Science.gov

Sample records for phosphodiesterase-4 promotes brain

  1. Chronic Cognitive Dysfunction after Traumatic Brain Injury Is Improved with a Phosphodiesterase 4B Inhibitor

    PubMed Central

    Titus, David J.; Wilson, Nicole M.; Freund, Julie E.; Carballosa, Melissa M.; Sikah, Kevin E.; Furones, Concepcion; Dietrich, W. Dalton; Gurney, Mark E.

    2016-01-01

    Learning and memory impairments are common in traumatic brain injury (TBI) survivors. However, there are no effective treatments to improve TBI-induced learning and memory impairments. TBI results in decreased cAMP signaling and reduced cAMP-response-element binding protein (CREB) activation, a critical pathway involved in learning and memory. TBI also acutely upregulates phosphodiesterase 4B2 (PDE4B2), which terminates cAMP signaling by hydrolyzing cAMP. We hypothesized that a subtype-selective PDE4B inhibitor could reverse the learning deficits induced by TBI. To test this hypothesis, adult male Sprague-Dawley rats received sham surgery or moderate parasagittal fluid-percussion brain injury. At 3 months postsurgery, animals were administered a selective PDE4B inhibitor or vehicle before cue and contextual fear conditioning, water maze training and a spatial working memory task. Treatment with the PDE4B inhibitor significantly reversed the TBI-induced deficits in cue and contextual fear conditioning and water maze retention. To further understand the underlying mechanisms of these memory impairments, we examined hippocampal long-term potentiation (LTP). TBI resulted in a significant reduction in basal synaptic transmission and impaired expression of LTP. Treatment with the PDE4B inhibitor significantly reduced the deficits in basal synaptic transmission and rescued LTP expression. The PDE4B inhibitor reduced tumor necrosis factor-α levels and increased phosphorylated CREB levels after TBI, suggesting that this drug inhibited molecular pathways in the brain known to be regulated by PDE4B. These results suggest that a subtype-selective PDE4B inhibitor is a potential therapeutic to reverse chronic learning and memory dysfunction and deficits in hippocampal synaptic plasticity following TBI. SIGNIFICANCE STATEMENT Currently, there are an estimated 3.2–5.3 million individuals living with disabilities from traumatic brain injury (TBI) in the United States, and 8 of

  2. Chronic Cognitive Dysfunction after Traumatic Brain Injury Is Improved with a Phosphodiesterase 4B Inhibitor.

    PubMed

    Titus, David J; Wilson, Nicole M; Freund, Julie E; Carballosa, Melissa M; Sikah, Kevin E; Furones, Concepcion; Dietrich, W Dalton; Gurney, Mark E; Atkins, Coleen M

    2016-07-06

    Learning and memory impairments are common in traumatic brain injury (TBI) survivors. However, there are no effective treatments to improve TBI-induced learning and memory impairments. TBI results in decreased cAMP signaling and reduced cAMP-response-element binding protein (CREB) activation, a critical pathway involved in learning and memory. TBI also acutely upregulates phosphodiesterase 4B2 (PDE4B2), which terminates cAMP signaling by hydrolyzing cAMP. We hypothesized that a subtype-selective PDE4B inhibitor could reverse the learning deficits induced by TBI. To test this hypothesis, adult male Sprague-Dawley rats received sham surgery or moderate parasagittal fluid-percussion brain injury. At 3 months postsurgery, animals were administered a selective PDE4B inhibitor or vehicle before cue and contextual fear conditioning, water maze training and a spatial working memory task. Treatment with the PDE4B inhibitor significantly reversed the TBI-induced deficits in cue and contextual fear conditioning and water maze retention. To further understand the underlying mechanisms of these memory impairments, we examined hippocampal long-term potentiation (LTP). TBI resulted in a significant reduction in basal synaptic transmission and impaired expression of LTP. Treatment with the PDE4B inhibitor significantly reduced the deficits in basal synaptic transmission and rescued LTP expression. The PDE4B inhibitor reduced tumor necrosis factor-α levels and increased phosphorylated CREB levels after TBI, suggesting that this drug inhibited molecular pathways in the brain known to be regulated by PDE4B. These results suggest that a subtype-selective PDE4B inhibitor is a potential therapeutic to reverse chronic learning and memory dysfunction and deficits in hippocampal synaptic plasticity following TBI. Currently, there are an estimated 3.2-5.3 million individuals living with disabilities from traumatic brain injury (TBI) in the United States, and 8 of 10 of these individuals

  3. Etazolate, a phosphodiesterase 4 inhibitor reverses chronic unpredictable mild stress-induced depression-like behavior and brain oxidative damage.

    PubMed

    Jindal, Ankur; Mahesh, Radhakrishnan; Bhatt, Shvetank

    2013-04-01

    Etazolate, a pyrazolopyridine class compound is selective inhibitor of type 4 phosphodiesterase (PDE4). Previous study in our laboratory has demonstrated that etazolate produced antidepressant-like effect in rodent models of behavioral despair. The present study was designed to investigate whether etazolate could affect the chronic unpredictable mild stress (CUMS)-induced depression in mice. The effect of etazolate on CUMS-induced depression was examined by measuring behavioral parameters and oxidant/antioxidant status of brain tissue. Mice were subjected to different stress paradigms daily for a period of 28days to induce depressive-like behavior. The results showed that CUMS caused depression-like behavior in mice, as indicated by significant (p<0.05) decrease in sucrose consumption and increase in duration of immobility. Moreover, CUMS also significantly (p<0.05) increased the oxidative stress markers and decreased the antioxidant enzymes activity. Chronic administration of etazolate (0.5 and 1mg/kg., p.o.) and fluoxetine (20mg/kg., p.o.) significantly (p<0.05) inhibited the CUMS-induced behavioral (decreased sucrose consumption and increased duration of immobility) and biochemical (increased lipid peroxidation and nitrite level; decreased glutathione, superoxide dismutase and catalase activity) changes. No alteration was observed in locomotor activity. Additionally, in the present study, the efficacy of etazolate (1mg/kg., p.o.) on the behavioral and biochemical paradigms was found comparable to that of fluoxetine, used as standard antidepressant. In conclusion, the results of the present study suggested that etazolate alleviated the CUMS-induced depression in mice, which is at least in part mediated by modulating oxidative-nitrosative stress status in mice brain.

  4. In cardiac myocytes, cAMP elevation triggers the down-regulation of transcripts and promoter activity for cyclic AMP phosphodiesterase-4A10 (PDE4A10).

    PubMed

    McCahill, Angela; Campbell, Lachlan; McSorley, Theresa; Sood, Arvind; Lynch, Martin J; Li, Xiang; Yan, Chen; Baillie, George S; Houslay, Miles D

    2008-11-01

    Transcripts for the PDE4A10 cyclic AMP phosphodiesterase isoform are present in a wide variety of rat tissues including the heart. Sequence comparisons between the putative human and mouse promoters revealed a number of conserved regions including both an Sp1 and a CREB-binding site. The putative mouse PDE4A10 promoter was amplified from genomic DNA and sub-cloned into a luciferase reporter vector for investigation of activity in neonatal cardiac myocytes. Transfection with this construct identified a high level of luciferase expression in neonatal cardiac myocytes. Surprisingly, this activity was down-regulated by elevation of intracellular cAMP through a process involving PKA, but not EPAC, signalling. Such inhibition of the rodent PDE4A10 promoter activity in response to elevated cAMP levels is in contrast to the PDE4 promoters so far described. Site-directed mutagenesis revealed that the Sp1 binding site at promoter position -348 to -336 is responsible for the basal constitutive expression of murine PDE4A10. The conserved CREB-binding motif at position -370 to -363 also contributes to basal promoter activity but does not in itself confer cAMP inhibition upon the PDE4A10 promoter. EMSA analysis confirmed the authenticity of CREB and Sp1 binding sites. The transcriptional start site was identified to be an adenine residue at position -55 in the mouse PDE4A10 promoter. We present evidence that this novel down-regulation of PDE4A10 is mediated by the transcription factor ICER in a PKA dependent manner. The pool of cAMP in cardiac myocytes that down-regulates PDE4A10 is regulated by beta-adrenoceptor coupled adenylyl cyclase activity and via hydrolysis determined predominantly by the action of PDE4 (cAMP phosphodiesterase-4) and not PDE3 (cAMP phosphodiesterase-3). We suggest that increased cAMP may remodel cAMP-mediated signalling events by not only increasing the expression of specific PDE4 cAMP phosphodiesterases but also by down-regulating specific isoforms

  5. The phosphodiesterase-4 inhibitor rolipram protects from ischemic stroke in mice by reducing blood-brain-barrier damage, inflammation and thrombosis.

    PubMed

    Kraft, Peter; Schwarz, Tobias; Göb, Eva; Heydenreich, Nadine; Brede, Marc; Meuth, Sven G; Kleinschnitz, Christoph

    2013-09-01

    Blood-brain-barrier (BBB) disruption, inflammation and thrombosis are important steps in the pathophysiology of acute ischemic stroke but are still inaccessible to therapeutic interventions. Rolipram specifically inhibits the enzyme phosphodiesterase (PDE) 4 thereby preventing the inactivation of the intracellular second messenger cyclic adenosine monophosphate (cAMP). Rolipram has been shown to relief inflammation and BBB damage in a variety of neurological disorders. We investigated the therapeutic potential of rolipram in a model of brain ischemia/reperfusion injury in mice. Treatment with 10mg/kg rolipram, but not 2 mg/kg rolipram, 2 h after 60 min of transient middle cerebral artery occlusion (tMCAO) reduced infarct volumes by 50% and significantly improved clinical scores on day 1 compared with vehicle-treated controls. Rolipram maintained BBB function upon stroke as indicated by preserved expression of the tight junction proteins occludin and claudin-5. Accordingly, the formation of vascular brain edema was strongly attenuated in mice receiving rolipram. Moreover, rolipram reduced the invasion of neutrophils as well as the expression of the proinflammatory cytokines IL-1β and TNFα but increased the levels of TGFβ-1. Finally, rolipram exerted antithrombotic effects upon stroke and fewer neurons in the rolipram group underwent apoptosis. Rolipram is a multifaceted antiinflammatory and antithrombotic compound that protects from ischemic neurodegeneration in clinically meaningful settings.

  6. Selective Phosphodiesterase 4B Inhibitors: A Review

    PubMed Central

    Azam, Mohammed Afzal; Tripuraneni, Naga Srinivas

    2014-01-01

    Abstract Phosphodiesterase 4B (PDE4B) is a member of the phosphodiesterase family of proteins that plays a critical role in regulating intracellular levels of cyclic adenosine monophosphate (cAMP) by controlling its rate of degradation. It has been demonstrated that this isoform is involved in the orchestra of events which includes inflammation, schizophrenia, cancers, chronic obstructive pulmonary disease, contractility of the myocardium, and psoriatic arthritis. Phosphodiesterase 4B has constituted an interesting target for drug development. In recent years, a number of PDE4B inhibitors have been developed for their use as therapeutic agents. In this review, an up-to-date status of the inhibitors investigated for the inhibition of PDE4B has been given so that this rich source of structural information of presently known PDE4B inhibitors could be helpful in generating a selective and potent inhibitor of PDE4B. PMID:25853062

  7. Brain Dynamics Promotes Function

    NASA Astrophysics Data System (ADS)

    Lourenço, Carlos

    Dynamical structure in the brain promotes biological function. Natural scientists look for correlations between measured electrical signals and behavior or mental states. Computational scientists have new opportunities to receive ’algorithmic’ inspiration from brain processes and propose computational paradigms. Thus a tradition which dates back to the 1940s with neural nets research is renewed. Real processes in the brain are ’complex’ and withstand trivial descriptions. However, dynamical complexity need not be at odds with a computational description of the phenomena and with the inspiration for algorithms that actually compute something in an engineering sense. We engage this complexity from a computational viewpoint, not excluding dynamical regimes that a number of authors are willing to label as chaos. The key question is: what may we be missing computation-wise if we overlook brain dynamics? At this point in brain research, we are happy if we can at least provide a partial answer.

  8. Phosphodiesterase 4D acts downstream of Neuropilin to control Hedgehog signal transduction and the growth of medulloblastoma.

    PubMed

    Ge, Xuecai; Milenkovic, Ljiljana; Suyama, Kaye; Hartl, Tom; Purzner, Teresa; Winans, Amy; Meyer, Tobias; Scott, Matthew P

    2015-09-15

    Alterations in Hedgehog (Hh) signaling lead to birth defects and cancers including medulloblastoma, the most common pediatric brain tumor. Although inhibitors targeting the membrane protein Smoothened suppress Hh signaling, acquired drug resistance and tumor relapse call for additional therapeutic targets. Here we show that phosphodiesterase 4D (PDE4D) acts downstream of Neuropilins to control Hh transduction and medulloblastoma growth. PDE4D interacts directly with Neuropilins, positive regulators of Hh pathway. The Neuropilin ligand Semaphorin3 enhances this interaction, promoting PDE4D translocation to the plasma membrane and cAMP degradation. The consequent inhibition of protein kinase A (PKA) enhances Hh transduction. In the developing cerebellum, genetic removal of Neuropilins reduces Hh signaling activity and suppresses proliferation of granule neuron precursors. In mouse medulloblastoma allografts, PDE4D inhibitors suppress Hh transduction and inhibit tumor growth. Our findings reveal a new regulatory mechanism of Hh transduction, and highlight PDE4D as a promising target to treat Hh-related tumors.

  9. Phosphodiesterase 4D acts downstream of Neuropilin to control Hedgehog signal transduction and the growth of medulloblastoma

    PubMed Central

    Ge, Xuecai; Milenkovic, Ljiljana; Suyama, Kaye; Hartl, Tom; Purzner, Teresa; Winans, Amy; Meyer, Tobias; Scott, Matthew P

    2015-01-01

    Alterations in Hedgehog (Hh) signaling lead to birth defects and cancers including medulloblastoma, the most common pediatric brain tumor. Although inhibitors targeting the membrane protein Smoothened suppress Hh signaling, acquired drug resistance and tumor relapse call for additional therapeutic targets. Here we show that phosphodiesterase 4D (PDE4D) acts downstream of Neuropilins to control Hh transduction and medulloblastoma growth. PDE4D interacts directly with Neuropilins, positive regulators of Hh pathway. The Neuropilin ligand Semaphorin3 enhances this interaction, promoting PDE4D translocation to the plasma membrane and cAMP degradation. The consequent inhibition of protein kinase A (PKA) enhances Hh transduction. In the developing cerebellum, genetic removal of Neuropilins reduces Hh signaling activity and suppresses proliferation of granule neuron precursors. In mouse medulloblastoma allografts, PDE4D inhibitors suppress Hh transduction and inhibit tumor growth. Our findings reveal a new regulatory mechanism of Hh transduction, and highlight PDE4D as a promising target to treat Hh-related tumors. DOI: http://dx.doi.org/10.7554/eLife.07068.001 PMID:26371509

  10. Practical enantioselective process for a chiral phosphodiesterase-4 inhibitor.

    PubMed

    Chen, Cheng-Yi

    2005-11-01

    L-869298 is a potent and selective phosphodiesterase-4 (PDE4) inhibitor, which is potentially useful in the treatment of asthma and chronic obstructive pulmonary disorder. A catalytic asymmetric synthesis that is suitable for the preparation of kilogram quantities of L-869298, and which does not require the use of chromatography, has been developed to support the on-going drug development program of L-869298 at Merck Research Laboratories. The catalytic asymmetric hydrogenation of an aromatic heteroaromatic ketone afforded the corresponding alcohol in almost perfect enantioselectivity. Activation of the alcohol via formation of the 4-toluenesulfonate, followed by an unprecedented displacement of the tosylate via the lithium enolate of ethyl-3-pyridyl acetate N-oxide, generated the chiral tetra-substituted ethane. The displacement reaction proceeded with inversion of configuration and without loss of optical purity. Deprotection of the displacement adduct followed by decarboxylation, afforded L-869298 in excellent overall yield. The methodology developed could be readily extended to the synthesis of several other chiral PDE4 inhibitors.

  11. Identification and Characterization of Baicalin as a Phosphodiesterase 4 Inhibitor.

    PubMed

    Park, Kyuhee; Lee, Jong Suk; Choi, Jung Suk; Nam, Yeon-Ju; Han, Jong-Heon; Byun, Hoo-Dhon; Song, Myung-Jin; Oh, Joa-Sup; Kim, Sung Gyu; Choi, Yongmun

    2016-01-01

    Asthma is a chronic inflammatory disease of lung airways, and pharmacological inhibitors of cyclic adenosine monophosphate-specific phosphodiesterase 4 (PDE4) have been considered as therapeutics for the treatment of asthma. However, development of PDE4 inhibitors in clinical trials has been hampered because of the severe side effects of non-selective PDE4 inhibitors. Here, screening of a plant extract library in conjunction with dereplication technology led to identification of baicalin as a new type of PDE4-selective inhibitor. We demonstrated that while rolipram inhibited the enzyme activity of a range of PDE4 subtypes in in vitro enzyme assays, baicalin selectively inhibited the enzyme activity of PDE4A and 4B. In addition, baicalin suppressed lipopolysaccharide-induced TNF-α expression in macrophage where PDE4B plays a key role in lipopolysaccharide-induced signaling. Furthermore, baicalin treatment in an animal model of allergic asthma reduced inflammatory cell infiltration and TNF-α levels in bronchoalveolar lavage fluids, indicating that the antiinflammatory effects of baicalin in vivo are attributable, in part, to its ability to inhibit PDE4. Copyright © 2015 John Wiley & Sons, Ltd.

  12. Phosphodiesterase 4D gene polymorphisms in sudden sensorineural hearing loss.

    PubMed

    Chien, Chen-Yu; Tai, Shu-Yu; Wang, Ling-Feng; Hsi, Edward; Chang, Ning-Chia; Wang, Hsun-Mo; Wu, Ming-Tsang; Ho, Kuen-Yao

    2016-09-01

    The phosphodiesterase 4D (PDE4D) gene has been reported as a risk gene for ischemic stroke. The vascular factors are between the hypothesized etiologies of sudden sensorineural hearing loss (SSNHL), and this genetic effect might be attributed for its role in SSNHL. We hypothesized that genetic variants of the PDE4D gene are associated with susceptibility to SSNHL. We conducted a case-control study with 362 SSNHL cases and 209 controls. Three single nucleotide polymorphisms (SNPs) were selected. The genotypes were determined using TaqMan technology. Hardy-Weinberg equilibrium (HWE) was tested for each SNP, and genetic effects were evaluated according to three inheritance modes. We carried out sex-specific analysis to analyze the overall data. All three SNPs were in HWE. When subjects were stratified by sex, the genetic effect was only evident in females but not in males. The TT genotype of rs702553 exhibited an adjusted odds ratio (OR) of 3.83 (95 % confidence interval = 1.46-11.18) (p = 0.006) in female SSNHL. The TT genotype of SNP rs702553 was associated with female SSNHL under the recessive model (p = 0.004, OR 3.70). In multivariate logistic regression analysis, TT genotype of rs702553 was significantly associated with female SSNHL (p = 0.0043, OR 3.70). These results suggest that PDE4D gene polymorphisms influence the susceptibility for the development of SSNHL in the southern Taiwanese female population.

  13. Phosphodiesterase 4 inhibitors for chronic obstructive pulmonary disease.

    PubMed

    Chong, Jimmy; Leung, Bonnie; Poole, Phillippa

    2013-11-04

    Chronic obstructive pulmonary disease (COPD) is associated with cough, sputum production or dyspnoea and a reduction in lung function, quality of life and life expectancy. Apart from smoking cessation, there are no other treatments that slow lung function decline. Roflumilast and cilomilast are oral phosphodiesterase 4 (PDE4) inhibitors proposed to reduce the airway inflammation and bronchoconstriction seen in COPD. To evaluate the efficacy and safety of oral PDE4 inhibitors in the management of stable COPD. We identified randomised controlled trials (RCTs) from the Cochrane Airways Group Specialised Register of trials (date of last search June 2013). We found other trials from web-based clinical trial registers. We included RCTs if they compared oral PDE4 inhibitors with placebo in people with COPD. We allowed co-administration of standard COPD therapy. One review author extracted data and a second review author checked the data, before entry into The Cochrane Collaboration software program (RevMan version 5.2). We reported pooled data as mean differences (MD), standardised mean differences (SMD) or odds ratios (OR). Twenty-nine separate RCTs studying roflumilast (15 trials, 12,654 patients) or cilomilast (14 trials, 6457 patients) met the inclusion criteria, with a duration between six weeks and one year. These included people across international study centres with moderate to very severe COPD (GOLD grades II-IV), with a mean age of 64 years.Treatment with a PDE4 inhibitor was associated with a significant improvement in forced expiratory volume in one second (FEV1) over the trial period compared with placebo (MD 45.60 mL; 95% confidence interval (CI) 39.45 to 51.75, 22 trials with 15,670 participants, moderate quality evidence due to moderate levels of heterogeneity and risk of reporting bias). There were small improvements in quality of life (St George's Respiratory Questionnaire MD -1.04; 95% CI -1.66 to -0.41, 10 trials with 7618 participants, moderate

  14. Aggregation of scaffolding protein DISC1 dysregulates phosphodiesterase 4 in Huntington's disease.

    PubMed

    Tanaka, Motomasa; Ishizuka, Koko; Nekooki-Machida, Yoko; Endo, Ryo; Takashima, Noriko; Sasaki, Hideyuki; Komi, Yusuke; Gathercole, Amy; Huston, Elaine; Ishii, Kazuhiro; Hui, Kelvin Kai-Wan; Kurosawa, Masaru; Kim, Sun-Hong; Nukina, Nobuyuki; Takimoto, Eiki; Houslay, Miles D; Sawa, Akira

    2017-04-03

    Huntington's disease (HD) is a polyglutamine (polyQ) disease caused by aberrant expansion of the polyQ tract in Huntingtin (HTT). While motor impairment mediated by polyQ-expanded HTT has been intensively studied, molecular mechanisms for nonmotor symptoms in HD, such as psychiatric manifestations, remain elusive. Here we have demonstrated that HTT forms a ternary protein complex with the scaffolding protein DISC1 and cAMP-degrading phosphodiesterase 4 (PDE4) to regulate PDE4 activity. We observed pathological cross-seeding between DISC1 and mutant HTT aggregates in the brains of HD patients as well as in a murine model that recapitulates the polyQ pathology of HD (R6/2 mice). In R6/2 mice, consequent reductions in soluble DISC1 led to dysregulation of DISC1-PDE4 complexes, aberrantly increasing the activity of PDE4. Importantly, exogenous expression of a modified DISC1, which binds to PDE4 but not mutant HTT, normalized PDE4 activity and ameliorated anhedonia in the R6/2 mice. We propose that cross-seeding of mutant HTT and DISC1 and the resultant changes in PDE4 activity may underlie the pathology of a specific subset of mental manifestations of HD, which may provide an insight into molecular signaling in mental illness in general.

  15. Phosphodiesterase 4 inhibitors for chronic obstructive pulmonary disease.

    PubMed

    Chong, Jimmy; Leung, Bonnie; Poole, Phillippa

    2017-09-19

    Chronic obstructive pulmonary disease (COPD) is associated with cough, sputum production or dyspnoea and a reduction in lung function, quality of life and life expectancy. Apart from smoking cessation, there are no other treatments that slow lung function decline. Roflumilast and cilomilast are oral phosphodiesterase 4 (PDE4) inhibitors proposed to reduce the airway inflammation and bronchoconstriction seen in COPD. This is an update of a Cochrane review first published in 2011 and updated in 2013. To evaluate the efficacy and safety of oral PDE4 inhibitors in the management of stable COPD. We identified randomised controlled trials (RCTs) from the Cochrane Airways Trials Register (date of last search October 2016). We found other trials from web-based clinical trials registers. We included RCTs if they compared oral PDE4 inhibitors with placebo in people with COPD. We allowed co-administration of standard COPD therapy. One review author extracted data and a second review author checked the data. We reported pooled data in Review Manager as mean differences (MD), standardised mean differences (SMD) or odds ratios (OR). We converted the odds ratios into absolute treatment effects in a 'Summary of findings' table. Thirty-four separate RCTs studying roflumilast (20 trials with 17,627 participants) or cilomilast (14 trials with 6457 participants) met the inclusion criteria, with a duration of between six weeks and one year. These included people across international study centres with moderate to very severe COPD (Global Initiative for Chronic Obstructive Lung Disease (GOLD) grades II-IV), with a mean age of 64 years.We considered that the methodological quality of the 34 published and unpublished trials was acceptable overall. Treatment with a PDE4 inhibitor was associated with a significant improvement in forced expiratory volume in one second (FEV1) over the trial period compared with placebo (MD 51.53 mL, 95% confidence interval (CI) 43.17 to 59.90, 27 trials with

  16. Specific Inhibition of Phosphodiesterase-4B Results in Anxiolysis and Facilitates Memory Acquisition.

    PubMed

    McGirr, Alexander; Lipina, Tatiana V; Mun, Ho-Suk; Georgiou, John; Al-Amri, Ahmed H; Ng, Enoch; Zhai, Dongxu; Elliott, Christina; Cameron, Ryan T; Mullins, Jonathan G L; Liu, Fang; Baillie, George S; Clapcote, Steven J; Roder, John C

    2016-03-01

    Cognitive dysfunction is a core feature of dementia and a prominent feature in psychiatric disease. As non-redundant regulators of intracellular cAMP gradients, phosphodiesterases (PDE) mediate fundamental aspects of brain function relevant to learning, memory, and higher cognitive functions. Phosphodiesterase-4B (PDE4B) is an important phosphodiesterase in the hippocampal formation, is a major Disrupted in Schizophrenia 1 (DISC1) binding partner and is itself a risk gene for psychiatric illness. To define the effects of specific inhibition of the PDE4B subtype, we generated mice with a catalytic domain mutant form of PDE4B (Y358C) that has decreased ability to hydrolyze cAMP. Structural modeling predictions of decreased function and impaired binding with DISC1 were confirmed in cell assays. Phenotypic characterization of the PDE4B(Y358C) mice revealed facilitated phosphorylation of CREB, decreased binding to DISC1, and upregulation of DISC1 and β-Arrestin in hippocampus and amygdala. In behavioral assays, PDE4B(Y358C) mice displayed decreased anxiety and increased exploration, as well as cognitive enhancement across several tests of learning and memory, consistent with synaptic changes including enhanced long-term potentiation and impaired depotentiation ex vivo. PDE4B(Y358C) mice also demonstrated enhanced neurogenesis. Contextual fear memory, though intact at 24 h, was decreased at 7 days in PDE4B(Y358C) mice, an effect replicated pharmacologically with a non-selective PDE4 inhibitor, implicating cAMP signaling by PDE4B in a very late phase of consolidation. No effect of the PDE4B(Y358C) mutation was observed in the prepulse inhibition and forced swim tests. Our data establish specific inhibition of PDE4B as a promising therapeutic approach for disorders of cognition and anxiety, and a putative target for pathological fear memory.

  17. Anxiogenic-Like Behavioral Phenotype of Mice Deficient in Phosphodiesterase 4B (PDE4B)

    PubMed Central

    Zhang, Han-Ting; Huang, Ying; Masood, Anbrin; Stolinski, Lisa R; Li, Yunfeng; Zhang, Lei; Dlaboga, Daniel; Jin, S-L Catherine; Conti, Marco; O’Donnell, James M

    2009-01-01

    Phosphodiesterase-4 (PDE4), an enzyme that catalyzes the hydrolysis of cyclic AMP and plays a critical role in controlling its intracellular concentration, has been implicated in depression- and anxiety-like behaviors. However, the functions of the four PDE4 subfamilies (PDE4A, PDE4B, PDE4C, and PDE4D) remain largely unknown. In animal tests sensitive to anxiolytics, antidepressants, memory enhancers, or analgesics, we examined the behavioral phenotype of mice deficient in PDE4B (PDE4B−/−). Immunoblot analysis revealed loss of PDE4B expression in the cerebral cortex and amygdala of PDE4B−/− mice. The reduction of PDE4B expression was accompanied by decreases in PDE4 activity in the brain regions of PDE4B−/− mice. Compared to PDE4B + / + littermates, PDE4B−/− mice displayed anxiogenic-like behavior, as evidenced by decreased head-dips and time spent in head-dipping in the holeboard test, reduced transitions and time on the light side in the light–dark transition test, and decreased initial exploration and rears in the open-field test. Consistent with anxiogenic-like behavior, PDE4B−/− mice displayed increased levels of plasma corticosterone. In addition, these mice also showed a modest increase in the proliferation of neuronal cells in the hippocampal dentate gyrus. In the forced-swim test, PDE4B−/− mice exhibited decreased immobility; however, this was not supported by the results from the tail-suspension test. PDE4B−/− mice did not display changes in memory, locomotor activity, or nociceptive responses. Taken together, these results suggest that the PDE4B subfamily is involved in signaling pathways that contribute to anxiogenic-like effects on behavior PMID:17700644

  18. Discovery of a highly potent series of oxazole-based phosphodiesterase 4 inhibitors.

    PubMed

    Kuang, Rongze; Shue, Ho-Jane; Blythin, David J; Shih, Neng-Yang; Gu, Danlin; Chen, Xiao; Schwerdt, John; Lin, Ling; Ting, Pauline C; Zhu, Xiaohong; Aslanian, Robert; Piwinski, John J; Xiao, Li; Prelusky, Daniel; Wu, Ping; Zhang, Ji; Zhang, Xiang; Celly, Chander S; Minnicozzi, Michael; Billah, Motasim; Wang, Peng

    2007-09-15

    Substituted quinolyl oxazoles were discovered as a novel and highly potent series of phosphodiesterase 4 (PDE4) inhibitors. Structure-activity relationship studies revealed that the oxazole core, with 4-carboxamide and 5-aminomethyl groups, is a novel PDE4 inhibitory pharmacophore. Selectivity profiles and in vivo biological activity are also reported.

  19. Intravenously administered phosphodiesterase 4 inhibitors dilate retinal blood vessels in rats.

    PubMed

    Miwa, Tomoyo; Mori, Asami; Nakahara, Tsutomu; Ishii, Kunio

    2009-01-05

    In the present study, we examined effects of intravenously administered inhibitors of phosphodiesterase 4 (rolipram and 4-(3-butoxy-4-methoxybenzyl)-2-imidazolidinone (Ro-20-1724)) and non-selective inhibitor of phosphodiesterases (theophylline) on diameter of retinal blood vessel and fundus (retinal/choroidal) blood flow in rats. Male Wistar rats (8- to 10-week-old) were treated with tetrodotoxin (50 microg/kg, i.v.) to eliminate any nerve activity and prevent the eye movement under artificial ventilation. Methoxamine was used to maintain adequate systemic circulation. Ocular fundus images were captured with an original high-resolution digital fundus camera for small animals. Diameters of retinal blood vessels contained in the digital images were measured using image-processing softwares on a personal computer. Fundus blood flow was measured using a laser Doppler flow meter. Both rolipram (0.01-10 microg/kg/min, i.v.) and Ro-20-1724 (0.01-10 microg/kg/min, i.v.) increased diameters of retinal blood vessels in a dose-dependent manner without significant effect on systemic blood pressure, heart rate and fundus blood flow. The effects of phosphodiesterase 4 inhibitors on retinal arterioles were greater than those on retinal venules. Similarly, theophylline (0.1-10 mg/kg/min, i.v.) dilated retinal blood vessels, whereas it decreased blood pressure and increased heart rate markedly. These results suggest that phosphodiesterase 4 contributes to maintenance of retinal vascular tone. Inhibitors of phosphodiesterase 4 could be considered as a candidate for therapeutic drugs to treat diseases associated with disorders of retinal circulation without severe cardiovascular side-effects.

  20. Selaginpulvilins A-D, new phosphodiesterase-4 inhibitors with an unprecedented skeleton from Selaginella pulvinata.

    PubMed

    Liu, Xin; Luo, Hai-Bin; Huang, Yi-You; Bao, Jing-Mei; Tang, Gui-Hua; Chen, Yun-Yun; Wang, Jun; Yin, Sheng

    2014-01-03

    Selaginpulvilins A-D (1-4), four new phenols with an unprecedented 9,9-diphenyl-1-(phenylethynyl)-9H-fluorene skeleton, together with four known selaginellins (5-8) were isolated from Selaginella pulvinata. Their structures were elucidated by spectroscopic analysis and chemical correlation. The structure of 1 was confirmed by single-crystal X-ray diffraction. Compounds 1-8 exhibited remarkable inhibitory activities (IC50 values in the range of 0.11-5.13 μM) against phosphodiesterase-4 (PDE4), a drug target for the treatment of asthma and chronic obstructive pulmonary disease.

  1. Inhibition of Phosphodiesterase-4 during Pneumococcal Pneumonia Reduces Inflammation and Lung Injury in Mice.

    PubMed

    Tavares, Luciana P; Garcia, Cristiana C; Vago, Juliana P; Queiroz-Junior, Celso M; Galvão, Izabela; David, Bruna A; Rachid, Milene A; Silva, Patrícia M R; Russo, Remo C; Teixeira, Mauro M; Sousa, Lirlândia P

    2016-07-01

    Pneumococcal pneumonia is a leading cause of mortality worldwide. The inflammatory response to bacteria is necessary to control infection, but it may also contribute to tissue damage. Phosphodiesterase-4 inhibitors, such as rolipram (ROL), effectively reduce inflammation. Here, we examined the impact of ROL in a pneumococcal pneumonia murine model. Mice were infected intranasally with 10(5)-10(6) CFU of Streptococcus pneumoniae, treated with ROL in a prophylactic or therapeutic schedule in combination, or not, with the antibiotic ceftriaxone. Inflammation and bacteria counts were assessed, and ex vivo phagocytosis assays were performed. ROL treatment during S. pneumoniae infection decreased neutrophil recruitment into lungs and airways and reduced lung injury. Prophylactic ROL treatment also decreased cytokine levels in the airways. Although modulation of inflammation by ROL ameliorated pneumonia, bacteria burden was not reduced. On the other hand, antibiotic therapy reduced bacteria without reducing neutrophil infiltration, cytokine level, or lung injury. Combined ROL and ceftriaxone treatment decreased lethality rates and was more efficient in reducing inflammation, by increasing proresolving protein annexin A1 (AnxA1) expression, and bacterial burden by enhancing phagocytosis. Lack of AnxA1 increased inflammation and lethality induced by pneumococcal infection. These data show that immunomodulatory effects of phosphodiesterase-4 inhibitors are useful during severe pneumococcal pneumonia and suggest their potential benefit as adjunctive therapy during infectious diseases.

  2. The effect of resveratrol on beta amyloid-induced memory impairment involves inhibition of phosphodiesterase-4 related signaling

    PubMed Central

    Wang, Gang; Chen, Ling; Pan, Xiaoyu; Chen, Jiechun; Wang, Liqun; Wang, Weijie; Cheng, Ruochuan; Wu, Fan; Feng, Xiaoqing; Yu, Yingcong; Zhang, Han-Ting; O'Donnell, James M.; Xu, Ying

    2016-01-01

    Resveratrol, a natural polyphenol found in red wine, has wide spectrum of pharmacological properties including antioxidative and antiaging activities. Beta amyloid peptides (Aβ) are known to involve cognitive impairment, neuroinflammatory and apoptotic processes in Alzheimer's disease (AD). Activation of cAMP and/or cGMP activities can improve memory performance and decrease the neuroinflammation and apoptosis. However, it remains unknown whether the memory enhancing effect of resveratrol on AD associated cognitive disorders is related to the inhibition of phosphodiesterase 4 (PDE4) subtypes and subsequent increases in intracellular cAMP and/or cGMP activities. This study investigated the effect of resveratrol on Aβ1-42-induced cognitive impairment and the participation of PDE4 subtypes related cAMP or cGMP signaling. Mice microinfused with Aβ1-42 into bilateral CA1 subregions displayed learning and memory impairment, as evidenced by reduced memory acquisition and retrieval in the water maze and retention in the passive avoidance tasks; it was also significant that neuroinflammatory and pro-apoptotic factors were increased in Aβ1-42-treated mice. Aβ1-42-treated mice also increased in PDE4A, 4B and 4D expression, and decreased in PKA level. However, PKA inhibitor H89, but not PKG inhibitor KT5823, prevented resveratrol's effects on these parameters. Resveratrol also reversed Aβ1-42-induced decreases in phosphorylated cAMP response-element binding protein (pCREB), brain derived neurotrophic factor (BDNF) and anti-apoptotic factor BCl-2 expression, which were reversed by H89. These findings suggest that resveratrol reversing Aβ-induced learning and memory disorder may involve the regulation of neuronal inflammation and apoptosis via PDE4 subtypes related cAMP-CREB-BDNF signaling. PMID:26980711

  3. Phosphodiesterase 4D and 5-Lipoxygenase Activating Protein in Ischemic Stroke

    PubMed Central

    Meschia, James F.; Brott, Thomas G.; Brown, Robert D.; Crook, Richard; Worrall, Bradford B.; Kissela, Brett; Brown, W. Mark; Rich, Stephen S.; Case, L. Douglas; Evans, E. Whitney; Hague, Stephen; Singleton, Andrew; Hardy, John

    2006-01-01

    Risk for ischemic stroke is mediated by both environmental and genetic factors. Although several environmental exposures have been implicated, relatively little is known about the genetic basis of predisposition to this disease. Recent studies in Iceland identified risk polymorphisms in two putative candidate genes for ischemic stroke: phosphodiesterase 4D (PDE4D) and 5-lipoxygenase activating protein (ALOX5AP). A collection of North American sibling pairs concordant for ischemic stroke and two cohorts of prospectively ascertained North American ischemic stroke cases and control subjects were used for evaluation of PDE4D and ALOX5AP. Although no evidence supported linkage of ischemic stroke with either of the two candidate genes, single-nucleotide polymorphisms and haplotypic associations were observed between PDE4D and ischemic stroke. There was no evidence of association between variants of ALOX5AP and ischemic stroke. These data suggest that common variants in PDE4D may contribute to the genetic risk for ischemic stroke in multiple populations. PMID:16130105

  4. Pharmacologic Inhibition of Host Phosphodiesterase-4 Improves Isoniazid-Mediated Clearance of Mycobacterium tuberculosis

    PubMed Central

    Subbian, Selvakumar; Koo, Mi-Sun; Tsenova, Liana; Khetani, Vikram; Zeldis, Jerome B.; Fallows, Dorothy; Kaplan, Gilla

    2016-01-01

    The lengthy duration of multidrug therapy needed to cure tuberculosis (TB) poses significant challenges for global control of the disease. Moreover, chronic inflammation associated with TB leads to pulmonary damage that can remain even after successful cure. Thus, there is a great need for the development of effective shorter drug regimens to improve clinical outcome and strengthen TB control. Host-directed therapy (HDT) is emerging as a novel adjunctive strategy to enhance the efficacy and shorten the duration of TB treatment. Previously, we showed that the administration of CC-3052, a phosphodiesterase-4 inhibitor (PDE4i), reduced the host inflammatory response during Mycobacterium tuberculosis (Mtb) infection and improved the antimicrobial efficacy of isoniazid (INH) in both the mouse and rabbit models. In the present study, we evaluated the pharmacokinetics and explored the mechanism underlying the efficacy of a more potent PDE4i, CC-11050, as adjunct to INH treatment in a mouse model of pulmonary Mtb infection. Genome-wide lung transcriptome analysis confirmed the dampening of inflammation and associated network genes that we previously reported with CC-3052. Consistent with the reduction in inflammation, a significant improvement in Mtb control and pathology was observed in the lungs of mice treated with CC-11050 plus INH, compared to INH alone. This important confirmatory study will be used to help design upcoming human clinical trials with CC-11050 as an HDT for TB treatment. PMID:27379099

  5. Structures of the Four Subfamilies of Phosphodiesterase-4 Provide Insight into the Selectivity of Their Inhibitors

    SciTech Connect

    Wang, H.; Peng, M; Chen , Y; Geng, J; Robinson, H; Houslay , M; Cai, J; Ke, H

    2007-01-01

    PDE4 (phosphodiesterase-4)-selective inhibitors have attracted much attention as potential therapeutics for the treatment of both depression and major inflammatory diseases, but their practical application has been compromised by side effects. A possible cause for the side effects is that current PDE4-selective inhibitors similarly inhibit isoforms from all four PDE4 subfamilies. The development of PDE4 subfamily-selective inhibitors has been hampered by a lack of structural information. In the present study, we rectify this by providing the crystal structures of the catalytic domains of PDE4A, PDE4B and PDE4D in complex with the PDE4 inhibitor NVP 4-[8-(3-nitrophenyl)-[1,7]naphthyridin-6-yl]benzoic acid as well as the unliganded PDE4C structure. NVP binds in the same conformation to the deep cAMP substrate pocket and interacts with the same residues in each instance. However, detailed structural comparison reveals significant conformational differences. Although the active sites of PDE4B and PDE4D are mostly comparable, PDE4A shows significant displacements of the residues next to the invariant glutamine residue that is critical for substrate and inhibitor binding. PDE4C appears to be more distal from other PDE4 subfamilies, with certain key residues being disordered. Our analyses provide the first structural basis for the development of PDE4 subfamily-selective inhibitors.

  6. Structural Basis for the Design of Selective Phosphodiesterase 4B Inhibitors

    PubMed Central

    Fox, David; Burgin, Alex B.; Gurney, Mark E.

    2014-01-01

    Phosphodiesterase-4B (PDE4B) regulates the pro-inflammatory Toll Receptor –Tumor Necrosis Factor α (TNFα) pathway in monocytes, macrophages and microglial cells. As such, it is an important, although under-exploited molecular target for anti-inflammatory drugs. This is due in part to the difficulty of developing selective PDE4B inhibitors as the amino acid sequence of the PDE4 active site is identical in all PDE4 subtypes (PDE4A-D). We show that highly selective PDE4B inhibitors can be designed by exploiting sequence differences outside the active site. Specifically, PDE4B selectivity can be achieved by capture of a C-terminal regulatory helix, now termed CR3 (Control Region 3), across the active site in a conformation that closes access by cAMP. PDE4B selectivity is driven by a single amino acid polymorphism in CR3 (Leu674 in PDE4B1 versus Gln594 in PDE4D). The reciprocal mutations in PDE4B and PDE4D cause a 70-80 fold shift in selectivity. Our structural studies show that CR3 is flexible and can adopt multiple orientations and multiple registries in the closed conformation. The new co-crystal structure with bound ligand provides a guide map for the design of PDE4B selective anti-inflammatory drugs. PMID:24361374

  7. Pharmacologic Inhibition of Host Phosphodiesterase-4 Improves Isoniazid-Mediated Clearance of Mycobacterium tuberculosis.

    PubMed

    Subbian, Selvakumar; Koo, Mi-Sun; Tsenova, Liana; Khetani, Vikram; Zeldis, Jerome B; Fallows, Dorothy; Kaplan, Gilla

    2016-01-01

    The lengthy duration of multidrug therapy needed to cure tuberculosis (TB) poses significant challenges for global control of the disease. Moreover, chronic inflammation associated with TB leads to pulmonary damage that can remain even after successful cure. Thus, there is a great need for the development of effective shorter drug regimens to improve clinical outcome and strengthen TB control. Host-directed therapy (HDT) is emerging as a novel adjunctive strategy to enhance the efficacy and shorten the duration of TB treatment. Previously, we showed that the administration of CC-3052, a phosphodiesterase-4 inhibitor (PDE4i), reduced the host inflammatory response during Mycobacterium tuberculosis (Mtb) infection and improved the antimicrobial efficacy of isoniazid (INH) in both the mouse and rabbit models. In the present study, we evaluated the pharmacokinetics and explored the mechanism underlying the efficacy of a more potent PDE4i, CC-11050, as adjunct to INH treatment in a mouse model of pulmonary Mtb infection. Genome-wide lung transcriptome analysis confirmed the dampening of inflammation and associated network genes that we previously reported with CC-3052. Consistent with the reduction in inflammation, a significant improvement in Mtb control and pathology was observed in the lungs of mice treated with CC-11050 plus INH, compared to INH alone. This important confirmatory study will be used to help design upcoming human clinical trials with CC-11050 as an HDT for TB treatment.

  8. Structures of the four subfamilies of phosphodiesterase-4 provide insight into the selectivity of their inhibitors.

    PubMed

    Wang, Huanchen; Peng, Ming-Sheng; Chen, Yi; Geng, Jie; Robinson, Howard; Houslay, Miles D; Cai, Jiwen; Ke, Hengming

    2007-12-01

    PDE4 (phosphodiesterase-4)-selective inhibitors have attracted much attention as potential therapeutics for the treatment of both depression and major inflammatory diseases, but their practical application has been compromised by side effects. A possible cause for the side effects is that current PDE4-selective inhibitors similarly inhibit isoforms from all four PDE4 subfamilies. The development of PDE4 subfamily-selective inhibitors has been hampered by a lack of structural information. In the present study, we rectify this by providing the crystal structures of the catalytic domains of PDE4A, PDE4B and PDE4D in complex with the PDE4 inhibitor NVP {4-[8-(3-nitrophenyl)-[1,7]naphthyridin-6-yl]benzoic acid} as well as the unliganded PDE4C structure. NVP binds in the same conformation to the deep cAMP substrate pocket and interacts with the same residues in each instance. However, detailed structural comparison reveals significant conformational differences. Although the active sites of PDE4B and PDE4D are mostly comparable, PDE4A shows significant displacements of the residues next to the invariant glutamine residue that is critical for substrate and inhibitor binding. PDE4C appears to be more distal from other PDE4 subfamilies, with certain key residues being disordered. Our analyses provide the first structural basis for the development of PDE4 subfamily-selective inhibitors.

  9. Structural basis for the design of selective phosphodiesterase 4B inhibitors.

    PubMed

    Fox, David; Burgin, Alex B; Gurney, Mark E

    2014-03-01

    Phosphodiesterase-4B (PDE4B) regulates the pro-inflammatory Toll Receptor -Tumor Necrosis Factor α (TNFα) pathway in monocytes, macrophages and microglial cells. As such, it is an important, although under-exploited molecular target for anti-inflammatory drugs. This is due in part to the difficulty of developing selective PDE4B inhibitors as the amino acid sequence of the PDE4 active site is identical in all PDE4 subtypes (PDE4A-D). We show that highly selective PDE4B inhibitors can be designed by exploiting sequence differences outside the active site. Specifically, PDE4B selectivity can be achieved by capture of a C-terminal regulatory helix, now termed CR3 (Control Region 3), across the active site in a conformation that closes access by cAMP. PDE4B selectivity is driven by a single amino acid polymorphism in CR3 (Leu674 in PDE4B1 versus Gln594 in PDE4D). The reciprocal mutations in PDE4B and PDE4D cause a 70-80 fold shift in selectivity. Our structural studies show that CR3 is flexible and can adopt multiple orientations and multiple registries in the closed conformation. The new co-crystal structure with bound ligand provides a guide map for the design of PDE4B selective anti-inflammatory drugs. Copyright © 2013 The Authors. Published by Elsevier Inc. All rights reserved.

  10. Promoting Motor Function by Exercising the Brain

    PubMed Central

    Perrey, Stephane

    2013-01-01

    Exercise represents a behavioral intervention that enhances brain health and motor function. The increase in cerebral blood volume in response to physical activity may be responsible for improving brain function. Among the various neuroimaging techniques used to monitor brain hemodynamic response during exercise, functional near-infrared spectroscopy could facilitate the measurement of task-related cortical responses noninvasively and is relatively robust with regard to the subjects’ motion. Although the components of optimal exercise interventions have not been determined, evidence from animal and human studies suggests that aerobic exercise with sufficiently high intensity has neuroprotective properties and promotes motor function. This review provides an insight into the effect of physical activity (based on endurance and resistance exercises) on brain function for producing movement. Since most progress in the study of brain function has come from patients with neurological disorders (e.g., stroke and Parkinson’s patients), this review presents some findings emphasizing training paradigms for restoring motor function. PMID:24961309

  11. Brain orexin promotes obesity resistance

    PubMed Central

    Kotz, Catherine; Nixon, Joshua; Butterick, Tammy; Perez-Leighton, Claudio; Teske, Jennifer; Billington, Charles

    2012-01-01

    Resistance to obesity is becoming an exception rather than the norm, and understanding mechanisms that lead some to remain lean in spite of an obesigenic environment is critical if we are to find new ways to reverse this trend. Levels of energy intake and physical activity both contribute to body weight management, but it is challenging for most to adopt major long-term changes in either factor. Physical activity outside of formal exercise, also referred to as activity of daily living, and in stricter form, spontaneous physical activity (SPA), may be an attractive modifiable variable for obesity prevention. In this review, we discuss individual variability in SPA and NEAT (nonexercise thermogenesis, or the energy expended by SPA) and its relationship to obesity resistance. The hypothalamic neuropeptide orexin (hypocretin) may play a key role in regulating SPA and NEAT. We discuss how elevated orexin signaling capacity, in the context of a brain network modulating SPA, may play a major role in defining individual variability in SPA and NEAT. Greater activation of this SPA network leads to a lower propensity for fat mass gain and therefore may be an attractive target for obesity prevention and therapy. PMID:22803681

  12. Phosphodiesterase 4D polymorphisms associate with the short-term outcome in ischemic stroke

    PubMed Central

    Song, Yan-li; Wang, Chun-juan; Wu, Yi-ping; Lin, Jie; Wang, Peng-lian; Du, Wan-liang; Liu, Li; Lin, Jin-xi; Wang, Yi-long; Wang, Yong-jun; Liu, Gai-fen

    2017-01-01

    It has been demonstrated that phosphodiesterase 4D (PDE4D) genetic polymorphism is associated with ischemic stroke. However, the association between PDE4D gene and prognosis after ischemic stroke remains unknown. We consecutively enrolled ischemic stroke patients admitted to Beijing Tiantan Hospital from October 2009 to December 2013. Clinical, laboratory and imaging data upon admission were collected. All patients were followed up 3 months after stroke onset. Odds ratios (ORs) and 95% confidence intervals (CIs) were calculated to assess the associations of genetic polymorphisms with 3-month outcome after ischemic stroke and different subtypes, under various genetic models. A total of 1447 patients were enrolled, and 3-month follow-up data were obtained from 1388 (95.92%). Multivariate regression analysis showed that SNP87 of PDE4D gene was associated with increased risk of unfavorable outcome after total ischemic stroke (OR = 1.47, 95%CI 1.12–1.93), as well as stroke due to large-artery atherosclerosis (OR = 1.49, 95%CI 1.04–2.11) and small-artery occlusion (OR = 1.76, 95%CI 1.05–2.96) under a recessive model. No association between SNP83 genotype and poor outcome was found. Overall, this study demonstrated that the TT genotype of SNP87 in PDE4D was associated with increased risk of poor outcome after total ischemic stroke, large-artery atherosclerosis and small-artery occlusion, in a Chinese population. PMID:28225001

  13. Overexpression of phosphodiesterase-4 subtypes involved in surgery-induced neuroinflammation and cognitive dysfunction in mice.

    PubMed

    Wang, Wei; Zhang, Xiao-Ying; Feng, Ze-Guo; Wang, Dong-Xin; Zhang, Hao; Sui, Bo; Zhang, Yong-Yi; Zhao, Wei-Xing; Fu, Qiang; Xu, Zhi-Peng; Mi, Wei-Dong

    2017-02-21

    Postoperative cognitive dysfunction (POCD) is characterized by cognitive impairments in patients after surgery. Hippocampal neuroinflammation induced by surgery is highly associated with POCD. Phosphodiesterase-4 (PDE4) is an enzyme that specifically hydrolyses cyclic adenosine monophosphate (cAMP), which plays an important role during neuroinflammation and the process of learning and memory. However, the role of PDE4 in the development of POCD remains unclear. Male 14-month-old C57BL/6 mice received carotid artery exposure to mimic POCD. First, we evaluated cognitive performance by a Morris water maze (MWM) and fear conditioning system (FCS) test after surgery. The expression of PDE4 subtypes, pro-inflammatory cytokines, p-CREB and PSD95 as well as cAMP levels were investigated. Then, we used rolipram, a PDE4 inhibitor, to block the effects of PDE4. The cognitive performance of the mice and the expression of PDE4 subtypes, pro-inflammatory cytokines, p-CREB and PSD95 as well as cAMP levels were examined again. Mice displayed learning and memory impairment, overexpression of PDE4B and PDE4D, elevation of pro-inflammatory cytokines, and reduction in the expression of p-CREB, PSD95 and cAMP levels after surgery. The expression of PDE4B and PDE4D in the hippocampus decreased following blocking of PDE4 by rolipram. Meanwhile, rolipram attenuated the cognitive impairment and the elevation of pro-inflammatory cytokines induced by surgery. Moreover, rolipram reversed the reduction of p-CREB and PSD95. These results indicate that PDE4 subtype overexpression may be involved in the development of surgery-induced cognitive dysfunction in mice.

  14. Altered gene expression in rat mesenteric tissue following in vivo exposure to a phosphodiesterase 4 inhibitor

    SciTech Connect

    Dagues, Nicolas . E-mail: nicolas.dagues@pfizer.com; Pawlowski, Valerie; Guigon, Ghislaine; Ledieu, David; Sobry, Cecile; Hanton, Gilles; Freslon, Jean-Louis; Chevalier, Stephan

    2007-01-01

    Vascular injury is a relatively common finding during the pre-clinical toxicity testing of drugs. The mechanisms of the injury are poorly understood and in turn, sensitive and specific biomarkers for pre-clinical and clinical monitoring do not exist. The present study was undertaken to investigate the molecular mechanisms of drug-induced vascular injury in mesenteric tissue of rats treated with the selective phosphodiesterase 4 (PDE4) inhibitor CI-1044. In a time-course study, male Sprague Dawley rats were given daily doses of 40 or 80 mg/kg for 1, 2 or 3 successive days and were euthanized the following day. Gene expression profiles in mesenteric tissue were determined using Affymetrix RG{sub U}34A microarrays and fibrinogen and cytokine measurements were performed in blood samples. Hierarchical clustering analysis produced a clear pattern separation of the animals with inflammation, animal with inflammation and necrosis and animals without any lesion. Genes associated with inflammation, procoagulation, extracellular matrix remodeling were up-regulated. An altered expression of genes involved in vascular tone regulation, lipid and glucose metabolism was also observed. Selected genes expression changes were confirmed by TaqMan real-time RT-PCR. The inflammatory process was also detected in the bloodstream at the protein level since fibrinogen, IL6 and IL1{beta} concentrations were increased in treated animals. Overall, the present study reveals several molecular changes supporting the hypothesis by which PDE4 inhibitor-induced vascular lesions in rats are triggered by an inflammatory mechanism and/or a vascular tone dysregulation.

  15. ERK regulation of phosphodiesterase 4 enhances dopamine-stimulated AMPA receptor membrane insertion.

    PubMed

    Song, Roy S; Massenburg, Ben; Wenderski, Wendy; Jayaraman, Vino; Thompson, Lauren; Neves, Susana R

    2013-09-17

    AMPA-type glutamate receptor (AMPAR) trafficking is essential for modulating synaptic transmission strength. Prior studies that have characterized signaling pathways underlying AMPAR trafficking have identified the cAMP/PKA-mediated phosphorylation of GluA1, an AMPAR subunit, as a key step in the membrane insertion of AMPAR. Inhibition of ERK impairs AMPAR membrane insertion, but the mechanism by which ERK exerts its effect is unknown. Dopamine, an activator of both PKA and ERK, induces AMPAR insertion, but the relationship between the two protein kinases in the process is not understood. We used a combination of computational modeling and live cell imaging to determine the relationship between ERK and PKA in AMPAR insertion. We developed a dynamical model to study the effects of phosphodiesterase 4 (PDE4), a cAMP phosphodiesterase that is phosphorylated and inhibited by ERK, on the membrane insertion of AMPAR. The model predicted that PKA could be a downstream effector of ERK in regulating AMPAR insertion. We experimentally tested the model predictions and found that dopamine-induced ERK phosphorylates and inhibits PDE4. This regulation results in increased cAMP levels and PKA-mediated phosphorylation of DARPP-32 and GluA1, leading to increased GluA1 trafficking to the membrane. These findings provide unique insight into an unanticipated network topology in which ERK uses PDE4 to regulate PKA output during dopamine signaling. The combination of dynamical models and experiments has helped us unravel the complex interactions between two protein kinase pathways in regulating a fundamental molecular process underlying synaptic plasticity.

  16. Loss of phosphodiesterase 4 in Parkinson disease: Relevance to cognitive deficits.

    PubMed

    Niccolini, Flavia; Wilson, Heather; Pagano, Gennaro; Coello, Christopher; Mehta, Mitul A; Searle, Graham E; Gunn, Roger N; Rabiner, Eugenii A; Foltynie, Thomas; Politis, Marios

    2017-08-08

    To assess in vivo the expression of phosphodiesterase 4 (PDE4) and its relevance to cognitive symptoms in patients with Parkinson disease (PD) using [(11)C]rolipram PET. We studied 12 levodopa-treated patients with PD with no concurrent diagnosis of mild cognitive impairment or dementia. Their data were compared with those from 12 healthy controls. All participants underwent neuropsychiatric and cognitive assessment using the Cambridge Neuropsychological Test Automated Battery. Parametric images of [(11)C]rolipram volume of distribution (VT) values were determined with the Logan plot. Patients with PD performed worse than healthy controls in cognitive examinations assessing psychomotor speed, episodic memory, and spatial working memory and executive function. Patients with PD showed reductions in [(11)C]rolipram VT compared to healthy controls, in the caudate (28%), thalamus (23%), hypothalamus (32%), and cortex (16%). Within thalamic subregions, [(11)C]rolipram VT values in patients with PD were decreased by 12%-32%, with most marked decreases observed in prefrontal and temporal thalamic nuclei, whereas motor nuclei were less affected. Within the cortex, [(11)C]rolipram VT values in patients with PD were decreased by 11%-20%, with most marked decreases observed in posterior dorsolateral frontal cortex, medial frontal cortex, and supplementary motor area, whereas orbitofrontal cortex was less affected. Worse performance in spatial working memory correlated with lower [(11)C]rolipram VT values in posterior dorsolateral frontal cortex, medial frontal cortex, supplementary motor area, precentral gyrus, caudate, and prefrontal thalamic nuclei. Our findings demonstrate loss of PDE4 expression in the striato-thalamo-cortical circuit, which is associated with deficits of spatial working memory in patients with PD. © 2017 American Academy of Neurology.

  17. ERK regulation of phosphodiesterase 4 enhances dopamine-stimulated AMPA receptor membrane insertion

    PubMed Central

    Song, Roy S.; Massenburg, Ben; Wenderski, Wendy; Jayaraman, Vino; Thompson, Lauren; Neves, Susana R.

    2013-01-01

    AMPA-type glutamate receptor (AMPAR) trafficking is essential for modulating synaptic transmission strength. Prior studies that have characterized signaling pathways underlying AMPAR trafficking have identified the cAMP/PKA-mediated phosphorylation of GluA1, an AMPAR subunit, as a key step in the membrane insertion of AMPAR. Inhibition of ERK impairs AMPAR membrane insertion, but the mechanism by which ERK exerts its effect is unknown. Dopamine, an activator of both PKA and ERK, induces AMPAR insertion, but the relationship between the two protein kinases in the process is not understood. We used a combination of computational modeling and live cell imaging to determine the relationship between ERK and PKA in AMPAR insertion. We developed a dynamical model to study the effects of phosphodiesterase 4 (PDE4), a cAMP phosphodiesterase that is phosphorylated and inhibited by ERK, on the membrane insertion of AMPAR. The model predicted that PKA could be a downstream effector of ERK in regulating AMPAR insertion. We experimentally tested the model predictions and found that dopamine-induced ERK phosphorylates and inhibits PDE4. This regulation results in increased cAMP levels and PKA-mediated phosphorylation of DARPP-32 and GluA1, leading to increased GluA1 trafficking to the membrane. These findings provide unique insight into an unanticipated network topology in which ERK uses PDE4 to regulate PKA output during dopamine signaling. The combination of dynamical models and experiments has helped us unravel the complex interactions between two protein kinase pathways in regulating a fundamental molecular process underlying synaptic plasticity. PMID:23986500

  18. Adjunctive Phosphodiesterase-4 Inhibitor Therapy Improves Antibiotic Response to Pulmonary Tuberculosis in a Rabbit Model

    PubMed Central

    Subbian, Selvakumar; Tsenova, Liana; Holloway, Jennifer; Peixoto, Blas; O'Brien, Paul; Dartois, Véronique; Khetani, Vikram; Zeldis, Jerome B.; Kaplan, Gilla

    2016-01-01

    Objectives Adjunctive host-directed therapy is emerging as a new potential approach to improve the outcome of conventional antimicrobial treatment for tuberculosis (TB). We tested the ability of a phosphodiesterase-4 inhibitor (PDE4i) CC-11050, co-administered with the first-line anti-TB drug isoniazid (INH), to accelerate bacillary killing and reduce chronic inflammation in the lungs of rabbits with experimental Mycobacterium tuberculosis (Mtb) infection. Methods A rabbit model of pulmonary TB that recapitulates the pathologic manifestations seen in humans was used. Rabbits were infected with virulent Mtb by aerosol exposure and treated for eight weeks with INH with or without CC-11050, starting at four weeks post infection. The effect of CC-11050 treatment on disease severity, pathology, bacillary load, T cell proliferation and global lung transcriptome profiles were analyzed. Results Significant improvement in bacillary clearance and reduced lung pathology and fibrosis were noted in the rabbits treated for eight weeks with INH + CC-11050, compared to those treated with INH or CC-11050 only. In addition, expression of host genes associated with tissue remodeling, tumor necrosis factor alpha (TNF-α) regulation, macrophage activation and lung inflammation networks was dampened in CC-11050-treated, compared to the untreated rabbits. Conclusions Adjunctive CC-11050 therapy significantly improves the response of rabbits with experimental pulmonary TB to INH treatment. We propose that CC-11050 may be a promising candidate for host directed therapy of patients with pulmonary TB, reducing the duration and improving clinical outcome of antibiotic treatment. PMID:26981575

  19. Inhibition of Uterine Contractility by Thalidomide Analogs via Phosphodiesterase-4 Inhibition and Calcium Entry Blockade.

    PubMed

    Fernández-Martínez, Eduardo; Ponce-Monter, Héctor; Soria-Jasso, Luis E; Ortiz, Mario I; Arias-Montaño, José-Antonio; Barragán-Ramírez, Guillermo; Mayén-García, Cynthia

    2016-10-07

    Uterine relaxation is crucial during preterm labor. Phosphodiesterase-4 (PDE-4) inhibitors have been proposed as tocolytics. Some thalidomide analogs are PDE-4 inhibitors. The aim of this study was to assess the uterus-relaxant properties of two thalidomide analogs, methyl 3-(4-nitrophthalimido)-3-(3,4-dimethoxyphenyl)-propanoate (4NO2PDPMe) and methyl 3-(4-aminophthalimido)-3-(3,4-dimethoxyphenyl)-propanoate (4APDPMe) and were compared to rolipram in functional studies of spontaneous phasic, K⁺-induced tonic, and Ca(2+)-induced contractions in isolated pregnant human myometrial tissues. The accumulation of cAMP was quantified in HeLa cells. The presence of PDE-4B2 and phosphorylated myosin light-chain (pMLC), in addition to the effect of thalidomide analogs on oxytocin-induced pMLC, were assessed in human uterine myometrial cells (UtSMCs). Thalidomide analogs had concentration-dependent inhibitory effects on spontaneous and tonic contractions and inhibited Ca(2+)-induced responses. Tonic contraction was equipotently inhibited by 4APDPMe and rolipram (IC50 = 125 ± 13.72 and 98.45 ± 8.86 µM, respectively). Rolipram and the thalidomide analogs inhibited spontaneous and tonic contractions equieffectively. Both analogs increased cAMP accumulation in a concentration-dependent manner (p < 0.05) and induced changes in the subcellular localization of oxytocin-induced pMLC in UtSMCs. The inhibitory effects of thalidomide analogs on the contractions of pregnant human myometrium tissue may be due to their PDE-4 inhibitory effect and novel mechanism as calcium-channel blockers.

  20. Inactivation of oncogenic cAMP-specific phosphodiesterase 4D by miR-139-5p in response to p53 activation

    PubMed Central

    Cao, Bo; Wang, Kebing; Liao, Jun-Ming; Zhou, Xiang; Liao, Peng; Zeng, Shelya X; He, Meifang; Chen, Lianzhou; He, Yulong; Li, Wen; Lu, Hua

    2016-01-01

    Increasing evidence highlights the important roles of microRNAs in mediating p53’s tumor suppression functions. Here, we report miR-139-5p as another new p53 microRNA target. p53 induced the transcription of miR-139-5p, which in turn suppressed the protein levels of phosphodiesterase 4D (PDE4D), an oncogenic protein involved in multiple tumor promoting processes. Knockdown of p53 reversed these effects. Also, overexpression of miR-139-5p decreased PDE4D levels and increased cellular cAMP levels, leading to BIM-mediated cell growth arrest. Furthermore, our analysis of human colorectal tumor specimens revealed significant inverse correlation between the expression of miR-139-5p and that of PDE4D. Finally, overexpression of miR-139-5p suppressed the growth of xenograft tumors, accompanied by decrease in PDE4D and increase in BIM. These results demonstrate that p53 inactivates oncogenic PDE4D by inducing the expression of miR-139-5p. DOI: http://dx.doi.org/10.7554/eLife.15978.001 PMID:27383270

  1. beta-Adrenoceptor stimulation up-regulates phosphodiesterase 4 activity and reduces prostaglandin E2-inhibitory effects in human neutrophils.

    PubMed

    Ortiz, J L; Dasí, F J; Cortijo, J; Morcillo, E J

    2000-04-01

    Human neutrophils were treated for 4 h with a combination of salbutamol (1 microM), a beta2-adrenoceptor agonist, and rolipram (30 microM), a selective phosphodiesterase 4 inhibitor, to investigate whether this treatment produces up-regulation of phosphodiesterase activity with functional consequences. Anion-exchange chromatography coupled with the use of selective activators and inhibitors demonstrated that a phosphodiesterase activity with characteristics of the isoenzyme type 4 was increased in drug-treated cells. Kinetic analysis showed a approximately 1.5-fold increase in Vmax without alteration of Km values. The augmented phosphodiesterase activity in drug-treated cells was abolished by actinomycin D. Cyclic AMP content in drug-treated cells was higher than resting values (27.28+/-2.79 pmol/10(6) cells vs. 0.34+/-0.03 pmol/10(6) cells). Reverse transcriptase-polymerase chain reaction showed increased expression of mRNA transcripts for PDE4B and PDE4A in drug-treated cells. Functionally, up-regulation of phosphodiesterase 4 reduced the inhibition by prostaglandin E2 of zymosan-induced superoxide generation.

  2. Investigation of the alkenyldiarylmethane non-nucleoside reverse transcriptase inhibitors as potential cAMP phosphodiesterase-4B2 inhibitors.

    PubMed

    Cullen, Matthew D; Cheung, York-Fong; Houslay, Miles D; Hartman, Tracy L; Watson, Karen M; Buckheit, Robert W; Pannecouque, Christophe; De Clercq, Erik; Cushman, Mark

    2008-02-15

    The alkenyldiarylmethanes (ADAMs) are currently being investigated as non-nucleoside HIV-1 reverse transcriptase inhibitors (NNRTIs) of potential value in the treatment of HIV infection and AIDS. During the course of these studies, a number of ADAM analogues have been identified that protect HIV-infected cells from the cytopathic effects of the virus by an unknown, HIV-1 RT-independent mechanism. Since the phosphodiesterase 4 family is required for HIV infection, the effect of various ADAMs on the activity of PDE4B2 was investigated in an effort to determine if the ADAMs could possibly be targeting phosphodiesterases. Six compounds representative of the ADAM class were tested for inhibition of cAMP hydrolysis by PDE4B2 enzymatic activity. Four ADAMs were found to be weak inhibitors of PDE4B2 and two of them were inactive. The experimental results are consistent with an antiviral mechanism that does not include inhibition of PDE4 isoforms.

  3. An in vivo chemical genetic screen identifies phosphodiesterase 4 as a pharmacological target for hedgehog signaling inhibition.

    PubMed

    Williams, Charles H; Hempel, Jonathan E; Hao, Jijun; Frist, Audrey Y; Williams, Michelle M; Fleming, Jonathan T; Sulikowski, Gary A; Cooper, Michael K; Chiang, Chin; Hong, Charles C

    2015-04-07

    Hedgehog (Hh) signaling plays an integral role in vertebrate development, and its dysregulation has been accepted widely as a driver of numerous malignancies. While a variety of small molecules target Smoothened (Smo) as a strategy for Hh inhibition, Smo gain-of-function mutations have limited their clinical implementation. Modulation of targets downstream of Smo could define a paradigm for treatment of Hh-dependent cancers. Here, we describe eggmanone, a small molecule identified from a chemical genetic zebrafish screen, which induced an Hh-null phenotype. Eggmanone exerts its Hh-inhibitory effects through selective antagonism of phosphodiesterase 4 (PDE4), leading to protein kinase A activation and subsequent Hh blockade. Our study implicates PDE4 as a target for Hh inhibition, suggests an improved strategy for Hh-dependent cancer therapy, and identifies a unique probe of downstream-of-Smo Hh modulation. Copyright © 2015 The Authors. Published by Elsevier Inc. All rights reserved.

  4. Psiguajadials A-K: Unusual Psidium Meroterpenoids as Phosphodiesterase-4 Inhibitors from the Leaves of Psidium guajava.

    PubMed

    Tang, Gui-Hua; Dong, Zhen; Guo, Yan-Qiong; Cheng, Zhong-Bin; Zhou, Chu-Jun; Yin, Sheng

    2017-04-21

    Bioassay-guided fractionation of the ethanolic extract of the leaves of Psidium guajava led to the isolation of 11 new Psidium meroterpenoids, psiguajadials A-K (1-11), along with 17 known ones (12-28). Their structures and absolute configurations were elucidated by spectroscopic methods and comparison of experimental and calculated ECD. Compounds 1 and 2 represent two unprecedented skeletons of 3,5-diformyl-benzyl phloroglucinol-coupled sesquiterpenoid, while 3 is the first example of Psidium meroterpenoids coupling via an oxepane ring. Putative biosynthetic pathways towards 1 and 2 are proposed. Compounds 1-13 and 16-26 exhibited moderate inhibitory activities against phosphodiesterase-4 (PDE4), a drug target for asthma and chronic obstructive pulmonary disease, with IC50 values in the range of 1.34-7.26 μM.

  5. Phosphodiesterase-4D Knock-down in the Prefrontal Cortex Alleviates Chronic Unpredictable Stress-Induced Depressive-Like Behaviors and Memory Deficits in Mice

    PubMed Central

    Wang, Zhen-Zhen; Yang, Wei-Xing; Zhang, Yi; Zhao, Nan; Zhang, You-Zhi; Liu, Yan-Qin; Xu, Ying; Wilson, Steven P.; O'Donnell, James M.; Zhang, Han-Ting; Li, Yun-Feng

    2015-01-01

    Phosphodiesterase 4 (PDE4) has four isoforms (PDE4A-D) with at least 25 splice variants. PDE4 subtype nonselective inhibitors produce potent antidepressant-like and cognition-enhancing effects via increased intracellular cyclic AMP (cAMP) signaling in the brain. Our previous data have demonstrated that long-form PDE4Ds appear to be involved in these pharmacological properties of PDE4 inhibitors in the normal animals. However, it is not clear whether long-form PDE4Ds are critical for the behaviors and related cellular signaling/neuronal plasticity/neuroendocrine alterations in the depressed animals. In the present study, animals exposed to the chronic unpredictable stress (CUS), a rodent model of depression, exhibited elevated corticosterone, depressive-like behavior, memory deficits, accompanied with decreased cAMP-PKA-CREB and cAMP-ERK1/2-CREB signaling and neuroplasticity. These alterations induced by CUS were reversed by RNA interference (RNAi)-mediated prefrontal cortex long-form PDE4Ds (especially PDE4D4 and PDE4D5) knock-down, similar to the effects of the PDE4 subtype nonselective inhibitor rolipram. Furthermore, these effects of RNAi were not enhanced by rolipram. These data indicate a predominant role of long-form PDE4Ds in the pharmacotherapies of PDE4 inhibitors for depression and concomitant memory deficits. Long-form PDE4Ds, especially PDE4D4 and PDE4D5, appear to be the promising targets for the development of antidepressants with high therapeutic indices. PMID:26161529

  6. The isozyme selective phosphodiesterase-4 inhibitor, ABI-4, attenuates the effects of lipopolysaccharide in human cells and rodent models of peripheral and CNS inflammation.

    PubMed

    Hedde, Joseph R; Hanks, Ashley N; Schmidt, Christopher J; Hughes, Zoë A

    2017-08-01

    Inhibitors of phosphodiesterase-4 (PDE4) have been approved for the treatment of inflammatory disorders, but are associated with dose-limiting nausea and vomiting. These side effects are hypothesized to be mediated by inhibition of the PDE4D isozyme. Here we demonstrate the anti-inflammatory effects of the novel brain penetrant PDE4D-sparing PDE4 inhibitor, ABI-4. ABI-4 was a potent (EC50∼14nM) inhibitor of lipopolysaccharide (LPS) induced TNF-α release from mouse microglia and human PBMCs. ABI-4 (0.32mg/kg) blocked LPS-induced release of pro-inflammatory cytokines (TNF-α, IL-1β, IL-6) in blood and brain of mice. In a rat model of endotoxin induced uveitis, ABI-4 (0.03-0.3mg/kg) demonstrated steroid-like efficacy in preventing leucocyte infiltration of the aqueous humor when administered 4h after LPS. LPS (0.32mg/kg×5days) caused a 30% upregulation of translocator protein (TSPO) binding which was prevented by co-administration of ABI-4 (0.32mg/kg). In a paradigm to assess motivation, LPS (0.32mg/kg) reduced the number of rewards received, whereas the effect was significantly blunted in mice dosed with ABI-4 (P<0.05) or in PDE4B-/- mice. PDE4B was also shown to modulate brain and plasma levels of TNF-α and IL-1β in aged mice. Aged mice dosed chronically with ABI-4 (0.32mg/kg) as well as aged PDE4B-/- mice, had significantly lower levels of TNF-α and IL-1β in brain and plasma relative to vehicle treated or PDE4+/+ mice. Together these data demonstrate that the PDE4D sparing, PDE4 inhibitor, ABI-4 retains potency and efficacy in exerting anti-inflammatory effects. This mechanism warrants further investigation in human disorders involving neuroinflammation. Copyright © 2017 Elsevier Inc. All rights reserved.

  7. Phosphodiesterase 4b expression plays a major role in alcohol-induced neuro-inflammation.

    PubMed

    Avila, Diana V; Myers, Scott A; Zhang, JingWen; Kharebava, Giorgi; McClain, Craig J; Kim, Hee-Yong; Whittemore, Scott R; Gobejishvili, Leila; Barve, Shirish

    2017-10-01

    It is increasingly evident that alcohol-induced, gut-mediated peripheral endotoxemia plays a significant role in glial cell activation and neuro-inflammation. Using a mouse model of chronic alcohol feeding, we examined the causal role of endotoxin- and cytokine-responsive Pde4 subfamily b (Pde4b) expression in alcohol-induced neuro-inflammation. Both pharmacologic and genetic approaches were used to determine the regulatory role of Pde4b. In C57Bl/6 wild type (WT) alcohol fed (WT-AF) animals, alcohol significantly induced peripheral endotoxemia and Pde4b expression in brain tissue, accompanied by a decrease in cAMP levels. Further, along with Pde4b, there was a robust activation of astrocytes and microglia accompanied by significant increases in the inflammatory cytokines (Tnfα, Il-1β, Mcp-1 and Il-17) and the generalized inflammatory marker Cox-2. At the cellular level, alcohol and inflammatory mediators, particularly LPS, Tnfα and Hmgb1 significantly activated microglial cells (Iba-1 expression) and selectively induced Pde4b expression with a minimal to no change in Pde4a and d isoforms. In comparison, the alcohol-induced decrease in brain cAMP levels was completely inhibited in WT mice treated with the Pde4 specific pharmacologic inhibitor rolipram and in Pde4b-/- mice. Moreover, all the observed markers of alcohol-induced brain inflammation were markedly attenuated. Importantly, glial cell activation induced by systemic endotoxemia (LPS administration) was also markedly decreased in Pde4b-/- mice. Taken together, these findings strongly support the notion that Pde4b plays a critical role in coordinating alcohol-induced, peripheral endotoxemia mediated neuro-inflammation and could serve as a significant therapeutic target. Copyright © 2017 Elsevier Ltd. All rights reserved.

  8. Effect of phosphodiesterase 4 inhibitors on NFAT-dependent cyclooxygenase-2 expression in human T lymphocytes.

    PubMed

    Jimenez, José L; Iñiguez, Miguel A; Muñoz-Fernández, M Angeles; Fresno, Manuel

    2004-12-01

    Transcriptional induction of cyclooxygenase-2 (COX-2) occurs early after T cell receptor triggering and has functional implications in inflammation. Here, we show that phosphodiesterase (PDE)-4 inhibitors block COX-2 induction and prostaglandin synthesis in activated T cells. COX-2 inhibition by PDE4 inhibitors occurs mainly at the transcriptional level. Two response elements for the nuclear factor of activated T cells (NFAT) in the COX-2 promoter were required for inhibition by these drugs. PDE4 inhibitors did not affect NFAT nuclear translocation upon T cell activation; rather they prevented NFAT binding to DNA and induction of the transactivation function of GAL4-NFAT. These effects seem to be cAMP/PKA independent as they were not mimicked by the permeable analog dBcAMP or by forskolin, neither can be reverted by the PKA inhibitors H89 or KT-5720. These results may explain some of the anti-inflammatory properties of PDE4 inhibitors through the blockade of NFAT-mediated transactivation of pro-inflammatory genes such as COX-2.

  9. Cigarette Smoke-Induced Emphysema and Pulmonary Hypertension Can Be Prevented by Phosphodiesterase 4 and 5 Inhibition in Mice.

    PubMed

    Seimetz, Michael; Parajuli, Nirmal; Pichl, Alexandra; Bednorz, Mariola; Ghofrani, Hossein Ardeschir; Schermuly, Ralph Theo; Seeger, Werner; Grimminger, Friedrich; Weissmann, Norbert

    2015-01-01

    Chronic obstructive pulmonary disease (COPD) is a widespread disease, with no curative therapies available. Recent findings suggest a key role of NO and sGC-cGMP signaling for the pathogenesis of the disease. Previous data suggest a downregulation/inactivation of the cGMP producing soluble guanylate cyclase, and sGC stimulation prevented cigarette smoke-induced emphysema and pulmonary hypertension (PH) in mice. We thus aimed to investigate if the inhibition of the cGMP degrading phosphodiesterase (PDE)5 has similar effects. Results were compared to the effects of a PDE 4 inhibitor (cAMP elevating) and a combination of both. C57BL6/J mice were chronically exposed to cigarette smoke and in parallel either treated with Tadalafil (PDE5 inhibitor), Piclamilast (PDE4 inhibitor) or both. Functional measurements (lung compliance, hemodynamics) and structural investigations (alveolar and vascular morphometry) as well as the heart ratio were determined after 6 months of tobacco smoke exposure. In addition, the number of alveolar macrophages in the respective lungs was counted. Preventive treatment with Tadalafil, Piclamilast or a combination of both almost completely prevented the development of emphysema, the increase in lung compliance, tidal volume, structural remodeling of the lung vasculature, right ventricular systolic pressure, and right ventricular hypertrophy induced by cigarette smoke exposure. Single, but not combination treatment prevented or reduced smoke-induced increase in alveolar macrophages. Cigarette smoke-induced emphysema and PH could be prevented by inhibition of the phosphodiesterases 4 and 5 in mice.

  10. AMPK antagonizes hepatic glucagon-stimulated cyclic AMP signalling via phosphorylation-induced activation of cyclic nucleotide phosphodiesterase 4B

    PubMed Central

    Johanns, M.; Lai, Y.-C.; Hsu, M.-F.; Jacobs, R.; Vertommen, D.; Van Sande, J.; Dumont, J. E.; Woods, A.; Carling, D.; Hue, L.; Viollet, B.; Foretz, M; Rider, M H

    2016-01-01

    Biguanides such as metformin have previously been shown to antagonize hepatic glucagon-stimulated cyclic AMP (cAMP) signalling independently of AMP-activated protein kinase (AMPK) via direct inhibition of adenylate cyclase by AMP. Here we show that incubation of hepatocytes with the small-molecule AMPK activator 991 decreases glucagon-stimulated cAMP accumulation, cAMP-dependent protein kinase (PKA) activity and downstream PKA target phosphorylation. Moreover, incubation of hepatocytes with 991 increases the Vmax of cyclic nucleotide phosphodiesterase 4B (PDE4B) without affecting intracellular adenine nucleotide concentrations. The effects of 991 to decrease glucagon-stimulated cAMP concentrations and activate PDE4B are lost in hepatocytes deleted for both catalytic subunits of AMPK. PDE4B is phosphorylated by AMPK at three sites, and by site-directed mutagenesis, Ser304 phosphorylation is important for activation. In conclusion, we provide a new mechanism by which AMPK antagonizes hepatic glucagon signalling via phosphorylation-induced PDE4B activation. PMID:26952277

  11. Phosphodiesterase 4B negatively regulates endotoxin-activated interleukin-1 receptor antagonist responses in macrophages

    PubMed Central

    Yang, Jing-Xing; Hsieh, Kou-Chou; Chen, Yi-Ling; Lee, Chien-Kuo; Conti, Marco; Chuang, Tsung-Hsien; Wu, Chin-Pyng; Jin, S.-L. Catherine

    2017-01-01

    Activation of TLR4 by lipopolysaccharide (LPS) induces both pro-inflammatory and anti-inflammatory cytokine production in macrophages. Type 4 phosphodiesterases (PDE4) are key cAMP-hydrolyzing enzymes, and PDE4 inhibitors are considered as immunosuppressors to various inflammatory responses. We demonstrate here that PDE4 inhibitors enhance the anti-inflammatory cytokine interleukin-1 receptor antagonist (IL-1Ra) secretion in LPS-activated mouse peritoneal macrophages, and this response was regulated at the transcriptional level rather than an increased IL-1Ra mRNA stability. Studies with PDE4-deficient macrophages revealed that the IL-1Ra upregulation elicited by LPS alone is PKA-independent, whereas the rolipram-enhanced response was mediated by inhibition of only PDE4B, one of the three PDE4 isoforms expressed in macrophages, and it requires PKA but not Epac activity. However, both pathways activate CREB to induce IL-1Ra expression. PDE4B ablation also promoted STAT3 phosphorylation (Tyr705) to LPS stimulation, but this STAT3 activation is not entirely responsible for the IL-1Ra upregulation in PDE4B-deficient macrophages. In a model of LPS-induced sepsis, only PDE4B-deficient mice displayed an increased circulating IL-1Ra, suggesting a protective role of PDE4B inactivation in vivo. These findings demonstrate that PDE4B negatively modulates anti-inflammatory cytokine expression in innate immune cells, and selectively targeting PDE4B should retain the therapeutic benefits of nonselective PDE4 inhibitors. PMID:28383060

  12. Evidence that cyclic AMP phosphodiesterase inhibitors suppress interleukin-2 release from murine splenocytes by interacting with a ‘low-affinity' phosphodiesterase 4 conformer

    PubMed Central

    Souness, John E; Houghton, Clare; Sardar, Nughat; Withnall, Michael T

    1997-01-01

    We have investigated the suppressive effects of rolipram, RP 73401 (piclamilast) and other structurally diverse inhibitors of cyclic AMP-specific phosphodiesterase 4 (PDE4) on interleukin (IL)-2 generation from Balb/c mouse splenocytes exposed to the superantigen, Staphylococcocal enterotoxin-A (Staph. A). The purpose was to determine whether their potencies are more closely correlated with inhibition of PDE4 from CTLL cells, against which rolipram displays weak potency (low-affinity PDE4), or displacement of [3H]-(±)-rolipram from its high-affinity binding site (HARBS) in mouse brain cytosol. RP 73401 (IC50 0.46±0.07 nM, n=4) was a very potent inhibitor of Staph. A-induced IL-2 release from Balb/c mouse splenocytes, being >1100 fold more potent than (±)-rolipram (IC50 540±67 nM, n=3). A close correlation (r=0.95) was observed between suppression of IL-2 release by PDE inhibitors and inhibition of PDE4. In contrast, little correlation (r=0.39) was observed between suppression of IL-2 release and their affinities for the high-affinity rolipram binding site (HARBS). RP 73401 only inhibited partially (30–40%) Staph. A-induced incorporation of [3H]-thymidine into splenocyte DNA. The PDE3 inhibitor, siguazodan (10 μM), had little or no effect on IL-2 release or DNA synthesis. This concentration of siguazodan did not enhance the inhibitory action of RP 73401 on IL-2 release but potentiated its effect on DNA synthesis, increasing potency and efficacy. Staph. A-induced DNA synthesis was only partially inhibited by anti-IL-2 neutralizing antibody, whereas dexamethazone (100 nM) and cyclosporine A (100 nM) completely blocked the response. RP 73401 (IC50 6.3±1.9 nM, n=4) was 140 fold more potent than rolipram (IC50 900±300 nM, n=3) in inhibiting Staph. A-induced [3H]-thymidine incorporation into splenocyte DNA. The results implicate a low-affinity form of PDE4 in the suppression of Staph. A-induced IL-2 release from murine splenocytes by PDE inhibitors

  13. The phosphodiesterase-4 inhibitor rolipram attenuates heroin-seeking behavior induced by cues or heroin priming in rats.

    PubMed

    Lai, Miaojun; Zhu, Huaqiang; Sun, Anna; Zhuang, Dingding; Fu, Dan; Chen, Weisheng; Zhang, Han-Ting; Zhou, Wenhua

    2014-09-01

    Inhibition of phosphodiesterase-4 (PDE4), an enzyme that specifically hydrolyzes cyclic adenosine monophosphate (cAMP) increases intracellular cAMP/cAMP-response element binding protein (CREB) signaling. Activation of this signaling is considered as an important compensatory response that decreases motivational properties of drugs of abuse. However, it is not known whether PDE4 is involved in heroin seeking. Self-administration of heroin (50 μg/kg/infusion) was performed under the fixed ratio 1 (FR1) schedule for 14 d and then drug seeking was extinguished for 10 d. The progressive ratio schedule was used to evaluate the relative motivational value of heroin reinforcement. After training, the conditioned cue or heroin priming (250 μg/kg) was introduced for the reinstatement of heroin-seeking behavior. Pretreatment (i.p.) with rolipram (0.03-0.3 mg/kg), a prototypical, selective PDE4 inhibitor, failed to inhibit heroin self-administration under the FR1 schedule, but decreased the reward values under the progressive ratio schedule in a dose-dependent manner. In addition, rolipram decreased the reinstatement of heroin seeking induced by cues or heroin priming even at the lowest dose (0.03 mg/kg); in contrast, the highest dose (0.3 mg/kg) of rolipram was required to decrease sucrose reinforcement. Finally, the effects of rolipram on heroin-seeking behavior were correlated with the increases in expression of phosphorylated CREB in the nucleus accumbens. The study demonstrated that rolipram inhibited heroin reward and heroin-seeking behavior. The results suggest that PDE4 plays an essential role in mediating heroin seeking and that PDE4 inhibitors may be used as a potential pharmacotherapeutic approach for heroin addiction.

  14. Phosphodiesterase-4 Inhibition Alters Gene Expression and Improves Isoniazid – Mediated Clearance of Mycobacterium tuberculosis in Rabbit Lungs

    PubMed Central

    Subbian, Selvakumar; Tsenova, Liana; O'Brien, Paul; Yang, Guibin; Koo, Mi-Sun; Peixoto, Blas; Fallows, Dorothy; Dartois, Veronique; Muller, George; Kaplan, Gilla

    2011-01-01

    Tuberculosis (TB) treatment is hampered by the long duration of antibiotic therapy required to achieve cure. This indolent response has been partly attributed to the ability of subpopulations of less metabolically active Mycobacterium tuberculosis (Mtb) to withstand killing by current anti-TB drugs. We have used immune modulation with a phosphodiesterase-4 (PDE4) inhibitor, CC-3052, that reduces tumor necrosis factor alpha (TNF-α) production by increasing intracellular cAMP in macrophages, to examine the crosstalk between host and pathogen in rabbits with pulmonary TB during treatment with isoniazid (INH). Based on DNA microarray, changes in host gene expression during CC-3052 treatment of Mtb infected rabbits support a link between PDE4 inhibition and specific down-regulation of the innate immune response. The overall pattern of host gene expression in the lungs of infected rabbits treated with CC-3052, compared to untreated rabbits, was similar to that described in vitro in resting Mtb infected macrophages, suggesting suboptimal macrophage activation. These alterations in host immunity were associated with corresponding down-regulation of a number of Mtb genes that have been associated with a metabolic shift towards dormancy. Moreover, treatment with CC-3052 and INH resulted in reduced expression of those genes associated with the bacterial response to INH. Importantly, CC-3052 treatment of infected rabbits was associated with reduced ability of Mtb to withstand INH killing, shown by improved bacillary clearance, from the lungs of co-treated animals compared to rabbits treated with INH alone. The results of our study suggest that changes in Mtb gene expression, in response to changes in the host immune response, can alter the responsiveness of the bacteria to antimicrobial agents. These findings provide a basis for exploring the potential use of adjunctive immune modulation with PDE4 inhibitors to enhance the efficacy of existing anti-TB treatment. PMID:21949656

  15. Cigarette Smoke-Induced Emphysema and Pulmonary Hypertension Can Be Prevented by Phosphodiesterase 4 and 5 Inhibition in Mice

    PubMed Central

    Pichl, Alexandra; Bednorz, Mariola; Ghofrani, Hossein Ardeschir; Schermuly, Ralph Theo; Seeger, Werner; Grimminger, Friedrich; Weissmann, Norbert

    2015-01-01

    Rationale Chronic obstructive pulmonary disease (COPD) is a widespread disease, with no curative therapies available. Recent findings suggest a key role of NO and sGC-cGMP signaling for the pathogenesis of the disease. Previous data suggest a downregulation/inactivation of the cGMP producing soluble guanylate cyclase, and sGC stimulation prevented cigarette smoke-induced emphysema and pulmonary hypertension (PH) in mice. We thus aimed to investigate if the inhibition of the cGMP degrading phosphodiesterase (PDE)5 has similar effects. Results were compared to the effects of a PDE 4 inhibitor (cAMP elevating) and a combination of both. Methods C57BL6/J mice were chronically exposed to cigarette smoke and in parallel either treated with Tadalafil (PDE5 inhibitor), Piclamilast (PDE4 inhibitor) or both. Functional measurements (lung compliance, hemodynamics) and structural investigations (alveolar and vascular morphometry) as well as the heart ratio were determined after 6 months of tobacco smoke exposure. In addition, the number of alveolar macrophages in the respective lungs was counted. Results Preventive treatment with Tadalafil, Piclamilast or a combination of both almost completely prevented the development of emphysema, the increase in lung compliance, tidal volume, structural remodeling of the lung vasculature, right ventricular systolic pressure, and right ventricular hypertrophy induced by cigarette smoke exposure. Single, but not combination treatment prevented or reduced smoke-induced increase in alveolar macrophages. Conclusion Cigarette smoke-induced emphysema and PH could be prevented by inhibition of the phosphodiesterases 4 and 5 in mice. PMID:26058042

  16. Role of phosphodiesterase 4 expression in the Epac1 signaling-dependent skeletal muscle hypertrophic action of clenbuterol.

    PubMed

    Ohnuki, Yoshiki; Umeki, Daisuke; Mototani, Yasumasa; Shiozawa, Kouichi; Nariyama, Megumi; Ito, Aiko; Kawamura, Naoya; Yagisawa, Yuka; Jin, Huiling; Cai, Wenqian; Suita, Kenji; Saeki, Yasutake; Fujita, Takayuki; Ishikawa, Yoshihiro; Okumura, Satoshi

    2016-05-01

    Clenbuterol (CB), a selective β2-adrenergic receptor (AR) agonist, induces muscle hypertrophy and counteracts muscle atrophy. However, it is paradoxically less effective in slow-twitch muscle than in fast-twitch muscle, though slow-twitch muscle has a greater density of β-AR We recently demonstrated that Epac1 (exchange protein activated by cyclic AMP [cAMP]1) plays a pivotal role in β2-AR-mediated masseter muscle hypertrophy through activation of the Akt and calmodulin kinase II (CaMKII)/histone deacetylase 4 (HDAC4) signaling pathways. Here, we investigated the role of Epac1 in the differential hypertrophic effect of CB using tibialis anterior muscle (TA; typical fast-twitch muscle) and soleus muscle (SOL; typical slow-twitch muscle) of wild-type (WT) and Epac1-null mice (Epac1KO). The TA mass to tibial length (TL) ratio was similar in WT and Epac1KO at baseline and was significantly increased after CB infusion in WT, but not in Epac1KO The SOL mass to TL ratio was also similar in WT and Epac1KO at baseline, but CB-induced hypertrophy was suppressed in both mice. In order to understand the mechanism involved, we measured the protein expression levels of β-AR signaling-related molecules, and found that phosphodiesterase 4 (PDE4) expression was 12-fold greater in SOL than in TA These results are consistent with the idea that increased PDE4-mediated cAMP hydrolysis occurs in SOL compared to TA, resulting in a reduced cAMP concentration that is insufficient to activate Epac1 and its downstream Akt and CaMKII/HDAC4 hypertrophic signaling pathways in SOL of WT This scenario can account for the differential effects of CB on fast- and slow-twitch muscles.

  17. S-Adenosylmethionine Decreases Lipopolysaccharide-Induced Phosphodiesterase 4B2 and Attenuates Tumor Necrosis Factor Expression via cAMP/Protein Kinase A PathwayS⃞

    PubMed Central

    Gobejishvili, Leila; Avila, Diana V.; Barker, David F.; Ghare, Smita; Henderson, David; Brock, Guy N.; Kirpich, Irina A.; Joshi-Barve, Swati; Mokshagundam, Sri Prakash L.; McClain, Craig J.

    2011-01-01

    S-Adenosylmethionine (SAM) treatment has anti-inflammatory, cytoprotective effects against endotoxin-induced organ injury. An important component of the anti-inflammatory action of SAM involves down-regulation of the lipopolysaccharide (LPS)-induced transcriptional induction of tumor necrosis factor-α (TNF) expression by monocytes/macrophages. We examined the effect of SAM on expression and activity of LPS-induced up-regulation of phosphodiesterase 4 (PDE4), which regulates cellular cAMP levels and TNF expression. LPS treatment of RAW 264.7, a mouse macrophage cell line, led to the induction of Pde4b2 mRNA expression with no effect on Pde4a or Pde4d. SAM pretreatment led to a significant decrease in LPS-induced up-regulation of Pde4b2 expression in both RAW 264.7 cells and primary human CD14+ monocytes. Of note, the decreased Pde4b2 mRNA expression correlated with the SAM-dependent increase in the transcriptionally repressive histone H3 lysine 9 trimethylation on the Pde4b2 intronic promoter region. The SAM-mediated decrease in LPS-inducible Pde4b2 up-regulation resulted in an increase in cellular cAMP levels and activation of cAMP-dependent protein kinase A (PKA), which plays an inhibitory role in LPS-induced TNF production. In addition, SAM did not affect LPS-inducible inhibitor of nuclear factor-κB degradation or nuclear factor-κB (NF-κB)-p65 translocation into the nucleus but rather inhibited NF-κB transcriptional activity. These results demonstrate for the first time that inhibition of LPS-induced PDE4B2 up-regulation and increased cAMP-dependent PKA activation are significant mechanisms contributing to the anti-TNF effect of SAM. Moreover, these data also suggest that SAM may be used as an effective PDE4B inhibitor in the treatment of chronic inflammatory disorders in which TNF expression plays a significant pathogenic role. PMID:21266552

  18. Tau deletion promotes brain insulin resistance

    PubMed Central

    Marciniak, Elodie; Leboucher, Antoine; Caron, Emilie; Ahmed, Tariq; Tailleux, Anne; Dumont, Julie; Issad, Tarik; Gerhardt, Ellen; Pagesy, Patrick; Vileno, Margaux; Hamdane, Malika; Bantubungi, Kadiombo; Lancel, Steve; Demeyer, Dominique; Eddarkaoui, Sabiha; Vallez, Emmanuelle; Vieau, Didier; Humez, Sandrine; Faivre, Emilie; Grenier-Boley, Benjamin; Outeiro, Tiago F.; Amouyel, Philippe; Balschun, Detlef

    2017-01-01

    The molecular pathways underlying tau pathology–induced synaptic/cognitive deficits and neurodegeneration are poorly understood. One prevalent hypothesis is that hyperphosphorylation, misfolding, and fibrillization of tau impair synaptic plasticity and cause degeneration. However, tau pathology may also result in the loss of specific physiological tau functions, which are largely unknown but could contribute to neuronal dysfunction. In the present study, we uncovered a novel function of tau in its ability to regulate brain insulin signaling. We found that tau deletion leads to an impaired hippocampal response to insulin, caused by altered IRS-1 and PTEN (phosphatase and tensin homologue on chromosome 10) activities. Our data also demonstrate that tau knockout mice exhibit an impaired hypothalamic anorexigenic effect of insulin that is associated with energy metabolism alterations. Consistently, we found that tau haplotypes are associated with glycemic traits in humans. The present data have far-reaching clinical implications and raise the hypothesis that pathophysiological tau loss-of-function favors brain insulin resistance, which is instrumental for cognitive and metabolic impairments in Alzheimer’s disease patients. PMID:28652303

  19. Promoting brain remodeling to aid in stroke recovery

    PubMed Central

    Zhang, Zheng Gang; Chopp, Michael

    2015-01-01

    Endogenous brain repair after stroke involves a set of highly interactive processes, such as angiogenesis, neurogenesis, oligodendrogenesis, synaptogenesis and axonal outgrowth, which together orchestrate neurological recovery. During the past several years, there have been advances in our understanding of miRNAs and histone deacetylases (HDACs) in brain repair processes after stroke. Emerging data indicate the important role of exosomes for intercellular communication in promoting coupled brain remodeling processes. These advances will likely have a major impact on development of restorative therapies for ischemic brain repair, consequently leading to improvement of neurological function. In this review, we provide an update on our current understanding of cellular and molecular mechanisms of miRNAs, exosomes, and HDACs in brain restorative processes after stroke. PMID:26278490

  20. Family Forward: Promoting Family Adaptation Following Pediatric Acquired Brain Injury.

    PubMed

    Hickey, Lyndal; Anderson, Vicki; Jordan, Brigid

    2016-08-15

    This article describes a new and innovative social work intervention, Family Forward, designed to promote early adaptation of the family system after the onset of a child's acquired brain injury. Family Forward is integrated into inpatient rehabilitation services provided to the injured child and recognizes the important role of family in child rehabilitation outcomes and the parallel process of recovery for the child and family following an injury. Family Forward is informed by clinical practice, existing research in family adaptation after pediatric acquired brain injury, the resiliency model of family adjustment and adaptation, and family therapy theories and approaches.

  1. Phosphodiesterase 4 inhibition affects both the direct and indirect pathway: an electrophysiological study examining the tri-phasic response in the substantia nigra pars reticulata.

    PubMed

    Heckman, P R A; Schweimer, J V; Sharp, T; Prickaerts, J; Blokland, A

    2017-09-18

    Fronto-striatal circuits constitute the neurobiological basis of many neuropsychiatric disorders. Part of the intracellular signaling within these circuits, including its dopaminergic modulation, is regulated by the cyclic adenosine monophosphate (cAMP)/protein kinase A (PKA) signaling cascade. Based on the overall expression in human fronto-striatal circuitry, we tested the effects of a cAMP selective phosphodiesterase 4 (PDE4) inhibitor on the tri-phasic response in the dorsomedial substantia nigra pars reticulata (SNr) upon stimulation of the infralimbic cortex in rats. Our results show for the first time that stimulation of the cognitive infralimbic cortex leads to a tri-phasic response in SNr neurons. In addition and in line with previous biochemical and behavioral studies, PDE4 inhibition by roflumilast affects the direct pathway as well as the indirect pathway of which the latter appears more sensitive than the former.

  2. Emotions promote social interaction by synchronizing brain activity across individuals

    PubMed Central

    Nummenmaa, Lauri; Glerean, Enrico; Viinikainen, Mikko; Jääskeläinen, Iiro P.; Hari, Riitta; Sams, Mikko

    2012-01-01

    Sharing others’ emotional states may facilitate understanding their intentions and actions. Here we show that networks of brain areas “tick together” in participants who are viewing similar emotional events in a movie. Participants’ brain activity was measured with functional MRI while they watched movies depicting unpleasant, neutral, and pleasant emotions. After scanning, participants watched the movies again and continuously rated their experience of pleasantness–unpleasantness (i.e., valence) and of arousal–calmness. Pearson’s correlation coefficient was used to derive multisubject voxelwise similarity measures [intersubject correlations (ISCs)] of functional MRI data. Valence and arousal time series were used to predict the moment-to-moment ISCs computed using a 17-s moving average. During movie viewing, participants' brain activity was synchronized in lower- and higher-order sensory areas and in corticolimbic emotion circuits. Negative valence was associated with increased ISC in the emotion-processing network (thalamus, ventral striatum, insula) and in the default-mode network (precuneus, temporoparietal junction, medial prefrontal cortex, posterior superior temporal sulcus). High arousal was associated with increased ISC in the somatosensory cortices and visual and dorsal attention networks comprising the visual cortex, bilateral intraparietal sulci, and frontal eye fields. Seed-voxel–based correlation analysis confirmed that these sets of regions constitute dissociable, functional networks. We propose that negative valence synchronizes individuals’ brain areas supporting emotional sensations and understanding of another’s actions, whereas high arousal directs individuals’ attention to similar features of the environment. By enhancing the synchrony of brain activity across individuals, emotions may promote social interaction and facilitate interpersonal understanding. PMID:22623534

  3. Sleep after spatial learning promotes covert reorganization of brain activity.

    PubMed

    Orban, Pierre; Rauchs, Géraldine; Balteau, Evelyne; Degueldre, Christian; Luxen, André; Maquet, Pierre; Peigneux, Philippe

    2006-05-02

    Sleep promotes the integration of recently acquired spatial memories into cerebral networks for the long term. In this study, we examined how sleep deprivation hinders this consolidation process. Using functional MRI, we mapped regional cerebral activity during place-finding navigation in a virtual town, immediately after learning and 3 days later, in subjects either allowed regular sleep (RS) or totally sleep-deprived (TSD) on the first posttraining night. At immediate and delayed retrieval, place-finding navigation elicited increased brain activity in an extended hippocampo-neocortical network in both RS and TSD subjects. Behavioral performance was equivalent between groups. However, striatal navigation-related activity increased more at delayed retrieval in RS than in TSD subjects. Furthermore, correlations between striatal response and behavioral performance, as well as functional connectivity between the striatum and the hippocampus, were modulated by posttraining sleep. These data suggest that brain activity is restructured during sleep in such a way that navigation in the virtual environment, initially related to a hippocampus-dependent spatial strategy, becomes progressively contingent in part on a response-based strategy mediated by the striatum. Both neural strategies eventually relate to equivalent performance levels, indicating that covert reorganization of brain patterns underlying navigation after sleep is not necessarily accompanied by overt changes in behavior.

  4. Effects of rolipram and roflumilast, phosphodiesterase-4 inhibitors, on hypertension-induced defects in memory function in rats.

    PubMed

    Jabaris, Sobhana George Sugin Lal; Sumathy, Haridass; Kumar, Ramadass Satiesh; Narayanan, Shridhar; Thanikachalam, Sadagopan; Babu, Chidambaram Saravana

    2015-01-05

    Hypertension (HT) is a prevailing risk factor for cognitive impairment, the most common cause of vascular dementia; yet, no possible mechanism underlying the cognitive impairment induced by hypertension has been identified so far. Inhibition of PDE-4 has been shown to increase phosphorylation of cAMP-response element binding protein in the hippocampus and enhance the memory performance. Here, we examined the effects of PDE-4 inhibitors, rolipram and roflumilast, on the impairment of learning and memory observed in hypertensive rats. We used 2k-1c hypertensive model to induce learning and memory defects. In addition, mRNA expression of PDE-4 sub-types A-D was also assessed in the hippocampus tissue. Systolic blood pressure (SBP) was measured by tail-cuff method was significantly increased in 2k-1c rats when compared to sham operated rats; this effect was reversed by clonidine, whereas, PDE-4 inhibitors did not. PDE-4 inhibitors significantly reversed time induced memory deficit in novel object recognition task (NORT). Further, the retention latency on the second day in the elevated plus maze model was significantly shortened after repeated administration of rolipram and roflumilast. Plasma and brain concentrations of rolipram, roflumilast and roflumilast N-oxide were also measured after the NORT and showed linear increase in plasma and brain concentrations. The PDE4B and PDE4D gene expression was significantly enhanced in hypertensive rats compared with sham operated however PDE4A and PDE4C remained unaltered. Repeated treatment with PDE-4 inhibitors caused down regulation of PDE4B and PDE4D in hypertensive rats. These results suggest that inhibition of PDE-4 ameliorates HT-induced impairment of learning and memory functions. Copyright © 2014 Elsevier B.V. All rights reserved.

  5. Deep brain stimulation in the globus pallidus externa promotes sleep.

    PubMed

    Qiu, M H; Chen, M C; Wu, J; Nelson, D; Lu, J

    2016-05-13

    The basal ganglia, a network of subcortical structures, play a critical role in movements, sleep and mental behavior. Basal ganglia disorders such as Parkinson's disease and Huntington's disease affect sleep. Deep brain stimulation (DBS) to treat motor symptoms in Parkinson's disease can ameliorate sleep disturbances. Our series of previous studies lead the hypothesis that dopamine, acting on D2 receptors on the striatopallidal terminals, enhances activity in the globus pallidus externa (GPe) and promotes sleep. Here, we tested if DBS in the GPe promotes sleep in rats. We found that unilateral DBS (180 Hz at 100 μA) in the GPe in rats significantly increased both non-rapid eye movement and rapid eye movement sleep compared to sham DBS stimulation. The EEG power spectrum of sleep induced by DBS was similar to that of the baseline sleep, and sleep latency was not affected by DBS. The GPe is potentially a better site for DBS to treat both insomnia and motor disorders caused by basal ganglia dysfunction.

  6. Evaluation of single nucleotide polymorphisms in the phosphodiesterase 4D gene (PDE4D) and their association with ischaemic stroke in a large German cohort.

    PubMed

    Kuhlenbäumer, G; Berger, K; Huge, A; Lange, E; Kessler, C; John, U; Funke, H; Nabavi, D G; Stögbauer, F; Ringelstein, E B; Stoll, M

    2006-04-01

    Genetic fine mapping of the first locus identified for genetically complex forms of stroke, STRK1 (which has been mapped to chromosome 5q12 in Icelandic families), has identified the phosphodiesterase 4D gene (PDE4D) gene as a good candidate gene. Association analysis of single nucleotide polymorphisms (SNPs) in the PDE4D gene in an Icelandic stroke cohort demonstrated genetic association between six SNPs in the 5' region of PDE4D and ischaemic stroke. The present study aimed to test whether the same six SNPs in PDE4D were also associated with stroke in a large stroke cohort from northern Germany (stroke patients with acute completed ischaemic stroke: n = 1181; population based controls: n = 1569). None of the six SNPs showed significant association with ischaemic stroke in the whole stroke sample before and after adjustment for conventional stroke risk factors (age, sex, hypertension, diabetes, and hypercholesterolaemia). Haplotype analysis did also not reveal any significant association. Marginally positive statistical measures of association in the subgroup with cardioembolic stroke did not remain significant after correction for multiple testing. In conclusion, this study was unable to demonstrate an association between the six SNPs which had showed significant single marker association with stroke in the Icelandic stroke cohort and ischaemic stroke in a large German cohort.

  7. Evaluation of single nucleotide polymorphisms in the phosphodiesterase 4D gene (PDE4D) and their association with ischaemic stroke in a large German cohort

    PubMed Central

    Kuhlenbäumer, G; Berger, K; Huge, A; Lange, E; Kessler, C; John, U; Funke, H; Nabavi, D G; Stögbauer, F; Ringelstein, E B; Stoll, M

    2006-01-01

    Genetic fine mapping of the first locus identified for genetically complex forms of stroke, STRK1 (which has been mapped to chromosome 5q12 in Icelandic families), has identified the phosphodiesterase 4D gene (PDE4D) gene as a good candidate gene. Association analysis of single nucleotide polymorphisms (SNPs) in the PDE4D gene in an Icelandic stroke cohort demonstrated genetic association between six SNPs in the 5′ region of PDE4D and ischaemic stroke. The present study aimed to test whether the same six SNPs in PDE4D were also associated with stroke in a large stroke cohort from northern Germany (stroke patients with acute completed ischaemic stroke: n = 1181; population based controls: n = 1569). None of the six SNPs showed significant association with ischaemic stroke in the whole stroke sample before and after adjustment for conventional stroke risk factors (age, sex, hypertension, diabetes, and hypercholesterolaemia). Haplotype analysis did also not reveal any significant association. Marginally positive statistical measures of association in the subgroup with cardioembolic stroke did not remain significant after correction for multiple testing. In conclusion, this study was unable to demonstrate an association between the six SNPs which had showed significant single marker association with stroke in the Icelandic stroke cohort and ischaemic stroke in a large German cohort. PMID:16543535

  8. Identification of a multifunctional docking site on the catalytic unit of phosphodiesterase-4 (PDE4) that is utilised by multiple interaction partners

    PubMed Central

    Houslay, Kirsty F.; Christian, Frank; MacLeod, Ruth; Adams, David R.; Houslay, Miles D.

    2017-01-01

    Cyclic AMP (cAMP)-specific phosphodiesterase-4 (PDE4) enzymes underpin compartmentalised cAMP signalling by localising to distinct signalling complexes. PDE4 long isoforms can be phosphorylated by mitogen-activated protein kinase-activated protein kinase 2 (MK2), which attenuates activation of such enzymes through their phosphorylation by protein kinase A. Here we show that MK2 interacts directly with PDE4 long isoforms and define the sites of interaction. One is a unique site that locates within the regulatory upstream conserved region 1 (UCR1) domain and contains a core Phe141, Leu142 and Tyr143 (FLY) cluster (PDE4A5 numbering). Located with the second site is a critical core Phe693, Glu694, Phe695 (FQF) motif that is also employed in the sequestering of PDE4 long forms by an array of other signalling proteins, including the signalling scaffold β-arrestin, the tyrosyl kinase Lyn, the SUMOylation E2 ligase UBC9, the dynein regulator Lis1 (PAFAH1B1) and the protein kinase Erk. We propose that the FQF motif lies at the heart of a multifunctional docking (MFD) site located within the PDE4 catalytic unit. It is clear from our data that, as well as aiding fidelity of interaction, the MFD site confers exclusivity of binding between PDE4 and a single specific partner protein from the cohort of signalling proteins whose interaction with PDE4 involves the FQF motif. PMID:27993970

  9. Design, Synthesis, and Structure-Activity Relationship, Molecular Modeling, and NMR Studies of a Series of a Phenyl Alkyl Ketones as Highly Potent and Selective Phosphodiesterase-4 Inhibitors

    SciTech Connect

    Zheng, S.; Kaur, G; Wang, H; Li, M; MacNaughtan, M; Yang, X; Reid, S; Prestegard, J; Wang, B; et. al.

    2008-01-01

    Phosphodiesterase 4 catalyzes the hydrolysis of cyclic AMP and is a target for the development of anti-inflammatory agents. We have designed and synthesized a series of phenyl alkyl ketones as PDE4 inhibitors. Among them, 13 compounds were identified as having submicromolar IC{sub 50} values. The most potent compounds have IC50 values of in the mid- to low-nanomolar range. Compound 5v also showed preference for PDE4 with selectivity of >2000-fold over PDE7, PDE9, PDE2, and PDE5. Docking of 5v, 5zf, and 5za into the binding pocket of the PDE4 catalytic domain revealed a similar binding profile to PDE4 with rolipram except that the fluorine atoms of the difluoromethyl groups of 5v, 5za, and 5zf are within a reasonable range for hydrogen bond formation with the amide hydrogen of Thr 333 and the long alkyl chain bears additional van der Waals interactions with His 160, Asp 318, and Tyr 159.

  10. Design, Synthesis, and Structure–Activity Relationship, Molecular Modeling, and NMR Studies of a Series of Phenyl Alkyl Ketones as Highly Potent and Selective Phosphodiesterase-4 Inhibitors

    PubMed Central

    Zheng, Shilong; Kaur, Gurpreet; Wang, Huanchen; Li, Minyong; Macnaughtan, Megan; Yang, Xiaochuan; Reid, Suazette; Prestegard, James; Wang, Binghe; Ke, Hengming

    2010-01-01

    Phosphodiesterase 4 catalyzes the hydrolysis of cyclic AMP and is a target for the development of anti-inflammatory agents. We have designed and synthesized a series of phenyl alkyl ketones as PDE4 inhibitors. Among them, 13 compounds were identified as having submicromolar IC50 values. The most potent compounds have IC50 values of in the mid- to low-nanomolar range. Compound 5v also showed preference for PDE4 with selectivity of >2000-fold over PDE7, PDE9, PDE2, and PDE5. Docking of 5v, 5zf, and 5za into the binding pocket of the PDE4 catalytic domain revealed a similar binding profile to PDE4 with rolipram except that the fluorine atoms of the difluoromethyl groups of 5v, 5za, and 5zf are within a reasonable range for hydrogen bond formation with the amide hydrogen of Thr 333 and the long alkyl chain bears additional van der Waals interactions with His 160, Asp 318, and Tyr 159. PMID:19049349

  11. Hydroxycarbamide decreases sickle reticulocyte adhesion to resting endothelium by inhibiting endothelial lutheran/basal cell adhesion molecule (Lu/BCAM) through phosphodiesterase 4A activation.

    PubMed

    Chaar, Vicky; Laurance, Sandrine; Lapoumeroulie, Claudine; Cochet, Sylvie; De Grandis, Maria; Colin, Yves; Elion, Jacques; Le Van Kim, Caroline; El Nemer, Wassim

    2014-04-18

    Vaso-occlusive crises are the main acute complication in sickle cell disease. They are initiated by abnormal adhesion of circulating blood cells to vascular endothelium of the microcirculation. Several interactions involving an intricate network of adhesion molecules have been described between sickle red blood cells and the endothelial vascular wall. We have shown previously that young sickle reticulocytes adhere to resting endothelial cells through the interaction of α4β1 integrin with endothelial Lutheran/basal cell adhesion molecule (Lu/BCAM). In the present work, we investigated the functional impact of endothelial exposure to hydroxycarbamide (HC) on this interaction using transformed human bone marrow endothelial cells and primary human pulmonary microvascular endothelial cells. Adhesion of sickle reticulocytes to HC-treated endothelial cells was decreased despite the HC-derived increase of Lu/BCAM expression. This was associated with decreased phosphorylation of Lu/BCAM and up-regulation of the cAMP-specific phosphodiesterase 4A expression. Our study reveals a novel mechanism for HC in endothelial cells where it could modulate the function of membrane proteins through the regulation of phosphodiesterase expression and cAMP-dependent signaling pathways.

  12. Pro-inflammatory cytokine regulation of cyclic AMP-phosphodiesterase 4 signaling in microglia in vitro and following CNS injury

    PubMed Central

    Ghosh, Mousumi; Garcia-Castillo, Daniela; Aguirre, Vladimir; Golshani, Roozbeh; Atkins, Coleen M.; Bramlett, Helen M.; Dietrich, W. Dalton; Pearse, Damien D.

    2015-01-01

    Cyclic AMP suppresses immune cell activation and inflammation. The positive feedback loop of pro-inflammatory cytokine production and immune activation implies that cytokines may not only be regulated by cyclic AMP but conversely regulate cyclic AMP. This study examined the effects of TNF-α and IL-1β on cyclic AMP-phosphodiesterase (PDE) signaling in microglia in vitro and after spinal cord or traumatic brain injury (SCI, TBI). TNF-α or IL-1β stimulation produced a profound reduction (>90%) of cyclic AMP within EOC2 microglia from 30min that then recovered after IL-1β but remained suppressed with TNF-α through 24h. Cyclic AMP was also reduced in TNF-α-stimulated primary microglia, albeit to a lesser extent. Accompanying TNF-α-induced cyclic AMP reductions, but not IL-1β, was increased cyclic AMP-PDE activity. The role of PDE4 activity in cyclic AMP reductions was confirmed by using Rolipram. Examination of pde4 mRNA revealed an immediate, persistent increase in pde4b with TNF-α; IL-1β increased all pde4 mRNAs. Immunoblotting for PDE4 showed that both cytokines increased PDE4A1, but only TNF-α increased PDE4B2. Immunocytochemistry revealed PDE4B nuclear translocation with TNF-α but not IL-1β. Acutely after SCI/TBI, where cyclic AMP levels are reduced, PDE4B was localized to activated OX-42+ microglia; PDE4B was absent in OX-42+ cells in uninjured spinal cord/cortex or inactive microglia. Immunoblotting showed PDE4B2 up-regulation from 24h to 1wk post-SCI, the peak of microglia activation. These studies show that TNF-α and IL-1β differentially affect cyclic AMP-PDE signaling in microglia. Targeting PDE4B2 may be a putative therapeutic direction for reducing microglia activation in CNS injury and neurodegenerative diseases. PMID:22865690

  13. Phosphodiesterase 4 in inflammatory diseases: Effects of apremilast in psoriatic blood and in dermal myofibroblasts through the PDE4/CD271 complex.

    PubMed

    Schafer, Peter H; Truzzi, Francesca; Parton, Anastasia; Wu, Lei; Kosek, Jolanta; Zhang, Ling-Hua; Horan, Gerald; Saltari, Annalisa; Quadri, Marika; Lotti, Roberta; Marconi, Alessandra; Pincelli, Carlo

    2016-07-01

    Phosphodiesterases 4 (PDE4) act as proinflammatory enzymes via degradation of cAMP, whereas PDE4 inhibitors play an anti-inflammatory role in vitro and in vivo. In particular, apremilast has been recently approved for the treatment of psoriasis and psoriatic arthritis. However, little is known on the expression pattern of PDE4 in psoriasis. We report that PDE4B and PDE4D mRNA are overexpressed in peripheral blood mononuclear cells (PBMC) from psoriasis, as compared with normal controls, while apremilast reduces PBMC production of a number of pro-inflammatory cytokines and increases the levels of anti-inflammatory mediators. PDE4 expression is up-regulated in psoriatic dermis as compared with normal skin, with particular regard to fibroblasts. This is confirmed in vitro, where both dermal fibroblasts (DF) and, to a greater extent, myofibroblasts (DM) express all PDE4 isoforms at the mRNA and protein level. Because PDE4 interacts with the nerve growth factor (NGF) receptor CD271 in lung fibroblasts, we evaluated the relationship and function of PDE4 and CD271 in normal human skin fibroblasts. All PDE4 isoforms co-immunoprecipitate with CD271 in DM, while apremilast inhibits apoptosis induced by β-amyloid, a CD271 ligand, in DM. Furthermore, apremilast significantly reduces NGF- and transforming growth factor-β1 (TGF-β1)-induced fibroblast migration, and inhibits DF differentiation into DM mediated by NGF or TGF-β1. Finally, in DM, apremilast significantly reduces cAMP degradation induced by treatment with β-amyloid. Taken together, these results indicate that PDE4 play an important role in psoriasis. In addition, the study reveals that the PDE4/CD271 complex could be important in modulating fibroblast functions. Copyright © 2016 The Authors. Published by Elsevier Inc. All rights reserved.

  14. cAMP/PKA/CREB/GLT1 signaling involved in the antidepressant-like effects of phosphodiesterase 4D inhibitor (GEBR-7b) in rats

    PubMed Central

    Liu, Xu; Guo, Haibiao; Sayed, Mohammad Daud SOM; Lu, Yang; Yang, Ting; Zhou, Dongsheng; Chen, Zhongming; Wang, Haitao; Wang, Chuang; Xu, Jiangping

    2016-01-01

    Objectives GEBR-7b, a potential phosphodiesterase 4D inhibitor, has been shown to have memory-enhancing effects in rodents. However, it is still unknown whether GEBR-7b also has the antidepressant-like effects in rats. Herein, we examined the potential of GEBR-7b to attenuate depression-like behaviors in the rat model of depression induced by chronic unpredictable stress (CUS). Next, we also investigated the alterations of cyclic adenosine monophosphate (cAMP), protein kinase A (PKA) catalytic subunit (PKAca), cAMP response element-binding (CREB), and glutamate transporter 1 (GLT1) levels produced by GEBR-7b in the rats model of depression. Methods Effects of GEBR-7b on CUS (35 days)-induced depression-like behaviors were examined by measuring immobility time in the forced swimming test (FST). Hippocampal cAMP levels were examined by enzyme-linked immunosorbent assay, whereas PKAca, phosphorylation of CREB (pCREB), CREB, and GLT1 in the hippocampus of rats were subjected to Western blot analysis. Results CUS exposure caused a depression-like behavior evidenced by the increased immobility time in FST. Depression-like behavior induced by CUS was accompanied by a significant increased GLT, decreased cAMP, PKAca, pCREB activities in hippocampus. However, repeated GEBR-7b administration significantly reversed CUS-induced depression-like behavior and changes of cAMP/PKA/CREB/GLT1 signaling. No alteration was observed in locomotor activity in open field test. Conclusion These findings indicate that GEBR-7b reversed the depression-like behaviors induced by CUS in rats, which is at least in part mediated by modulating cAMP, PKAca, pCREB, and GLT1 levels in the hippocampus of rats, supporting its neuroprotective potential against behavioral and biochemical dysfunctions induced by CUS. PMID:26855578

  15. Effects of repeated treatment with phosphodiesterase-4 inhibitors on cAMP signaling, hippocampal cell proliferation, and behavior in the forced-swim test.

    PubMed

    Xiao, Lan; O'Callaghan, James P; O'Donnell, James M

    2011-08-01

    The effects of repeated treatment with the phosphodiesterase-4 (PDE4) inhibitors rolipram, piclamilast, and 4-(2-(3-(cyclopentyloxy)-4-methoxyphenyl)-2-phenylethyl)pyridine (CDP840), which differ in their interactions with high- and low-affinity binding conformers of the enzyme, were contrasted to those of acute treatment on cAMP signaling, hippocampal cell proliferation, and immobility in the forced-swim test in rats. Repeated treatment with rolipram (1 and 3 mg/kg), piclamilast (0.3 and 1 mg/kg), or CDP840 (10 and 30 mg/kg) for 16 days increased cAMP and phosphorylation of cAMP response element binding protein (pCREB) in hippocampus and prefrontal cortex. In addition, repeated treatment with the PDE4 inhibitors increased proliferation and survival of newborn cells in the hippocampus and produced antidepressant-like effects on behavior, as evidenced by decreased immobility in the forced-swim test. Acute treatment with rolipram (3 mg/kg), piclamilast (1 mg/kg), or CDP840 (30 mg/kg) induced transient increases in cAMP and pCREB in hippocampus and prefrontal cortex, but the dose and time dependence of these effects did not parallel the behavioral effects. Compared with rolipram and piclamilast, repeated treatment with CDP840 exerted lesser effects on neural and behavioral measures, probably because of its weak interaction with the high-affinity binding conformer of PDE4. This suggests the relative importance of the high-affinity binding conformer in the mediation of the long-term effects of PDE4 inhibition on cAMP/pCREB signaling, hippocampal cell proliferation, and antidepressant-like effects on behavior.

  16. GS-5759, a Bifunctional β2-Adrenoceptor Agonist and Phosphodiesterase 4 Inhibitor for Chronic Obstructive Pulmonary Disease with a Unique Mode of Action: Effects on Gene Expression in Human Airway Epithelial Cells.

    PubMed

    Joshi, Taruna; Yan, Dong; Hamed, Omar; Tannheimer, Stacey L; Phillips, Gary B; Wright, Clifford D; Kim, Musong; Salmon, Michael; Newton, Robert; Giembycz, Mark A

    2017-02-01

    (R)-6-[(3-{[4-(5-{[2-hydroxy-2-(8-hydroxy-2-oxo-1,2-dihydroquinolin-5-yl)ethyl]amino}pent-1-yn-1-yl)phenyl] carbamoyl}phenyl)sulphonyl]-4-[(3-methoxyphenyl)amino]-8-methylquinoline-3-carboxamide trifluoroacetic acid (GS-5759) is a bifunctional ligand composed of a quinolinone-containing pharmacophore [β2-adrenoceptor agonist orthostere (β2A)] found in several β2-adrenoceptor agonists, including indacaterol, linked covalently to a phosphodiesterase 4 (PDE4) inhibitor related to 6-[3-(dimethylcarbamoyl)benzenesulphonyl]-4-[(3-methoxyphenyl)amino]-8-methylquinoline-3-carboxamide (GSK 256066) by a pent-1-yn-1-ylbenzene spacer. GS-5759 had a similar affinity for PDE4B1 and the native β2-adrenoceptor expressed on BEAS-2B human airway epithelial cells. However, compared with the monofunctional parent compound, β2A, the KA of GS-5759 for the β2-adrenoceptor was 35-fold lower. Schild analysis determined that the affinities of the β-adrenoceptor antagonists, (2R,3R)-1-[(2,3-dihydro-7-methyl-1H-inden-4-yl)oxy]-3-[(1-methylethyl) amino]-2-butanol (ICI 118551) and propranolol, were agonist-dependent, being significantly lower for GS-5759 than β2A. Collectively, these data can be explained by "forced proximity," bivalent binding where the pharmacophore in GS-5759 responsible for PDE4 inhibition also interacts with a nonallosteric domain within the β2-adrenoceptor that enhances the affinity of β2A for the orthosteric site. Microarray analyses revealed that, after 2-hour exposure, GS-5759 increased the expression of >3500 genes in BEAS-2B cells that were highly rank-order correlated with gene expression changes produced by indacaterol and GSK 256066 in combination (Ind/GSK). Moreover, the line of regression began close to the origin with a slope of 0.88, indicating that the magnitude of most gene expression changes produced by Ind/GSK was quantitatively replicated by GS-5759. Thus, GS-5759 is a novel compound exhibiting dual β2-adrenoceptor agonism and PDE4 inhibition

  17. Diminished responsiveness to dobutamine as an inotrope in mice with cecal ligation and puncture-induced sepsis: attribution to phosphodiesterase 4 upregulation.

    PubMed

    Sakai, Mari; Suzuki, Tokiko; Tomita, Kengo; Yamashita, Shigeyuki; Palikhe, Sailesh; Hattori, Kohshi; Yoshimura, Naoki; Matsuda, Naoyuki; Hattori, Yuichi

    2017-06-01

    without changes in cardiac β1-adrenoceptor signaling as a result of cAMP breakdown achieved by upregulated phosphodiesterase 4D. Copyright © 2017 the American Physiological Society.

  18. RNA interference-mediated phosphodiesterase 4D splice variants knock-down in the prefrontal cortex produces antidepressant-like and cognition-enhancing effects

    PubMed Central

    Wang, Zhen-Zhen; Zhang, Yi; Liu, Yan-Qin; Zhao, Nan; Zhang, You-Zhi; Yuan, Li; An, Lei; Li, Jing; Wang, Xiao-Yun; Qin, Juan-Juan; Wilson, Steven P; O'Donnell, James M; Zhang, Han-Ting; Li, Yun-Feng

    2013-01-01

    Background and Purpose Phosphodiesterase 4 (PDE4) inhibitors produce potent antidepressant-like and cognition-enhancing effects. However, their clinical utility is limited by the major side effect of emesis, which appears to be PDE4 isoform-specific. Although PDE4D subtype plays the pivotal role in these therapeutic profiles, it is also the primary subtype responsible for emesis. Therefore, the aim of present research was to investigate whether long-form PDE4D variants mediate antidepressant-like and cognition-enhancing effects, but are irrespective with emesis. Experimental Approach In mice microinfused with lentiviral vectors that contained shRNA-mir hairpin structure targeting long-form PDE4Ds into bilateral prefrontal cortices, the tail-suspension and forced-swim tests were used to measure antidepressant-like effects; novel object recognition and Morris water-maze tasks were used to determine cognition-enhancing effects. The emetic potential was assessed by alpha2 adrenergic receptor-mediated anaesthesia, a surrogate measure of emesis. Intracellular cAMP signalling was analysed by time-resolved FRET immunoassay and Western-blot. Dendritic complexity was assessed by Golgi staining. Key Results Microinfusions of lentiviral PDE4D-shRNA down-regulated PDE4D4 and PDE4D5, and imitated the antidepressant-like and cognition-enhancing effects of the prototypical PDE4 inhibitor rolipram. The behavioural effects were related to dendritic complexity and mediated by the increased cAMP signalling. In addition, these effects were not enhanced in the presence of rolipram. Finally, while rolipram shortened the duration of combined anaesthesia, RNA interference-mediated PDE4D knock-down in the prefrontal cortex did not. Conclusion and Implications These data suggest that long-form PDE4Ds, at least PDE4D4 and PDE4D5, may be the promising targets for the development of PDE4 variant-selective inhibitors as the new pharmacotherapies for depressive disorders and neurodegenerative

  19. Short-term or long-term treatments with a phosphodiesterase-4 (PDE4) inhibitor result in opposing agonist-induced Ca2+ responses in endothelial cells

    PubMed Central

    Campos-Toimil, M; Keravis, T; Orallo, F; Takeda, K; Lugnier, C

    2008-01-01

    Background and purpose: We previously reported that agonist-induced rises in cytoplasmic Ca2+ concentration ([Ca2+]i) in human umbilical vein endothelial cells (HUVEC) were inhibited after a short-term (2 min) pre-treatment with cAMP-elevating agents. The aim of this work was to study the effects of longer term (8 h) pre-treatment with dibutyryl-cAMP (db-cAMP) or rolipram, a specific inhibitor of phosphodiesterase-4 (PDE4), on [Ca2+]i, cAMP levels and PDE activity and expression in HUVEC. Experimental approach: [Ca2+]i changes were measured in isolated HUVEC by Fura-2 imaging. Intracellular cAMP levels and PDE4 activity were assessed by enzyme-immunoassay and radio-enzymatic assay, respectively. PDE expression was measured by northern and western blot analysis. Key results: Long-term pre-treatment of HUVEC with rolipram or db-cAMP significantly increased ATP-, histamine- and thrombin-induced [Ca2+]i rises. Short-term pre-treatment with rolipram was associated with an increase in cAMP, whereas long-term pre-treatment was associated with a decrease in cAMP. Long-term pre-treatment with rolipram or db-cAMP induced a significant increase in PDE4 activity and the expression of 74 kDa-PDE4A and 73 kDa-PDE4B was specifically enhanced. All these effects were suppressed by cycloheximide. Conclusions and implications: Our data suggest that sustained inhibition of PDE4 by rolipram induced an increase in PDE4 activity, possibly as a compensatory mechanism to accelerate cAMP degradation and that PDE4A and PDE4B were implicated in the regulation of [Ca2+]i. Thus, isozyme-specific PDE4 inhibitors might be useful as therapeutic agents in diseases where [Ca2+]i handling is altered, such as atherosclerosis, hypertension and tolerance to β-adrenoceptor agonists. PMID:18311187

  20. Intrathecal injection of phosphodiesterase 4B-specific siRNA attenuates neuropathic pain in rats with L5 spinal nerve ligation.

    PubMed

    Ji, Qing; Di, Yan; He, Xiaoyun; Liu, Qingzhen; Liu, Jian; Li, Weiyan; Zhang, Lidong

    2016-02-01

    Phosphodiesterase 4 (PDE4) is an adenosine cyclic 3,5-monophosphate-specific degradative enzyme, which is closely associated with the inflammatory response. Among its four subtypes (A-D), it remains unclear which one exerts suppressive effects on inflammation and reduces neuropathic pain. The present study aimed to examine the modulation of neuroinflammation by PDE4 subtypes in the spinal cord of a rat model of L5 spinal nerve ligation (SNL)-induced neuropathic pain. The expression levels of PDE4A-D were measured in the lumbar spinal cords of naïve rats. The rats were then divided into seven groups: The sham group (sham surgery + saline), the saline group (SNL + saline), the vehicle group (SNL + Lipofectamine® RNAiMAX), the mismatch small interfering (si)RNA group (SNL + mismatch siRNA), the PDE4A-siRNA group (SNL + PDE4A-siRNA), the PDE4B-siRNA group (SNL + PDE4B-siRNA) and the PDE4D-siRNA group (SNL + PDE4D-siRNA). In order to determine behavioral changes, mechanical withdrawal threshold (MWT) and thermal withdrawal latency (TWL) were recorded. The mRNA and protein expression levels of PDE4s were also detected. Furthermore, the association between behavioral changes and individual subtypes of PDE4 were studied following intrathecal administration of PDE4A, B and D-specific siRNA. The expression levels of protein kinases, including phosphorylated-extracellular signal-regulated kinases (p-ERK), and inflammatory cytokines were measured, in order to explore the underlying mechanisms. Subtypes A, B and D, but not C, were detected in the naïve rats. After SNL, both MWT and TWL were reduced. The mRNA and protein expression levels of PDE4A, B and D were significantly upregulated after 2, 4, 6 and 8 days of SNL. Subtype-specific siRNA significantly suppressed the elevated expression levels; however, only rats treated with PDE4B siRNA exhibited improved MWT and TWL. Further analysis of the PDE4B siRNA-treated rats demonstrated that 8 days after SNL, the intensity of p

  1. Mitotic activation of the DISC1-inducible cyclic AMP phosphodiesterase-4D9 (PDE4D9), through multi-site phosphorylation, influences cell cycle progression.

    PubMed

    Sheppard, Catherine L; Lee, Louisa C Y; Hill, Elaine V; Henderson, David J P; Anthony, Diana F; Houslay, Daniel M; Yalla, Krishna C; Cairns, Lynne S; Dunlop, Allan J; Baillie, George S; Huston, Elaine; Houslay, Miles D

    2014-09-01

    In Rat-1 cells, the dramatic decrease in the levels of both intracellular cyclic 3'5' adenosine monophosphate (cyclic AMP; cAMP) and in the activity of cAMP-activated protein kinase A (PKA) observed in mitosis was paralleled by a profound increase in cAMP hydrolyzing phosphodiesterase-4 (PDE4) activity. The decrease in PKA activity, which occurs during mitosis, was attributable to PDE4 activation as the PDE4 selective inhibitor, rolipram, but not the phosphodiesterase-3 (PDE3) inhibitor, cilostamide, specifically ablated this cell cycle-dependent effect. PDE4 inhibition caused Rat-1 cells to move from S phase into G2/M more rapidly, to transit through G2/M more quickly and to remain in G1 for a longer period. Inhibition of PDE3 elicited no observable effects on cell cycle dynamics. Selective immunopurification of each of the four PDE4 sub-families identified PDE4D as being selectively activated in mitosis. Subsequent analysis uncovered PDE4D9, an isoform whose expression can be regulated by Disrupted-In-Schizophrenia 1 (DISC1)/activating transcription factor 4 (ATF4) complex, as the sole PDE4 species activated during mitosis in Rat-1 cells. PDE4D9 becomes activated in mitosis through dual phosphorylation at Ser585 and Ser245, involving the combined action of ERK and an unidentified 'switch' kinase that has previously been shown to be activated by H2O2. Additionally, in mitosis, PDE4D9 also becomes phosphorylated at Ser67 and Ser81, through the action of MK2 (MAPKAPK2) and AMP kinase (AMPK), respectively. The multisite phosphorylation of PDE4D9 by all four of these protein kinases leads to decreased mobility (band-shift) of PDE4D9 on SDS-PAGE. PDE4D9 is predominantly concentrated in the perinuclear region of Rat-1 cells but with a fraction distributed asymmetrically at the cell margins. Our investigations demonstrate that the diminished levels of cAMP and PKA activity that characterise mitosis are due to enhanced cAMP degradation by PDE4D9. PDE4D9, was found to

  2. Brain-specific ablation of Efr3a promotes adult hippocampal neurogenesis via the brain-derived neurotrophic factor pathway.

    PubMed

    Qian, Qi; Liu, Qiuji; Zhou, Dongming; Pan, Hongyu; Liu, Zhiwei; He, Fangping; Ji, Suying; Wang, Dongpi; Bao, Wangxiao; Liu, Xinyi; Liu, Zhaoling; Zhang, Heng; Zhang, Xiaoqin; Zhang, Ling; Wang, Mingkai; Xu, Ying; Huang, Fude; Luo, Benyan; Sun, Binggui

    2017-02-13

    Efr3 is a newly identified plasma membrane protein and plays an important role in the phosphoinositide metabolism on the plasma membrane. However, although it is highly expressed in the brain, the functional significance of Efr3 in the brain is not clear. In the present study, we generated Efr3a(f/f) mice and then crossed them with Nestin-Cre mice to delete Efr3a, one of the Efr3 isoforms, specifically in the brain. We found that brain-specific ablation of Efr3a promoted adult hippocampal neurogenesis by increasing survival and maturation of newborn neurons without affecting their dendritic tree morphology. Moreover, the brain-derived neurotrophic factor (BDNF)-tropomyosin-related kinase B (TrkB) signaling pathway was significantly enhanced in the hippocampus of Efr3a-deficient mice, as reflected by increased expression of BDNF, TrkB, and the downstream molecules, including phospho-MAPK and phospho-Akt. Furthermore, the number of TUNEL(+) cells was decreased in the subgranular zone of dentate gyrus in Efr3a-deficient mice compared with that of control mice. Our data suggest that brain-specific deletion of Efr3a could promote adult hippocampal neurogenesis, presumably by upregulating the expression of BDNF and its receptor, TrkB, and therefore provide new insight into the roles of Efr3 in the brain.-Qian, Q., Liu, Q., Zhou, D., Pan, H., Liu, Z., He, F., Ji, S., Wang, D., Bao, W., Liu, X., Liu, Z., Zhang, H., Zhang, X., Zhang, L., Wang, M., Xu, Y., Huang, F., Luo, B., Sun B. Brain-specific ablation of Efr3a promotes adult hippocampal neurogenesis via the brain-derived neurotrophic factor pathway.

  3. A regulatory toolbox of MiniPromoters to drive selective expression in the brain

    PubMed Central

    Portales-Casamar, Elodie; Swanson, Douglas J.; Liu, Li; de Leeuw, Charles N.; Banks, Kathleen G.; Ho Sui, Shannan J.; Fulton, Debra L.; Ali, Johar; Amirabbasi, Mahsa; Arenillas, David J.; Babyak, Nazar; Black, Sonia F.; Bonaguro, Russell J.; Brauer, Erich; Candido, Tara R.; Castellarin, Mauro; Chen, Jing; Chen, Ying; Cheng, Jason C. Y.; Chopra, Vik; Docking, T. Roderick; Dreolini, Lisa; D'Souza, Cletus A.; Flynn, Erin K.; Glenn, Randy; Hatakka, Kristi; Hearty, Taryn G.; Imanian, Behzad; Jiang, Steven; Khorasan-zadeh, Shadi; Komljenovic, Ivana; Laprise, Stéphanie; Liao, Nancy Y.; Lim, Jonathan S.; Lithwick, Stuart; Liu, Flora; Liu, Jun; Lu, Meifen; McConechy, Melissa; McLeod, Andrea J.; Milisavljevic, Marko; Mis, Jacek; O'Connor, Katie; Palma, Betty; Palmquist, Diana L.; Schmouth, Jean-François; Swanson, Magdalena I.; Tam, Bonny; Ticoll, Amy; Turner, Jenna L.; Varhol, Richard; Vermeulen, Jenny; Watkins, Russell F.; Wilson, Gary; Wong, Bibiana K. Y.; Wong, Siaw H.; Wong, Tony Y. T.; Yang, George S.; Ypsilanti, Athena R.; Jones, Steven J. M.; Holt, Robert A.; Goldowitz, Daniel; Wasserman, Wyeth W.; Simpson, Elizabeth M.

    2010-01-01

    The Pleiades Promoter Project integrates genomewide bioinformatics with large-scale knockin mouse production and histological examination of expression patterns to develop MiniPromoters and related tools designed to study and treat the brain by directed gene expression. Genes with brain expression patterns of interest are subjected to bioinformatic analysis to delineate candidate regulatory regions, which are then incorporated into a panel of compact human MiniPromoters to drive expression to brain regions and cell types of interest. Using single-copy, homologous-recombination “knockins” in embryonic stem cells, each MiniPromoter reporter is integrated immediately 5′ of the Hprt locus in the mouse genome. MiniPromoter expression profiles are characterized in differentiation assays of the transgenic cells or in mouse brains following transgenic mouse production. Histological examination of adult brains, eyes, and spinal cords for reporter gene activity is coupled to costaining with cell-type–specific markers to define expression. The publicly available Pleiades MiniPromoter Project is a key resource to facilitate research on brain development and therapies. PMID:20807748

  4. Viral Vector-Based Dissection of Marmoset GFAP Promoter in Mouse and Marmoset Brains

    PubMed Central

    Takahashi, Nobutaka; Matsuzaki, Yasunori; Kishi, Shoji; Hirai, Hirokazu

    2016-01-01

    Adeno-associated virus (AAV) vectors are small in diameter, diffuse easily in the brain, and represent a highly efficient means by which to transfer a transgene to the brain of a large animal. A major demerit of AAV vectors is their limited accommodation capacity for transgenes. Thus, a compact promoter is useful when delivering large transgenes via AAV vectors. In the present study, we aimed to identify the shortest astrocyte-specific GFAP promoter region that could be used for AAV-vector-mediated transgene expression in the marmoset brain. The 2.0-kb promoter region upstream of the GFAP gene was cloned from the marmoset genome, and short promoters (1.6 kb, 1.4 kb, 0.6 kb, 0.3 kb and 0.2 kb) were obtained by progressively deleting the original 2.0-kb promoter from the 5’ end. The short promoters were screened in the mouse cerebellum in terms of their strength and astrocyte specificity. We found that the 0.3-kb promoter maintained 40% of the strength of the original 2.0-kb promoter, and approximately 90% of its astrocyte specificity. These properties were superior to those of the 1.4-kb, 0.6-kb (20% promoter strength) and 0.2-kb (70% astrocyte specificity) promoters. Then, we verified whether the 0.3-kb GFAP promoter retained astrocyte specificity in the marmoset cerebral cortex. Injection of viral vectors carrying the 0.3-kb marmoset GFAP promoter specifically transduced astrocytes in both the cerebral cortex and cerebellar cortex of the marmoset. These results suggest that the compact 0.3-kb promoter region serves as an astrocyte-specific promoter in the marmoset brain, which permits us to express a large gene by AAV vectors that have a limited accommodation capacity. PMID:27571575

  5. Acute stress promotes post-injury brain regeneration in fish.

    PubMed

    Sinyakov, Michael S; Haimovich, Amihai; Avtalion, Ramy R

    2017-09-12

    The central nervous system and the immune system, the two major players in homeostasis, operate in the ongoing bidirectional interaction. Stress is the third player that exerts strong effect on these two 'supersystems'; yet, its impact is studied much less. In this work employing carp model, we studied the influence of preliminary stress on neural and immune networks involved in post-injury brain regeneration. The relevant in-vivo models of air-exposure stress and precisely directed cerebellum injury have been developed. Neuronal regeneration was evaluated by using specific tracers of cell proliferation and differentiation. Involvement of immune networks was accessed by monitoring the expression of selected T cells markers. Contrast difference between acute and chronic stress manifested in the fact that chronically stressed fish did not survive the brain injury. Neuronal regeneration appeared as a biphasic process whereas involvement of immune system proceeded as a monophasic route. In stressed fish, immune response was fast and accompanied or even preceded neuronal regeneration. In unstressed subjects, immune response took place on the second phase of neuronal regeneration. These findings imply an intrinsic regulatory impact of acute stress on neuronal and immune factors involved in post-injury brain regeneration. Stress activates both neuronal and immune defense mechanisms and thus contributes to faster regeneration. In this context, paradoxically, acute preliminary stress might be considered a distinct asset in speeding up the following post-injury brain regeneration. Copyright © 2017 Elsevier B.V. All rights reserved.

  6. Understanding How Exercise Promotes Cognitive Integrity in the Aging Brain.

    PubMed

    Laitman, Benjamin M; John, Gareth R

    2015-01-01

    Alterations in the structure and organization of the aging central nervous system (CNS), and associated functional deficits, result in cognitive decline and increase susceptibility to neurodegeneration. Age-related changes to the neurovascular unit (NVU), and their consequences for cerebrovascular function, are implicated as driving cognitive impairment during aging as well as in neurodegenerative disease. The molecular events underlying these effects are incompletely characterized. Similarly, the mechanisms underlying effects of factors that reduce the impact of aging on the brain, such as physical exercise, are also opaque. A study in this issue of PLOS Biology links the NVU to cognitive decline in the aging brain and suggests a potential underlying molecular mechanism. Notably, the study further links the protective effects of chronic exercise on cognition to neurovascular integrity during aging.

  7. 900-MHz microwave radiation promotes oxidation in rat brain.

    PubMed

    Kesari, Kavindra Kumar; Kumar, Sanjay; Behari, Jitendra

    2011-12-01

    Recently, there have been several reports referring to detrimental effects due to radio frequency electromagnetic fields (RF-EMF) exposure. Special attention was given to investigate the effect of mobile phone exposure on the rat brain. Since the integrative mechanism of the entire body lies in the brain, it is suggestive to analyze its biochemical aspects. For this, 35-day old Wistar rats were exposed to a mobile phone for 2 h per day for a duration of 45 days where specific absorption rate (SAR) was 0.9 W/Kg. Animals were divided in two groups: sham exposed (n = 6) and exposed group (n = 6). Our observations indicate a significant decrease (P < 0.05) in the level of glutathione peroxidase, superoxide dismutase, and an increase in catalase activity. Moreover, protein kinase shows a significant decrease in exposed group (P < 0.05) of hippocampus and whole brain. Also, a significant decrease (P < 0.05) in the level of pineal melatonin and a significant increase (P < 0.05) in creatine kinase and caspase 3 was observed in exposed group of whole brain as compared with sham exposed. Finally, a significant increase in the level of ROS (reactive oxygen species) (P < 0.05) was also recorded. The study concludes that a reduction or an increase in antioxidative enzyme activities, protein kinase C, melatonin, caspase 3, and creatine kinase are related to overproduction of reactive oxygen species (ROS) in animals under mobile phone radiation exposure. Our findings on these biomarkers are clear indications of possible health implications.

  8. 125 Brain Games for Babies: Simple Games To Promote Early Brain Development.

    ERIC Educational Resources Information Center

    Silberg, Jackie

    Scientists believe that the stimulation that infants and young children receive determines which synapses form in the brain. This book presents 125 games for infants from birth to 12 months and is designed to nurture brain development. The book is organized chronologically in 3-month increments. Each game description includes information from…

  9. Motor Skill Acquisition Promotes Human Brain Myelin Plasticity

    PubMed Central

    Lakhani, Bimal; Borich, Michael R.; Jackson, Jacob N.; Wadden, Katie P.; Peters, Sue; Villamayor, Anica; MacKay, Alex L.; Vavasour, Irene M.; Rauscher, Alexander; Boyd, Lara A.

    2016-01-01

    Experience-dependent structural changes are widely evident in gray matter. Using diffusion weighted imaging (DWI), the neuroplastic effect of motor training on white matter in the brain has been demonstrated. However, in humans it is not known whether specific features of white matter relate to motor skill acquisition or if these structural changes are associated to functional network connectivity. Myelin can be objectively quantified in vivo and used to index specific experience-dependent change. In the current study, seventeen healthy young adults completed ten sessions of visuomotor skill training (10,000 total movements) using the right arm. Multicomponent relaxation imaging was performed before and after training. Significant increases in myelin water fraction, a quantitative measure of myelin, were observed in task dependent brain regions (left intraparietal sulcus [IPS] and left parieto-occipital sulcus). In addition, the rate of motor skill acquisition and overall change in myelin water fraction in the left IPS were negatively related, suggesting that a slower rate of learning resulted in greater neuroplastic change. This study provides the first evidence for experience-dependent changes in myelin that are associated with changes in skilled movements in healthy young adults. PMID:27293906

  10. Brain endogenous liver X receptor ligands selectively promote midbrain neurogenesis.

    PubMed

    Theofilopoulos, Spyridon; Wang, Yuqin; Kitambi, Satish Srinivas; Sacchetti, Paola; Sousa, Kyle M; Bodin, Karl; Kirk, Jayne; Saltó, Carmen; Gustafsson, Magnus; Toledo, Enrique M; Karu, Kersti; Gustafsson, Jan-Åke; Steffensen, Knut R; Ernfors, Patrik; Sjövall, Jan; Griffiths, William J; Arenas, Ernest

    2013-02-01

    Liver X receptors (Lxrα and Lxrβ) are ligand-dependent nuclear receptors critical for ventral midbrain neurogenesis in vivo. However, no endogenous midbrain Lxr ligand has so far been identified. Here we used LC/MS and functional assays to identify cholic acid as a new Lxr ligand. Moreover, 24(S),25-epoxycholesterol (24,25-EC) was found to be the most potent and abundant Lxr ligand in the developing mouse midbrain. Both Lxr ligands promoted neural development in an Lxr-dependent manner in zebrafish in vivo. Notably, each ligand selectively regulated the development of distinct midbrain neuronal populations. Whereas cholic acid increased survival and neurogenesis of Brn3a-positive red nucleus neurons, 24,25-EC promoted dopaminergic neurogenesis. These results identify an entirely new class of highly selective and cell type-specific regulators of neurogenesis and neuronal survival. Moreover, 24,25-EC promoted dopaminergic differentiation of embryonic stem cells, suggesting that Lxr ligands may thus contribute to the development of cell replacement and regenerative therapies for Parkinson's disease.

  11. Evolution of Brain Active Gene Promoters in Human Lineage Towards the Increased Plasticity of Gene Regulation.

    PubMed

    Gunbin, Konstantin V; Ponomarenko, Mikhail P; Suslov, Valentin V; Gusev, Fedor; Fedonin, Gennady G; Rogaev, Evgeny I

    2017-02-24

    Adaptability to a variety of environmental conditions is a prominent feature of Homo sapiens. We hypothesize that this feature can be explained by evolutionary changes in gene promoters active in the brain prefrontal cortex leading to a more flexible gene regulation network. The genotype-dependent range of gene expression can be broader in humans than in other higher primates. Thus, we searched for specific signatures of evolutionary changes in promoter architectures of multiple hominid genes, including the genes active in human cortical neurons that may indicate an increase of variability of gene expression rather than just changes in the level of expression, such as downregulation or upregulation of the genes. We performed a whole-genome search for genetic-based alterations that may impact gene regulation "flexibility" in a process of hominids evolution, such as (i) CpG dinucleotide content, (ii) predicted nucleosome-DNA dissociation constant, and (iii) predicted affinities for TATA-binding protein (TBP) in gene promoters. We tested all putative promoter regions across the human genome and especially gene promoters in active chromatin state in neurons of prefrontal cortex, the brain region critical for abstract thinking and social and behavioral adaptation. Our data imply that the origin of modern man has been associated with an increase of flexibility of promoter-driven gene regulation in brain. In contrast, after splitting from the ancestral lineages of H. sapiens, the evolution of ape species is characterized by reduced flexibility of gene promoter functioning, underlying reduced variability of the gene expression.

  12. Impairment of glymphatic pathway function promotes tau pathology after traumatic brain injury.

    PubMed

    Iliff, Jeffrey J; Chen, Michael J; Plog, Benjamin A; Zeppenfeld, Douglas M; Soltero, Melissa; Yang, Lijun; Singh, Itender; Deane, Rashid; Nedergaard, Maiken

    2014-12-03

    Traumatic brain injury (TBI) is an established risk factor for the early development of dementia, including Alzheimer's disease, and the post-traumatic brain frequently exhibits neurofibrillary tangles comprised of aggregates of the protein tau. We have recently defined a brain-wide network of paravascular channels, termed the "glymphatic" pathway, along which CSF moves into and through the brain parenchyma, facilitating the clearance of interstitial solutes, including amyloid-β, from the brain. Here we demonstrate in mice that extracellular tau is cleared from the brain along these paravascular pathways. After TBI, glymphatic pathway function was reduced by ∼60%, with this impairment persisting for at least 1 month post injury. Genetic knock-out of the gene encoding the astroglial water channel aquaporin-4, which is importantly involved in paravascular interstitial solute clearance, exacerbated glymphatic pathway dysfunction after TBI and promoted the development of neurofibrillary pathology and neurodegeneration in the post-traumatic brain. These findings suggest that chronic impairment of glymphatic pathway function after TBI may be a key factor that renders the post-traumatic brain vulnerable to tau aggregation and the onset of neurodegeneration. Copyright © 2014 the authors 0270-6474/14/3416180-14$15.00/0.

  13. Impairment of Glymphatic Pathway Function Promotes Tau Pathology after Traumatic Brain Injury

    PubMed Central

    Chen, Michael J.; Plog, Benjamin A.; Zeppenfeld, Douglas M.; Soltero, Melissa; Yang, Lijun; Singh, Itender; Deane, Rashid; Nedergaard, Maiken

    2014-01-01

    Traumatic brain injury (TBI) is an established risk factor for the early development of dementia, including Alzheimer's disease, and the post-traumatic brain frequently exhibits neurofibrillary tangles comprised of aggregates of the protein tau. We have recently defined a brain-wide network of paravascular channels, termed the “glymphatic” pathway, along which CSF moves into and through the brain parenchyma, facilitating the clearance of interstitial solutes, including amyloid-β, from the brain. Here we demonstrate in mice that extracellular tau is cleared from the brain along these paravascular pathways. After TBI, glymphatic pathway function was reduced by ∼60%, with this impairment persisting for at least 1 month post injury. Genetic knock-out of the gene encoding the astroglial water channel aquaporin-4, which is importantly involved in paravascular interstitial solute clearance, exacerbated glymphatic pathway dysfunction after TBI and promoted the development of neurofibrillary pathology and neurodegeneration in the post-traumatic brain. These findings suggest that chronic impairment of glymphatic pathway function after TBI may be a key factor that renders the post-traumatic brain vulnerable to tau aggregation and the onset of neurodegeneration. PMID:25471560

  14. Carcinoma-astrocyte gap junctions promote brain metastasis by cGAMP transfer.

    PubMed

    Chen, Qing; Boire, Adrienne; Jin, Xin; Valiente, Manuel; Er, Ekrem Emrah; Lopez-Soto, Alejandro; Jacob, Leni; Patwa, Ruzeen; Shah, Hardik; Xu, Ke; Cross, Justin R; Massagué, Joan

    2016-05-26

    Brain metastasis represents a substantial source of morbidity and mortality in various cancers, and is characterized by high resistance to chemotherapy. Here we define the role of the most abundant cell type in the brain, the astrocyte, in promoting brain metastasis. We show that human and mouse breast and lung cancer cells express protocadherin 7 (PCDH7), which promotes the assembly of carcinoma-astrocyte gap junctions composed of connexin 43 (Cx43). Once engaged with the astrocyte gap-junctional network, brain metastatic cancer cells use these channels to transfer the second messenger cGAMP to astrocytes, activating the STING pathway and production of inflammatory cytokines such as interferon-α (IFNα) and tumour necrosis factor (TNF). As paracrine signals, these factors activate the STAT1 and NF-κB pathways in brain metastatic cells, thereby supporting tumour growth and chemoresistance. The orally bioavailable modulators of gap junctions meclofenamate and tonabersat break this paracrine loop, and we provide proof-of-principle that these drugs could be used to treat established brain metastasis.

  15. Yes-associated protein 1 is widely expressed in human brain tumors and promotes glioblastoma growth.

    PubMed

    Orr, Brent A; Bai, Haibo; Odia, Yazmin; Jain, Deepali; Anders, Robert A; Eberhart, Charles G

    2011-07-01

    The hippo pathway and its downstream mediator yes-associated protein 1 (YAP1) regulate mammalian organ size in part through modulating progenitor cell numbers. YAP1 has also been implicated as an oncogene in multiple human cancers. Currently, little is known about the expression of YAP1 either in normal human brain tissue or in central nervous system neoplasms. We used immunohistochemistry to evaluate nuclear YAP1 expression in the fetal and normal adult human brains and in 264 brain tumors. YAP1 was expressed in fetal and adult brain regions known to harbor neural progenitor cells, but there was little YAP1 immunoreactivity in the adult cerebral cortex. YAP1 protein was also readily detected in the nuclei of human brain tumors. In medulloblastoma, the expression varied between histologic subtypes and was most prominent in nodular/desmoplastic tumors. In gliomas, it was frequently expressed in infiltrating astrocytomas and oligodendrogliomas but rarely in pilocytic astrocytomas. Using a loss-of-function approach, we show that YAP1 promoted growth of glioblastoma cell lines in vitro. High levels of YAP1 messenger RNA expression were associated with aggressive molecular subsets of glioblastoma and with a nonsignificant trend toward reduced mean survival in human astrocytoma patients. These findings suggest that YAP1 may play an important role in normal human brain development and that it could represent a new target in human brain tumors.

  16. Promoting brain health through exercise and diet in older adults: a physiological perspective.

    PubMed

    Jackson, Philippa A; Pialoux, Vincent; Corbett, Dale; Drogos, Lauren; Erickson, Kirk I; Eskes, Gail A; Poulin, Marc J

    2016-08-15

    The rise in incidence of age-related cognitive impairment is a global health concern. Ageing is associated with a number of changes in the brain that, collectively, contribute to the declines in cognitive function observed in older adults. Structurally, the ageing brain atrophies as white and grey matter volumes decrease. Oxidative stress and inflammation promote endothelial dysfunction thereby hampering cerebral perfusion and thus delivery of energy substrates and nutrients. Further, the development of amyloid plaques and neurofibrillary tangles contributes to neuronal loss. Of interest, there are substantial inter-individual differences in the degree to which these physical and functional changes impact upon cognitive function as we grow older. This review describes how engaging in physical activity and cognitive activities and adhering to a Mediterranean style diet promote 'brain health'. From a physiological perspective, we discuss the effects of these modifiable lifestyle behaviours on the brain, and how some recent human trials are beginning to show some promise as to the effectiveness of lifestyle behaviours in combating cognitive impairment. Moreover, we propose that these lifestyle behaviours, through numerous mechanisms, serve to increase brain, cerebrovascular and cognitive reserve, thereby preserving and enhancing cognitive function for longer. © 2015 The Authors. The Journal of Physiology © 2015 The Physiological Society.

  17. Intravenous transplantation of bone marrow mesenchymal stem cells promotes neural regeneration after traumatic brain injury.

    PubMed

    Anbari, Fatemeh; Khalili, Mohammad Ali; Bahrami, Ahmad Reza; Khoradmehr, Arezoo; Sadeghian, Fatemeh; Fesahat, Farzaneh; Nabi, Ali

    2014-05-01

    To investigate the supplement of lost nerve cells in rats with traumatic brain injury by intravenous administration of allogenic bone marrow mesenchymal stem cells, this study established a Wistar rat model of traumatic brain injury by weight drop impact acceleration method and administered 3 × 10(6) rat bone marrow mesenchymal stem cells via the lateral tail vein. At 14 days after cell transplantation, bone marrow mesenchymal stem cells differentiated into neurons and astrocytes in injured rat cerebral cortex and rat neurological function was improved significantly. These findings suggest that intravenously administered bone marrow mesenchymal stem cells can promote nerve cell regeneration in injured cerebral cortex, which supplement the lost nerve cells.

  18. Intravenous transplantation of bone marrow mesenchymal stem cells promotes neural regeneration after traumatic brain injury

    PubMed Central

    Anbari, Fatemeh; Khalili, Mohammad Ali; Bahrami, Ahmad Reza; Khoradmehr, Arezoo; Sadeghian, Fatemeh; Fesahat, Farzaneh; Nabi, Ali

    2014-01-01

    To investigate the supplement of lost nerve cells in rats with traumatic brain injury by intravenous administration of allogenic bone marrow mesenchymal stem cells, this study established a Wistar rat model of traumatic brain injury by weight drop impact acceleration method and administered 3 × 106 rat bone marrow mesenchymal stem cells via the lateral tail vein. At 14 days after cell transplantation, bone marrow mesenchymal stem cells differentiated into neurons and astrocytes in injured rat cerebral cortex and rat neurological function was improved significantly. These findings suggest that intravenously administered bone marrow mesenchymal stem cells can promote nerve cell regeneration in injured cerebral cortex, which supplement the lost nerve cells. PMID:25206912

  19. Brain inositol is a novel stimulator for promoting Cryptococcus penetration of the blood-brain barrier.

    PubMed

    Liu, Tong-Bao; Kim, Jong-Chul; Wang, Yina; Toffaletti, Dena L; Eugenin, Eliseo; Perfect, John R; Kim, Kee Jun; Xue, Chaoyang

    2013-01-01

    Cryptococcus neoformans is the most common cause of fungal meningitis, with high mortality and morbidity. The reason for the frequent occurrence of Cryptococcus infection in the central nervous system (CNS) is poorly understood. The facts that human and animal brains contain abundant inositol and that Cryptococcus has a sophisticated system for the acquisition of inositol from the environment suggests that host inositol utilization may contribute to the development of cryptococcal meningitis. In this study, we found that inositol plays an important role in Cryptococcus traversal across the blood-brain barrier (BBB) both in an in vitro human BBB model and in in vivo animal models. The capacity of inositol to stimulate BBB crossing was dependent upon fungal inositol transporters, indicated by a 70% reduction in transmigration efficiency in mutant strains lacking two major inositol transporters, Itr1a and Itr3c. Upregulation of genes involved in the inositol catabolic pathway was evident in a microarray analysis following inositol treatment. In addition, inositol increased the production of hyaluronic acid in Cryptococcus cells, which is a ligand known to binding host CD44 receptor for their invasion. These studies suggest an inositol-dependent Cryptococcus traversal of the BBB, and support our hypothesis that utilization of host-derived inositol by Cryptococcus contributes to CNS infection.

  20. Dopamine from the brain promotes spinal motor neuron generation during development and adult regeneration.

    PubMed

    Reimer, Michell M; Norris, Anneliese; Ohnmacht, Jochen; Patani, Rickie; Zhong, Zhen; Dias, Tatyana B; Kuscha, Veronika; Scott, Angela L; Chen, Yu-Chia; Rozov, Stanislav; Frazer, Sarah L; Wyatt, Cameron; Higashijima, Shin-ichi; Patton, E Elizabeth; Panula, Pertti; Chandran, Siddharthan; Becker, Thomas; Becker, Catherina G

    2013-06-10

    Coordinated development of brain stem and spinal target neurons is pivotal for the emergence of a precisely functioning locomotor system. Signals that match the development of these far-apart regions of the central nervous system may be redeployed during spinal cord regeneration. Here we show that descending dopaminergic projections from the brain promote motor neuron generation at the expense of V2 interneurons in the developing zebrafish spinal cord by activating the D4a receptor, which acts on the hedgehog pathway. Inhibiting this essential signal during early neurogenesis leads to a long-lasting reduction of motor neuron numbers and impaired motor responses of free-swimming larvae. Importantly, during successful spinal cord regeneration in adult zebrafish, endogenous dopamine promotes generation of spinal motor neurons, and dopamine agonists augment this process. Hence, we describe a supraspinal control mechanism for the development and regeneration of specific spinal cell types that uses dopamine as a signal.

  1. Transcranial ultrasound stimulation promotes brain-derived neurotrophic factor and reduces apoptosis in a mouse model of traumatic brain injury.

    PubMed

    Su, Wei-Shen; Wu, Chun-Hu; Chen, Szu-Fu; Yang, Feng-Yi

    2017-09-07

    The protein expressions of brain-derived neurotrophic factor (BDNF) can be elevated by transcranial ultrasound stimulation in the rat brain. The purpose of this study was to investigate the effects and underlying mechanisms of BDNF enhancement by low-intensity pulsed ultrasound (LIPUS) on traumatic brain injury (TBI). Mice subjected to controlled cortical impact injury were treated with LIPUS in the injured region daily for a period of 4 days. Western blot analysis and immunohistochemistry were performed to assess the effects of LIPUS. The results showed that the LIPUS treatment significantly promoted the neurotrophic factors BDNF and vascular endothelial growth factor (VEGF) at day 4 after TBI. Meanwhile, LIPUS also enhanced the phosphorylation of Tropomyosin-related kinase B (TrkB), Akt, and cAMP-response element binding protein (CREB). Furthermore, treatment with LIPUS significantly decreased the level of cleaved caspase-3. The reduction of apoptotic process was inhibited by the anti-BDNF antibody. In short, post-injury LIPUS treatment increased BDNF protein levels and inhibited the progression of apoptosis following TBI. The neuroprotective effects of LIPUS may be associated with enhancements of the protein levels of neurotrophic factors, at least partially via the TrkB/Akt-CREB signaling pathway. Copyright © 2017 Elsevier Inc. All rights reserved.

  2. Melatonin promotes blood-brain barrier integrity in methamphetamine-induced inflammation in primary rat brain microvascular endothelial cells.

    PubMed

    Jumnongprakhon, Pichaya; Govitrapong, Piyarat; Tocharus, Chainarong; Tocharus, Jiraporn

    2016-09-01

    Melatonin is a neurohormone and has high potent of antioxidant that is widely reported to be active against methamphetamine (METH)-induced toxicity to neuron, glial cells, and brain endothelial cells. However, the role of melatonin on the inflammatory responses which are mostly caused by blood-brain barrier (BBB) impairment by METH administration has not been investigated. This study used the primary rat brain microvascular endothelial cells (BMVECs) to determine the protective mechanism of melatonin on METH-induced inflammatory responses in the BBB via nuclear factor-ĸB (NF-κB) and nuclear factor erythroid 2-related factor-2 (Nrf2) signaling. Herein, we demonstrated that melatonin reduced the level of the inflammatory mediators, including intercellular adhesion molecules (ICAM)-1, vascular cell adhesion molecules (VCAM)-1, matrix metallopeptidase (MMP)-9, inducible nitric oxide synthase (iNOS), and nitric oxide (NO) caused by METH. These responses were related to the decrease of the expression and translocation of the NF-κB p65 subunit and the activity of NADPH oxidase (NOX)-2. In addition, melatonin promoted the antioxidant processes, modulated the expression and translocation of Nrf2, and also increased the level of heme oxygenase (HO)-1, NAD (P) H: quinone oxidoreductase (NQO)-1, γ-glutamylcysteine synthase (γ-GCLC), and the activity of superoxide dismutase (SOD) through NOX2 mechanism. In addition, we found that the protective role of melatonin in METH-induced inflammatory responses in the BBB was mediated through melatonin receptors (MT1/2). We concluded that the interaction of melatonin with its receptor prevented METH-induced inflammatory responses by suppressing the NF-κB signaling and promoting the Nrf2 signaling before BBB impairment. Copyright © 2016 Elsevier B.V. All rights reserved.

  3. A functional requirement for astroglia in promoting blood vessel development in the early postnatal brain.

    PubMed

    Ma, Shang; Kwon, Hyo Jun; Huang, Zhen

    2012-01-01

    Astroglia are a major cell type in the brain and play a key role in many aspects of brain development and function. In the adult brain, astrocytes are known to intimately ensheath blood vessels and actively coordinate local neural activity and blood flow. During development of the neural retina, blood vessel growth follows a meshwork of astrocytic processes. Several genes have also been implicated in retinal astrocytes for regulating vessel development. This suggests a role of astrocytes in promoting angiogenesis throughout the central nervous system. To determine the roles that astrocytes may play during brain angiogenesis, we employ genetic approaches to inhibit astrogliogenesis during perinatal corticogenesis and examine its effects on brain vessel development. We find that conditional deletion from glial progenitors of orc3, a gene required for DNA replication, dramatically reduces glial progenitor cell number in the subventricular zone and astrocytes in the early postnatal cerebral cortex. This, in turn, results in severe reductions in both the density and branching frequency of cortical blood vessels. Consistent with a delayed growth but not regression of vessels, we find neither significant net decreases in vessel density between different stages after normalizing for cortical expansion nor obvious apoptosis of endothelial cells in these mutants. Furthermore, concomitant with loss of astroglial interactions, we find increased endothelial cell proliferation, enlarged vessel luminal size as well as enhanced cytoskeletal gene expression in pericytes, which suggests compensatory changes in vascular cells. Lastly, we find that blood vessel morphology in mutant cortices recovers substantially at later stages, following astrogliosis. These results thus implicate a functional requirement for astroglia in promoting blood vessel growth during brain development.

  4. Astrocytes promote progression of breast cancer metastases to the brain via a KISS1-mediated autophagy.

    PubMed

    Kaverina, Natalya; Borovjagin, Anton V; Kadagidze, Zaira; Baryshnikov, Anatoly; Baryshnikova, Maria; Malin, Dmitry; Ghosh, Dhimankrishhna; Shah, Nameeta; Welch, Danny R; Gabikian, Patrik; Karseladze, Apollon; Cobbs, Charles; Ulasov, Ilya V

    2017-10-05

    Formation of metastases, also known as cancer dissemination, is an important stage of breast cancer (BrCa) development. KISS1 expression is associated with inhibition of metastases development. Recently we have demonstrated that BrCa metastases to the brain exhibit low levels of KISS1 expression at both mRNA and protein levels. By using multicolor immunofluorescence and coculture techniques here we show that normal adult astrocytes in the brain are capable of promoting metastatic transformation of circulating breast cancer cells localized to the brain through secretion of chemokine CXCL12. The latter was found in this study to downregulate KISS1 expression at the post-transcriptional level via induction of microRNA-345 (MIR345). Furthermore, we demonstrated that ectopic expression of KISS1 downregulates ATG5 and ATG7, 2 key modulators of autophagy, and works concurrently with autophagy inhibitors, thereby implicating autophagy in the mechanism of KISS1-mediated BrCa metastatic transformation. We also found that expression of KISS1 in human breast tumor specimens inversely correlates with that of MMP9 and IL8, implicated in the mechanism of metastatic invasion, thereby supporting the role of KISS1 as a potential regulator of BrCa metastatic invasion in the brain. This conclusion is further supported by the ability of KISS1, ectopically overexpressed from an adenoviral vector in MDA-MB-231Br cells with silenced expression of the endogenous gene, to revert invasive phenotype of those cells. Taken together, our results strongly suggest that human adult astrocytes can promote brain invasion of the brain-localized circulating breast cancer cells by upregulating autophagy signaling pathways via the CXCL12-MIR345- KISS1 axis.

  5. A Functional Requirement for Astroglia in Promoting Blood Vessel Development in the Early Postnatal Brain

    PubMed Central

    Ma, Shang; Kwon, Hyo Jun; Huang, Zhen

    2012-01-01

    Astroglia are a major cell type in the brain and play a key role in many aspects of brain development and function. In the adult brain, astrocytes are known to intimately ensheath blood vessels and actively coordinate local neural activity and blood flow. During development of the neural retina, blood vessel growth follows a meshwork of astrocytic processes. Several genes have also been implicated in retinal astrocytes for regulating vessel development. This suggests a role of astrocytes in promoting angiogenesis throughout the central nervous system. To determine the roles that astrocytes may play during brain angiogenesis, we employ genetic approaches to inhibit astrogliogenesis during perinatal corticogenesis and examine its effects on brain vessel development. We find that conditional deletion from glial progenitors of orc3, a gene required for DNA replication, dramatically reduces glial progenitor cell number in the subventricular zone and astrocytes in the early postnatal cerebral cortex. This, in turn, results in severe reductions in both the density and branching frequency of cortical blood vessels. Consistent with a delayed growth but not regression of vessels, we find neither significant net decreases in vessel density between different stages after normalizing for cortical expansion nor obvious apoptosis of endothelial cells in these mutants. Furthermore, concomitant with loss of astroglial interactions, we find increased endothelial cell proliferation, enlarged vessel luminal size as well as enhanced cytoskeletal gene expression in pericytes, which suggests compensatory changes in vascular cells. Lastly, we find that blood vessel morphology in mutant cortices recovers substantially at later stages, following astrogliosis. These results thus implicate a functional requirement for astroglia in promoting blood vessel growth during brain development. PMID:23110156

  6. Damage to Arousal-Promoting Brainstem Neurons with Traumatic Brain Injury

    PubMed Central

    Valko, Philipp O.; Gavrilov, Yuri V.; Yamamoto, Mihoko; Noaín, Daniela; Reddy, Hasini; Haybaeck, Johannes; Weis, Serge; Baumann, Christian R.; Scammell, Thomas E.

    2016-01-01

    Study Objectives: Coma and chronic sleepiness are common after traumatic brain injury (TBI). Here, we explored whether injury to arousal-promoting brainstem neurons occurs in patients with fatal TBI. Methods: Postmortem examination of 8 TBI patients and 10 controls. Results: Compared to controls, TBI patients had 17% fewer serotonergic neurons in the dorsal raphe nucleus (effect size: 1.25), but the number of serotonergic neurons did not differ in the median raphe nucleus. TBI patients also had 29% fewer noradrenergic neurons in the locus coeruleus (effect size: 0.96). The number of cholinergic neurons in the pedunculopontine and laterodorsal tegmental nuclei (PPT/LDT) was similar in TBI patients and controls. Conclusions: TBI injures arousal-promoting neurons of the mesopontine tegmentum, but this injury is less severe than previously observed in hypothalamic arousal-promoting neurons. Most likely, posttraumatic arousal disturbances are not primarily caused by damage to these brainstem neurons, but arise from an aggregate of injuries, including damage to hypothalamic arousal nuclei and disruption of other arousal-related circuitries. Citation: Valko PO, Gavrilov YV, Yamamoto M, Noain D, Reddy H, Haybaeck J, Weis S, Baumann CR, Scammell TE. Damage to arousal-promoting brainstem neurons with traumatic brain injury. SLEEP 2016;39(6):1249–1252. PMID:27091531

  7. Hypermethylation of the reelin (RELN) promoter in the brain of schizophrenic patients: a preliminary report.

    PubMed

    Abdolmaleky, Hamid Mostafavi; Cheng, Kuang-hung; Russo, Andrea; Smith, Cassandra L; Faraone, Stephen V; Wilcox, Marsha; Shafa, Rahim; Glatt, Stephen J; Nguyen, Giang; Ponte, Joe F; Thiagalingam, Sam; Tsuang, Ming T

    2005-04-05

    DNA methylation changes could provide a mechanism for DNA plasticity and dynamism for short-term adaptation, enabling a type of cell memory to register cellular history under different environmental conditions. Some environmental insults may also result in pathological methylation with corresponding alteration of gene expression patterns. Evidence from several studies has suggested that in schizophrenia and bipolar disorder, mRNA of the reelin gene (RELN), which encodes a protein necessary for neuronal migration, axonal branching, synaptogenesis, and cell signaling, is severely reduced in post-mortem brains. Therefore, we investigated the methylation status of the RELN promoter region in schizophrenic patients and normal controls as a potential mechanism for down regulation of its expression. Ten post-mortem frontal lobe brain samples from male schizophrenic patients and normal controls were obtained from the Harvard Brain Tissue Resources Center. DNA was extracted using a standard phenol-chloroform DNA extraction protocol. To evaluate differences between patients and controls, we applied methylation specific PCR (MSP) using primers localized to CpG islands flanking a potential cyclic AMP response element (CRE) and a stimulating protein-1 (SP1) binding site located in the promoter region. For each sample, DNA extraction, bisulfite treatment, and MSP were independently repeated at least four times to accurately determine the methylation status of the target region. Forty-three PCR trials were performed on the test and control samples. MSP analysis of the RELN promoter revealed an unmethylated signal in all reactions (43 of 43) using DNA from the frontal brain tissue, derived from either the schizophrenic patients or normal controls indicating that this region of the RELN promoter is predominantly unmethylated. However, we observed a distinct methylated signal in 73% of the trials (16 of 22) in schizophrenic patients compared with 24% (5 of 21) of controls. Thus, the

  8. ABERRANT SPLICING OF A BRAIN-ENRICHED ALTERNATIVE EXON ELIMINATES TUMOR SUPPRESSOR FUNCTION AND PROMOTES ONCOGENE FUNCTION DURING BRAIN TUMORIGENESIS

    PubMed Central

    Bredel, Markus; Ferrarese, Roberto; Harsh, Griffith R.; Yadav, Ajay K.; Bug, Eva; Maticzka, Daniel; Reichardt, Wilfried; Masilamani, Anie P.; Dai, Fangping; Kim, Hyunsoo; Hadler, Michael; Scholtens, Denise M.; Yu, Irene L.Y.; Beck, Jürgen; Srinivasasainagendra, Vinodh; Costa, Fabrizio; Baxan, Nicoleta; Pfeifer, Dietmar; Elverfeldt, Dominik v.; Backofen, Rolf; Weyerbrock, Astrid; Duarte, Christine W.; He, Xiaolin; Prinz, Marco; Chandler, James P.; Vogel, Hannes; Chakravarti, Arnab; Rich, Jeremy N.; Carro, Maria S.

    2014-01-01

    BACKGROUND: Tissue-specific alternative splicing is known to be critical to emergence of tissue identity during development, yet its role in malignant transformation is undefined. Tissue-specific splicing involves evolutionary-conserved, alternative exons, which represent only a minority of total alternative exons. Many, however, have functional features that influence activity in signaling pathways to profound biological effect. Given that tissue-specific splicing has a determinative role in brain development and the enrichment of genes containing tissue-specific exons for proteins with roles in signaling and development, it is thus plausible that changes in such exons could rewire normal neurogenesis towards malignant transformation. METHODS: We used integrated molecular genetic and cell biology analyses, computational biology, animal modeling, and clinical patient profiles to characterize the effect of aberrant splicing of a brain-enriched alternative exon in the membrane-binding tumor suppressor Annexin A7 (ANXA7) on oncogene regulation and brain tumorigenesis. RESULTS: We show that aberrant splicing of a tissue-specific cassette exon in ANXA7 diminishes endosomal targeting and consequent termination of the signal of the EGFR oncoprotein during brain tumorigenesis. Splicing of this exon is mediated by the ribonucleoprotein Polypyrimidine Tract-Binding Protein 1 (PTBP1), which is normally repressed during brain development but, we find, is excessively expressed in glioblastomas through either gene amplification or loss of a neuron-specific microRNA, miR-124. Silencing of PTBP1 attenuates both malignancy and angiogenesis in a stem cell-derived glioblastoma animal model characterized by a high native propensity to generate tumor endothelium or vascular pericytes to support tumor growth. We show that EGFR amplification and PTBP1 overexpression portend a similarly poor clinical outcome, further highlighting the importance of PTBP1-mediated activation of EGFR

  9. Sildenafil Enhances Quantity of Immature Neurons and Promotes Functional Recovery in the Developing Ischemic Mouse Brain.

    PubMed

    Engels, Jonas; Elting, Natalie; Braun, Lisa; Bendix, Ivo; Herz, Josephine; Felderhoff-Müser, Ursula; Dzietko, Mark

    2017-01-01

    Hypoxic-ischemic (HI) injury to the developing brain occurs in 1 out of 1,000 live births and remains a major cause of significant morbidity and mortality. A large number of survivors suffer from long-term sequelae including seizures and neurological deficits. However, the pathophysiological mechanisms of recovery after HI insult are not clearly understood, and preventive measures or clinical treatments are nonexistent or not sufficiently effective in the clinical setting. Sildenafil as a specific phosphodiesterase 5 inhibitor leads to increased levels of the second messenger cyclic guanosine monophosphate (cGMP) and promotes functional recovery and neurogenesis after ischemic injury to the adult brain. Here, we investigated the effect of sildenafil treatment on activation of intracellular signaling pathways, histological and neurogenic response including functional recovery after an ischemic insult to the developing brain. Nine-day-old C57BL/6 mice were subjected either to sham operation or underwent ligation of the right common carotid artery followed by hypoxia (8%) for 60 min. Animals were either administered sildenafil (10 mg/kg, i.p.) or vehicle 2 h after hypoxia. A subgroup of animals received multiple injections of 10 mg/kg daily on 5 consecutive days. Pups were either perfusion fixed at postnatal days 14 or 47 for immunohistochemical analysis, or brains were dissected 2, 6, 12, and 24 h after the end of hypoxia and analyzed for cGMP, pAkt, pGSK-3β, and β-catenin by means of ELISA or immunoblotting. In addition, behavioral studies using the wire hang test and elevated plus maze were conducted 21 and 38 days after HI injury. Based on cresyl violet staining, single or multiple sildenafil injections did not reveal any differences in injury scoring compared to sham animals. However, cerebral levels of cGMP were altered after sildenafil therapy. Treatment significantly increased numbers of immature neurons, as indicated by doublecortin immunoreactivity in the

  10. Placental, Matrilineal, and Epigenetic Mechanisms Promoting Environmentally Adaptive Development of the Mammalian Brain

    PubMed Central

    Broad, Kevin D.; Rocha-Ferreira, Eridan; Hristova, Mariya

    2016-01-01

    The evolution of intrauterine development, vivipary, and placentation in eutherian mammals has introduced new possibilities and constraints in the regulation of neural plasticity and development which promote neural function that is adaptive to the environment that a developing brain is likely to encounter in the future. A range of evolutionary adaptations associated with placentation transfers disproportionate control of this process to the matriline, a period unique in mammalian development in that there are three matrilineal genomes interacting in the same organism at the same time (maternal, foetal, and postmeiotic oocytes). The interactions between the maternal and developing foetal hypothalamus and placenta can provide a template by which a mother can transmit potentially adaptive information concerning potential future environmental conditions to the developing brain. In conjunction with genomic imprinting, it also provides a template to integrate epigenetic information from both maternal and paternal lineages. Placentation also hands ultimate control of genomic imprinting and intergenerational epigenetic information transfer to the matriline as epigenetic markers undergo erasure and reprogramming in the developing oocyte. These developments, in conjunction with an expanded neocortex, provide a unique evolutionary template by which matrilineal transfer of maternal care, resources, and culture can be used to promote brain development and infant survival. PMID:27069693

  11. Targeting Transporters: Promoting Blood-Brain Barrier Repair in Response to Oxidative Stress Injury

    PubMed Central

    Ronaldson, Patrick T.; Davis, Thomas P.

    2015-01-01

    The blood-brain barrier (BBB) is a physical and biochemical barrier that precisely regulates the ability of endogenous and exogenous substances to accumulate within brain tissue. It possesses structural and biochemical features (i.e., tight junction and adherens junction protein complexes, influx and efflux transporters) that work in concert to control solute permeation. Oxidative stress, a critical component of several diseases including cerebral hypoxia/ischemia and peripheral inflammatory pain, can cause considerable injury to the BBB and lead to significant CNS pathology. This suggests a critical need for novel therapeutic approaches that can protect the BBB in diseases with an oxidative stress component. Recent studies have identified molecular targets (i.e., endogenous transporters, intracellular signaling systems) that can be exploited for optimization of endothelial drug delivery or for control of transport of endogenous substrates such as the antioxidant glutathione (GSH). In particular, targeting transporters offers a unique approach to protect BBB integrity by promoting repair of cell-cell interactions at the level of the brain microvascular endothelium. This review summarizes current knowledge in this area and emphasizes those targets that present considerable opportunity for providing BBB protection and/or promoting BBB repair in the setting of oxidative stress. PMID:25796436

  12. T lymphocytes infiltration promotes blood-brain barrier injury after experimental intracerebral hemorrhage.

    PubMed

    Zhang, Xuan; Liu, Wei; Yuan, Jichao; Zhu, Haitao; Yang, Yang; Wen, Zexian; Chen, Yaxing; Li, Lan; Lin, Jiangkai; Feng, Hua

    2017-09-01

    T lymphocytes migrate into the brain after intracerebral hemorrhage (ICH) and promote cerebral inflammation, thus exacerbating neuronal injury. However, the relationship between of T lymphocytes infiltration and blood-brain barrier (BBB) injury after ICH has not been clarified. In this study, we investigated the spatial-temporal distribution of infiltrating T lymphocytes after ICH in C57BL/6 mice by immunofluorescence and flow cytometry, and the accompanying change rules of BBB permeability were detected by Evans blue dye leakage and tight junction protein expression. Furthermore, T lymphocyte-deficient nude mice and T lymphocyte-decreased C57BL/6 mice treated with fingolimod were used to verify the relationship between T lymphocytes infiltration and BBB leakage after ICH. Here, we reported that brain-infiltrating T lymphocytes in the hemorrhagic hemisphere began to accumulate on the first day and peaked on the fifth day after ICH; BBB leakage also at peaked on the fifth day. Moreover, T lymphocyte-deficient nude mice showed minor BBB leakage after ICH compared with C57BL/6 control mice. Similarly, fingolimod treatment can significantly decrease T lymphocyte infiltration and promote BBB integrity compared with a vehicle control. Overall, our results suggested that suppression of T lymphocyte infiltration may be a novel way to improve BBB integrity after ICH. Copyright © 2017. Published by Elsevier B.V.

  13. Histamine from brain resident MAST cells promotes wakefulness and modulates behavioral states.

    PubMed

    Chikahisa, Sachiko; Kodama, Tohru; Soya, Atsushi; Sagawa, Yohei; Ishimaru, Yuji; Séi, Hiroyoshi; Nishino, Seiji

    2013-01-01

    Mast cell activation and degranulation can result in the release of various chemical mediators, such as histamine and cytokines, which significantly affect sleep. Mast cells also exist in the central nervous system (CNS). Since up to 50% of histamine contents in the brain are from brain mast cells, mediators from brain mast cells may significantly influence sleep and other behaviors. In this study, we examined potential involvement of brain mast cells in sleep/wake regulations, focusing especially on the histaminergic system, using mast cell deficient (W/W(v)) mice. No significant difference was found in the basal amount of sleep/wake between W/W(v) mice and their wild-type littermates (WT), although W/W(v) mice showed increased EEG delta power and attenuated rebound response after sleep deprivation. Intracerebroventricular injection of compound 48/80, a histamine releaser from mast cells, significantly increased histamine levels in the ventricular region and enhanced wakefulness in WT mice, while it had no effect in W/W(v) mice. Injection of H1 antagonists (triprolidine and mepyramine) significantly increased the amounts of slow-wave sleep in WT mice, but not in W/W(v) mice. Most strikingly, the food-seeking behavior observed in WT mice during food deprivation was completely abolished in W/W(v) mice. W/W(v) mice also exhibited higher anxiety and depression levels compared to WT mice. Our findings suggest that histamine released from brain mast cells is wake-promoting, and emphasizes the physiological and pharmacological importance of brain mast cells in the regulation of sleep and fundamental neurobehavior.

  14. Brain-derived neurotrophic factor promoter methylation and cortical thickness in recurrent major depressive disorder.

    PubMed

    Na, Kyoung-Sae; Won, Eunsoo; Kang, June; Chang, Hun Soo; Yoon, Ho-Kyoung; Tae, Woo Suk; Kim, Yong-Ku; Lee, Min-Soo; Joe, Sook-Haeng; Kim, Hyun; Ham, Byung-Joo

    2016-02-15

    Recent studies have reported that methylation of the brain-derived neurotrophic factor (BDNF) gene promoter is associated with major depressive disorder (MDD). This study aimed to investigate the association between cortical thickness and methylation of BDNF promoters as well as serum BDNF levels in MDD. The participants consisted of 65 patients with recurrent MDD and 65 age- and gender-matched healthy controls. Methylation of BDNF promoters and cortical thickness were compared between the groups. The right medial orbitofrontal, right lingual, right lateral occipital, left lateral orbitofrontal, left pars triangularis, and left lingual cortices were thinner in patients with MDD than in healthy controls. Among the MDD group, right pericalcarine, right medical orbitofrontal, right rostral middle frontal, right postcentral, right inferior temporal, right cuneus, right precuneus, left frontal pole, left superior frontal, left superior temporal, left rostral middle frontal and left lingual cortices had inverse correlations with methylation of BDNF promoters. Higher levels of BDNF promoter methylation may be closely associated with the reduced cortical thickness among patients with MDD. Serum BDNF levels were significantly lower in MDD, and showed an inverse relationship with BDNF methylation only in healthy controls. Particularly the prefrontal and occipital cortices seem to indicate key regions in which BDNF methylation has a significant effect on structure.

  15. Brain-derived neurotrophic factor promoter methylation and cortical thickness in recurrent major depressive disorder

    PubMed Central

    Na, Kyoung-Sae; Won, Eunsoo; Kang, June; Chang, Hun Soo; Yoon, Ho-Kyoung; Tae, Woo Suk; Kim, Yong-Ku; Lee, Min-Soo; Joe, Sook-Haeng; Kim, Hyun; Ham, Byung-Joo

    2016-01-01

    Recent studies have reported that methylation of the brain-derived neurotrophic factor (BDNF) gene promoter is associated with major depressive disorder (MDD). This study aimed to investigate the association between cortical thickness and methylation of BDNF promoters as well as serum BDNF levels in MDD. The participants consisted of 65 patients with recurrent MDD and 65 age- and gender-matched healthy controls. Methylation of BDNF promoters and cortical thickness were compared between the groups. The right medial orbitofrontal, right lingual, right lateral occipital, left lateral orbitofrontal, left pars triangularis, and left lingual cortices were thinner in patients with MDD than in healthy controls. Among the MDD group, right pericalcarine, right medical orbitofrontal, right rostral middle frontal, right postcentral, right inferior temporal, right cuneus, right precuneus, left frontal pole, left superior frontal, left superior temporal, left rostral middle frontal and left lingual cortices had inverse correlations with methylation of BDNF promoters. Higher levels of BDNF promoter methylation may be closely associated with the reduced cortical thickness among patients with MDD. Serum BDNF levels were significantly lower in MDD, and showed an inverse relationship with BDNF methylation only in healthy controls. Particularly the prefrontal and occipital cortices seem to indicate key regions in which BDNF methylation has a significant effect on structure. PMID:26876488

  16. Microglia promote learning-dependent synapse formation through brain-derived neurotrophic factor.

    PubMed

    Parkhurst, Christopher N; Yang, Guang; Ninan, Ipe; Savas, Jeffrey N; Yates, John R; Lafaille, Juan J; Hempstead, Barbara L; Littman, Dan R; Gan, Wen-Biao

    2013-12-19

    Microglia are the resident macrophages of the CNS, and their functions have been extensively studied in various brain pathologies. The physiological roles of microglia in brain plasticity and function, however, remain unclear. To address this question, we generated CX3CR1(CreER) mice expressing tamoxifen-inducible Cre recombinase that allow for specific manipulation of gene function in microglia. Using CX3CR1(CreER) to drive diphtheria toxin receptor expression in microglia, we found that microglia could be specifically depleted from the brain upon diphtheria toxin administration. Mice depleted of microglia showed deficits in multiple learning tasks and a significant reduction in motor-learning-dependent synapse formation. Furthermore, Cre-dependent removal of brain-derived neurotrophic factor (BDNF) from microglia largely recapitulated the effects of microglia depletion. Microglial BDNF increases neuronal tropomyosin-related kinase receptor B phosphorylation, a key mediator of synaptic plasticity. Together, our findings reveal that microglia serve important physiological functions in learning and memory by promoting learning-related synapse formation through BDNF signaling.

  17. GM-CSF is not essential for experimental autoimmune encephalomyelitis but promotes brain-targeted disease

    PubMed Central

    Pierson, Emily R.; Goverman, Joan M.

    2017-01-01

    Experimental autoimmune encephalomyelitis (EAE) has been used as an animal model of multiple sclerosis to identify pathogenic cytokines that could be therapeutic targets. Granulocyte-macrophage colony-stimulating factor (GM-CSF) is the only cytokine reported to be essential for EAE. We investigated the role of GM-CSF in EAE in C3HeB/FeJ mice that uniquely exhibit extensive brain and spinal cord inflammation. Unexpectedly, GM-CSF–deficient C3HeB/FeJ mice were fully susceptible to EAE because IL-17 activity compensated for the loss of GM-CSF during induction of spinal cord–targeted disease. In contrast, both GM-CSF and IL-17 were needed to fully overcome the inhibitory influence of IFN-γ on the induction of inflammation in the brain. Both GM-CSF and IL-17 independently promoted neutrophil accumulation in the brain, which was essential for brain-targeted disease. These results identify a GM-CSF/IL-17/IFN-γ axis that regulates inflammation in the central nervous system and suggest that a combination of cytokine-neutralizing therapies may be needed to dampen central nervous system autoimmunity. PMID:28405624

  18. ADAM9 promotes lung cancer metastases to brain by a plasminogen activator-based pathway.

    PubMed

    Lin, Chen-Yuan; Chen, Hung-Jen; Huang, Cheng-Chung; Lai, Liang-Chuan; Lu, Tzu-Pin; Tseng, Guan-Chin; Kuo, Ting-Ting; Kuok, Qian-Yu; Hsu, Jennifer L; Sung, Shian-Ying; Hung, Mien-Chie; Sher, Yuh-Pyng

    2014-09-15

    The transmembrane cell adhesion protein ADAM9 has been implicated in cancer cell migration and lung cancer metastasis to the brain, but the underpinning mechanisms are unclear and clinical support has been lacking. Here, we demonstrate that ADAM9 enhances the ability of tissue plasminogen activator (tPA) to cleave and stimulate the function of the promigratory protein CDCP1 to promote lung metastasis. Blocking this mechanism of cancer cell migration prolonged survival in tumor-bearing mice and cooperated with dexamethasone and dasatinib (a dual Src/Abl kinase inhibitor) treatment to enhance cytotoxic treatment. In clinical specimens, high levels of ADAM9 and CDCP1 correlated with poor prognosis and high risk of mortality in patients with lung cancer. Moreover, ADAM9 levels in brain metastases derived from lung tumors were relatively higher than the levels observed in primary lung tumors. Our results show how ADAM9 regulates lung cancer metastasis to the brain by facilitating the tPA-mediated cleavage of CDCP1, with potential implications to target this network as a strategy to prevent or treat brain metastatic disease. ©2014 American Association for Cancer Research.

  19. Effects of APOE promoter polymorphism on the topological organization of brain structural connectome in nondemented elderly

    PubMed Central

    Shu, Ni; Li, Xin; Ma, Chao; Zhang, Junying; Chen, Kewei; Liang, Ying; Chen, Yaojing; Zhang, Zhanjun

    2015-01-01

    The polymorphism of the Apolipoprotein E (APOE) promoter rs405509 can regulate the transcriptional activity of the APOE gene and is related to Alzheimer’s disease (AD). However, its effects on cognitive performance and the underlying brain mechanisms remain unknown. Here, we performed a battery of neuropsychological tests in a large sample (837 subjects) of nondemented elderly Chinese people, and explored the related brain mechanisms via the construction of diffusion MRI-based structural connectome and graph analysis from a subset (84 subjects) of the sample. Cognitively, the rs405509 risk allele (TT) carriers showed decreased attention and execution functions compared with non-carriers (GG/GT). Regarding the topological alterations of the brain connectome, the risk allele group exhibited reduced global and local efficiency of white matter structural networks, mainly in the left anterior and posterior cingulate cortices (PCC). Importantly, the efficiency of the left PCC is correlated with the impaired attention function and mediates the impacts of the rs405509 genotype on attention. These results demonstrated that the rs405509 polymorphism affects attention function in nondemented elderly people, possibly by modulating brain structural connectivity of the PCC. This polymorphism may help us to understand the neural mechanisms of cognitive aging and to serve as a potential marker assessing the risk of AD. PMID:26314833

  20. Galectin-3 released in response to traumatic brain injury acts as an alarmin orchestrating brain immune response and promoting neurodegeneration

    PubMed Central

    Yip, Ping Kei; Carrillo-Jimenez, Alejandro; King, Paul; Vilalta, Anna; Nomura, Koji; Chau, Chi Cheng; Egerton, Alexander Michael Scott; Liu, Zhuo-Hao; Shetty, Ashray Jayaram; Tremoleda, Jordi L.; Davies, Meirion; Deierborg, Tomas; Priestley, John V.; Brown, Guy Charles; Michael-Titus, Adina Teodora; Venero, Jose Luis; Burguillos, Miguel Angel

    2017-01-01

    Traumatic brain injury (TBI) is currently a major cause of morbidity and poor quality of life in Western society, with an estimate of 2.5 million people affected per year in Europe, indicating the need for advances in TBI treatment. Within the first 24 h after TBI, several inflammatory response factors become upregulated, including the lectin galectin-3. In this study, using a controlled cortical impact (CCI) model of head injury, we show a large increase in the expression of galectin-3 in microglia and also an increase in the released form of galectin-3 in the cerebrospinal fluid (CSF) 24 h after head injury. We report that galectin-3 can bind to TLR-4, and that administration of a neutralizing antibody against galectin-3 decreases the expression of IL-1β, IL-6, TNFα and NOS2 and promotes neuroprotection in the cortical and hippocampal cell populations after head injury. Long-term analysis demonstrated a significant neuroprotection in the cortical region in the galectin-3 knockout animals in response to TBI. These results suggest that following head trauma, released galectin-3 may act as an alarmin, binding, among other proteins, to TLR-4 and promoting inflammation and neuronal loss. Taking all together, galectin-3 emerges as a clinically relevant target for TBI therapy. PMID:28128358

  1. Galectin-3 released in response to traumatic brain injury acts as an alarmin orchestrating brain immune response and promoting neurodegeneration.

    PubMed

    Yip, Ping Kei; Carrillo-Jimenez, Alejandro; King, Paul; Vilalta, Anna; Nomura, Koji; Chau, Chi Cheng; Egerton, Alexander Michael Scott; Liu, Zhuo-Hao; Shetty, Ashray Jayaram; Tremoleda, Jordi L; Davies, Meirion; Deierborg, Tomas; Priestley, John V; Brown, Guy Charles; Michael-Titus, Adina Teodora; Venero, Jose Luis; Burguillos, Miguel Angel

    2017-01-27

    Traumatic brain injury (TBI) is currently a major cause of morbidity and poor quality of life in Western society, with an estimate of 2.5 million people affected per year in Europe, indicating the need for advances in TBI treatment. Within the first 24 h after TBI, several inflammatory response factors become upregulated, including the lectin galectin-3. In this study, using a controlled cortical impact (CCI) model of head injury, we show a large increase in the expression of galectin-3 in microglia and also an increase in the released form of galectin-3 in the cerebrospinal fluid (CSF) 24 h after head injury. We report that galectin-3 can bind to TLR-4, and that administration of a neutralizing antibody against galectin-3 decreases the expression of IL-1β, IL-6, TNFα and NOS2 and promotes neuroprotection in the cortical and hippocampal cell populations after head injury. Long-term analysis demonstrated a significant neuroprotection in the cortical region in the galectin-3 knockout animals in response to TBI. These results suggest that following head trauma, released galectin-3 may act as an alarmin, binding, among other proteins, to TLR-4 and promoting inflammation and neuronal loss. Taking all together, galectin-3 emerges as a clinically relevant target for TBI therapy.

  2. Cerebral mast cells contribute to postoperative cognitive dysfunction by promoting blood brain barrier disruption.

    PubMed

    Zhang, Susu; Dong, Hongquan; Zhang, Xiang; Li, Nana; Sun, Jie; Qian, Yanning

    2016-02-01

    Trauma induced neuroinflammation plays a key role in the development of postoperative cognitive dysfunction (POCD). The blood-brain barrier (BBB), a highly specialized endothelial layer, is exquisitely sensitive to inflammatory insults, which can result in numerous neurocognitive syndromes. While brain mast cells are the "first responder" in the injury, the functional interactions between mast cells and the BBB remain poorly understood. Our results demonstrate that tibial fracture surgery can induce cognitive impairment relating to an inflammatory response and destabilization of the BBB. Disodium cromoglycate (cromolyn)--which acts as a mast cell stabilizer--inhibited this effect. Specifically, cromolyn resulted in ameliorated cognitive ability, decrease of inflammatory cytokines and increase of BBB stability. Taken together, these results suggest that activated mast cells contributed to central nervous system inflammation and cognitive dysfunction by promoting BBB disruption, and interactions between mast cells and the BBB could constitute a new and unique therapeutic target for POCD.

  3. Rapid eye movement sleep promotes cortical plasticity in the developing brain

    PubMed Central

    Dumoulin Bridi, Michelle C.; Aton, Sara J.; Seibt, Julie; Renouard, Leslie; Coleman, Tammi; Frank, Marcos G.

    2015-01-01

    Rapid eye movement sleep is maximal during early life, but its function in the developing brain is unknown. We investigated the role of rapid eye movement sleep in a canonical model of developmental plasticity in vivo (ocular dominance plasticity in the cat) induced by monocular deprivation. Preventing rapid eye movement sleep after monocular deprivation reduced ocular dominance plasticity and inhibited activation of a kinase critical for this plasticity (extracellular signal–regulated kinase). Chronic single-neuron recording in freely behaving cats further revealed that cortical activity during rapid eye movement sleep resembled activity present during monocular deprivation. This corresponded to times of maximal extracellular signal–regulated kinase activation. These findings indicate that rapid eye movement sleep promotes molecular and network adaptations that consolidate waking experience in the developing brain. PMID:26601213

  4. Rapid eye movement sleep promotes cortical plasticity in the developing brain.

    PubMed

    Dumoulin Bridi, Michelle C; Aton, Sara J; Seibt, Julie; Renouard, Leslie; Coleman, Tammi; Frank, Marcos G

    2015-07-01

    Rapid eye movement sleep is maximal during early life, but its function in the developing brain is unknown. We investigated the role of rapid eye movement sleep in a canonical model of developmental plasticity in vivo (ocular dominance plasticity in the cat) induced by monocular deprivation. Preventing rapid eye movement sleep after monocular deprivation reduced ocular dominance plasticity and inhibited activation of a kinase critical for this plasticity (extracellular signal-regulated kinase). Chronic single-neuron recording in freely behaving cats further revealed that cortical activity during rapid eye movement sleep resembled activity present during monocular deprivation. This corresponded to times of maximal extracellular signal-regulated kinase activation. These findings indicate that rapid eye movement sleep promotes molecular and network adaptations that consolidate waking experience in the developing brain.

  5. Constraint-induced movement therapy promotes brain functional reorganization in stroke patients with hemiplegia

    PubMed Central

    Wang, Wenqing; Wang, Aihui; Yu, Limin; Han, Xuesong; Jiang, Guiyun; Weng, Changshui; Zhang, Hongwei; Zhou, Zhiqiang

    2012-01-01

    Stroke patients with hemiplegia exhibit flexor spasms in the upper limb and extensor spasms in the lower limb, and their movement patterns vary greatly. Constraint-induced movement therapy is an upper limb rehabilitation technique used in stroke patients with hemiplegia; however, studies of lower extremity rehabilitation are scarce. In this study, stroke patients with lower limb hemiplegia underwent conventional Bobath therapy for 4 weeks as baseline treatment, followed by constraint-induced movement therapy for an additional 4 weeks. The 10-m maximum walking speed and Berg balance scale scores significantly improved following treatment, and lower extremity motor function also improved. The results of functional MRI showed that constraint-induced movement therapy alleviates the reduction in cerebral functional activation in patients, which indicates activation of functional brain regions and a significant increase in cerebral blood perfusion. These results demonstrate that constraint-induced movement therapy promotes brain functional reorganization in stroke patients with lower limb hemiplegia. PMID:25337108

  6. cAMP-Specific phosphodiesterase-4 enzymes in the cardiovascular system: a molecular toolbox for generating compartmentalized cAMP signaling.

    PubMed

    Houslay, Miles D; Baillie, George S; Maurice, Donald H

    2007-04-13

    Cyclic AMP regulates a vast number of distinct events in all cells. Early studies established that its hydrolysis by cyclic nucleotide phosphodiesterases (PDEs) controlled both the magnitude and the duration of its influence. Recent evidence shows that PDEs also act as coincident detectors linking cyclic-nucleotide- and non-cyclic-nucleotide-based cellular signaling processes and are tethered with great selectively to defined intracellular structures, thereby integrating and spatially restricting their cellular effects in time and space. Although 11 distinct families of PDEs have been defined, and cells invariably express numerous individual PDE enzymes, a large measure of our increased appreciation of the roles of these enzymes in regulating cyclic nucleotide signaling has come from studies on the PDE4 family. Four PDE4 genes encode more than 20 isoforms. Alternative mRNA splicing and the use of different promoters allows cells the possibility of expressing numerous PDE4 enzymes, each with unique amino-terminal-targeting and/or regulatory sequences. Dominant negative and small interfering RNA-mediated knockdown strategies have proven that particular isoforms can uniquely control specific cellular functions. Thus the protein kinase A phosphorylation status of the beta(2) adrenoceptor and, thereby, its ability to switch its signaling to extracellular signal-regulated kinase activation, is uniquely regulated by PDE4D5 in cardiomyocytes. We describe how cardiomyocytes and vascular smooth muscle cells selectively vary both the expression and the catalytic activities of PDE4 isoforms to regulate their various functions and how altered regulation of these processes can influence the development, or resolution, of cardiovascular pathologies, such as heart failure, as well as various vasculopathies.

  7. Evidence that cyclic AMP phosphodiesterase inhibitors suppress TNF alpha generation from human monocytes by interacting with a 'low-affinity' phosphodiesterase 4 conformer.

    PubMed Central

    Souness, J. E.; Griffin, M.; Maslen, C.; Ebsworth, K.; Scott, L. C.; Pollock, K.; Palfreyman, M. N.; Karlsson, J. A.

    1996-01-01

    1. We have investigated the inhibitory effects of RP 73401 (piclamilast) and rolipram against human monocyte cyclic AMP-specific phosphodiesterase (PDE4) in relation to their effects on prostaglandin (PG)E2-induced cyclic AMP accumulation and lipopolysaccharide (LPS)-induced TNF alpha production and TNF alpha mRNA expression. 2. PDE4 was found to be the predominant PDE isoenzyme in the cytosolic fraction of human monocytes. Cyclic GMP-inhibited PDE (PDE3) was also detected in the cytosolic and particulate fractions. Reverse transcription polymerase chain reaction (RT-PCR) of human monocyte poly (A+) mRNA revealed amplified products corresponding to PDE4 subtypes A and B of which the former was most highly expressed. A faint band corresponding in size to PDE4D was also observed. 3. RP 73401 was a potent inhibitor of cytosolic PDE4 (IC50: 1.5 +/- 0.6 nM, n = 3). (+/-)-Rolipram (IC50: 313 +/- 6.7 nM, n = 3) was at least 200 fold less potent than RP 73401. R-(-)-rolipram was approximately 3 fold more potent than S-(+)-rolipram against cytosolic PDE4. 4. RP 73401 (IC50: 9.2 +/- 2.1 nM, n = 6) was over 50 fold more potent than (+/-)-rolipram (IC50: 503 +/- 134 nM, n = 6) ) in potentiating PGE2-induced cyclic AMP accumulation. R-(-)-rolipram (IC50: 289 +/- 121 nM, n = 5) was 4.7 fold more potent than its S-(+)-enantiomer (IC50: 1356 +/- 314 nM, n = 5). A strong and highly-significant, linear correlation (r = 0.95, P < 0.01, n = 13) was observed between the inhibitory potencies of a range of structurally distinct PDE4 inhibitors against monocyte PDE4 and their ED50 values in enhancing monocyte cyclic AMP accumulation. A poorer, though still significant, linear correlation (r = 0.67, P < 0.01, n = 13) was observed between the potencies of the same compounds in potentiating PGE2-induced monocyte cyclic AMP accumulation and their abilities to displace [3H]-rolipram binding to brain membranes. 5. RP 73401 (IC50: 6.9 +/- 3.3 nM, n = 5) was 71 fold more potent than

  8. Brain-derived neurotrophic factor promotes neurite growth and survival of antennal lobe neurons in brain from the silk moth, Bombyx mori in vitro.

    PubMed

    Kim, Jin Hee; Sung, Dong Kyung; Park, Chan Woo; Park, Hun Hee; Park, Cheolin; Jeon, Soung-Hoo; Kang, Pil Don; Kwon, O-Yu; Lee, Bong Hee

    2005-03-01

    This study was conducted to investigate effects of brain-derived neurotrophic factor on the neurite growth and the survival rate of antennal lobe neurons in vitro, and secretion of brain-derived neurotrophic factor-like neuropeptide from brain into hemolymph in the silk moth, Bombyx mori. In primary culture of antennal lobe neurons with brain-derived neurotrophic factor, it promoted both a neurite extension of putative antennal lobe projection neurons and an outgrowth of branches from principal neurites of putative antennal interneurons with significance (p<0.05). Brain-derived neurotrophic factor also increased significantly a survival rate of antennal lobe neurons (p<0.05). Results from immunolabeling of brain and retrocerebral complex, and ELISA assay of hemolymph showed that brain-derived neurotrophic factor-like neuropeptide was synthesized by both median and lateral neurosecretory cells of brain, then transported to corpora allata for storage, and finally secreted into hemolymph for action. These results will provide valuable information for differentiation of invertebrate brain neurons with brain-derived neurotrophic factor.

  9. Brain energy consumption induced by electrical stimulation promotes systemic glucose uptake.

    PubMed

    Binkofski, Ferdinand; Loebig, Michaela; Jauch-Chara, Kamila; Bergmann, Sigrid; Melchert, Uwe H; Scholand-Engler, Harald G; Schweiger, Ulrich; Pellerin, Luc; Oltmanns, Kerstin M

    2011-10-01

    Controlled transcranial stimulation of the brain is part of clinical treatment strategies in neuropsychiatric diseases such as depression, stroke, or Parkinson's disease. Manipulating brain activity by transcranial stimulation, however, inevitably influences other control centers of various neuronal and neurohormonal feedback loops and therefore may concomitantly affect systemic metabolic regulation. Because hypothalamic adenosine triphosphate-sensitive potassium channels, which function as local energy sensors, are centrally involved in the regulation of glucose homeostasis, we tested whether transcranial direct current stimulation (tDCS) causes an excitation-induced transient neuronal energy depletion and thus influences systemic glucose homeostasis and related neuroendocrine mediators. In a crossover design testing 15 healthy male volunteers, we increased neuronal excitation by anodal tDCS versus sham and examined cerebral energy consumption with ³¹phosphorus magnetic resonance spectroscopy. Systemic glucose uptake was determined by euglycemic-hyperinsulinemic glucose clamp, and neurohormonal measurements comprised the parameters of the stress systems. We found that anodic tDCS-induced neuronal excitation causes an energetic depletion, as quantified by ³¹phosphorus magnetic resonance spectroscopy. Moreover, tDCS-induced cerebral energy consumption promotes systemic glucose tolerance in a standardized euglycemic-hyperinsulinemic glucose clamp procedure and reduces neurohormonal stress axes activity. Our data demonstrate that transcranial brain stimulation not only evokes alterations in local neuronal processes but also clearly influences downstream metabolic systems regulated by the brain. The beneficial effects of tDCS on metabolic features may thus qualify brain stimulation as a promising nonpharmacologic therapy option for drug-induced or comorbid metabolic disturbances in various neuropsychiatric diseases. Copyright © 2011 Society of Biological

  10. Promoting social plasticity in developmental disorders with non-invasive brain stimulation techniques

    PubMed Central

    Boggio, Paulo S.; Asthana, Manish K.; Costa, Thiago L.; Valasek, Cláudia A.; Osório, Ana A. C.

    2015-01-01

    Being socially connected directly impacts our basic needs and survival. People with deficits in social cognition might exhibit abnormal behaviors and face many challenges in our highly social-dependent world. These challenges and limitations are associated with a substantial economical and subjective impact. As many conditions where social cognition is affected are highly prevalent, more treatments have to be developed. Based on recent research, we review studies where non-invasive neuromodulatory techniques have been used to promote Social Plasticity in developmental disorders. We focused on three populations where non-invasive brain stimulation seems to be a promising approach in inducing social plasticity: Schizophrenia, Autism Spectrum Disorder (ASD) and Williams Syndrome (WS). There are still very few studies directly evaluating the effects of transcranial direct current stimulation (tDCS) and transcranial magnetic stimulation (TMS) in the social cognition of these populations. However, when considering the promising preliminary evidences presented in this review and the limited amount of clinical interventions available for treating social cognition deficits in these populations today, it is clear that the social neuroscientist arsenal may profit from non-invasive brain stimulation techniques for rehabilitation and promotion of social plasticity. PMID:26388712

  11. Activation of brain endothelium by pneumococcal neuraminidase NanA promotes bacterial internalization.

    PubMed

    Banerjee, Anirban; Van Sorge, Nina M; Sheen, Tamsin R; Uchiyama, Satoshi; Mitchell, Tim J; Doran, Kelly S

    2010-11-01

    Streptococcus pneumoniae (SPN), the leading cause of meningitis in children and adults worldwide, is associated with an overwhelming host inflammatory response and subsequent brain injury. Here we examine the global response of the blood-brain barrier to SPN infection and the role of neuraminidase A (NanA), an SPN surface anchored protein recently described to promote central nervous system tropism. Microarray analysis of human brain microvascular endothelial cells (hBMEC) during infection with SPN or an isogenic NanA-deficient (ΔnanA) mutant revealed differentially activated genes, including neutrophil chemoattractants IL-8, CXCL-1, CXCL-2. Studies using bacterial mutants, purified recombinant NanA proteins and in vivo neutrophil chemotaxis assays indicated that pneumococcal NanA is necessary and sufficient to activate host chemokine expression and neutrophil recruitment during infection. Chemokine induction was mapped to the NanA N-terminal lectin-binding domain with a limited contribution of the sialidase catalytic activity, and was not dependent on the invasive capability of the organism. Furthermore, pretreatment of hBMEC with recombinant NanA protein significantly increased bacterial invasion, suggesting that NanA-mediated activation of hBMEC is a prerequisite for efficient SPN invasion. These findings were corroborated in an acute murine infection model where we observed less inflammatory infiltrate and decreased chemokine expression following infection with the ΔnanA mutant. © 2010 Blackwell Publishing Ltd.

  12. Lineage-specific splicing of a brain-enriched alternative exon promotes glioblastoma progression

    PubMed Central

    Ferrarese, Roberto; Harsh, Griffith R.; Yadav, Ajay K.; Bug, Eva; Maticzka, Daniel; Reichardt, Wilfried; Dombrowski, Stephen M.; Miller, Tyler E.; Masilamani, Anie P.; Dai, Fangping; Kim, Hyunsoo; Hadler, Michael; Scholtens, Denise M.; Yu, Irene L.Y.; Beck, Jürgen; Srinivasasainagendra, Vinodh; Costa, Fabrizio; Baxan, Nicoleta; Pfeifer, Dietmar; von Elverfeldt, Dominik; Backofen, Rolf; Weyerbrock, Astrid; Duarte, Christine W.; He, Xiaolin; Prinz, Marco; Chandler, James P.; Vogel, Hannes; Chakravarti, Arnab; Rich, Jeremy N.; Carro, Maria S.; Bredel, Markus

    2014-01-01

    Tissue-specific alternative splicing is critical for the emergence of tissue identity during development, yet the role of this process in malignant transformation is undefined. Tissue-specific splicing involves evolutionarily conserved, alternative exons that represent only a minority of the total alternative exons identified. Many of these conserved exons have functional features that influence signaling pathways to profound biological effect. Here, we determined that lineage-specific splicing of a brain-enriched cassette exon in the membrane-binding tumor suppressor annexin A7 (ANXA7) diminishes endosomal targeting of the EGFR oncoprotein, consequently enhancing EGFR signaling during brain tumor progression. ANXA7 exon splicing was mediated by the ribonucleoprotein PTBP1, which is normally repressed during neuronal development. PTBP1 was highly expressed in glioblastomas due to loss of a brain-enriched microRNA (miR-124) and to PTBP1 amplification. The alternative ANXA7 splicing trait was present in precursor cells, suggesting that glioblastoma cells inherit the trait from a potential tumor-initiating ancestor and that these cells exploit this trait through accumulation of mutations that enhance EGFR signaling. Our data illustrate that lineage-specific splicing of a tissue-regulated alternative exon in a constituent of an oncogenic pathway eliminates tumor suppressor functions and promotes glioblastoma progression. This paradigm may offer a general model as to how tissue-specific regulatory mechanisms can reprogram normal developmental processes into oncogenic ones. PMID:24865424

  13. Why and How Physical Activity Promotes Experience-Induced Brain Plasticity

    PubMed Central

    Kempermann, Gerd; Fabel, Klaus; Ehninger, Dan; Babu, Harish; Leal-Galicia, Perla; Garthe, Alexander; Wolf, Susanne A.

    2010-01-01

    Adult hippocampal neurogenesis is an unusual case of brain plasticity, since new neurons (and not just neurites and synapses) are added to the network in an activity-dependent way. At the behavioral level the plasticity-inducing stimuli include both physical and cognitive activity. In reductionistic animal studies these types of activity can be studied separately in paradigms like voluntary wheel running and environmental enrichment. In both of these, adult neurogenesis is increased but the net effect is primarily due to different mechanisms at the cellular level. Locomotion appears to stimulate the precursor cells, from which adult neurogenesis originates, to increased proliferation and maintenance over time, whereas environmental enrichment, as well as learning, predominantly promotes survival of immature neurons, that is the progeny of the proliferating precursor cells. Surprisingly, these effects are additive: boosting the potential for adult neurogenesis by physical activity increases the recruitment of cells following cognitive stimulation in an enriched environment. Why is that? We argue that locomotion actually serves as an intrinsic feedback mechanism, signaling to the brain, including its neural precursor cells, increasing the likelihood of cognitive challenges. In the wild (other than in front of a TV), no separation of physical and cognitive activity occurs. Physical activity might thus be much more than a generally healthy garnish to leading “an active life” but an evolutionarily fundamental aspect of “activity,” which is needed to provide the brain and its systems of plastic adaptation with the appropriate regulatory input and feedback. PMID:21151782

  14. Erythropoietin promotes neurovascular remodeling and long-term functional recovery in rats following traumatic brain injury

    PubMed Central

    Ning, Ruizhuo; Xiong, Ye; Mahmood, Asim; Zhang, Yanlu; Meng, Yuling; Qu, Changsheng; Chopp, Michael

    2011-01-01

    Erythropoietin (EPO) improves functional recovery after traumatic brain injury (TBI). This study was designed to investigate long-term (3 mo) effects of EPO on brain remodeling and functional recovery in rats after TBI. Young male Wistar rats were subjected to unilateral controlled cortical impact injury. TBI rats were divided into the following groups: 1) Saline group (n = 7); 2) EPO-6h group (n = 8); and 3) EPO-24h group (n = 8). EPO (5,000 U/kg in saline) was administered intraperitoneally at 6 h, and 1 and 2 days (EPO-6h group) or at 1, 2, and 3 days (EPO-24h group) post injury. Neurological function was assessed using a modified neurological severity score, footfault and Morris water maze tests. Animals were sacrificed at 3 mos after injury and brain sections stained for immunohistochemical analyses. Compared to the saline, EPO-6h treatment significantly reduced cortical lesion volume, while EPO-24h therapy did not affect the lesion volume (P<0.05). Both the EPO-6h and EPO-24h treatments significantly reduced hippocampal cell loss (P<0.05), promoted angiogenesis (P<0.05) and increased endogenous cellular proliferation (BrdU-positive cells) in the injury boundary zone and hippocampus (P<0.05) compared to saline controls. Significantly enhanced neurogenesis (BrdU/NeuN-positive cells) was seen in the dentate gyrus of both EPO groups compared to the saline group. Both EPO treatments significantly improved long-term sensorimotor and cognitive functional recovery after TBI. In conclusion, the beneficial effects of posttraumatic EPO treatment on injured brain persisted for at least 3 months. The long-term improvement in functional outcome may in part be related to the neurovascular remodeling induced by EPO. PMID:21295557

  15. Erythropoietin promotes neurovascular remodeling and long-term functional recovery in rats following traumatic brain injury.

    PubMed

    Ning, Ruizhuo; Xiong, Ye; Mahmood, Asim; Zhang, Yanlu; Meng, Yuling; Qu, Changsheng; Chopp, Michael

    2011-04-12

    Erythropoietin (EPO) improves functional recovery after traumatic brain injury (TBI). This study was designed to investigate long-term (3 months) effects of EPO on brain remodeling and functional recovery in rats after TBI. Young male Wistar rats were subjected to unilateral controlled cortical impact injury. TBI rats were divided into the following groups: (1) saline group (n=7); (2) EPO-6h group (n=8); and (3) EPO-24h group (n=8). EPO (5000 U/kg in saline) was administered intraperitoneally at 6h, and 1 and 2 days (EPO-6h group) or at 1, 2, and 3 days (EPO-24h group) postinjury. Neurological function was assessed using a modified neurological severity score, footfault and Morris water maze tests. Animals were sacrificed at 3 months after injury and brain sections were stained for immunohistochemical analyses. Compared to the saline, EPO-6h treatment significantly reduced cortical lesion volume, while EPO-24h therapy did not affect the lesion volume (P<0.05). Both the EPO-6h and EPO-24h treatments significantly reduced hippocampal cell loss (P<0.05), promoted angiogenesis (P<0.05) and increased endogenous cellular proliferation (BrdU-positive cells) in the injury boundary zone and hippocampus (P<0.05) compared to saline controls. Significantly enhanced neurogenesis (BrdU/NeuN-positive cells) was seen in the dentate gyrus of both EPO groups compared to the saline group. Both EPO treatments significantly improved long-term sensorimotor and cognitive functional recovery after TBI. In conclusion, the beneficial effects of posttraumatic EPO treatment on injured brain persisted for at least 3 months. The long-term improvement in functional outcome may in part be related to the neurovascular remodeling induced by EPO.

  16. An anticomplement agent that homes to the damaged brain and promotes recovery after traumatic brain injury in mice

    PubMed Central

    Ruseva, Marieta M.; Ramaglia, Valeria; Morgan, B. Paul; Harris, Claire L.

    2015-01-01

    Activation of complement is a key determinant of neuropathology and disability after traumatic brain injury (TBI), and inhibition is neuroprotective. However, systemic complement is essential to fight infections, a critical complication of TBI. We describe a targeted complement inhibitor, comprising complement receptor of the Ig superfamily (CRIg) fused with complement regulator CD59a, designed to inhibit membrane attack complex (MAC) assembly at sites of C3b/iC3b deposition. CRIg and CD59a were linked via the IgG2a hinge, yielding CD59-2a-CRIg dimer with increased iC3b/C3b binding avidity and MAC inhibitory activity. CD59-2a-CRIg inhibited MAC formation and prevented complement-mediated lysis in vitro. CD59-2a-CRIg dimer bound C3b-coated surfaces with submicromolar affinity (KD). In experimental TBI, CD59-2a-CRIg administered posttrauma homed to sites of injury and significantly reduced MAC deposition, microglial accumulation, mitochondrial stress, and axonal damage and enhanced neurologic recovery compared with placebo controls. CD59-2a-CRIg inhibited MAC-induced inflammasome activation and IL-1β production in microglia. Given the important anti-infection roles of complement opsonization, site-targeted inhibition of MAC should be considered to promote recovery postneurotrauma. PMID:26578778

  17. Phosphodiesterase 4 inhibitors augment the ability of formoterol to enhance glucocorticoid-dependent gene transcription in human airway epithelial cells: a novel mechanism for the clinical efficacy of roflumilast in severe chronic obstructive pulmonary disease.

    PubMed

    Moodley, Thunicia; Wilson, Sylvia M; Joshi, Taruna; Rider, Christopher F; Sharma, Pawan; Yan, Dong; Newton, Robert; Giembycz, Mark A

    2013-04-01

    Post-hoc analysis of two phase III clinical studies found that the phosphodiesterase 4 (PDE4) inhibitor, roflumilast, reduced exacerbation frequency in patients with severe chronic obstructive pulmonary disease (COPD) who were taking inhaled corticosteroids (ICS) concomitantly, whereas patients not taking ICS derived no such benefit. In contrast, in two different trials also performed in patients with severe COPD, roflumilast reduced exacerbation rates in the absence of ICS, indicating that PDE4 inhibition alone is sufficient for therapeutic activity to be realized. Given that roflumilast is recommended as an "add-on" medication to patients with severe disease who will inevitably be taking a long-acting β2-adrenoceptor agonist (LABA)/ICS combination therapy, we tested the hypothesis that roflumilast augments the ability of glucocorticoids to induce genes with anti-inflammatory activity. Using a glucocorticoid response element (GRE) luciferase reporter transfected into human airway epithelial cells [both bronchial epithelium + adenovirus 12 - SV40 hybrid (BEAS-2B) cells and primary cultures], roflumilast enhanced fluticasone propionate-induced GRE-dependent transcription. Roflumilast also produced a sinistral displacement of the concentration-response curves that described the augmentation of GRE-dependent transcription by the LABA formoterol. In BEAS-2B cells and primary airway epithelia, roflumilast interacted with formoterol in a positive cooperative manner to enhance the expression of several glucocorticoid-inducible genes that have anti-inflammatory potential. We suggest that the ability of roflumilast and formoterol to interact in this way supports the concept that these drugs together may impart clinical benefit beyond that achievable by an ICS alone, a PDE4 inhibitor alone, or an ICS/LABA combination therapy. Roflumilast may, therefore, be especially effective in patients with severe COPD.

  18. Brain-derived Neurotrophic Factor Promotes the Migration of Olfactory Ensheathing Cells Through TRPC Channels.

    PubMed

    Wang, Ying; Teng, Hong-Lin; Gao, Yuan; Zhang, Fan; Ding, Yu-Qiang; Huang, Zhi-Hui

    2016-12-01

    Olfactory ensheathing cells (OECs) are a unique type of glial cells with axonal growth-promoting properties in the olfactory system. Organized migration of OECs is essential for neural regeneration and olfactory development. However, the molecular mechanism of OEC migration remains unclear. In the present study, we examined the effects of brain-derived neurotrophic factor (BDNF) on OEC migration. Initially, the "scratch" migration assay, the inverted coverslip and Boyden chamber migration assays showed that BDNF could promote the migration of primary cultured OECs. Furthermore, BDNF gradient attracted the migration of OECs in single-cell migration assays. Mechanistically, TrkB receptor expressed in OECs mediated BDNF-induced OEC migration, and BDNF triggered calcium signals in OECs. Finally, transient receptor potential cation channels (TRPCs) highly expressed in OECs were responsible for BDNF-induced calcium signals, and required for BDNF-induced OEC migration. Taken together, these results demonstrate that BDNF promotes the migration of cultured OECs and an unexpected finding is that TRPCs are required for BDNF-induced OEC migration. GLIA 2016;64:2154-2165.

  19. Non-promoter hypermethylation of zygote arrest 1 (ZAR1) in human brain tumors.

    PubMed

    Watanabe, Takao; Yachi, Kazunari; Ohta, Takashi; Fukushima, Takao; Yoshino, Atsuo; Katayama, Yoichi; Shinojima, Yui; Terui, Tadashi; Nagase, Hiroki

    2011-07-01

    Zygote arrest 1 (ZAR1) is a novel maternal-effect gene of crucial importance during the oocyte-to-embryo transition. Comprehensive methylation analysis of tumor-specific differently methylated regions in human malignant melanomas has recently led to the identification of non-promoter hypermethylation of the ZAR1 gene that had never been identified as an aberrant methylated region in any human tumor. Notably, ZAR1 hypermethylation was frequently observed in melanomas but was absent in benign nevi, and ZAR1 expression was found to be up-regulated in methylated tumors. These findings prompted us to screen for ZAR1 non-promoter methylation in various types of human brain tumors using MassARRAY EpiTYPER. Strikingly, hypermethylation of ZAR1 was observed frequently in diffuse astrocytomas (100%), anaplastic astrocytomas (94%), glioblastomas (93%), oligodendrogliomas (100%), anaplastic oligodendrogliomas (100%), and pituitary adenomas (90%), but not at all in pilocytic astrocytomas. For other tumor types ZAR1 hypermethylation was infrequent: 17% of vestibular schwannomas and 33% of meningothelial meningiomas. Detectable ZAR1 transcript was not found in any of hypermethylated glioma cell lines. Our results indicate that hypermethylation of the ZAR1 non-promoter is extremely frequent in diffuse gliomas and pituitary adenomas, although ZAR1 expression is unlikely to play a tumorigenic role.

  20. Early-life exercise may promote lasting brain and metabolic health through gut bacterial metabolites.

    PubMed

    Mika, Agnieszka; Fleshner, Monika

    2016-02-01

    The 100 trillion microorganisms residing within our intestines contribute roughly 5 million additional genes to our genetic gestalt, thus posing the potential to influence many aspects of our physiology. Microbial colonization of the gut shortly after birth is vital for the proper development of immune, neural and metabolic systems, while sustaining a balanced, diverse gut flora populated with beneficial bacteria is necessary for maintaining optimal function of these systems. Although symbiotic host-microbial interactions are important throughout the lifespan, these interactions can have greater and longer lasting impacts during certain critical developmental periods. A better understanding of these sensitive periods is necessary to improve the impact and effectiveness of health-promoting interventions that target the microbial ecosystem. We have recently reported that exercise initiated in early life increases gut bacterial species involved in promoting psychological and metabolic health. In this review, we emphasize the ability of exercise during this developmentally receptive time to promote optimal brain and metabolic function across the lifespan through microbial signals.

  1. Predictive QSAR modeling of phosphodiesterase 4 inhibitors.

    PubMed

    Kovalishyn, Vasyl; Tanchuk, Vsevolod; Charochkina, Larisa; Semenuta, Ivan; Prokopenko, Volodymyr

    2012-02-01

    A series of diverse organic compounds, phosphodiesterase type 4 (PDE-4) inhibitors, have been modeled using a QSAR-based approach. 48 QSAR models were compared by following the same procedure with different combinations of descriptors and machine learning methods. QSAR methodologies used random forests and associative neural networks. The predictive ability of the models was tested through leave-one-out cross-validation, giving a Q² = 0.66-0.78 for regression models and total accuracies Ac=0.85-0.91 for classification models. Predictions for the external evaluation sets obtained accuracies in the range of 0.82-0.88 (for active/inactive classifications) and Q² = 0.62-0.76 for regressions. The method showed itself to be a potential tool for estimation of IC₅₀ of new drug-like candidates at early stages of drug development. Copyright © 2011 Elsevier Inc. All rights reserved.

  2. LRG1 promotes angiogenesis through upregulating the TGF-β1 pathway in ischemic rat brain

    PubMed Central

    Meng, Hongmei; Song, Yuejia; Zhu, Jiyuan; Liu, Qi; Lu, Pengtian; Ye, Na; Zhang, Zhen; Pang, Yuxin; Qi, Jiping; Wu, He

    2016-01-01

    Stroke is a life-threatening disease that results in significant disability in the human population. Despite the advances in current stroke therapies, a host of patients do not benefit from the conventional treatments. Thus, more effective therapies are required. It has been previously reported that leucine-rich-α2-glycoprotein 1 (LRG1) is crucial during the formation of new blood vessels in retinal diseases. However, the function of LRG1 in the brain during the neovessel growth process following ischemic stroke has not been fully elucidated and the mechanism underlying its effect on angiogenesis remains unclear. The purpose of the current study was to demonstrate whether LRG1 may promote angiogenesis through the transforming growth factor (TGF)-β1 signaling pathway in ischemic rat brain following middle cerebral artery occlusion (MCAO). In the present study, the spatial and temporal expression of LRG1, TGF-β1, vascular endothelial growth factor (VEGF) and angiopoietin-2 (Ang-2) were detected in ischemic rat brain following MCAO using reverse transcription-quantitative polymerase chain reaction (RT-qPCR), western blot analysis and immunohistochemistry. CD34 immunohistochemistry staining was used as an indicator of microvessel density (MVD). The RT-qPCR and western blotting results revealed that the levels of LRG1 and TGF-β1 mRNA and protein expression were significantly increased as early as 6 and 12 h after MCAO (P<0.05), respectively, peaked at 3 days and persisted at significantly higher level until 14 days, in comparison with the control group. Additionally, VEGF and Ang-2 were also increased following MCAO. Furthermore, the immunohistochemistry results suggested that the MVD was increased following MCAO. In addition, the results also revealed that the percentage of LRG1-positive cells was positively correlated with the percentage of TGF-β1-positive cells, and the percentage of LRG1-positive and TGF-β1-positive cells had a positively correlation with the

  3. Long noncoding RNA MALAT1 promotes brain metastasis by inducing epithelial-mesenchymal transition in lung cancer.

    PubMed

    Shen, Liqin; Chen, Lei; Wang, Yongsheng; Jiang, Xiaochun; Xia, Hongping; Zhuang, Zhixiang

    2015-01-01

    Brain metastasis often has a poor prognosis in patients with advanced non-small cell lung cancer (NSCLC). Therefore, it is urgent to identify factors associated with lung cancer brain metastasis. Metastasis associated lung adenocarcinoma transcript 1 (MALAT1) also known as noncoding nuclear-enriched abundant transcript 2 is a long noncoding RNA, which is highly conserved amongst mammals. It has been shown to be increased in a variety of tumors including NSCLC and regulate the expression of metastasis-associated genes. However, the role of MALAT1 in lung cancer brain metastasis has not been investigated. In this study, we examined the level of MALAT1 in 78 cases of NSCLC samples with 19 brain metastasis and 59 non-brain metastasis by qRT-PCR. We observed that the level of MALAT1 was significantly higher in brain metastasis than that of non brain metastasis samples (P < 0.001). The level of MALAT1 was associated with patients' survival. To investigate the role of MALAT1 in brain metastasis, we established a highly invasive and metastatic cell subline using the brain metastasis lung cancer cell H1915. We found that MALAT1 is increased in highly invasive subline of brain metastasis lung cancer cells. Further functional studies indicate that silencing MALAT1 inhibits highly invasive subline of brain metastasis lung cancer cell migration and metastasis by inducing epithelial-mesenchymal transition (EMT). Therefore, increased level of long noncoding RNA MALAT1 promotes lung cancer brain metastasis by inducing EMT, which may be a promising prognosis factor and therapeutic target to treat lung cancer brain metastasis in future.

  4. Dietary cholesterol promotes repair of demyelinated lesions in the adult brain

    PubMed Central

    Berghoff, Stefan A.; Gerndt, Nina; Winchenbach, Jan; Stumpf, Sina K.; Hosang, Leon; Odoardi, Francesca; Ruhwedel, Torben; Böhler, Carolin; Barrette, Benoit; Stassart, Ruth; Liebetanz, David; Dibaj, Payam; Möbius, Wiebke; Edgar, Julia M.; Saher, Gesine

    2017-01-01

    Multiple Sclerosis (MS) is an inflammatory demyelinating disorder in which remyelination failure contributes to persistent disability. Cholesterol is rate-limiting for myelin biogenesis in the developing CNS; however, whether cholesterol insufficiency contributes to remyelination failure in MS, is unclear. Here, we show the relationship between cholesterol, myelination and neurological parameters in mouse models of demyelination and remyelination. In the cuprizone model, acute disease reduces serum cholesterol levels that can be restored by dietary cholesterol. Concomitant with blood-brain barrier impairment, supplemented cholesterol directly supports oligodendrocyte precursor proliferation and differentiation, and restores the balance of growth factors, creating a permissive environment for repair. This leads to attenuated axon damage, enhanced remyelination and improved motor learning. Remarkably, in experimental autoimmune encephalomyelitis, cholesterol supplementation does not exacerbate disease expression. These findings emphasize the safety of dietary cholesterol in inflammatory diseases and point to a previously unrecognized role of cholesterol in promoting repair after demyelinating episodes. PMID:28117328

  5. Microbiota-generated metabolites promote metabolic benefits via gut-brain neural circuits.

    PubMed

    De Vadder, Filipe; Kovatcheva-Datchary, Petia; Goncalves, Daisy; Vinera, Jennifer; Zitoun, Carine; Duchampt, Adeline; Bäckhed, Fredrik; Mithieux, Gilles

    2014-01-16

    Soluble dietary fibers promote metabolic benefits on body weight and glucose control, but underlying mechanisms are poorly understood. Recent evidence indicates that intestinal gluconeogenesis (IGN) has beneficial effects on glucose and energy homeostasis. Here, we show that the short-chain fatty acids (SCFAs) propionate and butyrate, which are generated by fermentation of soluble fiber by the gut microbiota, activate IGN via complementary mechanisms. Butyrate activates IGN gene expression through a cAMP-dependent mechanism, while propionate, itself a substrate of IGN, activates IGN gene expression via a gut-brain neural circuit involving the fatty acid receptor FFAR3. The metabolic benefits on body weight and glucose control induced by SCFAs or dietary fiber in normal mice are absent in mice deficient for IGN, despite similar modifications in gut microbiota composition. Thus, the regulation of IGN is necessary for the metabolic benefits associated with SCFAs and soluble fiber.

  6. The degradation of mixed lineage kinase domain-like protein promotes neuroprotection after ischemic brain injury

    PubMed Central

    Zhou, Yanlong; Zhou, Beiqun; Tu, Hui; Tang, Yan; Xu, Chen; Chen, Yanbo; Zhao, Zhong; Miao, Zhigang

    2017-01-01

    Mixed lineage kinase domain-like (MLKL) protein was recently found to play a critical role in necrotic cell death. To explore its role in neurological diseases, we measured MLKL protein expression after ischemia injury in a mouse model. We found that MLKL expression significantly increased 12 h after ischemia/reperfusion (I/R) injury with peak levels at 48 h. Inhibition of MLKL by intraperitoneal administration of NSA significantly reduced infarct volume and improved neurological deficits after 75 min of ischemia and 24 h of reperfusion. Further, we found NSA reduced MLKL levels via the ubiquitination proteasome pathway, but not by inhibiting RNA transcription. Interestingly, NSA administration increased cleaved PARP-1 levels, indicating the protective effects of MLKL inhibition is not related to apoptosis. These findings suggest MLKL is a new therapeutic target for neurological pathologies like stroke. Therefore, promoting degradation of MLKL may be a novel avenue to reduce necrotic cell death after ischemic brain injury. PMID:28978125

  7. The degradation of mixed lineage kinase domain-like protein promotes neuroprotection after ischemic brain injury.

    PubMed

    Zhou, Yanlong; Zhou, Beiqun; Tu, Hui; Tang, Yan; Xu, Chen; Chen, Yanbo; Zhao, Zhong; Miao, Zhigang

    2017-09-15

    Mixed lineage kinase domain-like (MLKL) protein was recently found to play a critical role in necrotic cell death. To explore its role in neurological diseases, we measured MLKL protein expression after ischemia injury in a mouse model. We found that MLKL expression significantly increased 12 h after ischemia/reperfusion (I/R) injury with peak levels at 48 h. Inhibition of MLKL by intraperitoneal administration of NSA significantly reduced infarct volume and improved neurological deficits after 75 min of ischemia and 24 h of reperfusion. Further, we found NSA reduced MLKL levels via the ubiquitination proteasome pathway, but not by inhibiting RNA transcription. Interestingly, NSA administration increased cleaved PARP-1 levels, indicating the protective effects of MLKL inhibition is not related to apoptosis. These findings suggest MLKL is a new therapeutic target for neurological pathologies like stroke. Therefore, promoting degradation of MLKL may be a novel avenue to reduce necrotic cell death after ischemic brain injury.

  8. Strategies to promote differentiation of newborn neurons into mature functional cells in Alzheimer brain.

    PubMed

    Schaeffer, Evelin L; Novaes, Barbara A; da Silva, Emanuelle R; Skaf, Heni D; Mendes-Neto, Alvaro G

    2009-10-01

    Adult neurogenesis occurs in the subgranular zone (SGZ) and subventricular zone (SVZ). New SGZ neurons migrate into the granule cell layer of the dentate gyrus (DG). New SVZ neurons seem to enter the association neocortex and entorhinal cortex besides the olfactory bulb. Alzheimer disease (AD) is characterized by neuron loss in the hippocampus (DG and CA1 field), entorhinal cortex, and association neocortex, which underlies the learning and memory deficits. We hypothesized that, if the AD brain can support neurogenesis, strategies to stimulate the neurogenesis process could have therapeutic value in AD. We reviewed the literature on: (a) the functional significance of adult-born neurons; (b) the occurrence of endogenous neurogenesis in AD; and (c) strategies to stimulate the adult neurogenesis process. We found that: (a) new neurons in the adult DG contribute to memory function; (b) new neurons are generated in the SGZ and SVZ of AD brains, but they fail to differentiate into mature neurons in the target regions; and (c) numerous strategies (Lithium, Glatiramer Acetate, nerve growth factor, environmental enrichment) can enhance adult neurogenesis and promote maturation of newly generated neurons. Such strategies might help to compensate for the loss of neurons and improve the memory function in AD.

  9. Cannabidiol reduces neuroinflammation and promotes neuroplasticity and functional recovery after brain ischemia.

    PubMed

    Mori, Marco Aurélio; Meyer, Erika; Soares, Ligia Mendes; Milani, Humberto; Guimarães, Francisco Silveira; de Oliveira, Rúbia Maria Weffort

    2017-04-03

    This study investigated the effects of cannabidiol (CBD), a non-psychotomimetic phytochemical present in Cannabis sativa, on the cognitive and emotional impairments induced by bilateral common carotid artery occlusion (BCCAO) in mice. Using a multi-tiered behavioral testing battery during 21days, we found that BCCAO mice exhibited long-lasting functional deficits reflected by increase in anxiety-like behavior (day 9), memory impairments (days 12-18) and despair-like behavior (day 21). Short-term CBD 10mg/kg treatment prevented the cognitive and emotional impairments, attenuated hippocampal neurodegeneration and white matter (WM) injury, and reduced glial response that were induced by BCCAO. In addition, ischemic mice treated with CBD exhibited an increase in the hippocampal brain derived neurotrophic factor (BDNF) protein levels. CBD also stimulated neurogenesis and promoted dendritic restructuring in the hippocampus of BCCAO animals. Collectively, the present results demonstrate that short-term CBD treatment results in global functional recovery in ischemic mice and impacts multiple and distinct targets involved in the pathophysiology of brain ischemic injury.

  10. Methamphetamine-induced nitric oxide promotes vesicular transport in blood–brain barrier endothelial cells

    PubMed Central

    Martins, Tânia; Burgoyne, Thomas; Kenny, Bridget-Ann; Hudson, Natalie; Futter, Clare E.; Ambrósio, António F.; Silva, Ana P.; Greenwood, John; Turowski, Patric

    2013-01-01

    Methamphetamine's (METH) neurotoxicity is thought to be in part due to its ability to induce blood–brain barrier (BBB) dysfunction. Here, we investigated the effect of METH on barrier properties of cultured rat primary brain microvascular endothelial cells (BMVECs). Transendothelial flux doubled in response to METH, irrespective of the size of tracer used. At the same time, transendothelial electrical resistance was unchanged as was the ultrastructural appearance of inter-endothelial junctions and the distribution of key junction proteins, suggesting that METH promoted vesicular but not junctional transport. Indeed, METH significantly increased uptake of horseradish peroxidase into vesicular structures. METH also enhanced transendothelial migration of lymphocytes indicating that the endothelial barrier against both molecules and cells was compromised. Barrier breakdown was only observed in response to METH at low micromolar concentrations, with enhanced vesicular uptake peaking at 1 μM METH. The BMVEC response to METH also involved rapid activation of endothelial nitric oxide synthase and its inhibition abrogated METH-induced permeability and lymphocyte migration, indicating that nitric oxide was a key mediator of BBB disruption in response to METH. This study underlines the key role of nitric oxide in BBB function and describes a novel mechanism of drug-induced fluid-phase transcytosis at the BBB. PMID:22960442

  11. Methamphetamine-induced nitric oxide promotes vesicular transport in blood-brain barrier endothelial cells.

    PubMed

    Martins, Tânia; Burgoyne, Thomas; Kenny, Bridget-Ann; Hudson, Natalie; Futter, Clare E; Ambrósio, António F; Silva, Ana P; Greenwood, John; Turowski, Patric

    2013-02-01

    Methamphetamine's (METH) neurotoxicity is thought to be in part due to its ability to induce blood-brain barrier (BBB) dysfunction. Here, we investigated the effect of METH on barrier properties of cultured rat primary brain microvascular endothelial cells (BMVECs). Transendothelial flux doubled in response to METH, irrespective of the size of tracer used. At the same time, transendothelial electrical resistance was unchanged as was the ultrastructural appearance of inter-endothelial junctions and the distribution of key junction proteins, suggesting that METH promoted vesicular but not junctional transport. Indeed, METH significantly increased uptake of horseradish peroxidase into vesicular structures. METH also enhanced transendothelial migration of lymphocytes indicating that the endothelial barrier against both molecules and cells was compromised. Barrier breakdown was only observed in response to METH at low micromolar concentrations, with enhanced vesicular uptake peaking at 1 μM METH. The BMVEC response to METH also involved rapid activation of endothelial nitric oxide synthase and its inhibition abrogated METH-induced permeability and lymphocyte migration, indicating that nitric oxide was a key mediator of BBB disruption in response to METH. This study underlines the key role of nitric oxide in BBB function and describes a novel mechanism of drug-induced fluid-phase transcytosis at the BBB.

  12. Hydrogel-delivered brain-derived neurotrophic factor promotes tissue repair and recovery after stroke.

    PubMed

    Cook, Douglas J; Nguyen, Cynthia; Chun, Hyun N; L Llorente, Irene; Chiu, Abraham S; Machnicki, Michal; Zarembinski, Thomas I; Carmichael, S Thomas

    2017-03-01

    Stroke is the leading cause of adult disability. Systemic delivery of candidate neural repair therapies is limited by the blood-brain barrier and off-target effects. We tested a bioengineering approach for local depot release of BDNF from the infarct cavity for neural repair in chronic periods after stroke. The brain release levels of a hyaluronic acid hydrogel + BDNF were tested in several stroke models in mouse (strains C57Bl/6, DBA) and non-human primate ( Macaca fascicularis) and tracked with MRI. The behavioral recovery effects of hydrogel + BDNF and the effects on tissue repair outcomes were determined. Hydrogel-delivered BDNF diffuses from the stroke cavity into peri-infarct tissue over 3 weeks in two mouse stroke models, compared with 1 week for direct BDNF injection. Hydrogel delivery of BDNF promotes recovery of motor function. Mapping of motor system connections indicates that hydrogel-BDNF induces axonal sprouting within existing cortical and cortico-striatal systems. Pharmacogenetic studies show that hydrogel-BDNF induces the initial migration of immature neurons into the peri-infarct cortex and their long-term survival. In chronic stroke in the non-human primate, hydrogel-released BDNF can be detected up to 2 cm from the infarct, a distance relevant to human functional recovery in stroke. The hydrogel can be tracked by MRI in mouse and primate.

  13. Ovarian brain-derived neurotrophic factor (BDNF) promotes the development of oocytes into preimplantation embryos

    PubMed Central

    Kawamura, Kazuhiro; Kawamura, Nanami; Mulders, Sabine M.; Gelpke, Maarten D. Sollewijn; Hsueh, Aaron J. W.

    2005-01-01

    Optimal development of fertilized eggs into preimplantation embryos is essential for reproduction. Although mammalian oocytes ovulated after luteinizing hormone (LH) stimulation can be fertilized and promoted into early embryos in vitro, little is known about ovarian factors important for the conditioning of eggs for early embryo development. Because LH interacts only with ovarian somatic cells, its potential regulation of oocyte functions is presumably mediated by local paracrine factors. We performed DNA microarray analyses of ovarian transcripts and identified brain-derived neurotrophic factor (BDNF) secreted by granulosa and cumulus cells as an ovarian factor stimulated by the preovulatory LH surge. Ovarian BDNF acts on TrkB receptors expressed exclusively in oocytes to enhance first polar body extrusion of oocytes and to promote the in vitro development of zygotes into preimplantation embryos. Furthermore, in vivo treatment with a Trk receptor inhibitor suppressed first polar body extrusion and the progression of zygotes into blastocysts. Thus, ovarian BDNF is important to nuclear and cytoplasmic maturation of the oocyte, which is essential for successful oocyte development into preimplantation embryos. Treatment with BDNF could condition the cultured oocytes for optimal progression into the totipotent blastocysts. PMID:15967989

  14. Activation of the c-Met pathway mobilizes an inflammatory network in the brain microenvironment to promote brain metastasis of breast cancer

    PubMed Central

    Xing, Fei; Liu, Yin; Sharma, Sambad; Wu, Kerui; Chan, Michael D.; Lo, Hui-Wen; Carpenter, Richard L.; Metheny-Barlow, Linda J.; Zhou, Xiaobo; Qasem, Shadi A.; Pasche, Boris; Watabe, Kounosuke

    2016-01-01

    Brain metastasis is one of the chief causes of mortality in breast cancer patients, but the mechanisms that drive this process remains poorly understood. Here we report that brain metastatic cells expressing high levels of c-Met promote the metastatic process via inflammatory cytokine upregulation and vascular reprogramming. Activated c-Met signaling promoted adhesion of tumor cells to brain endothelial cells and enhanced neovascularization by inducing the secretion of IL-8 and CXCL1. Additionally, stimulation of IL1β secretion by activation of c-Met induced tumor-associated astrocytes to secrete the c-Met ligand HGF. Thus, a feed-forward mechanism of cytokine release initiated and sustained by c-Met fed a vicious cycle which generated a favorable microenvironment for metastatic cells. Reinforcing our results, we found that pterostilbene, a compound that penetrates the blood-brain barrier, could suppress brain metastasis by targeting c-Met signaling. These findings suggest a potential utility of this natural compound for chemoprevention. PMID:27364556

  15. β1 integrin signaling promotes neuronal migration along vascular scaffolds in the post-stroke brain.

    PubMed

    Fujioka, Teppei; Kaneko, Naoko; Ajioka, Itsuki; Nakaguchi, Kanako; Omata, Taichi; Ohba, Honoka; Fässler, Reinhard; García-Verdugo, José Manuel; Sekiguchi, Kiyotoshi; Matsukawa, Noriyuki; Sawamoto, Kazunobu

    2017-02-01

    Cerebral ischemic stroke is a main cause of chronic disability. However, there is currently no effective treatment to promote recovery from stroke-induced neurological symptoms. Recent studies suggest that after stroke, immature neurons, referred to as neuroblasts, generated in a neurogenic niche, the ventricular-subventricular zone, migrate toward the injured area, where they differentiate into mature neurons. Interventions that increase the number of neuroblasts distributed at and around the lesion facilitate neuronal repair in rodent models for ischemic stroke, suggesting that promoting neuroblast migration in the post-stroke brain could improve efficient neuronal regeneration. To move toward the lesion, neuroblasts form chain-like aggregates and migrate along blood vessels, which are thought to increase their migration efficiency. However, the molecular mechanisms regulating these migration processes are largely unknown. Here we studied the role of β1-class integrins, transmembrane receptors for extracellular matrix proteins, in these migrating neuroblasts. We found that the neuroblast chain formation and blood vessel-guided migration critically depend on β1 integrin signaling. β1 integrin facilitated the adhesion of neuroblasts to laminin and the efficient translocation of their soma during migration. Moreover, artificial laminin-containing scaffolds promoted neuroblast chain formation and migration toward the injured area. These data suggest that laminin signaling via β1 integrin supports vasculature-guided neuronal migration to efficiently supply neuroblasts to injured areas. This study also highlights the importance of vascular scaffolds for cell migration in development and regeneration. Copyright © 2017 3-V Biosciences. Published by Elsevier B.V. All rights reserved.

  16. Lack of DNA binding in the rat nasal mucosa and other tissues of the nasal toxicants roflumilast, a phosphodiesterase 4 inhibitor, and a metabolite, 4-amino-3,5-dichloropyridine, in contrast to the nasal carcinogen 2,6-dimethylaniline.

    PubMed

    Jeffrey, Alan M; Luo, Feng-Qi; Amin, Shantilal; Krzeminski, Jacek; Zech, Karl; Williams, Gary M

    2002-02-01

    The phosphodiesterase 4 inhibitor Roflumilast (B9302-107) (RF) and its metabolite 4-amino-3,5-dichloropyridine (ADCP) produced nasal toxicity in preclinical safety studies with rats. The purpose of this study was to assess the possible formation of DNA adducts, by RF and ADCP, in the nasal mucosa, liver and testes of male rats using the 32P-postlabeling assay. For comparison, rats were exposed to the DNA-reactive carcinogens 2,6-dimethylaniline (DMA), also known as 2,6-xylidine, a nasal carcinogen, and the aromatic amine carcinogens 4,4'-methylene-bis(2-chloroaniline) (MOCA), which yields monocyclic DNA adducts, and 2-acetylaminofluorene (2-AAF). In the case of RF, possible sources of DNA adducts include the parent molecule and its ADCP moiety by enzymatic N-hydroxylation and sulfation, reactions typical of carcinogenic aromatic amines. 4-Acetoxylamino-3,5-dichloropyridine (N-acetoxy-ADCP), a chemically activated derivative of ADCP, was prepared and used to modify DNA which was then used to establish the chromatographic conditions with which to reliably detect whether or not such adducts were formed metabolically from RF and ADCP. Similarly, a standard N-hydroxy-DMA was prepared, but the corresponding N-acetoxy derivative was unstable and decomposed during synthesis. Both N-hydroxy-DMA and N-acetoxy-ADCP were mutagenic in the Salmonella typhimurium Ames assay using strain TA100 without an exogenous bioactivation system, with the former being more potent. N-hydroxy-ADCP was essentially inactive in this assay. For the 32P-postlabeling assay, male Wistar rats were exposed to the test substances and carrier control compounds by intragastric instillation at the selected dose levels for 7 days. Subsequently, the nasal mucosa, liver, and testes of the rats exposed to the test or control compounds were extirpated, the DNA extracted and the samples postlabeled. The patterns of adducts formed with the test compounds were compared to those formed in N-acetoxy-ADCP- and N

  17. Promoting Adaptive Behavior in Persons with Acquired Brain Injury, Extensive Motor and Communication Disabilities, and Consciousness Disorders

    ERIC Educational Resources Information Center

    Lancioni, Giulio E.; Singh, Nirbhay N.; O'Reilly, Mark F.; Sigafoos, Jeff; Belardinelli, Marta Olivetti; Buonocunto, Francesca; Sacco, Valentina; Navarro, Jorge; Lanzilotti, Crocifissa; De Tommaso, Marina; Megna, Marisa; Badagliacca, Francesco

    2012-01-01

    These two studies extended the evidence on the use of technology-based intervention packages to promote adaptive behavior in persons with acquired brain injury and multiple disabilities. Study I involved five participants in a minimally conscious state who were provided with intervention packages based on specific arrangements of optic, tilt, or…

  18. Promoting Adaptive Behavior in Persons with Acquired Brain Injury, Extensive Motor and Communication Disabilities, and Consciousness Disorders

    ERIC Educational Resources Information Center

    Lancioni, Giulio E.; Singh, Nirbhay N.; O'Reilly, Mark F.; Sigafoos, Jeff; Belardinelli, Marta Olivetti; Buonocunto, Francesca; Sacco, Valentina; Navarro, Jorge; Lanzilotti, Crocifissa; De Tommaso, Marina; Megna, Marisa; Badagliacca, Francesco

    2012-01-01

    These two studies extended the evidence on the use of technology-based intervention packages to promote adaptive behavior in persons with acquired brain injury and multiple disabilities. Study I involved five participants in a minimally conscious state who were provided with intervention packages based on specific arrangements of optic, tilt, or…

  19. Transcriptional activity of novel ALDH1L1 promoters in the rat brain following AAV vector-mediated gene transfer

    PubMed Central

    Mudannayake, Janitha M; Mouravlev, Alexandre; Fong, Dahna M; Young, Deborah

    2016-01-01

    Aldehyde dehydrogenase family 1, member L1 (ALDH1L1) is a recently characterized pan-astrocytic marker that is more homogenously expressed throughout the brain than the classic astrocytic marker, glial fibrillary acidic protein. We generated putative promoter sequence variants of the rat ALDH1L1 gene for use in adeno-associated viral vector-mediated gene transfer, with an aim to achieve selective regulation of transgene expression in astrocytes in the rat brain. Unexpectedly, ALDH1L1 promoter variants mediated transcriptional activity exclusively in neurons in the substantia nigra pars compacta as assessed by luciferase reporter expression at 3 weeks postvector infusion. This selectivity for neurons in the substantia nigra pars compacta also persisted in the context of adeno-associated viral serotype 5, 8 or 9 vector-mediated gene delivery. An in vivo promoter comparison showed the highest performing ALDH1L1 promoter variant mediated higher transgene expression than the neuronal-specific synapsin 1 and tyrosine hydroxylase promoters. The ALDH1L1 promoter was also transcriptionally active in dentate granule neurons following intrahippocampal adeno-associated viral vector infusion, whereas transgene expression was detected in both striatal neurons and astrocytes following vector infusion into the striatum. Our results demonstrate the potential suitability of the ALDH1L1 promoter as a new tool in the development of gene therapy and disease modelling applications. PMID:27990448

  20. Ketosis may promote brain macroautophagy by activating Sirt1 and hypoxia-inducible factor-1.

    PubMed

    McCarty, Mark F; DiNicolantonio, James J; O'Keefe, James H

    2015-11-01

    Ketogenic diets are markedly neuroprotective, but the basis of this effect is still poorly understood. Recent studies demonstrate that ketone bodies increase neuronal levels of hypoxia-inducible factor-1α (HIF-1α), possibly owing to succinate-mediated inhibition of prolyl hydroxylase activity. Moreover, there is reason to suspect that ketones can activate Sirt1 in neurons, in part by increasing cytoplasmic and nuclear levels of Sirt1's obligate cofactor NAD(+). Another recent study has observed reduced activity of mTORC1 in the hippocampus of rats fed a ketogenic diet - an effect plausibly attributable to Sirt1 activation. Increased activities of HIF-1 and Sirt1, and a decrease in mTORC1 activity, could be expected to collaborate in the induction of neuronal macroautophagy. Considerable evidence points to moderate up-regulation of neuronal autophagy as a rational strategy for prevention of neurodegenerative disorders; elimination of damaged mitochondria that overproduce superoxide, as well as clearance of protein aggregates that mediate neurodegeneration, presumably contribute to this protection. Hence, autophagy may mediate some of the neuroprotective benefits of ketogenic diets. Brain-permeable agents which activate AMP-activated kinase, such as metformin and berberine, as well as the Sirt1 activator nicotinamide riboside, can also boost neuronal autophagy, and may have potential for amplifying the impact of ketogenesis on this process. Since it might not be practical for most people to adhere to ketogenic diets continuously, alternative strategies are needed to harness the brain-protective potential of ketone bodies. These may include ingestion of medium-chain triglycerides or coconut oil, intermittent ketogenic dieting, and possibly the use of supplements that promote hepatic ketogenesis - notably carnitine and hydroxycitrate - in conjunction with dietary regimens characterized by long daily episodes of fasting or carbohydrate avoidance.

  1. Physiological Ischemic Training Promotes Brain Collateral Formation and Improves Functions in Patients with Acute Cerebral Infarction.

    PubMed

    Zhen, Xiaoyue; Zheng, Yu; Hong, Xunning; Chen, Yan; Gu, Ping; Tang, Jinrong; Cheng, Hong; Yuan, Ti-Fei; Lu, Xiao

    2016-01-01

    concentration and EPC number (r = 0.722, p < 0.01). PIT may be effective in increasing the expression of VEGF and recruitment of EPCs and in turn promote the formation of brain collateral circulation. The positive correlations may demonstrate a potential association between biological and functional parameters, and PIT may be able to improve the motor function, activity of daily living, and quality of life in patients with stroke.

  2. Astrocytes Promote Oligodendrogenesis after White Matter Damage via Brain-Derived Neurotrophic Factor

    PubMed Central

    Miyamoto, Nobukazu; Maki, Takakuni; Shindo, Akihiro; Liang, Anna C.; Maeda, Mitsuyo; Egawa, Naohiro; Itoh, Kanako; Lo, Evan K.; Lok, Josephine; Ihara, Masafumi

    2015-01-01

    Oligodendrocyte precursor cells (OPCs) in the adult brain contribute to white matter homeostasis. After white matter damage, OPCs compensate for oligodendrocyte loss by differentiating into mature oligodendrocytes. However, the underlying mechanisms remain to be fully defined. Here, we test the hypothesis that, during endogenous recovery from white matter ischemic injury, astrocytes support the maturation of OPCs by secreting brain-derived neurotrophic factor (BDNF). For in vitro experiments, cultured primary OPCs and astrocytes were prepared from postnatal day 2 rat cortex. When OPCs were subjected to chemical hypoxic stress by exposing them to sublethal CoCl2 for 7 d, in vitro OPC differentiation into oligodendrocytes was significantly suppressed. Conditioned medium from astrocytes (astro-medium) restored the process of OPC maturation even under the stressed conditions. When astro-medium was filtered with TrkB-Fc to remove BDNF, the BDNF-deficient astro-medium no longer supported OPC maturation. For in vivo experiments, we analyzed a transgenic mouse line (GFAPcre/BDNFwt/fl) in which BDNF expression is downregulated specifically in GFAP+ astrocytes. Both wild-type (GFAPwt/BDNFwt/fl mice) and transgenic mice were subjected to prolonged cerebral hypoperfusion by bilateral common carotid artery stenosis. As expected, compared with wild-type mice, the transgenic mice exhibited a lower number of newly generated oligodendrocytes and larger white matter damage. Together, these findings demonstrate that, during endogenous recovery from white matter damage, astrocytes may promote oligodendrogenesis by secreting BDNF. SIGNIFICANCE STATEMENT The repair of white matter after brain injury and neurodegeneration remains a tremendous hurdle for a wide spectrum of CNS disorders. One potentially important opportunity may reside in the response of residual oligodendrocyte precursor cells (OPCs). OPCs may serve as a back-up for generating mature oligodendrocytes in damaged white

  3. Astrocytes Promote Oligodendrogenesis after White Matter Damage via Brain-Derived Neurotrophic Factor.

    PubMed

    Miyamoto, Nobukazu; Maki, Takakuni; Shindo, Akihiro; Liang, Anna C; Maeda, Mitsuyo; Egawa, Naohiro; Itoh, Kanako; Lo, Evan K; Lok, Josephine; Ihara, Masafumi; Arai, Ken

    2015-10-14

    Oligodendrocyte precursor cells (OPCs) in the adult brain contribute to white matter homeostasis. After white matter damage, OPCs compensate for oligodendrocyte loss by differentiating into mature oligodendrocytes. However, the underlying mechanisms remain to be fully defined. Here, we test the hypothesis that, during endogenous recovery from white matter ischemic injury, astrocytes support the maturation of OPCs by secreting brain-derived neurotrophic factor (BDNF). For in vitro experiments, cultured primary OPCs and astrocytes were prepared from postnatal day 2 rat cortex. When OPCs were subjected to chemical hypoxic stress by exposing them to sublethal CoCl2 for 7 d, in vitro OPC differentiation into oligodendrocytes was significantly suppressed. Conditioned medium from astrocytes (astro-medium) restored the process of OPC maturation even under the stressed conditions. When astro-medium was filtered with TrkB-Fc to remove BDNF, the BDNF-deficient astro-medium no longer supported OPC maturation. For in vivo experiments, we analyzed a transgenic mouse line (GFAP(cre)/BDNF(wt/fl)) in which BDNF expression is downregulated specifically in GFAP(+) astrocytes. Both wild-type (GFAP(wt)/BDNF(wt/fl) mice) and transgenic mice were subjected to prolonged cerebral hypoperfusion by bilateral common carotid artery stenosis. As expected, compared with wild-type mice, the transgenic mice exhibited a lower number of newly generated oligodendrocytes and larger white matter damage. Together, these findings demonstrate that, during endogenous recovery from white matter damage, astrocytes may promote oligodendrogenesis by secreting BDNF. The repair of white matter after brain injury and neurodegeneration remains a tremendous hurdle for a wide spectrum of CNS disorders. One potentially important opportunity may reside in the response of residual oligodendrocyte precursor cells (OPCs). OPCs may serve as a back-up for generating mature oligodendrocytes in damaged white matter. However

  4. GAL4-NF-kappaB fusion protein augments transgene expression from neuronal promoters in the rat brain.

    PubMed

    Liu, B H; Yang, Y; Paton, J F R; Li, F; Boulaire, J; Kasparov, S; Wang, S

    2006-12-01

    Targeted gene expression mediated by a mammalian cellular promoter is desirable for gene therapy in the brain, where there are a variety of different neuronal phenotypes, several types of supportive cells, and blood vessels. However, this approach can be hampered by weak activity of some cellular promoters. In view of the potency of the transcription factor NF-kappaB in regulating neuronal gene expression, we have assessed whether it can be used to enhance the strength of neuron-specific promoters. Our approach was to use a neuronal promoter to drive expression of a chimeric transactivator, which consisted of a part of the transcriptional activation domain of the NF-kappaB p65 protein fused to the DNA-binding domain of GAL4 protein from yeast. The second copy of the neuronal promoter was modified by introducing the unique GAL4 binding sequences at its 5' end and used to drive the expression of a transgene. Binding of the chimeric transcriptional activator upstream of the second promoter was expected to potentiate its transcriptional activity. In this study, the approach was applied to the platelet-derived growth factor beta chain and synapsin-1 neuron-specific promoters and tested in vitro and in vivo using plasmid, lentiviral, and baculoviral vectors. We observed up to a 100-fold improvement in reporter gene expression in cultured neurons and 20-fold improvement in the rat brain in vivo. Moreover, the cell-type specificity of the two tested promoters was well preserved and restricted to neurons. Finally, the expression driven by the new lentiviral vectors with the p65-potentiated synapsin-1 promoter showed no signs of decline or cell damage 4 weeks after injection. This approach should be suitable for constructing powerful and stable gene expression systems based on weak cell-specific promoters in neuronal phenotypes.

  5. Linking ATM Promoter Methylation to Cell Cycle Protein Expression in Brain Tumor Patients: Cellular Molecular Triangle Correlation in ATM Territory.

    PubMed

    Mehdipour, P; Karami, F; Javan, Firouzeh; Mehrazin, M

    2015-08-01

    Ataxia telangiectasia mutated (ATM) is a key gene in DNA double-strand break (DSB), and therefore, most of its disabling genetic alterations play an important initiative role in many types of cancer. However, the exact role of ATM gene and its epigenetic alterations, especially promoter methylation in different grades of brain tumors, remains elusive. The current study was conducted to query possible correlations among methylation statue of ATM gene, ATM/ retinoblastoma (RB) protein expression, D1853N ATM polymorphism, telomere length (TL), and clinicopathological characteristics of various types of brain tumors. Isolated DNA from 30 fresh tissues was extracted from different types of brain tumors and two brain tissues from deceased normal healthy individuals. DNAs were treated with bisulfate sodium using DNA modification kit (Qiagen). Methylation-specific polymerase chain reaction (MSP-PCR) was implicated to determine the methylation status of treated DNA templates confirmed by promoter sequencing. Besides, the ATM and RB protein levels were determined by immunofluorescence (IF) assay using monoclonal mouse antihuman against ATM, P53, and RB proteins. To achieve an interactive correlation, the methylation data were statistically analyzed by considering TL and D1853N ATM polymorphism. More than 73% of the brain tumors were methylated in ATM gene promoter. There was strong correlation between ATM promoter methylation and its protein expression (p < 0.001). As a triangle, meaningful correlation was also found between methylated ATM promoter and ATM protein expression with D1853N ATM polymorphism (p = 0.01). ATM protein expression was not in line with RB protein expression while it was found to be significantly correlated with ATM promoter methylation (p = 0.01). There was significant correlation between TL neither with ATM promoter methylation nor with ATM protein expression nor with D1853N polymorphism. However, TL has shown strong correlation with patient's age and

  6. Promotion

    PubMed Central

    Alam, Hasan B.

    2013-01-01

    This article gives an overview of the promotion process in an academic medical center. A description of different promotional tracks, tenure and endowed chairs, and the process of submitting an application is provided. Finally, some practical advice about developing skills and attributes that can help with academic growth and promotion is dispensed. PMID:24436683

  7. Acupuncture promotes mTOR-independent autophagic clearance of aggregation-prone proteins in mouse brain

    PubMed Central

    Tian, Tian; Sun, Yanhong; Wu, Huangan; Pei, Jian; Zhang, Jing; Zhang, Yi; Wang, Lu; Li, Bin; Wang, Lihua; Shi, Jiye; Hu, Jun; Fan, Chunhai

    2016-01-01

    Acupuncture has historically been practiced to treat medical disorders by mechanically stimulating specific acupoints with fine needles. Despite its well-documented efficacy, its biological basis remains largely elusive. In this study, we found that mechanical stimulation at the acupoint of Yanglingquan (GB34) promoted the autophagic clearance of α-synuclein (α-syn), a well known aggregation-prone protein closely related to Parkinson’s disease (PD), in the substantia nigra par compacta (SNpc) of the brain in a PD mouse model. We found the protein clearance arose from the activation of the autophagy-lysosome pathway (ALP) in a mammalian target of rapamycin (mTOR)-independent approach. Further, we observed the recovery in the activity of dopaminergic neurons in SNpc, and improvement in the motor function at the behavior level of PD mice. Whereas acupuncture and rapamycin, a chemical mTOR inhibitor, show comparable α-syn clearance and therapeutic effects in the PD mouse model, the latter adopts a distinctly different, mTOR-dependent, autophagy induction process. Due to this fundamental difference, acupuncture may circumvent adverse effects of the rapamycin treatment. The newly discovered connection between acupuncture and autophagy not only provides a new route to understanding the molecular mechanism of acupuncture but also sheds new light on cost-effective and safe therapy of neurodegenerative diseases. PMID:26792101

  8. Acupuncture promotes mTOR-independent autophagic clearance of aggregation-prone proteins in mouse brain.

    PubMed

    Tian, Tian; Sun, Yanhong; Wu, Huangan; Pei, Jian; Zhang, Jing; Zhang, Yi; Wang, Lu; Li, Bin; Wang, Lihua; Shi, Jiye; Hu, Jun; Fan, Chunhai

    2016-01-21

    Acupuncture has historically been practiced to treat medical disorders by mechanically stimulating specific acupoints with fine needles. Despite its well-documented efficacy, its biological basis remains largely elusive. In this study, we found that mechanical stimulation at the acupoint of Yanglingquan (GB34) promoted the autophagic clearance of α-synuclein (α-syn), a well known aggregation-prone protein closely related to Parkinson's disease (PD), in the substantia nigra par compacta (SNpc) of the brain in a PD mouse model. We found the protein clearance arose from the activation of the autophagy-lysosome pathway (ALP) in a mammalian target of rapamycin (mTOR)-independent approach. Further, we observed the recovery in the activity of dopaminergic neurons in SNpc, and improvement in the motor function at the behavior level of PD mice. Whereas acupuncture and rapamycin, a chemical mTOR inhibitor, show comparable α-syn clearance and therapeutic effects in the PD mouse model, the latter adopts a distinctly different, mTOR-dependent, autophagy induction process. Due to this fundamental difference, acupuncture may circumvent adverse effects of the rapamycin treatment. The newly discovered connection between acupuncture and autophagy not only provides a new route to understanding the molecular mechanism of acupuncture but also sheds new light on cost-effective and safe therapy of neurodegenerative diseases.

  9. Defining the critical hypoxic threshold that promotes vascular remodeling in the brain.

    PubMed

    Boroujerdi, Amin; Milner, Richard

    2015-01-01

    In animal models, hypoxic pre-conditioning confers protection against subsequent neurological insults, mediated in part through an extensive vascular remodeling response. In light of the therapeutic potential of this effect, the goal of this study was to establish the dose-response relationship between level of hypoxia and the extent of cerebrovascular modeling, and to define the mildest level of hypoxia that promotes remodeling. Mice were exposed to different levels of continuous hypoxia (8-21% O2) for seven days before several aspects of vascular remodeling were evaluated, including endothelial proliferation, total vascular area, arteriogenesis, and fibronectin/α5β1 integrin expression. For most events, the threshold level of hypoxia that stimulated remodeling was 12-13% O2. Interestingly, many parameters displayed a biphasic dose-response curve, with peak levels attained at 10% O2, but declined thereafter. Further analysis in the 12-13% O2 range revealed that vascular remodeling occurs by two separate mechanisms: (i) endothelial hyperplasia, triggered by a hypoxic threshold of 13% O2, which leads to increased capillary growth, and (ii) endothelial hypertrophy, triggered by a more severe hypoxic threshold of 12% O2, which leads to expansion of large vessels and arteriogenesis. Taken together, these results define the hypoxic thresholds for vascular remodeling in the brain, and point to two separate mechanisms mediating this process.

  10. Imp promotes axonal remodeling by regulating profilin mRNA during brain development.

    PubMed

    Medioni, Caroline; Ramialison, Mirana; Ephrussi, Anne; Besse, Florence

    2014-03-31

    Neuronal remodeling is essential for the refinement of neuronal circuits in response to developmental cues [1-4]. Although this process involves pruning or retraction of axonal projections followed by axonal regrowth and branching, how these steps are controlled is poorly understood. Drosophila mushroom body (MB) γ neurons provide a paradigm for the study of neuronal remodeling, as their larval axonal branches are pruned during metamorphosis and re-extend to form adult-specific branches [5]. Here, we identify the RNA binding protein Imp as a key regulator of axonal remodeling. Imp is the sole fly member of a conserved family of proteins that bind target mRNAs to promote their subcellular targeting [6-12]. We show that whereas Imp is dispensable for the initial growth of MB γ neuron axons, it is required for the regrowth and ramification of axonal branches that have undergone pruning. Furthermore, Imp is actively transported to axons undergoing developmental remodeling. Finally, we demonstrate that profilin mRNA is a direct and functional target of Imp that localizes to axons and controls axonal regrowth. Our study reveals that mRNA localization machineries are actively recruited to axons upon remodeling and suggests a role of mRNA transport in developmentally programmed rewiring of neuronal circuits during brain maturation. Copyright © 2014 Elsevier Ltd. All rights reserved.

  11. Viral-mediated delivery of an RXFP3 agonist into brain promotes arousal in mice.

    PubMed

    Smith, Craig M; Blasiak, Anna; Ganella, Despina E; Chua, Berenice E; Layfield, Sharon L; Bathgate, Ross A D; Gundlach, Andrew L

    2013-01-01

    Anatomical and functional studies of central relaxin-3/RXFP3 systems suggest they constitute an ascending arousal network. For example, relaxin-3 knockout mice display circadian hypoactivity compared to wild type littermate controls. In studies to explore the effect of chronic RXFP3 activation on behaviour, we engineered a lentiviral construct to constitutively secrete the RXFP3 agonist, R3/I5, and express a green fluorescent protein (GFP) marker in transduced cells. Intracerebroventricular injection of the lenti-R3/I5-GFP virus (-10(power)8 genomic copies in 2 microl) in adult C57BL/6J mice resulted in GFP expression within cells of the ventricle walls and choroid plexus over a period of 1-4 weeks, suggesting likely chronic R3/I5 secretion and RXFP3 activation in brain regions proximal to the ventricular system. Subsequent testing in automated locomotor cells on day 8 and 9 post-injection revealed that lenti-R3/I5-GFP treated mice displayed prolonged, elevated locomotor activity (-18% higher over the last 15 min on day 8, and over the entire 30 min test on day 9) compared to mice injected with a control lenti-GFP virus, which habituated normally to the novel environment (n = 18/12 respectively, p < 0.05). These findings are consistent with an earlier report of increased activity scores in rats acutely injected centrally with R3/I5, and further suggest a role for relaxin-3/RXFP3 signalling in promoting behavioural arousal.

  12. Structural and functional state of heart left ventricle depending on polymorphism rs966221 phosphodiesterase 4D gene in emergency workers of the Chornobyl NPP suffering from coronary heart disease.

    PubMed

    Nastina, O; Pleskach, G; Kursina, N; Bazyka, O; Makarevich, O; Abramenko, I; Chumak, A; Belyi, D

    2016-12-01

    This study consisted in examination the features of structural and functional state of the cardiovascular system in emergency workers (EW) of the Chernobyl nuclear power plant (ChNPP) who suffered from coronary heart disease (CHD) and having different genotypes due to polymorphism rs966221 phosphodiesterase 4D (PDE4D) gene. The study involved 121 EW and 63 non irradiated patients with CHD. Standardized survey included echo doppler cardiography (EchoCG) that was done by Diagnostic Ultrasound System DS N3 (Mindray). Polymorphism rs966221 PDE4D determined by polymerase chain reaction followed by restriction reaction products. The distribution of genotypes PDE4D in EW was as follows: CC - 42, CT - 49 and TT - 30 patients. In the con trol group, carriers of the same genotypes were 27, 21 and 15 persons respectively. All echocardiographic parame ters in EW workers and non irradiated patients did not differ significantly. Amongst TT genotype carriers of both groups the proportion of patients with increased myocardial mass index was the highest (82.9%) compared to CC genotype (78.4%) and CT (71.4%). The concentric type of left ventricular (LV) hypertrophy was found in 54.9% of patients with CC genotype, in 51.8% with CT genotype and 45.7% with TT genotype, while the eccentric type in 23.5, 21.4 and 37.1% respectively. The relative number of people with high LV end diastolic volume (EDV) normalized by body surface area (BSA) was 27.5% in CC genotype carriers, 26.8% in CT genotype and 40% in TT genotype carriers (p > 0.05). The increase of BSA indexed LV end systolic volume (ESV) was found in 27.5, 30.4 and 28.6%, and the ejection fraction in 15.7, 23.2 and 22.9% respectively. The largest number of CHD patients with inadequate dias tolic function was in carriers of TT genotype (75%) compared with the data in CC (66.7%) and CT genotypes (42.9%) carriers. In patients with the same genotype, both EW and non irradiated persons there were virtually no dif ferences in indicators

  13. Reactive astrocytes promote the metastatic growth of breast cancer stem-like cells by activating Notch signalling in brain.

    PubMed

    Xing, Fei; Kobayashi, Aya; Okuda, Hiroshi; Watabe, Misako; Pai, Sudha K; Pandey, Puspa R; Hirota, Shigeru; Wilber, Andrew; Mo, Yin-Yuan; Moore, Brian E; Liu, Wen; Fukuda, Koji; Iiizumi, Megumi; Sharma, Sambad; Liu, Yin; Wu, Kerui; Peralta, Elizabeth; Watabe, Kounosuke

    2013-03-01

    Brain metastasis of breast cancer profoundly affects the cognitive and sensory functions as well as morbidity of patients, and the 1 year survival rate among these patients remains less than 20%. However, the pathological mechanism of brain metastasis is as yet poorly understood. In this report, we found that metastatic breast tumour cells in the brain highly expressed IL-1β which then 'activated' surrounding astrocytes. This activation significantly augmented the expression of JAG1 in the astrocytes, and the direct interaction of the reactivated astrocytes and cancer stem-like cells (CSCs) significantly stimulated Notch signalling in CSCs. We also found that the activated Notch signalling in CSCs up-regulated HES5 followed by promoting self-renewal of CSCs. Furthermore, we have shown that the blood-brain barrier permeable Notch inhibitor, Compound E, can significantly suppress the brain metastasis in vivo. These results represent a novel paradigm for the understanding of how metastatic breast CSCs re-establish their niche for their self-renewal in a totally different microenvironment, which opens a new avenue to identify a novel and specific target for the brain metastatic disease.

  14. Reactive astrocytes promote the metastatic growth of breast cancer stem-like cells by activating Notch signalling in brain

    PubMed Central

    Xing, Fei; Kobayashi, Aya; Okuda, Hiroshi; Watabe, Misako; Pai, Sudha K; Pandey, Puspa R; Hirota, Shigeru; Wilber, Andrew; Mo, Yin-Yuan; Moore, Brian E; Liu, Wen; Fukuda, Koji; Iiizumi, Megumi; Sharma, Sambad; Liu, Yin; Wu, Kerui; Peralta, Elizabeth; Watabe, Kounosuke

    2013-01-01

    Brain metastasis of breast cancer profoundly affects the cognitive and sensory functions as well as morbidity of patients, and the 1 year survival rate among these patients remains less than 20%. However, the pathological mechanism of brain metastasis is as yet poorly understood. In this report, we found that metastatic breast tumour cells in the brain highly expressed IL-1β which then ‘activated’ surrounding astrocytes. This activation significantly augmented the expression of JAG1 in the astrocytes, and the direct interaction of the reactivated astrocytes and cancer stem-like cells (CSCs) significantly stimulated Notch signalling in CSCs. We also found that the activated Notch signalling in CSCs up-regulated HES5 followed by promoting self-renewal of CSCs. Furthermore, we have shown that the blood-brain barrier permeable Notch inhibitor, Compound E, can significantly suppress the brain metastasis in vivo. These results represent a novel paradigm for the understanding of how metastatic breast CSCs re-establish their niche for their self-renewal in a totally different microenvironment, which opens a new avenue to identify a novel and specific target for the brain metastatic disease. PMID:23495140

  15. Serpins Promote Cancer Cell Survival and Vascular Cooption in Brain Metastasis

    PubMed Central

    Valiente, Manuel; Obenauf, Anna C.; Jin, Xin; Chen, Qing; Zhang, Xiang H.-F.; Lee, Derek J.; Chaft, Jamie E.; Kris, Mark G.; Huse, Jason T.; Brogi, Edi; Massagué, Joan

    2014-01-01

    Brain metastasis is an ominous complication of cancer, yet most cancer cells that infiltrate the brain die of unknown causes. Here we identify plasmin from the reactive brain stroma as a defense against metastatic invasion, and plasminogen activator (PA) inhibitory serpins in cancer cells as a shield against this defense. Plasmin suppresses brain metastasis in two ways: by converting membrane-bound astrocytic FasL into a paracrine death signal for cancer cells, and by inactivating the axon pathfinding molecule L1CAM that metastatic cells express for spreading along brain capillaries and for metastatic outgrowth. Brain metastatic cells from lung cancer and breast cancer express high levels of anti-PA serpins, including neuroserpin and serpin B2, to prevent plasmin generation and its deleterious consequences. By protecting cancer cells from death signals and fostering vascular cooption, anti-PA serpins provide a unifying mechanism for the initiation of brain metastasis in lung and breast cancers. PMID:24581498

  16. Reduced Cerebral Oxygen Content in the DG and SVZ In Situ Promotes Neurogenesis in the Adult Rat Brain In Vivo.

    PubMed

    Zhang, Kuan; Zhou, Yanzhao; Zhao, Tong; Wu, Liying; Huang, Xin; Wu, Kuiwu; Xu, Lun; Li, Dahu; Liu, Shuhong; Zhao, Yongqi; Fan, Ming; Zhu, Lingling

    2015-01-01

    Neurogenesis in the adult brain occurs mainly within two neurogenic structures, the dentate gyrus (DG) of the hippocampus and the sub-ventricular zone (SVZ) of the forebrain. It has been reported that mild hypoxia promoted the proliferation of Neural Stem Cells (NSCs)in vitro. Our previous study further demonstrated that an external hypoxic environment stimulated neurogenesis in the adult rat brain in vivo. However, it remains unknown how external hypoxic environments affect the oxygen content in the brain and result in neurogenesis. Here we use an optical fiber luminescent oxygen sensor to detect the oxygen content in the adult rat brain in situ under normoxia and hypoxia. We found that the distribution of oxygen in cerebral regions is spatiotemporally heterogeneous. The Po2 values in the ventricles (45∼50 Torr) and DG (approximately 10 Torr) were much higher than those of other parts of the brain, such as the cortex and thalamus (approximately 2 Torr). Interestingly, our in vivo studies showed that an external hypoxic environment could change the intrinsic oxygen content in brain tissues, notably reducing oxygen levels in both the DG and SVZ, the major sites of adult neurogenesis. Furthermore, the hypoxic environment also increased the expression of HIF-1α and VEGF, two factors that have been reported to regulate neurogenesis, within the DG and SVZ. Thus, we have demonstrated that reducing the oxygen content of the external environment decreased Po2 levels in the DG and SVZ. This reduced oxygen level in the DG and SVZ might be the main mechanism triggering neurogenesis in the adult brain. More importantly, we speculate that varying oxygen levels may be the physiological basis of the regionally restricted neurogenesis in the adult brain.

  17. Molecular pathways: tumor cells Co-opt the brain-specific metabolism gene CPT1C to promote survival.

    PubMed

    Reilly, Patrick T; Mak, Tak W

    2012-11-01

    The metabolic adaptations of cancer cells are receiving renewed attention as potential targets for therapeutic exploitation. Recent work has highlighted the importance of fatty acid catabolism through β-oxidation to cellular energy homeostasis. In this article, we describe recent preclinical studies suggesting that a gene usually expressed only in the brain, carnitine palmitoyltransferase (CPT)1C, promotes cancer cell survival and tumor growth. CTP1C confers rapamycin resistance on breast cancer cells, indicating that this gene may act in a pathway parallel to mTOR-enhanced glycolysis. Because of CPT1C's normally brain-restricted expression and the inability of most drugs to pass the blood-brain barrier, CPT1C may be an ideal candidate for specific small-molecule inhibition. We further speculate that concurrent targeting of CPT1C activity and glycolysis in tumor cells could be a highly effective anticancer approach.

  18. Brain and muscle Arnt-like 1 promotes skeletal muscle regeneration through satellite cell expansion

    SciTech Connect

    Chatterjee, Somik; Yin, Hongshan; Nam, Deokhwa; Li, Yong; Ma, Ke

    2015-02-01

    Circadian clock is an evolutionarily conserved timing mechanism governing diverse biological processes and the skeletal muscle possesses intrinsic functional clocks. Interestingly, although the essential clock transcription activator, Brain and muscle Arnt-like 1 (Bmal1), participates in maintenance of muscle mass, little is known regarding its role in muscle growth and repair. In this report, we investigate the in vivo function of Bmal1 in skeletal muscle regeneration using two muscle injury models. Bmal1 is highly up-regulated by cardiotoxin injury, and its genetic ablation significantly impairs regeneration with markedly suppressed new myofiber formation and attenuated myogenic induction. A similarly defective regenerative response is observed in Bmal1-null mice as compared to wild-type controls upon freeze injury. Lack of satellite cell expansion accounts for the regeneration defect, as Bmal1{sup −/−} mice display significantly lower satellite cell number with nearly abolished induction of the satellite cell marker, Pax7. Furthermore, satellite cell-derived primary myoblasts devoid of Bmal1 display reduced growth and proliferation ex vivo. Collectively, our results demonstrate, for the first time, that Bmal1 is an integral component of the pro-myogenic response that is required for muscle repair. This mechanism may underlie its role in preserving adult muscle mass and could be targeted therapeutically to prevent muscle-wasting diseases. - Highlights: • Bmal1 is highly inducible by muscle injury and myogenic stimuli. • Genetic ablation of Bmal1 significantly impairs muscle regeneration. • Bmal1 promotes satellite cell expansion during muscle regeneration. • Bmal1-deficient primary myoblasts display attenuated growth and proliferation.

  19. Neurofibromatosis-1 (Nf1) heterozygous brain microglia elaborate paracrine factors that promote Nf1-deficient astrocyte and glioma growth.

    PubMed

    Daginakatte, Girish C; Gutmann, David H

    2007-05-01

    The tumor microenvironment is considered to play an important role in tumor formation and progression by providing both negative and positive signals that influence tumor cell growth. We and others have previously shown that brain tumor (glioma) formation in Nf1 genetically engineered mice requires a microenvironment composed of cells heterozygous for a targeted Nf1 mutation. Using NF1 as a model system to understand the contribution of the tumor microenvironment to glioma formation, we show that Nf1+/- brain microglia produce specific factors that promote Nf1-/- astrocyte growth in vitro and in vivo and identify hyaluronidase as one of these factors in both genetically engineered Nf1 mouse and human NF1-associated optic glioma. We further demonstrate that blocking hyaluronidase ameliorates the ability of Nf1+/- microglia to increase Nf1-/- astrocyte proliferation and that hyaluronidase increases Nf1-/- astrocyte proliferation in an MAPK-dependent fashion. Lastly, inhibiting microglia activation in genetically engineered Nf1 mice significantly reduces mouse optic glioma proliferation in vivo. Collectively, these studies identify Nf1+/- microglia as an important stromal cell type that promotes Nf1-/- astrocyte and optic glioma growth relevant to the pathogenesis of NF1-associated brain tumors and suggest that future brain therapies might be directed against paracrine factors produced by cells in the tumor microenvironment.

  20. Neuroprotective effect of buyang huanwu decoction on rat ischemic/reperfusion brain damage by promoting migration of neural precursor cells.

    PubMed

    Kong, Xiangying; Su, Xiaohui; Zhu, Jia; Wang, Jianzhu; Wan, Hongye; Zhong, Micun; Li, Li; Lin, Na

    2014-06-01

    Buyang Huanwu Decoction (BYHWD) is a classic formula widely used for treating stroke-induced disability, the highest morbidity of neurological disorders in China. However, the mechanism of its neuroprotection has not been fully clarified. Previous reports indicated that BYHWD may promote growth and differentiation of neural precursor cells (NPCs). The present study focused on the effects of BYHWD on migration of NPCs in rats with middle cerebral artery occlusion (MCAO). Rats were treated with different doses of BYHWD (12 and 24 grams/kg) from day 1 to day 21 after model building. BYHWD could increase the survival rate and decrease neurological scores and infarct volume as compared with the vehicle-treated MCAO rats. Moreover, BYHWD treatment significantly increased 5-bromo-2-deoxyuridine (BrdU)-positive cells in the subventricular zone (SVZ), subgranular zone (SGZ), and corpus striatum (CS) of the infarct brain. Interestingly, BYHWD could markedly enhance BrdU(+)/doublecortin(+) cells not only in the SVZ and SGZ but also in CS, by up-regulating the protein expression of migration activators, including stromal cell derived factor-1, CXC chemokine receptor 4, vascular endothelial growth factor, Reelin, and brain-derived neurotrophic factor in the ipsilateral infarct area after MCAO. In addition, BYHWD treatment was able to promote the neuronal differentiation, which was closely related to the migratory process of NPCs in MCAO rats. These findings offer evidence for the first time that BYHWD may exert its neuroprotective effects partially by promotion of NPCs migration to ischemic brain areas.

  1. Brain insults in rats induce increased expression of the BDNF gene through differential use of multiple promoters.

    PubMed

    Kokaia, Z; Metsis, M; Kokaia, M; Bengzon, J; Elmér, E; Smith, M L; Timmusk, T; Siesjö, B K; Persson, H; Lindvall, O

    1994-04-01

    The rat brain-derived neurotrophic factor (BDNF) gene consists of four short 5'-exons linked to separate promoters and one 3'-exon encoding the mature BDNF protein. Using in situ hybridization we demonstrate here that kindling-induced seizures, cerebral ischaemia and insulin-induced hypoglycaemic coma increase BDNF mRNA levels through insult- and region-specific usage of three promoters within the BDNF gene. Both brief (2 min) and longer (10 min) periods of forebrain ischaemia induced significant and major increases only of exon III mRNA in the dentate gyrus. Following hypoglycaemic coma (1 and 30 min), exon III mRNA was markedly elevated in the dentate gyrus and, in addition, exon I mRNA showed a moderate increase. Single and recurrent (n = 40) hippocampal seizures significantly increased expression of exon I, II and III mRNAs in the dentate gyrus granule cells. After recurrent seizures, including generalized convulsions, there were also major increases of both exon I and III mRNAs in the CA3 region, amygdala, piriform cortex and neocortex, whereas in the hippocampal CA1 sector marked elevations were detected only for exon III mRNA. The insults had no effect on the level of exon IV mRNA in the brain. The region- and insult-specific pattern of promoter activation might be of importance for the effectiveness of protective responses as well as for the regulation of plastic changes following brain insults.

  2. T cell–derived interleukin (IL)-21 promotes brain injury following stroke in mice

    PubMed Central

    Clarkson, Benjamin D.S.; Ling, Changying; Shi, Yejie; Harris, Melissa G.; Rayasam, Aditya; Sun, Dandan; Salamat, M. Shahriar; Kuchroo, Vijay; Lambris, John D.; Sandor, Matyas

    2014-01-01

    T lymphocytes are key contributors to the acute phase of cerebral ischemia reperfusion injury, but the relevant T cell–derived mediators of tissue injury remain unknown. Using a mouse model of transient focal brain ischemia, we report that IL-21 is highly up-regulated in the injured mouse brain after cerebral ischemia. IL-21–deficient mice have smaller infarcts, improved neurological function, and reduced lymphocyte accumulation in the brain within 24 h of reperfusion. Intracellular cytokine staining and adoptive transfer experiments revealed that brain-infiltrating CD4+ T cells are the predominant IL-21 source. Mice treated with decoy IL-21 receptor Fc fusion protein are protected from reperfusion injury. In postmortem human brain tissue, IL-21 localized to perivascular CD4+ T cells in the area surrounding acute stroke lesions, suggesting that IL-21–mediated brain injury may be relevant to human stroke. PMID:24616379

  3. Subacute Intranasal Administration of Tissue Plasminogen Activator Promotes Neuroplasticity and Improves Functional Recovery following Traumatic Brain Injury in Rats

    PubMed Central

    Meng, Yuling; Chopp, Michael; Zhang, Yanlu; Liu, Zhongwu; An, Aaron; Mahmood, Asim; Xiong, Ye

    2014-01-01

    Traumatic brain injury (TBI) is a major cause of death and long-term disability worldwide. To date, there are no effective pharmacological treatments for TBI. Recombinant human tissue plasminogen activator (tPA) is the effective drug for the treatment of acute ischemic stroke. In addition to its thrombolytic effect, tPA is also involved in neuroplasticity in the central nervous system. However, tPA has potential adverse side effects when administered intravenously including brain edema and hemorrhage. Here we report that tPA, administered by intranasal delivery during the subacute phase after TBI, provides therapeutic benefit. Animals with TBI were treated intranasally with saline or tPA initiated 7 days after TBI. Compared with saline treatment, subacute intranasal tPA treatment significantly 1) improved cognitive (Morris water maze test) and sensorimotor (footfault and modified neurological severity score) functional recovery in rats after TBI, 2) reduced the cortical stimulation threshold evoking ipsilateral forelimb movement, 3) enhanced neurogenesis in the dentate gyrus and axonal sprouting of the corticospinal tract originating from the contralesional cortex into the denervated side of the cervical gray matter, and 4) increased the level of mature brain-derived neurotrophic factor. Our data suggest that subacute intranasal tPA treatment improves functional recovery and promotes brain neurogenesis and spinal cord axonal sprouting after TBI, which may be mediated, at least in part, by tPA/plasmin-dependent maturation of brain-derived neurotrophic factor. PMID:25184365

  4. Injection parameters and virus dependent choice of promoters to improve neuron targeting in the nonhuman primate brain.

    PubMed

    Lerchner, W; Corgiat, B; Der Minassian, V; Saunders, R C; Richmond, B J

    2014-03-01

    We, like many others, wish to use modern molecular methods to alter neuronal functionality in primates. For us, this requires expression in a large proportion of the targeted cell population. Long generation times make germline modification of limited use. The size and intricate primate brain anatomy poses additional challenges. We surved methods using lentiviruses and serotypes of adeno-associated viruses (AAVs) to introduce active molecular material into cortical and subcortical regions of old-world monkey brains. Slow injections of AAV2 give well-defined expression of neurons in the cortex surrounding the injection site. Somewhat surprisingly we find that in the monkey the use of cytomegalovirus promoter in lentivirus primarily targets glial cells but few neurons. In contrast, with a synapsin promoter fragment the lentivirus expression is neuron specific at high transduction levels in all cortical layers. We also achieve specific targeting of tyrosine hydroxlase (TH)- rich neurons in the locus coeruleus and substantia nigra with a lentvirus carrying a fragment of the TH promoter. Lentiviruses carrying neuron specific promoters are suitable for both cortical and subcortical injections even when injected quickly.

  5. Exercise promotes the expression of brain derived neurotrophic factor (BDNF) through the action of the ketone body β-hydroxybutyrate

    PubMed Central

    Sleiman, Sama F; Henry, Jeffrey; Al-Haddad, Rami; El Hayek, Lauretta; Abou Haidar, Edwina; Stringer, Thomas; Ulja, Devyani; Karuppagounder, Saravanan S; Holson, Edward B; Ratan, Rajiv R; Ninan, Ipe; Chao, Moses V

    2016-01-01

    Exercise induces beneficial responses in the brain, which is accompanied by an increase in BDNF, a trophic factor associated with cognitive improvement and the alleviation of depression and anxiety. However, the exact mechanisms whereby physical exercise produces an induction in brain Bdnf gene expression are not well understood. While pharmacological doses of HDAC inhibitors exert positive effects on Bdnf gene transcription, the inhibitors represent small molecules that do not occur in vivo. Here, we report that an endogenous molecule released after exercise is capable of inducing key promoters of the Mus musculus Bdnf gene. The metabolite β-hydroxybutyrate, which increases after prolonged exercise, induces the activities of Bdnf promoters, particularly promoter I, which is activity-dependent. We have discovered that the action of β-hydroxybutyrate is specifically upon HDAC2 and HDAC3, which act upon selective Bdnf promoters. Moreover, the effects upon hippocampal Bdnf expression were observed after direct ventricular application of β-hydroxybutyrate. Electrophysiological measurements indicate that β-hydroxybutyrate causes an increase in neurotransmitter release, which is dependent upon the TrkB receptor. These results reveal an endogenous mechanism to explain how physical exercise leads to the induction of BDNF. DOI: http://dx.doi.org/10.7554/eLife.15092.001 PMID:27253067

  6. Exercise promotes the expression of brain derived neurotrophic factor (BDNF) through the action of the ketone body β-hydroxybutyrate.

    PubMed

    Sleiman, Sama F; Henry, Jeffrey; Al-Haddad, Rami; El Hayek, Lauretta; Abou Haidar, Edwina; Stringer, Thomas; Ulja, Devyani; Karuppagounder, Saravanan S; Holson, Edward B; Ratan, Rajiv R; Ninan, Ipe; Chao, Moses V

    2016-06-02

    Exercise induces beneficial responses in the brain, which is accompanied by an increase in BDNF, a trophic factor associated with cognitive improvement and the alleviation of depression and anxiety. However, the exact mechanisms whereby physical exercise produces an induction in brain Bdnf gene expression are not well understood. While pharmacological doses of HDAC inhibitors exert positive effects on Bdnf gene transcription, the inhibitors represent small molecules that do not occur in vivo. Here, we report that an endogenous molecule released after exercise is capable of inducing key promoters of the Mus musculus Bdnf gene. The metabolite β-hydroxybutyrate, which increases after prolonged exercise, induces the activities of Bdnf promoters, particularly promoter I, which is activity-dependent. We have discovered that the action of β-hydroxybutyrate is specifically upon HDAC2 and HDAC3, which act upon selective Bdnf promoters. Moreover, the effects upon hippocampal Bdnf expression were observed after direct ventricular application of β-hydroxybutyrate. Electrophysiological measurements indicate that β-hydroxybutyrate causes an increase in neurotransmitter release, which is dependent upon the TrkB receptor. These results reveal an endogenous mechanism to explain how physical exercise leads to the induction of BDNF.

  7. Subanesthetic Ketamine Treatment Promotes Abnormal Interactions between Neural Subsystems and Alters the Properties of Functional Brain Networks

    PubMed Central

    Dawson, Neil; McDonald, Martin; Higham, Desmond J; Morris, Brian J; Pratt, Judith A

    2014-01-01

    Acute treatment with subanesthetic ketamine, a non-competitive N-methyl-D-aspartic acid (NMDA) receptor antagonist, is widely utilized as a translational model for schizophrenia. However, how acute NMDA receptor blockade impacts on brain functioning at a systems level, to elicit translationally relevant symptomatology and behavioral deficits, has not yet been determined. Here, for the first time, we apply established and recently validated topological measures from network science to brain imaging data gained from ketamine-treated mice to elucidate how acute NMDA receptor blockade impacts on the properties of functional brain networks. We show that the effects of acute ketamine treatment on the global properties of these networks are divergent from those widely reported in schizophrenia. Where acute NMDA receptor blockade promotes hyperconnectivity in functional brain networks, pronounced dysconnectivity is found in schizophrenia. We also show that acute ketamine treatment increases the connectivity and importance of prefrontal and thalamic brain regions in brain networks, a finding also divergent to alterations seen in schizophrenia. In addition, we characterize how ketamine impacts on bipartite functional interactions between neural subsystems. A key feature includes the enhancement of prefrontal cortex (PFC)-neuromodulatory subsystem connectivity in ketamine-treated animals, a finding consistent with the known effects of ketamine on PFC neurotransmitter levels. Overall, our data suggest that, at a systems level, acute ketamine-induced alterations in brain network connectivity do not parallel those seen in chronic schizophrenia. Hence, the mechanisms through which acute ketamine treatment induces translationally relevant symptomatology may differ from those in chronic schizophrenia. Future effort should therefore be dedicated to resolve the conflicting observations between this putative translational model and schizophrenia. PMID:24492765

  8. Cancer-associated fibroblast promote transmigration through endothelial brain cells in three-dimensional in vitro models.

    PubMed

    Choi, Yoon Pyo; Lee, Joo Hyun; Gao, Ming-Qing; Kim, Baek Gil; Kang, Suki; Kim, Se Hoon; Cho, Nam Hoon

    2014-11-01

    Brain metastases are associated with high morbidity as well as with poor prognosis and survival in breast cancer patients. Despite its clinical importance, metastasis of breast cancer cells through the blood-brain barrier (BBB) is poorly understood. The objective of our study was to investigate whether cancer-associated fibroblasts (CAFs) play crucial roles in breast cancer brain metastasis. Using a cell adhesion assays, in vitro BBB permeability and transmigration assays and soft agar colony formation assays, we investigated the physical roles of CAFs in breast cancer brain metastasis. We also performed immunofluorescence, flow cytometric analysis, Droplet Digital PCR and Simon™ Simple Western System to confirm changes in expression levels. We established two novel three-dimensional (3D) culture systems using a perpendicular slide chamber and applying 3D embedded culture method to reflect brain metastasis conditions. With a newly developed device, CAFs was proven to promote cell adhesion to human brain microvascular endothelial cells, in vitro BBB permeability and transmigration and colony formation of breast cancer cells. Furthermore, CAFs enhanced the invasive migration of breast cancer cells in two kinds of 3D cultures. These 3D models also reliably recapitulate the initial steps of BBB transmigration, micro-metastasis and colonization. Expression of integrin α5β1 and αvβ3, c-MET and α2,6-siayltransferase was increased in breast cancer cells that migrated through the BBB. In conclusion, based on our in vitro BBB and co-culture models, our data suggest that CAFs may play a role in breast cancer brain metastasis. © 2014 UICC.

  9. Increases in levels of brain-derived neurotrophic factor mRNA and its promoters after transient forebrain ischemia in the rat brain.

    PubMed

    Tsukahara, T; Iihara, K; Hashimoto, N; Nishijima, T; Taniguchi, T

    1998-08-01

    Expression of brain-derived neurotrophic factor (BDNF) may play a role in the mechanism of neuronal cell death after cerebral ischemia. We investigated the changes in levels of mRNAs encoding BDNF and its promoters in the rat brain after transient forebrain ischemia. Transient forebrain ischemia was induced by occlusion of bilateral common carotid arteries and systemic hypotension for 8 min. The alterations in BDNF gene expression in the hippocampus and in the cerebral cortex were examined by in situ hybridization using a mouse BDNF cDNA probe and cDNA probes including exon-specific promoters. BDNF transcripts were rapidly enhanced after the ischemic insult, both in the hippocampus and the cerebral cortex. NBQX suppressed the enhanced gene expression of BDNF markedly in the dentate gyrus (DG). In contrast, MK-801 had little effect on BDNF expression. In the piriform cortex, MK-801 or NBQX reduced the expression only moderately. After the ischemic insult, promoter specific BDNF 5'-exon I and exon III were increased remarkably in the DG. The increase in exon I in DG was suppressed partially by MK-801 and NBQX, while the increase in exon III in CA3 was suppressed by MK-801 but that in DG was not suppressed by either antagonist. In the piriform cortex, exon III was increased remarkably and this increase was not influenced by either agonist. These results suggest that the gene expression of BDNF was enhanced by transient ischemia both in the hippocampus and the cerebral cortex and that the cerebral ischemia stimulated at least two different promoter- and neuron type-specific pathways regulating expression of the BDNF gene mediated by glutamate receptors of non-NMDA type and NMDA type.

  10. Serpins promote cancer cell survival and vascular co-option in brain metastasis.

    PubMed

    Valiente, Manuel; Obenauf, Anna C; Jin, Xin; Chen, Qing; Zhang, Xiang H-F; Lee, Derek J; Chaft, Jamie E; Kris, Mark G; Huse, Jason T; Brogi, Edi; Massagué, Joan

    2014-02-27

    Brain metastasis is an ominous complication of cancer, yet most cancer cells that infiltrate the brain die of unknown causes. Here, we identify plasmin from the reactive brain stroma as a defense against metastatic invasion, and plasminogen activator (PA) inhibitory serpins in cancer cells as a shield against this defense. Plasmin suppresses brain metastasis in two ways: by converting membrane-bound astrocytic FasL into a paracrine death signal for cancer cells, and by inactivating the axon pathfinding molecule L1CAM, which metastatic cells express for spreading along brain capillaries and for metastatic outgrowth. Brain metastatic cells from lung cancer and breast cancer express high levels of anti-PA serpins, including neuroserpin and serpin B2, to prevent plasmin generation and its metastasis-suppressive effects. By protecting cancer cells from death signals and fostering vascular co-option, anti-PA serpins provide a unifying mechanism for the initiation of brain metastasis in lung and breast cancers. Copyright © 2014 Elsevier Inc. All rights reserved.

  11. Infiltrating monocytes promote brain inflammation and exacerbate neuronal damage after status epilepticus

    PubMed Central

    Varvel, Nicholas H.; Neher, Jonas J.; Bosch, Andrea; Wang, Wenyi; Ransohoff, Richard M.; Miller, Richard J.; Dingledine, Raymond

    2016-01-01

    The generalized seizures of status epilepticus (SE) trigger a series of molecular and cellular events that produce cognitive deficits and can culminate in the development of epilepsy. Known early events include opening of the blood–brain barrier (BBB) and astrocytosis accompanied by activation of brain microglia. Whereas circulating monocytes do not infiltrate the healthy CNS, monocytes can enter the brain in response to injury and contribute to the immune response. We examined the cellular components of innate immune inflammation in the days following SE by discriminating microglia vs. brain-infiltrating monocytes. Chemokine receptor 2 (CCR2+) monocytes invade the hippocampus between 1 and 3 d after SE. In contrast, only an occasional CD3+ T lymphocyte was encountered 3 d after SE. The initial cellular sources of the chemokine CCL2, a ligand for CCR2, included perivascular macrophages and microglia. The induction of the proinflammatory cytokine IL-1β was greater in FACS-isolated microglia than in brain-invading monocytes. However, Ccr2 knockout mice displayed greatly reduced monocyte recruitment into brain and reduced levels of the proinflammatory cytokine IL-1β in hippocampus after SE, which was explained by higher expression of the cytokine in circulating and brain monocytes in wild-type mice. Importantly, preventing monocyte recruitment accelerated weight regain, reduced BBB degradation, and attenuated neuronal damage. Our findings identify brain-infiltrating monocytes as a myeloid-cell subclass that contributes to neuroinflammation and morbidity after SE. Inhibiting brain invasion of CCR2+ monocytes could represent a viable method for alleviating the deleterious consequences of SE. PMID:27601660

  12. Triptans disrupt brain networks and promote stress-induced CSD-like responses in cortical and subcortical areas

    PubMed Central

    Bishop, J.; Barmettler, G.; Xie, Y.; Navratilova, E.; Porreca, F.; Borsook, D.

    2015-01-01

    A number of drugs, including triptans, promote migraine chronification in susceptible individuals. In rats, a period of triptan administration over 7 days can produce “latent sensitization” (14 days after discontinuation of drug) demonstrated as enhanced sensitivity to presumed migraine triggers such as environmental stress and lowered threshold for electrically induced cortical spreading depression (CSD). Here we have used fMRI to evaluate the early changes in brain networks at day 7 of sumatriptan administration that may induce latent sensitization as well as the potential response to stress. After continuous infusion of sumatriptan, rats were scanned to measure changes in resting state networks and the response to bright light environmental stress. Rats receiving sumatriptan, but not saline infusion, showed significant differences in default mode, autonomic, basal ganglia, salience, and sensorimotor networks. Bright light stress produced CSD-like responses in sumatriptan-treated but not control rats. Our data show the first brain-related changes in a rat model of medication overuse headache and suggest that this approach could be used to evaluate the multiple brain networks involved that may promote this condition. PMID:26490291

  13. Stress-Induced Recruitment of Bone Marrow-Derived Monocytes to the Brain Promotes Anxiety-Like Behavior

    PubMed Central

    Wohleb, Eric S.; Powell, Nicole D.

    2013-01-01

    Social stress is associated with altered immunity and higher incidence of anxiety-related disorders. Repeated social defeat (RSD) is a murine stressor that primes peripheral myeloid cells, activates microglia, and induces anxiety-like behavior. Here we show that RSD-induced anxiety-like behavior corresponded with an exposure-dependent increase in circulating monocytes (CD11b+/SSClo/Ly6Chi) and brain macrophages (CD11b+/SSClo/CD45hi). Moreover, RSD-induced anxiety-like behavior corresponded with brain region-dependent cytokine and chemokine responses involved with myeloid cell recruitment. Next, LysM-GFP+ and GFP+ bone marrow (BM)-chimeric mice were used to determine the neuroanatomical distribution of peripheral myeloid cells recruited to the brain during RSD. LysM-GFP+ mice showed that RSD increased recruitment of GFP+ macrophages to the brain and increased their presence within the perivascular space (PVS). In addition, RSD promoted recruitment of GFP+ macrophages into the PVS and parenchyma of the prefrontal cortex, amygdala, and hippocampus of GFP+ BM-chimeric mice. Furthermore, mice deficient in chemokine receptors associated with monocyte trafficking [chemokine receptor-2 knockout (CCR2KO) or fractalkine receptor knockout (CX3CR1KO)] failed to recruit macrophages to the brain and did not develop anxiety-like behavior following RSD. Last, RSD-induced macrophage trafficking was prevented in BM-chimeric mice generated with CCR2KO or CX3CR1KO donor cells. These findings indicate that monocyte recruitment to the brain in response to social stress represents a novel cellular mechanism that contributes to the development of anxiety. PMID:23966702

  14. Brain region-specific methylation in the promoter of the murine oxytocin receptor gene is involved in its expression regulation.

    PubMed

    Harony-Nicolas, Hala; Mamrut, Shimrat; Brodsky, Leonid; Shahar-Gold, Hadar; Barki-Harrington, Liza; Wagner, Shlomo

    2014-01-01

    Oxytocin is a nine amino acid neuropeptide that is known to play a critical role in fetal expulsion and breast-feeding, and has been recently implicated in mammalian social behavior. The actions of both central and peripheral oxytocin are mediated through the oxytocin receptor (Oxtr), which is encoded by a single gene. In contrast to the highly conserved expression of oxytocin in specific hypothalamic nuclei, the expression of its receptor in the brain is highly diverse among different mammalian species or even within individuals of the same species. The diversity in the pattern of brain Oxtr expression among mammals is thought to contribute to the broad range of social systems and organizations. Yet, the mechanisms underlying this diversity are poorly understood. DNA methylation is a major epigenetic mechanism that regulates gene transcription, and has been linked to reduced expression levels of the Oxtr in individuals with autism. Here we hypothesize that DNA methylation is involved in the expression regulation of Oxtr in the mouse brain. By combining bisulfite DNA conversion and Next-Generation Sequencing we found that specific CpG sites are differentially methylated between distinct brain regions expressing different levels of Oxtr mRNA. Some of these CpG sites are located within putative binding sites of transcription factors known to regulate Oxtr expression, including estrogen receptor α (ERα) and SP1. Specifically, methylation of the SP1 site was found to positively correlate with Oxtr expression. Furthermore, we revealed that the methylation levels of these sites in the various brain regions predict the relationship between ERα and Oxtr mRNA levels. Collectively, our results suggest that brain region-specific expression of the mouse Oxtr gene is epigenetically regulated by DNA methylation of its promoter. Copyright © 2013 Elsevier Ltd. All rights reserved.

  15. Creative music therapy to promote brain structure, function, and neurobehavioral outcomes in preterm infants: a randomized controlled pilot trial protocol.

    PubMed

    Haslbeck, Friederike Barbara; Bucher, Hans-Ulrich; Bassler, Dirk; Hagmann, Cornelia

    2017-01-01

    Preterm birth is associated with increased risk of neurological impairment and deficits in cognition, motor function, and behavioral problems. Limited studies indicate that multi-sensory experiences support brain development in preterm infants. Music appears to promote neurobiological processes and neuronal learning in the human brain. Creative music therapy (CMT) is an individualized, interactive therapeutic approach based on the theory and methods of Nordoff and Robbins. CMT may promote brain development in preterm infants via concurrent interaction and meaningful auditory stimulation. We hypothesize that preterm infants who receive creative music therapy during neonatal intensive care admission will have developmental benefits short- and long-term brain function. A prospective, randomized controlled single-center pilot trial involving 60 clinically stable preterm infants under 32 weeks of gestational age is conducted in preparation for a multi-center trial. Thirty infants each are randomized to either standard neonatal intensive care or standard care with CMT. Music therapy intervention is approximately 20 min in duration three times per week. A trained music therapist sings for the infants in lullaby style, individually entrained and adjusted to the infant's rhythm and affect. Primary objectives of this study are feasibility of protocol implementation and investigating the potential mechanism of efficacy for this new intervention. To examine the effect of this new intervention, non-invasive, quantitative magnetic resonance imaging (MRI) methods at corrected age and standardized neurodevelopmental assessments using the Bayley Scales of Infant and Toddler Development third edition at a corrected age of 24 months and Kaufman Assessment Battery for Children at 5 years will be performed. All assessments will be performed and analyzed by blinded experts. To our knowledge, this is the first randomized controlled clinical trial to systematically examine possible

  16. NK cells promote neutrophil recruitment in the brain during sepsis-induced neuroinflammation

    PubMed Central

    He, Hao; Geng, Tingting; Chen, Piyun; Wang, Meixiang; Hu, Jingxia; Kang, Li; Song, Wengang; Tang, Hua

    2016-01-01

    Sepsis could affect the central nervous system and thus induces neuroinflammation, which subsequently leads to brain damage or dysfunction. However, the mechanisms of generation of neuroinflammation during sepsis remain poorly understood. By administration of lipopolysaccharides (LPS) in mice to mimic sepsis, we found that shortly after opening the blood–brain barrier, conventional CD11b+CD27+ NK subset migrated into the brain followed by subsequent neutrophil infiltration. Interestingly, depletion of NK cells prior to LPS treatment severely impaired neutrophil recruitment in the inflamed brain. By in vivo recruitment assay, we found that brain-infiltrated NK cells displayed chemotactic activity to neutrophils, which depended on the higher expression of chemokines such as CXCL2. Moreover, microglia were also responsible for neutrophil recruitment, and their chemotactic activity was significantly impaired by ablation of NK cells. Furthermore, depletion of NK cells could significantly ameliorate depression-like behavior in LPS-treated mice. These data indicated a NK cell-regulated neutrophil recruitment in the blamed brain, which also could be seen on another sepsis model, cecal ligation and puncture. So, our findings revealed an important scenario in the generation of sepsis-induced neuroinflammation. PMID:27270556

  17. Multiple preconditioning paradigms converge on interferon regulatory factor-dependent signaling to promote tolerance to ischemic brain injury.

    PubMed

    Stevens, Susan L; Leung, Philberta Y; Vartanian, Keri B; Gopalan, Banu; Yang, Tao; Simon, Roger P; Stenzel-Poore, Mary P

    2011-06-08

    Ischemic tolerance can be induced by numerous preconditioning stimuli, including various Toll-like receptor (TLR) ligands. We have shown previously that systemic administration of the TLR4 ligand LPS or the TLR9 ligand unmethylated CpG oligodeoxynucleotide before transient brain ischemia in mice confers substantial protection against ischemic damage. To elucidate the molecular mechanisms of preconditioning, we compared brain genomic profiles in response to preconditioning with these TLR ligands and with preconditioning via exposure to brief ischemia. We found that exposure to the TLR ligands and brief ischemia induced genomic changes in the brain characteristic of a TLR pathway-mediated response. Interestingly, all three preconditioning stimuli resulted in a reprogrammed response to stroke injury that converged on a shared subset of 13 genes not evident in the genomic profile from brains that were subjected to stroke without prior preconditioning. Analysis of the promoter region of these shared genes showed sequences required for interferon regulatory factor (IRF)-mediated transcription. The importance of this IRF gene network was tested using mice deficient in IRF3 or IRF7. Our data show that both transcription factors are required for TLR-mediated preconditioning and neuroprotection. These studies are the first to discover a convergent mechanism of neuroprotection induced by preconditioning--one that potentially results in reprogramming of the TLR-mediated response to stroke and requires the presence of IRF3 and IRF7.

  18. Down-Regulation of Olfactory Receptors in Response to Traumatic Brain Injury Promotes Risk for Alzheimer’s Disease

    DTIC Science & Technology

    2014-10-01

    5a. CONTRACT NUMBER Promotes Risk for Alzheimer’s Disease 5b. GRANT NUMBER W81XWH-12-1-0582 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR( S ) Giulio Maria... disease : a review. Prog. Brain Res. 161, 303-16. Zhao W, Ho L, Varghese M, Yemul S , Dams-O’Connor K, Gordon W, Knable L, Freire D, Haroutunian V... disease PRINCIPAL INVESTIGATOR: Giulio Maria Pasinetti MD., PhD CONTRACTING ORGANIZATION: Icahn School of Medicine at Mount Sinai New York, NY

  19. Transferrin-modified liposome promotes α-mangostin to penetrate the blood-brain barrier.

    PubMed

    Chen, Zhi-Lan; Huang, Man; Wang, Xia-Rong; Fu, Jun; Han, Min; Shen, You-Qing; Xia, Zheng; Gao, Jian-Qing

    2016-02-01

    α-Mangostin (α-M) is a polyphenolic xanthone that protects and improves the survival of cerebral cortical neurons against Aβ oligomer-induced toxicity in rats. α-M is a potential candidate as a treatment for Alzheimer's disease (AD). However, the efficacy was limited by the poor penetration of the drug through the blood-brain barrier (BBB). In this study, we modified the α-M liposome with transferrin (Tf) and investigated the intracellular distribution of liposomes in bEnd3 cells. In addition, the transport of α-M across the BBB in the Tf(α-M) liposome group was examined. In vitro studies demonstrated that the Tf(α-M) liposome could cross the BBB in the form of an integrated liposome. Results of the in vivo studies on the α-M distribution in the brain demonstrated that the Tf(α-M) liposome improved the brain delivery of α-M. These results indicated that the Tf liposome is a potential carrier of α-M against AD. The use of α-Mangostin (α-M) as a potential agent to treat Alzheimer's disease (AD) has been reported. However, its use is limited by the poor penetration through the blood brain barrier. The delivery of this agent by transferrin-modified liposomes was investigated by the authors in this study. The positive results could point to a better drug delivery system for brain targeting. Copyright © 2015 Elsevier Inc. All rights reserved.

  20. Obesity promotes oxidative stress and exacerbates sepsis-induced brain damage.

    PubMed

    Vieira, Andriele Aparecida; Michels, Monique; Florentino, Drielly; Nascimento, Diego Zapelini; Rezin, Gislaine Tezza; Leffa, Daniela Dimer; Fortunato, Jucelia Jeremias; Dal-Pizzol, Felipe; Barichello, Tatiana; Quevedo, Joao; Petronilho, Fabricia

    2015-01-01

    Sepsis is a severe clinical syndrome in which a system-wide inflammatory response follows initial attempts to eliminate pathogens. It is not novel that in sepsis the brain is one of the first organs affected which causes an increase in morbidity and mortality and its consequences may be exacerbated when associated with a diagnosis of chronic inflammation, such as in obesity. Thus, the aim of the present study is to evaluate the susceptibility to brain damage after sepsis in obese rats. During two months, Wistar rats, 60 days, 250-300g received hypercaloric nutrition to induce obesity. Sepsis was submitted to the cecal ligation and perforation (CLP) procedure and sham-operated rats was considered control group. The experimental groups were divided into Sham + Eutrophic, Sham + Obesity, CLP + Eutrophic and CLP + Obesity. Twelve and twenty four hours after surgery the blood brain barrier (BBB) permeability, nitrite/nitrate concentration, myeloperoxidase (MPO) activity, oxidative damage to lipids and proteins and superoxide dismutase (SOD) and catalase (CAT) activities were evaluated in the hippocampus, cortex and prefrontal cortex. The data indicate that in obese rats subjected to sepsis occurs an increase of BBB permeability in different brain regions compared to eutrophic septic rats. This alteration reflected an increase of MPO activity, concentration of nitrite/nitrate, oxidative damage to lipids and proteins and an imbalance of SOD and CAT especially 24 hours after sepsis. It follows that obesity due to its pro-inflammatory phenotype can aggravate or accelerate the sepsis-induced damage in rat brain.

  1. Snx14 Regulates Neuronal Excitability, Promotes Synaptic Transmission, and Is Imprinted in the Brain of Mice

    PubMed Central

    Huang, Hsien-Sung; Yoon, Bong-June; Brooks, Sherian; Bakal, Robert; Berrios, Janet; Larsen, Rylan S.; Wallace, Michael L.; Han, Ji Eun; Chung, Eui Hwan; Zylka, Mark J.; Philpot, Benjamin D.

    2014-01-01

    Genomic imprinting describes an epigenetic process through which genes can be expressed in a parent-of-origin-specific manner. The monoallelic expression of imprinted genes renders them particularly susceptible to disease causing mutations. A large proportion of imprinted genes are expressed in the brain, but little is known about their functions. Indeed, it has proven difficult to identify cell type-specific imprinted genes due to the heterogeneity of cell types within the brain. Here we used laser capture microdissection of visual cortical neurons and found evidence that sorting nexin 14 (Snx14) is a neuronally imprinted gene in mice. SNX14 protein levels are high in the brain and progressively increase during neuronal development and maturation. Snx14 knockdown reduces intrinsic excitability and severely impairs both excitatory and inhibitory synaptic transmission. These data reveal a role for monoallelic Snx14 expression in maintaining normal neuronal excitability and synaptic transmission. PMID:24859318

  2. Identification of cis-acting regulatory elements in the promoter region of the rat brain creatine kinase gene.

    PubMed Central

    Hobson, G M; Molloy, G R; Benfield, P A

    1990-01-01

    The functional organization of the rat brain creatine kinase (ckb) promoter was analyzed by deletion, linker scanning, and substitution mutagenesis. Mutations were introduced into the ckb promoter of hybrid ckb/neo (neomycin resistance gene) genes, and the mutant genes were expressed transiently in HeLa cells. Expression was assayed by primer extension analysis of neo RNA, which allowed the transcription start sites and the amount of transcription to be determined. Transfections and primer extension reactions were internally controlled by simultaneous analysis of transcription from the adenovirus VA gene located on the same plasmid as the hybrid ckb/neo gene. We demonstrate that 195 bp of the ckb promoter is sufficient for efficient in vivo expression in HeLa cells. A nonconsensus TTAA element at -28 bp appears to provide the TATA box function for the ckb promoter in vivo. Two CCAAT elements, one at -84 bp and the other at -54 bp, and a TATAAA TA element (a consensus TATA box sequence) at -66 bp are required for efficient transcription from the TTAA element. In addition, we present evidence that the consensus beta-globin TATA box responds to the TATAAATA element in the same way as the ckb nonconsensus TTAA element. Images PMID:2247071

  3. TDP6, a brain-derived neurotrophic factor-based trkB peptide mimetic, promotes oligodendrocyte myelination.

    PubMed

    Wong, Agnes W; Giuffrida, Lauren; Wood, Rhiannon; Peckham, Haley; Gonsalvez, David; Murray, Simon S; Hughes, Richard A; Xiao, Junhua

    2014-11-01

    Brain-derived neurotrophic factor (BDNF) plays critical roles in the development and maintenance of the central (CNS) and peripheral nervous systems (PNS). BDNF exerts its biological effects via tropomyosin-related kinase B (TrkB) and the p75 neurotrophin receptor (p75NTR). We have recently identified that BDNF promotes CNS myelination via oligodendroglial TrkB receptors. In order to selectively target TrkB to promote CNS myelination, we have used a putative TrkB agonist, a small multicyclic peptide (tricyclic dimeric peptide 6, TDP6) previously described by us that structurally mimics a region of BDNF that binds TrkB. We confirmed that TDP6 acts as a TrkB agonist as it provoked autophosphorylation of TrkB and its downstream signalling effector extracellular related-kinase 1 and 2 (Erk1/2) in primary oligodendrocytes. Using an in vitro myelination assay, we show that TDP6 significantly promotes myelination by oligodendrocytes in vitro, as evidenced by enhanced myelin protein expression and an increased number of myelinated axonal segments. In contrast, a second, structurally distinct BDNF mimetic (cyclo-dPAKKR) that targets p75NTR had no effect upon oligodendrocyte myelination in vitro, despite the fact that cyclo-dPAKKR is a very effective promoter of peripheral (Schwann cell) myelination. The selectivity of TDP6 was further verified by using TrkB-deficient oligodendrocytes, in which TDP6 failed to promote myelination, indicating that the pro-myelinating effect of TDP6 is oligodendroglial TrkB-dependent. Together, our results demonstrate that TDP6 is a novel BDNF mimetic that promotes oligodendrocyte myelination in vitro via targeting TrkB.

  4. Lin28 promotes the proliferative capacity of neural progenitor cells in brain development

    PubMed Central

    Yang, Mei; Yang, Si-Lu; Herrlinger, Stephanie; Liang, Chen; Dzieciatkowska, Monika; Hansen, Kirk C.; Desai, Ridham; Nagy, Andras; Niswander, Lee; Moss, Eric G.; Chen, Jian-Fu

    2015-01-01

    Neural progenitor cells (NPCs) have distinct proliferation capacities at different stages of brain development. Lin28 is an RNA-binding protein with two homologs in mice: Lin28a and Lin28b. Here we show that Lin28a/b are enriched in early NPCs and their expression declines during neural differentiation. Lin28a single-knockout mice show reduced NPC proliferation, enhanced cell cycle exit and a smaller brain, whereas mice lacking both Lin28a alleles and one Lin28b allele display similar but more severe phenotypes. Ectopic expression of Lin28a in mice results in increased NPC proliferation, NPC numbers and brain size. Mechanistically, Lin28a physically and functionally interacts with Imp1 (Igf2bp1) and regulates Igf2-mTOR signaling. The function of Lin28a/b in NPCs could be attributed, at least in part, to the regulation of their mRNA targets that encode Igf1r and Hmga2. Thus, Lin28a and Lin28b have overlapping functions in temporally regulating NPC proliferation during early brain development. PMID:25922525

  5. Lin28 promotes the proliferative capacity of neural progenitor cells in brain development.

    PubMed

    Yang, Mei; Yang, Si-Lu; Herrlinger, Stephanie; Liang, Chen; Dzieciatkowska, Monika; Hansen, Kirk C; Desai, Ridham; Nagy, Andras; Niswander, Lee; Moss, Eric G; Chen, Jian-Fu

    2015-05-01

    Neural progenitor cells (NPCs) have distinct proliferation capacities at different stages of brain development. Lin28 is an RNA-binding protein with two homologs in mice: Lin28a and Lin28b. Here we show that Lin28a/b are enriched in early NPCs and their expression declines during neural differentiation. Lin28a single-knockout mice show reduced NPC proliferation, enhanced cell cycle exit and a smaller brain, whereas mice lacking both Lin28a alleles and one Lin28b allele display similar but more severe phenotypes. Ectopic expression of Lin28a in mice results in increased NPC proliferation, NPC numbers and brain size. Mechanistically, Lin28a physically and functionally interacts with Imp1 (Igf2bp1) and regulates Igf2-mTOR signaling. The function of Lin28a/b in NPCs could be attributed, at least in part, to the regulation of their mRNA targets that encode Igf1r and Hmga2. Thus, Lin28a and Lin28b have overlapping functions in temporally regulating NPC proliferation during early brain development. © 2015. Published by The Company of Biologists Ltd.

  6. Service Learning to Promote Brain-Based Learning in Undergraduate Teaching

    ERIC Educational Resources Information Center

    Nwokah, Eva E.; Leafblad, Stefanie

    2013-01-01

    In this study 44 undergraduate students in a language development course participated in service learning with preschool homeless and low-income children as a course requirement. Students completed a survey, questionnaires, reflective journaling, and small-group debriefing sessions. Based on current views on brain-based learning from cortical…

  7. Metabolite of tryptophan promoting changes in EEG signal and the oxidative status of the brain.

    PubMed

    Ferrari, Rosana; Pugini, Silvana Maria Picolli; Arce, Aldo Ivan Cespedes; Costa, Ernane Jose Xavier; de Melo, Mariza Pires

    2014-08-01

    Tryptophan is an essential amino acid precursor of neurotransmitter serotonin and triptamine. During its metabolism, indole-3-acetic acid (IAA) is generated; this substance presents both antioxidant and prooxidant effects in different biological systems in addition to hipoglicemic effects. To date, electroencephalography (EEG) has been used to evaluate the temporal effect of several substances in neurotransmission. The goal of this study was to characterize the effect of IAA in the brain by analysing the EEG signal and evaluate the oxidative status by means of biochemical parameters. The EEG was acquired by using a noninvasive method, and the brain electric signal was analysed by advanced digital signal processing techniques to determinate the energy signal filtered in different band frequencies. Furthermore, the oxidative status of the brain was investigated by measuring the activity of antioxidant enzymes and lipid peroxidation as well as blood glucose rates of the animals treated with different doses of IAA. Our results showed the relationship of IAA administration with changes in EEG signals. The oxidative status of the brain was modified by IAA after 14 days of treatment.

  8. Assessing Children with Traumatic Brain Injury during Rehabilitation: Promoting School and Community Reentry.

    ERIC Educational Resources Information Center

    Farmer, Janet E.; And Others

    1996-01-01

    Evaluating children with traumatic brain injury (TBI) in order to facilitate their transition to school is reviewed. A process-oriented approach to assessing TBI children during rehabilitation is suggested. The major areas of functioning important to school reentry are discussed. The need for families and professionals to communicate about the…

  9. Enhanced Dentate Neurogenesis after Brain Injury Undermines Long-Term Neurogenic Potential and Promotes Seizure Susceptibility.

    PubMed

    Neuberger, Eric J; Swietek, Bogumila; Corrubia, Lucas; Prasanna, Anagha; Santhakumar, Vijayalakshmi

    2017-09-12

    Hippocampal dentate gyrus is a focus of enhanced neurogenesis and excitability after traumatic brain injury. Increased neurogenesis has been proposed to aid repair of the injured network. Our data show that an early increase in neurogenesis after fluid percussion concussive brain injury is transient and is followed by a persistent decrease compared with age-matched controls. Post-injury changes in neurogenesis paralleled changes in neural precursor cell proliferation and resulted in a long-term decline in neurogenic capacity. Targeted pharmacology to restore post-injury neurogenesis to control levels reversed the long-term decline in neurogenic capacity. Limiting post-injury neurogenesis reduced early increases in dentate excitability and seizure susceptibility. Our results challenge the assumption that increased neurogenesis after brain injury is beneficial and show that early post-traumatic increases in neurogenesis adversely affect long-term outcomes by exhausting neurogenic potential and enhancing epileptogenesis. Treatments aimed at limiting excessive neurogenesis can potentially restore neuroproliferative capacity and limit epilepsy after brain injury. Copyright © 2017 The Author(s). Published by Elsevier Inc. All rights reserved.

  10. Circulating tumor cell is a common property of brain glioma and promotes the monitoring system

    PubMed Central

    Gao, Faliang; Cui, Yong; Jiang, Haihui; Sui, Dali; Wang, Yonggang; Jiang, Zhongli; Zhao, Jizong; Lin, Song

    2016-01-01

    Brain glioma is the most common primary intracranial tumor characterized by dismal prognosis and frequent recurrence, yet a real-time and reliable biological approach to monitor tumor response and progression is still lacking. Recently, few studies have reported that circulating tumor cells (CTCs) could be detected in glioblastoma multiform (GBM), providing the possibility of its application in brain glioma monitoring system. But its application limits still exist, because the detection rate of CTCs is still low and was exclusively limited to high- grade gliomas. Here, we adopted an advanced integrated cellular and molecular approach of SE-iFISH to detect CTCs in the peripheral blood (PB) of patients with 7 different subtypes of brain glioma, uncovering the direct evidences of glioma migration. We identified CTCs in the PB from 24 of 31 (77%) patients with glioma in all 7 subtypes. No statistical difference of CTC incidence and count was observed in different pathological subtypes or WHO grades of glioma. Clinical data revealed that CTCs, to some extent, was superior to MRI in monitoring the treatment response and differentiating radionecrosis from recurrence of glioma. Conclusively, CTCs is a common property of brain gliomas of various pathological subtypes, which has provided an ultimate paradox for the hypothesis “soil and seed”. It can be used to monitor the microenvironment of gliomas dynamically, which will be a meaningful complement to radiographic imaging. PMID:27517490

  11. Promoter Decommissioning by the NuRD Chromatin Remodeling Complex Triggers Synaptic Connectivity in the Mammalian Brain

    PubMed Central

    Yamada, Tomoko; Yang, Yue; Hemberg, Martin; Yoshida, Toshimi; Cho, Ha Young; Murphy, J. Patrick; Fioravante, Diasynou; Regehr, Wade G.; Gygi, Steven P.; Georgopoulos, Katia; Bonni, Azad

    2014-01-01

    SUMMARY Precise control of gene expression plays fundamental roles in brain development, but the roles of chromatin regulators in neuronal connectivity have remained poorly understood. We report that depletion of the NuRD complex by in vivo RNAi and conditional knockout of the core NuRD subunit Chd4 profoundly impairs the establishment of granule neuron parallel fiber/Purkinje cell synapses in the rodent cerebellar cortex in vivo. By interfacing genome-wide sequencing of transcripts and ChIP-Seq analyses, we uncover a network of repressed genes and distinct histone modifications at target gene promoters that are developmentally regulated by the NuRD complex in the cerebellum in vivo. Finally, in a targeted in vivo RNAi screen of NuRD target genes, we identify a program of NuRD-repressed genes that operate as critical regulators of presynaptic differentiation in the cerebellar cortex. Our findings define NuRD-dependent promoter decommissioning as a developmentally-regulated programming mechanism that drives synaptic connectivity in the mammalian brain. PMID:24991957

  12. Promoter decommissioning by the NuRD chromatin remodeling complex triggers synaptic connectivity in the mammalian brain.

    PubMed

    Yamada, Tomoko; Yang, Yue; Hemberg, Martin; Yoshida, Toshimi; Cho, Ha Young; Murphy, J Patrick; Fioravante, Diasynou; Regehr, Wade G; Gygi, Steven P; Georgopoulos, Katia; Bonni, Azad

    2014-07-02

    Precise control of gene expression plays fundamental roles in brain development, but the roles of chromatin regulators in neuronal connectivity have remained poorly understood. We report that depletion of the NuRD complex by in vivo RNAi and conditional knockout of the core NuRD subunit Chd4 profoundly impairs the establishment of granule neuron parallel fiber/Purkinje cell synapses in the rodent cerebellar cortex in vivo. By interfacing genome-wide sequencing of transcripts and ChIP-seq analyses, we uncover a network of repressed genes and distinct histone modifications at target gene promoters that are developmentally regulated by the NuRD complex in the cerebellum in vivo. Finally, in a targeted in vivo RNAi screen of NuRD target genes, we identify a program of NuRD-repressed genes that operate as critical regulators of presynaptic differentiation in the cerebellar cortex. Our findings define NuRD-dependent promoter decommissioning as a developmentally regulated programming mechanism that drives synaptic connectivity in the mammalian brain. Copyright © 2014 Elsevier Inc. All rights reserved.

  13. Clueless regulates aPKC activity and promotes self-renewal cell fate in Drosophila lgl mutant larval brains.

    PubMed

    Goh, Li Hui; Zhou, Xiu; Lee, Mei Chin; Lin, Shuping; Wang, Huashan; Luo, Yan; Yang, Xiaohang

    2013-09-15

    Asymmetric cell division of Drosophila neural stem cells or neuroblasts is an important process which gives rise to two different daughter cells, one of which is the stem cell itself and the other, a committed or differentiated daughter cell. During neuroblast asymmetric division, atypical Protein Kinase C (aPKC) activity is tightly regulated; aberrant levels of activity could result in tumorigenesis in third instar larval brain. We identified clueless (clu), a genetic interactor of parkin (park), as a novel regulator of aPKC activity. It preferentially binds to the aPKC/Bazooka/Partition Defective 6 complex and stabilizes aPKC levels. In clu mutants, Miranda (Mira) and Numb are mislocalized in small percentages of dividing neuroblasts. Adult mutants are short-lived with severe locomotion defects. Clu promotes tumorigenesis caused by loss of function of lethal(2) giant larvae (lgl) in the larval brain. Removal of clu in lgl mutants rescues Mira and Numb mislocalization and restores the enlarged brain size. Western blot analyses indicate that the rescue is due to the down-regulation of aPKC levels in the lgl clu double mutant. Interestingly, the phenotype of the park mutant, which causes Parkinson's Disease-like symptoms in adult flies, is reminiscent of that of clu in neuroblast asymmetric division. Our study provides the first clue for the potential missing pathological link between temporally separated neurogenesis and neurodegeneration events; the minor defects during early neurogenesis could be a susceptible factor contributing to neurodegenerative diseases at later stages of life.

  14. Rapidly increased vasopressin promotes acute platelet aggregation and early brain injury after experimental subarachnoid hemorrhage in a rat model.

    PubMed

    Liu, Zun-Wei; Gu, Hua; Zhang, Bin-Fei; Zhao, Ya-Hui; Zhao, Jun-Jie; Zhao, Yong-Lin; Ma, Xu-Dong; Song, Jin-Ning

    2016-05-15

    To investigate the dynamic expression of vasopressin and its potential role in rat brain tissue after experimental subarachnoid hemorrhage (SAH). Male Sprague-Dawley rats were divided into 10min, 1h, 6h, 24h, 48h and 72h groups. The SAH model was established by endovascular puncture. ELISA and immunohistochemistry were performed to evaluate dynamic expression of vasopressin. Immunohistochemistry of GPIIb/IIIa integrin was used to assess platelet aggregation. Double immunofluorescence labeling was carried out to observe the reaction between vasopressin and platelet. Early brain injury was evaluated by apoptotic cells counting. Neurobehavioral score was performed to assess neuroprotective role of SR 49059 (a selective antagonists of vasopressin receptor). In peripheral blood and hypothalamus, vasopressin increased rapidly at 6h and 24h. Expression of GPIIb/IIIa integrin peaked at 24h in cortex and hippocampus. Immunofluorescence showed that vasopressin and GPIIb/IIIa integrin located at the same site. Administration of SR 49059 significantly decreased platelet aggregation and number of apoptotic cells. The neurobehavioral score was promoted significantly after the intervention. The results indicate that rapidly increased vasopressin could induce platelet aggregation and contribute to early brain injury after SAH. Copyright © 2016 Elsevier B.V. All rights reserved.

  15. 2-Methoxystypandrone ameliorates brain function through preserving BBB integrity and promoting neurogenesis in mice with acute ischemic stroke.

    PubMed

    Chern, Chang-Ming; Wang, Yea-Hwey; Liou, Kuo-Tong; Hou, Yu-Chang; Chen, Chien-Chih; Shen, Yuh-Chiang

    2014-02-01

    2-Methoxystypandrone (2-MS), a naphthoquinone, has been shown to display an immunomodulatory effect in a cellular model. To explore whether 2-MS could protect mice against cerebral ischemic/reperfusion (I/R)-induced brain injury, we evaluated 2-MS's protective effects on an acute ischemic stroke by inducing a middle cerebral artery occlusion/reperfusion (MCAO) injury in murine model. Treatment of mice that have undergone I/R injury with 2-MS (10-100 μg/kg, i.v.) at 2 h after MCAO enhanced survival rate and ameliorated neurological deficits, brain infarction, neural dysfunction and massive oxidative stress, due to an enormous production of free radicals and breakdown of blood-brain barrier (BBB) by I/R injury; this primarily occurred with extensive infiltration of CD11b-positive inflammatory cells and upexpression of inducible nitric oxide synthase (iNOS), cyclooxygenase-2 and p65 nuclear factor-kappa B (NF-κB). All of these pathological changes were diminished by 2-MS; 2-MS also intensively limited cortical infarction and promoted upexpression of neurodevelopmental genes near peri-infarct cortex and endogenous neurogenesis near subgranular zone of hippocampal dentate gyrus and the subventricular zone, most possibly by inactivation of GSK3β which in turn upregulating β-catenin, Bcl-2 adam11 and adamts20. We conclude that 2-MS blocks inflammatory responses by impairing NF-κB signaling to limit the inflammation and oxidative stress for preservation of BBB integrity; 2-MS also concomitantly promotes neurodevelopmental protein expression and endogenous neurogenesis through inactivation of GSK3β to enhance β-catenin signaling for upexpression of neuroprotective genes and proteins.

  16. IFN-γ promotes transendothelial migration of CD4(+) T cells across the blood-brain barrier.

    PubMed

    Sonar, Sandip Ashok; Shaikh, Shagufta; Joshi, Nupura; Atre, Ashwini N; Lal, Girdhari

    2017-07-06

    Transendothelial migration (TEM) of Th1 and Th17 cells across the blood-brain barrier (BBB) has a critical role in the development of experimental autoimmune encephalomyelitis (EAE). How cytokines produced by inflammatory Th1 and Th17 cells damage the endothelial BBB and promote transendothelial migration of immune cells into the central nervous system (CNS) during autoimmunity is not understood. We therefore investigated the effect of various cytokines on brain endothelial cells. Among the various cytokines tested, such as Th1 (IFN-γ, IL-1α, IL-1β, TNF-α, IL-12), Th2 (IL-3, IL-4, IL-6 and IL-13), Th17 (IL-17A, IL-17F, IL-21, IL-22, IL-23, GM-CSF) and Treg-specific cytokines (IL-10 and TGF-β), IFN-γ predominantly showed increased expression of ICAM-1, VCAM-1, MAdCAM-1, H2-K(b) and I-A(b) molecules on brain endothelial cells. Furthermore, IFN-γ induced transendothelial migration of CD4(+) T cells from the apical (luminal side) to the basal side (abluminal side) of the endothelial monolayer to chemokine CCL21 in a STAT-1-dependent manner. IFN-γ also favored the transcellular route of TEM of CD4(+) T cells. Multicolor immunofluorescence and confocal microscopic analysis showed that IFN-γ induced relocalization of ICAM-1, PECAM-1, ZO-1 and VE-cadherin in the endothelial cells, which affected the migration of CD4(+) T cells. These findings reveal that the IFN-γ produced during inflammation could contribute towards disrupting the BBB and promoting TEM of CD4(+) T cells. Our findings also indicate that strategies that interfere with the activation of CNS endothelial cells may help in controlling neuroinflammation and autoimmunity.Immunology and Cell Biology advance online publication, 1 August 2017; doi:10.1038/icb.2017.56.

  17. Argonaute-2 promotes miR-18a entry in human brain endothelial cells.

    PubMed

    Ferreira, Raquel; Santos, Tiago; Amar, Arun; Gong, Alex; Chen, Thomas C; Tahara, Stanley M; Giannotta, Steven L; Hofman, Florence M

    2014-05-16

    Cerebral arteriovenous malformation (AVM) is a vascular disease exhibiting abnormal blood vessel morphology and function. miR-18a ameliorates the abnormal characteristics of AVM-derived brain endothelial cells (AVM-BEC) without the use of transfection reagents. Hence, our aim was to identify the mechanisms by which miR-18a is internalized by AVM-BEC. Since AVM-BEC overexpress RNA-binding protein Argonaute-2 (Ago-2) we explored the clinical potential of Ago-2 as a systemic miRNA carrier. Primary cultures of AVM-BEC were isolated from surgical specimens and tested for endogenous miR-18a levels using qPCR. Conditioned media (CM) was derived from AVM-BEC cultures (AVM-BEC-CM). AVM-BEC-CM significantly enhanced miR-18a internalization. Ago-2 was detected using western blotting and immunostaining techniques. Ago-2 was highly expressed in AVM-BEC; and siAgo-2 decreased miR-18a entry into brain-derived endothelial cells. Only brain-derived endothelial cells were responsive to the Ago-2/miR-18a complex and not other cell types tested. Secreted products (eg, thrombospondin-1 [TSP-1]) were tested using ELISA. Brain endothelial cells treated with the Ago-2/miR-18a complex in vitro increased TSP-1 secretion. In the in vivo angiogenesis glioma model, animals were treated with miR-18a in combination with Ago-2. Plasma was obtained and tested for TSP-1 and vascular endothelial growth factor (VEGF)-A. In this angiogenesis model, the Ago-2/miR-18a complex caused a significant increase in TSP-1 and decrease in VEGF-A secretion in the plasma. Ago-2 facilitates miR-18a entry into brain endothelial cells in vitro and in vivo. This study highlights the clinical potential of Ago-2 as a miRNA delivery platform for the treatment of brain vascular diseases. © 2014 The Authors. Published on behalf of the American Heart Association, Inc., by Wiley Blackwell.

  18. The promoter of brain-specific angiogenesis inhibitor 1-associated protein 4 drives developmentally targeted transgene expression mainly in adult cerebral cortex and hippocampus.

    PubMed

    Kim, Mi-Young; Ahn, Kyu Youn; Lee, Seon Min; Koh, Jeong Tae; Chun, Byeong Jo; Bae, Choon Sang; Lee, Kee Sook; Kim, Kyung Keun

    2004-05-21

    Restricting transgene expression to specific cell types and maintaining long-term expression are major goals for gene therapy. Previously, we cloned brain-specific angiogenesis inhibitor 1-associated protein 4 (BAI1-AP4), a novel brain-specific protein that interacts with BAI1, and found that it was developmentally upregulated in the adult brain. In this report, we isolated 5 kb of the 5' upstream sequence of the mouse BAI1-AP4 gene and analyzed its promoter activity. Functional analyses demonstrated that an Sp1 site was the enhancer, and the region containing the transcription initiation site and an AP2-binding site was the basal promoter. We examined the ability of the BAI1-AP4 promoter to drive adult brain-specific expression by using it to drive lacZ expression in transgenic (TG) mice. Northern blot analyses showed a unique pattern of beta-galactosidase expression in TG brain, peaking at 1 month after birth, like endogenous BAI1-AP4. Histological analyses demonstrated the same localization and developmental expression of beta-galactosidase and BAI1-AP4 in most neurons of the cerebral cortex and hippocampus. Our data indicate that TG mice carrying the BAI1-AP4 promoter could be a valuable model system for region-specific brain diseases.

  19. A Proposal for Undergraduate Students’ Inclusion in Brain Awareness Week: Promoting Interest in Curricular Neuroscience Components

    PubMed Central

    Martins, Alexandre; Mello-Carpes, Pâmela Billig

    2014-01-01

    Brain Awareness Week (BAW) is a global campaign aimed at raising awareness of neuroscience and the progress and benefits of brain research. Our proposal was to include undergraduate physiology students in the organization and presentation of BAW activities. In this sense, we proposed the BAW as a neurophysiology teaching strategy. BAW 2013 occurred between March 11–17, and physiology students in the Nursing, Pharmacy and Physiotherapy programs of our university were involved in the organization of and participation in the activities. To evaluate student perceptions of their participation, a questionnaire was used to establish whether their involvement increased their interest in physiology/neuroscience. Our results indicated that this strategy was successful and increased the students’ interest in neuroscience and physiology. In addition a survey of undergraduate and graduate students participating in BAW established their interest in the various activities available. The attention and reaction time workshop and the neuroanatomy workshop were the most popular of the eight activities available. PMID:25565918

  20. Autism-associated promoter variant in MET impacts functional and structural brain networks.

    PubMed

    Rudie, Jeffrey D; Hernandez, Leanna M; Brown, Jesse A; Beck-Pancer, Devora; Colich, Natalie L; Gorrindo, Philip; Thompson, Paul M; Geschwind, Daniel H; Bookheimer, Susan Y; Levitt, Pat; Dapretto, Mirella

    2012-09-06

    As genes that confer increased risk for autism spectrum disorder (ASD) are identified, a crucial next step is to determine how these risk factors impact brain structure and function and contribute to disorder heterogeneity. With three converging lines of evidence, we show that a common, functional ASD risk variant in the Met Receptor Tyrosine Kinase (MET) gene is a potent modulator of key social brain circuitry in children and adolescents with and without ASD. MET risk genotype predicted atypical fMRI activation and deactivation patterns to social stimuli (i.e., emotional faces), as well as reduced functional and structural connectivity in temporo-parietal regions known to have high MET expression, particularly within the default mode network. Notably, these effects were more pronounced in individuals with ASD. These findings highlight how genetic stratification may reduce heterogeneity and help elucidate the biological basis of complex neuropsychiatric disorders such as ASD. Copyright © 2012 Elsevier Inc. All rights reserved.

  1. The effects of 860 MHz radiofrequency radiation on the induction or promotion of brain tumors and other neoplasms in rats.

    PubMed

    Zook, B C; Simmens, S J

    2001-04-01

    Sprague-Dawley rats were irradiated with a continuous- wave (CW) or a pulsed-wave (P) radiofrequency (RF) for 6 h/day, 5 days/week from 2 up to 24 months of age. The RFs emanated from dipole antennas (1 W average output) 2.0 +/- 0.5 cm from the tip of each rat's nose. The RFs had an 860 MHz frequency, and the specific absorption rate was 1.0 W/ kg averaged over the brain. Fifteen groups of 60 rats (900 total) were formed from offspring of females injected i.v. with 0 (groups 1, 2, 9, 10, 13), 2.5 (groups 5, 6, 7, 8, 11, 12, 14) or 10 mg/kg (groups 3, 4, 15) ethylnitrosourea (ENU) to induce brain tumors. Groups 1, 3, 5 and 7 received the PRF, and groups 9 and 11 the CWRF; groups 2, 4, 6, 8, 10 and 12 were sham-irradiated, and groups 13-15 were cage controls. All rats but 2, totaling 898, were necropsied, and major tissues were studied histopathologically. There was no statistically significant evidence that the PRF or CWRF induced neoplasia in any tissues. Additionally, there was no significant evidence of promotion of cranial or spinal nerve or spinal cord tumors. The PRF or CWRF had no statistically significant effect on the number, volume, location, multiplicity, histological type, malignancy or fatality of brain tumors. There was a trend for the group that received a high dose of ENU and was exposed to the PRF to develop fatal brain tumors at a higher rate than its sham group; however, the result was not significant using the log-rank test (P = 0.14, 2-tailed). No statistically significant differences were related to the PRF or CWRF compared to controls in the low- or zero-dose groups regarding tumors of any kind.

  2. Cardiovascular Risk Factors Promote Brain Hypoperfusion Leading to Cognitive Decline and Dementia

    PubMed Central

    de la Torre, Jack C.

    2012-01-01

    Heart disease is the major leading cause of death and disability in the world. Mainly affecting the elderly population, heart disease and its main outcome, cardiovascular disease, have become an important risk factor in the development of cognitive decline and Alzheimer's disease (AD). This paper examines the evidence linking chronic brain hypoperfusion induced by a variety of cardiovascular deficits in the development of cognitive impairment preceding AD. The evidence indicates a strong association between AD and cardiovascular risk factors, including ApoE4, atrial fibrillation, thrombotic events, hypertension, hypotension, heart failure, high serum markers of inflammation, coronary artery disease, low cardiac index, and valvular pathology. In elderly people whose cerebral perfusion is already diminished by their advanced age, additional reduction of cerebral blood flow stemming from abnormalities in the heart-brain vascular loop ostensibly increases the probability of developing AD. Evidence also suggests that a neuronal energy crisis brought on by relentless brain hypoperfusion may be responsible for protein synthesis abnormalities that later result in the classic neurodegenerative lesions involving the formation of amyloid-beta plaques and neurofibrillary tangles. Insight into how cardiovascular risk factors can induce progressive cognitive impairment offers an enhanced understanding of the multifactorial pathophysiology characterizing AD and ways at preventing or managing the cardiovascular precursors of this dementia. PMID:23243502

  3. Blood-brain barrier promotes differentiation of human fetal neural precursor cells.

    PubMed

    Chintawar, Satyan; Cayrol, Romain; Antel, Jack; Pandolfo, Massimo; Prat, Alexandre

    2009-04-01

    In the stem cell niche, neural stem cells (NSCs) are in close contact with the specialized blood-brain barrier (BBB) endothelial cells (ECs) that modulate their proliferation and differentiation behavior. NSCs are also an attractive source for cell transplantation and neural tissue repair after central nervous system injury. After systemic grafting, they are confronted with the BBB before they can enter the brain parenchyma. We investigated the interactions of human fetal neural precursor cells (hfNPCs) with human brain ECs in an in vitro model using primary cultures. We demonstrated that hfNPCs efficiently differentiate to neurons, astrocytes, and oligodendrocytes and move to the subendothelial space of human BBB endothelium, but not to pulmonary artery ECs. Effective differentiation was found to be dependent on the chemokine CCL2/MCP-1, but not on CXCL8/IL-8. Our findings suggest that neural precursor cells specifically interact with the BBB endothelium and differentiate in the subendothelial niche into astrocytes, neurons, and oligodendrocytes, under the influence of the chemokine CCL2/MCP-1.

  4. Cyclin A2 promotes DNA repair in the brain during both development and aging

    PubMed Central

    Gygli, Patrick E.; Chang, Joshua C.; Gokozan, Hamza N.; Catacutan, Fay P.; Schmidt, Theresa A.; Kaya, Behiye; Goksel, Mustafa; Baig, Faisal S.; Chen, Shannon; Griveau, Amelie; Michowski, Wojciech; Wong, Michael; Palanichamy, Kamalakannan; Sicinski, Piotr; Nelson, Randy J.; Czeisler, Catherine; Otero, José J.

    2016-01-01

    Various stem cell niches of the brain have differential requirements for Cyclin A2. Cyclin A2 loss results in marked cerebellar dysmorphia, whereas forebrain growth is retarded during early embryonic development yet achieves normal size at birth. To understand the differential requirements of distinct brain regions for Cyclin A2, we utilized neuroanatomical, transgenic mouse, and mathematical modeling techniques to generate testable hypotheses that provide insight into how Cyclin A2 loss results in compensatory forebrain growth during late embryonic development. Using unbiased measurements of the forebrain stem cell niche, we parameterized a mathematical model whereby logistic growth instructs progenitor cells as to the cell-types of their progeny. Our data was consistent with prior findings that progenitors proliferate along an auto-inhibitory growth curve. The growth retardation in CCNA2-null brains corresponded to cell cycle lengthening, imposing a developmental delay. We hypothesized that Cyclin A2 regulates DNA repair and that CCNA2-null progenitors thus experienced lengthened cell cycle. We demonstrate that CCNA2-null progenitors suffer abnormal DNA repair, and implicate Cyclin A2 in double-strand break repair. Cyclin A2's DNA repair functions are conserved among cell lines, neural progenitors, and hippocampal neurons. We further demonstrate that neuronal CCNA2 ablation results in learning and memory deficits in aged mice. PMID:27425845

  5. Slow oscillation electrical brain stimulation during waking promotes EEG theta activity and memory encoding.

    PubMed

    Kirov, Roumen; Weiss, Carsten; Siebner, Hartwig R; Born, Jan; Marshall, Lisa

    2009-09-08

    The application of transcranial slow oscillation stimulation (tSOS; 0.75 Hz) was previously shown to enhance widespread endogenous EEG slow oscillatory activity when applied during a sleep period characterized by emerging endogenous slow oscillatory activity. Processes of memory consolidation typically occurring during this state of sleep were also enhanced. Here, we show that the same tSOS applied in the waking brain also induced an increase in endogenous EEG slow oscillations (0.4-1.2 Hz), although in a topographically restricted fashion. Applied during wakefulness tSOS, additionally, resulted in a marked and widespread increase in EEG theta (4-8 Hz) activity. During wake, tSOS did not enhance consolidation of memories when applied after learning, but improved encoding of hippocampus-dependent memories when applied during learning. We conclude that the EEG frequency and related memory processes induced by tSOS critically depend on brain state. In response to tSOS during wakefulness the brain transposes stimulation by responding preferentially with theta oscillations and facilitated encoding.

  6. Estrogen promotes the brain metastatic colonization of triple negative breast cancer cells via an astrocyte-mediated paracrine mechanism

    PubMed Central

    Sartorius, Carol A.; Hanna, Colton T.; Gril, Brunilde; Cruz, Hazel; Serkova, Natalie J.; Huber, Kendra M.; Kabos, Peter; Schedin, Troy B.; Borges, Virginia F.; Steeg, Patricia S.; Cittelly, Diana M.

    2015-01-01

    + astrocytes in the brain microenvironment, can promote BM of TN breast cancers, and suggests existing endocrine agents may provide some clinical benefit towards reducing and managing BM. PMID:26411365

  7. Activated astrocytes enhance the dopaminergic differentiation of stem cells and promote brain repair through bFGF.

    PubMed

    Yang, Fan; Liu, Yunhui; Tu, Jie; Wan, Jun; Zhang, Jie; Wu, Bifeng; Chen, Shanping; Zhou, Jiawei; Mu, Yangling; Wang, Liping

    2014-12-17

    Astrocytes provide neuroprotective effects against degeneration of dopaminergic (DA) neurons and play a fundamental role in DA differentiation of neural stem cells. Here we show that light illumination of astrocytes expressing engineered channelrhodopsin variant (ChETA) can remarkably enhance the release of basic fibroblast growth factor (bFGF) and significantly promote the DA differentiation of human embryonic stem cells (hESCs) in vitro. Light activation of transplanted astrocytes in the substantia nigra (SN) also upregulates bFGF levels in vivo and promotes the regenerative effects of co-transplanted stem cells. Importantly, upregulation of bFGF levels, by specific light activation of endogenous astrocytes in the SN, enhances the DA differentiation of transplanted stem cells and promotes brain repair in a mouse model of Parkinson's disease (PD). Our study indicates that astrocyte-derived bFGF is required for regulation of DA differentiation of the stem cells and may provide a strategy targeting astrocytes for treatment of PD.

  8. Cbln family proteins promote synapse formation by regulating distinct neurexin signaling pathways in various brain regions.

    PubMed

    Matsuda, Keiko; Yuzaki, Michisuke

    2011-04-01

    Cbln1 (a.k.a. precerebellin) is a unique bidirectional synaptic organizer that plays an essential role in the formation and maintenance of excitatory synapses between granule cells and Purkinje cells in the mouse cerebellum. Cbln1 secreted from cerebellar granule cells directly induces presynaptic differentiation and indirectly serves as a postsynaptic organizer by binding to its receptor, the δ2 glutamate receptor. However, it remains unclear how Cbln1 binds to the presynaptic sites and interacts with other synaptic organizers. Furthermore, although Cbln1 and its family members Cbln2 and Cbln4 are expressed in brain regions other than the cerebellum, it is unknown whether they regulate synapse formation in these brain regions. In this study, we showed that Cbln1 and Cbln2, but not Cbln4, specifically bound to its presynaptic receptor -α and β isoforms of neurexin carrying the splice site 4 insert [NRXs(S4+)] - and induced synaptogenesis in cerebellar, hippocampal and cortical neurons in vitro. Cbln1 competed with synaptogenesis mediated by neuroligin 1, which lacks the splice sites A and B, but not leucine-rich repeat transmembrane protein 2, possibly by sharing the presynaptic receptor NRXs(S4+). However, unlike neurexins/neuroligins or neurexins/leucine-rich repeat transmembrane proteins, the interaction between NRX1β(S4+) and Cbln1 was insensitive to extracellular Ca(2+) concentrations. These findings revealed the unique and general roles of Cbln family proteins in mediating the formation and maintenance of synapses not only in the cerebellum but also in various other brain regions.

  9. Glycine transporters type 1 inhibitor promotes brain preconditioning against NMDA-induced excitotoxicity.

    PubMed

    Pinto, Mauro Cunha Xavier; Lima, Isabel Vieira de Assis; da Costa, Flávia Lage Pessoa; Rosa, Daniela Valadão; Mendes-Goulart, Vânia Aparecida; Resende, Rodrigo Ribeiro; Romano-Silva, Marco Aurélio; de Oliveira, Antônio Carlos Pinheiro; Gomez, Marcus Vinícius; Gomez, Renato Santiago

    2015-02-01

    Brain preconditioning is a protective mechanism, which can be activated by sub-lethal stimulation of the NMDA receptors (NMDAR) and be used to achieve neuroprotection against stroke and neurodegenerative diseases models. Inhibitors of glycine transporters type 1 modulate glutamatergic neurotransmission through NMDAR, suggesting an alternative therapeutic strategy of brain preconditioning. The aim of this work was to evaluate the effects of brain preconditioning induced by NFPS, a GlyT1 inhibitor, against NMDA-induced excitotoxicity in mice hippocampus, as well as to study its neurochemical mechanisms. C57BL/6 mice (male, 10-weeks-old) were preconditioned by intraperitoneal injection of NFPS at doses of 1.25, 2.5 or 5.0 mg/kg, 24 h before intrahippocampal injection of NMDA. Neuronal death was evaluated by fluoro jade C staining and neurochemical parameters were evaluated by gas chromatography-mass spectrometry, scintillation spectrometry and western blot. We observed that NFPS preconditioning reduced neuronal death in CA1 region of hippocampus submitted to NMDA-induced excitotoxicity. The amino acids (glycine and glutamate) uptake and content were increased in hippocampus of animals treated with NFPS 5.0 mg/kg, which were associated to an increased expression of type-2 glycine transporter (GlyT2) and glutamate transporters (EAAT1, EAAT2 and EAAT3). The expression of GlyT1 was reduced in animals treated with NFPS. Interestingly, the preconditioning reduced expression of GluN2B subunits of NMDAR, whereas did not change the expression of GluN1 or GluN2A in all tested doses. Our study suggests that NFPS preconditioning induces resistance against excitotoxicity, which is associated with neurochemical changes and reduction of GluN2B-containing NMDAR expression.

  10. Orexin/Hypocretin and Organizing Principles for a Diversity of Wake-Promoting Neurons in the Brain.

    PubMed

    Schöne, Cornelia; Burdakov, Denis

    2016-11-10

    An enigmatic feature of behavioural state control is the rich diversity of wake-promoting neural systems. This diversity has been rationalized as 'robustness via redundancy', wherein wakefulness control is not critically dependent on one type of neuron or molecule. Studies of the brain orexin/hypocretin system challenge this view by demonstrating that wakefulness control fails upon loss of this neurotransmitter system. Since orexin neurons signal arousal need, and excite other wake-promoting neurons, their actions illuminate nonredundant principles of arousal control. Here, we suggest such principles by reviewing the orexin system from a collective viewpoint of biology, physics and engineering. Orexin peptides excite other arousal-promoting neurons (noradrenaline, histamine, serotonin, acetylcholine neurons), either by activating mixed-cation conductances or by inhibiting potassium conductances. Ohm's law predicts that these opposite conductance changes will produce opposite effects on sensitivity of neuronal excitability to current inputs, thus enabling orexin to differentially control input-output gain of its target networks. Orexin neurons also produce other transmitters, including glutamate. When orexin cells fire, glutamate-mediated downstream excitation displays temporal decay, but orexin-mediated excitation escalates, as if orexin transmission enabled arousal controllers to compute a time integral of arousal need. Since the anatomical and functional architecture of the orexin system contains negative feedback loops (e.g. orexin ➔ histamine ➔ noradrenaline/serotonin-orexin), such computations may stabilize wakefulness via integral feedback, a basic engineering strategy for set point control in uncertain environments. Such dynamic behavioural control requires several distinct wake-promoting modules, which perform nonredundant transformations of arousal signals and are connected in feedback loops.

  11. Fibrin deposited in the Alzheimer’s disease brain promotes neuronal degeneration

    PubMed Central

    Cortes-Canteli, Marta; Mattei, Larissa; Richards, Allison T.; Norris, Erin H.; Strickland, Sidney

    2014-01-01

    Alzheimer’s disease (AD) is the most common form of dementia and has no effective treatment. Besides the well-known pathological characteristics, this disease also has a vascular component, and substantial evidence shows increased thrombosis as well as a critical role for fibrin(ogen) in AD. This molecule has been implicated in neuroinflammation, neurovascular damage, blood brain barrier permeability, vascular amyloid deposition, and memory deficits that are observed in AD. Here we present evidence demonstrating that fibrin deposition increases in the AD brain and correlates with the degree of pathology. Moreover, we show that fibrin(ogen) is present in areas of dystrophic neurites and that a modest decrease in fibrinogen levels improves neuronal health and ameliorates amyloid pathology in the subiculum of AD mice. Our results further characterize the important role of fibrin(ogen) in this disease and support the design of therapeutic strategies aimed at blocking the interaction between fibrinogen and Aβ and/or normalizing the increased thrombosis present in AD. PMID:25475538

  12. Anesthetics rapidly promote synaptogenesis during a critical period of brain development.

    PubMed

    De Roo, Mathias; Klauser, Paul; Briner, Adrian; Nikonenko, Irina; Mendez, Pablo; Dayer, Alexandre; Kiss, Jozsef Z; Muller, Dominique; Vutskits, Laszlo

    2009-09-16

    Experience-driven activity plays an essential role in the development of brain circuitry during critical periods of early postnatal life, a process that depends upon a dynamic balance between excitatory and inhibitory signals. Since general anesthetics are powerful pharmacological modulators of neuronal activity, an important question is whether and how these drugs can affect the development of synaptic networks. To address this issue, we examined here the impact of anesthetics on synapse growth and dynamics. We show that exposure of young rodents to anesthetics that either enhance GABAergic inhibition or block NMDA receptors rapidly induce a significant increase in dendritic spine density in the somatosensory cortex and hippocampus. This effect is developmentally regulated; it is transient but lasts for several days and is also reproduced by selective antagonists of excitatory receptors. Analyses of spine dynamics in hippocampal slice cultures reveals that this effect is mediated through an increased rate of protrusions formation, a better stabilization of newly formed spines, and leads to the formation of functional synapses. Altogether, these findings point to anesthesia as an important modulator of spine dynamics in the developing brain and suggest the existence of a homeostatic process regulating spine formation as a function of neural activity. Importantly, they also raise concern about the potential impact of these drugs on human practice, when applied during critical periods of development in infants.

  13. Informing design of an app-based coaching intervention to promote social participation of teenagers with traumatic brain injury.

    PubMed

    Bedell, Gary M; Wade, Shari L; Turkstra, Lyn S; Haarbauer-Krupa, Juliet; King, Jessica A

    2016-10-28

    To examine perspectives of multiple stakeholders to inform the design of an app-based coaching intervention to promote social participation in teenagers with traumatic brain injury (TBI). Teenagers and college students with and without TBI and parents of teenagers with TBI were recruited from two children's hospitals and two universities in the USA (n = 39). Data were collected via interviews, focus groups, and surveys and examined using descriptive statistics and content analyses. Teenagers with TBI reported more social participation barriers and fewer strategies for addressing these barriers than teenagers without TBI. There was consensus across groups about the value of college student coaches and use of smartphones and apps. Participants expressed mixed views on the use of chat rooms and degree of parent involvement. Results provided insights about the possible benefits of the intervention, and informed its initial design (e.g., desired coach qualities, and type of coach training and supervision).

  14. Consumption of tyrosine in royal jelly increases brain levels of dopamine and tyramine and promotes transition from normal to reproductive workers in queenless honey bee colonies.

    PubMed

    Matsuyama, Syuhei; Nagao, Takashi; Sasaki, Ken

    2015-01-15

    Dopamine (DA) and tyramine (TA) have neurohormonal roles in the production of reproductive workers in queenless colonies of honey bees, but the regulation of these biogenic amines in the brain are still largely unclear. Nutrition is an important factor in promoting reproduction and might be involved in the regulation of these biogenic amines in the brain. To test this hypothesis, we examined the effect of oral treatments of tyrosine (Tyr; a common precursor of DA, TA and octopamine, and a component of royal jelly) in queenless workers and quantified the resulting production of biogenic amines. Tyrosine treatments enhanced the levels of DA, TA and their metabolites in the brain. Workers fed royal jelly had significantly larger brain levels of Tyr, DA, TA and the metabolites in the brains compared with those bees fed honey or sucrose (control). Treatment with Tyr also inhibited the behavior of workers outside of the hive and promoted ovarian development. These results suggest that there is a link between nutrition and the regulation of DA and TA in the brain to promote the production of reproductive workers in queenless honey bee colonies.

  15. Brain-derived neurotrophic factor promotes vasculature-associated migration of neuronal precursors toward the ischemic striatum.

    PubMed

    Grade, Sofia; Weng, Yuan C; Snapyan, Marina; Kriz, Jasna; Malva, João O; Saghatelyan, Armen

    2013-01-01

    Stroke induces the recruitment of neuronal precursors from the subventricular zone (SVZ) into the ischemic striatum. In injured areas, de-routed neuroblasts use blood vessels as a physical scaffold to their migration, in a process that resembles the constitutive migration seen in the rostral migratory stream (RMS). The molecular mechanism underlying injury-induced vasculature-mediated migration of neuroblasts in the post-stroke striatum remains, however, elusive. Using adult mice we now demonstrate that endothelial cells in the ischemic striatum produce brain-derived neurotrophic factor (BDNF), a neurotrophin that promotes the vasculature-mediated migration of neuronal precursors in the RMS, and that recruited neuroblasts maintain expression of p75NTR, a low-affinity receptor for BDNF. Reactive astrocytes, which are widespread throughout the damaged area, ensheath blood vessels and express TrkB, a high-affinity receptor for BDNF. Despite the absence of BDNF mRNA, we observed strong BDNF immunolabeling in astrocytes, suggesting that these glial cells trap extracellular BDNF. Importantly, this pattern of expression is reminiscent of the adult RMS, where TrkB-expressing astrocytes bind and sequester vasculature-derived BDNF, leading to the entry of migrating cells into the stationary phase. Real-time imaging of cell migration in acute brain slices revealed a direct role for BDNF in promoting the migration of neuroblasts to ischemic areas. We also demonstrated that cells migrating in the ischemic striatum display higher exploratory behavior and longer stationary periods than cells migrating in the RMS. Our findings suggest that the mechanisms involved in the injury-induced vasculature-mediated migration of neuroblasts recapitulate, at least partially, those observed during constitutive migration in the RMS.

  16. Impairment of biliverdin reductase-A promotes brain insulin resistance in Alzheimer disease: A new paradigm.

    PubMed

    Barone, Eugenio; Di Domenico, Fabio; Cassano, Tommaso; Arena, Andrea; Tramutola, Antonella; Lavecchia, Michele Angelo; Coccia, Raffaella; Butterfield, D Allan; Perluigi, Marzia

    2016-02-01

    Clinical studies suggest a link between peripheral insulin resistance and cognitive dysfunction. Interestingly, post-mortem analyses of Alzheimer disease (AD) subjects demonstrated insulin resistance in the brain proposing a role for cognitive deficits observed in AD. However, the mechanisms responsible for the onset of brain insulin resistance (BIR) need further elucidations. Biliverdin reductase-A (BVR-A) emerged as a unique Ser/Thr/Tyr kinase directly involved in the insulin signaling and represents an up-stream regulator of the insulin signaling cascade. Because we previously demonstrated the oxidative stress (OS)-induced impairment of BVR-A in human AD brain, we hypothesize that BVR-A dysregulation could be associated with the onset of BIR in AD. In the present work, we longitudinally analyze the age-dependent changes of (i) BVR-A protein levels and activation, (ii) total oxidative stress markers levels (PC, HNE, 3-NT) as well as (iii) IR/IRS1 levels and activation in the hippocampus of the triple transgenic model of AD (3xTg-AD) mice. Furthermore, ad hoc experiments have been performed in SH-SY5Y neuroblastoma cells to clarify the molecular mechanism(s) underlying changes observed in mice. Our results show that OS-induced impairment of BVR-A kinase activity is an early event, which starts prior the accumulation of Aβ and tau pathology or the elevation of TNF-α, and that greatly contribute to the onset of BIR along the progression of AD pathology in 3xTg-Ad mice. Based on these evidence we, therefore, propose a new paradigm for which: OS-induced impairment of BVR-A is firstly responsible for a sustained activation of IRS1, which then causes the stimulation of negative feedback mechanisms (i.e. mTOR) aimed to turn-off IRS1 hyper-activity and thus BIR. Similar alterations characterize also the normal aging process in mice, positing BVR-A impairment as a possible bridge in the transition from normal aging to AD. Copyright © 2015 Elsevier Inc. All rights

  17. Activation of P2X7 promotes cerebral edema and neurological injury after traumatic brain injury in mice.

    PubMed

    Kimbler, Donald E; Shields, Jessica; Yanasak, Nathan; Vender, John R; Dhandapani, Krishnan M

    2012-01-01

    Traumatic brain injury (TBI) is a leading cause of death and disability worldwide. Cerebral edema, the abnormal accumulation of fluid within the brain parenchyma, contributes to elevated intracranial pressure (ICP) and is a common life-threatening neurological complication following TBI. Unfortunately, neurosurgical approaches to alleviate increased ICP remain controversial and medical therapies are lacking due in part to the absence of viable drug targets. In the present study, genetic inhibition (P2X7-/- mice) of the purinergic P2x7 receptor attenuated the expression of the pro-inflammatory cytokine, interleukin-1β (IL-1β) and reduced cerebral edema following controlled cortical impact, as compared to wild-type mice. Similarly, brilliant blue G (BBG), a clinically non-toxic P2X7 inhibitor, inhibited IL-1β expression, limited edemic development, and improved neurobehavioral outcomes after TBI. The beneficial effects of BBG followed either prophylactic administration via the drinking water for one week prior to injury or via an intravenous bolus administration up to four hours after TBI, suggesting a clinically-implementable therapeutic window. Notably, P2X7 localized within astrocytic end feet and administration of BBG decreased the expression of glial fibrillary acidic protein (GFAP), a reactive astrocyte marker, and attenuated the expression of aquaporin-4 (AQP4), an astrocytic water channel that promotes cellular edema. Together, these data implicate P2X7 as a novel therapeutic target to prevent secondary neurological injury after TBI, a finding that warrants further investigation.

  18. Characterization of PTEN mutations in brain cancer reveals that pten mono-ubiquitination promotes protein stability and nuclear localization.

    PubMed

    Yang, Jr-M; Schiapparelli, P; Nguyen, H-N; Igarashi, A; Zhang, Q; Abbadi, S; Amzel, L M; Sesaki, H; Quiñones-Hinojosa, A; Iijima, M

    2017-03-06

    PTEN is a PIP3 phosphatase that antagonizes oncogenic PI3-kinase signalling. Due to its critical role in suppressing the potent signalling pathway, it is one of the most mutated tumour suppressors, especially in brain tumours. It is generally thought that PTEN deficiencies predominantly result from either loss of expression or enzymatic activity. By analysing PTEN in malignant glioblastoma primary cells derived from 16 of our patients, we report mutations that block localization of PTEN at the plasma membrane and nucleus without affecting lipid phosphatase activity. Cellular and biochemical analyses as well as structural modelling revealed that two mutations disrupt intramolecular interaction of PTEN and open its conformation, enhancing polyubiquitination of PTEN and decreasing protein stability. Moreover, promoting mono-ubiquitination increases protein stability and nuclear localization of mutant PTEN. Thus, our findings provide a molecular mechanism for cancer-associated PTEN defects and may lead to a brain cancer treatment that targets PTEN mono-ubiquitination.Oncogene advance online publication, 6 March 2017; doi:10.1038/onc.2016.493.

  19. Antipsychotics promote GABAergic interneuron genesis in the adult rat brain: Role of heat-shock protein production.

    PubMed

    Kaneta, Hiroo; Ukai, Wataru; Tsujino, Hanako; Furuse, Kengo; Kigawa, Yoshiyasu; Tayama, Masaya; Ishii, Takao; Hashimoto, Eri; Kawanishi, Chiaki

    2017-09-01

    Current antipsychotics reduce positive symptoms and reverse negative symptoms in conjunction with cognitive behavioral issues with the goal of restoring impaired occupational and social functioning. However, limited information is available on their influence on gliogenesis or their neurogenic properties in adult schizophrenia brains, particularly on GABAergic interneuron production. In the present study, we used young adult subventricular zone (SVZ)-derived progenitor cells expressing proteoglycan NG2 cultures to examine the oligodendrocyte and GABAergic interneuron genesis effects of several kinds of antipsychotics on changes in differentiation function induced by exposure to the NMDA receptor antagonist MK-801. We herein demonstrated that antipsychotics promoted or restored changes in the oligodendrocyte/GABAergic interneuron differentiation functions of NG2(+) cells induced by the exposure to MK-801, which was considered to be one of the drug-induced schizophrenia model. We also demonstrated that antipsychotics restored heat-shock protein (HSP) production in NG2(+) cells with differentiation impairment. The antipsychotics olanzapine, aripiprazole, and blonanserin, but not haloperidol increased HSP90 levels, which were reduced by the exposure to MK-801. Our results showed that antipsychotics, particularly those recently synthesized, exerted similar GABAergic interneuron genesis effects on NG2(+) neuronal/glial progenitor cells in the adult rat brain by increasing cellular HSP production, and also suggest that HSP90 may play a crucial role in the pathophysiology of schizophrenia and is a key target for next drug development. Copyright © 2017 Elsevier Ltd. All rights reserved.

  20. Magnetic resonance spectroscopy reveals oral Lactobacillus promotion of increases in brain GABA, N-acetyl aspartate and glutamate.

    PubMed

    Janik, Rafal; Thomason, Lynsie A M; Stanisz, Andrew M; Forsythe, Paul; Bienenstock, John; Stanisz, Greg J

    2016-01-15

    The gut microbiome has been shown to regulate the development and functions of the enteric and central nervous systems. Its involvement in the regulation of behavior has attracted particular attention because of its potential translational importance in clinical disorders, however little is known about the pathways involved. We previously have demonstrated that administration of Lactobacillus rhamnosus (JB-1) to healthy male BALB/c mice, promotes consistent changes in GABA-A and -B receptor sub-types in specific brain regions, accompanied by reductions in anxiety and depression-related behaviors. In the present study, using magnetic resonance spectroscopy (MRS), we quantitatively assessed two clinically validated biomarkers of brain activity and function, glutamate+glutamine (Glx) and total N-acetyl aspartate+N-acetyl aspartyl glutamic acid (tNAA), as well as GABA, the chief brain inhibitory neurotransmitter. Mice received 1×10(9) cfu of JB-1 per day for 4weeks and were subjected to MRS weekly and again 4weeks after cessation of treatment to ascertain temporal changes in these neurometabolites. Baseline concentrations for Glx, tNAA and GABA were equal to 10.4±0.3mM, 8.7±0.1mM, and 1.2±0.1mM, respectively. Delayed increases were first seen for Glx (~10%) and NAA (~37%) at 2weeks which persisted only to the end of treatment. However, Glx was still elevated 4weeks after treatment had ceased. Significantly elevated GABA (~25%) was only seen at 4weeks. These results suggest specific metabolic pathways in our pursuit of mechanisms of action of psychoactive bacteria. They also offer through application of standard clinical neurodiagnostic techniques, translational opportunities to assess biomarkers accompanying behavioral changes induced by alterations in the gut microbiome. Crown Copyright © 2015. Published by Elsevier Inc. All rights reserved.

  1. Human neural stem cells promote proliferation of endogenous neural stem cells and enhance angiogenesis in ischemic rat brain.

    PubMed

    Ryu, Sun; Lee, Seung-Hoon; Kim, Seung U; Yoon, Byung-Woo

    2016-02-01

    Transplantation of human neural stem cells into the dentate gyrus or ventricle of rodents has been reportedly to enhance neurogenesis. In this study, we examined endogenous stem cell proliferation and angiogenesis in the ischemic rat brain after the transplantation of human neural stem cells. Focal cerebral ischemia in the rat brain was induced by middle cerebral artery occlusion. Human neural stem cells were transplanted into the subventricular zone. The behavioral performance of human neural stem cells-treated ischemic rats was significantly improved and cerebral infarct volumes were reduced compared to those in untreated animals. Numerous transplanted human neural stem cells were alive and preferentially localized to the ipsilateral ischemic hemisphere. Furthermore, 5-bromo-2'-deoxyuridine-labeled endogenous neural stem cells were observed in the subventricular zone and hippocampus, where they differentiated into cells immunoreactive for the neural markers doublecortin, neuronal nuclear antigen NeuN, and astrocyte marker glial fibrillary acidic protein in human neural stem cells-treated rats, but not in the untreated ischemic animals. The number of 5-bromo-2'-deoxyuridine-positive ⁄ anti-von Willebrand factor-positive proliferating endothelial cells was higher in the ischemic boundary zone of human neural stem cells-treated rats than in controls. Finally, transplantation of human neural stem cells in the brains of rats with focal cerebral ischemia promoted the proliferation of endogenous neural stem cells and their differentiation into mature neural-like cells, and enhanced angiogenesis. This study provides valuable insights into the effect of human neural stem cell transplantation on focal cerebral ischemia, which can be applied to the development of an effective therapy for stroke.

  2. Healthy aging persons and their brains: promoting resilience through creative engagement.

    PubMed

    McFadden, Susan H; Basting, Anne D

    2010-02-01

    Creative engagement, as an expression of and a support for resilience, may have a neuroprotective effect among older adults, contributing to retention of cognitive capacity. Recent research on creative activities shows that they strengthen social networks and give persons a sense of control; both outcomes have been associated with brain health. The authors cite evidence suggesting that positive social interactions can nurture resilience and creative engagement among older persons, including those living with dementia. The motivational, attentional, affective, and social components of creative activities combine to offer older persons meaningful opportunities to express and strengthen their resilience, regardless of their cognitive status, despite the biopsychosocial challenges of aging. The article addresses implications for future research, clinical practice, and public policy, and suggests how gaps in current research on resilience and creativity might be addressed.

  3. The promotion of recovery through rehabilitation after acquired brain injury in children.

    PubMed

    Forsyth, Rob; Basu, Anna

    2015-01-01

    A degree of motor recovery is typically seen after acquired brain injury in children. The extent to which rehabilitation efforts can claim credit for this is disputed. Strong correlations between late impairment outcomes and early severity and impairment indices are seen both in adults and children. These correlations have been interpreted by some as evidence that recovery is largely intrinsic and that any additional rehabilitation effects are small. Such views are belied by published animal studies demonstrating the possibility of large rehabilitation effects. Animal models suggest that to achieve similar rehabilitation treatment effect sizes in clinical practice, rehabilitation 'doses' should be greater, rehabilitation efforts should start sooner, and premature accommodation of impairment should be avoided. © 2014 Mac Keith Press.

  4. TRPV1 promotes repetitive febrile seizures by pro-inflammatory cytokines in immature brain.

    PubMed

    Huang, Wen-Xian; Yu, Fang; Sanchez, Russell M; Liu, Yu-Qiang; Min, Jia-Wei; Hu, Jiang-Jian; Bsoul, Najeeb Bassam; Han, Song; Yin, Jun; Liu, Wan-Hong; He, Xiao-Hua; Peng, Bi-Wen

    2015-08-01

    Febrile seizure (FS) is the most common seizure disorder in children, and children with FS are regarded as a high risk for the eventual development of epilepsy. Brain inflammation may be implicated in the mechanism of FS. Transient receptor potential vanilloid 1 (TRPV1) is believed to act as a monitor and regulator of body temperature. The role of inflammation in synaptic plasticity mediation indicates that TRPV1 is relevant to several nervous system diseases, such as epilepsy. Here, we report a critical role for TRPV1 in a febrile seizure mouse model and reveal increased levels of pro-inflammatory factors in the immature brain. Animals were subjected to hyperthermia for 30 min, which generates seizures lasting approximately 20 min, and then were used for experiments. To invoke frequently repetitive febrile seizures, mice are exposed to hyperthermia for three times daily at an interval of 4h between every time induced seizure, and a total of 4 days to induce. Behavioral testing for febrile seizures revealed that a TRPV1 knock-out mouse model demonstrated a prolonged onset latency and a shortened duration and seizure grade of febrile seizure when compared with wild type (WT) mice. The expression levels of both TRPV1 mRNA and protein increased after a hyperthermia-induced febrile seizure in WT mice. Notably, TRPV1 activation resulted in a significant elevation in the expression of pro-inflammatory cytokines (IL-1β, IL-6, TNF-α and HMGB1) in the hippocampus and cortex. These data indicate that the reduction of TRPV1 expression parallels a decreased susceptibility to febrile seizures. Thus, preventative strategies might be developed for use during febrile seizures.

  5. Neuronal Ca2+-Activated K+ Channels Limit Brain Infarction and Promote Survival

    PubMed Central

    Liao, Yiliu; Gu, Ning; Rundén-Pran, Elise; Ruth, Peter; Sausbier, Matthias; Storm, Johan F.

    2010-01-01

    Neuronal calcium-activated potassium channels of the BK type are activated by membrane depolarization and intracellular Ca2+ ions. It has been suggested that these channels may play a key neuroprotective role during and after brain ischemia, but this hypothesis has so far not been tested by selective BK-channel manipulations in vivo. To elucidate the in vivo contribution of neuronal BK channels in acute focal cerebral ischemia, we performed middle cerebral artery occlusion (MCAO) in mice lacking BK channels (homozygous mice lacking the BK channel alpha subunit, BK−/−). MCAO was performed in BK−/− and WT mice for 90 minutes followed by a 7-hour-reperfusion period. Coronal 1 mm thick sections were stained with 2,3,5-triphenyltetrazolium chloride to reveal the infarction area. We found that transient focal cerebral ischemia by MCAO produced larger infarct volume, more severe neurological deficits, and higher post-ischemic mortality in BK−/− mice compared to WT littermates. However, the regional cerebral blood flow was not significantly different between genotypes as measured by Laser Doppler (LD) flowmetry pre-ischemically, intra-ischemically, and post-ischemically, suggesting that the different impact of MCAO in BK−/− vs. WT was not due to vascular BK channels. Furthermore, when NMDA was injected intracerebrally in non-ischemic mice, NMDA-induced neurotoxicity was found to be larger in BK−/− mice compared to WT. Whole-cell patch clamp recordings from CA1 pyramidal cells in organotypic hippocampal slice cultures revealed that BK channels contribute to rapid action potential repolarization, as previously found in acute slices. When these cultures were exposed to ischemia-like conditions this induced significantly more neuronal death in BK−/− than in WT cultures. These results indicate that neuronal BK channels are important for protection against ischemic brain damage. PMID:21209897

  6. Cortical Thickness Maturation and Duration of Music Training: Health-Promoting Activities Shape Brain Development

    PubMed Central

    Hudziak, James J.; Albaugh, Matthew D.; Ducharme, Simon; Karama, Sherif; Spottswood, Margaret; Crehan, Eileen; Evans, Alan C.; Botteron, Kelly N.

    2014-01-01

    Objective To assess the extent to which playing a musical instrument is associated with cortical thickness development among healthy youths. Method Participants were part of the National Institutes of Health (NIH) Magnetic Resonance Imaging (MRI) Study of Normal Brain Development. This study followed a longitudinal design such that participants underwent MRI scanning and behavioral testing on up to three separate visits, occurring at 2-year intervals. MRI, IQ, and music training data were available for 232 youths (334 scans), ranging from 6–18 years of age. Cortical thickness was regressed against the number of years each youth had played a musical instrument. Next, thickness was regressed against an “Age × Years of Playing” interaction term. Age, gender, total brain volume, and scanner were controlled for in analyses. Participant ID was entered as a random effect to account for within-person dependence. False discovery rate correction was applied (p ≤ 0.05). Results There was no association between thickness and years playing a musical instrument. The “Age × Years of Playing” interaction was associated with thickness in motor, premotor, and supplementary motor cortices, as well as prefrontal and parietal cortices. Follow-up analysis revealed that musical training was associated with an increased rate of thickness maturation. Results were largely unchanged when IQ and handedness were included as covariates. Conclusion Playing a musical instrument was associated with more rapid cortical thickness maturation within areas implicated in motor planning and coordination, visuospatial ability, and emotion and impulse regulation. However, given the quasi-experimental nature of this study, we cannot rule out the influence of confounding variables. PMID:25440305

  7. Cortical thickness maturation and duration of music training: health-promoting activities shape brain development.

    PubMed

    Hudziak, James J; Albaugh, Matthew D; Ducharme, Simon; Karama, Sherif; Spottswood, Margaret; Crehan, Eileen; Evans, Alan C; Botteron, Kelly N

    2014-11-01

    To assess the extent to which playing a musical instrument is associated with cortical thickness development among healthy youths. Participants were part of the National Institutes of Health (NIH) Magnetic Resonance Imaging (MRI) Study of Normal Brain Development. This study followed a longitudinal design such that participants underwent MRI scanning and behavioral testing on up to 3 separate visits, occurring at 2-year intervals. MRI, IQ, and music training data were available for 232 youths (334 scans), ranging from 6 to 18 years of age. Cortical thickness was regressed against the number of years that each youth had played a musical instrument. Next, thickness was regressed against an "Age × Years of Playing" interaction term. Age, gender, total brain volume, and scanner were controlled for in analyses. Participant ID was entered as a random effect to account for within-person dependence. False discovery rate correction was applied (p ≤ .05). There was no association between thickness and years playing a musical instrument. The "Age × Years of Playing" interaction was associated with thickness in motor, premotor, and supplementary motor cortices, as well as prefrontal and parietal cortices. Follow-up analysis revealed that music training was associated with an increased rate of thickness maturation. Results were largely unchanged when IQ and handedness were included as covariates. Playing a musical instrument was associated with more rapid cortical thickness maturation within areas implicated in motor planning and coordination, visuospatial ability, and emotion and impulse regulation. However, given the quasi-experimental nature of this study, we cannot rule out the influence of confounding variables. Copyright © 2014 American Academy of Child and Adolescent Psychiatry. Published by Elsevier Inc. All rights reserved.

  8. Heregulin-HER3-HER2 signaling promotes matrix metalloproteinase-dependent blood-brain-barrier transendothelial migration of human breast cancer cell lines.

    PubMed

    Momeny, Majid; Saunus, Jodi M; Marturana, Flavia; McCart Reed, Amy E; Black, Debra; Sala, Gianluca; Iacobelli, Stefano; Holland, Jane D; Yu, Dihua; Da Silva, Leonard; Simpson, Peter T; Khanna, Kum Kum; Chenevix-Trench, Georgia; Lakhani, Sunil R

    2015-02-28

    HER2-positive breast tumors are associated with a high risk of brain relapse. HER3 is thought to be an indispensible signaling substrate for HER2 (encoded by ERBB2) and is induced in breast cancer-brain metastases, though the molecular mechanisms by which this oncogenic dimer promotes the development of brain metastases are still elusive. We studied the effects of the HER3-HER2 ligand, heregulin (neuregulin-1, broadly expressed in the brain), on luminal breast cancer cell lines in vitro. Treatment of SKBr3 (ERBB2-amplified), MDA-MB-361 (ERBB2-amplified, metastatic brain tumor-derived) and MCF7 (HER2-positive, not ERBB2-amplified) cells with exogenous heregulin increased proliferation and adhesive potential, concomitant with induction of cyclin D1 and ICAM-1, and suppression of p27. All three cell lines invaded through matrigel toward a heregulin chemotactic signal in transwell experiments, associated with activation of extracellular cathepsin B and matrix metalloproteinase-9 (MMP-9). Moreover, heregulin induced breast cancer cell transmigration across a tight barrier of primary human brain microvascular endothelia. This was dependent on the activity of HER2, HER3 and MMPs, and was completely abrogated by combination HER2-HER3 blockade using Herceptin® and the humanized HER3 monoclonal antibody, EV20. Collectively these data suggest mechanisms by which the HER3-HER2 dimer promotes development of metastatic tumors in the heregulin-rich brain microenvironment.

  9. Heregulin-HER3-HER2 signaling promotes matrix metalloproteinase-dependent blood-brain-barrier transendothelial migration of human breast cancer cell lines

    PubMed Central

    Momeny, Majid; Saunus, Jodi M.; Marturana, Flavia; McCart Reed, Amy E.; Black, Debra; Sala, Gianluca; Iacobelli, Stefano; Holland, Jane D.; Yu, Dihua; Da Silva, Leonard; Simpson, Peter T.; Khanna, Kum Kum; Chenevix-Trench, Georgia; Lakhani, Sunil R.

    2015-01-01

    HER2-positive breast tumors are associated with a high risk of brain relapse. HER3 is thought to be an indispensible signaling substrate for HER2 (encoded by ERBB2) and is induced in breast cancer-brain metastases, though the molecular mechanisms by which this oncogenic dimer promotes the development of brain metastases are still elusive. We studied the effects of the HER3-HER2 ligand, heregulin (neuregulin-1, broadly expressed in the brain), on luminal breast cancer cell lines in vitro. Treatment of SKBr3 (ERBB2-amplified), MDA-MB-361 (ERBB2-amplified, metastatic brain tumor-derived) and MCF7 (HER2-positive, not ERBB2-amplified) cells with exogenous heregulin increased proliferation and adhesive potential, concomitant with induction of cyclin D1 and ICAM-1, and suppression of p27. All three cell lines invaded through matrigel toward a heregulin chemotactic signal in transwell experiments, associated with activation of extracellular cathepsin B and matrix metalloproteinase-9 (MMP-9). Moreover, heregulin induced breast cancer cell transmigration across a tight barrier of primary human brain microvascular endothelia. This was dependent on the activity of HER2, HER3 and MMPs, and was completely abrogated by combination HER2-HER3 blockade using Herceptin® and the humanized HER3 monoclonal antibody, EV20. Collectively these data suggest mechanisms by which the HER3-HER2 dimer promotes development of metastatic tumors in the heregulin-rich brain microenvironment. PMID:25668816

  10. Atlas of transgenic Tet-Off Ca2+/calmodulin-dependent protein kinase II and prion protein promoter activity in the mouse brain.

    PubMed

    Odeh, Francis; Leergaard, Trygve B; Boy, Jana; Schmidt, Thorsten; Riess, Olaf; Bjaalie, Jan G

    2011-02-14

    Conditional transgenic mouse models are important tools for investigations of neurodegenerative diseases and evaluation of potential therapeutic interventions. A popular conditional transgenic system is the binary tetracycline-responsive gene (Tet-Off) system, in which the expression of the gene of interest depends on a tetracycline-regulatable transactivator (tTA) under the control of a specific promoter construct. The most frequently used Tet-Off promoter mouse lines are the Ca(2+)/calmodulin-dependent protein kinase II (CamKII) and prion protein (PrP) promoter lines, respectively. To target the regulated gene of interest to relevant brain regions, a priori knowledge about the spatial distribution of the regulated gene expression in the brain is important. Such distribution patterns can be investigated using double transgenic mice in which the promoter construct regulates a LacZ reporter gene encoding the marker β-galactosidase which can be histologically detected using its substrate X-gal. We have previously published an atlas showing the brain-wide expression mediated by the Tet-Off PrP promoter mouse line, but the distribution of activity in the Tet-Off CamKII promoter mouse line is less well known. To compare promoter activity distributions in these two Tet-Off mouse lines, we have developed an online digital atlas tailored for side-by-side comparison of histological section images. The atlas provides a comprehensive list of brain regions containing X-gal labeling and an interactive dual image viewer tool for panning and zooming of corresponding section images. Comparison of spatial expression patterns between the two lines show considerable regional and cellular differences, relevant in context of generation and analysis of inducible models based on these two tetracycline responsive promoter mouse lines. Copyright © 2010 Elsevier Inc. All rights reserved.

  11. Possible promotion of neuronal differentiation in fetal rat brain neural progenitor cells after sustained exposure to static magnetism.

    PubMed

    Nakamichi, Noritaka; Ishioka, Yukichi; Hirai, Takao; Ozawa, Shusuke; Tachibana, Masaki; Nakamura, Nobuhiro; Takarada, Takeshi; Yoneda, Yukio

    2009-08-15

    We have previously shown significant potentiation of Ca(2+) influx mediated by N-methyl-D-aspartate receptors, along with decreased microtubules-associated protein-2 (MAP2) expression, in hippocampal neurons cultured under static magnetism without cell death. In this study, we investigated the effects of static magnetism on the functionality of neural progenitor cells endowed to proliferate for self-replication and differentiate into neuronal, astroglial, and oligodendroglial lineages. Neural progenitor cells were isolated from embryonic rat neocortex and hippocampus, followed by culture under static magnetism at 100 mT and subsequent determination of the number of cells immunoreactive for a marker protein of particular progeny lineages. Static magnetism not only significantly decreased proliferation of neural progenitor cells without affecting cell viability, but also promoted differentiation into cells immunoreactive for MAP2 with a concomitant decrease in that for an astroglial marker, irrespective of the presence of differentiation inducers. In neural progenitors cultured under static magnetism, a significant increase was seen in mRNA expression of several activator-type proneural genes, such as Mash1, Math1, and Math3, together with decreased mRNA expression of the repressor type Hes5. These results suggest that sustained static magnetism could suppress proliferation for self-renewal and facilitate differentiation into neurons through promoted expression of activator-type proneural genes by progenitor cells in fetal rat brain.

  12. Early inhibition of MMP activity in ischemic rat brain promotes expression of tight junction proteins and angiogenesis during recovery.

    PubMed

    Yang, Yi; Thompson, Jeffrey F; Taheri, Saeid; Salayandia, Victor M; McAvoy, Thera A; Hill, Jeff W; Yang, Yirong; Estrada, Eduardo Y; Rosenberg, Gary A

    2013-07-01

    In cerebral ischemia, matrix metalloproteinases (MMPs) have a dual role by acutely disrupting tight junction proteins (TJPs) in the blood-brain barrier (BBB) and chronically promoting angiogenesis. Since TJP remodeling of the neurovascular unit (NVU) is important in recovery and early inhibition of MMPs is neuroprotective, we hypothesized that short-term MMP inhibition would reduce infarct size and promote angiogenesis after ischemia. Adult spontaneously hypertensive rats had a transient middle cerebral artery occlusion with reperfusion. At the onset of ischemia, they received a single dose of the MMP inhibitor, GM6001. They were studied at multiple times up to 4 weeks with immunohistochemistry, biochemistry, and magnetic resonance imaging (MRI). We observed newly formed vessels in peri-infarct regions at 3 weeks after reperfusion. Dynamic contrast-enhanced MRI showed BBB opening in new vessels. Along with the new vessels, pericytes expressed zonula occludens-1 (ZO-1) and MMP-3, astrocytes expressed ZO-1, occludin, and MMP-2, while endothelial cells expressed claudin-5. The GM6001, which reduced tissue loss at 3 to 4 weeks, significantly increased new vessel formation with expression of TJPs and MMPs. Our results show that pericytes and astrocytes act spatiotemporally, contributing to extraendothelial TJP formation, and that MMPs are involved in BBB restoration during recovery. Early MMP inhibition benefits neurovascular remodeling after stroke.

  13. Early inhibition of MMP activity in ischemic rat brain promotes expression of tight junction proteins and angiogenesis during recovery

    PubMed Central

    Yang, Yi; Thompson, Jeffrey F; Taheri, Saeid; Salayandia, Victor M; McAvoy, Thera A; Hill, Jeff W; Yang, Yirong; Estrada, Eduardo Y; Rosenberg, Gary A

    2013-01-01

    In cerebral ischemia, matrix metalloproteinases (MMPs) have a dual role by acutely disrupting tight junction proteins (TJPs) in the blood–brain barrier (BBB) and chronically promoting angiogenesis. Since TJP remodeling of the neurovascular unit (NVU) is important in recovery and early inhibition of MMPs is neuroprotective, we hypothesized that short-term MMP inhibition would reduce infarct size and promote angiogenesis after ischemia. Adult spontaneously hypertensive rats had a transient middle cerebral artery occlusion with reperfusion. At the onset of ischemia, they received a single dose of the MMP inhibitor, GM6001. They were studied at multiple times up to 4 weeks with immunohistochemistry, biochemistry, and magnetic resonance imaging (MRI). We observed newly formed vessels in peri-infarct regions at 3 weeks after reperfusion. Dynamic contrast-enhanced MRI showed BBB opening in new vessels. Along with the new vessels, pericytes expressed zonula occludens-1 (ZO-1) and MMP-3, astrocytes expressed ZO-1, occludin, and MMP-2, while endothelial cells expressed claudin-5. The GM6001, which reduced tissue loss at 3 to 4 weeks, significantly increased new vessel formation with expression of TJPs and MMPs. Our results show that pericytes and astrocytes act spatiotemporally, contributing to extraendothelial TJP formation, and that MMPs are involved in BBB restoration during recovery. Early MMP inhibition benefits neurovascular remodeling after stroke. PMID:23571276

  14. Differential Promoter Methylation and Histone Modification Contribute to the Brain Specific Expression of the Mouse Mbu-1 Gene

    PubMed Central

    Kim, Byungtak; Kang, Seongeun; Kim, Sun Jung

    2012-01-01

    Mbu-1 (Csrnp-3) is a mouse gene that was identified in our previous study as showing highly restricted expression to the central nervous system. In this study, to elucidate the regulatory mechanism for tissue specificity of the gene, epigenetic approaches that identify the profiles of CpG methylation, as well as histone modifications at the promoter region were conducted. Methylation-specific PCR revealed that the CpG sites in brain tissues from embryo to adult stages showed virtually no methylation (0.052–0.67%). Lung (9.0%) and pancreas (3.0%) also showed lower levels. Other tissues such as liver, kidney, and heart showed much higher methylation levels ranging from approximately 39–93%. Treatment of 5-aza-2′-deoxycytidine (5-Aza-dC) significantly decreased promoter methylation, reactivating Mbu-1 expression in NG108-15 and Neuro-2a neuronal cells. Chromatin immunoprecipitation assay revealed that 5-Aza-dC decreased levels of acetylated H3K9 and methylated H3K4, and increased methylated H3K9. This result indicates that CpG methylation converses with histone modifications in an opposing sense of regulating Mbu-1 expression. PMID:23076708

  15. IDH1/2 Mutation and MGMT Promoter Methylation - the Relevant Survival Predictors in Czech Patients with Brain Gliomas.

    PubMed

    Kramář, F; Minárik, M; Benešová, L; Halková, T; Netuka, D; Bradáč, O; Beneš, V

    2016-01-01

    Gliomas are a heterogeneous group of tumours varying in prognosis, treatment approach, and overall survival. Recently, novel markers have been identified which are linked to patient prognosis and therapeutic response. Especially the mutation of the enzyme isocitrate dehydrogenase 1 or 2 (IDH1/2) gene and the O6-methylguanine-DNA methyltransferase (MGMT) promoter methylation status seem to be the most important predictors of survival. From 2012 to 2015, 94 Czech patients with primary brain tumours were enrolled into the study. The IDH1/2 mutation was detected by denaturing capillary electrophores.The methylation status of the MGMT gene and other 46 genes was revealed by MS-MLPA. In all 94 patients, the clinical data were correlated with molecular markers by Kaplan-Meier analyses and Cox regression model. The MGMT promoter methylation status was established and compared to clinical data. In our study eight different probes were used to elucidate the MGMT methylation status; hypermethylation was proclaimed if four and more probes were positive. This 3 : 5 ratio was tested and confirmed by Kaplan-Meier and Cox analyses. The study confirmed the importance of the IDH1/2 mutation and hypermethylation of the MGMT gene promoter being present in tumour tissue. Both markers are independent positive survival predictors; in the Cox model the IDH hazard ratio was 0.10 and in the case of MGMT methylation it reached 0.32. The methylation analysis of the panel of additional 46 genes did not reveal any other significant epigenetic markers; none of the candidate genes have been confirmed in the Cox regression analyses as an independent prognostic factor.

  16. Treadmill Exercise Promotes Neurogenesis in Ischemic Rat Brains via Caveolin-1/VEGF Signaling Pathways.

    PubMed

    Zhao, Yun; Pang, Qiongyi; Liu, Meixia; Pan, Jingzi; Xiang, Bingwu; Huang, Tingting; Tu, Fengxia; Liu, Chan; Chen, Xiang

    2017-02-01

    Using a model of middle cerebral artery occlusion (MCAO), we have previously demonstrated that treadmill exercise promotes angiogenesis in the ischemic penumbra through caveolin-1/VEGF signaling pathways. However, the function of caveolin-1/VEGF signaling in neurogenesis after MCAO has not been determined. In this study, we aimed to investigate the potential of treadmill exercise to promote neurogenesis after MCAO and whether caveolin-1/VEGF signaling pathways are involved. After MCAO, rats were subjected to a program of treadmill exercise. Daidzein (a specific inhibitor of caveolin-1 protein expression, 0.4 mg/kg) was used to confirm the effect of caveolin-1/VEGF signaling on exercise-mediated neurogenesis. We found that the total protein expression of both caveolin-1 and VEGF was increased by exercise and consistent with the improved neurological recovery, decreased infarct volumes and increased 5-bromo-2'-deoxyuridine (BrdU) in the ipsilateral Subventricular zone (SVZ), as well as increased numbers of BrdU/DCX and BrdU/Neun-positive cells in the peri-infarct region. Furthermore, we observed that the treadmill exercise-induced increased VEGF expression, improved neurological recovery, decreased infarct volumes, increased BrdU/DCX and BrdU/Neun-positive cells were significantly inhibited by the caveolin-1 inhibitor. Our results indicate that treadmill exercise improves neurological recovery in ischemic rats, possibly by enhancement of SVZ-derived neural stem cell (NSC) proliferation, migration and differentiation in the penumbra. Moreover, caveolin-1/VEGF signaling is involved in exercise-mediated NSC migration and neuronal differentiation.

  17. Music making as a tool for promoting brain plasticity across the life span.

    PubMed

    Wan, Catherine Y; Schlaug, Gottfried

    2010-10-01

    Playing a musical instrument is an intense, multisensory, and motor experience that usually commences at an early age and requires the acquisition and maintenance of a range of skills over the course of a musician's lifetime. Thus, musicians offer an excellent human model for studying the brain effects of acquiring specialized sensorimotor skills. For example, musicians learn and repeatedly practice the association of motor actions with specific sound and visual patterns (musical notation) while receiving continuous multisensory feedback. This association learning can strengthen connections between auditory and motor regions (e.g., arcuate fasciculus) while activating multimodal integration regions (e.g., around the intraparietal sulcus). We argue that training of this neural network may produce cross-modal effects on other behavioral or cognitive operations that draw on this network. Plasticity in this network may explain some of the sensorimotor and cognitive enhancements that have been associated with music training. These enhancements suggest the potential for music making as an interactive treatment or intervention for neurological and developmental disorders, as well as those associated with normal aging.

  18. Music Making as a Tool for Promoting Brain Plasticity across the Life Span

    PubMed Central

    Wan, Catherine Y.; Schlaug, Gottfried

    2010-01-01

    Playing a musical instrument is an intense, multisensory, and motor experience that usually commences at an early age and requires the acquisition and maintenance of a range of skills over the course of a musician's lifetime. Thus, musicians offer an excellent human model for studying the brain effects of acquiring specialized sensorimotor skills. For example, musicians learn and repeatedly practice the association of motor actions with specific sound and visual patterns (musical notation) while receiving continuous multisensory feedback. This association learning can strengthen connections between auditory and motor regions (e.g., arcuate fasciculus) while activating multimodal integration regions (e.g., around the intraparietal sulcus). We argue that training of this neural network may produce cross-modal effects on other behavioral or cognitive operations that draw on this network. Plasticity in this network may explain some of the sensorimotor and cognitive enhancements that have been associated with music training. These enhancements suggest the potential for music making as an interactive treatment or intervention for neurological and developmental disorders, as well as those associated with normal aging. PMID:20889966

  19. Low-level laser therapy promotes dendrite growth via upregulating brain-derived neurotrophic factor expression

    NASA Astrophysics Data System (ADS)

    Meng, Chengbo; He, Zhiyong; Xing, Da

    2014-09-01

    Downregulation of brain-derived neurotrophic factor (BDNF) in the hippocampus occurs early in the progression of Alzheimer's disease (AD). Since BDNF plays a critical role in neuronal survival and dendrite growth, BDNF upregulation may contribute to rescue dendrite atrophy and cell loss in AD. Low-level laser therapy (LLLT) has been demonstrated to regulate neuronal function both in vitro and in vivo. In the present study, we found that LLLT rescued neurons loss and dendritic atrophy via the increase of both BDNF mRNA and protein expression. In addition, dendrite growth was improved after LLLT, characterized by upregulation of PSD95 expression, and the increase in length, branching, and spine density of dendrites in hippocampal neurons. Together, these studies suggest that upregulation of BDNF with LLLT can ameliorate Aβ-induced neurons loss and dendritic atrophy, thus identifying a novel pathway by which LLLT protects against Aβ-induced neurotoxicity. Our research may provide a feasible therapeutic approach to control the progression of Alzheimer's disease.

  20. Cobalt supplementation promotes hypoxic tolerance and facilitates acclimatization to hypobaric hypoxia in rat brain.

    PubMed

    Shrivastava, Kalpana; Ram, M Sai; Bansal, Anju; Singh, S S; Ilavazhagan, G

    2008-01-01

    In the present study, we report the molecular mechanisms of action by cobalt in facilitating acclimatization to hypobaric hypoxia using male Sprague-Dawley rats as the model system. We determined hypoxic gasping time and survival time as a measure to assess the degree of tolerance of animals to hypobaric hypoxia by exposing the animals to an altitude of 10,668 m. Oral administration of cobalt chloride (12.5 mg Co/kg body weight, BW, for 7 days) increased gasping time and hypoxic survival time by 3 to 4 times compared to the control animals. This could be attributed to an increased expression and the DNA binding activity of hypoxia inducible transcriptional factor (HIF-1alpha) and its regulated genes, that is, erythropoietin (EPO), vascular endothelial growth factor (VEGF), glucose transporter-1 (Glut-1), and nitric oxide synthase (NOS) levels. This in turn leads to better oxygenation, oxygen delivery, glucose transport, and maintenance of vascular tone, respectively, under oxygen-limited conditions. This was further confirmed by lower levels of lactate dehydrogenase (LDH) activity and lactate in the brain of cobalt + hypoxia group compared with animals exposed to hypoxia. Glucose levels also increased after cobalt supplementation. The findings of the study provide a basis for the possible use of cobalt for facilitating acclimatization to hypoxia and other conditions involving oxygen deprivation.

  1. Multistimulation group therapy in Alzheimer's disease promotes changes in brain functioning.

    PubMed

    Baglio, Francesca; Griffanti, Ludovica; Saibene, Francesca Lea; Ricci, Cristian; Alberoni, Margherita; Critelli, Raffaella; Villanelli, Fabiana; Fioravanti, Raffaella; Mantovani, Federica; D'amico, Alessandra; Cabinio, Monia; Preti, Maria Giulia; Nemni, Raffaello; Farina, Elisabetta

    2015-01-01

    Background. The growing social emergency represented by Alzheimer's disease (AD) and the lack of medical treatments able to modify the disease course have kindled the interest in nonpharmacological therapies. Objective. We introduced a novel nonpharmacological approach for people with AD (PWA) named Multidimensional Stimulation group Therapy (MST) to improve PWA condition in different disease domains: cognition, behavior, and motor functioning. Methods. Enrolling 60 PWA in a mild to moderate stage of the disease, we evaluated the efficacy of MST with a randomized-controlled study. Neuropsychological and neurobehavioral measures and functional magnetic resonance imaging (fMRI) data were considered as outcome measures. Results. The following significant intervention-related changes were observed: reduction in Neuropsychiatric Inventory scale score, improvement in language and memory subscales of Alzheimer's Disease Assessment Scale-Cognitive subscale, and increased fMRI activations in temporal brain areas, right insular cortex, and thalamus. Conclusions. Cognitive-behavioral and fMRI results support the notion that MST has significant effects in improving PWA cognitive-behavioral status by restoring neural functioning. © The Author(s) 2014.

  2. Enhancement of Contralesional Motor Control Promotes Locomotor Recovery after Unilateral Brain Lesion

    PubMed Central

    Hua, Xu-Yun; Qiu, Yan-Qun; Wang, Meng; Zheng, Mou-Xiong; Li, Tie; Shen, Yun-Dong; Jiang, Su; Xu, Jian-Guang; Gu, Yu-Dong; Tsien, JoeZ.; Xu, Wen-Dong

    2016-01-01

    There have been controversies on the contribution of contralesional hemispheric compensation to functional recovery of the upper extremity after a unilateral brain lesion. Some studies have demonstrated that contralesional hemispheric compensation may be an important recovery mechanism. However, in many cases where the hemispheric lesion is large, this form of compensation is relatively limited, potentially due to insufficient connections from the contralesional hemisphere to the paralyzed side. Here, we used a new procedure to increase the effect of contralesional hemispheric compensation by surgically crossing a peripheral nerve at the neck in rats, which may provide a substantial increase in connections between the contralesional hemisphere and the paralyzed limb. This surgical procedure, named cross-neck C7-C7 nerve transfer, involves cutting the C7 nerve on the healthy side and transferring it to the C7 nerve on the paretic side. Intracortical microstimulation, Micro-PET and histological analysis were employed to explore the cortical changes in contralesional hemisphere and to reveal its correlation with behavioral recovery. These results showed that the contralesional hemispheric compensation was markedly strengthened and significantly related to behavioral improvements. The findings also revealed a feasible and effective way to maximize the potential of one hemisphere in controlling both limbs. PMID:26732072

  3. Unrecognized sleep loss accumulated in daily life can promote brain hyperreactivity to food cue.

    PubMed

    Katsunuma, Ruri; Oba, Kentaro; Kitamura, Shingo; Motomura, Yuki; Terasawa, Yuri; Nakazaki, Kyoko; Hida, Akiko; Moriguchi, Yoshiya; Mishima, Kazuo

    2017-08-21

    Epidemiological studies have shown that sleep debt increases the risk of obesity. Experimental total sleep deprivation has been reported to activate the reward system in response to food stimuli, but food-related responses in everyday sleep habits, which could lead to obesity, have not been addressed. Here, we report that habitual sleep time at home among volunteers without any sleep concerns was shorter than their optimal sleep time estimated by the 9-day extended sleep intervention, which indicates that participants had already been in sleep debt in their usual sleep habits. The amygdala and anterior insula, which are responsible for both affective responses and reward prediction, were found to exhibit significantly lowered activity in the optimal sleep condition. Additionally, a subsequent one-night period of total sleep deprivation reactivated the right anterior insula in response to food images; however, the activity level of amygdala remained lowered. These findings indicate that 1) our brain is at risk of hyperactivation to food triggers in everyday life, which could be a risk factor for obesity and lifestyle diseases, and 2) optimal sleep appears to reduce this hypersensitivity to food stimuli. © Sleep Research Society 2017. Published by Oxford University Press on behalf of the Sleep Research Society. All rights reserved. For permissions, please e-mail journals.permissions@oup.com.

  4. Brain-derived neurotrophic factor promotes central nervous system myelination via a direct effect upon oligodendrocytes.

    PubMed

    Xiao, Junhua; Wong, Agnes W; Willingham, Melanie M; van den Buuse, Maarten; Kilpatrick, Trevor J; Murray, Simon S

    2010-01-01

    The extracellular factors that are responsible for inducing myelination in the central nervous system (CNS) remain elusive. We investigated whether brain-derived neurotrophic factor (BDNF) is implicated, by first confirming that BDNF heterozygous mice exhibit delayed CNS myelination during early postnatal development. We next established that the influence of BDNF upon myelination was direct, by acting on oligodendrocytes, using co-cultures of dorsal root ganglia neurons and oligodendrocyte precursor cells. Importantly, we found that BDNF retains its capacity to enhance myelination of neurons or by oligodendrocytes derived from p75NTR knockout mice, indicating the expression of p75NTR is not necessary for BDNF-induced myelination. Conversely, we observed that phosphorylation of TrkB correlated with myelination, and that inhibiting TrkB signalling also inhibited the promyelinating effect of BDNF, suggesting that BDNF enhances CNS myelination via activating oligodendroglial TrkB-FL receptors. Together, our data reveal a previously unknown role for BDNF in potentiating the normal development of CNS myelination, via signalling within oligodendrocytes.

  5. Deletion of NADH oxidase in Listeria monocytogenes promotes the bacterial infection of brain.

    PubMed

    Li, Sen; Yu, Wenwen; Guan, Xiao; Luo, Zhen; Chen, Guowei; Liu, Wukang; Zhang, Jingchen

    2017-11-01

    NADH oxidase (NOX) plays important roles in respiration and reactive oxygen species (ROS) generation in cells. In this study, we explored the function of NOX in Listeria monocytogenes by gene deletion. From our results, nox mutant strain (∆nox) had lower H2O2 level and showed no significant alteration in bacteria growth activity. But it had enhanced invasiveness during the invasion of glial cells and mice brain compared to wildtype strain. Furthermore, several virulence genes involved in invasion, such as inlA, inlB, vip and sigB, were upregulated in ∆nox, and the alterations could be restored by complementation. To explore if nox was involved in the interaction of pathogen and host, we examined the generation of host ROS including superoxide and H2O2 during infection, and found ∆nox invasion leading to less superoxide and H2O2 generation. Besides, the upregulation of pro-inflammatory factors in glial cells was restrained when invaded by ∆nox compared to wildtype and complementary strain. In conclusion, our study evaluated the function of nox in L. monocytogenes and indicated that nox could regulate the invasion of L. monocytogenes by regulating virulence genes expression and the interaction of host-and- pathogens. Copyright © 2017 Elsevier Inc. All rights reserved.

  6. Aag-initiated base excision repair promotes ischemia reperfusion injury in liver, brain, and kidney

    PubMed Central

    Ebrahimkhani, Mohammad R.; Daneshmand, Ali; Mazumder, Aprotim; Allocca, Mariacarmela; Calvo, Jennifer A.; Abolhassani, Nona; Jhun, Iny; Muthupalani, Sureshkumar; Ayata, Cenk; Samson, Leona D.

    2014-01-01

    Inflammation is accompanied by the release of highly reactive oxygen and nitrogen species (RONS) that damage DNA, among other cellular molecules. Base excision repair (BER) is initiated by DNA glycosylases and is crucial in repairing RONS-induced DNA damage; the alkyladenine DNA glycosylase (Aag/Mpg) excises several DNA base lesions induced by the inflammation-associated RONS release that accompanies ischemia reperfusion (I/R). Using mouse I/R models we demonstrate that Aag−/− mice are significantly protected against, rather than sensitized to, I/R injury, and that such protection is observed across three different organs. Following I/R in liver, kidney, and brain, Aag−/− mice display decreased hepatocyte death, cerebral infarction, and renal injury relative to wild-type. We infer that in wild-type mice, Aag excises damaged DNA bases to generate potentially toxic abasic sites that in turn generate highly toxic DNA strand breaks that trigger poly(ADP-ribose) polymerase (Parp) hyperactivation, cellular bioenergetics failure, and necrosis; indeed, steady-state levels of abasic sites and nuclear PAR polymers were significantly more elevated in wild-type vs. Aag−/− liver after I/R. This increase in PAR polymers was accompanied by depletion of intracellular NAD and ATP levels plus the translocation and extracellular release of the high-mobility group box 1 (Hmgb1) nuclear protein, activating the sterile inflammatory response. We thus demonstrate the detrimental effects of Aag-initiated BER during I/R and sterile inflammation, and present a novel target for controlling I/R-induced injury. PMID:25349415

  7. Aag-initiated base excision repair promotes ischemia reperfusion injury in liver, brain, and kidney.

    PubMed

    Ebrahimkhani, Mohammad R; Daneshmand, Ali; Mazumder, Aprotim; Allocca, Mariacarmela; Calvo, Jennifer A; Abolhassani, Nona; Jhun, Iny; Muthupalani, Sureshkumar; Ayata, Cenk; Samson, Leona D

    2014-11-11

    Inflammation is accompanied by the release of highly reactive oxygen and nitrogen species (RONS) that damage DNA, among other cellular molecules. Base excision repair (BER) is initiated by DNA glycosylases and is crucial in repairing RONS-induced DNA damage; the alkyladenine DNA glycosylase (Aag/Mpg) excises several DNA base lesions induced by the inflammation-associated RONS release that accompanies ischemia reperfusion (I/R). Using mouse I/R models we demonstrate that Aag(-/-) mice are significantly protected against, rather than sensitized to, I/R injury, and that such protection is observed across three different organs. Following I/R in liver, kidney, and brain, Aag(-/-) mice display decreased hepatocyte death, cerebral infarction, and renal injury relative to wild-type. We infer that in wild-type mice, Aag excises damaged DNA bases to generate potentially toxic abasic sites that in turn generate highly toxic DNA strand breaks that trigger poly(ADP-ribose) polymerase (Parp) hyperactivation, cellular bioenergetics failure, and necrosis; indeed, steady-state levels of abasic sites and nuclear PAR polymers were significantly more elevated in wild-type vs. Aag(-/-) liver after I/R. This increase in PAR polymers was accompanied by depletion of intracellular NAD and ATP levels plus the translocation and extracellular release of the high-mobility group box 1 (Hmgb1) nuclear protein, activating the sterile inflammatory response. We thus demonstrate the detrimental effects of Aag-initiated BER during I/R and sterile inflammation, and present a novel target for controlling I/R-induced injury.

  8. De novo expression of parvalbumin in ependymal cells in response to brain injury promotes ependymal remodeling and wound repair.

    PubMed

    Szabolcsi, Viktória; Celio, Marco R

    2015-04-01

    The calcium-binding protein parvalbumin (PV) hallmarks subpopulations of interneurons in the murine brain. We serendipitously observed the de novo expression of PV in ependymal cells of the lateral ventricle wall following in vivo lesioning and brain slicing for the preparation of organotypic hippocampal slice cultures (OHSCs). In OHSCs, de novo PV-expression begins shortly after the onset of culturing, and the number of ependymal cells implicated in this process increases with time. PV-immunopositive ependymal cells aggregate and form compact cell clusters, which are characterized by lumen-formation and beating cilia. Scratches inflicted on such clusters with a sharp knife are rapidly closed. Exposure of OHSCs to NF-КB-inhibitors and to antioxidants reduces PV-expression in ependymal cells, thereby implicating injury-induced inflammation in this process. Indeed, in vivo stab injury enhances PV-expression in ependymal cells adjacent to the lesion, whereas neuraminidase denudation is without effect. PV-knock-out mice manifest an impaired wound-healing response to in vivo injury, and a reduced scratch-wound reparation capacity in OHSCs. Whole-transcriptome analysis of ependymal-cell clusters in OHSCs revealed down-regulation of genes involved in cytoskeletal rearrangement, cell motility and cell adhesion in PV-knock out mice as compared with wild-type mice. Our data indicate that the injury-triggered up-regulation of PV-expression is mediated by inflammatory cytokines, and promotes the motility and adhesion of ependymal cells, thereby contributing to leakage closure by the re-establishment of a continuous ependymal layer.

  9. Diet-induced obesity promotes depressive-like behaviour that is associated with neural adaptations in brain reward circuitry.

    PubMed

    Sharma, S; Fulton, S

    2013-03-01

    The biological mechanisms that link the development of depression to metabolic disorders such as obesity and diabetes remain obscure. Dopamine- and plasticity-related signalling in mesolimbic reward circuitry is implicated in the pathophysiology and aetiology of depression. To determine the impact of a palatable high-fat diet (HFD) on depressive-like behaviour and biochemical alterations in brain reward circuitry in order to understand the neural processes that may contribute to the development of depression in the context of diet-induced obesity (DIO). Adult male C57Bl6 mice were placed on a HFD or ingredient-matched, low-fat diet for 12 weeks. At the end of the diet regimen, we assessed anxiety and depressive-like behaviour, corticosterone levels and biochemical changes in the midbrain and limbic brain regions. Nucleus accumbens (NAc), dorsolateral striatum (DLS) and ventral tegmental area dissections were subjected to SDS-PAGE and immunoblotting using antibodies against D1A receptor, D2 receptor, brain-derived neurotrophic factor (BDNF), phospho-DARPP-32(thr75), phospho-CREB and ΔFosB. HFD mice showed significant decreases in open arm time and centre time activity in elevated plus maze and open field tasks, respectively, and increased immobility (behavioural despair) in the forced swim test. Corticosterone levels following acute restraint stress were substantially elevated in HFD mice. HFD mice had significantly higher D2R, BDNF and ΔFosB, but reduced D1R, protein expression in the NAc. Notably, the expression of BDNF in both the NAc and DLS and phospho-CREB in the DLS was positively correlated with behavioural despair. Our results demonstrate that chronic consumption of high-fat food and obesity induce plasticity-related changes in reward circuitry that are associated with a depressive-like phenotype. As increases in striatal BDNF and CREB activity are well implicated in depressive behaviour and reward, we suggest these signalling molecules may mediate the

  10. Sex-dichotomous effects of NOS1AP promoter DNA methylation on intracranial aneurysm and brain arteriovenous malformation.

    PubMed

    Wang, Zhepei; Zhao, Jikuang; Sun, Jie; Nie, Sheng; Li, Keqing; Gao, Feng; Zhang, Tiefeng; Duan, Shiwei; Di, Yazhen; Huang, Yi; Gao, Xiang

    2016-05-16

    The goal of this study was to investigate the contribution of NOS1AP-promoter DNA methylation to the risk of intracranial aneurysm (IA) and brain arteriovenous malformation (BAVM) in a Han Chinese population. A total of 48 patients with IAs, 22 patients with BAVMs, and 26 control individuals were enrolled in the study. DNA methylation was tested using bisulfite pyrosequencing technology. We detected significantly higher DNA methylation levels in BAVM patients than in IA patients based on the multiple testing correction (CpG4-5 methylation: 5.86±1.04% vs. 4.37±2.64%, P=0.006). In women, CpG4-5 methylation levels were much lower in IA patients (3.64±1.97%) than in BAVM patients (6.11±1.20%, P<0.0001). However, in men, CpG1-3 methylation levels were much higher in the controls (6.92±0.78%) than in BAVM patients (5.99±0.70%, P=0.008). Additionally, there was a gender-based difference in CpG1 methylation within the controls (men vs. women: 5.75±0.50% vs. 4.99±0.53%, P=0.003) and BAVM patients (men vs. women: 4.70±0.74% vs. 5.50±0.87%, P=0.026). A subgroup analysis revealed significantly higher CpG3 methylation in patients who smoked than in those who did not (P=0.041). Our results suggested that gender modulated the interaction between NOS1AP promoter DNA methylation in IA and BAVM patients. Our results also confirmed that regular tobacco smoking was associated with increased NOS1AP methylation in humans. Additional studies with larger sample sizes are required to replicate and extend these findings.

  11. Identification of brain-derived neurotrophic factor promoter regions mediating tissue-specific, axotomy-, and neuronal activity-induced expression in transgenic mice

    PubMed Central

    1995-01-01

    The structure of rat brain-derived neurotrophic factor (BDNF) gene is complex; four 5' exons are linked to separate promoters and one 3' exon is encoding the BDNF protein. To analyze the relative importance of the regulatory regions in vivo, we have generated transgenic mice with six different promoter constructs of the BDNF gene fused to the chloramphenicol acetyl transferase reporter gene. High level and neuronal expression of the reporter gene, that in many respects recapitulated BDNF gene expression, was achieved by using 9 kb of genomic sequences covering the promoter regions that lie adjacent to each other in the genome (promoters I and II and promoters III and IV, respectively) and by including sequences of BDNF intron-exon splice junctions and 3' untranslated region in the constructs. The genomic regions responsible for the in vivo upregulation of BDNF expression in the axotomized sciatic nerve and in the brain after kainic acid-induced seizures and KCl-induced spreading depression were mapped. These data show that regulation of the different aspects of BDNF expression is controlled by different regions in vivo, and they suggest that these promoter constructs may be useful for targeted expression of heterologous genes to specific regions of the central and peripheral nervous systems in an inducible manner. PMID:7822414

  12. Activation of NOTCH Signaling by Tenascin-C Promotes Growth of Human Brain Tumor-Initiating Cells.

    PubMed

    Sarkar, Susobhan; Mirzaei, Reza; Zemp, Franz J; Wei, Wu; Senger, Donna L; Robbins, Stephen M; Yong, V Wee

    2017-06-15

    Oncogenic signaling by NOTCH is elevated in brain tumor-initiating cells (BTIC) in malignant glioma, but the mechanism of its activation is unknown. Here we provide evidence that tenascin-C (TNC), an extracellular matrix protein prominent in malignant glioma, increases NOTCH activity in BTIC to promote their growth. We demonstrate the proximal localization of TNC and BTIC in human glioblastoma specimens and in orthotopic murine xenografts of human BTIC implanted intracranially. In tissue culture, TNC was superior amongst several extracellular matrix proteins in enhancing the sphere-forming capacity of glioma patient-derived BTIC. Exogenously applied or autocrine TNC increased BTIC growth through an α2β1 integrin-mediated mechanism that elevated NOTCH ligand Jagged1 (JAG1). Microarray analyses and confirmatory PCR and Western analyses in BTIC determined that NOTCH signaling components including JAG1, ADAMTS15, and NICD1/2 were elevated in BITC after TNC exposure. Inhibition of γ-secretase and metalloproteinase proteolysis in the NOTCH pathway, or silencing of α2β1 integrin or JAG1, reduced the proliferative effect of TNC on BTIC. Collectively, our findings identified TNC as a pivotal initiator of elevated NOTCH signaling in BTIC and define the establishment of a TN-α2β1-JAG1-NOTCH signaling axis as a candidate therapeutic target in glioma patients. Cancer Res; 77(12); 3231-43. ©2017 AACR. ©2017 American Association for Cancer Research.

  13. N-methyl-D-aspartate receptor subtype 3A promotes apoptosis in developing mouse brain exposed to hyperoxia

    PubMed Central

    Li, Jimei; Yu, Shanping; Lu, Zhongyang; Mohamad, Osama; Wei, Ling

    2012-01-01

    In the present study, 7 day postnatal C57/BL6 wild-type mice (hyperoxia group) and 7 day postnatal N-methyl-D-aspartate receptor subtype 3A knockout mice (NR3A KO group) were exposed to 75% oxygen and 15% nitrogen in a closed container for 5 days. Wild-type mice raised in normoxia served as controls. TdT-mediated dUTP nick end labeling (TUNEL)/neuron-specific nuclear protein (NeuN) and 5-bromo-2′-deoxyuridine (BrdU)/NeuN immunofluorescence staining showed that the number of apoptotic cells and the number of proliferative cells in the dentate subgranular zone significantly increased in the hyperoxia group compared with the control group. However, in the same hyperoxia environment, the number of apoptotic cells and the number of proliferative cells significantly decreased in the NR3A KO group compared with hyperoxia group. TUNEL+/NeuN+ and BrdU+/NeuN+ cells were observed in the NR3A KO and the hyperoxia groups. These results demonstrated that the NR3A gene can promote cell apoptosis and mediate the potential damage in the developing brain induced by exposure to non-physiologically high concentrations of oxygen. PMID:25806068

  14. A soluble biocompatible guanidine-containing polyamidoamine as promoter of primary brain cell adhesion and in vitro cell culturing

    NASA Astrophysics Data System (ADS)

    Tonna, Noemi; Bianco, Fabio; Matteoli, Michela; Cagnoli, Cinzia; Antonucci, Flavia; Manfredi, Amedea; Mauro, Nicolò; Ranucci, Elisabetta; Ferruti, Paolo

    2014-08-01

    This paper reports on a novel application of an amphoteric water-soluble polyamidoamine named AGMA1 bearing 4-butylguanidine pendants. AGMA1 is an amphoteric, prevailingly cationic polyelectrolyte with isoelectric point of about 10. At pH 7.4 it is zwitterionic with an average of 0.55 excess positive charges per unit, notwithstanding it is highly biocompatible. In this work, it was found that AGMA1 surface-adsorbed on cell culturing coverslips exhibits excellent properties as adhesion and proliferation promoter of primary brain cells such as microglia, as well as of hippocampal neurons and astrocytes. Microglia cells cultured on AGMA1-coated coverslips substrate displayed the typical resting, ramified morphology of those cultured on poly-L-lysine and poly-L-ornithine, employed as reference substrates. Mixed cultures of primary astrocytes and neuronal cells grown on AGMA1- and poly-L-lysine coated coverslips were morphologically undistinguishable. On both substrates, neurons differentiated axon and dendrites and eventually established perfectly functional synaptic contacts. Quantitative immunocytochemical staining revealed no difference between AGMA1 and poly-L-lysine. Electrophysiological experiments allowed recording neuron spontaneous activity on AGMA1. In addition, cell cultures on both AGMA1 and PLL displayed comparable excitatory and inhibitory neurotransmission, demonstrating that the synaptic contacts formed were fully functional.

  15. 2-Bromopalmitate impairs neural stem/progenitor cell proliferation, promotes cell apoptosis and induces malformation in zebrafish embryonic brain.

    PubMed

    Wang, Chen; Chen, Xueran; Shi, Wei; Wang, Fen; Du, Zhaoxia; Li, Xian; Yao, Yao; Liu, Tong; Shao, Tong; Li, Gang; Hao, Aijun

    2015-01-01

    2-Bromopalmitate (2BP) is a widely used palmitoylation inhibitor. Besides, it has been reported that 2BP can inhibit T-cell activation, making it a potential immunosuppressor for the treatment of autoimmune diseases. Although the important roles of palmitoylation in a neural system have been noted during the past decades, the effect of 2BP on neural development is still not very clear. In this study, we demonstrated that 25 μM-100 μM 2BP exposure caused apparent neural malformation in the presumptive brains of zebrafish embryos at 14 hpf. Further studies implied that the mRNA quantities and distributions of neural stem/progenitor cell (NSPC) markers (neurog1, sox2, and sox3) in the affected regions of 50 μM 2BP treated embryos significantly decreased. In addition, we found that 2BP impaired the NSPC proliferation at 10 hpf and 14 hpf as well as promoted cell apoptosis at 14 hpf, consistent with which the interference with FGF/ERK signaling pathway was also detected. For the first time, this study provided information about the toxicity and teratogenicity of 2BP for neural development in vivo. Copyright © 2015 Elsevier Inc. All rights reserved.

  16. Glycoprotein nonmetastatic melanoma protein B (GPNMB) promotes the progression of brain glioblastoma via Na(+)/K(+)-ATPase.

    PubMed

    Ono, Yoko; Chiba, Shinsuke; Yano, Hirohito; Nakayama, Noriyuki; Saio, Masanao; Tsuruma, Kazuhiro; Shimazawa, Masamitsu; Iwama, Toru; Hara, Hideaki

    2016-12-02

    Glycoprotein nonmetastatic melanoma protein B (GPNMB), which is involved in invasion and metastasis, was found to be overexpressed in various cancers. High levels of GPNMB and Na(+)/K(+)-ATPase α subunits are associated with a poor prognosis in glioblastoma patients. We showed that GPNMB interacts with Na(+)/K(+)-ATPase α subunits to activate PI3K/Akt and MEK/ERK pathways. However, it remains unclear whether the interaction of GPNMB and Na(+)/K(+)-ATPase α subunits is involves in progression of glioma. The tumor size induced by the injection of glioma GL261 cells was larger in transgenic mice overexpressing GPNMB when compared with wild-type mice. Additionally, the interaction of GPNMB and Na(+)/K(+)-ATPase α subunits was identified in the murine glioma model and in the tumors of glioblastoma patients. Ouabain, a Na(+)/K(+)-ATPase inhibitor, suppressed the glioma growth induced by the injection of glioma cells in the transgenic mice overexpressing GPNMB and blocked the GPNMB-induced migration of glioma cells. These findings indicate that GPNMB promotes glioma growth via Na(+)/K(+)-ATPase α subunits. Thus, the interaction between GPNMB and Na(+), K(+)-ATPase α subunits represents a novel therapeutic target for the treatment of brain glioblastomas. Copyright © 2016 Elsevier Inc. All rights reserved.

  17. Modulating Astrocyte Transition after Stroke to Promote Brain Rescue and Functional Recovery: Emerging Targets Include Rho Kinase.

    PubMed

    Abeysinghe, Hima Charika S; Phillips, Ellie L; Chin-Cheng, Heung; Beart, Philip M; Roulston, Carli L

    2016-02-26

    Stroke is a common and serious condition, with few therapies. Whilst previous focus has been directed towards biochemical events within neurons, none have successfully prevented the progression of injury that occurs in the acute phase. New targeted treatments that promote recovery after stroke might be a better strategy and are desperately needed for the majority of stroke survivors. Cells comprising the neurovascular unit, including blood vessels and astrocytes, present an alternative target for supporting brain rescue and recovery in the late phase of stroke, since alteration in the unit also occurs in regions outside of the lesion. One of the major changes in the unit involves extensive morphological transition of astrocytes resulting in altered energy metabolism, decreased glutamate reuptake and recycling, and retraction of astrocyte end feed from both blood vessels and neurons. Whilst globally inhibiting transitional change in astrocytes after stroke is reported to result in further damage and functional loss, we discuss the available evidence to suggest that the transitional activation of astrocytes after stroke can be modulated for improved outcomes. In particular, we review the role of Rho-kinase (ROCK) in reactive gliosis and show that inhibiting ROCK after stroke results in reduced scar formation and improved functional recovery.

  18. DNA-methyltransferase1 (DNMT1) binding to CpG rich GABAergic and BDNF promoters is increased in the brain of schizophrenia and bipolar disorder patients.

    PubMed

    Dong, E; Ruzicka, W B; Grayson, D R; Guidotti, A

    2015-09-01

    The down regulation of glutamic acid decarboxylase67 (GAD1), reelin (RELN), and BDNF expression in brain of schizophrenia (SZ) and bipolar (BP) disorder patients is associated with overexpression of DNA methyltransferase1 (DNMT1) and ten-eleven translocase methylcytosine dioxygenase1 (TET1). DNMT1 and TET1 belong to families of enzymes that methylate and hydroxymethylate cytosines located proximal to and within cytosine phosphodiester guanine (CpG) islands of many gene promoters, respectively. Altered promoter methylation may be one mechanism underlying the down-regulation of GABAergic and glutamatergic gene expression. However, recent reports suggest that both DNMT1 and TET1 directly bind to unmethylated CpG rich promoters through their respective Zinc Finger (ZF-CXXC) domains. We report here, that the binding of DNMT1 to GABAergic (GAD1, RELN) and glutamatergic (BDNF-IX) promoters is increased in SZ and BP disorder patients and this increase does not necessarily correlate with enrichment in promoter methylation. The increased DNMT1 binding to these promoter regions is detected in the cortex but not in the cerebellum of SZ and BP disorder patients, suggesting a brain region and neuron specific dependent mechanism. Increased binding of DNMT1 positively correlates with increased expression of DNMT1 and with increased binding of MBD2. In contrast, the binding of TET1 to RELN, GAD1 and BDNF-IX promoters failed to change. These data are consistent with the hypothesis that the down-regulation of specific GABAergic and glutamatergic genes in SZ and BP disorder patients may be mediated, at least in part, by a brain region specific and neuronal-activity dependent DNMT1 action that is likely independent of its DNA methylation activity.

  19. Human FGF1 promoter is active in ependymal cells and dopaminergic neurons in the brains of F1B-GFP transgenic mice.

    PubMed

    Chen, Mei-Shu; Lin, Hua-Kuo; Chiu, Hsun; Lee, Don-Ching; Chung, Yu-Fen; Chiu, Ing-Ming

    2015-03-01

    FGF1 is involved in multiple biological functions and exhibits the importance in neuroprotective effects. Our previous studies indicated that, in human brain and retina, the FGF1B promoter controlled the expression of FGF1. However, the exact function and regulation of FGF1 in brain is still unclear. Here, we generated F1B-GFP transgenic mice that expressed the GFP reporter gene under the control of human FGF1B promoter (-540 to +31). Using the fresh brain sections of F1B-GFP transgenic mice, we found that the F1B-GFP cells expressed strong fluorescent signals in the ventricular system throughout the brain. The results of immunohistochemistry further showed that two distinct populations of F1B-GFP(+) cells existed in the brains of F1B-GFP transgenic mice. We demonstrated that one population of F1B-GFP(+) cells was ependymal cells, which distributed along the entire ventricles, and the second population of F1B-GFP(+) cells was neuronal cells that projected their long processes into multiple directions in specific areas of the brain. The double labeling of F1B-GFP(+) cells and tyrosine hydroxylase indicated that a subpopulation of F1B-GFP(+) -neuronal cells was dopaminergic neurons. Importantly, these F1B-GFP(+) /TH(+) cells were distributed in the main dopaminergic neuronal groups including hypothalamus, ventral tegmental area, and raphe nuclei. These results suggested that human FGF1B promoter was active in ependymal cells, neurons, and a portion of dopaminergic neurons. Thus, the F1B-GFP transgenic mice provide an animal model not only for studying FGF1 gene expression in vivo but also for understanding the role of FGF1 contribution in neurodegenerative disorders such as Parkinson's disease and Alzheimer's disease.

  20. Deep-brain magnetic stimulation promotes adult hippocampal neurogenesis and alleviates stress-related behaviors in mouse models for neuropsychiatric disorders

    PubMed Central

    2014-01-01

    Background Repetitive Transcranial Magnetic Stimulation (rTMS)/ Deep-brain Magnetic Stimulation (DMS) is an effective therapy for various neuropsychiatric disorders including major depression disorder. The molecular and cellular mechanisms underlying the impacts of rTMS/DMS on the brain are not yet fully understood. Results Here we studied the effects of deep-brain magnetic stimulation to brain on the molecular and cellular level. We examined the adult hippocampal neurogenesis and hippocampal synaptic plasticity of rodent under stress conditions with deep-brain magnetic stimulation treatment. We found that DMS promotes adult hippocampal neurogenesis significantly and facilitates the development of adult new-born neurons. Remarkably, DMS exerts anti-depression effects in the learned helplessness mouse model and rescues hippocampal long-term plasticity impaired by restraint stress in rats. Moreover, DMS alleviates the stress response in a mouse model for Rett syndrome and prolongs the life span of these animals dramatically. Conclusions Deep-brain magnetic stimulation greatly facilitates adult hippocampal neurogenesis and maturation, also alleviates depression and stress-related responses in animal models. PMID:24512669

  1. Hyperbaric oxygen treatment promotes neural stem cell proliferation in the subventricular zone of neonatal rats with hypoxic-ischemic brain damage.

    PubMed

    Feng, Zhichun; Liu, Jing; Ju, Rong

    2013-05-05

    Hyperbaric oxygen therapy for the treatment of neonatal hypoxic-ischemic brain damage has been used clinically for many years, but its effectiveness remains controversial. In addition, the mechanism of this potential neuroprotective effect remains unclear. This study aimed to investigate the influence of hyperbaric oxygen on the proliferation of neural stem cells in the subventricular zone of neonatal Sprague-Dawley rats (7 days old) subjected to hypoxic-ischemic brain damage. Six hours after modeling, rats were treated with hyperbaric oxygen once daily for 7 days. Immunohistochemistry revealed that the number of 5-bromo-2'-deoxyuridine positive and nestin positive cells in the subventricular zone of neonatal rats increased at day 3 after hypoxic-ischemic brain damage and peaked at day 5. After hyperbaric oxygen treatment, the number of 5-bromo-2'-deoxyuridine positive and nestin positive cells began to increase at day 1, and was significantly higher than that in normal rats and model rats until day 21. Hematoxylin-eosin staining showed that hyperbaric oxygen treatment could attenuate pathological changes to brain tissue in neonatal rats, and reduce the number of degenerating and necrotic nerve cells. Our experimental findings indicate that hyperbaric oxygen treatment enhances the proliferation of neural stem cells in the subventricular zone of neonatal rats with hypoxic-ischemic brain damage, and has therapeutic potential for promoting neurological recovery following brain injury.

  2. Red-backed vole brain promotes highly efficient in vitro amplification of abnormal prion protein from macaque and human brains infected with variant Creutzfeldt-Jakob disease agent.

    USGS Publications Warehouse

    Nemecek, Julie; Nag, Nabanita; Carlson, Christina M.; Schneider, Jay R.; Heisey, Dennis M.; Johnson, Christopher J.; Asher, David M.; Gregori, Luisa

    2013-01-01

    Rapid antemortem tests to detect individuals with transmissible spongiform encephalopathies (TSE) would contribute to public health. We investigated a technique known as protein misfolding cyclic amplification (PMCA) to amplify abnormal prion protein (PrPTSE) from highly diluted variant Creutzfeldt-Jakob disease (vCJD)-infected human and macaque brain homogenates, seeking to improve the rapid detection of PrPTSE in tissues and blood. Macaque vCJD PrPTSE did not amplify using normal macaque brain homogenate as substrate (intraspecies PMCA). Next, we tested interspecies PMCA with normal brain homogenate of the southern red-backed vole (RBV), a close relative of the bank vole, seeded with macaque vCJD PrPTSE. The RBV has a natural polymorphism at residue 170 of the PrP-encoding gene (N/N, S/S, and S/N). We investigated the effect of this polymorphism on amplification of human and macaque vCJD PrPTSE. Meadow vole brain (170N/N PrP genotype) was also included in the panel of substrates tested. Both humans and macaques have the same 170S/S PrP genotype. Macaque PrPTSE was best amplified with RBV 170S/S brain, although 170N/N and 170S/N were also competent substrates, while meadow vole brain was a poor substrate. In contrast, human PrPTSE demonstrated a striking narrow selectivity for PMCA substrate and was successfully amplified only with RBV 170S/S brain. These observations suggest that macaque PrPTSE was more permissive than human PrPTSE in selecting the competent RBV substrate. RBV 170S/S brain was used to assess the sensitivity of PMCA with PrPTSE from brains of humans and macaques with vCJD. PrPTSE signals were reproducibly detected by Western blot in dilutions through 10-12 of vCJD-infected 10% brain homogenates. This is the first report showing PrPTSE from vCJD-infected human and macaque brains efficiently amplified with RBV brain as the substrate. Based on our estimates, PMCA showed a sensitivity that might be sufficient to detect PrPTSE in v

  3. Red-Backed Vole Brain Promotes Highly Efficient In Vitro Amplification of Abnormal Prion Protein from Macaque and Human Brains Infected with Variant Creutzfeldt-Jakob Disease Agent

    PubMed Central

    Nemecek, Julie; Nag, Nabanita; Carlson, Christina M.; Schneider, Jay R.; Heisey, Dennis M.; Johnson, Christopher J.; Asher, David M.; Gregori, Luisa

    2013-01-01

    Rapid antemortem tests to detect individuals with transmissible spongiform encephalopathies (TSE) would contribute to public health. We investigated a technique known as protein misfolding cyclic amplification (PMCA) to amplify abnormal prion protein (PrPTSE) from highly diluted variant Creutzfeldt-Jakob disease (vCJD)-infected human and macaque brain homogenates, seeking to improve the rapid detection of PrPTSE in tissues and blood. Macaque vCJD PrPTSE did not amplify using normal macaque brain homogenate as substrate (intraspecies PMCA). Next, we tested interspecies PMCA with normal brain homogenate of the southern red-backed vole (RBV), a close relative of the bank vole, seeded with macaque vCJD PrPTSE. The RBV has a natural polymorphism at residue 170 of the PrP-encoding gene (N/N, S/S, and S/N). We investigated the effect of this polymorphism on amplification of human and macaque vCJD PrPTSE. Meadow vole brain (170N/N PrP genotype) was also included in the panel of substrates tested. Both humans and macaques have the same 170S/S PrP genotype. Macaque PrPTSE was best amplified with RBV 170S/S brain, although 170N/N and 170S/N were also competent substrates, while meadow vole brain was a poor substrate. In contrast, human PrPTSE demonstrated a striking narrow selectivity for PMCA substrate and was successfully amplified only with RBV 170S/S brain. These observations suggest that macaque PrPTSE was more permissive than human PrPTSE in selecting the competent RBV substrate. RBV 170S/S brain was used to assess the sensitivity of PMCA with PrPTSE from brains of humans and macaques with vCJD. PrPTSE signals were reproducibly detected by Western blot in dilutions through 10-12 of vCJD-infected 10% brain homogenates. This is the first report showing PrPTSE from vCJD-infected human and macaque brains efficiently amplified with RBV brain as the substrate. Based on our estimates, PMCA showed a sensitivity that might be sufficient to detect PrPTSE in vCJD-infected human

  4. Differential Associations of Early- and Late-Night Sleep with Functional Brain States Promoting Insight to Abstract Task Regularity

    PubMed Central

    Wagner, Ullrich; Verleger, Rolf

    2010-01-01

    Background Solving a task with insight has been associated with occipital and right-hemisphere activations. The present study tested the hypothesis if sleep-related alterations in functional activation states modulate the probability of insight into a hidden abstract regularity of a task. Methodology State-dependent functional activation was measured by beta and alpha electroencephalographic (EEG) activity and spatial synchronization. Task-dependent functional activation was assessed by slow cortical potentials (SPs). EEG parameters during the performance of the Number Reduction Task (NRT) were compared between before sleep and after sleep sessions. In two different groups, the relevant sleep occurred either in the first or in the second half of the night, dominated by slow wave sleep (SWS) or by rapid eye movement (REM) sleep. Principal Findings Changes in EEG parameters only occurred in the early-night group, not in the late-night group and indicated occipital and right-hemisphere functional alterations. These changes were associated with off-line consolidation of implicit task representations and with the amount of SWS but they did not predict subsequent insight. The gain of insight was, however, independently associated with changes of spectral beta and alpha measures only in those subjects from the two sleep groups who would subsequently comprehend the hidden regularity of the task. Insight-related enhancement of right frontal asymmetry after sleep did not depend on sleep stages. Significance It is concluded that off-line restructuring of implicit information during sleep is accompanied by alterations of functional activation states after sleep. This mechanism is promoted by SWS but not by REM sleep and may contribute to attaining insight after sleep. Original neurophysiologic evidence is provided for alterations of the functional activation brain states after sleep. These alterations are associated with a decrease in controlled processing within the visual

  5. High Ca2+ load promotes hydrogen peroxide generation via activation of α-glycerophosphate dehydrogenase in brain mitochondria.

    PubMed

    Tretter, Laszlo; Adam-Vizi, Vera

    2012-12-01

    H(2)O(2) generation associated with α-glycerophosphate (α-GP) oxidation was addressed in guinea pig brain mitochondria challenged with high Ca(2+) load (10 μM). Exposure to 10 μM Ca(2+) induced an abrupt 2.5-fold increase in H(2)O(2) release compared to that measured in the presence of a physiological cytosolic Ca(2+) concentration (100 nM) from mitochondria respiring on 5 mM α-GP in the presence of ADP (2 mM). The Ca(2+)-induced stimulation of H(2)O(2) generation was reversible and unaltered by the uniporter blocker Ru 360, indicating that it did not require Ca(2+) uptake into mitochondria. Enhanced H(2)O(2) generation by Ca(2+) was also observed in the absence of ADP when mitochondria exhibited permeability transition pore opening with a decrease in the NAD(P)H level, dissipation of membrane potential, and mitochondrial swelling. Furthermore, mitochondria treated with the pore-forming peptide alamethicin also responded with an elevated H(2)O(2) generation to a challenge with 10 μM Ca(2+). Ca(2+)-induced promotion of H(2)O(2) formation was further enhanced by the complex III inhibitor myxothiazol. With 20 mM α-GP concentration, stimulation of H(2)O(2) formation by Ca(2+) was detected only in the presence, not in the absence, of ADP. It is concluded that α-glycerophosphate dehydrogenase, which is accessible to and could be activated by a rise in the level of cytosolic Ca(2+), makes a major contribution to Ca(2+)-stimulated H(2)O(2) generation. This work highlights a unique high-Ca(2+)-stimulated reactive oxygen species-forming mechanism in association with oxidation of α-GP, which is largely independent of the bioenergetic state and can proceed even in damaged, functionally incompetent mitochondria.

  6. Brain-derived neurotrophic factor promotes nerve regeneration by activating the JAK/STAT pathway in Schwann cells.

    PubMed

    Lin, Guiting; Zhang, Haiyang; Sun, Fionna; Lu, Zhihua; Reed-Maldonado, Amanda; Lee, Yung-Chin; Wang, Guifang; Banie, Lia; Lue, Tom F

    2016-04-01

    Radical prostatectomy (RP) carries the risk of erectile dysfunction (ED) due to cavernous nerve (CN) injury. Schwann cells are essential for the maintenance of integrity and function of peripheral nerves such as the CNs. We hypothesize that brain-derived neurotrophic factor (BDNF) activates the Janus kinase (JAK)/(signal transducer and activator of transcription) STAT pathway in Schwann cells, not in neuronal axonal fibers, with the resultant secretion of cytokines from Schwann cells to facilitate nerve recovery. Using four different cell lines-human neuroblastoma BE(2)-C and SH-SY5Y, human Schwann cell (HSC), and rat Schwann cell (RSC) RT4-D6P2T-we assessed the effect of BDNF application on the activation of the JAK/STAT pathway. We also assessed the time response of JAK/STAT pathway activation in RSCs and HSCs after BDNF treatment. We then assayed cytokine release from HSCs as a response to BDNF treatment using oncostatin M and IL6 as markers. We showed extensive phosphorylation of STAT3/STAT1 by BDNF at high dose (100 pM) in RSCs, with no JAK/STAT pathway activation in human neuroblastoma cell lines. The time response of JAK/STAT pathway activation in RSCs and HSCs after BDNF treatment showed an initial peak at shortly after treatment and then a second higher peak at 24-48 hours. Cytokine release from HSCs increased progressively after BDNF application, reaching statistical significance for IL6. We demonstrated for the first time the indirect mechanism of BDNF enhancement of nerve regeneration through the activation of JAK/STAT pathway in Schwann cells, rather than directly on neurons. As a result of BDNF application, Schwann cells produce cytokines that promote nerve regeneration.

  7. Connective tissue growth factor (CTGF) expression in the brain is a downstream effector of insulin resistance- associated promotion of Alzheimer's disease beta-amyloid neuropathology.

    PubMed

    Zhao, Zhong; Ho, Lap; Wang, Jun; Qin, Weiping; Festa, Eugene D; Mobbs, Charles; Hof, Patrick; Rocher, Anne; Masur, Sandra; Haroutunian, Vahram; Pasinetti, Giulio Maria

    2005-12-01

    The goal of this study was to further explore potential mechanisms through which diabetogenic dietary conditions that result in promotion of insulin resistance (IR), a feature of non-insulin dependant diabetes mellitus (type-2 diabetes), may influence Alzheimer's disease (AD). Using genome-wide array technology, we found that connective tissue growth factor (CTGF), a gene product described previously for its involvement in diabetic fibrosis, is elevated in brain tissue in an established mouse model of diet-induced IR. With this evidence we continued to explore the regulation of CTGF in postmortem AD brain tissue and found that CTGF expression correlated with the progression of AD clinical dementia and amyloid neuritic plaque (NP) neuropathology, but not neurofibrillary tangle (NFT) deposition. Consistent with this evidence, we also found that exposure of Tg2576 mice (a model AD-type amyloid neuropathology) to a diabetogenic diet that promotes IR results in a ~2-fold elevation in CTGF steady-state levels in the brain, coincident with a commensurate promotion of AD-type amyloid plaque burden. Finally, using in vitro cellular models of amyloid precursor protein (APP)-processing and Abeta generation/clearance, we confirmed that human recombinant (hr)CTGF may increase Abeta1-40 and Abeta1-42 peptide steady-state levels, possibly through a mechanism that involves gamma-secretase activation and decreased insulin-degrading enzyme (IDE) steady-state levels in a MAP kinase (MAPK)/ phosphatidylinositol 3-kinase (PI-3K)/protein kinase-B (AKT)1-dependent manner. The findings in this study tentatively suggest that increased CTGF expression in the brain might be a novel biological predicative factor of AD clinical progression and neuropathology in response to dietary regimens promoting IR conditions.

  8. Chromatin immunoprecipitation scanning identifies glucocorticoid receptor binding regions in the proximal promoter of a ubiquitously expressed glucocorticoid target gene in brain.

    PubMed

    van der Laan, Siem; Sarabdjitsingh, R Angela; Van Batenburg, Marcel F; Lachize, Servane B; Li, Hualing; Dijkmans, Thomas F; Vreugdenhil, Erno; de Kloet, E Ron; Meijer, Onno C

    2008-09-01

    While the actions of glucocorticoids on brain functions have been comprehensively studied, the underlying genomic mechanisms are poorly understood. In this study, we show that glucocorticoid-induced leucine zipper (GILZ) mRNA is strongly and ubiquitously induced in rat brain. To decipher the molecular mechanisms underlying these genomic effects, it is of interest to identify the regulatory sites in the promoter region. Alignment of the rat GILZ promoter with the well-characterized human promoter resulted in poor sequence homology. Consequently, we analyzed the rat 5' flanking sequence by Matrix REDUCE and identified two high-affinity glucocorticoid response elements (GRE) located 2 kb upstream of the transcription start site. These findings were corroborated using the glucocorticoid receptor (GR) expressing Ns-1 PC12 rat cell-line. In these cells, dexamethasone treatment leads to a progressive increase of GILZ mRNA expression levels via a GR-dependent mechanism. Subsequently, using chromatin immunoprecipitation assays we show that the two high-affinity GREs are located within the GR-binding regions. Lastly, we demonstrate using multiple tissue in situ hybridization a marked increase in mRNA expression levels in spleen, thymus, heart, lung, liver, muscle, testis, kidney, colon, ileum, as well as in brain and conclude that the GILZ gene can be used to study glucocorticoid effects in many additional rodent tissues.

  9. Antipsychotic drugs attenuate aberrant DNA methylation of DTNBP1 (dysbindin) promoter in saliva and post-mortem brain of patients with schizophrenia and Psychotic bipolar disorder.

    PubMed

    Abdolmaleky, Hamid M; Pajouhanfar, Sara; Faghankhani, Masoomeh; Joghataei, Mohammad Taghi; Mostafavi, Ashraf; Thiagalingam, Sam

    2015-12-01

    Due to the lack of genetic association between individual genes and schizophrenia (SCZ) pathogenesis, the current consensus is to consider both genetic and epigenetic alterations. Here, we report the examination of DNA methylation status of DTNBP1 promoter region, one of the most credible candidate genes affected in SCZ, assayed in saliva and post-mortem brain samples. The Illumina DNA methylation profiling and bisulfite sequencing of representative samples were used to identify methylation status of the DTNBP1 promoter region. Quantitative methylation specific PCR (qMSP) was employed to assess methylation of DTNBP1 promoter CpGs flanking a SP1 binding site in the saliva of SCZ patients, their first-degree relatives and control subjects (30, 15, and 30/group, respectively) as well as in post-mortem brains of patients with SCZ and bipolar disorder (BD) versus controls (35/group). qRT-PCR was used to assess DTNBP1 expression. We found DNA hypermethylation of DTNBP1 promoter in the saliva of SCZ patients (∼12.5%, P = 0.036), particularly in drug-naïve patients (∼20%, P = 0.011), and a trend toward hypermethylation in their first-degree relatives (P = 0.085) versus controls. Analysis of post-mortem brain samples revealed an inverse correlation between DTNBP1 methylation and expression, and normalization of this epigenetic change by classic antipsychotic drugs. Additionally, BD patients with psychotic depression exhibited higher degree of methylation versus other BD patients (∼80%, P = 0.025). DTNBP1 promoter DNA methylation may become a key element in a panel of biomarkers for diagnosis, prevention, or therapy in SCZ and at risk individuals pending confirmatory studies with larger sample sizes to attain a higher degree of significance. © 2015 Wiley Periodicals, Inc.

  10. Role of phosphodiesterase-4 on ethanol elicited locomotion and narcosis.

    PubMed

    Baliño, Pablo; Ledesma, Juan Carlos; Aragon, Carlos M G

    2016-02-01

    The cAMP signaling pathway has emerged as an important modulator of the pharmacological effects of ethanol. In this respect, the cAMP-dependent protein kinase has been shown to play an important role in the modulation of several ethanol-induced behavioral actions. Cellular levels of cAMP are maintained by the activity of adenylyl cyclases and phosphodiesterases. In the present work we have focused on ascertaining the role of PDE4 in mediating the neurobehavioral effects of ethanol. For this purpose, we have used the selective PDE4 inhibitor Ro 20-1724. This compound has been proven to enhance cellular cAMP response by PDE4 blockade and can be administered systemically. Swiss mice were injected intraperitoneally (i.p.) with Ro 20-1724 (0-5 mg/kg; i.p.) at different time intervals before ethanol (0-4 g/kg; i.p.) administration. Immediately after the ethanol injection, locomotor activity, loss of righting reflex, PKA footprint and enzymatic activity were assessed. Pretreatment with Ro 20-1724 increased ethanol-induced locomotor stimulation in a dose-dependent manner. Doses that increased locomotor stimulation did not modify basal locomotion or the suppression of motor activity produced by high doses of this alcohol. Ro 20-1724 did not alter the locomotor activation produced by amphetamine or cocaine. The time of loss of righting reflex evoked by ethanol was increased after pretreatment with Ro 20-1724. This effect was selective for the narcotic effects of ethanol since Ro 20-1724 did not affect pentobarbital-induced narcotic effects. Moreover, Ro 20-1724 administration increased the PKA footprint and enzymatic activity response elicited by ethanol. These data provide further evidence of the key role of the cAMP signaling pathway in the central effects of ethanol.

  11. Bilateral retinal and brain tumors in transgenic mice expressing simian virus 40 large T antigen under control of the human interphotoreceptor retinoid-binding protein promoter

    PubMed Central

    1992-01-01

    We have previously shown that postnatal expression of the viral oncoprotein SV40 T antigen in rod photoreceptors (transgene MOT1), at a time when retinal cells have withdrawn from the mitotic cycle, leads to photoreceptor cell death (Al-Ubaidi et al., 1992. Proc. Natl. Acad. Sci. USA. 89:1194-1198). To study the effect of the specificity of the promoter, we replaced the mouse opsin promoter in MOT1 by a 1.3-kb promoter fragment of the human IRBP gene which is expressed in both rod and cone photoreceptors during embryonic development. The resulting construct, termed HIT1, was injected into mouse embryos and five transgenic mice lines were established. Mice heterozygous for HIT1 exhibited early bilateral retinal and brain tumors with varying degrees of incidence. Histopathological examination of the brain and eyes of three of the families showed typical primitive neuroectodermal tumors. In some of the bilateral retinal tumors, peculiar rosettes were observed, which were different from the Flexner-Wintersteiner rosettes typically associated with human retinoblastomas. The ocular and cerebral tumors, however, contained Homer-Wright rosettes, and showed varying degrees of immunoreactivity to antibodies against the neuronal specific antigens, synaptophysin and Leu7, but not to antibodies against photoreceptor specific proteins. Taken together, the results indicate that the specificity of the promoter used for T antigen and/or the time of onset of transgene expression determines the fate of photoreceptor cells expressing T antigen. PMID:1334963

  12. Neural stem cells over-expressing brain-derived neurotrophic factor promote neuronal survival and cytoskeletal protein expression in traumatic brain injury sites.

    PubMed

    Chen, Tao; Yu, Yan; Tang, Liu-Jiu; Kong, Li; Zhang, Cheng-Hong; Chu, Hai-Ying; Yin, Liang-Wei; Ma, Hai-Ying

    2017-03-01

    Cytoskeletal proteins are involved in neuronal survival. Brain-derived neurotrophic factor can increase expression of cytoskeletal proteins during regeneration after axonal injury. However, the effect of neural stem cells genetically modified by brain-derived neurotrophic factor transplantation on neuronal survival in the injury site still remains unclear. To examine this, we established a rat model of traumatic brain injury by controlled cortical impact. At 72 hours after injury, 2 × 10(7) cells/mL neural stem cells overexpressing brain-derived neurotrophic factor or naive neural stem cells (3 mL) were injected into the injured cortex. At 1-3 weeks after transplantation, expression of neurofilament 200, microtubule-associated protein 2, actin, calmodulin, and beta-catenin were remarkably increased in the injury sites. These findings confirm that brain-derived neurotrophic factor-transfected neural stem cells contribute to neuronal survival, growth, and differentiation in the injury sites. The underlying mechanisms may be associated with increased expression of cytoskeletal proteins and the Wnt/β-catenin signaling pathway.

  13. Neural stem cells over-expressing brain-derived neurotrophic factor promote neuronal survival and cytoskeletal protein expression in traumatic brain injury sites

    PubMed Central

    Chen, Tao; Yu, Yan; Tang, Liu-jiu; Kong, Li; Zhang, Cheng-hong; Chu, Hai-ying; Yin, Liang-wei; Ma, Hai-ying

    2017-01-01

    Cytoskeletal proteins are involved in neuronal survival. Brain-derived neurotrophic factor can increase expression of cytoskeletal proteins during regeneration after axonal injury. However, the effect of neural stem cells genetically modified by brain-derived neurotrophic factor transplantation on neuronal survival in the injury site still remains unclear. To examine this, we established a rat model of traumatic brain injury by controlled cortical impact. At 72 hours after injury, 2 × 107 cells/mL neural stem cells overexpressing brain-derived neurotrophic factor or naive neural stem cells (3 mL) were injected into the injured cortex. At 1–3 weeks after transplantation, expression of neurofilament 200, microtubule-associated protein 2, actin, calmodulin, and beta-catenin were remarkably increased in the injury sites. These findings confirm that brain-derived neurotrophic factor-transfected neural stem cells contribute to neuronal survival, growth, and differentiation in the injury sites. The underlying mechanisms may be associated with increased expression of cytoskeletal proteins and the Wnt/β-catenin signaling pathway. PMID:28469658

  14. Enhanced brain-derived neurotrophic factor delivery by ultrasound and microbubbles promotes white matter repair after stroke.

    PubMed

    Rodríguez-Frutos, Berta; Otero-Ortega, Laura; Ramos-Cejudo, Jaime; Martínez-Sánchez, Patricia; Barahona-Sanz, Inés; Navarro-Hernanz, Teresa; Gómez-de Frutos, María Del Carmen; Díez-Tejedor, Exuperio; Gutiérrez-Fernández, María

    2016-09-01

    Ultrasound-targeted microbubble destruction (UTMD) has been shown to be a promising tool to deliver proteins to select body areas. This study aimed to analyze whether UTMD was able to deliver brain-derived neurotrophic factor (BDNF) to the brain, enhancing functional recovery and white matter repair, in an animal model of subcortical stroke induced by endothelin (ET)-1. UTMD was used to deliver BDNF to the brain 24 h after stroke. This technique was shown to be safe, given there were no cases of hemorrhagic transformation or blood brain barrier (BBB) leakage. UTMD treatment was associated with increased brain BDNF levels at 4 h after administration. Targeted ultrasound delivery of BDNF improved functional recovery associated with fiber tract connectivity restoration, increasing oligodendrocyte markers and remyelination compared to BDNF alone administration in an experimental animal model of white matter injury.

  15. IFN-γ-producing CD4+ T cells promote experimental cerebral malaria by modulating CD8+ T cell accumulation within the brain.

    PubMed

    Villegas-Mendez, Ana; Greig, Rachel; Shaw, Tovah N; de Souza, J Brian; Gwyer Findlay, Emily; Stumhofer, Jason S; Hafalla, Julius C R; Blount, Daniel G; Hunter, Christopher A; Riley, Eleanor M; Couper, Kevin N

    2012-07-15

    It is well established that IFN-γ is required for the development of experimental cerebral malaria (ECM) during Plasmodium berghei ANKA infection of C57BL/6 mice. However, the temporal and tissue-specific cellular sources of IFN-γ during P. berghei ANKA infection have not been investigated, and it is not known whether IFN-γ production by a single cell type in isolation can induce cerebral pathology. In this study, using IFN-γ reporter mice, we show that NK cells dominate the IFN-γ response during the early stages of infection in the brain, but not in the spleen, before being replaced by CD4(+) and CD8(+) T cells. Importantly, we demonstrate that IFN-γ-producing CD4(+) T cells, but not innate or CD8(+) T cells, can promote the development of ECM in normally resistant IFN-γ(-/-) mice infected with P. berghei ANKA. Adoptively transferred wild-type CD4(+) T cells accumulate within the spleen, lung, and brain of IFN-γ(-/-) mice and induce ECM through active IFN-γ secretion, which increases the accumulation of endogenous IFN-γ(-/-) CD8(+) T cells within the brain. Depletion of endogenous IFN-γ(-/-) CD8(+) T cells abrogates the ability of wild-type CD4(+) T cells to promote ECM. Finally, we show that IFN-γ production, specifically by CD4(+) T cells, is sufficient to induce expression of CXCL9 and CXCL10 within the brain, providing a mechanistic basis for the enhanced CD8(+) T cell accumulation. To our knowledge, these observations demonstrate, for the first time, the importance of and pathways by which IFN-γ-producing CD4(+) T cells promote the development of ECM during P. berghei ANKA infection.

  16. Adult human dental pulp stem cells promote blood-brain barrier permeability through vascular endothelial growth factor-a expression.

    PubMed

    Winderlich, Joshua N; Kremer, Karlea L; Koblar, Simon A

    2016-06-01

    Stem cell therapy is a promising new treatment option for stroke. Intravascular administration of stem cells is a valid approach as stem cells have been shown to transmigrate the blood-brain barrier. The mechanism that causes this effect has not yet been elucidated. We hypothesized that stem cells would mediate localized discontinuities in the blood-brain barrier, which would allow passage into the brain parenchyma. Here, we demonstrate that adult human dental pulp stem cells express a soluble factor that increases permeability across an in vitro model of the blood-brain barrier. This effect was shown to be the result of vascular endothelial growth factor-a. The effect could be amplified by exposing dental pulp stem cell to stromal-derived factor 1, which stimulates vascular endothelial growth factor-a expression. These findings support the use of dental pulp stem cell in therapy for stroke. © The Author(s) 2015.

  17. Cytomegalovirus Infection of the Rat Developing Brain In Utero Prominently Targets Immune Cells and Promotes Early Microglial Activation

    PubMed Central

    Cloarec, Robin; Bauer, Sylvian; Luche, Hervé; Buhler, Emmanuelle; Pallesi-Pocachard, Emilie; Salmi, Manal; Courtens, Sandra; Massacrier, Annick; Grenot, Pierre; Teissier, Natacha; Watrin, Françoise; Schaller, Fabienne; Adle-Biassette, Homa; Gressens, Pierre; Malissen, Marie; Stamminger, Thomas; Streblow, Daniel N.; Bruneau, Nadine; Szepetowski, Pierre

    2016-01-01

    Background Congenital cytomegalovirus infections are a leading cause of neurodevelopmental disorders in human and represent a major health care and socio-economical burden. In contrast with this medical importance, the pathophysiological events remain poorly known. Murine models of brain cytomegalovirus infection, mostly neonatal, have brought recent insights into the possible pathogenesis, with convergent evidence for the alteration and possible involvement of brain immune cells. Objectives and Methods In order to confirm and expand those findings, particularly concerning the early developmental stages following infection of the fetal brain, we have created a model of in utero cytomegalovirus infection in the developing rat brain. Rat cytomegalovirus was injected intraventricularly at embryonic day 15 (E15) and the brains analyzed at various stages until the first postnatal day, using a combination of gene expression analysis, immunohistochemistry and multicolor flow cytometry experiments. Results Rat cytomegalovirus infection was increasingly seen in various brain areas including the choroid plexi and the ventricular and subventricular areas and was prominently detected in CD45low/int, CD11b+ microglial cells, in CD45high, CD11b+ cells of the myeloid lineage including macrophages, and in CD45+, CD11b– lymphocytes and non-B non-T cells. In parallel, rat cytomegalovirus infection of the developing rat brain rapidly triggered a cascade of pathophysiological events comprising: chemokines upregulation, including CCL2-4, 7 and 12; infiltration by peripheral cells including B-cells and monocytes at E17 and P1, and T-cells at P1; and microglia activation at E17 and P1. Conclusion In line with previous findings in neonatal murine models and in human specimen, our study further suggests that neuroimmune alterations might play critical roles in the early stages following cytomegalovirus infection of the brain in utero. Further studies are now needed to determine which

  18. Analysis of tumor- and stroma-supplied proteolytic networks reveals a brain metastasis-promoting role for cathepsin S

    PubMed Central

    Sevenich, Lisa; Bowman, Robert L.; Mason, Steven D.; Quail, Daniela F.; Rapaport, Franck; Elie, Benelita T.; Brogi, Edi; Brastianos, Priscilla K.; Hahn, William C.; Holsinger, Leslie J.; Massagué, Joan; Leslie, Christina S.; Joyce, Johanna A.

    2014-01-01

    Metastasis remains the most common cause of death in most cancers, with limited therapies for combating disseminated disease. While the primary tumor microenvironment is an important regulator of cancer progression, it is less well understood how different tissue environments influence metastasis. We analyzed tumor-stroma interactions that modulate organ tropism of brain, bone and lung metastasis in xenograft models. We identified a number of potential modulators of site-specific metastasis, including cathepsin S as a regulator of breast-to-brain metastasis. High cathepsin S expression at the primary site correlated with decreased brain metastasis-free survival in breast cancer patients. Both macrophages and tumor cells produce cathepsin S, and only the combined depletion significantly reduced brain metastasis in vivo. Cathepsin S specifically mediates blood-brain barrier transmigration via proteolytic processing of the junctional adhesion molecule (JAM)-B. Pharmacological inhibition of cathepsin S significantly reduced experimental brain metastasis, supporting its consideration as a therapeutic target for this disease. PMID:25086747

  19. Human neural stem cells genetically modified to overexpress brain-derived neurotrophic factor promote functional recovery and neuroprotection in a mouse stroke model.

    PubMed

    Lee, Hong J; Lim, In J; Lee, Min C; Kim, Seung U

    2010-11-15

    Intracerebral hemorrhage (ICH) is a lethal stroke type; mortality approaches 50%, and current medical therapy against ICH shows only limited effectiveness, so an alternative approach is required, such as stem cell-based cell therapy. Previously we have shown that intravenously transplanted human neural stem cells (NSCs) selectively migrate to the brain and promote functional recovery in rat ICH model, and others have shown that intracerebral infusion of brain-derived neurotrophic factor (BDNF) results in improved structural and functional outcome from cerebral ischemia. We postulated that human NSCs overexpressing BDNF transplanted into cerebral cortex overlying ICH lesion could provide improved survival of grafted NSCs and increased angiogenesis and behavioral recovery in mouse ICH model. ICH was induced in adult mice by injection of bacterial collagenase into striatum. The HB1.F3.BDNF (F3.BDNF) human NSC line produces sixfold higher amounts of BDNFF over the parental F3 cell line in vitro, induces behavioral improvement, and produces a threefold increase in cell survival at 2 weeks and 8 weeks posttransplantation. Brain transplantation of human NSCs overexpressing BDNF provided differentiation and survival of grafted human NSCs and renewed angiogenesis of host brain and functional recovery of ICH animals. These results indicate that the F3.BDNF human NSCs should be of great value as a cellular source for experimental studies involving cellular therapy for human neurological disorders, including ICH.

  20. Cryptococcus neoformans activates RhoGTPase proteins followed by protein kinase C, focal adhesion kinase, and ezrin to promote traversal across the blood-brain barrier.

    PubMed

    Kim, Jong-Chul; Crary, Benjamin; Chang, Yun C; Kwon-Chung, Kyung J; Kim, Kee J

    2012-10-19

    Cryptococcus neoformans is an opportunistic fungal pathogen that causes meningoencephalitis. Previous studies have demonstrated that Cryptococcus binding and invasion of human brain microvascular endothelial cells (HBMEC) is a prerequisite for transmigration across the blood-brain barrier. However, the molecular mechanism involved in the cryptococcal blood-brain barrier traversal is poorly understood. In this study we examined the signaling events in HBMEC during interaction with C. neoformans. Analysis with inhibitors revealed that cryptococcal association, invasion, and transmigration require host actin cytoskeleton rearrangement. Rho pulldown assays revealed that Cryptococcus induces activation of three members of RhoGTPases, e.g. RhoA, Rac1, and Cdc42, and their activations are required for cryptococcal transmigration across the HBMEC monolayer. Western blot analysis showed that Cryptococcus also induces phosphorylation of focal adhesion kinase (FAK), ezrin, and protein kinase C α (PKCα), all of which are involved in the rearrangement of host actin cytoskeleton. Down-regulation of FAK, ezrin, or PKCα by shRNA knockdown, dominant-negative transfection, or inhibitors significantly reduces cryptococcal ability to traverse the HBMEC monolayer, indicating their positive role in cryptococcal transmigration. In addition, activation of RhoGTPases is the upstream event for phosphorylation of FAK, ezrin, and PKCα during C. neoformans-HBMEC interaction. Taken together, our findings demonstrate that C. neoformans activates RhoGTPases and subsequently FAK, ezrin, and PKCα to promote their traversal across the HBMEC monolayer, which is the critical step for cryptococcal brain infection and development of meningitis.

  1. A Mechanism to Enhance Cellular Responsivity to Hormone Action: Krüppel-Like Factor 9 Promotes Thyroid Hormone Receptor-β Autoinduction During Postembryonic Brain Development

    PubMed Central

    Hu, Fang; Knoedler, Joseph R.

    2016-01-01

    Thyroid hormone (TH) receptor (TR)-β (trb) is induced by TH (autoinduced) in Xenopus tadpoles during metamorphosis. We previously showed that Krüppel-like factor 9 (Klf9) is rapidly induced by TH in the tadpole brain, associates in chromatin with the trb upstream region in a developmental stage and TH-dependent manner, and forced expression of Klf9 in the Xenopus laevis cell line XTC-2 accelerates and enhances trb autoinduction. Here we investigated whether Klf9 can promote trb autoinduction in tadpole brain in vivo. Using electroporation-mediated gene transfer, we transfected plasmids into premetamorphic tadpole brain to express wild-type or mutant forms of Klf9. Forced expression of Klf9 increased baseline trb mRNA levels in thyroid-intact but not in goitrogen-treated tadpoles, supporting that Klf9 enhances liganded TR action. As in XTC-2 cells, forced expression of Klf9 enhanced trb autoinduction in tadpole brain in vivo and also increased TH-dependent induction of the TR target genes klf9 and thbzip. Consistent with our previous mutagenesis experiments conducted in XTC-2 cells, the actions of Klf9 in vivo required an intact N-terminal region but not a functional DNA binding domain. Forced expression of TRβ in tadpole brain by electroporation-mediated gene transfer increased baseline and TH-induced TR target gene transcription, supporting a role for trb autoinduction during metamorphosis. Our findings support that Klf9 acts as an accessory transcription factor for TR at the trb locus during tadpole metamorphosis, enhancing trb autoinduction and transcription of other TR target genes, which increases cellular responsivity to further TH action on developmental gene regulation programs. PMID:26886257

  2. Processing demands upon cognitive, linguistic, and articulatory functions promote grey matter plasticity in the adult multilingual brain: Insights from simultaneous interpreters.

    PubMed

    Elmer, Stefan; Hänggi, Jürgen; Jäncke, Lutz

    2014-05-01

    Until now, considerable effort has been made to determine structural brain characteristics related to exceptional multilingual skills. However, at least one important question has not yet been satisfactorily addressed in the previous literature, namely whether and to which extent the processing demands upon cognitive, linguistic, and articulatory functions may promote grey matter plasticity in the adult multilingual brain. Based on the premise that simultaneous interpretation is a highly demanding linguistic task that places strong demands on executive and articulatory functions, here we compared grey matter volumes between professional simultaneous interpreters (SI) and multilingual control subjects. Thereby, we focused on a specific set of a-priori defined bilateral brain regions that have previously been shown to support neurocognitional aspects of language control and linguistic functions in the multilingual brain. These regions are the cingulate gyrus, caudate nucleus, frontal operculum (pars triangularis and opercularis), inferior parietal lobe (IPL) (supramarginal and angular gyrus), and the insula. As a main result, we found reduced grey matter volumes in professional SI, compared to multilingual controls, in the left middle-anterior cingulate gyrus, bilateral pars triangularis, left pars opercularis, bilateral middle part of the insula, and in the left supramarginal gyrus (SMG). Interestingly, grey matter volume in left pars triangularis, right pars opercularis, middle-anterior cingulate gyrus, and in the bilateral caudate nucleus was negatively correlated with the cumulative number of interpreting hours. Hence, we provide first evidence for an expertise-related grey matter architecture that may reflect a composite of brain characteristics that were still present before interpreting training and training-related changes.

  3. Arguments against promoting organ transplants from brain-dead donors, and views of contemporary Japanese on life and death.

    PubMed

    Asai, Atsushi; Kadooka, Yasuhiro; Aizawa, Kuniko

    2012-05-01

    As of 2009, the number of donors in Japan is the lowest among developed countries. On July 13, 2009, Japan's Organ Transplant Law was revised for the first time in 12 years. The revised and old laws differ greatly on four primary points: the definition of death, age requirements for donors, requirements for brain-death determination and organ extraction, and the appropriateness of priority transplants for relatives. In the four months of deliberations in the National Diet before the new law was established, various arguments regarding brain death and organ transplantation were offered. An amazing variety of opinions continue to be offered, even after more than 40 years have elapsed since the first heart organ transplant in Japan. Some are of the opinion that with the passage of the revised law, Japan will finally become capable of performing transplants according to global standards. Contrarily, there are assertions that organ transplants from brain-dead donors are unacceptable because they result in organs being taken from living human beings. Considering the current conditions, we will organize and introduce the arguments for and against organ transplants from brain-dead donors in contemporary Japan. Subsequently, we will discuss the primary arguments against organ transplants from brain-dead donors from the perspective of contemporary Japanese views on life and death. After introducing the recent view that brain death should not be regarded as equivalent to the death of a human being, we would like to probe the deeply-rooted views on life and death upon which it is based. © 2010 Blackwell Publishing Ltd.

  4. Alcohol-induced One-carbon Metabolism Impairment Promotes Dysfunction of DNA Base Excision Repair in Adult Brain*

    PubMed Central

    Fowler, Anna-Kate; Hewetson, Aveline; Agrawal, Rajiv G.; Dagda, Marisela; Dagda, Raul; Moaddel, Ruin; Balbo, Silvia; Sanghvi, Mitesh; Chen, Yukun; Hogue, Ryan J.; Bergeson, Susan E.; Henderson, George I.; Kruman, Inna I.

    2012-01-01

    The brain is one of the major targets of chronic alcohol abuse. Yet the fundamental mechanisms underlying alcohol-mediated brain damage remain unclear. The products of alcohol metabolism cause DNA damage, which in conditions of DNA repair dysfunction leads to genomic instability and neural death. We propose that one-carbon metabolism (OCM) impairment associated with long term chronic ethanol intake is a key factor in ethanol-induced neurotoxicity, because OCM provides cells with DNA precursors for DNA repair and methyl groups for DNA methylation, both critical for genomic stability. Using histological (immunohistochemistry and stereological counting) and biochemical assays, we show that 3-week chronic exposure of adult mice to 5% ethanol (Lieber-Decarli diet) results in increased DNA damage, reduced DNA repair, and neuronal death in the brain. These were concomitant with compromised OCM, as evidenced by elevated homocysteine, a marker of OCM dysfunction. We conclude that OCM dysfunction plays a causal role in alcohol-induced genomic instability in the brain because OCM status determines the alcohol effect on DNA damage/repair and genomic stability. Short ethanol exposure, which did not disturb OCM, also did not affect the response to DNA damage, whereas additional OCM disturbance induced by deficiency in a key OCM enzyme, methylenetetrahydrofolate reductase (MTHFR) in Mthfr+/− mice, exaggerated the ethanol effect on DNA repair. Thus, the impact of long term ethanol exposure on DNA repair and genomic stability in the brain results from OCM dysfunction, and MTHFR mutations such as Mthfr 677C→T, common in human population, may exaggerate the adverse effects of ethanol on the brain. PMID:23118224

  5. Alcohol-induced one-carbon metabolism impairment promotes dysfunction of DNA base excision repair in adult brain.

    PubMed

    Fowler, Anna-Kate; Hewetson, Aveline; Agrawal, Rajiv G; Dagda, Marisela; Dagda, Raul; Moaddel, Ruin; Balbo, Silvia; Sanghvi, Mitesh; Chen, Yukun; Hogue, Ryan J; Bergeson, Susan E; Henderson, George I; Kruman, Inna I

    2012-12-21

    The brain is one of the major targets of chronic alcohol abuse. Yet the fundamental mechanisms underlying alcohol-mediated brain damage remain unclear. The products of alcohol metabolism cause DNA damage, which in conditions of DNA repair dysfunction leads to genomic instability and neural death. We propose that one-carbon metabolism (OCM) impairment associated with long term chronic ethanol intake is a key factor in ethanol-induced neurotoxicity, because OCM provides cells with DNA precursors for DNA repair and methyl groups for DNA methylation, both critical for genomic stability. Using histological (immunohistochemistry and stereological counting) and biochemical assays, we show that 3-week chronic exposure of adult mice to 5% ethanol (Lieber-Decarli diet) results in increased DNA damage, reduced DNA repair, and neuronal death in the brain. These were concomitant with compromised OCM, as evidenced by elevated homocysteine, a marker of OCM dysfunction. We conclude that OCM dysfunction plays a causal role in alcohol-induced genomic instability in the brain because OCM status determines the alcohol effect on DNA damage/repair and genomic stability. Short ethanol exposure, which did not disturb OCM, also did not affect the response to DNA damage, whereas additional OCM disturbance induced by deficiency in a key OCM enzyme, methylenetetrahydrofolate reductase (MTHFR) in Mthfr(+/-) mice, exaggerated the ethanol effect on DNA repair. Thus, the impact of long term ethanol exposure on DNA repair and genomic stability in the brain results from OCM dysfunction, and MTHFR mutations such as Mthfr 677C→T, common in human population, may exaggerate the adverse effects of ethanol on the brain.

  6. Motor cortex electrical stimulation promotes axon outgrowth to brain stem and spinal targets that control the forelimb impaired by unilateral corticospinal injury.

    PubMed

    Carmel, Jason B; Kimura, Hiroki; Berrol, Lauren J; Martin, John H

    2013-04-01

    We previously showed that electrical stimulation of motor cortex (M1) after unilateral pyramidotomy in the rat increased corticospinal tract (CST) axon length, strengthened spinal connections, and restored forelimb function. Here, we tested: (i) if M1 stimulation only increases spinal axon length or if it also promotes connections to brain stem forelimb control centers, especially magnocellular red nucleus; and (ii) if stimulation-induced increase in axon length depends on whether pyramidotomy denervated the structure. After unilateral pyramidotomy, we electrically stimulated the forelimb area of intact M1, to activate the intact CST and other corticofugal pathways, for 10 days. We anterogradely labeled stimulated M1 and measured axon length using stereology. Stimulation increased axon length in both the spinal cord and magnocellular red nucleus, even though the spinal cord is denervated by pyramidotomy and the red nucleus is not. Stimulation also promoted outgrowth in the cuneate and parvocellular red nuclei. In the spinal cord, electrical stimulation caused increased axon length ipsilateral, but not contralateral, to stimulation. Thus, stimulation promoted outgrowth preferentially to the sparsely corticospinal-innervated and impaired side. Outgrowth resulted in greater axon density in the ipsilateral dorsal horn and intermediate zone, resembling the contralateral termination pattern. Importantly, as in spinal cord, increase in axon length in brain stem also was preferentially directed towards areas less densely innervated by the stimulated system. Thus, M1 electrical stimulation promotes increases in corticofugal axon length to multiple M1 targets. We propose the axon length change was driven by competition into an adaptive pattern resembling lost connections. © 2013 Federation of European Neuroscience Societies and Blackwell Publishing Ltd.

  7. Promoter sequences in the RI beta subunit gene of cAMP-dependent protein kinase required for transgene expression in mouse brain.

    PubMed

    Clegg, C H; Haugen, H S; Boring, L F

    1996-01-19

    Neural-specific expression of the mouse regulatory type-I beta (RI beta) subunit gene of cAMP-dependent protein kinase is controlled by a fragment of genomic DNA comprised of a TATA-less promoter flanked by 1.5 kilobases of 5'-upstream sequence and a 1.8-kilobase intron. This DNA contains a complex arrangement of transcription factor binding motifs, and previous experiments have shown that many of these are recognized by proteins found in brain nuclear extract. To identify sequences critical for RI beta expression in functional neurons, we performed a deletion analysis in transgenic mice. Evidence is presented that the GC-rich proximal promoter is responsible for cell type-specific expression in vivo because RI beta DNA containing as little as 17 base pairs (bp) of 5'-upstream sequence was functional in mouse brain. One likely regulatory element coincides with the start of transcription and includes an EGR-1 motif and 3 consecutive SP1 sites within a 21-bp interval. Maximal RI beta promoter activity required the adjacent 663 bp of 5'-upstream DNA where most, but not all, of the regulatory activity was localized between position -663 and -333. A 37-bp direct repeat lies within this region that contains 2 basic helix-loop-helix binding sites, each of which are overlapped by two steroid hormone receptor half-sites, and a shared AP1 consensus sequence. Intron I sequences were also tested, and deletion of a 388-bp region containing numerous Sp1-like sequences lowered transgene activity significantly. These results have identified specific regions of the RI beta promoter that are required for the expression of this signal transduction protein in mouse neurons.

  8. Tissue plasminogen activator followed by antioxidant-loaded nanoparticle delivery promotes activation/mobilization of progenitor cells in infarcted rat brain

    PubMed Central

    Petro, Marianne; Jaffer, Hayder; Yang, Jun; Kabu, Shushi; Morris, Viola B.; Labhasetwar, Vinod

    2015-01-01

    Inherent neuronal and circulating progenitor cells play important roles in facilitating neuronal and functional recovery post stroke. However, this endogenous repair process is rather limited, primarily due to unfavorable conditions in the infarcted brain involving reactive oxygen species (ROS)-mediated oxidative stress and inflammation following ischemia/reperfusion injury. We hypothesized that during reperfusion, effective delivery of antioxidants to ischemic brain would create an environment without such oxidative stress and inflammation, thus promoting activation and mobilization of progenitor cells in the infarcted brain. We administered recombinant human tissue-type plasminogen activator (tPA) via carotid artery at 3 h post stroke in a thromboembolic rat model, followed by sequential administration of the antioxidants catalase (CAT) and superoxide dismutase (SOD), encapsulated in biodegradable nanoparticles (nano-CAT/SOD). Brains were harvested at 48 h post stroke for immunohistochemical analysis. Ipsilateral brain slices from animals that had received tPA + nano-CAT/SOD showed a widespread distribution of glial fibrillary acidic protein-positive cells (with morphology resembling radial glia-like neural precursor cells) and nestin-positive cells (indicating the presence of immature neurons); such cells were considerably fewer in untreated animals or those treated with tPA alone. Brain sections from animals receiving tPA + nano-CAT/SOD also showed much greater numbers of SOX2- and nestin-positive progenitor cells migrating from subventricular zone of the lateral ventricle and entering the rostral migratory stream than in t-PA alone treated group or untreated control. Further, animals treated with tPA + nano-CAT/SOD showed far fewer caspase-positive cells and fewer neutrophils than did other groups, as well as an inhibition of hippocampal swelling. These results suggest that the antioxidants mitigated the inflammatory response, protected neuronal cells from

  9. Beyond Neural Cubism: Promoting a Multidimensional View of Brain Disorders by Enhancing the Integration of Neurology and Psychiatry in Education

    PubMed Central

    Taylor, Joseph J.; Williams, Nolan R.; George, Mark S.

    2014-01-01

    Cubism was an influential early 20th century art movement characterized by angular, disjointed imagery. The two-dimensional appearance of Cubist figures and objects is created through juxtaposition of angles. The authors posit that the constrained perspectives found in Cubism may also be found in the clinical classification of brain disorders. Neurological disorders are often separated from psychiatric disorders as if they stem from different organ systems. Maintaining two isolated clinical disciplines fractionalizes the brain in the same way that Pablo Picasso fractionalized figures and objects in his Cubist art. This Neural Cubism perpetuates a clinical divide that does not reflect the scope and depth of neuroscience. All brain disorders are complex and multidimensional, with aberrant circuitry and resultant psychopharmacology manifesting as altered behavior, affect, mood or cognition. Trainees should receive a multidimensional education based on modern neuroscience, not a partial education based on clinical precedent. The authors briefly outline the rationale for increasing the integration of neurology and psychiatry and discuss a nested model with which clinical neuroscientists (neurologists and psychiatrists) can approach and treat brain disorders. PMID:25340364

  10. Researching the Practice, Practicing the Research, and Promoting Responsible Policy: Usable Knowledge in Mind, Brain, and Education

    ERIC Educational Resources Information Center

    Christodoulou, Joanna A.; Daley, Samantha G.; Katzir, Tami

    2009-01-01

    The theme of Usable Knowledge in Mind, Brain, and Education will be a special section that will appear regularly in the journal. The section will focus on the synergistic connections between biology, cognitive science, and human development on the one hand and educational thought, policy, and practice on the other. Efforts to create usable…

  11. Researching the Practice, Practicing the Research, and Promoting Responsible Policy: Usable Knowledge in Mind, Brain, and Education

    ERIC Educational Resources Information Center

    Christodoulou, Joanna A.; Daley, Samantha G.; Katzir, Tami

    2009-01-01

    The theme of Usable Knowledge in Mind, Brain, and Education will be a special section that will appear regularly in the journal. The section will focus on the synergistic connections between biology, cognitive science, and human development on the one hand and educational thought, policy, and practice on the other. Efforts to create usable…

  12. Beyond neural cubism: promoting a multidimensional view of brain disorders by enhancing the integration of neurology and psychiatry in education.

    PubMed

    Taylor, Joseph J; Williams, Nolan R; George, Mark S

    2015-05-01

    Cubism was an influential early-20th-century art movement characterized by angular, disjointed imagery. The two-dimensional appearance of Cubist figures and objects is created through juxtaposition of angles. The authors posit that the constrained perspectives found in Cubism may also be found in the clinical classification of brain disorders. Neurological disorders are often separated from psychiatric disorders as if they stemmed from different organ systems. Maintaining two isolated clinical disciplines fractionalizes the brain in the same way that Pablo Picasso fractionalized figures and objects in his Cubist art. This Neural Cubism perpetuates a clinical divide that does not reflect the scope and depth of neuroscience. All brain disorders are complex and multidimensional, with aberrant circuitry and resultant psychopharmacology manifesting as altered behavior, affect, mood, or cognition. Trainees should receive a multidimensional education based on modern neuroscience, not a partial education based on clinical precedent. The authors briefly outline the rationale for increasing the integration of neurology and psychiatry and discuss a nested model with which clinical neuroscientists (neurologists and psychiatrists) can approach and treat brain disorders.

  13. High mobility group box protein-1 promotes cerebral edema after traumatic brain injury via activation of toll-like receptor 4.

    PubMed

    Laird, Melissa D; Shields, Jessica S; Sukumari-Ramesh, Sangeetha; Kimbler, Donald E; Fessler, R David; Shakir, Basheer; Youssef, Patrick; Yanasak, Nathan; Vender, John R; Dhandapani, Krishnan M

    2014-01-01

    Traumatic brain injury (TBI) is a major cause of mortality and morbidity worldwide. Cerebral edema, a life-threatening medical complication, contributes to elevated intracranial pressure (ICP) and a poor clinical prognosis after TBI. Unfortunately, treatment options to reduce post-traumatic edema remain suboptimal, due in part, to a dearth of viable therapeutic targets. Herein, we tested the hypothesis that cerebral innate immune responses contribute to edema development after TBI. Our results demonstrate that high-mobility group box protein 1 (HMGB1) was released from necrotic neurons via a NR2B-mediated mechanism. HMGB1 was clinically associated with elevated ICP in patients and functionally promoted cerebral edema after TBI in mice. The detrimental effects of HMGB1 were mediated, at least in part, via activation of microglial toll-like receptor 4 (TLR4) and the subsequent expression of the astrocytic water channel, aquaporin-4 (AQP4). Genetic or pharmacological (VGX-1027) TLR4 inhibition attenuated the neuroinflammatory response and limited post-traumatic edema with a delayed, clinically implementable therapeutic window. Human and rodent tissue culture studies further defined the cellular mechanisms demonstrating neuronal HMGB1 initiates the microglial release of interleukin-6 (IL-6) in a TLR4 dependent mechanism. In turn, microglial IL-6 increased the astrocytic expression of AQP4. Taken together, these data implicate microglia as key mediators of post-traumatic brain edema and suggest HMGB1-TLR4 signaling promotes neurovascular dysfunction after TBI.

  14. The pesticide deltamethrin increases free radical production and promotes nuclear translocation of the stress response transcription factor Nrf2 in rat brain

    PubMed Central

    Li, HY; Wu, SY; Ma, Q; Shi, N

    2015-01-01

    The transcription factor NF-E2-related factor 2 (Nrf2) plays a critical role in the mammalian response to chemical and oxidative stress through induction of phase II detoxification enzymes and oxidative stress response proteins. We reported that Nrf2 expression was activated by deltamethrin (DM), a prototype of the widely used pyrithroid pesticides, in PC12 cells. However, no study has examined Nrf2 nuclear translocation and free radical production, two hallmarks of oxidative stress, in the mammalian brain in vivo. To this end, we examined translocation of Nrf2 and production of free radicals in rat brain exposed to DM. Indeed, DM initiated nuclear translocation of Nrf2 in a dose-dependent manner. Furthermore, Nrf2 translocation was accompanied by the expression of heme oxygenase-1 gene, an Nrf2-regulated gene linked to free radical production. Deltamethrin exposure promoted free radical formation in rat brain and reactive oxygen species generation in PC12 cells. Translocation of Nrf2 may be a response to DM-dependent induction of free radicals and DM may act as a mammalian neurotoxin by initiating oxidative stress. PMID:21398409

  15. In vitro hypoxic preconditioning of embryonic stem cells as a strategy of promoting cell survival and functional benefits after transplantation into the ischemic rat brain.

    PubMed

    Theus, Michelle Hedrick; Wei, Ling; Cui, Lin; Francis, Kevin; Hu, Xinyang; Keogh, Christine; Yu, Shan Ping

    2008-04-01

    Hypoxic preconditioning (HP) and stem cell transplantation have been extensively studied as individual therapies for ischemic stroke. The present investigation is an initial effort to combine these methods to achieve increased therapeutic effects after brain ischemia. Sublethal in vitro hypoxia pretreatment significantly enhanced the tolerance of neurally-differentiating embryonic stem (ES) cells and primary bone marrow mesenchymal stem cells (BMSC) to apoptotic cell death (40-50% reduction in cell death and caspase-3 activation). The HP protective effects on cultured cells lasted for at least 6 days. HP increased secretion of erythropoietin (EPO) and upregulated expression of bcl-2, hypoxia-inducible factor (HIF-1alpha), erythropoietin receptor (EPOR), neurofilament (NF), and synaptophysin in ES cell-derived neural progenitor cells (ES-NPCs). The HP cytoprotective effect was diminished by blocking EPOR, while pretreatment of ES-NPCs with recombinant human EPO mimicked the HP effect. HP-primed ES-NPCs survived better 3 days after transplantation into the ischemic brain (30-40% reduction in cell death and caspase-3 activation). Finally, transplanted HP-primed ES-NPCs exhibited extensive neuronal differentiation in the ischemic brain, accelerated and enhanced recovery of sensorimotor function when compared to transplantation of non-HP-treated ES-NPCs. The cell-priming strategy aimed to promote transplanted cell survival and their tissue repair capability provides a simple yet effective way of optimizing cell transplantation therapy.

  16. Exenatide promotes cognitive enhancement and positive brain metabolic changes in PS1-KI mice but has no effects in 3xTg-AD animals

    PubMed Central

    Bomba, M; Ciavardelli, D; Silvestri, E; Canzoniero, L MT; Lattanzio, R; Chiappini, P; Piantelli, M; Di Ilio, C; Consoli, A; Sensi, S L

    2013-01-01

    Recent studies have shown that type 2 diabetes mellitus (T2DM) is a risk factor for cognitive dysfunction or dementia. Insulin resistance is often associated with T2DM and can induce defective insulin signaling in the central nervous system as well as increase the risk of cognitive impairment in the elderly. Glucagone like peptide-1 (GLP-1) is an incretin hormone and, like GLP-1 analogs, stimulates insulin secretion and has been employed in the treatment of T2DM. GLP-1 and GLP-1 analogs also enhance synaptic plasticity and counteract cognitive deficits in mouse models of neuronal dysfunction and/or degeneration. In this study, we investigated the potential neuroprotective effects of long-term treatment with exenatide, a GLP-1 analog, in two animal models of neuronal dysfunction: the PS1-KI and 3xTg-AD mice. We found that exenatide promoted beneficial effects on short- and long-term memory performances in PS1-KI but not in 3xTg-AD animals. In PS1-KI mice, the drug increased brain lactate dehydrogenase activity leading to a net increase in lactate levels, while no effects were observed on mitochondrial respiration. On the contrary, exenatide had no effects on brain metabolism of 3xTg-AD mice. In summary, our data indicate that exenatide improves cognition in PS1-KI mice, an effect likely driven by increasing the brain anaerobic glycolysis rate. PMID:23640454

  17. The tissue-type plasminogen activator-plasminogen activator inhibitor 1 complex promotes neurovascular injury in brain trauma: evidence from mice and humans.

    PubMed

    Sashindranath, Maithili; Sales, Eunice; Daglas, Maria; Freeman, Roxann; Samson, Andre L; Cops, Elisa J; Beckham, Simone; Galle, Adam; McLean, Catriona; Morganti-Kossmann, Cristina; Rosenfeld, Jeffrey V; Madani, Rime; Vassalli, Jean-Dominique; Su, Enming J; Lawrence, Daniel A; Medcalf, Robert L

    2012-11-01

    The neurovascular unit provides a dynamic interface between the circulation and central nervous system. Disruption of neurovascular integrity occurs in numerous brain pathologies including neurotrauma and ischaemic stroke. Tissue plasminogen activator is a serine protease that converts plasminogen to plasmin, a protease that dissolves blood clots. Besides its role in fibrinolysis, tissue plasminogen activator is abundantly expressed in the brain where it mediates extracellular proteolysis. However, proteolytically active tissue plasminogen activator also promotes neurovascular disruption after ischaemic stroke; the molecular mechanisms of this process are still unclear. Tissue plasminogen activator is naturally inhibited by serine protease inhibitors (serpins): plasminogen activator inhibitor-1, neuroserpin or protease nexin-1 that results in the formation of serpin:protease complexes. Proteases and serpin:protease complexes are cleared through high-affinity binding to low-density lipoprotein receptors, but their binding to these receptors can also transmit extracellular signals across the plasma membrane. The matrix metalloproteinases are the second major proteolytic system in the mammalian brain, and like tissue plasminogen activators are pivotal to neurological function but can also degrade structures of the neurovascular unit after injury. Herein, we show that tissue plasminogen activator potentiates neurovascular damage in a dose-dependent manner in a mouse model of neurotrauma. Surprisingly, inhibition of activity following administration of plasminogen activator inhibitor-1 significantly increased cerebrovascular permeability. This led to our finding that formation of complexes between tissue plasminogen activator and plasminogen activator inhibitor-1 in the brain parenchyma facilitates post-traumatic cerebrovascular damage. We demonstrate that following trauma, the complex binds to low-density lipoprotein receptors, triggering the induction of matrix

  18. Salvianolic acid A alleviates ischemic brain injury through the inhibition of inflammation and apoptosis and the promotion of neurogenesis in mice.

    PubMed

    Chien, Mei-Yin; Chuang, Cheng-Hung; Chern, Chang-Ming; Liou, Kou-Tong; Liu, Der-Zen; Hou, Yu-Chang; Shen, Yuh-Chiang

    2016-10-01

    Salvianolic acid A (SalA), a chemical type of caffeic acid trimer, has drawn great attention for its potent bioactivities against ischemia-induced injury both in vitro and in vivo. In this study, we evaluated SalA's protective effects against acute ischemic stroke by inducing middle cerebral artery occlusion/reperfusion (MCAO) injuries in mice. Treatment of the mice with SalA (50 and 100μg/kg, i.v.) at 2h after MCAO enhanced their survival rate, improved their moving activity, and ameliorated the severity of brain infarction and apoptosis seen in the mice by diminishing pathological changes such as the extensive breakdown of the blood-brain barrier (BBB), nitrosative stress, and the activation of an inflammatory transcriptional factor p65 nuclear factor-kappa B (NF-κB) and a pro-apoptotic kinase p25/Cdk5. SalA also intensively limited cortical infarction and promoted the expression of neurogenesis protein near the peri-infarct cortex and subgranular zone of the hippocampal dentate gyrus by compromising the activation of GSK3β and p25/Cdk5, which in turn upregulated β-catenin, doublecortin (DCX), and Bcl-2, most possibly through the activation of PI3K/Akt signaling via the upregulation of brain-derived neurotrophic factor. We conclude that SalA blocks inflammatory responses by impairing NF-κB signaling, thereby limiting inflammation/nitrosative stress and preserving the integrity of the BBB; SalA also concomitantly promotes neurogenesis-related protein expression by compromising GSK3β/Cdk5 activity to enhance the expression levels of β-catenin/DCX and Bcl-2 for neuroprotection.

  19. Recombinant human interleukin-1 receptor antagonist promotes M1 microglia biased cytokines and chemokines following human traumatic brain injury.

    PubMed

    Helmy, Adel; Guilfoyle, Mathew R; Carpenter, Keri Lh; Pickard, John D; Menon, David K; Hutchinson, Peter J

    2016-08-01

    Interleukin-1 receptor antagonist (IL1ra) has demonstrated efficacy in a wide range of animal models of neuronal injury. We have previously published a randomised controlled study of IL1ra in human severe TBI, with concomitant microdialysis and plasma sampling of 42 cytokines and chemokines. In this study, we have used partial least squares discriminant analysis to model the effects of drug administration and time following injury on the cytokine milieu within the injured brain. We demonstrate that treatment with rhIL1ra causes a brain-specific modification of the cytokine and chemokine response to injury, particularly in samples from the first 48 h following injury. The magnitude of this response is dependent on the concentration of IL1ra achieved in the brain extracellular space. Chemokines related to recruitment of macrophages from the plasma compartment (MCP-1) and biasing towards a M1 microglial phenotype (GM-CSF, IL1) are increased in patient samples in the rhIL1ra-treated patients. In control patients, cytokines and chemokines biased to a M2 microglia phenotype (IL4, IL10, MDC) are relatively increased. This pattern of response suggests that a simple classification of IL1ra as an 'anti-inflammatory' cytokine may not be appropriate and highlights the importance of the microglial response to injury.

  20. c-myc and N-myc promote active stem cell metabolism and cycling as architects of the developing brain.

    PubMed

    Wey, Alice; Knoepfler, Paul S

    2010-06-01

    myc genes are associated with a wide variety of human cancers including most types of nervous system tumors. While the mechanisms by which myc overexpression causes tumorigenesis are multifaceted and have yet to be clearly elucidated, they are at least in part related to endogenous myc function in normal cells. Knockout (KO) of either c-myc or N-myc genes in neural stem and precursor cells (NSC) driven by nestin-cre impairs mouse brain growth and mutation of N-myc also causes microcephaly in humans in Feingold Syndrome. To further define myc function in NSC and nervous system development, we created a double KO (DKO) for c- and N-myc using nestin-cre. The DKO mice display profoundly impaired overall brain growth associated with decreased cell cycling and migration of NSC, which are strikingly decreased in number. The DKO brain also exhibits specific changes in gene expression including downregulation of genes involved in protein and nucleotide metabolism, mitosis, and chromatin structure as well as upregulation of genes associated with differentiation. Together these data support a model of nervous system tumorigenesis in which excess myc aberrantly locks in a developmentally active chromatin state characterized by overactive cell cycling, and metabolism as well as blocked differentiation.

  1. Expression of the woodchuck N-myc2 retroposon in brain and in liver tumors is driven by a cryptic N-myc promoter.

    PubMed Central

    Fourel, G; Transy, C; Tennant, B C; Buendia, M A

    1992-01-01

    The woodchuck intronless proto-oncogene N-myc2 was initially discovered as a frequent target site for hepadnavirus integration in hepatocellular carcinoma. N-myc2 possesses characteristics of a functional retroposon derived from the woodchuck N-myc gene. We have investigated the regulatory signals governing N-myc2 expression and found that a short promoter, including a variant TATA box and potential binding sites for several transcription factors, is localized in the N-myc2 sequences homologous to the 5' untranslated region of the second N-myc exon. The corresponding region in the intron-containing woodchuck N-myc gene also exhibited promoter activity in transient transfection assays. The high evolutionary conservation of these sequences in mammalian N-myc genes suggests that they contain a cryptic N-myc promoter which may be unmasked in the particular context provided by the N-myc2 retroposon. Although N-myc2, like the woodchuck N-myc gene, contributes to an extended CpG island and was found constitutively hypomethylated, it presents a highly restricted expression pattern in adult animals. Whereas the intron-containing N-myc gene is expressed at low levels in different tissues, N-myc2 mRNA was detected only in brain tissue, raising questions about the functional significance of the maintenance of a second N-myc gene in the woodchuck genome. Images PMID:1333041

  2. Transcriptional activation of the human brain-derived neurotrophic factor gene promoter III by dopamine signaling in NT2/N neurons.

    PubMed

    Fang, Hung; Chartier, Joanne; Sodja, Caroline; Desbois, Angele; Ribecco-Lutkiewicz, Maria; Walker, P Roy; Sikorska, Marianna

    2003-07-18

    We have identified a functional cAMP-response element (CRE) in the human brain-derived neurotrophic factor (BDNF) gene promoter III and established that it participated in the modulation of BDNF expression in NT2/N neurons via downstream signaling from the D1 class of dopamine (DA) receptors. The up-regulation of BDNF expression, in turn, produced neuroprotective signals through receptor tyrosine kinase B (TrkB) and promoted cell survival under the conditions of oxygen and glucose deprivation. To our knowledge this is the first evidence showing the presence of a functional CRE in the human BDNF gene and the role of DA signaling in establishing transcriptional competence of CRE in post-mitotic NT2/N neurons. This ability of DA to regulate the expression of the BDNF survival factor has a profound significance for the nigrostriatal pathway, because it indicates the existence of a feedback loop between the neutrophin, which promotes both the maturation and survival of dopaminergic neurons, and the neurotransmitter, which the mature neurons ultimately produce and release.

  3. Putting the Mind in the Brain: Promoting an Appreciation of the Biological Basis to Understanding Human Behavior

    ERIC Educational Resources Information Center

    Neumann, David L.

    2010-01-01

    A surprising number of students in psychology, behavioral science, and related social science classes fail to appreciate the importance of biological mechanisms to understanding behavior. To help teachers promote this understanding, this paper outlines six sources of evidence. These are (a) phylogenetic, (b) genetic/developmental, (c) clinical,…

  4. Putting the Mind in the Brain: Promoting an Appreciation of the Biological Basis to Understanding Human Behavior

    ERIC Educational Resources Information Center

    Neumann, David L.

    2010-01-01

    A surprising number of students in psychology, behavioral science, and related social science classes fail to appreciate the importance of biological mechanisms to understanding behavior. To help teachers promote this understanding, this paper outlines six sources of evidence. These are (a) phylogenetic, (b) genetic/developmental, (c) clinical,…

  5. Preinduction of HSP70 promotes hypoxic tolerance and facilitates acclimatization to acute hypobaric hypoxia in mouse brain

    PubMed Central

    Zhang, Kuan; Zhao, Tong; Huang, Xin; Liu, Zhao-hui; Xiong, Lei; Li, Ming-ming; Wu, Li-ying; Zhao, Yong-qi

    2008-01-01

    It has been shown that induction of HSP70 by administration of geranylgeranylacetone (GGA) leads to protection against ischemia/reperfusion injury. The present study was performed to determine the effect of GGA on the survival of mice and on brain damage under acute hypobaric hypoxia. The data showed that the mice injected with GGA survived significantly longer than control animals (survival time of 9.55 ± 3.12 min, n = 16 vs. controls at 4.28 ± 4.29 min, n = 15, P < 0.005). Accordingly, the cellular necrosis or degeneration of the hippocampus and the cortex induced by sublethal hypoxia for 6 h could be attenuated by preinjection with GGA, especially in the CA2 and CA3 regions of the hippocampus. In addition, the activity of nitric oxide synthase (NOS) of the hippocampus and the cortex was increased after exposure to sublethal hypoxia for 6 h but could be inhibited by the preinjection of GGA. Furthermore, the expression of HSP70 was significantly increased at 1 h after GGA injection. These results suggest that administration of GGA improved survival rate and prevented acute hypoxic damage to the brain and that the underlying mechanism involved induction of HSP70 and inhibition of NOS activity. PMID:19105051

  6. Preinduction of HSP70 promotes hypoxic tolerance and facilitates acclimatization to acute hypobaric hypoxia in mouse brain.

    PubMed

    Zhang, Kuan; Zhao, Tong; Huang, Xin; Liu, Zhao-hui; Xiong, Lei; Li, Ming-ming; Wu, Li-ying; Zhao, Yong-qi; Zhu, Ling-ling; Fan, Ming

    2009-07-01

    It has been shown that induction of HSP70 by administration of geranylgeranylacetone (GGA) leads to protection against ischemia/reperfusion injury. The present study was performed to determine the effect of GGA on the survival of mice and on brain damage under acute hypobaric hypoxia. The data showed that the mice injected with GGA survived significantly longer than control animals (survival time of 9.55 +/- 3.12 min, n = 16 vs. controls at 4.28 +/- 4.29 min, n = 15, P < 0.005). Accordingly, the cellular necrosis or degeneration of the hippocampus and the cortex induced by sublethal hypoxia for 6 h could be attenuated by preinjection with GGA, especially in the CA2 and CA3 regions of the hippocampus. In addition, the activity of nitric oxide synthase (NOS) of the hippocampus and the cortex was increased after exposure to sublethal hypoxia for 6 h but could be inhibited by the preinjection of GGA. Furthermore, the expression of HSP70 was significantly increased at 1 h after GGA injection. These results suggest that administration of GGA improved survival rate and prevented acute hypoxic damage to the brain and that the underlying mechanism involved induction of HSP70 and inhibition of NOS activity.

  7. Surface functionalizing of a lipid nanosystem to promote brain targeting: step-by-step design and physico-chemical characterization.

    PubMed

    Cózar-Bernal, M J; García-Esteban, E; Sánchez-Soto, P J; Rabasco, A M; González-Rodríguez, M L

    2016-11-01

    The use of lipid nanosystems as drug delivery to the central nervous system may be advantageous over the current strategies. The aim of this study was to develop and characterize functionalized liposomes for treatment of brain diseases. The covalent method of coupling IgG to liposomes via the derivatized lipid 1,2-dioleoyl-sn-glycero-3-phosphoethanolamine-N-[4-(p-maleimidophenyl)butyramide](MPB-PE) was investigated. Optimized coupling conditions are shown to result in the efficient conjugation of IgG to liposomes containing low concentrations of MPB-PE (3/1 SH:IgG). The qualitative analysis has shown that after the extrusion process, more homogeneous populations of vesicles have been obtained with a nanometric size suitable to be effective to further anchor the protein. Negative values of zeta potential demonstrate that they are stable systems. Lyophilization was used to maintain the stability of the formulation. These very interesting results encourage further investigations to formulate peptide- and protein-loaded immunoliposomes, making targeting of liposomes as an attractive approach for brain drug delivery.

  8. Testing for association of the monoamine oxidase A promoter polymorphism with brain structure volumes in both autism and the fragile X syndrome

    PubMed Central

    2014-01-01

    Background Autism and the fragile X syndrome (FXS) are related to each other genetically and symptomatically. A cardinal biological feature of both disorders is abnormalities of cerebral cortical brain volumes. We have previously shown that the monoamine oxidase A (MAOA) promoter polymorphism is associated with cerebral cortical volumes in children with autism, and we now sought to determine whether the association was also present in children with FXS. Methods Participants included 47 2-year-old Caucasian boys with FXS, some of whom also had autism, as well as 34 2-year-old boys with idiopathic autism analyzed in a previous study. The MAOA promoter polymorphism was genotyped and tested for relationships with gray and white matter volumes of the cerebral cortical lobes and cerebro-spinal fluid volume of the lateral ventricles. Results MAOA genotype effects in FXS children were the same as those previously observed in idiopathic autism: the low activity MAOA promoter polymorphism allele was associated with increased gray and white matter volumes in all cerebral lobes. The effect was most pronounced in frontal lobe gray matter and all three white matter regions: frontal gray, F = 4.39, P = 0.04; frontal white, F = 5.71, P = 0.02; temporal white, F = 4.73, P = 0.04; parieto-occipital white, F = 5.00, P = 0.03. Analysis of combined FXS and idiopathic autism samples produced P values for these regions <0.01 and effect sizes of approximately 0.10. Conclusions The MAOA promoter polymorphism is similarly associated with brain structure volumes in both idiopathic autism and FXS. These data illuminate a number of important aspects of autism and FXS heritability: a genetic effect on a core biological trait of illness, the specificity/generalizability of the genetic effect, and the utility of examining individual genetic effects on the background of a single gene disorder such as FXS. PMID:24669826

  9. Widespread neuron-specific transgene expression in brain and spinal cord following synapsin promoter-driven AAV9 neonatal intracerebroventricular injection.

    PubMed

    McLean, Jesse R; Smith, Gaynor A; Rocha, Emily M; Hayes, Melissa A; Beagan, Jonathan A; Hallett, Penelope J; Isacson, Ole

    2014-07-25

    Adeno-associated viral (AAV) gene transfer holds great promise for treating a wide-range of neurodegenerative disorders. The AAV9 serotype crosses the blood-brain barrier and shows enhanced transduction efficiency compared to other serotypes, thus offering advantageous targeting when global transgene expression is required. Neonatal intravenous or intracerebroventricular (i.c.v.) delivery of recombinant AAV9 (rAAV9) have recently proven effective for modeling and treating several rodent models of neurodegenerative disease, however, the technique is associated with variable cellular tropism, making tailored gene transfer a challenge. In the current study, we employ the human synapsin 1 (hSYN1) gene promoter to drive neuron-specific expression of green fluorescent protein (GFP) after neonatal i.c.v. injection of rAAV9 in mice. We observed widespread GFP expression in neurons throughout the brain, spinal cord, and peripheral nerves and ganglia at 6 weeks-of-age. Region-specific quantification of GFP expression showed high neuronal transduction rates in substantia nigra pars reticulata (43.9±5.4%), motor cortex (43.5±3.3%), hippocampus (43.1±2.7%), cerebellum (29.6±2.3%), cervical spinal cord (24.9±3.9%), and ventromedial striatum (16.9±4.3%), among others. We found that 14.6±2.2% of neuromuscular junctions innervating the gastrocnemius muscle displayed GFP immunoreactivity. GFP expression was identified in several neuronal sub-types, including nigral tyrosine hydroxylase (TH)-positive dopaminergic cells, striatal dopamine- and cAMP-regulated neuronal phosphoprotein (DARPP-32)-positive neurons, and choline acetyltransferase (ChAT)-positive motor neurons. These results build on contemporary gene transfer techniques, demonstrating that the hSYN1 promoter can be used with rAAV9 to drive robust neuron-specific transgene expression throughout the nervous system.

  10. Methylene blue exerts a neuroprotective effect against traumatic brain injury by promoting autophagy and inhibiting microglial activation

    PubMed Central

    ZHAO, MINGFEI; LIANG, FENG; XU, HANGDI; YAN, WEI; ZHANG, JIANMIN

    2016-01-01

    Traumatic brain injury (TBI) leads to permanent neurological impairment, and methylene blue (MB) exerts central nervous system neuroprotective effects. However, only one previous study has investigated the effectiveness of MB in a controlled cortical impact injury model of TBI. In addition, the specific mechanisms underlying the effect of MB against TBI remain to be elucidated. Therefore, the present study investigated the neuroprotective effect of MB on TBI and the possible mechanisms involved. In a mouse model of TBI, the animals were randomly divided into sham, vehicle (normal saline) or MB groups. The treatment time-points were 24 and 72 h (acute phase of TBI), and 14 days (chronic phase of TBI) post-TBI. The brain water content (BWC), and levels of neuronal death, and autophagy were determined during the acute phase, and neurological deficit, injury volume and microglial activation were assessed at all time-points. The injured hemisphere BWC was significantly increased 24 h post-TBI, and this was attenuated following treatment with MB. There was a significantly higher number of surviving neurons in the MB group, compared with the Vehicle group at 24 and 72 h post-TBI. In the acute phase, the MB-treated animals exhibited significantly upregulated expression of Beclin 1 and increased LC3-II to LC3-I ratios, compared with the vehicle group, indicating an increased rate of autophagy. Neurological functional deficits, measured using the modified neurological severity score, were significantly lower in the acute phase in the MB-treated animals and cerebral lesion volumes in the MB-treated animals were significantly lower, compared with the other groups at all time-points. Microglia were activated 24 h after TBI, peaked at 72 h and persisted until 14 days after TBI. Although the number of Iba-1-positive cells in the vehicle and MB groups 24 h post-TBI were not significantly different, marked microglial inhibition was observed in the MB group 72 h and 14 days after

  11. The extracellular matrix protein laminin-10 promotes blood-brain barrier repair after hypoxia and inflammation in vitro.

    PubMed

    Kangwantas, Korakoch; Pinteaux, Emmanuel; Penny, Jeffrey

    2016-02-01

    The blood-brain barrier (BBB) of the central nervous system (CNS) is essential for normal brain function. However, the loss of BBB integrity that occurs after ischaemic injury is associated with extracellular matrix (ECM) remodelling and inflammation, and contributes to poor outcome. ECM remodelling also contributes to BBB repair after injury, but the precise mechanisms and contribution of specific ECM molecules involved are unknown. Here, we investigated the mechanisms by which hypoxia and inflammation trigger loss of BBB integrity and tested the hypothesis ECM changes could contribute to BBB repair in vitro. We used an in vitro model of the BBB, composed of primary rat brain endothelial cells grown on collagen (Col) I-, Col IV-, fibronectin (FN)-, laminin (LM) 8-, or LM10-coated tissue culture plates, either as a single monolayer culture or on Transwell® inserts above mixed glial cell cultures. Cultures were exposed to oxygen-glucose deprivation (OGD) and/or reoxygenation, in the absence or the presence of recombinant interleukin-1β (IL-1β). Cell adhesion to ECM molecules was assessed by cell attachment and cell spreading assays. BBB dysfunction was assessed by immunocytochemistry for tight junction proteins occludin and zona occludens-1 (ZO-1) and measurement of trans-endothelial electrical resistance (TEER). Change in endothelial expression of ECM molecules was assessed by semi-quantitative RT-PCR. OGD and/or IL-1 induce dramatic changes associated with loss of BBB integrity, including cytoplasmic relocalisation of membrane-associated tight junction proteins occludin and ZO-1, cell swelling, and decreased TEER. OGD and IL-1 also induced gene expression of key ECM molecules associated with the BBB, including FN, Col IV, LM 8, and LM10. Importantly, we found that LM10, but not FN, Col IV, nor LM8, plays a key role in maintenance of BBB integrity and reversed most of the key hallmarks of BBB dysfunction induced by IL-1. Our data unravel new mechanisms of BBB

  12. Ischemic post-conditioning facilitates brain recovery after stroke by promoting Akt/mTOR activity in nude rats.

    PubMed

    Xie, Rong; Wang, Peng; Ji, Xunming; Zhao, Heng

    2013-12-01

    While pre-conditioning is induced before stroke onset, ischemic post-conditioning (IPostC) is performed after reperfusion, which typically refers to a series of mechanical interruption of blood reperfusion after stroke. IPostC is known to reduce infarction in wild-type animals. We investigated if IPostC protects against brain injury induced by focal ischemia in Tcell-deficient nude rats and to examine its effects on Akt and the mammalian target of rapamycin (mTOR) pathway. Although IPostC reduced infarct size at 2 days post-stroke in wild-type rats, it did not attenuate infarction in nude rats. Despite the unaltered infarct size in nude rats, IPostC increased levels of phosphorylated Akt (p-Akt) and Akt isoforms (Akt1, Akt2, Akt3), and p-mTOR, p-S6K and p-4EBP1 in the mTOR pathway, as well as growth associated Protein 43 (GAP43), both in the peri-infarct area and core, 24 h after stroke. IPostC improved neurological function in nude rats 1-30 days after stroke and reduced the extent of brain damage 30 days after stroke. The mTOR inhibitor rapamycin abolished the long-term protective effects of IPostC. We determined that IPostC did not inhibit acute infarction in nude rats but did provide long-term protection by enhancing Akt and mTOR activity during the acute post-stroke phase. Post-conditioning did not attenuate infarction in nude rats measured 2 days post-stroke, but improved neurological function in nude rats and reduced brain damage 30 days after stroke. It resulted in increased-activities of Akt and mTOR, S6K and p-4EBP1. The mTOR inhibitor rapamycin abolished the long-term protective effects of IPostC.

  13. Age-related changes in the proteostasis network in the brain of the naked mole-rat: Implications promoting healthy longevity.

    PubMed

    Triplett, Judy C; Tramutola, Antonella; Swomley, Aaron; Kirk, Jessime; Grimes, Kelly; Lewis, Kaitilyn; Orr, Miranda; Rodriguez, Karl; Cai, Jian; Klein, Jon B; Perluigi, Marzia; Buffenstein, Rochelle; Butterfield, D Allan

    2015-10-01

    The naked mole-rat (NMR) is the longest-lived rodent and possesses several exceptional traits: marked cancer resistance, negligible senescence, prolonged genomic integrity, pronounced proteostasis, and a sustained health span. The underlying molecular mechanisms that contribute to these extraordinary attributes are currently under investigation to gain insights that may conceivably promote and extend human health span and lifespan. The ubiquitin-proteasome and autophagy-lysosomal systems play a vital role in eliminating cellular detritus to maintain proteostasis and have been previously shown to be more robust in NMRs when compared with shorter-lived rodents. Using a 2-D PAGE proteomics approach, differential expression and phosphorylation levels of proteins involved in proteostasis networks were evaluated in the brains of NMRs in an age-dependent manner. We identified 9 proteins with significantly altered levels and/or phosphorylation states that have key roles involved in proteostasis networks. To further investigate the possible role that autophagy may play in maintaining cellular proteostasis, we examined aspects of the PI3K/Akt/mammalian target of rapamycin (mTOR) axis as well as levels of Beclin-1, LC3-I, and LC3-II in the brain of the NMR as a function of age. Together, these results show that NMRs maintain high levels of autophagy throughout the majority of their lifespan and may contribute to the extraordinary health span of these rodents. The potential of augmenting human health span via activating the proteostasis network will require further studies.

  14. Age-related Changes in the Proteostasis Network in the Brain of the Naked Mole-Rat: Implications Promoting Healthy Longevity

    PubMed Central

    Triplett, Judy C.; Tramutola, Antonella; Swomley, Aaron; Kirk, Jessime; Grimes, Kelly; Lewis, Kaitilyn; Orr, Miranda; Rodriguez, Karl; Cai, Jian; Klein, Jon B.; Perluigi, Marzia; Buffenstein, Rochelle; Butterfield, D. Allan

    2016-01-01

    The naked mole-rat (NMR) is the longest-lived rodent and possesses several exceptional traits: marked cancer resistance, negligible senescence, prolonged genomic integrity, pronounced proteostasis, and a sustained healthspan. The underlying molecular mechanisms that contribute to these extraordinary attributes are currently under investigation to gain insights that may conceivably promote and extended human healthspan and lifespan. The ubiquitin-proteasome and autophagy-lysosomal systems play a vital role in eliminating cellular detritus to maintain proteostasis and have been previously shown to be more robust in NMRs when compared to shorter-lived rodents. Using a 2-D PAGE proteomics approach, differential expression and phosphorylation levels of proteins involved in proteostasis networks were evaluated in the brains of NMRs in an age-dependent manner. We identified 9 proteins with significantly altered levels and/or phosphorylation states that have key roles involved in proteostasis networks. To further investigate the possible role that autophagy may play in maintaining cellular proteostasis, we examined aspects of the PI3K/Akt/mammalian target of rapamycin (mTOR) axis as well as levels of Beclin-1, LC3-I, and LC3-II in the brain of the NMR as a function of age. Together, these results show that NMRs maintain high levels of autophagy throughout the majority of their lifespan. PMID:26248058

  15. Rac1-mediated indentation of resting neurons promotes the chain migration of new neurons in the rostral migratory stream of post-natal mouse brain.

    PubMed

    Hikita, Takao; Ohno, Akihisa; Sawada, Masato; Ota, Haruko; Sawamoto, Kazunobu

    2014-03-01

    New neurons generated in the ventricular-subventricular zone in the post-natal brain travel toward the olfactory bulb by using a collective cell migration process called 'chain migration.' These new neurons show a saltatory movement of their soma, suggesting that each neuron cycles through periods of 'rest' during migration. Here, we investigated the role of the resting neurons in chain migration using post-natal mouse brain, and found that they undergo a dynamic morphological change, in which a deep indentation forms in the cell body. Inhibition of Rac1 activity resulted in less indentation of the new neurons in vivo. Live cell imaging using a Förster resonance energy transfer biosensor revealed that Rac1 was activated at the sites of contact between actively migrating and resting new neurons. On the cell surface of resting neurons, Rac1 activation coincided with the formation of the indentation. Furthermore, Rac1 knockdown prevented the indentation from forming and impaired migration along the resting neurons. These results suggest that Rac1 regulates a morphological change in the resting neurons, which allows them to serve as a migratory scaffold, and thereby non-cell-autonomously promotes chain migration. © 2013 International Society for Neurochemistry.

  16. Using architecture and technology to promote improved quality of life for military service members with traumatic brain injury.

    PubMed

    Pasquina, Paul F; Pasquina, Lavinia Fici; Anderson-Barnes, Victoria C; Giuggio, Jeffrey S; Cooper, Rory A

    2010-02-01

    Today, injured service members are surviving wounds that would have been fatal in previous wars. A recent RAND report estimates that approximately 320,000 service members may have experienced a traumatic brain injury (TBI) during deployment, and it is not uncommon for a soldier to sustain multiple associated injuries such as limb loss, paralysis, sensory loss, and psychological damage. As a result, many military service members and their families face significant challenges returning to a high quality of independent life. The architectural concepts of universal design (UD) and evidence-based design (EBD) are gaining interest as an integral part of the rehabilitation process of veterans with TBI. This article examines the possibilities presented by UD and EBD in accordance with the Americans with Disabilities Act of 1990, in terms of high-end building and interior design quality, and possible technological options for individuals with disabilities.

  17. Brain Hemispheres: Panacea 2001?

    ERIC Educational Resources Information Center

    Fagan, Edward R.

    1979-01-01

    As with previous educational fads, each promoted as the answer to all educational ills, brain-theory principles have been used by effective teachers long before the "discovery" of "brain-compatible" teaching methods. (Author/SJL)

  18. Testing promotes long-term learning via stabilizing activation patterns in a large network of brain areas.

    PubMed

    Keresztes, Attila; Kaiser, Daniel; Kovács, Gyula; Racsmány, Mihály

    2014-11-01

    The testing effect refers to the phenomenon that repeated retrieval of memories promotes better long-term retention than repeated study. To investigate the neural correlates of the testing effect, we used event-related functional magnetic resonance imaging methods while participants performed a cued recall task. Prior to the neuroimaging experiment, participants learned Swahili-German word pairs, then half of the word pairs were repeatedly studied, whereas the other half were repeatedly tested. For half of the participants, the neuroimaging experiment was performed immediately after the learning phase; a 1-week retention interval was inserted for the other half of the participants. We found that a large network of areas identified in a separate 2-back functional localizer scan were active during the final recall of the word pair associations. Importantly, the learning strategy (retest or restudy) of the word pairs determined the manner in which the retention interval affected the activations within this network. Recall of previously restudied memories was accompanied by reduced activation within this network at long retention intervals, but no reduction was observed for previously retested memories. We suggest that retrieval promotes learning via stabilizing cue-related activation patterns in a network of areas usually associated with cognitive and attentional control functions.

  19. Combining brain stimulation and video game to promote long-term transfer of learning and cognitive enhancement.

    PubMed

    Looi, Chung Yen; Duta, Mihaela; Brem, Anna-Katharine; Huber, Stefan; Nuerk, Hans-Christoph; Cohen Kadosh, Roi

    2016-02-23

    Cognitive training offers the potential for individualised learning, prevention of cognitive decline, and rehabilitation. However, key research challenges include ecological validity (training design), transfer of learning and long-term effects. Given that cognitive training and neuromodulation affect neuroplasticity, their combination could promote greater, synergistic effects. We investigated whether combining transcranial direct current stimulation (tDCS) with cognitive training could further enhance cognitive performance compared to training alone, and promote transfer within a short period of time. Healthy adults received real or sham tDCS over their dorsolateral prefrontal cortices during two 30-minute mathematics training sessions involving body movements. To examine the role of training, an active control group received tDCS during a non-mathematical task. Those who received real tDCS performed significantly better in the game than the sham group, and showed transfer effects to working memory, a related but non-numerical cognitive domain. This transfer effect was absent in active and sham control groups. Furthermore, training gains were more pronounced amongst those with lower baseline cognitive abilities, suggesting the potential for reducing cognitive inequalities. All effects associated with real tDCS remained 2 months post-training. Our study demonstrates the potential benefit of this approach for long-term enhancement of human learning and cognition.

  20. Combining brain stimulation and video game to promote long-term transfer of learning and cognitive enhancement

    PubMed Central

    Looi, Chung Yen; Duta, Mihaela; Brem, Anna-Katharine; Huber, Stefan; Nuerk, Hans-Christoph; Cohen Kadosh, Roi

    2016-01-01

    Cognitive training offers the potential for individualised learning, prevention of cognitive decline, and rehabilitation. However, key research challenges include ecological validity (training design), transfer of learning and long-term effects. Given that cognitive training and neuromodulation affect neuroplasticity, their combination could promote greater, synergistic effects. We investigated whether combining transcranial direct current stimulation (tDCS) with cognitive training could further enhance cognitive performance compared to training alone, and promote transfer within a short period of time. Healthy adults received real or sham tDCS over their dorsolateral prefrontal cortices during two 30-minute mathematics training sessions involving body movements. To examine the role of training, an active control group received tDCS during a non-mathematical task. Those who received real tDCS performed significantly better in the game than the sham group, and showed transfer effects to working memory, a related but non-numerical cognitive domain. This transfer effect was absent in active and sham control groups. Furthermore, training gains were more pronounced amongst those with lower baseline cognitive abilities, suggesting the potential for reducing cognitive inequalities. All effects associated with real tDCS remained 2 months post-training. Our study demonstrates the potential benefit of this approach for long-term enhancement of human learning and cognition. PMID:26902664

  1. Long-term consumption of sugar-sweetened beverage during the growth period promotes social aggression in adult mice with proinflammatory responses in the brain

    PubMed Central

    Choi, Jung-Yun; Park, Mi-Na; Kim, Chong-Su; Lee, Young-Kwan; Choi, Eun Young; Chun, Woo Young; Shin, Dong-Mi

    2017-01-01

    Overconsumption of sugar-sweetened beverages (SSBs) is known to be a key contributor to the obesity epidemic; however, its effects on behavioral changes are yet to be fully studied. In the present study, we examined the long-term effects of SSB on social aggression in mice. Three-week-old weaned mice started to drink either a 30 w/v% sucrose solution (S30), plain water (CT), or an aspartame solution with sweetness equivalent to the sucrose solution (A30) and continued to drink until they were 11-week-old adults. Aggressive behaviors were assessed by the resident-intruder test. We found that SSB significantly promoted social aggression, accompanied by heightened serum corticosterone and reduced body weight. To understand the underlying mechanism, we performed transcriptome analyses of brain. The profiles of mice on S30 were dramatically different from those on CT or A30. Transcriptional networks related to immunological function were significantly dysregulated by SSB. FACS analysis of mice on S30 revealed increased numbers of inflammatory cells in peripheral blood. Interestingly, the artificial sweetener failed to mimic the effects of sugar on social aggression and inflammatory responses. These results demonstrate that SSB promotes aggressive behaviors and provide evidence that sugar reduction strategies may be useful in efforts to prevent social aggression. PMID:28393871

  2. Long-term consumption of sugar-sweetened beverage during the growth period promotes social aggression in adult mice with proinflammatory responses in the brain.

    PubMed

    Choi, Jung-Yun; Park, Mi-Na; Kim, Chong-Su; Lee, Young-Kwan; Choi, Eun Young; Chun, Woo Young; Shin, Dong-Mi

    2017-04-10

    Overconsumption of sugar-sweetened beverages (SSBs) is known to be a key contributor to the obesity epidemic; however, its effects on behavioral changes are yet to be fully studied. In the present study, we examined the long-term effects of SSB on social aggression in mice. Three-week-old weaned mice started to drink either a 30 w/v% sucrose solution (S30), plain water (CT), or an aspartame solution with sweetness equivalent to the sucrose solution (A30) and continued to drink until they were 11-week-old adults. Aggressive behaviors were assessed by the resident-intruder test. We found that SSB significantly promoted social aggression, accompanied by heightened serum corticosterone and reduced body weight. To understand the underlying mechanism, we performed transcriptome analyses of brain. The profiles of mice on S30 were dramatically different from those on CT or A30. Transcriptional networks related to immunological function were significantly dysregulated by SSB. FACS analysis of mice on S30 revealed increased numbers of inflammatory cells in peripheral blood. Interestingly, the artificial sweetener failed to mimic the effects of sugar on social aggression and inflammatory responses. These results demonstrate that SSB promotes aggressive behaviors and provide evidence that sugar reduction strategies may be useful in efforts to prevent social aggression.

  3. Either brain-derived neurotrophic factor or neurotrophin-3 only neurotrophin-producing grafts promote locomotor recovery in untrained spinalized cats.

    PubMed

    Ollivier-Lanvin, Karen; Fischer, Itzhak; Tom, Veronica; Houlé, John D; Lemay, Michel A

    2015-01-01

    Background. Transplants of cellular grafts expressing a combination of 2 neurotrophic factors, brain-derived neurotrophic factor (BDNF) and neurotrophin-3 (NT-3) have been shown to promote and enhance locomotor recovery in untrained spinalized cats. Based on the time course of recovery and the absence of axonal growth through the transplants, we hypothesized that recovery was due to neurotrophin-mediated plasticity within the existing locomotor circuitry of the lumbar cord. Since BDNF and NT-3 have different effects on axonal sprouting and synaptic connectivity/strengthening, it becomes important to ascertain the contribution of each individual neurotrophins to recovery. Objective. We studied whether BDNF or NT-3 only producing cellular grafts would be equally effective at restoring locomotion in untrained spinal cats. Methods. Rat fibroblasts secreting one of the 2 neurotrophins were grafted into the T12 spinal transection site of adult cats. Four cats in each group (BDNF alone or NT-3 alone) were evaluated. Locomotor recovery was tested on a treadmill at 3 and 5 weeks post-transection/grafting. Results. Animals in both groups were capable of plantar weight-bearing stepping at speed up to 0.8 m/s as early as 3 weeks and locomotor capabilities were similar at 3 and 5 weeks for both types of graft. Conclusions. Even without locomotor training, either BDNF or NT-3 only producing grafts promote locomotor recovery in complete spinal animals. More clinically applicable delivery methods need to be developed.

  4. Bridging the gap between theory and practice: dynamic systems theory as a framework for understanding and promoting recovery of function in children and youth with acquired brain injuries.

    PubMed

    Levac, Danielle; DeMatteo, Carol

    2009-11-01

    A theoretical framework can help physiotherapists understand and promote recovery of function in children and youth with acquired brain injuries (ABI). Physiotherapy interventions for this population have traditionally been based in hierarchical-maturational theories of motor development emphasizing the role of the central nervous system (CNS) in controlling motor behaviour. In contrast, Dynamic Systems Theory (DST) views movement as resulting from the interaction of many subsystems within the individual, features of the functional task to be accomplished, and the environmental context in which the movement takes place. DST is now a predominant theoretical framework in pediatric physiotherapy. The purpose of this article is to describe how DST can be used to understand and promote recovery of function after pediatric ABI. A DST-based approach for children and youth with ABI does not treat the impaired CNS in isolation but rather emphasizes the role of all subsystems, including the family and the environment, in influencing recovery. The emphasis is on exploration, problem solving, and practice of functional tasks. A case scenario provides practical recommendations for the use of DST to inform physiotherapy interventions and clinical decision making in the acute phase of recovery from ABI. Future research is required to evaluate the effectiveness of interventions based in this theoretical framework.

  5. Early-life stress changes expression of GnRH and kisspeptin genes and DNA methylation of GnRH3 promoter in the adult zebrafish brain.

    PubMed

    Khor, Yee Min; Soga, Tomoko; Parhar, Ishwar S

    2016-02-01

    Early-life stress can cause long-term effects in the adulthood such as alterations in behaviour, brain functions and reproduction. DNA methylation is a mechanism of epigenetic change caused by early-life stress. Dexamethasone (DEX) was administered to zebrafish larvae to study its effect on reproductive dysfunction. The level of GnRH2, GnRH3, Kiss1 and Kiss2 mRNAs were measured between different doses of DEX treatment groups in adult zebrafish. Kiss1 and GnRH2 expression were increased in the 200mg/L DEX treated while Kiss2 and GnRH3 mRNA levels were up-regulated in the 2mg/L DEX-treated zebrafish. The up-regulation may be related to programming effect of DEX in the zebrafish larvae, causing overcompensation mechanism to increase the mRNA levels. Furthermore, DEX treatment caused negative impact on the development and maturation of the testes, in particular spermatogenesis. Therefore, immature gonadal development may cause positive feedback by increasing GnRH and Kiss. This indicates that DEX can alter the regulation of GnRH2, GnRH3, Kiss1 and Kiss2 in adult zebrafish, which affects maturation of gonads. Computer analysis of 1.5 kb region upstream of the 5' UTR of Kiss1, Kiss2, GnRH2 and GnRH3 promoter showed that there are putative binding sites of glucocorticoid response element and transcription factors involved in stress response. GnRH3 promoter analysed from pre-optic area, ventral telencephalon and ventral olfactory bulb showed higher methylation at CpG residues located on -1410, -1377 and -1355 between control and 2mg/L DEX-treated groups. Hence, early-life DEX treatment can alter methylation of GnRH3 gene promoter, which subsequently affects gene regulation and reproductive functions. Copyright © 2015 Elsevier Inc. All rights reserved.

  6. Brain-Derived Neurotrophic Factor (BDNF) Promotes Cochlear Spiral Ganglion Cell Survival and Function in Deafened, Developing Cats

    PubMed Central

    Leake, Patricia A.; Hradek, Gary T.; Hetherington, Alexander M.; Stakhovskaya, Olga

    2011-01-01

    Postnatal development and survival of spiral ganglion (SG) neurons depend upon both neural activity and neurotrophic support. Our previous studies showed that electrical stimulation from a cochlear implant only partly prevents SG degeneration after early deafness. Thus, neurotrophic agents that might be combined with an implant to improve neural survival are of interest. Recent studies reporting that BDNF promotes SG survival after deafness, have been conducted in rodents and limited to relatively short durations. Our study examined longer duration BDNF treatment in deafened cats that may better model the slow progression of SG degeneration in human cochleae and provides the first study of BDNF in the developing auditory system. Kittens were deafened neonatally, implanted at 4-5 weeks with intracochlear electrodes containing a drug-delivery cannula, and BDNF or artificial perilymph was infused for 10 weeks from a mini-osmotic pump. In BDNF-treated cochleae SG cells grew to normal size and were significantly larger than cells on the contralateral side. However, their morphology was not completely normal and many neurons lacked or had thinned perikaryl myelin. Unbiased stereology was employed to estimate SG cell density, independent of cell size. BDNF was effective in promoting significantly improved survival of SG neurons in these developing animals. BDNF treatment also resulted in higher density and larger size of myelinated radial nerve fibers, sprouting of fibers into the scala tympani, and improvement in electrically-evoked auditory brainstem response thresholds. Although BDNF may have potential therapeutic value in the developing auditory system, many serious obstacles currently preclude clinical application. PMID:21452221

  7. Low Message Sensation Health Promotion Videos Are Better Remembered and Activate Areas of the Brain Associated with Memory Encoding

    PubMed Central

    Jaganathan, Kanchana; Loughead, James W.; Blady, Shira J.; Childress, Anna Rose; Romer, Daniel; Langleben, Daniel D.

    2014-01-01

    Greater sensory stimulation in advertising has been postulated to facilitate attention and persuasion. For this reason, video ads promoting health behaviors are often designed to be high in “message sensation value” (MSV), a standardized measure of sensory intensity of the audiovisual and content features of an ad. However, our previous functional Magnetic Resonance Imaging (fMRI) study showed that low MSV ads were better remembered and produced more prefrontal and temporal and less occipital cortex activation, suggesting that high MSV may divert cognitive resources from processing ad content. The present study aimed to determine whether these findings from anti-smoking ads generalize to other public health topics, such as safe sex. Thirty-nine healthy adults viewed high- and low MSV ads promoting safer sex through condom use, during an fMRI session. Recognition memory of the ads was tested immediately and 3 weeks after the session. We found that low MSV condom ads were better remembered than the high MSV ads at both time points and replicated the fMRI patterns previously reported for the anti-smoking ads. Occipital and superior temporal activation was negatively related to the attitudes favoring condom use (see Condom Attitudes Scale, Methods and Materials section). Psychophysiological interaction (PPI) analysis of the relation between occipital and fronto-temporal (middle temporal and inferior frontal gyri) cortices revealed weaker negative interactions between occipital and fronto-temporal cortices during viewing of the low MSV that high MSV ads. These findings confirm that the low MSV video health messages are better remembered than the high MSV messages and that this effect generalizes across public health domains. The greater engagement of the prefrontal and fronto-temporal cortices by low MSV ads and the greater occipital activation by high MSV ads suggest that that the “attention-grabbing” high MSV format could impede the learning and retention of

  8. Low message sensation health promotion videos are better remembered and activate areas of the brain associated with memory encoding.

    PubMed

    Seelig, David; Wang, An-Li; Jagannathan, Kanchana; Jaganathan, Kanchana; Loughead, James W; Blady, Shira J; Childress, Anna Rose; Romer, Daniel; Langleben, Daniel D

    2014-01-01

    Greater sensory stimulation in advertising has been postulated to facilitate attention and persuasion. For this reason, video ads promoting health behaviors are often designed to be high in "message sensation value" (MSV), a standardized measure of sensory intensity of the audiovisual and content features of an ad. However, our previous functional Magnetic Resonance Imaging (fMRI) study showed that low MSV ads were better remembered and produced more prefrontal and temporal and less occipital cortex activation, suggesting that high MSV may divert cognitive resources from processing ad content. The present study aimed to determine whether these findings from anti-smoking ads generalize to other public health topics, such as safe sex. Thirty-nine healthy adults viewed high- and low MSV ads promoting safer sex through condom use, during an fMRI session. Recognition memory of the ads was tested immediately and 3 weeks after the session. We found that low MSV condom ads were better remembered than the high MSV ads at both time points and replicated the fMRI patterns previously reported for the anti-smoking ads. Occipital and superior temporal activation was negatively related to the attitudes favoring condom use (see Condom Attitudes Scale, Methods and Materials section). Psychophysiological interaction (PPI) analysis of the relation between occipital and fronto-temporal (middle temporal and inferior frontal gyri) cortices revealed weaker negative interactions between occipital and fronto-temporal cortices during viewing of the low MSV that high MSV ads. These findings confirm that the low MSV video health messages are better remembered than the high MSV messages and that this effect generalizes across public health domains. The greater engagement of the prefrontal and fronto-temporal cortices by low MSV ads and the greater occipital activation by high MSV ads suggest that that the "attention-grabbing" high MSV format could impede the learning and retention of public

  9. A-Disintegrin and Metalloprotease (ADAM) 10 and 17 promote self-renewal of brain tumor sphere forming cells.

    PubMed

    Bulstrode, Harry; Jones, Louise M; Siney, Elodie J; Sampson, Jessica M; Ludwig, Andreas; Gray, William P; Willaime-Morawek, Sandrine

    2012-12-29

    It has been proposed that gliomas contain a subpopulation of 'Brain Tumor Stem Cells' (BTSCs), which demonstrate resistance to conventional therapies. A potential component of the environment governing the behavior of these BTSCs is a class of transmembrane proteins with structural and signaling functions, the A-Disintegrin And Metalloproteases (ADAMs). In this study we confirm overexpression of ADAM10 and 17 in human glioma tissue compared to human controls, and especially in tumor sphere cultures thought to enrich for BTSCs. Inhibition of ADAM10/17 function impairs the growth of tumor spheres with evidence of depletion of the sphere forming cell population. This results from a combination of reduced proliferation, cell death and a switch of sphere-forming cells away from symmetric self-renewal division towards neuronal differentiation. A developing appreciation of the role of ADAMs in BTSC promises insights into pathophysiology and potential therapeutic avenues in this intractable group of tumors. Copyright © 2012 Elsevier Ireland Ltd. All rights reserved.

  10. Long-term viral brain-derived neurotrophic factor delivery promotes spasticity in rats with a cervical spinal cord hemisection.

    PubMed

    Fouad, Karim; Bennett, David J; Vavrek, Romana; Blesch, Armin

    2013-01-01

    We have recently reported that rats with complete thoracic spinal cord injury (SCI) that received a combinatorial treatment, including viral brain-derived neurotrophic factor (BDNF) delivery in the spinal cord, not only showed enhanced axonal regeneration, but also deterioration of hind-limb motor function. By demonstrating that BDNF over-expression can trigger spasticity-like symptoms in a rat model of sacral SCI, we proposed a causal relationship between the observed spasticity-like symptoms (i.e., resistance to passive range of motion) and the over-expression of BDNF. The current study was originally designed to evaluate a comparable combined treatment for cervical SCI in the rat to improve motor recovery. Once again we found similar signs of spasticity involving clenching of the paws and wrist flexion. This finding changed the focus of the study and, we then explored whether this spasticity-like symptom is directly related to the over-expression of BDNF by administering a BDNF antagonist. Using electromyographic measurements we showed that this treatment gradually diminished the resistance to overcome forelimb flexion in an acute experiment. Thus, we conclude that neuro-excitatory effects of chronic BDNF delivery together with diminished descending control after SCI can result in adverse effects.

  11. Project Career: An individualized postsecondary approach to promoting independence, functioning, and employment success among students with traumatic brain injuries.

    PubMed

    Minton, Deborah; Elias, Eileen; Rumrill, Phillip; Hendricks, Deborah J; Jacobs, Karen; Leopold, Anne; Nardone, Amanda; Sampson, Elaine; Scherer, Marcia; Gee Cormier, Aundrea; Taylor, Aiyana; DeLatte, Caitlin

    2017-09-14

    Project Career is a five-year interdisciplinary demonstration project funded by NIDILRR. It provides technology-driven supports, merging Cognitive Support Technology (CST) evidence-based practices and rehabilitation counseling, to improve postsecondary and employment outcomes for veteran and civilian undergraduate students with traumatic brain injury (TBI). Provide a technology-driven individualized support program to improve career and employment outcomes for students with TBI. Project staff provide assessments of students' needs relative to assistive technology, academic achievement, and career preparation; provide CST training to 150 students; match students with mentors; provide vocational case management; deliver job development and placement assistance; and maintain an electronic portal regarding accommodation and career resources. Participating students receive cognitive support technology training, academic enrichment, and career preparatory assistance from trained professionals at three implementation sites. Staff address cognitive challenges using the 'Matching Person with Technology' assessment to accommodate CST use (iPad and selected applications (apps)). JBS International (JBS) provides the project's evaluation. To date, 117 students participate with 63% report improved life quality and 75% report improved academic performance. Project Career provides a national model based on best practices for enabling postsecondary students with TBI to attain academic, employment, and career goals.

  12. Endothelial VWF promotes blood-brain barrier flexibility and provides protection from hypoxia and seizures in mice

    PubMed Central

    Suidan, Georgette L.; Brill, Alexander; De Meyer, Simon F.; Voorhees, Jaymie R.; Cifuni, Stephen M.; Cabral, Jessica E.; Wagner, Denisa D.

    2013-01-01

    Objective Aberrant blood-brain barrier (BBB) permeability is a hallmark pathology of many central nervous system diseases. von Willebrand factor (VWF) is stored in endothelial Weibel-Palade bodies from where it is released upon activation into plasma and basement membrane. VWF’s role in endothelial homeostasis is unclear. The goal of this study was to assess the role of VWF in disease models associated with increased BBB permeability. Approach and Results We did not find any differences in BBB permeability to Evan’s blue dye at baseline between wild-type (WT) and VWF−/− animals. We next utilized two models presenting with increased BBB permeability, hypoxia/reoxygenation and pilocarpine-induced status epilepticus, to assess the response of VWF−/− animals. In both models, VWF−/− mice maintained a tighter BBB than WT. VWF−/− mice fared worse in both conditions with nearly 100% of VWF−/− mice dying within 120 minutes after pilocarpine administration while more than 80% of WT animals survived. Investigation into the status of tight junction proteins revealed that VWF−/− mice expressed more claudin-5 at baseline. In vitro work confirmed that the presence of subendothelial VWF is inhibitory to claudin-5 expression. Conclusions VWF-deficiency confers partial preservation of BBB integrity after hypoxia/reoxygenation and seizures. Surprisingly, this decrease in BBB permeability did not result in protection of the animals as they demonstrated more severe pathology in both models when compared to WT animals. These data suggest that a rigid BBB is detrimental (to the organism) during certain disease states and that VWF release may provide desired flexibility under stress. PMID:23825365

  13. Neural Progenitor Cell Transplantation Promotes Neuroprotection, Enhances Hippocampal Neurogenesis, and Improves Cognitive Outcomes after Traumatic Brain Injury

    PubMed Central

    Blaya, Meghan O.; Tsoulfas, Pantelis; Bramlett, Helen M.; Dietrich, W. Dalton

    2014-01-01

    Transplantation of neural progenitor cells (NPCs) may be a potential treatment strategy for traumatic brain injury (TBI) due to their intrinsic advantages, including the secretion of neurotrophins. Neurotrophins are critical for neuronal survival and repair, but their clinical use is limited. In this study, we hypothesized that pericontusional transplantation of NPCs genetically modified to secrete a synthetic, human multineurotrophin (MNTS1) would overcome some of the limitations of traditional neurotrophin therapy. MNTS1 is a multifunctional neurotrophin that binds all three tropomyosin-related kinase (Trk) receptors, recapitulating the prosurvival activity of 3 endogenous mature neurotrophins. NPCs obtained from rat fetuses at E15 were transduced with lentiviral vectors containing MNTS1 and GFP constructs (MNTS1-NPCs) or fluorescent constructs alone (control GFP-NPCs). Adult rats received fluid percussion-induced TBI or sham surgery. Animals were transplanted 1 week later with control GFP-NPCs, MNTS1-NPCs, or injected with saline (vehicle). At five weeks, animals were evaluated for hippocampal-dependent spatial memory. Six weeks post surgery, we observed significant survival and neuronal differentiation of MNTS1-NPCs and injury-activated tropism towards contused regions. NPCs displayed processes that extended into several remote structures, including the hippocampus and contralateral cortex. Both GFP- and MNTS1-NPCs conferred significant preservation of pericontusional host tissues and enhanced hippocampal neurogenesis. NPC transplantation improved spatial memory capacity on the Morris water maze (MWM) task. Transplant recipients exhibited escape latencies approximately half that of injured vehicle controls. While we observed greater transplant survival and neuronal differentiation of MNTS1-NPCs, our collective findings suggest that MNTS1 may be superfluous in terms of preserving the cytoarchitecture and rescuing behavioral deficits given the lack of significant

  14. Neural progenitor cell transplantation promotes neuroprotection, enhances hippocampal neurogenesis, and improves cognitive outcomes after traumatic brain injury.

    PubMed

    Blaya, Meghan O; Tsoulfas, Pantelis; Bramlett, Helen M; Dietrich, W Dalton

    2015-02-01

    Transplantation of neural progenitor cells (NPCs) may be a potential treatment strategy for traumatic brain injury (TBI) due to their intrinsic advantages, including the secretion of neurotrophins. Neurotrophins are critical for neuronal survival and repair, but their clinical use is limited. In this study, we hypothesized that pericontusional transplantation of NPCs genetically modified to secrete a synthetic, human multineurotrophin (MNTS1) would overcome some of the limitations of traditional neurotrophin therapy. MNTS1 is a multifunctional neurotrophin that binds all three tropomyosin-related kinase (Trk) receptors, recapitulating the prosurvival activity of 3 endogenous mature neurotrophins. NPCs obtained from rat fetuses at E15 were transduced with lentiviral vectors containing MNTS1 and GFP constructs (MNTS1-NPCs) or fluorescent constructs alone (control GFP-NPCs). Adult rats received fluid percussion-induced TBI or sham surgery. Animals were transplanted 1week later with control GFP-NPCs, MNTS1-NPCs, or injected with saline (vehicle). At five weeks, animals were evaluated for hippocampal-dependent spatial memory. Six weeks post-surgery, we observed significant survival and neuronal differentiation of MNTS1-NPCs and injury-activated tropism toward contused regions. NPCs displayed processes that extended into several remote structures, including the hippocampus and contralateral cortex. Both GFP- and MNTS1-NPCs conferred significant preservation of pericontusional host tissues and enhanced hippocampal neurogenesis. NPC transplantation improved spatial memory capacity on the Morris water maze (MWM) task. Transplant recipients exhibited escape latencies approximately half that of injured vehicle controls. While we observed greater transplant survival and neuronal differentiation of MNTS1-NPCs, our collective findings suggest that MNTS1 may be superfluous in terms of preserving the cytoarchitecture and rescuing behavioral deficits given the lack of significant

  15. Immune Modulation Mediated by Cryptococcal Laccase Promotes Pulmonary Growth and Brain Dissemination of Virulent Cryptococcus neoformans in Mice

    PubMed Central

    Qiu, Yafeng; Davis, Michael J.; Dayrit, Jeremy K.; Hadd, Zachary; Meister, Daniel L.; Osterholzer, John J.; Williamson, Peter R.; Olszewski, Michal A.

    2012-01-01

    C. neoformans is a leading cause of fatal mycosis linked to CNS dissemination. Laccase, encoded by the LAC1 gene, is an important virulence factor implicated in brain dissemination yet little is known about the mechanism(s) accounting for this observation. Here, we investigated whether the presence or absence of laccase altered the local immune response in the lungs by comparing infections with the highly virulent strain, H99 (which expresses laccase) and mutant strain of H99 deficient in laccase (lac1Δ) in a mouse model of pulmonary infection. We found that LAC1 gene deletion decreased the pulmonary fungal burden and abolished CNS dissemination at weeks 2 and 3. Furthermore, LAC1 deletion lead to: 1) diminished pulmonary eosinophilia; 2) increased accumulation of CD4+ and CD8+ T cells; 3) increased Th1 and Th17 cytokines yet decreased Th2 cytokines; and 4) lung macrophage shifting of the lung macrophage phenotype from M2- towards M1-type activation. Next, we used adoptively transferred CD4+ T cells isolated from pulmonary lymph nodes of mice infected with either lac1Δ or H99 to evaluate the role of laccase-induced immunomodulation on CNS dissemination. We found that in comparison to PBS treated mice, adoptively transferred CD4+ T cells isolated from lac1Δ-infected mice decreased CNS dissemination, while those isolated from H99-infected mice increased CNS dissemination. Collectively, our findings reveal that immune modulation away from Th1/Th17 responses and towards Th2 responses represents a novel mechanism through which laccase can contribute to cryptococcal virulence. Furthermore, our data support the hypothesis that laccase-induced changes in polarization of CD4+ T cells contribute to CNS dissemination. PMID:23110112

  16. Immune modulation mediated by cryptococcal laccase promotes pulmonary growth and brain dissemination of virulent Cryptococcus neoformans in mice.

    PubMed

    Qiu, Yafeng; Davis, Michael J; Dayrit, Jeremy K; Hadd, Zachary; Meister, Daniel L; Osterholzer, John J; Williamson, Peter R; Olszewski, Michal A

    2012-01-01

    C. neoformans is a leading cause of fatal mycosis linked to CNS dissemination. Laccase, encoded by the LAC1 gene, is an important virulence factor implicated in brain dissemination yet little is known about the mechanism(s) accounting for this observation. Here, we investigated whether the presence or absence of laccase altered the local immune response in the lungs by comparing infections with the highly virulent strain, H99 (which expresses laccase) and mutant strain of H99 deficient in laccase (lac1Δ) in a mouse model of pulmonary infection. We found that LAC1 gene deletion decreased the pulmonary fungal burden and abolished CNS dissemination at weeks 2 and 3. Furthermore, LAC1 deletion lead to: 1) diminished pulmonary eosinophilia; 2) increased accumulation of CD4+ and CD8+ T cells; 3) increased Th1 and Th17 cytokines yet decreased Th2 cytokines; and 4) lung macrophage shifting of the lung macrophage phenotype from M2- towards M1-type activation. Next, we used adoptively transferred CD4+ T cells isolated from pulmonary lymph nodes of mice infected with either lac1Δ or H99 to evaluate the role of laccase-induced immunomodulation on CNS dissemination. We found that in comparison to PBS treated mice, adoptively transferred CD4+ T cells isolated from lac1Δ-infected mice decreased CNS dissemination, while those isolated from H99-infected mice increased CNS dissemination. Collectively, our findings reveal that immune modulation away from Th1/Th17 responses and towards Th2 responses represents a novel mechanism through which laccase can contribute to cryptococcal virulence. Furthermore, our data support the hypothesis that laccase-induced changes in polarization of CD4+ T cells contribute to CNS dissemination.

  17. Acute cardiac support with intravenous milrinone promotes recovery from early brain injury in a murine model of severe subarachnoid hemorrhage.

    PubMed

    Mutoh, Tomoko; Mutoh, Tatsushi; Nakamura, Kazuhiro; Yamamoto, Yukiko; Tsuru, Yoshiharu; Tsubone, Hirokazu; Ishikawa, Tatsuya; Taki, Yasuyuki

    2016-12-23

    Early brain injury/ischemia (EBI) is a serious complication early after subarachnoid hemorrhage (SAH) that contributes to development of delayed cerebral ischemia (DCI). This study aimed to determine the role of inotropic cardiac support using milrinone (MIL) on restoring acute cerebral hypoperfusion attributable to EBI and improving outcomes after experimental SAH. Forty-three male C57BL/6 mice were assigned to either sham surgery (SAH-sham), SAH induced by endovascular perforation plus postconditioning with 2% isoflurane (Control), or SAH plus isoflurane combined with MIL with and without hypoxia-inducible factor inhibitor (HIF-I) pretreatment. Cardiac output (CO) during intravenous MIL infusion (0.25-0.75 μg/kg/min) between 1.5 and 2.5h after SAH induction was monitored with Doppler-echocardiography. MRI-continuous arterial spin labeling was used for quantitative CBF measurements. Neurobehavioral function was assessed daily by neurological score and open field test. DCI was analyzed 3 days later by determining infarction on MRI. Mild reduction of cardiac output (CO) and global cerebral blood flow (CBF) depression were notable early after SAH. MIL increased CO in a dose-dependent manner (P <0.001), which was accompanied by improved hypoperfusion, incidence of DCI and functional recovery than Control (P <0.05). The neuroprotective effects afforded by MIL or Control were attenuated by HIF inhibition (P <0.05). These results suggest that MIL improves acute hypoperfusion by its inotropic effect, leading to neurobehavioral improvement in mice after severe SAH, in which HIF may be acting as a critical mediator. This article is protected by copyright. All rights reserved.

  18. An elevated level of circulating galanin promotes developmental expression of myelin basic protein in the mouse brain.

    PubMed

    Lyubetska, H; Zhang, L; Kong, J; Vrontakis, M

    2015-01-22

    Myelinogenesis is a scheduled process that is regulated by the intrinsic properties of the cell and extracellular signals. Galanin (GAL) is a bioactive neuropeptide that is widely distributed throughout the nervous system. Chronic increase in circulating GAL levels protects the demyelination processes. Furthermore, GAL is synthesized in myelin-producing glial cells, such as oligodendrocytes and its expression level is at its highest between postnatal days 10 and 40. In the present study, we use our GAL transgenic mouse model to examine the effects of GAL on postnatal myelinogenesis in the CNS. Although we observed no difference in the proliferation of oligodendrocyte precursor cells, we found that GAL has a strong pro-myelinating effect. The transgenic mice at postnatal day 10 appeared to undergo myelinogenesis at an accelerated rate, as demonstrated by the increase in myelin basic protein (MBP) synthesis. The immunohistochemical results are consistent with our preliminary findings that suggest that GAL is a regulator of myelination and may be one of the myelination promoters. This finding is especially important for studies focusing on endogenous molecules for treating myelin-related diseases, such as multiple sclerosis and other leukodystrophies.

  19. Heat-shock protein 90 (Hsp90) promotes opioid-induced anti-nociception by an ERK mitogen-activated protein kinase (MAPK) mechanism in mouse brain.

    PubMed

    Lei, Wei; Mullen, Nathan; McCarthy, Sarah; Brann, Courtney; Richard, Philomena; Cormier, James; Edwards, Katie; Bilsky, Edward J; Streicher, John M

    2017-06-23

    Recent advances in developing opioid treatments for pain with reduced side effects have focused on the signaling cascades of the μ-opioid receptor (MOR). However, few such signaling targets have been identified for exploitation. To address this need, we explored the role of heat-shock protein 90 (Hsp90) in opioid-induced MOR signaling and pain, which has only been studied in four previous articles. First, in four cell models of MOR signaling, we found that Hsp90 inhibition for 24 h with the inhibitor 17-N-allylamino-17-demethoxygeldanamycin (17-AAG) had different effects on protein expression and opioid signaling in each line, suggesting that cell models may not be reliable for predicting pharmacology with this protein. We thus developed an in vivo model using CD-1 mice with an intracerebroventricular injection of 17-AAG for 24 h. We found that Hsp90 inhibition strongly blocked morphine-induced anti-nociception in models of post-surgical and HIV neuropathic pain but only slightly blocked anti-nociception in a naive tail-flick model, while enhancing morphine-induced precipitated withdrawal. Seeking a mechanism for these changes, we found that Hsp90 inhibition blocks ERK MAPK activation in the periaqueductal gray and caudal brain stem. We tested these signaling changes by inhibiting ERK in the above-mentioned pain models and found that ERK inhibition could account for all of the changes in anti-nociception induced by Hsp90 inhibition. Taken together, these findings suggest that Hsp90 promotes opioid-induced anti-nociception by an ERK mechanism in mouse brain and that Hsp90 could be a future target for improving the therapeutic index of opioid drugs. © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.

  20. Promoting neuroplasticity for motor rehabilitation after stroke: considering the effects of aerobic exercise and genetic variation on brain-derived neurotrophic factor.

    PubMed

    Mang, Cameron S; Campbell, Kristin L; Ross, Colin J D; Boyd, Lara A

    2013-12-01

    Recovery of motor function after stroke involves relearning motor skills and is mediated by neuroplasticity. Recent research has focused on developing rehabilitation strategies that facilitate such neuroplasticity to maximize functional outcome poststroke. Although many molecular signaling pathways are involved, brain-derived neurotrophic factor (BDNF) has emerged as a key facilitator of neuroplasticity involved in motor learning and rehabilitation after stroke. Thus, rehabilitation strategies that optimize BDNF effects on neuroplasticity may be especially effective for improving motor function poststroke. Two potential poststroke rehabilitation strategies that consider the importance of BDNF are the use of aerobic exercise to enhance brain function and the incorporation of genetic information to individualize therapy. Converging evidence demonstrates that aerobic exercise increases BDNF production and consequently enhances learning and memory processes. Nevertheless, a common genetic variant reduces activity-dependent secretion of the BDNF protein. Thus, BDNF gene variation may affect response to motor rehabilitation training and potentially modulate the effects of aerobic exercise on neuroplasticity. This perspective article discusses evidence that aerobic exercise promotes neuroplasticity by increasing BDNF production and considers how aerobic exercise may facilitate the acquisition and retention of motor skills for poststroke rehabilitation. Next, the impact of the BDNF gene val66met polymorphism on motor learning and response to rehabilitation is explored. It is concluded that the effects of aerobic exercise on BDNF and motor learning may be better exploited if aerobic exercise is paired more closely in time with motor training. Additionally, information about BDNF genotype could provide insight into the type and magnitude of effects that aerobic exercise may have across individuals and potentially help guide an individualized prescription of aerobic exercise

  1. Promoting Neuroplasticity for Motor Rehabilitation After Stroke: Considering the Effects of Aerobic Exercise and Genetic Variation on Brain-Derived Neurotrophic Factor

    PubMed Central

    Mang, Cameron S.; Campbell, Kristin L.; Ross, Colin J.D.

    2013-01-01

    Recovery of motor function after stroke involves relearning motor skills and is mediated by neuroplasticity. Recent research has focused on developing rehabilitation strategies that facilitate such neuroplasticity to maximize functional outcome poststroke. Although many molecular signaling pathways are involved, brain-derived neurotrophic factor (BDNF) has emerged as a key facilitator of neuroplasticity involved in motor learning and rehabilitation after stroke. Thus, rehabilitation strategies that optimize BDNF effects on neuroplasticity may be especially effective for improving motor function poststroke. Two potential poststroke rehabilitation strategies that consider the importance of BDNF are the use of aerobic exercise to enhance brain function and the incorporation of genetic information to individualize therapy. Converging evidence demonstrates that aerobic exercise increases BDNF production and consequently enhances learning and memory processes. Nevertheless, a common genetic variant reduces activity-dependent secretion of the BDNF protein. Thus, BDNF gene variation may affect response to motor rehabilitation training and potentially modulate the effects of aerobic exercise on neuroplasticity. This perspective article discusses evidence that aerobic exercise promotes neuroplasticity by increasing BDNF production and considers how aerobic exercise may facilitate the acquisition and retention of motor skills for poststroke rehabilitation. Next, the impact of the BDNF gene val66met polymorphism on motor learning and response to rehabilitation is explored. It is concluded that the effects of aerobic exercise on BDNF and motor learning may be better exploited if aerobic exercise is paired more closely in time with motor training. Additionally, information about BDNF genotype could provide insight into the type and magnitude of effects that aerobic exercise may have across individuals and potentially help guide an individualized prescription of aerobic exercise

  2. The nuclear splicing factor RNA binding motif 5 promotes caspase activation in human neuronal cells, and increases after traumatic brain injury in mice

    PubMed Central

    Jackson, Travis C; Du, Lina; Janesko-Feldman, Keri; Vagni, Vincent A; Dezfulian, Cameron; Poloyac, Samuel M; Jackson, Edwin K; Clark, Robert SB; Kochanek, Patrick M

    2015-01-01

    Splicing factors (SFs) coordinate nuclear intron/exon splicing of RNA. Splicing factor disturbances can cause cell death. RNA binding motif 5 (RBM5) and 10 (RBM10) promote apoptosis in cancer cells by activating detrimental alternative splicing of key death/survival genes. The role(s) of RBM5/10 in neurons has not been established. Here, we report that RBM5 knockdown in human neuronal cells decreases caspase activation by staurosporine. In contrast, RBM10 knockdown augments caspase activation. To determine whether brain injury alters RBM signaling, we measured RBM5/10 protein in mouse cortical/hippocampus homogenates after controlled cortical impact (CCI) traumatic brain injury (TBI) plus hemorrhagic shock (CCI+HS). The RBM5/10 staining was higher 48  to 72 hours after injury and appeared to be increased in neuronal nuclei of the hippocampus. We also measured levels of other nuclear SFs known to be essential for cellular viability and report that splicing factor 1 (SF1) but not splicing factor 3A (SF3A) decreased 4  to 72 hours after injury. Finally, we confirm that RBM5/10 regulate protein expression of several target genes including caspase-2, cellular FLICE-like inhibitory protein (c-FLIP), LETM1 Domain-Containing Protein 1 (LETMD1), and amyloid precursor-like protein 2 (APLP2) in neuronal cells. Knockdown of RBM5 appeared to increase expression of c-FLIP(s), LETMD1, and APLP2 but decrease caspase-2. PMID:25586139

  3. Predator threat stress promotes long lasting anxiety-like behaviors and modulates synaptophysin and CB1 receptors expression in brain areas associated with PTSD symptoms.

    PubMed

    Campos, Alline Cristina; Ferreira, Frederico Rogério; da Silva, Wilson Araujo; Guimarães, Francisco Silveira

    2013-01-15

    Several studies have suggested that changes in hippocampal, prefrontal cortex and amygdaloid complex function are associated with the main symptoms of Posttraumatic Stress Disorder (PTSD). Predator exposure can mimic some aspects of PSTD such as hyperarousal and chronic anxiety. However, little is known about the neural substrate involved in this model. Synaptophysin (SYP) expression has been used to evaluate synaptic plastic changes while cannabinoids have emerged as a therapeutic target for the treatment of stress- and anxiety-related disorders. The present work evaluated whether the long lasting behavioral effects evoked by predator exposure are associated to long-term changes in the expression of the Cannabinoid receptor 1 (CB1) and the synaptic protein SYP in brain areas related to the genesis of PTSD symptoms (frontal cortex, hippocampus and amygdaloid complex). Male Wistar rats were exposed to a live or a dummy cat and seven days later submitted to the elevated plus maze test. To explore possible neurobiological mechanisms involved in these effects, CB1 receptor and SYP mRNA expression were measured in the hippocampus, frontal cortex and amygdaloid complex. Single predator exposure promoted long-lasting anxiogenic effects. Seven days after predator threat CB1 mRNA expression was down regulated in the frontal cortex and amygdaloid complex while SYP gene was up regulated in the amygdaloid complex. Our results suggested that predator exposure causes long-lasting anxiogenic effects associated with hyperactivation of amygdaloid complex and modulation of CB1 receptor in brain areas related to PTSD symptoms. Copyright © 2012 Elsevier Ireland Ltd. All rights reserved.

  4. Activities and interim outcomes of a multi-site development project to promote cognitive support technology use and employment success among postsecondary students with traumatic brain injuries.

    PubMed

    Hendricks, Deborah J; Sampson, Elaine; Rumrill, Phillip; Leopold, Anne; Elias, Eileen; Jacobs, Karen; Nardone, Amanda; Scherer, Marcia; Stauffer, Callista

    2015-01-01

    This article describes the activities and interim outcomes of a multi-site development project called Project Career, designed to promote cognitive support technology (CST) use and employment success for college and university students with traumatic brain injuries (TBIs). To obtain early intervention results from participants in Project Career's first 18 months of operation. Fifty-six students with TBI have participated to date across three implementation sites in Massachusetts, Ohio, and West Virginia, with 25 of these participants being military veterans. Descriptive analyses provide information regarding the participants, the barriers they face due to their TBI in obtaining a post-secondary education, and the impact services provided by Project Career have had to date in ameliorating those difficulties. Inferential statistical analyses provide preliminary results regarding program effectiveness. Preliminary results indicate the program is encouraging students to use CST strategies in the form of iPads and cognitive enhancement applications (also known as 'apps'). Significant results indicate participants are more positive, independent, and social; participants have a more positive attitude toward technology after six months in the program; and participants reported significantly improved experiences with technology during their first six months in the program. Participating students are actively preparing for their careers after graduation through a wide range of intensive vocational supports provided by project staff members.

  5. rAAV-mediated delivery of brain-derived neurotrophic factor promotes neurite outgrowth and protects neurodegeneration in focal ischemic model.

    PubMed

    Zhang, Jingyu; Yu, Zhigang; Yu, Zhiqiang; Yang, Zichao; Zhao, Hong; Liu, Luran; Zhao, Jiexu

    2011-06-20

    Stroke is one of the neurological diseases which lead to permanently neuronal damage after temporary or long-term occlusion of vessels or after heart attack. However, there are few efficient strategies to prevent or treat this kind of insult in clinical because the consequence is irreversible and could be long-lasting after the onset of stroke. Gene therapy especially using viral system has long been addressed to be of great potential to reduce the damage. Here, we generated recombinant adeno-associated virus (rAAV) carrying brain-derived neurotrophic factor (BDNF) gene. Cells infected with rAAV-BDNF could be able to produce functional BDNF which promoted neurite outgrowth and protected neurons from apoptosis induced by serum deprivation. Further more, single injection of rAAV showed neuroprotection against cell death in focal ischemic model. These results showed that rAAV-mediated gene delivery is functional, which shed light to the future application of viral system-based gene therapy in clinical.

  6. Integrin β4 Signaling Promotes Mammary Tumor Cell Adhesion to Brain Microvascular Endothelium by Inducing ErbB2-mediated Secretion of VEGF

    PubMed Central

    Fan, Jie; Cai, Bin; Zeng, Min; Hao, Yanyan

    2015-01-01

    Prior studies have indicated that the β4 integrin promotes mammary tumor invasion and metastasis by combining with ErbB2 and amplifying its signaling capacity. However, the effector pathways and cellular functions by which the β4 integrin exerts these effects are incompletely understood. To examine if β4 signaling plays a role during mammary tumor cell adhesion to microvascular endothelium, we have examined ErbB2-transformed mammary tumor cells expressing either a wild-type (WT) or a signaling-defective form of β4 (1355T). We report that WT cells adhere to brain microvascular endothelium in vitro to a significantly larger extent as compared to 1355T cells. Interestingly, integrin β4 signaling does not exert a direct effect on adhesion to the endothelium or the underlying basement membrane. Rather, it enhances ErbB2-dependent expression of VEGF by tumor cells. VEGF in turn disrupts the tight and adherens junctions of endothelial monolayers, enabling the exposure of underlying basement membrane and increasing the adhesion of tumor cells to the intercellular junctions of endothelium. Inhibition of ErbB2 on tumor cells or the VEGFR-2 on endothelial cells suppresses mammary tumor cell adhesion to microvascular endothelium. Our results indicate that β4 signaling regulates VEGF expression by the mammary tumor cells thereby enhancing their adhesion to microvascular endothelium. PMID:21556948

  7. TRAF6 promotes atypical ubiquitination of mutant DJ-1 and alpha-synuclein and is localized to Lewy bodies in sporadic Parkinson's disease brains.

    PubMed

    Zucchelli, Silvia; Codrich, Marta; Marcuzzi, Federica; Pinto, Milena; Vilotti, Sandra; Biagioli, Marta; Ferrer, Isidro; Gustincich, Stefano

    2010-10-01

    Parkinson's disease (PD) is a neurodegenerative disorder characterized by loss of dopaminergic neurons in the Substantia Nigra and the formation of ubiquitin- and alpha-synuclein (aSYN)-positive cytoplasmic inclusions called Lewy bodies (LBs). Although most PD cases are sporadic, families with genetic mutations have been found. Mutations in PARK7/DJ-1 have been associated with autosomal recessive early-onset PD, while missense mutations or duplications of aSYN (PARK1, PARK4) have been linked to dominant forms of the disease. In this study, we identify the E3 ubiquitin ligase tumor necrosis factor-receptor associated factor 6 (TRAF6) as a common player in genetic and sporadic cases. TRAF6 binds misfolded mutant DJ-1 and aSYN. Both proteins are substrates of TRAF6 ligase activity in vivo. Interestingly, rather than conventional K63 assembly, TRAF6 promotes atypical ubiquitin linkage formation to both PD targets that share K6-, K27- and K29- mediated ubiquitination. Importantly, TRAF6 stimulates the accumulation of insoluble and polyubiquitinated mutant DJ-1 into cytoplasmic aggregates. In human post-mortem brains of PD patients, TRAF6 protein colocalizes with aSYN in LBs. These results reveal a novel role for TRAF6 and for atypical ubiquitination in PD pathogenesis.

  8. Post-Injury Treatment with Rolipram Increases Hemorrhage After Traumatic Brain Injury

    PubMed Central

    Atkins, C.M.; Kang, Y.; Furones, C.; Truettner, J.S.; Alonso, O.F.; Dietrich, W.D.

    2012-01-01

    The pathology caused by traumatic brain injury (TBI) is exacerbated by the inflammatory response of the injured brain. Two pro-inflammatory cytokines that contribute to inflammation after TBI are tumor necrosis factor-α (TNF-α) and interleukin-1β (IL-1β). In previous studies using the parasagittal fluid-percussion brain injury model, we reported that the anti-inflammatory drug rolipram, a phosphodiesterase 4 inhibitor, reduced TNF-α and IL-1β levels and improved histopathological outcome when administered 30 min prior to injury. We now report that treatment with (±)-rolipram given 30 min after injury significantly reduced TNF-α levels in the cortex and hippocampus. However, post-injury administration of (±)-rolipram significantly increased cortical contusion volume and increased atrophy of the cortex as compared to vehicle-treated animals at 10 days post-injury. Thus, despite the reduction in pro-inflammatory cytokine levels, histopathological outcome was worsened with post-TBI (±)-rolipram treatment. Further histological analysis of (±)-rolipram-treated TBI animals revealed significant hemorrhage in the contused brain. Given the well known role of (±)-rolipram to increase vasodilation, it is likely that (±)-rolipram worsened outcome after fluid-percussion brain injury by causing increased bleeding. PMID:22535545

  9. Chronic vitamin C deficiency promotes redox imbalance in the brain but does not alter sodium-dependent vitamin C transporter 2 expression.

    PubMed

    Paidi, Maya D; Schjoldager, Janne G; Lykkesfeldt, Jens; Tveden-Nyborg, Pernille

    2014-04-29

    Vitamin C (VitC) has several roles in the brain acting both as a specific and non-specific antioxidant. The brain upholds a very high VitC concentration and is able to preferentially retain VitC even during deficiency. The accumulation of brain VitC levels much higher than in blood is primarily achieved by the sodium dependent VitC transporter (SVCT2). This study investigated the effects of chronic pre-and postnatal VitC deficiency as well as the effects of postnatal VitC repletion, on brain SVCT2 expression and markers of oxidative stress in young guinea pigs. Biochemical analyses demonstrated significantly decreased total VitC and an increased percentage of dehydroascorbic acid, as well as increased lipid oxidation (malondialdehyde), in the brains of VitC deficient animals (p < 0.0001) compared to controls. VitC repleted animals were not significantly different from controls. No significant changes were detected in either gene or protein expression of SVCT2 between groups or brain regions. In conclusion, chronic pre-and postnatal VitC deficiency increased brain redox imbalance but did not increase SVCT2 expression. Our findings show potential implications for VitC deficiency induced negative effects of redox imbalance in the brain and provide novel insight to the regulation of VitC in the brain during deficiency.

  10. Anterograde delivery of brain-derived neurotrophic factor to striatum via nigral transduction of recombinant adeno-associated virus increases neuronal death but promotes neurogenic response following stroke.

    PubMed

    Gustafsson, Elin; Andsberg, Gunnar; Darsalia, Vladimer; Mohapel, Paul; Mandel, Ronald J; Kirik, Deniz; Lindvall, Olle; Kokaia, Zaal

    2003-06-01

    To explore the role of brain-derived neurotrophic factor for survival and generation of striatal neurons after stroke, recombinant adeno-associated viral vectors carrying brain-derived neurotrophic factor or green fluorescent protein genes were injected into right rat substantia nigra 4-5 weeks prior to 30 min ipsilateral of middle cerebral artery occlusion. The brain-derived neurotrophic factor-recombinant adeno-associated viral transduction markedly increased the production of brain-derived neurotrophic factor protein by nigral cells. Brain-derived neurotrophic factor was transported anterogradely to the striatum and released in biologically active form, as revealed by the hypertrophic response of striatal neuropeptide Y-positive interneurons. Animals transduced with brain-derived neurotrophic factor-recombinant adeno-associated virus also exhibited abnormalities in body posture and movements, including tilted body to the right, choreiform movements of left forelimb and head, and spontaneous, so-called 'barrel' rotation along their long axis. The continuous delivery of brain-derived neurotrophic factor had no effect on the survival of striatal projection neurons after stroke, but exaggerated the loss of cholinergic, and parvalbumin- and neuropeptide Y-positive, gamma-aminobutyric acid-ergic interneurons. The high brain-derived neurotrophic factor levels in the animals subjected to stroke also gave rise to an increased number of striatal cells expressing doublecortin, a marker for migrating neuroblasts, and cells double-labelled with the mitotic marker, 5-bromo-2'-deoxyuridine-5'monophosphate, and early neuronal (Hu) or striatal neuronal (Meis2) markers. Our findings indicate that long-term anterograde delivery of high levels of brain-derived neurotrophic factor increases the vulnerability of striatal interneurons to stroke-induced damage. Concomitantly, brain-derived neurotrophic factor potentiates the stroke-induced neurogenic response, at least at early stages.

  11. Nox4 NADPH oxidase-derived reactive oxygen species, via endogenous carbon monoxide, promote survival of brain endothelial cells during TNF-α-induced apoptosis

    PubMed Central

    Basuroy, Shyamali; Tcheranova, Dilyara; Bhattacharya, Sujoy; Leffler, Charles W.

    2011-01-01

    We investigated the role of reactive oxygen species (ROS) in promoting cell survival during oxidative stress induced by the inflammatory mediator tumor necrosis factor-α (TNF-α) in cerebral microvascular endothelial cells (CMVEC) from newborn piglets. Nox4 is the major isoform of NADPH oxidase responsible for TNF-α-induced oxidative stress and apoptosis in CMVEC. We present novel data that Nox4 NADPH oxidase-derived ROS also initiate a cell survival mechanism by increasing production of a gaseous antioxidant mediator carbon monoxide (CO) by constitutive heme oxygenase-2 (HO-2). TNF-α rapidly enhanced endogenous CO production in a superoxide- and NADPH oxidase-dependent manner in CMVEC with innate, but not with small interfering RNA (siRNA)-downregulated Nox4 activity. CORM-A1, a CO-releasing compound, inhibited Nox4-mediated ROS production and enhanced cell survival in TNF-α-challenged CMVEC. The ROS-induced CO-mediated survival mechanism requires functional interactions between the protein kinase B/Akt and extracellular signal-related kinase (ERK)/p38 MAPK signaling pathways activated by TNF-α. In Akt siRNA-transfected CMVEC and in cells with pharmacologically inhibited Akt, Erk1/2, and p38 mitogen-activated protein kinase (MAPK) activities, CORM-A1 was no longer capable of blocking Nox4 activation and apoptosis caused by TNF-α. Overall, Nox4 NADPH oxidase-derived ROS initiate both death and survival pathways in TNF-α-challenged CMVEC. The ROS-dependent cell survival pathway is mediated by an endogenous antioxidant CO, which inhibits Nox4 activation via a mechanism that includes Akt, ERK1/2, and p38 MAPK signaling pathways. The ability of CO to inhibit TNF-α-induced ERK1/2 and p38 MAPK activities in an Akt-dependent manner appears to be the key element in ROS-dependent survival of endothelial cells during TNF-α-mediated brain inflammatory disease. PMID:21123734

  12. Microglial TNF-α-dependent elevation of MHC class I expression on brain endothelium induced by amyloid-beta promotes T cell transendothelial migration.

    PubMed

    Yang, Yi-Ming; Shang, De-Shu; Zhao, Wei-Dong; Fang, Wen-Gang; Chen, Yu-Hua

    2013-11-01

    The blood-brain barrier (BBB) normally bars peripheral T lymphocytes from entering the cerebrum. Interestingly, activated T cells exist as infiltrates in the brains of Alzheimer's disease (AD) patients, but little is known about the mechanisms involved. In this study, we observed significantly higher MHC class I expression in rat brain endothelial cells compared with controls following the induction of experimental AD models. An in vitro BBB model, which was constructed with human brain microvascular endothelial cells, was established to study the mechanisms underlying the transendothelial migration of T cells. Using in vitro studies, we demonstrated that secretion of TNF-α from Aβ1-42-treated BV2 microglia contributes to the elevated expression of MHC class I on the brain microvessel endothelium. Transmigration assays and adhesion assays confirmed that the upregulation of MHC class I molecules was associated with T cell transendothelial migration. MHC class I knock-down in HBMECs significantly attenuated the migratory and adhesive capability of the T cells. Interestingly, a TNF-α neutralizing antibody effectively blocked the transendothelial migration of T cells triggered by treatment with the supernatant from Aβ1-42-treated BV2 microglia. We propose that microglia-derived TNF-α upregulates MHC class I molecule expression on brain endothelial cells, which represents a mechanism of T cell migration into the brain. This study may provide a new insight into the potential pathomechanism of Alzheimer's disease.

  13. Magnetic resonance imaging as a tool to image neuroinflammation in a rat model of Parkinson's disease--phagocyte influx to the brain is promoted by bilberry-enriched diet.

    PubMed

    Virel, Ana; Rehnmark, Anna; Orädd, Greger; Olmedo-Díaz, Sonia; Faergemann, Erik; Strömberg, Ingrid

    2015-11-01

    Neuroinflammation is a chronic event in neurodegenerative disorders. In the rat model of Parkinson's disease, including a striatal injection of the neurotoxin 6-hydroxydopamine (6-OHDA), antioxidant treatment affects the inflammatory process. Despite a heavy accumulation of microglia early after the injury, dopamine nerve fibre regeneration occurs. It remains unclear why this heavy accumulation of microglia is found early after the lesion in antioxidant-treated animals, or even more, what is the origin of these microglia. In this study magnetic resonance imaging (MRI) was used to elucidate whether the inflammatory response was generated from the blood or from activated brain microglia. Superparamagnetic iron oxide (SPIO) nanoparticles were injected intravenously prior to a striatal 6-OHDA injection to tag phagocytes in the blood. Rats were fed either with bilberry-enriched or control diet. T2*-weighted MRI scans were performed 1 week after the lesion, and hypointense areas were calculated from T2*-weighted images, to monitor the presence of SPIO particles. The results revealed that feeding the animals with bilberries significantly promoted accumulation of blood-derived immune cells. Gadolinium-enhanced MRI demonstrated no difference in leakage of the blood-brain barrier independent of diets. To conclude, bilberry-enriched diet promotes an influx of periphery-derived immune cells to the brain early after injury.

  14. Social defeat promotes a reactive endothelium in a brain region-dependent manner with increased expression of key adhesion molecules, selectins and chemokines associated with the recruitment of myeloid cells to the brain.

    PubMed

    Sawicki, C M; McKim, D B; Wohleb, E S; Jarrett, B L; Reader, B F; Norden, D M; Godbout, J P; Sheridan, J F

    2015-08-27

    Repeated social defeat (RSD) in mice causes myeloid cell trafficking to the brain that contributes to the development of prolonged anxiety-like behavior. Myeloid cell recruitment following RSD occurs in regions where neuronal and microglia activation is observed. Thus, we hypothesized that crosstalk between neurons, microglia, and endothelial cells contributes to brain myeloid cell trafficking via chemokine signaling and vascular adhesion molecules. Here we show that social defeat caused an exposure- and brain region-dependent increase in several key adhesion molecules and chemokines involved in the recruitment of myeloid cells. For example, RSD induced distinct patterns of adhesion molecule expression that may explain brain region-dependent myeloid cell trafficking. VCAM-1 and ICAM-1 mRNA expression were increased in an exposure-dependent manner. Furthermore, RSD-induced VCAM-1 and ICAM-1 protein expression were localized to the vasculature of brain regions implicated in fear and anxiety responses, which spatially corresponded to previously reported patterns of myeloid cell trafficking. Next, mRNA expression of additional adhesion molecules (E- and P-selectin, PECAM-1) and chemokines (CXCL1, CXCL2, CXCL12, CCL2) were determined in the brain. Social defeat induced an exposure-dependent increase in mRNA levels of E-selectin, CXCL1, and CXCL2 that increased with additional days of social defeat. While CXCL12 was unaffected by RSD, CCL2 expression was increased by six days of social defeat. Last, comparison between enriched CD11b(+) cells (microglia/macrophages) and enriched GLAST-1(+)/CD11b(-) cells (astrocytes) revealed RSD increased mRNA expression of IL-1β, CCL2, and CXCL2 in microglia/macrophages but not in astrocytes. Collectively, these data indicate that key mediators of leukocyte recruitment were increased in the brain vasculature following RSD in an exposure- and brain region-dependent manner.

  15. Recommendations for Development of New Standardized Forms of Cocoa Breeds and Cocoa Extract Processing for the Prevention of Alzheimer's Disease: Role of Cocoa in Promotion of Cognitive Resilience and Healthy Brain Aging.

    PubMed

    Dubner, Lauren; Wang, Jun; Ho, Lap; Ward, Libby; Pasinetti, Giulio M

    2015-01-01

    It is currently thought that the lackluster performance of translational paradigms in the prevention of age-related cognitive deteriorative disorders, such as Alzheimer's disease (AD), may be due to the inadequacy of the prevailing approach of targeting only a single mechanism. Age-related cognitive deterioration and certain neurodegenerative disorders, including AD, are characterized by complex relationships between interrelated biological phenotypes. Thus, alternative strategies that simultaneously target multiple underlying mechanisms may represent a more effective approach to prevention, which is a strategic priority of the National Alzheimer's Project Act and the National Institute on Aging. In this review article, we discuss recent strategies designed to clarify the mechanisms by which certain brain-bioavailable, bioactive polyphenols, in particular, flavan-3-ols also known as flavanols, which are highly represented in cocoa extracts, may beneficially influence cognitive deterioration, such as in AD, while promoting healthy brain aging. However, we note that key issues to improve consistency and reproducibility in the development of cocoa extracts as a potential future therapeutic agent requires a better understanding of the cocoa extract sources, their processing, and more standardized testing including brain bioavailability of bioactive metabolites and brain target engagement studies. The ultimate goal of this review is to provide recommendations for future developments of cocoa extracts as a therapeutic agent in AD.

  16. Alterations of brain anatomy in mouse model of MDD created by replacement of homologous mouse DNA sequence with an illness-associated 6-base human CREB1 promoter sequence.

    PubMed

    Zubenko, George S; Hughes, Hugh B; Hitchens, T Kevin; Cohen, Bruce M

    2014-01-01

    We have recently reported the creation and initial characterization of an etiology-based recombinant mouse model of a severe and inherited form of Major Depressive Disorder (MDD). This was achieved by replacing the corresponding mouse DNA sequence with a 6-base DNA sequence from the human CREB1 promoter that is associated with the development of MDD in men and women from families identified by probands with recurrent, early-onset MDD (RE-MDD). Individuals in these families are also at increased risk for childhood developmental disorders and late life neurodegenerative disorders. The current study used three-dimensional magnetic resonance microscopy (3D-MRM) to determine the effect of the resulting humanized mutation of the mouse Creb1 gene on the anatomy of the mouse brain. Homozygous mutant mice manifested prominent increases in the volume and surface area of the lateral ventricles, as well as reduced volume of the anterior corpus callosum, compared to age/sex-matched wild-type mice. No significant genotype effects were observed on the volume or surface area of total brain, or several brain regions sometimes observed to be abnormal in human depression, including hippocampus, amygdala, or striatum. These findings suggest that at least some forms of MDD result from abnormal brain development produced by inherited genetic variants. © 2013 Wiley Periodicals, Inc.

  17. The fatty acid amide hydrolase inhibitor PF-3845 promotes neuronal survival, attenuates inflammation and improves functional recovery in mice with traumatic brain injury.

    PubMed

    Tchantchou, Flaubert; Tucker, Laura B; Fu, Amanda H; Bluett, Rebecca J; McCabe, Joseph T; Patel, Sachin; Zhang, Yumin

    2014-10-01

    Traumatic brain injury (TBI) is the leading cause of death in young adults in the United States, but there is still no effective agent for treatment. N-arachidonoylethanolamine (anandamide, AEA) is a major endocannabinoid in the brain. Its increase after brain injury is believed to be protective. However, the compensatory role of AEA is transient due to its rapid hydrolysis by the fatty acid amide hydrolase (FAAH). Thus, inhibition of FAAH can boost the endogenous levels of AEA and prolong its protective effect. Using a TBI mouse model, we found that post-injury chronic treatment with PF3845, a selective and potent FAAH inhibitor, reversed TBI-induced impairments in fine motor movement, hippocampus dependent working memory and anxiety-like behavior. Treatment with PF3845 inactivated FAAH activity and enhanced the AEA levels in the brain. It reduced neurodegeneration in the dentate gyrus, and up-regulated the expression of Bcl-2 and Hsp70/72 in both cortex and hippocampus. PF3845 also suppressed the increased production of amyloid precursor protein, prevented dendritic loss and restored the levels of synaptophysin in the ipsilateral dentate gyrus. Furthermore, PF3845 suppressed the expression of inducible nitric oxide synthase and cyclooxygenase-2 and enhanced the expression of arginase-1 post-TBI, suggesting a shift of microglia/macrophages from M1 to M2 phenotype. The effects of PF3845 on TBI-induced behavioral deficits and neurodegeneration were mediated by activation of cannabinoid type 1 and 2 receptors and might be attributable to the phosphorylation of ERK1/2 and AKT. These results suggest that selective inhibition of FAAH is likely to be beneficial for TBI treatment.

  18. PKCε Promotes HuD-Mediated Neprilysin mRNA Stability and Enhances Neprilysin-Induced Aβ Degradation in Brain Neurons

    PubMed Central

    Lim, Chol Seung; Alkon, Daniel L.

    2014-01-01

    Amyloid-beta (Aβ) peptide accumulation in the brain is a pathological hallmark of all forms of Alzheimer’s disease. An imbalance between Aβ production and clearance from the brain may contribute to accumulation of neurotoxic Aβ and subsequent synaptic loss, which is the strongest correlate of the extent of memory loss in AD. The activity of neprilysin (NEP), a potent Aβ-degrading enzyme, is decreased in the AD brain. Expression of HuD, an mRNA-binding protein important for synaptogenesis and neuronal plasticity, is also decreased in the AD brain. HuD is regulated by protein kinase Cε (PKCε), and we previously demonstrated that PKCε activation decreases Aβ levels. We hypothesized that PKCε acts through HuD to stabilize NEP mRNA, modulate its localization, and support NEP activity. Conversely, loss of PKCε-activated HuD in AD leads to decreased NEP activity and accumulation of Aβ. Here we show that HuD is associated with NEP mRNA in cultures of human SK-N-SH cells. Treatment with bryostatin, a PKCε-selective activator, enhanced NEP association with HuD and increased NEP mRNA stability. Activation of PKCε also increased NEP protein levels, increased NEP phosphorylation, and induced cell surface expression. In addition, specific PKCε activation directly stimulated NEP activity, leading to degradation of a monomeric form of Aβ peptide and decreased Aβ neuronal toxicity, as measured by cell viability. Bryostatin treatment also rescued Aβ-mediated inhibition of HuD-NEP mRNA binding, NEP protein expression, and NEP cell membrane translocation. These results suggest that PKCε activation reduces Aβ by up-regulating, via the mRNA-binding protein HuD, Aβ-degrading enzymes such as NEP. Thus, PKCε activation may have therapeutic efficacy for AD by reducing neurotoxic Aβ accumulation as well as having direct anti-apoptotic and synaptogenic effects. PMID:24848988

  19. Rho kinase inhibition following traumatic brain injury in mice promotes functional improvement and acute neuron survival but has little effect on neurogenesis, glial responses or neuroinflammation.

    PubMed

    Bye, Nicole; Christie, Kimberly J; Turbic, Alisa; Basrai, Harleen S; Turnley, Ann M

    2016-05-01

    Inhibition of the Rho/Rho kinase pathway has been shown to be beneficial in a variety of neural injuries and diseases. In this manuscript we investigate the role of Rho kinase inhibition in recovery from traumatic brain injury using a controlled cortical impact model in mice. Mice subjected to a moderately severe TBI were treated for 1 or 4 weeks with the Rho kinase inhibitor Y27632, and functional outcomes and neuronal and glial cell responses were analysed at 1, 7 and 35 days post-injury. We hypothesised that Y27632-treated mice would show functional improvement, with augmented recruitment of neuroblasts from the SVZ and enhanced survival of newborn neurons in the pericontusional cortex, with protection against neuronal degeneration, neuroinflammation and modulation of astrocyte reactivity and blood-brain-barrier permeability. While Rho kinase inhibition enhanced recovery of motor function after trauma, there were no substantial increases in the recruitment of DCX(+) neuroblasts or the number of BrdU(+) or EdU(+) labelled newborn neurons in the pericontusional cortex of Y27632-treated mice. Inhibition of Rho kinase significantly reduced the number of degenerating cortical neurons at 1day post-injury compared to saline controls but had no longer term effect on neuronal degeneration, with only modest effects on astrocytic reactivity and macrophage/microglial responses. Overall, this study showed that Rho kinase contributes to acute neurodegenerative processes in the injured cortex but does not play a significant role in SVZ neural precursor cell-derived adult neurogenesis, glial responses or blood-brain barrier permeability following a moderately severe brain injury.

  20. Enhancing Brain Pregnenolone May Protect Cannabis Intoxication but Should Not Be Considered as an Anti-addiction Therapeutic: Hypothesizing Dopaminergic Blockade and Promoting Anti-Reward.

    PubMed

    Blum, Kenneth; Oscar-Berman, Marlene; Braverman, Eric R; Febo, Marcelo; Li, Mona; Gold, Mark S

    Many US states now embrace the medical and recreational use of Cannabis. Changes in the laws have heightened interest and encouraged research into both cannabinoid products and the potential harms of Cannabis use, addiction, and intoxication. Some research into those harms will be reviewed here and misgivings about the use of Pregnenolone, to treat cannabis addiction and intoxication explained. Pregnenolone considered the inactive precursor of all steroid hormones, has recently been shown to protect the brain from Cannabis intoxication. The major active ingredient of Cannabis sativa (marijuana), Δ(9)-tetrahydrocannabinol (THC) enhances Pregnenolone synthesis in the brain via stimulation of the type-1 cannabinoid (CB1) receptor. This steroid has been shown to inhibit the activity of the CB1 receptor thereby reducing many of the effects of THC. While this mechanism seems correct, in our opinion, Vallee et al., incorrectly suggest that blocking CB1 receptors could open unforeseen approaches to the treatment of cannabis intoxication and addiction. In this hypothesis, we caution the scientific community that, other CB1 receptor blockers, such as, Rimonabant (SR141718) have been pulled off the market in Europe. In addition, CB1 receptor blockers were rejected by the FDA due to mood changes including suicide ideation. Blocking CB1 receptors would result in reduced neuronal release of Dopamine by disinhibition of GABA signaling. Long-term blockade of cannabinoid receptors could occur with raising Pregnenolone brain levels, may induce a hypodopaminergic state, and lead to aberrant substance and non-substance (behavioral) addictions.

  1. Enhancing Brain Pregnenolone May Protect Cannabis Intoxication but Should Not Be Considered as an Anti-addiction Therapeutic: Hypothesizing Dopaminergic Blockade and Promoting Anti-Reward

    PubMed Central

    Blum, Kenneth; Oscar-Berman, Marlene; Braverman, Eric R.; Febo, Marcelo; Li, Mona; Gold, Mark S.

    2015-01-01

    Many US states now embrace the medical and recreational use of Cannabis. Changes in the laws have heightened interest and encouraged research into both cannabinoid products and the potential harms of Cannabis use, addiction, and intoxication. Some research into those harms will be reviewed here and misgivings about the use of Pregnenolone, to treat cannabis addiction and intoxication explained. Pregnenolone considered the inactive precursor of all steroid hormones, has recently been shown to protect the brain from Cannabis intoxication. The major active ingredient of Cannabis sativa (marijuana), Δ9-tetrahydrocannabinol (THC) enhances Pregnenolone synthesis in the brain via stimulation of the type-1 cannabinoid (CB1) receptor. This steroid has been shown to inhibit the activity of the CB1 receptor thereby reducing many of the effects of THC. While this mechanism seems correct, in our opinion, Vallee et al., incorrectly suggest that blocking CB1 receptors could open unforeseen approaches to the treatment of cannabis intoxication and addiction. In this hypothesis, we caution the scientific community that, other CB1 receptor blockers, such as, Rimonabant (SR141718) have been pulled off the market in Europe. In addition, CB1 receptor blockers were rejected by the FDA due to mood changes including suicide ideation. Blocking CB1 receptors would result in reduced neuronal release of Dopamine by disinhibition of GABA signaling. Long-term blockade of cannabinoid receptors could occur with raising Pregnenolone brain levels, may induce a hypodopaminergic state, and lead to aberrant substance and non-substance (behavioral) addictions. PMID:26306328

  2. Regulation of endogenous neural stem/progenitor cells for neural repair—factors that promote neurogenesis and gliogenesis in the normal and damaged brain

    PubMed Central

    Christie, Kimberly J.; Turnley, Ann M.

    2012-01-01

    Neural stem/precursor cells in the adult brain reside in the subventricular zone (SVZ) of the lateral ventricles and the subgranular zone (SGZ) of the dentate gyrus in the hippocampus. These cells primarily generate neuroblasts that normally migrate to the olfactory bulb (OB) and the dentate granule cell layer respectively. Following brain damage, such as traumatic brain injury, ischemic stroke or in degenerative disease models, neural precursor cells from the SVZ in particular, can migrate from their normal route along the rostral migratory stream (RMS) to the site of neural damage. This neural precursor cell response to neural damage is mediated by release of endogenous factors, including cytokines and chemokines produced by the inflammatory response at the injury site, and by the production of growth and neurotrophic factors. Endogenous hippocampal neurogenesis is frequently also directly or indirectly affected by neural damage. Administration of a variety of factors that regulate different aspects of neural stem/precursor biology often leads to improved functional motor and/or behavioral outcomes. Such factors can target neural stem/precursor proliferation, survival, migration and differentiation into appropriate neuronal or glial lineages. Newborn cells also need to subsequently survive and functionally integrate into extant neural circuitry, which may be the major bottleneck to the current therapeutic potential of neural stem/precursor cells. This review will cover the effects of a range of intrinsic and extrinsic factors that regulate neural stem/precursor cell functions. In particular it focuses on factors that may be harnessed to enhance the endogenous neural stem/precursor cell response to neural damage, highlighting those that have already shown evidence of preclinical effectiveness and discussing others that warrant further preclinical investigation. PMID:23346046

  3. Activation of melatonin receptor (MT1/2) promotes P-gp transporter in methamphetamine-induced toxicity on primary rat brain microvascular endothelial cells.

    PubMed

    Jumnongprakhon, Pichaya; Sivasinprasasn, Sivanan; Govitrapong, Piyarat; Tocharus, Chainarong; Tocharus, Jiraporn

    2017-02-20

    Melatonin has been known as a neuroprotective agent for the central nervous system (CNS) and the blood-brain barrier (BBB), which is the primary structure that comes into contact with several neurotoxins including methamphetamine (METH). Previous studies have reported that the activation of melatonin receptors (MT1/2) by melatonin could protect against METH-induced toxicity in brain endothelial cells via several mechanisms. However, its effects on the P-glycoprotein (P-gp) transporter, the active efflux pump involved in cell homeostasis, are still unclear. Thus, this study investigated the role of melatonin and its receptors on the METH-impaired P-gp transporter in primary rat brain microvascular endothelial cells (BMVECs). The results showed that METH impaired the function of the P-gp transporter, significantly decreasing the efflux of Rho123 and P-gp expression, which caused a significant increase in the intracellular accumulation of Rho123, and these responses were reversed by the interaction of melatonin with its receptors. Blockade of the P-gp transporter by verapamil caused oxidative stress, apoptosis, and cell integrity impairment after METH treatment, and these effects could be reversed by melatonin. Our results, together with previous findings, suggest that the interaction of melatonin with its receptors protects against the effects of the METH-impaired P-gp transporter and that the protective role in METH-induced toxicity was at least partially mediated by the regulation of the P-gp transporter. Thus, melatonin and its receptors (MT1/2) are essential for protecting against BBB impairment caused by METH.

  4. Activating Developmental Reserve Capacity Via Cognitive Training or Non-invasive Brain Stimulation: Potentials for Promoting Fronto-Parietal and Hippocampal-Striatal Network Functions in Old Age.

    PubMed

    Passow, Susanne; Thurm, Franka; Li, Shu-Chen

    2017-01-01

    Existing neurocomputational and empirical data link deficient neuromodulation of the fronto-parietal and hippocampal-striatal circuitries with aging-related increase in processing noise and declines in various cognitive functions. Specifically, the theory of aging neuronal gain control postulates that aging-related suboptimal neuromodulation may attenuate neuronal gain control, which yields computational consequences on reducing the signal-to-noise-ratio of synaptic signal transmission and hampering information processing within and between cortical networks. Intervention methods such as cognitive training and non-invasive brain stimulation, e.g., transcranial direct current stimulation (tDCS), have been considered as means to buffer cognitive functions or delay cognitive decline in old age. However, to date the reported effect sizes of immediate training gains and maintenance effects of a variety of cognitive trainings are small to moderate at best; moreover, training-related transfer effects to non-trained but closely related (i.e., near-transfer) or other (i.e., far-transfer) cognitive functions are inconsistent or lacking. Similarly, although applying different tDCS protocols to reduce aging-related cognitive impairments by inducing temporary changes in cortical excitability seem somewhat promising, evidence of effects on short- and long-term plasticity is still equivocal. In this article, we will review and critically discuss existing findings of cognitive training- and stimulation-related behavioral and neural plasticity effects in the context of cognitive aging, focusing specifically on working memory and episodic memory functions, which are subserved by the fronto-parietal and hippocampal-striatal networks, respectively. Furthermore, in line with the theory of aging neuronal gain control we will highlight that developing age-specific brain stimulation protocols and the concurrent applications of tDCS during cognitive training may potentially facilitate

  5. Co-grafting of neural stem cells with olfactory en sheathing cells promotes neuronal restoration in traumatic brain injury with an anti-inflammatory mechanism.

    PubMed

    Liu, Su-Juan; Zou, Yu; Belegu, Visar; Lv, Long-Yun; Lin, Na; Wang, Ting-Yong; McDonald, John W; Zhou, Xue; Xia, Qing-Jie; Wang, Ting-Hua

    2014-04-02

    We sought to investigate the effects of co-grafting neural stem cells (NSCs) with olfactory ensheathing cells (OECs) on neurological behavior in rats subjected to traumatic brain injury (TBI) and explore underlying molecular mechanisms. TBI was established by percussion device made through a weight drop (50 g) from a 30 cm height. Cultured NSCs and OECs isolated from rats were labeled by Hoechst 33342 (blue) and chloromethyl-benzamidodialkyl carbocyanine (CM-Dil) (red), respectively. Then, NSCs and/or OECs, separately or combined, were transplanted into the area surrounding the injury site. Fourteen days after transplantation, neurological severity score (NSS) were recorded. The brain tissue was harvested and processed for immunocytochemistry, terminal deoxynucleotidyl transferase-mediated dUTP nick end labeling (TUNEL), and reverse transcription-polymerase chain reaction (RT-PCR). Significant neurological function improvement was observed in the three transplant groups, compared to the TBI group, and co-transplantation gave rise to the best improvement. Morphological evaluation showed that the number of neurons in cortex from combination implantation was more than for other groups (P <0.05); conversely, the number of apoptotic cells showed a significant decrease by TUNEL staining. Transplanted NSCs and OECs could survive and migrate in the brain, and the number of neurons differentiating from NSCs in the co-transplantation group was significantly greater than in the NSCs group. At the molecular level, the expressions of IL-6 and BAD in the co-graft group were found to be down regulated significantly, when compared to either the NSC or OEC alone groups. The present study demonstrates for the first time the optimal effects of co-grafting NSCs and OECs as a new strategy for the treatment of TBI via an anti-inflammation mechanism.

  6. Co-grafting of neural stem cells with olfactory en sheathing cells promotes neuronal restoration in traumatic brain injury with an anti-inflammatory mechanism

    PubMed Central

    2014-01-01

    Background We sought to investigate the effects of co-grafting neural stem cells (NSCs) with olfactory ensheathing cells (OECs) on neurological behavior in rats subjected to traumatic brain injury (TBI) and explore underlying molecular mechanisms. Methods TBI was established by percussion device made through a weight drop (50 g) from a 30 cm height. Cultured NSCs and OECs isolated from rats were labeled by Hoechst 33342 (blue) and chloromethyl-benzamidodialkyl carbocyanine (CM-Dil) (red), respectively. Then, NSCs and/or OECs, separately or combined, were transplanted into the area surrounding the injury site. Fourteen days after transplantation, neurological severity score (NSS) were recorded. The brain tissue was harvested and processed for immunocytochemistry, terminal deoxynucleotidyl transferase-mediated dUTP nick end labeling (TUNEL), and reverse transcription-polymerase chain reaction (RT-PCR). Results Significant neurological function improvement was observed in the three transplant groups, compared to the TBI group, and co-transplantation gave rise to the best improvement. Morphological evaluation showed that the number of neurons in cortex from combination implantation was more than for other groups (P <0.05); conversely, the number of apoptotic cells showed a significant decrease by TUNEL staining. Transplanted NSCs and OECs could survive and migrate in the brain, and the number of neurons differentiating from NSCs in the co-transplantation group was significantly greater than in the NSCs group. At the molecular level, the expressions of IL-6 and BAD in the co-graft group were found to be down regulated significantly, when compared to either the NSC or OEC alone groups. Conclusion The present study demonstrates for the first time the optimal effects of co-grafting NSCs and OECs as a new strategy for the treatment of TBI via an anti-inflammation mechanism. PMID:24690089

  7. Activating Developmental Reserve Capacity Via Cognitive Training or Non-invasive Brain Stimulation: Potentials for Promoting Fronto-Parietal and Hippocampal-Striatal Network Functions in Old Age

    PubMed Central

    Passow, Susanne; Thurm, Franka; Li, Shu-Chen

    2017-01-01

    Existing neurocomputational and empirical data link deficient neuromodulation of the fronto-parietal and hippocampal-striatal circuitries with aging-related increase in processing noise and declines in various cognitive functions. Specifically, the theory of aging neuronal gain control postulates that aging-related suboptimal neuromodulation may attenuate neuronal gain control, which yields computational consequences on reducing the signal-to-noise-ratio of synaptic signal transmission and hampering information processing within and between cortical networks. Intervention methods such as cognitive training and non-invasive brain stimulation, e.g., transcranial direct current stimulation (tDCS), have been considered as means to buffer cognitive functions or delay cognitive decline in old age. However, to date the reported effect sizes of immediate training gains and maintenance effects of a variety of cognitive trainings are small to moderate at best; moreover, training-related transfer effects to non-trained but closely related (i.e., near-transfer) or other (i.e., far-transfer) cognitive functions are inconsistent or lacking. Similarly, although applying different tDCS protocols to reduce aging-related cognitive impairments by inducing temporary changes in cortical excitability seem somewhat promising, evidence of effects on short- and long-term plasticity is still equivocal. In this article, we will review and critically discuss existing findings of cognitive training- and stimulation-related behavioral and neural plasticity effects in the context of cognitive aging, focusing specifically on working memory and episodic memory functions, which are subserved by the fronto-parietal and hippocampal-striatal networks, respectively. Furthermore, in line with the theory of aging neuronal gain control we will highlight that developing age-specific brain stimulation protocols and the concurrent applications of tDCS during cognitive training may potentially facilitate

  8. Pho4 Is Essential for Dissemination of Cryptococcus neoformans to the Host Brain by Promoting Phosphate Uptake and Growth at Alkaline pH

    PubMed Central

    Kaufman-Francis, Keren; Desmarini, Desmarini; Juillard, Pierre G.; Li, Cecilia; Stifter, Sebastian A.; Feng, Carl G.; Sorrell, Tania C.; Grau, Georges E. R.; Bahn, Yong-Sun

    2017-01-01

    ABSTRACT Phosphate acquisition by fungi is regulated by the phosphate-sensing and acquisition (PHO) signaling pathway. Cryptococcus neoformans disseminates from the lung to the brain and is the commonest cause of fungal meningitis worldwide. To investigate the contribution of PHO signaling to cryptococcal dissemination, we characterized a transcription factor knockout strain (hlh3Δ/pho4Δ) defective in phosphate acquisition. Despite little similarity with other fungal Pho4 proteins, Hlh3/Pho4 functioned like a typical phosphate-responsive transcription factor in phosphate-deprived cryptococci, accumulating in nuclei and triggering expression of genes involved in phosphate acquisition. The pho4Δ mutant strain was susceptible to a number of stresses, the effect of which, except for alkaline pH, was alleviated by phosphate supplementation. Even in the presence of phosphate, the PHO pathway was activated in wild-type cryptococci at or above physiological pH, and under these conditions, the pho4Δ mutant had a growth defect and compromised phosphate uptake. The pho4Δ mutant was hypovirulent in a mouse inhalation model, where dissemination to the brain was reduced dramatically, and markedly hypovirulent in an intravenous dissemination model. The pho4Δ mutant was not detected in blood, nor did it proliferate significantly when cultured with peripheral blood monocytes. In conclusion, dissemination of infection and the pathogenesis of meningitis are dependent on cryptococcal phosphate uptake and stress tolerance at alkaline pH, both of which are Pho4 dependent. IMPORTANCE Cryptococcal meningitis is fatal without treatment and responsible for more than 500,000 deaths annually. To be a successful pathogen, C. neoformans must obtain an adequate supply of essential nutrients, including phosphate, from various host niches. Phosphate acquisition in fungi is regulated by the PHO signaling cascade, which is activated when intracellular phosphate decreases below a critical

  9. Brain herniation

    MedlinePlus

    ... herniation; Uncal herniation; Subfalcine herniation; Tonsillar herniation; Herniation - brain ... Brain herniation occurs when something inside the skull produces pressure that moves brain tissues. This is most ...

  10. Pro-Brain-Derived Neurotrophic Factor (proBDNF)-Mediated p75NTR Activation Promotes Depolarizing Actions of GABA and Increases Susceptibility to Epileptic Seizures.

    PubMed

    Riffault, Baptiste; Kourdougli, Nazim; Dumon, Camille; Ferrand, Nadine; Buhler, Emmanuelle; Schaller, Fabienne; Chambon, Caroline; Rivera, Claudio; Gaiarsa, Jean-Luc; Porcher, Christophe

    2016-12-01

    The brain-derived neurotrophic factor (BDNF) is synthesized as a precursor, namely proBDNF, which can be processed into mature BDNF (mBDNF). Evidences suggest that proBDNF signaling through p75(NTR) may account for the emergence of neurological disorders. These findings support the view that the relative availability of mBDNF and proBDNF forms is an important mechanism underlying brain circuit formation and cognitive functions. Here we describe novel insights into the proBDNF/p75(NTR) mechanisms and function in vivo in modulating neuronal circuit and synaptic plasticity during the first postnatal weeks in rats. Our results showed that increased proBDNF/p75(NTR) signaling during development maintains a depolarizing γ-aminobutyric acid (GABA) response in a KCC2-dependent manner in mature neuronal cells. This resulted in altered excitation/inhibition balance and enhanced neuronal network activity. The enhanced proBDNF/p75(NTR) signaling ultimately led to increased seizure susceptibility that was abolished by in vivo injection of function blocking p75(NTR) antibody. Altogether, our study shed new light on how proBDNF/p75(NTR) signaling can orchestrate the GABA excitatory/inhibitory developmental sequence leading to depolarizing and excitatory actions of GABA in adulthood and subsequent epileptic disorders.

  11. Hyperbaric oxygenation promotes neural stem cell proliferation and protects the learning and memory ability in neonatal hypoxic-ischemic brain damage.

    PubMed

    Wei, Lixia; Wang, Jinshen; Cao, Yuntao; Ren, Qing; Zhao, Lili; Li, Xingang; Wang, Jiwen

    2015-01-01

    The aim of our study was to evaluate whether hyperbaric oxygenation (HBO) was an effective therapy for neonatal hypoxic ischemic brain damage (HIBD). Seven-day-old rat pups were divided into 3 groups: sham, hypoxia-ischemia (HI) control and HI-HBO group. HBO was administered for HI rats daily. The pathologic changes in brain tissues were observed by hematoxylin-eosin (H-E) staining. The immunohistochemical staining was applied to detect the Nestin and 5-bromo-2-deoxyuridine (BrdU) positive cells in hippocampal dentate gyrus region. The learning and memory function of rats was examined by Morris water maze. The HI rats showed obvious pathologic changes accompanied by levels decreasing and disorder arrangement of pyramidal cells, glial cells proliferation in postoperative, and nerve nuclei broken, while pathologic changes of rats in sham group was approximate to that in the HI + HBO group that was opposite to the HI group. Compared with the sham group, the Nestin and BrdU positive cells in HBO + HI group at different time points increased significantly (P < 0.01). Learning and memory function of rats in HI group was poor compared with the sham/HI + HBO group (P < 0.01), while that in HI + HBO group was approximate to that in sham group (P > 0.05). HBO treatment improved the learning and memory ability of the HI rats. HBO therapy may be effective for neonatal HIBD treatment.

  12. Endonuclease VIII-like 1 (NEIL1) promotes short-term spatial memory retention and protects from ischemic stroke-induced brain dysfunction and death in mice.

    PubMed

    Canugovi, Chandrika; Yoon, Jeong Seon; Feldman, Neil H; Croteau, Deborah L; Mattson, Mark P; Bohr, Vilhelm A

    2012-09-11

    Recent findings suggest that neurons can efficiently repair oxidatively damaged DNA, and that both DNA damage and repair are enhanced by activation of excitatory glutamate receptors. However, in pathological conditions such as ischemic stroke, excessive DNA damage can trigger the death of neurons. Oxidative DNA damage is mainly repaired by base excision repair (BER), a process initiated by DNA glycosylases that recognize and remove damaged DNA bases. Endonuclease VIII-like 1 (NEIL1) is a DNA glycosylase that recognizes a broad range of oxidative lesions. Here, we show that mice lacking NEIL1 exhibit impaired memory retention in a water maze test, but no abnormalities in tests of motor performance, anxiety, or fear conditioning. NEIL1 deficiency results in increased brain damage and a defective functional outcome in a focal ischemia/reperfusion model of stroke. The incision capacity on a 5-hydroxyuracil-containing bubble substrate was lower in the ipsilateral side of ischemic brains and in the mitochondrial lysates of unstressed old NEIL1-deficient mice. These results indicate that NEIL1 plays an important role in learning and memory and in protection of neurons against ischemic injury.

  13. Minibrain drives the Dacapo-dependent cell cycle exit of neurons in the Drosophila brain by promoting asense and prospero expression.

    PubMed

    Shaikh, Mirja N; Gutierrez-Aviño, Francisco; Colonques, Jordi; Ceron, Julian; Hämmerle, Barbara; Tejedor, Francisco J

    2016-09-01

    A key aim of neurodevelopmental research is to understand how precursor cells decide to stop dividing and commence their terminal differentiation at the correct time and place. Here, we show that minibrain (mnb), the Drosophila ortholog of the Down syndrome candidate gene DYRK1A, is transiently expressed in newborn neuronal precursors known as ganglion cells (GCs). Mnb promotes the cell cycle exit of GCs through a dual mechanism that regulates the expression of the cyclin-dependent kinase inhibitor Dacapo, the homolog of vertebrate p27(Kip1) (Cdkn1b). Mnb upregulates the expression of the proneural transcription factor (TF) Asense, which promotes Dacapo expression. Mnb also induces the expression of Prospero, a homeodomain TF that in turn inhibits the expression of Deadpan, a pan-neural TF that represses dacapo In addition to its effects on Asense and Prospero, Mnb also promotes the expression of the neuronal-specific RNA regulator Elav, strongly suggesting that Mnb facilitates neuronal differentiation. These actions of Mnb ensure the precise timing of neuronal birth, coupling the mechanisms that regulate neurogenesis, cell cycle control and terminal differentiation of neurons. © 2016. Published by The Company of Biologists Ltd.

  14. Early life adversity and serotonin transporter gene variation interact to affect DNA methylation of the corticotropin-releasing factor gene promoter region in the adult rat brain.

    PubMed

    van der Doelen, Rick H A; Arnoldussen, Ilse A; Ghareh, Hussein; van Och, Liselot; Homberg, Judith R; Kozicz, Tamás

    2015-02-01

    The interaction between childhood maltreatment and the serotonin transporter (5-HTT) gene linked polymorphic region has been associated with increased risk to develop major depression. This Gene × Environment interaction has furthermore been linked with increased levels of anxiety and glucocorticoid release upon exposure to stress. Both endophenotypes are regulated by the neuropeptide corticotropin-releasing factor (CRF) or hormone, which is expressed by the paraventricular nucleus of the hypothalamus, the bed nucleus of the stria terminalis, and the central amygdala (CeA). Therefore, we hypothesized that altered regulation of the expression of CRF in these areas represents a major neurobiological mechanism underlying the interaction of early life stress and 5-HTT gene variation. The programming of gene transcription by Gene × Environment interactions has been proposed to involve epigenetic mechanisms such as DNA methylation. In this study, we report that early life stress and 5-HTT genotype interact to affect DNA methylation of the Crf gene promoter in the CeA of adult male rats. Furthermore, we found that DNA methylation of a specific site in the Crf promoter significantly correlated with CRF mRNA levels in the CeA. Moreover, CeA CRF mRNA levels correlated with stress coping behavior in a learned helplessness paradigm. Together, our findings warrant further investigation of the link of Crf promoter methylation and CRF expression in the CeA with behavioral changes that are relevant for psychopathology.

  15. Perinatal exposure to lead (Pb) promotes Tau phosphorylation in the rat brain in a GSK-3β and CDK5 dependent manner: Relevance to neurological disorders.

    PubMed

    Gąssowska, Magdalena; Baranowska-Bosiacka, Irena; Moczydłowska, Joanna; Tarnowski, Maciej; Pilutin, Anna; Gutowska, Izabela; Strużyńska, Lidia; Chlubek, Dariusz; Adamczyk, Agata

    2016-03-10

    Hyperphosphorylation of Tau is involved in the pathomechanism of neurological disorders such as Alzheimer's, Parkinson's diseases as well as Autism. Epidemiological data suggest the significance of early life exposure to lead (Pb) in etiology of disorders affecting brain function. However, the precise mechanisms by which Pb exerts neurotoxic effects are not fully elucidated. The purpose of this study was to evaluate the effect of perinatal exposure to low dose of Pb on the Tau pathology in the developing rat brain. Furthermore, the involvement of two major Tau-kinases: glycogen synthase kinase-3 beta (GSK-3β) and cyclin-dependent kinase 5 (CDK5) in Pb-induced Tau modification was evaluated. Pregnant female rats were divided into control and Pb-treated group. The control animals were maintained on drinking water while females from the Pb-treated group received 0.1% lead acetate (PbAc) in drinking water, starting from the first day of gestation until weaning of the offspring. During the feeding of pups, mothers from the Pb-treated group were still receiving PbAc. Pups of both groups were weaned at postnatal day 21 and then until postnatal day 28 received only drinking water. 28-day old pups were sacrificed and Tau mRNA and protein level as well as Tau phosphorylation were analyzed in forebrain cortex (FC), cerebellum (C) and hippocampus (H). Concomitantly, we examined the effect of Pb exposure on GSK-3β and CDK5 activation. Our data revealed that pre- and neonatal exposure to Pb (concentration of Pb in whole blood below 10μg/dL, considered safe for humans) caused significant increase in the phosphorylation of Tau at Ser396 and Ser199/202 with parallel rise in the level of total Tau protein in FC and C. Tau hyperphosphorylation in Pb-treated animals was accompanied by elevated activity of GSK-3β and CDK5. Western blot analysis revealed activation of GSK-3β in FC and C as well as CDK5 in C, via increased phosphorylation of Tyr-216 and calpain-dependent p25

  16. Neuregulin 1 Type II-ErbB Signaling Promotes Cell Divisions Generating Neurons from Neural Progenitor Cells in the Developing Zebrafish Brain.

    PubMed

    Sato, Tomomi; Sato, Fuminori; Kamezaki, Aosa; Sakaguchi, Kazuya; Tanigome, Ryoma; Kawakami, Koichi; Sehara-Fujisawa, Atsuko

    2015-01-01

    Post-mitotic neurons are generated from neural progenitor cells (NPCs) at the expense of their proliferation. Molecular and cellular mechanisms that regulate neuron production temporally and spatially should impact on the size and shape of the brain. While transcription factors such as neurogenin1 (neurog1) and neurod govern progression of neurogenesis as cell-intrinsic mechanisms, recent studies show regulatory roles of several cell-extrinsic or intercellular signaling molecules including Notch, FGF and Wnt in production of neurons/neural progenitor cells from neural stem cells/radial glial cells (NSCs/RGCs) in the ventricular zone (VZ). However, it remains elusive how production of post-mitotic neurons from neural progenitor cells is regulated in the sub-ventricular zone (SVZ). Here we show that newborn neurons accumulate in the basal-to-apical direction in the optic tectum (OT) of zebrafish embryos. While neural progenitor cells are amplified by mitoses in the apical ventricular zone, neurons are exclusively produced through mitoses of neural progenitor cells in the sub-basal zone, later in the sub-ventricular zone, and accumulate apically onto older neurons. This neurogenesis depends on Neuregulin 1 type II (NRG1-II)-ErbB signaling. Treatment with an ErbB inhibitor, AG1478 impairs mitoses in the sub-ventricular zone of the optic tectum. Removal of AG1478 resumes sub-ventricular mitoses without precedent mitoses in the apical ventricular zone prior to basal-to-apical accumulation of neurons, suggesting critical roles of ErbB signaling in mitoses for post-mitotic neuron production. Knockdown of NRG1-II impairs both mitoses in the sub-basal/sub-ventricular zone and the ventricular zone. Injection of soluble human NRG1 into the developing brain ameliorates neurogenesis of NRG1-II-knockdown embryos, suggesting a conserved role of NRG1 as a cell-extrinsic signal. From these results, we propose that NRG1-ErbB signaling stimulates cell divisions generating neurons from

  17. β-asarone and levodopa co-administration increase striatal dopamine level in 6-hydroxydopamine induced rats by modulating P-glycoprotein and tight junction proteins at the blood-brain barrier and promoting levodopa into the brain.

    PubMed

    Huang, Liping; Deng, Minzhen; He, Yuping; Lu, Shiyao; Ma, Ruanxin; Fang, Yongqi

    2016-06-01

    Levodopa (L-dopa) is widely considered as one of the most effective drug constituents in the treatment of Parkinson's disease (PD), but the blood-brain barrier (BBB) permeability of L-dopa is <5%, which causes low efficacy. Neuroprotective effects of β-asarone on 6-hydroxydopamine (6-OHDA)-induced PD rats were demonstrated by our previous studies. Co-administration of β-asarone and L-dopa has not been explored until being investigated on PD rats in this study. PD rats were divided into four groups: untreated, L-dopa-treated, β-asarone-treated and co-administered-treated groups. All of the treatments were administered to the rats twice per day for 30 days. The L-dopa, dopamine (DA), 3,4-dihydroxyphenylacetic acid (DOPAC) and homovanillic acid (HVA), S100β and neuron-specific enolase (NSE) levels were subsequently determined. The P-glycoprotein (P-gp), zonula occludens-1 (ZO-1), claudin-5, occludin and actin expression was also assessed in cortex. Changes in BBB ultrastructure were observed using transmission electron microscopy. Our results showed that the co-administered treatment increased levels of L-dopa, DA, DOPAC and HVA in striatum, and S100β in plasma, but down-regulated NSE, P-gp, ZO-1, occludin, actin and claudin-5 in cortex. Crevices were observed between capillary endothelial cells at intercellular tight junction of the striatum in co-administered-treated group, while the endothelial cells in untreated group were tightly jointing each other. In addition, the correlations of L-dopa or DA and P-gp or tight junction proteins respectively were significantly negative in co-administered- and β-asarone-treated groups. These findings suggest that co-administered treatment may enhance the L-dopa BBB permeability and attenuate brain injury, which may be beneficial to PD treatment.

  18. Hyperglycaemia promotes human brain microvascular endothelial cell apoptosis via induction of protein kinase C-ßI and prooxidant enzyme NADPH oxidase.

    PubMed

    Shao, Beili; Bayraktutan, Ulvi

    2014-01-01

    Blood-brain barrier disruption represents a key feature in hyperglycaemia-aggravated cerebral damage after an ischaemic stroke. Although the underlying mechanisms remain largely unknown, activation of protein kinase C (PKC) is thought to play a critical role. This study examined whether apoptosis of human brain microvascular endothelial cells (HBMEC) might contribute to hyperglycaemia-evoked barrier damage and assessed the specific role of PKC in this phenomenon. Treatments with hyperglycaemia (25 mM) or phorbol myristate acetate (PMA, a protein kinase C activator, 100 nM) significantly increased NADPH oxidase activity, O2 (•-) generation, proapoptotic protein Bax expression, TUNEL-positive staining and caspase-3/7 activities. Pharmacological inhibition of NADPH oxidase, PKC-a, PKC-ß or PKC-ßI via their specific inhibitors and neutralisation of O2 (•-) by a cell-permeable superoxide dismutase mimetic, MnTBAP normalised all the aforementioned increases induced by hyperglycaemia. Suppression of these PKC isoforms also negated the stimulatory effects of hyperglycaemia on the protein expression of NADPH oxidase membrane-bound components, Nox2 and p22-phox which determine the overall enzymatic activity. Silencing of PKC-ßI gene through use of specific siRNAs abolished the effects of both hyperglycaemia and PMA on endothelial cell NADPH oxidase activity, O2 (•-) production and apoptosis and consequently improved the integrity and function of an in vitro model of human cerebral barrier comprising HBMEC, astrocytes and pericytes. Hyperglycaemia-mediated apoptosis of HBMEC contributes to cerebral barrier dysfunction and is modulated by sequential activations of PKC-ßI and NADPH oxidase.

  19. Hyperglycaemia promotes human brain microvascular endothelial cell apoptosis via induction of protein kinase C-ßI and prooxidant enzyme NADPH oxidase

    PubMed Central

    Shao, Beili; Bayraktutan, Ulvi

    2014-01-01

    Blood–brain barrier disruption represents a key feature in hyperglycaemia-aggravated cerebral damage after an ischaemic stroke. Although the underlying mechanisms remain largely unknown, activation of protein kinase C (PKC) is thought to play a critical role. This study examined whether apoptosis of human brain microvascular endothelial cells (HBMEC) might contribute to hyperglycaemia-evoked barrier damage and assessed the specific role of PKC in this phenomenon. Treatments with hyperglycaemia (25 mM) or phorbol myristate acetate (PMA, a protein kinase C activator, 100 nM) significantly increased NADPH oxidase activity, O2•- generation, proapoptotic protein Bax expression, TUNEL-positive staining and caspase-3/7 activities. Pharmacological inhibition of NADPH oxidase, PKC-a, PKC-ß or PKC-ßI via their specific inhibitors and neutralisation of O2•- by a cell-permeable superoxide dismutase mimetic, MnTBAP normalised all the aforementioned increases induced by hyperglycaemia. Suppression of these PKC isoforms also negated the stimulatory effects of hyperglycaemia on the protein expression of NADPH oxidase membrane-bound components, Nox2 and p22-phox which determine the overall enzymatic activity. Silencing of PKC-ßI gene through use of specific siRNAs abolished the effects of both hyperglycaemia and PMA on endothelial cell NADPH oxidase activity, O2•- production and apoptosis and consequently improved the integrity and function of an in vitro model of human cerebral barrier comprising HBMEC, astrocytes and pericytes. Hyperglycaemia-mediated apoptosis of HBMEC contributes to cerebral barrier dysfunction and is modulated by sequential activations of PKC-ßI and NADPH oxidase. PMID:24936444

  20. Voltage-dependent anion channels (VDACs) promote mitophagy to protect neuron from death in an early brain injury following a subarachnoid hemorrhage in rats.

    PubMed

    Li, Jian; Lu, Jianfei; Mi, Yongjie; Shi, Zhao; Chen, Chunhua; Riley, John; Zhou, Changman

    2014-07-21

    The term mitophagy is coined to describe the selective removal of mitochondria by autophagy but the process itself is still contentious, especially in the early period following subarachnoid hemorrhage (SAH). In the present study, we investigated the role of mitophagy following 48h after SAH injury in rats. Specifically evaluating whether mitophagy, through voltage dependant anion channels (VDACs) interacting with microtubule-associated protein 1 light chain 3, could orchestrate the induction of apoptotic and necrotic cell death in neurons, a VDAC1siRNA and an activitor Rapamycian (RAPA), were engaged. One hundred and twelve male Sprague-Dawley rats were randomly divided into 4 groups: Sham, SAH, SAH+VDAC1siRNA, and SAH+RAPA. Outcomes measured included mortality rate, brain edema, BBB disruption, and neurobehavioral testing. We also used western blotting techniques to analyze the expressions of key mitophagic/autophagic proteins and pro-apoptotic protein such as ROS, VDAC1, LC-3II and Caspase-3. Rapamycin treatment significantly improved the mortality rate, cerebral edema, and neurobehavioral deficits; apoptotic and necrotic cell death in neurons were reduced by Rapamycin following SAH injury. However, VDAC1siRNA worsened the brain injury following SAH. Immunohistochemical staining and western blot analysis demonstrated a decreased expression of VDAC1, LC3II, and an increase of ROS and Caspase-3 followed by VDAC1siRNA administration. In conclusion, mitophagy induced by VDAC1 following SAH injury may in fact play a significant role in neuroprotection, the mechanism which may be through the attenuation of the apoptosic and necrosic molecular pathways. This translates a preservation of functional integrity and an improvement in mortality.

  1. Atrazine Acts as an Endocrine Disrupter by Inhibiting cAMP-specific Phosphodiesterase-4

    PubMed Central

    Kucka, Marek; Pogrmic-Majkic, Kristina; Fa, Svetlana; Stojilkovic, Stanko S.; Kovacevic, Radmila

    2014-01-01

    Atrazine, one of the most commonly used herbicides worldwide, acts as an endocrine disruptor, but the mechanism of its action has not been characterized. In this study, we show that atrazine rapidly increases cAMP levels in cultured rat pituitary and testicular Leydig cells in a concentration-dependent manner, but less effectively than 3-isobutyl-1-methylxanthine, a competitive non-specific inhibitor of phosphodiesterases (PDEs). In forskolin (an activator of adenylyl cyclase)- and probenecid (an inhibitor of cyclic nucleotide transporters)-treated cells, but not in 3-isobutyl-1-methylxanthine-treated cells, atrazine further increased cAMP levels, indicating that inhibition of PDEs accounts for accumulation of cAMP. In contrast to cAMP, atrazine did not alter cGMP levels, further indicating that it inhibits cAMP-specific PDEs. Atrazine-induced changes in cAMP levels were sufficient to stimulate prolactin release in pituitary cells and androgen production in Leydig cells, indicating that it acts as an endocrine disrupter both in cells that secrete by exocytosis of prestored hormones and in cells that secrete by de novo hormone synthesis. Rolipram abolished the stimulatory effect of atrazine on cAMP release in both cell types, suggesting that it acts as an inhibitor of PDE4s, isoforms whose mRNA transcripts dominate in pituitary and Leydig cells together with mRNA for PDE8A. In contrast, immortalized lacto-somatotrophs showed low expression of these mRNA transcripts and several fold higher cAMP levels compared to normal pituitary cells, and atrazine was unable to further increase cAMP levels. These results indicate that atrazine acts as a general endocrine disrupter by inhibiting cAMP-specific PDE4s. PMID:23022511

  2. Attenuation of Inhibitory Prostaglandin E2 Signaling in Human Lung Fibroblasts Is Mediated by Phosphodiesterase 4

    PubMed Central

    Michalski, Joel; Kanaji, Nobuhiro; Liu, Xiangde; Nogel, Steve; Wang, Xingqi; Basma, Hesham; Nakanishi, Masanori; Sato, Tadashi; Gunji, Yoko; Fahrid, Maha; Nelson, Amy; Muller, Kai-Christian; Holz, Olaf; Magnussen, Helgo; Rabe, Klaus F.; Toews, Myron L.

    2012-01-01

    The etiology of chronic obstructive pulmonary disease (COPD) is complex and involves an aberrant inflammatory response. Prostaglandin (PG)E2 is elevated in COPD, is a key modulator of lung fibroblast functions, and may influence COPD progression. Most studies evaluating the effects of PGE2 on lung fibroblasts have used acute exposures. The current study evaluated whether longer-term exposure would induce attenuation of PGE2 signaling as part of an autoregulatory pathway. Human fetal lung fibroblasts were pretreated with PGE2 for 24 hours, and migration and cAMP accumulation in response to acute stimulation with PGE2 were assessed. Fibroblasts from adults with and without COPD were pretreated, and migration was assessed. PGE2 pretreatment attenuated subsequent PGE2-mediated inhibition of chemotaxis and cAMP stimulation. This attenuation was predominantly due to an increase in phosphodiesterase (PDE)4-mediated degradation of cAMP rather than to decreased activation of PGE2 receptors (receptor desensitization). Albuterol- and iloprost-mediated signaling were also attenuated after PGE2 pretreatment, suggesting that activation of PDE4 was able to broadly modulate multiple cAMP-coupled pathways. Lung fibroblasts from adult control subjects pretreated with PGE2 also developed attenuation of PGE2-mediated inhibition of chemotaxis. In contrast, fibroblasts obtained from patients with COPD maintained inhibitory PGE2 signaling after PGE2 pretreatment. These data identify a PDE4-mediated attenuation of PGE2 inhibitory signaling in normal fibroblasts that appears to be altered in COPD fibroblasts. These alterations may contribute to COPD pathogenesis and could provide novel therapeutic targets. PMID:23043089

  3. Atrazine acts as an endocrine disrupter by inhibiting cAMP-specific phosphodiesterase-4

    SciTech Connect

    Kucka, Marek; Pogrmic-Majkic, Kristina; Fa, Svetlana; Stojilkovic, Stanko S.; Kovacevic, Radmila

    2012-11-15

    Atrazine, one of the most commonly used herbicides worldwide, acts as an endocrine disruptor, but the mechanism of its action has not been characterized. In this study, we show that atrazine rapidly increases cAMP levels in cultured rat pituitary and testicular Leydig cells in a concentration-dependent manner, but less effectively than 3-isobutyl-1-methylxanthine, a competitive non-specific inhibitor of phosphodiesterases (PDEs). In forskolin (an activator of adenylyl cyclase)- and probenecid (an inhibitor of cyclic nucleotide transporters)-treated cells, but not in 3-isobutyl-1-methylxanthine-treated cells, atrazine further increased cAMP levels, indicating that inhibition of PDEs accounts for accumulation of cAMP. In contrast to cAMP, atrazine did not alter cGMP levels, further indicating that it inhibits cAMP-specific PDEs. Atrazine-induced changes in cAMP levels were sufficient to stimulate prolactin release in pituitary cells and androgen production in Leydig cells, indicating that it acts as an endocrine disrupter both in cells that secrete by exocytosis of prestored hormones and in cells that secrete by de novo hormone synthesis. Rolipram abolished the stimulatory effect of atrazine on cAMP release in both cell types, suggesting that it acts as an inhibitor of PDE4s, isoforms whose mRNA transcripts dominate in pituitary and Leydig cells together with mRNA for PDE8A. In contrast, immortalized lacto-somatotrophs showed low expression of these mRNA transcripts and several fold higher cAMP levels compared to normal pituitary cells, and atrazine was unable to further increase cAMP levels. These results indicate that atrazine acts as a general endocrine disrupter by inhibiting cAMP-specific PDE4s. -- Highlights: ► Atrazine stimulates cAMP accumulation in pituitary and Leydig cells. ► Atrazine also stimulates PRL and androgens secretion. ► Stimulatory effects of atrazine were abolished in cells with IBMX-inhibited PDEs. ► Atrazine specificity toward cAMP-specific PDEs was indicated by no changes in cGMP. ► Rolipram, a specific PDE4 inhibitor, also prevents stimulatory effects of atrazine. ► Atrazine acts as an endocrine disrupter by inhibiting cAMP-specific PDE4.

  4. Topical therapy for psoriasis: a promising future. Focus on JAK and phosphodiesterase-4 inhibitors.

    PubMed

    Rafael, Adilia; Torres, Tiago

    2016-01-01

    Psoriasis is a common, chronic and disabling skin disorder affecting approximately 2% of the population, associated with significant negative impact on the patient's quality of life. Approximately 80% of those affected with psoriasis have mild-to-moderate forms and are usually treated with topical therapy, whereas phototherapy and systemic therapies are used for those with severe disease. In the past three decades, the major advances in psoriasis therapy have been in systemic agents for the treatment of moderate-to-severe psoriasis, particularly new immunomodulatory and biological molecules, while topical therapies have remained relatively unchanged over the past decades. Indeed, topical corticosteroids and vitamin D3 analogs are still the gold standard of therapy for mild-to-moderate psoriasis. Thus, there is a need to develop new and more effective topical agents in the short and long term, with a better efficacy and safety profile than corticosteroids and vitamin D3 analogs. Over the past five years, investigation into topical therapy has expanded, with exciting new drugs being developed. Preliminary results of these emerging agents that selectively target disease-defining pathogenic pathways seem to be promising, although long-term and large-scale studies assessing safety and efficacy are still lacking. The aim of this article was to review the clinical and research data of some emerging topical agents, focusing on Janus kinase-signal transducer and activator of transcription and phosphodiesterase type 4 inhibitors, which are currently being investigated.

  5. Synthesis, Pharmacological Profile and Docking Studies of New Sulfonamides Designed as Phosphodiesterase-4 Inhibitors

    PubMed Central

    Cardozo, Suzana Vanessa S.; Carvalho, Vinicius de Frias; Romeiro, Nelilma Correia; Silva, Patrícia Machado Rodrigues e; Martins, Marco Aurélio; Barreiro, Eliezer J.; Lima, Lídia Moreira

    2016-01-01

    Prior investigations showed that increased levels of cyclic AMP down-regulate lung inflammatory changes, stimulating the interest in phosphodiesterase (PDE)4 as therapeutic target. Here, we described the synthesis, pharmacological profile and docking properties of a novel sulfonamide series (5 and 6a-k) designed as PDE4 inhibitors. Compounds were screened for their selectivity against the four isoforms of human PDE4 using an IMAP fluorescence polarized protocol. The effect on allergen- or LPS-induced lung inflammation and airway hyper-reactivity (AHR) was studied in A/J mice, while the xylazine/ketamine-induced anesthesia test was employed as a behavioral correlate of emesis in rodents. As compared to rolipram, the most promising screened compound, 6a (LASSBio-448) presented a better inhibitory index concerning PDE4D/PDE4A or PDE4D/PDE4B. Accordingly, docking analyses of the putative interactions of LASSBio-448 revealed similar poses in the active site of PDE4A and PDE4C, but slight unlike orientations in PDE4B and PDE4D. LASSBio-448 (100 mg/kg, oral), 1 h before provocation, inhibited allergen-induced eosinophil accumulation in BAL fluid and lung tissue samples. Under an interventional approach, LASSBio-448 reversed ongoing lung eosinophilic infiltration, mucus exacerbation, peribronchiolar fibrosis and AHR by allergen provocation, in a mechanism clearly associated with blockade of pro-inflammatory mediators such as IL-4, IL-5, IL-13 and eotaxin-2. LASSBio-448 (2.5 and 10 mg/kg) also prevented inflammation and AHR induced by LPS. Finally, the sulfonamide derivative was shown to be less pro-emetic than rolipram and cilomilast in the assay employed. These findings suggest that LASSBio-448 is a new PDE4 inhibitor with marked potential to prevent and reverse pivotal pathological features of diseases characterized by lung inflammation, such as asthma. PMID:27695125

  6. Discover natural compounds as potential phosphodiesterase-4B inhibitors via computational approaches.

    PubMed

    Li, Jing; Zhou, Nan; Liu, Wen; Li, Jianzong; Feng, Yu; Wang, Xiaoyun; Wu, Chuanfang; Bao, Jinku

    2016-05-01

    cAMP, intracellular cyclic adenosine monophosphate, is a ubiquitous second messenger that plays a key role in many physiological processes. PDE4B which can reduce the cAMP level by hydrolyzing cAMP to 5'-AMP has become a therapeutic target for the treatment of human diseases such as respiratory disorders, inflammation diseases, neurological and psychiatric disorders. However, the use of currently available PDE4B inhibitors is restricted due to serious side effects caused by targeting PDE4D. Hence, we are attempting to find out subfamily-selective PDE4B inhibitors from natural products, using computer-aided approaches such as virtual screening, docking, and molecular dynamics simulation. Finally, four potential PDE4B-selective inhibitors (ZINC67912770, ZINC67912780, ZINC72320169, and ZINC28882432) were found. Compared to the reference drug (roflumilast), they scored better during the virtual screening process. Binding free energy for them was -317.51, -239.44, -215.52, and -165.77 kJ/mol, better than -129.05 kJ/mol of roflumilast. The pharmacophore model of the four candidate inhibitors comprised six features, including one hydrogen bond donor, four hydrogen bond acceptors, and one aromatic ring feature. It is expected that our study will pave the way for the design of potent PDE4B-selective inhibitors of new drugs to treat a wide variety of diseases such as asthma, COPD, psoriasis, depression, etc.

  7. Increased mtDNA mutations with aging promotes amyloid accumulation and brain atrophy in the APP/Ld transgenic mouse model of Alzheimer’s disease

    PubMed Central

    2014-01-01

    Background The role of mitochondrial dysfunction has long been implicated in age-related brain pathology, including Alzheimer’s disease (AD). However, the mechanism by which mitochondrial dysfunction may cause neurodegeneration in AD is unclear. To model mitochondrial dysfunction in vivo, we utilized mice that harbor a knockin mutation that inactivates the proofreading function of mitochondrial DNA polymerase γ (PolgA D257A), so that these mice accumulate mitochondrial DNA mutations with age. PolgA D257A mice develop a myriad of mitochondrial bioenergetic defects and physical phenotypes that mimic premature ageing, with subsequent death around one year of age. Results We crossed the D257A mice with a well-established transgenic AD mouse model (APP/Ld) that develops amyloid plaques. We hypothesized that mitochondrial dysfunction would affect Aβ synthesis and/or clearance, thus contributing to amyloidogenesis and triggering neurodegeneration. Initially, we discovered that Aβ42 levels along with Aβ42 plaque density were increased in D257A; APP/Ld bigenic mice compared to APP/Ld monogenic mice. Elevated Aβ production was not responsible for increased amyloid pathology, as levels of BACE1, PS1, C99, and C83 were unchanged in D257A; APP/Ld compared to APP/Ld mice. However, the levels of a major Aβ clearance enzyme, insulin degrading enzyme (IDE), were reduced in mice with the D257A mutation, suggesting this as mechanism for increased amyloid load. In the presence of the APP transgene, D257A mice also exhibited significant brain atrophy with apparent cortical thinning but no frank neuron loss. D257A; APP/Ld mice had increased levels of 17 kDa cleaved caspase-3 and p25, both indicative of neurodegeneration. Moreover, D257A; APP/Ld neurons appeared morphologically disrupted, with swollen and vacuolated nuclei. Conclusions Overall, our results implicate synergism between the effects of the PolgA D257A mutation and Aβ in causing neurodegeneration. These findings

  8. Chicoric Acid Ameliorates Lipopolysaccharide-Induced Oxidative Stress via Promoting the Keap1/Nrf2 Transcriptional Signaling Pathway in BV-2 Microglial Cells and Mouse Brain.

    PubMed

    Liu, Qian; Hu, Yaya; Cao, Youfang; Song, Ge; Liu, Zhigang; Liu, Xuebo

    2017-01-18

    As a major nutraceutical component of a typical Mediterranean vegetable chicory, chicoric acid (CA) has been well-documented due to its excellent antioxidant and antiobesity bioactivities. In the current study, the effects of CA on lipopolysaccharide (LPS)-stimulated oxidative stress in BV-2 microglia and C57BL/6J mice and the underlying molecular mechanisms were investigated. Results demonstrated that CA significantly reversed LPS-elicited cell viability decrease, mitochondrial dysfunction, activation of NFκB and MAPK stress pathways, and inflammation responses via balancing cellular redox status. Furthermore, molecular modeling study demonstrated that CA could insert into the pocket of Keap1 and up-regulated Nrf2 signaling and, thus, transcriptionally regulate downstream expressions of antioxidant enzymes including HO-1 and NQO-1 in both microglial cells and ip injection of LPS-treated mouse brain. These results suggested that CA attenuated LPS-induced oxidative stress via mediating Keap1/Nrf2 transcriptional pathways and downstream enzyme expressions, which indicated that CA has great potential as a nutritional preventive strategy in oxidative stress-related neuroinflammation.

  9. RNA interference-mediated knockdown of brain-derived neurotrophic factor (BDNF) promotes cell cycle arrest and apoptosis in B-cell lymphoma cells.

    PubMed

    Xia, D; Li, W; Zhang, L; Qian, H; Yao, S; Qi, X

    2014-01-01

    Brain-derived neurotrophic factor (BDNF) is a member of the neurotrophin superfamily that has been reported to be involved in a number of neurological and psychological situations. Recently, high expression level of BDNF is observed in diverse human malignancies, delineating a role of BDNF in tumorigenesis. Nevertheless, its effect on B-cell lymphoma remains unclear. In this study, RNA interference technology mediated by short hairpin RNA (shRNA) was performed to inhibit endogenous BDNF expression in B-cell lymphoma cells. Results showed that knockdown of BDNF reduced cell growth and proliferation of Raji and Ramos cells. Furthermore, down-regulation of BDNF induced a cell cycle arrest at G0/G1 phase in Raji cells, and consequently led to cell apoptosis in vitro. Meanwhile, down-regulation of Bcl-2 and up-regulation of Bax, activated caspase-3 and caspase-9 and cleaved poly (ADP-ribose) polymerase (PARP) were observed in Raji cells when endogenous BDNF was inhibited. Besides, we also found that suppression of BDNF in Raji cells increased their sensitivity to chemotherapeutic drug, 5-Fluorouracil (5-FU). Our research provides a promising therapeutic strategy for human B-cell lymphoma by targeting BDNF.

  10. Sustained (S)-roscovitine delivery promotes neuroprotection associated with functional recovery and decrease in brain edema in a randomized blind focal cerebral ischemia study.

    PubMed

    Rousselet, Estelle; Létondor, Anne; Menn, Bénédicte; Courbebaisse, Yann; Quillé, Marie-Lise; Timsit, Serge

    2017-01-01

    Stroke is a devastating disorder that significantly contributes to death, disability and healthcare costs. In ischemic stroke, the only current acute therapy is recanalization, but the narrow therapeutic window less than 6 h limits its application. The current challenge is to prevent late cell death, with concomitant therapy targeting the ischemic cascade to widen the therapeutic window. Among potential neuroprotective drugs, cyclin-dependent kinase inhibitors such as (S)-roscovitine are of particular relevance. We previously showed that (S)-roscovitine crossed the blood-brain barrier and was neuroprotective in a dose-dependent manner in two models of middle cerebral artery occlusion (MCAo). According to the Stroke Therapy Academic Industry Roundtable guidelines, the pharmacokinetics of (S)-roscovitine and the optimal mode of delivery and therapeutic dose in rats were investigated. Combination of intravenous (IV) and continuous sub-cutaneous (SC) infusion led to early and sustained delivery of (S)-roscovitine. Furthermore, in a randomized blind study on a transient MCAo rat model, we showed that this mode of delivery reduced both infarct and edema volume and was beneficial to neurological outcome. Within the framework of preclinical studies for stroke therapy development, we here provide data to improve translation of pre-clinical studies into successful clinical human trials.

  11. Angelica injection promotes peripheral nerve structure and function recovery with increased expressions of nerve growth factor and brain derived neurotrophic factor in diabetic rats.

    PubMed

    Li, Ruilin; Zhang, Junjian; Zhang, Lei; Cui, Qin; Liu, Hui

    2010-08-01

    Several nervous system injury models, such as sciatic crush and chronic cerebral hypoperfusion have been well studied in terms of neuroprotective effect of angelica injection. However, definitive experimental studies are lacking on diabetic peripheral neuropathy (DPN). This study sought to investigate the effects of angelica injection on DPN in type 1 diabetic rats. Diabetes was induced by single intraperitoneal injection of streptozotocin (STZ). To examine whether DPN model succeeded, tail-flick latency (TFL) and motor nerve conduction velocity (MNCV) were measured at 6 weeks after diabetes induction. Then, diabetic rats were treated with high- and low-dose angelica injection for 4 weeks. TFL, MNCV, morphology of sciatic nerve, myelinated nerve fiber density and the expressions of nerve growth factor (NGF) and brain derived neurotrophic factor (BDNF) in soleus and sciatic nerve were measured at 10 weeks after diabetes induction. The results showed the TFL was significantly shortened (p<0.001) and the MNCV was reduced (p<0.01) in diabetic rats compared with normal control rats at 6 weeks after diabetes induction. The TFL was obviously prolonged and the MNCV was further reduced in diabetic control group at 10 weeks after diabetes induction. TFL, MNCV and morphology of sciatic nerve were remarkably ameliorated and myelinated nerve fiber density and the expressions of NGF and BDNF in soleus and sciatic nerve were increased in the angelica treatment groups. This study suggests angelica injection has potential therapeutic effects on DPN, and the mechanism might be related to direct increase in NGF expression and direct or indirect increase in BDNF expression.

  12. Brain-derived neurotrophic factor but not vesicular zinc promotes TrkB activation within mossy fibers of mouse hippocampus in vivo.

    PubMed

    Helgager, Jeffrey; Huang, Yang Zhong; Mcnamara, James O

    2014-12-01

    The neurotrophin receptor, TrkB receptor tyrosine kinase, is critical to central nervous system (CNS) function in health and disease. Elucidating the ligands mediating TrkB activation in vivo will provide insights into its diverse roles in the CNS. The canonical ligand for TrkB is brain-derived neurotrophic factor (BDNF). A diversity of stimuli also can activate TrkB in the absence of BDNF, a mechanism termed transactivation. Zinc, a divalent cation packaged in synaptic vesicles along with glutamate in axons of mammalian cortical neurons, can transactivate TrkB in neurons and heterologous cells in vitro. Yet the contributions of BDNF and zinc to TrkB activation in vivo are unknown. To address these questions, we conducted immunohistochemical (IHC) studies of the hippocampal mossy fiber axons and boutons using an antibody selective for pY816 of TrkB, a surrogate measure of TrkB activation. We found that conditional deletion of BDNF resulted in a reduction of pY816 in axons and synaptic boutons of hippocampal mossy fibers, thereby implicating BDNF in activation of TrkB in vivo. Unexpectedly, pY816 immunoreactivity was increased in axons but not synaptic boutons of mossy fibers in ZnT3 knockout mice that lack vesicular zinc. Marked increases of BDNF content were evident within the hippocampus of ZnT3 knockout mice and genetic elimination of BDNF reduced pY816 immunoreactivity in these mice, implicating BDNF in enhanced TrkB activation mediated by vesicular zinc depletion. These findings support the conclusion that BDNF but not vesicular zinc activates TrkB in hippocampal mossy fiber axons under physiological conditions.

  13. FK506-loaded chitosan conduit promotes the regeneration of injured sciatic nerves in the rat through the upregulation of brain-derived neurotrophic factor and TrkB.

    PubMed

    Zhao, Jia; Zheng, Xifu; Fu, Chongyang; Qu, Wei; Wei, Guoqiang; Zhang, Weiguo

    2014-09-15

    FK506 has been shown to exert neurotrophic and neuroprotective effects, but its long-term application for nerve regeneration is limited. This study evaluated the potential application of a novel FK506-loaded chitosan conduit for peripheral nerve repair, and explored the underlying mechanism. A sciatic nerve injury model was created in male Wistar rats, which were then randomly divided into three treatment groups (n=40, each): chitosan-only, chitosan+FK506 injection, and FK506-loaded chitosan. We found significant recovery of normal morphology of sciatic nerves and higher density of myelinated nerve fibers in rats treated with FK506-loaded chitosan. Similarly, the total number of myelinated nerve fibers, myelin sheath thickness, and axon diameters were significantly higher in this group compared with the others, and the compound muscle action potentials and motor nerve conduction velocity values of sciatic nerves were significantly higher. BDNF and TrkB levels in motor neurons were highest in rats treated with FK506-loaded chitosan. In conclusion, FK506-loaded chitosan promoted peripheral nerve repair and regeneration in a rat model of sciatic nerve injury. These effects are correlated with increased BDNF and TrkB expression in motor neurons.

  14. Persistent inflammation-induced up-regulation of brain-derived neurotrophic factor (BDNF) promotes synaptic delivery of α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptor GluA1 subunits in descending pain modulatory circuits.

    PubMed

    Tao, Wenjuan; Chen, Quan; Zhou, Wenjie; Wang, Yunping; Wang, Lu; Zhang, Zhi

    2014-08-08

    The enhanced AMPA receptor phosphorylation at GluA1 serine 831 sites in the central pain-modulating system plays a pivotal role in descending pain facilitation after inflammation, but the underlying mechanisms remain unclear. We show here that, in the rat brain stem, in the nucleus raphe magnus, which is a critical relay in the descending pain-modulating system of the brain, persistent inflammatory pain induced by complete Freund adjuvant (CFA) can enhance AMPA receptor-mediated excitatory postsynaptic currents and the GluA2-lacking AMPA receptor-mediated rectification index. Western blot analysis showed an increase in GluA1 phosphorylation at Ser-831 but not at Ser-845. This was accompanied by an increase in distribution of the synaptic GluA1 subunit. In parallel, the level of histone H3 acetylation at bdnf gene promoter regions was reduced significantly 3 days after CFA injection, as indicated by ChIP assays. This was correlated with an increase in BDNF mRNA levels and BDNF protein levels. Sequestering endogenous extracellular BDNF with TrkB-IgG in the nucleus raphe magnus decreased AMPA receptor-mediated synaptic transmission and GluA1 phosphorylation at Ser-831 3 days after CFA injection. Under the same conditions, blockade of TrkB receptor functions, phospholipase C, or PKC impaired GluA1 phosphorylation at Ser-831 and decreased excitatory postsynaptic currents mediated by GluA2-lacking AMPA receptors. Taken together, these results suggest that epigenetic up-regulation of BDNF by peripheral inflammation induces GluR1 phosphorylation at Ser-831 sites through activation of the phospholipase C-PKC signaling cascade, leading to the trafficking of GluA1 to pain-modulating neuronal synapses.

  15. Brain abscess

    MedlinePlus

    ... with certain heart disorders, may receive antibiotics before dental or other procedures to help reduce the risk of infection. Alternative Names Abscess - brain; Cerebral abscess; CNS abscess Patient Instructions Brain surgery - discharge Images Amebic brain abscess ...

  16. Brain components

    MedlinePlus Videos and Cool Tools

    The brain is composed of more than a thousand billion neurons. Specific groups of them, working in concert, provide ... of information. The 3 major components of the brain are the cerebrum, cerebellum, and brain stem. The ...

  17. Brain surgery

    MedlinePlus

    Craniotomy; Surgery - brain; Neurosurgery; Craniectomy; Stereotactic craniotomy; Stereotactic brain biopsy; Endoscopic craniotomy ... cut depends on where the problem in the brain is located. The surgeon creates a hole in ...

  18. Brain Malformations

    MedlinePlus

    Most brain malformations begin long before a baby is born. Something damages the developing nervous system or causes it ... medicines, infections, or radiation during pregnancy interferes with brain development. Parts of the brain may be missing, ...

  19. Brain-derived neurotrophic factor promotes vesicular glutamate transporter 3 expression and neurite outgrowth of dorsal root ganglion neurons through the activation of the transcription factors Etv4 and Etv5.

    PubMed

    Liu, Dong; Liu, Zhen; Liu, Huaxiang; Li, Hao; Pan, Xinliang; Li, Zhenzhong

    2016-03-01

    Brain-derived neurotrophic factor (BDNF) is critical for sensory neuron survival and is necessary for vesicular glutamate transporter 3 (VGLUT3) expression. Whether the transcription factors Etv4 and Etv5 are involved in these BDNF-induced effects remains unclear. In the present study, primary cultured dorsal root ganglion (DRG) neurons were used to test the link between BDNF and transcription factors Etv4 and Etv5 on VGLUT3 expression and neurite outgrowth. BDNF promoted the mRNA and protein expression of Etv4 and Etv5 in DRG neurons. These effects were blocked by extracellular signal-regulated protein kinase 1/2 (ERK1/2) inhibitor PD98059 but not phosphatidylinositol 3-kinase (PI3K) inhibitor LY294002 or phospholipase C-γ (PLC-γ) inhibitor U73122. Etv4 siRNA and Etv5 siRNA effectively blocked the VGLUT3 expression and neurite elongation induced by BNDF. The overexpression of Etv4 or Etv5 potentiated the effects of BNDF-induced neurite elongation and growth-associated protein 43 (GAP-43), medium neurofilament (NF-M), and light neurofilament (NF-L) expression while these effects could be inhibited by Etv4 and Etv5 siRNA. These data imply that Etv4 and Etv5 are essential transcription factors in modulating BDNF/TrkB signaling-mediated VGLUT3 expression and neurite outgrowth. BDNF, through the ERK1/2 signaling pathway, activates Etv4 and Etv5 to initiate GAP-43 expression, promote neurofilament (NF) protein expression, induce neurite outgrowth, and mediate VGLUT3 expression for neuronal function improvement. The biological effects initiated by BDNF/TrkB signaling linked to E26 transformation-specific (ETS) transcription factors are important to elucidate neuronal differentiation, axonal regeneration, and repair in various pathological states.

  20. Chronic psychological stress and high-fat high-fructose diet disrupt metabolic and inflammatory gene networks in the brain, liver, and gut and promote behavioral deficits in mice.

    PubMed

    de Sousa Rodrigues, Maria Elizabeth; Bekhbat, Mandakh; Houser, Madelyn C; Chang, Jianjun; Walker, Douglas I; Jones, Dean P; Oller do Nascimento, Claudia M P; Barnum, Christopher J; Tansey, Malú G

    2017-01-01

    The mechanisms underlying the association between chronic psychological stress, development of metabolic syndrome (MetS), and behavioral impairment in obesity are poorly understood. The aim of the present study was to assess the effects of mild chronic psychological stress on metabolic, inflammatory, and behavioral profiles in a mouse model of diet-induced obesity. We hypothesized that (1) high-fat high-fructose diet (HFHF) and psychological stress would synergize to mediate the impact of inflammation on the central nervous system in the presence of behavioral dysfunction, and that (2) HFHF and stress interactions would impact insulin and lipid metabolism. C57Bl/6 male mice underwent a combination of HFHF and two weeks of chronic psychological stress. MetS-related conditions were assessed using untargeted plasma metabolomics, and structural and immune changes in the gut and liver were evaluated. Inflammation was measured in plasma, liver, gut, and brain. Our results show a complex interplay of diet and stress on gut alterations, energetic homeostasis, lipid metabolism, and plasma insulin levels. Psychological stress and HFHF diet promoted changes in intestinal tight junctions proteins and increases in insulin resistance and plasma cholesterol, and impacted the RNA expression of inflammatory factors in the hippocampus. Stress promoted an adaptive anti-inflammatory profile in the hippocampus that was abolished by diet treatment. HFHF increased hippocampal and hepatic Lcn2 mRNA expression as well as LCN2 plasma levels. Behavioral changes were associated with HFHF and stress. Collectively, these results suggest that diet and stress as pervasive factors exacerbate MetS-related conditions through an inflammatory mechanism that ultimately can impact behavior. This rodent model may prove useful for identification of possible biomarkers and therapeutic targets to treat metabolic syndrome and mood disorders.

  1. Campaign for the Brain.

    PubMed

    Marshall, Jolene

    2017-04-01

    A stroke alert is an emergency. An event in the brain can end in long-term deficits that may be prevented if attention is given to the signs. The message needs to be told. Be fast. This is a poem to promote code stroke.

  2. Love promotes health.

    PubMed

    Esch, Tobias; Stefano, George B

    2005-06-01

    Love has consequences for health and well-being. Engaging in joyful activities such as love may activate areas in the brain responsible for emotion, attention, motivation and memory (i.e., limbic structures), and it may further serve to control the autonomic nervous system, i.e., stress reduction. This specific CNS activity pattern appears to exert protective effects, even on the brain itself. Moreover, anxiolytic effects of pleasurable experiences may occur by promotion of an inhibitory tone in specific areas of the brain. Thus, love and pleasure clearly are capable of stimulating health, well-being and (re)productivity: This wonderful biological instrument makes procreation and maintenance of organisms and their species a deeply rewarding and pleasurable experience, thus ensuring survival, health, and perpetuation.

  3. Assessment of Students with Traumatic Brain Injury

    ERIC Educational Resources Information Center

    Chesire, David J.; Buckley, Valerie A.; Canto, Angela I.

    2011-01-01

    The incidence of brain injuries, as well as their impact on individuals who sustain them, has received growing attention from American media in recent years. This attention is likely the result of high profile individuals suffering brain injuries. Greater public awareness of traumatic brain injuries (TBIs) has also been promoted by sources such as…

  4. Assessment of Students with Traumatic Brain Injury

    ERIC Educational Resources Information Center

    Chesire, David J.; Buckley, Valerie A.; Canto, Angela I.

    2011-01-01

    The incidence of brain injuries, as well as their impact on individuals who sustain them, has received growing attention from American media in recent years. This attention is likely the result of high profile individuals suffering brain injuries. Greater public awareness of traumatic brain injuries (TBIs) has also been promoted by sources such as…

  5. Aquaporins and Brain Tumors

    PubMed Central

    Maugeri, Rosario; Schiera, Gabriella; Di Liegro, Carlo Maria; Fricano, Anna; Iacopino, Domenico Gerardo; Di Liegro, Italia

    2016-01-01

    Brain primary tumors are among the most diverse and complex human cancers, and they are normally classified on the basis of the cell-type and/or the grade of malignancy (the most malignant being glioblastoma multiforme (GBM), grade IV). Glioma cells are able to migrate throughout the brain and to stimulate angiogenesis, by inducing brain capillary endothelial cell proliferation. This in turn causes loss of tight junctions and fragility of the blood–brain barrier, which becomes leaky. As a consequence, the most serious clinical complication of glioblastoma is the vasogenic brain edema. Both glioma cell migration and edema have been correlated with modification of the expression/localization of different isoforms of aquaporins (AQPs), a family of water channels, some of which are also involved in the transport of other small molecules, such as glycerol and urea. In this review, we discuss relationships among expression/localization of AQPs and brain tumors/edema, also focusing on the possible role of these molecules as both diagnostic biomarkers of cancer progression, and therapeutic targets. Finally, we will discuss the possibility that AQPs, together with other cancer promoting factors, can be exchanged among brain cells via extracellular vesicles (EVs). PMID:27367682

  6. Targeted taste cell-specific overexpression of brain-derived neurotrophic factor in adult taste buds elevates phosphorylated TrkB protein levels in taste cells, increases taste bud size, and promotes gustatory innervation.

    PubMed

    Nosrat, Irina V; Margolskee, Robert F; Nosrat, Christopher A

    2012-05-11

    Brain-derived neurotrophic factor (BDNF) is the most potent neurotrophic factor in the peripheral taste system during embryonic development. It is also expressed in adult taste buds. There is a lack of understanding of the role of BDNF in the adult taste system. To address this, we generated novel transgenic mice in which transgene expression was driven by an α-gustducin promoter coupling BDNF expression to the postnatal expression of gustducin in taste cells. Immunohistochemistry revealed significantly stronger BDNF labeling in taste cells of high BDNF-expressing mouse lines compared with controls. We show that taste buds in these mice are significantly larger and have a larger number of taste cells compared with controls. To examine whether innervation was affected in Gust-BDNF mice, we used antibodies to neural cell adhesion molecule (NCAM) and ATP receptor P2X3. The total density of general innervation and specifically the gustatory innervation was markedly increased in high BDNF-expressing mice compared with controls. TrkB and NCAM gene expression in laser capture microdissected taste epithelia were significantly up-regulated in these mice. Up-regulation of TrkB transcripts in taste buds and elevated taste cell-specific TrkB phosphorylation in response to increased BDNF levels indicate that BDNF controls the expression and activation of its high affinity receptor in taste cells. This demonstrates a direct taste cell function for BDNF. BDNF also orchestrates and maintains taste bud innervation. We propose that the Gust-BDNF transgenic mouse models can be employed to further dissect the specific roles of BDNF in the adult taste system.

  7. Targeted Taste Cell-specific Overexpression of Brain-derived Neurotrophic Factor in Adult Taste Buds Elevates Phosphorylated TrkB Protein Levels in Taste Cells, Increases Taste Bud Size, and Promotes Gustatory Innervation*

    PubMed Central

    Nosrat, Irina V.; Margolskee, Robert F.; Nosrat, Christopher A.

    2012-01-01

    Brain-derived neurotrophic factor (BDNF) is the most potent neurotrophic factor in the peripheral taste system during embryonic development. It is also expressed in adult taste buds. There is a lack of understanding of the role of BDNF in the adult taste system. To address this, we generated novel transgenic mice in which transgene expression was driven by an α-gustducin promoter coupling BDNF expression to the postnatal expression of gustducin in taste cells. Immunohistochemistry revealed significantly stronger BDNF labeling in taste cells of high BDNF-expressing mouse lines compared with controls. We show that taste buds in these mice are significantly larger and have a larger number of taste cells compared with controls. To examine whether innervation was affected in Gust-BDNF mice, we used antibodies to neural cell adhesion molecule (NCAM) and ATP receptor P2X3. The total density of general innervation and specifically the gustatory innervation was markedly increased in high BDNF-expressing mice compared with controls. TrkB and NCAM gene expression in laser capture microdissected taste epithelia were significantly up-regulated in these mice. Up-regulation of TrkB transcripts in taste buds and elevated taste cell-specific TrkB phosphorylation in response to increased BDNF levels indicate that BDNF controls the expression and activation of its high affinity receptor in taste cells. This demonstrates a direct taste cell function for BDNF. BDNF also orchestrates and maintains taste bud innervation. We propose that the Gust-BDNF transgenic mouse models can be employed to further dissect the specific roles of BDNF in the adult taste system. PMID:22442142

  8. Brain Autopsy

    MedlinePlus

    ... that you contact a medical center or brain bank with experience in neurological disorders and, if at ... and Strokes also maintains a listing of brain banks on the research section of their website: www. ...

  9. Brain Power.

    ERIC Educational Resources Information Center

    Albrecht, Karl

    2002-01-01

    Reviews significant findings of recent brain research, including the concept of five minds: automatic, subconscious, practical, creative, and spiritual. Suggests approaches to training the brain that are related to this hierarchy of thinking. (JOW)

  10. Brain Diseases

    MedlinePlus

    The brain is the control center of the body. It controls thoughts, memory, speech, and movement. It regulates the function of many organs. When the brain is healthy, it works quickly and automatically. However, ...

  11. Brain Aneurysm

    MedlinePlus

    ... tests don't provide enough information. Screening for brain aneurysms The use of imaging tests to screen ... and occupational therapy to relearn skills. Treating unruptured brain aneurysms Surgical clipping or endovascular coiling can be ...

  12. The Brain.

    ERIC Educational Resources Information Center

    Hubel, David H.

    1979-01-01

    This article on the brain is part of an entire issue about neurobiology and the question of how the human brain works. The brain as an intricate tissue composed of cells is discussed based on the current knowledge and understanding of its composition and structure. (SA)

  13. Brain Aneurysm

    MedlinePlus

    A brain aneurysm is an abnormal bulge or "ballooning" in the wall of an artery in the brain. They are sometimes called berry aneurysms because they ... often the size of a small berry. Most brain aneurysms produce no symptoms until they become large, ...

  14. The Brain.

    ERIC Educational Resources Information Center

    Hubel, David H.

    1979-01-01

    This article on the brain is part of an entire issue about neurobiology and the question of how the human brain works. The brain as an intricate tissue composed of cells is discussed based on the current knowledge and understanding of its composition and structure. (SA)

  15. Left Brain. Right Brain. Whole