Sample records for phosphoenolpyruvate induced starvation

  1. Zinc starvation induces autophagy in yeast

    PubMed Central

    Kawamata, Tomoko; Horie, Tetsuro; Matsunami, Miou; Sasaki, Michiko; Ohsumi, Yoshinori

    2017-01-01

    Zinc is an essential nutrient for all forms of life. Within cells, most zinc is bound to protein. Because zinc serves as a catalytic or structural cofactor for many proteins, cells must maintain zinc homeostasis under severely zinc-deficient conditions. In yeast, the transcription factor Zap1 controls the expression of genes required for uptake and mobilization of zinc, but to date the fate of existing zinc-binding proteins under zinc starvation remains poorly understood. Autophagy is an evolutionarily conserved cellular degradation/recycling process in which cytoplasmic proteins and organelles are sequestered for degradation in the vacuole/lysosome. In this study, we investigated how autophagy functions under zinc starvation. Zinc depletion induced non-selective autophagy, which is important for zinc-limited growth. Induction of autophagy by zinc starvation was not directly related to transcriptional activation of Zap1. Instead, TORC1 inactivation directed zinc starvation-induced autophagy. Abundant zinc proteins, such as Adh1, Fba1, and ribosomal protein Rpl37, were degraded in an autophagy-dependent manner. But the targets of autophagy were not restricted to zinc-binding proteins. When cellular zinc is severely depleted, this non-selective autophagy plays a role in releasing zinc from the degraded proteins and recycling zinc for other essential purposes. PMID:28264932

  2. Zinc starvation induces autophagy in yeast.

    PubMed

    Kawamata, Tomoko; Horie, Tetsuro; Matsunami, Miou; Sasaki, Michiko; Ohsumi, Yoshinori

    2017-05-19

    Zinc is an essential nutrient for all forms of life. Within cells, most zinc is bound to protein. Because zinc serves as a catalytic or structural cofactor for many proteins, cells must maintain zinc homeostasis under severely zinc-deficient conditions. In yeast, the transcription factor Zap1 controls the expression of genes required for uptake and mobilization of zinc, but to date the fate of existing zinc-binding proteins under zinc starvation remains poorly understood. Autophagy is an evolutionarily conserved cellular degradation/recycling process in which cytoplasmic proteins and organelles are sequestered for degradation in the vacuole/lysosome. In this study, we investigated how autophagy functions under zinc starvation. Zinc depletion induced non-selective autophagy, which is important for zinc-limited growth. Induction of autophagy by zinc starvation was not directly related to transcriptional activation of Zap1. Instead, TORC1 inactivation directed zinc starvation-induced autophagy. Abundant zinc proteins, such as Adh1, Fba1, and ribosomal protein Rpl37, were degraded in an autophagy-dependent manner. But the targets of autophagy were not restricted to zinc-binding proteins. When cellular zinc is severely depleted, this non-selective autophagy plays a role in releasing zinc from the degraded proteins and recycling zinc for other essential purposes. © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.

  3. Phosphate starvation induced OsPHR4 mediates Pi-signaling and homeostasis in rice.

    PubMed

    Ruan, Wenyuan; Guo, Meina; Wu, Ping; Yi, Keke

    2017-02-01

    OsPHR4 mediates the regulation of Pi-starvation signaling and Pi-homeostasis in a PHR1-subfamily dependent manner in rice. Phosphate (Pi) starvation response is a sophisticated process for plant in the natural environment. In this process, PHOSPHATE STARVATION RESPONSE 1 (PHR1) subfamily genes play a central role in regulating Pi-starvation signaling and Pi-homeostasis. Besides the three PHR1 orthologs in Oryza sativa L. (Os) [(Os) PHR1, (Os) PHR2, and (Os) PHR3], which were reported to regulated Pi-starvation signaling and Pi-homeostasis redundantly, a close related PHR1 ortholog [designated as (Os) PHR4] is presented in rice genome with unknown function. In this study, we found that OsPHR4 is a Pi-starvation induced gene and mainly expresses in vascular tissues through all growth and development periods. The expression of OsPHR4 is positively regulated by OsPHR1, OsPHR2 and OsPHR3. The nuclear located OsPHR4 can respectively interact with other three PHR1 subfamily members to regulate downstream Pi-starvation induced genes. Consistent with the positive role of PHR4 in regulating Pi-starvation signaling, the OsPHR4 overexpressors display higher Pi accumulation in the shoot and elevated expression of Pi-starvation induced genes under Pi-sufficient condition. Besides, moderate growth retardation and repression of the Pi-starvation signaling in the OsPHR4 RNA interfering (RNAi) transgenic lines can be observed under Pi-deficient condition. Together, we propose that OsPHR4 mediates the regulation of Pi-starvation signaling and Pi-homeostasis in a PHR1-subfamily dependent manner in rice.

  4. Epigenetic regulation of starvation-induced autophagy in Drosophila by histone methyltransferase G9a.

    PubMed

    An, Phan Nguyen Thuy; Shimaji, Kouhei; Tanaka, Ryo; Yoshida, Hideki; Kimura, Hiroshi; Fukusaki, Eiichiro; Yamaguchi, Masamitsu

    2017-08-04

    Epigenetics is now emerging as a key regulation in response to various stresses. We herein identified the Drosophila histone methyltransferase G9a (dG9a) as a key factor to acquire tolerance to starvation stress. The depletion of dG9a led to high sensitivity to starvation stress in adult flies, while its overexpression induced starvation stress resistance. The catalytic domain of dG9a was not required for starvation stress resistance. dG9a plays no apparent role in tolerance to other stresses including heat and oxidative stresses. Metabolomic approaches were applied to investigate global changes in the metabolome due to the loss of dG9a during starvation stress. The results obtained indicated that dG9a plays an important role in maintaining energy reservoirs including amino acid, trehalose, glycogen, and triacylglycerol levels during starvation. Further investigations on the underlying mechanisms showed that the depletion of dG9a repressed starvation-induced autophagy by controlling the expression level of Atg8a, a critical gene for the progression of autophagy, in a different manner to that in cancer cells. These results indicate a positive role for dG9a in starvation-induced autophagy.

  5. Selective endosomal microautophagy is starvation-inducible in Drosophila.

    PubMed

    Mukherjee, Anindita; Patel, Bindi; Koga, Hiroshi; Cuervo, Ana Maria; Jenny, Andreas

    2016-11-01

    Autophagy delivers cytosolic components to lysosomes for degradation and is thus essential for cellular homeostasis and to cope with different stressors. As such, autophagy counteracts various human diseases and its reduction leads to aging-like phenotypes. Macroautophagy (MA) can selectively degrade organelles or aggregated proteins, whereas selective degradation of single proteins has only been described for chaperone-mediated autophagy (CMA) and endosomal microautophagy (eMI). These 2 autophagic pathways are specific for proteins containing KFERQ-related targeting motifs. Using a KFERQ-tagged fluorescent biosensor, we have identified an eMI-like pathway in Drosophila melanogaster. We show that this biosensor localizes to late endosomes and lysosomes upon prolonged starvation in a KFERQ- and Hsc70-4- dependent manner. Furthermore, fly eMI requires endosomal multivesicular body formation mediated by ESCRT complex components. Importantly, induction of Drosophila eMI requires longer starvation than the induction of MA and is independent of the critical MA genes atg5, atg7, and atg12. Furthermore, inhibition of Tor signaling induces eMI in flies under nutrient rich conditions, and, as eMI in Drosophila also requires atg1 and atg13, our data suggest that these genes may have a novel, additional role in regulating eMI in flies. Overall, our data provide the first evidence for a novel, starvation-inducible, catabolic process resembling endosomal microautophagy in the Drosophila fat body.

  6. Nutrient-regulated Phosphorylation of ATG13 Inhibits Starvation-induced Autophagy*

    PubMed Central

    Puente, Cindy; Hendrickson, Ronald C.; Jiang, Xuejun

    2016-01-01

    Autophagy is a conserved catabolic process that utilizes a defined series of membrane trafficking events to generate a de novo double-membrane vesicle termed the autophagosome, which matures by fusing to the lysosome. Subsequently, the lysosome facilitates the degradation and recycling of the cytoplasmic cargo. In yeast, the upstream signals that regulate the induction of starvation-induced autophagy are clearly defined. The nutrient-sensing kinase Tor inhibits the activation of autophagy by regulating the formation of the Atg1-Atg13-Atg17 complex, through hyperphosphorylation of Atg13. However, in mammals, the ortholog complex ULK1-ATG13-FIP200 is constitutively formed. As such, the molecular mechanism by which mTOR regulates mammalian autophagy is unknown. Here we report the identification and characterization of novel nutrient-regulated phosphorylation sites on ATG13: Ser-224 and Ser-258. mTOR directly phosphorylates ATG13 on Ser-258 while Ser-224 is modulated by the AMPK pathway. In ATG13 knock-out cells reconstituted with an unphosphorylatable mutant of ATG13, ULK1 kinase activity is more potent, and amino acid starvation induced more rapid ATG13 and ULK1 translocation. These events culminated in a more rapid starvation-induced autophagy response. Therefore, ATG13 phosphorylation plays a crucial role in autophagy regulation. PMID:26801615

  7. Starvation reveals the cause of infection-induced castration and gigantism

    PubMed Central

    Cressler, Clayton E.; Nelson, William A.; Day, Troy; McCauley, Edward

    2014-01-01

    Parasites often induce life-history changes in their hosts. In many cases, these infection-induced life-history changes are driven by changes in the pattern of energy allocation and utilization within the host. Because these processes will affect both host and parasite fitness, it can be challenging to determine who benefits from them. Determining the causes and consequences of infection-induced life-history changes requires the ability to experimentally manipulate life history and a framework for connecting life history to host and parasite fitness. Here, we combine a novel starvation manipulation with energy budget models to provide new insights into castration and gigantism in the Daphnia magna–Pasteuria ramosa host–parasite system. Our results show that starvation primarily affects investment in reproduction, and increasing starvation stress reduces gigantism and parasite fitness without affecting castration. These results are consistent with an energetic structure where the parasite uses growth energy as a resource. This finding gives us new understanding of the role of castration and gigantism in this system, and how life-history variation will affect infection outcome and epidemiological dynamics. The approach of combining targeted life-history manipulations with energy budget models can be adapted to understand life-history changes in other disease systems. PMID:25143034

  8. Starvation reveals the cause of infection-induced castration and gigantism.

    PubMed

    Cressler, Clayton E; Nelson, William A; Day, Troy; McCauley, Edward

    2014-10-07

    Parasites often induce life-history changes in their hosts. In many cases, these infection-induced life-history changes are driven by changes in the pattern of energy allocation and utilization within the host. Because these processes will affect both host and parasite fitness, it can be challenging to determine who benefits from them. Determining the causes and consequences of infection-induced life-history changes requires the ability to experimentally manipulate life history and a framework for connecting life history to host and parasite fitness. Here, we combine a novel starvation manipulation with energy budget models to provide new insights into castration and gigantism in the Daphnia magna-Pasteuria ramosa host-parasite system. Our results show that starvation primarily affects investment in reproduction, and increasing starvation stress reduces gigantism and parasite fitness without affecting castration. These results are consistent with an energetic structure where the parasite uses growth energy as a resource. This finding gives us new understanding of the role of castration and gigantism in this system, and how life-history variation will affect infection outcome and epidemiological dynamics. The approach of combining targeted life-history manipulations with energy budget models can be adapted to understand life-history changes in other disease systems.

  9. Phosphoenolpyruvate metabolism in Jerusalem artichoke mitochondria.

    PubMed

    de Bari, Lidia; Valenti, Daniela; Pizzuto, Roberto; Atlante, Anna; Passarella, Salvatore

    2007-04-01

    We report here initial studies on phosphoenolpyruvate metabolism in coupled mitochondria isolated from Jerusalem artichoke tubers. It was found that: (1) phosphoenolpyruvate can be metabolized by Jerusalem artichoke mitochondria by virtue of the presence of the mitochondrial pyruvate kinase, shown both immunologically and functionally, located in the inner mitochondrial compartments and distinct from the cytosolic pyruvate kinase as shown by the different pH and inhibition profiles. (2) Jerusalem artichoke mitochondria can take up externally added phosphoenolpyruvate in a proton compensated manner, in a carrier-mediated process which was investigated by measuring fluorimetrically the oxidation of intramitochondrial pyridine nucleotide which occurs as a result of phosphoenolpyruvate uptake and alternative oxidase activation. (3) The addition of phosphoenolpyruvate causes pyruvate and ATP production, as monitored via HPLC, with their efflux into the extramitochondrial phase investigated fluorimetrically. Such an efflux occurs via the putative phosphoenolpyruvate/pyruvate and phosphoenolpyruvate/ATP antiporters, which differ from each other and from the pyruvate and the adenine nucleotide carriers, in the light of the different sensitivity to non-penetrant compounds. These carriers were shown to regulate the rate of efflux of both pyruvate and ATP. The appearance of citrate and oxaloacetate outside mitochondria was also found as a result of phosphoenolpyruvate addition.

  10. Light Moderates the Induction of Phosphoenolpyruvate Carboxylase by NaCl and Abscisic Acid in Mesembryanthemum crystallinum 1

    PubMed Central

    McElwain, Elizabeth F.; Bohnert, Hans J.; Thomas, John C.

    1992-01-01

    In Mesembryanthemum crystallinum, phosphoenolpyruvate carboxylase is synthesized de novo in response to osmotic stress, as part of the switch from C3-photosynthesis to Crassulacean acid metabolism. To better understand the environmental signals involved in this pathway, we have investigated the effects of light on the induced expression of phosphoenolpyruvate carboxylase mRNA and protein in response to stress by 400 millimolar NaCl or 10 micromolar abscisic acid in hydroponically grown plants. When plants were grown in high-intensity fluorescent or incandescent light (850 microeinsteins per square meter per second), NaCl and abscisic acid induced approximately an eightfold accumulation of phosphoenolpyruvate carboxylase mRNA when compared to untreated controls. Levels of phosphoenolpyruvate carboxylase protein were high in these abscisic acid- and NaCl-treated plants, and detectable in the unstressed control. Growth in high-intensity incandescent (red) light resulted in approximately twofold higher levels of phosphoenolpyruvate carboxylase mRNA in the untreated plants when compared to control plants grown in high-intensity fluorescent light. In low light (300 microeinsteins per square meter per second fluorescent), only NaCl induced mRNA levels significantly above the untreated controls. Low light grown abscisic acid- and NaCl-treated plants contained a small amount of phosphoenolpyruvate carboxylase protein, whereas the (untreated) control plants did not contain detectable amounts of phosphoenolpyruvate carboxylase. Environmental stimuli, such as light and osmotic stress, exert a combined effect on gene expression in this facultative halophyte. ImagesFigure 1Figure 2 PMID:16668999

  11. Transcriptional program for nitrogen starvation-induced lipid accumulation in Chlamydomonas reinhardtii

    DOE PAGES

    Garcia de Lomana, Adrian Lopez; Schäuble, Sascha; Valenzuela, Jacob; ...

    2015-12-02

    Algae accumulate lipids to endure different kinds of environmental stresses including macronutrient starvation. Although this response has been extensively studied, an in depth understanding of the transcriptional regulatory network (TRN) that controls the transition into lipid accumulation remains elusive. In this study, we used a systems biology approach to elucidate the transcriptional program that coordinates the nitrogen starvation-induced metabolic readjustments that drive lipid accumulation in Chlamydomonas reinhardtii. We demonstrate that nitrogen starvation triggered differential regulation of 2147 transcripts, which were co-regulated in 215 distinct modules and temporally ordered as 31 transcriptional waves. An early-stage response was triggered within 12 minmore » that initiated growth arrest through activation of key signaling pathways, while simultaneously preparing the intracellular environment for later stages by modulating transport processes and ubiquitin-mediated protein degradation. Subsequently, central metabolism and carbon fixation were remodeled to trigger the accumulation of triacylglycerols. Further analysis revealed that these waves of genome-wide transcriptional events were coordinated by a regulatory program orchestrated by at least 17 transcriptional regulators, many of which had not been previously implicated in this process. We demonstrate that the TRN coordinates transcriptional downregulation of 57 metabolic enzymes across a period of nearly 4 h to drive an increase in lipid content per unit biomass. Notably, this TRN appears to also drive lipid accumulation during sulfur starvation, while phosphorus starvation induces a different regulatory program. The TRN model described here is available as a community-wide web-resource at http://networks.systemsbiology.net/chlamy-portal. In conclusion, in this work, we have uncovered a comprehensive mechanistic model of the TRN controlling the transition from N starvation to lipid

  12. Transcriptional program for nitrogen starvation-induced lipid accumulation in Chlamydomonas reinhardtii

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Garcia de Lomana, Adrian Lopez; Schäuble, Sascha; Valenzuela, Jacob

    Algae accumulate lipids to endure different kinds of environmental stresses including macronutrient starvation. Although this response has been extensively studied, an in depth understanding of the transcriptional regulatory network (TRN) that controls the transition into lipid accumulation remains elusive. In this study, we used a systems biology approach to elucidate the transcriptional program that coordinates the nitrogen starvation-induced metabolic readjustments that drive lipid accumulation in Chlamydomonas reinhardtii. We demonstrate that nitrogen starvation triggered differential regulation of 2147 transcripts, which were co-regulated in 215 distinct modules and temporally ordered as 31 transcriptional waves. An early-stage response was triggered within 12 minmore » that initiated growth arrest through activation of key signaling pathways, while simultaneously preparing the intracellular environment for later stages by modulating transport processes and ubiquitin-mediated protein degradation. Subsequently, central metabolism and carbon fixation were remodeled to trigger the accumulation of triacylglycerols. Further analysis revealed that these waves of genome-wide transcriptional events were coordinated by a regulatory program orchestrated by at least 17 transcriptional regulators, many of which had not been previously implicated in this process. We demonstrate that the TRN coordinates transcriptional downregulation of 57 metabolic enzymes across a period of nearly 4 h to drive an increase in lipid content per unit biomass. Notably, this TRN appears to also drive lipid accumulation during sulfur starvation, while phosphorus starvation induces a different regulatory program. The TRN model described here is available as a community-wide web-resource at http://networks.systemsbiology.net/chlamy-portal. In conclusion, in this work, we have uncovered a comprehensive mechanistic model of the TRN controlling the transition from N starvation to lipid

  13. The Molecular Mechanism of Ethylene-Mediated Root Hair Development Induced by Phosphate Starvation

    PubMed Central

    Song, Li; Yu, Haopeng; Dong, Jinsong; Liu, Dong

    2016-01-01

    Enhanced root hair production, which increases the root surface area for nutrient uptake, is a typical adaptive response of plants to phosphate (Pi) starvation. Although previous studies have shown that ethylene plays an important role in root hair development induced by Pi starvation, the underlying molecular mechanism is not understood. In this work, we characterized an Arabidopsis mutant, hps5, that displays constitutive ethylene responses and increased sensitivity to Pi starvation due to a mutation in the ethylene receptor ERS1. hps5 accumulates high levels of EIN3 protein, a key transcription factor involved in the ethylene signaling pathway, under both Pi sufficiency and deficiency. Pi starvation also increases the accumulation of EIN3 protein. Combined molecular, genetic, and genomic analyses identified a group of genes that affect root hair development by regulating cell wall modifications. The expression of these genes is induced by Pi starvation and is enhanced in the EIN3-overexpressing line. In contrast, the induction of these genes by Pi starvation is suppressed in ein3 and ein3eil1 mutants. EIN3 protein can directly bind to the promoter of these genes, some of which are also the immediate targets of RSL4, a key transcription factor that regulates root hair development. Based on these results, we propose that under normal growth conditions, the level of ethylene is low in root cells; a group of key transcription factors, including RSL4 and its homologs, trigger the transcription of their target genes to promote root hair development; Pi starvation increases the levels of the protein EIN3, which directly binds to the promoters of the genes targeted by RSL4 and its homologs and further increase their transcription, resulting in the enhanced production of root hairs. This model not only explains how ethylene mediates root hair responses to Pi starvation, but may provide a general mechanism for how ethylene regulates root hair development under both stress

  14. Carbon-Starvation Induces Cross-Resistance to Thermal, Acid, and Oxidative Stress in Serratia marcescens

    PubMed Central

    Pittman, Joseph R.; Kline, La’Kesha C.; Kenyon, William J.

    2015-01-01

    The broad host-range pathogen Serratia marcescens survives in diverse host and non-host environments, often enduring conditions in which the concentration of essential nutrients is growth-limiting. In such environments, carbon and energy source starvation (carbon-starvation) is one of the most common forms of stress encountered by S. marcescens. Related members of the family Enterobacteriaceae are known to undergo substantial changes in gene expression and physiology in response to the specific stress of carbon-starvation, enabling non-spore-forming cells to survive periods of prolonged starvation and exposure to other forms of stress (i.e., starvation-induced cross-resistance). To determine if carbon-starvation also results in elevated levels of cross-resistance in S. marcescens, both log-phase and carbon-starved cultures, depleted of glucose before the onset of high cell-density stationary-phase, were grown in minimal media at either 30 °C or 37 °C and were then challenged for resistance to high temperature (50 °C), low pH (pH 2.8), and oxidative stress (15 mM H2O2). In general, carbon-starved cells exhibited a higher level of resistance to thermal stress, acid stress, and oxidative stress compared to log-phase cells. The extent of carbon-starvation-induced cross-resistance was dependent on incubation temperature and on the particular strain of S. marcescens. In addition, strain- and temperature-dependent variations in long-term starvation survival were also observed. The enhanced stress-resistance of starved S. marcescens cells could be an important factor in their survival and persistence in many non-host environments and within certain host microenvironments where the availability of carbon sources is suboptimal for growth. PMID:27682115

  15. Effects of Starvation on Lipid Metabolism and Gluconeogenesis in Yak

    PubMed Central

    Yu, Xiaoqiang; Peng, Quanhui; Luo, Xiaolin; An, Tianwu; Guan, Jiuqiang; Wang, Zhisheng

    2016-01-01

    This research was conducted to investigate the physiological consequences of undernourished yak. Twelve Maiwa yak (110.3±5.85 kg) were randomly divided into two groups (baseline and starvation group). The yak of baseline group were slaughtered at day 0, while the other group of yak were kept in shed without feed but allowed free access to water, salt and free movement for 9 days. Blood samples of the starvation group were collected on day 0, 1, 2, 3, 5, 7, 9 and the starved yak were slaughtered after the final blood sample collection. The liver and muscle glycogen of the starvation group decreased (p<0.01), and the lipid content also decreased while the content of moisture and ash increased (p<0.05) both in Longissimus dorsi and liver compared with the baseline group. The plasma insulin and glucose of the starved yak decreased at first and then kept stable but at a relatively lower level during the following days (p<0.01). On the contrary, the non-esterified fatty acids was increased (p<0.01). Beyond our expectation, the ketone bodies of β-hydroxybutyric acid and acetoacetic acid decreased with prolonged starvation (p<0.01). Furthermore, the mRNA expression of lipogenetic enzyme fatty acid synthase and lipoprotein lipase in subcutaneous adipose tissue of starved yak were down-regulated (p<0.01), whereas the mRNA expression of lipolytic enzyme carnitine palmitoyltransferase-1 and hormone sensitive lipase were up-regulated (p<0.01) after 9 days of starvation. The phosphoenolpyruvate carboxykinase and pyruvate carboxylase, responsible for hepatic gluconeogenesis were up-regulated (p<0.01). It was concluded that yak derive energy by gluconeogenesis promotion and fat storage mobilization during starvation but without ketone body accumulation in the plasma. PMID:26954191

  16. Effects of Starvation on Lipid Metabolism and Gluconeogenesis in Yak.

    PubMed

    Yu, Xiaoqiang; Peng, Quanhui; Luo, Xiaolin; An, Tianwu; Guan, Jiuqiang; Wang, Zhisheng

    2016-11-01

    This research was conducted to investigate the physiological consequences of undernourished yak. Twelve Maiwa yak (110.3±5.85 kg) were randomly divided into two groups (baseline and starvation group). The yak of baseline group were slaughtered at day 0, while the other group of yak were kept in shed without feed but allowed free access to water, salt and free movement for 9 days. Blood samples of the starvation group were collected on day 0, 1, 2, 3, 5, 7, 9 and the starved yak were slaughtered after the final blood sample collection. The liver and muscle glycogen of the starvation group decreased (p<0.01), and the lipid content also decreased while the content of moisture and ash increased (p<0.05) both in Longissimus dorsi and liver compared with the baseline group. The plasma insulin and glucose of the starved yak decreased at first and then kept stable but at a relatively lower level during the following days (p<0.01). On the contrary, the non-esterified fatty acids was increased (p<0.01). Beyond our expectation, the ketone bodies of β-hydroxybutyric acid and acetoacetic acid decreased with prolonged starvation (p<0.01). Furthermore, the mRNA expression of lipogenetic enzyme fatty acid synthase and lipoprotein lipase in subcutaneous adipose tissue of starved yak were down-regulated (p<0.01), whereas the mRNA expression of lipolytic enzyme carnitine palmitoyltransferase-1 and hormone sensitive lipase were up-regulated (p<0.01) after 9 days of starvation. The phosphoenolpyruvate carboxykinase and pyruvate carboxylase, responsible for hepatic gluconeogenesis were up-regulated (p<0.01). It was concluded that yak derive energy by gluconeogenesis promotion and fat storage mobilization during starvation but without ketone body accumulation in the plasma.

  17. Phosphoenolpyruvate-dependent sucrose phosphotransferase activity in five serotypes of Streptococcus mutans.

    PubMed

    Slee, A M; Tanzer, J M

    1979-11-01

    An inducible phosphoenolpyruvate-dependent sucrose phosphotransferase system has been demonstrated in decryptified cell suspensions of the various common serotypes of the cariogenic microorganism Streptococcus mutans.

  18. Ca(2+)-regulated cyclic electron flow supplies ATP for nitrogen starvation-induced lipid biosynthesis in green alga.

    PubMed

    Chen, Hui; Hu, Jinlu; Qiao, Yaqin; Chen, Weixian; Rong, Junfeng; Zhang, Yunming; He, Chenliu; Wang, Qiang

    2015-10-09

    We previously showed that both the linear photosynthetic electron transportation rate and the respiration rate dropped significantly during N starvation-induced neutral lipid accumulation in an oil-producing microalga, Chlorella sorokiniana, and proposed a possible role for cyclic electron flow (CEF) in ATP supply. In this study, we further exploited this hypothesis in both Chlorella sorokiniana C3 and the model green alga Chlamydomonas. We found that both the rate of CEF around photosystem I and the activity of thylakoid membrane-located ATP synthetase increased significantly during N starvation to drive ATP production. Furthermore, we demonstrated that the Chlamydomonas mutant pgrl1, which is deficient in PGRL1-mediated CEF, accumulated less neutral lipids and had reduced rates of CEF under N starvation. Further analysis revealed that Ca(2+) signaling regulates N starvation-induced neutral lipid biosynthesis in Chlamydomonas by increasing calmodulin activity and boosting the expression of the calcium sensor protein that regulates Pgrl1-mediated CEF. Thus, Ca(2+)-regulated CEF supplies ATP for N starvation-induced lipid biosynthesis in green alga. The increased CEF may re-equilibrate the ATP/NADPH balance and recycle excess light energy in photosystems to prevent photooxidative damage, suggesting Ca(2+)-regulated CEF also played a key role in protecting and sustaining photosystems.

  19. Phosphate Starvation Inducible Metabolism in Lycopersicon esculentum1

    PubMed Central

    Goldstein, Alan H.; Baertlein, Dawn A.; McDaniel, Robert G.

    1988-01-01

    Both tomato (Lycopersicon esculentum cv VF 36) plants and suspension cultured cells show phosphate starvation inducible (psi) excretion of acid phosphatase (Apase). Apase excretion in vitro was proportional to the level of exogenous orthophosphate (Pi). Intracellular Apase activity remained the same in both Pi-starved and sufficient cells, while Apase excreted by the starved cells increased by as much as six times over unstressed control cells on a dry weight basis. At peak induction, 50% of total Apase was excreted. Ten day old tomato seedlings grown without Pi showed slight growth reduction versus unstressed control plants. The Pi-depleted roots showed psi enhancement of Apase activity. Severely starved seedlings (17 days) reached only one-third of the biomass of unstressed control plants but, because of a combination of psi Apase excretion by roots and a shift in biomass to this organ, they excreted 5.5 times the Apase activity of the unstressed control. Observed psi Apase excretion may be part of a phosphate starvation rescue system in plants. The utility of the visible indicator dye 5-bromo-4-chloro-3-indolyl-phosphate-p-toluidine as a phenotypic marker for plant Apase excretion is demonstrated. Images Fig. 5 PMID:16666212

  20. Melatonin redirects carbohydrates metabolism during sugar starvation in plant cells.

    PubMed

    Kobylińska, Agnieszka; Borek, Sławomir; Posmyk, Małgorzata M

    2018-05-01

    Recent studies have shown that melatonin is an important molecule in plant physiology. It seems that the most important is that melatonin efficacy eliminates oxidative stress (direct and indirect antioxidant) and moreover induce plant stress reaction and switch on different defence strategies (preventively and interventively actions). In this report, the impact of exogenous melatonin on carbohydrate metabolism in Nicotiana tabacum L. line Bright Yellow 2 (BY-2) suspension cells during sugar starvation was examined. We analysed starch concentration, α-amylase and PEPCK activity as well as proteolytic activity in culture media. It has been shown that BY-2 cell treatment with 200 nM of melatonin improved viability of sugar-starved cells. It was correlated with higher starch content and phosphoenolpyruvate carboxykinase (PEPCK) activity. The obtained results revealed that exogenous melatonin under specific conditions (stress) can play regulatory role in sugar metabolism, and it may modulate carbohydrate concentration in etiolated BY-2 cells. Moreover, our results confirmed the hypothesis that if the starch is synthesised even in sugar-starved cells, it is highly probable that melatonin shifts the BY-2 cell metabolism on gluconeogenesis pathway and allows for synthesis of carbohydrates from nonsugar precursors, that is amino acids. These points to another defence strategy that was induced by exogenous melatonin applied in plants to overcome adverse environmental conditions. © 2018 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  1. Cloning of Trametes versicolar genes induced by nitrogen starvation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Trudel, P.; Courchesne, D.; Roy, C.

    1988-06-01

    We have screened a genomic library of Trametes versicolar for genes whose expression is associated with nitrogen starvation, which has been shown to induce ligninolytic activity. Using two different approaches based on differential expression, we isolated 29 clones. These were shown by restriction mapping and cross-hybridization to code for 11 distinct differentially expressed genes. Northern analysis of the kinetics of expression of these genes revealed that at least four of them have kinetics of induction that parallel kinetics of induction of ligninolytic activity.

  2. Autophagy induction under carbon starvation conditions is negatively regulated by carbon catabolite repression.

    PubMed

    Adachi, Atsuhiro; Koizumi, Michiko; Ohsumi, Yoshinori

    2017-12-01

    Autophagy is a conserved process in which cytoplasmic components are sequestered for degradation in the vacuole/lysosomes in eukaryotic cells. Autophagy is induced under a variety of starvation conditions, such as the depletion of nitrogen, carbon, phosphorus, zinc, and others. However, apart from nitrogen starvation, it remains unclear how these stimuli induce autophagy. In yeast, for example, it remains contentious whether autophagy is induced under carbon starvation conditions, with reports variously suggesting both induction and lack of induction upon depletion of carbon. We therefore undertook an analysis to account for these inconsistencies, concluding that autophagy is induced in response to abrupt carbon starvation when cells are grown with glycerol but not glucose as the carbon source. We found that autophagy under these conditions is mediated by nonselective degradation that is highly dependent on the autophagosome-associated scaffold proteins Atg11 and Atg17. We also found that the extent of carbon starvation-induced autophagy is positively correlated with cells' oxygen consumption rate, drawing a link between autophagy induction and respiratory metabolism. Further biochemical analyses indicated that maintenance of intracellular ATP levels is also required for carbon starvation-induced autophagy and that autophagy plays an important role in cell viability during prolonged carbon starvation. Our findings suggest that carbon starvation-induced autophagy is negatively regulated by carbon catabolite repression. © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.

  3. LEPS2, a Phosphorus Starvation-Induced Novel Acid Phosphatase from Tomato1

    PubMed Central

    Baldwin, James C.; Karthikeyan, Athikkattuvalasu S.; Raghothama, Kashchandra G.

    2001-01-01

    Phosphate (Pi) is one of the least available plant nutrients found in the soil. A significant amount of phosphate is bound in organic forms in the rhizosphere. Phosphatases produced by plants and microbes are presumed to convert organic phosphorus into available Pi, which is absorbed by plants. In this study we describe the isolation and characterization of a novel tomato (Lycopersicon esculentum) phosphate starvation-induced gene (LePS2) representing an acid phosphatase. LePS2 is a member of a small gene family in tomato. The cDNA is 942 bp long and contains an open reading frame encoding a 269-amino acid polypeptide. The amino acid sequence of LePS2 has a significant similarity with a phosphatase from chicken. Distinct regions of the peptide also share significant identity with the members of HAD and DDDD super families of phosphohydrolases. Many plant homologs of LePS2 are found in the databases. The LePS2 transcripts are induced rapidly in tomato plant and cell culture in the absence of Pi. However, the induction is repressible in the presence of Pi. Divided root studies indicate that internal Pi levels regulate the expression of LePS2. The enhanced expression of LePS2 is a specific response to Pi starvation, and it is not affected by starvation of other nutrients or abiotic stresses. The bacterially (Escherichia coli) expressed protein exhibits phosphatase activity against the synthetic substrate p-nitrophenyl phosphate. The pH optimum of the enzyme activity suggests that LePS2 is an acid phosphatase. PMID:11161030

  4. TVP1022 and propargylamine protect neonatal rat ventricular myocytes against doxorubicin-induced and serum starvation-induced cardiotoxicity.

    PubMed

    Kleiner, Yana; Bar-Am, Orit; Amit, Tamar; Berdichevski, Alexandra; Liani, Esti; Maor, Gila; Reiter, Irina; Youdim, Moussa B H; Binah, Ofer

    2008-09-01

    We recently reported that propargylamine derivatives such as rasagiline (Azilect) and its S-isomer TVP1022 are neuroprotective. The aim of this study was to test the hypothesis that the neuroprotective agents TVP1022 and propargylamine (the active moiety of propargylamine derivatives) are also cardioprotective. We specifically investigated the protective efficacy of TVP1022 and propargylamine in neonatal rat ventricular myocytes (NRVM) against apoptosis induced by the anthracycline chemotherapeutic agent doxorubicin and by serum starvation. We demonstrated that pretreatment of NRVM cultures with TVP1022 or propargylamine attenuated doxorubicin-induced and serum starvation-induced apoptosis, inhibited the increase in cleaved caspase 3 levels, and reversed the decline in Bcl-2/Bax ratio. These cytoprotective effects were shown to reside in the propargylamine moiety. Finally, we showed that TVP1022 neither caused proliferation of the human cancer cell lines HeLa and MDA-231 nor interfered with the anti-cancer efficacy of doxorubicin. These results suggest that TVP1022 should be considered as a novel cardioprotective agent against ischemic insults and against anthracycline cardiotoxicity and can be coadministered with doxorubicin in the treatment of human malignancies.

  5. Nitrogen Starvation Induced Oxidative Stress in an Oil-Producing Green Alga Chlorella sorokiniana C3

    PubMed Central

    He, Chen-Liu; Wang, Qiang

    2013-01-01

    Microalgal lipid is one of the most promising feedstocks for biodiesel production. Chlorella appears to be a particularly good option, and nitrogen (N) starvation is an efficient environmental pressure used to increase lipid accumulation in Chlorella cells. The effects of N starvation of an oil-producing wild microalga, Chlorella sorokiniana C3, on lipid accumulation were investigated using thin layer chromatography (TLC), confocal laser scanning microscopy (CLSM) and flow cytometry (FCM). The results showed that N starvation resulted in lipid accumulation in C. sorokiniana C3 cells, oil droplet (OD) formation and significant lipid accumulation in cells were detected after 2 d and 8 d of N starvation, respectively. During OD formation, reduced photosynthetic rate, respiration rate and photochemistry efficiency accompanied by increased damage to PSII were observed, demonstrated by chlorophyll (Chl) fluorescence, 77K fluorescence and oxygen evolution tests. In the mean time the rate of cyclic electron transportation increased correspondingly to produce more ATP for triacylglycerols (TAGs) synthesis. And 0.5 d was found to be the turning point for the early stress response and acclimation of cells to N starvation. Increased level of membrane peroxidation was also observed during OD formation, and superoxide dismutase (SOD), peroxide dismutase (POD) and catalase (CAT) enzyme activity assays suggested impaired reactive oxygen species (ROS) scavenging ability. Significant neutral lipid accumulation was also observed by artificial oxidative stress induced by H2O2 treatment. These results suggested coupled neutral lipid accumulation and oxidative stress during N starvation in C. sorokiniana C3. PMID:23874918

  6. Regulatory Response to Carbon Starvation in Caulobacter crescentus

    PubMed Central

    Britos, Leticia; Abeliuk, Eduardo; Taverner, Thomas; Lipton, Mary; McAdams, Harley; Shapiro, Lucy

    2011-01-01

    Bacteria adapt to shifts from rapid to slow growth, and have developed strategies for long-term survival during prolonged starvation and stress conditions. We report the regulatory response of C. crescentus to carbon starvation, based on combined high-throughput proteome and transcriptome analyses. Our results identify cell cycle changes in gene expression in response to carbon starvation that involve the prominent role of the FixK FNR/CAP family transcription factor and the CtrA cell cycle regulator. Notably, the SigT ECF sigma factor mediates the carbon starvation-induced degradation of CtrA, while activating a core set of general starvation-stress genes that respond to carbon starvation, osmotic stress, and exposure to heavy metals. Comparison of the response of swarmer cells and stalked cells to carbon starvation revealed four groups of genes that exhibit different expression profiles. Also, cell pole morphogenesis and initiation of chromosome replication normally occurring at the swarmer-to-stalked cell transition are uncoupled in carbon-starved cells. PMID:21494595

  7. Changes in the quaternary structure of phosphoenolpyruvate carboxylase induced by ionic strength affect its catalytic activity.

    PubMed

    Wagner, R; Gonzalez, D H; Podesta, F E; Andreo, C S

    1987-05-04

    Phosphoenolpyruvate carboxylase from maize leaves dissociated into dimers and/or monomers when exposed to increasing ionic strength (e.g. 200-400 mM NaCl) as indicated by gel filtration experiments. Changes in the oligomerization state were dependent on pH, time of preincubation with salt and protein concentration. A dissociation into dimers and monomers was observed at pH 8, while at pH 7 dissociation into the dimeric form only was observed. Exposure of the enzyme to higher ionic strength decreased the activity in a time-dependent manner. Turnover conditions and glucose 6-phosphate protected the carboxylase from the decay in activity, which was faster at pH 7 than at pH 8. The results suggest that changes in activity of the enzyme, following exposure to high ionic strength, are the consequence of dissociation. Tetrameric and dimeric forms of the phosphoenolpyruvate carboxylase seemingly reveal different catalytic properties. We suggest that the distinct catalytic properties of the different oligomeric species of phosphoenolpyruvate carboxylase and changes in the equilibrium between them could be the molecular basis for an effective regulation of metabolite levels by this key enzyme of C4 plants.

  8. Glyceroneogenesis in the hepatopancreas of the crab Neohelice granulata: Diet, starvation and season effects.

    PubMed

    Sarapio, E; Santos, J T; Model, J F A; De Fraga, L S; Vinagre, A S; Martins, T L; Da Silva, R S M; Trapp, M

    2017-09-01

    We determined the activity of glyceroneogenesis from [2- 14 C]-pyruvate, the phosphoenolpyruvate carboxykinase activity, [2- 14 C]-pyruvate oxidation and total lipid levels in the hepatopancreas of the crab Neohelice granulata fed with a carbohydrate-rich (HC) diet or a high-protein (HP) diet and then subjected to 5weeks of starvation, in summer and winter, to determine whether the seasonal adjustments of lipid metabolism to food scarcity are modulated by the composition of the diet previously given to the crabs. The results demonstrated that glyceroneogenesis is an active pathway in N. granulata hepatopancreas, and is regulated by seasonal variations, diet composition and starvation. This study showed that in summer the increase in the hepatopancreas glyceroneogenesis activity is among the strategies used by N. granulata fed an HP diet, to maintain the triglyceride/fatty acid cycle during starvation, a normal condition in the biological cycle of this crab. However, the administration of an HC diet reduced the glyceroneogenesis capacity in response to starvation in summer. In winter, the decrease in the glyceroneogenesis capacity in both fed (HP and HC diets) and starved crabs seems to be a strategy to reduce energy consumption and/or requirement. In contrast to the summer results, the incorporation of [2- 14 C]-pyruvate into 14 CO 2 was markedly higher in both diet (HC and HP) groups and in starved crabs during the winter. Four decades after the first study describing the glyceroneogenesis pathway in rat white adipose tissue, this pathway is evidenced for the first time in a crustacean. Copyright © 2017 Elsevier Inc. All rights reserved.

  9. Phosphate starvation promoted the accumulation of phenolic acids by inducing the key enzyme genes in Salvia miltiorrhiza hairy roots.

    PubMed

    Liu, Lin; Yang, DongFeng; Liang, TongYao; Zhang, HaiHua; He, ZhiGui; Liang, ZongSuo

    2016-09-01

    Phosphate starvation increased the production of phenolic acids by inducing the key enzyme genes in a positive feedback pathway in Saliva miltiorrhiza hairy roots. SPX may be involved in this process. Salvia miltiorrhiza is a wildly popular traditional Chinese medicine used for the treatment of coronary heart diseases and inflammation. Phosphate is an essential plant macronutrient that is often deficient, thereby limiting crop yield. In this study, we investigated the effects of phosphate concentration on the biomass and accumulation of phenolic acid in S. miltiorrhiza. Results show that 0.124 mM phosphate was favorable for plant growth. Moreover, 0.0124 mM phosphate was beneficial for the accumulation of phenolic acids, wherein the contents of danshensu, caffeic acid, rosmarinic acid, and salvianolic acid B were, respectively, 2.33-, 1.02-, 1.68-, and 2.17-fold higher than that of the control. By contrast, 12.4 mM phosphate inhibited the accumulation of phenolic acids. The key enzyme genes in the phenolic acid biosynthesis pathway were investigated to elucidate the mechanism of phosphate starvation-induced increase of phenolic acids. The results suggest that phosphate starvation induced the gene expression from the downstream pathway to the upstream pathway, i.e., a feedback phenomenon. In addition, phosphate starvation response gene SPX (SYG1, Pho81, and XPR1) was promoted by phosphate deficiency (0.0124 mM). We inferred that SPX responded to phosphate starvation, which then affected the expression of later responsive key enzyme genes in phenolic acid biosynthesis, resulting in the accumulation of phenolic acids. Our findings provide a resource-saving and environmental protection strategy to increase the yield of active substance in herbal preparations. The relationship between SPX and key enzyme genes and the role they play in phenolic acid biosynthesis during phosphate deficiency need further studies.

  10. Phosphorus starvation induces membrane remodeling and recycling in Emiliania huxleyi.

    PubMed

    Shemi, Adva; Schatz, Daniella; Fredricks, Helen F; Van Mooy, Benjamin A S; Porat, Ziv; Vardi, Assaf

    2016-08-01

    Nutrient availability is an important factor controlling phytoplankton productivity. Phytoplankton contribute c. 50% of the global photosynthesis and possess efficient acclimation mechanisms to cope with nutrient stress. We investigate the cellular response of the bloom-forming coccolithophore Emiliania huxleyi to phosphorus (P) scarcity, which is often a limiting factor in marine ecosystems. We combined mass spectrometry, fluorescence microscopy, transmission electron microscopy (TEM) and gene expression analyses in order to assess diverse cellular features in cells exposed to P limitation and recovery. Early starvation-induced substitution of phospholipids in the cells' membranes with galacto- and betaine lipids. Lipid remodeling was rapid and reversible upon P resupply. The PI3K inhibitor wortmannin reduced phospholipid substitution, suggesting a possible involvement of PI3K- signaling in this process. In addition, P limitation enhanced the formation and acidification of membrane vesicles in the cytoplasm. Intracellular vesicles may facilitate the recycling of cytoplasmic content, which is engulfed in the vesicles and delivered to the main vacuole. Long-term starvation was characterized by a profound increase in cell size and morphological alterations in cellular ultrastructure. This study provides cellular and molecular basis for future ecophysiological assessment of natural E. huxleyi populations in oligotrophic regions. © 2016 The Authors. New Phytologist © 2016 New Phytologist Trust.

  11. Attenuation of Phosphate Starvation Responses by Phosphite in Arabidopsis1

    PubMed Central

    Ticconi, Carla A.; Delatorre, Carla A.; Abel, Steffen

    2001-01-01

    When inorganic phosphate is limiting, Arabidopsis has the facultative ability to metabolize exogenous nucleic acid substrates, which we utilized previously to identify insensitive phosphate starvation response mutants in a conditional genetic screen. In this study, we examined the effect of the phosphate analog, phosphite (Phi), on molecular and morphological responses to phosphate starvation. Phi significantly inhibited plant growth on phosphate-sufficient (2 mm) and nucleic acid-containing (2 mm phosphorus) media at concentrations higher than 2.5 mm. However, with respect to suppressing typical responses to phosphate limitation, Phi effects were very similar to those of phosphate. Phosphate starvation responses, which we examined and found to be almost identically affected by both anions, included changes in: (a) the root-to-shoot ratio; (b) root hair formation; (c) anthocyanin accumulation; (d) the activities of phosphate starvation-inducible nucleolytic enzymes, including ribonuclease, phosphodiesterase, and acid phosphatase; and (e) steady-state mRNA levels of phosphate starvation-inducible genes. It is important that induction of primary auxin response genes by indole-3-acetic acid in the presence of growth-inhibitory Phi concentrations suggests that Phi selectively inhibits phosphate starvation responses. Thus, the use of Phi may allow further dissection of phosphate signaling by genetic selection for constitutive phosphate starvation response mutants on media containing organophosphates as the only source of phosphorus. PMID:11706178

  12. Phosphite, an analog of phosphate, suppresses the coordinated expression of genes under phosphate starvation.

    PubMed

    Varadarajan, Deepa K; Karthikeyan, Athikkattuvalasu S; Matilda, Paino Durzo; Raghothama, Kashchandra G

    2002-07-01

    Phosphate (Pi) and its analog phosphite (Phi) are acquired by plants via Pi transporters. Although the uptake and mobility of Phi and Pi are similar, there is no evidence suggesting that plants can utilize Phi as a sole source of phosphorus. Phi is also known to interfere with many of the Pi starvation responses in plants and yeast (Saccharomyces cerevisiae). In this study, effects of Phi on plant growth and coordinated expression of genes induced by Pi starvation were analyzed. Phi suppressed many of the Pi starvation responses that are commonly observed in plants. Enhanced root growth and root to shoot ratio, a hallmark of Pi stress response, was strongly inhibited by Phi. The negative effects of Phi were not obvious in plants supplemented with Pi. The expression of Pi starvation-induced genes such as LePT1, LePT2, AtPT1, and AtPT2 (high-affinity Pi transporters); LePS2 (a novel acid phosphatase); LePS3 and TPSI1 (novel genes); and PAP1 (purple acid phosphatase) was suppressed by Phi in plants and cell cultures. Expression of luciferase reporter gene driven by the Pi starvation-induced AtPT2 promoter was also suppressed by Phi. These analyses showed that suppression of Pi starvation-induced genes is an early response to addition of Phi. These data also provide evidence that Phi interferes with gene expression at the level of transcription. Synchronized suppression of multiple Pi starvation-induced genes by Phi points to its action on the early molecular events, probably signal transduction, in Pi starvation response.

  13. HMGB1 promotes the starvation-induced autophagic degradation of α-synuclein in SH-SY5Y cells Atg 5-dependently.

    PubMed

    Guan, Yi; Li, Yiping; Zhao, Gang; Li, Yunqian

    2018-06-01

    Impaired autophagic clearance of aggregated α-synuclein is considered as one of key mechanisms underlining Parkinson disease (PD). High-mobility group protein B1 (HMGB1) has recently been demonstrated to mediate persistent neuroinflammation and consequent progressive neurodegeneration by promoting multiple inflammatory and neurotoxic factors. In this study, we examined the influence of the overexpression of wild-type (WT) and mutant-type (MT, A53T and A30P) α-synuclein on the autophagy in neuroblastoma SH-SY5Y cells under starvation, and then investigated the regulation of endogenous HMGB1 on the α-synuclein degradation and on the starvation-induced autophagy in the α-synuclein-overexpressed SH-SY5Y cells. It was demonstrated that the overexpression of WT or MT α-synuclein significantly downregulated the starvation-induced conversion of LC3I to LC3II and autophagy protein (Atg) 5 expression, whereas markedly inhibited the starvation-downregulated mTOR in SH-SY5Y cells. On the other side, the lentivirus-mediated upregulation of endogenous HMGB1 promoted the degradation of WT or MT α-synuclein in SH-SY5Y cells autophagy-dependently via promoting Atg 5, but not mTOR, the Atg 5 knockdown downregulated the HMGB1-mediated promotion to α-synuclein degeneration. Thus, we concluded that α-synuclein inhibited the starvation-induced autophagy in neuroblastoma SH-SY5Y cells via inhibiting the mTOR/Atg 5 signaling. However, the endogenous HMGB1 promoted the autophagic degradation of α-synuclein via the Atg 5-dependent autophagy-initiation pathway, implying the protective role of endogenous HMGB1 in the neuroblastoma cells against the α-synuclein accumulation. Copyright © 2018. Published by Elsevier Inc.

  14. Autophagy in Drosophila ovaries is induced by starvation and is required for oogenesis.

    PubMed

    Barth, J M I; Szabad, J; Hafen, E; Köhler, K

    2011-06-01

    Autophagy, an evolutionarily conserved lysosome-mediated degradation, promotes cell survival under starvation and is controlled by insulin/target of rapamycin (TOR) signaling. In Drosophila, nutrient depletion induces autophagy in the fat body. Interestingly, nutrient availability and insulin/TOR signaling also influence the size and structure of Drosophila ovaries, however, the role of nutrient signaling and autophagy during this process remains to be elucidated. Here, we show that starvation induces autophagy in germline cells (GCs) and in follicle cells (FCs) in Drosophila ovaries. This process is mediated by the ATG machinery and involves the upregulation of Atg genes. We further demonstrate that insulin/TOR signaling controls autophagy in FCs and GCs. The analysis of chimeric females reveals that autophagy in FCs, but not in GCs, is required for egg development. Strikingly, when animals lack Atg gene function in both cell types, ovaries develop normally, suggesting that the incompatibility between autophagy-competent GCs and autophagy-deficient FCs leads to defective egg development. As egg morphogenesis depends on a tightly linked signaling between FCs and GCs, we propose a model in which autophagy is required for the communication between these two cell types. Our data establish an important function for autophagy during oogenesis and contributes to the understanding of the role of autophagy in animal development.

  15. Overcoming diabetes-induced hyperglycemia through inhibition of hepatic phosphoenolpyruvate carboxykinase (GTP) with RNAi.

    PubMed

    Gómez-Valadés, Alicia G; Vidal-Alabró, Anna; Molas, Maria; Boada, Jordi; Bermúdez, Jordi; Bartrons, Ramon; Perales, José C

    2006-02-01

    Phosphoenolpyruvate carboxykinase (PEPCK; EC 4.1.1.32) is the rate-controlling enzyme in gluconeogenesis. In diabetic individuals, altered rates of gluconeogenesis are responsible for increased hepatic glucose output and sustained hyperglycemia. Liver-specific inhibition of PEPCK has not been assessed to date as a treatment for diabetes. We have designed a therapeutic, vector-based RNAi approach to induce posttranscriptional gene silencing of hepatic PEPCK using nonviral gene delivery. A transient reduction of PEPCK enzymatic activity (7.6 +/- 0.6 vs 9.7 +/- 1.1 mU/mg, P < 0.05) that correlated with decreased protein content of up to 50% was achieved using this strategy in diabetic mice. PEPCK partial silencing was sufficient to demonstrate lowered blood glucose (218 +/- 26 vs 364 +/- 33 mg/dl, P < 0.001) and improved glucose tolerance together with decreased circulating FFA (0.89 +/- 0.10 vs 1.44 +/- 0.11 mEq/dl, P < 0.001) and TAG (65 +/- 11 vs 102 +/- 16 mg/dl, P < 0.01), in the absence of liver steatosis or lactic acidosis. SREBP1c was down-regulated in PEPCK-silenced animals, suggesting a role for this pathway in the alterations of lipid metabolism. These data reinforce the significance of PEPCK in sustaining diabetes-induced hyperglycemia and validate liver-specific intervention at the level of PEPCK for diabetes gene therapy.

  16. Effector caspase Dcp-1 and IAP protein Bruce regulate starvation-induced autophagy during Drosophila melanogaster oogenesis.

    PubMed

    Hou, Ying-Chen Claire; Chittaranjan, Suganthi; Barbosa, Sharon González; McCall, Kimberly; Gorski, Sharon M

    2008-09-22

    A complex relationship exists between autophagy and apoptosis, but the regulatory mechanisms underlying their interactions are largely unknown. We conducted a systematic study of Drosophila melanogaster cell death-related genes to determine their requirement in the regulation of starvation-induced autophagy. We discovered that six cell death genes--death caspase-1 (Dcp-1), hid, Bruce, Buffy, debcl, and p53-as well as Ras-Raf-mitogen activated protein kinase signaling pathway components had a role in autophagy regulation in D. melanogaster cultured cells. During D. melanogaster oogenesis, we found that autophagy is induced at two nutrient status checkpoints: germarium and mid-oogenesis. At these two stages, the effector caspase Dcp-1 and the inhibitor of apoptosis protein Bruce function to regulate both autophagy and starvation-induced cell death. Mutations in Atg1 and Atg7 resulted in reduced DNA fragmentation in degenerating midstage egg chambers but did not appear to affect nuclear condensation, which indicates that autophagy contributes in part to cell death in the ovary. Our study provides new insights into the molecular mechanisms that coordinately regulate autophagic and apoptotic events in vivo.

  17. Carbohydrate metabolism during starvation in the silkworm Bombyx mori.

    PubMed

    Satake, S; Kawabe, Y; Mizoguchi, A

    2000-06-01

    The effect of starvation on carbohydrate metabolism in the last instar larvae of the silkworm Bombyx mori was examined. Trehalose concentration in the hemolymph increased slightly during the first 6 h of starvation and decreased thereafter, whereas glucose concentration decreased rapidly immediately after diet deprivation. Starvation-induced hypertrehalosemia was completely inhibited by neck ligation, suggesting that starvation stimulates the release of a hypertrehalosemic factor(s) from the head. The percentage of active glycogen phosphorylase in the fat body increased within 3 h of starvation and its glycogen content decreased gradually. These observations suggest that production of trehalose from glycogen is enhanced in starved larvae. However, hypertrehalosemia during starvation cannot be explained by the increased supply of trehalose into hemolymph alone, as similar changes in phosphorylase activity and glycogen content in the fat body were observed in neck-ligated larvae, in which hemolymph trehalose concentration did not increase but decreased gradually. When injected into larvae, trehalose disappeared from hemolymph at a rate about 40% lower in starved larvae than neck-ligated larvae. The hemolymph lipid concentration increased during starvation, suggesting that an increased supply of lipids to tissues suppresses the consumption of hemolymph trehalose and this is an important factor in hypertrehalosemia. Copyright 2000 Wiley-Liss, Inc.

  18. The carbon starvation response of the ectomycorrhizal fungus Paxillus involutus

    DOE PAGES

    Ellstrom, Magnus; Shah, Firoz; Johansson, Tomas; ...

    2015-03-16

    The amounts of carbon allocated to the fungal partner in ectomycorrhizal associations can vary substantially depending on the plant growth and the soil nutrient conditions, and the fungus may frequently be confronted with limitations in carbon. We used chemical analysis and transcriptome profiling to examine the physiological response of the ectomycorrhizal fungus Paxillus involutus to carbon starvation during axenic cultivation. Carbon starvation induced a decrease in the biomass. Concomitantly, ammonium, cell wall material (chitin) and proteolytic enzymes were released into the medium, which suggest autolysis. Compared with the transcriptome of actively growing hyphae, about 45% of the transcripts analyzed weremore » differentially regulated during C-starvation. Induced during starvation were transcripts encoding extracellular enzymes such as peptidases, chitinases and laccases. In parallel, transcripts of N-transporters were upregulated, which suggest that some of the released nitrogen compounds were re-assimilated by the mycelium. The observed changes suggest that the carbon starvation response in P. involutus is associated with complex cellular changes that involves autolysis, recycling of intracellular compounds by autophagy and reabsorption of the extracellular released material. The study provides molecular markers that can be used to examine the role of autolysis for the turnover and survival of the ectomycorrhizal mycelium in soils.« less

  19. The carbon starvation response of the ectomycorrhizal fungus Paxillus involutus

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ellstrom, Magnus; Shah, Firoz; Johansson, Tomas

    The amounts of carbon allocated to the fungal partner in ectomycorrhizal associations can vary substantially depending on the plant growth and the soil nutrient conditions, and the fungus may frequently be confronted with limitations in carbon. We used chemical analysis and transcriptome profiling to examine the physiological response of the ectomycorrhizal fungus Paxillus involutus to carbon starvation during axenic cultivation. Carbon starvation induced a decrease in the biomass. Concomitantly, ammonium, cell wall material (chitin) and proteolytic enzymes were released into the medium, which suggest autolysis. Compared with the transcriptome of actively growing hyphae, about 45% of the transcripts analyzed weremore » differentially regulated during C-starvation. Induced during starvation were transcripts encoding extracellular enzymes such as peptidases, chitinases and laccases. In parallel, transcripts of N-transporters were upregulated, which suggest that some of the released nitrogen compounds were re-assimilated by the mycelium. The observed changes suggest that the carbon starvation response in P. involutus is associated with complex cellular changes that involves autolysis, recycling of intracellular compounds by autophagy and reabsorption of the extracellular released material. The study provides molecular markers that can be used to examine the role of autolysis for the turnover and survival of the ectomycorrhizal mycelium in soils.« less

  20. Starvation induced cell death in autophagy-defective yeast mutants is caused by mitochondria dysfunction.

    PubMed

    Suzuki, Sho W; Onodera, Jun; Ohsumi, Yoshinori

    2011-02-25

    Autophagy is a highly-conserved cellular degradation and recycling system that is essential for cell survival during nutrient starvation. The loss of viability had been used as an initial screen to identify autophagy-defective (atg) mutants of the yeast Saccharomyces cerevisiae, but the mechanism of cell death in these mutants has remained unclear. When cells grown in a rich medium were transferred to a synthetic nitrogen starvation media, secreted metabolites lowered the extracellular pH below 3.0 and autophagy-defective mutants mostly died. We found that buffering of the starvation medium dramatically restored the viability of atg mutants. In response to starvation, wild-type (WT) cells were able to upregulate components of the respiratory pathway and ROS (reactive oxygen species) scavenging enzymes, but atg mutants lacked this synthetic capacity. Consequently, autophagy-defective mutants accumulated the high level of ROS, leading to deficient respiratory function, resulting in the loss of mitochondria DNA (mtDNA). We also showed that mtDNA deficient cells are subject to cell death under low pH starvation conditions. Taken together, under starvation conditions non-selective autophagy, rather than mitophagy, plays an essential role in preventing ROS accumulation, and thus in maintaining mitochondria function. The failure of response to starvation is the major cause of cell death in atg mutants.

  1. Effect of amino acid starvation on UV sensitivity of Lactobacillus acidophilus cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Soška, J.; Nečasová, J.

    1973-11-01

    In Lactobacillus acidophilus cultures uv irradiated in the exponential phase of growth, the dose-survival curve was of the simple exponential type, without any shoulder. If the bacteria were subjected to amino acid starvation prior to irradiation, a shoulder corresponding to a quasi-threshold dose (D) of about 780 ergs/mm/sup 2/ appeared in the curve. The administration of protein- or RNA-synthesis inhibitors prior to irradiation had the same effect. The effect of pre-irradiation amino acid starvation was abolished by simuitaneous thymidine starvation. It was likewise abolished if amino acid starvation was followed by incubation in the presence of amino acids (without thymidine)more » and then by irradiation of the cells. Post-irradiation amino acid starvation did not lead to the formation of a shoulder but if combined with thymidine starvation it did. It can be concluded from the results that post-irradiation repair processes are facilitated or promoted if, during the post-irradiation interval DNA synthesis is delayed. This delay represents a compensation of the pre-irradiation increase of cellular DNA-content, taking place during inhibition of proteosynthesis. The post-irradiation administration of caffeine did not abolish the formation of the shoulder induced by pre-irradiation amino acid starvation; on the contrary, it induced its formation even in exponentially growing, irradiated control bacteria. (auth)« less

  2. SIZ1 Regulation of Phosphate Starvation-Induced Root Architecture Remodeling Involves the Control of Auxin Accumulation1[C][W][OA

    PubMed Central

    Miura, Kenji; Lee, Jiyoung; Gong, Qingqiu; Ma, Shisong; Jin, Jing Bo; Yoo, Chan Yul; Miura, Tomoko; Sato, Aiko; Bohnert, Hans J.; Hasegawa, Paul M.

    2011-01-01

    Phosphate (Pi) limitation causes plants to modulate the architecture of their root systems to facilitate the acquisition of Pi. Previously, we reported that the Arabidopsis (Arabidopsis thaliana) SUMO E3 ligase SIZ1 regulates root architecture remodeling in response to Pi limitation; namely, the siz1 mutations cause the inhibition of primary root (PR) elongation and the promotion of lateral root (LR) formation. Here, we present evidence that SIZ1 is involved in the negative regulation of auxin patterning to modulate root system architecture in response to Pi starvation. The siz1 mutations caused greater PR growth inhibition and LR development of seedlings in response to Pi limitation. Similar root phenotypes occurred if Pi-deficient wild-type seedlings were supplemented with auxin. N-1-Naphthylphthalamic acid, an inhibitor of auxin efflux activity, reduced the Pi starvation-induced LR root formation of siz1 seedlings to a level equivalent to that seen in the wild type. Monitoring of the auxin-responsive reporter DR5::uidA indicated that auxin accumulates in PR tips at early stages of the Pi starvation response. Subsequently, DR5::uidA expression was observed in the LR primordia, which was associated with LR elongation. The time-sequential patterning of DR5::uidA expression occurred earlier in the roots of siz1 as compared with the wild type. In addition, microarray analysis revealed that several other auxin-responsive genes, including genes involved in cell wall loosening and biosynthesis, were up-regulated in siz1 relative to wild-type seedlings in response to Pi starvation. Together, these results suggest that SIZ1 negatively regulates Pi starvation-induced root architecture remodeling through the control of auxin patterning. PMID:21156857

  3. Acute starvation alters lipopolysaccharide-induced fever in leptin-dependent and -independent mechanisms in rats.

    PubMed

    Inoue, Wataru; Luheshi, Giamal N

    2010-12-01

    A decrease in leptin levels with the onset of starvation triggers a myriad of physiological responses including immunosuppression and hypometabolism/hypothermia, both of which can counteract the fever response to pathogens. Here we examined the role of leptin in LPS-induced fever in rats that were fasted for 48 h prior to inflammation with or without leptin replacement (12 μg/day). The preinflammation fasting alone caused a progressive hypothermia that was almost completely reversed by leptin replacement. The LPS (100 μg/kg)-induced elevation in core body temperature (T(core)) was attenuated in the fasted animals at 2-6 h after the injection, an effect that was not reversed by leptin replacement. Increasing the LPS dose to 1,000 μg/kg caused a long-lasting fever that remained unabated for up to 36 h after the injection in the fed rats. This sustained response was strongly attenuated in the fasted rats whose T(core) started to decrease by 18 h after the injection. Leptin replacement almost completely restored the prolonged fever. The attenuation of the prolonged fever in the fasted animals was accompanied by the diminution of proinflammatory PGE(2) in the cerebrospinal fluid and mRNA of proopiomelanocortin (POMC) in the hypothalamus. Leptin replacement prevented the fasting-induced reduction of POMC but not PGE(2). Moreover, the leptin-dependent fever maintenance correlated closely with hypothalamic POMC levels (r = 0.77, P < 0.001). These results suggest that reduced leptin levels during starvation attenuate the sustained fever response by lowering hypothalamic POMC tone but not PGE(2) synthesis.

  4. Regulation of phosphate starvation responses in higher plants.

    PubMed

    Yang, Xiao Juan; Finnegan, Patrick M

    2010-04-01

    Phosphorus (P) is often a limiting mineral nutrient for plant growth. Many soils worldwide are deficient in soluble inorganic phosphate (P(i)), the form of P most readily absorbed and utilized by plants. A network of elaborate developmental and biochemical adaptations has evolved in plants to enhance P(i) acquisition and avoid starvation. Controlling the deployment of adaptations used by plants to avoid P(i) starvation requires a sophisticated sensing and regulatory system that can integrate external and internal information regarding P(i) availability. In this review, the current knowledge of the regulatory mechanisms that control P(i) starvation responses and the local and long-distance signals that may trigger P(i) starvation responses are discussed. Uncharacterized mutants that have P(i)-related phenotypes and their potential to give us additional insights into regulatory pathways and P(i) starvation-induced signalling are also highlighted and assessed. An impressive list of factors that regulate P(i) starvation responses is now available, as is a good deal of knowledge regarding the local and long-distance signals that allow a plant to sense and respond to P(i) availability. However, we are only beginning to understand how these factors and signals are integrated with one another in a regulatory web able to control the range of responses demonstrated by plants grown in low P(i) environments. Much more knowledge is needed in this agronomically important area before real gains can be made in improving P(i) acquisition in crop plants.

  5. Effect of LED light spectra on starvation-induced oxidative stress in the cinnamon clownfish Amphiprion melanopus.

    PubMed

    Choi, Cheol Young; Shin, Hyun Suk; Choi, Young Jae; Kim, Na Na; Lee, Jehee; Kil, Gyung-Suk

    2012-11-01

    The present study aimed to test starvation-induced oxidative stress in the cinnamon clownfish Amphiprion melanopus illuminated by light-emitting diodes (LEDs): red (peak at 630 nm), green (peak at 530 nm), and blue (peak at 450 nm) within a visible light. We investigated the oxidative stress induced by starvation for 12 days during illumination with 3 LED light spectra through measuring antioxidant enzyme (superoxide dismutase [SOD] and catalase [CAT]) mRNA expression and activity; CAT western blotting; and measuring lipid peroxidation [LPO]), plasma H(2)O(2), lysozyme, glucose, alanine aminotransferase (AlaAT), aspartate aminotransferase (AspAT), and melatonin levels. In green and blue lights, expression and activity of antioxidant enzyme mRNA were significantly lower than those of other light spectra, results that are in agreement with CAT protein expression level by western blot analysis. Also, in green and blue lights, plasma H(2)O(2), lysozyme, glucose, AlaAT, AspAT, and melatonin levels were significantly lower than those in other light spectra. These results indicate that green and blue LEDs inhibit oxidative stress and enhance immune function in starved cinnamon clownfish. Copyright © 2012 Elsevier Inc. All rights reserved.

  6. Combined effects of starvation and butyrate on autophagy-dependent gingival epithelial cell death.

    PubMed

    Evans, M; Murofushi, T; Tsuda, H; Mikami, Y; Zhao, N; Ochiai, K; Kurita-Ochiai, T; Yamamoto, M; Otsuka, K; Suzuki, N

    2017-06-01

    Bacteria in the dental biofilm surrounding marginal gingival grooves cause periodontal diseases. Numerous bacteria within the biofilm consume nutrients from the gingival crevicular fluid. Furthermore, some gram-negative bacteria in mature dental biofilms produce butyrate. Thus, gingival epithelial cells in close proximity to mature dental biofilms are at risk of both starvation and exposure to butyrate. In the present study, we determined the combined effects of starvation and butyrate exposure on gingival epithelial cell death and the underlying mechanisms. The Ca9-22 cell line was used as an in vitro counterpart of gingival epithelial cells. Cell death was measured as the amount of total DNA in the dead cells using SYTOX Green dye, which penetrates through membranes of dead cells and emits fluorescence when it intercalates into double-stranded DNA. AMP-activated protein kinase (AMPK) activity, the amount of autophagy, and acetylation of histone H3 were determined using western blot. Gene expression levels of microtubule-associated protein 1 light chain 3b (lc3b) were determined using quantitative reverse transcription-polymerase chain reaction. Butyrate-induced cell death occurred in a dose-dependent manner whether cells were starved or fed. However, the induction of cell death was two to four times higher when cells were placed under starvation conditions compared to when they were fed. Moreover, both starvation and butyrate exposure induced AMPK activity and autophagy. While AMPK inactivation resulted in decreased autophagy and butyrate-induced cell death under conditions of starvation, AMPK activation resulted in butyrate-induced cell death when cells were fed. Combined with the results of our previous report, which demonstrated butyrate-induced autophagy-dependent cell death, the results of this study suggest that the combination of starvation and butyrate exposure activates AMPK inducing autophagy and subsequent cell death. Notably, this combination markedly

  7. Distinguishing starvation from cachexia.

    PubMed

    Thomas, David R

    2002-11-01

    The poor response to hypercaloric feeding in ill adults may be caused by failure to distinguish cachexia from starvation (Table 1). The chief difference between starvation and cachexia is that refeeding reverses starvation but is less effective for cachexia. The ineffectiveness of refeeding in treating cachexia may explain some of the poor results from direct nutritional interventions in clinical trials. Simple starvation should respond to voluntary or involuntary hypercaloric feedings. The failure to demonstrate a more positive response may be caused by underlying cachexic states.

  8. Macrophage migration inhibitory factor plays a permissive role in the maintenance of cardiac contractile function under starvation through regulation of autophagy.

    PubMed

    Xu, Xihui; Pacheco, Benjamin D; Leng, Lin; Bucala, Richard; Ren, Jun

    2013-08-01

    The cytokine macrophage migration inhibitory factor (MIF) protects the heart through AMPK activation. Autophagy, a conserved pathway for bulk degradation of intracellular proteins and organelles, helps preserve and recycle energy and nutrients for cells to survive under starvation. This study was designed to examine the role of MIF in cardiac homeostasis and autophagy regulation following an acute starvation challenge. Wild-type (WT) and MIF knockout mice were starved for 48 h. Echocardiographic data revealed little effect of starvation on cardiac geometry, contractile and intracellular Ca²⁺ properties. MIF deficiency unmasked an increase in left ventricular end-systolic diameter, a drop in fractional shortening associated with cardiomyocyte contractile and intracellular Ca²⁺ anomalies following starvation. Interestingly, the unfavourable effect of MIF deficiency was associated with interruption of starvation-induced autophagy. Furthermore, restoration of autophagy using rapamycin partially protected against starvation-induced cardiomyocyte contractile defects. In our in vitro model of starvation, neonatal mouse cardiomyocytes from WT and MIF-/- mice and H9C2 cells were treated with serum free-glucose free DMEM for 2 h. MIF depletion dramatically attenuated starvation-induced autophagic vacuole formation in neonatal mouse cardiomyocytes and exacerbated starvation-induced cell death in H9C2 cells. In summary, these results indicate that MIF plays a permissive role in the maintenance of cardiac contractile function under starvation by regulation of autophagy.

  9. Temperature induces trade-offs between development and starvation resistance in Aedes aegypti (L.) larvae.

    PubMed

    Padmanabha, H; Lord, C C; Lounibos, L P

    2011-12-01

    Heightened temperature increases the development rate of mosquitoes. However, in Aedes aegypti (Diptera: Culicidae), the larvae of which commonly experience limited access to food in urban habitats, temperature effects on adult production may also be influenced by changes in the capacity of larvae to survive without food. We carried out experiments to investigate the effects of temperatures increasing at intervals of 2 °C from 20 °C to 30 °C on the growth, maturation rate and longevity of optimally fed larvae placed in starvation. Overall, both growth rate and starvation resistance were lower in the first three larval instars (L1-L3) compared with L4, in which growth of >75% occurred. Although increasing the temperature reduced the duration of each instar, it had a U-shaped impact in terms of the effect of initial growth on starvation resistance, which increased from L1 to L2 at 20 °C and 30 °C, remained constant at 22 °C and 28 °C, and decreased at 24 °C and 26 °C. Growth from L2 to L3 significantly increased starvation resistance only from 26 °C to 30 °C. Increased temperature (>22 °C) consistently reduced starvation resistance in L1. In L2-L4, increments of 2 °C decreased starvation resistance between 20 °C and 24 °C, but had weaker and instar-specific effects at >24 °C. These data show that starvation resistance in Ae. aegypti depends on both instar and temperature, indicating a trade-off between increased development rate and reduced starvation survival of early-instar larvae, particularly in the lower and middle temperatures of the dengue-endemic range of 20-30 °C. We suggest that anabolic and catabolic processes in larvae have distinct temperature dependencies, which may ultimately cause temperature to modify the density regulation of Ae. aegypti populations. © 2011 The Authors. Medical and Veterinary Entomology © 2011 The Royal Entomological Society.

  10. Global Proteomics Analysis of the Response to Starvation in C. elegans*

    PubMed Central

    Larance, Mark; Pourkarimi, Ehsan; Wang, Bin; Brenes Murillo, Alejandro; Kent, Robert; Lamond, Angus I.; Gartner, Anton

    2015-01-01

    Periodic starvation of animals induces large shifts in metabolism but may also influence many other cellular systems and can lead to adaption to prolonged starvation conditions. To date, there is limited understanding of how starvation affects gene expression, particularly at the protein level. Here, we have used mass-spectrometry-based quantitative proteomics to identify global changes in the Caenorhabditis elegans proteome due to acute starvation of young adult animals. Measuring changes in the abundance of over 5,000 proteins, we show that acute starvation rapidly alters the levels of hundreds of proteins, many involved in central metabolic pathways, highlighting key regulatory responses. Surprisingly, we also detect changes in the abundance of chromatin-associated proteins, including specific linker histones, histone variants, and histone posttranslational modifications associated with the epigenetic control of gene expression. To maximize community access to these data, they are presented in an online searchable database, the Encyclopedia of Proteome Dynamics (http://www.peptracker.com/epd/). PMID:25963834

  11. Glucose Starvation Inhibits Autophagy via Vacuolar Hydrolysis and Induces Plasma Membrane Internalization by Down-regulating Recycling*

    PubMed Central

    Lang, Michael J.; Martinez-Marquez, Jorge Y.; Prosser, Derek C.; Ganser, Laura R.; Buelto, Destiney; Wendland, Beverly; Duncan, Mara C.

    2014-01-01

    Cellular energy influences all aspects of cellular function. Although cells can adapt to a gradual reduction in energy, acute energy depletion poses a unique challenge. Because acute depletion hampers the transport of new energy sources into the cell, the cell must use endogenous substrates to replenish energy after acute depletion. In the yeast Saccharomyces cerevisiae, glucose starvation causes an acute depletion of intracellular energy that recovers during continued glucose starvation. However, how the cell replenishes energy during the early phase of glucose starvation is unknown. In this study, we investigated the role of pathways that deliver proteins and lipids to the vacuole during glucose starvation. We report that in response to glucose starvation, plasma membrane proteins are directed to the vacuole through reduced recycling at the endosomes. Furthermore, we found that vacuolar hydrolysis inhibits macroautophagy in a target of rapamycin complex 1-dependent manner. Accordingly, we found that endocytosis and hydrolysis are required for survival in glucose starvation, whereas macroautophagy is dispensable. Together, these results suggest that hydrolysis of components delivered to the vacuole independent of autophagy is the cell survival mechanism used by S. cerevisiae in response to glucose starvation. PMID:24753258

  12. Differences between winter oilseed rape (Brassica napus L.) cultivars in nitrogen starvation-induced leaf senescence are governed by leaf-inherent rather than root-derived signals

    PubMed Central

    Koeslin-Findeklee, Fabian; Becker, Martin A.; van der Graaff, Eric; Roitsch, Thomas; Horst, Walter J.

    2015-01-01

    Nitrogen (N) efficiency of winter oilseed rape (Brassica napus L.) line-cultivars (cvs.), defined as high grain yield under N limitation, has been primarily attributed to maintained N uptake during reproductive growth (N uptake efficiency) in combination with delayed senescence of the older leaves accompanied with maintained photosynthetic capacity (functional stay-green). However, it is not clear whether genotypic variation in N starvation-induced leaf senescence is due to leaf-inherent factors and/or governed by root-mediated signals. Therefore, the N-efficient and stay-green cvs. NPZ-1 and Apex were reciprocally grafted with the N-inefficient and early-senescing cvs. NPZ-2 and Capitol, respectively and grown in hydroponics. The senescence status of older leaves after 12 days of N starvation assessed by SPAD, photosynthesis and the expression of the senescence-specific cysteine protease gene SAG12-1 revealed that the stay-green phenotype of the cvs. NPZ-1 and Apex under N starvation was primarily under the control of leaf-inherent factors. The same four cultivars were submitted to N starvation for up to 12 days in a time-course experiment. The specific leaf contents of biologically active and inactive cytokinins (CKs) and the expression of genes involved in CK homeostasis revealed that under N starvation leaves of early-senescing cultivars were characterized by inactivation of biologically active CKs, whereas in stay-green cultivars synthesis, activation, binding of and response to biologically active CKs were favoured. These results suggest that the homeostasis of biologically active CKs was the predominant leaf-inherent factor for cultivar differences in N starvation-induced leaf senescence and thus N efficiency. PMID:25944925

  13. Glucose starvation impairs DNA repair in tumour cells selectively by blocking histone acetylation.

    PubMed

    Ampferl, Rena; Rodemann, Hans Peter; Mayer, Claus; Höfling, Tobias Tim Alexander; Dittmann, Klaus

    2018-03-01

    Tumour cells are characterized by aerobic glycolysis and thus have high glucose consumption. Because repairing radiation-induced DNA damage is an energy-demanding process, we hypothesized that glucose starvation combined with radiotherapy could be an effective strategy to selectively target tumour cells. We glucose-starved tumour cells (A549, FaDu) in vitro and analysed their radiation-induced cell responses compared to normal fibroblasts (HSF7). Irradiation depleted intracellular ATP levels preferentially in cancer cells. Consequently, glucose starvation impaired DNA double-strand break (DSB) repair and radiosensitized confluent tumour cells but not normal fibroblasts. In proliferating tumour cells glucose starvation resulted in a reduction of proliferation, but failed to radiosensitize cells. Glucose supply was indispensable during the late DSB repair in confluent tumour cells starting approximately 13 h after irradiation, and glucose starvation inhibited radiation-induced histone acetylation, which is essential for chromatin relaxation. Sirtinol - an inhibitor of histone deacetylases - reverted the effects of glucose depletion on histone acetylation and DNA DSB repair in tumour cells. Furthermore, a glucose concentration of 2.8 mmol/L was sufficient to impair DSB repair in tumour cells and reduced their clonogenic survival under a fractionated irradiation regimen. In resting tumour cells, glucose starvation combined with irradiation resulted in the impairment of late DSB repair and the reduction of clonogenic survival, which was associated with disrupted radiation-induced histone acetylation. However, in normal cells, DNA repair and radiosensitivity were not affected by glucose depletion. Copyright © 2017 Elsevier B.V. All rights reserved.

  14. Proteomic Profiling of De Novo Protein Synthesis in Starvation-Induced Autophagy Using Bioorthogonal Noncanonical Amino Acid Tagging.

    PubMed

    Zhang, J; Wang, J; Lee, Y-M; Lim, T-K; Lin, Q; Shen, H-M

    2017-01-01

    Autophagy is an intracellular degradation process activated by stress factors such as nutrient starvation to maintain cellular homeostasis. There is emerging evidence demonstrating that de novo protein synthesis is involved in the autophagic process. However, up-to-date characterizing of these de novo proteins is technically difficult. In this chapter, we describe a novel method to identify newly synthesized proteins during starvation-mediated autophagy by bioorthogonal noncanonical amino acid tagging (BONCAT), in conjunction with isobaric tagging for relative and absolute quantification (iTRAQ)-based quantitative proteomics. l-azidohomoalanine (AHA) is an analog of methionine, and it can be readily incorporated into the newly synthesized proteins. The AHA-containing proteins can be enriched with avidin beads after a "click" reaction between alkyne-bearing biotin and the azide moiety of AHA. The enriched proteins are then subjected to iTRAQ™ labeling for protein identification and quantification using liquid chromatography-tandem mass spectrometry (LC-MS/MS). By using this technique, we have successfully profiled more than 700 proteins that are synthesized during starvation-induced autophagy. We believe that this approach is effective in identification of newly synthesized proteins in the process of autophagy and provides useful insights to the molecular mechanisms and biological functions of autophagy. © 2017 Elsevier Inc. All rights reserved.

  15. Cross-talk between Phosphate Starvation and Other Environmental Stress Signaling Pathways in Plants

    PubMed Central

    Baek, Dongwon; Chun, Hyun Jin; Yun, Dae-Jin; Kim, Min Chul

    2017-01-01

    The maintenance of inorganic phosphate (Pi) homeostasis is essential for plant growth and yield. Plants have evolved strategies to cope with Pi starvation at the transcriptional, post-transcriptional, and post-translational levels, which maximizes its availability. Many transcription factors, miRNAs, and transporters participate in the Pi starvation signaling pathway where their activities are modulated by sugar and phytohormone signaling. Environmental stresses significantly affect the uptake and utilization of nutrients by plants, but their effects on the Pi starvation response remain unclear. Recently, we reported that Pi starvation signaling is affected by abiotic stresses such as salt, abscisic acid, and drought. In this review, we identified transcription factors, such as MYB, WRKY, and zinc finger transcription factors with functions in Pi starvation and other environmental stress signaling. In silico analysis of the promoter regions of Pi starvation-responsive genes, including phosphate transporters, microRNAs, and phosphate starvation–induced genes, suggest that their expression may be regulated by other environmental stresses, such as hormones, drought, cold, heat, and pathogens as well as by Pi starvation. Thus, we suggest the possibility of cross-talk between Pi starvation signaling and other environmental stress signaling pathways. PMID:29047263

  16. Larval starvation improves metabolic response to adult starvation in honey bees (Apis mellifera L.).

    PubMed

    Wang, Ying; Campbell, Jacob B; Kaftanoglu, Osman; Page, Robert E; Amdam, Gro V; Harrison, Jon F

    2016-04-01

    Environmental changes during development have long-term effects on adult phenotypes in diverse organisms. Some of the effects play important roles in helping organisms adapt to different environments, such as insect polymorphism. Others, especially those resulting from an adverse developmental environment, have a negative effect on adult health and fitness. However, recent studies have shown that those phenotypes influenced by early environmental adversity have adaptive value under certain (anticipatory) conditions that are similar to the developmental environment, though evidence is mostly from morphological and behavioral observations and it is still rare at physiological and molecular levels. In the companion study, we applied a short-term starvation treatment to fifth instar honey bee larvae and measured changes in adult morphology, starvation resistance, hormonal and metabolic physiology and gene expression. Our results suggest that honey bees can adaptively respond to the predicted nutritional stress. In the present study, we further hypothesized that developmental starvation specifically improves the metabolic response of adult bees to starvation instead of globally affecting metabolism under well-fed conditions. Here, we produced adult honey bees that had experienced a short-term larval starvation, then we starved them for 12 h and monitored metabolic rate, blood sugar concentrations and metabolic reserves. We found that the bees that experienced larval starvation were able to shift to other fuels faster and better maintain stable blood sugar levels during starvation. However, developmental nutritional stress did not change metabolic rates or blood sugar levels in adult bees under normal conditions. Overall, our study provides further evidence that early larval starvation specifically improves the metabolic responses to adult starvation in honey bees. © 2016. Published by The Company of Biologists Ltd.

  17. Cellular, physiological, and molecular adaptive responses of Erwinia amylovora to starvation.

    PubMed

    Santander, Ricardo D; Oliver, James D; Biosca, Elena G

    2014-05-01

    Erwinia amylovora causes fire blight, a destructive disease of rosaceous plants distributed worldwide. This bacterium is a nonobligate pathogen able to survive outside the host under starvation conditions, allowing its spread by various means such as rainwater. We studied E. amylovora responses to starvation using water microcosms to mimic natural oligotrophy. Initially, survivability under optimal (28 °C) and suboptimal (20 °C) growth temperatures was compared. Starvation induced a loss of culturability much more pronounced at 28 °C than at 20 °C. Natural water microcosms at 20 °C were then used to characterize cellular, physiological, and molecular starvation responses of E. amylovora. Challenged cells developed starvation-survival and viable but nonculturable responses, reduced their size, acquired rounded shapes and developed surface vesicles. Starved cells lost motility in a few days, but a fraction retained flagella. The expression of genes related to starvation, oxidative stress, motility, pathogenicity, and virulence was detected during the entire experimental period with different regulation patterns observed during the first 24 h. Further, starved cells remained as virulent as nonstressed cells. Overall, these results provide new knowledge on the biology of E. amylovora under conditions prevailing in nature, which could contribute to a better understanding of the life cycle of this pathogen. © 2014 Federation of European Microbiological Societies. Published by John Wiley & Sons Ltd. All rights reserved.

  18. PEBP1, a RAF kinase inhibitory protein, negatively regulates starvation-induced autophagy by direct interaction with LC3.

    PubMed

    Noh, Hae Sook; Hah, Young-Sool; Zada, Sahib; Ha, Ji Hye; Sim, Gyujin; Hwang, Jin Seok; Lai, Trang Huyen; Nguyen, Huynh Quoc; Park, Jae-Yong; Kim, Hyun Joon; Byun, June-Ho; Hahm, Jong Ryeal; Kang, Kee Ryeon; Kim, Deok Ryong

    2016-11-01

    Autophagy plays a critical role in maintaining cell homeostasis in response to various stressors through protein conjugation and activation of lysosome-dependent degradation. MAP1LC3B/LC3B (microtubule- associated protein 1 light chain 3 β) is conjugated with phosphatidylethanolamine (PE) in the membranes and regulates initiation of autophagy through interaction with many autophagy-related proteins possessing an LC3-interacting region (LIR) motif, which is composed of 2 hydrophobic amino acids (tryptophan and leucine) separated by 2 non-conserved amino acids (WXXL). In this study, we identified a new putative LIR motif in PEBP1/RKIP (phosphatidylethanolamine binding protein 1) that was originally isolated as a PE-binding protein and also a cellular inhibitor of MAPK/ERK signaling. PEBP1 was specifically bound to PE-unconjugated LC3 in cells, and mutation (WXXL mutated to AXXA) of this LIR motif disrupted its interaction with LC3 proteins. Interestingly, overexpression of PEBP1 significantly inhibited starvation-induced autophagy by activating the AKT and MTORC1 (mechanistic target of rapamycin [serine/threonine kinase] complex 1) signaling pathway and consequently suppressing the ULK1 (unc-51 like autophagy activating kinase 1) activity. In contrast, ablation of PEBP1 expression dramatically promoted the autophagic process under starvation conditions. Furthermore, PEBP1 lacking the LIR motif highly stimulated starvation-induced autophagy through the AKT-MTORC1-dependent pathway. PEBP1 phosphorylation at Ser153 caused dissociation of LC3 from the PEBP1-LC3 complex for autophagy induction. PEBP1-dependent suppression of autophagy was not associated with the MAPK pathway. These findings suggest that PEBP1 can act as a negative mediator in autophagy through stimulation of the AKT-MTORC1 pathway and direct interaction with LC3.

  19. The natural compound Guttiferone F sensitizes prostate cancer to starvation induced apoptosis via calcium and JNK elevation.

    PubMed

    Li, Xin; Lao, Yuanzhi; Zhang, Hong; Wang, Xiaoyu; Tan, Hongsheng; Lin, Zhixiu; Xu, Hongxi

    2015-04-11

    In a cytotoxicity screen in serum-free medium, Guttiferone F showed strong growth inhibitory effect against prostate cancer cells. Prostate cancer cells LNCaP and PC3 were treated with Guttiferone F in serum depleted medium. Sub-G1 phase distributions were estimated with flow cytometry. Mitochondrial disruption was observed under confocal microscope using Mitotracker Red staining. Gene and protein expression changes were detected by real-time PCR and Western blotting. Ca(2+) elevation was examined by Fluo-4 staining under fluorescence microscope. PC3 xenografts in mice were examined by immunohistochemical analysis. Guttiferone F had strong growth inhibitory effect against prostate cancer cell lines under serum starvation. It induced a significant increase in sub-G1 fraction and DNA fragmentation. In serum-free medium, Guttiferone F triggered mitochondria dependent apoptosis by regulating Bcl-2 family proteins. In addition, Guttiferone F attenuated the androgen receptor expression and phosphorylation of ERK1/2, while activating the phosphorylation of JNK and Ca(2+) flux. Combination of caloric restriction with Guttiferone F in vivo could increase the antitumor effect without causing toxicity. Guttiferone F induced prostate cancer cell apoptosis under serum starvation via Ca(2+) elevation and JNK activation. Combined with caloric restriction, Guttiferone F exerted significant growth inhibition of PC3 cells xenograft in vivo. Guttiferone F is therefore a potential anti-cancer compound.

  20. The Zinc Finger Proteins Mxr1p and Repressor of Phosphoenolpyruvate Carboxykinase (ROP) Have the Same DNA Binding Specificity but Regulate Methanol Metabolism Antagonistically in Pichia pastoris*

    PubMed Central

    Kumar, Nallani Vijay; Rangarajan, Pundi N.

    2012-01-01

    The methanol-inducible alcohol oxidase I (AOXI) promoter of the methylotrophic yeast, Pichia pastoris, is used widely for the production of recombinant proteins. AOXI transcription is regulated by the zinc finger protein Mxr1p (methanol expression regulator 1). ROP (repressor of phosphoenolpyruvate carboxykinase, PEPCK) is a methanol- and biotin starvation-inducible zinc finger protein that acts as a negative regulator of PEPCK in P. pastoris cultured in biotin-deficient, glucose-ammonium medium. The function of ROP during methanol metabolism is not known. In this study, we demonstrate that ROP represses methanol-inducible expression of AOXI when P. pastoris is cultured in a nutrient-rich medium containing yeast extract, peptone, and methanol (YPM). Deletion of the gene encoding ROP results in enhanced expression of AOXI and growth promotion whereas overexpression of ROP results in repression of AOXI and growth retardation of P. pastoris cultured in YPM medium. Surprisingly, deletion or overexpression of ROP has no effect on AOXI gene expression and growth of P. pastoris cultured in a minimal medium containing yeast nitrogen base and methanol (YNBM). Subcellular localization studies indicate that ROP translocates from cytosol to nucleus of cells cultured in YPM but not YNBM. In vitro DNA binding studies indicate that AOXI promoter sequences containing 5′ CYCCNY 3′ motifs serve as binding sites for Mxr1p as well as ROP. Thus, Mxr1p and ROP exhibit the same DNA binding specificity but regulate methanol metabolism antagonistically in P. pastoris. This is the first report on the identification of a transcriptional repressor of methanol metabolism in any yeast species. PMID:22888024

  1. A combined proteomic and genetic analysis identifies a role for the lipid desaturase Desat1 in starvation-induced autophagy in Drosophila.

    PubMed

    Köhler, Katja; Brunner, Erich; Guan, Xue Li; Boucke, Karin; Greber, Urs F; Mohanty, Sonali; Barth, Julia M I; Wenk, Markus R; Hafen, Ernst

    2009-10-01

    Autophagy is a lysosomal-mediated degradation process that promotes cell survival during nutrient-limiting conditions. However, excessive autophagy results in cell death. In Drosophila, autophagy is regulated nutritionally, hormonally and developmentally in several tissues, including the fat body, a nutrient-storage organ. Here we use a proteomics approach to identify components of starvation-induced autophagic responses in the Drosophila fat body. Using cICAT labeling and mass spectrometry, differences in protein expression levels of normal compared to starved fat bodies were determined. Candidates were analyzed genetically for their involvement in autophagy in fat bodies deficient for the respective genes. One of these genes, Desat1, encodes a lipid desaturase. Desat1 mutant cells fail to induce autophagy upon starvation. The desat1 protein localizes to autophagic structures after nutrient depletion and is required for fly development. Lipid analyses revealed that Desat1 regulates the composition of lipids in Drosophila. We propose that Desat1 exerts its role in autophagy by controlling lipid biosynthesis and/or signaling necessary for autophagic responses.

  2. The implications of starvation induced psychological changes for the ethical treatment of hunger strikers

    PubMed Central

    Fessler, D

    2003-01-01

    Design: Electronic databases were searched for (a) editorials and ethical proclamations on hunger strikers and their treatment; (b) studies of voluntary and involuntary starvation, and (c) legal cases pertaining to hunger striking. Additional studies were gathered in a snowball fashion from the published material cited in these databases. Material was included if it (a) provided ethical or legal guidelines; (b) shed light on psychological changes accompanying starvation, or (c) illustrated the practice of hunger striking. Authors' observations, opinions, and conclusions were noted. Conclusions: Although the heterogeneous nature of the sources precluded statistical analysis, starvation appears to be accompanied by marked psychological changes. Some changes clearly impair competence, in which case physicians are advised to follow advance directives obtained early in the hunger strike. More problematic are increases in impulsivity and aggressivity, changes which, while not impairing competence, enhance the likelihood that patients will starve themselves to death. PMID:12930863

  3. Dual role of starvation signaling in promoting growth and recovery

    PubMed Central

    Leshkowitz, Dena; Barkai, Naama

    2017-01-01

    Growing cells are subject to cycles of nutrient depletion and repletion. A shortage of nutrients activates a starvation program that promotes growth in limiting conditions. To examine whether nutrient-deprived cells prepare also for their subsequent recovery, we followed the transcription program activated in budding yeast transferred to low-phosphate media and defined its contribution to cell growth during phosphate limitation and upon recovery. An initial transcription wave was induced by moderate phosphate depletion that did not affect cell growth. A second transcription wave followed when phosphate became growth limiting. The starvation program contributed to growth only in the second, growth-limiting phase. Notably, the early response, activated at moderate depletion, promoted recovery from starvation by increasing phosphate influx upon transfer to rich medium. Our results suggest that cells subject to nutrient depletion prepare not only for growth in the limiting conditions but also for their predicted recovery once nutrients are replenished. PMID:29236696

  4. Glucose starvation increases V-ATPase assembly and activity in mammalian cells through AMP kinase and phosphatidylinositide 3-kinase/Akt signaling.

    PubMed

    McGuire, Christina M; Forgac, Michael

    2018-06-08

    The vacuolar H + -ATPase (V-ATPase) is an ATP-driven proton pump involved in many cellular processes. An important mechanism by which V-ATPase activity is controlled is the reversible assembly of its two domains, namely the peripheral V 1 domain and the integral V 0 domain. Although reversible assembly is conserved across all eukaryotic organisms, the signaling pathways controlling it have not been fully characterized. Here, we identify glucose starvation as a novel regulator of V-ATPase assembly in mammalian cells. During acute glucose starvation, the V-ATPase undergoes a rapid and reversible increase in assembly and activity as measured by lysosomal acidification. Because the V-ATPase has recently been implicated in the activation of AMP kinase (AMPK), a critical cellular energy sensor that is also activated upon glucose starvation, we compared the time course of AMPK activation and V-ATPase assembly upon glucose starvation. We observe that AMPK activation precedes increased V-ATPase activity. Moreover, the starvation-induced increase in V-ATPase activity and assembly are prevented by the AMPK inhibitor dorsomorphin. These results suggest that increased assembly and activity of the V-ATPase upon glucose starvation are dependent upon AMPK. We also find that the PI3K/Akt pathway, which has previously been implicated in controlling V-ATPase assembly in mammalian cells, also plays a role in the starvation-induced increase in V-ATPase assembly and activity. These studies thus identify a novel stimulus of V-ATPase assembly and a novel signaling pathway involved in regulating this process. The possible function of starvation-induced increase in lysosomal V-ATPase activity is discussed. © 2018 by The American Society for Biochemistry and Molecular Biology, Inc.

  5. Suppressors of dGTP Starvation in Escherichia coli

    PubMed Central

    Itsko, Mark

    2017-01-01

    ABSTRACT dGTP starvation, a newly discovered phenomenon in which Escherichia coli cells are starved specifically for the DNA precursor dGTP, leads to impaired growth and, ultimately, cell death. Phenomenologically, it represents an example of nutritionally induced unbalanced growth: cell mass amplifies normally as dictated by the nutritional status of the medium, but DNA content growth is specifically impaired. The other known example of such a condition, thymineless death (TLD), involves starvation for the DNA precursor dTTP, which has been found to have important chemotherapeutic applications. Experimentally, dGTP starvation is induced by depriving an E. coli gpt optA1 strain of its required purine source, hypoxanthine. In our studies of this phenomenon, we noted the emergence of a relatively high frequency of suppressor mutants that proved resistant to the treatment. To study such suppressors, we used next-generation sequencing on a collection of independently obtained mutants. A significant fraction was found to carry a defect in the PurR transcriptional repressor, controlling de novo purine biosynthesis, or in its downstream purEK operon. Thus, upregulation of de novo purine biosynthesis appears to be a major mode of overcoming the lethal effects of dGTP starvation. In addition, another large fraction of the suppressors contained a large tandem duplication of a 250- to 300-kb genomic region that included the purEK operon as well as the acrAB-encoded multidrug efflux system. Thus, the suppressive effects of the duplications could potentially involve beneficial effects of a number of genes/operons within the amplified regions. IMPORTANCE Concentrations of the four precursors for DNA synthesis (2′-deoxynucleoside-5′-triphosphates [dNTPs]) are critical for both the speed of DNA replication and its accuracy. Previously, we investigated consequences of dGTP starvation, where the DNA precursor dGTP was specifically reduced to a low level. Under this condition, E

  6. Effects of repeated cycles of starvation and refeeding on lungs of growing rats.

    PubMed

    Sahebjami, H; Domino, M

    1992-12-01

    Adult male rats were subjected to four cycles of mild starvation (2 wk) and refeeding (1 wk) and were compared with a fed group. Starvation was induced by giving rats one-third of their measured daily food consumption. During each starvation cycle, rats lost approximately 20% of their body weight. Despite catch-up growth and overall weight gain, starved rats had lower final body weight than fed rats. Lung dry weight and lung volumes were also reduced in the starved group. The mechanical properties of air- and saline-filled lungs did not change significantly with repeated cycles of starvation. Mean linear intercept was similar in the two groups, but alveolar surface area was reduced in the starved rats. Total content of crude connective tissue and concentration per lung dry weight of hydroxyproline and crude connective tissue were reduced in starved rats. We conclude that lung growth is retarded in growing rats subjected to repeated cycles of mild starvation and refeeding, as manifested by smaller lung volume and reduced alveolar surface area. Because alveolar size is unchanged, a reduced number of alveoli is most likely responsible for decreased lung volumes.

  7. Sul1 and Sul2 Sulfate Transceptors Signal to Protein Kinase A upon Exit of Sulfur Starvation*

    PubMed Central

    Kankipati, Harish Nag; Rubio-Texeira, Marta; Castermans, Dries; Diallinas, George; Thevelein, Johan M.

    2015-01-01

    Sulfate is an essential nutrient with pronounced regulatory effects on cellular metabolism and proliferation. Little is known, however, about how sulfate is sensed by cells. Sul1 and Sul2 are sulfate transporters in the yeast Saccharomyces cerevisiae, strongly induced upon sulfur starvation and endocytosed upon the addition of sulfate. We reveal Sul1,2-dependent activation of PKA targets upon sulfate-induced exit from growth arrest after sulfur starvation. We provide two major arguments in favor of Sul1 and Sul2 acting as transceptors for signaling to PKA. First, the sulfate analogue, d-glucosamine 2-sulfate, acted as a non-transported agonist of signaling by Sul1 and Sul2. Second, mutagenesis to Gln of putative H+-binding residues, Glu-427 in Sul1 or Glu-443 in Sul2, abolished transport without affecting signaling. Hence, Sul1,2 can function as pure sulfate sensors. Sul1E427Q and Sul2E443Q are also deficient in sulfate-induced endocytosis, which can therefore be uncoupled from signaling. Overall, our data suggest that transceptors can undergo independent conformational changes, each responsible for triggering different downstream processes. The Sul1 and Sul2 transceptors are the first identified plasma membrane sensors for extracellular sulfate. High affinity transporters induced upon starvation for their substrate may generally act as transceptors during exit from starvation. PMID:25724649

  8. The implications of starvation induced psychological changes for the ethical treatment of hunger strikers.

    PubMed

    Fessler, D M T

    2003-08-01

    To evaluate existing ethical guidelines for the treatment of hunger strikers in light of findings on psychological changes that accompany the cessation of food intake. Electronic databases were searched for (a) editorials and ethical proclamations on hunger strikers and their treatment; (b) studies of voluntary and involuntary starvation, and (c) legal cases pertaining to hunger striking. Additional studies were gathered in a snowball fashion from the published material cited in these databases. Material was included if it (a) provided ethical or legal guidelines; (b) shed light on psychological changes accompanying starvation, or (c) illustrated the practice of hunger striking. Authors' observations, opinions, and conclusions were noted. Although the heterogeneous nature of the sources precluded statistical analysis, starvation appears to be accompanied by marked psychological changes. Some changes clearly impair competence, in which case physicians are advised to follow advance directives obtained early in the hunger strike. More problematic are increases in impulsivity and aggressivity, changes which, while not impairing competence, enhance the likelihood that patients will starve themselves to death.

  9. Explanatory model of cattle death by starvation in Manitoba: Forensic evaluation

    PubMed Central

    Whiting, Terry L.; Postey, Rosemary C.; Chestley, Seylene T.; Wruck, Gustave C.

    2012-01-01

    Cattle death by starvation is a persistent annual event in Manitoba. Herds with more than 10% overwinter death loss are usually identified in the late winter or early spring. Field and postmortem findings suggest that there is complete mobilization of fat followed by inability to maintain adequate thermoregulation and death by cardiac arrest. Carcasses show only mild evidence of muscle catabolism and are in excellent preservation if located prior to or around the time of spring thaw. A forensic diagnosis of death by starvation-induced exposure can be made with a high level of confidence when considering field data, whole carcass appearance, and postmortem evaluation of residual fat stores. PMID:23633710

  10. Convergent Starvation Signals and Hormone Crosstalk in Regulating Nutrient Mobilization upon Germination in Cereals[C][W

    PubMed Central

    Hong, Ya-Fang; Ho, Tuan-Hua David; Wu, Chin-Feng; Ho, Shin-Lon; Yeh, Rong-Hwei; Lu, Chung-An; Chen, Peng-Wen; Yu, Lin-Chih; Chao, Annlin; Yu, Su-May

    2012-01-01

    Germination is a unique developmental transition from metabolically quiescent seed to actively growing seedling that requires an ensemble of hydrolases for coordinated nutrient mobilization to support heterotrophic growth until autotrophic photosynthesis is established. This study reveals two crucial transcription factors, MYBS1 and MYBGA, present in rice (Oryza sativa) and barley (Hordeum vulgare), that function to integrate diverse nutrient starvation and gibberellin (GA) signaling pathways during germination of cereal grains. Sugar represses but sugar starvation induces MYBS1 synthesis and its nuclear translocation. GA antagonizes sugar repression by enhancing conuclear transport of the GA-inducible MYBGA with MYBS1 and the formation of a stable bipartite MYB-DNA complex to activate the α-amylase gene. We further discovered that not only sugar but also nitrogen and phosphate starvation signals converge and interconnect with GA to promote the conuclear import of MYBS1 and MYBGA, resulting in the expression of a large set of GA-inducible but functionally distinct hydrolases, transporters, and regulators associated with mobilization of the full complement of nutrients to support active seedling growth in cereals. PMID:22773748

  11. Transcription Factor Arabidopsis Activating Factor1 Integrates Carbon Starvation Responses with Trehalose Metabolism1[OPEN

    PubMed Central

    Garapati, Prashanth; Feil, Regina; Lunn, John Edward; Van Dijck, Patrick; Balazadeh, Salma; Mueller-Roeber, Bernd

    2015-01-01

    Plants respond to low carbon supply by massive reprogramming of the transcriptome and metabolome. We show here that the carbon starvation-induced NAC (for NO APICAL MERISTEM/ARABIDOPSIS TRANSCRIPTION ACTIVATION FACTOR/CUP-SHAPED COTYLEDON) transcription factor Arabidopsis (Arabidopsis thaliana) Transcription Activation Factor1 (ATAF1) plays an important role in this physiological process. We identified TREHALASE1, the only trehalase-encoding gene in Arabidopsis, as a direct downstream target of ATAF1. Overexpression of ATAF1 activates TREHALASE1 expression and leads to reduced trehalose-6-phosphate levels and a sugar starvation metabolome. In accordance with changes in expression of starch biosynthesis- and breakdown-related genes, starch levels are generally reduced in ATAF1 overexpressors but elevated in ataf1 knockout plants. At the global transcriptome level, genes affected by ATAF1 are broadly associated with energy and carbon starvation responses. Furthermore, transcriptional responses triggered by ATAF1 largely overlap with expression patterns observed in plants starved for carbon or energy supply. Collectively, our data highlight the existence of a positively acting feedforward loop between ATAF1 expression, which is induced by carbon starvation, and the depletion of cellular carbon/energy pools that is triggered by the transcriptional regulation of downstream gene regulatory networks by ATAF1. PMID:26149570

  12. Tropical Drosophila ananassae of wet-dry seasons show cross resistance to heat, drought and starvation

    PubMed Central

    Lambhod, Chanderkala; Pathak, Ankita; Munjal, Ashok K.

    2017-01-01

    ABSTRACT Plastic responses to multiple environmental stressors in wet or dry seasonal populations of tropical Drosophila species have received less attention. We tested plastic effects of heat hardening, acclimation to drought or starvation, and changes in trehalose, proline and body lipids in Drosophila ananassae flies reared under wet or dry season-specific conditions. Wet season flies revealed significant increase in heat knockdown, starvation resistance and body lipids after heat hardening. However, accumulation of proline was observed only after desiccation acclimation of dry season flies while wet season flies elicited no proline but trehalose only. Therefore, drought-induced proline can be a marker metabolite for dry-season flies. Further, partial utilization of proline and trehalose under heat hardening reflects their possible thermoprotective effects. Heat hardening elicited cross-protection to starvation stress. Stressor-specific accumulation or utilization as well as rates of metabolic change for each energy metabolite were significantly higher in wet-season flies than dry-season flies. Energy metabolite changes due to inter-related stressors (heat versus desiccation or starvation) resulted in possible maintenance of energetic homeostasis in wet- or dry-season flies. Thus, low or high humidity-induced plastic changes in energy metabolites can provide cross-protection to seasonally varying climatic stressors. PMID:29141954

  13. HPS4/SABRE regulates plant responses to phosphate starvation through antagonistic interaction with ethylene signalling

    PubMed Central

    Yu, Hailan; Luo, Nan; Sun, Lichao; Liu, Dong

    2012-01-01

    The phytohormone ethylene plays important roles in regulating plant responses to phosphate (Pi) starvation. To date, however, no molecular components have been identified that interact with ethylene signalling in regulating such responses. In this work, an Arabidopsis mutant, hps4, was characterized that exhibits enhanced responses to Pi starvation, including increased inhibition of primary root growth, enhanced expression of Pi starvation-induced genes, and overproduction of root-associated acid phosphatases. Molecular cloning indicated that hps4 is a new allele of SABRE, which was previously identified as an important regulator of cell expansion in Arabidopsis. HPS4/SABRE antagonistically interacts with ethylene signalling to regulate plant responses to Pi starvation. Furthermore, it is shown that Pi-starved hps4 mutants accumulate more auxin in their root tips than the wild type, which may explain the increased inhibition of their primary root growth when grown under Pi deficiency. PMID:22615140

  14. Regulation of autophagy by sphingosine kinase 1 and its role in cell survival during nutrient starvation.

    PubMed

    Lavieu, Grégory; Scarlatti, Francesca; Sala, Giusy; Carpentier, Stéphane; Levade, Thierry; Ghidoni, Riccardo; Botti, Joëlle; Codogno, Patrice

    2006-03-31

    The sphingolipid ceramide induces macroautophagy (here called autophagy) and cell death with autophagic features in cancer cells. Here we show that overexpression of sphingosine kinase 1 (SK1), an enzyme responsible for the production of sphingosine 1-phosphate (S1P), in MCF-7 cells stimulates autophagy by increasing the formation of LC3-positive autophagosomes and the rate of proteolysis sensitive to the autophagy inhibitor 3-methyladenine. Autophagy was blocked in the presence of dimethylsphingosine, an inhibitor of SK activity, and in cells expressing a catalytically inactive form of SK1. In SK1(wt)-overexpressing cells, however, autophagy was not sensitive to fumonisin B1, an inhibitor of ceramide synthase. In contrast to ceramide-induced autophagy, SK1(S1P)-induced autophagy is characterized by (i) the inhibition of mammalian target of rapamycin signaling independently of the Akt/protein kinase B signaling arm and (ii) the lack of robust accumulation of the autophagy protein Beclin 1. In addition, nutrient starvation induced both the stimulation of autophagy and SK activity. Knocking down the expression of the autophagy protein Atg7 or that of SK1 by siRNA abolished starvation-induced autophagy and increased cell death with apoptotic hallmarks. In conclusion, these results show that SK1(S1P)-induced autophagy protects cells from death with apoptotic features during nutrient starvation.

  15. Why does starvation make bones fat?

    PubMed Central

    Devlin, Maureen J.

    2011-01-01

    Body fat, or adipose tissue, is a crucial energetic buffer against starvation in humans and other mammals, and reserves of white adipose tissue (WAT) rise and fall in parallel with food intake. Much less is known about the function of bone marrow adipose tissue (BMAT), which are fat cells found in bone marrow. BMAT mass actually increases during starvation, even as other fat depots are being mobilized for energy. Here I review the possible reasons for this poorly understood phenomenon. Is BMAT a passive filler that occupies spaces left by dying bone cells, a pathological consequence of suppressed bone formation, or potentially an adaptation for surviving starvation? To evaluate these possibilities, here I review what is known about the effects of starvation on the body, particularly the skeleton, and the mechanisms involved in storing and metabolizing BMAT during negative energy balance. PMID:21793093

  16. Why does starvation make bones fat?

    PubMed

    Devlin, Maureen J

    2011-01-01

    Body fat, or adipose tissue, is a crucial energetic buffer against starvation in humans and other mammals, and reserves of white adipose tissue (WAT) rise and fall in parallel with food intake. Much less is known about the function of bone marrow adipose tissue (BMAT), which are fat cells found in bone marrow. BMAT mass actually increases during starvation, even as other fat depots are being mobilized for energy. This review considers several possible reasons for this poorly understood phenomenon. Is BMAT a passive filler that occupies spaces left by dying bone cells, a pathological consequence of suppressed bone formation, or potentially an adaptation for surviving starvation? These possibilities are evaluated in terms of the effects of starvation on the body, particularly the skeleton, and the mechanisms involved in storing and metabolizing BMAT during negative energy balance. Copyright © 2011 Wiley-Liss, Inc.

  17. Resistance of soil microorganisms to starvation.

    NASA Technical Reports Server (NTRS)

    Chen, M.; Alexander, M.

    1972-01-01

    Most groups of soil microorganisms died when exposed to prolonged starvation in a carbon-free solution, but the relative abundance of Bacillus and actinomycetes increased with time. Certain nonspore-forming bacteria also persisted. The ability of individual soil isolates to endure starvation in solution was not correlated with their glycogen content or rate of endogenous respiration. However, cells of the resistant populations were rich in poly-beta-hydroxybutyrate, whereas the starvation-susceptible bacteria generally contained little of this substance. Poly-beta-hydroxybutyrate was used rapidly in cells deprived of exogenous sources of carbon.

  18. FGF21 and the late adaptive response to starvation in humans.

    PubMed

    Fazeli, Pouneh K; Lun, Mingyue; Kim, Soo M; Bredella, Miriam A; Wright, Spenser; Zhang, Yang; Lee, Hang; Catana, Ciprian; Klibanski, Anne; Patwari, Parth; Steinhauser, Matthew L

    2015-11-03

    In mice, FGF21 is rapidly induced by fasting, mediates critical aspects of the adaptive starvation response, and displays a number of positive metabolic properties when administered pharmacologically. In humans, however, fasting does not consistently increase FGF21, suggesting a possible evolutionary divergence in FGF21 function. Moreover, many key aspects of FGF21 function in mice have been identified in the context of transgenic overexpression or administration of supraphysiologic doses, rather than in a physiologic setting. Here, we explored the dynamics and function of FGF21 in human volunteers during a 10-day fast. Unlike mice, which show an increase in circulating FGF21 after only 6 hours, human subjects did not have a notable surge in FGF21 until 7 to 10 days of fasting. Moreover, we determined that FGF21 induction was associated with decreased thermogenesis and adiponectin, an observation that directly contrasts with previous reports based on supraphysiologic dosing. Additionally, FGF21 levels increased after ketone induction, demonstrating that endogenous FGF21 does not drive starvation-mediated ketogenesis in humans. Instead, a longitudinal analysis of biologically relevant variables identified serum transaminases--markers of tissue breakdown--as predictors of FGF21. These data establish FGF21 as a fasting-induced hormone in humans and indicate that FGF21 contributes to the late stages of adaptive starvation, when it may regulate the utilization of fuel derived from tissue breakdown.

  19. Phosphoenolpyruvate-dependent maltose:phosphotransferase activity in Fusobacterium mortiferum ATCC 25557: specificity, inducibility, and product analysis.

    PubMed Central

    Robrish, S A; Fales, H M; Gentry-Weeks, C; Thompson, J

    1994-01-01

    Phosphoenolypyruvate-dependent maltose:phosphotransferase activity was induced in cells of Fusobacterium mortiferum ATCC 25557 during growth on maltose. The disaccharide was rapidly metabolized by washed cells maintained under anaerobic conditions, but fermentation ceased immediately upon exposure of the cell suspension to air. Coincidentally, high levels of a phosphorylated derivative accumulated within the cells. Chemical and enzymatic analyses, in conjunction with data from 1H, 13C, and 31P nuclear magnetic resonance spectroscopy, established the structure of the purified compound as 6-O-phosphoryl-alpha-D-glucopyranosyl-(1-4)-D-glucose (maltose 6-phosphate). A method for the preparation of substrate amounts of this commercially unavailable disaccharide phosphate is described. Permeabilized cells of F. mortiferum catalyzed the phosphoenolpyruvate-dependent phosphorylation of maltose under aerobic conditions. However, the hydrolysis of maltose 6-phosphate (to glucose 6-phosphate and glucose) by permeabilized cells or cell-free preparations required either an anaerobic environment or addition of dithiothreitol to aerobic reaction mixtures. The first step in dissimilation of the phosphorylated disaccharide appears to be catalyzed by an oxygen-sensitive maltose 6-phosphate hydrolase. Cells of F. mortiferum, grown previously on maltose, fermented a variety of alpha-linked glucosides, including maltose, turanose, palatinose, maltitol, alpha-methylglucoside, trehalose, and isomaltose. Conversely, cells grown on the separate alpha-glucosides also metabolized maltose. For this anaerobic pathogen, we suggest that the maltose:phosphotransferase and maltose 6-phosphate hydrolase catalyze the phosphorylative translocation and cleavage not only of maltose but also of structurally analogous alpha-linked glucosides. Images PMID:8195080

  20. Phosphate or phosphite addition promotes the proteolytic turnover of phosphate-starvation inducible tomato purple acid phosphatase isozymes.

    PubMed

    Bozzo, Gale G; Singh, Vinay K; Plaxton, William C

    2004-08-27

    Within 48 h of the addition of 2.5 mM phosphate (HPO42-, Pi) or phosphite (H2PO3-, Phi) to 8-day-old Pi-starved (-Pi) tomato suspension cells: (i) secreted and intracellular purple acid phosphatase (PAP) activities decreased by about 12- and 6-fold, respectively and (ii) immunoreactive PAP polypeptides either disappeared (secreted PAPs) or were substantially reduced (intracellular PAP). The degradation of both secreted PAP isozymes was correlated with the de novo synthesis of two extracellular serine proteases having M(r)s of 137 and 121 kDa. In vitro proteolysis of purified secreted tomato PAP isozymes occurred following their 24 h incubation with culture filtrate from Pi-resupplied cells. The results indicate that Pi or Phi addition to -Pi tomato cells induces serine proteases that degrade Pi-starvation inducible extracellular proteins.

  1. Starvation Promotes Odor/Feeding-Time Associations in Flies

    ERIC Educational Resources Information Center

    Chouhan, Nitin Singh; Wolf, Reinard; Heisenberg, Martin

    2017-01-01

    Starvation causes a motivational state that facilitates diverse behaviors such as feeding, walking, and search. Starved "Drosophila" can form odor/feeding-time associations but the role of starvation in encoding of "time" is poorly understood. Here we show that the extent of starvation is correlated with the fly's ability to…

  2. Knockdown of AMPKα decreases ATM expression and increases radiosensitivity under hypoxia and nutrient starvation in an SV40-transformed human fibroblast cell line, LM217.

    PubMed

    Murata, Yasuhiko; Hashimoto, Takuma; Urushihara, Yusuke; Shiga, Soichiro; Takeda, Kazuya; Jingu, Keiichi; Hosoi, Yoshio

    2018-01-22

    Presence of unperfused regions containing cells under hypoxia and nutrient starvation contributes to radioresistance in solid human tumors. It is well known that hypoxia causes cellular radioresistance, but little is known about the effects of nutrient starvation on radiosensitivity. We have reported that nutrient starvation induced decrease of mTORC1 activity and decrease of radiosensitivity in an SV40-transformed human fibroblast cell line, LM217, and that nutrient starvation induced increase of mTORC1 activity and increase of radiosensitivity in human liver cancer cell lines, HepG2 and HuH6 (Murata et al., BBRC 2015). Knockdown of mTOR using small interfering RNA (siRNA) for mTOR suppressed radiosensitivity under nutrient starvation alone in HepG2 cells, which suggests that mTORC1 pathway regulates radiosensitivity under nutrient starvation alone. In the present study, effects of hypoxia and nutrient starvation on radiosensitivity were investigated using the same cell lines. LM217 and HepG2 cells were used to examine the effects of hypoxia and nutrient starvation on cellular radiosensitivity, mTORC1 pathway including AMPK, ATM, and HIF-1α, which are known as regulators of mTORC1 activity, and glycogen storage, which is induced by HIF-1 and HIF-2 under hypoxia and promotes cell survival. Under hypoxia and nutrient starvation, AMPK activity and ATM expression were increased in LM217 cells and decreased in HepG2 cells compared with AMPK activity under nutrient starvation alone or ATM expression under hypoxia alone. Under hypoxia and nutrient starvation, radiosensitivity was decreased in LM217 cells and increased in HepG2 cells compared with radiosensitivity under hypoxia alone. Under hypoxia and nutrient starvation, knockdown of AMPK decreased ATM activity and increased radiation sensitivity in LM217 cells. In both cell lines, mTORC1 activity was decreased under hypoxia and nutrient starvation. Under hypoxia alone, knockdown of mTOR slightly increased ATM

  3. Identification of Genes in Saccharomyces cerevisiae that Are Haploinsufficient for Overcoming Amino Acid Starvation

    PubMed Central

    Bae, Nancy S.; Seberg, Andrew P.; Carroll, Leslie P.; Swanson, Mark J.

    2017-01-01

    The yeast Saccharomyces cerevisiae responds to amino acid deprivation by activating a pathway conserved in eukaryotes to overcome the starvation stress. We have screened the entire yeast heterozygous deletion collection to identify strains haploinsufficient for growth in the presence of sulfometuron methyl, which causes starvation for isoleucine and valine. We have discovered that cells devoid of MET15 are sensitive to sulfometuron methyl, and loss of heterozygosity at the MET15 locus can complicate screening the heterozygous deletion collection. We identified 138 cases of loss of heterozygosity in this screen. After eliminating the issues of the MET15 loss of heterozygosity, strains isolated from the collection were retested on sulfometuron methyl. To determine the general effect of the mutations for a starvation response, SMM-sensitive strains were tested for the ability to grow in the presence of canavanine, which induces arginine starvation, and strains that were MET15 were also tested for growth in the presence of ethionine, which causes methionine starvation. Many of the genes identified in our study were not previously identified as starvation-responsive genes, including a number of essential genes that are not easily screened in a systematic way. The genes identified span a broad range of biological functions, including many involved in some level of gene expression. Several unnamed proteins have also been identified, giving a clue as to possible functions of the encoded proteins. PMID:28209762

  4. The role of carbon starvation in the induction of enzymes that degrade plant-derived carbohydrates in Aspergillus niger

    PubMed Central

    van Munster, Jolanda M.; Daly, Paul; Delmas, Stéphane; Pullan, Steven T.; Blythe, Martin J.; Malla, Sunir; Kokolski, Matthew; Noltorp, Emelie C.M.; Wennberg, Kristin; Fetherston, Richard; Beniston, Richard; Yu, Xiaolan; Dupree, Paul; Archer, David B.

    2014-01-01

    Fungi are an important source of enzymes for saccharification of plant polysaccharides and production of biofuels. Understanding of the regulation and induction of expression of genes encoding these enzymes is still incomplete. To explore the induction mechanism, we analysed the response of the industrially important fungus Aspergillus niger to wheat straw, with a focus on events occurring shortly after exposure to the substrate. RNA sequencing showed that the transcriptional response after 6 h of exposure to wheat straw was very different from the response at 24 h of exposure to the same substrate. For example, less than half of the genes encoding carbohydrate active enzymes that were induced after 24 h of exposure to wheat straw, were also induced after 6 h exposure. Importantly, over a third of the genes induced after 6 h of exposure to wheat straw were also induced during 6 h of carbon starvation, indicating that carbon starvation is probably an important factor in the early response to wheat straw. The up-regulation of the expression of a high number of genes encoding CAZymes that are active on plant-derived carbohydrates during early carbon starvation suggests that these enzymes could be involved in a scouting role during starvation, releasing inducing sugars from complex plant polysaccharides. We show, using proteomics, that carbon-starved cultures indeed release CAZymes with predicted activity on plant polysaccharides. Analysis of the enzymatic activity and the reaction products, indicates that these proteins are enzymes that can degrade various plant polysaccharides to generate both known, as well as potentially new, inducers of CAZymes. PMID:24792495

  5. The role of carbon starvation in the induction of enzymes that degrade plant-derived carbohydrates in Aspergillus niger.

    PubMed

    van Munster, Jolanda M; Daly, Paul; Delmas, Stéphane; Pullan, Steven T; Blythe, Martin J; Malla, Sunir; Kokolski, Matthew; Noltorp, Emelie C M; Wennberg, Kristin; Fetherston, Richard; Beniston, Richard; Yu, Xiaolan; Dupree, Paul; Archer, David B

    2014-11-01

    Fungi are an important source of enzymes for saccharification of plant polysaccharides and production of biofuels. Understanding of the regulation and induction of expression of genes encoding these enzymes is still incomplete. To explore the induction mechanism, we analysed the response of the industrially important fungus Aspergillus niger to wheat straw, with a focus on events occurring shortly after exposure to the substrate. RNA sequencing showed that the transcriptional response after 6h of exposure to wheat straw was very different from the response at 24h of exposure to the same substrate. For example, less than half of the genes encoding carbohydrate active enzymes that were induced after 24h of exposure to wheat straw, were also induced after 6h exposure. Importantly, over a third of the genes induced after 6h of exposure to wheat straw were also induced during 6h of carbon starvation, indicating that carbon starvation is probably an important factor in the early response to wheat straw. The up-regulation of the expression of a high number of genes encoding CAZymes that are active on plant-derived carbohydrates during early carbon starvation suggests that these enzymes could be involved in a scouting role during starvation, releasing inducing sugars from complex plant polysaccharides. We show, using proteomics, that carbon-starved cultures indeed release CAZymes with predicted activity on plant polysaccharides. Analysis of the enzymatic activity and the reaction products, indicates that these proteins are enzymes that can degrade various plant polysaccharides to generate both known, as well as potentially new, inducers of CAZymes. Copyright © 2014 The Authors. Published by Elsevier Inc. All rights reserved.

  6. BAG3 promoted starvation-induced apoptosis of thyroid cancer cells via attenuation of autophagy.

    PubMed

    Li, Si; Zhang, Hai-Yan; Wang, Tian; Meng, Xin; Zong, Zhi-Hong; Kong, De-Hui; Wang, Hua-Qin; Du, Zhen-Xian

    2014-11-01

    BAG3 plays a regulatory role in a number of cellular processes. Recent studies have attracted much attention on its role in activation of selective autophagy. In addition, we have very recently reported that BAG3 is implicated in a BECN1-independent autophagy, namely noncanonical autophagy. The current study aimed to investigate the potential involvement of BAG3 in canonical autophagy triggered by Earle's Balanced Salt Solution (EBSS) starvation. Replacement of complete medium with EBSS was used to trigger canonical autophagy. BAG3 expression was measured using real-time RT-PCR and Western blot. Autophagy was monitored using LC3-II transition and p62/SQSTM1 accumulation by Western blot, as well as punctate distribution of LC3 by immunofluorescence staining. Cell growth and apoptotic cell death was investigated using real-time cell analyzer and flowcytometry, respectively. BAG3 expression was potently reduced by EBSS starvation. Forced expression of BAG3 suppressed autophagy and promoted apoptotic cell death of thyroid cancer cells elicited by starvation. In addition, in the presence of autophagy inhibitor, the enhancing effect of BAG3 on apoptotic cell death was attenuated. These results suggest that BAG3 promotes apoptotic cell death in starved thyroid cancer cells, at least in part by autophagy attenuation.

  7. Management of starvation in a Role 1 setting.

    PubMed

    Jeffery, S M T; Freshwater, D A

    2012-01-01

    Historical reports from war and natural disasters first identified the dangers of reintroducing food after a period of starvation or malnutrition. The development of advanced nutritional support for hospitalised patients gave rise to the concept of refeeding syndrome, further highlighting the problems and leading to the development of guidelines and protocols for managing malnutrition. In this paper we present a case of starvation in the maritime setting and review the pathophysiology of starvation and refeeding. We discuss the problems associated with managing acute starvation in a Role 1 setting without access to higher medical care, and present guidance for its management.

  8. Kibra and aPKC regulate starvation-induced autophagy in Drosophila.

    PubMed

    Jin, Ahrum; Neufeld, Thomas P; Choe, Joonho

    Autophagy is a bulk degradation system that functions in response to cellular stresses such as metabolic stress, endoplasmic reticulum stress, oxidative stress, and developmental processes. During autophagy, cytoplasmic components are captured in double-membrane vesicles called autophagosomes. The autophagosome fuses with the lysosome, producing a vacuole known as an autolysosome. The cellular components are degraded by lysosomal proteases and recycled. Autophagy is important for maintaining cellular homeostasis, and the process is evolutionarily conserved. Kibra is an upstream regulator of the hippo signaling pathway, which controls organ size by affecting cell growth, proliferation, and apoptosis. Kibra is mainly localized in the apical membrane domain of epithelial cells and acts as a scaffold protein. We found that Kibra is required for autophagy to function properly. The absence of Kibra caused defects in the formation of autophagic vesicles and autophagic degradation. We also found that the well-known cell polarity protein aPKC interacts with Kibra, and its activity affects autophagy upstream of Kibra. Constitutively active aPKC decreased autophagic vesicle formation and autophagic degradation. We confirmed the interaction between aPKC and Kibra in S2 cells and Drosophila larva. Taken together, our data suggest that Kibra and aPKC are essential for regulating starvation-induced autophagy. Copyright © 2015 The Authors. Published by Elsevier Inc. All rights reserved.

  9. The combination of energy-dependent internal adaptation mechanisms and external factors enables Listeria monocytogenes to express a strong starvation survival response during multiple-nutrient starvation.

    PubMed

    Lungu, Bwalya; Saldivar, Joshua C; Story, Robert; Ricke, Steven C; Johnson, Michael G

    2010-05-01

    The goal of this study was to characterize the starvation survival response (SSR) of a wild-type Listeria monocytogenes 10403S and an isogenic DeltasigB mutant strain during multiple-nutrient starvation conditions over 28 days. This study examined the effects of inhibitors of protein synthesis, the proton motive force, substrate level phosphorylation, and oxidative phosphorylation on the SSR of L. monocytogenes 10403S and a DeltasigB mutant during multiple-nutrient starvation. The effects of starvation buffer changes on viability were also examined. During multiple-nutrient starvation, both strains expressed a strong SSR, suggesting that L. monocytogenes possesses SigB-independent mechanism(s) for survival during multiple-nutrient starvation. Neither strain was able to express an SSR following starvation buffer changes, indicating that the nutrients/factors present in the starvation buffer could be a source of energy for cell maintenance and survival. Neither the wild-type nor the DeltasigB mutant strain was able to elicit an SSR when exposed to the protein synthesis inhibitor chloramphenicol within the first 4 h of starvation. However, both strains expressed an SSR when exposed to chloramphenicol after 6 h or more of starvation, suggesting that the majority of proteins required to elicit an effective SSR in L. monocytogenes are likely produced somewhere between 4 and 6 h of starvation. The varying SSRs of both strains to the different metabolic inhibitors under aerobic or anaerobic conditions suggested that (1) energy derived from the proton motive force is important for an effective SSR, (2) L. monocytogenes utilizes an anaerobic electron transport during multiple-nutrient starvation conditions, and (3) the glycolytic pathway is an important energy source during multiple-nutrient starvation when oxygen is available, and less important under anaerobic conditions. Collectively, the data suggest that the combination of energy-dependent internal adaptation mechanisms

  10. Obesity-associated cardiac dysfunction in starvation-selected Drosophila melanogaster.

    PubMed

    Hardy, Christopher M; Birse, Ryan T; Wolf, Matthew J; Yu, Lin; Bodmer, Rolf; Gibbs, Allen G

    2015-09-15

    There is a clear link between obesity and cardiovascular disease, but the complexity of this interaction in mammals makes it difficult to study. Among the animal models used to investigate obesity-associated diseases, Drosophila melanogaster has emerged as an important platform of discovery. In the laboratory, Drosophila can be made obese through lipogenic diets, genetic manipulations, and adaptation to evolutionary stress. While dietary and genetic changes that cause obesity in flies have been demonstrated to induce heart dysfunction, there have been no reports investigating how obesity affects the heart in laboratory-evolved populations. Here, we studied replicated populations of Drosophila that had been selected for starvation resistance for over 65 generations. These populations evolved characteristics that closely resemble hallmarks of metabolic syndrome in mammals. We demonstrate that starvation-selected Drosophila have dilated hearts with impaired contractility. This phenotype appears to be correlated with large fat deposits along the dorsal cuticle, which alter the anatomical position of the heart. We demonstrate a strong relationship between fat storage and heart dysfunction, as dilation and reduced contractility can be rescued through prolonged fasting. Unlike other Drosophila obesity models, the starvation-selected lines do not exhibit excessive intracellular lipid deposition within the myocardium and rather store excess triglycerides in large lipid droplets within the fat body. Our findings provide a new model to investigate obesity-associated heart dysfunction. Copyright © 2015 the American Physiological Society.

  11. Death from drought in tropical forests is triggered by hydraulics not carbon starvation.

    PubMed

    Rowland, L; da Costa, A C L; Galbraith, D R; Oliveira, R S; Binks, O J; Oliveira, A A R; Pullen, A M; Doughty, C E; Metcalfe, D B; Vasconcelos, S S; Ferreira, L V; Malhi, Y; Grace, J; Mencuccini, M; Meir, P

    2015-12-03

    Drought threatens tropical rainforests over seasonal to decadal timescales, but the drivers of tree mortality following drought remain poorly understood. It has been suggested that reduced availability of non-structural carbohydrates (NSC) critically increases mortality risk through insufficient carbon supply to metabolism ('carbon starvation'). However, little is known about how NSC stores are affected by drought, especially over the long term, and whether they are more important than hydraulic processes in determining drought-induced mortality. Using data from the world's longest-running experimental drought study in tropical rainforest (in the Brazilian Amazon), we test whether carbon starvation or deterioration of the water-conducting pathways from soil to leaf trigger tree mortality. Biomass loss from mortality in the experimentally droughted forest increased substantially after >10 years of reduced soil moisture availability. The mortality signal was dominated by the death of large trees, which were at a much greater risk of hydraulic deterioration than smaller trees. However, we find no evidence that the droughted trees suffered carbon starvation, as their NSC concentrations were similar to those of non-droughted trees, and growth rates did not decline in either living or dying trees. Our results indicate that hydraulics, rather than carbon starvation, triggers tree death from drought in tropical rainforest.

  12. A glucose-starvation response regulates the diffusion of macromolecules

    PubMed Central

    Joyner, Ryan P; Tang, Jeffrey H; Helenius, Jonne; Dultz, Elisa; Brune, Christiane; Holt, Liam J; Huet, Sebastien; Müller, Daniel J; Weis, Karsten

    2016-01-01

    The organization and biophysical properties of the cytosol implicitly govern molecular interactions within cells. However, little is known about mechanisms by which cells regulate cytosolic properties and intracellular diffusion rates. Here, we demonstrate that the intracellular environment of budding yeast undertakes a startling transition upon glucose starvation in which macromolecular mobility is dramatically restricted, reducing the movement of both chromatin in the nucleus and mRNPs in the cytoplasm. This confinement cannot be explained by an ATP decrease or the physiological drop in intracellular pH. Rather, our results suggest that the regulation of diffusional mobility is induced by a reduction in cell volume and subsequent increase in molecular crowding which severely alters the biophysical properties of the intracellular environment. A similar response can be observed in fission yeast and bacteria. This reveals a novel mechanism by which cells globally alter their properties to establish a unique homeostasis during starvation. DOI: http://dx.doi.org/10.7554/eLife.09376.001 PMID:27003290

  13. Phosphorylation of Heat Shock Protein 27 is Increased by Cast Immobilization and by Serum-free Starvation in Skeletal Muscles

    PubMed Central

    Kim, Mee-Young; Lee, Jeong-Uk; Kim, Ju-Hyun; Lee, Lim-Kyu; Park, Byoung-Sun; Yang, Seung-Min; Jeon, Hye-Joo; Lee, Won-Deok; Noh, Ji-Woong; Kwak, Taek-Yong; Jang, Sung-Ho; Lee, Tae-Hyun; Kim, Ju-Young; Kim, Bokyung; Kim, Junghwan

    2014-01-01

    [Purpose] Cast immobilization- and cell starvation-induced loss of muscle mass are closely associated with a dramatic reduction in the structural muscle proteins. Heat shock proteins are molecular chaperones that are constitutively expressed in several eukaryotic cells and have been shown to protect against various stressors. However, the changes in the phosphorylation of atrophy-related heat shock protein 27 (HSP27) are still poorly understood in skeletal muscles. In this study, we examine whether or not phosphorylation of HSP27 is changed in the skeletal muscles after cast immobilization and serum-free starvation with low glucose in a time-dependent manner. [Methods] We undertook a HSP27 expression and high-resolution differential proteomic analysis in skeletal muscles. Furthermore, we used western blotting to examine protein expression and phosphorylation of HSP27 in atrophied gastrocnemius muscle strips and L6 myoblasts. [Results] Cast immobilization and starvation significantly upregulated the phosphorylation of HSP27 in a time-dependent manner, respectively. [Conclusion] Our results suggest that cast immobilization- and serum-free starvation-induced atrophy may be in part related to changes in the phosphorylation of HSP27 in rat skeletal muscles. PMID:25540511

  14. Transcriptional profile of a myotube starvation model of atrophy

    NASA Technical Reports Server (NTRS)

    Stevenson, Eric J.; Koncarevic, Alan; Giresi, Paul G.; Jackman, Robert W.; Kandarian, Susan C.

    2005-01-01

    Skeletal muscle wasting is a pervasive phenomenon that can result from a wide range of pathological conditions as well as from habitual muscular inactivity. The present work describes a cell-culture condition that induces significant atrophy in skeletal muscle C2C12 myotubes. The failure to replenish differentiation media in mature myotubes leads to rapid atrophy (53% in diameter), which is referred to here as starvation. Affymetrix microarrays were used to develop a transcriptional profile of control (fed) vs. atrophied (nonfed) myotubes. Myotube starvation was characterized by an upregulation of genes involved in translational inhibition, amino acid biosynthesis and transport, and cell cycle arrest/apoptosis, among others. Downregulated genes included several structural and regulatory elements of the extracellular matrix as well as several elements of Wnt/frizzled and TGF-beta signaling pathways. Interestingly, the characteristic transcriptional upregulation of the ubiquitin-proteasome system, calpains, and cathepsins known to occur in multiple in vivo models of atrophy were not seen during myotube starvation. With the exception of the downregulation of extracellular matrix genes, serine protease inhibitor genes, and the upregulation of the translation initiation factor PHAS-I, this model of atrophy in cell culture has a transcriptional profile quite distinct from any study published to date with atrophy in whole muscle. These data show that, although the gross morphology of atrophied muscle fibers may be similar in whole muscle vs. myotube culture, the processes by which this phenotype is achieved differ markedly.

  15. Starvation-Survival in Haloarchaea.

    PubMed

    Winters, Yaicha D; Lowenstein, Tim K; Timofeeff, Michael N

    2015-11-12

    Recent studies claiming to revive ancient microorganisms trapped in fluid inclusions in halite have warranted an investigation of long-term microbial persistence. While starvation-survival is widely reported for bacteria, it is less well known for halophilic archaea-microorganisms likely to be trapped in ancient salt crystals. To better understand microbial survival in fluid inclusions in ancient evaporites, laboratory experiments were designed to simulate growth of halophilic archaea under media-rich conditions, complete nutrient deprivation, and a controlled substrate condition (glycerol-rich) and record their responses. Haloarchaea used for this work included Hbt. salinarum and isolate DV582A-1 (genus Haloterrigena) sub-cultured from 34 kyear Death Valley salt. Hbt. salinarum and DV582A-1 reacted to nutrient limitation with morphological and population changes. Starved populations increased and most cells converted from rods to small cocci within 56 days of nutrient deprivation. The exact timing of starvation adaptations and the physical transformations differed between species, populations of the same species, and cells of the same population. This is the first study to report the timing of starvation strategies for Hbt. salinarum and DV582A-1. The morphological states in these experiments may allow differentiation between cells trapped with adequate nutrients (represented here by early stages in nutrient-rich media) from cells trapped without nutrients (represented here by experimental starvation) in ancient salt. The hypothesis that glycerol, leaked from Dunaliella, provides nutrients for the survival of haloarchaea trapped in fluid inclusions in ancient halite, is also tested. Hbt. salinarum and DV582A-1 were exposed to a mixture of lysed and intact Dunaliella for 56 days. The ability of these organisms to utilize glycerol from Dunaliella cells was assessed by documenting population growth, cell length, and cell morphology. Hbt. salinarum and DV582A-1

  16. OsWRKY74, a WRKY transcription factor, modulates tolerance to phosphate starvation in rice.

    PubMed

    Dai, Xiaoyan; Wang, Yuanyuan; Zhang, Wen-Hao

    2016-02-01

    The WRKY transcription factor family has 109 members in the rice genome, and has been reported to be involved in the regulation of biotic and abiotic stress in plants. Here, we demonstrated that a rice OsWRKY74 belonging to group III of the WRKY transcription factor family was involved in tolerance to phosphate (Pi) starvation. OsWRKY74 was localized in the nucleus and mainly expressed in roots and leaves. Overexpression of OsWRKY74 significantly enhanced tolerance to Pi starvation, whereas transgenic lines with down-regulation of OsWRKY74 were sensitive to Pi starvation. Root and shoot biomass, and phosphorus (P) concentration in rice OsWRKY74-overexpressing plants were ~16% higher than those of wild-type (WT) plants in Pi-deficient hydroponic solution. In soil pot experiments, >24% increases in tiller number, grain weight and P concentration were observed in rice OsWRKY74-overexpressing plants compared to WT plants when grown in P-deficient medium. Furthermore, Pi starvation-induced changes in root system architecture were more profound in OsWRKY74-overexpressing plants than in WT plants. Expression patterns of a number of Pi-responsive genes were altered in the OsWRKY74-overexpressing and RNA interference lines. In addition, OsWRKY74 may also be involved in the response to deficiencies in iron (Fe) and nitrogen (N) as well as cold stress in rice. In Pi-deficient conditions, OsWRKY74-overexpressing plants exhibited greater accumulation of Fe and up-regulation of the cold-responsive genes than WT plants. These findings highlight the role of OsWRKY74 in modulation of Pi homeostasis and potential crosstalk between P starvation and Fe starvation, and cold stress in rice. © The Author 2015. Published by Oxford University Press on behalf of the Society for Experimental Biology.

  17. Genetic and Genomic Evidence That Sucrose Is a Global Regulator of Plant Responses to Phosphate Starvation in Arabidopsis1[W][OA

    PubMed Central

    Lei, Mingguang; Liu, Yidan; Zhang, Baocai; Zhao, Yingtao; Wang, Xiujie; Zhou, Yihua; Raghothama, Kashchandra G.; Liu, Dong

    2011-01-01

    Plants respond to phosphate (Pi) starvation by exhibiting a suite of developmental, biochemical, and physiological changes to cope with this nutritional stress. To understand the molecular mechanism underlying these responses, we isolated an Arabidopsis (Arabidopsis thaliana) mutant, hypersensitive to phosphate starvation1 (hps1), which has enhanced sensitivity in almost all aspects of plant responses to Pi starvation. Molecular and genetic analyses indicated that the mutant phenotype is caused by overexpression of the SUCROSE TRANSPORTER2 (SUC2) gene. As a consequence, hps1 has a high level of sucrose (Suc) in both its shoot and root tissues. Overexpression of SUC2 or its closely related family members SUC1 and SUC5 in wild-type plants recapitulates the phenotype of hps1. In contrast, the disruption of SUC2 functions greatly inhibits plant responses to Pi starvation. Microarray analysis further indicated that 73% of the genes that are induced by Pi starvation in wild-type plants can be induced by elevated levels of Suc in hps1 mutants, even when they are grown under Pi-sufficient conditions. These genes include several important Pi signaling components and those that are directly involved in Pi transport, mobilization, and distribution between shoot and root. Interestingly, Suc and low-Pi signals appear to interact with each other both synergistically and antagonistically in regulating gene expression. Our genetic and genomic studies provide compelling evidence that Suc is a global regulator of plant responses to Pi starvation. This finding will help to further elucidate the signaling mechanism that controls plant responses to this particular nutritional stress. PMID:21346170

  18. Anethole dithiolethione, a putative neuroprotectant, increases intracellular and extracellular glutathione levels during starvation of cultured astroglial cells.

    PubMed

    Dringen, R; Hamprecht, B; Drukarch, B

    1998-12-01

    Astroglial cells protect neurons against oxidative damage. The antioxidant glutathione plays a pivotal role in the neuroprotective action of astroglial cells which is impaired following loss of glutathione. Anethole dithiolethione (ADT), a sulfur-containing compound which is used in humans as a secretagogue, increases glutathione levels in cultured astroglial cells under "physiological" conditions and is thought thereby to protect against oxidative damage. Presently, we report the effect of ADT (3-100 microM) on glutathione content of and efflux from rat primary astroglia-rich cultures under "pathological" conditions, i.e., extended deprivation of glucose and amino acids. Although cellular viability was not affected significantly, starvation of these cultures for 24 h in a bicarbonate buffer lacking glucose and amino acids led to a decrease in glutathione and protein content of approximately 43% and 40%, respectively. Although no effect on the protein loss occurred, the presence of ADT during starvation counteracted the starvation-induced loss of intracellular glutathione in a concentration-dependent way. At a concentration of 100 microM ADT even a significant increase in astroglial glutathione content was noted after 24 h of starvation. Alike intracellular glutathione levels, the amount of glutathione found in the buffer was elevated substantially if ADT was present during starvation. This ADT-mediated, apparent increase in glutathione efflux was additive to the stimulatory effect on extracellular glutathione levels of acivicin (100 microM), an inhibitor of extracellular enzymatic glutathione breakdown. However, the ADT-induced elevation of both intra- and extracellular glutathione content during starvation was prevented completely by coincubation with buthionine sulfoximine (10 microM), an inhibitor of glutathione synthesis. These results demonstrate that, most likely through stimulation of glutathione synthesis, ADT enables astroglial cells to maintain higher

  19. CD147 is increased in HCC cells under starvation and reduces cell death through upregulating p-mTOR in vitro.

    PubMed

    Gou, Xingchun; Tang, Xu; Kong, Derek Kai; He, Xinying; Gao, Xingchun; Guo, Na; Hu, Zhifang; Zhao, Zhaohua; Chen, Yanke

    2016-01-01

    Transarterial chemoembolization (TACE) is the standard of care for treatment of intermediate hepatocellular carcinoma (HCC), however, key molecules involved in HCC cell survival and tumor metastasis post-TACE remain unclear. CD147 is a member of the immunoglobulin superfamily that is overexpressed on the surface of HCC cells and is associated with malignant potential and poor prognosis in HCC patients. In this study, using an Earle's Balanced Salt Solution medium culture model that mimics nutrient deprivation induced by TACE, we investigated the regulation of CD147 expression on HCC cells under starvation conditions and its functional effects on HCC cell death. During early stages of starvation, the expression of CD147 was considerably upregulated in SMMC7721, HepG2 and HCC9204 hepatoma cell lines at the protein levels. Downregulation of CD147 by specific small interfering RNA (siRNA) significantly promoted starvation-induced cell death. In addition, CD147 siRNA-transfected SMMC7721 cells demonstrated significantly increased levels of both apoptosis and autophagy as compared to cells transfected with control siRNA under starvation conditions, whereas no difference was observed between the two treatment groups under normal culture conditions. Furthermore, silencing of CD147 resulted in a remarkable downregulation of phosphorylated mammalian target of rapamycin (p-mTOR) in starved SMMC7721 cells. Finally, the combined treatment of starvation and anti-CD147 monoclonal antibody exhibited a synergistic HCC cell killing effect. Our study suggests that upregulation of CD147 under starvation may reduce hepatoma cell death by modulating both apoptosis and autophagy through mTOR signaling, and that CD147 may be a novel potential molecular target to improve the efficacy of TACE.

  20. Kibra and aPKC regulate starvation-induced autophagy in Drosophila

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jin, Ahrum; Neufeld, Thomas P.; Choe, Joonho, E-mail: jchoe@kaist.ac.kr

    Autophagy is a bulk degradation system that functions in response to cellular stresses such as metabolic stress, endoplasmic reticulum stress, oxidative stress, and developmental processes. During autophagy, cytoplasmic components are captured in double-membrane vesicles called autophagosomes. The autophagosome fuses with the lysosome, producing a vacuole known as an autolysosome. The cellular components are degraded by lysosomal proteases and recycled. Autophagy is important for maintaining cellular homeostasis, and the process is evolutionarily conserved. Kibra is an upstream regulator of the hippo signaling pathway, which controls organ size by affecting cell growth, proliferation, and apoptosis. Kibra is mainly localized in the apicalmore » membrane domain of epithelial cells and acts as a scaffold protein. We found that Kibra is required for autophagy to function properly. The absence of Kibra caused defects in the formation of autophagic vesicles and autophagic degradation. We also found that the well-known cell polarity protein aPKC interacts with Kibra, and its activity affects autophagy upstream of Kibra. Constitutively active aPKC decreased autophagic vesicle formation and autophagic degradation. We confirmed the interaction between aPKC and Kibra in S2 cells and Drosophila larva. Taken together, our data suggest that Kibra and aPKC are essential for regulating starvation-induced autophagy. - Highlights: • Loss of Kibra causes defects in autophagosome formation and autophagic degradation. • Constitutively-active aPKCs negatively regulate autophagy. • Kibra interacts with aPKC in vitro and in vivo. • Kibra regulates autophagy downstream of aPKC.« less

  1. TORC1 activity is partially reduced under nitrogen starvation conditions in sake yeast Kyokai no. 7, Saccharomyces cerevisiae.

    PubMed

    Nakazawa, Nobushige; Sato, Aya; Hosaka, Masahiro

    2016-03-01

    Industrial yeasts are generally unable to sporulate but treatment with the immunosuppressive drug rapamycin restores this ability in a sake yeast strain Kyokai no. 7 (K7), Saccharomyces cerevisiae. This finding suggests that TORC1 is active under sporulation conditions. Here, using a reporter gene assay, Northern and Western blots, we tried to gain insight into how TORC1 function under nitrogen starvation conditions in K7 cells. Similarly to a laboratory strain, RPS26A transcription was repressed and Npr1 was dephosphorylated in K7 cells, indicative of the expected loss of TORC1 function under nitrogen starvation. The expression of nitrogen catabolite repression-sensitive genes, however, was not induced, the level of Cln3 remained constant, and autophagy was more slowly induced than in a laboratory strain, all suggestive of active TORC1. We conclude that TORC1 activity is partially reduced under nitrogen starvation conditions in K7 cells. Copyright © 2015 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.

  2. Loss of the starvation-induced gene Rack1 leads to glycogen deficiency and impaired autophagic responses in Drosophila.

    PubMed

    Erdi, Balázs; Nagy, Péter; Zvara, Agnes; Varga, Agnes; Pircs, Karolina; Ménesi, Dalma; Puskás, László G; Juhász, Gábor

    2012-07-01

    Autophagy delivers cytoplasmic material for lysosomal degradation in eukaryotic cells. Starvation induces high levels of autophagy to promote survival in the lack of nutrients. We compared genome-wide transcriptional profiles of fed and starved control, autophagy-deficient Atg7 and Atg1 null mutant Drosophila larvae to search for novel regulators of autophagy. Genes involved in catabolic processes including autophagy were transcriptionally upregulated in all cases. We also detected repression of genes involved in DNA replication in autophagy mutants compared with control animals. The expression of Rack1 (receptor of activated protein kinase C 1) increased 4.1- to 5.5-fold during nutrient deprivation in all three genotypes. The scaffold protein Rack1 plays a role in a wide range of processes including translation, cell adhesion and migration, cell survival and cancer. Loss of Rack1 led to attenuated autophagic response to starvation, and glycogen stores were decreased 11.8-fold in Rack1 mutant cells. Endogenous Rack1 partially colocalized with GFP-Atg8a and early autophagic structures on the ultrastructural level, suggesting its involvement in autophagosome formation. Endogenous Rack1 also showed a high degree of colocalization with glycogen particles in the larval fat body, and with Shaggy, the Drosophila homolog of glycogen synthase kinase 3B (GSK-3B). Our results, for the first time, demonstrated the fundamental role of Rack1 in autophagy and glycogen synthesis.

  3. Fibroblast growth factor rescues brain endothelial cells lacking presenilin 1 from apoptotic cell death following serum starvation.

    PubMed

    Gama Sosa, Miguel A; De Gasperi, Rita; Hof, Patrick R; Elder, Gregory A

    2016-07-22

    Presenilin 1 (Psen1) is important for vascular brain development and is known to influence cellular stress responses. To understand the role of Psen1 in endothelial stress responses, we investigated the effects of serum withdrawal on wild type (wt) and Psen1-/- embryonic brain endothelial cells. Serum starvation induced apoptosis in Psen1-/- cells but did not affect wt cells. PI3K/AKT signaling was reduced in serum-starved Psen1-/- cells, and this was associated with elevated levels of phospho-p38 consistent with decreased pro-survival AKT signaling in the absence of Psen1. Fibroblast growth factor (FGF1 and FGF2), but not vascular endothelial growth factor (VEGF) rescued Psen1-/- cells from serum starvation induced apoptosis. Inhibition of FGF signaling induced apoptosis in wt cells under serum withdrawal, while blocking γ-secretase activity had no effect. In the absence of serum, FGF2 immunoreactivity was distributed diffusely in cytoplasmic and nuclear vesicles of wt and Psen1-/- cells, as levels of FGF2 in nuclear and cytosolic fractions were not significantly different. Thus, sensitivity of Psen1-/- cells to serum starvation is not due to lack of FGF synthesis but likely to effects of Psen1 on FGF release onto the cell surface and impaired activation of the PI3K/AKT survival pathway.

  4. Quantitative chemical proteomics profiling of de novo protein synthesis during starvation-mediated autophagy

    PubMed Central

    Wang, Jigang; Zhang, Jianbin; Lee, Yew-Mun; Koh, Pin-Lang; Ng, Shukie; Bao, Feichao; Lin, Qingsong; Shen, Han-Ming

    2016-01-01

    ABSTRACT Autophagy is an intracellular degradation mechanism in response to nutrient starvation. Via autophagy, some nonessential cellular constituents are degraded in a lysosome-dependent manner to generate biomolecules that can be utilized for maintaining the metabolic homeostasis. Although it is known that under starvation the global protein synthesis is significantly reduced mainly due to suppression of MTOR (mechanistic target of rapamycin serine/threonine kinase), emerging evidence demonstrates that de novo protein synthesis is involved in the autophagic process. However, characterizing these de novo proteins has been an issue with current techniques. Here, we developed a novel method to identify newly synthesized proteins during starvation-mediated autophagy by combining bio-orthogonal noncanonical amino acid tagging (BONCAT) and isobaric tags for relative and absolute quantitation (iTRAQTM). Using bio-orthogonal metabolic tagging, L-azidohomoalanine (AHA) was incorporated into newly synthesized proteins which were then enriched with avidin beads after a click reaction between alkyne-bearing biotin and AHA's bio-orthogonal azide moiety. The enriched proteins were subjected to iTRAQ labeling for protein identification and quantification using liquid chromatography-tandem mass spectrometry (LC-MS/MS). Via the above approach, we identified and quantified a total of 1176 proteins and among them 711 proteins were found to meet our defined criteria as de novo synthesized proteins during starvation-mediated autophagy. The characterized functional profiles of the 711 newly synthesized proteins by bioinformatics analysis suggest their roles in ensuring the prosurvival outcome of autophagy. Finally, we performed validation assays for some selected proteins and found that knockdown of some genes has a significant impact on starvation-induced autophagy. Thus, we think that the BONCAT-iTRAQ approach is effective in the identification of newly synthesized proteins and

  5. Quantitative chemical proteomics profiling of de novo protein synthesis during starvation-mediated autophagy.

    PubMed

    Wang, Jigang; Zhang, Jianbin; Lee, Yew-Mun; Koh, Pin-Lang; Ng, Shukie; Bao, Feichao; Lin, Qingsong; Shen, Han-Ming

    2016-10-02

    Autophagy is an intracellular degradation mechanism in response to nutrient starvation. Via autophagy, some nonessential cellular constituents are degraded in a lysosome-dependent manner to generate biomolecules that can be utilized for maintaining the metabolic homeostasis. Although it is known that under starvation the global protein synthesis is significantly reduced mainly due to suppression of MTOR (mechanistic target of rapamycin serine/threonine kinase), emerging evidence demonstrates that de novo protein synthesis is involved in the autophagic process. However, characterizing these de novo proteins has been an issue with current techniques. Here, we developed a novel method to identify newly synthesized proteins during starvation-mediated autophagy by combining bio-orthogonal noncanonical amino acid tagging (BONCAT) and isobaric tags for relative and absolute quantitation (iTRAQ TM ). Using bio-orthogonal metabolic tagging, L-azidohomoalanine (AHA) was incorporated into newly synthesized proteins which were then enriched with avidin beads after a click reaction between alkyne-bearing biotin and AHA's bio-orthogonal azide moiety. The enriched proteins were subjected to iTRAQ labeling for protein identification and quantification using liquid chromatography-tandem mass spectrometry (LC-MS/MS). Via the above approach, we identified and quantified a total of 1176 proteins and among them 711 proteins were found to meet our defined criteria as de novo synthesized proteins during starvation-mediated autophagy. The characterized functional profiles of the 711 newly synthesized proteins by bioinformatics analysis suggest their roles in ensuring the prosurvival outcome of autophagy. Finally, we performed validation assays for some selected proteins and found that knockdown of some genes has a significant impact on starvation-induced autophagy. Thus, we think that the BONCAT-iTRAQ approach is effective in the identification of newly synthesized proteins and provides

  6. Specific biomarkers for stochastic division patterns and starvation-induced quiescence under limited glucose levels in fission yeast

    PubMed Central

    Pluskal, Tomáš; Hayashi, Takeshi; Saitoh, Shigeaki; Fujisawa, Asuka; Yanagida, Mitsuhiro

    2011-01-01

    Glucose as a source of energy is centrally important to our understanding of life. We investigated the cell division–quiescence behavior of the fission yeast Schizosaccharomyces pombe under a wide range of glucose concentrations (0–111 mm). The mode of S. pombe cell division under a microfluidic perfusion system was surprisingly normal under highly diluted glucose concentrations (5.6 mm, 1/20 of the standard medium, within human blood sugar levels). Division became stochastic, accompanied by a curious division-timing inheritance, in 2.2–4.4 mm glucose. A critical transition from division to quiescence occurred within a narrow range of concentrations (2.2–1.7 mm). Under starvation (1.1 mm) conditions, cells were mostly quiescent and only a small population of cells divided. Under fasting (0 mm) conditions, division was immediately arrested with a short chronological lifespan (16 h). When cells were first glucose starved prior to fasting, they possessed a substantially extended lifespan (∼14 days). We employed a quantitative metabolomic approach for S. pombe cell extracts, and identified specific metabolites (e.g. biotin, trehalose, ergothioneine, S-adenosyl methionine and CDP-choline), which increased or decreased at different glucose concentrations, whereas nucleotide triphosphates, such as ATP, maintained high concentrations even under starvation. Under starvation, the level of S-adenosyl methionine increased sharply, accompanied by an increase in methylated amino acids and nucleotides. Under fasting, cells rapidly lost antioxidant and energy compounds, such as glutathione and ATP, but, in fasting cells after starvation, these and other metabolites ensuring longevity remained abundant. Glucose-starved cells became resistant to 40 mm H2O2 as a result of the accumulation of antioxidant compounds. PMID:21306563

  7. Analysis of starvation effects on hydrodynamic lubrication in nonconforming contacts

    NASA Technical Reports Server (NTRS)

    Brewe, D. E.; Hamrock, B. J.

    1981-01-01

    The effects of lubricant starvation on minimum film thickness, under conditions of a hydrodynamic point contact, are determined by numerical methods where: (1) starvation is effected by varying the fluid inlet level; (2) the Reynolds boundary conditions are applied at the cavitation boundary; and (3) zero pressure is stipulated at the meniscus or inlet boundary. Seventy-four cases were used to numerically determine a minimum-film-thickness equation, as a function of the ratio of dimensionless load to dimensionless speed for varying degrees of starvation. A film reduction factor was in turn determined as a function of the fluid inlet level, and a starved, fully-flooded boundary was defined along with an expression determining the onset of starvation. It is found that as the degree of starvation increases, the minimum film thickness decreases gradually until the fluid inlet becomes critical. The changes in the inlet pressure buildup due to changing the available lubricant supply are presented in the form of three-dimensional isometric plots.

  8. Two Young MicroRNAs Originating from Target Duplication Mediate Nitrogen Starvation Adaptation via Regulation of Glucosinolate Synthesis in Arabidopsis thaliana1[W

    PubMed Central

    He, Hua; Liang, Gang; Li, Yang; Wang, Fang; Yu, Diqiu

    2014-01-01

    Nitrogen is an essential macronutrient required for plant growth and development. A number of genes respond to nitrogen starvation conditions. However, the functions of most of these nitrogen starvation-responsive genes are unclear. Our recent survey suggested that many microRNAs (miRNAs) are responsive to nitrogen starvation in Arabidopsis thaliana. Here, we identified a new miRNA (miR5090) from the complementary transcript of the MIR826 gene. Further investigation uncovered that both miRNA genes recently evolved from the inverse duplication of their common target gene, ALKENYL HYDROXALKYL PRODUCING2 (AOP2). Similar to miR826, miR5090 is induced by nitrogen starvation. By contrast, the AOP2 transcript level was negatively correlated with miR826 and miR5090 under nitrogen starvation. GUS-fused AOP2 expression suggested that AOP2 was posttranscriptionally suppressed by miR826 and miR5090. miRNA transgenic plants with significantly low AOP2 expression accumulated fewer Met-derived glucosinolates, phenocopying the aop2 mutants. Most glucosinolate synthesis-associated genes were repressed under nitrogen starvation conditions. Furthermore, miRNA transgenic plants with less glucosinolate displayed enhanced tolerance to nitrogen starvation, including high biomass, more lateral roots, increased chlorophyll, and decreased anthocyanin. Meanwhile, nitrogen starvation-responsive genes were up-regulated in transgenic plants, implying improved nitrogen uptake activity. Our study reveals a mechanism by which Arabidopsis thaliana regulates the synthesis of glucosinolates to adapt to environmental changes in nitrogen availability. PMID:24367020

  9. Nitrogen starvation affects bacterial adhesion to soil

    PubMed Central

    Borges, Maria Tereza; Nascimento, Antônio Galvão; Rocha, Ulisses Nunes; Tótola, Marcos Rogério

    2008-01-01

    One of the main factors limiting the bioremediation of subsoil environments based on bioaugmentation is the transport of selected microorganisms to the contaminated zones. The characterization of the physiological responses of the inoculated microorganisms to starvation, especially the evaluation of characteristics that affect the adhesion of the cells to soil particles, is fundamental to anticipate the success or failure of bioaugmentation. The objective of this study was to investigate the effect of nitrogen starvation on cell surface hydrophobicity and cell adhesion to soil particles by bacterial strains previously characterized as able to use benzene, toluene or xilenes as carbon and energy sources. The strains LBBMA 18-T (non-identified), Arthrobacter aurescens LBBMA 98, Arthrobacter oxydans LBBMA 201, and Klebsiella sp. LBBMA 204–1 were used in the experiments. Cultivation of the cells in nitrogen-deficient medium caused a significant reduction of the adhesion to soil particles by all the four strains. Nitrogen starvation also reduced significantly the strength of cell adhesion to the soil particles, except for Klebsiella sp. LBBMA 204–1. Two of the four strains showed significant reduction in cell surface hydrophobicity. It is inferred that the efficiency of bacterial transport through soils might be potentially increased by nitrogen starvation. PMID:24031246

  10. Crystal structures of C4 form maize and quaternary complex of E. coli phosphoenolpyruvate carboxylases.

    PubMed

    Matsumura, Hiroyoshi; Xie, Yong; Shirakata, Shunsuke; Inoue, Tsuyoshi; Yoshinaga, Takeo; Ueno, Yoshihisa; Izui, Katsura; Kai, Yasushi

    2002-12-01

    Phosphoenolpyruvate carboxylase (PEPC) catalyzes the first step in the fixation of atmospheric CO(2) during C(4) photosynthesis. The crystal structure of C(4) form maize PEPC (ZmPEPC), the first structure of the plant PEPCs, has been determined at 3.0 A resolution. The structure includes a sulfate ion at the plausible binding site of an allosteric activator, glucose 6-phosphate. The crystal structure of E. coli PEPC (EcPEPC) complexed with Mn(2+), phosphoenolpyruvate analog (3,3-dichloro-2-dihydroxyphosphinoylmethyl-2-propenoate), and an allosteric inhibitor, aspartate, has also been determined at 2.35 A resolution. Dynamic movements were found in the ZmPEPC structure, compared with the EcPEPC structure, around two loops near the active site. On the basis of these molecular structures, the mechanisms for the carboxylation reaction and for the allosteric regulation of PEPC are proposed.

  11. The carbon starvation response of Aspergillus niger during submerged cultivation: Insights from the transcriptome and secretome

    PubMed Central

    2012-01-01

    Background Filamentous fungi are confronted with changes and limitations of their carbon source during growth in their natural habitats and during industrial applications. To survive life-threatening starvation conditions, carbon from endogenous resources becomes mobilized to fuel maintenance and self-propagation. Key to understand the underlying cellular processes is the system-wide analysis of fungal starvation responses in a temporal and spatial resolution. The knowledge deduced is important for the development of optimized industrial production processes. Results This study describes the physiological, morphological and genome-wide transcriptional changes caused by prolonged carbon starvation during submerged batch cultivation of the filamentous fungus Aspergillus niger. Bioreactor cultivation supported highly reproducible growth conditions and monitoring of physiological parameters. Changes in hyphal growth and morphology were analyzed at distinct cultivation phases using automated image analysis. The Affymetrix GeneChip platform was used to establish genome-wide transcriptional profiles for three selected time points during prolonged carbon starvation. Compared to the exponential growth transcriptome, about 50% (7,292) of all genes displayed differential gene expression during at least one of the starvation time points. Enrichment analysis of Gene Ontology, Pfam domain and KEGG pathway annotations uncovered autophagy and asexual reproduction as major global transcriptional trends. Induced transcription of genes encoding hydrolytic enzymes was accompanied by increased secretion of hydrolases including chitinases, glucanases, proteases and phospholipases as identified by mass spectrometry. Conclusions This study is the first system-wide analysis of the carbon starvation response in a filamentous fungus. Morphological, transcriptomic and secretomic analyses identified key events important for fungal survival and their chronology. The dataset obtained forms a

  12. NMR-Based Metabonomic Analysis of Physiological Responses to Starvation and Refeeding in the Rat.

    PubMed

    Serrano-Contreras, José I; García-Pérez, Isabel; Meléndez-Camargo, María E; Zepeda, L Gerardo

    2016-09-02

    Starvation is a postabsorptive condition derived from a limitation on food resources by external factors. Energy homeostasis is maintained under this condition by using sources other than glucose via adaptive mechanisms. After refeeding, when food is available, other adaptive processes are linked to energy balance. However, less has been reported about the physiological mechanisms present as a result of these conditions, considering the rat as a supraorganism. Metabolic profiling using (1)H nuclear magnetic resonance spectroscopy was used to characterize the physiological metabolic differences in urine specimens collected under starved, refed, and recovered conditions. In addition, because starvation induced lack of faecal production and not all animals produced faeces during refeeding, 24 h pooled faecal water samples were also analyzed. Urinary metabolites upregulated by starvation included 2-butanamidoacetate, 3-hydroxyisovalerate, ketoleucine, methylmalonate, p-cresyl glucuronide, p-cresyl sulfate, phenylacetylglycine, pseudouridine, creatinine, taurine, and N-acetyl glycoprotein, which were related to renal and skeletal muscle function, β-oxidation, turnover of proteins and RNA, and host-microbial interactions. Food-derived metabolites, including gut microbial cometabolites, and tricarboxylic acid cycle intermediates were upregulated under refed and recovered conditions, which characterized anabolic urinary metabotypes. The upregulation of creatine and pantothenate indicated an absorptive state after refeeding. Fecal short chain fatty acids, 3-(3-hydroxyphenyl)propionate, lactate, and acetoin provided additional information about the combinatorial metabolism between the host and gut microbiota. This investigation contributes to allow a deeper understanding of physiological responses associated with starvation and refeeding.

  13. Synthesis of citrate from phosphoenolpyruvate and acetylcarnitine by mitochondria from rabbit, pigeon and rat liver: implications for lipogenesis.

    PubMed

    Wiese, T J; Wuensch, S A; Ray, P D

    1996-08-01

    Rabbit, pigeon and rat liver mitochondria convert exogenous phosphoenolpyruvate and acetylcarnitine to citrate at rates of 14, 74 and 8 nmol/15 min/mg protein. Citrate formation is dependent on exogenous HCO3-, is increased consistently by exogenous nucleotides (GDP, IDP, GTP, ADP, ATP) and inhibited strongly by 3-mercaptopicolinate and 1,2,3-benzenetricarboxylate. Citrate is not made from pyruvate alone or combined with acetylcarnitine. Pigeon and rat liver mitochondria make large amounts of citrate from exogenous succinate, suggesting the presence of an endogenous source of acetyl units or means of converting oxalacetate to acetyl units. Citrate synthesis from succinate by pigeon and rabbit mitochondria is increased significantly by exogenous acetylcarnitine. Pigeon and rat liver contain 80 and 15 times, respectively, more ATP:citrate lyase activity than does rabbit liver. Data suggest that mitochondrial phosphoenolpyruvate carboxykinase in vivo could convert glycolysis-derived phosphoenolpyruvate to oxalacetate that, with acetyl CoA, could form citrate for export to support cytosolic lipogenesis as an activator of acetyl CoA carboxylase, a carbon source via ATP:citrate lyase and NADPH via NADP:malate dehydrogenase or NADP:isocitrate dehydrogenase.

  14. Identification of Genes Associated with Resilience/Vulnerability to Sleep Deprivation and Starvation in Drosophila

    PubMed Central

    Thimgan, Matthew S.; Seugnet, Laurent; Turk, John; Shaw, Paul J.

    2015-01-01

    Background and Study Objectives: Flies mutant for the canonical clock protein cycle (cyc01) exhibit a sleep rebound that is ∼10 times larger than wild-type flies and die after only 10 h of sleep deprivation. Surprisingly, when starved, cyc01 mutants can remain awake for 28 h without demonstrating negative outcomes. Thus, we hypothesized that identifying transcripts that are differentially regulated between waking induced by sleep deprivation and waking induced by starvation would identify genes that underlie the deleterious effects of sleep deprivation and/or protect flies from the negative consequences of waking. Design: We used partial complementary DNA microarrays to identify transcripts that are differentially expressed between cyc01 mutants that had been sleep deprived or starved for 7 h. We then used genetics to determine whether disrupting genes involved in lipid metabolism would exhibit alterations in their response to sleep deprivation. Setting: Laboratory. Patients or Participants: Drosophila melanogaster. Interventions: Sleep deprivation and starvation. Measurements and Results: We identified 84 genes with transcript levels that were differentially modulated by 7 h of sleep deprivation and starvation in cyc01 mutants and were confirmed in independent samples using quantitative polymerase chain reaction. Several of these genes were predicted to be lipid metabolism genes, including bubblegum, cueball, and CG4500, which based on our data we have renamed heimdall (hll). Using lipidomics we confirmed that knockdown of hll using RNA interference significantly decreased lipid stores. Importantly, genetically modifying bubblegum, cueball, or hll resulted in sleep rebound alterations following sleep deprivation compared to genetic background controls. Conclusions: We have identified a set of genes that may confer resilience/vulnerability to sleep deprivation and demonstrate that genes involved in lipid metabolism modulate sleep homeostasis. Citation: Thimgan MS

  15. Oxaloacetate and malate production in engineered Escherichia coli by expression of codon-optimized phosphoenolpyruvate carboxylase2 gene from Dunaliella salina.

    PubMed

    Park, Soohyun; Chang, Kwang Suk; Jin, Eonseon; Pack, Seung Pil; Lee, Jinwon

    2013-01-01

    A new phosphoenolpyruvate carboxylase (PEPC) gene of Dunaliella salina is identified using homology analysis was conducted using PEPC gene of Chlamydomonas reinhardtii and Arabidopsis thaliana. Recombinant E. coli SGJS115 with increased production of malate and oxaloacetate was developed by introducing codon-optimized phosphoenolpyruvate carboxylase2 (OPDSPEPC2) gene of Dunaliella salina. E. coli SGJS115 yielded a 9.9 % increase in malate production. In addition, E. coli SGJS115 exhibited two times increase in the yield of oxaloacetate over the E. coli SGJS114 having identified PEPC2 gene obtained from Dunaliella salina.

  16. Death from drought in tropical forests is triggered by hydraulics not carbon starvation

    NASA Astrophysics Data System (ADS)

    Rowland, L.; da Costa, A. C. L.; Galbraith, D. R.; Oliveira, R. S.; Binks, O. J.; Oliveira, A. A. R.; Pullen, A. M.; Doughty, C. E.; Metcalfe, D. B.; Vasconcelos, S. S.; Ferreira, L. V.; Malhi, Y.; Grace, J.; Mencuccini, M.; Meir, P.

    2015-12-01

    Drought threatens tropical rainforests over seasonal to decadal timescales, but the drivers of tree mortality following drought remain poorly understood. It has been suggested that reduced availability of non-structural carbohydrates (NSC) critically increases mortality risk through insufficient carbon supply to metabolism (‘carbon starvation’). However, little is known about how NSC stores are affected by drought, especially over the long term, and whether they are more important than hydraulic processes in determining drought-induced mortality. Using data from the world’s longest-running experimental drought study in tropical rainforest (in the Brazilian Amazon), we test whether carbon starvation or deterioration of the water-conducting pathways from soil to leaf trigger tree mortality. Biomass loss from mortality in the experimentally droughted forest increased substantially after >10 years of reduced soil moisture availability. The mortality signal was dominated by the death of large trees, which were at a much greater risk of hydraulic deterioration than smaller trees. However, we find no evidence that the droughted trees suffered carbon starvation, as their NSC concentrations were similar to those of non-droughted trees, and growth rates did not decline in either living or dying trees. Our results indicate that hydraulics, rather than carbon starvation, triggers tree death from drought in tropical rainforest.

  17. Integrated analysis of transcriptome and metabolites reveals an essential role of metabolic flux in starch accumulation under nitrogen starvation in duckweed.

    PubMed

    Yu, Changjiang; Zhao, Xiaowen; Qi, Guang; Bai, Zetao; Wang, Yu; Wang, Shumin; Ma, Yubin; Liu, Qian; Hu, Ruibo; Zhou, Gongke

    2017-01-01

    Duckweed is considered a promising source of energy due to its high starch content and rapid growth rate. Starch accumulation in duckweed involves complex processes that depend on the balanced expression of genes controlled by various environmental and endogenous factors. Previous studies showed that nitrogen starvation induces a global stress response and results in the accumulation of starch in duckweed. However, relatively little is known about the mechanisms underlying the regulation of starch accumulation under conditions of nitrogen starvation. In this study, we used next-generation sequencing technology to examine the transcriptome responses of Lemna aequinoctialis 6000 at three stages (0, 3, and 7 days) during nitrogen starvation in the presence of exogenously applied sucrose. Overall, 2522, 628, and 1832 differentially expressed unigenes (DEGs) were discovered for the treated and control samples. Clustering and enrichment analysis of DEGs revealed several biological processes occurring under nitrogen starvation. Genes involved in nitrogen metabolism showed the earliest responses to nitrogen starvation, whereas genes involved in carbohydrate biosynthesis were responded subsequently. The expression of genes encoding nitrate reductase, glutamine synthetase, and glutamate synthase was down-regulated under nitrogen starvation. The expression of unigenes encoding enzymes involved in gluconeogenesis was up-regulated, while the majority of unigenes involved in glycolysis were down-regulated. The metabolite results showed that more ADP-Glc was accumulated and lower levels of UDP-Glc were accumulated under nitrogen starvation, the activity of AGPase was significantly increased while the activity of UGPase was dramatically decreased. These changes in metabolite levels under nitrogen starvation are roughly consistent with the gene expression changes in the transcriptome. Based on these results, it can be concluded that the increase of ADP-glucose and starch contents

  18. Geometry and starvation effects in hydrodynamic lubrication

    NASA Technical Reports Server (NTRS)

    Brewe, D.; Hamrock, B. J.

    1982-01-01

    Numerical methods were used to detemine the effects of lubricant starvation on the minimum film thickness under conditions of a hydrodynamic point contact. Starvation was effected by varying the fluid inlet level. The Reynolds boundary conditions were applied at the cavitation boundary and zero pressure was stipulated at the meniscus or inlet boundary. A minimum film thickness equation as a function of both the ratio of dimensionless load to dimensionless speed and inlet supply level was determined. By comparing the film generated under the starved inlet condition with the film generated from the fully flooded inlet, an expression for the film reduction factor was obtained. Based on this factor a starvation threshold was defined as well as a critically starved inlet. The changes in the inlet pressure buildup due to changing the available lubricant supply are presented in the form of three dimensional isometric plots and also in the form of contour plots.

  19. Geometry and starvation effects in hydrodynamic lubrication

    NASA Technical Reports Server (NTRS)

    Brewe, D. E.; Hamrock, B. J.

    1982-01-01

    Numerical methods were used to determine the effects of lubricant starvation on the minimum film thickness under conditions of a hydrodynamic point contact. Starvation was effected by varying the fluid inlet level. The Reynolds boundary conditions were applied at the cavitation boundary and zero pressure was stipulated at the meniscus or inlet boundary. A minimum-film-thickness equation as a function of both the ratio of dimensionless load to dimensionless speed and inlet supply level was determined. By comparing the film generated under the starved inlet condition with the film generated from the fully flooded inlet, an expression for the film reduction factor was obtained. Based on this factor a starvation threshold was defined as well as a critically starved inlet. The changes in the inlet pressure buildup due to changing the available lubricant supply are presented in the form of three dimensional isometric plots and also in the form of contour plots.

  20. Increased susceptibility to drought-induced mortality in Sequoia sempervirens (Cupressaceae) trees under Cenozoic atmospheric carbon dioxide starvation.

    PubMed

    Quirk, Joe; McDowell, Nate G; Leake, Jonathan R; Hudson, Patrick J; Beerling, David J

    2013-03-01

    Climate-induced forest retreat has profound ecological and biogeochemical impacts, but the physiological mechanisms underlying past tree mortality are poorly understood, limiting prediction of vegetation shifts with climate variation. Climate, drought, fire, and grazing represent agents of tree mortality during the late Cenozoic, but the interaction between drought and declining atmospheric carbon dioxide ([CO2]a) from high to near-starvation levels ∼34 million years (Ma) ago has been overlooked. Here, this interaction frames our investigation of sapling mortality through the interdependence of hydraulic function, carbon limitation, and defense metabolism. • We recreated a changing Cenozoic [CO2]a regime by growing Sequoia sempervirens trees within climate-controlled growth chambers at 1500, 500, or 200 ppm [CO2]a, capturing the decline toward minimum concentrations from 34 Ma. After 7 months, we imposed drought conditions and measured key physiological components linking carbon utilization, hydraulics, and defense metabolism as hypothesized interdependent mechanisms of tree mortality. • Catastrophic failure of hydraulic conductivity, carbohydrate starvation, and tree death occurred at 200 ppm, but not 500 or 1500 ppm [CO2]a. Furthermore, declining [CO2]a reduced investment in carbon-rich foliar defense compounds that would diminish resistance to biotic attack, likely exacerbating mortality. • Low-[CO2]a-driven tree mortality under drought is consistent with Pleistocene pollen records charting repeated Californian Sequoia forest contraction during glacial periods (180-200 ppm [CO2]a) and may even have contributed to forest retreat as grasslands expanded on multiple continents under low [CO2]a over the past 10 Ma. In this way, geologic intervals of low [CO2]a coupled with drought could impose a demographic bottleneck in tree recruitment, driving vegetation shifts through forest mortality.

  1. Phosphoenolpyruvate carboxykinase and gluconeogenesis in grape pericarp.

    PubMed

    Walker, Robert P; Battistelli, Alberto; Moscatello, Stefano; Técsi, László; Leegood, Richard C; Famiani, Franco

    2015-12-01

    Glycolysis from sugars is necessary at all stages of development of grape pericarp, and this raises the question as to why gluconeogenesis from malate occurs. Phosphoenolpyruvate carboxykinase (PEPCK) is required for gluconeogenesis in grape pericarp. In this study we determined the abundance of PEPCK protein and activity in different parts of grape pericarp during its development. Both PEPCK protein and activity were present throughout development, however, in both the skin and the flesh their abundance increased greatly at the start of ripening. This coincided with the onset of the decrease in the malate content of the berry. The location of PEPCK in the pericarp at different stages of development was determined using both immunohistochemistry and dissection. We provide a possible explanation for the occurrence of gluconeogenesis in grape pericarp. Copyright © 2015 Elsevier Masson SAS. All rights reserved.

  2. OsCYCP1;1, a PHO80 homologous protein, negatively regulates phosphate starvation signaling in the roots of rice (Oryza sativa L.).

    PubMed

    Deng, Minjuan; Hu, Bin; Xu, Lei; Liu, Yang; Wang, Fang; Zhao, Hongyu; Wei, Xijuan; Wang, Jichao; Yi, Keke

    2014-12-01

    Phosphorus is one of the most essential and limiting nutrients in all living organisms, thus the organisms have evolved complicated and precise regulatory mechanisms for phosphorus acquisition, storage and homeostasis. In the budding yeast, Saccharomyces cerevisiae, the modification of PHO4 by the PHO80 and PHO85 complex is a core regulation system. However, the existence and possible functions in phosphate signaling of the homologs of the PHO80 and PHO85 components in plants has yet to be determined. Here we describe the identification of a family of seven PHO80 homologous genes in rice named OsCYCPs. Among these, the OsCYCP1;1 gene was able to partially rescue the pho80 mutant strain of yeast. The OsCYCP1;1 protein was predominantly localized in the nucleus, and was ubiquitously expressed throughout the whole plant and during the entire growth period of rice. Consistent with the negative role of PHO80 in phosphate signaling in yeast, OsCYCP1;1 expression was reduced by phosphate starvation in the roots. This reduction was dependent on PHR2, the central regulator of phosphate signaling in rice. Overexpression and suppression of the expression of OsCYCP1;1 influenced the phosphate starvation signaling response. The inducible expression of phosphate starvation inducible and phosphate transporter genes was suppressed in the OsCYCP1;1 overexpression lines and was relatively enhanced in the OsCYCP1;1 RNAi plants by phosphate starvation. Together, these results demonstrate the role of PHO80 homologs in the phosphate starvation signaling pathway in rice.

  3. The biofilm environment offers a possible condition for inducing the competency of DNA recipient cells through nutritional starvation.

    PubMed

    Nishioka, Motomu; Mashayekhan, Shohreh; Onishi, Kyoko; Taya, Masahito

    2007-09-01

    Transformation phenomena occurring under conditions mimicking the biofilm environment were investigated using Escherichia coli IM302 (as DNA recipient cells) and Providencia sp. WW2 (as surrounding cells in the biofilm model). In the case of planktonic IM302 cells kept at 25 degrees C, the transformation took place exclusively in the absence of organic nutrients (COD = 0), and was not substantially observed in the range of COD = 30-1500 mg O2/L. On the other hand, in the case of biofilm IM302 cells, the transformation occurred at relatively high levels under the examined conditions (temperature = 5 or 25 degrees C and COD = 0-1500 mg O2/L). These results indicated that the competency of biofilm IM302 cells was induced even in the presence of organic nutrients owing to nutritional starvation caused by WW2 cells.

  4. Amino acid starvation in Escherichia coli K-12: characteristics of the translation process.

    PubMed Central

    Subrahmanyam, C S; Das, H K

    1976-01-01

    Some characteristics of the translation process during amino acid starvation in Escherichia coli have been examined. Once starvation has been established, premature termination of polypeptides is negligible and complete proteins are formed. There is some preference for the synthesis of shorter proteins. The number of ribosomes involved in protein synthesis appears to decline to about half during amino acid-starvation. The assembly time of proteins during amino acid starvation is increased to only about fourfold, though protein synthesis maintained by turnover is reduced to 10%. To explain these observations, a model has been proposed for the course of events that possibly take place from the onset of starvation. PMID:780337

  5. Biofilm extracellular polysaccharides degradation during starvation and enamel demineralization

    PubMed Central

    Costa Oliveira, Bárbara Emanoele; Cury, Jaime Aparecido

    2017-01-01

    This study was conducted to evaluate if extracellular polysaccharides (EPS) are used by Streptococcus mutans (Sm) biofilm during night starvation, contributing to enamel demineralization increasing occurred during daily sugar exposure. Sm biofilms were formed during 5 days on bovine enamel slabs of known surface hardness (SH). The biofilms were exposed to sucrose 10% or glucose + fructose 10.5% (carbohydrates that differ on EPS formation), 8x/day but were maintained in starvation during the night. Biofilm samples were harvested during two moments, on the end of the 4th day and in the morning of the 5th day, conditions of sugar abundance and starvation, respectively. The slabs were also collected to evaluate the percentage of surface hardness loss (%SHL). The biofilms were analyzed for EPS soluble and insoluble and intracellular polysaccharides (IPS), viable bacteria (CFU), biofilm architecture and biomass. pH, calcium and acid concentration were determined in the culture medium. The data were analyzed by two-way ANOVA followed by Tukey’s test or Student's t-test. The effect of the factor carbohydrate treatment for polysaccharide analysis was significant (p < 0.05) but not the harvest moment (p > 0.05). Larger amounts of soluble and insoluble EPS and IPS were formed in the sucrose group when compared to glucose + fructose group (p < 0.05), but they were not metabolized during starvation time (S-EPS, p = 0.93; I-EPS, p = 0.11; and IPS = 0.96). Greater enamel %SHL was also found for the sucrose group (p < 0.05) but the demineralization did not increase during starvation (p = 0.09). In conclusion, the findings suggest that EPS metabolization by S. mutans during night starvation do not contribute to increase enamel demineralization occurred during the daily abundance of sugar. PMID:28715508

  6. Novel tumor suppressive function of Smad4 in serum starvation-induced cell death through PAK1–PUMA pathway

    PubMed Central

    Lee, S-H; Jung, Y-S; Chung, J-Y; Oh, A Y; Lee, S-J; Choi, D H; Jang, S M; Jang, K-S; Paik, S S; Ha, N-C; Park, B-J

    2011-01-01

    DPC4 (deleted in pancreatic cancer 4)/Smad4 is an essential factor in transforming growth factor (TGF)-β signaling and is also known as a frequently mutated tumor suppressor gene in human pancreatic and colon cancer. However, considering the fact that TGF-β can contribute to cancer progression through transcriptional target genes, such as Snail, MMPs, and epithelial–mesenchymal transition (EMT)-related genes, loss of Smad4 in human cancer would be required for obtaining the TGF-β signaling-independent advantage, which should be essential for cancer cell survival. Here, we provide the evidences about novel role of Smad4, serum-deprivation-induced apoptosis. Elimination of serum can obviously increase the Smad4 expression and induces the cell death by p53-independent PUMA induction. Instead, Smad4-deficient cells show the resistance to serum starvation. Induced Smad4 suppresses the PAK1, which promotes the PUMA destabilization. We also found that Siah-1 and pVHL are involved in PAK1 destabilization and PUMA stabilization. In fact, Smad4-expressed cancer tissues not only show the elevated expression of PAK1, but also support our hypothesis that Smad4 induces PUMA-mediated cell death through PAK1 suppression. Our results strongly suggest that loss of Smad4 renders the resistance to serum-deprivation-induced cell death, which is the TGF-β-independent tumor suppressive role of Smad4. PMID:22130069

  7. Progesterone production requires activation of caspase-3 in preovulatory granulosa cells in a serum starvation model.

    PubMed

    An, Li-Sha; Yuan, Xiao-Hua; Hu, Ying; Shi, Zi-Yun; Liu, Xiao-Qin; Qin, Li; Wu, Gui-Qing; Han, Wei; Wang, Ya-Qin; Ma, Xu

    2012-11-01

    Granulosa cells proliferate, differentiate, and undergo apoptosis throughout follicular development. Previous studies have demonstrated that stimulation of progesterone production is accompanied by caspase-3 activation. Moreover, we previously reported that arsenic enhanced caspase-3 activity coupled with progesterone production. Inhibition of caspase-3 activity can significantly inhibit progesterone production induced by arsenic or follicle-stimulating hormone (FSH). Here, we report that serum starvation induces caspase-3 activation coupled with augmentation of progesterone production. Serum starvation also increased the levels of cytochrome P450 cholesterol side chain cleavage enzyme (P450scc) and steroidogenic acute regulatory (StAR) protein, both of which may contribute to progesterone synthesis in preovulatory granulosa cells. Inhibition of caspase-3 activity resulted in a decrease in progesterone production. Deactivation of caspase-3 activity by caspase-3 specific inhibitor also resulted in decreases in P450scc and StAR expression, which may partly contribute to the observed decrease in progesterone production. Our study demonstrates for the first time that progesterone production in preovulatory granulosa cells is required for caspase-3 activation in a serum starvation model. Inhibition of caspase-3 activity can result in decreased expression of the steroidogenic proteins P450scc and StAR. Our work provides further details on the relationship between caspase-3 activation and steroidogenesis and indicates that caspase-3 plays a critical role in progesterone production by granulosa cells. Copyright © 2012 Elsevier Inc. All rights reserved.

  8. Temporal pattern of feeding response of Chaoborus larvae to starvation

    Treesearch

    Rakesh Minocha; James F. Haney

    1986-01-01

    The effect of starvation on the feeding rate of larval Chaoborus (Diptera. Chaoboridae) was investigated using Daphnia rosea as prey. The starvation period varied from 12 h to 22 days. The starved Chaoborus were individually incubated with 10 Daphnia under controlled light and temperature...

  9. Plant peroxisomes are degraded by starvation-induced and constitutive autophagy in tobacco BY-2 suspension-cultured cells

    PubMed Central

    Voitsekhovskaja, Olga V.; Schiermeyer, Andreas; Reumann, Sigrun

    2014-01-01

    Very recently, autophagy has been recognized as an important degradation pathway for quality control of peroxisomes in Arabidopsis plants. To further characterize the role of autophagy in plant peroxisome degradation, we generated stable transgenic suspension-cultured cell lines of heterotrophic Nicotiana tabacum L. cv. Bright Yellow 2 expressing a peroxisome-targeted version of enhanced yellow fluorescent protein. Indeed, this cell line model system proved advantageous for detailed cytological analyses of autophagy stages and for quantification of cellular peroxisome pools under different culturing conditions and upon inhibitor applications. Complementary biochemical, cytological, and pharmacological analyses provided convincing evidence for peroxisome degradation by bulk autophagy during carbohydrate starvation. This degradation was slowed down by the inhibitor of autophagy, 3-methyladenine (3-MA), but the 3-MA effect ceased at advanced stages of starvation, indicating that another degradation mechanism for peroxisomes might have taken over. 3-MA also caused an increase particularly in peroxisomal proteins and cellular peroxisome numbers when applied under nutrient-rich conditions in the logarithmic growth phase, suggesting a high turnover rate for peroxisomes by basal autophagy under non-stress conditions. Together, our data demonstrate that a great fraction of the peroxisome pool is subject to extensive autophagy-mediated turnover under both nutrient starvation and optimal growth conditions. Our analyses of the cellular pool size of peroxisomes provide a new tool for quantitative investigations of the role of plant peroxisomes in reactive oxygen species metabolism. PMID:25477890

  10. Plant peroxisomes are degraded by starvation-induced and constitutive autophagy in tobacco BY-2 suspension-cultured cells.

    PubMed

    Voitsekhovskaja, Olga V; Schiermeyer, Andreas; Reumann, Sigrun

    2014-01-01

    Very recently, autophagy has been recognized as an important degradation pathway for quality control of peroxisomes in Arabidopsis plants. To further characterize the role of autophagy in plant peroxisome degradation, we generated stable transgenic suspension-cultured cell lines of heterotrophic Nicotiana tabacum L. cv. Bright Yellow 2 expressing a peroxisome-targeted version of enhanced yellow fluorescent protein. Indeed, this cell line model system proved advantageous for detailed cytological analyses of autophagy stages and for quantification of cellular peroxisome pools under different culturing conditions and upon inhibitor applications. Complementary biochemical, cytological, and pharmacological analyses provided convincing evidence for peroxisome degradation by bulk autophagy during carbohydrate starvation. This degradation was slowed down by the inhibitor of autophagy, 3-methyladenine (3-MA), but the 3-MA effect ceased at advanced stages of starvation, indicating that another degradation mechanism for peroxisomes might have taken over. 3-MA also caused an increase particularly in peroxisomal proteins and cellular peroxisome numbers when applied under nutrient-rich conditions in the logarithmic growth phase, suggesting a high turnover rate for peroxisomes by basal autophagy under non-stress conditions. Together, our data demonstrate that a great fraction of the peroxisome pool is subject to extensive autophagy-mediated turnover under both nutrient starvation and optimal growth conditions. Our analyses of the cellular pool size of peroxisomes provide a new tool for quantitative investigations of the role of plant peroxisomes in reactive oxygen species metabolism.

  11. Identification of genes associated with resilience/vulnerability to sleep deprivation and starvation in Drosophila.

    PubMed

    Thimgan, Matthew S; Seugnet, Laurent; Turk, John; Shaw, Paul J

    2015-05-01

    Flies mutant for the canonical clock protein cycle (cyc(01)) exhibit a sleep rebound that is ∼10 times larger than wild-type flies and die after only 10 h of sleep deprivation. Surprisingly, when starved, cyc(01) mutants can remain awake for 28 h without demonstrating negative outcomes. Thus, we hypothesized that identifying transcripts that are differentially regulated between waking induced by sleep deprivation and waking induced by starvation would identify genes that underlie the deleterious effects of sleep deprivation and/or protect flies from the negative consequences of waking. We used partial complementary DNA microarrays to identify transcripts that are differentially expressed between cyc(01) mutants that had been sleep deprived or starved for 7 h. We then used genetics to determine whether disrupting genes involved in lipid metabolism would exhibit alterations in their response to sleep deprivation. Laboratory. Drosophila melanogaster. Sleep deprivation and starvation. We identified 84 genes with transcript levels that were differentially modulated by 7 h of sleep deprivation and starvation in cyc(01) mutants and were confirmed in independent samples using quantitative polymerase chain reaction. Several of these genes were predicted to be lipid metabolism genes, including bubblegum, cueball, and CG4500, which based on our data we have renamed heimdall (hll). Using lipidomics we confirmed that knockdown of hll using RNA interference significantly decreased lipid stores. Importantly, genetically modifying bubblegum, cueball, or hll resulted in sleep rebound alterations following sleep deprivation compared to genetic background controls. We have identified a set of genes that may confer resilience/vulnerability to sleep deprivation and demonstrate that genes involved in lipid metabolism modulate sleep homeostasis. © 2015 Associated Professional Sleep Societies, LLC.

  12. Fermentation of Xylose Causes Inefficient Metabolic State Due to Carbon/Energy Starvation and Reduced Glycolytic Flux in Recombinant Industrial Saccharomyces cerevisiae

    PubMed Central

    Matsushika, Akinori; Nagashima, Atsushi; Goshima, Tetsuya; Hoshino, Tamotsu

    2013-01-01

    In the present study, comprehensive, quantitative metabolome analysis was carried out on the recombinant glucose/xylose-cofermenting S. cerevisiae strain MA-R4 during fermentation with different carbon sources, including glucose, xylose, or glucose/xylose mixtures. Capillary electrophoresis time-of-flight mass spectrometry was used to determine the intracellular pools of metabolites from the central carbon pathways, energy metabolism pathways, and the levels of twenty amino acids. When xylose instead of glucose was metabolized by MA-R4, glycolytic metabolites including 3- phosphoglycerate, 2- phosphoglycerate, phosphoenolpyruvate, and pyruvate were dramatically reduced, while conversely, most pentose phosphate pathway metabolites such as sedoheptulose 7- phosphate and ribulose 5-phosphate were greatly increased. These results suggest that the low metabolic activity of glycolysis and the pool of pentose phosphate pathway intermediates are potential limiting factors in xylose utilization. It was further demonstrated that during xylose fermentation, about half of the twenty amino acids declined, and the adenylate/guanylate energy charge was impacted due to markedly decreased adenosine triphosphate/adenosine monophosphate and guanosine triphosphate/guanosine monophosphate ratios, implying that the fermentation of xylose leads to an inefficient metabolic state where the biosynthetic capabilities and energy balance are severely impaired. In addition, fermentation with xylose alone drastically increased the level of citrate in the tricarboxylic acid cycle and increased the aromatic amino acids tryptophan and tyrosine, strongly supporting the view that carbon starvation was induced. Interestingly, fermentation with xylose alone also increased the synthesis of the polyamine spermidine and its precursor S-adenosylmethionine. Thus, differences in carbon substrates, including glucose and xylose in the fermentation medium, strongly influenced the dynamic metabolism of MA-R4

  13. Experimental Starvation in Man

    DTIC Science & Technology

    1945-10-15

    and Problems A. Edema ..................... 37 B. Dental Effects. ...... , ......... 38 C. Specific Vitamin Nutrition ..... ...... 38 VII...experimental study on human starvation and nutritional rehabilitation. Thirty-four young men, previously normal and well-nourished, have completed six months of...anthropometric characteristics. The character of the diet and the extent of the nutritional deficit have been calculated to be representative of moderately

  14. Dynamics of the Escherichia coli proteome in response to nitrogen starvation and entry into the stationary phase.

    PubMed

    Sanchuki, Heloisa B S; Gravina, Fernanda; Rodrigues, Thiago E; Gerhardt, Edileusa C M; Pedrosa, Fábio O; Souza, Emanuel M; Raittz, Roberto T; Valdameri, Glaucio; de Souza, Gustavo A; Huergo, Luciano F

    2017-03-01

    Nitrogen is needed for the biosynthesis of biomolecules including proteins and nucleic acids. In the absence of fixed nitrogen prokaryotes such as E. coli immediately ceases growth. Ammonium is the preferred nitrogen source for E. coli supporting the fastest growth rates. Under conditions of ammonium limitation, E. coli can use alternative nitrogen sources to supply ammonium ions and this reprogramming is led by the induction of the NtrC regulon. Here we used label free proteomics to determine the dynamics of E. coli proteins expression in response to ammonium starvation in both the short (30min) and the longer (60min) starvation. Protein abundances and post-translational modifications confirmed that activation of the NtrC regulon acts as the first line of defense against nitrogen starvation. The ribosome inactivating protein Rmf was induced shortly after ammonium exhaustion and this was preceded by induction of other ribosome inactivating proteins such as Hpf and RaiA supporting the hypothesis that ribosome shut-down is a key process during nitrogen limitation stress. The proteomic data revealed that growth arrest due to nitrogen starvation correlates with the accumulation of proteins involved in DNA condensation, RNA and protein catabolism and ribosome hibernation. Collectively, these proteome adaptations will result in metabolic inactive cells which are likely to exhibit multidrug tolerance. Copyright © 2016 Elsevier B.V. All rights reserved.

  15. AMPK-Dependent Phosphorylation of GAPDH Triggers Sirt1 Activation and Is Necessary for Autophagy upon Glucose Starvation.

    PubMed

    Chang, Chunmei; Su, Hua; Zhang, Danhong; Wang, Yusha; Shen, Qiuhong; Liu, Bo; Huang, Rui; Zhou, Tianhua; Peng, Chao; Wong, Catherine C L; Shen, Han-Ming; Lippincott-Schwartz, Jennifer; Liu, Wei

    2015-12-17

    Eukaryotes initiate autophagy to cope with the lack of external nutrients, which requires the activation of the nicotinamide adenine dinucleotide (NAD(+))-dependent deacetylase Sirtuin 1 (Sirt1). However, the mechanisms underlying the starvation-induced Sirt1 activation for autophagy initiation remain unclear. Here, we demonstrate that glyceraldehyde 3-phosphate dehydrogenase (GAPDH), a conventional glycolytic enzyme, is a critical mediator of AMP-activated protein kinase (AMPK)-driven Sirt1 activation. Under glucose starvation, but not amino acid starvation, cytoplasmic GAPDH is phosphorylated on Ser122 by activated AMPK. This causes GAPDH to redistribute into the nucleus. Inside the nucleus, GAPDH interacts directly with Sirt1, displacing Sirt1's repressor and causing Sirt1 to become activated. Preventing this shift of GAPDH abolishes Sirt1 activation and autophagy, while enhancing it, through overexpression of nuclear-localized GAPDH, increases Sirt1 activation and autophagy. GAPDH is thus a pivotal and central regulator of autophagy under glucose deficiency, undergoing AMPK-dependent phosphorylation and nuclear translocation to activate Sirt1 deacetylase activity. Copyright © 2015 Elsevier Inc. All rights reserved.

  16. Previous Repeated Exposure to Food Limitation Enables Rats to Spare Lipid Stores during Prolonged Starvation.

    PubMed

    McCue, Marshall D; Albach, Audrey; Salazar, Giovanni

    The risk of food limitation and, ultimately, starvation dates back to the dawn of heterotrophy in animals, yet starvation remains a major factor in the regulation of modern animal populations. Researchers studying starvation more than a century ago suggested that animals subjected to sublethal periods of food limitation are somehow more tolerant of subsequent starvation events. This possibility has received little attention over the past decades, yet it is highly relevant to modern science for two reasons. First, animals in natural populations are likely to be exposed to bouts of food limitation once or more before they face prolonged starvation, during which the risk of mortality becomes imminent. Second, our current approach to studying starvation physiology in the laboratory focuses on nourished animals with no previous exposure to nutritional stress. We examined the relationship between previous exposure to food limitation and potentially adaptive physiological responses to starvation in adult rats and found several significant differences. On two occasions, rats were fasted until they lost 20% of their body mass maintained lower body temperatures, and had presumably lower energy requirements when subjected to prolonged starvation than their naive cohort that never experienced food limitation. These rats that were trained in starvation also had lower plasma glucose set -points and reduced their reliance on endogenous lipid oxidation. These findings underscore (1) the need for biologists to revisit the classic hypothesis that animals can become habituated to starvation, using a modern set of research tools; and (2) the need to design controlled experiments of starvation physiology that more closely resemble the dynamic nature of food availability.

  17. Global gene expression under nitrogen starvation in Xylella fastidiosa: contribution of the σ54 regulon

    PubMed Central

    2010-01-01

    Background Xylella fastidiosa, a Gram-negative fastidious bacterium, grows in the xylem of several plants causing diseases such as citrus variegated chlorosis. As the xylem sap contains low concentrations of amino acids and other compounds, X. fastidiosa needs to cope with nitrogen limitation in its natural habitat. Results In this work, we performed a whole-genome microarray analysis of the X. fastidiosa nitrogen starvation response. A time course experiment (2, 8 and 12 hours) of cultures grown in defined medium under nitrogen starvation revealed many differentially expressed genes, such as those related to transport, nitrogen assimilation, amino acid biosynthesis, transcriptional regulation, and many genes encoding hypothetical proteins. In addition, a decrease in the expression levels of many genes involved in carbon metabolism and energy generation pathways was also observed. Comparison of gene expression profiles between the wild type strain and the rpoN null mutant allowed the identification of genes directly or indirectly induced by nitrogen starvation in a σ54-dependent manner. A more complete picture of the σ54 regulon was achieved by combining the transcriptome data with an in silico search for potential σ54-dependent promoters, using a position weight matrix approach. One of these σ54-predicted binding sites, located upstream of the glnA gene (encoding glutamine synthetase), was validated by primer extension assays, confirming that this gene has a σ54-dependent promoter. Conclusions Together, these results show that nitrogen starvation causes intense changes in the X. fastidiosa transcriptome and some of these differentially expressed genes belong to the σ54 regulon. PMID:20799976

  18. Calnexin Is Essential for Survival under Nitrogen Starvation and Stationary Phase in Schizosaccharomyces pombe

    PubMed Central

    Rokeach, Luis A.

    2015-01-01

    Cell fate is determined by the balance of conserved molecular mechanisms regulating death (apoptosis) and survival (autophagy). Autophagy is a process by which cells recycle their organelles and macromolecules through degradation within the vacuole in yeast and plants, and lysosome in metazoa. In the yeast Schizosaccharomyces pombe, autophagy is strongly induced under nitrogen starvation and in aging cells. Previously, we demonstrated that calnexin (Cnx1p), a highly conserved transmembrane chaperone of the endoplasmic reticulum (ER), regulates apoptosis under ER stress or inositol starvation. Moreover, we showed that in stationary phase, Cnx1p is cleaved into two moieties, L_Cnx1p and S_Cnx1p. Here, we show that the processing of Cnx1p is regulated by autophagy, induced by nitrogen starvation or cell aging. The cleavage of Cnx1p involves two vacuolar proteases: Isp6, which is essential for autophagy, and its paralogue Psp3. Blocking autophagy through the knockout of autophagy-related genes (atg) results in inhibition of both, the cleavage and the trafficking of Cnx1p from the ER to the vacuole. We demonstrate that Cnx1p is required for cell survival under nitrogen-starvation and in chronological aging cultures. The death of the mini_cnx1 mutant (overlapping S_cnx1p) cells is accompanied by accumulation of high levels of reactive-oxygen species (ROS), a slowdown in endocytosis and severe cell-wall defects. Moreover, mutant cells expressing only S_Cnx1p showed cell wall defects. Co-expressing mutant overlapping the L_Cnx1p and S_Cnx1p cleavage products reverses the death, ROS phenotype and cell wall defect to wild-type levels. As it is involved in both apoptosis and autophagy, Cnx1p could be a nexus for the crosstalk between these pro-death and pro-survival mechanisms. Ours, and observations in mammalian systems, suggest that the multiple roles of calnexin depend on its sub-cellular localization and on its cleavage. The use of S. pombe should assist in further

  19. Impact of starvation on survival, meat condition and metabolism of Chlamys farreri

    NASA Astrophysics Data System (ADS)

    Yang, Hong-Sheng; Wang, Jian; Zhou, Yi; Wang, Ping; He, Yi-Chao; Zhang, Fu-Sui

    2001-03-01

    The effects of 60-day starvation on survival rate, condition index (CI), changes of nutrient composition of different tissues, respiration and excretion of scallop Chlamys farreri were studied in laboratory from Oct. 17 to Dec. 15, 1997. Two groups (control and starvation with 200 individuals each) were cultured in two 2 m3 tanks, with 31 to 32 salinity water at 17°C. Starvation effects were measured after 10, 20, 40 and 60 days. There was no mass mortality of scallops of the two tanks and survival rates of the control and starvation groups were 93.5% and 92.0%, respectively. Starvation had strong effect on the meat condition of the scallops, especially after 10 days; when relative lipid percentage dropped sharply while relative protein percentage increased. The impact of starvation on the oxygen consumption rate (OCR) and the ammonia-N excretion rate (AER) was obvious. The OCR increased rapidly after 10 days but decreased after 20 days. The AER increased after 10 days and 20 days, but decreased obviously from 20 to 40 days. The O∶N ratios varied to different degrees, and minimized after 20 days. The low O∶N ratios implied that the protein was the main material for the metabolism of C. farreri.

  20. Significance of Phosphoenolpyruvate Carboxylase during Ammonium Assimilation

    PubMed Central

    Guy, Robert D.; Vanlerberghe, Greg C.; Turpin, David H.

    1989-01-01

    The effect of N-assimilation on the partitioning of carbon fixation between phosphoenolpyruvate carboxylase (PEPcase) and ribulose bisphosphate carboxylase/oxygenase (Rubisco) was determined by measuring stable carbon isotope discrimination during photosynthesis by an N-limited green alga, Selenastrum minutum (Naeg.) Collins. This was facilitated by a two process model accounting for simultaneous CO2 fixation and respiratory CO2 release. Discrimination by control cells was consistent with the majority of carbon being fixed by Rubisco. During nitrogen assimilation however, discrimination was greatly reduced indicating an enhanced flux through PEPcase which accounted for upward of 70% of total carbon fixation. This shift toward anaplerotic metabolism supports a large increase in tricarboxylic acid cycle activity primarily between oxaloacetate and α-ketoglutarate thereby facilitating the provision of carbon skeletons for amino acid synthesis. This provides an example of a unique set of conditions under which anaplerotic carbon fixation by PEPcase exceeds photosynthetic carbon fixation by Rubisco in a C3 organism. Images Figure 6 PMID:16666678

  1. Transcriptional and Proteomic Profiling of Aspergillus flavipes in Response to Sulfur Starvation

    PubMed Central

    El-Sayed, Ashraf S. A.; Yassin, Marwa A.; Ali, Gul Shad

    2015-01-01

    Aspergillus flavipes has received considerable interest due to its potential to produce therapeutic enzymes involved in sulfur amino acid metabolism. In natural habitats, A. flavipes survives under sulfur limitations by mobilizing endogenous and exogenous sulfur to operate diverse cellular processes. Sulfur limitation affects virulence and pathogenicity, and modulates proteome of sulfur assimilating enzymes of several fungi. However, there are no previous reports aimed at exploring effects of sulfur limitation on the regulation of A. flavipes sulfur metabolism enzymes at the transcriptional, post-transcriptional and proteomic levels. In this report, we show that sulfur limitation affects morphological and physiological responses of A. flavipes. Transcription and enzymatic activities of several key sulfur metabolism genes, ATP-sulfurylase, sulfite reductase, methionine permease, cysteine synthase, cystathionine β- and γ-lyase, glutathione reductase and glutathione peroxidase were increased under sulfur starvation conditions. A 50 kDa protein band was strongly induced by sulfur starvation, and the proteomic analyses of this protein band using LC-MS/MS revealed similarity to many proteins involved in the sulfur metabolism pathway. PMID:26633307

  2. Transcriptional and Proteomic Profiling of Aspergillus flavipes in Response to Sulfur Starvation.

    PubMed

    El-Sayed, Ashraf S A; Yassin, Marwa A; Ali, Gul Shad

    2015-01-01

    Aspergillus flavipes has received considerable interest due to its potential to produce therapeutic enzymes involved in sulfur amino acid metabolism. In natural habitats, A. flavipes survives under sulfur limitations by mobilizing endogenous and exogenous sulfur to operate diverse cellular processes. Sulfur limitation affects virulence and pathogenicity, and modulates proteome of sulfur assimilating enzymes of several fungi. However, there are no previous reports aimed at exploring effects of sulfur limitation on the regulation of A. flavipes sulfur metabolism enzymes at the transcriptional, post-transcriptional and proteomic levels. In this report, we show that sulfur limitation affects morphological and physiological responses of A. flavipes. Transcription and enzymatic activities of several key sulfur metabolism genes, ATP-sulfurylase, sulfite reductase, methionine permease, cysteine synthase, cystathionine β- and γ-lyase, glutathione reductase and glutathione peroxidase were increased under sulfur starvation conditions. A 50 kDa protein band was strongly induced by sulfur starvation, and the proteomic analyses of this protein band using LC-MS/MS revealed similarity to many proteins involved in the sulfur metabolism pathway.

  3. Transcriptome analysis of the Populus trichocarpa-Rhizophagus irregularis Mycorrhizal Symbiosis: Regulation of Plant and Fungal Transportomes under Nitrogen Starvation.

    PubMed

    Calabrese, Silvia; Kohler, Annegret; Niehl, Annette; Veneault-Fourrey, Claire; Boller, Thomas; Courty, Pierre-Emmanuel

    2017-06-01

    Nutrient transfer is a key feature of the arbuscular mycorrhizal (AM) symbiosis. Valuable mineral nutrients are transferred from the AM fungus to the plant, increasing its fitness and productivity, and, in exchange, the AM fungus receives carbohydrates as an energy source from the plant. Here, we analyzed the transcriptome of the Populus trichocarpa-Rhizophagus irregularis symbiosis using RNA-sequencing of non-mycorrhizal or mycorrhizal fine roots, with a focus on the effect of nitrogen (N) starvation. In R. irregularis, we identified 1,015 differentially expressed genes, whereby N starvation led to a general induction of gene expression. Genes of the functional classes of cell growth, membrane biogenesis and cell structural components were highly abundant. Interestingly, N starvation also led to a general induction of fungal transporters, indicating increased nutrient demand upon N starvation. In non-mycorrhizal P. trichocarpa roots, 1,341 genes were differentially expressed under N starvation. Among the 953 down-regulated genes in N starvation, most were involved in metabolic processes including amino acids, carbohydrate and inorganic ion transport, while the 342 up-regulated genes included many defense-related genes. Mycorrhization led to the up-regulation of 549 genes mainly involved in secondary metabolite biosynthesis and transport; only 24 genes were down-regulated. Mycorrhization specifically induced expression of three ammonium transporters and one phosphate transporter, independently of the N conditions, corroborating the hypothesis that these transporters are important for symbiotic nutrient exchange. In conclusion, our data establish a framework of gene expression in the two symbiotic partners under high-N and low-N conditions. © The Author 2017. Published by Oxford University Press on behalf of Japanese Society of Plant Physiologists. All rights reserved. For permissions, please email: journals.permissions@oup.com.

  4. Vitamin D fails to prevent serum starvation- or staurosporine-induced apoptosis in human and rat osteosarcoma-derived cell lines

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Witasp, Erika; Division of Biochemical Toxicology, Institute of Environmental Medicine, Karolinska Institutet, Stockholm; Gustafsson, Ann-Catrin

    2005-05-13

    Previous studies have suggested that 1,25(OH){sub 2}D{sub 3}, the active form of vitamin D{sub 3}, may increase the survival of bone-forming osteoblasts through an inhibition of apoptosis. On the other hand, vitamin D{sub 3} has also been shown to trigger apoptosis in human cancer cells, including osteosarcoma-derived cell lines. In the present study, we show that 1,25(OH){sub 2}D{sub 3} induces a time- and dose-dependent loss of cell viability in the rat osteosarcoma cell line, UMR-106, and the human osteosarcoma cell line, TE-85. We were unable, however, to detect nuclear condensation, phosphatidylserine externalization, or other typical signs of apoptosis in thismore » model. Moreover, 1,25(OH){sub 2}D{sub 3} failed to protect against apoptosis induced by serum starvation or incubation with the protein kinase inhibitor, staurosporine. These in vitro findings are thus at variance with several previous reports in the literature and suggest that induction of or protection against apoptosis of bone-derived cells may not be a primary function of vitamin D{sub 3}.« less

  5. Conformational Flexibility Enables the Function of a BECN1 Region Essential for Starvation-Mediated Autophagy

    DOE PAGES

    Mei, Yang; Ramanathan, Arvind; Glover, Karen; ...

    2016-03-03

    BECN1 is essential for autophagy, a critical eukaryotic cellular homeostasis pathway. Here in this study, we delineate a highly conserved BECN1 domain located between previously characterized BH3 and coiled-coil domains and elucidate its structure and role in autophagy. The 2.0 Å sulfur-single-wavelength anomalous dispersion X-ray crystal structure of this domain demonstrates that its N-terminal half is unstructured while its C-terminal half is helical; hence, we name it the flexible helical domain (FHD). Circular dichroism spectroscopy, double electron–electron resonance–electron paramagnetic resonance, and small-angle X-ray scattering (SAXS) analyses confirm that the FHD is partially disordered, even in the context of adjacent BECN1more » domains. Molecular dynamic simulations fitted to SAXS data indicate that the FHD transiently samples more helical conformations. FHD helicity increases in 2,2,2-trifluoroethanol, suggesting it may become more helical upon binding. Finally, cellular studies show that conserved FHD residues are required for starvation-induced autophagy. Thus, the FHD likely undergoes a binding-associated disorder-to-helix transition, and conserved residues critical for this interaction are essential for starvation-induced autophagy.« less

  6. Monitoring protein turnover during phosphate starvation-dependent autophagic degradation using a photoconvertible fluorescent protein aggregate in tobacco BY-2 cells

    PubMed Central

    Tasaki, Maiko; Asatsuma, Satoru; Matsuoka, Ken

    2014-01-01

    We have developed a system for quantitative monitoring of autophagic degradation in transformed tobacco BY-2 cells using an aggregate-prone protein comprised of cytochrome b5 (Cyt b5) and a tetrameric red fluorescent protein (RFP). Unfortunately, this system is of limited use for monitoring the kinetics of autophagic degradation because the proteins synthesized before and after induction of autophagy cannot be distinguished. To overcome this problem, we developed a system using kikume green-red (KikGR), a photoconvertible and tetrameric fluorescent protein that changes its fluorescence from green to red upon irradiation with purple light. Using the fusion protein of Cyt b5 and KikGR together with a method for the bulk conversion of KikGR, which we had previously used to convert the Golgi-localized monomeric KikGR fusion protein, we were able to monitor both the growth and de novo formation of aggregates. Using this system, we found that tobacco cells do not cease protein synthesis under conditions of phosphate (Pi)-starvation. Induction of autophagy under Pi-starvation, but not under sugar- or nitrogen-starvation, was specifically inhibited by phosphite, which is an analog of Pi with a different oxidation number. Therefore, the mechanism by which BY-2 cells can sense Pi-starvation and induce autophagy does not involve sensing a general decrease in energy supply and a specific Pi sensor might be involved in the induction of autophagy under Pi-starvation. PMID:24817874

  7. Monitoring protein turnover during phosphate starvation-dependent autophagic degradation using a photoconvertible fluorescent protein aggregate in tobacco BY-2 cells.

    PubMed

    Tasaki, Maiko; Asatsuma, Satoru; Matsuoka, Ken

    2014-01-01

    We have developed a system for quantitative monitoring of autophagic degradation in transformed tobacco BY-2 cells using an aggregate-prone protein comprised of cytochrome b5 (Cyt b5) and a tetrameric red fluorescent protein (RFP). Unfortunately, this system is of limited use for monitoring the kinetics of autophagic degradation because the proteins synthesized before and after induction of autophagy cannot be distinguished. To overcome this problem, we developed a system using kikume green-red (KikGR), a photoconvertible and tetrameric fluorescent protein that changes its fluorescence from green to red upon irradiation with purple light. Using the fusion protein of Cyt b5 and KikGR together with a method for the bulk conversion of KikGR, which we had previously used to convert the Golgi-localized monomeric KikGR fusion protein, we were able to monitor both the growth and de novo formation of aggregates. Using this system, we found that tobacco cells do not cease protein synthesis under conditions of phosphate (Pi)-starvation. Induction of autophagy under Pi-starvation, but not under sugar- or nitrogen-starvation, was specifically inhibited by phosphite, which is an analog of Pi with a different oxidation number. Therefore, the mechanism by which BY-2 cells can sense Pi-starvation and induce autophagy does not involve sensing a general decrease in energy supply and a specific Pi sensor might be involved in the induction of autophagy under Pi-starvation.

  8. A proposed role for selective autophagy in regulating auxin-dependent lateral root development under phosphate starvation in Arabidopsis.

    PubMed

    Sankaranarayanan, Subramanian; Samuel, Marcus A

    2015-01-01

    Plants respond to limited soil nutrient availability by inducing more lateral roots (LR) to increase the root surface area. At the cellular level, nutrient starvation triggers the process of autophagy through which bulk degradation of cellular materials is achieved to facilitate nutrient mobilization. Whether there is any link between the cellular autophagy and induction of LR had remained unknown. We recently showed that the S-Domain receptor Kinase (ARK2) and U Box/Armadillo Repeat-Containing E3 ligase (PUB9) module is required for lateral root formation under phosphate starvation in Arabidopsis thaliana.(1) We also showed that PUB9 localized to autophagic bodies following either activation by ARK2 or under phosphate starvation and ark2-1/pub9-1 plants displayed lateral root defects with inability to accumulate auxin in the root tips under phosphate starvation.(1) Supplementing exogenous auxin was sufficient to rescue the LR defects in ark2-1/pub9-1 mutant. Blocking of autophagic responses in wild-type Arabidopsis also resulted in inhibition of both lateral roots and auxin accumulation in the root tips indicating the importance of autophagy in mediating auxin accumulation under phosphate starved conditions.(1) Here, we propose a model for ARK2/AtPUB9 module in regulation of lateral root development via selective autophagy.

  9. Surviving starvation: essential role of the ghrelin-growth hormone axis.

    PubMed

    Goldstein, J L; Zhao, T-j; Li, R L; Sherbet, D P; Liang, G; Brown, M S

    2011-01-01

    After brief starvation, vertebrates maintain blood glucose by releasing fatty acids from adipose tissue. The fatty acids provide energy for gluconeogenesis in liver and are taken up by muscle, sparing glucose. After prolonged starvation, fat stores are depleted, yet blood glucose can be maintained at levels sufficient to preserve life. Using a new mouse model, we demonstrate that survival after prolonged starvation requires ghrelin, an octanoylated peptide hormone that stimulates growth hormone (GH) secretion. We studied wild-type mice and mice lacking ghrelin as a result of knockout of GOAT, the enzyme that attaches octanoate to ghrelin. Mice were fed 40% of their normal intake for 7 d. Fat stores in both lines of mice became depleted after 4 d. On day 7, mice were fasted for 23 h. In wild-type mice, ghrelin and GH rose massively, and blood sugar was maintained at ~60 mg/dL. In Goat(-/-) mice, ghrelin was undetectable and GH failed to rise appropriately. Blood sugar declined to ~20 mg/dL, and the animals were moribund. Infusion of ghrelin or GH prevented hypoglycemia. Our results support the following sequence: (1) Starvation lowers blood glucose; (2) glucose-sensing neurons respond by activating sympathetic neurons; (3) norepinephrine, released in the stomach, stimulates ghrelin secretion; (4) ghrelin releases GH, which maintains blood glucose. Thus, ghrelin lies at the center of a hormonal response that permits mice to survive an acute fast superimposed on chronic starvation.

  10. Heat and phosphate starvation effects on the proteome, morphology and chemical composition of the biomining bacteria Acidithiobacillus ferrooxidans.

    PubMed

    Ribeiro, Daniela A; Maretto, Danilo A; Nogueira, Fábio C S; Silva, Márcio J; Campos, Francisco A P; Domont, Gilberto B; Poppi, Ronei J; Ottoboni, Laura M M

    2011-06-01

    Acidithiobacillus ferrooxidans is a Gram negative, acidophilic, chemolithoautotrophic bacterium that plays an important role in metal bioleaching. During bioleaching, the cells are subjected to changes in the growth temperature and nutrients starvation. The aim of this study was to gather information about the response of the A.ferrooxidans Brazilian strain LR to K2HPO4 starvation and heat stress through investigation of cellular morphology, chemical composition and differential proteome. The scanning electron microscopic results showed that under the tested stress conditions, A. ferrooxidans cells became elongated while the Fourier transform infrared spectroscopy (FT-IR) analysis showed alterations in the wavenumbers between 850 and 1,275 cm(-1), which are related to carbohydrates, phospholipids and phosphoproteins. These findings indicate that the bacterial cell surface is affected by the tested stress conditions. A proteomic analysis, using 2-DE and tandem mass spectrometry, enabled the identification of 44 differentially expressed protein spots, being 30 due to heat stress (40°C) and 14 due to K2HPO4 starvation. The identified proteins belonged to 11 different functional categories, including protein fate, energy metabolism and cellular processes. The upregulated proteins were mainly from protein fate and energy metabolism categories. The obtained results provide evidences that A. ferrooxidans LR responds to heat stress and K2HPO4 starvation by inducing alterations in cellular morphology and chemical composition of the cell surface. Also, the identification of several proteins involved in protein fate suggests that the bacteria cellular homesostasis was affected. In addition, the identification of proteins from different functional categories indicates that the A. ferrooxidans response to higher than optimal temperatures and phosphate starvation involves global changes in its physiology.

  11. Starvation, Together with the SOS Response, Mediates High Biofilm-Specific Tolerance to the Fluoroquinolone Ofloxacin

    PubMed Central

    Bernier, Steve P.; Lebeaux, David; DeFrancesco, Alicia S.; Valomon, Amandine; Soubigou, Guillaume; Coppée, Jean-Yves; Ghigo, Jean-Marc; Beloin, Christophe

    2013-01-01

    High levels of antibiotic tolerance are a hallmark of bacterial biofilms. In contrast to well-characterized inherited antibiotic resistance, molecular mechanisms leading to reversible and transient antibiotic tolerance displayed by biofilm bacteria are still poorly understood. The physiological heterogeneity of biofilms influences the formation of transient specialized subpopulations that may be more tolerant to antibiotics. In this study, we used random transposon mutagenesis to identify biofilm-specific tolerant mutants normally exhibited by subpopulations located in specialized niches of heterogeneous biofilms. Using Escherichia coli as a model organism, we demonstrated, through identification of amino acid auxotroph mutants, that starved biofilms exhibited significantly greater tolerance towards fluoroquinolone ofloxacin than their planktonic counterparts. We demonstrated that the biofilm-associated tolerance to ofloxacin was fully dependent on a functional SOS response upon starvation to both amino acids and carbon source and partially dependent on the stringent response upon leucine starvation. However, the biofilm-specific ofloxacin increased tolerance did not involve any of the SOS-induced toxin–antitoxin systems previously associated with formation of highly tolerant persisters. We further demonstrated that ofloxacin tolerance was induced as a function of biofilm age, which was dependent on the SOS response. Our results therefore show that the SOS stress response induced in heterogeneous and nutrient-deprived biofilm microenvironments is a molecular mechanism leading to biofilm-specific high tolerance to the fluoroquinolone ofloxacin. PMID:23300476

  12. Osteoporosis in survivors of early life starvation.

    PubMed

    Weisz, George M; Albury, William R

    2013-01-01

    The objective of this study was to provide evidence for the association of early life nutritional deprivation and adult osteoporosis, in order to suggest that a history of such deprivation may be an indicator of increased risk of osteoporosis in later life. The 'fetal programming' of a range of metabolic and cardiovascular disorders in adults was first proposed in the 1990s and more recently extended to disorders of bone metabolism. Localised famines during World War II left populations in whom the long-term effects of maternal, fetal and infantile nutritional deprivation were studied. These studies supported the original concept of 'fetal programming' but did not consider bone metabolism. The present paper offers clinical data from another cohort of World War II famine survivors - those from the Holocaust. The data presented here, specifically addressing the issue of osteoporosis, report on 11 Holocaust survivors in Australia (five females, six males) who were exposed to starvation in early life. The cases show, in addition to other metabolic disorders associated with early life starvation, various levels of osteoporosis, often with premature onset. The cohort studied is too small to support firm conclusions, but the evidence suggests that the risk of adult osteoporosis in both males and females is increased by severe starvation early in life - not just in the period from gestation to infancy but also in childhood and young adulthood. It is recommended that epidemiological research on this issue be undertaken, to assist planning for the future health needs of immigrants to Australia coming from famine affected backgrounds. Pending such research, it would be prudent for primary care health workers to be alert to the prima facie association between early life starvation and adult osteoporosis, and to take this factor into account along with other indicators when assessing a patient's risk of osteoporosis in later life.

  13. Physiological desensitization of carbohydrate permeases and adenylate cyclase to regulation by the phosphoenolpyruvate:sugar phosphotransferase system in Escherichia coli and Salmonella typhimurium. Involvement of adenosine cyclic 3',5'-phosphate and inducer.

    PubMed

    Saier, M H; Keeler, D K; Feucht, B U

    1982-03-10

    Adenylate cyclase and a number of carbohydrate transport systems are subject to regulation by the phosphoenolpyruvate:sugar phosphotransferase system. These sensitive carbohydrate transport systems are desensitized to regulation by the phosphotransferase system, and adenylate cyclase is deactivated when cells are grown in medium containing cyclic AMP. These effects are specific for cyclic AMP and are potentiated by the genetic loss of cyclic AMP phosphodiesterase. Inclusion in the growth medium of an inducer of a sensitive transport system also promotes desensitization of that particular transport system. Inducer-promoted desensitization is specific for the particular target transport system, while cyclic AMP-promoted desensitization is general and affects several systems. Desensitization of the permeases to regulation, and inactivation of adenylate cyclase, are slow processes which are blocked by chloramphenicol and are therefore presumably dependent on protein synthesis. Several sugar substrates of the phosphotransferase system are capable of regulating the sensitive carbohydrate transport systems. The evidence suggests that desensitization to this regulation does not result from a direct effect on the functioning of Enzyme I, a small heat-stable protein of the phosphotransferase system, HPr, or an Enzyme II of the phosphotransferase system, but specifically uncouples the permease systems from regulation.

  14. Tomato strigolactones are derived from carotenoids and their biosynthesis is promoted by phosphate starvation.

    PubMed

    López-Ráez, Juan Antonio; Charnikhova, Tatsiana; Gómez-Roldán, Victoria; Matusova, Radoslava; Kohlen, Wouter; De Vos, Ric; Verstappen, Francel; Puech-Pages, Virginie; Bécard, Guillaume; Mulder, Patrick; Bouwmeester, Harro

    2008-01-01

    * Strigolactones are rhizosphere signalling compounds that mediate host location in arbuscular mycorrhizal (AM) fungi and parasitic plants. Here, the regulation of the biosynthesis of strigolactones is studied in tomato (Solanum lycopersicum). * Strigolactone production under phosphate starvation, in the presence of the carotenoid biosynthesis inhibitor fluridone and in the abscisic acid (ABA) mutant notabilis were assessed using a germination bioassay with seeds of Orobanche ramosa; a hyphal branching assay with Gigaspora spp; and by liquid chromatography coupled to tandem mass spectrometry (LC-MS/MS) analysis. * The root exudates of tomato cv. MoneyMaker induced O. ramosa seed germination and hyphal branching in AM fungi. Phosphate starvation markedly increased, and fluridone strongly decreased, this activity. Exudates of notabilis induced approx. 40% less germination than the wild-type. The LC-MS/MS analysis confirmed that the biological activity and changes therein were due to the presence of several strigolactones; orobanchol, solanacol and two or three didehydro-orobanchol isomers. * These results show that the AM branching factors and parasitic plant germination stimulants in tomato root exudate are strigolactones and that they are biosynthetically derived from carotenoids. The dual activity of these signalling compounds in attracting beneficial AM fungi and detrimental parasitic plants is further strengthened by environmental conditions such as phosphate availability.

  15. Starvation and recovery in the deep-sea methanotroph Methyloprofundus sedimenti.

    PubMed

    Tavormina, Patricia L; Kellermann, Matthias Y; Antony, Chakkiath Paul; Tocheva, Elitza I; Dalleska, Nathan F; Jensen, Ashley J; Valentine, David L; Hinrichs, Kai-Uwe; Jensen, Grant J; Dubilier, Nicole; Orphan, Victoria J

    2017-01-01

    In the deep ocean, the conversion of methane into derived carbon and energy drives the establishment of diverse faunal communities. Yet specific biological mechanisms underlying the introduction of methane-derived carbon into the food web remain poorly described, due to a lack of cultured representative deep-sea methanotrophic prokaryotes. Here, the response of the deep-sea aerobic methanotroph Methyloprofundus sedimenti to methane starvation and recovery was characterized. By combining lipid analysis, RNA analysis, and electron cryotomography, it was shown that M. sedimenti undergoes discrete cellular shifts in response to methane starvation, including changes in headgroup-specific fatty acid saturation levels, and reductions in cytoplasmic storage granules. Methane starvation is associated with a significant increase in the abundance of gene transcripts pertinent to methane oxidation. Methane reintroduction to starved cells stimulates a rapid, transient extracellular accumulation of methanol, revealing a way in which methane-derived carbon may be routed to community members. This study provides new understanding of methanotrophic responses to methane starvation and recovery, and lays the initial groundwork to develop Methyloprofundus as a model chemosynthesizing bacterium from the deep sea. © 2016 John Wiley & Sons Ltd.

  16. Phototrophy and starvation-based induction of autophagy upon removal of Gcn5-catalyzed acetylation of Atg7 in Magnaporthe oryzae.

    PubMed

    Zhang, Shulin; Liang, Meiling; Naqvi, Naweed I; Lin, Chaoxiang; Qian, Wanqiang; Zhang, Lian-Hui; Deng, Yi Zhen

    2017-08-03

    Magnaporthe oryzae, the ascomycete fungus that causes rice blast disease, initiates conidiation in response to light when grown on Prune-Agar medium containing both carbon and nitrogen sources. Macroautophagy/autophagy was shown to be essential for M. oryzae conidiation and induced specifically upon exposure to light but is undetectable in the dark. Therefore, it is inferred that autophagy is naturally induced by light, rather than by starvation during M. oryzae conidiation. However, the signaling pathway(s) involved in such phototropic induction of autophagy remains unknown. We identified an M. oryzae ortholog of GCN5 (MGG_03677), encoding a histone acetyltransferase (HAT) that negatively regulates light- and nitrogen-starvation-induced autophagy, by acetylating the autophagy protein Atg7. Furthermore, we unveiled novel regulatory mechanisms on Gcn5 at both transcriptional and post-translational levels, governing its function associated with the unique phototropic response of autophagy in this pathogenic fungus. Thus, our study depicts a signaling network and regulatory mechanism underlying the autophagy induction by important environmental clues such as light and nutrients.

  17. High-Throughput Profiling of Caenorhabditis elegans Starvation-Responsive microRNAs

    PubMed Central

    Garcia-Segura, Laura; Abreu-Goodger, Cei; Hernandez-Mendoza, Armando; Dimitrova Dinkova, Tzvetanka D.; Padilla-Noriega, Luis; Perez-Andrade, Martha Elva; Miranda-Rios, Juan

    2015-01-01

    MicroRNAs (miRNAs) are non-coding RNAs of ~22 nucleotides in length that regulate gene expression by interfering with the stability and translation of mRNAs. Their expression is regulated during development, under a wide variety of stress conditions and in several pathological processes. In nature, animals often face feast or famine conditions. We observed that subjecting early L4 larvae from Caenorhabditis elegans to a 12-hr starvation period produced worms that are thinner and shorter than well-fed animals, with a decreased lipid accumulation, diminished progeny, reduced gonad size, and an increased lifespan. Our objective was to identify which of the 302 known miRNAs of C. elegans changed their expression under starvation conditions as compared to well-fed worms by means of deep sequencing in early L4 larvae. Our results indicate that 13 miRNAs (miR-34-3p, the family of miR-35-3p to miR-41-3p, miR-39-5p, miR-41-5p, miR-240-5p, miR-246-3p and miR-4813-5p) were upregulated, while 2 miRNAs (let-7-3p and miR-85-5p) were downregulated in 12-hr starved vs. well-fed early L4 larvae. Some of the predicted targets of the miRNAs that changed their expression in starvation conditions are involved in metabolic or developmental process. In particular, miRNAs of the miR-35 family were upregulated 6–20 fold upon starvation. Additionally, we showed that the expression of gld-1, important in oogenesis, a validated target of miR-35-3p, was downregulated when the expression of miR-35-3p was upregulated. The expression of another reported target, the cell cycle regulator lin-23, was unchanged during starvation. This study represents a starting point for a more comprehensive understanding of the role of miRNAs during starvation in C. elegans. PMID:26554708

  18. High-Throughput Profiling of Caenorhabditis elegans Starvation-Responsive microRNAs.

    PubMed

    Garcia-Segura, Laura; Abreu-Goodger, Cei; Hernandez-Mendoza, Armando; Dimitrova Dinkova, Tzvetanka D; Padilla-Noriega, Luis; Perez-Andrade, Martha Elva; Miranda-Rios, Juan

    2015-01-01

    MicroRNAs (miRNAs) are non-coding RNAs of ~22 nucleotides in length that regulate gene expression by interfering with the stability and translation of mRNAs. Their expression is regulated during development, under a wide variety of stress conditions and in several pathological processes. In nature, animals often face feast or famine conditions. We observed that subjecting early L4 larvae from Caenorhabditis elegans to a 12-hr starvation period produced worms that are thinner and shorter than well-fed animals, with a decreased lipid accumulation, diminished progeny, reduced gonad size, and an increased lifespan. Our objective was to identify which of the 302 known miRNAs of C. elegans changed their expression under starvation conditions as compared to well-fed worms by means of deep sequencing in early L4 larvae. Our results indicate that 13 miRNAs (miR-34-3p, the family of miR-35-3p to miR-41-3p, miR-39-5p, miR-41-5p, miR-240-5p, miR-246-3p and miR-4813-5p) were upregulated, while 2 miRNAs (let-7-3p and miR-85-5p) were downregulated in 12-hr starved vs. well-fed early L4 larvae. Some of the predicted targets of the miRNAs that changed their expression in starvation conditions are involved in metabolic or developmental process. In particular, miRNAs of the miR-35 family were upregulated 6-20 fold upon starvation. Additionally, we showed that the expression of gld-1, important in oogenesis, a validated target of miR-35-3p, was downregulated when the expression of miR-35-3p was upregulated. The expression of another reported target, the cell cycle regulator lin-23, was unchanged during starvation. This study represents a starting point for a more comprehensive understanding of the role of miRNAs during starvation in C. elegans.

  19. [Starvation ketosis in a breastfeeding woman].

    PubMed

    Monnier, D; Goulenok, T; Allary, J; Zarrouk, V; Fantin, B

    2015-12-01

    Bovine ketosis is a rare cause of metabolic acidosis. It is a starvation ketosis that appears in lactating woman. A 29-year-old woman had a previous gastric surgery one month ago while breastfeeding her 6-month child. She presented to emergency with dyspnea, fatigue, weight loss and anorexia. The explorations revealed a serious metabolic acidosis with a high anion gap, for which all other causes have been eliminated. A restrictive diet in lactating patients is a major risk of ketosis or bovine ketosis. Medico-surgical treatment of obesity during lactation seems unreasonable. Breastfeeding should be systematically sought before a medical and surgical management of obesity. With the spread of bariatric surgery, starvation ketosis is a cause of metabolic acidosis not to ignore. Copyright © 2015 Société nationale française de médecine interne (SNFMI). Published by Elsevier SAS. All rights reserved.

  20. Arabidopsis roots and shoots show distinct temporal adaptation patterns toward nitrogen starvation.

    PubMed

    Krapp, Anne; Berthomé, Richard; Orsel, Mathilde; Mercey-Boutet, Stéphanie; Yu, Agnes; Castaings, Loren; Elftieh, Samira; Major, Hilary; Renou, Jean-Pierre; Daniel-Vedele, Françoise

    2011-11-01

    Nitrogen (N) is an essential macronutrient for plants. N levels in soil vary widely, and plants have developed strategies to cope with N deficiency. However, the regulation of these adaptive responses and the coordinating signals that underlie them are still poorly understood. The aim of this study was to characterize N starvation in adult Arabidopsis (Arabidopsis thaliana) plants in a spatiotemporal manner by an integrative, multilevel global approach analyzing growth, metabolites, enzyme activities, and transcript levels. We determined that the remobilization of N and carbon compounds to the growing roots occurred long before the internal N stores became depleted. A global metabolite analysis by gas chromatography-mass spectrometry revealed organ-specific differences in the metabolic adaptation to complete N starvation, for example, for several tricarboxylic acid cycle intermediates, but also for carbohydrates, secondary products, and phosphate. The activities of central N metabolism enzymes and the capacity for nitrate uptake adapted to N starvation by favoring N remobilization and by increasing the high-affinity nitrate uptake capacity after long-term starvation. Changes in the transcriptome confirmed earlier studies and added a new dimension by revealing specific spatiotemporal patterns and several unknown N starvation-regulated genes, including new predicted small RNA genes. No global correlation between metabolites, enzyme activities, and transcripts was evident. However, this multilevel spatiotemporal global study revealed numerous new patterns of adaptation mechanisms to N starvation. In the context of a sustainable agriculture, this work will give new insight for the production of crops with increased N use efficiency.

  1. Effect of starvation on free histidine and amino acids in white muscle of milkfish Chanos chanos.

    PubMed

    Shiau, C Y; Pong, Y P; Chiou, T K; Tin, Y Y

    2001-03-01

    Milkfish (Chanos chanos) decreased their body weight from 47 to 28 g over the 60-day period of starvation. Starvation also resulted in the reduction of muscle lipid and protein, and hepatosomatic index. The predominant free amino acid (FAA) in white muscle of milkfish was histidine, followed by taurine and glycine. In the first 25 days of starvation, no significant change in histidine was found. After 40 days of starvation, however, the histidine concentration was significantly decreased by 46%, and remained unchanged thereafter. As compared to control group fish, the 60-day-starved fish possessed only half the amount of histidine. Taurine and glycine, on the other hand, showed no significant changes throughout starvation. Taurine became the most predominant in the FAA pool after 40 days of starvation, and the concentration of 60-day-starved fish was two times higher than that of control group fish without starvation. The ratios of histidine, taurine, and glycine to total FAAs remained approximately the same although the individual contributions varied considerably to the total FAAs during starvation. The results of this study suggested that a good strategy would be to keep taurine and glycine in milkfish muscle at relatively high levels for physiological function as histidine decreased drastically for energy source under conditions of food deprivation.

  2. IscR Regulates Synthesis of Colonization Factor Antigen I Fimbriae in Response to Iron Starvation in Enterotoxigenic Escherichia coli

    PubMed Central

    Arnaud-Barbe, Nadège; Poncet, David; Reverchon, Sylvie; Wawrzyniak, Julien; Nasser, William

    2015-01-01

    ABSTRACT Iron availability functions as an environmental cue for enteropathogenic bacteria, signaling arrival within the human host. As enterotoxigenic Escherichia coli (ETEC) is a major cause of human diarrhea, the effect of iron on ETEC virulence factors was evaluated here. ETEC pathogenicity is directly linked to production of fimbrial colonization factors and secretion of heat-labile enterotoxin (LT) and/or heat-stable enterotoxin (ST). Efficient colonization of the small intestine further requires at least the flagellin binding adhesin EtpA. Under iron starvation, production of the CFA/I fimbriae was increased in the ETEC H10407 prototype strain. In contrast, LT secretion was inhibited. Furthermore, under iron starvation, gene expression of the cfa (CFA/I) and etp (EtpBAC) operons was induced, whereas transcription of toxin genes was either unchanged or repressed. Transcriptional reporter fusion experiments focusing on the cfa operon further showed that iron starvation stimulated cfaA promoter activity in ETEC, indicating that the impact of iron on CFA/I production was mediated by transcriptional regulation. Evaluation of cfaA promoter activity in heterologous E. coli single mutant knockout strains identified IscR as the regulator responsible for inducing cfa fimbrial gene expression in response to iron starvation, and this was confirmed in an ETEC ΔiscR strain. The global iron response regulator, Fur, was not implicated. IscR binding sites were identified in silico within the cfaA promoter and fixation confirmed by DNase I footprinting, indicating that IscR directly binds the promoter region to induce CFA/I. IMPORTANCE Pathogenic enterobacteria modulate expression of virulence genes in response to iron availability. Although the Fur transcription factor represents the global regulator of iron homeostasis in Escherichia coli, we show that several ETEC virulence factors are modulated by iron, with expression of the major fimbriae under the control of the iron

  3. Somatic insulin signaling regulates a germline starvation response in Drosophila egg chambers

    PubMed Central

    Burn, K. Mahala; Shimada, Yuko; Ayers, Kathleen; Lu, Feiyue; Hudson, Andrew M.; Cooley, Lynn

    2014-01-01

    Egg chambers from starved Drosophila females contain large aggregates of processing (P) bodies and cortically enriched microtubules. As this response to starvation is rapidly reversed upon re-feeding females or culturing egg chambers with exogenous bovine insulin, we examined the role of endogenous insulin signaling in mediating the starvation response. We found that systemic Drosophila insulin-like peptides (dILPs) activate the insulin pathway in follicle cells, which then regulate both microtubule and P body organization in the underlying germline cells. This organization is modulated by the motor proteins Dynein and Kinesin. Dynein activity is required for microtubule and P body organization during starvation, while Kinesin activity is required during nutrient-rich conditions. Blocking the ability of egg chambers to form P body aggregates in response to starvation correlated with reduced progeny survival. These data suggest a potential mechanism to maximize fecundity even during periods of poor nutrient availability, by mounting a protective response in immature egg chambers. PMID:25481758

  4. Early Changes in the Ultrastructure of Streptococcus faecalis After Amino Acid Starvation

    PubMed Central

    Higgins, M. L.; Shockman, G. D.

    1970-01-01

    Thin sections of Streptococcus faecalis (ATCC 9790) starved of one essential amino acid (threonine or valine) initially show rapid increases in (i) cell wall thickness, (ii) the apparent size of the central nucleoid region, and (iii) mesosomal membranes. The most rapid increases in all three variables occurred during the first 1 to 2 hr of starvation. After this initial period, the rates progressively decreased over the 20-hr observation period. During threonine starvation, the mesosomal membrane that accumulated in the first hour was subsequently degraded and reached a level similar to that found in exponential-phase cells after 20 hr. With valine starvation, mesosomal membrane continued to slowly accumulate over the entire 20-hr observation period. The mesosomes of the starved cells retained the same “stalked-bag” morphology of those in exponential-phase cells. These cytological observations agree with previously published biochemical data on membrane lipid and wall content after starvation. Images PMID:4987306

  5. Post carbon removal nitrifying MBBR operation at high loading and exposure to starvation conditions.

    PubMed

    Young, Bradley; Delatolla, Robert; Kennedy, Kevin; LaFlamme, Edith; Stintzi, Alain

    2017-09-01

    This study investigates the performance of MBBR nitrifying biofilm post carbon removal at high loading and starvation conditions. The nitrifying MBBR, treating carbon removal lagoon effluent, achieved a maximum SARR of 2.13gN/m 2 d with complete conversion of ammonia to nitrate. The results also show the MBBR technology is capable of maintaining a stable biofilm under starvation conditions in systems that nitrify intermittently. The biomass exhibited a higher live fraction of total cells in the high loaded reactors (73-100%) as compared to the reactors operated in starvation condition (26-82%). For both the high loaded and starvation condition, the microbial communities significantly changed with time of operation. The nitrifying community, however, remained steady with the family Nitrosomonadacea as the primary AOBs and Nitrospira as the primary NOB. During starvation conditions, the relative abundance of AOBs decreased and Nitrospira increased corresponding to an NOB/AOB ratio of 5.2-12.1. Copyright © 2017 Elsevier Ltd. All rights reserved.

  6. Phenobarbital reduces blood glucose and gluconeogenesis through down-regulation of phosphoenolpyruvate carboxykinase (GTP) gene expression in rats.

    PubMed

    Oda, Hiroaki; Okuda, Yuji; Yoshida, Yukiko; Kimura, Noriko; Kakinuma, Atsushi

    2015-10-23

    The regulatory mechanism of phosphoenolpyruvate carboykinase (GTP) (EC 4.1.1.32) (PEPCK) gene expression and gluconeogenesis by phenobarbital (PB), which is known to induce drug-metabolizing enzymes, was investigated. Higher level of PEPCK mRNA was observed in spherical rat primary hepatocytes on EHS-gel than monolayer hepatocytes on TIC (type I collagen). We found that PB directly suppressed PEPCK gene expression in spherical hepatocytes on EHS-gel, but not in those on TIC. PB strongly suppressed cAMP-dependent induction of PEPCK gene expression. Tyrosine aminotransferase (TAT), another gluconeogenic enzyme, was induced by cAMP, but not suppressed by PB. Chronic administration of PB reduced hepatic PEPCK mRNA in streptozotocin-induced diabetic and nondiabetic rats, and PB reduced blood glucose level in diabetic rats. Increased TAT mRNA in diabetic rats was not suppressed by PB. These results indicated that PB-dependent reduction is specific to PEPCK. From pyrvate challenge test, PB suppressed the increased gluconeogenesis in diabetic rats. PEPCK gene promoter activity was suppressed by PB in HepG2 cells. In conclusion, we found that spherical hepatocytes cultured on EHS-gel are capable to respond to PB to suppress PEPCK gene expression. Moreover, our results indicate that hypoglycemic action of PB result from transcriptional repression of PEPCK gene and subsequent suppression of gluconeogenesis. Copyright © 2015. Published by Elsevier Inc.

  7. Acute starvation ketoacidosis in pregnancy with severe hypertriglyceridemia: A case report.

    PubMed

    Hui, Li; Shuying, Li

    2018-05-01

    Pregnant women are more prone to ketosis due to the relative insulin resistance, accelerated lipolysis and increased free fatty acids. We report a pregnant woman with hyperlipidemia, who experienced severe metabolic acidosis after a short period of starvation. Based on her clinical symptoms, exclusion diagnosis and therapeutic diagnosis, her condition was diagnosed as starvation ketoacidosis. An emergency caesarean section under general anesthesia was implemented 2 hours after her admission. The metabolic acidosis was treated with fluid resuscitation using compound sodium lactate, bicarbonate, and 5% dextrose together with insulin 6U. Both mother and baby were discharged clinically well. Starvation ketoacidosis may happen in special patient who was in pregnancy and with severe hypertriglyceridemia, after just one day fasting and vomiting.

  8. Cytosolic phosphoenolpyruvate carboxykinase is a response gene involved in porcine adipocyte adaptation to heat stress.

    PubMed

    Qu, Huan; Ajuwon, Kolapo M

    2018-05-04

    Heat stress (HS) leads to increased lipid storage and expression of cytosolic phosphoenolpyruvate carboxykinase (PCK1) in pig adipocytes. However, the importance of PCK1 activation and lipid storage in the adaptive response to HS is unknown. Therefore, in vitro experiments were conducted to investigate the effect of PCK1 inhibition with 3-mercaptopicolinic acid (3MPA) on lipid storage and adipocyte response during HS. In vitro culture of adipocytes under HS (41.0 °C) increased (P < 0.05) triacylglycerol accumulation compared with control (37.0 °C). HS increased (P < 0.05) reactive oxygen species level and 3MPA further upregulated (P < 0.05) its level. Heat shock protein 70 (HSP70) gene expression was induced (P < 0.05) by HS compared to control, and PCK1 inhibition with 3MPA attenuated (P < 0.05) its induction by HS. The endoplasmic reticulum (ER) stress markers, C/EBP homologous protein (CHOP) was also upregulated by HS and 3MPA further upregulated (P < 0.05) CHOP mRNA level. These results suggest that with inhibition of PCK1 during HS, in vitro cultured adipocytes were less able to induce adaptive responses such as upregulation of HSP70 and triglycerides, and this exacerbated ER stress during HS. Thus, PCK1 may function to alleviate ER stress that occurs during HS.

  9. The phosphoenolpyruvate/phosphate translocator is required for phenolic metabolism, palisade cell development, and plastid-dependent nuclear gene expression.

    PubMed

    Streatfield, S J; Weber, A; Kinsman, E A; Häusler, R E; Li, J; Post-Beittenmiller, D; Kaiser, W M; Pyke, K A; Flügge, U I; Chory, J

    1999-09-01

    The Arabidopsis chlorophyll a/b binding protein (CAB) gene underexpressed 1 (cue1) mutant underexpresses light-regulated nuclear genes encoding chloroplast-localized proteins. cue1 also exhibits mesophyll-specific chloroplast and cellular defects, resulting in reticulate leaves. Both the gene underexpression and the leaf cell morphology phenotypes are dependent on light intensity. In this study, we determine that CUE1 encodes the plastid inner envelope phosphoenolpyruvate/phosphate translocator (PPT) and define amino acid residues that are critical for translocator function. The biosynthesis of aromatics is compromised in cue1, and the reticulate phenotype can be rescued by feeding aromatic amino acids. Determining that CUE1 encodes PPT indicates the in vivo role of the translocator in metabolic partitioning and reveals a mesophyll cell-specific requirement for the translocator in Arabidopsis leaves. The nuclear gene expression defects in cue1 suggest that a light intensity-dependent interorganellar signal is modulated through metabolites dependent on a plastid supply of phosphoenolpyruvate.

  10. Evaluating death and activity decay of Anammox bacteria during anaerobic and aerobic starvation.

    PubMed

    Wang, Qilin; Song, Kang; Hao, Xiaodi; Wei, Jing; Pijuan, Maite; van Loosdrecht, Mark C M; Zhao, Huijun

    2018-06-01

    The decreased activity (i.e. decay) of anaerobic ammonium oxidation (Anammox) bacteria during starvation can be attributed to death (i.e. decrease in the amount of viable bacteria) and activity decay (i.e. decrease in the specific activity of viable bacteria). Although they are crucial for the operation of the Anammox process, they have never been comprehensively investigated. This study for the first time experimentally assessed death and activity decay of the Anammox bacteria during 84 days' starvation stress based on ammonium removal rate, Live/Dead staining and fluorescence in-situ hybridization. The anaerobic and aerobic decay rates of Anammox bacteria were determined as 0.015 ± 0.001 d -1 and 0.028 ± 0.001 d -1 , respectively, indicating Anammox bacteria would lose their activity more quickly in the aerobic starvation than in the anaerobic starvation. The anaerobic and aerobic death rates of Anammox bacteria were measured at 0.011 ± 0.001 d -1 and 0.025 ± 0.001 d -1 , respectively, while their anaerobic and aerobic activity decay rates were determined at 0.004 ± 0.001 d -1 and 0.003 ± 0.001 d -1 , respectively. Further analysis revealed that death accounted for 73 ± 4% and 89 ± 5% of the decreased activity of Anammox bacteria during anaerobic and aerobic starvations, and activity decay was only responsible for 27 ± 4% and 11 ± 5% of the decreased Anammox activity, respectively, over the same starvation periods. These deeply shed light on the response of Anammox bacteria to the starvation stress, which would facilitate operation and optimization of the Anammox process. Copyright © 2018 Elsevier Ltd. All rights reserved.

  11. An Immunological Strategy To Monitor In Situ the Phosphate Starvation State in Thiobacillus ferrooxidans

    PubMed Central

    Varela, Patricia; Levicán, Gloria; Rivera, Francisco; Jerez, Carlos A.

    1998-01-01

    Thiobacillus ferrooxidans is one of the chemolithoautotrophic bacteria important in industrial biomining operations. During the process of ore bioleaching, the microorganisms are subjected to several stressing conditions, including the lack of some essential nutrients, which can affect the rates and yields of bioleaching. When T. ferrooxidans is starved for phosphate, the cells respond by inducing the synthesis of several proteins, some of which are outer membrane proteins of high molecular weight (70,000 to 80,000). These proteins were considered to be potential markers of the phosphate starvation state of these microorganisms. We developed a single-cell immunofluorescence assay that allowed monitoring of the phosphate starvation condition of this biomining microorganism by measuring the increased expression of the surface proteins. In the presence of low levels of arsenate (2 mM), the growth of phosphate-starved T. ferrooxidans cells was greatly inhibited compared to that of control nonstarved cells. Therefore, the determination of the phosphorus nutritional state is particularly relevant when arsenic compounds are solubilized during the bioleaching of different ores. PMID:9835593

  12. Isothermal elastohydrodynamic lubrication of point contacts. 4: Starvation results

    NASA Technical Reports Server (NTRS)

    Hamrock, B. J.; Dowson, D.

    1976-01-01

    The influence of lubricant starvation on minimum film thickness was investigated by moving the inlet boundary closer to the contact center. The following expression was derived for the dimensionless inlet distance at the boundary between the fully flooded and starved conditions: m* = 1 + 3.06 ((R/b)(R/b)H) to the power 0.58, where R is the effective radius of curvature, b is the semiminor axis of the contact ellipse, and H is the central film thickness for fully flooded conditions. A corresponding expression was also given based on the minimum film thickness for fully flooded conditions. Therefore, for m m*, starvation occurs and, for m m*, a fully flooded condition exists. Two other expressions were also derived for the central and minimum film thicknesses for a starved condition. Contour plots of the pressure and the film thickness in and around the contact are shown for the fully flooded and starved lubricating conditions, from which the film thickness was observed to decrease substantially as starvation increases.

  13. dbl-1/TGF-β and daf-12/NHR Signaling Mediate Cell-Nonautonomous Effects of daf-16/FOXO on Starvation-Induced Developmental Arrest.

    PubMed

    Kaplan, Rebecca E W; Chen, Yutao; Moore, Brad T; Jordan, James M; Maxwell, Colin S; Schindler, Adam J; Baugh, L Ryan

    2015-12-01

    Nutrient availability has profound influence on development. In the nematode C. elegans, nutrient availability governs post-embryonic development. L1-stage larvae remain in a state of developmental arrest after hatching until they feed. This "L1 arrest" (or "L1 diapause") is associated with increased stress resistance, supporting starvation survival. Loss of the transcription factor daf-16/FOXO, an effector of insulin/IGF signaling, results in arrest-defective and starvation-sensitive phenotypes. We show that daf-16/FOXO regulates L1 arrest cell-nonautonomously, suggesting that insulin/IGF signaling regulates at least one additional signaling pathway. We used mRNA-seq to identify candidate signaling molecules affected by daf-16/FOXO during L1 arrest. dbl-1/TGF-β, a ligand for the Sma/Mab pathway, daf-12/NHR and daf-36/oxygenase, an upstream component of the daf-12 steroid hormone signaling pathway, were up-regulated during L1 arrest in a daf-16/FOXO mutant. Using genetic epistasis analysis, we show that dbl-1/TGF-β and daf-12/NHR steroid hormone signaling pathways are required for the daf-16/FOXO arrest-defective phenotype, suggesting that daf-16/FOXO represses dbl-1/TGF-β, daf-12/NHR and daf-36/oxygenase. The dbl-1/TGF-β and daf-12/NHR pathways have not previously been shown to affect L1 development, but we found that disruption of these pathways delayed L1 development in fed larvae, consistent with these pathways promoting development in starved daf-16/FOXO mutants. Though the dbl-1/TGF-β and daf-12/NHR pathways are epistatic to daf-16/FOXO for the arrest-defective phenotype, disruption of these pathways does not suppress starvation sensitivity of daf-16/FOXO mutants. This observation uncouples starvation survival from developmental arrest, indicating that DAF-16/FOXO targets distinct effectors for each phenotype and revealing that inappropriate development during starvation does not cause the early demise of daf-16/FOXO mutants. Overall, this study shows

  14. dbl-1/TGF-β and daf-12/NHR Signaling Mediate Cell-Nonautonomous Effects of daf-16/FOXO on Starvation-Induced Developmental Arrest

    PubMed Central

    Moore, Brad T.; Jordan, James M.; Maxwell, Colin S.; Schindler, Adam J.; Baugh, L. Ryan

    2015-01-01

    Nutrient availability has profound influence on development. In the nematode C. elegans, nutrient availability governs post-embryonic development. L1-stage larvae remain in a state of developmental arrest after hatching until they feed. This “L1 arrest” (or "L1 diapause") is associated with increased stress resistance, supporting starvation survival. Loss of the transcription factor daf-16/FOXO, an effector of insulin/IGF signaling, results in arrest-defective and starvation-sensitive phenotypes. We show that daf-16/FOXO regulates L1 arrest cell-nonautonomously, suggesting that insulin/IGF signaling regulates at least one additional signaling pathway. We used mRNA-seq to identify candidate signaling molecules affected by daf-16/FOXO during L1 arrest. dbl-1/TGF-β, a ligand for the Sma/Mab pathway, daf-12/NHR and daf-36/oxygenase, an upstream component of the daf-12 steroid hormone signaling pathway, were up-regulated during L1 arrest in a daf-16/FOXO mutant. Using genetic epistasis analysis, we show that dbl-1/TGF-β and daf-12/NHR steroid hormone signaling pathways are required for the daf-16/FOXO arrest-defective phenotype, suggesting that daf-16/FOXO represses dbl-1/TGF-β, daf-12/NHR and daf-36/oxygenase. The dbl-1/TGF-β and daf-12/NHR pathways have not previously been shown to affect L1 development, but we found that disruption of these pathways delayed L1 development in fed larvae, consistent with these pathways promoting development in starved daf-16/FOXO mutants. Though the dbl-1/TGF-β and daf-12/NHR pathways are epistatic to daf-16/FOXO for the arrest-defective phenotype, disruption of these pathways does not suppress starvation sensitivity of daf-16/FOXO mutants. This observation uncouples starvation survival from developmental arrest, indicating that DAF-16/FOXO targets distinct effectors for each phenotype and revealing that inappropriate development during starvation does not cause the early demise of daf-16/FOXO mutants. Overall, this study

  15. Resuscitation of starved anaerobic ammonium oxidation sludge system: Impacts of repeated short-term starvation.

    PubMed

    Ye, Lihong; Li, Dong; Zhang, Jie; Zeng, Huiping

    2018-05-04

    Starvation of biomass is common during underloading of bioreactors or sludge storage in biological wastewater treatment industries. The aim of this work was to study the impact of starvation modes on the nitrogen removal capacity of anaerobic ammonium oxidation (anammox) process in sequencing batch reactor (SBR). The repeated short-term starvation and reactivation experiments were performed to evaluate the response of anammox sludge system in the condition of 27 ± 1.5 °C and 320 min HRT. Moreover, the nitrogen removal ability of the anammox process was reactivated rapidly in the low substrate condition, then the total nitrogen (TN) removal efficiency reached 82.5%, with the effluent TN of around 14.6 mgNL -1 . The repeated short-term starvation (1 day-4 days) and recovery mode could improve the tolerance and apparent activity of anammox sludge system. The dominant species of general anaerobic ammonium oxidation bacteria (AnAOB) was Candidatus Brocadia, which had better self-adaption to repeated starvation. Copyright © 2018 Elsevier Ltd. All rights reserved.

  16. Analysis of starvation effects on hydrodynamic lubrication in nonconforming contacts

    NASA Technical Reports Server (NTRS)

    Brewe, D. E.; Hamrock, B. J.

    1981-01-01

    Numerical methods were used to determine the effects of lubricant starvation on the minimum film thickness under conditions of a hydrodynamic point contact. Starvation was effected by varying the fluid inlet level. The Reynolds boundary conditions were applied at the cavitation boundary and zero pressure was stipulated at the meniscus or inlet boundary. A minimum-fill-thickness equation as a function of both the ratio of dimensionless load to dimensionless speed and inlet supply level was determined. By comparing the film generated under the starved inlet condition with the film generated from the fully flooded inlet, an expression for the film reduction factor was obtained. Based on this factor a starvation threshold was defined as well as a critically starved inlet. The changes in the inlet pressure buildup due to changing the available lubricant supply are presented in the form of three dimensional isometric plots and also in the form of contour plots.

  17. SUB1 Plays a Negative Role during Starvation Induced Sporulation Program in Saccharomyces cerevisiae

    PubMed Central

    Gupta, Ritu; Vijayraghavan, Usha

    2015-01-01

    Saccharomyces cerevisiae Sub1 is involved in several cellular processes such as, transcription initiation, elongation, mRNA processing and DNA repair. It has also been reported to provide cellular resistance during conditions of oxidative DNA damage and osmotic stress. Here, we report a novel role of SUB1 during starvation stress-induced sporulation, which leads to meiosis and spore formation in diploid yeast cells. Deletion of SUB1 gene significantly increased sporulation efficiency as compared to the wild-type cells in S288c genetic background. Whereas, the sporulation functions of the sub1(Y66A) missense mutant were similar to Sub1. SUB1 transcript and protein levels are downregulated during sporulation, in highly synchronized and sporulation proficient wild-type SK1 cells. The changes in Sub1 levels during sporulation cascade correlate with the induction of middle sporulation gene expression. Deletion of SUB1 increased middle sporulation gene transcript levels with no effect on their induction kinetics. In wild-type cells, Sub1 associates with chromatin at these loci in a temporal pattern that correlates with their enhanced gene expression seen in sub1Δ cells. We show that SUB1 genetically interacts with HOS2, which led us to speculate that Sub1 might function with Set3 repressor complex during sporulation. Positive Cofactor 4, human homolog of Sub1, complemented the sub1Δ sporulation phenotype, suggesting conservation of function. Taken together, our results suggest that SUB1 acts as a negative regulator of sporulation. PMID:26147804

  18. SUB1 Plays a Negative Role during Starvation Induced Sporulation Program in Saccharomyces cerevisiae.

    PubMed

    Gupta, Ritu; Sadhale, Parag P; Vijayraghavan, Usha

    2015-01-01

    Saccharomyces cerevisiae Sub1 is involved in several cellular processes such as, transcription initiation, elongation, mRNA processing and DNA repair. It has also been reported to provide cellular resistance during conditions of oxidative DNA damage and osmotic stress. Here, we report a novel role of SUB1 during starvation stress-induced sporulation, which leads to meiosis and spore formation in diploid yeast cells. Deletion of SUB1 gene significantly increased sporulation efficiency as compared to the wild-type cells in S288c genetic background. Whereas, the sporulation functions of the sub1(Y66A) missense mutant were similar to Sub1. SUB1 transcript and protein levels are downregulated during sporulation, in highly synchronized and sporulation proficient wild-type SK1 cells. The changes in Sub1 levels during sporulation cascade correlate with the induction of middle sporulation gene expression. Deletion of SUB1 increased middle sporulation gene transcript levels with no effect on their induction kinetics. In wild-type cells, Sub1 associates with chromatin at these loci in a temporal pattern that correlates with their enhanced gene expression seen in sub1Δ cells. We show that SUB1 genetically interacts with HOS2, which led us to speculate that Sub1 might function with Set3 repressor complex during sporulation. Positive Cofactor 4, human homolog of Sub1, complemented the sub1Δ sporulation phenotype, suggesting conservation of function. Taken together, our results suggest that SUB1 acts as a negative regulator of sporulation.

  19. Regulation of mATG9 trafficking by Src- and ULK1-mediated phosphorylation in basal and starvation-induced autophagy.

    PubMed

    Zhou, Changqian; Ma, Kaili; Gao, Ruize; Mu, Chenglong; Chen, Linbo; Liu, Qiangqiang; Luo, Qian; Feng, Du; Zhu, Yushan; Chen, Quan

    2017-02-01

    Autophagy requires diverse membrane sources and involves membrane trafficking of mATG9, the only membrane protein in the ATG family. However, the molecular regulation of mATG9 trafficking for autophagy initiation remains unclear. Here we identified two conserved classic adaptor protein sorting signals within the cytosolic N-terminus of mATG9, which mediate trafficking of mATG9 from the plasma membrane and trans-Golgi network (TGN) via interaction with the AP1/2 complex. Src phosphorylates mATG9 at Tyr8 to maintain its endocytic and constitutive trafficking in unstressed conditions. In response to starvation, phosphorylation of mATG9 at Tyr8 by Src and at Ser14 by ULK1 functionally cooperate to promote interactions between mATG9 and the AP1/2 complex, leading to redistribution of mATG9 from the plasma membrane and juxta-nuclear region to the peripheral pool for autophagy initiation. Our findings uncover novel mechanisms of mATG9 trafficking and suggest a coordination of basal and stress-induced autophagy.

  20. On the resilience of nitrogen assimilation by intact roots under starvation, as revealed by isotopic and metabolomic techniques.

    PubMed

    Bathellier, Camille; Tcherkez, Guillaume; Mauve, Caroline; Bligny, Richard; Gout, Elizabeth; Ghashghaie, Jaleh

    2009-09-01

    The response of root metabolism to variations in carbon source availability is critical for whole-plant nitrogen (N) assimilation and growth. However, the effect of changes in the carbohydrate input to intact roots is currently not well understood and, for example, both smaller and larger values of root:shoot ratios or root N uptake have been observed so far under elevated CO(2). In addition, previous studies on sugar starvation mainly focused on senescent or excised organs while an increasing body of data suggests that intact roots may behave differently with, for example, little protein remobilization. Here, we investigated the carbon and nitrogen primary metabolism in intact roots of French bean (Phaseolus vulgaris L.) plants maintained under continuous darkness for 4 days. We combined natural isotopic (15)N/(14)N measurements, metabolomic and (13)C-labeling data and show that intact roots continued nitrate assimilation to glutamate for at least 3 days while the respiration rate decreased. The activity of the tricarboxylic acid cycle diminished so that glutamate synthesis was sustained by the anaplerotic phosphoenolpyruvate carboxylase fixation. Presumably, the pentose phosphate pathway contributed to provide reducing power for nitrate reduction. All the biosynthetic metabolic fluxes were nevertheless down-regulated and, consequently, the concentration of all amino acids decreased. This is the case of asparagine, strongly suggesting that, as opposed to excised root tips, protein remobilization in intact roots remained very low for 3 days in spite of the restriction of respiratory substrates. Copyright (c) 2009 John Wiley & Sons, Ltd.

  1. Proteomic Adaptations to Starvation Prepare Escherichia coli for Disinfection Tolerance

    PubMed Central

    Du, Zhe; Nandakumar, Renu; Nickerson, Kenneth; Li, Xu

    2015-01-01

    Despite the low nutrient level and constant presence of secondary disinfectants, bacterial re-growth still occurs in drinking water distribution systems. The molecular mechanisms that starved bacteria use to survive low-level chlorine-based disinfectants are not well understood. The objective of this study is to investigate these molecular mechanisms at the protein level that prepare starved cells for disinfection tolerance. Two commonly used secondary disinfectants chlorine and monochloramine, both at 1 mg/L, were used in this study. The proteomes of normal and starved Escherichia coli (K12 MG1655) cells were studied using quantitative proteomics. Over 60-min disinfection, starved cells showed significantly higher disinfection tolerance than normal cells based on the inactivation curves for both chlorine and monochloramine. Proteomic analyses suggest that starvation may prepare cells for the oxidative stress that chlorine-based disinfection will cause by affecting glutathione metabolism. In addition, proteins involved in stress regulation and stress responses were among the ones up-regulated under both starvation and chlorine/monochloramine disinfection. By comparing the fold changes under different conditions, it is suggested that starvation prepares E. coli for disinfection tolerance by increasing the expression of enzymes that can help cells survive chlorine/monochloramine disinfection. Protein co-expression analyses show that proteins in glycolysis and pentose phosphate pathway that were up-regulated under starvation are also involved in disinfection tolerance. Finally, the production and detoxification of methylglyoxal may be involved in the chlorine-based disinfection and cell defense mechanisms. PMID:25463932

  2. Salt Stress Increases the Level of Translatable mRNA for Phosphoenolpyruvate Carboxylase in Mesembryanthemum crystallinum1

    PubMed Central

    Ostrem, James A.; Olson, Steve W.; Schmitt, Jürgen M.; Bohnert, Hans J.

    1987-01-01

    Mesembryanthemum crystallinum responds to salt stress by switching from C3 photosynthesis to Crassulacean acid metabolism (CAM). During this transition the activity of phosphoenolpyruvate carboxylase (PEPCase) increases in soluble protein extracts from leaf tissue. We monitored CAM induction in plants irrigated with 0.5 molar NaCl for 5 days during the fourth, fifth, and sixth week after germination. Our results indicate that the age of the plant influenced the response to salt stress. There was no increase in PEPCase protein or PEPCase enzyme activity when plants were irrigated with 0.5 molar NaCl during the fourth and fifth week after germination. However, PEPCase activity increased within 2 to 3 days when plants were salt stressed during the sixth week after germination. Immunoblot analysis with anti-PEPCase antibodies showed that PEPCase synthesis was induced in both expanded leaves and in newly developing axillary shoot tissue. The increase in PEPCase protein was paralleled by an increase in PEPCase mRNA as assayed by immunoprecipitation of PEPCase from the in vitro translation products of RNA from salt-stressed plants. These results demonstrate that salinity increased the level of PEPCase in leaf and shoot tissue via a stress-induced increase in the steady-state level of translatable mRNA for this enzyme. Images Fig. 2 Fig. 3 Fig. 4 PMID:16665596

  3. Long-term starvation and subsequent recovery of nitrifiers in aerated submerged fixed-bed biofilm reactors.

    PubMed

    Elawwad, Abdelsalam; Sandner, Hendrik; Kappelmeyer, Uwe; Koeser, Heinz

    2013-01-01

    The effectiveness of three operational strategies for maintaining nitrifiers in bench-scale, aerated, submerged fixed-bed biofilm reactors (SFBBRs) during long-term starvation at 20 degrees C were evaluated. The operational strategies were characterized by the resulting oxidation-reduction potential (ORP) in the SFBBRs. The activity rates of the nitrifiers were measured and the activity decay was expressed by half-life times. It was found that anoxic and alternating anoxic/aerobic conditions were the best ways to preserve ammonia-oxidizing bacteria (AOB) during long starvation periods and resulted in half-life times of up to 34 and 28 days, respectively. Extended anaerobic conditions caused the half-life for AOB to decrease to 21 days. In comparison, the activity decay of nitrite-oxidizing bacteria (NOB) tended to be slightly faster. The activity of AOB biofilms that were kept for 97 days under anoxic conditions could be completely recovered in less than one week, while over 4 weeks was needed for AOB kept under anaerobic conditions. NOB were more sensitive to starvation and required longer recovery periods than AOB. For complete recovery, NOB needed approximately 7 weeks, regardless of the starvation conditions applied. Using the fluorescence in situ hybridization (FISH) technique, Nitrospira was detected as the dominant NOB genus. Among the AOB, the terminal restriction fragment length polymorphism (TRFLP) technique showed that during starvation and recovery periods, the relative frequency of species shifted to Nitrosomonas europaea/eutropha, regardless of the starvation condition. The consequences of these findings for the operation of SFBBRs under low-load and starvation conditions are discussed.

  4. Heat- and humidity-induced plastic changes in body lipids and starvation resistance in the tropical fly Zaprionus indianus during wet and dry seasons.

    PubMed

    Girish, T N; Pradeep, B E; Parkash, Ravi

    2018-05-04

    Insects in tropical wet or dry seasons are likely to cope with starvation stress through plastic changes (developmental as well as adult acclimation) in energy metabolites. Control and experimental groups of Zaprionus indianus flies were reared under wet or dry conditions, but adults were acclimated at different thermal or humidity conditions. Adult flies of the control group were acclimated at 27°C and low (50%) or high (60%) relative humidity (RH). For experimental groups, adult flies were acclimated at 32°C for 1 to 6 days and under low (40%) or high (70%) RH. For humidity acclimation, adult flies were acclimated at 27°C but under low (40%) or high (70%) RH for 1 to 6 days. Plastic changes in experimental groups as compared with the control group (developmental as well as adult acclimation) revealed significant accumulation of body lipids owing to thermal or humidity acclimation of wet season flies, but low humidity acclimation did not change the level of body lipids in dry season flies. Starvation resistance and body lipids were higher in the males of dry season flies but in the females of wet season flies. Adults acclimated under different thermal or humidity conditions exhibited changes in the rate of utilization of body lipids, carbohydrates and proteins. Adult acclimation of wet or dry season flies revealed plastic changes in mean daily fecundity; and a reduction in fecundity under starvation. Thus, thermal or humidity acclimation of adults revealed plastic changes in energy metabolites to support starvation resistance of wet or dry season flies. © 2018. Published by The Company of Biologists Ltd.

  5. Environmental Control of Phosphoenolpyruvate Carboxylase Induction in Mature Mesembryanthemum crystallinum L. 1

    PubMed Central

    Piepenbrock, Mechtild; Schmitt, Jürgen M.

    1991-01-01

    Mesembryanthemum crystallinum L. plants shift the mode of carbon assimilation from C3 to Crassulacean acid metabolism when stressed by high salinity. A prerequisite for Crassulacean acid metabolism induction is the synthesis of phosphoenolpyruvate carboxylase (PEPCase). A moderate increase in the abundance of PEPCase transcripts and activity is observed in 7-week-old, well-watered plants. This increase in PEPCase coincides in time with a decrease in the growth rate of the shoots. The steady-state level of PEPCase activity is uniform along the leaves of well-watered plants, as can be shown by comparing leaves of different age from individual 7-week-old plants. In contrast, the rate of induction in response to salt stress varies with the age of plants and to a lesser extent with the age of the leaves. Two-week-old seedlings induce PEPCase slowly under a moderate salt stress regimen, whereas older plants induce faster. When individual leaves from a seven-week-old plant are compared with respect to induction velocity, no clear-cut correlation with leaf age is apparent. The highest induction rate is observed in leaves from node five that are about 2 weeks old at the beginning of the experiment. PEPCase transcripts are readily down-regulated to minute levels when detached leaves are hydrated. The levels reached after 8 hours of rehydration are very similar, regardless of whether the leaves were cut from young or old plants or whether the plants were previously salt-stressed or well-watered. It is concluded that environmental rather than developmental factors are predominant in determining abundance of PEPCase activity and transcripts in leaves of mature M. crystallinum plants. ImagesFigure 1Figure 3Figure 5 PMID:16668542

  6. Changes in the midgut cells in the European cave spider, Meta menardi, during starvation in spring and autumn.

    PubMed

    Lipovšek, Saška; Leitinger, Gerd; Novak, Tone; Janžekovič, Franc; Gorgoń, Szymon; Kamińska, Karolina; Rost-Roszkowska, Magdalena

    2018-03-01

    During the growth period, in surface habitats, spiders catch enough prey to feed normally. In contrast, in the cave entrance zone, prey may be relatively scarce. Meta menardi inhabits this cave section, resulting in temporary starvation. We studied structural changes in the midgut epithelial cells of M. menardi during a short-term and a medium-term controlled starvation to mimic the occasional starvation in caves, during spring and autumn. Digestive cells, secretory cells and adipocytes were examined before the experimental starvation, in the middle and at the end of starvation. We used light microscopy, transmission electron microscopy and specific histochemical methods for the detection of lipids, polysaccharides and proteins. Detection of lysosomes, autolysosomes and apoptosis was also carried out. The general structures of the cells did not change during the experimental starvation in either season, while some specific differences in the ultrastructure were observed. In both sexes, in both seasons, the amounts of lipids, glycogen and proteins decreased during starvation. Larger amounts of lipids were found in autumn, while there were no significant differences in the amounts of glycogen and proteins. In both sexes, in both seasons, autophagy and apoptosis intensified with starvation in progress, but more intensively in females. Thus, autumn individuals, in contrast to spring ones, compile energy-supplying stores to confront the subsequent winter deficiency of prey in caves, while the cellular ultrastructures undergo the same starvation-dependant changes at any time during the growth period.

  7. Transcript level coordination of carbon pathways during silicon starvation-induced lipid accumulation in the diatom Thalassiosira pseudonana

    DOE PAGES

    Smith, Sarah R.; Gle, Corine; Abbriano, Raffaela M.; ...

    2016-02-04

    Diatoms are one of the most productive and successful photosynthetic taxa on Earth and possess attributes such as rapid growth rates and production of lipids, making them candidate sources of renewable fuels. Despite their significance, few details of the mechanisms used to regulate growth and carbon metabolism are currently known, hindering metabolic engineering approaches to enhance productivity. To characterize the transcript level component of metabolic regulation, genome-wide changes in transcript abundance were documented in the model diatom Thalassiosira pseudonana on a time-course of silicon starvation. Growth, cell cycle progression, chloroplast replication, fatty acid composition, pigmentation, and photosynthetic parameters were characterizedmore » alongside lipid accumulation. Extensive coordination of large suites of genes was observed, highlighting the existence of clusters of coregulated genes as a key feature of global gene regulation in T. pseudonana. The identity of key enzymes for carbon metabolic pathway inputs (photosynthesis) and outputs (growth and storage) reveals these clusters are organized to synchronize these processes. Coordinated transcript level responses to silicon starvation are probably driven by signals linked to cell cycle progression and shifts in photophysiology. A mechanistic understanding of how this is accomplished will aid efforts to engineer metabolism for development of algal-derived biofuels.« less

  8. The response and recovery of the Arabidopsis thaliana transcriptome to phosphate starvation.

    PubMed

    Woo, Jongchan; MacPherson, Cameron Ross; Liu, Jun; Wang, Huan; Kiba, Takatoshi; Hannah, Matthew A; Wang, Xiu-Jie; Bajic, Vladimir B; Chua, Nam-Hai

    2012-05-03

    Over application of phosphate fertilizers in modern agriculture contaminates waterways and disrupts natural ecosystems. Nevertheless, this is a common practice among farmers, especially in developing countries as abundant fertilizers are believed to boost crop yields. The study of plant phosphate metabolism and its underlying genetic pathways is key to discovering methods of efficient fertilizer usage. The work presented here describes a genome-wide resource on the molecular dynamics underpinning the response and recovery in roots and shoots of Arabidopsis thaliana to phosphate-starvation. Genome-wide profiling by micro- and tiling-arrays (accessible from GEO: GSE34004) revealed minimal overlap between root and shoot transcriptomes suggesting two independent phosphate-starvation regulons. Novel gene expression patterns were detected for over 1000 candidates and were classified as either initial, persistent, or latent responders. Comparative analysis to AtGenExpress identified cohorts of genes co-regulated across multiple stimuli. The hormone ABA displayed a dominant role in regulating many phosphate-responsive candidates. Analysis of co-regulation enabled the determination of specific versus generic members of closely related gene families with respect to phosphate-starvation. Thus, among others, we showed that PHR1-regulated members of closely related phosphate-responsive families (PHT1;1, PHT1;7-9, SPX1-3, and PHO1;H1) display greater specificity to phosphate-starvation than their more generic counterparts. Our results uncover much larger, staged responses to phosphate-starvation than previously described. To our knowledge, this work describes the most complete genome-wide data on plant nutrient stress to-date.

  9. Hepatitis B Virus X protein elevates Parkin-mediated mitophagy through Lon Peptidase in starvation.

    PubMed

    Huang, Xiao-Yun; Li, Dan; Chen, Zhi-Xin; Huang, Yue-Hong; Gao, Wen-Yu; Zheng, Bi-Yun; Wang, Xiao-Zhong

    2018-07-01

    Hepatocellular Carcinoma (HCC) is the fifth most prevalent cancer worldwide. Specially, Hepatitis B viurs X protein (HBx) is a leading factor in the progression of Hepatitis B viurs-related HCC. Nutrient-deprived tumor microenvironment also contributes to tumor development. However, the role of HBx in nutrient-deprived HCC has received little investigation. Here, we show that HBx elevates PINK1-Parkin mediating mitophagy in starvation. HBx not only increases the PINK1/Parkin gene expression but also accelerates Parkin recruitment to partial mitochondria. Further analysis indicates that, HBx either promotes mitochondrial unfolded protein response, with remarkable mitochondrial LONP1 increases, or reduces LONP1 expression in cytosol inducing LONP1-Parkin pathway, both consequently enhancing mitophagy. Moreover, the enhanced mitophagy lowers mitochondrial apoptosis in starved hepatoma cells, and Bax is implied in the machinery. In addition, we define differential centrifuge, 3000 g or 12,000 g to pellet mitochondria, as an effective method to obtain distinct mitochondria. In collect, HBx regulates diverse aspects of LONP1 and Parkin, enhancing mitophagy in starvation. This study may shed new insights into the machinery development of hepatocellular carcinoma. Copyright © 2018 The Authors. Published by Elsevier Inc. All rights reserved.

  10. Proteomic adaptations to starvation prepare Escherichia coli for disinfection tolerance.

    PubMed

    Du, Zhe; Nandakumar, Renu; Nickerson, Kenneth W; Li, Xu

    2015-02-01

    Despite the low nutrient level and constant presence of secondary disinfectants, bacterial re-growth still occurs in drinking water distribution systems. The molecular mechanisms that starved bacteria use to survive low-level chlorine-based disinfectants are not well understood. The objective of this study is to investigate these molecular mechanisms at the protein level that prepare starved cells for disinfection tolerance. Two commonly used secondary disinfectants chlorine and monochloramine, both at 1 mg/L, were used in this study. The proteomes of normal and starved Escherichia coli (K12 MG1655) cells were studied using quantitative proteomics. Over 60-min disinfection, starved cells showed significantly higher disinfection tolerance than normal cells based on the inactivation curves for both chlorine and monochloramine. Proteomic analyses suggest that starvation may prepare cells for the oxidative stress that chlorine-based disinfection will cause by affecting glutathione metabolism. In addition, proteins involved in stress regulation and stress responses were among the ones up-regulated under both starvation and chlorine/monochloramine disinfection. By comparing the fold changes under different conditions, it is suggested that starvation prepares E. coli for disinfection tolerance by increasing the expression of enzymes that can help cells survive chlorine/monochloramine disinfection. Protein co-expression analyses show that proteins in glycolysis and pentose phosphate pathway that were up-regulated under starvation are also involved in disinfection tolerance. Finally, the production and detoxification of methylglyoxal may be involved in the chlorine-based disinfection and cell defense mechanisms. Copyright © 2014 Elsevier Ltd. All rights reserved.

  11. Eggs and hatchlings variations in desert locusts: phase related characteristics and starvation tolerance

    PubMed Central

    Maeno, Koutaro O.; Piou, Cyril; Ould Babah, Mohamed A.; Nakamura, Satoshi

    2013-01-01

    Locusts are grasshopper species that express phase polyphenism: modifying their behavior, morphology, coloration, life history and physiology in response to crowding. Desert locusts, Schistocerca gregaria, epigenetically modify progeny quality and quantity in response to crowding. Gregarious (crowded) females produce larger but fewer progeny than do solitarious (isolated) ones. The variability of progeny quality within single egg pod and the reasons why gregarious progeny have a better survival rate than solitarious ones remains unclear. This study investigated 1) the effects of rearing density on the variation in egg size within single egg pods 2) the starvation tolerance of hatchlings from mothers with different phases and 3) the physiological differences in hatchling energy reserve. Isolated females produced smaller but more eggs than did crowded ones. The variation in egg size within egg pods was greater in the latter than in the former. A negative relationship between egg size and number of eggs per egg pod was observed for both groups. Under starvation conditions, gregarious hatchlings survived significantly longer than solitarious ones. Among the solitarious hatchlings, the survival time was longer with increased hatchling body size. However, small individuals survived as long as large ones among the gregarious hatchlings. The percentage of water content per fresh body weight was almost equal between the two phases, before and after starvation. In contrast, the percentage of lipid content per dry body weight was significantly higher in gregarious hatchlings than in solitarious ones before starvation, but became almost equal after starvation. These results demonstrate that female locusts not only trade-off to modify their progeny size and number, but also vary progenies' energy reserves. We hypothesize that gregarious females enhance their fitness by producing progeny differently adapted to high environmental variability and particularly to starvation

  12. [Effects of starvation on the consumption of energy sources and swimming performance in juvenile Gambusia affinis and Tanichthys albonubes].

    PubMed

    Li, Jiang-tao; Lin, Xiao-tao; Zhou, Chen-hui; Zeng, Peng; Xu, Zhong-neng; Sun, Jun

    2016-01-01

    To explore the consumption of energy sources and swimming performance of juvenile Gambusia affinis and Tanichthys albonubes after starvation, contents of glycogen, lipid and protein, burst swimming speeds (Uburst), and critical swimming speeds (Ucrit) at different starvation times (0, 10, 20, 30 and 40 days) were evaluated. The results showed that, at 0 day, contents of glycogen and lipid were significantly lower in G. affinis than those in T. albonubes, whereas no significant difference in content of protein between two experimental fish was found. Swimming speeds in G. affinis were significantly lower than those in T. albonubes for all swimming performances. After different starvation scenarios, content of glycogen both in G. affinis and T. albonubes decreased significantly in power function trend with starvation time and were close to zero after starvation for 10 days, whereas the contents of lipid and protein were linearly significantly decreased. The slope of line regression equation between content of lipid and starvation time in G. affinis was significantly lower than that in T. albonubes, whereas there was a significantly higher slope of line equation between content of protein and starvation time in G. affinis. 40 days later, the consumption rate of glycogen both in G. affinis and T. albonubes were significantly higher than that of lipid, while the consumption rate of protein was the least. Consumption amounts of glycogen in all experimental fish were the least, G. affinis consumed more protein than lipid, and T. albonubes consumed more lipid than protein. Uburst and Ucrit decreased significantly linearly with starvation time for all experimental fish. Slope of linear equation between Uburst and starvation time was not significantly different between G. affinis and T. albonubes. However, the straight slope between Ucrit and starvation time was significantly lower in G. affinis than that in T. albonubes. These findings indicated that there was close

  13. Proteinase pattern in Trametes versicolor in response to carbon and nitrogen starvation.

    PubMed

    Staszczak, M; Nowak, G

    1984-01-01

    In stationary cultures of Trametes versicolor seven proteinase bands were revealed by electrophoresis in mycelium and five in the medium. Under conditions of nitrogen starvation the number of bands in mycelium was unchanged whereas one extracellular proteinase was missing. In the case of carbon starvation one new intracellular proteinase activity appeared and one extracellular activity disappeared. Moreover, in all starved cultures distinct differences in the intensity of particular bands were observed.

  14. Proteasome storage granules protect proteasomes from autophagic degradation upon carbon starvation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Marshall, Richard S.; Vierstra, Richard D.

    26S proteasome abundance is tightly regulated at multiple levels, including the elimination of excess or inactive particles by autophagy. In yeast, this proteaphagy occurs upon nitrogen starvation but not carbon starvation, which instead stimulates the rapid sequestration of proteasomes into cytoplasmic puncta termed proteasome storage granules (PSGs). Here, we show that PSGs help protect proteasomes from autophagic degradation. Both the core protease and regulatory particle sub-complexes are sequestered separately into PSGs via pathways dependent on the accessory proteins Blm10 and Spg5, respectively. Modulating PSG formation, either by perturbing cellular energy status or pH, or by genetically eliminating factors required formore » granule assembly, not only influences the rate of proteasome degradation, but also impacts cell viability upon recovery from carbon starvation. PSG formation and concomitant protection against proteaphagy also occurs in Arabidopsis, suggesting that PSGs represent an evolutionarily conserved cache of proteasomes that can be rapidly re-mobilized based on energy availability.« less

  15. Proteasome storage granules protect proteasomes from autophagic degradation upon carbon starvation

    DOE PAGES

    Marshall, Richard S.; Vierstra, Richard D.

    2018-04-06

    26S proteasome abundance is tightly regulated at multiple levels, including the elimination of excess or inactive particles by autophagy. In yeast, this proteaphagy occurs upon nitrogen starvation but not carbon starvation, which instead stimulates the rapid sequestration of proteasomes into cytoplasmic puncta termed proteasome storage granules (PSGs). Here, we show that PSGs help protect proteasomes from autophagic degradation. Both the core protease and regulatory particle sub-complexes are sequestered separately into PSGs via pathways dependent on the accessory proteins Blm10 and Spg5, respectively. Modulating PSG formation, either by perturbing cellular energy status or pH, or by genetically eliminating factors required formore » granule assembly, not only influences the rate of proteasome degradation, but also impacts cell viability upon recovery from carbon starvation. PSG formation and concomitant protection against proteaphagy also occurs in Arabidopsis, suggesting that PSGs represent an evolutionarily conserved cache of proteasomes that can be rapidly re-mobilized based on energy availability.« less

  16. Effects of heat stress and starvation on clonal odontoblast-like cells.

    PubMed

    Morotomi, Takahiko; Kitamura, Chiaki; Toyono, Takashi; Okinaga, Toshinori; Washio, Ayako; Saito, Noriko; Nishihara, Tatsuji; Terashita, Masamichi; Anan, Hisashi

    2011-07-01

    Heat stress during restorative procedures, particularly under severe starvation conditions, can trigger damage to dental pulp. In the present study, we examined effects of heat stress on odontoblastic activity and inflammatory responses in an odontoblast-like cell line (KN-3) under serum-starved conditions. Viability, nuclear structures, and inflammatory responses of KN-3 cells were examined in culture medium containing 10% or 1% serum after exposure to heat stress at 43°C for 45 minutes. Gene expression of extracellular matrices, alkaline phosphatase activity, and detection of extracellular calcium deposition in cells exposed to heat stress were also examined. Reduced viability and apoptosis were transiently induced in KN-3 cells during the initial phases after heat stress; thereafter, cells recovered their viability. The cytotoxic effects of heat stress were enhanced under serum-starved conditions. Heat stress also strongly up-regulated expression of heat shock protein 25 as well as transient expression of tumor necrosis factor-alpha, interleukin-6, and cyclooxygenase-2 in KN-3 cells. In contrast, expression of type-1 collagen, runt-related transcription factor 2, and dentin sialophosphoprotein were not inhibited by heat stress although starvation suppressed ALP activity and delayed progression of calcification. Odontoblast-like cells showed thermoresistance with transient inflammatory responses and without loss of calcification activity, and their thermoresistance and calcification activity were influenced by nutritional status. Copyright © 2011 American Association of Endodontists. Published by Elsevier Inc. All rights reserved.

  17. Drought tolerance and proteomics studies of transgenic wheat containing the maize C4 phosphoenolpyruvate carboxylase (PEPC) gene.

    PubMed

    Qin, Na; Xu, Weigang; Hu, Lin; Li, Yan; Wang, Huiwei; Qi, Xueli; Fang, Yuhui; Hua, Xia

    2016-11-01

    Enhancing drought tolerance of crops has been a great challenge in crop improvement. Here, we report the maize phosphoenolpyruvate carboxylase (PEPC) gene was able to confer drought tolerance and increase grain yield in transgenic wheat (Triticum aestivum L.) plants. The improved of drought tolerance was associated with higher levels of proline, soluble sugar, soluble protein, and higher water use efficiency. The transgenic wheat plants had also a more extensive root system as well as increased photosynthetic capacity during stress treatments. The increased grain yield of the transgenic wheat was contributed by improved biomass, larger spike and grain numbers, and heavier 1000-grain weight under drought-stress conditions. Under non-stressed conditions, there were no significant increases in these of the measured traits except for photosynthetic rate when compared with parental wheat. Proteomic research showed that the expression levels of some proteins, including chlorophyll A-B binding protein and pyruvate, phosphate dikinase, which are related to photosynthesis, PAP fibrillin, which is involved in cytoskeleton synthesis, S-adenosylmethionine synthetase, which catalyzes methionine synthesis, were induced in the transgenic wheat under drought stress. Additionally, the expression of glutamine synthetase, which is involved in ammonia assimilation, was induced by drought stress in the wheat. Our study shows that PEPC can improve both stress tolerance and grain yield in wheat, demonstrating the efficacy of PEPC in crop improvement.

  18. The Critical Role of Arabidopsis Electron-Transfer Flavoprotein:Ubiquinone Oxidoreductase during Dark-Induced StarvationW⃞

    PubMed Central

    Ishizaki, Kimitsune; Larson, Tony R.; Schauer, Nicolas; Fernie, Alisdair R.; Graham, Ian A.; Leaver, Christopher J.

    2005-01-01

    In mammals, electron-transfer flavoprotein:ubiquinone oxidoreductase (ETFQO) and electron-transfer flavoprotein (ETF) are functionally associated, and ETF accepts electrons from at least nine mitochondrial matrix flavoprotein dehydrogenases and transfers them to ubiquinone in the inner mitochondrial membrane. In addition, the mammalian ETF/ETFQO system plays a key role in β-oxidation of fatty acids and catabolism of amino acids and choline. By contrast, nothing is known of the function of ETF and ETFQO in plants. Sequence analysis of the unique Arabidopsis thaliana homologue of ETFQO revealed high similarity to the mammalian ETFQO protein. Moreover, green fluorescent protein cellular localization experiments suggested a mitochondrial location for this protein. RNA gel blot analysis revealed that Arabidopsis ETFQO transcripts accumulated in long-term dark-treated leaves. Analysis of three independent insertional mutants of Arabidopsis ETFQO revealed a dramatic reduction in their ability to withstand extended darkness, resulting in senescence and death within 10 d after transfer, whereas wild-type plants remained viable for at least 15 d. Metabolite profiling of dark-treated leaves of the wild type and mutants revealed a dramatic decline in sugar levels. In contrast with the wild type, the mutants demonstrated a significant accumulation of several amino acids, an intermediate of Leu catabolism, and, strikingly, high-level accumulation of phytanoyl-CoA. These data demonstrate the involvement of a mitochondrial protein, ETFQO, in the catabolism of Leu and potentially of other amino acids in higher plants and also imply a novel role for this protein in the chlorophyll degradation pathway activated during dark-induced senescence and sugar starvation. PMID:16055629

  19. Coupling and uncoupling of triglyceride and beta-carotene production by Dunaliella salina under nitrogen limitation and starvation.

    PubMed

    Bonnefond, Hubert; Moelants, Nina; Talec, Amélie; Mayzaud, Patrick; Bernard, Olivier; Sciandra, Antoine

    2017-01-01

    Nitrogen starvation and limitation are known to induce important physiological changes especially in lipid metabolism of microalgae (triglycerides, membrane lipids, beta-carotene, etc.). Although little information is available for Dunaliella salina , it is a promising microalga for biofuel production and biotechnological applications due to its ability to accumulate lipid together with beta-carotene. Batch and chemostat experiments with various degrees of nitrogen limitation, ranging from starvation to nitrogen-replete conditions, were carried out to study carbon storage dynamics (total carbon, lipids, and beta-carotene) in steady state cultures of D. salina . A new protocol was developed in order to manage the very high beta-carotene concentrations and to more accurately separate and quantify beta-carotene and triglycerides by chromatography. Biomass evolution was appropriately described by the Droop model on the basis of the nitrogen quota dynamics. Triglycerides and beta-carotene were both strongly anti-correlated with nitrogen quota highlighting their carbon sink function in nitrogen depletion conditions. Moreover, these two valuable molecules were correlated each other for nitrogen replete conditions or moderated nitrogen limitations (N:C ratio higher than 0.04). Under nitrogen starvation, i.e., for very low N:C ratio, the dynamic revealed, for the first time, uncoupled part (higher triglyceride accumulation than beta-carotene), possibly because of shortage in key proteins involved in the stabilization of lipid droplets. This study motivates the accurate control of the microalgal nitrogen quota in order to optimize lipid productivity.

  20. Biotin starvation causes mitochondrial protein hyperacetylation and partial rescue by the SIRT3-like deacetylase Hst4p

    PubMed Central

    Madsen, Christian T.; Sylvestersen, Kathrine B.; Young, Clifford; Larsen, Sara C.; Poulsen, Jon W.; Andersen, Marianne A.; Palmqvist, Eva A.; Hey-Mogensen, Martin; Jensen, Per B.; Treebak, Jonas T.; Lisby, Michael; Nielsen, Michael L.

    2015-01-01

    The essential vitamin biotin is a covalent and tenaciously attached prosthetic group in several carboxylases that play important roles in the regulation of energy metabolism. Here we describe increased acetyl-CoA levels and mitochondrial hyperacetylation as downstream metabolic effects of biotin deficiency. Upregulated mitochondrial acetylation sites correlate with the cellular deficiency of the Hst4p deacetylase, and a biotin-starvation-induced accumulation of Hst4p in mitochondria supports a role for Hst4p in lowering mitochondrial acetylation. We show that biotin starvation and knockout of Hst4p cause alterations in cellular respiration and an increase in reactive oxygen species (ROS). These results suggest that Hst4p plays a pivotal role in biotin metabolism and cellular energy homeostasis, and supports that Hst4p is a functional yeast homologue of the sirtuin deacetylase SIRT3. With biotin deficiency being involved in various metabolic disorders, this study provides valuable insight into the metabolic effects biotin exerts on eukaryotic cells. PMID:26158509

  1. Regulation of Phosphoenolpyruvate Carboxylase and Crassulacean Acid Metabolism Induction in Mesembryanthemum crystallinum L. by Cytokinin 1

    PubMed Central

    Schmitt, Jürgen M.; Piepenbrock, Mechtild

    1992-01-01

    Phosphoenolpyruvate carboxylase (PEPCase), the key enzyme of Crassulacean acid metabolism, is induced by water stress in leaves of Mesembryanthemum crystallinum. In water-stressed plants or excised leaves, exogenous cytokinin suppresses PEPCase transcript accumulation in the leaves. Cytokinin (6-benzylaminopurine) used in concentrations from 5 to 500 micromolar (a) inhibits the upregulation of PEPCase transcripts, enzyme activity, and Crassulacean acid metabolism induction in salt-stressed intact plants when sprayed once daily during the stress period, (b) inhibits the accumulation of PEPCase mRNA in leaves from well-watered plants, (c) down-regulates PEPCase transcripts within 8 hours in prestressed, intact plants after a single spraying of an individual leaf, (d) inhibits accumulation of PEPCase transcripts in excised, wilting leaves, and (e) accelerates the net decrease of PEPCase transcripts in excised leaves from prestressed plants under rehydration conditions. When roots, the main site of cytokinin biosynthesis, are excised, PEPCase induction under drought stress is intensified. We propose that roots, acting as sensors of soil water status, may regulate PEPCase gene expression in the leaves with cytokinin as a signal transducer. ImagesFigure 2Figure 7 PMID:16669088

  2. Requirement of the isocitrate lyase gene ICL1 for VPS41-mediated starvation response in Cryptococcus neoformans.

    PubMed

    Xu, Zhe; Zhi, Yafei; Dong, Jianzhang; Lin, Benfeng; Ye, Di; Liu, Xiaoguang

    2016-07-01

    Cryptococcus neoformans is a major cause of fungal meningitis in individuals with impaired immunity. Our previous studies have shown that the VPS41 gene plays a critical role in the survival of Cryptococcus neoformans under nitrogen starvation; however, the molecular mechanisms underlying VPS41-mediated starvation response remain to be elucidated. In the present study, we show that, under nitrogen starvation, VPS41 strongly enhanced ICL1 expression in C. neoformans and that overexpression of ICL1 in the vps41 mutant dramatically suppressed its defects in starvation response due to the loss of VPS41 function. Moreover, targeted deletion of ICL1 resulted in a dramatic decline in viability of C. neoformans cells under nitrogen deprivation. Taken together, our data suggest a model in which VPS41 up-regulates ICL1 expression, directly or indirectly, to promote survival of C. neoformans under nitrogen starvation.

  3. Uric acid-dependent inhibition of AMP kinase induces hepatic glucose production in diabetes and starvation: evolutionary implications of the uricase loss in hominids

    PubMed Central

    Cicerchi, Christina; Li, Nanxing; Kratzer, James; Garcia, Gabriela; Roncal-Jimenez, Carlos A.; Tanabe, Katsuyuki; Hunter, Brandi; Rivard, Christopher J.; Sautin, Yuri Y.; Gaucher, Eric A.; Johnson, Richard J.; Lanaspa, Miguel A.

    2014-01-01

    Reduced AMP kinase (AMPK) activity has been shown to play a key deleterious role in increased hepatic gluconeogenesis in diabetes, but the mechanism whereby this occurs remains unclear. In this article, we document that another AMP-dependent enzyme, AMP deaminase (AMPD) is activated in the liver of diabetic mice, which parallels with a significant reduction in AMPK activity and a significant increase in intracellular glucose accumulation in human HepG2 cells. AMPD activation is induced by a reduction in intracellular phosphate levels, which is characteristic of insulin resistance and diabetic states. Increased gluconeogenesis is mediated by reduced TORC2 phosphorylation at Ser171 by AMPK in these cells, as well as by the up-regulation of the rate-limiting enzymes PEPCK and G6Pc. The mechanism whereby AMPD controls AMPK activation depends on the production of a specific AMP downstream metabolite through AMPD, uric acid. In this regard, humans have higher uric acid levels than most mammals due to a mutation in uricase, the enzyme involved in uric acid degradation in most mammals, that developed during a period of famine in Europe 1.5 × 107 yr ago. Here, working with resurrected ancestral uricases obtained from early hominids, we show that their expression on HepG2 cells is enough to blunt gluconeogenesis in parallel with an up-regulation of AMPK activity. These studies identify a key role AMPD and uric acid in mediating hepatic gluconeogenesis in the diabetic state, via a mechanism involving AMPK down-regulation and overexpression of PEPCK and G6Pc. The uricase mutation in the Miocene likely provided a survival advantage to help maintain glucose levels under conditions of near starvation, but today likely has a role in the pathogenesis of diabetes.—Cicerchi, C., Li, N., Kratzer, J., Garcia, G., Roncal-Jimenez, C. A., Tanabe, K., Hunter, B., Rivard, C. J., Sautin, Y. Y., Gaucher, E. A., Johnson, R. J., Lanaspa, M. A. Uric acid-dependent inhibition of AMP kinase

  4. Influence of starvation on the larval development of Hyas araneus (Decapoda, Majidae)

    NASA Astrophysics Data System (ADS)

    Anger, K.; Dawirs, R. R.

    1981-09-01

    The influence of starvation on larval development of the spider crab Hyas araneus (L.) was studied in laboratory experiments. No larval stage suffering from continual lack of food had sufficient energy reserves to reach the next instar. Maximal survival times were observed at four different constant temperatures (2°, 6°, 12° and 18 °C). In general, starvation resistance decreased as temperatures increased: from 72 to 12days in the zoea-1, from 48 to 18 days in the zoea-2, and from 48 to 15 days in the megalopa stage. The length of maximal survival is of the same order of magnitude as the duration of each instar at a given temperature. “Sublethal limits” of early starvation periods were investigated at 12 °C: Zoea larvae must feed right from the beginning of their stage (at high food concentration) and for more than one fifth, approximately, of that stage to have at least some chance of surviving to the next instar, independent of further prey availability. The minimum time in which enough reserves are accumulated for successfully completing the instar without food is called “point-of-reserve-saturation” (PRS). If only this minimum period of essential initial feeding precedes starvation, development in both zoeal stages is delayed and mortality is greater, when compared to the fed control. Starvation periods beginning right after hatching of the first zoea cause a prolongation of this instar and, surprisingly, a slight shortening of the second stage. The delay in the zoea-1 increases proportionally to the length of the initial fasting period. If more than approximately 70 % of the maximum possible survival time has elapsed without food supply, the larvae become unable to recover and to moult to the second stage even when re-fed (“point-of-no-return”, PNR). The conclusion, based on own observations and on literature data, is that initial feeding is of paramount importance in the early development of planktotrophic decapod larvae. Taking into account

  5. Starvation and Imidacloprid Exposure Influence Immune Response by Anoplophora glabripennis (Coleoptera: Cerambycidae) to a Fungal Pathogen.

    PubMed

    Fisher, Joanna J; Castrillo, Louela A; Donzelli, Bruno G G; Hajek, Ann E

    2017-08-01

    In several insect systems, fungal entomopathogens synergize with neonicotinoid insecticides which results in accelerated host death. Using the Asian longhorned beetle, Anoplophora glabripennis (Motschulsky), an invasive woodborer inadvertently introduced into North America and Europe, we investigated potential mechanisms in the synergy between the entomopathogenic fungus Metarhizium brunneum Petch and the insecticide imidacloprid. A potential mechanism underlying this synergy could be imidacloprid's ability to prevent feeding shortly after administration. We investigated whether starvation would have an impact similar to imidacloprid exposure on the mortality of fungal-inoculated beetles. Using real-time PCR to quantify fungal load in inoculated beetles, we determined how starvation and pesticide exposure impacted beetles' ability to tolerate or resist a fungal infection. The effect of starvation and pesticide exposure on the encapsulation and melanization immune responses of the beetles was also quantified. Starvation had a similar impact on the survival of M. brunneum-inoculated beetles compared to imidacloprid exposure. The synergy, however, was not completely due to starvation, as imidacloprid reduced the beetles' melanotic encapsulation response and capsule area, while starvation did not significantly reduce these immune responses. Our results suggest that there are multiple interacting mechanisms involved in the synergy between M. brunneum and imidacloprid. © The Authors 2017. Published by Oxford University Press on behalf of Entomological Society of America. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  6. Evidence for the adverse effect of starvation on bone quality: a review of the literature.

    PubMed

    Kueper, Janina; Beyth, Shaul; Liebergall, Meir; Kaplan, Leon; Schroeder, Josh E

    2015-01-01

    Malnutrition and starvation's possible adverse impacts on bone health and bone quality first came into the spotlight after the horrors of the Holocaust and the ghettos of World War II. Famine and food restrictions led to a mean caloric intake of 200-800 calories a day in the ghettos and concentration camps, resulting in catabolysis and starvation of the inhabitants and prisoners. Severely increased risks of fracture, poor bone mineral density, and decreased cortical strength were noted in several case series and descriptive reports addressing the medical issues of these individuals. A severe effect of severely diminished food intake and frequently concomitant calcium- and Vitamin D deficiencies was subsequently proven in both animal models and the most common cause of starvation in developed countries is anorexia nervosa. This review attempts to summarize the literature available on the impact of the metabolic response to Starvation on overall bone health and bone quality.

  7. Transgene Expression and Repression in Transgenic Rats Bearing the Phosphoenolpyruvate Carboxykinase-Simian Virus 40 T Antigen or the Phosphoenolpyruvate Carboxykinase-Transforming Growth Factor-α Constructs

    PubMed Central

    Haas, Michael J.; Dragan, Yvonne P.; Hikita, Hiroshi; Shimel, Randee; Takimoto, Koichi; Heath, Susan; Vaughan, Jennifer; Pitot, Henry C.

    1999-01-01

    Transgenic Sprague-Dawley rats expressing either human transforming growth factor-α (TGFα) or simian virus 40 large and small T antigen (TAg), each under the control of the phosphoenolpyruvate carboxykinase (PEPCK) promoter, were developed as an approach to the study of the promotion of hepatocarcinogenesis in the presence of a transgene regulatable by diet and/or hormones. Five lines of PEPCK-TGFα transgenic rats were established, each genetic line containing from one to several copies of the transgene per haploid genome. Two PEPCK-TAg transgenic founder rats were obtained, each with multiple copies of the transgene. Expression of the transgene was undetectable in the TGFα transgenic rats and could not be induced when the animals were placed on a high-protein, low-carbohydrate diet. The transgene was found to be highly methylated in all of these lines. No pathological alterations in the liver and intestine were observed at any time (up to 2 years) during the lives of these rats. One line of transgenic rats expressing the PEPCK-TAg transgene developed pancreatic islet cell hyperplasias and carcinomas, with few normal islets evident in the pancreas. This transgene is integrated as a hypomethylated tandem array of 10 to 12 copies on chromosome 8q11. Expression of large T antigen is highest in pancreatic neoplasms, but is also detectable in the normal brain, kidney, and liver. Mortality is most rapid in males, starting at 5 months of age and reaching 100% by 8 months. Morphologically, islet cell differentiation in the tumors ranges from poor to well differentiated, with regions of necrosis and fibrosis. Spontaneous metastasis of TAg-positive tumor cells to regional lymph nodes was observed. These studies indicate the importance of DNA methylation in the repression of specific transgenes in the rat. However, the expression of the PEPCK-TAg induces neoplastic transformation in islet cells, probably late in neuroendocrine cell differentiation. T antigen expression

  8. Nitric oxide regulation of leaf phosphoenolpyruvate carboxylase-kinase activity: implication in sorghum responses to salinity.

    PubMed

    Monreal, José A; Arias-Baldrich, Cirenia; Tossi, Vanesa; Feria, Ana B; Rubio-Casal, Alfredo; García-Mata, Carlos; Lamattina, Lorenzo; García-Mauriño, Sofía

    2013-11-01

    Nitric oxide (NO) is a signaling molecule that mediates many plant responses to biotic and abiotic stresses, including salt stress. Interestingly, salinity increases NO production selectively in mesophyll cells of sorghum leaves, where photosynthetic C₄ phosphoenolpyruvate carboxylase (C₄ PEPCase) is located. PEPCase is regulated by a phosphoenolpyruvate carboxylase-kinase (PEPCase-k), which levels are greatly enhanced by salinity in sorghum. This work investigated whether NO is involved in this effect. NO donors (SNP, SNAP), the inhibitor of NO synthesis NNA, and the NO scavenger cPTIO were used for long- and short-term treatments. Long-term treatments had multifaceted consequences on both PPCK gene expression and PEPCase-k activity, and they also decreased photosynthetic gas-exchange parameters and plant growth. Nonetheless, it could be observed that SNP increased PEPCase-k activity, resembling salinity effect. Short-term treatments with NO donors, which did not change photosynthetic gas-exchange parameters and PPCK gene expression, increased PEPCase-k activity both in illuminated leaves and in leaves kept at dark. At least in part, these effects were independent on protein synthesis. PEPCase-k activity was not decreased by short-term treatment with cycloheximide in NaCl-treated plants; on the contrary, it was decreased by cPTIO. In summary, NO donors mimicked salt effect on PEPCase-k activity, and scavenging of NO abolished it. Collectively, these results indicate that NO is involved in the complex control of PEPCase-k activity, and it may mediate some of the plant responses to salinity.

  9. Unsatisfactory knowledge and use of terminology regarding malnutrition, starvation, cachexia and sarcopenia among dietitians.

    PubMed

    Ter Beek, Lies; Vanhauwaert, Erika; Slinde, Frode; Orrevall, Ylva; Henriksen, Christine; Johansson, Madelene; Vereecken, Carine; Rothenberg, Elisabet; Jager-Wittenaar, Harriët

    2016-12-01

    Clinical signs of malnutrition, starvation, cachexia and sarcopenia overlap, as they all imply muscle wasting to a various extent. However, the underlying mechanisms differ fundamentally and therefore distinction between these phenomena has therapeutic and prognostic implications. We aimed to determine whether dietitians in selected European countries have 'sufficient knowledge' regarding malnutrition, starvation, cachexia and sarcopenia, and use these terms in their daily clinical work. An anonymous online survey was performed among dietitians in Belgium, the Netherlands, Norway and Sweden. 'Sufficient knowledge' was defined as having mentioned at least two of the three common domains of malnutrition according to ESPEN definition of malnutrition (2011): 'nutritional balance', 'body composition' and 'functionality and clinical outcome', and a correct answer to three cases on starvation, cachexia and sarcopenia. Chi-square test was used to analyse differences in experience, work place and number of malnourished patients treated between dietitians with 'sufficient knowledge' vs. 'less sufficient knowledge'. 712/7186 responded to the questionnaire, of which data of 369 dietitians were included in the analysis (5%). The term 'malnutrition' is being used in clinical practice by 88% of the respondents. Starvation, cachexia and sarcopenia is being used by 3%, 30% and 12% respectively. The cases on starvation, cachexia and sarcopenia were correctly identified by 58%, 43% and 74% respectively. 13% of the respondents had 'sufficient knowledge'. 31% of the respondents identified all cases correctly. The proportion of respondents with 'sufficient knowledge' was significantly higher in those working in a hospital or in municipality (16%, P < 0.041), as compared to those working in other settings (7%). The results of our survey among dietitians in four European countries show that the percentage of dietitians with 'sufficient knowledge' regarding malnutrition, starvation

  10. New partial sequences of phosphoenolpyruvate carboxylase as molecular phylogenetic markers.

    PubMed

    Gehrig, H; Heute, V; Kluge, M

    2001-08-01

    To better understand the evolution of the enzyme phosphoenolpyruvate carboxylase (PEPC) and to test its versatility as a molecular character in phylogenetic and taxonomic studies, we have characterized and compared 70 new partial PEPC nucleotide and amino acid sequences (about 1100 bp of the 3' side of the gene) from 50 plant species (24 species of Bryophyta, 1 of Pteridophyta, and 25 of Spermatophyta). Together with previously published data, the new set of sequences allowed us to construct the up to now most complete phylogenetic tree of PEPC, where the PEPC sequences cluster according to both the taxonomic positions of the donor plants and the assumed specific function of the PEPC isoforms. Altogether, the study further strengthens the view that PEPC sequences can provide interesting information for the reconstruction of phylogenetic relations between organisms and metabolic pathways. To avoid confusion in future discussion, we propose a new nomenclature for the denotation of PEPC isoforms. Copyright 2001 Academic Press.

  11. Evidence for the Adverse Effect of Starvation on Bone Quality: A Review of the Literature

    PubMed Central

    Kueper, Janina; Beyth, Shaul; Liebergall, Meir; Kaplan, Leon; Schroeder, Josh E.

    2015-01-01

    Malnutrition and starvation's possible adverse impacts on bone health and bone quality first came into the spotlight after the horrors of the Holocaust and the ghettos of World War II. Famine and food restrictions led to a mean caloric intake of 200–800 calories a day in the ghettos and concentration camps, resulting in catabolysis and starvation of the inhabitants and prisoners. Severely increased risks of fracture, poor bone mineral density, and decreased cortical strength were noted in several case series and descriptive reports addressing the medical issues of these individuals. A severe effect of severely diminished food intake and frequently concomitant calcium- and Vitamin D deficiencies was subsequently proven in both animal models and the most common cause of starvation in developed countries is anorexia nervosa. This review attempts to summarize the literature available on the impact of the metabolic response to Starvation on overall bone health and bone quality. PMID:25810719

  12. Effect of Thymine Starvation on Messenger Ribonucleic Acid Synthesis in Escherichia coli

    PubMed Central

    Luzzati, Denise

    1966-01-01

    Luzzati, Denise (Institut de Biologie Physico-Chimique, Paris, France). Effect of thymine starvation on messenger ribonucleic acid synthesis in Escherichia coli. J. Bacteriol. 92:1435–1446. 1966.—During the course of thymine starvation, the rate of synthesis of messenger ribonucleic acid (mRNA, the rapidly labeled fraction of the RNA which decays in the presence of dinitrophenol or which hybridizes with deoxyribonucleic acid) decreases exponentially, in parallel with the viability of the thymine-starved bacteria. The ability of cell-free extracts of starved bacteria to incorporate ribonucleoside triphosphates into RNA was determined; it was found to be inferior to that of extracts from control cells. The analysis of the properties of cell-free extracts of starved cells shows that their decreased RNA polymerase activity is the consequence of a modification of their deoxyribonucleic acid, the ability of which to serve as a template for RNA polymerase decreases during starvation. PMID:5332402

  13. Effects of starvation and molting on the metabolic rate of the bed bug (Cimex lectularius L.).

    PubMed

    DeVries, Zachary C; Kells, Stephen A; Appel, Arthur G

    2015-01-01

    The bed bug (Cimex lectularius L.) is a common hematophagous pest in the urban environment and is capable of surviving extended periods of starvation. However, the relationship between starvation and metabolism in bed bugs is not well understood. To better understand this relationship, we measured the metabolism of all life stages for >900 h after feeding (starvation) using closed-system respirometry. Measurements were made around molting for the immature life stages, which occurs only after a blood meal. In addition, both mated and unmated adults were measured. Starvation and molting had significant effects on the metabolism of the bed bug. Mass-specific metabolic rate (V(O2); mL g(-1) h(-1)) declined in a curvilinear fashion with the period of starvation for adults and with the postmolting period for immature bed bugs (used to standardize all immature life stages). A standard curve was developed to depict the generalized pattern of metabolic decline observed in all life stages that molted. Individual metabolic comparisons among life stages that molted revealed some differences in metabolic rate between unmated males and females. In addition, the mass scaling coefficient was found to decline with starvation time (postmolting time) for all life stages that molted. In most life stages, the ratio of V(CO2) to V(O2) (respiratory exchange ratio) declined over time, indicating a change in metabolic substrate with starvation. Finally, daily percent loss in body mass declined in a pattern similar to that of V(O2). The observed patterns in metabolic decline are evaluated in relation to the life history of bed bugs. In addition, the evolutionary development of these patterns is discussed. The metabolic pattern after feeding was also found to share several similarities with that of other ectothermic species.

  14. Starvation effects on the hydrodynamic lubrication of rigid nonconformal contacts in combined rolling and normal motion

    NASA Technical Reports Server (NTRS)

    Ghosh, M. K.; Hamrock, B. J.; Brewe, D. E.

    1986-01-01

    The effect of inlet starvation on the hydrodynamic lubrication of lightly loaded rigid nonconformal contacts in combined rolling and normal motion is determined through a numerical solution of the Reynolds' equation for an isoviscous, incompressible lubricant. Starvation is effected by systematically reducing the fluid inlet level. The pressures are taken to be ambient at the inlet meniscus boundary and Reynolds' boundary condition is applied for film rupture in the exit region. Results are presented for the dynamic performance of the starved contacts in combined rolling and normal motion for both normal approach and separation. During normal approach the dynamic load ratio (i.e. ratio of dynamic to steady state load capacity) increases considerably with increase in the inlet starvation. The effect of starvation on the dynamic peak pressure ratio is relatively small. Further, it has been observed that with increasing starvation, film thickness effects become significant in the dynamic behavior of the nonconformal contacts. For significantly starved contacts the dynamic load ratio increases with increase in film thickness during normal approach and a similar reduction is observed during separation. A similar effect is noted for the dynamic peak pressure ratio.

  15. Differential impact of amino acids on OXPHOS system activity following carbohydrate starvation in Arabidopsis cell suspensions.

    PubMed

    Cavalcanti, João Henrique F; Quinhones, Carla G S; Schertl, Peter; Brito, Danielle S; Eubel, Holger; Hildebrandt, Tatjana; Nunes-Nesi, Adriano; Braun, Hans-Peter; Araújo, Wagner L

    2017-12-01

    Plant respiration mostly depends on the activity of glycolysis and the oxidation of organic acids in the tricarboxylic acid cycle to synthesize ATP. However, during stress situations plant cells also use amino acids as alternative substrates to donate electrons through the electron-transfer flavoprotein (ETF)/ETF:ubiquinone oxidoreductase (ETF/ETFQO) complex to the mitochondrial electron transport chain (mETC). Given this, we investigated changes of the oxidative phosphorylation (OXPHOS) system in Arabidopsis thaliana cell culture under carbohydrate starvation supplied with a range of amino acids. Induction of isovaleryl-CoA dehydrogenase (IVDH) activity was observed under carbohydrate starvation which was associated with increased amounts of IVDH protein detected by immunoblotting. Furthermore, activities of the protein complexes of the mETC were reduced under carbohydrate starvation. We also observed that OXPHOS system activity behavior is differently affected by different amino acids and that proteins associated with amino acids catabolism are upregulated in cells following carbohydrate starvation. Collectively, our results support the contention that ETF/ETFQO is an essential pathway to donate electrons to the mETC and that amino acids are alternative substrates to maintain respiration under carbohydrate starvation. © 2017 Scandinavian Plant Physiology Society.

  16. Effect of different starvation conditions on the flocculation of Saccharomyces cerevisiae.

    PubMed

    Soares, E V; Vroman, A

    2003-01-01

    To study the effect of different starvation conditions on the flocculation of an ale brewing yeast of Saccharomyces cerevisiae NCYC 1195. Flocculation was assessed by a micro-flocculation technique (Soares and Mota 1997). Carbon-starved cells of a NewFlo phenotype strain did not lose flocculation during a 48 h period. Cells incubated only in the presence of fermentable carbon sources (glucose, galactose and maltose at 2%, w/v), showed a progressive flocculation loss. The incubation of cells in 4% (v/v) ethanol did not induce a flocculation loss. The simultaneous incubation of cells in the presence of 2% (w/v) glucose and 15 microg ml(-1) cycloheximide hindered flocculation loss. The presence of 0.1 mmol l(-1) PMSF or 10 mmol l-1 EDTA prevented partially or completely, respectively, the loss of flocculation in the presence of glucose. Fermentable sugars induced a flocculation loss, which seems to require de novo protein synthesis and the involvement of different proteases. The findings reported here contribute to the elucidation of the role of nutrients on the physiological control of yeast flocculation.

  17. Suppressed translation and ULK1 degradation as potential mechanisms of autophagy limitation under prolonged starvation.

    PubMed

    Allavena, Giulia; Boyd, Caroline; Oo, Kyaw Soe; Maellaro, Emilia; Zhivotovsky, Boris; Kaminskyy, Vitaliy O

    2016-11-01

    Macroautophagy/autophagy is a well-organized process of intracellular degradation, which is rapidly activated under starvation conditions. Recent data demonstrate a transcriptional upregulation of several autophagy genes as a mechanism that controls autophagy in response to starvation. Here we report that despite the significant upregulation of mRNA of the essential autophagy initiation gene ULK1, its protein level is rapidly reduced under starvation. Although both autophagic and proteasomal systems contribute to the degradation of ULK1, under prolonged nitrogen deprivation, its level was still reduced in ATG7 knockout cells, and only initially stabilized in cells treated with the lysosomal or proteasomal inhibitors. We demonstrate that under starvation, protein translation is rapidly diminished and, similar to treatments with the proteosynthesis inhibitors cycloheximide or anisomycin, is associated with a significant reduction of ULK1. Furthermore, it was found that inhibition of the mitochondrial respiratory complexes or the mitochondrial ATP synthase function that could also take place in the absence of substrates, promote upregulation of ULK1 mRNA and protein expression in an AMPK-dependent manner in U1810 lung cancer cells growing in complete culture medium. These inhibitors could also drastically increase the ULK1 protein in U1810 cells with knockout of ATG13, where the ULK1 expression is significantly diminished. However, such upregulation of ULK1 protein is negligible under starvation conditions, further signifying the contribution of translation and suggesting that transcriptional upregulation of ULK1 protein will be diminished under such conditions. Thus, we propose a model where inhibition of protein translation, together with the degradation systems, limit autophagy during starvation.

  18. The High-Risk Human Papillomavirus E6 Oncogene Exacerbates the Negative Effect of Tryptophan Starvation on the Development of Chlamydia trachomatis

    PubMed Central

    Sherchand, Shardulendra P.; Ibana, Joyce A.; Zea, Arnold H.; Quayle, Alison J.; Aiyar, Ashok

    2016-01-01

    Chlamydia trachomatis is an obligate intracellular pathogen that requires specific essential nutrients from the host cell, one of which is the amino acid tryptophan. In this context interferon gamma (IFNγ) is the major host protective cytokine against chlamydial infections because it induces the expression of the host enzyme, indoleamine 2,3-dioxygenase 1, that degrades tryptophan, thereby restricting bacterial replication. The mechanism by which IFNγ acts has been dissected in vitro using epithelial cell-lines such as HeLa, HEp-2, or the primary-like endocervical cell-line A2EN. All these cell-lines express the high-risk human papillomavirus oncogenes E6 & E7. While screening cell-lines to identify those suitable for C. trachomatis co-infections with other genital pathogens, we unexpectedly found that tryptophan starvation did not completely block chlamydial development in cell-lines that were HR-HPV negative, such as C33A and 293. Therefore, we tested the hypothesis that HR-HPV oncogenes modulate the effect of tryptophan starvation on chlamydial development by comparing chlamydial development in HeLa and C33A cell-lines that were both derived from cervical carcinomas. Our results indicate that during tryptophan depletion, unlike HeLa, C33A cells generate sufficient intracellular tryptophan via proteasomal activity to permit C. trachomatis replication. By generating stable derivatives of C33A that expressed HPV16 E6, E7 or E6 & E7, we found that E6 expression alone was sufficient to convert C33A cells to behave like HeLa during tryptophan starvation. The reduced tryptophan levels in HeLa cells have a biological consequence; akin to the previously described effect of IFNγ, tryptophan starvation protects C. trachomatis from clearance by doxycycline in HeLa but not C33A cells. Curiously, when compared to the known Homo sapiens proteome, the representation of tryptophan in the HR-HPV E6 & E6AP degradome is substantially lower, possibly providing a mechanism that

  19. Transcriptome and metabolome analysis of plant sulfate starvation and resupply provides novel information on transcriptional regulation of metabolism associated with sulfur, nitrogen and phosphorus nutritional responses in Arabidopsis

    PubMed Central

    Bielecka, Monika; Watanabe, Mutsumi; Morcuende, Rosa; Scheible, Wolf-Rüdiger; Hawkesford, Malcolm J.; Hesse, Holger; Hoefgen, Rainer

    2015-01-01

    Sulfur is an essential macronutrient for plant growth and development. Reaching a thorough understanding of the molecular basis for changes in plant metabolism depending on the sulfur-nutritional status at the systems level will advance our basic knowledge and help target future crop improvement. Although the transcriptional responses induced by sulfate starvation have been studied in the past, knowledge of the regulation of sulfur metabolism is still fragmentary. This work focuses on the discovery of candidates for regulatory genes such as transcription factors (TFs) using ‘omics technologies. For this purpose a short term sulfate-starvation/re-supply approach was used. ATH1 microarray studies and metabolite determinations yielded 21 TFs which responded more than 2-fold at the transcriptional level to sulfate starvation. Categorization by response behaviors under sulfate-starvation/re-supply and other nutrient starvations such as nitrate and phosphate allowed determination of whether the TF genes are specific for or common between distinct mineral nutrient depletions. Extending this co-behavior analysis to the whole transcriptome data set enabled prediction of putative downstream genes. Additionally, combinations of transcriptome and metabolome data allowed identification of relationships between TFs and downstream responses, namely, expression changes in biosynthetic genes and subsequent metabolic responses. Effect chains on glucosinolate and polyamine biosynthesis are discussed in detail. The knowledge gained from this study provides a blueprint for an integrated analysis of transcriptomics and metabolomics and application for the identification of uncharacterized genes. PMID:25674096

  20. Effects of Infant Starvation on Learning Abilities.

    ERIC Educational Resources Information Center

    Klein, Pnina S.

    Explored were the effects of starvation during infancy on the learning abilities of 50 children when evaluated between 5 and 14 years of age. All Ss had suffered from pyloric stenosis, a condition which prevents passage of food from the stomach, in infancy for periods ranging from 2 days to 3 weeks. Ss were given five tests of various learning…

  1. Increase of chromium tolerance in Scenedesmus acutus after sulfur starvation: Chromium uptake and compartmentalization in two strains with different sensitivities to Cr(VI).

    PubMed

    Marieschi, M; Gorbi, G; Zanni, C; Sardella, A; Torelli, A

    2015-10-01

    In photosynthetic organisms sulfate constitutes the main sulfur source for the biosynthesis of GSH and its precursor Cys. Hence, sulfur availability can modulate the capacity to cope with environmental stresses, a phenomenon known as SIR/SED (Sulfur Induced Resistance or Sulfur Enhanced Defence). Since chromate may compete for sulfate transport into the cells, in this study chromium accumulation and tolerance were investigated in relation to sulfur availability in two strains of the unicellular green alga Scenedesmus acutus with different Cr-sensitivities. Paradoxically, sulfur deprivation has been demonstrated to induce a transient increase of Cr-tolerance in both strains. Sulfur deprivation is known to enhance the sulfate uptake/assimilation pathway leading to important consequences on Cr-tolerance: (i) reduced chromate uptake due to the induction of high affinity sulfate transporters (ii) higher production of cysteine and GSH which can play a role both through the formation of unsoluble complexes and their sequestration in inert compartments. To investigate the role of the above mentioned mechanisms, Cr accumulation in total cells and in different cell compartments (cell wall, membranes, soluble and miscellaneous fractions) was analyzed in both sulfur-starved and unstarved cells. Both strains mainly accumulated chromium in the soluble fraction, but the uptake was higher in the wild-type. In this type a short period of sulfur starvation before Cr(VI) treatment lowered chromium accumulation to the level observed in the unstarved Cr-tolerant strain, in which Cr uptake seems instead less influenced by S-starvation, since no significant decrease was observed. The increase in Cr-tolerance following S-starvation seems thus to rely on different mechanisms in the two strains, suggesting the induction of a mechanism constitutively active in the Cr-tolerant strain, maybe a high affinity sulfate transporter also in the wild-type. Changes observed in the cell wall and

  2. Derivation of highly purified cardiomyocytes from human induced pluripotent stem cells using small molecule-modulated differentiation and subsequent glucose starvation.

    PubMed

    Sharma, Arun; Li, Guang; Rajarajan, Kuppusamy; Hamaguchi, Ryoko; Burridge, Paul W; Wu, Sean M

    2015-03-18

    Human induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs) have become an important cell source to address the lack of primary cardiomyocytes available for basic research and translational applications. To differentiate hiPSCs into cardiomyocytes, various protocols including embryoid body (EB)-based differentiation and growth factor induction have been developed. However, these protocols are inefficient and highly variable in their ability to generate purified cardiomyocytes. Recently, a small molecule-based protocol utilizing modulation of Wnt/β-Catenin signaling was shown to promote cardiac differentiation with high efficiency. With this protocol, greater than 50%-60% of differentiated cells were cardiac troponin-positive cardiomyocytes were consistently observed. To further increase cardiomyocyte purity, the differentiated cells were subjected to glucose starvation to specifically eliminate non-cardiomyocytes based on the metabolic differences between cardiomyocytes and non-cardiomyocytes. Using this selection strategy, we consistently obtained a greater than 30% increase in the ratio of cardiomyocytes to non-cardiomyocytes in a population of differentiated cells. These highly purified cardiomyocytes should enhance the reliability of results from human iPSC-based in vitro disease modeling studies and drug screening assays.

  3. Distinct mechanisms coordinate transcription and translation under carbon and nitrogen starvation in Escherichia coli.

    PubMed

    Iyer, Sukanya; Le, Dai; Park, Bo Ryoung; Kim, Minsu

    2018-05-14

    Bacteria adapt to environmental stress by producing proteins that provide stress protection. However, stress can severely perturb the kinetics of gene expression, disrupting protein production. Here, we characterized how Escherichia coli mitigates such perturbations under nutrient stress through the kinetic coordination of transcription and translation. We observed that, when translation became limiting under nitrogen starvation, transcription elongation slowed accordingly. This slowdown was mediated by (p)ppGpp, the alarmone whose primary role is thought to be promoter regulation. This kinetic coordination by (p)ppGpp was critical for the robust synthesis of gene products. Surprisingly, under carbon starvation, (p)ppGpp was dispensable for robust synthesis. Characterization of the underlying kinetics revealed that under carbon starvation, transcription became limiting, and translation aided transcription elongation. This mechanism naturally coordinated transcription with translation, alleviating the need for (p)ppGpp as a mediator. These contrasting mechanisms for coordination resulted in the condition-dependent effects of (p)ppGpp on global protein synthesis and starvation survival. Our findings reveal a kinetic aspect of gene expression plasticity, establishing (p)ppGpp as a condition-dependent global effector of gene expression.

  4. Starvation effects on nitrogen and carbon stable isotopes of animals: an insight from meta-analysis of fasting experiments

    PubMed Central

    Akamatsu, Fumikazu; González, Angélica L.

    2017-01-01

    Nitrogen and carbon stable isotopic compositions (δ15N and δ13C) of consumers have been used for physiological and food web studies. Previous studies have shown δ15N and δ13C values are affected by several biological and environmental factors during starvation, but the generality of the effect of starvation on δ15N and δ13C values has not yet been tested. Here, we performed a meta-analysis to evaluate the effects of starvation on δ15N and δ13C values of consumers, and the underlying factors that may explain the observed variation. The δ15N and δ13C values were calculated as the differences between the final δ15N and δ13C values of consumers (post-starvation) and the pre-starvation values on each experiment. Our meta-analysis showed a large variation in the δ15N and δ13C values of consumers (δ15N range: –0.82 to 4.30‰; mean: 0.47‰ and δ13C range: –1.92 to 2.62‰; mean: 0.01‰). The δ15N values of most consumers increased along the length of the starvation period and were influenced by nitrogen excretion and thermoregulation types, probably because differences in nitrogen metabolism and thermoregulation affect nitrogen processing and excretion rates. None of our predictor variables accounted for the variation in δ13C values, which showed both increases and decreases due to fasting. Our findings suggest that starvation results in changes in consumer δ15N values which are mainly explained by the length of the fasting period and by nitrogen and energy metabolism, but the underlying mechanisms of the starvation effects on δ13C values seem to be more complex than previously thought. PMID:28879005

  5. Effect of starvation and refeeding on the hepatopancreas of whiteleg shrimp Penaeus vannamei (Boone) using computer-assisted image analysis.

    PubMed

    Cervellione, F; McGurk, C; Berger Eriksen, T; Van den Broeck, W

    2017-11-01

    Under normal farming conditions, shrimp can experience starvation periods attributable to disease outbreaks or adverse environmental conditions. Starvation leads to significant morphological changes in the hepatopancreas (HP), being the main organ for absorption and storage of nutrients. In the literature, limited research has described the effect on the HP of periods of starvation followed by refeeding and none in whiteleg shrimp (Penaeus vannamei) using computer-assisted image analysis (CAIA). This study describes the effect of starvation and starvation followed by refeeding on the HP of whiteleg shrimp using CAIA. Visiopharm ® software was used to quantify the following morphological parameters, measured as ratio to the total tissue area (TLA): total lumen area (TLA:TTA), haemocytic infiltration area in the intertubular spaces (HIA:TTA), B-cell vacuole area (VBA:TTA), lipid droplet area within R cells (LDA:TTA) and F-cell area (FCA:TTA). Significant changes were measured for HIA:TTA and LDA:TTA during starvation (increase in HIA:TTA associated with decrease in LDA:TTA) and starvation followed by refeeding (decrease in HIA:TTA associated with increase in LDA:TTA). In the future, HIA:TTA and LDA:TTA have the potential to be used in a pre-emptive manner to monitor the health of the HP, facilitate early diagnosis of diseases and study the pathophysiology of the organ. © 2017 John Wiley & Sons Ltd.

  6. Starvation is more efficient than the washing technique for purification of rat Sertoli cells.

    PubMed

    Ghasemzadeh-Hasankolaei, Mohammad; Eslaminejad, Mohamadreza Baghaban; Sedighi-Gilani, Mohammadali; Mokarizadeh, Aram

    2014-09-01

    Sertoli cells (SCs), one of the most important components of seminiferous tubules, are vital for normal spermatogenesis and male fertility. In recent years, numerous in vitro studies have shown the potential and actual activities of SCs. However, pure SCs are necessary for various in vitro studies. In this study, we have evaluated the efficiency of the starvation method for SC purification as compared with the washing method. Seminiferous tubule-derived cells (STDCs) of rats' testes underwent two different techniques for SC purification. In the first group (washing group), the medium was changed every 3-4 d, and cells were washed twice with phosphate-buffered saline that lacked CaC12 and MgSO4 (PBS(-)) before the addition of fresh medium. In the second group (starvation), the medium was changed every 7-8 d. Primary culture (P0), passage 1 (P1), and passage 2 (P2) cells were analyzed for the expression of SC-specific genes, vimentin, Wilm's tumor 1 (WT1), germ cell gene (vasa), Leydig cell marker, 17beta-hydroxysteroid dehydrogenase type 3 (Hsd17b3), and a marker of peritubular myoid cells, alpha smooth muscle actin (αSma), by reverse transcriptase polymerase chain reaction (RT-PCR) and real-time RT-PCR. Gene expression analysis showed that P0 cells expressed all tested genes except Hsd17b3. The starvation method caused significant downregulation of vasa and αSma expression in P0, P1, and P2 cells, whereas vimentin and WT1 were upregulated. In contrast, the washing method was less effective than the starvation method for the removal of germ and pretubular myoid cells (p < 0.001). Totally, the results have revealed that although washing is the only common technique for elimination of contaminant cells in SC cultures, starvation has a stronger effect and is a suitable, affordable technique for SC purification. We propose that starvation is an efficient, inexpensive method that can be used for purification of SCs in animal species.

  7. Self-starvation in context: towards a culturally sensitive understanding of anorexia nervosa.

    PubMed

    Lee, S

    1995-07-01

    Extreme forms of self-starvation can be traced across time and place, and may be construed using a variety of explanatory models. Curiously, the prevailing biomedical definition of anorexia nervosa has assigned primacy to the exclusive use of 'fat phobia' by the affected subjects to justify their diminished food intake. This paper assembles evidence to show that this culturally constructed version of fat phobic anorexia nervosa has neglected the full metaphorical significance of self-starvation and, when applied in a cross-cultural context, may constitute a category fallacy. By delegitimizing other rationales for non-eating and thereby barring subjective expressions, this regnant interpretive strategy may obscure clinicians' understanding of patients' lived experience, and even jeopardize their treatment. Nonetheless, it is a relatively simple task to attune the extant diagnostic criteria to a polythetic approach which will avert cultural parochialism in psychiatric theory and practice. As a corollary of the archival and ethnocultural study of extreme self-starvation, there is, contrary to epistemological assumptions embedded in the biomedical culture of contemporary psychiatry, no 'core psychopathology' of anorexia nervosa.

  8. Effects of Starvation on Physiological Activity and Chlorine Disinfection Resistance in Escherichia coli O157:H7

    PubMed Central

    Lisle, John T.; Broadaway, Susan C.; Prescott, Annette M.; Pyle, Barry H.; Fricker, Colin; McFeters, Gordon A.

    1998-01-01

    Escherichia coli O157:H7 can persist for days to weeks in microcosms simulating natural conditions. In this study, we used a suite of fluorescent, in situ stains and probes to assess the influence of starvation on physiological activity based on membrane potential (rhodamine 123 assay), membrane integrity (LIVE/DEAD BacLight kit), respiratory activity (5-cyano-2,3-di-4-tolyl-tetrazolium chloride assay), intracellular esterase activity (ScanRDI assay), and 16S rRNA content. Growth-dependent assays were also used to assess substrate responsiveness (direct viable count [DVC] assay), ATP activity (MicroStar assay), and culturability (R2A agar assay). In addition, resistance to chlorine disinfection was assessed. After 14 days of starvation, the DVC values decreased, while the values in all other assays remained relatively constant and equivalent to each other. Chlorine resistance progressively increased through the starvation period. After 29 days of starvation, there was no significant difference in chlorine resistance between control cultures that had not been exposed to the disinfectant and cultures that had been exposed. This study demonstrates that E. coli O157:H7 adapts to starvation conditions by developing a chlorine resistance phenotype. PMID:9835545

  9. Effects of starvation on physiological activity and chlorine disinfection resistance in Escherichia coli O157:H7

    NASA Technical Reports Server (NTRS)

    Lisle, J. T.; Broadaway, S. C.; Prescott, A. M.; Pyle, B. H.; Fricker, C.; McFeters, G. A.

    1998-01-01

    Escherichia coli O157:H7 can persist for days to weeks in microcosms simulating natural conditions. In this study, we used a suite of fluorescent, in situ stains and probes to assess the influence of starvation on physiological activity based on membrane potential (rhodamine 123 assay), membrane integrity (LIVE/DEAD BacLight kit), respiratory activity (5-cyano-2,3-di-4-tolyl-tetrazolium chloride assay), intracellular esterase activity (ScanRDI assay), and 16S rRNA content. Growth-dependent assays were also used to assess substrate responsiveness (direct viable count [DVC] assay), ATP activity (MicroStar assay), and culturability (R2A agar assay). In addition, resistance to chlorine disinfection was assessed. After 14 days of starvation, the DVC values decreased, while the values in all other assays remained relatively constant and equivalent to each other. Chlorine resistance progressively increased through the starvation period. After 29 days of starvation, there was no significant difference in chlorine resistance between control cultures that had not been exposed to the disinfectant and cultures that had been exposed. This study demonstrates that E. coli O157:H7 adapts to starvation conditions by developing a chlorine resistance phenotype.

  10. Impacts of strigolactone on shoot branching under phosphate starvation in chrysanthemum (Dendranthema grandiflorum cv. Jinba)

    PubMed Central

    Xi, Lin; Wen, Chao; Fang, Shuang; Chen, Xiaoli; Nie, Jing; Chu, JinFang; Yuan, Cunquan; Yan, Cunyu; Ma, Nan; Zhao, Liangjun

    2015-01-01

    Chrysanthemum (Dendranthema grandiflorum cv. Jinba) shoot branching is determined by bud outgrowth during the vegetative growth stage. The degree of axillary bud outgrowth is highly influenced by environmental conditions, such as nutrient availability. Here, we demonstrated that phosphorus (Pi) starvation significantly reduces axillary bud outgrowth in chrysanthemum. A strigolactone (SL) biosynthesis gene, DgCCD7, was isolated and characterized as an ortholog of MAX3/DAD3/RMS5/D17. By using ultra-performance liquid chromatography coupled with mass spectrometry (UPLC-MS), three putative SLs were identified and levels of all three SLs showed strong increase under Pi starvation conditions. Determinations of the distribution of SLs and regulation of DgCCD7/8 in response to Pi changes in root indicate that SL acts systemically. However, temporal expression patterns of biosynthesis and signaling genes in nodes revealed that Pi starvation causes a local response of SL pathway. Treatment of node segments with or without auxin and Pi revealed that in the absence of exogenous auxin, Pi delayed axillary buds outgrowth and up-regulated local SL pathway genes. These data indicated that an auxin-SL regulatory loop responded to Pi starvation for delaying bud outgrowth locally, root biosynthesized SLs were transported acropetally and functioned in shoot branching inhibition under Pi starvation. We proposed that SLs contributed to chrysanthemum shoot branching control in response to Pi-limiting conditions in a systemic way. PMID:26442011

  11. The energy cost of triglyceride-fatty acid recycling in nonobese subjects after an overnight fast and four days of starvation.

    PubMed

    Elia, M; Zed, C; Neale, G; Livesey, G

    1987-03-01

    The basal blood glycerol concentration was determined and the rate of glycerol turnover was assessed by a nonradioactive infusion technique in six healthy nonobese adults after an overnight fast and again after four days of total starvation. Simultaneously, estimates of total energy expenditure and net fat oxidation were made from measurements of oxygen consumption, carbon dioxide production, and urinary nitrogen excretion. The data were combined to provide quantitative estimates of the activity of the triglyceride/fatty acid cycle. The basal concentration of glycerol in venous blood rose from a mean value of 54 +/- 8 mumol/L (SEM) before starvation to 154 +/- 5 mumol/L on day 4 of starvation. Glycerol turnover rates correlated well with the basal blood glycerol concentration (r = .95) and increased from a mean value of 115 +/- 17 mumol/min before starvation (equivalent to mobilization of about 3.95 kJ triglyceride/min) to 304 +/- 20 mumol/min (equivalent to mobilization of about 18.41 kJ/min). The estimated rate of net fat oxidation was 3.00 +/- 0.47 kJ/min before starvation and 4.00 +/- 0.14 kJ/min on day +4 of starvation. The rate of triglyceride energy recycling or rate of deposition of triglyceride energy into fat stores was calculated from the difference in the rate of fat energy mobilization and the rate of energy released during net fat oxidation. The values were found to be 0.94 +/- 0.26 kJ/min before starvation and 6.29 +/- 0.54 kJ/min on day +4 of starvation.(ABSTRACT TRUNCATED AT 250 WORDS)

  12. Enzymes with lid-gated active sites must operate by an induced fit mechanism instead of conformational selection

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sullivan, Sarah M.; Holyoak, Todd

    2008-09-17

    The induced fit and conformational selection/population shift models are two extreme cases of a continuum aimed at understanding the mechanism by which the final key-lock or active enzyme conformation is achieved upon formation of the correctly ligated enzyme. Structures of complexes representing the Michaelis and enolate intermediate complexes of the reaction catalyzed by phosphoenolpyruvate carboxykinase provide direct structural evidence for the encounter complex that is intrinsic to the induced fit model and not required by the conformational selection model. In addition, the structural data demonstrate that the conformational selection model is not sufficient to explain the correlation between dynamics andmore » catalysis in phosphoenolpyruvate carboxykinase and other enzymes in which the transition between the uninduced and the induced conformations occludes the active site from the solvent. The structural data are consistent with a model in that the energy input from substrate association results in changes in the free energy landscape for the protein, allowing for structural transitions along an induced fit pathway.« less

  13. Enzymes With Lid-Gated Active Sites Must Operate By An Induced Fit Mechanism Instead of Conformational Selection

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sullivan, S.M.; Holyoak, T.

    2009-05-26

    The induced fit and conformational selection/population shift models are two extreme cases of a continuum aimed at understanding the mechanism by which the final key-lock or active enzyme conformation is achieved upon formation of the correctly ligated enzyme. Structures of complexes representing the Michaelis and enolate intermediate complexes of the reaction catalyzed by phosphoenolpyruvate carboxykinase provide direct structural evidence for the encounter complex that is intrinsic to the induced fit model and not required by the conformational selection model. In addition, the structural data demonstrate that the conformational selection model is not sufficient to explain the correlation between dynamics andmore » catalysis in phosphoenolpyruvate carboxykinase and other enzymes in which the transition between the uninduced and the induced conformations occludes the active site from the solvent. The structural data are consistent with a model in that the energy input from substrate association results in changes in the free energy landscape for the protein, allowing for structural transitions along an induced fit pathway.« less

  14. Starvation stress affects the interplay among shrimp gut microbiota, digestion and immune activities.

    PubMed

    Dai, Wen-Fang; Zhang, Jin-Jie; Qiu, Qiong-Fen; Chen, Jiong; Yang, Wen; Ni, Sui; Xiong, Jin-Bo

    2018-05-24

    Aquatic animals are frequently suffered from starvation due to restricted food availability or deprivation. It is currently known that gut microbiota assists host in nutrient acquisition. Thus, exploring the gut microbiota responses would improve our understanding on physiological adaptation to starvation. To achieve this, we investigated how the gut microbiota and shrimp digestion and immune activities were affected under starvation stress. The results showed that the measured digestion activities in starved shrimp were significantly lower than in normal cohorts; while the measured immune activities exhibited an opposite trend. A structural equation modeling (SEM) revealed that changes in the gut bacterial community were directly related to digestive and immune enzyme activities, which in turn markedly affected shrimp growth traits. Notably, several gut bacterial indicators that characterized the shrimp nutrient status were identified, with more abundant opportunistic pathogens in starved shrimp, although there were no statistical differences in the overall diversity and the structures of gut bacterial communities between starved and normal shrimp. Starved shrimp exhibited less connected and cooperative interspecies interaction as compared with normal cohorts. Additionally, the functional pathways involved in carbohydrate and protein digestion, glycan biosynthesis, lipid and enzyme metabolism remarkably decreased in starved shrimp. These attenuations could increase the susceptibility of starved shrimp to pathogens infection. In summary, this study provides novel insights into the interplay among shrimp digestion, immune activities and gut microbiota in response to starvation stress. Copyright © 2018 Elsevier Ltd. All rights reserved.

  15. A novel measure of compulsive food restriction in anorexia nervosa: validation of the Self-Starvation Scale (SS).

    PubMed

    Godier, Lauren R; Park, Rebecca J

    2015-04-01

    The characteristic relentless self-starvation behaviour seen in Anorexia Nervosa (AN) has been described as evidence of compulsivity, with increasing suggestion of transdiagnostic parallels with addictive behaviour. There is a paucity of standardised self-report measures of compulsive behaviour in eating disorders (EDs). Measures that index the concept of compulsive self-starvation in AN are needed to explore the suggested parallels with addictions. With this aim a novel measure of self-starvation was developed (the Self-Starvation Scale, SS). 126 healthy participants, and 78 individuals with experience of AN, completed the new measure along with existing measures of eating disorder symptoms, anxiety and depression. Initial validation in the healthy sample indicated good reliability and construct validity, and incremental validity in predicting eating disorder symptoms. The psychometric properties of the SS scale were replicated in the AN sample. The ability of this scale to predict ED symptoms was particularly strong in individuals currently suffering from AN. These results suggest the SS may be a useful index of compulsive food restriction in AN. The concept of 'starvation dependence' in those with eating disorders, as a parallel with addiction, may be of clinical and theoretical importance. Copyright © 2014 Elsevier Ltd. All rights reserved.

  16. Implications of Starvation-Induced Change in Right Dorsal Anterior Cingulate Volume in Anorexia Nervosa

    PubMed Central

    McCormick, Laurie M.; Keel, Pamela K.; Brumm, Michael C.; Bowers, Wayne; Swayze, Victor; Andersen, Arnold; Andreasen, Nancy

    2013-01-01

    Objective Converging evidence suggests a role for the anterior cingulate cortex (ACC) in the pathophysiology of anorexia nervosa (AN). This study sought to determine whether ACC volume was affected by starvation in active AN and, if so, whether this had any clinical significance. Method Eighteen patients with active AN and age- and gender-matched normal controls underwent magnetic resonance imaging (MRI). Sixteen patients (89%) with AN had intelligence quotients (IQ) testing at intake, 14 (78%) had repeat MRIs after weight normalization, and 10 (56%) had outcome data at 1-year post-hospitalization. Results Right dorsal ACC volume was significantly reduced in active AN patients versus controls and was correlated with lower performance IQ. While ACC normalization occurred with weight restoration, smaller change in right dorsal ACC volume prospectively predicted relapse after treatment. Conclusion Reduced right dorsal ACC volume during active AN relates to deficits in perceptual organization and conceptual reasoning. The degree of right dorsal ACC normalization during treatment is related to outcome. PMID:18473337

  17. Implications of starvation-induced change in right dorsal anterior cingulate volume in anorexia nervosa.

    PubMed

    McCormick, Laurie M; Keel, Pamela K; Brumm, Michael C; Bowers, Wayne; Swayze, Victor; Andersen, Arnold; Andreasen, Nancy

    2008-11-01

    Converging evidence suggests a role for the anterior cingulate cortex (ACC) in the pathophysiology of anorexia nervosa (AN). This study sought to determine whether ACC volume was affected by starvation in active AN and, if so, whether this had any clinical significance. Eighteen patients with active AN and age- and gender-matched normal controls underwent magnetic resonance imaging (MRI). Sixteen patients (89%) with AN had intelligence quotients (IQ) testing at intake, 14 (78%) had repeat MRIs after weight normalization, and 10 (56%) had outcome data at 1-year posthospitalization. Right dorsal ACC volume was significantly reduced in active AN patients versus controls and was correlated with lower performance IQ. While ACC normalization occurred with weight restoration, smaller change in right dorsal ACC volume prospectively predicted relapse after treatment. Reduced right dorsal ACC volume during active AN relates to deficits in perceptual organization and conceptual reasoning. The degree of right dorsal ACC normalization during treatment is related to outcome.

  18. Drought-induced starvation of aardvarks in the Kalahari: an indirect effect of climate change.

    PubMed

    Rey, Benjamin; Fuller, Andrea; Mitchell, Duncan; Meyer, Leith C R; Hetem, Robyn S

    2017-07-01

    Aardvarks ( Orycteropus afer ) are elusive burrowing mammals, predominantly nocturnal and distributed widely throughout Africa except for arid deserts. Their survival may be threatened by climate change via direct and indirect effects of increasing heat and aridity. To measure their current physiological plasticity, we implanted biologgers into six adult aardvarks resident in the semi-arid Kalahari. Following a particularly dry and hot summer, five of the study aardvarks and 11 other aardvarks at the study site died. Body temperature records revealed homeothermy (35.4-37.2°C) initially, but heterothermy increased progressively through the summer, with declining troughs in the nychthemeral rhythm of body temperature reaching as low as 25°C before death, likely due to starvation. Activity patterns shifted from the normal nocturnal to a diurnal mode. Our results do not bode well for the future of aardvarks facing climate change. Extirpation of aardvarks, which play a key role as ecosystem engineers, may disrupt stability of African ecosystems. © 2017 The Author(s).

  19. Natural malaria infection reduces starvation resistance of nutritionally stressed mosquitoes.

    PubMed

    Lalubin, Fabrice; Delédevant, Aline; Glaizot, Olivier; Christe, Philippe

    2014-07-01

    In disease ecology, there is growing evidence that environmental quality interacts with parasite and host to determine host susceptibility to an infection. Most studies of malaria parasites have focused on the infection costs incurred by the hosts, and few have investigated the costs on mosquito vectors. The interplay between the environment, the vector and the parasite has therefore mostly been ignored and often relied on unnatural or allopatric Plasmodium/vector associations. Here, we investigated the effects of natural avian malaria infection on both fecundity and survival of field-caught female Culex pipiens mosquitoes, individually maintained in laboratory conditions. We manipulated environmental quality by providing mosquitoes with different concentrations of glucose-feeding solution prior to submitting them to a starvation challenge. We used molecular-based methods to assess mosquitoes' infection status. We found that mosquitoes infected with Plasmodium had lower starvation resistance than uninfected ones only under low nutritional conditions. The effect of nutritional stress varied with time, with the difference of starvation resistance between optimally and suboptimally fed mosquitoes increasing from spring to summer, as shown by a significant interaction between diet treatment and months of capture. Infected and uninfected mosquitoes had similar clutch size, indicating no effect of infection on fecundity. Overall, this study suggests that avian malaria vectors may suffer Plasmodium infection costs in their natural habitat, under certain environmental conditions. This may have major implications for disease transmission in the wild. © 2013 The Authors. Journal of Animal Ecology © 2013 British Ecological Society.

  20. Phosphate transporter mediated lipid accumulation in Saccharomyces cerevisiae under phosphate starvation conditions.

    PubMed

    James, Antoni W; Nachiappan, Vasanthi

    2014-01-01

    In the current study, when phosphate transporters pho88 and pho86 were knocked out they resulted in significant accumulation (84% and 43%) of triacylglycerol (TAG) during phosphate starvation. However in the presence of phosphate, TAG accumulation was only around 45% in both pho88 and pho86 mutant cells. These observations were confirmed by radio-labeling, fluorescent microscope and RT-PCR studies. The TAG synthesizing genes encoding for acyltransferases namely LRO1 and DGA1 were up regulated. This is the first report for accumulation of TAG in pho88Δ and pho86Δ cells under phosphate starvation conditions. Copyright © 2013. Published by Elsevier Ltd.

  1. EGFR is not a major driver for osteosarcoma cell growth in vitro but contributes to starvation and chemotherapy resistance.

    PubMed

    Sevelda, Florian; Mayr, Lisa; Kubista, Bernd; Lötsch, Daniela; van Schoonhoven, Sushilla; Windhager, Reinhard; Pirker, Christine; Micksche, Michael; Berger, Walter

    2015-11-02

    Enhanced signalling via the epidermal growth factor receptor (EGFR) is a hallmark of multiple human carcinomas. However, in recent years data have accumulated that EGFR might also be hyperactivated in human sarcomas. Aim of this study was to investigate the influence of EGFR inhibition on cell viability and its interaction with chemotherapy response in osteosarcoma cell lines. We have investigated a panel of human osteosarcoma cell lines regarding EGFR expression and downstream signalling. To test its potential applicability as therapeutic target, inhibition of EGFR by gefitinib was combined with osteosarcoma chemotherapeutics and cell viability, migration, and cell death assays were performed. Osteosarcoma cells expressed distinctly differing levels of functional EGFR reaching in some cases high amounts. Functionality of EGFR in osteosarcoma cells was proven by EGF-mediated activation of both MAPK and PI3K/AKT pathway (determined by phosphorylation of ERK1/2, AKT, S6, and GSK3β). The EGFR-specific inhibitor gefitinib blocked EGF-mediated downstream signal activation. At standard in vitro culture conditions, clinically achievable gefitinib doses demonstrated only limited cytotoxic activity, however, significantly reduced long-term colony formation and cell migration. In contrast, under serum-starvation conditions active gefitinib doses were distinctly reduced while EGF promoted starvation survival. Importantly, gefitinib significantly supported the anti-osteosarcoma activities of doxorubicin and methotrexate regarding cell survival and migratory potential. Our data suggest that EGFR is not a major driver for osteosarcoma cell growth but contributes to starvation- and chemotherapy-induced stress survival. Consequently, combination approaches including EGFR inhibitors should be evaluated for treatment of high-grade osteosarcoma patients.

  2. Different Metabolomic Responses to Carbon Starvation between Light and Dark Conditions in the Purple Photosynthetic Bacterium, Rhodopseudomonas palustris.

    PubMed

    Kanno, Nanako; Matsuura, Katsumi; Haruta, Shin

    2018-03-29

    Purple photosynthetic bacteria utilize light energy for growth. We previously demonstrated that light energy contributed to prolonging the survival of multiple purple bacteria under carbon-starved conditions. In order to clarify the effects of illumination on metabolic states under carbon-starved, non-growing conditions, we herein compared the metabolic profiles of starved cells in the light and dark using the purple bacterium, Rhodopseudomonas palustris. The metabolic profiles of starved cells in the light were markedly different from those in the dark. After starvation for 5 d in the light, cells showed increases in the amount of ATP and the NAD + /NADH ratio. Decreases in the amounts of most metabolites related to glycolysis and the TCA cycle in energy-rich starved cells suggest the active utilization of these metabolites for the modification of cellular components. Starvation in the dark induced the consumption of cellular compounds such as amino acids, indicating that the degradation of these cellular components produced ATP in order to maintain viability under energy-poor conditions. The present results suggest that intracellular energy levels alter survival strategies under carbon-starved conditions through metabolism.

  3. Proteomic analysis of rainbow trout (Oncorhynchus mykiss) intestinal epithelia: physiological acclimation to short-term starvation.

    PubMed

    Baumgarner, Bradley L; Bharadwaj, Anant S; Inerowicz, Dorota; Goodman, Angela S; Brown, Paul B

    2013-03-01

    The intestinal epithelia form the first line of defense against harmful agents in the gut lumen of most monogastric vertebrates, including teleost fishes. Previous investigations into the effect of starvation on the intestinal epithelia of teleost fishes have focused primarily on changes in morphological characteristics and targeted molecular analysis of specific enzymes. The goal of this study was to use a comprehensive approach to help reveal how the intestinal epithelia of carnivorous teleost fishes acclimate to short-term nutrient deprivation. We utilized two-dimensional gel electrophoresis (2-DE) to conduct the proteomic analysis of the mucosal and epithelial layer of the anterior gut intestinal tract (GIT) from satiation fed vs. 4 week starved rainbow trout (Oncorhynchus mykiss). A total of 40 proteins were determined to be differentially expressed and were subsequently picked for in-gel trypsin digestion. Peptide mass fingerprint analysis was conducted using matrix assisted laser desorption time-of-flight/time-of-flight. Nine of the 11 positively identified proteins were directly related to innate immunity. The expression of α-1 proteinase inhibitor decreased in starved vs. fed fish. Also, the concentration of one leukocyte elastase inhibitor (LEI) isomer decreased in starved fish, though the concentration of another LEI isomer increased in due to starvation. In addition, starvation promoted an increased concentration of the important xenobiotic-transporter p-glycoprotein. Finally, starvation resulted in a significant increase in type II keratin E2. Overall, our results indicate that starvation promoted a reduced capacity to inhibit enzymatic stress but increased xenobiotic resistance and paracellular permeability of epithelial cells in the anterior intestine of rainbow trout. Copyright © 2012 Elsevier Inc. All rights reserved.

  4. daf-16/FoxO promotes gluconeogenesis and trehalose synthesis during starvation to support survival

    PubMed Central

    Hibshman, Jonathan D; Doan, Alexander E; Moore, Brad T; Kaplan, Rebecca EW; Hung, Anthony; Webster, Amy K; Bhatt, Dhaval P; Chitrakar, Rojin; Hirschey, Matthew D

    2017-01-01

    daf-16/FoxO is required to survive starvation in Caenorhabditis elegans, but how daf-16IFoxO promotes starvation resistance is unclear. We show that daf-16/FoxO restructures carbohydrate metabolism by driving carbon flux through the glyoxylate shunt and gluconeogenesis and into synthesis of trehalose, a disaccharide of glucose. Trehalose is a well-known stress protectant, capable of preserving membrane organization and protein structure during abiotic stress. Metabolomic, genetic, and pharmacological analyses confirm increased trehalose synthesis and further show that trehalose not only supports survival as a stress protectant but also serves as a glycolytic input. Furthermore, we provide evidence that metabolic cycling between trehalose and glucose is necessary for this dual function of trehalose. This work demonstrates that daf-16/FoxO promotes starvation resistance by shifting carbon metabolism to drive trehalose synthesis, which in turn supports survival by providing an energy source and acting as a stress protectant. PMID:29063832

  5. daf-16/FoxO promotes gluconeogenesis and trehalose synthesis during starvation to support survival.

    PubMed

    Hibshman, Jonathan D; Doan, Alexander E; Moore, Brad T; Kaplan, Rebecca Ew; Hung, Anthony; Webster, Amy K; Bhatt, Dhaval P; Chitrakar, Rojin; Hirschey, Matthew D; Baugh, L Ryan

    2017-10-24

    daf-16 /FoxO is required to survive starvation in Caenorhabditis elegans , but how daf-16I FoxO promotes starvation resistance is unclear. We show that daf-16 /FoxO restructures carbohydrate metabolism by driving carbon flux through the glyoxylate shunt and gluconeogenesis and into synthesis of trehalose, a disaccharide of glucose. Trehalose is a well-known stress protectant, capable of preserving membrane organization and protein structure during abiotic stress. Metabolomic, genetic, and pharmacological analyses confirm increased trehalose synthesis and further show that trehalose not only supports survival as a stress protectant but also serves as a glycolytic input. Furthermore, we provide evidence that metabolic cycling between trehalose and glucose is necessary for this dual function of trehalose. This work demonstrates that daf-16 /FoxO promotes starvation resistance by shifting carbon metabolism to drive trehalose synthesis, which in turn supports survival by providing an energy source and acting as a stress protectant.

  6. [Death by starvation in French psychiatric hospitals during the occupation].

    PubMed

    Caire, Michel

    2006-01-01

    The author reports the tragic event which happened in the psychiatric hospitals where several thousands patients died by starvation during the occupation. He treats with a judicial inquiry in the wake of the death of fifteen patients in the psychiatric hospital of Toulouse.

  7. Genome-wide Analysis of Phosphoenolpyruvate Carboxylase Gene Family and Their Response to Abiotic Stresses in Soybean

    PubMed Central

    Wang, Ning; Zhong, Xiujuan; Cong, Yahui; Wang, Tingting; Yang, Songnan; Li, Yan; Gai, Junyi

    2016-01-01

    Phosphoenolpyruvate carboxylase (PEPC) plays an important role in assimilating atmospheric CO2 during C4 and crassulacean acid metabolism photosynthesis, and also participates in various non-photosynthetic processes, including fruit ripening, stomatal opening, supporting carbon–nitrogen interactions, seed formation and germination, and regulation of plant tolerance to stresses. However, a comprehensive analysis of PEPC family in Glycine max has not been reported. Here, a total of ten PEPC genes were identified in soybean and denominated as GmPEPC1-GmPEPC10. Based on the phylogenetic analysis of the PEPC proteins from 13 higher plant species including soybean, PEPC family could be classified into two subfamilies, which was further supported by analyses of their conserved motifs and gene structures. Nineteen cis-regulatory elements related to phytohormones, abiotic and biotic stresses were identified in the promoter regions of GmPEPC genes, indicating their roles in soybean development and stress responses. GmPEPC genes were expressed in various soybean tissues and most of them responded to the exogenously applied phytohormones. GmPEPC6, GmPEPC8 and GmPEPC9 were significantly induced by aluminum toxicity, cold, osmotic and salt stresses. In addition, the enzyme activities of soybean PEPCs were also up-regulated by these treatments, suggesting their potential roles in soybean response to abiotic stresses. PMID:27924923

  8. Cloning and expression of phosphoenolpyruvate carboxykinase from a cestode parasite and its solubilization from inclusion bodies using l-arginine.

    PubMed

    Dutta, Asim K; Ramnath; Dkhar, Barilin; Tandon, Veena; Das, Bidyadhar

    2016-09-01

    Phosphoenolpyruvate carboxykinase is an essential regulatory enzyme of glycolysis in the cestode parasite, Raillietina echinobothrida, and is considered a potential target for anthelmintic action because of its differential activity from that of its avian host. However, due to the unavailability of its structure, the mechanism of regulation of PEPCK from R. echinobothrida (rePEPCK) and its interaction with possible modulators remain unclear. Hence, in this study, the rePEPCK gene was cloned into pGEX-4T-3 and overexpressed for its characterization. On being induced by IPTG, the recombinant rePEPCK was expressed as inclusion bodies (IBs); hence, various agents, like different inducer concentrations, temperature, time, host cell types, culture media, pH, and additives, were used to bring the protein to soluble form. Finally, a significant amount (∼46%) of rePEPCK was solubilized from IBs by adding 2M l-arginine. Near-UV circular dichroism spectra analysis indicated that l-arginine (2M) had no effect on the conformation of the protein. In this study, we have reported a yield of ∼73mg of purified rePEPCK per 1L of culture. The purified rePEPCK retained its biological activity, and Km of the enzyme for its substrate was determined and discussed. The availability of recombinant rePEPCK may help in biochemical- and biophysical-studies to explore its molecular mechanisms and regulations. Copyright © 2015 Elsevier Inc. All rights reserved.

  9. Effect of Different Starvation Levels on Cognitive Ability in Mice

    NASA Astrophysics Data System (ADS)

    Li, Xiaobing; Zhi, Guoguo; Yu, Yi; Cai, Lingyu; Li, Peng; Zhang, Danhua; Bao, Shuting; Hu, Wenlong; Shen, Haiyan; Song, Fujuan

    2018-01-01

    Objective: To study the effect of different starvation levels on cognitive ability in mice. Method: Mice were randomly divided into four groups: normal group, dieting group A, dieting group B, dieting group C. The mice of normal group were given normal feeding amount, the rest of groups were given 3/4 of normal feeding amount, 2/4 of normal feeding amount and 1/4 of normal feeding amount. After feeding mice four days, the weight was observed and T-maze experiment, Morris water maze test, open field test and Serum Catalase activity were detected. Result: Compared with the normal group, the correct rate of the intervention group in the T-maze experiment was decreased and dieting group A> dieting group B> dieting group C. In the Morris water maze test, Compared with the normal group, the correct rate of the intervention group was increased. Among these three intervention groups, dieting group A had the highest correct rate and the difference of dieting group B and dieting group C were similar. In the open field test, Compared with the normal group, the exploration rate of the surrounding environment in the intervention group was increased. In the Serum Catalase test, Compared with the normal group, the activities of serum peroxidase in the intervention groups were decreased and dieting group A> dieting group B> dieting group C. Conclusion: A certain level of starvation could affect the cognitive ability of mice. In a certain range, the level of starvation is inversely proportional to cognitive ability in mice.

  10. Transcriptional and Proteomic Responses to Carbon Starvation in Paracoccidioides

    PubMed Central

    Lima, Patrícia de Sousa; Casaletti, Luciana; Bailão, Alexandre Melo; de Vasconcelos, Ana Tereza Ribeiro; Fernandes, Gabriel da Rocha; Soares, Célia Maria de Almeida

    2014-01-01

    Background The genus Paracoccidioides comprises human thermal dimorphic fungi, which cause paracoccidioidomycosis (PCM), an important mycosis in Latin America. Adaptation to environmental conditions is key to fungal survival during human host infection. The adaptability of carbon metabolism is a vital fitness attribute during pathogenesis. Methodology/Principal Findings The fungal pathogen Paracoccidioides spp. is exposed to numerous adverse conditions, such as nutrient deprivation, in the human host. In this study, a comprehensive response of Paracoccidioides, Pb01, under carbon starvation was investigated using high-resolution transcriptomic (RNAseq) and proteomic (NanoUPLC-MSE) approaches. A total of 1,063 transcripts and 421 proteins were differentially regulated, providing a global view of metabolic reprogramming during carbon starvation. The main changes were those related to cells shifting to gluconeogenesis and ethanol production, supported by the degradation of amino acids and fatty acids and by the modulation of the glyoxylate and tricarboxylic cycles. This proposed carbon flow hypothesis was supported by gene and protein expression profiles assessed using qRT-PCR and western blot analysis, respectively, as well as using enzymatic, cell dry weight and fungus-macrophage interaction assays. The carbon source provides a survival advantage to Paracoccidioides inside macrophages. Conclusions/Significance For a complete understanding of the physiological processes in an organism, the integration of approaches addressing different levels of regulation is important. To the best of our knowledge, this report presents the first description of the responses of Paracoccidioides spp. to host-like conditions using large-scale expression approaches. The alternative metabolic pathways that could be adopted by the organism during carbon starvation can be important for a better understanding of the fungal adaptation to the host, because systems for detecting and responding

  11. Variability in Phytoplankton Morphology and Macromolecular Composition With Nutrient Starvation and The Implications for Oceanic Elemental Stoichiometry

    NASA Astrophysics Data System (ADS)

    Liefer, J. D.; Benner, I.; Brown, C. M.; Garg, A.; Fiset, C.; Irwin, A. J.; Follows, M. J.; Finkel, Z.

    2016-02-01

    Trait based modeling efforts are an important tool for predicting the distribution of phytoplankton communities in the ocean and their interaction with elemental stoichiometry. The elemental stoichiometry of phytoplankton is based on their macromolecular composition. Many phytoplankton species accumulate C-rich storage products (carbohydrates and lipids) and reduce N and P-rich functional components (proteins and nucleic acids) upon N- or P-starvation. Reconciling global patterns in C:N:P stoichiometry and phytoplankton community structure and succession requires a better understanding of how phytoplankton macromolecular composition varies across taxa, size class, and growth conditions. We examined changes in cell size and composition from exponential growth to nitrogen starvation in four common phytoplankton species representing two size classes each of chlorophytes and diatoms. Variation in cell size, cell mass, and length of stationary growth phase appeared to be size dependent. The larger species of chlorophyte and diatom had a significant increase in cell mass and cell size with N-starvation and showed no significant change in cell density after starvation for 5-7 days. The smaller size species of both phyla showed no significant change in cell size or mass upon N-starvation and a consistent decline in cell density 1-2 days after peak densities were reached. All species had a similar significant increase in C quota, but changes in N quota and C:N were more variable and species-specific. We also present changes in macromolecular composition and C, N, and P-allocation due to N-starvation and their implications for elemental stoichiometry under natural conditions. These results are compared to field observations of C:N:P stoichiometry and phytoplankton community structure to examine the physiological plasticity that may underlie global oceanic C:N:P variability and demonstrate the importance of this plasticity in trait based models.

  12. Stress induced gene expression drives transient DNA methylation changes at adjacent repetitive elements.

    PubMed

    Secco, David; Wang, Chuang; Shou, Huixia; Schultz, Matthew D; Chiarenza, Serge; Nussaume, Laurent; Ecker, Joseph R; Whelan, James; Lister, Ryan

    2015-07-21

    Cytosine DNA methylation (mC) is a genome modification that can regulate the expression of coding and non-coding genetic elements. However, little is known about the involvement of mC in response to environmental cues. Using whole genome bisulfite sequencing to assess the spatio-temporal dynamics of mC in rice grown under phosphate starvation and recovery conditions, we identified widespread phosphate starvation-induced changes in mC, preferentially localized in transposable elements (TEs) close to highly induced genes. These changes in mC occurred after changes in nearby gene transcription, were mostly DCL3a-independent, and could partially be propagated through mitosis, however no evidence of meiotic transmission was observed. Similar analyses performed in Arabidopsis revealed a very limited effect of phosphate starvation on mC, suggesting a species-specific mechanism. Overall, this suggests that TEs in proximity to environmentally induced genes are silenced via hypermethylation, and establishes the temporal hierarchy of transcriptional and epigenomic changes in response to stress.

  13. Epigenetic modification of fetal baboon hepatic phosphoenolpyruvate carboxykinase following exposure to moderately reduced nutrient availability

    PubMed Central

    Nijland, Mark J; Mitsuya, Kozoh; Li, Cun; Ford, Stephen; McDonald, Thomas J; Nathanielsz, Peter W; Cox, Laura A

    2010-01-01

    Decreased maternal nutrient availability during pregnancy induces compensatory fetal metabolic and endocrine responses. Knowledge of cellular changes involved is critical to understanding normal and abnormal development. Several studies in rodents and sheep report increased fetal plasma cortisol and associated increased gluconeogenesis in response to maternal nutrient reduction (MNR) but observations in primates are lacking. We determined MNR effects on fetal liver phosphoenolpyruvate carboxykinase 1 (protein, PEPCK1; gene, PCK1 orthologous/homologous human chromosomal region 20q13.31) at 0.9 gestation (G). Female baboon social groups were fed ad libitum (control, CTR) or 70% CTR (MNR) from 0.16 to 0.9G when fetuses were delivered by caesarean section under general anaesthesia. Plasma cortisol was elevated in fetuses of MNR mothers (P < 0.05). Immunoreactive PEPCK1 protein was located around the liver lobule central vein and was low in CTR fetuses but rose to 63% of adult levels in MNR fetuses. PCK1 mRNA measured by QRT-PCR increased in MNR (2.3-fold; P < 0.05) while the 25% rise in protein by Western blot analysis was not significant. PCK1 promoter methylation analysis using bisulfite sequencing was significantly reduced in six out of nine CpG-dinucleotides evaluated in MNR compared with CTR liver samples. In conclusion, these are the first data from a fetal non-human primate indicating hypomethylation of the PCK1 promoter in the liver following moderate maternal nutrient reduction. PMID:20176628

  14. The negative effect of starvation and the positive effect of mild thermal stress on thermal tolerance of the red flour beetle, Tribolium castaneum

    NASA Astrophysics Data System (ADS)

    Scharf, Inon; Wexler, Yonatan; MacMillan, Heath Andrew; Presman, Shira; Simson, Eddie; Rosenstein, Shai

    2016-04-01

    The thermal tolerance of a terrestrial insect species can vary as a result of differences in population origin, developmental stage, age, and sex, as well as via phenotypic plasticity induced in response to changes in the abiotic environment. Here, we studied the effects of both starvation and mild cold and heat shocks on the thermal tolerance of the red flour beetle, Tribolium castaneum. Starvation led to impaired cold tolerance, measured as chill coma recovery time, and this effect, which was stronger in males than females, persisted for longer than 2 days but less than 7 days. Heat tolerance, measured as heat knockdown time, was not affected by starvation. Our results highlight the difficulty faced by insects when encountering multiple stressors simultaneously and indicate physiological trade-offs. Both mild cold and heat shocks led to improved heat tolerance in both sexes. It could be that both mild shocks lead to the expression of heat shock proteins, enhancing heat tolerance in the short run. Cold tolerance was not affected by previous mild cold shock, suggesting that such a cold shock, as a single event, causes little stress and hence elicits only weak physiological reaction. However, previous mild heat stress led to improved cold tolerance but only in males. Our results point to both hardening and cross-tolerance between cold and heat shocks.

  15. Balancing the risks of hydraulic failure and carbon starvation: a twig scale analysis in declining Scots pine

    PubMed Central

    Torres‐Ruiz, José M.; Poyatos, Rafael; Martinez‐Vilalta, Jordi; Meir, Patrick; Cochard, Hervé; Mencuccini, Maurizio

    2015-01-01

    Abstract Understanding physiological processes involved in drought‐induced mortality is important for predicting the future of forests and for modelling the carbon and water cycles. Recent research has highlighted the variable risks of carbon starvation and hydraulic failure in drought‐exposed trees. However, little is known about the specific responses of leaves and supporting twigs, despite their critical role in balancing carbon acquisition and water loss. Comparing healthy (non‐defoliated) and unhealthy (defoliated) Scots pine at the same site, we measured the physiological variables involved in regulating carbon and water resources. Defoliated trees showed different responses to summer drought compared with non‐defoliated trees. Defoliated trees maintained gas exchange while non‐defoliated trees reduced photosynthesis and transpiration during the drought period. At the branch scale, very few differences were observed in non‐structural carbohydrate concentrations between health classes. However, defoliated trees tended to have lower water potentials and smaller hydraulic safety margins. While non‐defoliated trees showed a typical response to drought for an isohydric species, the physiology appears to be driven in defoliated trees by the need to maintain carbon resources in twigs. These responses put defoliated trees at higher risk of branch hydraulic failure and help explain the interaction between carbon starvation and hydraulic failure in dying trees. PMID:25997464

  16. High activity and stability of codon-optimized phosphoenolpyruvate carboxylase from Photobacterium profundum SS9 at low temperatures and its application for in vitro production of oxaloacetate.

    PubMed

    Park, Soohyun; Hong, Soohye; Pack, Seung Pil; Lee, Jinwon

    2014-02-01

    Phosphoenolpyruvate carboxylase (PEPC) of Photobacterium profundum SS9 can be expressed and purified using the Escherichia coli expression system. In this study, a codon-optimized PEPC gene (OPPP) was used to increase expression levels. We confirmed OPPP expression and purified it from extracts of recombinant E. coli SGJS117 harboring the OPPP gene. The purified OPPP showed a specific activity value of 80.3 U/mg protein. The OPPP was stable under low temperature (5-30 °C) and weakly basic conditions (pH 8.5-10). The enzymatic ability of OPPP was investigated for in vitro production of oxaloacetate using phosphoenolpyruvate (PEP) and bicarbonate. Only samples containing the OPPP, PEP, and bicarbonate resulted in oxaloacetate production. OPPP production system using E. coli could be a platform technology to produce high yields of heterogeneous gene and provide the PEPC enzyme, which has high enzyme activity.

  17. Physiological consequences of starvation in Pseudomonas putida: degradation of intracellular protein and loss of activity of the inducible enzymes of L-arginine catabolism.

    PubMed

    Fan, C L; Rodwell, V W

    1975-12-01

    We investigated the degradation of radioisotopically labeled intracellular protein in starved, intact cells of Pseudomonas putida P2 (ATCC 25571) and the regulation of this process. Intracellular protein isotopically labeled with L-[4,5-3H]leucine during log-phase growth at 30 C is degraded at rates of 1 to 2%/h in log-phase cells and 7 to 9%/h in starved cells. Rifampin, chloramphenicol, and tosyllysine chloromethylketone lower the rate of protein degradation by starved cells. Addition to starved cells of a nutrient upon which the culture is induced for growth rapidly lowers the rate of protein degradation from 7 to 9%/h to less than 1.5%/h. A nutrient that is oxidized but that cannot immediately support growth also lowers the rate of starvation-induced protein degradation. Proteolytic activity of cell extracts requires a divalent metal ion and may be inhibited up to 60% by tosyllysine chloromethylketone or p-toluenesulfonyl fluoride. Rifampin and chloramphenicol have no effect. In contrast to intact cells, extracts of growing or starving cells degrade protein at equivalent rates. We also investigated the stabilities of the inducible transport system and of four inducible intracellular enzymes of L-arginine catabolism. These include: the membrane-associated, L-arginine-specific transport system; L-arginine oxidase (oxidase); alpha-ketoarginine decarboxylase (decarboxylase); gamma-guanidinobutyraldehyde dehydrogenase ( dehydrogenase); and gamma-guanidinobutyrate amidinohydrolase (hydrolase). In starved cells, the rates of loss of activities were: transport and dehydrogenase activities, stable; oxidase and decarboxylase activities, 20 to 30%/h; hydrolase activity, 5 to 8%/h. Chloramphenicol decreases the rate of loss of oxidase, decarboxylase, and hydrolase activity, whereas p-toluenesulfonyl fluoride lowers the rate of loss of decarboxylase but not of oxidase or hydrolase activity. Addition to starved cells of a nutrient for which they are already induced for

  18. Both the autophagy and proteasomal pathways facilitate the Ubp3p-dependent depletion of a subset of translation and RNA turnover factors during nitrogen starvation in Saccharomyces cerevisiae

    PubMed Central

    Kelly, Shane P.; Bedwell, David M.

    2015-01-01

    Protein turnover is an important regulatory mechanism that facilitates cellular adaptation to changing environmental conditions. Previous studies have shown that ribosome abundance is reduced during nitrogen starvation by a selective autophagy mechanism termed ribophagy, which is dependent upon the deubiquitinase Ubp3p. In this study, we asked whether the abundance of various translation and RNA turnover factors are reduced following the onset of nitrogen starvation in Saccharomyces cerevisiae. We found distinct differences in the abundance of the proteins tested following nitrogen starvation: (1) The level of some did not change; (2) others were reduced with kinetics similar to ribophagy, and (3) a few proteins were rapidly depleted. Furthermore, different pathways differentially degraded the various proteins upon nitrogen starvation. The translation factors eRF3 and eIF4GI, and the decapping enhancer Pat1p, required an intact autophagy pathway for their depletion. In contrast, the deadenylase subunit Pop2p and the decapping enzyme Dcp2p were rapidly depleted by a proteasome-dependent mechanism. The proteasome-dependent depletion of Dcp2p and Pop2p was also induced by rapamycin, suggesting that the TOR1 pathway influences this pathway. Like ribophagy, depletion of eIF4GI, eRF3, Dcp2p, and Pop2p was dependent upon Ubp3p to varying extents. Together, our results suggest that the autophagy and proteasomal pathways degrade distinct translation and RNA turnover factors in a Ubp3p-dependent manner during nitrogen starvation. While ribophagy is thought to mediate the reutilization of scarce resources during nutrient limitation, our results suggest that the selective degradation of specific proteins could also facilitate a broader reprogramming of the post-transcriptional control of gene expression. PMID:25795416

  19. Transforming Growth Factor β/Activin signaling in neurons increases susceptibility to starvation.

    PubMed

    Chng, Wen-Bin Alfred; Koch, Rafael; Li, Xiaoxue; Kondo, Shu; Nagoshi, Emi; Lemaitre, Bruno

    2017-01-01

    Animals rely on complex signaling network to mobilize its energy stores during starvation. We have previously shown that the sugar-responsive TGFβ/Activin pathway, activated through the TGFβ ligand Dawdle, plays a central role in shaping the post-prandial digestive competence in the Drosophila midgut. Nevertheless, little is known about the TGFβ/Activin signaling in sugar metabolism beyond the midgut. Here, we address the importance of Dawdle (Daw) after carbohydrate ingestion. We found that Daw expression is coupled to dietary glucose through the evolutionarily conserved Mio-Mlx transcriptional complex. In addition, Daw activates the TGFβ/Activin signaling in neuronal populations to regulate triglyceride and glycogen catabolism and energy homeostasis. Loss of those neurons depleted metabolic reserves and rendered flies susceptible to starvation.

  20. Transcriptome landscape of Synechococcus elongatus PCC 7942 for nitrogen starvation responses using RNA-seq

    PubMed Central

    Choi, Sun Young; Park, Byeonghyeok; Choi, In-Geol; Sim, Sang Jun; Lee, Sun-Mi; Um, Youngsoon; Woo, Han Min

    2016-01-01

    The development of high-throughput technology using RNA-seq has allowed understanding of cellular mechanisms and regulations of bacterial transcription. In addition, transcriptome analysis with RNA-seq has been used to accelerate strain improvement through systems metabolic engineering. Synechococcus elongatus PCC 7942, a photosynthetic bacterium, has remarkable potential for biochemical and biofuel production due to photoautotrophic cell growth and direct CO2 conversion. Here, we performed a transcriptome analysis of S. elongatus PCC 7942 using RNA-seq to understand the changes of cellular metabolism and regulation for nitrogen starvation responses. As a result, differentially expressed genes (DEGs) were identified and functionally categorized. With mapping onto metabolic pathways, we probed transcriptional perturbation and regulation of carbon and nitrogen metabolisms relating to nitrogen starvation responses. Experimental evidence such as chlorophyll a and phycobilisome content and the measurement of CO2 uptake rate validated the transcriptome analysis. The analysis suggests that S. elongatus PCC 7942 reacts to nitrogen starvation by not only rearranging the cellular transport capacity involved in carbon and nitrogen assimilation pathways but also by reducing protein synthesis and photosynthesis activities. PMID:27488818

  1. Effect of starvation and refeeding on digestive enzyme activities in sturgeon (Acipenser naccarii) and trout (Oncorhynchus mykiss).

    PubMed

    Furné, Miriam; García-Gallego, Manuel; Hidalgo, M Carmen; Morales, Amalia E; Domezain, Alberto; Domezain, Julio; Sanz, Ana

    2008-04-01

    The digestive enzyme activities were determined in Adriatic sturgeon and rainbow trout during starvation and refeeding period. Overall, the digestive enzyme activities are affected in the same sense in both species. The protease and lipase activities were decreased later than amylase activity. Even after 1 month of starvation, both species would be prepared to digest protein and lipids in an effective way. After 72 days of starvation, the digestive machinery of the sturgeon and of the trout shows an altered capacity to digest macronutrients. The capacity to digest proteins and lipids, after 60 days of refeeding, begins to become re-established in sturgeon and trout. In contrast, in this period, the capacity to digest carbohydrates remains depressed in both species.

  2. Effects of starvation on intermolt development in Calanus finmarchicus copepodites: a comparison between theoretical models and field studies1

    NASA Astrophysics Data System (ADS)

    Crain, Jennifer A.; Miller, Charles B.

    Campbell et al . (Deep Sea Research II, 48 (2001) 531) have shown that there was a localized starvation event affecting Calanus finmarchicus on the southern flank of Georges Bank in April 1997. Growth and molting rates of this dominant copepod were reduced. We have used the morphology of tooth development in field-collected samples to show that this starvation affected animals living continuously in the field, as well as those in Campbell et al .'s experimental tanks. Assuming a point of reserve saturation (PRS) response of Calanus to food limitation, and correspondence between PRS and advance from the postmolt jaw facies, the proportion of individuals with postmolt jaws should increase in all copepodite stages under starvation. Individuals that have developed past PRS should molt to the next stage, acquiring postmolt facies. Thus, the fraction of postmolt jaws should increase, while the fraction of jaws in later phases should decrease. This was observed for a drifter-marked station over five days. Numerical simulations of jaw phase distributions expected under full nutrition, and both total and patchy starvation were generated from individual-based models of development. Proportions of copepodites in postmolt phase do not increase with full nutrition. A simulation of a total starvation event showed a marked increase in postmolts during food limitation, but the increase was more extreme than the field data. A modification of the starvation simulation, representing patchy feeding conditions, matched the level of increase of postmolt individuals in all stages that was observed in the field samples.

  3. Glutamine starvation enhances PCV2 replication via the phosphorylation of p38 MAPK, as promoted by reducing glutathione levels.

    PubMed

    Chen, Xingxiang; Shi, Xiuli; Gan, Fang; Huang, Da; Huang, Kehe

    2015-03-18

    Glutamine has a positive effect on ameliorating reproductive failure caused by porcine circovirus type 2 (PCV2). However, the mechanism by which glutamine affects PCV2 replication remains unclear. This study was conducted to investigate the effects of glutamine on PCV2 replication and its underlying mechanisms in vitro. The results show that glutamine promoted PK-15 cell viability. Surprisingly, glutamine starvation significantly increased PCV2 replication. The promotion of PCV2 replication by glutamine starvation disappeared after fresh media with 4 mM glutamine was added. Likewise, promotion of PCV2 was observed after adding buthionine sulfoximine (BSO). Glutamine starvation or BSO treatment increased the level of p38 MAPK phosphorylation and PCV2 replication in PK-15 cells. Meanwhile, p38 MAPK phosphorylation and PCV2 replication significantly decreased in p38-knockdown PK-15 cells. Promotion of PCV2 replication caused by glutamine starvation could be blocked in p38-knockdown PK-15 cells. Therefore, glutamine starvation increased PCV2 replication by promoting p38 MAPK activation, which was associated with the down regulation of intracellular glutathione levels. Our findings may contribute toward interpreting the possible pathogenic mechanism of PCV2 and provide a theoretical reference for application of glutamine in controlling porcine circovirus-associated diseases.

  4. Computational model of in vivo human energy metabolism during semi-starvation and re-feeding

    PubMed Central

    Hall, Kevin D.

    2008-01-01

    Changes of body weight and composition are the result of complex interactions among metabolic fluxes contributing to macronutrient balances. To better understand these interactions, a mathematical model was constructed that used the measured dietary macronutrient intake during semi-starvation and re-feeding as model inputs and computed whole-body energy expenditure, de novo lipogenesis, gluconeogenesis, as well as turnover and oxidation of carbohydrate, fat and protein. Published in vivo human data provided the basis for the model components which were integrated by fitting a few unknown parameters to the classic Minnesota human starvation experiment. The model simulated the measured body weight and fat mass changes during semi-starvation and re-feeding and predicted the unmeasured metabolic fluxes underlying the body composition changes. The resting metabolic rate matched the experimental measurements and required a model of adaptive thermogenesis. Re-feeding caused an elevation of de novo lipogenesis which, along with increased fat intake, resulted in a rapid repletion and overshoot of body fat. By continuing the computer simulation with the pre-starvation diet and physical activity, the original body weight and composition was eventually restored, but body fat mass was predicted to take more than one additional year to return to within 5% of its original value. The model was validated by simulating a recently published short-term caloric restriction experiment without changing the model parameters. The predicted changes of body weight, fat mass, resting metabolic rate, and nitrogen balance matched the experimental measurements thereby providing support for the validity of the model. PMID:16449298

  5. Nitrogen Starvation Acclimation in Synechococcus elongatus: Redox-Control and the Role of Nitrate Reduction as an Electron Sink

    PubMed Central

    Klotz, Alexander; Reinhold, Edgar; Doello, Sofía; Forchhammer, Karl

    2015-01-01

    Nitrogen starvation acclimation in non-diazotrophic cyanobacteria is characterized by a process termed chlorosis, where the light harvesting pigments are degraded and the cells gradually tune down photosynthetic and metabolic activities. The chlorosis response is governed by a complex and poorly understood regulatory network, which converges at the expression of the nblA gene, the triggering factor for phycobiliprotein degradation. This study established a method that allows uncoupling metabolic and redox-signals involved in nitrogen-starvation acclimation. Inhibition of glutamine synthetase (GS) by a precise dosage of l-methionine-sulfoximine (MSX) mimics the metabolic situation of nitrogen starvation. Addition of nitrate to such MSX-inhibited cells eliminates the associated redox-stress by enabling electron flow towards nitrate/nitrite reduction and thereby, prevents the induction of nblA expression and the associated chlorosis response. This study demonstrates that nitrogen starvation is perceived not only through metabolic signals, but requires a redox signal indicating over-reduction of PSI-reduced electron acceptors. It further establishes a cryptic role of nitrate/nitrite reductases as electron sinks to balance conditions of over-reduction. PMID:25780959

  6. Immunolocalization of carbonic anhydrase and phosphoenolpyruvate carboxylase in developing seeds of Medicago sativa.

    PubMed

    Aivalakis, Georgios; Dimou, Maria; Flemetakis, Emmanouil; Plati, Fotini; Katinakis, Panagiotis; Drossopoulos, J B

    2004-03-01

    To investigate the role of carbonic anhydrase (CA; EC 4.2.1.1) and phosphoenolpyruvate carboxylase (PEPC; EC 4.1.1.31) during Medicago sativa seed development, the distribution of both proteins was examined using an immunohistological approach. Both enzymes are co-localized in most ovular and embryonic tissues. In early stages of seed development, both proteins were abundant in embryo and integuments, while at subsequent stages both proteins are accumulated in endosperm, nucellus and integuments. At late stages of seed development when both endosperm and nucellus are degraded, significant accumulation of both proteins was observed in the embryo proper. Chlorophyll was found to accumulate in embryos after the heart stage and reached a maximum at mature stage. It is suggested that CA and PEPC play a role in respiratory carbon dioxide refixation while generating malate to support amino acid and/or fatty acids biosynthesis.

  7. Phosphoenolpyruvate:glucose phosphotransferase system modification increases the conversion rate during L-tryptophan production in Escherichia coli.

    PubMed

    Liu, Lina; Chen, Sheng; Wu, Jing

    2017-10-01

    Escherichia coli FB-04(pta1), a recombinant L-tryptophan production strain, was constructed in our laboratory. However, the conversion rate (L-tryptophan yield per glucose) of this strain is somewhat low. In this study, additional genes have been deleted in an effort to increase the conversion rate of E. coli FB-04(pta1). Initially, the pykF gene, which encodes pyruvate kinase I (PYKI), was inactivated to increase the accumulation of phosphoenolpyruvate, a key L-tryptophan precursor. The resulting strain, E. coli FB-04(pta1)ΔpykF, showed a slightly higher L-tryptophan yield and a higher conversion rate in fermentation processes. To further improve the conversion rate, the phosphoenolpyruvate:glucose phosphotransferase system (PTS) was disrupted by deleting the ptsH gene, which encodes the phosphocarrier protein (HPr). The levels of biomass, L-tryptophan yield, and conversion rate of this strain, E. coli FB-04(pta1)ΔpykF/ptsH, were especially low during fed-batch fermentation process, even though it achieved a significant increase in conversion rate during shake-flask fermentation. To resolve this issue, four HPr mutations (N12S, N12A, S46A, and S46N) were introduced into the genomic background of E. coli FB-04(pta1)ΔpykF/ptsH, respectively. Among them, the strain harboring the N12S mutation (E. coli FB-04(pta1)ΔpykF-ptsHN12S) showed a prominently increased conversion rate of 0.178 g g -1 during fed-batch fermentation; an increase of 38.0% compared with parent strain E. coli FB-04(pta1). Thus, mutation of the genomic of ptsH gene provided an alternative method to weaken the PTS and improve the efficiency of carbon source utilization.

  8. Cytoplasmic dynein undergoes intracellular redistribution concomitant with phosphorylation of the heavy chain in response to serum starvation and okadaic acid.

    PubMed

    Lin, S X; Ferro, K L; Collins, C A

    1994-11-01

    Cytoplasmic dynein is a microtubule-binding protein which is considered to serve as a motor for retrograde organelle movement. In cultured fibroblasts, cytoplasmic dynein localizes primarily to lysosomes, membranous organelles whose movement and distribution in the cytoplasm have been shown to be dependent on the integrity of the microtubule cytoskeleton. We have recently identified conditions which lead to an apparent dissociation of dynein from lysosomes in vivo, indicating that alterations in membrane binding may be involved in the regulation of retrograde organelle movement (Lin, S. X. H., and C. A. Collins. 1993. J. Cell Sci. 105:579-588). Both brief serum withdrawal and low extracellular calcium levels induced this alteration, and the effect was reversed upon addition of serum or additional calcium. Here we demonstrate that the phosphorylation state of the dynein molecule is correlated with changes in its intracellular distribution in normal rat kidney fibroblasts. Dynein heavy chain phosphorylation level increased during serum starvation, and decreased back to control levels upon subsequent addition of serum. We found that okadaic acid, a phosphoprotein phosphatase inhibitor, mimicked the effects of serum starvation on both phosphorylation and the intracellular redistribution of dynein from a membrane-associated pool to one that was more soluble, with similar dose dependence for both phenomena. Cell fractionation by differential detergent extraction revealed that a higher proportion of dynein was present in a soluble pool after serum starvation than was found in comparable fractions from control cells. Our data indicate that cytoplasmic dynein is phosphorylated in vivo, and changes in phosphorylation state may be involved in a regulatory mechanism affecting the distribution of this protein among intracellular compartments.

  9. Comparative transcriptome analysis to investigate the high starch accumulation of duckweed (Landoltia punctata) under nutrient starvation.

    PubMed

    Tao, Xiang; Fang, Yang; Xiao, Yao; Jin, Yan-Ling; Ma, Xin-Rong; Zhao, Yun; He, Kai-Ze; Zhao, Hai; Wang, Hai-Yan

    2013-05-08

    Duckweed can thrive on anthropogenic wastewater and produce tremendous biomass production. Due to its relatively high starch and low lignin percentage, duckweed is a good candidate for bioethanol fermentation. Previous studies have observed that water devoid of nutrients is good for starch accumulation, but its molecular mechanism remains unrevealed. This study globally analyzed the response to nutrient starvation in order to investigate the starch accumulation in duckweed (Landoltia punctata). L. punctata was transferred from nutrient-rich solution to distilled water and sampled at different time points. Physiological measurements demonstrated that the activity of ADP-glucose pyrophosphorylase, the key enzyme of starch synthesis, as well as the starch percentage in duckweed, increased continuously under nutrient starvation. Samples collected at 0 h, 2 h and 24 h time points respectively were used for comparative gene expression analysis using RNA-Seq. A comprehensive transcriptome, comprising of 74,797 contigs, was constructed by a de novo assembly of the RNA-Seq reads. Gene expression profiling results showed that the expression of some transcripts encoding key enzymes involved in starch biosynthesis was up-regulated, while the expression of transcripts encoding enzymes involved in starch consumption were down-regulated, the expression of some photosynthesis-related transcripts were down-regulated during the first 24 h, and the expression of some transporter transcripts were up-regulated within the first 2 h. Very interestingly, most transcripts encoding key enzymes involved in flavonoid biosynthesis were highly expressed regardless of starvation, while transcripts encoding laccase, the last rate-limiting enzyme of lignifications, exhibited very low expression abundance in all three samples. Our study provides a comprehensive expression profiling of L. punctata under nutrient starvation, which indicates that nutrient starvation down-regulated the global metabolic

  10. Comparative transcriptome analysis to investigate the high starch accumulation of duckweed (Landoltia punctata) under nutrient starvation

    PubMed Central

    2013-01-01

    Background Duckweed can thrive on anthropogenic wastewater and produce tremendous biomass production. Due to its relatively high starch and low lignin percentage, duckweed is a good candidate for bioethanol fermentation. Previous studies have observed that water devoid of nutrients is good for starch accumulation, but its molecular mechanism remains unrevealed. Results This study globally analyzed the response to nutrient starvation in order to investigate the starch accumulation in duckweed (Landoltia punctata). L. punctata was transferred from nutrient-rich solution to distilled water and sampled at different time points. Physiological measurements demonstrated that the activity of ADP-glucose pyrophosphorylase, the key enzyme of starch synthesis, as well as the starch percentage in duckweed, increased continuously under nutrient starvation. Samples collected at 0 h, 2 h and 24 h time points respectively were used for comparative gene expression analysis using RNA-Seq. A comprehensive transcriptome, comprising of 74,797 contigs, was constructed by a de novo assembly of the RNA-Seq reads. Gene expression profiling results showed that the expression of some transcripts encoding key enzymes involved in starch biosynthesis was up-regulated, while the expression of transcripts encoding enzymes involved in starch consumption were down-regulated, the expression of some photosynthesis-related transcripts were down-regulated during the first 24 h, and the expression of some transporter transcripts were up-regulated within the first 2 h. Very interestingly, most transcripts encoding key enzymes involved in flavonoid biosynthesis were highly expressed regardless of starvation, while transcripts encoding laccase, the last rate-limiting enzyme of lignifications, exhibited very low expression abundance in all three samples. Conclusion Our study provides a comprehensive expression profiling of L. punctata under nutrient starvation, which indicates that nutrient starvation down

  11. Genome-wide analysis of autophagy-associated genes in foxtail millet (Setaria italica L.) and characterization of the function of SiATG8a in conferring tolerance to nitrogen starvation in rice.

    PubMed

    Li, Weiwei; Chen, Ming; Wang, Erhui; Hu, Liqin; Hawkesford, Malcolm J; Zhong, Li; Chen, Zhu; Xu, Zhaoshi; Li, Liancheng; Zhou, Yongbin; Guo, Changhong; Ma, Youzhi

    2016-10-12

    Autophagy is a cellular degradation process that is highly evolutionarily-conserved in yeast, plants, and animals. In plants, autophagy plays important roles in regulating intracellular degradation and recycling of amino acids in response to nutrient starvation, senescence, and other environmental stresses. Foxtail millet (Setaria italica) has strong resistance to stresses and has been proposed as an ideal material for use in the study of the physiological mechanisms of abiotic stress tolerance in plants. Although the genome sequence of foxtail millet (Setaria italica) is available, the characteristics and functions of abiotic stress-related genes remain largely unknown for this species. A total of 37 putative ATG (autophagy-associated genes) genes in the foxtail millet genome were identified. Gene duplication analysis revealed that both segmental and tandem duplication events have played significant roles in the expansion of the ATG gene family in foxtail millet. Comparative synteny mapping between the genomes of foxtail millet and rice suggested that the ATG genes in both species have common ancestors, as their ATG genes were primarily located in similar syntenic regions. Gene expression analysis revealed the induced expression of 31 SiATG genes by one or more phytohormone treatments, 26 SiATG genes by drought, salt and cold, 24 SiATG genes by darkness and 25 SiATG genes by nitrogen starvation. Results of qRT-PCR showing that among 37 SiATG genes, the expression level of SiATG8a was the highest after nitrogen starvation treatment 24 h, suggesting its potential role in tolerance to nutrient starvation. Moreover, the heterologous expression of SiATG8a in rice improved nitrogen starvation tolerance. Compared to wild type rice, the transgenic rice performed better and had higher aboveground total nitrogen content when the plants were grown under nitrogen starvation conditions. Our results deepen understanding about the characteristics and functions of ATG genes in

  12. Stress induced gene expression drives transient DNA methylation changes at adjacent repetitive elements

    PubMed Central

    Secco, David; Wang, Chuang; Shou, Huixia; Schultz, Matthew D; Chiarenza, Serge; Nussaume, Laurent; Ecker, Joseph R; Whelan, James; Lister, Ryan

    2015-01-01

    Cytosine DNA methylation (mC) is a genome modification that can regulate the expression of coding and non-coding genetic elements. However, little is known about the involvement of mC in response to environmental cues. Using whole genome bisulfite sequencing to assess the spatio-temporal dynamics of mC in rice grown under phosphate starvation and recovery conditions, we identified widespread phosphate starvation-induced changes in mC, preferentially localized in transposable elements (TEs) close to highly induced genes. These changes in mC occurred after changes in nearby gene transcription, were mostly DCL3a-independent, and could partially be propagated through mitosis, however no evidence of meiotic transmission was observed. Similar analyses performed in Arabidopsis revealed a very limited effect of phosphate starvation on mC, suggesting a species-specific mechanism. Overall, this suggests that TEs in proximity to environmentally induced genes are silenced via hypermethylation, and establishes the temporal hierarchy of transcriptional and epigenomic changes in response to stress. DOI: http://dx.doi.org/10.7554/eLife.09343.001 PMID:26196146

  13. An Escherichia coli nitrogen starvation response is important for mutualistic coexistence with Rhodopseudomonas palustris.

    PubMed

    McCully, Alexandra L; Behringer, Megan G; Gliessman, Jennifer R; Pilipenko, Evgeny V; Mazny, Jeffrey L; Lynch, Michael; Drummond, D Allan; McKinlay, James B

    2018-05-04

    Microbial mutualistic cross-feeding interactions are ubiquitous and can drive important community functions. Engaging in cross-feeding undoubtedly affects the physiology and metabolism of individual species involved. However, the nature in which an individual's physiology is influenced by cross-feeding and the importance of those physiological changes for the mutualism have received little attention. We previously developed a genetically tractable coculture to study bacterial mutualisms. The coculture consists of fermentative Escherichia coli and phototrophic Rhodopseudomonas palustris In this coculture, E. coli anaerobically ferments sugars into excreted organic acids as a carbon source for R. palustris In return, a genetically-engineered R. palustris constitutively converts N 2 into NH 4 + , providing E. coli with essential nitrogen. Using RNA-seq and proteomics, we identified transcript and protein levels that differ in each partner when grown in coculture versus monoculture. When in coculture with R. palustris , E. coli gene-expression changes resembled a nitrogen starvation response under the control of the transcriptional regulator NtrC. By genetically disrupting E. coli NtrC, we determined that a nitrogen starvation response is important for a stable coexistence, especially at low R. palustris NH 4 + excretion levels. Destabilization of the nitrogen starvation regulatory network resulted in variable growth trends and in some cases, extinction. Our results highlight that alternative physiological states can be important for survival within cooperative cross-feeding relationships. Importance Mutualistic cross-feeding between microbes within multispecies communities is widespread. Studying how mutualistic interactions influence the physiology of each species involved is important for understanding how mutualisms function and persist in both natural and applied settings. Using a bacterial mutualism consisting of Rhodopseudomonas palustris and Escherichia coli

  14. Real-time metabolome profiling of the metabolic switch between starvation and growth.

    PubMed

    Link, Hannes; Fuhrer, Tobias; Gerosa, Luca; Zamboni, Nicola; Sauer, Uwe

    2015-11-01

    Metabolic systems are often the first networks to respond to environmental changes, and the ability to monitor metabolite dynamics is key for understanding these cellular responses. Because monitoring metabolome changes is experimentally tedious and demanding, dynamic data on time scales from seconds to hours are scarce. Here we describe real-time metabolome profiling by direct injection of living bacteria, yeast or mammalian cells into a high-resolution mass spectrometer, which enables automated monitoring of about 300 compounds in 15-30-s cycles over several hours. We observed accumulation of energetically costly biomass metabolites in Escherichia coli in carbon starvation-induced stationary phase, as well as the rapid use of these metabolites upon growth resumption. By combining real-time metabolome profiling with modeling and inhibitor experiments, we obtained evidence for switch-like feedback inhibition in amino acid biosynthesis and for control of substrate availability through the preferential use of the metabolically cheaper one-step salvaging pathway over costly ten-step de novo purine biosynthesis during growth resumption.

  15. The dynamics of carbon stored in xylem sapwood to drought-induced hydraulic stress in mature trees

    PubMed Central

    Yoshimura, Kenichi; Saiki, Shin-Taro; Yazaki, Kenichi; Ogasa, Mayumi Y.; Shirai, Makoto; Nakano, Takashi; Yoshimura, Jin; Ishida, Atsushi

    2016-01-01

    Climate-induced forest die-off is widespread in multiple biomes, strongly affecting the species composition, function and primary production in forest ecosystems. Hydraulic failure and carbon starvation in xylem sapwood are major hypotheses to explain drought-induced tree mortality. Because it is difficult to obtain enough field observations on drought-induced mortality in adult trees, the current understanding of the physiological mechanisms for tree die-offs is still controversial. However, the simultaneous examination of water and carbon uses throughout dehydration and rehydration processes in adult trees will contribute to clarify the roles of hydraulic failure and carbon starvation in tree wilting. Here we show the processes of the percent loss of hydraulic conductivity (PLC) and the content of nonstructural carbohydrates (NSCs) of distal branches in woody plants with contrasting water use strategy. Starch was converted to soluble sugar during PLC progression under drought, and the hydraulic conductivity recovered following water supply. The conversion of NSCs is strongly associated with PLC variations during dehydration and rehydration processes, indicating that stored carbon contributes to tree survival under drought; further carbon starvation can advance hydraulic failure. We predict that even slow-progressing drought degrades forest ecosystems via carbon starvation, causing more frequent catastrophic forest die-offs than the present projection. PMID:27079677

  16. The dynamics of carbon stored in xylem sapwood to drought-induced hydraulic stress in mature trees

    NASA Astrophysics Data System (ADS)

    Yoshimura, Kenichi; Saiki, Shin-Taro; Yazaki, Kenichi; Ogasa, Mayumi Y.; Shirai, Makoto; Nakano, Takashi; Yoshimura, Jin; Ishida, Atsushi

    2016-04-01

    Climate-induced forest die-off is widespread in multiple biomes, strongly affecting the species composition, function and primary production in forest ecosystems. Hydraulic failure and carbon starvation in xylem sapwood are major hypotheses to explain drought-induced tree mortality. Because it is difficult to obtain enough field observations on drought-induced mortality in adult trees, the current understanding of the physiological mechanisms for tree die-offs is still controversial. However, the simultaneous examination of water and carbon uses throughout dehydration and rehydration processes in adult trees will contribute to clarify the roles of hydraulic failure and carbon starvation in tree wilting. Here we show the processes of the percent loss of hydraulic conductivity (PLC) and the content of nonstructural carbohydrates (NSCs) of distal branches in woody plants with contrasting water use strategy. Starch was converted to soluble sugar during PLC progression under drought, and the hydraulic conductivity recovered following water supply. The conversion of NSCs is strongly associated with PLC variations during dehydration and rehydration processes, indicating that stored carbon contributes to tree survival under drought; further carbon starvation can advance hydraulic failure. We predict that even slow-progressing drought degrades forest ecosystems via carbon starvation, causing more frequent catastrophic forest die-offs than the present projection.

  17. The Hunger Games: p53 regulates metabolism upon serine starvation.

    PubMed

    Tavana, Omid; Gu, Wei

    2013-02-05

    Cancer cells reprogram their metabolism to support a high proliferative rate. A new study shows that, upon serine starvation, the tumor suppressor p53 activates p21 to shift metabolic flux from purine biosynthesis to glutathione production, which enhances cellular proliferation and viability by combating ROS (Maddocks et al., 2013). Copyright © 2013 Elsevier Inc. All rights reserved.

  18. Influence of NaCl on Growth, Proline, and Phosphoenolpyruvate Carboxylase Levels in Mesembryanthemum crystallinum Suspension Cultures 1

    PubMed Central

    Thomas, John C.; De Armond, Richard L.; Bohnert, Hans J.

    1992-01-01

    The facultative halophyte Mesembryanthemum crystallinum responds to salt stress by increasing the levels of phosphoenolpyruvate carboxylase (PEPCase) and other enzymes associated with Crassulacean acid metabolism. A more common response to salt stress in sensitive and tolerant species, including M. crystallinum, is the accumulation of proline. We have established M. crystallinum suspension cultures to investigate whether both these salt-induced responses occur at the cellular level. Leaf-and root-derived cultures maintain 5% of the total soluble amino acids as proline. Cell culture growth slows upon addition of 400 millimolar NaCl, and proline levels increase to 40% of the total soluble amino acids. These results suggest a functional salt-stress and response program in Mesembryanthemum cells. Suspension cultures grown with or without 400 millimolar NaCl have PEPCase levels that compare with those from roots and unstressed leaves. The predominant protein cross-reacting with an anti-PEPCase antibody corresponds to 105 kilodaltons (apparent molecular mass), whereas a second species of approximately 110 kilodaltons is present at low levels. In salt-stressed leaves, the 110 kilodalton protein is more prevalent. Levels of mRNA for both ppc1 (salt stress induced in leaves) and ppc2 (constitutive) genes in salt-treated suspensions cultures are equal to unstressed leaves, and only twice the levels found in untreated suspension cultures. Whereas cells accumulate proline in response to NaCl, PEPCase protein amounts remain similar in salt-treated and untreated cultures. The induction upon salt stress of the 110 kilodalton PEPCase protein and other Crassulacean acid metabolism enzymes in organized tissues is not observed in cell culture and may depend on tissue-dependent or photoautotrophy-dependent programs. ImagesFigure 4Figure 5 PMID:16668687

  19. Nutritional Stress Induced by Amino Acid Starvation Results in Changes for Slc38 Transporters in Immortalized Hypothalamic Neuronal Cells and Primary Cortex Cells.

    PubMed

    Hellsten, Sofie V; Tripathi, Rekha; Ceder, Mikaela M; Fredriksson, Robert

    2018-01-01

    Amino acid sensing and signaling is vital for cells, and both gene expression and protein levels of amino acid transporters are regulated in response to amino acid availability. Here, the aim was to study the regulation of all members of the SLC38 amino acid transporter family, Slc38a1-11 , in mouse brain cells following amino acid starvation. We reanalyzed microarray data for the immortalized hypothalamic cell line N25/2 subjected to complete amino acid starvation for 1, 2, 3, 5, or 16 h, focusing specifically on the SLC38 family. All 11 Slc38 genes were expressed in the cell line, and Slc38a1, Slc38a2 , and Slc38a7 were significantly upregulated at 5 h and most strongly at 16 h. Here, protein level changes were measured for SLC38A7 and the orphan family member SLC38A11 which has not been studied under different amino acid starvation condition at protein level. At 5 h, no significant alteration on protein level for either SLC38A7 or SLC38A11 could be detected. In addition, primary embryonic cortex cells were deprived of nine amino acids, the most common amino acids transported by the SLC38 family members, for 3 h, 7 h or 12 h, and the gene expression was measured using qPCR. Slc38a1, Slc38a2, Slc38a5, Slc38a6, Slc38a9 , and Slc38a10 were upregulated, while Slc38a3 and Slc38a7 were downregulated. Slc38a8 was upregulated at 5 h and downregulated at 12 h. In conclusion, several members from the SLC38 family are regulated depending on amino acid levels and are likely to be involved in amino acid sensing and signaling in brain.

  20. The complexity of treating wasting in ambulatory rehabilitation: Is it starvation, sarcopenia, cachexia or a combination of these conditions?

    PubMed

    Yaxley, Alison; Miller, Michelle D; Fraser, Robert J; Cobiac, Lynne; Crotty, Maria

    2012-01-01

    Nutritional status is often impaired in ambulatory rehabilitation patients. Wasting conditions can be classified as starvation, sarcopenia or cachexia but differences between these are not well defined, and misdiagnosis may lead to inappropriate intervention. A secondary analysis of data from 187 ambulatory rehabilitation patients aged >=60 years aimed to identify patients with one or more wasting condition, and investigate the impact on common rehabilitation outcomes. Starvation was defined by fat-free mass index and the Council on Nutrition Appetite Questionnaire score; sarcopenia by fat-free mass index and quadriceps strength; and cachexia by fat-free mass index and serum C-reactive protein. Selected rehabilitation outcomes were compared for those who were, and those who were not, identified as having one or more wasting condition. Of those identified with starvation (n=30), all were also identified as sarcopenic and 20 as cachectic; of those identified as sarcopenic (n=75), 30 had starvation and 37 were cachectic; and of those identified as cachectic (n=37), 20 had starvation and all were sarcopenic. Twenty participants were identified as having all three conditions. Those with starvation had higher level of depression (p=0.003), lower self-rated health (p=0.032), and lower levels of physical function (motor p=0.006; process p=0.004) than those with no evidence of a wasting condition. Those who had sarcopenia had lower physical function (motor p=0.012; process p=0.003) as did those with cachexia (motor p=0.025; process p=0.042). Results suggest problems in operationalising definitions in an ambulatory clinical setting. The overlap identified in this analysis suggests that up to 40% (75/187) of patients could be misidentified and prescribed inappropriate nutritional support.

  1. The glycerol backbone of phospholipids derives from noncarbohydrate precursors in starved lung cancer cells

    PubMed Central

    Trötzmüller, Martin; Hinteregger, Barbara; Leko, Petra; Wieser, Beatrix I.; Grasmann, Gabriele; Bertsch, Alexandra L.; Züllig, Thomas; Stacher, Elvira; Valli, Alessandro; Prassl, Ruth; Olschewski, Andrea; Harris, Adrian L.; Köfeler, Harald C.; Olschewski, Horst; Hrzenjak, Andelko

    2018-01-01

    Cancer cells are reprogrammed to consume large amounts of glucose to support anabolic biosynthetic pathways. However, blood perfusion and consequently the supply with glucose are frequently inadequate in solid cancers. PEPCK-M (PCK2), the mitochondrial isoform of phosphoenolpyruvate carboxykinase (PEPCK), has been shown by us and others to be functionally expressed and to mediate gluconeogenesis, the reverse pathway of glycolysis, in different cancer cells. Serine and ribose synthesis have been identified as downstream pathways fed by PEPCK in cancer cells. Here, we report that PEPCK-M–dependent glycerol phosphate formation from noncarbohydrate precursors (glyceroneogenesis) occurs in starved lung cancer cells and supports de novo glycerophospholipid synthesis. Using stable isotope-labeled glutamine and lactate, we show that PEPCK-M generates phosphoenolpyruvate and 3-phosphoglycerate, which are at least partially converted to glycerol phosphate and incorporated into glycerophospholipids (GPL) under glucose and serum starvation. This pathway is required to maintain levels of GPL, especially phosphatidylethanolamine (PE), as shown by stable shRNA-mediated silencing of PEPCK-M in H23 lung cancer cells. PEPCK-M shRNA led to reduced colony formation after starvation, and the effect was partially reversed by the addition of dioleyl-PE. Furthermore, PEPCK-M silencing abrogated cancer growth in a lung cancer cell xenograft model. In conclusion, glycerol phosphate formation for de novo GPL synthesis via glyceroneogenesis is a newly characterized anabolic pathway in cancer cells mediated by PEPCK-M under conditions of severe nutrient deprivation. PMID:29844165

  2. Overexpression of the autophagy-related gene SiATG8a from foxtail millet (Setaria italica L.) confers tolerance to both nitrogen starvation and drought stress in Arabidopsis.

    PubMed

    Li, Wei-wei; Chen, Ming; Zhong, Li; Liu, Jia-ming; Xu, Zhao-shi; Li, Lian-cheng; Zhou, Yong-Bin; Guo, Chang-Hong; Ma, You-Zhi

    2015-12-25

    Autophagy is an evolutionarily conserved biological process in all eukaryotes for the degradation of intracellular components for nutrient recycling. Autophagy is known to be involved in responses to low nitrogen stress in Arabidopsis. Foxtail millet has strong abiotic stress resistance to both low nutrient and drought stress. However, to date, there have only been a few genes reported to be related with abiotic stress resistance in foxtail millet. In this study, we identified an autophagy-related gene, SiATG8a, from foxtail millet. SiATG8a is mainly expressed in stems and its expression was dramatically induced by drought stress and nitrogen starvation treatments. SiATG8a was localized in the membrane and cytoplasm of foxtail millet. Overexpression of SiATG8a in Arabidopsis conferred tolerance to both nitrogen starvation and to drought stress. Under nitrogen starvation conditions, the SiATG8a transgenic plants had larger root and leaf areas and accumulated more total nitrogen than wild-type plants. The transgenic plants had lower total protein concentrations than did the WT plants. Under drought stress, the SiATG8a transgenic plants had higher survival rates, chlorophyll content, and proline content, but had lower MDA content than wild type plants. Taken together, our results represent the first identified case where overexpression of autophagy related gene can simultaneously improve plant resistance to low nitrogen and drought stresses. These findings implicate plant autophagy in plant stress responses to low nitrogen and drought and should be helpful in efforts to improve stresses resistance to nitrogen starvation and drought of crops by genetic transformation. Copyright © 2015 Elsevier Inc. All rights reserved.

  3. Usage of energy reserves in crustaceans during starvation: status and future directions.

    PubMed

    Sánchez-Paz, Arturo; García-Carreño, Fernando; Muhlia-Almazán, Adriana; Peregrino-Uriarte, Alma B; Hernández-López, Jorge; Yepiz-Plascencia, Gloria

    2006-04-01

    In this paper, we review the current knowledge about the usage of carbohydrates, lipids and proteins as energy source by marine crustaceans during starvation. Crustaceans are a large and diverse group including some economically important species. The efforts to culture them for human consumption has prompted the interest to understand the preferences of energy sources to be applied for feed formulation and cost reduction. Important differences have been found among species and appear to be related not only to the biochemistry and physiology of nutrition, but also to the living environment of the crustaceans. Furthermore, crustaceans undergo morphological, physiological and behavioral changes due to their natural growing process that affect their feeding habits, an aspect that should be carefully considered. We discuss the current information on marine crustaceans about energy usage and describe areas of future research, where starvation studies render important insights.

  4. Durability test with fuel starvation using a Pt/CNF catalyst in PEMFC.

    PubMed

    Jung, Juhae; Park, Byungil; Kim, Junbom

    2012-01-05

    In this study, a catalyst was synthesized on carbon nanofibers [CNFs] with a herringbone-type morphology. The Pt/CNF catalyst exhibited low hydrophilicity, low surface area, high dispersion, and high graphitic behavior on physical analysis. Electrodes (5 cm2) were prepared by a spray method, and the durability of the Pt/CNF was evaluated by fuel starvation. The performance was compared with a commercial catalyst before and after accelerated tests. The fuel starvation caused carbon corrosion with a reverse voltage drop. The polarization curve, EIS, and cyclic voltammetry were analyzed in order to characterize the electrochemical properties of the Pt/CNF. The performance of a membrane electrode assembly fabricated from the Pt/CNF was maintained, and the electrochemical surface area and cell resistance showed the same trend. Therefore, CNFs are expected to be a good support in polymer electrolyte membrane fuel cells.

  5. D-Xylose as a sugar complement regulates blood glucose levels by suppressing phosphoenolpyruvate carboxylase (PEPCK) in streptozotocin-nicotinamide-induced diabetic rats and by enhancing glucose uptake in vitro

    PubMed Central

    Kim, Eunju; Kim, Yoo-Sun; Kim, Kyung-Mi; Jung, Sangwon; Yoo, Sang-Ho

    2016-01-01

    BACKGROUND/OBJECTIVES Type 2 diabetes (T2D) is more frequently diagnosed and is characterized by hyperglycemia and insulin resistance. D-Xylose, a sucrase inhibitor, may be useful as a functional sugar complement to inhibit increases in blood glucose levels. The objective of this study was to investigate the anti-diabetic effects of D-xylose both in vitro and stretpozotocin (STZ)-nicotinamide (NA)-induced models in vivo. MATERIALS/METHODS Wistar rats were divided into the following groups: (i) normal control; (ii) diabetic control; (iii) diabetic rats supplemented with a diet where 5% of the total sucrose content in the diet was replaced with D-xylose; and (iv) diabetic rats supplemented with a diet where 10% of the total sucrose content in the diet was replaced with D-xylose. These groups were maintained for two weeks. The effects of D-xylose on blood glucose levels were examined using oral glucose tolerance test, insulin secretion assays, histology of liver and pancreas tissues, and analysis of phosphoenolpyruvate carboxylase (PEPCK) expression in liver tissues of a STZ-NA-induced experimental rat model. Levels of glucose uptake and insulin secretion by differentiated C2C12 muscle cells and INS-1 pancreatic β-cells were analyzed. RESULTS In vivo, D-xylose supplementation significantly reduced fasting serum glucose levels (P < 0.05), it slightly reduced the area under the glucose curve, and increased insulin levels compared to the diabetic controls. D-Xylose supplementation enhanced the regeneration of pancreas tissue and improved the arrangement of hepatocytes compared to the diabetic controls. Lower levels of PEPCK were detected in the liver tissues of D-xylose-supplemented rats (P < 0.05). In vitro, both 2-NBDG uptake by C2C12 cells and insulin secretion by INS-1 cells were increased with D-xylose supplementation in a dose-dependent manner compared to treatment with glucose alone. CONCLUSIONS In this study, D-xylose exerted anti-diabetic effects in vivo by

  6. Lack of long-lasting consequences of starvation on eating pathology in Jewish Holocaust survivors of Nazi concentration camps.

    PubMed

    Bachar, Eytan; Canetti, Laura; Berry, Elliot M

    2005-02-01

    The purpose of the present study was to investigate whether Holocaust survivors will show the same eating pathologies that were found in other participants who had also undergone starvation. Fifty-five Holocaust survivors and 43 matched control participants answered a questionnaire designed to explore eating problems and pathologies described in the literature as lasting for decades after a period of severe food restriction. Confirmation of the survivors' reports was obtained from their children. No significant differences in current eating habits were found between the Holocaust survivors and their matched controls. Prolonged starvation in Holocaust survivors did not lead to disordered eating habits in the sample. These results conflict with the notion that severe starvation consistently leads to food preoccupation and disordered eating. Copyright (c) 2005 APA, all rights reserved.

  7. Effects of prolonged drought on stem non-structural carbohydrates content and post-drought hydraulic recovery in Laurus nobilis L.: The possible link between carbon starvation and hydraulic failure.

    PubMed

    Trifilò, Patrizia; Casolo, Valentino; Raimondo, Fabio; Petrussa, Elisa; Boscutti, Francesco; Lo Gullo, Maria Assunta; Nardini, Andrea

    2017-11-01

    Drought-induced tree decline is a complex event, and recent hypotheses suggest that hydraulic failure and carbon starvation are co-responsible for this process. We tested the possible role of non-structural carbohydrates (NSC) content on post-drought hydraulic recovery, to verify the hypothesis that embolism reversal represents a mechanistic link between carbon starvation and stem hydraulics. Measurements were performed in laurel plants subjected to similar water stress levels either over short or long term, to induce comparable embolism levels. Plants subjected to mild and prolonged water shortage (S) showed reduced growth, adjustment of turgor loss point driven by changes in both osmotic potential at full turgor and bulk modulus of elasticity, a lower content of soluble NSC and a higher content of starch with respect to control (C) plants. Moreover, S plants showed a lower ability to recover from xylem embolism than C plants, even after irrigation. Our data suggest that plant carbon status might indirectly influence plant performance during and after drought via effects on xylem hydraulic functioning, supporting the view of a possible mechanistic link between the two processes. Copyright © 2017 Elsevier Masson SAS. All rights reserved.

  8. The effect of severe starvation and captivity stress on plasma thyroxine and triiodothyronine concentrations in an antarctic bird (emperor penguin).

    PubMed

    Groscolas, R; Leloup, J

    1989-01-01

    The effect of confinement and severe starvation on the plasma thyroxine (T4) and triiodothyronine (T3) concentrations was determined in emperor penguins (Aptenodytes forsteri). During their annual cycle, emperor penguins fast freely for periods of up to 4 months and may thus represent a unique subject to study endocrine adaptations to fasting. Plasma T4 concentrations progressively decreased following capture and confinement of naturally fasting penguins, and within 15-20 days stabilized at levels three times lower than in free-living penguins. A transient fourfold increase in plasma T3 concentration developed within the day following confinement in parallel with a rise in daily body mass loss. Both plasma T3 concentration and mass loss subsided to normal levels within 15 days. The decrease in plasma T4 concentration is in accordance with the well-known inhibitory effect of stress on thyroid function in birds and mammals, whereas the transient increase in plasma T3 concentration seems related to enhancement of energy expenditure as a consequence of restlessness. Starvation severe enough to exhaust fat stores and to activate protein catabolism induced a 6- and 5 to 10-fold fall in plasma T4 and T3, respectively. This is in marked contrast with maintenance of plasma thyroid levels during long-term natural fasting associated with protein sparing (R. Groscolas and J. Leloup (1986) Gen. Comp. Endocrinol. 63, 264-274). Surprisingly, there was a final reincrease in plasma T4 concentration in very lean penguins. These results suggest that the effect of starvation on plasma thyroid hormones seems to depend on how much protein catabolism is activated and demonstrate the acute sensitivity of thyroid hormone balance to stress in penguins.

  9. The phosphoenolpyruvate:sugar phosphotransferase system is involved in sensitivity to the glucosylated bacteriocin sublancin.

    PubMed

    Garcia De Gonzalo, C V; Denham, E L; Mars, R A T; Stülke, J; van der Donk, W A; van Dijl, J M

    2015-11-01

    The mode of action of a group of glycosylated antimicrobial peptides known as glycocins remains to be elucidated. In the current study of one glycocin, sublancin, we identified the phosphoenolpyruvate:sugar phosphotransferase system (PTS) of Bacillus species as a key player in bacterial sensitivity. Sublancin kills several Gram-positive bacteria, such as Bacillus species and Staphylococcus aureus, including methicillin-resistant S. aureus (MRSA). Unlike other classes of bacteriocins for which the PTS is involved in their mechanism of action, we show that the addition of PTS-requiring sugars leads to increased resistance rather than increased sensitivity, suggesting that sublancin has a distinct mechanism of action. Collectively, our present mutagenesis and genomic studies demonstrate that the histidine-containing phosphocarrier protein (HPr) and domain A of enzyme II (PtsG) in particular are critical determinants for bacterial sensitivity to sublancin. Copyright © 2015, American Society for Microbiology. All Rights Reserved.

  10. Trade-off of energy metabolites as well as body color phenotypes for starvation and desiccation resistance in montane populations of Drosophila melanogaster.

    PubMed

    Parkash, Ravi; Aggarwal, Dau Dayal

    2012-02-01

    Storage of energy metabolites has been investigated in different sets of laboratory selected desiccation or starvation resistant lines but few studies have examined such changes in wild-caught populations of Drosophila melanogaster. In contrast to parallel selection of desiccation and starvation tolerance under laboratory selection experiments, opposite clines were observed in wild populations of D. melanogaster. If resistance to desiccation and starvation occurs in opposite directions under field conditions, we may expect a trade-off for energy metabolites but such correlated changes are largely unknown. We tested whether there is a trade-off for storage as well as actual utilization of carbohydrates (trehalose and glycogen), lipids and proteins in D. melanogaster populations collected from different altitudes (512-2500 m). For desiccation resistance, darker flies (>50% body melanization) store more body water content and endure greater loss of water (higher dehydration tolerance) as compared to lighter flies (<30% body melanization). Based on within population analysis, we found evidence for coadapted phenotypes i.e. darker flies store and actually utilize more carbohydrates to confer greater desiccation resistance. In contrast, higher starvation resistance in lighter flies is associated with storage and actual utilization of greater lipid amount. However, darker and lighter flies did not vary in the rate of utilization of carbohydrates under desiccation stress; and of lipids under starvation stress. Thus, we did not find support for the hypothesis that a lower rate of utilization of energy metabolites may contribute to greater stress resistance. Further, for increased desiccation resistance of darker flies, about two-third of total energy budget is provided by carbohydrates. By contrast, lighter flies derive about 66% of total energy content from lipids which sustain higher starvation tolerance. Our results support evolutionary trade-off for storage as well as

  11. Evaluating a strategy for maintaining nitrifier activity during long-term starvation in a moving bed biofilm reactor (MBBR) treating reverse osmosis concentrate.

    PubMed

    Ye, Liu; Hu, Shihu; Poussade, Yvan; Keller, Jurg; Yuan, Zhiguo

    2012-01-01

    A two-stage moving bed biofilm reactor (MBBR) was applied at the Bundamba advanced water treatment plant (AWTP) (Queensland, Australia) to treat the reverse osmosis concentrate (ROC) for inorganic nutrient removal. One of the operational challenges for the system was to cope with the large fluctuations of the ROC flow. This study investigated the decay rates of ammonia-oxidizing bacteria (AOB) and nitrite-oxidizing bacteria (NOB) and biofilm detachment in MBBR during starvation for up to one month. An intermittent aeration strategy of 15 min aeration every 6 h was applied. This study also evaluated the activity recovery of both AOB and NOB after normal operation was resumed. The results showed that the activity loss of AOB and NOB was relatively minor (<20%) within 10 days of starvation, which ensured relatively quick recovery of ammonium removal when normal operation resumed. In contrast, the AOB and NOB activity loss reached 60-80% when the starvation time was longer than 20 days, resulting in slower recovery of ammonium removal after starvation. Starvation for less than 20 days didn't result in an apparent biomass detachment from carriers.

  12. Mitochondrial phosphoenolpyruvate carboxykinase (PEPCK-M) and serine biosynthetic pathway genes are co-ordinately increased during anabolic agent-induced skeletal muscle growth.

    PubMed

    Brown, D M; Williams, H; Ryan, K J P; Wilson, T L; Daniel, Z C T R; Mareko, M H D; Emes, R D; Harris, D W; Jones, S; Wattis, J A D; Dryden, I L; Hodgman, T C; Brameld, J M; Parr, T

    2016-06-28

    We aimed to identify novel molecular mechanisms for muscle growth during administration of anabolic agents. Growing pigs (Duroc/(Landrace/Large-White)) were administered Ractopamine (a beta-adrenergic agonist; BA; 20 ppm in feed) or Reporcin (recombinant growth hormone; GH; 10 mg/48 hours injected) and compared to a control cohort (feed only; no injections) over a 27-day time course (1, 3, 7, 13 or 27-days). Longissimus Dorsi muscle gene expression was analyzed using Agilent porcine transcriptome microarrays and clusters of genes displaying similar expression profiles were identified using a modified maSigPro clustering algorithm. Anabolic agents increased carcass (p = 0.002) and muscle weights (Vastus Lateralis: p < 0.001; Semitendinosus: p = 0.075). Skeletal muscle mRNA expression of serine/one-carbon/glycine biosynthesis pathway genes (Phgdh, Psat1 and Psph) and the gluconeogenic enzyme, phosphoenolpyruvate carboxykinase-M (Pck2/PEPCK-M), increased during treatment with BA, and to a lesser extent GH (p < 0.001, treatment x time interaction). Treatment with BA, but not GH, caused a 2-fold increase in phosphoglycerate dehydrogenase (PHGDH) protein expression at days 3 (p < 0.05) and 7 (p < 0.01), and a 2-fold increase in PEPCK-M protein expression at day 7 (p < 0.01). BA treated pigs exhibit a profound increase in expression of PHGDH and PEPCK-M in skeletal muscle, implicating a role for biosynthetic metabolic pathways in muscle growth.

  13. Durability test with fuel starvation using a Pt/CNF catalyst in PEMFC

    PubMed Central

    2012-01-01

    In this study, a catalyst was synthesized on carbon nanofibers [CNFs] with a herringbone-type morphology. The Pt/CNF catalyst exhibited low hydrophilicity, low surface area, high dispersion, and high graphitic behavior on physical analysis. Electrodes (5 cm2) were prepared by a spray method, and the durability of the Pt/CNF was evaluated by fuel starvation. The performance was compared with a commercial catalyst before and after accelerated tests. The fuel starvation caused carbon corrosion with a reverse voltage drop. The polarization curve, EIS, and cyclic voltammetry were analyzed in order to characterize the electrochemical properties of the Pt/CNF. The performance of a membrane electrode assembly fabricated from the Pt/CNF was maintained, and the electrochemical surface area and cell resistance showed the same trend. Therefore, CNFs are expected to be a good support in polymer electrolyte membrane fuel cells. PMID:22221426

  14. Effect of extended and daily short-term starvation/shut-down events on the performance of a biofilter treating toluene vapors.

    PubMed

    Jiménez, Lucero; Arriaga, Sonia; Muñoz, Raúl; Aizpuru, Aitor

    2017-12-01

    Industrial emissions of Volatile Organic Compounds are usually discontinuous. To assess the impact of interruptions in pollutant supply on the performance of biological treatment systems, two identical biofilters previously operated under continuous toluene loadings were subjected for 110 days to extended (12, 24, 36, 48, 60, 72, 84 and 96 h) and for a week to daily (8 h on, 16 h off) toluene starvation/shutdown events. One biofilter was operated under complete shutdowns (both air and toluene supply were interrupted), while the other maintained the air supply under toluene starvation. The biofilter operated under complete shutdowns was able to withstand both the extended and daily pollutant interruptions, while starvation periods >24 h severely impacted the performance of the other biofilter, with a removal efficiency decrease from 97.7 ± 0.1% to 45.4 ± 6.7% at the end of the extended starvation periods. This deterioration was likely due to a reduction in liquid lixiviation (from a total volume of 2380 mL to 1800 mL) mediated by the countercurrent airflow during the starvation periods. The presence of air under toluene starvation also favored the accumulation of inactive biomass, thus increasing the pressure drop from 337 to 700 mm H 2 O.m -1 , while decreasing the wash out of acidic by-products with a significantly higher pH of leachates (Student paired t-test <0.05). This study confirmed the need to prevent the accumulation of inhibitory compounds produced during process perturbation in order to increase biofiltration robustness. Process operation with sufficient drainage in the packing material and the absence of countercurrent airflow are highly recommended during toluene deprivation periods. Copyright © 2017. Published by Elsevier Ltd.

  15. Induction of Phosphoenolpyruvate Carboxykinase (PEPCK) during Acute Acidosis and Its Role in Acid Secretion by V-ATPase-Expressing Ionocytes.

    PubMed

    Furukawa, Fumiya; Tseng, Yung-Che; Liu, Sian-Tai; Chou, Yi-Ling; Lin, Ching-Chun; Sung, Po-Hsuan; Uchida, Katsuhisa; Lin, Li-Yih; Hwang, Pung-Pung

    2015-01-01

    Vacuolar-Type H(+)-ATPase (V-ATPase) takes the central role in pumping H(+) through cell membranes of diverse organisms, which is essential for surviving acid-base fluctuating lifestyles or environments. In mammals, although glucose is believed to be an important energy source to drive V-ATPase, and phosphoenolpyruvate carboxykinase (PEPCK), a key enzyme for gluconeogenesis, is known to be activated in response to acidosis, the link between acid secretion and PEPCK activation remains unclear. In the present study, we used zebrafish larva as an in vivo model to show the role of acid-inducible PEPCK activity in glucose production to support higher rate of H(+) secretion via V-ATPase, by utilizing gene knockdown, glucose supplementation, and non-invasive scanning ion-selective electrode technique (SIET). Zebrafish larvae increased V-ATPase-mediated acid secretion and transiently expression of Pck1, a zebrafish homolog of PEPCK, in response to acid stress. When pck1 gene was knocked down by specific morpholino, the H(+) secretion via V-ATPase decreased, but this effect was rescued by supplementation of glucose into the yolk. By assessing changes in amino acid content and gene expression of respective enzymes, glutamine and glutamate appeared to be the major source for replenishment of Krebs cycle intermediates, which are subtracted by Pck1 activity. Unexpectedly, pck1 knockdown did not affect glutamine/glutamate catalysis, which implies that Pck1 does not necessarily drive this process. The present study provides the first in vivo evidence that acid-induced PEPCK provides glucose for acid-base homeostasis at an individual level, which is supported by rapid pumping of H(+) via V-ATPase at the cellular level.

  16. Increased Phosphoenolpyruvate Carboxykinase (PEPCK) Gene Expression and Steatosis During Hepatitis C Virus (HCV) Subgenome Replication: Role of Nonstructural Component-5A (NS5A) and CCAAT/Enhancer Binding Protein ß (C/EBPß)

    USDA-ARS?s Scientific Manuscript database

    Chronic hepatitis C virus (HCV) infection greatly increases the risk for type 2 diabetes and nonalcoholic steatohepatitis; however, the pathogenic mechanisms remain incompletely understood. Here we report gluconeogenic enzyme phosphoenolpyruvate carboxykinase (PEPCK) transcription and associated tra...

  17. Transcription of All amoC Copies Is Associated with Recovery ofNitrosomonas europaea from Ammonia Starvation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Berube, Paul M.; Samudrala, Ram; Stahl, David A.

    2007-09-21

    The chemolithotrophic ammonia-oxidizing bacteriumNitrosomonas europaea is known to be highly resistant to starvationconditions. The transcriptional response of N. europaea to ammoniaaddition following short- and long-term starvation was examined by primerextension and S1 nuclease protection analyses of genes encoding enzymesfor ammonia oxidation (amoCAB operons) and CO2 fixation (cbbLS), a third,lone copy of amoC (amoC3), and two representative housekeeping genes(glyA and rpsJ). Primer extension analysis of RNA isolated from growing,starved, and recovering cells revealed two differentially regulatedpromoters upstream of the two amoCAB operons. The distal sigma 70 typeamoCAB promoter was constitutively active in the presence of ammonia, butthe proximal promoter was onlymore » active when cells were recovering fromammonia starvation. The lone, divergent copy of amoC (amoC3) wasexpressed only during recovery. Both the proximal amoC1,2 promoter andthe amoC3 promoter are similar to gram-negative sigma E promoters, thusimplicating sigma E in the regulation of the recovery response. Althoughmodeling of subunit interactions suggested that a nonconservative prolinesubstitution in AmoC3 may modify the activity of the holoenzyme,characterization of a Delta amoC3 strain showed no significant differencein starvation recovery under conditions evaluated. In contrast to the amotranscripts, a delayed appearance of transcripts for a gene required forCO2 fixation (cbbL) suggested that its transcription is retarded untilsufficient energy is available. Overall, these data revealed a programmedexit from starvation likely involving regulation by sigma E and thecoordinated regulation of catabolic and anabolic genes.« less

  18. Nutrient control of gene expression in Drosophila: microarray analysis of starvation and sugar-dependent response

    PubMed Central

    Zinke, Ingo; Schütz, Christina S.; Katzenberger, Jörg D.; Bauer, Matthias; Pankratz, Michael J.

    2002-01-01

    We have identified genes regulated by starvation and sugar signals in Drosophila larvae using whole-genome microarrays. Based on expression profiles in the two nutrient conditions, they were organized into different categories that reflect distinct physiological pathways mediating sugar and fat metabolism, and cell growth. In the category of genes regulated in sugar-fed, but not in starved, animals, there is an upregulation of genes encoding key enzymes of the fat biosynthesis pathway and a downregulation of genes encoding lipases. The highest and earliest activated gene upon sugar ingestion is sugarbabe, a zinc finger protein that is induced in the gut and the fat body. Identification of potential targets using microarrays suggests that sugarbabe functions to repress genes involved in dietary fat breakdown and absorption. The current analysis provides a basis for studying the genetic mechanisms underlying nutrient signalling. PMID:12426388

  19. The corticotropin-releasing factor-like diuretic hormone 44 (DH44) and kinin neuropeptides modulate desiccation and starvation tolerance in Drosophila melanogaster.

    PubMed

    Cannell, Elizabeth; Dornan, Anthony J; Halberg, Kenneth A; Terhzaz, Selim; Dow, Julian A T; Davies, Shireen-A

    2016-06-01

    Malpighian tubules are critical organs for epithelial fluid transport and stress tolerance in insects, and are under neuroendocrine control by multiple neuropeptides secreted by identified neurons. Here, we demonstrate roles for CRF-like diuretic hormone 44 (DH44) and Drosophila melanogaster kinin (Drome-kinin, DK) in desiccation and starvation tolerance. Gene expression and labelled DH44 ligand binding data, as well as highly selective knockdowns and/or neuronal ablations of DH44 in neurons of the pars intercerebralis and DH44 receptor (DH44-R2) in Malpighian tubule principal cells, indicate that suppression of DH44 signalling improves desiccation tolerance of the intact fly. Drome-kinin receptor, encoded by the leucokinin receptor gene, LKR, is expressed in DH44 neurons as well as in stellate cells of the Malpighian tubules. LKR knockdown in DH44-expressing neurons reduces Malpighian tubule-specific LKR, suggesting interactions between DH44 and LK signalling pathways. Finally, although a role for DK in desiccation tolerance was not defined, we demonstrate a novel role for Malpighian tubule cell-specific LKR in starvation tolerance. Starvation increases gene expression of epithelial LKR. Also, Malpighian tubule stellate cell-specific knockdown of LKR significantly reduced starvation tolerance, demonstrating a role for neuropeptide signalling during starvation stress. Copyright © 2016 The Authors. Published by Elsevier Inc. All rights reserved.

  20. Transport of Phosphoenolpyruvate by Chloroplasts from Mesembryanthemum crystallinum L. Exhibiting Crassulacean Acid Metabolism 1

    PubMed Central

    Neuhaus, H. Ekkehard; Holtum, Joseph A. M.; Latzko, Erwin

    1988-01-01

    Chloroplasts from CAM-Mesembryanthemum crystallinum can transport phosphoenolpyruvate (PEP) across the envelope. The initial velocities of PEP uptake in the dark at 4°C exhibited saturation kinetics with increasing external PEP concentration. PEP uptake had a Vmax of 6.46 (±0.05) micromoles per milligram chlorophyll per hour and an apparent Kmpep of 0.148 (±0.004) millimolar. The uptake was competitively inhibited by Pi (apparent Ki = 0.19 millimolar), by glycerate 3-phosphate (apparent Ki = 0.13 millimolar), and by dihydroxyacetone phosphate, but malate and pyruvate were without effect. The chloroplasts were able to synthesize PEP when presented with pyruvate. PEP synthesis was light dependent. The prolonged synthesis and export of PEP from the chloroplasts required the presence of Pi or glycerate 3-phosphate in the external medium. It is suggested that the transport of pyruvate and PEP across the chloroplasts envelope is required during the gluconeogenic conversion of carbon from malate to storage carbohydrate in the light. PMID:16666128

  1. Starvation stress during larval development facilitates an adaptive response in adult worker honey bees (Apis mellifera L.).

    PubMed

    Wang, Ying; Kaftanoglu, Osman; Brent, Colin S; Page, Robert E; Amdam, Gro V

    2016-04-01

    Most organisms are constantly faced with environmental changes and stressors. In diverse organisms, there is an anticipatory mechanism during development that can program adult phenotypes. The adult phenotype would be adapted to the predicted environment that occurred during organism maturation. However, whether this anticipatory mechanism is present in eusocial species is questionable because eusocial organisms are largely shielded from exogenous conditions by their stable nest environment. In this study, we tested whether food deprivation during development of the honey bee (Apis mellifera), a eusocial insect model, can shift adult phenotypes to better cope with nutritional stress. After subjecting fifth instar worker larvae to short-term starvation, we measured nutrition-related morphology, starvation resistance, physiology, endocrinology and behavior in the adults. We found that the larval starvation caused adult honey bees to become more resilient toward starvation. Moreover, the adult bees were characterized by reduced ovary size, elevated glycogen stores and juvenile hormone (JH) titers, and decreased sugar sensitivity. These changes, in general, can help adult insects survive and reproduce in food-poor environments. Overall, we found for the first time support for an anticipatory mechanism in a eusocial species, the honey bee. Our results suggest that this mechanism may play a role in honey bee queen-worker differentiation and worker division of labor, both of which are related to the responses to nutritional stress. © 2016. Published by The Company of Biologists Ltd.

  2. Regulation of PRPP and nucleoside tri and tetraphosphate pools in Escherichia coli under conditions of nitrogen starvation.

    PubMed Central

    Villadsen, I S; Michelsen, O

    1977-01-01

    The ribonucleoside triphosphate, deoxyribonucleoside triphosphate, 3' -diphosphate guanosine 5' -diphosphate (ppGpp), and 5-phosphoribosyl 1-pyrophosphate (PRPP) pools in Escherichia coli B were determined by thin-layer chromatography during changing conditions to ammonium starvation. The intracellular concentrations of all nucleotides were found to change in a well-defined order several minutes before andy observed change in the optical density of the culture. The levels of purine nucleoside triphosphates (adenosine 5' -triphosphate [CTP], dCTP) and uridine nucleotides (uridine 5' -triphosphate, deoxythymidine 5'-triphosphate). The deoxyribonucleotides thus behaved as the ribonucleotides. The levels of ppGpp increased 11-fold after the decrease in uridine nucleotides, when the accumulation of stable ribonucleic acid (RNA) stopped. The level of the nucleotide pool did not stabilize until 30 min after the change in optical density. The pool of dGTP dropped concomitantly with the pool of CTP. The nucleotide precursor PRPP exhibited a transient increase, wtih maximum value of four times the exponential levels at the onset of starvation. Apparently the cell adjusts early to starvation by reducing either the phosphorylating activity or the nucleotide biosynthetic activity. As in other downshift systems, the accumulation of stable RNA stopped before the break in optical density and before the stop in protein accumulation. Cell divisions were quite insensitive to the control mechanisms operating on RNA and protein accumulation under ammonium starvation, since the cells continued to divide for 21 min without any net accumulation of RNA. Images PMID:323222

  3. (+)-Grandifloracin, an antiausterity agent, induces autophagic PANC-1 pancreatic cancer cell death.

    PubMed

    Ueda, Jun-ya; Athikomkulchai, Sirivan; Miyatake, Ryuta; Saiki, Ikuo; Esumi, Hiroyasu; Awale, Suresh

    2014-01-01

    Human pancreatic tumors are known to be highly resistant to nutrient starvation, and this prolongs their survival in the hypovascular (austere) tumor microenvironment. Agents that retard this tolerance to nutrient starvation represent a novel antiausterity strategy in anticancer drug discovery. (+)-Grandifloracin (GF), isolated from Uvaria dac, has shown preferential toxicity to PANC-1 human pancreatic cancer cells under nutrient starvation, with a PC50 value of 14.5 μM. However, the underlying mechanism is not clear. In this study, GF was found to preferentially induce PANC-1 cell death in a nutrient-deprived medium via hyperactivation of autophagy, as evidenced by a dramatic upregulation of microtubule-associated protein 1 light chain 3. No change was observed in expression of the caspase-3 and Bcl-2 apoptosis marker proteins. GF was also found to strongly inhibit the activation of Akt, a key regulator of cancer cell survival and proliferation. Because pancreatic tumors are highly resistant to current therapies that induce apoptosis, the alternative cell death mechanism exhibited by GF provides a novel therapeutic insight into antiausterity drug candidates.

  4. Density-Dependent Recycling Promotes the Long-Term Survival of Bacterial Populations during Periods of Starvation.

    PubMed

    Takano, Sotaro; Pawlowska, Bogna J; Gudelj, Ivana; Yomo, Tetsuya; Tsuru, Saburo

    2017-02-07

    The amount of natural resources in the Earth's environment is in flux, which can trigger catastrophic collapses of ecosystems. How populations survive under nutrient-poor conditions is a central question in ecology. Curiously, some bacteria persist for a long time in nutrient-poor environments. Although this survival may be accomplished through cell death and the recycling of dead cells, the importance of these processes and the mechanisms underlying the survival of the populations have not been quantitated. Here, we use microbial laboratory experiments and mathematical models to demonstrate that death and recycling are essential activities for the maintenance of cell survival. We also show that the behavior of the survivors is governed by population density feedback, wherein growth is limited not only by the available resources but also by the population density. The numerical simulations suggest that population density-dependent recycling could be an advantageous behavior under starvation conditions. How organisms survive after exhaustion of resources is a central question in ecology. Starving Escherichia coli constitute a model system to understand survival mechanisms during long-term starvation. Although death and the recycling of dead cells might play a key role in the maintenance of long-term survival, their mechanisms and importance have not been quantitated. Here, we verified the significance of social recycling of dead cells for long-term survival. We also show that the survivors restrained their recycling and did not use all available nutrients released from dead cells, which may be advantageous under starvation conditions. These results indicate that not only the utilization of dead cells but also restrained recycling coordinate the effective utilization of limited resources for long-term survival under starvation. Copyright © 2017 Takano et al.

  5. Evolution of the Phosphoenolpyruvate Carboxylase Protein Kinase Family in C3 and C4 Flaveria spp.1[W][OPEN

    PubMed Central

    Aldous, Sophia H.; Weise, Sean E.; Sharkey, Thomas D.; Waldera-Lupa, Daniel M.; Stühler, Kai; Mallmann, Julia; Groth, Georg; Gowik, Udo; Westhoff, Peter; Arsova, Borjana

    2014-01-01

    The key enzyme for C4 photosynthesis, Phosphoenolpyruvate Carboxylase (PEPC), evolved from nonphotosynthetic PEPC found in C3 ancestors. In all plants, PEPC is phosphorylated by Phosphoenolpyruvate Carboxylase Protein Kinase (PPCK). However, differences in the phosphorylation pattern exist among plants with these photosynthetic types, and it is still not clear if they are due to interspecies differences or depend on photosynthetic type. The genus Flaveria contains closely related C3, C3-C4 intermediate, and C4 species, which are evolutionarily young and thus well suited for comparative analysis. To characterize the evolutionary differences in PPCK between plants with C3 and C4 photosynthesis, transcriptome libraries from nine Flaveria spp. were used, and a two-member PPCK family (PPCKA and PPCKB) was identified. Sequence analysis identified a number of C3- and C4-specific residues with various occurrences in the intermediates. Quantitative analysis of transcriptome data revealed that PPCKA and PPCKB exhibit inverse diel expression patterns and that C3 and C4 Flaveria spp. differ in the expression levels of these genes. PPCKA has maximal expression levels during the day, whereas PPCKB has maximal expression during the night. Phosphorylation patterns of PEPC varied among C3 and C4 Flaveria spp. too, with PEPC from the C4 species being predominantly phosphorylated throughout the day, while in the C3 species the phosphorylation level was maintained during the entire 24 h. Since C4 Flaveria spp. evolved from C3 ancestors, this work links the evolutionary changes in sequence, PPCK expression, and phosphorylation pattern to an evolutionary phase shift of kinase activity from a C3 to a C4 mode. PMID:24850859

  6. Woodward's reagent K reacts with histidine and cysteine residues in Escherichia coli and Saccharomyces cerevisiae phosphoenolpyruvate carboxykinases.

    PubMed

    Bustos, P; Gajardo, M I; Gómez, C; Goldie, H; Cardemil, E; Jabalquinto, A M

    1996-07-01

    The reaction of Woordward's reagent K (WRK) with model amino acids and proteins has been analyzed. Our results indicate that WRK forms 340-nm-absorbing adducts with sulfhydryl- and imidazol-containing compounds, but not with carboxylic acid derivatives, in agreement with Liamas et al. [(1986), J. Am. Chem. Soc. 108, 5543-5548], but not with Sinha and Brewer [(1985), Anal. Biochem. 151, 327-333]. The chemical modification of Escherichia coli and Saccharomyces cerevisiae phosphoenolpyruvate carboxykinases with WRK leads to an increase in the absorption at 340 nm, and we have demonstrated its reaction with His and Cys residues in these proteins. These results caution against claims of glutamic or aspartic acid modification by WRK based on the absorption at 340 nm of protein- WRK adducts.

  7. DIFFERENT PHYSIOLOGICAL RESPONSES OF FOUR MARINE SYNECHOCOCCUS STRAINS (CYANOPHYCEAE) TO NICKEL STARVATION UNDER IRON-REPLETE AND IRON-DEPLETE CONDITIONS(1).

    PubMed

    Qiu, Baosheng; Price, Neil M

    2009-10-01

    Synechococcus species are important primary producers in coastal and open-ocean ecosystems. When nitrate was provided as the sole nitrogen source, nickel starvation inhibited the growth of strains WH8102 and WH7803, while it had little effect on two euryhaline strains, WH5701 and PCC 7002. Nickel was required for the acclimation of Synechococcus WH7803 to low iron and high light. In WH8102 and WH7803, nickel starvation decreased the linear electron transport activity, slowed down QA reoxidation, but increased the connectivity factor between individual photosynthetic units. Under such conditions, the reduction of their intersystem electron transport chains was expected to increase, and their cyclic electron transport around PSI would be favored. Nickel starvation decreased the total superoxide dismutase (SOD) activity of WH8102 and WH7803 by 30% and 15% of the control, respectively. The protein-bound (63) Ni of the oceanic strain WH8102 comigrated with SOD activity on nondenaturing gels and thus provided additional evidence for the existence of active NiSOD in Synechococcus WH8102. In WH7803, it seems likely that nickel starvation affected other metabolic pathways and thus indirectly affected the total SOD activity. © 2009 Phycological Society of America.

  8. Nondiabetic ketoacidosis in a pregnant woman due to acute starvation with concomitant influenza A (H1N1) and respiratory failure.

    PubMed

    Skalley, G; Rodríguez-Villar, S

    2018-02-28

    Threatening refractory metabolic acidosis due to short-term starvation nondiabetic ketoacidosis is rarely reported. Severe ketoacidosis due to starvation itself is a rare occurrence, and more so in pregnancy with a concomitant stressful clinical situation. This case report presents a nondiabetic woman admitted in intensive care for respiratory failure type 1 during the third trimester of pregnancy with a severe metabolic acidosis refractory to medical treatment. We diagnosed the patient with acute starvation ketoacidosis based on her history and the absence of other causes of high anion gap metabolic acidosis after doing a rigorous analysis of her acid-base disorder. Crown Copyright © 2018. Publicado por Elsevier España, S.L.U. All rights reserved.

  9. The Neuropsychology of Starvation: Set-Shifting and Central Coherence in a Fasted Nonclinical Sample

    PubMed Central

    Pender, Sarah; Gilbert, Sam J.; Serpell, Lucy

    2014-01-01

    Objectives Recent research suggests certain neuropsychological deficits occur in anorexia nervosa (AN). The role of starvation in these deficits remains unclear. Studies of individuals without AN can elucidate our understanding of the effect of short-term starvation on neuropsychological performance. Methods Using a within-subjects repeated measures design, 60 healthy female participants were tested once after fasting for 18 hours, and once when satiated. Measures included two tasks to measure central coherence and a set-shifting task. Results Fasting exacerbated set-shifting difficulties on a rule-change task. Fasting was associated with stronger local and impaired global processing, indicating weaker central coherence. Conclusions Models of AN that propose a central role for set-shifting difficulties or weak central coherence should also consider the impact of short-term fasting on these processes. PMID:25338075

  10. Managing uncertainty: information and insurance under the risk of starvation.

    PubMed Central

    Dall, Sasha R X; Johnstone, Rufus A

    2002-01-01

    In an uncertain world, animals face both unexpected opportunities and danger. Such outcomes can select for two potential strategies: collecting information to reduce uncertainty, or insuring against it. We investigate the relative value of information and insurance (energy reserves) under starvation risk by offering model foragers a choice between constant and varying food sources over finite foraging bouts. We show that sampling the variable option (choosing it when it is not expected to be good) should decline both with lower reserves and late in foraging bouts; in order to be able to reap the reduction in uncertainty associated with exploiting a variable resource effectively, foragers must be able to afford and compensate for an initial increase in the risk of an energetic shortfall associated with choosing the option when it is bad. Consequently, expected exploitation of the varying option increases as it becomes less variable, and when the overall risk of energetic shortfall is reduced. In addition, little activity on the variable alternative is expected until reserves are built up early in a foraging bout. This indicates that gathering information is a luxury while insurance is a necessity, at least when foraging on stochastic and variable food under the risk of starvation. PMID:12495509

  11. The glycerol backbone of phospholipids derives from noncarbohydrate precursors in starved lung cancer cells.

    PubMed

    Leithner, Katharina; Triebl, Alexander; Trötzmüller, Martin; Hinteregger, Barbara; Leko, Petra; Wieser, Beatrix I; Grasmann, Gabriele; Bertsch, Alexandra L; Züllig, Thomas; Stacher, Elvira; Valli, Alessandro; Prassl, Ruth; Olschewski, Andrea; Harris, Adrian L; Köfeler, Harald C; Olschewski, Horst; Hrzenjak, Andelko

    2018-06-12

    Cancer cells are reprogrammed to consume large amounts of glucose to support anabolic biosynthetic pathways. However, blood perfusion and consequently the supply with glucose are frequently inadequate in solid cancers. PEPCK-M ( PCK2 ), the mitochondrial isoform of phosphoenolpyruvate carboxykinase (PEPCK), has been shown by us and others to be functionally expressed and to mediate gluconeogenesis, the reverse pathway of glycolysis, in different cancer cells. Serine and ribose synthesis have been identified as downstream pathways fed by PEPCK in cancer cells. Here, we report that PEPCK-M-dependent glycerol phosphate formation from noncarbohydrate precursors (glyceroneogenesis) occurs in starved lung cancer cells and supports de novo glycerophospholipid synthesis. Using stable isotope-labeled glutamine and lactate, we show that PEPCK-M generates phosphoenolpyruvate and 3-phosphoglycerate, which are at least partially converted to glycerol phosphate and incorporated into glycerophospholipids (GPL) under glucose and serum starvation. This pathway is required to maintain levels of GPL, especially phosphatidylethanolamine (PE), as shown by stable shRNA-mediated silencing of PEPCK-M in H23 lung cancer cells. PEPCK-M shRNA led to reduced colony formation after starvation, and the effect was partially reversed by the addition of dioleyl-PE. Furthermore, PEPCK-M silencing abrogated cancer growth in a lung cancer cell xenograft model. In conclusion, glycerol phosphate formation for de novo GPL synthesis via glyceroneogenesis is a newly characterized anabolic pathway in cancer cells mediated by PEPCK-M under conditions of severe nutrient deprivation. Copyright © 2018 the Author(s). Published by PNAS.

  12. A chemical genetic strategy identify the PHOSTIN, a synthetic molecule that triggers phosphate starvation responses in Arabidopsis thaliana.

    PubMed

    Bonnot, Clémence; Pinson, Benoît; Clément, Mathilde; Bernillon, Stéphane; Chiarenza, Serge; Kanno, Satomi; Kobayashi, Natsuko; Delannoy, Etienne; Nakanishi, Tomoko M; Nussaume, Laurent; Desnos, Thierry

    2016-01-01

    Plants display numerous strategies to cope with phosphate (Pi)-deficiency. Despite multiple genetic studies, the molecular mechanisms of low-Pi-signalling remain unknown. To validate the interest of chemical genetics to investigate this pathway we discovered and analysed the effects of PHOSTIN (PSN), a drug mimicking Pi-starvation in Arabidopsis. We assessed the effects of PSN and structural analogues on the induction of Pi-deficiency responses in mutants and wild-type and followed their accumulation in plants organs by high pressure liquid chromotography (HPLC) or mass-spectrophotometry. We show that PSN is cleaved in the growth medium, releasing its active motif (PSN11), which accumulates in plants roots. Despite the overaccumulation of Pi in the roots of treated plants, PSN11 elicits both local and systemic Pi-starvation effects. Nevertheless, albeit that the transcriptional activation of low-Pi genes by PSN11 is lost in the phr1;phl1 double mutant, neither PHO1 nor PHO2 are required for PSN11 effects. The range of local and systemic responses to Pi-starvation elicited, and their dependence on the PHR1/PHL1 function suggests that PSN11 affects an important and early step of Pi-starvation signalling. Its independence from PHO1 and PHO2 suggest the existence of unknown pathway(s), showing the usefulness of PSN and chemical genetics to bring new elements to this field. © 2015 The Authors. New Phytologist © 2015 New Phytologist Trust.

  13. A maize gene encoding an NADPH binding enzyme highly homologous to isoflavone reductases is activated in response to sulfur starvation.

    PubMed

    Petrucco, S; Bolchi, A; Foroni, C; Percudani, R; Rossi, G L; Ottonello, S

    1996-01-01

    we isolated a novel gene that is selectively induced both in roots and shoots in response to sulfur starvation. This gene encodes a cytosolic, monomeric protein of 33 kD that selectively binds NADPH. The predicted polypeptide is highly homologous ( > 70%) to leguminous isoflavone reductases (IFRs), but the maize protein (IRL for isoflavone reductase-like) belongs to a novel family of proteins present in a variety of plants. Anti-IRL antibodies specifically recognize IFR polypeptides, yet the maize protein is unable to use various isoflavonoids as substrates. IRL expression is correlated closely to glutathione availability: it is persistently induced in seedlings whose glutathione content is about fourfold lower than controls, and it is down-regulated rapidly when control levels of glutathione are restored. This glutathione-dependent regulation indicates that maize IRL may play a crucial role in the establishment of a thiol-independent response to oxidative stress under glutathione shortage conditions.

  14. Developmental Physiology of Cluster-Root Carboxylate Synthesis and Exudation in Harsh Hakea. Expression of Phosphoenolpyruvate Carboxylase and the Alternative Oxidase1

    PubMed Central

    Shane, Michael W.; Cramer, Michael D.; Funayama-Noguchi, Sachiko; Cawthray, Gregory R.; Millar, A. Harvey; Day, David A.; Lambers, Hans

    2004-01-01

    Harsh hakea (Hakea prostrata R.Br.) is a member of the Proteaceae family, which is highly represented on the extremely nutrient-impoverished soils in southwest Australia. When phosphorus is limiting, harsh hakea develops proteoid or cluster roots that release carboxylates that mobilize sparingly soluble phosphate in the rhizosphere. To investigate the physiology underlying the synthesis and exudation of carboxylates from cluster roots in Proteaceae, we measured O2 consumption, CO2 release, internal carboxylate concentrations and carboxylate exudation, and the abundance of the enzymes phosphoenolpyruvate carboxylase and alternative oxidase (AOX) over a 3-week time course of cluster-root development. Peak rates of citrate and malate exudation were observed from 12- to 13-d-old cluster roots, preceded by a reduction in cluster-root total protein levels and a reduced rate of O2 consumption. In harsh hakea, phosphoenolpyruvate carboxylase expression was relatively constant in cluster roots, regardless of developmental stage. During cluster-root maturation, however, the expression of AOX protein increased prior to the time when citrate and malate exudation peaked. This increase in AOX protein levels is presumably needed to allow a greater flow of electrons through the mitochondrial electron transport chain in the absence of rapid ATP turnover. Citrate and isocitrate synthesis and accumulation contributed in a major way to the subsequent burst of citrate and malate exudation. Phosphorus accumulated by harsh hakea cluster roots was remobilized during senescence as part of their efficient P cycling strategy for growth on nutrient impoverished soils. PMID:15122030

  15. Excess Vitamin Intake before Starvation does not Affect Body Mass, Organ Mass, or Blood Variables but Affects Urinary Excretion of Riboflavin in Starving Rats.

    PubMed

    Moriya, Aya; Fukuwatari, Tsutomu; Shibata, Katsumi

    2013-01-01

    B-vitamins are important for producing energy from amino acids, fatty acids, and glucose. The aim of this study was to elucidate the effects of excess vitamin intake before starvation on body mass, organ mass, blood, and biological variables as well as on urinary excretion of riboflavin in rats. Adult rats were fed two types of diets, one with a low vitamin content (minimum vitamin diet for optimum growth) and one with a sufficient amount of vitamins (excess vitamin diet). Body mass, organ mass, and blood variables were not affected by excess vitamin intake before starvation. Interestingly, urinary riboflavin excretion showed a different pattern. Urine riboflavin in the excess vitamin intake group declined gradually during starvation, whereas it increased in the low vitamin intake group. Excess vitamin intake before starvation does not affect body mass, organ mass, or blood variables but does affect the urinary excretion of riboflavin in starving rats.

  16. System-level analysis of genes and functions affecting survival during nutrient starvation in Saccharomyces cerevisiae.

    PubMed

    Gresham, David; Boer, Viktor M; Caudy, Amy; Ziv, Naomi; Brandt, Nathan J; Storey, John D; Botstein, David

    2011-01-01

    An essential property of all cells is the ability to exit from active cell division and persist in a quiescent state. For single-celled microbes this primarily occurs in response to nutrient deprivation. We studied the genetic requirements for survival of Saccharomyces cerevisiae when starved for either of two nutrients: phosphate or leucine. We measured the survival of nearly all nonessential haploid null yeast mutants in mixed populations using a quantitative sequencing method that estimates the abundance of each mutant on the basis of frequency of unique molecular barcodes. Starvation for phosphate results in a population half-life of 337 hr whereas starvation for leucine results in a half-life of 27.7 hr. To measure survival of individual mutants in each population we developed a statistical framework that accounts for the multiple sources of experimental variation. From the identities of the genes in which mutations strongly affect survival, we identify genetic evidence for several cellular processes affecting survival during nutrient starvation, including autophagy, chromatin remodeling, mRNA processing, and cytoskeleton function. In addition, we found evidence that mitochondrial and peroxisome function is required for survival. Our experimental and analytical methods represent an efficient and quantitative approach to characterizing genetic functions and networks with unprecedented resolution and identified genotype-by-environment interactions that have important implications for interpretation of studies of aging and quiescence in yeast.

  17. Starvation as cause of death in the Croatian Quarnero and hinterland between 1816 and 1825.

    PubMed

    Jovanović, Visnja; Ulina, Tatjana; Skrobonja, Ante

    2010-12-01

    Our aim is to investigate starvation as cause of death and social and demographic consequences in the Croatian Quarnero and its hinterland between 1816 and 1825, paying particular attention to the infamous "year of famine" 1817. Our sources were: registers of births, marriages, and deaths from 21 parishes kept at the Croatian State Archives in Rijeka and Zagreb. We collected and processed data for statistical analysis according to the date of baptism (birth), marriage, and death, and according to sex and age. Our focus was on recorded causes of death. Between 1816 and 1825, 15,701 children were baptised (born), and 11,021 people died. Starvation was recorded as cause of death in 255 cases, of which 198 were recorded in the infamous 1817. It was the only year with negative growth in virtually all parishes, with the birth-to-death ratio of 1147:1545. In 1817, the proportion of death by starvation to the total death rate was 12.8% for the entire area, with the highest share recorded in Veprinac (33.3%), Crikvenica (23.3%), and Kastav (15.8%). Death by starvation was more common in men than in women (56.7% vs. 43.3%, respectively). Age distribution was as follows; in the population below 20 years of age the death rate was 42 (16.5% of total deaths), but the most affected age group were infants and children aged 1-4 years (69.0%) whereas in adult population the death rate was 213 (83.5% of total deaths) and the most affected group were the elderly between 60 and 69 years (26.3%). Analysis shows lower birth and marriage rates between 1816 and 1818, followed by a steep rise and a plateau with minimal variation. This study shows that the Croatian Quarnero and its hinterland suffered a great famine in the early 19th century and 1817 in particular, which had left a deep mark on local demography, just like in the neighbouring parts of Croatia and Europe.

  18. Functional evaluation of Heat Shock Proteins 70 (HSP70/HSC70) on Rhodnius prolixus (Hemiptera, Reduviidae) physiological responses associated with feeding and starvation.

    PubMed

    Paim, Rafaela M M; Araujo, Ricardo N; Leis, Miguel; Sant'anna, Mauricio R V; Gontijo, Nelder F; Lazzari, Claudio R; Pereira, Marcos H

    2016-10-01

    Blood-sucking vectors must overcome thermal stress caused by intake of proportionally large amounts of warm blood from their hosts. In response to this, Heat Shock Proteins (HSPs) such as the widely studied HSP70 family (the inducible HSP70 and the cognate form HSC70, known for their role in preserving essential cellular functions) are rapidly up-regulated in their tissues. The triatomine Rhodnius prolixus is an important vector of Trypanosoma cruzi, the causative pathogen of Chagas' disease, and is also a model organism for studying insect biology and physiology. In this work, we observed that the expression of Rhodnius prolixus HSP70 was rapidly up-regulated in response to thermal shocks (0 °C and 40 °C) and also during the first hours after feeding on blood. HSP70/HSC70 RNAi knockdown elicited important alterations in R. prolixus physiological responses triggered by blood meal and starvation. HSP70/HSC70 knockdown insects showed lower resistance to prolonged starvation in comparison to appropriate controls, dying between 32 and 40 days after dsRNA injection. After blood feeding, the physiological effects of HSP70/HSC70 knockdown were more prominent and the insects died even earlier, within 14-20 days after feeding (21-27 days after dsRNA injection). These bugs showed impaired blood processing and digestion, reduced energetic metabolism and the midgut immune responses were compromised. Our findings suggest that HSP70/HSC70 depletion affected R. prolixus in starvation or fed conditions. After feeding, the arrival of blood in the digestive tract of knockdown insects fails to activate essential signaling pathways involved in blood processing, producing several alterations in their physiological processes enough to generate a premature death. Copyright © 2016 Elsevier Ltd. All rights reserved.

  19. Deregulation of Feedback Inhibition of Phosphoenolpyruvate Carboxylase for Improved Lysine Production in Corynebacterium glutamicum

    PubMed Central

    Chen, Zhen; Bommareddy, Rajesh Reddy; Frank, Doinita; Rappert, Sugima

    2014-01-01

    Allosteric regulation of phosphoenolpyruvate carboxylase (PEPC) controls the metabolic flux distribution of anaplerotic pathways. In this study, the feedback inhibition of Corynebacterium glutamicum PEPC was rationally deregulated, and its effect on metabolic flux redistribution was evaluated. Based on rational protein design, six PEPC mutants were designed, and all of them showed significantly reduced sensitivity toward aspartate and malate inhibition. Introducing one of the point mutations (N917G) into the ppc gene, encoding PEPC of the lysine-producing strain C. glutamicum LC298, resulted in ∼37% improved lysine production. In vitro enzyme assays and 13C-based metabolic flux analysis showed ca. 20 and 30% increases in the PEPC activity and corresponding flux, respectively, in the mutant strain. Higher demand for NADPH in the mutant strain increased the flux toward pentose phosphate pathway, which increased the supply of NADPH for enhanced lysine production. The present study highlights the importance of allosteric regulation on the flux control of central metabolism. The strategy described here can also be implemented to improve other oxaloacetate-derived products. PMID:24334667

  20. Deregulation of feedback inhibition of phosphoenolpyruvate carboxylase for improved lysine production in Corynebacterium glutamicum.

    PubMed

    Chen, Zhen; Bommareddy, Rajesh Reddy; Frank, Doinita; Rappert, Sugima; Zeng, An-Ping

    2014-02-01

    Allosteric regulation of phosphoenolpyruvate carboxylase (PEPC) controls the metabolic flux distribution of anaplerotic pathways. In this study, the feedback inhibition of Corynebacterium glutamicum PEPC was rationally deregulated, and its effect on metabolic flux redistribution was evaluated. Based on rational protein design, six PEPC mutants were designed, and all of them showed significantly reduced sensitivity toward aspartate and malate inhibition. Introducing one of the point mutations (N917G) into the ppc gene, encoding PEPC of the lysine-producing strain C. glutamicum LC298, resulted in ∼37% improved lysine production. In vitro enzyme assays and (13)C-based metabolic flux analysis showed ca. 20 and 30% increases in the PEPC activity and corresponding flux, respectively, in the mutant strain. Higher demand for NADPH in the mutant strain increased the flux toward pentose phosphate pathway, which increased the supply of NADPH for enhanced lysine production. The present study highlights the importance of allosteric regulation on the flux control of central metabolism. The strategy described here can also be implemented to improve other oxaloacetate-derived products.

  1. Ixodes scapularis Tick Cells Control Anaplasma phagocytophilum Infection by Increasing the Synthesis of Phosphoenolpyruvate from Tyrosine.

    PubMed

    Cabezas-Cruz, Alejandro; Espinosa, Pedro J; Obregón, Dasiel A; Alberdi, Pilar; de la Fuente, José

    2017-01-01

    The obligate intracellular pathogen, Anaplasma phagocytophilum , is the causative agent of life-threatening diseases in humans and animals. A. phagocytophilum is an emerging tick-borne pathogen in the United States, Europe, Africa and Asia, with increasing numbers of infected people and animals every year. It is increasingly recognized that intracellular pathogens modify host cell metabolic pathways to increase infection and transmission in both vertebrate and invertebrate hosts. Recent reports have shown that amino acids are central to the host-pathogen metabolic interaction. In this study, a genome-wide search for components of amino acid metabolic pathways was performed in Ixodes scapularis , the main tick vector of A. phagocytophilum in the United States, for which the genome was recently published. The enzymes involved in the synthesis and degradation pathways of the twenty amino acids were identified. Then, the available transcriptomics and proteomics data was used to characterize the mRNA and protein levels of I. scapularis amino acid metabolic pathway components in response to A. phagocytophilum infection of tick tissues and ISE6 tick cells. Our analysis was focused on the interplay between carbohydrate and amino acid metabolism during A. phagocytophilum infection in ISE6 cells. The results showed that tick cells increase the synthesis of phosphoenolpyruvate (PEP) from tyrosine to control A. phagocytophilum infection. Metabolic pathway analysis suggested that this is achieved by (i) increasing the transcript and protein levels of mitochondrial phosphoenolpyruvate carboxykinase (PEPCK-M), (ii) shunting tyrosine into the tricarboxylic acid (TCA) cycle to increase fumarate and oxaloacetate which will be converted into PEP by PEPCK-M, and (iii) blocking all the pathways that use PEP downstream gluconeogenesis (i.e., de novo serine synthesis pathway (SSP), glyceroneogenesis and gluconeogenesis). While sequestering host PEP may be critical for this bacterium

  2. Time-series resolution of gradual nitrogen starvation and its impact on photosynthesis in the cyanobacterium Synechocystis PCC 6803.

    PubMed

    Krasikov, Vladimir; Aguirre von Wobeser, Eneas; Dekker, Henk L; Huisman, Jef; Matthijs, Hans C P

    2012-07-01

    Sequential adaptation to nitrogen deprivation and ultimately to full starvation requires coordinated adjustment of cellular functions. We investigated changes in gene expression and cell physiology of the cyanobacterium Synechocystis PCC 6803 during 96 h of nitrogen starvation. During the first 6 h, the transcriptome showed activation of nitrogen uptake and assimilation systems and of the core nitrogen and carbon assimilation regulators. However, the nitrogen-deprived cells still grew at the same rate as the control and even showed transiently increased expression of phycobilisome genes. After 12 h, cell growth decreased and chlorosis started with degradation of the nitrogen-rich phycobilisomes. During this phase, the transcriptome showed suppression of genes for phycobilisomes, for carbon fixation and for de novo protein synthesis. Interestingly, photosynthetic activity of both photosystem I (PSI) and photosystem II was retained quite well. Excess electrons were quenched by the induction of terminal oxidase and hydrogenase genes, compensating for the diminished carbon fixation and nitrate reduction activity. After 48 h, the cells ceased most activities. A marked exception was the retained PSI gene transcription, possibly this supports the viability of Synechocystis cells and enables rapid recovery after relieving from nitrogen starvation. During early recovery, many genes changed expression, supporting the resumed cellular activity. In total, our results distinguished three phases during gradual nitrogen depletion: (1) an immediate response, (2) short-term acclimation and (3) long-term survival. This shows that cyanobacteria respond to nitrogen starvation by a cascade of physiological adaptations reflected by numerous changes in the transcriptome unfolding at different timescales. Copyright © Physiologia Plantarum 2012.

  3. Lactobacillus casei 64H Contains a Phosphoenolpyruvate-Dependent Phosphotransferase System for Uptake of Galactose, as Confirmed by Analysis of ptsH and Different gal Mutants

    PubMed Central

    Bettenbrock, Katja; Siebers, Ulrike; Ehrenreich, Petra; Alpert, Carl-Alfred

    1999-01-01

    Galactose metabolism in Lactobacillus casei 64H was analyzed by genetic and biochemical methods. Mutants with defects in ptsH, galK, or the tagatose 6-phosphate pathway were isolated either by positive selection using 2-deoxyglucose or 2-deoxygalactose or by an enrichment procedure with streptozotocin. ptsH mutations abolish growth on lactose, cellobiose, N-acetylglucosamine, mannose, fructose, mannitol, glucitol, and ribitol, while growth on galactose continues at a reduced rate. Growth on galactose is also reduced, but not abolished, in galK mutants. A mutation in galK in combination with a mutation in the tagatose 6-phosphate pathway results in sensitivity to galactose and lactose, while a galK mutation in combination with a mutation in ptsH completely abolishes galactose metabolism. Transport assays, in vitro phosphorylation assays, and thin-layer chromatography of intermediates of galactose metabolism also indicate the functioning of a permease/Leloir pathway and a phosphoenolpyruvate-dependent phosphotransferase system (PTS)/tagatose 6-phosphate pathway. The galactose-PTS is induced by growth on either galactose or lactose, but the induction kinetics for the two substrates are different. PMID:9864334

  4. Fetal and neonatal responses to maternal canine starvation: circulating fuels and neonatal glucose production.

    PubMed

    Kliegman, R M; Miettinen, E L; Adam, P A

    1981-06-01

    Pregnant dogs were starved for 72 hr while controls were fasted overnight. Maternal starvation significantly reduced fetal birth weight (269 +/- 7.2 versus 294 +/- 4.4 g). Total caloric deprivation had no effect on maternal or fetal blood glucose concentration at the time of delivery; however, fasting neonatal blood glucose levels were depressed during the first 9 hr of life. Starvation produced a large elevation of maternal free fatty acids (1.68 +/- 0.39 versus 0.74 +/- 0.2 mM) and ketone bodies (2.99 +/- 0.70 versus 1.04 +/- 0.48). Although fetal free fatty acids increased minimally (0.39 +/- 0.03 versus 0.22 +/- 0.07), ketone body levels were markedly elevated (2.53 +/- 0.35 versus 1.01 +/- 0.32). After birth, plasma-free fatty acid and beta-hydroxybutyrate levels were lower in pups of starved mothers at 3 hr, and acetoacetate was lower at 6 and 9 hr. Other alternate fuels such as amino acids demonstrated lower levels of glutamine in pups of starved mothers throughout the day (except 3 hr), whereas alanine levels declined significantly only at 24 hr (114.9 +/- 15 versus 187.6 +/- 26 microM. Glucose production was significantly depressed in pups of starved mothers at 3 (13.7 +/- 1.4 versus 22.7 +/- 3) and 9 hr (17.5 +/- 2.2 versus 26.0 +/- 2.8 mumoles/kg/min), whereas glucose clearance rates were elevated at 3, 6 and 9 hr of age. Lactate carbon incorporation into glucose increased throughout the day but was not significantly affected by prior maternal starvation.

  5. The Pkn22 Ser/Thr kinase in Nostoc PCC 7120: role of FurA and NtcA regulators and transcript profiling under nitrogen starvation and oxidative stress.

    PubMed

    Yingping, Fan; Lemeille, Sylvain; González, Andrés; Risoul, Véronique; Denis, Yann; Richaud, Pierre; Lamrabet, Otmane; Fillat, Maria F; Zhang, Cheng-Cai; Latifi, Amel

    2015-07-29

    The filamentous cyanobacterium Nostoc sp. strain PCC 7120 can fix N2 when combined nitrogen is not available. Furthermore, it has to cope with reactive oxygen species generated as byproducts of photosynthesis and respiration. We have previously demonstrated the synthesis of Ser/Thr kinase Pkn22 as an important survival response of Nostoc to oxidative damage. In this study we wished to investigate the possible involvement of this kinase in signalling peroxide stress and nitrogen deprivation. Quantitative RT-PCR experiments revealed that the pkn22 gene is induced in response to peroxide stress and to combined nitrogen starvation. Electrophoretic motility assays indicated that the pkn22 promoter is recognized by the global transcriptional regulators FurA and NtcA. Transcriptomic analysis comparing a pkn22-insertion mutant and the wild type strain indicated that this kinase regulates genes involved in important cellular functions such as photosynthesis, carbon metabolism and iron acquisition. Since metabolic changes may lead to oxidative stress, we investigated whether this is the case with nitrogen starvation. Our results rather invalidate this hypothesis thereby suggesting that the function of Pkn22 under nitrogen starvation is independent of its role in response to peroxide stress. Our analyses have permitted a more complete functional description of Ser/Thr kinase in Nostoc. We have decrypted the transcriptional regulation of the pkn22 gene, and analysed the whole set of genes under the control of this kinase in response to the two environmental changes often encountered by cyanobacteria in their natural habitat: oxidative stress and nitrogen deprivation.

  6. The mitochondrial isoform of phosphoenolpyruvate carboxykinase (PEPCK-M) and glucose homeostasis: has it been overlooked?

    PubMed Central

    Stark, Romana; Kibbey, Richard G.

    2013-01-01

    Background Plasma glucose levels are tightly regulated within a narrow physiologic range. Insulin-mediated glucose uptake by tissues must be balanced by the appearance of glucose from nutritional sources, glycogen stores, or gluconeogenesis. In this regard, a common pathway regulating both glucose clearance and appearance has not been described. The metabolism of glucose to produce ATP is generally considered to be the primary stimulus for insulin release from beta-cells. Similarly, gluconeogenesis from phosphoenolpyruvate (PEP) is believed to be the primarily pathway via the cytosolic isoform of phosphoenolpyruvate carboxykinase (PEPCK-C). These models cannot adequately explain the regulation of insulin secretion or gluconeogenesis. Scope of review A metabolic sensing pathway involving mitochondrial GTP (mtGTP) and PEP synthesis by the mitochondrial isoform of PEPCK (PEPCK-M) is associated with glucose-stimulated insulin secretion from pancreatic beta-cells. Here we examine whether there is evidence for a similar mtGTP-dependent pathway involved in gluconeogenesis. In both islets and the liver, mtGTP is produced at the substrate level by the enzyme succinyl CoA synthetase (SCS-GTP) with a rate proportional to the TCA cycle. In the beta-cell PEPCK-M then hydrolyzes mtGTP in the production of PEP that, unlike mtGTP, can escape the mitochondria to generate a signal for insulin release. Similarly, PEPCK-M and mtGTP might also provide a significant source of PEP in gluconeogenic tissues for the production of glucose. This review will focus on the possibility that PEPCK-M, as a sensor for TCA cycle flux, is a key mechanism to regulate both insulin secretion and gluconeogenesis suggesting conservation of this biochemical mechanism in regulating multiple aspects of glucose homeostasis. Moreover, we propose that this mechanism may be more important for regulating insulin secretion and gluconeogenesis compared to canonical nutrient sensing pathways. Major conclusions PEPCK

  7. The Starvation Resistance and Biofilm Formation of Enterococcus faecalis in Coexistence with Candida albicans, Streptococcus gordonii, Actinomyces viscosus, or Lactobacillus acidophilus.

    PubMed

    Gao, Yan; Jiang, Xiaoqiong; Lin, Dongjia; Chen, Yanhuo; Tong, Zhongchun

    2016-08-01

    Enterococcus faecalis is the most frequently detected species in root canal-treated teeth, and it is able to survive under starvation conditions. However, persistent periapical disease is often caused by multispecies. The aim of this study was to explore the survival of E. faecalis in starvation conditions and biofilm formation with the 4 common pathogenic species. A dual-species model of Candida albicans, Streptococcus gordonii, Actinomyces viscosus, or Lactobacillus acidophilus in combination with E. faecalis was established and allowed to grow in phosphate-buffered saline for the examination of starvation survival. Cefuroxime sodium and vancomycin at a concentration of 100 mg/L were added into brain-heart infusion plate agar to count the 2 bacteria separately in the dual species. Scanning electron microscopy was used to observe the dual species and multiple species on the root canal dentin of bovine teeth for 48 hours. A confocal laser scanning microscope was used to show the 4 groups of dual-species biofilms on substrates with glass bottoms for 48 hours. E. faecalis was more resistant to starvation in coexistence with C. albicans, S. gordonii, A. viscosus, or L. acidophilus, and S. gordonii was completely inhibited in coexistence with E. faecalis. The dual-species biofilm showed that E. faecalis formed thicker and denser biofilms on the root canal dentin and glass slides in coexistence with S. gordonii and A. viscosus than C. albicans and L. acidophilus. The multispecies community is conducive to the resistance to starvation of E. faecalis and biofilm formation in root canals. Copyright © 2016 American Association of Endodontists. Published by Elsevier Inc. All rights reserved.

  8. A maize gene encoding an NADPH binding enzyme highly homologous to isoflavone reductases is activated in response to sulfur starvation.

    PubMed Central

    Petrucco, S; Bolchi, A; Foroni, C; Percudani, R; Rossi, G L; Ottonello, S

    1996-01-01

    we isolated a novel gene that is selectively induced both in roots and shoots in response to sulfur starvation. This gene encodes a cytosolic, monomeric protein of 33 kD that selectively binds NADPH. The predicted polypeptide is highly homologous ( > 70%) to leguminous isoflavone reductases (IFRs), but the maize protein (IRL for isoflavone reductase-like) belongs to a novel family of proteins present in a variety of plants. Anti-IRL antibodies specifically recognize IFR polypeptides, yet the maize protein is unable to use various isoflavonoids as substrates. IRL expression is correlated closely to glutathione availability: it is persistently induced in seedlings whose glutathione content is about fourfold lower than controls, and it is down-regulated rapidly when control levels of glutathione are restored. This glutathione-dependent regulation indicates that maize IRL may play a crucial role in the establishment of a thiol-independent response to oxidative stress under glutathione shortage conditions. PMID:8597660

  9. Sequence analyses and evolutionary relationships among the energy-coupling proteins Enzyme I and HPr of the bacterial phosphoenolpyruvate: sugar phosphotransferase system.

    PubMed Central

    Reizer, J.; Hoischen, C.; Reizer, A.; Pham, T. N.; Saier, M. H.

    1993-01-01

    We have previously reported the overexpression, purification, and biochemical properties of the Bacillus subtilis Enzyme I of the phosphoenolpyruvate: sugar phosphotransferase system (PTS) (Reizer, J., et al., 1992, J. Biol. Chem. 267, 9158-9169). We now report the sequencing of the ptsI gene of B. subtilis encoding Enzyme I (570 amino acids and 63,076 Da). Putative transcriptional regulatory signals are identified, and the pts operon is shown to be subject to carbon source-dependent regulation. Multiple alignments of the B. subtilis Enzyme I with (1) six other sequenced Enzymes I of the PTS from various bacterial species, (2) phosphoenolpyruvate synthase of Escherichia coli, and (3) bacterial and plant pyruvate: phosphate dikinases (PPDKs) revealed regions of sequence similarity as well as divergence. Statistical analyses revealed that these three types of proteins comprise a homologous family, and the phylogenetic tree of the 11 sequenced protein members of this family was constructed. This tree was compared with that of the 12 sequence HPr proteins or protein domains. Antibodies raised against the B. subtilis and E. coli Enzymes I exhibited immunological cross-reactivity with each other as well as with PPDK of Bacteroides symbiosus, providing support for the evolutionary relationships of these proteins suggested from the sequence comparisons. Putative flexible linkers tethering the N-terminal and the C-terminal domains of protein members of the Enzyme I family were identified, and their potential significance with regard to Enzyme I function is discussed. The codon choice pattern of the B. subtilis and E. coli ptsI and ptsH genes was found to exhibit a bias toward optimal codons in these organisms.(ABSTRACT TRUNCATED AT 250 WORDS) PMID:7686067

  10. Unraveling the evolutionary history of the phosphoryl-transfer chain of the phosphoenolpyruvate:phosphotransferase system through phylogenetic analyses and genome context

    PubMed Central

    2008-01-01

    Background The phosphoenolpyruvate phosphotransferase system (PTS) plays a major role in sugar transport and in the regulation of essential physiological processes in many bacteria. The PTS couples solute transport to its phosphorylation at the expense of phosphoenolpyruvate (PEP) and it consists of general cytoplasmic phosphoryl transfer proteins and specific enzyme II complexes which catalyze the uptake and phosphorylation of solutes. Previous studies have suggested that the evolution of the constituents of the enzyme II complexes has been driven largely by horizontal gene transfer whereas vertical inheritance has been prevalent in the general phosphoryl transfer proteins in some bacterial groups. The aim of this work is to test this hypothesis by studying the evolution of the phosphoryl transfer proteins of the PTS. Results We have analyzed the evolutionary history of the PTS phosphoryl transfer chain (PTS-ptc) components in 222 complete genomes by combining phylogenetic methods and analysis of genomic context. Phylogenetic analyses alone were not conclusive for the deepest nodes but when complemented with analyses of genomic context and functional information, the main evolutionary trends of this system could be depicted. Conclusion The PTS-ptc evolved in bacteria after the divergence of early lineages such as Aquificales, Thermotogales and Thermus/Deinococcus. The subsequent evolutionary history of the PTS-ptc varied in different bacterial lineages: vertical inheritance and lineage-specific gene losses mainly explain the current situation in Actinobacteria and Firmicutes whereas horizontal gene transfer (HGT) also played a major role in Proteobacteria. Most remarkably, we have identified a HGT event from Firmicutes or Fusobacteria to the last common ancestor of the Enterobacteriaceae, Pasteurellaceae, Shewanellaceae and Vibrionaceae. This transfer led to extensive changes in the metabolic and regulatory networks of these bacteria including the development of a

  11. Starvation and diet according to the Vinzenz Priessnitz family water book of 1847.

    PubMed

    Rohde, Jürgen

    2007-02-01

    Vinzenz Priessnitz (1799-1851) did not only carry out water treatments within the scope of his cure, but also movement therapy, aerial and solar baths, natural lifestyle and, above all, diet therapy. According to the literature Priessnitz only seldom allowed starvation within his cure because this would break his preferred principle of restoration. Nevertheless, the widely unknown 'Vinzenz Priessnitz family water book' which he dictated to his daughter Sophie in 1847, includes 13 orders of starvation for a series of indications (breast inflammations, pneumonia, pulmonary embolism, cholera, intestines inflammation, tapeworm) and symptoms (diarrhoea and vomiting, heart cramp, head woe, faint, stone pains, feeling of sickness). Furthermore, it comprises diet recommendations on cold water drinking, milk and cold confection of pastry, compote and buttermilk, vegetables, fruit and strawberries, fruit and frozen food, no meat, little meat and cold food. In the view of the literature, these diet principles and means as well as their applications then and now are discussed. As for those days the Priessnitz diet was quite modern, manifold, logic and 'natural'.

  12. [Effect of starvation on blood protein levels in the population of Dobrinja (1992-1995)].

    PubMed

    Hasković, E

    2000-01-01

    In nutritional protein deficiency, numerous studies verified utilization of amino acids generated from tissue degradation in intensive protein synthesis. Unlike liver, muscle protein synthesis is extremely dependent on external supplies of essential amino acids. Prolonged nutritional protein deficiency results in decrease of body weight as well as total protein concentration, in particular in early days of starvation. In prolonged starvation during the war, significant decrease of body weight was registered in 70 subjects while their total protein concentration remained within the expected range and did not significantly differ the values recorded in the control group. Concentration of serum albumines in the control group was lower than the concentration recorded in the tested group, while the serum globulins concentration was higher in the control group. Although the difference in body weight between the tested and the control group was statistically significant, no significant difference in the concentration of total proteins, albumines and globulines was recorded.

  13. Modeling turbidity type and intensity effects on the growth and starvation mortality of age-0 yellow perch

    USGS Publications Warehouse

    Manning, Nathan M; Bossenbroek, Jonathan M.; Mayer, Christine M.; Bunnell, David B.; Tyson, Jeff T.; Rudstam, Lars G.; Jackson, James R.

    2014-01-01

    We sought to quantify the possible population-level influence of sediment plumes and algal blooms on yellow perch (Perca flavescens), a visual predator found in systems with dynamic water clarity. We used an individual-based model (IBM), which allowed us to include variance in water clarity and the distribution of individual sizes. Our IBM was built with laboratory data showing that larval yellow perch feeding rates increased slightly as sediment turbidity level increased, but that both larval and juvenile yellow perch feeding rates decreased as phytoplankton level increased. Our IBM explained a majority of the variance in yellow perch length in data from the western and central basins of Lake Erie and Oneida Lake, with R2 values ranging from 0.611 to 0.742. Starvation mortality was size dependent, as the greatest daily mortality rates in each simulation occurred within days of each other. Our model showed that turbidity-dependent consumption rates and temperature are key components in determining growth and starvation mortality of age-0 yellow perch, linking fish production to land-based processes that influence water clarity. These results suggest the timing and persistence of sediment plumes and algal blooms can drastically alter the growth potential and starvation mortality of a yellow perch cohort.

  14. Dying piece by piece: carbohydrate dynamics in aspen seedlings under severe carbon stress and starvation

    NASA Astrophysics Data System (ADS)

    Wiley, Erin; Chow, Pak; Landhäusser, Simon

    2016-04-01

    Carbon stress and starvation remain poorly understood in trees, despite their potential role in mortality from a variety of agents. To explore the effects of carbon stress on nonstructural carbohydrate (NSC) dynamics and recovery potential and to examine the process of starvation, we grew aspen seedlings under one of three levels of shade: 40% (light shade), 8% (medium shade), and 4% (dark shade) of full sunlight. We then exposed seedlings to 24 hours darkness at either 20° or 28° C until trees had died. Periodically, seedlings were harvested for NSC analysis and to measure stem and root respiration. In addition, some seedlings were moved back into the light to determine if recovery was possible at certain points during starvation. Specifically, we sought to address the following questions: 1) Do NSC concentrations or mass influence tree survival under carbon stress? 2) At what carbohydrate levels do trees fail to recover and starve? 3) Does temperature affect the NSC level at which trees starve? Increasing shade reduced growth, but surprisingly did not reduce NSC levels, except in a portion of deep shade seedlings that experienced dieback. Once in darkness, leaves died first, with final NSC levels ranging from ~4% (Medium shade, 28 degrees) to 7.5% (Light shade). Stem death generally occurred gradually down the stem. Stem tissues retained ~1-2% NSC when dead. Recovery was still possible when only the upper half of the stem had died; at this point, seedlings had relatively high root NSC levels in their remaining roots (7-10%), with 1-3% starch. No trees recovered after the whole stem had died, at which point, some trees root systems were completely dead. However, most retained substantial amounts of live roots, averaging 5-6% NSC, with 0.25-1.5% starch. Despite the initially similar NSC concentrations, light shade seedlings took longer to reach half stem and whole stem death than seedlings from medium and dark shade. Longer survival times were associated with

  15. Effect of light intensity and nitrogen starvation on CO2 fixation and lipid/carbohydrate production of an indigenous microalga Scenedesmus obliquus CNW-N.

    PubMed

    Ho, Shih-Hsin; Chen, Chun-Yen; Chang, Jo-Shu

    2012-06-01

    Engineering strategies were applied to improve the CO(2) fixation rate and carbohydrate/lipid production of a Scenedesmus obliquus CNW-N isolate. The light intensity that promotes cell growth, carbohydrate/lipid productivity, and CO(2) fixation efficiency was identified. Nitrogen starvation was also employed to trigger the accumulation of lipid and carbohydrate. The highest productivity of biomass, lipid, and carbohydrate was 840.57 mg L(-1)d(-1), 140.35 mg L(-1)d(-1). The highest lipid and carbohydrate content was 22.4% (5-day N-starvation) and 46.65% (1-day N-starvation), respectively. The optimal CO(2) consumption rate was 1420.6 mg L(-1)d(-1). This performance is better than that reported in most other studies. Under nitrogen starvation, the microalgal lipid was mainly composed of C16/C18 fatty acid (around 90%), which is suitable for biodiesel synthesis. The carbohydrate present in the biomass was mainly glucose, accounting for 77-80% of total carbohydrates. This carbohydrate composition is also suitable for fermentative biofuels production (e.g., bioethanol and biobutanol). Copyright © 2011 Elsevier Ltd. All rights reserved.

  16. Effects of Oleate Starvation in a Fatty Acid Auxotroph of Escherichia coli K-12

    PubMed Central

    Henning, U.; Dennert, G.; Rehn, K.; Deppe, Gisela

    1969-01-01

    The effects of oleate starvation on an oleate auxotroph of Escherichia coli K-12 were investigated. Following removal of oleate from the mutant growing in a minimal glycerol-peptone medium, the cells stopped making deoxyribonucleic acid, ribonucleic acid, protein, and phospholipids; they began to die exponentially and finally lysed. During oleate starvation in minimal medium minus peptone, inhibition of macromolecular syntheses and death occurred; however, lysis did not follow. When growth ceased, no further dying was observed. It is shown that none of the early effects (inhibition of macromolecular syntheses and death) can be due to leakiness of the cells, induction of a prophage or a colicin, or lack of energy sources. The cause of inhibition of macromolecular syntheses remained unknown. Since the rate of death was the same as the generation time under different conditions, it appears that death is due to the defective synthesis of some cellular structure (quite possibly, cytoplasmic membrane) during phospholipid deficiency. Lysis was found to require protein synthesis; electron microscopy revealed a peculiar type of “lysis from within”; i.e., the shape of the cells did not change but fragmentation of the inner layer of the cell envelope occurred. The murein was found to be unaltered. Most likely, lysis was a consequence of the cell's attempt to synthesize cytoplasmic membrane with altered phospholipid composition or during phospholipid deficiency. Several membrane functions (respiration, adenosine triphosphate formation, permeability) existing before oleate removal were not lost during starvation. Therefore, general damage to the membrane did not occur, and it could be that most, if not all, described effects were due to defective de novo membrane synthesis. Images PMID:4891268

  17. Regulation of neuronal APL-1 expression by cholesterol starvation.

    PubMed

    Wiese, Mary; Antebi, Adam; Zheng, Hui

    2012-01-01

    Alzheimer's disease (AD) is a neurodegenerative disorder characterized by the deposition of β-amyloid plaques composed primarily of the amyloid-β peptide, a cleavage product of amyloid precursor protein (APP). While mutations in APP lead to the development of Familial Alzheimer's Disease (FAD), sporadic AD has only one clear genetic modifier: the ε4 allele of the apolipoprotein E (ApoE) gene. Cholesterol starvation in Caenorhabditis elegans leads to molting and arrest phenotypes similar to loss-of-function mutants of the APP ortholog, apl-1 (amyloid precursor-like protein 1), and lrp-1 (lipoprotein receptor-related protein 1), suggesting a potential interaction between apl-1 and cholesterol metabolism. Previously, we found that RNAi knock-down of apl-1 leads to aldicarb hypersensitivity, indicating a defect in synaptic function. Here we find the same defect is recapitulated during lrp-1 knock-down and by cholesterol starvation. A cholesterol-free diet or loss of lrp-1 directly affects APL-1 levels as both lead to loss of APL-1::GFP fluorescence in neurons. However, loss of cholesterol does not affect global transcription or protein levels as seen by qPCR and Western blot. Our results show that cholesterol and lrp-1 are involved in the regulation of synaptic transmission, similar to apl-1. Both are able to modulate APL-1 protein levels in neurons, however cholesterol changes do not affect global apl-1 transcription or APL-1 protein indicating the changes are specific to neurons. Thus, regulation of synaptic transmission and molting by LRP-1 and cholesterol may be mediated by their ability to control APL-1 neuronal protein expression.

  18. Formation of a Snf1-Mec1-Atg1 Module on Mitochondria Governs Energy Deprivation-Induced Autophagy by Regulating Mitochondrial Respiration.

    PubMed

    Yi, Cong; Tong, Jingjing; Lu, Puzhong; Wang, Yizheng; Zhang, Jinxie; Sun, Chen; Yuan, Kangning; Xue, Renyu; Zou, Bing; Li, Nianzhong; Xiao, Shuhua; Dai, Chong; Huang, Yuwei; Xu, Liling; Li, Lin; Chen, She; Miao, Di; Deng, Haiteng; Li, Hongliang; Yu, Li

    2017-04-10

    Autophagy is essential for maintaining glucose homeostasis, but the mechanism by which energy deprivation activates autophagy is not fully understood. We show that Mec1/ATR, a member of the DNA damage response pathway, is essential for glucose starvation-induced autophagy. Mec1, Atg13, Atg1, and the energy-sensing kinase Snf1 are recruited to mitochondria shortly after glucose starvation. Mec1 is recruited through the adaptor protein Ggc1. Snf1 phosphorylates Mec1 on the mitochondrial surface, leading to recruitment of Atg1 to mitochondria. Furthermore, the Snf1-mediated Mec1 phosphorylation and mitochondrial recruitment of Atg1 are essential for maintaining mitochondrial respiration during glucose starvation, and active mitochondrial respiration is required for energy deprivation-activated autophagy. Thus, formation of a Snf1-Mec1-Atg1 module on mitochondria governs energy deprivation-induced autophagy by regulating mitochondrial respiration. Copyright © 2017 Elsevier Inc. All rights reserved.

  19. New insights into the post-translational modification of multiple phosphoenolpyruvate carboxylase isoenzymes by phosphorylation and monoubiquitination during sorghum seed development and germination.

    PubMed

    Ruiz-Ballesta, Isabel; Baena, Guillermo; Gandullo, Jacinto; Wang, Liqun; She, Yi-Min; Plaxton, William Charles; Echevarría, Cristina

    2016-05-01

    Phosphoenolpyruvate carboxylase (PEPC; E.C. 4.1.1.31) was characterized in developing and germinating sorghum seeds, focusing on the transcript and polypeptide abundance of multiple plant-type phosphoenolpyruvate carboxylase (PTPC) genes, and the post-translational modification of each isoenzyme by phosphorylation versus monoubiquitination during germination. We observed high levels of SbPPC4 (Sb07g014960) transcripts during early development (stage I), and extensive transcript abundance of SbPPC2 (Sb02g021090) and SbPPC3 (Sb04g008720) throughout the entire life cycle of the seed. Although tandem mass spectrometry (MS) analysis of immunopurified PTPC indicated that four different PTPC isoenzymes were expressed in the developing and germinating seeds, SbPPC3 was the most abundant isozyme of the developing seed, and of the embryo and the aleurone layer of germinating seeds. In vivo phosphorylation of the different PTPC isoenzymes at their conserved N-terminal seryl phosphorylation site during germination was also established by MS/MS analysis. Furthermore, three of the four isoenzymes were partially monoubiquitinated, with MS/MS pinpointing SbPPC2 and SbPPC3 monoubiquitination at the conserved Lys-630 and Lys-624 residues, respectively. Our results demonstrate that monoubiquitination and phosphorylation simultaneously occur in vivo with different PTPC isozymes during seed germination. In addition, we show that PTPC monoubiquitination in germinating sorghum seeds always increases at stage II (emergence of the radicle), is maintained during the aerobic period of rapid cell division and reserve mobilization, and remains relatively constant until stage IV-V when coleoptiles initiate the formation of the photosynthetic tissues. © The Author 2016. Published by Oxford University Press on behalf of the Society for Experimental Biology.

  20. Effects of Long-Term Starvation on a Host Bivalve (Codakia orbicularis, Lucinidae) and Its Symbiont Population▿

    PubMed Central

    Caro, Audrey; Got, Patrice; Bouvy, Marc; Troussellier, Marc; Gros, Olivier

    2009-01-01

    The bivalve Codakia orbicularis, hosting sulfur-oxidizing gill endosymbionts, was starved (in artificial seawater filtered through a 0.22-μm-pore-size membrane) for a long-term experiment (4 months). The effects of starvation were observed using transmission electron microscopy, fluorescence in situ hybridization and catalyzed reporter deposition (CARD-FISH), and flow cytometry to monitor the anatomical and physiological modifications in the gill organization of the host and in the symbiotic population housed in bacteriocytes. The abundance of the symbiotic population decreased through starvation, with a loss of one-third of the bacterial population each month, as shown by CARD-FISH. At the same time, flow cytometry revealed significant changes in the physiology of symbiotic cells, with a decrease in cell size and modifications to the nucleic acid content, while most of the symbionts maintained a high respiratory activity (measured using the 5-cyano-2,3-ditolyl tetrazolium chloride method). Progressively, the number of symbiont subpopulations was reduced, and the subsequent multigenomic state, characteristic of this symbiont in freshly collected clams, turned into one and five equivalent genome copies for the two remaining subpopulations after 3 months. Concomitant structural modifications appeared in the gill organization. Lysosymes became visible in the bacteriocytes, while large symbionts disappeared, and bacteriocytes were gradually replaced by granule cells throughout the entire lateral zone. Those data suggested that host survival under these starvation conditions was linked to symbiont digestion as the main nutritional source. PMID:19346359

  1. Erosion potential of the Yangtze Delta under sediment starvation and climate change.

    PubMed

    Yang, H F; Yang, S L; Xu, K H; Wu, H; Shi, B W; Zhu, Q; Zhang, W X; Yang, Z

    2017-09-05

    Deltas are widely threatened by sediment starvation and climate change. Erosion potential is an important indicator of delta vulnerability. Here, we investigate the erosion potential of the Yangtze Delta. We found that over the past half century the Yangtze's sediment discharge has decreased by 80% due to the construction of >50,000 dams and soil conservation, whereas the wind speed and wave height in the delta region have increased by 5-7%, and the sea level has risen at a rate of 3 mm/yr. According to hydrodynamic measurements and analyses of seabed sediments, the period when bed shear stress due to combined current-wave action under normal weather conditions exceeds the critical bed shear stress for erosion (τ cr ) accounts for 63% of the total observed period on average and can reach 100% during peak storms. This explains why net erosion has occurred in some areas of the subaqueous delta. We also found that the increase with depth of τ cr is very gradual in the uppermost several metres of the depositional sequence. We therefore expect that the Yangtze subaqueous delta will experience continuous erosion under sediment starvation and climate change in the next decades of this century or even a few centuries.

  2. Abiotic and Biotic Stressors Causing Equivalent Mortality Induce Highly Variable Transcriptional Responses in the Soybean Aphid

    PubMed Central

    Enders, Laramy S.; Bickel, Ryan D.; Brisson, Jennifer A.; Heng-Moss, Tiffany M.; Siegfried, Blair D.; Zera, Anthony J.; Miller, Nicholas J.

    2014-01-01

    Environmental stress affects basic organismal functioning and can cause physiological, developmental, and reproductive impairment. However, in many nonmodel organisms, the core molecular stress response remains poorly characterized and the extent to which stress-induced transcriptional changes differ across qualitatively different stress types is largely unexplored. The current study examines the molecular stress response of the soybean aphid (Aphis glycines) using RNA sequencing and compares transcriptional responses to multiple stressors (heat, starvation, and plant defenses) at a standardized stress level (27% adult mortality). Stress-induced transcriptional changes showed remarkable variation, with starvation, heat, and plant defensive stress altering the expression of 3985, 510, and 12 genes, respectively. Molecular responses showed little overlap across all three stressors. However, a common transcriptional stress response was identified under heat and starvation, involved with up-regulation of glycogen biosynthesis and molecular chaperones and down-regulation of bacterial endosymbiont cellular and insect cuticular components. Stressor-specific responses indicated heat affected expression of heat shock proteins and cuticular components, whereas starvation altered a diverse set of genes involved in primary metabolism, oxidative reductive processes, nucleosome and histone assembly, and the regulation of DNA repair and replication. Exposure to host plant defenses elicited the weakest response, of which half of the genes were of unknown function. This study highlights the need for standardizing stress levels when comparing across stress types and provides a basis for understanding the role of general vs. stressor specific molecular responses in aphids. PMID:25538100

  3. Effect of re-feeding after starvation on biomechanical properties in rat small intestine.

    PubMed

    Dou, Y; Gregersen, S; Zhao, J; Zhuang, F; Gregersen, H

    2001-10-01

    Luminal nutrients are essential for maintaining the structural and functional integrity of the gut. Starvation induces pronounced structural and biomechanical remodelling in the rat small intestine. The present work was done to study the recovery process after resumption of food intake. Twenty-five Wistar rats were allocated to five groups. Four groups fasted for 7 days but had free access to water. One of these groups served as fasted controls and was killed at the end of the fast. The other three groups were re-fed for 2, 4 and 7 days before they were euthanised. The fifth group had free access to food during the whole study (fed controls). The intestinal no-load state, zero-stress state and the stress-strain relationship during distension were studied. The intestinal segments were cut transversely into a series of short ring-shaped segments to obtain the no-load state. Each ring was cut in the radial direction to obtain the zero-stress state. The rats regained the lost body weight (22%) by the 7th day of re-feeding. The lost duodenal mass (40%) and jejunal mass (25%) were regained by the 2nd day whereas the lost mass from ileum (18%) was regained by the 4th day. The fasting-induced morphometric changes were normalised by re-feeding on the 2nd day in the duodenum and jejunum, and on the 4th day in the ileum. The longitudinal stress-strain curves shifted to the right after fasting and shifted back within two days following re-feeding (P<0.05). The circumferential stress-strain curves in the fasted or re-fed rats changed in a similar though less pronounced way. Normal values were reached within 4-7 days for the circumferential direction. In conclusion, fasting-induced biomechanical and structural remodelling were normalised by re-feeding in a time- and location-dependent way.

  4. Reduction of metal artifacts: beam hardening and photon starvation effects

    NASA Astrophysics Data System (ADS)

    Yadava, Girijesh K.; Pal, Debashish; Hsieh, Jiang

    2014-03-01

    The presence of metal-artifacts in CT imaging can obscure relevant anatomy and interfere with disease diagnosis. The cause and occurrence of metal-artifacts are primarily due to beam hardening, scatter, partial volume and photon starvation; however, the contribution to the artifacts from each of them depends on the type of hardware. A comparison of CT images obtained with different metallic hardware in various applications, along with acquisition and reconstruction parameters, helps understand methods for reducing or overcoming such artifacts. In this work, a metal beam hardening correction (BHC) and a projection-completion based metal artifact reduction (MAR) algorithms were developed, and applied on phantom and clinical CT scans with various metallic implants. Stainless-steel and Titanium were used to model and correct for metal beam hardening effect. In the MAR algorithm, the corrupted projection samples are replaced by the combination of original projections and in-painted data obtained by forward projecting a prior image. The data included spine fixation screws, hip-implants, dental-filling, and body extremity fixations, covering range of clinically used metal implants. Comparison of BHC and MAR on different metallic implants was used to characterize dominant source of the artifacts, and conceivable methods to overcome those. Results of the study indicate that beam hardening could be a dominant source of artifact in many spine and extremity fixations, whereas dental and hip implants could be dominant source of photon starvation. The BHC algorithm could significantly improve image quality in CT scans with metallic screws, whereas MAR algorithm could alleviate artifacts in hip-implants and dentalfillings.

  5. Influence of toxic bait type and starvation on worker and queen mortality in laboratory colonies of Argentine ant (Hymenoptera: Formicidae).

    PubMed

    Mathieson, Melissa; Toft, Richard; Lester, Philip J

    2012-08-01

    The efficacy of toxic baits should be judged by their ability to kill entire ant colonies, including the colony queen or queens. We studied the efficacy of four toxic baits to the Argentine ant, Linepithema humile (Mayr) (Hymenoptera: Formicidae). These baits were Xstinguish that has the toxicant fipronil, Exterm-an-Ant that contains both boric acid and sodium borate, and Advion ant gel and Advion ant bait arena that both have indoxacarb. Experimental nests contained 300 workers and 10 queen ants that were starved for either 24 or 48 h before toxic bait exposure. The efficacy of the toxic baits was strongly influenced by starvation. In no treatment with 24-h starvation did we observe 100% worker death. After 24-h starvation three of the baits did not result in any queen deaths, with only Exterm-an-Ant producing an average of 25% mortality. In contrast, 100% queen and worker mortality was observed in colonies starved for 48 h and given Xstinguish or Exterm-an-Ant. The baits Advion ant gel and Advion ant bait arena were not effective against Argentine ants in these trials, resulting in <60% mortality in all treatments. Because of the strong influence of starvation on bait uptake, control efficacy may be maximized by applying bait when ants are likely to be starved. Our results suggest queen mortality must be assessed in tests for toxic bait efficacy. Our data indicate that of these four baits, Xstinguish and Exterm-an-Ant are the best options for control of Argentine ants in New Zealand.

  6. Effects of Starvation and Thermal Stress on the Thermal Tolerance of Silkworm, Bombyx mori: Existence of Trade-offs and Cross-Tolerances.

    PubMed

    Mir, A H; Qamar, A

    2017-09-27

    Organisms, in nature, are often subjected to multiple stressors, both biotic and abiotic. Temperature and starvation are among the main stressors experienced by organisms in their developmental cycle and the responses to these stressors may share signaling pathways, which affects the way these responses are manifested. Temperature is a major factor governing the performance of ectothermic organisms in ecosystems worldwide and, therefore, the thermal tolerance is a central issue in the thermobiology of these organisms. Here, we investigated the effects of starvation as well as mild heat and cold shocks on the thermal tolerance of the larvae of silkworm, Bombyx mori (Linnaeus). Starvation acted as a meaningful or positive stressor as it improved cold tolerance, measured as chill coma recovery time (CCRT), but, at the same time, it acted as a negative stressor and impaired the heat tolerance, measured as heat knockdown time (HKT). In the case of heat tolerance, starvation negated the positive effects of both mild cold as well as mild heat shocks and thus indicated the existence of trade-off between these stressors. Both mild heat and cold shocks improved the thermal tolerance, but the effects were more prominent when the indices were measured in response to a stressor of same type, i.e., a mild cold shock improved the cold tolerance more than the heat tolerance and vice versa. This improvement in thermal tolerance by both mild heat as well as cold shocks indicated the possibility of cross-tolerance between these stressors.

  7. Myocellular creatine and creatine transporter serine phosphorylation after starvation.

    PubMed

    Zhao, Chun-Rui; Shang, Lihong; Wang, Weiyang; Jacobs, Danny O

    2002-06-01

    Myocellular creatine, which is critically important for normal energy metabolism, increases in rat gastrocnemius muscle after starvation via unknown mechanisms. Creatine (Cr) uptake across plasma membranes is governed by a single, specific transporter (CrTr) that shares 50% amino acid sequence identity with GABA/choline/betaine transporters whose functions are modulated by phosphorylation. Gastrocnemius muscle was collected from adult male Sprague-Dawley (225-250 g) rats that were randomized to receive normal rat chow and distilled water ad libitum (CTL) or distilled water alone for 4 days (STV). Total Cr, phosphocreatine (PCr), free Cr, and ATP were measured luminometrically. CrTr protein expression and protein serine and tyrosine phosphorylation and mRNA expression were determined using immunoprecipitation and quantitative Western blotting and reverse transcription polymerase chain reaction (RT-PCR) analyses, respectively. Guanidinoacetate methyltransferase (GAMT) activity, guanidinoacetic acid (GAA) content, creatine kinase (CK) activity, and creatinine (Crn) content were assayed luminometrically or spectrophotometrically. Creatine transporter uptake activity was also measured in skeletal muscle membrane vesicles. Data were analyzed by t test. Total Cr and free Cr increased 26 and 280% in STV (32.3 +/- 1.0 and 12.9 +/- 1.4 vs 25.7 +/- 1.1 and 3.4 +/- 0.9 micromol/g wet wt, mean +/- SEM, respectively, P < 0.01) whereas PCr content decreased 18% (18.6 +/- 0.8 vs 22.8 +/- 0.9 micromol/g wet wt, STV vs CTL P < 0.05). CrTr protein and mRNA expression, ATP, GAA, CK, GAMT, and protein tyrosine phosphorylation of CrTr were not significantly different between the two groups. However, protein serine phosphorylation of CrTr was significantly reduced by 30% (P < 0.05) and creatine uptake activity was significantly increased (P < 0.05) in starved animals. Increases in myocellular creatine content after starvation are associated with reduced serine phosphorylation of the

  8. Effect of Starvation on the Turnover and Metabolic Response to Leucine

    PubMed Central

    Sherwin, Robert S.

    1978-01-01

    l-Leucine was administered as a primed continuous 3-4-h infusion in nonobese and obese subjects in the postabsorptive state and for 12 h in obese subjects after a 3-day and 4-wk fast. In nonobese and obese subjects studied in the post-absorptive state, the leucine infusion resulted in a 150-200% rise in plasma leucine above preinfusion levels, a small decrease in plasma glucose, and unchanged levels of plasma insulin and glucagon and blood ketones. Plasma isoleucine (60-70%) and valine (35-40%) declined to a greater extent than other amino acids (P < 0.001). After 3 days and 4 wk of fasting, equimolar infusions of leucine resulted in two- to threefold greater increments in plasma leucine as compared to post-absorptive subjects, a 30-40% decline in other plasma amino acids, and a 25-30% decrease in negative nitrogen balance. Urinary excretion of 3-methylhistidine was however, unchanged. Plasma glucose which declined in 3-day fasted subjects after leucine administration, surprisingly rose by 20 mg/100 ml after 4 wk of fasting. The rise in blood glucose occurred in the absence of changes in plasma glucagon and insulin and in the face of a 15% decline in endogenous glucose production (as measured by infusion of [3-3H]glucose). On the other hand, fractional glucose utilization fell by 30% (P < 0.001), thereby accounting for hyperglycemia. The estimated metabolic clearance rate of leucine fell by 48% after 3 days of fasting whereas the plasma delivery rate of leucine was unchanged, thereby accounting for a 40% rise in plasma leucine during early starvation. After a 4-wk fast, the estimated metabolic clearance rate of leucine declined further to 59% below base line. Plasma leucine nevertheless fell to postabsorptive levels as the plasma delivery rate of leucine decreased 65% below postabsorptive values. Conclusions: (a) Infusion of exogenous leucine in prolonged fasting results in a decline in plasma levels of other amino acids, improvement in nitrogen balance and

  9. The changes in the biochemical compositions and enzymatic activities of rotifer (Brachionus plicatilis, Müller) and Artemia during the enrichment and starvation periods.

    PubMed

    Naz, Mehmet

    2008-12-01

    The changes in the biochemical compositions and enzymatic activities of rotifer (Brachionus plicatilis) and Artemia, enriched and stored at 4 degrees C temperature, were determined. The total starvation period was 16 h and samples were taken at the end of the 8th and 16th hours. In present study, the rotifer and nauplii catabolized a large proportion of the protein during the enrichment period. Lipid contents of both live preys increased during the enrichment period and decreased in nauplii and metanauplii throughout the starvation period but lipid content of the rotifer remained relatively constant during the starvation period. The changes observed in the amino acid compositions of Artemia and the rotifer were statistically significant (P < 0.05). The conspicuous decline the essential amino acid (EAA) and nonessential amino acid (NEAA) content of the rotifer was observed during the enrichment period. However, the essential amino acid (EAA) and nonessential amino acid (NEAA) contents of Artemia nauplii increased during the enrichment period. The unenriched and enriched rotifers contained more monounsaturated fatty acid (MUFAs) than polyunsaturated fatty acid (PUFAs) and saturated fatty acids (SFA). However, Artemia contained more PUFAs than MUFAs and SFA during the experimental period. A sharp increase in the amounts of docosahexaenoic acid (DHA) during the enrichment of the rotifer and Artemia nauplii was observed. However, the amount of DHA throughout the starvation period decreased in Artemia metanauplii but not in Artemia nauplii. Significant differences in tryptic, leucine aminopeptidase N (LAP), and alkaline phosphatase (AP) enzyme activities of Artemia and rotifer were observed during the enrichment and starvation period (P < 0.05). The digestive enzymes derived from live food to fish larvae provided the highest contribution at the end of the enrichment period. In conclusion, the results of the study provide important contributions to determine the most

  10. Probing Phosphorus Efficient Low Phytic Acid Content Soybean Genotypes with Phosphorus Starvation in Hydroponics Growth System.

    PubMed

    Kumar, Varun; Singh, Tiratha Raj; Hada, Alkesh; Jolly, Monica; Ganapathi, Andy; Sachdev, Archana

    2015-10-01

    Phosphorus is an essential nutrient required for soybean growth but is bound in phytic acid which causes negative effects on both the environment as well as the animal nutrition. Lowering of phytic acid levels is associated with reduced agronomic characteristics, and relatively little information is available on the response of soybean plants to phosphorus (P) starvation. In this study, we evaluated the effects of different P starvation concentrations on the phytic acid content, growth, and yield of seven mutant genotypes along with the unirradiated control, JS-335, in a hydroponics growth system. The low phytic acid containing mutant genotypes, IR-JS-101, IR-DS-118, and IR-V-101, showed a relatively high growth rate in low P concentration containing nutrient solution (2 μM), whereas the high P concentration (50 μM) favored the growth of IR-DS-111 and IR-DS-115 mutant genotypes containing moderate phytate levels. The mutant genotypes with high phytic acid content, IR-DS-122, IR-DS-114, and JS-335, responded well under P starvation and did not have any significant effect on the growth and yield of plants. Moreover, the reduction of P concentration in nutrient solution from 50 to 2 μM also reduced the phytic acid content in the seeds of all the soybean genotypes under study. The desirable agronomic performance of low phytic acid containing mutant genotype IR-DS-118 reported in this study suggested it to be a P-efficient genotype which could be considered for agricultural practices under P limiting soils.

  11. Stereochemical course of the reactions catalyzed by the bacterial phosphoenolpyruvate: Mannitol phosphotransferase system

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mueller, E.G.; Knowles, J.R.; Khandekar, S.S.

    1990-07-24

    The authors have determined the overall stereochemical course of the reactions leading to the phosphorylation of D-mannitol by mannitol-specific enzyme II (EII{sup Mtl}) of the Escherichia coli phosphoenolpyruvate- (PEP) dependent phosphotransferase system (PTS). In the presence of enzyme I and HPr of the PTS, and of membranes containing EII{sup Mtl}, the phospho group from ((R)-{sup 16}O, {sup 17}O, {sup 18}O)PEP was transferred to D-mannitol to form mannitol 1-phosphate with overall inversion of the configuration at phosphorus with respect to that of PEP. Since in the course of these reactions enzyme I and HPr are each covalently phosphorylated at a singlemore » site and inversion of the chiral phospho group from PEP indicates an odd number of transfer steps overall, transfer from phospho-HPr to mannitol via EII{sup Mtl} must also occur in an odd number of steps. Taken together with the fact that catalytically important phospho-EII{sup Mtl} intermediates have been demonstrated biochemically, the results imply that EII{sup Mtl} is sequentially phosphorylated at two different sites during phospho transfer from phospho-HPr to mannitol. This conclusion is consistent with the available evidence on phospho-EII{sup Mtl} intermediates and in particular with the recent report that two different phospho peptides can be isolated from the fully phosphorylated protein.« less

  12. Trypanosoma evansi contains two auxiliary enzymes of glycolytic metabolism: Phosphoenolpyruvate carboxykinase and pyruvate phosphate dikinase.

    PubMed

    Rivero, Luz Amira; Concepción, Juan Luis; Quintero-Troconis, Ender; Quiñones, Wilfredo; Michels, Paul A M; Acosta, Héctor

    2016-06-01

    Trypanosoma evansi is a monomorphic protist that can infect horses and other animal species of economic importance for man. Like the bloodstream form of the closely related species Trypanosoma brucei, T. evansi depends exclusively on glycolysis for its free-energy generation. In T. evansi as in other kinetoplastid organisms, the enzymes of the major part of the glycolytic pathway are present within organelles called glycosomes, which are authentic but specialized peroxisomes. Since T. evansi does not undergo stage-dependent differentiations, it occurs only as bloodstream forms, it has been assumed that the metabolic pattern of this parasite is identical to that of the bloodstream form of T. brucei. However, we report here the presence of two additional enzymes, phosphoenolpyruvate carboxykinase and PPi-dependent pyruvate phosphate dikinase in T. evansi glycosomes. Their colocalization with glycolytic enzymes within the glycosomes of this parasite has not been reported before. Both enzymes can make use of PEP for contributing to the production of ATP within the organelles. The activity of these enzymes in T. evansi glycosomes drastically changes the model assumed for the oxidation of glucose by this parasite. Copyright © 2016 Elsevier Inc. All rights reserved.

  13. Light-regulated phosphorylation of maize phosphoenolpyruvate carboxykinase plays a vital role in its activity.

    PubMed

    Chao, Qing; Liu, Xiao-Yu; Mei, Ying-Chang; Gao, Zhi-Fang; Chen, Yi-Bo; Qian, Chun-Rong; Hao, Yu-Bo; Wang, Bai-Chen

    2014-05-01

    Phosphoenolpyruvate carboxykinase (PEPCK)-the major decarboxylase in PEPCK-type C4 plants-is also present in appreciable amounts in the bundle sheath cells of NADP-malic enzyme-type C4 plants, such as maize (Zea mays), where it plays an apparent crucial role during photosynthesis (Wingler et al., in Plant Physiol 120(2):539-546, 1999; Furumoto et al., in Plant Mol Biol 41(3):301-311, 1999). Herein, we describe the use of mass spectrometry to demonstrate phosphorylation of maize PEPCK residues Ser55, Thr58, Thr59, and Thr120. Western blotting indicated that the extent of Ser55 phosphorylation dramatically increases in the leaves of maize seedlings when the seedlings are transferred from darkness to light, and decreases in the leaves of seedlings transferred from light to darkness. The effect of light on phosphorylation of this residue is opposite that of the effect of light on PEPCK activity, with the decarboxylase activity of PEPCK being less in illuminated leaves than in leaves left in the dark. This inverse relationship between PEPCK activity and the extent of phosphorylation suggests that the suppressive effect of light on PEPCK decarboxylation activity might be mediated by reversible phosphorylation of Ser55.

  14. Transcriptional Profiling of the Iron Starvation Response in Bordetella pertussis Provides New Insights into Siderophore Utilization and Virulence Gene Expression ▿ §

    PubMed Central

    Brickman, Timothy J.; Cummings, Craig A.; Liew, Sin-Yee; Relman, David A.; Armstrong, Sandra K.

    2011-01-01

    Serological studies of patients with pertussis and the identification of antigenic Bordetella pertussis proteins support the hypothesis that B. pertussis perceives an iron starvation cue and expresses multiple iron source utilization systems in its natural human host environment. Furthermore, previous studies using a murine respiratory tract infection model showed that several of these B. pertussis iron systems are required for colonization and persistence and are differentially expressed over the course of infection. The present study examined genome-wide changes in B. pertussis gene transcript abundance in response to iron starvation in vitro. In addition to known iron source utilization genes, we identified a previously uncharacterized iron-repressed cytoplasmic membrane transporter system, fbpABC, that is required for the utilization of multiple structurally distinct siderophores including alcaligin, enterobactin, ferrichrome, and desferrioxamine B. Expression of type III secretion system genes was also found to be upregulated during iron starvation in both B. pertussis strain Tohama I and Bordetella bronchiseptica strain RB50. In a survey of type III secretion system protein production by an assortment of B. pertussis laboratory-adapted and low-passage clinical isolate strains, iron limitation increased the production and secretion of the type III secretion system-specific translocation apparatus tip protein Bsp22 in all Bvg-proficient strains. These results indicate that iron starvation in the infected host is an important environmental cue influencing not only Bordetella iron transport gene expression but also the expression of other important virulence-associated genes. PMID:21742863

  15. Arabidopsis WRKY45 transcription factor activates PHOSPHATE TRANSPORTER1;1 expression in response to phosphate starvation.

    PubMed

    Wang, Hui; Xu, Qian; Kong, You-Han; Chen, Yun; Duan, Jun-Ye; Wu, Wei-Hua; Chen, Yi-Fang

    2014-04-01

    The WRKY transcription factor family has more than 70 members in the Arabidopsis (Arabidopsis thaliana) genome, and some of them are involved in plant responses to biotic and abiotic stresses. This study evaluated the role of WRKY45 in regulating phosphate (Pi) uptake in Arabidopsis. WRKY45 was localized in the nucleus and mainly expressed in roots. During Pi starvation, WRKY45 expression was markedly induced, typically in roots. WRKY45 overexpression in Arabidopsis increased Pi content and uptake, while RNA interference suppression of WRKY45 decreased Pi content and uptake. Furthermore, the WRKY45-overexpressing lines were more sensitive to arsenate, the analog of Pi, compared with wild-type seedlings. These results indicate that WRKY45 positively regulates Arabidopsis Pi uptake. Quantitative real-time polymerase chain reaction and β-glucuronidase staining assays showed that PHOSPHATE TRANSPORTER1;1 (PHT1;1) expression was enhanced in the WRKY45-overexpressing lines and slightly repressed in the WRKY45 RNA interference line. Chromatin immunoprecipitation and electrophoretic mobility shift assay results indicated that WRKY45 can bind to two W-boxes within the PHT1;1 promoter, confirming the role of WRKY45 in directly up-regulating PHT1;1 expression. The pht1;1 mutant showed decreased Pi content and uptake, and overexpression of PHT1;1 resulted in enhanced Pi content and uptake. Furthermore, the PHT1;1-overexpressing line was much more sensitive to arsenate than WRKY45-overexpressing and wild-type seedlings, indicating that PHT1;1 overexpression can enhance Arabidopsis Pi uptake. Moreover, the enhanced Pi uptake and the increased arsenate sensitivity of the WRKY45-overexpressing line was impaired by pht1;1 (35S:WRKY45-18::pht1;1), demonstrating an epistatic genetic regulation between WRKY45 and PHT1;1. Together, our results demonstrate that WRKY45 is involved in Arabidopsis response to Pi starvation by direct up-regulation of PHT1;1 expression.

  16. Role of glucocorticoids in increased muscle glutamine production in starvation

    NASA Technical Reports Server (NTRS)

    Tischler, Marc E.; Henriksen, Erik J.; Cook, Paul H.

    1988-01-01

    The role of glucocorticoids in the synthesis of muscle glutamine during starvation was investigated in adrenalectomized fasted rats injected with cortisol (1 mg/100 g body weight). It was found that administration of cortisol in vivo increased (compared to nontreated starved adrenalectomized controls) the glutamine/glutamate ratio and the activity of glutamine synthetase in the diaphragm and the extensor digitorum muscles, and that these effects were abolished by prior treatment with actinomycin D or proflavine. The results obtained in in vitro experiments, using fresh-frozen soleus, extensor digitorum longus, and diaphragm muscle preparations, supported the in vivo indications of the cortisol-enhanced glutamine synthesis and protein turnover in starved adrenalectomized animals.

  17. Changes in expression of soluble inorganic pyrophosphatases of Phaseolus vulgaris under phosphate starvation.

    PubMed

    Hernández-Domíguez, Eric E; Valencia-Turcotte, Lilián G; Rodríguez-Sotres, Rogelio

    2012-05-01

    Phosphorus is an essential element for all living cells, but its availability is often limiting in the soil. Plants have adapted to such limitation and respond to phosphorus deficiency. The soluble inorganic pyrophosphatases (PPase; EC 3.6.1.1) recycle the pyrophosphate produced by many biosynthetic reactions, and may play a role in the plant adaptation to phosphorus deficiency. In this work, three PPase mRNAs were identified from the Phaseolus vulgaris EST international database and their sequences were corroborated and completed using 3'RACE. After design and validation of the appropriate oligonucleotide primers, the PPase mRNA expression was measured by qRT-PCR in leaves, stems, and roots of bean plants grown with 1mM phosphate or under phosphate starvation. The plant tissues were classified according to their position on the plant, and some physiological signs of stress were recorded. qRT-PCR revealed changes in mRNA expression, but not for all isozymes under analysis, and not for all tissues. In addition, changes in the activity of some PPases were observed in zymograms. Our data are consistent with an important role for pyrophosphate in the adaptation of the plant to phosphate starvation. © 2012 Elsevier Ireland Ltd. All rights reserved.

  18. Human forearm metabolism during progressive starvation.

    PubMed

    Owen, O E; Reichard, G A

    1971-07-01

    Forearm muscle metabolism was studied in eight obese subjects after an overnight, 3 and 24 day fast. Arterio-deep-venous differences of oxygen, carbon dioxide, glucose, lactate, pyruvate, free fatty acids, acetoacetate, and beta-hydroxybutyrate with simultaneous forearm blood flow were measured. Rates of metabolite utilization and production were thus estimated. Oxygen consumption and lactate and pyruvate production remained relatively constant at each fasting period. Glucose, initially the major substrate consumed, showed decreased consumption after 3 and 24 days of fasting. Acetoacetate and beta-hydroxybutyrate consumption after an overnight fast was low. At 3 days of fasting with increased arterial concentrations of acetoactate and beta-hydroxybutyrate, consumption of these substrates rose dramatically. At 24 days of fasting, despite further elevation of arterial levels of acetoacetate and beta-hydroxybutyrate, the utilization of acetoacetate did not increase further and if anything decreased, while five out of eight subjects released beta-hydroxybutyrate across the forearm. Acetoacetate was preferentially extracted over beta-hydroxybutyrate. At 24 days of starvation, free fatty acids were the principal fuels extracted by forearm muscle; at this time there was a decreased glucose and also ketone-body consumption by skeletal muscle.

  19. Enhanced Detoxification of Arsenic Under Carbon Starvation: A New Insight into Microbial Arsenic Physiology.

    PubMed

    Nandre, Vinod S; Bachate, Sachin P; Salunkhe, Rahul C; Bagade, Aditi V; Shouche, Yogesh S; Kodam, Kisan M

    2017-05-01

    Nutrient availability in nature influenced the microbial ecology and behavior present in existing environment. In this study, we have focused on isolation of arsenic-oxidizing cultures from arsenic devoid environment and studied effect of carbon starvation on rate of arsenite oxidation. In spite of the absence of arsenic, a total of 40 heterotrophic, aerobic, arsenic-transforming bacterial strains representing 18 different genera were identified. Nineteen bacterial species were isolated from tannery effluent and twenty-one from tannery soil. A strong co-relation between the carbon starvation and arsenic oxidation potential of the isolates obtained from the said niche was observed. Interestingly, low carbon content enhanced the arsenic oxidation ability of the strains across different genera in Proteobacteria obtained. This represents the impact of physiological response of carbon metabolism under metal stress conditions. Enhanced arsenic-oxidizing ability of the strains was validated by the presence of aio gene and RT-PCR, where 0.5- to 26-fold up-regulation of arsenite oxidase gene in different genera was observed. The cultures isolated from tannery environment in this study show predominantly arsenic oxidation ability. This detoxification of arsenic in lack of carbon content can aid in effective in situ arsenic bioremediation.

  20. Mechanism of growth delay induced in Escherichia coli by near ultraviolet radiation.

    PubMed Central

    Ramabhadran, T V; Jagger, J

    1976-01-01

    Continuously growing cultures of E. coli B/r were irradiated with a fluence of broad-band near-ultraviolet radiation (315-405 nm) sufficient to cause extensive growth delay and complete cessation of net RNA synthesis. Chloramphenicol treatment was found to stimulate resumption of RNA synthesis, similar to that observed with chloramphenicol treatment after amino-acid starvation. E. coli strains in which amino-acid starvation does not result in cessation of RNA synthesis ("relaxed" or rel- strains) show no cessation of growth and only a slight effect on the rate of growth or of RNA synthesis. These findings show that such near-UV fluences do not inactivate the RNA synthetic machinery but affect the regulation of RNA synthesis, in a manner similat to that produced by amino-acid starvation. Such regulation is believed to be mediated through alterations in concentration of guanosine tetraphosphate (ppGpp), and our estimations of ppGpp after near-UV irradiation are consistent with such an interpretation. These data, combined with earlier published data, strongly suggest that the mechanism of near-UV-induced growth delay in E. coli involves partial inactivation of certain tRNA species, which is interpreted by the cell in a manner similar to that of amino-acid starvation, causing a rise in ppGpp levels, a shut-off of net RNA synthesis, and the induction of a growth delay. Images PMID:1108019

  1. Methionine sulfoximine-treatment and carbon starvation elicit Snf1-independent phosphorylation of the transcription activator Gln3 in Saccharomyces cerevisiae

    PubMed Central

    Tate, Jennifer J.; Rai, Rajendra; Cooper, Terrance G.

    2008-01-01

    SUMMARY Tor proteins are global regulators situated at the top of a signal transduction pathway conserved from yeast to humans. Specific inhibition of the two S. cerevisiae Tor proteins by rapamycin alters many cellular processes and the expression of hundreds of genes. Among the regulated genes are those whose expression is activated by the GATA-family transcription activator, Gln3. The extent of Gln3 phosphorylation has been thought to determine its intracellular localization, with phosphorylated and dephosphorylated forms accumulating in the cytoplasm and nucleus, respectively. Data presented here demonstrate that rapamycin and the glutamine synthetase inhibitor, methionine sulfoximine (MSX), although eliciting the same outcomes with respect to Gln3-Myc13 nuclear accumulation and NCR-sensitive transcription, generate diametrically opposite effects on Gln3-Myc13 phosphorylation. MSX increases Gln3-Myc13 phosphorylation while rapamycin decreases it. Gln3-Myc13 phosphorylation levels are regulated by at least three mechanisms: (i) one, observed during carbon starvation, depends on Snf1 kinase, (ii) another, observed during both carbon-starvation and MSX-treatment, is Snf1-independent, and (iii) the last is rapamycin-induced dephosphorylation. MSX and rapamycin act additively on Gln3-Myc13 phosphorylation, but MSX clearly predominates. These results suggest that MSX- and rapamycin-inhibited proteins are more likely to function in separate regulatory pathways than they are to function tandemly in a single pathway as previously thought. Further, Gln3 phosphorylation/dephosphorylation, that we and others have detected thus far, is not a demonstrably required step in achieving Gln3 nuclear localization and NCR-sensitive transcription in response to MSX- or rapamycin-treatment. PMID:15911613

  2. The Path of Carbon Flow during NO(3)-Induced Photosynthetic Suppression in N-Limited Selenastrum minutum.

    PubMed

    Elrifi, I R; Turpin, D H

    1987-01-01

    Nitrate addition to nitrate-limited cultures of Selenastrum minutum Naeg. Collins (Chlorophyta) resulted in a 70% suppression of photosynthetic carbon fixation. In (14)CO(2) pulse/chase experiments nitrate resupply increased radiolabel incorporation into amino and organic acids and decreased radiolabel incorporation into insoluble material. Nitrate resupply increased the concentration of phosphoenolpyruvate and increased the radiolabeling of phosphoenolpyruvate, pyruvate and tricarboxylic acid cycle intermediates, notably citrate, fumarate, and malate. Furthermore, nitrate also increased the pool sizes and radiolabeling of most amino acids, with alanine, aspartate, glutamate, and glutamine showing the largest changes. Nitrate resupply increased the proportion of radiolabel in the C-4 position of malate and increased the ratios of radiolabel in aspartate to phosphoenolpyruvate and in pyruvate to phosphoenolpyruvate, indicative of increased phosphoenolpyruvate carboxylase and pyruvate kinase activities. Analysis of these data showed that the rate of carbon flow through glutamate (10.6 mumoles glutamate per milligram chlorophyll per hour) and the rate of net glutamate production (7.9 mumoles glutamate per milligram chlorophyll per hour) were both greater than the maximum rate of carbon export from the Calvin cycle which could be maintained during steady state photosynthesis. These results are consistent with the hypothesis that nitrogen resupply to nitrogen-limited microalgae results in a transient suppression of photosynthetic carbon fixation due, in part, to the severity of competition for carbon skeletons between the Calvin cycle and nitrogen assimilation (IR Elrifi, DH Turpin 1986 Plant Physiol 81: 273-279).

  3. How and When Do Insects Rely on Endogenous Protein and Lipid Resources during Lethal Bouts of Starvation? A New Application for 13C-Breath testing

    PubMed Central

    McCue, Marshall D.; Guzman, R. Marena; Passement, Celeste A.; Davidowitz, Goggy

    2015-01-01

    Most of our understanding about the physiology of fasting and starvation comes from studies of vertebrates; however, for ethical reasons, studies that monitor vertebrates through the lethal endpoint are scant. Insects are convenient models to characterize the comparative strategies used to cope with starvation because they have diverse life histories and have evolved under the omnipresent challenge of food limitation. Moreover, we can study the physiology of starvation through its natural endpoint. In this study we raised populations of five species of insects (adult grasshoppers, crickets, cockroaches, and larval beetles and moths) on diets labeled with either 13C-palmitic acid or 13C-leucine to isotopically enrich the lipids or the proteins in their bodies, respectively. The insects were allowed to become postabsorptive and then starved. We periodically measured the δ13C of the exhaled breath to characterize how each species adjusted their reliance on endogenous lipids and proteins as energy sources. We found that starving insects employ a wide range of strategies for regulating lipid and protein oxidation. All of the insects except for the beetle larvae were capable of sharply reducing reliance on protein oxidation; however, this protein sparing strategy was usually unsustainable during the entire starvation period. All insects increased their reliance on lipid oxidation, but while some species (grasshoppers, cockroaches, and beetle larvae) were still relying extensively on lipids at the time of death, other species (crickets and moth larvae) allowed rates of lipid oxidation to return to prestarvation levels. Although lipids and proteins are critical metabolic fuels for both vertebrates and insects, insects apparently exhibit a much wider range of strategies for rationing these limited resources during starvation. PMID:26465334

  4. How and When Do Insects Rely on Endogenous Protein and Lipid Resources during Lethal Bouts of Starvation? A New Application for 13C-Breath testing.

    PubMed

    McCue, Marshall D; Guzman, R Marena; Passement, Celeste A; Davidowitz, Goggy

    2015-01-01

    Most of our understanding about the physiology of fasting and starvation comes from studies of vertebrates; however, for ethical reasons, studies that monitor vertebrates through the lethal endpoint are scant. Insects are convenient models to characterize the comparative strategies used to cope with starvation because they have diverse life histories and have evolved under the omnipresent challenge of food limitation. Moreover, we can study the physiology of starvation through its natural endpoint. In this study we raised populations of five species of insects (adult grasshoppers, crickets, cockroaches, and larval beetles and moths) on diets labeled with either 13C-palmitic acid or 13C-leucine to isotopically enrich the lipids or the proteins in their bodies, respectively. The insects were allowed to become postabsorptive and then starved. We periodically measured the δ13C of the exhaled breath to characterize how each species adjusted their reliance on endogenous lipids and proteins as energy sources. We found that starving insects employ a wide range of strategies for regulating lipid and protein oxidation. All of the insects except for the beetle larvae were capable of sharply reducing reliance on protein oxidation; however, this protein sparing strategy was usually unsustainable during the entire starvation period. All insects increased their reliance on lipid oxidation, but while some species (grasshoppers, cockroaches, and beetle larvae) were still relying extensively on lipids at the time of death, other species (crickets and moth larvae) allowed rates of lipid oxidation to return to prestarvation levels. Although lipids and proteins are critical metabolic fuels for both vertebrates and insects, insects apparently exhibit a much wider range of strategies for rationing these limited resources during starvation.

  5. The role of changes in the sensitivity of hepatic mitochondrial overt carnitine palmitoyltransferase in determining the onset of the ketosis of starvation in the rat.

    PubMed Central

    Drynan, L; Quant, P A; Zammit, V A

    1996-01-01

    The relationships between the increase in blood ketone-body concentrations and several parameters that can potentially influence the rate of hepatic fatty acid oxidation were studied during progressive starvation (up to 24 h) in the rat in order to discover whether the sensitivity of mitochondrial overt carnitine palmitoyltransferase (CPT I) to malonyl-CoA plays an important part in determining the intrahepatic potential for fatty acid oxidation during the onset of ketogenic conditions. A rapid increase in blood ketone-body concentration occurred between 12 and 16 h of starvation, several hours after the marked fall in hepatic malonyl-CoA and in serum insulin concentrations and doubling of plasma non-esterfied fatty acid (NEFA) concentration. Consequently, both the changes in hepatic malonyl-CoA and serum NEFA preceded the increase in blood ketone-body concentration by several hours. The maximal activity of CPT I increased gradually throughout the 24 h period of starvation, but the increases did not become significant before 18 h of starvation. By contrast, the sensitivity of CPT I to malonyl-CoA and the increase in blood ketone-body concentration followed an identical time course, demonstrating the central importance of this parameter in determining the ketogenic response of the liver to the onset of the starved state. PMID:8836117

  6. Transcriptome and proteome analysis of nitrogen starvation responses in Synechocystis 6803 ΔglgC, a mutant incapable of glycogen storage

    DOE PAGES

    Carrieri, Damian; Lombardi, Thomas; Paddock, Troy; ...

    2016-11-17

    Molecular mechanisms that regulate carbon flux are poorly understood in algae. The ΔglgC mutant of the cyanobacterium Synechocystis sp. PCC 6803 is incapable of glycogen storage and displays an array of physiological responses under nitrogen starvation that are different from wild-type (WT). These include non-bleaching phenotype and the redirection of photosynthetically fixed carbon towards excreted organic acids (overflow metabolism) without biomass growth. To understand the role of gene/protein expression in these responses, we followed the time course of transcripts by genome-scale microarrays and proteins by shotgun proteomics in ΔglgC and WT cells upon nitrogen starvation. Compared to WT, the degradationmore » of phycobilisome rod proteins was delayed and attenuated in the mutant, and the core proteins were less degraded; both contributed to the non-bleaching appearance despite the induction of nblA genes, suggesting the presence of a break in regulation of the phycobilisome degradation pathway downstream of nblA induction. The mutant displayed NtcA-mediated transcriptional response to nitrogen starvation, indicating that it is able to sense nitrogen status. Furthermore, some responses to nitrogen starvation appear to be stronger in the mutant, as shown by the increases in transcripts for the transcriptional regulator, rre37, which regulates central carbon metabolism. Accordingly, multiple proteins involved in photosynthesis, central carbon metabolism, and carbon storage and utilization showed lower abundance in the mutant. Furthermore, these results indicate that the transition in the central carbon metabolism from growth to overflow metabolism in ΔglgC does not require increases in expression of the overflow pathway enzymes; the transition and non-bleaching phenotype are likely regulated instead at the metabolite level.« less

  7. Transcriptome and proteome analysis of nitrogen starvation responses in Synechocystis 6803 ΔglgC, a mutant incapable of glycogen storage

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Carrieri, Damian; Lombardi, Thomas; Paddock, Troy

    Molecular mechanisms that regulate carbon flux are poorly understood in algae. The ΔglgC mutant of the cyanobacterium Synechocystis sp. PCC 6803 is incapable of glycogen storage and displays an array of physiological responses under nitrogen starvation that are different from wild-type (WT). These include non-bleaching phenotype and the redirection of photosynthetically fixed carbon towards excreted organic acids (overflow metabolism) without biomass growth. To understand the role of gene/protein expression in these responses, we followed the time course of transcripts by genome-scale microarrays and proteins by shotgun proteomics in ΔglgC and WT cells upon nitrogen starvation. Compared to WT, the degradationmore » of phycobilisome rod proteins was delayed and attenuated in the mutant, and the core proteins were less degraded; both contributed to the non-bleaching appearance despite the induction of nblA genes, suggesting the presence of a break in regulation of the phycobilisome degradation pathway downstream of nblA induction. The mutant displayed NtcA-mediated transcriptional response to nitrogen starvation, indicating that it is able to sense nitrogen status. Furthermore, some responses to nitrogen starvation appear to be stronger in the mutant, as shown by the increases in transcripts for the transcriptional regulator, rre37, which regulates central carbon metabolism. Accordingly, multiple proteins involved in photosynthesis, central carbon metabolism, and carbon storage and utilization showed lower abundance in the mutant. Furthermore, these results indicate that the transition in the central carbon metabolism from growth to overflow metabolism in ΔglgC does not require increases in expression of the overflow pathway enzymes; the transition and non-bleaching phenotype are likely regulated instead at the metabolite level.« less

  8. Pesticides and passive dispersal: acaricide- and starvation-induced take-off of the predatory mite Neoseiulus baraki.

    PubMed

    Monteiro, Vaneska Barbosa; Silva, Vanessa Farias; Lima, Debora Barbosa; Guedes, Raul Narciso Carvalho; Gondim, Manoel Guedes Correa

    2018-06-01

    An understanding of the causes and consequences of dispersal is vital for managing populations. Environmental contaminants, such as pesticides, provide potential environmental context-dependent stimuli for dispersal of targeted and non-targeted species, which may occur not only for active but also for passive dispersal, although such a possibility is frequently neglected. Here, we assessed the potential of food deprivation and acaricides to interfere with the take-off for passive (wind) dispersal of the predatory mite Neoseiulus baraki. Wind tunnel bioassays indicated that starvation favoured the take-off for wind dispersal by the mite predator, which also varied with wind velocity, and dispersal increased at higher velocities within the 1-7 (m s -1 ) range tested. For the acaricides tested, particularly the biopesticide azadirachtin but also abamectin and fenpyroximate, the rate of predator take-off for dispersal increased, and further increased with wind velocity up to 7 m/s. Such responses were associated with changes in the predator behavioural preparation for wind-mediated passive dispersal, with a greater incidence of the standing posture that permitted take-off. The rate of take-off for passive dispersal by N. baraki increased with food deprivation and exposure to the residues of agricultural acaricides. Azadirachtin exposure resulted in a particularly strong response, although abamectin and fenpyroximate also stimulated dispersal. © 2018 Society of Chemical Industry. © 2018 Society of Chemical Industry.

  9. Seasonality can induce coexistence of multiple bet-hedging strategies in Dictyostelium discoideum via storage effect.

    PubMed

    Martínez-García, Ricardo; Tarnita, Corina E

    2017-08-07

    The social amoeba Dictyostelium discoideum has been recently suggested as an example of bet-hedging in microbes. In the presence of resources, amoebae reproduce as unicellular organisms. Resource depletion, however, leads to a starvation phase in which the population splits between aggregators, which form a fruiting body made of a stalk and resistant spores, and non-aggregators, which remain as vegetative cells. Spores are favored when starvation periods are long, but vegetative cells can exploit resources in environments where food replenishes quickly. The investment in aggregators versus non-aggregators can therefore be understood as a bet-hedging strategy that evolves in response to stochastic starvation times. A genotype (or strategy) is defined by the balance between each type of cells. In this framework, if the ecological conditions on a patch are defined in terms of the mean starvation time (i.e. time between the onset of starvation and the arrival of a new food pulse), a single genotype dominates each environment, which is inconsistent with the huge genetic diversity observed in nature. Here we investigate whether seasonality, represented by a periodic, wet-dry alternation in the mean starvation times, allows the coexistence of several strategies in a single patch. We study this question in a non-spatial (well-mixed) setting in which different strains compete for a common pool of resources over a sequence of growth-starvation cycles. We find that seasonality induces a temporal storage effect that can promote the stable coexistence of multiple genotypes. Two conditions need to be met in our model. First, there has to be a temporal niche partitioning (two well-differentiated habitats within the year), which requires not only different mean starvation times between seasons but also low variance within each season. Second, each season's well-adapted strain has to grow and create a large enough population that permits its survival during the subsequent

  10. Are phloem-derived amino acids the origin of the elevated malate concentration in the xylem sap following mineral N starvation in soybean?

    PubMed

    Vitor, Simone C; do Amarante, Luciano; Sodek, Ladaslav

    2018-05-16

    A substantial increase in malate in the xylem sap of soybean subjected to mineral N starvation originates mainly from aspartate, a prominent amino acid of the phloem. A substantial increase in xylem malate was found when non-nodulated soybean plants were transferred to a N-free medium. Nodulated plants growing in the absence of mineral N and, therefore, dependent on symbiotic N 2 fixation also contained elevated concentrations of malate in the xylem sap. When either nitrate or ammonium was supplied, malate concentrations in the xylem sap were low, both for nodulated and non-nodulated plants. Evidence was obtained that the elevated malate concentration of the xylem was derived from amino acids supplied by the phloem. Aspartate was a prominent component of the phloem sap amino acids and, therefore, a potential source of malate. Supplying the roots of intact plants with 13 C-aspartate revealed that malate of the xylem sap was readily labelled under N starvation. A hypothetical scheme is proposed whereby aspartate supplied by the phloem is metabolised in the roots and the products of this metabolism cycled back to the shoot. Under N starvation, aspartate metabolism is diverted from asparagine synthesis to supply N for the synthesis of other amino acids via transaminase activity. The by-product of aspartate transaminase activity, oxaloacetate, is transformed to malate and its export accounts for much of the elevated concentration of malate found in the xylem sap. This mechanism represents a new additional role for malate during mineral N starvation of soybean, beyond that of charge balance.

  11. Metabolite profiling and integrative modeling reveal metabolic constraints for carbon partitioning under nitrogen starvation in the green algae Haematococcus pluvialis.

    PubMed

    Recht, Lee; Töpfer, Nadine; Batushansky, Albert; Sikron, Noga; Gibon, Yves; Fait, Aaron; Nikoloski, Zoran; Boussiba, Sammy; Zarka, Aliza

    2014-10-31

    The green alga Hematococcus pluvialis accumulates large amounts of the antioxidant astaxanthin under inductive stress conditions, such as nitrogen starvation. The response to nitrogen starvation and high light leads to the accumulation of carbohydrates and fatty acids as well as increased activity of the tricarboxylic acid cycle. Although the behavior of individual pathways has been well investigated, little is known about the systemic effects of the stress response mechanism. Here we present time-resolved metabolite, enzyme activity, and physiological data that capture the metabolic response of H. pluvialis under nitrogen starvation and high light. The data were integrated into a putative genome-scale model of the green alga to in silico test hypotheses of underlying carbon partitioning. The model-based hypothesis testing reinforces the involvement of starch degradation to support fatty acid synthesis in the later stages of the stress response. In addition, our findings support a possible mechanism for the involvement of the increased activity of the tricarboxylic acid cycle in carbon repartitioning. Finally, the in vitro experiments and the in silico modeling presented here emphasize the predictive power of large scale integrative approaches to pinpoint metabolic adjustment to changing environments. © 2014 by The American Society for Biochemistry and Molecular Biology, Inc.

  12. The effect of starvation and re-feeding on mitochondrial potential in the midgut of Neocaridina davidi (Crustacea, Malacostraca)

    PubMed Central

    Włodarczyk, Agnieszka; Sonakowska, Lidia; Kamińska, Karolina; Marchewka, Angelika; Wilczek, Grażyna; Wilczek, Piotr; Student, Sebastian; Rost-Roszkowska, Magdalena

    2017-01-01

    The midgut in the freshwater shrimp Neocaridina davidi (previously named N. heteropoda) (Crustacea, Malacostraca) is composed of a tube-shaped intestine and a large hepatopancreas that is formed by numerous blind-ended tubules. The precise structure and ultrastructure of these regions were presented in our previous papers, while here we focused on the ultrastructural changes that occurred in the midgut epithelial cells (D-cells in the intestine, B- and F- cells in the hepatopancreas) after long-term starvation and re-feeding. We used transmission electron microscopy, light and confocal microscopes and flow cytometry to describe all of the changes that occurred due to the stressor with special emphasis on mitochondrial alterations. A quantitative assessment of cells with depolarized mitochondria helped us to establish whether there is a relationship between starvation, re-feeding and the inactivation/activation of mitochondria. The results of our studies showed that in the freshwater shrimp N. davidi that were analyzed, long-term starvation activates the degeneration of epithelial cells at the ultrastructural level and causes an increase of cells with depolarized (non-active) mitochondria. The process of re-feeding leads to the gradual regeneration of the cytoplasm of the midgut epithelial cells; however, these changes were observed at the ultrastructural level. Additionally, re-feeding causes the regeneration of mitochondrial ultrastructure. Therefore, we can state that the increase in the number of cells with polarized mitochondria occurs slowly and does not depend on ultrastructural alterations. PMID:28282457

  13. The effect of starvation and re-feeding on mitochondrial potential in the midgut of Neocaridina davidi (Crustacea, Malacostraca).

    PubMed

    Włodarczyk, Agnieszka; Sonakowska, Lidia; Kamińska, Karolina; Marchewka, Angelika; Wilczek, Grażyna; Wilczek, Piotr; Student, Sebastian; Rost-Roszkowska, Magdalena

    2017-01-01

    The midgut in the freshwater shrimp Neocaridina davidi (previously named N. heteropoda) (Crustacea, Malacostraca) is composed of a tube-shaped intestine and a large hepatopancreas that is formed by numerous blind-ended tubules. The precise structure and ultrastructure of these regions were presented in our previous papers, while here we focused on the ultrastructural changes that occurred in the midgut epithelial cells (D-cells in the intestine, B- and F- cells in the hepatopancreas) after long-term starvation and re-feeding. We used transmission electron microscopy, light and confocal microscopes and flow cytometry to describe all of the changes that occurred due to the stressor with special emphasis on mitochondrial alterations. A quantitative assessment of cells with depolarized mitochondria helped us to establish whether there is a relationship between starvation, re-feeding and the inactivation/activation of mitochondria. The results of our studies showed that in the freshwater shrimp N. davidi that were analyzed, long-term starvation activates the degeneration of epithelial cells at the ultrastructural level and causes an increase of cells with depolarized (non-active) mitochondria. The process of re-feeding leads to the gradual regeneration of the cytoplasm of the midgut epithelial cells; however, these changes were observed at the ultrastructural level. Additionally, re-feeding causes the regeneration of mitochondrial ultrastructure. Therefore, we can state that the increase in the number of cells with polarized mitochondria occurs slowly and does not depend on ultrastructural alterations.

  14. Hydrodynamic starvation in first-feeding larval fishes

    PubMed Central

    China, Victor; Holzman, Roi

    2014-01-01

    Larval fishes suffer prodigious mortality rates, eliminating 99% of the brood within a few days after first feeding. Hjort (1914) famously attributed this “critical period” of low survival to the larvae’s inability to obtain sufficient food [Hjort (1914) Rapp P-v Réun Cons Int Explor Mer 20:1–228]. However, the cause of this poor feeding success remains to be identified. Here, we show that hydrodynamic constraints on the ubiquitous suction mechanism in first-feeding larvae limit their ability to capture prey, thereby reducing their feeding rates. Dynamic-scaling experiments revealed that larval size is the primary determinant of feeding rate, independent of other ontogenetic effects. We conclude that first-feeding larvae experience “hydrodynamic starvation,” in which low Reynolds numbers mechanistically limit their feeding performance even under high prey densities. Our results provide a hydrodynamic perspective on feeding of larval fishes that focuses on the physical properties of the larvae and prey, rather than on prey concentration and the rate of encounters. PMID:24843180

  15. Relationship between NH+4 Assimilation Rate and in Vivo Phosphoenolpyruvate Carboxylase Activity 1

    PubMed Central

    Vanlerberghe, Greg C.; Schuller, Kathryn A.; Smith, Ronald G.; Feil, Regina; Plaxton, William C.; Turpin, David H.

    1990-01-01

    The rate of NH4+ assimilation by N-limited Selenastrum minutum (Naeg.) Collins cells in the dark was set as an independent variable and the relationship between NH4+ assimilation rate and in vivo activity of phosphoenolpyruvate carboxylase (PEPC) was determined. In vivo activity of PEPC was measured by following the incorporation of H14CO−3 into acid stable products. A linear relationship of 0.3 moles C fixed via PEPC per mole N assimilated was observed. This value agrees extremely well with the PEPC requirement for the synthesis of the amino acids found in total cellular protein. Determinations of metabolite levels in vivo at different rates of N assimilation indicated that the known metabolite effectors of S. minutum PEPC in vitro (KA Schuller, WC Plaxton, DH Turpin, [1990] Plant Physiol 93: 1303-1311) are important regulators of this enzyme during N assimilation. As PEPC activity increased in response to increasing rates of N assimilation, there was a corresponding decline in the level of PEPC inhibitors (2-oxoglutarate, malate), an increase in the level of PEPC activators (glutamine, dihydroxyacetone phosphate), and an increase in the Gln/Glu ratio. Treatment of N-limited cells with azaserine caused an increase in the Gln/Glu ratio resulting in increased PEPC activity in the absence of N assimilation. We suggest glutamate and glutamine play a key role in regulating the anaplerotic function of PEPC in this C3 organism. PMID:16667699

  16. Path of carbon flow during NO/sub 3//sup -/-induced photosynthetic suppression in N-limited Selenastrum minutum

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Elrifi, I.R.; Turpin, D.H.

    Nitrate addition to nitrate-limited cultures of Selenastrum minutum Naeg. Collins (Chlorophyta) resulted in a 70% suppression of photosynthetic carbon fixation. In /sup 14/CO/sub 2/ pulse/chase experiments nitrate resupply increased radiolabel incorporation into amino and organic acids and decreased radiolabel incorporation into insoluble material. Nitrate resupply increased the concentration of phosphoenolpyruvate and increased the radiolabeling of phosphoenolpyruvate, pyruvate and tricarboxylic acid cycle intermediates, notably citrate, fumarate, and malate. Furthermore, nitrate also increased the pool sizes and radiolabeling of most amino acids, with alanine, aspartate, glutamate, and glutamine showing the largest changes. Nitrate resupply increased the proportion of radiolabel in the C-4more » position of malate and increased the ratios of radiolabel in aspartate to phosphoenolpyruvate and in pyruvate to phosphoenolpyruvate, indicative of increased phosphoenolpyruvate carboxylase and pyruvate kinase activities. Analysis of these data showed that the rate of carbon flow through glutamate (10.6 ..mu..moles glutamate per milligram chlorophyll per hour) and the rate of net glutamate production (7.9 ..mu..moles glutamate per milligram chlorophyll per hour) were both greater than the maximum rate of carbon export from the Calvin cycle which could be maintained during steady state photosynthesis. These results are consistent with the hypothesis that nitrogen resupply to nitrogen-limited microalgae results in a transient suppression of photosynthetic carbon fixation due, in part, to the severity of competition for carbon skeletons between the Calvin cycle and nitrogen assimilation.« less

  17. Molt cycle related changes and effect of short term starvation on the biochemical constituents of the blue swimmer crab Portunus pelagicus

    PubMed Central

    Sugumar, V.; Vijayalakshmi, G.; Saranya, K.

    2012-01-01

    Synthesis and hardening of a new exoskeleton are essential to the arthropod molting process. The present study emphasizes the variations in the levels of hemolymph total free sugars, hepatopancreas glycogen and cuticular proteins during the molting stages of Portunus pelagicus. It also reports the effect of short-term starvation conditions on the biochemical constituents of the hemolymph. Intermolt crabs were subjected to 6 days of starvation and hemolymph samples were taken. Standard biochemical procedures were followed toward the quantification of total proteins, total free sugars and total lipids. The total free sugar level in the hemolymph of P. pelagicus was observed to increase during early premolt D0 (3.108 ± 0.032 g/ml) and a gradual decrease till late postmolt B stage (0.552 ± 0.124 g/ml), suggesting the need for total free sugars to provide energy for the apolysis process. Increase in the levels of hepatopancreas glycogen was observed from 1225 ± 0.04 μg/mg in early premolt D0 to 1700 ± 0.3 μg/mg in late premolt D2–3. This is in correlation with the decreased levels of free sugars during premolt stages, suggesting an increase in the storage of glycogen reserves in the hepatopancreas. Cuticular proteins increased during stage B (2.702 ± 0.093 g/ml) and stage C (3.065 ± 0.012 g/ml), indicating exoskeleton hardening and mineralization. Results of the starvation studies clearly showed a steady decline in the level of total free sugars till day 6 (0.099 ± 0.00 g/ml) when compared to the control (8.646 ± 0.08 g/ml). Gradual decrease of total lipids was also observed from the first day of the experiment (6.088 ± 2.44 g/ml) to the last day of the study (0.401 ± 0.20 g/ml) which was 85% lesser than the control (8.450 ± 0.49 g/ml)suggesting the efficient usage of total sugars to consolidate the loss of energy reserves during starvation. The knowledge of Molt-cycle events can be used as a tool for the evaluation of

  18. The SULTR gene family in maize (Zea mays L.): Gene cloning and expression analyses under sulfate starvation and abiotic stress.

    PubMed

    Huang, Qin; Wang, Meiping; Xia, Zongliang

    2018-01-01

    Sulfur is an essential macronutrient required for plant growth, development and stress responses. The family of sulfate transporters (SULTRs) mediates the uptake and translocation of sulfate in higher plants. However, basic knowledge of the SULTR gene family in maize (Zea mays L.) is scarce. In this study, a genome-wide bioinformatic analysis of SULTR genes in maize was conducted, and the developmental expression patterns of the genes and their responses to sulfate starvation and abiotic stress were further investigated. The ZmSULTR family includes eight putative members in the maize genome and is clustered into four groups in the phylogenetic tree. These genes displayed differential expression patterns in various organs of maize. For example, expression of ZmSULTR1;1 and ZmSULTR4;1 was high in roots, and transcript levels of ZmSULTR3;1 and ZmSULTR3;3 were high in shoots. Expression of ZmSULTR1;2, ZmSULTR2;1, ZmSULTR3;3, and ZmSULTR4;1 was high in flowers. Also, these eight genes showed differential responses to sulfate deprivation in roots and shoots of maize seedlings. Transcript levels of ZmSULTR1;1, ZmSULTR1;2, and ZmSULTR3;4 were significantly increased in roots during 12-day-sulfate starvation stress, while ZmSULTR3;3 and ZmSULTR3;5 only showed an early response pattern in shoots. In addition, dynamic transcriptional changes determined via qPCR revealed differential expression profiles of these eight ZmSULTR genes in response to environmental stresses such as salt, drought, and heat stresses. Notably, all the genes, except for ZmSULTR3;3, were induced by drought and heat stresses. However, a few genes were induced by salt stress. Physiological determination showed that two important thiol-containing compounds, cysteine and glutathione, increased significantly under these abiotic stresses. The results suggest that members of the SULTR family might function in adaptations to sulfur deficiency stress and adverse growing environments. This study will lay a

  19. Regulatory Tasks of the Phosphoenolpyruvate-Phosphotransferase System of Pseudomonas putida in Central Carbon Metabolism

    PubMed Central

    Chavarría, Max; Kleijn, Roelco J.; Sauer, Uwe; Pflüger-Grau, Katharina; de Lorenzo, Víctor

    2012-01-01

    ABSTRACT Two branches of the phosphoenolpyruvate-phosphotransferase system (PTS) operate in the soil bacterium Pseudomonas putida KT2440. One branch encompasses a complete set of enzymes for fructose intake (PTSFru), while the other (N-related PTS, or PTSNtr) controls various cellular functions unrelated to the transport of carbohydrates. The potential of these two systems for regulating central carbon catabolism has been investigated by measuring the metabolic fluxes of isogenic strains bearing nonpolar mutations in PTSFru or PTSNtr genes and grown on either fructose (a PTS substrate) or glucose, the transport of which is not governed by the PTS in this bacterium. The flow of carbon from each sugar was distinctly split between the Entner-Doudoroff, pentose phosphate, and Embden-Meyerhof-Parnas pathways in a ratio that was maintained in each of the PTS mutants examined. However, strains lacking PtsN (EIIANtr) displayed significantly higher fluxes in the reactions of the pyruvate shunt, which bypasses malate dehydrogenase in the TCA cycle. This was consistent with the increased activity of the malic enzyme and the pyruvate carboxylase found in the corresponding PTS mutants. Genetic evidence suggested that such a metabolic effect of PtsN required the transfer of high-energy phosphate through the system. The EIIANtr protein of the PTSNtr thus helps adjust central metabolic fluxes to satisfy the anabolic and energetic demands of the overall cell physiology. PMID:22434849

  20. A Role for Mitochondrial Phosphoenolpyruvate Carboxykinase (PEPCK-M) in the Regulation of Hepatic Gluconeogenesis*

    PubMed Central

    Stark, Romana; Guebre-Egziabher, Fitsum; Zhao, Xiaojian; Feriod, Colleen; Dong, Jianying; Alves, Tiago C.; Ioja, Simona; Pongratz, Rebecca L.; Bhanot, Sanjay; Roden, Michael; Cline, Gary W.; Shulman, Gerald I.; Kibbey, Richard G.

    2014-01-01

    Synthesis of phosphoenolpyruvate (PEP) from oxaloacetate is an absolute requirement for gluconeogenesis from mitochondrial substrates. Generally, this reaction has solely been attributed to the cytosolic isoform of PEPCK (PEPCK-C), although loss of the mitochondrial isoform (PEPCK-M) has never been assessed. Despite catalyzing the same reaction, to date the only significant role reported in mammals for the mitochondrial isoform is as a glucose sensor necessary for insulin secretion. We hypothesized that this nutrient-sensing mitochondrial GTP-dependent pathway contributes importantly to gluconeogenesis. PEPCK-M was acutely silenced in gluconeogenic tissues of rats using antisense oligonucleotides both in vivo and in isolated hepatocytes. Silencing PEPCK-M lowers plasma glucose, insulin, and triglycerides, reduces white adipose, and depletes hepatic glycogen, but raises lactate. There is a switch of gluconeogenic substrate preference to glycerol that quantitatively accounts for a third of glucose production. In contrast to the severe mitochondrial deficiency characteristic of PEPCK-C knock-out livers, hepatocytes from PEPCK-M-deficient livers maintained normal oxidative function. Consistent with its predicted role, gluconeogenesis rates from hepatocytes lacking PEPCK-M are severely reduced for lactate, alanine, and glutamine, but not for pyruvate and glycerol. Thus, PEPCK-M has a direct role in fasted and fed glucose homeostasis, and this mitochondrial GTP-dependent pathway should be reconsidered for its involvement in both normal and diabetic metabolism. PMID:24497630

  1. A role for mitochondrial phosphoenolpyruvate carboxykinase (PEPCK-M) in the regulation of hepatic gluconeogenesis.

    PubMed

    Stark, Romana; Guebre-Egziabher, Fitsum; Zhao, Xiaojian; Feriod, Colleen; Dong, Jianying; Alves, Tiago C; Ioja, Simona; Pongratz, Rebecca L; Bhanot, Sanjay; Roden, Michael; Cline, Gary W; Shulman, Gerald I; Kibbey, Richard G

    2014-03-14

    Synthesis of phosphoenolpyruvate (PEP) from oxaloacetate is an absolute requirement for gluconeogenesis from mitochondrial substrates. Generally, this reaction has solely been attributed to the cytosolic isoform of PEPCK (PEPCK-C), although loss of the mitochondrial isoform (PEPCK-M) has never been assessed. Despite catalyzing the same reaction, to date the only significant role reported in mammals for the mitochondrial isoform is as a glucose sensor necessary for insulin secretion. We hypothesized that this nutrient-sensing mitochondrial GTP-dependent pathway contributes importantly to gluconeogenesis. PEPCK-M was acutely silenced in gluconeogenic tissues of rats using antisense oligonucleotides both in vivo and in isolated hepatocytes. Silencing PEPCK-M lowers plasma glucose, insulin, and triglycerides, reduces white adipose, and depletes hepatic glycogen, but raises lactate. There is a switch of gluconeogenic substrate preference to glycerol that quantitatively accounts for a third of glucose production. In contrast to the severe mitochondrial deficiency characteristic of PEPCK-C knock-out livers, hepatocytes from PEPCK-M-deficient livers maintained normal oxidative function. Consistent with its predicted role, gluconeogenesis rates from hepatocytes lacking PEPCK-M are severely reduced for lactate, alanine, and glutamine, but not for pyruvate and glycerol. Thus, PEPCK-M has a direct role in fasted and fed glucose homeostasis, and this mitochondrial GTP-dependent pathway should be reconsidered for its involvement in both normal and diabetic metabolism.

  2. Lipid droplets induced by secreted phospholipase A2 and unsaturated fatty acids protect breast cancer cells from nutrient and lipotoxic stress.

    PubMed

    Jarc, Eva; Kump, Ana; Malavašič, Petra; Eichmann, Thomas O; Zimmermann, Robert; Petan, Toni

    2018-03-01

    Cancer cells driven by the Ras oncogene scavenge unsaturated fatty acids (FAs) from their environment to counter nutrient stress. The human group X secreted phospholipase A 2 (hGX sPLA 2 ) releases FAs from membrane phospholipids, stimulates lipid droplet (LD) biogenesis in Ras-driven triple-negative breast cancer (TNBC) cells and enables their survival during starvation. Here we examined the role of LDs, induced by hGX sPLA 2 and unsaturated FAs, in protection of TNBC cells against nutrient stress. We found that hGX sPLA 2 releases a mixture of unsaturated FAs, including ω-3 and ω-6 polyunsaturated FAs (PUFAs), from TNBC cells. Starvation-induced breakdown of LDs induced by low micromolar concentrations of unsaturated FAs, including PUFAs, was associated with protection from cell death. Interestingly, adipose triglyceride lipase (ATGL) contributed to LD breakdown during starvation, but it was not required for the pro-survival effects of hGX sPLA 2 and unsaturated FAs. High micromolar concentrations of PUFAs, but not OA, induced oxidative stress-dependent cell death in TNBC cells. Inhibition of triacylglycerol (TAG) synthesis suppressed LD biogenesis and potentiated PUFA-induced cell damage. On the contrary, stimulation of LD biogenesis by hGX sPLA 2 and suppression of LD breakdown by ATGL depletion reduced PUFA-induced oxidative stress and cell death. Finally, lipidomic analyses revealed that sequestration of PUFAs in LDs by sPLA 2 -induced TAG remodelling and retention of PUFAs in LDs by inhibition of ATGL-mediated TAG lipolysis protect from PUFA lipotoxicity. LDs are thus antioxidant and pro-survival organelles that guard TNBC cells against nutrient and lipotoxic stress and emerge as attractive targets for novel therapeutic interventions. Copyright © 2017 Elsevier B.V. All rights reserved.

  3. Exercise-induced BCL2-regulated autophagy is required for muscle glucose homeostasis.

    PubMed

    He, Congcong; Bassik, Michael C; Moresi, Viviana; Sun, Kai; Wei, Yongjie; Zou, Zhongju; An, Zhenyi; Loh, Joy; Fisher, Jill; Sun, Qihua; Korsmeyer, Stanley; Packer, Milton; May, Herman I; Hill, Joseph A; Virgin, Herbert W; Gilpin, Christopher; Xiao, Guanghua; Bassel-Duby, Rhonda; Scherer, Philipp E; Levine, Beth

    2012-01-18

    Exercise has beneficial effects on human health, including protection against metabolic disorders such as diabetes. However, the cellular mechanisms underlying these effects are incompletely understood. The lysosomal degradation pathway, autophagy, is an intracellular recycling system that functions during basal conditions in organelle and protein quality control. During stress, increased levels of autophagy permit cells to adapt to changing nutritional and energy demands through protein catabolism. Moreover, in animal models, autophagy protects against diseases such as cancer, neurodegenerative disorders, infections, inflammatory diseases, ageing and insulin resistance. Here we show that acute exercise induces autophagy in skeletal and cardiac muscle of fed mice. To investigate the role of exercise-mediated autophagy in vivo, we generated mutant mice that show normal levels of basal autophagy but are deficient in stimulus (exercise- or starvation)-induced autophagy. These mice (termed BCL2 AAA mice) contain knock-in mutations in BCL2 phosphorylation sites (Thr69Ala, Ser70Ala and Ser84Ala) that prevent stimulus-induced disruption of the BCL2-beclin-1 complex and autophagy activation. BCL2 AAA mice show decreased endurance and altered glucose metabolism during acute exercise, as well as impaired chronic exercise-mediated protection against high-fat-diet-induced glucose intolerance. Thus, exercise induces autophagy, BCL2 is a crucial regulator of exercise- (and starvation)-induced autophagy in vivo, and autophagy induction may contribute to the beneficial metabolic effects of exercise.

  4. Starvation dynamics of a greedy forager

    NASA Astrophysics Data System (ADS)

    Bhat, U.; Redner, S.; Bénichou, O.

    2017-07-01

    We investigate the dynamics of a greedy forager that moves by random walking in an environment where each site initially contains one unit of food. Upon encountering a food-containing site, the forager eats all the food there and can subsequently hop an additional S steps without food before starving to death. Upon encountering an empty site, the forager goes hungry and comes one time unit closer to starvation. We investigate the new feature of forager greed; if the forager has a choice between hopping to an empty site or to a food-containing site in its nearest neighborhood, it hops preferentially towards food. If the neighboring sites all contain food or are all empty, the forager hops equiprobably to one of these neighbors. Paradoxically, the lifetime of the forager can depend non-monotonically on greed, and the sense of the non-monotonicity is opposite in one and two dimensions. Even more unexpectedly, the forager lifetime in one dimension is substantially enhanced when the greed is negative; here the forager tends to avoid food in its local neighborhood. We also determine the average amount of food consumed at the instant when the forager starves. We present analytic, heuristic, and numerical results to elucidate these intriguing phenomena.

  5. Chloroplast Galactolipids: The Link Between Photosynthesis, Chloroplast Shape, Jasmonates, Phosphate Starvation and Freezing Tolerance.

    PubMed

    Li, Hsou-Min; Yu, Chun-Wei

    2018-06-01

    Monogalactosyldiacylglycerol (MGDG) and digalactosyldiacylglycerol (DGDG) together constitute approximately 80% of chloroplast lipids. Apart from facilitating the photosynthesis light reaction in the thylakoid membrane, these two lipids are important for maintaining chloroplast morphology and for plant survival under abiotic stresses such as phosphate starvation and freezing. Recently it was shown that severe growth retardation phenotypes of the DGDG-deficient mutant dgd1 were due to jasmonate overproduction, linking MGDG and DGDG homeostasis with phytohormone production and suggesting MGDG as a major substrate for jasmonate biosynthesis. Induction of jasmonate synthesis and jasmonic acid (JA) signaling was also observed under conditions of phosphate starvation. We hypothesize that when DGDG is recruited to substitute for phospholipids in extraplastidic membranes during phosphate deficiency, the altered MGDG to DGDG ratio in the chloroplast envelope triggers the conversion of galactolipids into jasmonates. The conversion may contribute to rebalancing the MGDG to DGDG ratio rapidly to maintain chloroplast shape, and jasmonate production can reduce the growth rate and enhance predator deterrence. We also hypothesize that other conditions, such as suppression of dgd1 phenotypes by trigalactosyldiacylglycerol (tgd) mutations, may all be linked to altered jasmonate production, indicating that caution should be exercised when interpreting phenotypes caused by conditions that may alter the MGDG to DGDG ratio at the chloroplast envelope.

  6. Nutrient starvation leading to triglyceride accumulation activates the Entner Doudoroff pathway in Rhodococcus jostii RHA1.

    PubMed

    Juarez, Antonio; Villa, Juan A; Lanza, Val F; Lázaro, Beatriz; de la Cruz, Fernando; Alvarez, Héctor M; Moncalián, Gabriel

    2017-02-27

    Rhodococcus jostii RHA1 and other actinobacteria accumulate triglycerides (TAG) under nutrient starvation. This property has an important biotechnological potential in the production of sustainable oils. To gain insight into the metabolic pathways involved in TAG accumulation, we analysed the transcriptome of R jostii RHA1 under nutrient-limiting conditions. We correlate these physiological conditions with significant changes in cell physiology. The main consequence was a global switch from catabolic to anabolic pathways. Interestingly, the Entner-Doudoroff (ED) pathway was upregulated in detriment of the glycolysis or pentose phosphate pathways. ED induction was independent of the carbon source (either gluconate or glucose). Some of the diacylglycerol acyltransferase genes involved in the last step of the Kennedy pathway were also upregulated. A common feature of the promoter region of most upregulated genes was the presence of a consensus binding sequence for the cAMP-dependent CRP regulator. This is the first experimental observation of an ED shift under nutrient starvation conditions. Knowledge of this switch could help in the design of metabolomic approaches to optimize carbon derivation for single cell oil production.

  7. The Janus transcription factor HapX controls fungal adaptation to both iron starvation and iron excess

    PubMed Central

    Gsaller, Fabio; Hortschansky, Peter; Beattie, Sarah R; Klammer, Veronika; Tuppatsch, Katja; Lechner, Beatrix E; Rietzschel, Nicole; Werner, Ernst R; Vogan, Aaron A; Chung, Dawoon; Mühlenhoff, Ulrich; Kato, Masashi; Cramer, Robert A; Brakhage, Axel A; Haas, Hubertus

    2014-01-01

    Balance of physiological levels of iron is essential for every organism. In Aspergillus fumigatus and other fungal pathogens, the transcription factor HapX mediates adaptation to iron limitation and consequently virulence by repressing iron consumption and activating iron uptake. Here, we demonstrate that HapX is also essential for iron resistance via activating vacuolar iron storage. We identified HapX protein domains that are essential for HapX functions during either iron starvation or high-iron conditions. The evolutionary conservation of these domains indicates their wide-spread role in iron sensing. We further demonstrate that a HapX homodimer and the CCAAT-binding complex (CBC) cooperatively bind an evolutionary conserved DNA motif in a target promoter. The latter reveals the mode of discrimination between general CBC and specific HapX/CBC target genes. Collectively, our study uncovers a novel regulatory mechanism mediating both iron resistance and adaptation to iron starvation by the same transcription factor complex with activating and repressing functions depending on ambient iron availability. PMID:25092765

  8. The Path of Carbon Flow during NO3−-Induced Photosynthetic Suppression in N-Limited Selenastrum minutum1

    PubMed Central

    Elrifi, Ivor R.; Turpin, David H.

    1987-01-01

    Nitrate addition to nitrate-limited cultures of Selenastrum minutum Naeg. Collins (Chlorophyta) resulted in a 70% suppression of photosynthetic carbon fixation. In 14CO2 pulse/chase experiments nitrate resupply increased radiolabel incorporation into amino and organic acids and decreased radiolabel incorporation into insoluble material. Nitrate resupply increased the concentration of phosphoenolpyruvate and increased the radiolabeling of phosphoenolpyruvate, pyruvate and tricarboxylic acid cycle intermediates, notably citrate, fumarate, and malate. Furthermore, nitrate also increased the pool sizes and radiolabeling of most amino acids, with alanine, aspartate, glutamate, and glutamine showing the largest changes. Nitrate resupply increased the proportion of radiolabel in the C-4 position of malate and increased the ratios of radiolabel in aspartate to phosphoenolpyruvate and in pyruvate to phosphoenolpyruvate, indicative of increased phosphoenolpyruvate carboxylase and pyruvate kinase activities. Analysis of these data showed that the rate of carbon flow through glutamate (10.6 μmoles glutamate per milligram chlorophyll per hour) and the rate of net glutamate production (7.9 μmoles glutamate per milligram chlorophyll per hour) were both greater than the maximum rate of carbon export from the Calvin cycle which could be maintained during steady state photosynthesis. These results are consistent with the hypothesis that nitrogen resupply to nitrogen-limited microalgae results in a transient suppression of photosynthetic carbon fixation due, in part, to the severity of competition for carbon skeletons between the Calvin cycle and nitrogen assimilation (IR Elrifi, DH Turpin 1986 Plant Physiol 81: 273-279). PMID:16665223

  9. Influence of Starvation on Potential Ammonia-Oxidizing Activity and amoA mRNA Levels of Nitrosospira briensis

    PubMed Central

    Bollmann, Annette; Schmidt, Ingo; Saunders, Aaron M.; Nicolaisen, Mette H.

    2005-01-01

    The effect of short-term ammonia starvation on Nitrosospira briensis was investigated. The ammonia-oxidizing activity was determined in a concentrated cell suspension with a NOx biosensor. The apparent half-saturation constant [Km(app)] value of the NH3 oxidation of N. briensis was 3 μM NH3 for cultures grown both in continuous and batch cultures as determined by a NOx biosensor. Cells grown on the wall of the vessel had a lower Km(app) value of 1.8 μM NH3. Nonstarving cultures of N. briensis showed potential ammonia-oxidizing activities of between 200 to 250 μM N h−1, and this activity decreased only slowly during starvation up to 10 days. Within 10 min after the addition of fresh NH4+, 100% activity was regained. Parallel with activity measurements, amoA mRNA and 16S rRNA were investigated. No changes were observed in the 16S rRNA, but a relative decrease of amoA mRNA was observed during the starvation period. During resuscitation, an increase in amoA mRNA expression was detected simultaneously. The patterns of the soluble protein fraction of a 2-week-starved culture of N. briensis showed only small differences in comparison to a nonstarved control. From these results we conclude that N. briensis cells remain in a state allowing fast recovery of ammonia-oxidizing activity after addition of NH4+ to a starved culture. Maintaining cells in this kind of active state could be the survival strategy of ammonia-oxidizing bacteria in nature under fluctuating NH4+ availability. PMID:15746329

  10. Towards efficient photosynthesis: overexpression of Zea mays phosphoenolpyruvate carboxylase in Arabidopsis thaliana.

    PubMed

    Kandoi, Deepika; Mohanty, Sasmita; Govindjee; Tripathy, Baishnab C

    2016-12-01

    Plants with C4 photosynthesis are efficient in carbon assimilation and have an advantage over C3 photosynthesis. In C4 photosynthesis, the primary CO 2 fixation is catalyzed by phosphoenolpyruvate carboxylase (PEPC). Here, we show that overexpression of Zea mays PEPC cDNA, under the control of 35 S promoter, in Arabidopsis thaliana resulted in ~7-10 fold higher protein abundance and ~7-10 fold increase in PEPC activity in the transgenic lines than that in the vector control. We suggest that overexpression of PEPC played an anaplerotic role to increase the supply of 4-carbon carboxylic acids, which provided carbon skeletons for increased amino acid and protein synthesis. Higher protein content must have been responsible for increased metabolic processes including chlorophyll biosynthesis, photosynthesis, and respiration. Consequently, the PEPC-overexpressed transgenic plants had higher chlorophyll content, enhanced electron transport rate (ETR), lower non-photochemical quenching (NPQ) of chlorophyll a fluorescence, and a higher performance index (PI) than the vector control. Consistent with these observations, the rate of CO 2 assimilation, the starch content, and the dry weight of PEPC-overexpressed plants increased by 14-18 %, 10-18 %, and 6.5-16 %, respectively. Significantly, transgenics were tolerant to salt stress as they had increased ability to synthesize amino acids, including the osmolyte proline. NaCl (150 mM)-treated transgenic plants had higher variable to maximum Chl a fluorescence (F v /F m ) ratio, higher PI, higher ETR, and lower NPQ than the salt-treated vector controls. These results suggest that expression of C4 photosynthesis enzyme(s) in a C3 plant can improve its photosynthetic capacity with enhanced tolerance to salinity stress.

  11. Characterization of the soybean GmALMT family genes and the function of GmALMT5 in response to phosphate starvation.

    PubMed

    Peng, Wenting; Wu, Weiwei; Peng, Junchu; Li, Jiaojiao; Lin, Yan; Wang, Yanan; Tian, Jiang; Sun, Lili; Liang, Cuiyue; Liao, Hong

    2018-03-01

    A potential mechanism to enhance utilization of sparingly soluble forms of phosphorus (P) is the root secretion of malate, which is mainly mediated by the ALMT gene family in plants. In this study, a total of 34 GmALMT genes were identified in the soybean genome. Expression patterns diverged considerably among GmALMTs in response to phosphate (Pi) starvation in leaves, roots and flowers, with expression altered by P availability in 26 of the 34 GmALMTs. One root-specific GmALMT whose expression was significantly enhanced by Pi-starvation, GmALMT5, was studied in more detail to determine its possible role in soybean P nutrition. Analysis of GmALMT5 tissue expression patterns, subcellular localization, and malate exudation from transgenic soybean hairy roots overexpressing GmALMT5, demonstrated that GmALMT5 is a plasma membrane protein that mediates malate efflux from roots. Furthermore, both growth and P content of transgenic Arabidopsis overexpressing GmALMT5 were significantly increased when sparingly soluble Ca-P was used as the external P source. Taken together, these results indicate that members of the soybean GmALMT gene family exhibit diverse responses to Pi starvation. One member of this family, GmALMT5, might contribute to soybean P efficiency by enhancing utilization of sparingly soluble P sources under P limited conditions. © 2017 Institute of Botany, Chinese Academy of Sciences.

  12. Analysis of the Transcriptional Regulator GlpR, Promoter Elements, and Posttranscriptional Processing Involved in Fructose-Induced Activation of the Phosphoenolpyruvate-Dependent Sugar Phosphotransferase System in Haloferax mediterranei

    PubMed Central

    Cai, Lei; Cai, Shuangfeng; Zhao, Dahe; Wu, Jinhua; Wang, Lei; Liu, Xiaoqing; Li, Ming; Hou, Jing; Zhou, Jian; Liu, Jingfang; Han, Jing

    2014-01-01

    Among all known archaeal strains, the phosphoenolpyruvate-dependent phosphotransferase system (PTS) for fructose utilization is used primarily by haloarchaea, which thrive in hypersaline environments, whereas the molecular details of the regulation of the archaeal PTS under fructose induction remain unclear. In this study, we present a comprehensive examination of the regulatory mechanism of the fructose PTS in the haloarchaeon Haloferax mediterranei. With gene knockout and complementation, microarray analysis, and chromatin immunoprecipitation-quantitative PCR (ChIP-qPCR), we revealed that GlpR is the indispensable activator, which specifically binds to the PTS promoter (PPTS) during fructose induction. Further promoter-scanning mutation indicated that three sites located upstream of the H. mediterranei PPTS, which are conserved in most haloarchaeal PPTSs, are involved in this induction. Interestingly, two PTS transcripts (named T8 and T17) with different lengths of 5′ untranslated region (UTR) were observed, and promoter or 5′ UTR swap experiments indicated that the shorter 5′ UTR was most likely generated from the longer one. Notably, the translation efficiency of the transcript with this shorter 5′ UTR was significantly higher and the ratio of T8 (with the shorter 5′ UTR) to T17 increased during fructose induction, implying that a posttranscriptional mechanism is also involved in PTS activation. With these insights into the molecular regulation of the haloarchaeal PTS, we have proposed a working model for haloarchaea in response to environmental fructose. PMID:24334671

  13. Induction of mRNA for Phosphoenolpyruvate Carboxylase Is Correlated with a Decrease in Shoot Water Content in Well-Irrigated Mesembryanthemum crystallinum 1

    PubMed Central

    Schmitt, Jürgen M.; Piepenbrock, Mechtild

    1992-01-01

    The abundance of mRNA specific for phosphoenolpyruvate carboxylase (PEPCase) was measured in leaves from well-watered plants of Mesembryanthemum crystallinum. Plants grown side by side in pots of four different volumes (0.16, 0.74, 2.6, 6.5 liters) were compared. The time of increase in the steady-state level of PEPCase mRNA in well-watered plants was dependent on soil volume. The larger the pot, the later PEPCase transcripts were increased. PEPCase mRNA induction started when shoot water content decreased to well below 4000% of dry weight. No positive correlation with the developmental status of the plants could be found. The data indicate that PEPCase mRNA induction in well-watered plants up to 10 weeks of age is controlled environmentally rather than developmentally. ImagesFigure 2 PMID:16668951

  14. Survival of pathogenic bacteria under nutrient starvation conditions. [aboard orbiting space stations

    NASA Technical Reports Server (NTRS)

    Boyle, Michael; Ford, Tim; Mitchell, Ralph; Maki, James

    1990-01-01

    The survival of opportunistic pathogenic microorganisms in water, under nutrient-limiting conditions, has been investigated in order to ascertain whether human pathogens can survive within a water-distribution system of the kind proposed for the NASA Space Station. Cultures of a strain of pseudomonas aeruginosa and two strains of staphylococcus aureus were incubated at 10, 25, or 37 C, and samples at 1 day, 1 week, 1 month, and six weeks. While neither of the staphylococcus strains tested were detected after 1 week of starvation, the pseudomonas strain can survive in deionized water at all three temperatures.

  15. The Ω-loop lid domain of phosphoenolpyruvate carboxykinase is essential for catalytic function

    PubMed Central

    Johnson, Troy A.; Holyoak, Todd

    2012-01-01

    Phosphoenolpyruvate carboxykinase (PEPCK) is an essential metabolic enzyme operating in the gluconeogenesis and glyceroneogenesis pathways. Recent studies have demonstrated that the enzyme contains a mobile active site lid domain that transitions between an open/disorded conformation to a closed/ordered conformation as the enzyme progresses through the catalytic cycle. The understanding of how this mobile domain functions in catalysis is incomplete. Previous studies show that the closure of the lid domain stabilizes the reaction intermediate and protects the reactive intermediate from spurious protonation and thus contributes to the fidelity of the enzyme. In order to more fully investigate the roles of the lid domain in PEPCK function we created three mutations that replaced the 11-residue lid domain with one, two or three glycine residues. Kinetic analysis of the mutant enzymes demonstrates that none of the enzyme constructs exhibit any measurable kinetic activity resulting in a decrease in the catalytic parameters by at least 106. Structural characterization of the mutants in complexes representing the catalytic cycle suggest that the inactivity is due to a role for the lid domain in the formation of the fully closed state of the enzyme that is required for catalytic function. In the absence of the lid domain, the enzyme is unable to achieve the fully closed state and is rendered inactive despite possessing all of the residues and substrates required for catalytic function. This work demonstrates how enzyme catalytic function can be abolished through the alteration of conformational equilibria despite all elements required for chemical conversion of substrates to products remaining intact. PMID:23127136

  16. Stringent control during carbon starvation of marine Vibrio sp. strain S14: molecular cloning, nucleotide sequence, and deletion of the relA gene.

    PubMed Central

    Flärdh, K; Axberg, T; Albertson, N H; Kjelleberg, S

    1994-01-01

    In order to evaluate the role of the stringent response in starvation adaptations of the marine Vibrio sp. strain S14, we have cloned the relA gene and generated relaxed mutants of this organism. The Vibrio relA gene was selected from a chromosomal DNA library by complementation of an Escherichia coli delta relA strain. The nucleotide sequence contains a 743-codon open reading frame that encodes a polypeptide that is identical in length and highly homologous to the E. coli RelA protein. The amino acid sequences are 64% identical, and they share some completely conserved regions. A delta relA::kan allele was generated by replacing 53% of the open reading frame with a kanamycin resistance gene. The Vibrio relA mutants displayed a relaxed control of RNA synthesis and failed to accumulate ppGpp during amino acid limitation. During carbon and energy starvation, a relA-dependent burst of ppGpp synthesis concomitant with carbon source depletion and growth arrest was observed. Also, in the absence of the relA gene, there was an accumulation of ppGpp during carbon starvation, but this was slower and smaller than that which occurred in the stringent strains, and it was preceded by a marked decrease in the [ATP]/[ADP] ratio. In both the wild-type and the relaxed strains, carbon source depletion caused an immediate decrease in the size of the GTP pool and a block of net RNA accumulation. The relA mutation did not affect long-term survival or the development of resistance against heat, ethanol, and oxidative stress during carbon starvation of Vibrio sp. strain S14. PMID:7928955

  17. Studies on the Biochemistry and Fine Structure of Silica Shell Formation in Diatoms. Chemical Composition of Navicula pelliculosa during Silicon-Starvation Synchrony 1

    PubMed Central

    Coombs, J.; Darley, W. M.; Holm-Hansen, O.; Volcani, B. E.

    1967-01-01

    Changes are reported in total cellular organic carbon, nucleic acids, proteins, carbohydrates, lipids and chlorophylls during the course of silicon-starvation synchrony of Navicula pelliculosa. All constituents increased at the same rate, relative to cell number, for 30 hours of exponential growth during which silicon was depleted from the medium. Increase in cell number then stopped, but net synthesis of most components continued for a further 5 to 7 hours before ceasing. Deoxyribonucleic acids and lipids accumulated throughout the 14 hour silicon-starvation period. When silicon was resupplied, lipid synthesis ceased and organic carbon and carbohydrates decreased slightly. Net synthesis remained low during the 4 hour silicon uptake period but was resumed at higher rates as cell number began to rise. In cultures transferred to the dark 1 hour prior to readdition of silicon, total carbon, carbohydrates, and lipids decreased markedly during silicon uptake and cell separation. This was due in part to conversion of protein which maintained the protein level of the dark cells close to that of cells kept in the light. Mechanisms by which silicon starvation and reintroduction of silicon might affect rates of cellular synthesis are discussed. PMID:6080872

  18. Short-term starvation and realimentation helps stave off Edwardsiella tarda infection in red sea bream (Pagrus major).

    PubMed

    Mohapatra, Sipra; Chakraborty, Tapas; Reza, Mohammad Ali Noman; Shimizu, Sonoko; Matsubara, Takahiro; Ohta, Kohei

    2017-04-01

    Dietary regime modifications have been an integral part of health and healing practices throughout the animal kingdom. Thus, to assess the effects of periodic starvation and refeeding schedule on the physiological and immunological perturbations in Edwardsiella tarda infected red sea bream, we conducted a 20day experiment using 4 treatment groups, namely, pre-fed placebo (PFP); pre-starved placebo (PSP); pre-fed infected (PFI); and pre-starved infected (PSI), wherein a 5h E. tarda infection was done on the 11th day. In the present investigation, the pre-starved groups showed significant (P<0.05) alterations in the liver Hexokinase and Glucose-6-phosphatase activity. The pre-starved fish also exhibited significant (P<0.05) increment in the hepatosomatic index, along with increased hepatic glycogen content, in a time dependent fashion. The PPAR (peroxisome proliferator activated receptors)α transcription in the pre-starved group decreased significantly (P<0.05) by 10dai, while the PPARγ showcased a reverse pattern. The transcription of Hepcidin1 and Transferrin (iron homeostasis related genes), and Cathepsin D and Ubiquitin (programmed cell death related genes) portrayed a time responsive decrease and increase in PSI and PFI groups, respectively. Additionally, in comparison to the PFI group, the PSI fish demonstrated substantially reduced oxidative stress level. Fluorescent Immunohistochemistry showed significant (P<0.05) increase in p63 positive cells in the 10dai PFI fish in relation to the PSI group. Therefore, these findings provide new insight into the beneficial role of alternating starvation and refeeding schedule, preferably short-term starvation prior to an infection, in order to obtain better capability to battle against E. tarda infection in red sea bream. Copyright © 2017 Elsevier Inc. All rights reserved.

  19. A time resolved metabolomics study: the influence of different carbon sources during growth and starvation of Bacillus subtilis.

    PubMed

    Meyer, Hanna; Weidmann, Hendrikje; Mäder, Ulrike; Hecker, Michael; Völker, Uwe; Lalk, Michael

    2014-07-01

    In its natural environment, the soil, the Gram-positive model bacterium Bacillus subtilis frequently encounters nutrient limitation and other stress factors. Efficient adaptation mechanisms are necessary to cope with this wide range of environmental challenges. The ability to utilize diverse carbon sources represents a key adaptation process that allows B. subtilis to thrive in its natural habitat. To gain a comprehensive insight into the metabolism of B. subtilis, global metabolite analyses were performed during growth with glucose alone or glucose with either malate, fumarate or citrate as carbon/energy sources. Furthermore, to achieve a comprehensive coverage of a wide range of chemically different metabolites, complementary GC-MS, LC-MS and (1)H-NMR analyses were applied. This study reveals that the availability of different carbon sources results in different extracellular metabolite profiles whereas a regulated intracellular metabolite equilibrium was observed. In addition, the typical energy-starvation induced activation of the general stress sigma factor σ(B) was only observed upon entry into the stationary phase with glucose or glucose and malate as carbon sources.

  20. A multi-species synthesis of physiological mechanisms in drought-induced tree mortality

    USGS Publications Warehouse

    Adams, Henry D.; Zeppel, Melanie; Anderegg, William R.L.; Hartmann, Henrik; Landhäusser, Simon M.; Tissue, David T.; Huxman, Travis E.; Hudson, Patrick J.; Franz, Trenton E.; Allen, Craig D.; Anderegg, Leander D. L.; Barron-Gafford, Greg A.; Beerling, David; Breshears, David D.; Brodribb, Timothy J.; Bugmann, Harald; Cobb, Richard C.; Collins, Adam D.; Dickman, L. Turin; Duan, Honglang; Ewers, Brent E.; Galiano, Lucia; Galvez, David A.; Garcia-Forner, Núria; Gaylord, Monica L.; Germino, Matthew J.; Gessler, Arthur; Hacke, Uwe G.; Hakamada, Rodrigo; Hector, Andy; Jenkins, Michael W.; Kane, Jeffrey M.; Kolb, Thomas E.; Law, Darin J.; Lewis, James D.; Limousin, Jean-Marc; Love, David; Macalady, Alison K.; Martinez-Vilalta, Jordi; Mencuccini, Maurizio; Mitchell, Patrick J.; Muss, Jordan D.; O'Brien, Michael J.; O'Grady, Anthony P.; Pangle, Robert E.; Pinkard, Elizabeth A.; Piper, Frida I.; Plaut, Jennifer; Pockman, William T.; Quirk, Joe; Reinhardt, Keith; Ripullone, Francesco; Ryan, Michael G.; Sala, Anna; Sevanto, Sanna; Sperry, John S.; Vargas, Rodrigo; Vennetier, Michel; Way, Danielle A.; Wu, Chonggang; Yepez, Enrico A.; McDowell, Nate G.

    2017-01-01

    Widespread tree mortality associated with drought has been observed on all forested continents and global change is expected to exacerbate vegetation vulnerability. Forest mortality has implications for future biosphere–atmosphere interactions of carbon, water and energy balance, and is poorly represented in dynamic vegetation models. Reducing uncertainty requires improved mortality projections founded on robust physiological processes. However, the proposed mechanisms of drought-induced mortality, including hydraulic failure and carbon starvation, are unresolved. A growing number of empirical studies have investigated these mechanisms, but data have not been consistently analysed across species and biomes using a standardized physiological framework. Here, we show that xylem hydraulic failure was ubiquitous across multiple tree taxa at drought-induced mortality. All species assessed had 60% or higher loss of xylem hydraulic conductivity, consistent with proposed theoretical and modelled survival thresholds. We found diverse responses in non-structural carbohydrate reserves at mortality, indicating that evidence supporting carbon starvation was not universal. Reduced non-structural carbohydrates were more common for gymnosperms than angiosperms, associated with xylem hydraulic vulnerability, and may have a role in reducing hydraulic function. Our finding that hydraulic failure at drought-induced mortality was persistent across species indicates that substantial improvement in vegetation modelling can be achieved using thresholds in hydraulic function.

  1. A multi-species synthesis of physiological mechanisms in drought-induced tree mortality.

    PubMed

    Adams, Henry D; Zeppel, Melanie J B; Anderegg, William R L; Hartmann, Henrik; Landhäusser, Simon M; Tissue, David T; Huxman, Travis E; Hudson, Patrick J; Franz, Trenton E; Allen, Craig D; Anderegg, Leander D L; Barron-Gafford, Greg A; Beerling, David J; Breshears, David D; Brodribb, Timothy J; Bugmann, Harald; Cobb, Richard C; Collins, Adam D; Dickman, L Turin; Duan, Honglang; Ewers, Brent E; Galiano, Lucía; Galvez, David A; Garcia-Forner, Núria; Gaylord, Monica L; Germino, Matthew J; Gessler, Arthur; Hacke, Uwe G; Hakamada, Rodrigo; Hector, Andy; Jenkins, Michael W; Kane, Jeffrey M; Kolb, Thomas E; Law, Darin J; Lewis, James D; Limousin, Jean-Marc; Love, David M; Macalady, Alison K; Martínez-Vilalta, Jordi; Mencuccini, Maurizio; Mitchell, Patrick J; Muss, Jordan D; O'Brien, Michael J; O'Grady, Anthony P; Pangle, Robert E; Pinkard, Elizabeth A; Piper, Frida I; Plaut, Jennifer A; Pockman, William T; Quirk, Joe; Reinhardt, Keith; Ripullone, Francesco; Ryan, Michael G; Sala, Anna; Sevanto, Sanna; Sperry, John S; Vargas, Rodrigo; Vennetier, Michel; Way, Danielle A; Xu, Chonggang; Yepez, Enrico A; McDowell, Nate G

    2017-09-01

    Widespread tree mortality associated with drought has been observed on all forested continents and global change is expected to exacerbate vegetation vulnerability. Forest mortality has implications for future biosphere-atmosphere interactions of carbon, water and energy balance, and is poorly represented in dynamic vegetation models. Reducing uncertainty requires improved mortality projections founded on robust physiological processes. However, the proposed mechanisms of drought-induced mortality, including hydraulic failure and carbon starvation, are unresolved. A growing number of empirical studies have investigated these mechanisms, but data have not been consistently analysed across species and biomes using a standardized physiological framework. Here, we show that xylem hydraulic failure was ubiquitous across multiple tree taxa at drought-induced mortality. All species assessed had 60% or higher loss of xylem hydraulic conductivity, consistent with proposed theoretical and modelled survival thresholds. We found diverse responses in non-structural carbohydrate reserves at mortality, indicating that evidence supporting carbon starvation was not universal. Reduced non-structural carbohydrates were more common for gymnosperms than angiosperms, associated with xylem hydraulic vulnerability, and may have a role in reducing hydraulic function. Our finding that hydraulic failure at drought-induced mortality was persistent across species indicates that substantial improvement in vegetation modelling can be achieved using thresholds in hydraulic function.

  2. Starvation of children in Syria--sanctions and the politics of revenge.

    PubMed

    Sen, Kasturi

    2014-01-01

    As Syria completes two years of western sanctions (2011-13), their dramatic effects on health are being highlighted with first reports of starvation deaths among children in the suburbs of Damascus. Although heavy fighting has taken place in this area, experts had predicted for some time the unworkability of sanctions for regime change, arguing that only civilians would pay the price in a country (Syria in this case) which was once well on the way to meeting the Millennium Development Goals 4 targets on reducing child mortality. In this, as in the case of other "sanctioned" countries, it is not just "civilians" but the most vulnerable among them--children, who are experiencing the tragic consequences of sanctions.

  3. Gluconeogenesis in Leishmania mexicana: contribution of glycerol kinase, phosphoenolpyruvate carboxykinase, and pyruvate phosphate dikinase.

    PubMed

    Rodriguez-Contreras, Dayana; Hamilton, Nicklas

    2014-11-21

    Gluconeogenesis is an active pathway in Leishmania amastigotes and is essential for their survival within the mammalian cells. However, our knowledge about this pathway in trypanosomatids is very limited. We investigated the role of glycerol kinase (GK), phosphoenolpyruvate carboxykinase (PEPCK), and pyruvate phosphate dikinase (PPDK) in gluconeogenesis by generating the respective Leishmania mexicana Δgk, Δpepck, and Δppdk null mutants. Our results demonstrated that indeed GK, PEPCK, and PPDK are key players in the gluconeogenesis pathway in Leishmania, although stage-specific differences in their contribution to this pathway were found. GK participates in the entry of glycerol in promastigotes and amastigotes; PEPCK participates in the entry of aspartate in promastigotes, and PPDK is involved in the entry of alanine in amastigotes. Furthermore, the majority of alanine enters into the pathway via decarboxylation of pyruvate in promastigotes, whereas pathway redundancy is suggested for the entry of aspartate in amastigotes. Interestingly, we also found that l-lactate, an abundant glucogenic precursor in mammals, was used by Leishmania amastigotes to synthesize mannogen, entering the pathway through PPDK. On the basis of these new results, we propose a revision in the current model of gluconeogenesis in Leishmania, emphasizing the differences between amastigotes and promastigotes. This work underlines the importance of studying the trypanosomatid intracellular life cycle stages to gain a better understanding of the pathologies caused in humans. © 2014 by The American Society for Biochemistry and Molecular Biology, Inc.

  4. A plant/fungal-type phosphoenolpyruvate carboxykinase located in the parasite mitochondrion ensures glucose-independent survival of Toxoplasma gondii.

    PubMed

    Nitzsche, Richard; Günay-Esiyok, Özlem; Tischer, Maximilian; Zagoriy, Vyacheslav; Gupta, Nishith

    2017-09-15

    Toxoplasma gondii is considered to be one of the most successful intracellular pathogens, because it can reproduce in varied nutritional milieus, encountered in diverse host cell types of essentially any warm-blooded organism. Our earlier work demonstrated that the acute (tachyzoite) stage of T. gondii depends on cooperativity of glucose and glutamine catabolism to meet biosynthetic demands. Either of these two nutrients can sustain the parasite survival; however, what determines the metabolic plasticity has not yet been resolved. Here, we reveal two discrete phosphoenolpyruvate carboxykinase (PEPCK) enzymes in the parasite, one of which resides in the m i t ochondrion ( Tg PEPCK mt ), whereas the other protein is n ot e xpressed in t achyzoites ( Tg PEPCK net ). Parasites with an intact glycolysis can tolerate genetic deletions of Tg PEPCK mt as well as of Tg PEPCK net , indicating their nonessential roles for tachyzoite survival. Tg PEPCK net can also be ablated in a glycolysis-deficient mutant, while Tg PEPCK mt is refractory to deletion. Consistent with this, the lytic cycle of a conditional mutant of Tg PEPCK mt in the glycolysis-impaired strain was aborted upon induced repression of the mitochondrial isoform, demonstrating its essential role for the glucose-independent survival of parasites. Isotope-resolved metabolomics of the conditional mutant revealed defective flux of glutamine-derived carbon into RNA-bound ribose sugar as well as metabolites associated with gluconeogenesis, entailing a critical nodal role of PEPCK mt in linking catabolism of glucose and glutamine with anabolic pathways. Our data also suggest a homeostatic function of Tg PEPCK mt in cohesive operation of glycolysis and the tricarboxylic acid cycle in a normal glucose-replete milieu. Conversely, we found that the otherwise integrative enzyme pyruvate carboxylase ( Tg PyC) is dispensable not only in glycolysis-competent but also in glycolysis-deficient tachyzoites despite a mitochondrial

  5. Glucose-Specific Enzyme IIA of the Phosphoenolpyruvate:Carbohydrate Phosphotransferase System Modulates Chitin Signaling Pathways in Vibrio cholerae.

    PubMed

    Yamamoto, Shouji; Ohnishi, Makoto

    2017-09-15

    In Vibrio cholerae , the genes required for chitin utilization and natural competence are governed by the chitin-responsive two-component system (TCS) sensor kinase ChiS. In the classical TCS paradigm, a sensor kinase specifically phosphorylates a cognate response regulator to activate gene expression. However, our previous genetic study suggested that ChiS stimulates the non-TCS transcriptional regulator TfoS by using mechanisms distinct from classical phosphorylation reactions (S. Yamamoto, J. Mitobe, T. Ishikawa, S. N. Wai, M. Ohnishi, H. Watanabe, and H. Izumiya, Mol Microbiol 91:326-347, 2014, https://doi.org/10.1111/mmi.12462). TfoS specifically activates the transcription of tfoR , encoding a small regulatory RNA essential for competence gene expression. Whether ChiS and TfoS interact directly remains unknown. To determine if other factors mediate the communication between ChiS and TfoS, we isolated transposon mutants that turned off tfoR :: lacZ expression but possessed intact chiS and tfoS genes. We demonstrated an unexpected association of chitin-induced signaling pathways with the glucose-specific enzyme IIA (EIIA glc ) of the phosphoenolpyruvate:carbohydrate phosphotransferase system (PTS) for carbohydrate uptake and catabolite control of gene expression. Genetic and physiological analyses revealed that dephosphorylated EIIA glc inactivated natural competence and tfoR transcription. Chitin-induced expression of the chb operon, which is required for chitin transport and catabolism, was also repressed by dephosphorylated EIIA glc Furthermore, the regulation of tfoR and chb expression by EIIA glc was dependent on ChiS and intracellular levels of ChiS were not affected by disruption of the gene encoding EIIA glc These results define a previously unknown connection between the PTS and chitin signaling pathways in V. cholerae and suggest a strategy whereby this bacterium can physiologically adapt to the existing nutrient status. IMPORTANCE The EIIA glc

  6. Starvation beneficially influences the liver physiology and nutrient metabolism in Edwardsiella tarda infected red sea bream (Pagrus major).

    PubMed

    Mohapatra, Sipra; Chakraborty, Tapas; Shimizu, Sonoko; Urasaki, Shintaro; Matsubara, Takahiro; Nagahama, Yoshitaka; Ohta, Kohei

    2015-11-01

    Dietary compromises, especially food restrictions, possess species-specific effects on the health status and infection control in several organisms, including fish. To understand the starvation-mediated physiological responses in Edwardsiella tarda infected red sea bream, especially in the liver, we performed a 20-day starvation experiment using 4 treatment (2 fed and 2 starved) groups, namely, fed-placebo, starved-placebo, fed-infected, and starved-infected, wherein bacterial exposure was done on the 11th day. In the present study, the starved groups showed reduced hepatosomatic index and drastic depletion in glycogen storage and vacuole formation. The fed-infected fish showed significant (P<0.05) increase in catalase and superoxide dismutase activity in relation to its starved equivalent. Significant (P<0.05) alteration in glucose and energy metabolism, as evident from hexokinase and glucose-6-phosphate dehydrogenase activity, was recorded in the starved groups. Interestingly, coinciding with the liver histology, PPAR (peroxisome proliferator activated receptors) α transcription followed a time-dependent activation in starved groups while PPARγ exhibited an opposite pattern. The transcription of hepcidin 1 and transferrin, initially increased in 0dai (days after infection) starved fish but reduced significantly (P<0.05) at later stages. Two-color immunohistochemistry and subsequent cell counting showed significant increase in P63-positive cells at 0dai and 5dai but later reduced slightly at 10dai. Similar results were also obtained in the lysosomal (cathepsin D) and non-lysosomal (ubiquitin) gene transcription level. All together, our data suggest that starvation exerts multidirectional responses, which allows for better physiological adaptations during any infectious period, in red sea bream. Copyright © 2015 Elsevier Inc. All rights reserved.

  7. Serum starvation-induced voltage-gated potassium channel Kv7.5 expression and its regulation by Sp1 in canine osteosarcoma cells.

    PubMed

    Lee, Bo Hyung; Ryu, Pan Dong; Lee, So Yeong

    2014-01-10

    The KCNQ gene family, whose members encode Kv7 channels, belongs to the voltage-gated potassium (Kv) channel group. The roles of this gene family have been widely investigated in nerve and muscle cells. In the present study, we investigated several characteristics of Kv7.5, which is strongly expressed in the canine osteosarcoma cell line, CCL-183. Serum starvation upregulated Kv7.5 expression, and the Kv7 channel opener, flupirtine, attenuated cell proliferation by arresting cells in the G0/G1 phase. We also showed that Kv7.5 knockdown helps CCL-183 cells to proliferate. In an effort to find an endogenous regulator of Kv7.5, we used mithramycin A to reduce the level of the transcription factor Sp1, and it strongly inhibited the induction of Kv7.5 in CCL-183 cells. These results suggest that the activation of Kv7.5 by flupirtine may exert an anti-proliferative effect in canine osteosarcoma. Therefore, Kv7.5 is a possible molecular target for canine osteosarcoma therapy.

  8. Leaf Senescence and Starvation-Induced Chlorosis Are Accelerated by the Disruption of an Arabidopsis Autophagy Gene1

    PubMed Central

    Hanaoka, Hideki; Noda, Takeshi; Shirano, Yumiko; Kato, Tomohiko; Hayashi, Hiroaki; Shibata, Daisuke; Tabata, Satoshi; Ohsumi, Yoshinori

    2002-01-01

    Autophagy is an intracellular process for vacuolar bulk degradation of cytoplasmic components. The molecular machinery responsible for yeast and mammalian autophagy has recently begun to be elucidated at the cellular level, but the role that autophagy plays at the organismal level has yet to be determined. In this study, a genome-wide search revealed significant conservation between yeast and plant autophagy genes. Twenty-five plant genes that are homologous to 12 yeast genes essential for autophagy were discovered. We identified an Arabidopsis mutant carrying a T-DNA insertion within AtAPG9, which is the only ortholog of yeast Apg9 in Arabidopsis (atapg9-1). AtAPG9 is transcribed in every wild-type organ tested but not in the atapg9-1 mutant. Under nitrogen or carbon-starvation conditions, chlorosis was observed earlier in atapg9-1 cotyledons and rosette leaves compared with wild-type plants. Furthermore, atapg9-1 exhibited a reduction in seed set when nitrogen starved. Even under nutrient growth conditions, bolting and natural leaf senescence were accelerated in atapg9-1 plants. Senescence-associated genes SEN1 and YSL4 were up-regulated in atapg9-1 before induction of senescence, unlike in wild type. All of these phenotypes were complemented by the expression of wild-type AtAPG9 in atapg9-1 plants. These results imply that autophagy is required for maintenance of the cellular viability under nutrient-limited conditions and for efficient nutrient use as a whole plant. PMID:12114572

  9. Phosphoenolpyruvate Transporter Enables Targeted Perturbation During Metabolic Analysis of L-Phenylalanine Production With Escherichia coli.

    PubMed

    Tröndle, Julia; Albermann, Christoph; Weiner, Michael; Sprenger, Georg A; Weuster-Botz, Dirk

    2018-05-01

    Usually perturbation of the metabolism of cells by addition of substrates is applied for metabolic analysis of production organisms, but perturbation studies are restricted to the endogenous substrates of the cells under study. The goal of this study is to overcome this limitation by making phosphoenolpyruvate (PEP) available for perturbation studies with Escherichia coli producing L-phenylalanine. A production strain overexpressing a PEP-transporter variant (UhpT-D388C) is applied in a standardized fed-batch production-process on a 42 L-scale. Four parallel short-term perturbation experiments of 20 min are performed with glucose and glycerol as fed-batch carbon sources after rapid media transition of cells from the production-process. PEP is added after 9 min and is immediately consumed by the cells with up to 1.5 mmol g CDW -1  h -1 . L-phenylalanine production rates increased by up to 200% after addition of PEP. This clearly indicates an intracellular PEP-limitation in the L-phenylalanine production strain under study. Thus, it is shown that overexpressing specific transporters for analytical reasons makes exogenous substrates available as perturbation substrates for metabolic analyses of cells sampled from production-processes and thereby allows a very targeted perturbation of whole-cell metabolism. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. The contribution of stored malate and citrate to the substrate requirements of metabolism of ripening peach (Prunus persica L. Batsch) flesh is negligible. Implications for the occurrence of phosphoenolpyruvate carboxykinase and gluconeogenesis.

    PubMed

    Famiani, Franco; Farinelli, Daniela; Moscatello, Stefano; Battistelli, Alberto; Leegood, Richard C; Walker, Robert P

    2016-04-01

    The first aim of this study was to determine the contribution of stored malate and citrate to the substrate requirements of metabolism in the ripening flesh of the peach (Prunus persica L. Batsch) cultivar Adriatica. In the flesh, stored malate accumulated before ripening could contribute little or nothing to the net substrate requirements of metabolism. This was because there was synthesis and not dissimilation of malate throughout ripening. Stored citrate could potentially contribute a very small amount (about 5.8%) of the substrate required by metabolism when the whole ripening period was considered, and a maximum of about 7.5% over the latter part of ripening. The second aim of this study was to investigate why phosphoenolpyruvate carboxykinase (PEPCK) an enzyme utilised in gluconeogenesis from malate and citrate is present in peach flesh. The occurrence and localisation of enzymes utilised in the metabolism of malate, citrate and amino acids were determined in peach flesh throughout its development. Phosphoenolpyruvate carboxylase (essential for the synthesis of malate and citrate) was present in the same cells and at the same time as PEPCK and NADP-malic enzyme (both utilised in the dissimilation of malate and citrate). A hypothesis is presented to explain the presence of these enzymes and to account for the likely occurrence of gluconeogenesis. Copyright © 2016 Elsevier Masson SAS. All rights reserved.

  11. Evidence of the Trade-Off between Starvation and Predation Risks in Ducks

    PubMed Central

    Zimmer, Cédric; Boos, Mathieu; Poulin, Nicolas; Gosler, Andrew; Petit, Odile; Robin, Jean-Patrice

    2011-01-01

    The theory of trade-off between starvation and predation risks predicts a decrease in body mass in order to improve flight performance when facing high predation risk. To date, this trade-off has mainly been validated in passerines, birds that store limited body reserves for short-term use. In the largest avian species in which the trade-off has been investigated (the mallard, Anas platyrhynchos), the slope of the relationship between mass and flight performance was steeper in proportion to lean body mass than in passerines. In order to verify whether the same case can be applied to other birds with large body reserves, we analyzed the response to this trade-off in two other duck species, the common teal (Anas crecca) and the tufted duck (Aythya fuligula). Predation risk was simulated by disturbing birds. Ducks within disturbed groups were compared to non-disturbed control birds. In disturbed groups, both species showed a much greater decrease in food intake and body mass during the period of simulated high risk than those observed in the control group. This loss of body mass allows reaching a more favourable wing loading and increases power for flight, hence enhancing flight performances and reducing predation risk. Moreover, body mass loss and power margin gain in both species were higher than in passerines, as observed in mallards. Our results suggest that the starvation-predation risk trade-off is one of the major life history traits underlying body mass adjustments, and these findings can be generalized to all birds facing predation. Additionally, the response magnitude seems to be influenced by the strategy of body reserve management. PMID:21789252

  12. Enzyme II/sup Mtl/ of the Escherichia coli phosphoenolpyruvate-dependent phosphotransferase system: identification of the activity-linked cysteine on the mannitol carrier

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pas, H.H.; Robillard, G.T.

    1988-07-26

    The cysteine of the membrane-bound mannitol-specific enzyme II (EII/sup Mtl/) of the Escherichia coli phosphoenolpyruvate-dependent phosphotransferase system have been labeled with 4-vinylpyridine. After proteolytic breakdown and reversed-phase HPLC, the peptides containing cysteines 110, 384, and 571 could be identified. N-Ethylmaleimide (NEM) treatment of the native unphosphorylated enzyme results in incorporation of one NEM label per molecule and loss of enzymatic activity. NEM treatment and inactivation prevented 4-vinylpyridine incorporation into the Cys-384-containing peptide, identifying this residue as the activity-linked cysteine. Both oxidation and phosphorylation of the native enzyme protected the enzyme against NEM labeling of Cys-384. Positive identification of the activity-linkedmore » cysteine was accomplished by inactivation with (/sup 14/C)iodoacetamide, proteolytic fragmentation, isolation of the peptide, and amino acid sequencing.« less

  13. Development, glycolytic activity, and viability of preimplantation mouse embryos subjected to different periods of glucose starvation.

    PubMed

    Leppens-Luisier, G; Sakkas, D

    1997-03-01

    After compaction, the preimplantation mouse embryo switches to a glucose-based metabolism, whereas for the 2- to 4-cell stage embryo, glucose can be inhibitory. In this study, we investigated the adaptability of preimplantation embryos to different periods of glucose starvation by culturing in vitro fertilized (IVF) and in vivo-fertilized 1-cell OF1 mouse embryos. Blastocysts obtained from exposure to glucose starvation for different periods of time were examined for the number of cells in the trophectoderm and inner cell mass, and for glycolytic activity and viability. A high percentage of blastocysts was obtained when 1-cell embryos fertilized in vitro or in vivo were cultured in M16 until the 2-cell stage, were transferred to M16 without glucose (M16-G) until the 4- or 8-cell stage, and then were transferred to fresh M16-G. When in vivo-fertilized 1-cell embryos were cultured to the 2-cell stage and then left in M16, less than 5% formed blastocysts compared to 26% of those transferred into M16-G. Blastocysts obtained when in vivo-fertilized 1-cell embryos were left in M16-G after the 2-cell stage, however, showed a significantly elevated glycolytic activity compared to those transferred to fresh M16 or M16-G medium at the 4- or 8-cell stage. Interestingly, even though these embryos displayed elevated glycolytic activity, they did not exhibit differences in the numbers of inner cell mass and trophectoderm cells or in viability compared to embryos cultured according to other protocols. Blastocysts from all cultured protocols had a significantly lower total cell number and a lower trophectoderm, but not inner cell mass, cell number compared to blastocysts developed in vivo. This study documents the metabolic adaptability of the preimplantation embryo by highlighting its ability to proceed with development and retain viability when challenged with glucose starvation at different periods.

  14. Phenformin-induced Hypoglycaemia in Normal Subjects*

    PubMed Central

    Lyngsøe, J.; Trap-Jensen, J.

    1969-01-01

    Study of the effect of phenformin on the blood glucose level in normal subjects before and during 70 hours of starvation showed a statistically significant hypoglycaemic effect after 40 hours of starvation. This effect was not due to increased glucose utilization. Another finding in this study was a statistically significant decrease in total urinary nitrogen excretion during starvation in subjects given phenformin. These findings show that the hypoglycaemic effect of phenformin in starved normal subjects is due to inhibition of gluconeogenesis. PMID:5780431

  15. Reduced Gut Acidity Induces an Obese-Like Phenotype in Drosophila melanogaster and in Mice

    PubMed Central

    Yen, Jui-Hung; Kuo, Ping-Chang; Yeh, Sheng-Rong; Lin, Hung-Yu; Fu, Tsai-Feng; Wu, Ming-Shiang; Wang, Horng-Dar; Wang, Pei-Yu

    2015-01-01

    In order to identify genes involved in stress and metabolic regulation, we carried out a Drosophila P-element-mediated mutagenesis screen for starvation resistance. We isolated a mutant, m2, that showed a 23% increase in survival time under starvation conditions. The P-element insertion was mapped to the region upstream of the vha16-1 gene, which encodes the c subunit of the vacuolar-type H+-ATPase. We found that vha16-1 is highly expressed in the fly midgut, and that m2 mutant flies are hypomorphic for vha16-1 and also exhibit reduced midgut acidity. This deficit is likely to induce altered metabolism and contribute to accelerated aging, since vha16-1 mutant flies are short-lived and display increases in body weight and lipid accumulation. Similar phenotypes were also induced by pharmacological treatment, through feeding normal flies and mice with a carbonic anhydrase inhibitor (acetazolamide) or proton pump inhibitor (PPI, lansoprazole) to suppress gut acid production. Our study may thus provide a useful model for investigating chronic acid suppression in patients. PMID:26436771

  16. PDK4 Deficiency Induces Intrinsic Apoptosis in Response to Starvation in Fibroblasts from Doberman Pinschers with Dilated Cardiomyopathy.

    PubMed

    Taggart, Kathryn; Estrada, Amara; Thompson, Patrick; Lourenco, Francisco; Kirmani, Sara; Suzuki-Hatano, Silveli; Pacak, Christina A

    2017-01-01

    The Doberman pinscher (DP) canine breed displays a high incidence of idiopathic, nonischemic dilated cardiomyopathy (DCM) with increased mortality. A common mutation in DPs is a splice site deletion in the pyruvate dehydrogenase kinase 4 (PDK4) gene that shows a positive correlation with DCM development. PDK4, a vital mitochondrial protein, controls the switch between glycolysis and oxidative phosphorylation based upon nutrient availability. It is likely, although unproven, that DPs with the PDK4 mutation are unable to switch to oxidative phosphorylation during periods of low nutrient availability, and thus are highly susceptible to mitochondrial-mediated apoptosis. This study investigated cell viability, mitochondrial stress, and activation of the intrinsic (mitochondrial mediated) apoptotic pathway in dermal fibroblasts from DPs that were healthy (PDK4 wt/wt ), heterozygous (PDK4 wt/del ), and homozygous (PDK4 del/del ) for the PDK4 mutation under conditions of high (unstarved) and low (starved) nutrient availability in vitro . As hypothesized, PDK4 wt/del and PDK4 del/del cells showed evidence of mitochondrial stress and activation of the intrinsic apoptotic pathway following starvation, while the PDK4 wt/wt cells remained healthy and viable under these conditions. Adeno-associated virus (AAV) PDK4-mediated gene replacement experiments confirmed cause-effect relationships between PDK4 deficiency and apoptosis activation. The restoration of function observed following administration of AAV-PDK4 provides strong support for the translation of this gene therapy approach into the clinical realm for PDK4-affected Dobermans.

  17. Recombinant thermoactive phosphoenolpyruvate carboxylase (PEPC) from Thermosynechococcus elongatus and its coupling with mesophilic/thermophilic bacterial carbonic anhydrases (CAs) for the conversion of CO2 to oxaloacetate.

    PubMed

    Del Prete, Sonia; De Luca, Viviana; Capasso, Clemente; Supuran, Claudiu T; Carginale, Vincenzo

    2016-01-15

    With the continuous increase of atmospheric CO2 in the last decades, efficient methods for carbon capture, sequestration, and utilization are urgently required. The possibility of converting CO2 into useful chemicals could be a good strategy to both decreasing the CO2 concentration and for achieving an efficient exploitation of this cheap carbon source. Recently, several single- and multi-enzyme systems for the catalytic conversion of CO2 mainly to bicarbonate have been implemented. In order to design and construct a catalytic system for the conversion of CO2 to organic molecules, we implemented an in vitro multienzyme system using mesophilic and thermophilic enzymes. The system, in fact, was constituted by a recombinant phosphoenolpyruvate carboxylase (PEPC) from the thermophilic cyanobacterium Thermosynechococcus elongatus, in combination with mesophilic/thermophilic bacterial carbonic anhydrases (CAs), for converting CO2 into oxaloacetate, a compound of potential utility in industrial processes. The catalytic procedure is in two steps: the conversion of CO2 into bicarbonate by CA, followed by the carboxylation of phosphoenolpyruvate with bicarbonate, catalyzed by PEPC, with formation of oxaloacetate (OAA). All tested CAs, belonging to α-, β-, and γ-CA classes, were able to increase OAA production compared to procedures when only PEPC was used. Interestingly, the efficiency of the CAs tested in OAA production was in good agreement with the kinetic parameters for the CO2 hydration reaction of these enzymes. This PEPC also revealed to be thermoactive and thermostable, and when coupled with the extremely thermostable CA from Sulphurhydrogenibium azorense (SazCA) the production of OAA was achieved even if the two enzymes were exposed to temperatures up to 60 °C, suggesting a possible role of the two coupled enzymes in biotechnological processes. Copyright © 2015 Elsevier Ltd. All rights reserved.

  18. The effect of aerobic exercise and starvation on growth performance and postprandial metabolic response in juvenile southern catfish (Silurus meridionalis).

    PubMed

    Li, Xiu-Ming; Liu, Li; Yuan, Jian-Ming; Xiao, Yuan-Yuan; Fu, Shi-Jian; Zhang, Yao-Guang

    2016-03-01

    To investigate the effects of aerobic exercise and starvation on growth performance, postprandial metabolic response and their interaction in a sedentary fish species, either satiation-fed or starved juvenile southern catfish (Silurus meridionalis) were exercised at 25 °C under three water velocities, i.e., nearly still water (control), 1 body length (bl) s(-1) and 2 bl s(-1), for eight weeks. Then, the feed intake (FI), food conversion efficiency (FCE), specific growth rate (SGR), morphological parameters, resting ṀO2 (ṀO2rest) and postprandial ṀO2 responses of the experimental fish were measured. Exercise at a low velocity (1 bl s(-1)) showed no effect on any growth performance parameter, whereas exercise at a high velocity (2 bl s(-1)) exhibited higher FI but similar SGR due to the extra energy expenditure from swimming and consequent decreased FCE. Starvation led to a significant body mass loss, whereas the effect intensified in both exercise groups. Exercise resulted in improved cardio-respiratory capacity, as indicated by increased gill and heart indexes, whereas it exhibited no effect on resting and postprandial metabolism in S. meridionalis. The starved fish displayed significantly larger heart, gill and digestive tract indexes compared with the feeding fish, suggesting selective maintenance of cardio-respiratory and digestive function in this fish species during starvation. However, starved fish still exhibited impaired digestive performance, as evidenced by the prolonged duration and low postprandial metabolic increase, and this effect was further exacerbated in both the 1 and 2 bl s(-1) exercise groups. These data suggest the following: (1) aerobic exercise produced no improvement in growth performance but may have led to the impairment of growth under insufficient food conditions; (2) the mass of different organs and tissues responded differently to aerobic exercise and starvation due to the different physiological roles they play; and (3

  19. Proximal Gut Mucosal Epithelial Homeostasis in Aged IL-1 Type I Receptor Knockout Mice After Starvation

    DTIC Science & Technology

    2011-08-01

    increases whole-body lean mass and insulin sensitivity in elderly subjects with sarcopenia . Am J Cardiol. 2008; 101:69E. [PubMed: 18157968] 11. Iwakiri R...nutritional deficiencies in the elderly can be corrected by nutritional supplementation [5-7], especially among patients who are fed enterally [8-10...mechanistic approach regarding intestinal cell dysfunction in the elderly . Starvation causes mucosal atrophy and loss of mucosal height [32], and glutamine

  20. Lipid markers of diet history and their retention during experimental starvation in the Bering Sea euphausiid Thysanoessa raschii

    NASA Astrophysics Data System (ADS)

    Pleuthner, Rachel L.; Shaw, C. Tracy; Schatz, Megan J.; Lessard, Evelyn J.; Harvey, H. Rodger

    2016-12-01

    Two extended pulsed feeding experiments, following the spring bloom period, investigated lipid retention in the prominent Bering Sea euphausiid (krill) Thysanoessa raschii. These experiments occurred during late spring and early summer of 2010. Concurrent taxonomic analysis of the natural algal community allowed prey type to be linked to lipid composition of the natural communities. In late spring, experimental periods of feeding followed by starvation showed an overall decrease in total lipid for T. raschii. In early summer, no consistent trend was observed for total lipid with the visible presence of storage lipid in some animals. Polar lipids, as phospholipids, were the dominant krill lipid class in both experiments constituting ≥88% of total lipid, and triacylglycerols reached a maximum of 5% of total lipid. The sterols cholesterol and brassicasterol+desmosterol comprised 98-99% of total sterol abundances in T. raschii throughout both experiments, even after feeding periods when alternative sterols (i.e. the algal sterol 24-methylenecholesterol) accounted for up to 39% of sterols in potential food particles. Cholesterol abundance and concentration increased during both incubations, likely due to the metabolism of dietary sterols. Major fatty acids observed in krill included C14:0n, C16:0n, C16:1(n-7), C18:1(n-7), C18:1(n-9), C20:5(n-3), and C22:6(n-3) with the diatom-attributed C16:1(n-7) decreasing in abundance and concentration during starvation. Low concentrations of the dinoflagellate-derived sterol and a novel C28:8 PUFA, typically found in dinoflagellates and prymnesiophytes, indicated predation on protozooplankton in early summer when diatom abundances were low. The stability of lipid distributions over periods of starvation and intermittent feeding suggest that fatty acid and sterol biomarkers present in this polar euphausiid principally reflect long-term diet history rather than short-term feeding episodes.

  1. Metabolite Profiling of Low-P Tolerant and Low-P Sensitive Maize Genotypes under Phosphorus Starvation and Restoration Conditions

    PubMed Central

    Ganie, Arshid Hussain; Ahmad, Altaf; Pandey, Renu; Aref, Ibrahim M.; Yousuf, Peerzada Yasir; Ahmad, Sayeed; Iqbal, Muhammad

    2015-01-01

    Background Maize (Zea mays L.) is one of the most widely cultivated crop plants. Unavoidable economic and environmental problems associated with the excessive use of phosphatic fertilizers demands its better management. The solution lies in improving the phosphorus (P) use efficiency to sustain productivity even at low P levels. Untargeted metabolomic profiling of contrasting genotypes provides a snap shot of whole metabolome which differs under specific conditions. This information provides an understanding of the mechanisms underlying tolerance to P stress and the approach for increasing P-use-efficiency. Methodology/Principal Findings A comparative metabolite-profiling approach based on gas chromatography-mass spectrometry (GC/MS) was applied to investigate the effect of P starvation and its restoration in low-P sensitive (HM-4) and low-P tolerant (PEHM-2) maize genotypes. A comparison of the metabolite profiles of contrasting genotypes in response to P-deficiency revealed distinct differences among low-P sensitive and tolerant genotypes. Another set of these genotypes were grown under P-restoration condition and sampled at different time intervals (3, 5 and 10 days) to investigate if the changes in metabolite profile under P-deficiency was restored. Significant variations in the metabolite pools of these genotypes were observed under P-deficiency which were genotype specific. Out of 180 distinct analytes, 91 were identified. Phosphorus-starvation resulted in accumulation of di- and trisaccharides and metabolites of ammonium metabolism, specifically in leaves, but decreased the levels of phosphate-containing metabolites and organic acids. A sharp increase in the concentrations of glutamine, asparagine, serine and glycine was observed in both shoots and roots under low-P condition. Conclusion The new insights generated on the maize metabolome in resposne to P-starvation and restoration would be useful towards improvement of the P-use efficiency in maize. PMID

  2. Brain-midgut short neuropeptide F mechanism that inhibits digestive activity of the American cockroach, Periplaneta americana upon starvation.

    PubMed

    Mikani, Azam; Wang, Qiu-Shi; Takeda, Makio

    2012-03-01

    Immunohistochemical reactivity against short neuropeptide F (sNPF) was observed in the brain-corpus cardiacum and midgut paraneurons of the American cockroach, Periplaneta americana. Four weeks of starvation increased the number of sNPF-ir cells in the midgut epithelium but the refeeding decreased the number in 3h. Dramatic rises in sNPF contents in the midgut epithelium and hemolymph of roaches starved for 4 weeks were confirmed by ELISA. Starvation for 4 weeks reduced α-amylase, protease and lipase activities in the midgut of P. americana but refeeding restored these to high levels. Co-incubation of dissected midgut with sNPF at physiological concentrations inhibited α-amylase, protease and lipase activities. sNPF injection into the hemocoel led to a decrease in α-amylase, protease and lipase activities, whereas PBS injection had no effects. The injection of d-(+)-trehalose and l-proline into the hemocoel of decapitated adult male cockroaches that had been starved for 4 weeks had no effect on these digestive enzymes. However, injection into the hemocoel of head-intact starved cockroaches stimulated digestive activity. Injection of d-(+)-trehalose and l-proline into the lumen of decapitated cockroaches that had been starved for 4 weeks increased enzymes activities and suppressed sNPF in the midgut. Our data indicate that sNPF from the midgut paraneurons suppresses α-amylase, protease and lipase activities during starvation. Injection of d-(+)-trehalose/l-proline into the hemocoel of head-intact starved cockroach decreased the hemolymph sNPF content, which suggests that sNPF could be one of the brain factors, demonstrating brain-midgut interplay in the regulation of digestive activities and possibly nutrition-associated behavioral modifications. Copyright © 2011 Elsevier Inc. All rights reserved.

  3. Dissecting nutrient-related co-expression networks in phosphate starved poplars.

    PubMed

    Kavka, Mareike; Polle, Andrea

    2017-01-01

    Phosphorus (P) is an essential plant nutrient, but its availability is often limited in soil. Here, we studied changes in the transcriptome and in nutrient element concentrations in leaves and roots of poplars (Populus × canescens) in response to P deficiency. P starvation resulted in decreased concentrations of S and major cations (K, Mg, Ca), in increased concentrations of N, Zn and Al, while C, Fe and Mn were only little affected. In roots and leaves >4,000 and >9,000 genes were differently expressed upon P starvation. These genes clustered in eleven co-expression modules of which seven were correlated with distinct elements in the plant tissues. One module (4.7% of all differentially expressed genes) was strongly correlated with changes in the P concentration in the plant. In this module the GO term "response to P starvation" was enriched with phosphoenolpyruvate carboxylase kinases, phosphatases and pyrophosphatases as well as regulatory domains such as SPX, but no phosphate transporters. The P-related module was also enriched in genes of the functional category "galactolipid synthesis". Galactolipids substitute phospholipids in membranes under P limitation. Two modules, one correlated with C and N and the other with biomass, S and Mg, were connected with the P-related module by co-expression. In these modules GO terms indicating "DNA modification" and "cell division" as well as "defense" and "RNA modification" and "signaling" were enriched; they contained phosphate transporters. Bark storage proteins were among the most strongly upregulated genes in the growth-related module suggesting that N, which could not be used for growth, accumulated in typical storage compounds. In conclusion, weighted gene coexpression network analysis revealed a hierarchical structure of gene clusters, which separated phosphate starvation responses correlated with P tissue concentrations from other gene modules, which most likely represented transcriptional adjustments related to

  4. Evolution of Mycolic Acid Biosynthesis Genes and Their Regulation during Starvation in Mycobacterium tuberculosis

    PubMed Central

    Jamet, Stevie; Quentin, Yves; Coudray, Coralie; Texier, Pauline; Laval, Françoise; Daffé, Mamadou

    2015-01-01

    ABSTRACT Mycobacterium tuberculosis, the etiological agent of tuberculosis, is a Gram-positive bacterium with a unique cell envelope composed of an essential outer membrane. Mycolic acids, which are very-long-chain (up to C100) fatty acids, are the major components of this mycomembrane. The enzymatic pathways involved in the biosynthesis and transport of mycolates are fairly well documented and are the targets of the major antituberculous drugs. In contrast, only fragmented information is available on the expression and regulation of the biosynthesis genes. In this study, we report that the hadA, hadB, and hadC genes, which code for the mycolate biosynthesis dehydratase enzymes, are coexpressed with three genes that encode proteins of the translational apparatus. Consistent with the well-established control of the translation potential by nutrient availability, starvation leads to downregulation of the hadABC genes along with most of the genes required for the synthesis, modification, and transport of mycolates. The downregulation of a subset of the biosynthesis genes is partially dependent on RelMtb, the key enzyme of the stringent response. We also report the phylogenetic evolution scenario that has shaped the current genetic organization, characterized by the coregulation of the hadABC operon with genes of the translational apparatus and with genes required for the modification of the mycolates. IMPORTANCE Mycobacterium tuberculosis infects one-third of the human population worldwide, and despite the available therapeutic arsenal, it continues to kill millions of people each year. There is therefore an urgent need to identify new targets and develop a better understanding of how the bacterium is adapting itself to host defenses during infection. A prerequisite of this understanding is knowledge of how this adaptive skill has been implanted by evolution. Nutrient scarcity is an environmental condition the bacterium has to cope with during infection. In many

  5. H2O2 treatment or serum deprivation induces autophagy and apoptosis in naked mole-rat skin fibroblasts by inhibiting the PI3K/Akt signaling pathway.

    PubMed

    Zhao, Shanmin; Li, Li; Wang, Shiyong; Yu, Chenlin; Xiao, Bang; Lin, Lifang; Cong, Wei; Cheng, Jishuai; Yang, Wenjing; Sun, Wei; Cui, Shufang

    2016-12-20

    Naked mole-rats (NMR; Heterocephalus glaber) display extreme longevity and resistance to cancer. Here, we examined whether autophagy contributes to the longevity of NMRs by assessing the effects of the PI3K/Akt pathway inhibitor LY294002 and the autophagy inhibitor chloroquine (CQ) on autophagy and apoptosis in NMR skin fibroblasts. Serum starvation, H2O2 treatment, and LY294002 treatment all increased the LC3-II/LC3-I ratio and numbers of double-membraned autophagosomes and autophagic vacuoles, and decreased levels of p70S6K, p-AktSer473, and p-AktThr308. By contrast, CQ treatment decreased p70S6K, AktSer473, and AktThr308 levels. The Bax/Bcl-2 ratio increased after 12 h of exposure to LY294002 or CQ. These data show that inhibiting the Akt pathway promotes autophagy and apoptosis in NMR skin fibroblasts. Furthermore, LY294002 or CQ treatment decreased caspase-3, p53, and HIF1-α levels, suggesting that serum starvation or H2O2 treatment increase autophagy and apoptosis in NMR skin fibroblasts by inhibiting the PI3K/Akt pathway. CQ-induced inhibition of late autophagy stages also prevented Akt activation and induced apoptosis. Finally, the HIF-1α and p53 pathways were involved in serum starvation- or H2O2-induced autophagy in NMR skin fibroblasts.

  6. Tauroursodeoxycholic acid (TUDCA) alleviates endoplasmic reticulum stress of nuclear donor cells under serum starvation.

    PubMed

    Zhang, Ying; Qu, Pengxiang; Ma, Xiaonan; Qiao, Fang; Ma, Yefei; Qing, Suzhu; Zhang, Yong; Wang, Yongsheng; Cui, Wei

    2018-01-01

    Serum starvation is a routine protocol for synchronizing nuclear donor cells to G0/G1 phase during somatic cell nuclear transfer (SCNT). However, abrupt serum deprivation can cause serious stress to the cells cultured in vitro, which might result in endoplasmic reticulum (ER) stress, chromosome damage, and finally reduce the success rate of SCNT. In the present study, the effects of tauroursodeoxycholic acid (TUDCA), an effective ER stress-relieving drug, on the nuclear donor cells under serum deprivation condition as well as following SCNT procedures were first assessed in the bovine. The results showed that TUDCA significantly reduced ER stress and cell apoptosis in those nuclear donor cells. Moreover, it significantly decreased the expression of Hdac1 and Dnmt1, and increased the level of H3K9 acetylation in nuclear donor cells compared with control group. SCNT reconstructed embryos cloned from TUDCA-treated donor cells showed significantly higher fusion, cleavage, blastocyst formation rate, total cell number in day 7 blastocysts, and lower apoptotic index than that from control group. In addition, the expression of Hdac1, Dnmt1 and Bax was significantly lower in blastocysts derived from TUDCA-treated donor cells than that from control group. In conclusion, TUDCA significantly reduced the ER stress of nuclear donor cells under serum starvation condition, and significantly improved the developmental competence of following SCNT reconstructed embryos when these TUDCA-treated cells were used as the nuclear donors.

  7. Dormancy in Deinococcus sp. UDEC-P1 as a survival strategy to escape from deleterious effects of carbon starvation and temperature.

    PubMed

    Guerra, Matías; González, Karina; González, Carlos; Parra, Boris; Martínez, Miguel

    2015-09-01

    Dormancy is characterized by low metabolism and absence of protein synthesis and cellular division enabling bacterial cells to survive under stress. The aim was to determine if carbon starvation and low temperature are factors that modify the proportion of dormant/active cells in Deinococcus sp. UDEC-P1. By flow cytometry, RedoxSensor Green (RSG) was used to quantify metabolic activity and Propidium Iodide (PI) to evaluate membrane integrity in order to determine the percentage of dormant cells. Cell size and morphology were determined using scanning electronic microscopy. Under carbon starvation at 30°C, Deinococcus sp. UDEC-P1 increased its proportion of dormant cells from 0.1% to 20%, decreased the count of culturable cells and average cell volume decreased 7.1 times. At 4°C, however, the proportion of dormant cells increased only to 6%, without a change in the count of culturable cells and an average cellular volume decrease of 4.1 times and 3% of the dormant cells were able to be awakened. Results indicate a greater proportion of dormant Deinococcus sp. UDEC-P1 cells at 30ºC and it suggests that carbon starvation is more deleterious condition at 30ºC than 4ºC. For this reason Deinococcus sp. UDEC-P1 cells are more likely to enter into dormancy at higher temperature as a strategy to survive. Copyright© by the Spanish Society for Microbiology and Institute for Catalan Studies.

  8. Relationship between NH sub 4 sup + assimilation rate and in vivo phosphoenolpyruvate carboxylase activity

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vanlerberghe, G.C.; Schuller, K.A.; Smith, R.G.

    The rate of NH{sub 4}{sup +} assimilation by N-limited Selenastrum minutum (Naeg.) Collins cells in the dark was set as an independent variable and the relationship between NH{sub 4}{sup +} assimilation rate and in vivo activity of phosphoenolpyruvate carboxylase (PEPC) was determined. In vivo activity of PEPC was measured by following the incorporation of H{sup 14}CO{sub 3}{sup {minus}} into acid stable products. A linear relationship of 0.3 moles C fixed via PEPC per mole N assimilated was observed. This value agrees extremely well with the PEPC requirement for the synthesis of the amino acids found in total cellular protein. Determinationsmore » of metabolite levels in vivo at different rates of N assimilation indicated that the known metabolite effectors of S. minutum PEPC in vitro (KA Schuller, WC Plaxton, DH Turpin, (1990) Plant Physiol 93: 1303-1311) are important regulators of this enzyme during N assimilation. As PEPC activity increased in response to increasing rates of N assimilation, there was a corresponding decline in the level of PEPC inhibitors (2-oxoglutarate, malate), an increase in the level of PEPC activators (glutamine, dihydroxyacetone phosphate), and an increase in the Gln/Glu ratio. Treatment of N-limited cells with azaserine caused an increase in the Gln/Glu ratio resulting in increased PEPC activity in the absence of N assimilation. We suggest glutamate and glutamine play a key role in regulating the anaplerotic function of PEPC in this C{sub 3} organism.« less

  9. Disorders of fuel metabolism: medical complications associated with starvation, eating disorders, dietary fads, and supplements.

    PubMed

    Judge, Bryan S; Eisenga, Bernard H

    2005-08-01

    Disorders of fuel metabolism as they relate to abnormal fuel intake,abnormal fuel expenditure, and dietary supplements are the focus of this article. The emergency physician should be aware of the medical complications that can occur as a result of starvation states,eating disorders, fad diets, hypermetabolic states, and ergogenic aids. Knowledge and understanding of the complications associated with these disorders will facilitate the diagnosis and management of patients who present to the emergency department with any of the disorders reviewed.

  10. A multi-species synthesis of physiological mechanisms in drought-induced tree mortality

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Adams, Henry D.; Zeppel, Melanie J. B.; Anderegg, William R. L.

    Widespread tree mortality associated with drought has been observed on all forested continents, and global change is expected to exacerbate vegetation vulnerability. Forest mortality has implications for future biosphere-atmosphere interactions of carbon, water, and energy balance, and is poorly represented in dynamic vegetation models. Reducing uncertainty requires improved mortality projections founded on robust physiological processes. However, the proposed mechanisms of drought-induced mortality, including hydraulic failure and carbon starvation, are unresolved. A growing number of empirical studies have investigated these mechanisms, but data have not been consistently analyzed across species and biomes using a standardized physiological framework. Here we show thatmore » xylem hydraulic failure was ubiquitous across multiple tree taxa at drought-induced mortality. All species assessed had 60% or greater loss of xylem hydraulic conductivity, consistent with proposed theoretical and modelled survival thresholds. We found diverse responses in non-structural carbohydrates at mortality, indicating that evidence supporting carbon starvation was not universal. Reduced non-structural carbohydrates were more common for gymnosperms than angiosperms, associated with xylem hydraulic vulnerability, and may have a role in hydraulic deterioration. The consistent Our finding that across species of hydraulic failure at drought-induced mortality was persistent across species indicates that substantial improvement in vegetation modelling can be achieved using thresholds in hydraulic function.« less

  11. Changes in plastid proteome and structure in arbuscular mycorrhizal roots display a nutrient starvation signature.

    PubMed

    Daher, Zeina; Recorbet, Ghislaine; Solymosi, Katalin; Wienkoop, Stefanie; Mounier, Arnaud; Morandi, Dominique; Lherminier, Jeannine; Wipf, Daniel; Dumas-Gaudot, Eliane; Schoefs, Benoît

    2017-01-01

    During arbuscular mycorrhizal symbiosis, arbuscule-containing root cortex cells display a proliferation of plastids, a feature usually ascribed to an increased plant anabolism despite the lack of studies focusing on purified root plastids. In this study, we investigated mycorrhiza-induced changes in plastidic pathways by performing a label-free comparative subcellular quantitative proteomic analysis targeted on plastid-enriched fractions isolated from Medicago truncatula roots, coupled to a cytological analysis of plastid structure. We identified 490 root plastid protein candidates, among which 79 changed in abundance upon mycorrhization, as inferred from spectral counting. According to cross-species sequence homology searches, the mycorrhiza-responsive proteome was enriched in proteins experimentally localized in thylakoids, whereas it was depleted of proteins ascribed predominantly to amyloplasts. Consistently, the analysis of plastid morphology using transmission electron microscopy indicated that starch depletion associated with the proliferation of membrane-free and tubular membrane-containing plastids was a feature specific to arbusculated cells. The loss of enzymes involved in carbon/nitrogen assimilation and provision of reducing power, coupled to macromolecule degradation events in the plastid-enriched fraction of mycorrhizal roots that paralleled lack of starch accumulation in arbusculated cells, lead us to propose that arbuscule functioning elicits a nutrient starvation and an oxidative stress signature that may prime arbuscule breakdown. © 2016 Scandinavian Plant Physiology Society.

  12. The Response of Diatom Central Carbon Metabolism to Nitrogen Starvation Is Different from That of Green Algae and Higher Plants1[W

    PubMed Central

    Hockin, Nicola Louise; Mock, Thomas; Mulholland, Francis; Kopriva, Stanislav; Malin, Gill

    2012-01-01

    The availability of nitrogen varies greatly in the ocean and limits primary productivity over large areas. Diatoms, a group of phytoplankton that are responsible for about 20% of global carbon fixation, respond rapidly to influxes of nitrate and are highly successful in upwelling regions. Although recent diatom genome projects have highlighted clues to the success of this group, very little is known about their adaptive response to changing environmental conditions. Here, we compare the proteome of the marine diatom Thalassiosira pseudonana (CCMP 1335) at the onset of nitrogen starvation with that of nitrogen-replete cells using two-dimensional gel electrophoresis. In total, 3,310 protein spots were distinguishable, and we identified 42 proteins increasing and 23 decreasing in abundance (greater than 1.5-fold change; P < 0.005). Proteins involved in the metabolism of nitrogen, amino acids, proteins, and carbohydrates, photosynthesis, and chlorophyll biosynthesis were represented. Comparison of our proteomics data with the transcriptome response of this species under similar growth conditions showed good correlation and provided insight into different levels of response. The T. pseudonana response to nitrogen starvation was also compared with that of the higher plant Arabidopsis (Arabidopsis thaliana), the green alga Chlamydomonas reinhardtii, and the cyanobacterium Prochlorococcus marinus. We have found that the response of diatom carbon metabolism to nitrogen starvation is different from that of other photosynthetic eukaryotes and bears closer resemblance to the response of cyanobacteria. PMID:22065419

  13. Effect of starvation and exercise on actual and total activity of the branched-chain 2-oxo acid dehydrogenase complex in rat tissues.

    PubMed Central

    Wagenmakers, A J; Schepens, J T; Veerkamp, J H

    1984-01-01

    Starvation does not change the actual activity per g of tissue of the branched-chain 2-oxo acid dehydrogenase in skeletal muscles, but affects the total activity to a different extent, depending on the muscle type. The activity state (proportion of the enzyme present in the active state) does not change in diaphragm and decreases in quadriceps muscle. Liver and kidney show an increase of both activities, without a change of the activity state. In heart and brain no changes were observed. Related to organ wet weights, the actual activity present in the whole-body muscle mass decreases on starvation, whereas the activities present in liver and kidney do not change, or increase slightly. Exercise (treadmill-running) of untrained rats for 15 and 60 min causes a small increase of the actual activity and the activity state of the branched-chain 2-oxo acid dehydrogenase complex in heart and skeletal muscle. Exercise for 1 h, furthermore, increased the actual and the total activity in liver and kidney, without a change of the activity state. In brain no changes were observed. The actual activity per g of tissue in skeletal muscle was less than 2% of that in liver and kidney, both before and after exercise and starvation. Our data indicate that the degradation of branched-chain 2-oxo acids predominantly occurs in liver and to a smaller extent in kidney and skeletal muscle in fed, starved and exercised rats. PMID:6508743

  14. Sequence and expression of the genes for HPr (ptsH) and enzyme I (ptsI) of the phosphoenolpyruvate-dependent phosphotransferase transport system from Streptococcus mutans.

    PubMed Central

    Boyd, D A; Cvitkovitch, D G; Hamilton, I R

    1994-01-01

    We report the sequencing of a 2,242-bp region of the Streptococcus mutants NG5 genome containing the genes for ptsH and ptsI, which encode HPr and enzyme I (EI), respectively, of the phosphoenolpyruvate-dependent phosphotransferase transport system. The sequence was obtained from two cloned overlapping genomic fragments; one expresses HPr and a truncated EI, while the other expresses a full-length EI in Escherichia coli, as determined by Western immunoblotting. The ptsI gene appeared to be expressed from a region located in the ptsH gene. The S. mutans NG5 pts operon does not appear to be linked to other phosphotransferase transport system proteins as has been found in other bacteria. A positive fermentation pattern on MacConkey-glucose plates by an E. coli ptsI mutant harboring the S. mutans NG5 ptsI gene on a plasmid indicated that the S. mutans NG5 EI can complement a defect in the E. coli gene. This was confirmed by protein phosphorylation experiments with 32P-labeled phosphoenolpyruvate indicating phosphotransfer from the S. mutans NG5 EI to the E. coli HPr. Two forms of the cloned EI, both truncated to varying degrees in the C-terminal region, were inefficiently phosphorylated and unable to complement fully the ptsI defect in the E. coli mutant. The deduced amino acid sequence of HPr shows a high degree of homology, particularly around the active site, to the same protein from other gram-positive bacteria, notably, S. salivarius, and to a lesser extent with those of gram-negative bacteria. The deduced amino acid sequence of S. mutans NG5 EI also shares several regions of homology with other sequenced EIs, notably, with the region around the active site, a region that contains the only conserved cystidyl residue among the various proteins and which may be involved in substrate binding. Images PMID:8132321

  15. Changes in composition of spider orb web sticky droplets with starvation and web removal, and synthesis of sticky droplet compounds

    PubMed Central

    Townley, Mark A.; Tillinghast, Edward K.; Neefus, Christopher D.

    2006-01-01

    Summary The sticky spiral of araneoid spider orb webs consists of silk fibers coated with adhesive droplets. The droplets contain a variety of low-molecular-mass compounds (LMM). Within a species, a fairly consistent ratio of LMM is often observed, but substantial variability can exist. To gain insight into factors influencing LMM composition, spiders of three araneid species were starved and LMM from their webs were analyzed for changes in composition. To determine if these changes were consistent with the spider’s ability to synthesize the different organic LMM, synthetic capacities were estimated following the feeding of radiolabeled metabolites. Some changes in droplet composition were broadly consistent with differing synthetic capacities: molar percentages of less readily synthesized compounds (e.g., choline, isethionate, n-acetyltaurine) typically declined with starvation, at least during a portion of the imposed fast, while more readily synthesized compounds (e.g., GABamide, glycine) tended to increase. Most striking was the apparent partial substitution of n-acetylputrescine by the more readily synthesized GABamide in fasting Argiope trifasciata. However, departures from expected compositional shifts demonstrated that synthetic capacity alone does not adequately predict sticky droplet compositional shifts with starvation. Moreover, feeding controls exhibited some changes in composition similar to starving spiders. As the webs of both feeding and starving spiders were removed for chemical analysis and could not be recycled, the loss of LMM contained in these webs likely contributed to similarities between treatments. In addition, feeding spiders molted, oviposited, and/or built heavier webs. The added metabolic demands of these activities may have contributed to changes in composition similar to those resulting from starvation. PMID:16574806

  16. Changes in composition of spider orb web sticky droplets with starvation and web removal, and synthesis of sticky droplet compounds.

    PubMed

    Townley, Mark A; Tillinghast, Edward K; Neefus, Christopher D

    2006-04-01

    The sticky spiral of araneoid spider orb webs consists of silk fibers coated with adhesive droplets. The droplets contain a variety of low-molecular-mass compounds (LMM). Within a species, a fairly consistent ratio of LMM is often observed, but substantial variability can exist. To gain insight into factors influencing LMM composition, spiders of three araneid species were starved and LMM from their webs were analyzed for changes in composition. To determine if these changes were consistent with the spider's ability to synthesize the different organic LMM, synthetic capacities were estimated following the feeding of radiolabeled metabolites. Some changes in droplet composition were broadly consistent with differing synthetic capacities: molar percentages of less readily synthesized compounds (e.g. choline, isethionate, N-acetyltaurine) typically declined with starvation, at least during a portion of the imposed fast, while more readily synthesized compounds (e.g. GABamide, glycine) tended to increase. Most striking was the apparent partial substitution of N-acetylputrescine by the more readily synthesized GABamide in fasting Argiope trifasciata. However, departures from expected compositional shifts demonstrated that synthetic capacity alone does not adequately predict sticky droplet compositional shifts with starvation. Moreover, feeding controls exhibited some changes in composition similar to starving spiders. As the webs of both feeding and starving spiders were removed for chemical analysis and could not be recycled, the loss of LMM contained in these webs likely contributed to similarities between treatments. In addition, feeding spiders molted, oviposited and/or built heavier webs. The added metabolic demands of these activities may have contributed to changes in composition similar to those resulting from starvation.

  17. Dynamic Changes in Yeast Phosphatase Families Allow for Specialization in Phosphate and Thiamine Starvation.

    PubMed

    Nahas, John V; Iosue, Christine L; Shaik, Noor F; Selhorst, Kathleen; He, Bin Z; Wykoff, Dennis D

    2018-05-10

    Convergent evolution is often due to selective pressures generating a similar phenotype. We observe relatively recent duplications in a spectrum of Saccharomycetaceae yeast species resulting in multiple phosphatases that are regulated by different nutrient conditions - thiamine and phosphate starvation. This specialization is both transcriptional and at the level of phosphatase substrate specificity. In Candida glabrata , loss of the ancestral phosphatase family was compensated by the co-option of a different histidine phosphatase family with three paralogs. Using RNA-seq and functional assays, we identify one of these paralogs, CgPMU3 , as a thiamine phosphatase. We further determine that the 81% identical paralog CgPMU2 does not encode thiamine phosphatase activity; however, both are capable of cleaving the phosphatase substrate, 1-napthyl-phosphate. We functionally demonstrate that members of this family evolved novel enzymatic functions for phosphate and thiamine starvation, and are regulated transcriptionally by either nutrient condition, and observe similar trends in other yeast species. This independent, parallel evolution involving two different families of histidine phosphatases suggests that there were likely similar selective pressures on multiple yeast species to recycle thiamine and phosphate. In this work, we focused on duplication and specialization, but there is also repeated loss of phosphatases, indicating that the expansion and contraction of the phosphatase family is dynamic in many Ascomycetes. The dynamic evolution of the phosphatase gene families is perhaps just one example of how gene duplication, co-option, and transcriptional and functional specialization together allow species to adapt to their environment with existing genetic resources. Copyright © 2018, G3: Genes, Genomes, Genetics.

  18. Effect of nitrogen-starvation, light intensity and iron on triacylglyceride/carbohydrate production and fatty acid profile of Neochloris oleoabundans HK-129 by a two-stage process.

    PubMed

    Sun, Xian; Cao, Yu; Xu, Hui; Liu, Yan; Sun, Jianrui; Qiao, Dairong; Cao, Yi

    2014-03-01

    Triacylglyceride (TAG) and carbohydrate are potential feedstock for biofuels production. In this study, a two-stage process was applied for enhancing TAG/carbohydrate production in the selected microalgae - Neochloris oleoabundans HK-129. In stage I, effects of nitrogen, light intensity and iron on cell growth were investigated, and the highest biomass productivity of 292.83±5.83mg/L/d was achieved. In stage II, different nitrogen-starvation periods, light intensities and iron concentrations were employed to trigger accumulation of TAG and carbohydrate. The culture under 2-day N-starvation, 200μmol/m(2)/s light intensity and 0.037mM Fe(3+) concentration produced the maximum TAG and carbohydrate productivity of 51.58mg/L/d and 90.70mg/L/d, respectively. Nitrogen starvation period and light intensity had marked effects on TAG/carbohydrate accumulation and fatty acids profile, compared to iron concentration. The microalgal lipid was mainly composed of C16/C18 fatty acids (90.02%), saturated fatty acids (29.82%), and monounsaturated fatty acids (32.67%), which is suitable for biodiesel synthesis. Copyright © 2014 Elsevier Ltd. All rights reserved.

  19. Hepatic Subcellular Compartmentation of Cytoplasmic Phosphoenolpyruvate Carboxykinase Determined by Immunogold Electron Microscopy

    NASA Astrophysics Data System (ADS)

    Gao, Kuixiong; Cardell, Emma Lou; Morris, Randal E.; Giffin, Bruce F.; Cardell, Robert R.

    1995-08-01

    Phosphoenolpyruvate carboxykinase (PEPCK) is the rate-limiting gluconeogenic enzyme and in liver occurs in a lobular gradient from periportal to pericentral regions. The subcellular distribution of cytoplasmic PEPCK molecules within hepatocytes and its relationship to organelles have not been determined previously. In this study, we have used immunogold electron microscopy to evaluate the subcellar distribution of the enzyme, in addition to brightfield and epipolarized light microscopy. Cryosections (10 [mu]m) of perfusion-fixed rat liver were collected on silanated slides and immunostained using goat anti-rat PEPCK followed by 5-nm gold-labeled secondary and tertiary antibodies. Additionally, free-floating vibratome sections (25, 50, and 100 [mu]m) of perfusion-immersion-fixed rat liver were immunogold stained using goat anti-rat PEPCK and 5-nm gold-labeled secondary antibody, with and without silver enhancement. The immunogold labeled sections from both procedures were embedded in epoxy resin for the preparation of thin sections for electron microscopy. The results showed that the gold-labeled antibodies penetrated the entire thickness of cryosections, resulting in a high signal for PEPCK, but membranes in general, the smooth endoplasmic reticulum in particular, were not identifiable as electron dense unit membranes. On the other hand, the vibratome sections of well-fixed tissue allowed good visualization of the ultrastructure of cellular organelles, with the smooth endoplasmic reticulum appearing as vesicles and tubules with electron dense unit membranes; however, the penetration of the gold-labeled antibody was limited to cells at the surface of the vibratome sections. In both procedures, PEPCK, as indicated by gold particles, is predominantly in the glycogen areas of the cytosome and not in mitochondria, nuclei, Golgi apparatus, or other cell organelles. Hepatocytes in periportal regions have a compact subcellular distribution of PEPCK shown by gold particles

  20. Significance of Phosphoenolpyruvate Carboxylase during Ammonium Assimilation: Carbon Isotope Discrimination in Photosynthesis and Respiration by the N-Limited Green Alga Selenastrum minutum.

    PubMed

    Guy, R D; Vanlerberghe, G C; Turpin, D H

    1989-04-01

    The effect of N-assimilation on the partitioning of carbon fixation between phosphoenolpyruvate carboxylase (PEPcase) and ribulose bisphosphate carboxylase/oxygenase (Rubisco) was determined by measuring stable carbon isotope discrimination during photosynthesis by an N-limited green alga, Selenastrum minutum (Naeg.) Collins. This was facilitated by a two process model accounting for simultaneous CO(2) fixation and respiratory CO(2) release. Discrimination by control cells was consistent with the majority of carbon being fixed by Rubisco. During nitrogen assimilation however, discrimination was greatly reduced indicating an enhanced flux through PEPcase which accounted for upward of 70% of total carbon fixation. This shift toward anaplerotic metabolism supports a large increase in tricarboxylic acid cycle activity primarily between oxaloacetate and alpha-ketoglutarate thereby facilitating the provision of carbon skeletons for amino acid synthesis. This provides an example of a unique set of conditions under which anaplerotic carbon fixation by PEPcase exceeds photosynthetic carbon fixation by Rubisco in a C(3) organism.

  1. Alkali production associated with malolactic fermentation by oral streptococci and protection against acid, oxidative, or starvation damage

    PubMed Central

    Sheng, Jiangyun; Baldeck, Jeremiah D.; Nguyen, Phuong T.M.; Quivey, Robert G.; Marquis, Robert E.

    2011-01-01

    Alkali production by oral streptococci is considered important for dental plaque ecology and caries moderation. Recently, malolactic fermentation (MLF) was identified as a major system for alkali production by oral streptococci, including Streptococcus mutans. Our major objectives in the work described in this paper were to further define the physiology and genetics of MLF of oral streptococci and its roles in protection against metabolic stress damage. l-Malic acid was rapidly fermented to l-lactic acid and CO2 by induced cells of wild-type S. mutans, but not by deletion mutants for mleS (malolactic enzyme) or mleP (malate permease). Mutants for mleR (the contiguous regulator gene) had intermediate capacities for MLF. Loss of capacity to catalyze MLF resulted in loss of capacity for protection against lethal acidification. MLF was also found to be protective against oxidative and starvation damage. The capacity of S. mutans to produce alkali from malate was greater than its capacity to produce acid from glycolysis at low pH values of 4 or 5. MLF acted additively with the arginine deiminase system for alkali production by Streptococcus sanguinis, but not with urease of Streptococcus salivarius. Malolactic fermentation is clearly a major process for alkali generation by oral streptococci and for protection against environmental stresses. PMID:20651853

  2. Alkali production associated with malolactic fermentation by oral streptococci and protection against acid, oxidative, or starvation damage.

    PubMed

    Sheng, Jiangyun; Baldeck, Jeremiah D; Nguyen, Phuong T M; Quivey, Robert G; Marquis, Robert E

    2010-07-01

    Alkali production by oral streptococci is considered important for dental plaque ecology and caries moderation. Recently, malolactic fermentation (MLF) was identified as a major system for alkali production by oral streptococci, including Streptococcus mutans. Our major objectives in the work described in this paper were to further define the physiology and genetics of MLF of oral streptococci and its roles in protection against metabolic stress damage. L-Malic acid was rapidly fermented to L-lactic acid and CO(2) by induced cells of wild-type S. mutans, but not by deletion mutants for mleS (malolactic enzyme) or mleP (malate permease). Mutants for mleR (the contiguous regulator gene) had intermediate capacities for MLF. Loss of capacity to catalyze MLF resulted in loss of capacity for protection against lethal acidification. MLF was also found to be protective against oxidative and starvation damage. The capacity of S. mutans to produce alkali from malate was greater than its capacity to produce acid from glycolysis at low pH values of 4 or 5. MLF acted additively with the arginine deiminase system for alkali production by Streptococcus sanguinis, but not with urease of Streptococcus salivarius. Malolactic fermentation is clearly a major process for alkali generation by oral streptococci and for protection against environmental stresses.

  3. Cloning and Molecular Analysis of a Mannitol Operon of Phosphoenolpyruvate-dependent Phosphotransferase (PTS) type From Vibrio cholerae O395

    PubMed Central

    Kumar, Sanath; Smith, Kenneth P.; Floyd, Jody L.; Varela, Manuel F.

    2010-01-01

    A putative mannitol operon of the phosphoenolpyruvate phosphotransferase (PTS) type was cloned from Vibrio cholerae O395 and its activity studied in Escherichia coli. The 3.9 kb operon comprising of three genes is organized as mtlADR. Based on the sequence analysis, these were identified as genes encoding a putative mannitol-specific enzyme IICBA (EIIMtl) component (MtlA), a mannitol-1-phosphate dehydrogenase (MtlD) and a mannitol operon repressor (MtlR). The transport of [3H]mannitol by the cloned mannitol operon in E. coli was 13.8±1.4 nmol/min/mg protein. The insertional inactivation of EIIMtl abolished mannitol and sorbitol transport in V. cholerae O395. Comparison of the mannitol utilization apparatus of V. cholerae with those of Gram-negative and Gram positive bacteria suggests highly conserved nature of the system. MtlA and MtlD exhibit 75% similarity with corresponding sequences of E. coli mannitol operon genes, while MtlR has 63% similarity with MtlR of E. coli. The cloning of V. cholerae mannitol utilization system in an E. coli background will help in elucidating the functional properties of this operon. PMID:21184218

  4. Multiple inter-kingdom horizontal gene transfers in the evolution of the phosphoenolpyruvate carboxylase gene family.

    PubMed

    Peng, Yingmei; Cai, Jing; Wang, Wen; Su, Bing

    2012-01-01

    Pepcase is a gene encoding phosphoenolpyruvate carboxylase that exists in bacteria, archaea and plants,playing an important role in plant metabolism and development. Most plants have two or more pepcase genes belonging to two gene sub-families, while only one gene exists in other organisms. Previous research categorized one plant pepcase gene as plant-type pepcase (PTPC) while the other as bacteria-type pepcase (BTPC) because of its similarity with the pepcase gene found in bacteria. Phylogenetic reconstruction showed that PTPC is the ancestral lineage of plant pepcase, and that all bacteria, protistpepcase and BTPC in plants are derived from a lineage of pepcase closely related with PTPC in algae. However, their phylogeny contradicts the species tree and traditional chronology of organism evolution. Because the diversification of bacteria occurred much earlier than the origin of plants, presumably all bacterialpepcase derived from the ancestral PTPC of algal plants after divergingfrom the ancestor of vascular plant PTPC. To solve this contradiction, we reconstructed the phylogeny of pepcase gene family. Our result showed that both PTPC and BTPC are derived from an ancestral lineage of gamma-proteobacteriapepcases, possibly via an ancient inter-kingdom horizontal gene transfer (HGT) from bacteria to the eukaryotic common ancestor of plants, protists and cellular slime mold. Our phylogenetic analysis also found 48other pepcase genes originated from inter-kingdom HGTs. These results imply that inter-kingdom HGTs played important roles in the evolution of the pepcase gene family and furthermore that HGTsare a more frequent evolutionary event than previouslythought.

  5. In vivo monoubiquitination of anaplerotic phosphoenolpyruvate carboxylase occurs at Lys624 in germinating sorghum seeds.

    PubMed

    Ruiz-Ballesta, Isabel; Feria, Ana-Belén; Ni, Hong; She, Yi-Min; Plaxton, William Charles; Echevarría, Cristina

    2014-02-01

    Phosphoenolpyruvate carboxylase (PEPC; EC 4.1.1.31) is an important cytosolic regulatory enzyme that plays a pivotal role in numerous physiological processes in plants, including seed development and germination. Previous studies demonstrated the occurrence of immunoreactive PEPC polypeptides of ~110 kDa and 107 kDa (p110 and p107, respectively) on immunoblots of clarified extracts of germinating sorghum (Sorghum bicolor) seeds. In order to establish the biochemical basis for this observation, a 460 kDa PEPC heterotetramer composed of an equivalent ratio of p110 and p107 subunits was purified to near homogeneity from the germinated seeds. Mass spectrometry established that p110 and p107 are both encoded by the same plant-type PEPC gene (CP21), but that p107 was in vivo monoubiquitinated at Lys624 to form p110. This residue is absolutely conserved in vascular plant PEPCs and is proximal to a PEP-binding/catalytic domain. Anti-ubiquitin IgG immunodetected p110 but not p107, whereas incubation with a deubiquitinating enzyme (USP-2 core) efficiently converted p110 into p107, while relieving the enzyme's feedback inhibition by L-malate. Partial PEPC monoubiquitination was also detected during sorghum seed development. It is apparent that monoubiquitination at Lys624 is opposed to phosphorylation at Ser7 in terms of regulating the catalytic activity of sorghum seed PEPC. PEPC monoubiquitination is hypothesized to fine-tune anaplerotic carbon flux according to the cell's immediate physiological requirements for tricarboxylic acid cycle intermediates needed in support of biosynthesis and carbon-nitrogen interactions.

  6. Heat inactivation of leaf phosphoenolpyruvate carboxylase: Protection by aspartate and malate in C4 plants.

    PubMed

    Rathnam, C K

    1978-01-01

    The activity of phosphoenolpyruvate (PEP) carboxylase EC 4.1.1.31 in leaf extracts of Eleusine indica L. Gaertn., a C4 plant, exhibited a temperature optimum of 35-37° C with a complete loss of activity at 50° C. However, the enzyme was protected effectively from heat inactivation up to 55° C by L-aspartate. Activation energies (Ea) for the enzyme in the presence of aspartate were 2.5 times lower than that of the control enzyme. Arrhenius plots of PEP carboxylase activity (±aspartate) showed a break in the slope around 17-20° C with a 3-fold increase in the Ea below the break. The discontinuity in the slopes was abolished by treating the enzyme extracts with Triton X-100, suggesting that PEP carboxylase in C4 plants is associated with lipid and may be a membrane bound enzyme. Depending upon the species, the major C4 acid formed during photosynthesis (malate or aspartate) was found to be more protective than the minor C4 acid against the heat inactivation of their PEP carboxylase. Oxaloacetate, the reaction product, was less effective compared to malate or aspartate. Several allosteric inhibitors of PEP carboxylase were found to be moderately to highly effective in protecting the C4 enzyme while its activators showed no significant effect. PEP carboxylase from C3 species was not protected from thermal inactivation by the C4 acids. The physiological significance of these results is discussed in relation to the high temperature tolerance of C4 plants.

  7. In vivo monoubiquitination of anaplerotic phosphoenolpyruvate carboxylase occurs at Lys624 in germinating sorghum seeds

    PubMed Central

    Echevarría, Cristina

    2014-01-01

    Phosphoenolpyruvate carboxylase (PEPC; EC 4.1.1.31) is an important cytosolic regulatory enzyme that plays a pivotal role in numerous physiological processes in plants, including seed development and germination. Previous studies demonstrated the occurrence of immunoreactive PEPC polypeptides of ~110kDa and 107kDa (p110 and p107, respectively) on immunoblots of clarified extracts of germinating sorghum (Sorghum bicolor) seeds. In order to establish the biochemical basis for this observation, a 460kDa PEPC heterotetramer composed of an equivalent ratio of p110 and p107 subunits was purified to near homogeneity from the germinated seeds. Mass spectrometry established that p110 and p107 are both encoded by the same plant-type PEPC gene (CP21), but that p107 was in vivo monoubiquitinated at Lys624 to form p110. This residue is absolutely conserved in vascular plant PEPCs and is proximal to a PEP-binding/catalytic domain. Anti-ubiquitin IgG immunodetected p110 but not p107, whereas incubation with a deubiquitinating enzyme (USP-2 core) efficiently converted p110 into p107, while relieving the enzyme’s feedback inhibition by l-malate. Partial PEPC monoubiquitination was also detected during sorghum seed development. It is apparent that monoubiquitination at Lys624 is opposed to phosphorylation at Ser7 in terms of regulating the catalytic activity of sorghum seed PEPC. PEPC monoubiquitination is hypothesized to fine-tune anaplerotic carbon flux according to the cell’s immediate physiological requirements for tricarboxylic acid cycle intermediates needed in support of biosynthesis and carbon–nitrogen interactions. PMID:24288181

  8. Glucose Tolerance Testing and Anthropometric Comparisons Among Rural Residents of Kyiv Region: Investigating the Possible Effect of Childhood Starvation-A Community-Based Study.

    PubMed

    Khalangot, Mykola D; Kovtun, Volodymir A; Okhrimenko, Nadia V; Gurianov, Vitaly G; Kravchenko, Victor I

    2017-01-01

    A relationship between childhood starvation and type 2 diabetes mellitus (T2D) in adulthood was previously indicated. Ukraine suffered a series of artificial famines between 1921 and 1947. Famines of 1932 to 1933 and 1946 were most severe among them. Long-term health consequences of these famines remain insufficiently investigated. Type 2 diabetes mellitus screening was conducted between June 2013 and December 2014. A total of 198 rural residents of Kyiv region more than 44 years of age, not registered as patients with T2D, were randomly selected. In all, 159 persons answered the question about starvation of parental family, including 73 born before 1947. Among them, 62 persons answered positive. Anthropometric measurements and glucose tolerance tests were performed. A logistic regression model was used to evaluate results. Type 2 diabetes mellitus was detected in 7 of 62 persons (11.3%), who starved during childhood vs 6 of 11 (54.5%) who did not ( P  = .002), age-adjusted and sex-adjusted odds ratio (OR) (95% confidence interval): 0.063 (0.007-0.557). Analysis of the anthropometric data revealed a negative connection between adulthood height and neck circumference (cm, continued variables) and childhood starvation: age-adjusted and sex-adjusted ORs 0.86 (0.76-0.97) and 0.73 (0.54-0.97), respectively. Individuals who starved during famines of 1932 to 1933 and 1946 in Ukraine had a decreased T2D prevalence several decades after the famine episodes.

  9. Cyclophilin D is required for mitochondrial removal by autophagy in cardiac cells

    PubMed Central

    Carreira, Raquel S.; Lee, Youngil; Ghochani, Mariam; Gustafsson, Åsa B.; Gottlieb, Roberta A.

    2013-01-01

    Autophagy is a highly regulated intracellular degradation process by which cells remove cytosolic long-lived proteins and damaged organelles. The mitochondrial permeability transition (MPT) results in mitochondrial depolarization and increased reactive oxygen species production, which can trigger autophagy. Therefore, we hypothesized that the MPT may have a role in signaling autophagy in cardiac cells. Mitochondrial membrane potential was lower in HL-1 cells subjected to starvation compared to cells maintained in full medium. Mitochondrial membrane potential was preserved in starved cells treated with cyclosporin A (CsA), suggesting the MPT pore is associated with starvation-induced depolarization. Starvation-induced autophagy in HL-1 cells, neonatal rat cardiomyocytes and adult mouse cardiomyocytes was inhibited by CsA. Starvation failed to induce autophagy in CypD-deficient murine cardiomyocytes, whereas in myocytes from mice overexpressing CypD the levels of autophagy were enhanced even under fed conditions. Collectively, these results demonstrate a role for CypD and the MPT in the initiation of autophagy. We also analyzed the role of the MPT in the degradation of mitochondria by biochemical analysis and electron microscopy. HL-1 cells subjected to starvation in the presence of CsA had higher levels of mitochondrial proteins (by Western blot), more mitochondria and less autophagosomes (by electron microscopy) then cells starved in the absence of CsA. Our results suggest a physiologic function for CypD and the MPT in the regulation of starvation-induced autophagy. Starvation-induced autophagy regulated by CypD and the MPT may represent a homeostatic mechanism for cellular and mitochondrial quality control. PMID:20364102

  10. The Capacity of Mycobacterium tuberculosis To Survive Iron Starvation Might Enable It To Persist in Iron-Deprived Microenvironments of Human Granulomas.

    PubMed

    Kurthkoti, Krishna; Amin, Hamel; Marakalala, Mohlopheni J; Ghanny, Saleena; Subbian, Selvakumar; Sakatos, Alexandra; Livny, Jonathan; Fortune, Sarah M; Berney, Michael; Rodriguez, G Marcela

    2017-08-15

    This study was conducted to investigate the role of iron deprivation in the persistence of Mycobacterium tuberculosis We present evidence of iron restriction in human necrotic granulomas and demonstrate that under iron starvation M. tuberculosis persists, refractive to antibiotics and capable of restarting replication when iron is made available. Transcriptomics and metabolomic analyses indicated that the persistence of M. tuberculosis under iron starvation is dependent on strict control of endogenous Fe utilization and is associated with upregulation of pathogenicity and intrinsic antibiotic resistance determinants. M. tuberculosis mutants compromised in their ability to survive Fe starvation were identified. The findings of this study advance the understanding of the physiological settings that may underpin the chronicity of human tuberculosis (TB) and are relevant to the design of effective antitubercular therapies. IMPORTANCE One-third of the world population may harbor persistent M. tuberculosis , causing an asymptomatic infection that is refractory to treatment and can reactivate to become potentially lethal tuberculosis disease. However, little is known about the factors that trigger and maintain M. tuberculosis persistence in infected individuals. Iron is an essential nutrient for M. tuberculosis growth. In this study, we show, first, that in human granulomas the immune defense creates microenvironments in which M. tuberculosis likely experiences drastic Fe deprivation and, second, that Fe-starved M. tuberculosis is capable of long-term persistence without growth. Together, these observations suggest that Fe deprivation in the lung might trigger a state of persistence in M. tuberculosis and promote chronic TB. We also identified vulnerabilities of iron-restricted persistent M. tuberculosis , which can be exploited for the design of new antitubercular therapies. Copyright © 2017 Kurthkoti et al.

  11. Plant, cell, and molecular mechanisms of abscisic-acid regulation of stomatal apertures. In vivo phosphorylation of phosphoenolpyruvate carboxylase in guard cells of Vicia faba L. is enhanced by fusicoccin and suppressed by abscisic acid

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Du, Z.; Aghoram, K.; Outlaw, W.H. Jr.

    Plants regulate water loss and CO{sub 2} gain by modulating the aperture sizes of stomata that penetrate the epidermis. Aperture size itself is increased by osmolyte accumulation and consequent turgor increase in the pair of guard cells that flank each stoma. Guard-cell phosphoenolpyruvate carboxylase, which catalyzes the regulated step leading to malate synthesis, is crucial for charge and pH maintenance during osmolyte accumulation. Regulation of this cytosolic enzyme by effectors is well documented, but additional regulation by posttranslational modification is predicted by the alteration of PEPC kinetics during stomatal opening. In this study, the authors have investigated whether this alterationmore » is associated with the phosphorylation status of this enzyme. Using sonicated epidermal peels (isolated guard cells) pre-loaded with {sub 32}PO{sub 4}, the authors induced stomatal opening and guard-cell malate accumulation by incubation with 5 {micro}M fusicoccin (FC). In corroboratory experiments, guard cells were incubated with 5 {micro}M fusicoccin (FC). In corroboratory experiments, guard cells were incubated with the FC antagonist, 10 {micro}M abscisic acid (ABA). The phosphorylation status of PEPC was assessed by immunoprecipitation, electrophoresis, immunoblotting, and autoradiography. PEPC was phosphorylated when stomata were stimulated to open, and phosphorylation was lessened by incubation with ABA.« less

  12. Expression of codon-optmized phosphoenolpyruvate carboxylase gene from Glaciecola sp. HTCC2999 in Escherichia coli and its application for C4 chemical production.

    PubMed

    Park, Soohyun; Pack, Seung Pil; Lee, Jinwon

    2012-08-01

    We examined the expression of the phosphoenolpyruvate carboxylase (PEPC) gene from marine bacteria in Escherichia coli using codon optimization. The codon-optimized PEPC gene was expressed in the E. coli K-12 strain W3110. SDS-PAGE analysis revealed that the codon-optimized PEPC gene was only expressed in E. coli, and measurement of enzyme activity indicated the highest PEPC activity in the E. coli SGJS112 strain that contained the codon-optimized PEPC gene. In fermentation assays, the E. coli SGJS112 produced the highest yield of oxaloacetate using glucose as the source and produced a 20-times increase in the yield of malate compared to the control. We concluded that the codon optimization enabled E. coli to express the PEPC gene derived from the Glaciecola sp. HTCC2999. Also, the expressed protein exhibited an enzymatic activity similar to that of E. coli PEPC and increased the yield of oxaloacetate and malate in an E. coli system.

  13. Starvation-responsive glycine-rich protein gene in the silkworm Bombyx mori.

    PubMed

    Taniai, Kiyoko; Hirayama, Chikara; Mita, Kazuei; Asaoka, Kiyoshi

    2014-10-01

    Four glycine-rich protein (GRP) genes were identified from expressed sequence tags of the maxillary galea of the silkworm. All four genes were expressed in the maxillary pulp, antenna, labrum, and labium, but none of the genes were expressed in most internal organs. Expression of one of the genes, termed bmSIGRP, was further increased approximately fivefold in the mouth region (including the maxilla, antenna, labrum, labium, and mandible) after 24 h of starvation. bmSIGRP expression peaked at 24 h and gradually declined during the subsequent 2 days. When a synthetic diet not containing proteins was fed, bmSIGRP expression increased significantly in the mouth region to levels similar to that observed in starved larvae. Synthetic diets that lacked vitamins or salts but contained amino acids did not significantly affect bmSIGRP expression. These results suggest that amino acid depletion increases bmSIGRP expression.

  14. Nitrogen starvation of cyanobacteria results in the production of β-N-methylamino-L-alanine.

    PubMed

    Downing, S; Banack, S A; Metcalf, J S; Cox, P A; Downing, T G

    2011-08-01

    β-N-Methylamino-L-alanine, an unusual amino acid implicated in neurodegenerative disease, has been detected in cultures of nearly all genera of environmentally ubiquitous cyanobacteria tested. The compound is present within cyanobacterial cells in free and protein-associated forms, with large variations occurring in the concentration of these pools between species as well as within single strains. With a lack of knowledge and supporting data on the regulation of BMAA production and the role of this compound in cyanobacteria, the association between BMAA and cyanobacteria is still subject to debate. In this study we investigated the biosynthesis of BMAA in axenic non-diazotrophic cyanobacterial cultures using the stable isotope ¹⁵N. Nitrogen starvation of nutritionally replete cells resulted in an increase in free cellular ¹⁵N BMAA suggesting that BMAA may be the result of catabolism to provide nitrogen or that BMAA is synthesised to serve a functional role in the cell in response to nitrogen deprivation. The addition of NO₃⁻ and NH₄⁺ to the culture medium following starvation resulted in a decrease of free cellular BMAA without a corresponding increase in the protein-associated fraction. The use of ammonia as a nitrogen source resulted in a more rapid reduction of BMAA when compared to nitrate. This study provides the first data regarding the regulation of intracellular BMAA concentrations in cyanobacteria with results conclusively showing the production of ¹⁵N BMAA by an axenic cyanobacterial culture. Copyright © 2011 Elsevier Ltd. All rights reserved.

  15. Effects of phosphoenolpyruvate carboxylase desensitization on glutamic acid production in Corynebacterium glutamicum ATCC 13032.

    PubMed

    Wada, Masaru; Sawada, Kazunori; Ogura, Kotaro; Shimono, Yuta; Hagiwara, Takuya; Sugimoto, Masakazu; Onuki, Akiko; Yokota, Atsushi

    2016-02-01

    Phosphoenolpyruvate carboxylase (PEPC) in Corynebacterium glutamicum ATCC13032, a glutamic-acid producing actinobacterium, is subject to feedback inhibition by metabolic intermediates such as aspartic acid and 2-oxoglutaric acid, which implies the importance of PEPC in replenishing oxaloacetic acid into the TCA cycle. Here, we investigated the effects of feedback-insensitive PEPC on glutamic acid production. A single amino-acid substitution in PEPC, D299N, was found to relieve the feedback control by aspartic acid, but not by 2-oxoglutaric acid. A simple mutant, strain R1, having the D299N substitution in PEPC was constructed from ATCC 13032 using the double-crossover chromosome replacement technique. Strain R1 produced glutamic acid at a concentration of 31.0 g/L from 100 g/L glucose in a jar fermentor culture under biotin-limited conditions, which was significantly higher than that of the parent, 26.0 g/L (1.19-fold), indicative of the positive effect of desensitized PEPC on glutamic acid production. Another mutant, strain DR1, having both desensitized PEPC and PYK-gene deleted mutations, was constructed in a similar manner using strain D1 with a PYK-gene deleted mutation as the parent. This mutation had been shown to enhance glutamic acid production in our previous study. Although marginal, strain D1 produced higher glutamic acid, 28.8 g/L, than ATCC13032 (1.11-fold). In contrast, glutamic acid production by strain DR-1 was elevated up to 36.9 g/L, which was 1.42-fold higher than ATCC13032 and significantly higher than the other three strains. The results showed a synergistic effect of these two mutations on glutamic acid production in C. glutamicum. Copyright © 2015 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.

  16. Gene-nutrient interactions on the phosphoenolpyruvate carboxykinase influence insulin sensitivity in metabolic syndrome subjects.

    PubMed

    Perez-Martinez, Pablo; Garcia-Rios, Antonio; Delgado-Lista, Javier; Gjelstad, Ingrid M F; Gibney, James; Kieć-Wilk, Beata; Camargo, Antonio; Helal, Olfa; Karlström, Brita; Blaak, Ellen E; Hall, Wendy; Risérus, Ulf; Dembińska-Kieć, Aldona; Defoort, Catherine; Saris, Wim H M; Lovegrove, Julie A; Drevon, Christian A; Roche, Helen M; Lopez-Miranda, Jose

    2013-08-01

    Genetic background may interact with habitual dietary fat composition, and affect development of the metabolic syndrome (MetS). The phosphoenolpyruvate carboxykinase gene (PCK1) plays a significant role regulating glucose metabolism, and fatty acids are key metabolic regulators, which interact with transcription factors and influence glucose metabolism. We explored genetic variability at the PCK1 gene locus in relation to degree of insulin resistance and plasma fatty acid levels in MetS subjects. Moreover, we analyzed the PCK1 gene expression in the adipose tissue of a subgroup of MetS subjects according to the PCK1 genetic variants. Insulin sensitivity, insulin secretion, glucose effectiveness, plasma concentrations of C-peptide, fatty acid composition and three PCK1 tag-single nucleotide polymorphisms (SNPs) were determined in 443 MetS participants in the LIPGENE cohort. The rs2179706 SNP interacted with plasma concentration of n - 3 polyunsaturated fatty acids (n - 3 PUFA), which were significantly associated with plasma concentrations of fasting insulin, peptide C, and HOMA-IR. Among subjects with n - 3 PUFA levels above the population median, carriers of the C/C genotype exhibited lower plasma concentrations of fasting insulin (P = 0.036) and HOMA-IR (P = 0.019) as compared with C/C carriers with n - 3 PUFA below the median. Moreover, homozygous C/C subjects with n - 3 PUFA levels above the median showed lower plasma concentrations of peptide C as compared to individuals with the T-allele (P = 0.006). Subjects carrying the T-allele showed a lower gene PCK1 expression as compared with carriers of the C/C genotype (P = 0.015). The PCK1 rs2179706 polymorphism interacts with plasma concentration of n - 3 PUFA levels modulating insulin resistance in MetS subjects. Copyright © 2012 Elsevier Ltd and European Society for Clinical Nutrition and Metabolism. All rights reserved.

  17. A conserved two-component signal transduction system controls the response to phosphate starvation in Bifidobacterium breve UCC2003.

    PubMed

    Alvarez-Martin, Pablo; Fernández, Matilde; O'Connell-Motherway, Mary; O'Connell, Kerry Joan; Sauvageot, Nicolas; Fitzgerald, Gerald F; MacSharry, John; Zomer, Aldert; van Sinderen, Douwe

    2012-08-01

    This work reports on the identification and molecular characterization of the two-component regulatory system (2CRS) PhoRP, which controls the response to inorganic phosphate (P(i)) starvation in Bifidobacterium breve UCC2003. The response regulator PhoP was shown to bind to the promoter region of pstSCAB, specifying a predicted P(i) transporter system, as well as that of phoU, which encodes a putative P(i)-responsive regulatory protein. This interaction is assumed to cause transcriptional modulation under conditions of P(i) limitation. Our data suggest that the phoRP genes are subject to positive autoregulation and, together with pstSCAB and presumably phoU, represent the complete regulon controlled by the phoRP-encoded 2CRS in B. breve UCC2003. Determination of the minimal PhoP binding region combined with bioinformatic analysis revealed the probable recognition sequence of PhoP, designated here as the PHO box, which together with phoRP is conserved among many high-GC-content Gram-positive bacteria. The importance of the phoRP 2CRS in the response of B. breve to P(i) starvation conditions was confirmed by analysis of a B. breve phoP insertion mutant which exhibited decreased growth under phosphate-limiting conditions compared to its parent strain UCC2003.

  18. A Conserved Two-Component Signal Transduction System Controls the Response to Phosphate Starvation in Bifidobacterium breve UCC2003

    PubMed Central

    Alvarez-Martin, Pablo; Fernández, Matilde; O'Connell-Motherway, Mary; O'Connell, Kerry Joan; Sauvageot, Nicolas; Fitzgerald, Gerald F.; MacSharry, John; Zomer, Aldert

    2012-01-01

    This work reports on the identification and molecular characterization of the two-component regulatory system (2CRS) PhoRP, which controls the response to inorganic phosphate (Pi) starvation in Bifidobacterium breve UCC2003. The response regulator PhoP was shown to bind to the promoter region of pstSCAB, specifying a predicted Pi transporter system, as well as that of phoU, which encodes a putative Pi-responsive regulatory protein. This interaction is assumed to cause transcriptional modulation under conditions of Pi limitation. Our data suggest that the phoRP genes are subject to positive autoregulation and, together with pstSCAB and presumably phoU, represent the complete regulon controlled by the phoRP-encoded 2CRS in B. breve UCC2003. Determination of the minimal PhoP binding region combined with bioinformatic analysis revealed the probable recognition sequence of PhoP, designated here as the PHO box, which together with phoRP is conserved among many high-GC-content Gram-positive bacteria. The importance of the phoRP 2CRS in the response of B. breve to Pi starvation conditions was confirmed by analysis of a B. breve phoP insertion mutant which exhibited decreased growth under phosphate-limiting conditions compared to its parent strain UCC2003. PMID:22635988

  19. Molecular mechanisms in response to phosphate starvation in rice.

    PubMed

    Panigrahy, Madhusmita; Rao, D Nageswara; Sarla, N

    2009-01-01

    Phosphorus is one of the most important elements that significantly affect plant growth and metabolism. Among the macro-nutrients, phosphorus is the least available to the plants as major phosphorus content of the fertiliser is sorbed by soil particles. An increased knowledge of the regulatory mechanisms controlling plant's phosphorus status is vital for improving phosphorus uptake and P-use efficiency and for reducing excessive input of fertilisers, while maintaining an acceptable yield. Phosphorus use efficiency has been studied using forward and reverse genetic analyses of mutants, quantitative genomic approaches and whole plant physiology but all these studies need to be integrated for a clearer understanding. We provide a critical overview on the molecular mechanisms and the components involved in the plant during phosphorus starvation. Then we summarize the information available on the genes and QTLs involved in phosphorus signalling and also the methods to estimate total phosphate in plant tissue. Also, an effort is made to build a comprehensive picture of phosphorus uptake, homeostasis, assimilation, remobilization, its deposition in the grain and its interaction with other micro- and macro-nutrients as well as phytohormones.

  20. The Influence of Age, Sex, Pregnancy, Starvation, and Other Factors on the Cytoplasmic Ribonucleoproteins of Rat Liver

    PubMed Central

    Petermann, Mary L.; Hamilton, Mary G.

    1958-01-01

    Rat liver was homogenized in 0.88 M sucrose. The DNA and total RNA were determined, and the homogenate was fractionated by differential centrifugation. The pellets obtained between 30 minutes at 20,000 g and 180 minutes at 105,000 g were analyzed for RNA and nitrogen. The ribonucleoproteins were determined in the analytical ultracentrifuge. The non-pellet RNA was calculated by difference. The results are reported as amounts per 6.7 x 10-9 mg. of DNA. In young, growing male rats the amounts of microsomal protein and ribonucleoprotein B (83S) increased with age. Non-pregnant adult females showed less non-pellet RNA and much more ribonucleoprotein C (63S) than did adult males. During pregnancy both of these cell constituents reverted to levels characteristic for male animals. Starvation for 5 days resulted in a reduction in the mass of liver tissue, the non-pellet RNA, the microsomal protein, and ribonucleoproteins B and C. During recovery from starvation the return of the liver to normal paralleled the rate at which body weight was restored. Treatment with cortisone, 25 mg. per rat per day for 5 days, caused an increase in microsomal protein and a decrease in ribonucleoprotein B. Treatment with 6-mercapto-purine, 50 mg. per kilo per day for 5 days, caused little change in liver composition in either males or females. PMID:13610943

  1. Phosphoenolpyruvate carboxykinase of Trypanosoma brucei is targeted to the glycosomes by a C-terminal sequence.

    PubMed

    Sommer, J M; Nguyen, T T; Wang, C C

    1994-08-15

    Import of proteins into the glycosomes of T. brucei resembles the peroxisomal protein import in that C-terminal SKL-like tripeptide sequences can function as targeting signals. Many of the glycosomal proteins do not, however, possess such C-terminal tripeptide signals. Among these, phosphoenolpyruvate carboxykinase (PEPCK (ATP)) was thought to be targeted to the glycosomes by an N-terminal or an internal targeting signal. A limited similarity to the N-terminal targeting signal of rat peroxisomal thiolase exists at the N-terminus of T. brucei PEPCK. However, we found that this peroxisomal targeting signal does not function for glycosomal protein import in T. brucei. Further studies of the PEPCK gene revealed that the C-terminus of the predicted protein does not correspond to the previously deduced protein sequence of 472 amino acids due to a -1 frame shift error in the original DNA sequence. Readjusting the reading frame of the sequence results in a predicted protein of 525 amino acids in length ending in a tripeptide serine-arginine-leucine (SRL), which is a potential targeting signal for import into the glycosomes. A fusion protein of firefly luciferase, without its own C-terminal SKL targeting signal, and T. brucei PEPCK is efficiently imported into the glycosomes when expressed in procyclic trypanosomes. Deletion of the C-terminal SRL tripeptide or the last 29 amino acids of PEPCK reduced the import only by about 50%, while a deletion of the last 47 amino acids completely abolished the import. These results suggest that T. brucei PEPCK may contain a second, internal glycosomal targeting signal upstream of the C-terminal SRL sequence.

  2. Key role of hydrazine to the interaction between oxaloacetic against phosphoenolpyruvic carboxykinase (PEPCK): ONIOM calculations.

    PubMed

    Prajongtat, Pongthep; Phromyothin, Darinee Sae-Tang; Hannongbua, Supa

    2013-08-01

    The interactions between oxaloacetic (OAA) and phosphoenolpyruvic carboxykinase (PEPCK) binding pocket in the presence and absence of hydrazine were carried out using quantum chemical calculations, based on the two-layered ONIOM (ONIOM2) approach. The complexes were partially optimized by ONIOM2 (B3LYP/6-31G(d):PM6) method while the interaction energies between OAA and individual residues surrounding the pocket were performed at the MP2/6-31G(d,p) level of theory. The calculated interaction energies (INT) indicated that Arg87, Gly237, Ser286, and Arg405 are key residues for binding to OAA with the INT values of -1.93, -2.06, -2.47, and -3.16 kcal mol(-1), respectively. The interactions are mainly due to the formation of hydrogen bonding interactions with OAA. Moreover, using ONIOM2 (B3LYP/6-31G(d):PM6) applied on the PEPCKHS complex, two proton transfers were observed; first, the proton was transferred from the carboxylic group of OAA to hydrazine while the second one was from Asp311 to Lys244. Such reactions cause the generation of binding strength of OAA to the pocket via electrostatic interaction. The orientations of Lys243, Lys244, His264, Asp311, Phe333, and Arg405 were greatly deviated after hydrazine incorporation. These indicate that hydrazine plays an important role in terms of not only changing the conformation of the binding pocket, but is also tightly bound to OAA resulting in its conformation change in the pocket. The understanding of such interaction can be useful for the design of hydrazine-based inhibitor for antichachexia agents.

  3. Cooling rate and starvation affect supercooling point and cold tolerance of the Khapra beetle, Trogoderma granarium Everts fourth instar larvae (Coleoptera: Dermestidae).

    PubMed

    Mohammadzadeh, M; Izadi, H

    2018-01-01

    Trogoderma granarium Everts (Coleoptera: Dermestidae) is an important insect pest of stored products. In this study, the survival strategies of T. granarium fourth instar larvae were investigated at different sub-zero temperatures following different cooling rates, acclimation to different relative humidity (RH) and different starvation times. Our results show that larvae of T. granarium are freeze-intolerant. There was a strong link between cooling rates and supercooling point, which means the slower the decrease in temperature, the lower the supercooling point. Trehalose content was greater in insects cooled at a rate of 0.5°C/min. According to results, the RH did not affect supercooling point. However, acclimation to an RH of 25% increased mortality following exposure to - 10°C/24h. The time necessary to reach 95% mortality was 1737h and 428h at - 5°C and - 10°C. The lowest lipid and trehalose content was detected in insects acclimated to 25% RH, although, the different RH treatments did not significantly affect glycogen content of T. granarium larvae. The supercooling point of larvae was gradually increased following starvation. By contrast, fed larvae had the greatest lipid, glycogen, and trehalose content, and insects starved for eight days had the lowest energy contents. There was a sharp decline in the survival of larvae between - 11 and - 18°C after 1h exposure. Our results indicate the effects of cooling rate and starvation on energy reserves and survival of T. granarium. We conclude that T. granarium may not survive under similar stress conditions of the stored products. Copyright © 2017 Elsevier Ltd. All rights reserved.

  4. Adenylate Energy Charge in Escherichia coli During Growth and Starvation

    PubMed Central

    Chapman, Astrid G.; Fall, Lana; Atkinson, Daniel E.

    1971-01-01

    The value of the adenylate energy charge, [(adenosine triphosphate) + ½ (adenosine diphosphate)]/[(adenosine triphosphate) + (adenosine diphosphate) + (adenosine monophosphate)], in Escherichia coli cells during growth is about 0.8. During the stationary phase after cessation of growth, or during starvation in carbon-limited cultures, the energy charge declines slowly to a value of about 0.5, and then falls more rapidly. During the slow decline in energy charge, all the cells are capable of forming colonies, but a rapid fall in viability coincides with the steep drop in energy charge. These results suggest that growth can occur only at energy charge values above about 0.8, that viability is maintained at values between 0.8 and 0.5, and that cells die at values below 0.5. Tabulation of adenylate concentrations previously reported for various organisms and tissues supports the prediction, based on enzyme kinetic observations in vitro, that the energy charge is stabilized near 0.85 in intact metabolizing cells of a wide variety of types. PMID:4333317

  5. Molecular biology of C4 phosphoenolpyruvate carboxylase: Structure, regulation and genetic engineering.

    PubMed

    Rajagopalan, A V; Devi, M T; Raghavendra, A S

    1994-02-01

    Three to four families of nuclear genes encode different isoforms of phosphoenolpyruvate (PEP) carboxylase (PEPC): C4-specific, C3 or etiolated, CAM and root forms. C4 leaf PEPC is encoded by a single gene (ppc) in sorghum and maize, but multiple genes in the C4-dicot Flaveria trinervia. Selective expression of ppc in only C4-mesophyll cells is proposed to be due to nuclear factors, DNA methylation and a distinct gene promoter. Deduced amino acid sequences of C4-PEPC pinpoint the phosphorylatable serine near the N-terminus, C4-specific valine and serine residues near the C-terminus, conserved cysteine, lysine and histidine residues and PEP binding/catalytic sites. During the PEPC reaction, PEP and bicarbonate are first converted into carboxyphosphate and the enolate of pyruvate. Carboxyphosphate decomposes within the active site into Pi and CO2, the latter combining with the enolate to form oxalacetate. Besides carboxylation, PEPC catalyzes a HCO3 (-)-dependent hydrolysis of PEP to yield pyruvate and Pi. Post-translational regulation of PEPC occurs by a phosphorylation/dephosphorylation cascade in vivo and by reversible enzyme oligomerization in vitro. The interrelation between phosphorylation and oligomerization of the enzyme is not clear. PEPC-protein kinase (PEPC-PK), the enzyme responsible for phosphorylation of PEPC, has been studied extensively while only limited information is available on the protein phosphatase 2A capable of dephosphorylating PEPC. The C4 ppc was cloned and expressed in Escherichia coli as well as tobacco. The transformed E. coli produced a functional/phosphorylatable C4 PEPC and the transgenic tobacco plants expressed both C3 and C4 isoforms. Site-directed mutagenesis of ppc indicates the importance of His(138), His(579) and Arg(587) in catalysis and/or substrate-binding by the E. coli enzyme, Ser(8) in the regulation of sorghum PEPC. Important areas for further research on C4 PEPC are: mechanism of transduction of light signal during

  6. Leptin does not mediate short-term fasting-induced changes in growth hormone pulsatility but increases IGF-I in leptin deficiency states.

    PubMed

    Chan, Jean L; Williams, Catherine J; Raciti, Patricia; Blakeman, Jennifer; Kelesidis, Theodore; Kelesidis, Iosif; Johnson, Michael L; Thorner, Michael O; Mantzoros, Christos S

    2008-07-01

    States of acute and chronic energy deficit are characterized by increased GH secretion and decreased IGF-I levels. The objective of the study was to determine whether changes in levels of leptin, a key mediator of the adaptation to starvation, regulate the GH-IGF system during energy deficit. We studied 14 healthy normal-weight men and women during three conditions: baseline fed and 72-h fasting (to induce hypoleptinemia) with administration of placebo or recombinant methionyl human leptin (r-metHuLeptin) (to reverse the fasting associated hypoleptinemia). We also studied eight normal-weight women with exercise-induced chronic energy deficit and hypothalamic amenorrhea at baseline and during 2-3 months of r-metHuLeptin treatment. GH pulsatility, IGF levels, IGF and GH binding protein (GHBP) levels were measured. During short-term energy deficit, measures of GH pulsatility and disorderliness and levels of IGF binding protein (IGFBP)-1 increased, whereas leptin, insulin, IGF-I (total and free), IGFBP-4, IGFBP-6, and GHBP decreased; r-metHuLeptin administration blunted the starvation-associated decrease of IGF-I. In chronic energy deficit, total and free IGF-I, IGFBP-6, and GHBP levels were lower, compared with euleptinemic controls; r-metHuLeptin administration had no major effect on GH pulsatility after 2 wk but increased total IGF-I levels and tended to increase free IGF-I and IGFBP-3 after 1 month. The GH/IGF system changes associated with energy deficit are largely independent of leptin deficiency. During acute energy deficit, r-metHuLeptin administration in replacement doses blunts the starvation-induced decrease of IGF-I, but during chronic energy deficit, r-metHuLeptin administration increases IGF-I and tends to increase free IGF-I and IGFBP-3.

  7. Phosphoenolpyruvate carboxylase intrinsically located in the chloroplast of rice plays a crucial role in ammonium assimilation

    PubMed Central

    Masumoto, Chisato; Miyazawa, Shin-Ichi; Ohkawa, Hiroshi; Fukuda, Takuya; Taniguchi, Yojiro; Murayama, Seiji; Kusano, Miyako; Saito, Kazuki; Fukayama, Hiroshi; Miyao, Mitsue

    2010-01-01

    Phosphoenolpyruvate carboxylase (PEPC) is a key enzyme of primary metabolism in bacteria, algae, and vascular plants, and is believed to be cytosolic. Here we show that rice (Oryza sativa L.) has a plant-type PEPC, Osppc4, that is targeted to the chloroplast. Osppc4 was expressed in all organs tested and showed high expression in the leaves. Its expression in the leaves was confined to mesophyll cells, and Osppc4 accounted for approximately one-third of total PEPC protein in the leaf blade. Recombinant Osppc4 was active in the PEPC reaction, showing Vmax comparable to cytosolic isozymes. Knockdown of Osppc4 expression by the RNAi technique resulted in stunting at the vegetative stage, which was much more marked when rice plants were grown with ammonium than with nitrate as the nitrogen source. Comparison of leaf metabolomes of ammonium-grown plants suggested that the knockdown suppressed ammonium assimilation and subsequent amino acid synthesis by reducing levels of organic acids, which are carbon skeleton donors for these processes. We also identified the chloroplastic PEPC gene in other Oryza species, all of which are adapted to waterlogged soil where the major nitrogen source is ammonium. This suggests that, in addition to glycolysis, the genus Oryza has a unique route to provide organic acids for ammonium assimilation that involves a chloroplastic PEPC, and that this route is crucial for growth with ammonium. This work provides evidence for diversity of primary ammonium assimilation in the leaves of vascular plants. PMID:20194759

  8. Temperature Responses of C4 Photosynthesis: Biochemical Analysis of Rubisco, Phosphoenolpyruvate Carboxylase, and Carbonic Anhydrase in Setaria viridis.

    PubMed

    Boyd, Ryan A; Gandin, Anthony; Cousins, Asaph B

    2015-11-01

    The photosynthetic assimilation of CO2 in C4 plants is potentially limited by the enzymatic rates of Rubisco, phosphoenolpyruvate carboxylase (PEPc), and carbonic anhydrase (CA). Therefore, the activity and kinetic properties of these enzymes are needed to accurately parameterize C4 biochemical models of leaf CO2 exchange in response to changes in CO2 availability and temperature. There are currently no published temperature responses of both Rubisco carboxylation and oxygenation kinetics from a C4 plant, nor are there known measurements of the temperature dependency of the PEPc Michaelis-Menten constant for its substrate HCO3 (-), and there is little information on the temperature response of plant CA activity. Here, we used membrane inlet mass spectrometry to measure the temperature responses of Rubisco carboxylation and oxygenation kinetics, PEPc carboxylation kinetics, and the activity and first-order rate constant for the CA hydration reaction from 10°C to 40°C using crude leaf extracts from the C4 plant Setaria viridis. The temperature dependencies of Rubisco, PEPc, and CA kinetic parameters are provided. These findings describe a new method for the investigation of PEPc kinetics, suggest an HCO3 (-) limitation imposed by CA, and show similarities between the Rubisco temperature responses of previously measured C3 species and the C4 plant S. viridis. © 2015 American Society of Plant Biologists. All Rights Reserved.

  9. Different Material States of Pub1 Condensates Define Distinct Modes of Stress Adaptation and Recovery.

    PubMed

    Kroschwald, Sonja; Munder, Matthias C; Maharana, Shovamayee; Franzmann, Titus M; Richter, Doris; Ruer, Martine; Hyman, Anthony A; Alberti, Simon

    2018-06-12

    How cells adapt to varying environmental conditions is largely unknown. Here, we show that, in budding yeast, the RNA-binding and stress granule protein Pub1 has an intrinsic property to form condensates upon starvation or heat stress and that condensate formation is associated with cell-cycle arrest. Release from arrest coincides with condensate dissolution, which takes minutes (starvation) or hours (heat shock). In vitro reconstitution reveals that the different dissolution rates of starvation- and heat-induced condensates are due to their different material properties: starvation-induced Pub1 condensates form by liquid-liquid demixing and subsequently convert into reversible gel-like particles; heat-induced condensates are more solid-like and require chaperones for disaggregation. Our data suggest that different physiological stresses, as well as stress durations and intensities, induce condensates with distinct physical properties and thereby define different modes of stress adaptation and rates of recovery. Copyright © 2018 The Authors. Published by Elsevier Inc. All rights reserved.

  10. Staphylococcal phosphoenolpyruvate-dependent phosphotransferase system: purification and characterization of the mannitol-specific enzyme III/sup mtl/ of Staphylococcus aureus and Staphylococcus carnosus and homology with the enzyme II/sup mtl/ of Escherichia coli

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Reiche, B.; Frank, R.; Deutscher, J.

    1988-08-23

    Enzyme III/sup mtl/ is part of the mannitol phosphotransferase system of Staphylococcus aureus and Staphylococcus carnosus and is phosphorylated by phosphoenolpyruvate in a reaction sequence requiring enzyme I (phosphoenolpyruvate-protein phosphotransferase) and the histidine-containing protein HPr. In this paper, the authors report the isolation of III/sup mtl/ from both S. aureus and S. carnosus and the characterization of the active center. After phosphorylation of III/sup mtl/ with (/sup 32/P)PEP, enzyme I, and HPr, the phosphorylated protein was cleaved with endoproteinase GLu(C). The amino acid sequence of the S. aureus peptide carrying the phosphoryl group was found to be Gln-Val-Val-Ser-Thr-Phe-Met-Gly-Asn-Gly-Leu-Ala-Ile-Pro-His-Gly-Thr-Asp-Asp. The correspondingmore » peptide from S. carnosus shows an equal sequence except that the first residue is Ala instead of Gln. These peptides both contain a single histidyl residue which they assume to carry the phosphoryl group. All proteins of the PTS so far investigated indeed carry the phosphoryl group attached to a histidyl residue. According to sodium dodecyl sulfate gels, the molecular weight of the III/sup mtl/ proteins was found to be 15,000. They have also determined the N-terminal sequence of both proteins. Comparison of the III/sup mtl/ peptide sequences and the C-terminal part of the enzyme II/sup mtl/ of Escherichia coli reveals considerable sequence homology, which supports the suggestion that II/sup mtl/ of E. coli is a fusion protein of a soluble III protein with a membrane-bound enzyme II.« less

  11. A mathematical model of weight loss under total starvation: evidence against the thrifty-gene hypothesis

    PubMed Central

    Speakman, John R.; Westerterp, Klaas R.

    2013-01-01

    SUMMARY The thrifty-gene hypothesis (TGH) posits that the modern genetic predisposition to obesity stems from a historical past where famine selected for genes that promote efficient fat deposition. It has been previously argued that such a scenario is unfeasible because under such strong selection any gene favouring fat deposition would rapidly move to fixation. Hence, we should all be predisposed to obesity: which we are not. The genetic architecture of obesity that has been revealed by genome-wide association studies (GWAS), however, calls into question such an argument. Obesity is caused by mutations in many hundreds (maybe thousands) of genes, each with a very minor, independent and additive impact. Selection on such genes would probably be very weak because the individual advantages they would confer would be very small. Hence, the genetic architecture of the epidemic may indeed be compatible with, and hence support, the TGH. To evaluate whether this is correct, it is necessary to know the likely effects of the identified GWAS alleles on survival during starvation. This would allow definition of their advantage in famine conditions, and hence the likely selection pressure for such alleles to have spread over the time course of human evolution. We constructed a mathematical model of weight loss under total starvation using the established principles of energy balance. Using the model, we found that fatter individuals would indeed survive longer and, at a given body weight, females would survive longer than males, when totally starved. An allele causing deposition of an extra 80 g of fat would result in an extension of life under total starvation by about 1.1–1.6% in an individual with 10 kg of fat and by 0.25–0.27% in an individual carrying 32 kg of fat. A mutation causing a per allele effect of 0.25% would become completely fixed in a population with an effective size of 5 million individuals in 6000 selection events. Because there have probably been

  12. Autophagy in alcohol-induced liver diseases

    PubMed Central

    Dolganiuc, Angela; Thomes, Paul G.; Ding, Wen-Xing; Lemasters, John J.; Donohue, Terrence M.

    2013-01-01

    Alcohol is the most abused substance worldwide and a significant source of liver injury; the mechanisms of alcohol-induced liver disease are not fully understood. Significant cellular toxicity and impairment of protein synthesis and degradation occur in alcohol-exposed liver cells, along with changes in energy balance and modified responses to pathogens. Autophagy is the process of cellular catabolism through the lysosomal-dependent machinery, which maintains a balance among protein synthesis, degradation, and recycling of self. Autophagy is part of normal homeostasis and it can be triggered by multiple factors that threaten cell integrity including starvation, toxins, or pathogens. Multiple factors regulate autophagy; survival and preservation of cellular integrity at the expense of inadequately-folded proteins and damaged high energy-generating intracellular organelles are prominent targets of autophagy in pathologic conditions. Coincidentally, inadequately-folded proteins accumulate and high energy-generating intracellular organelles, such as mitochondria, are damaged by alcohol abuse; these alcohol-induced pathological findings prompted investigation of the role of autophagy in the pathogenesis of alcohol-induced liver damage. Our review summarizes the current knowledge about the role and implications of autophagy in alcohol-induced liver disease. PMID:22551004

  13. Plasmid expression and maintenance during long-term starvation-survival of bacteria in well water.

    PubMed Central

    Caldwell, B A; Ye, C; Griffiths, R P; Moyer, C L; Morita, R Y

    1989-01-01

    Strains of enteric bacteria and pseudomonads containing plasmid R388::Tnl721 (Tpr, Tcr) or pRO101 (Hgr, Tcr) were starved for over 250 days in sterile well water to evaluate effects of starvation-survival on plasmid expression and maintenance. Viable populations dropped to between approximately 0.1 and 1% of the initial populations. Escherichia coli(pRO101) and Pseudomonas cepacia(pRO101) lost both viability and plasmid expression at a lower rate than strains containing R388::Tnl721. Three patterns of host-plasmid interaction were detected: (i) no apparent loss of plasmid expression, (ii) loss of plasmid expression on initial recovery with subsequent expression upon resuscitation, and (iii) loss of capability to produce functional plasmid resistance. PMID:2782868

  14. Streptococcal phosphoenolpyruvate-sugar phosphotransferase system: amino acid sequence and site of ATP-dependent phosphorylation of HPr

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Deutscher, J.; Pevec, B.; Beyreuther, K.

    1986-10-21

    The amino acid sequence of histidine-containing protein (HPr) from Streptococcus faecalis has been determined by direct Edman degradation of intact HPr and by amino acid sequence analysis of tryptic peptides, V8 proteolyptic peptides, thermolytic peptides, and cyanogen bromide cleavage products. HPr from S. faecalis was found to contain 89 amino acid residues, corresponding to a molecular weight of 9438. The amino acid sequence of HPr from S. faecalis shows extended homology to the primary structure of HPr proteins from other bacteria. Besides the phosphoenolpyruvate-dependent phosphorylation of a histidyl residue in HPr, catalyzed by enzyme I of the bacterial phosphotransferase system,more » HPr was also found to be phosphorylated at a seryl residue in an ATP-dependent protein kinase catalyzed reaction. The site of ATP-dependent phosphorylation in HPr of S faecalis has now been determined. (/sup 32/P)P-Ser-HPr was digested with three different proteases, and in each case, a single labeled peptide was isolated. Following digestion with subtilisin, they obtained a peptide with the sequence -(P)Ser-Ile-Met-. Using chymotrypsin, they isolated a peptide with the sequence -Ser-Val-Asn-Leu-Lys-(P)Ser-Ile-Met-Gly-Val-Met-. The longest labeled peptide was obtained with V8 staphylococcal protease. According to amino acid analysis, this peptide contained 36 out of the 89 amino acid residues of HPr. The following sequence of 12 amino acid residues of the V8 peptide was determined: -Tyr-Lys-Gly-Lys-Ser-Val-Asn-Leu-Lys-(P)Ser-Ile-Met-. Thus, the site of ATP-dependent phosphorylation was determined to be Ser-46 within the primary structure of HPr.« less

  15. Nitrogen Starvation and TorC1 Inhibition Differentially Affect Nuclear Localization of the Gln3 and Gat1 Transcription Factors Through the Rare Glutamine tRNACUG in Saccharomyces cerevisiae

    PubMed Central

    Tate, Jennifer J.; Rai, Rajendra; Cooper, Terrance G.

    2015-01-01

    A leucine, leucyl-tRNA synthetase–dependent pathway activates TorC1 kinase and its downstream stimulation of protein synthesis, a major nitrogen consumer. We previously demonstrated, however, that control of Gln3, a transcription activator of catabolic genes whose products generate the nitrogenous precursors for protein synthesis, is not subject to leucine-dependent TorC1 activation. This led us to conclude that excess nitrogen-dependent down-regulation of Gln3 occurs via a second mechanism that is independent of leucine-dependent TorC1 activation. A major site of Gln3 and Gat1 (another GATA-binding transcription activator) control occurs at their access to the nucleus. In excess nitrogen, Gln3 and Gat1 are sequestered in the cytoplasm in a Ure2-dependent manner. They become nuclear and activate transcription when nitrogen becomes limiting. Long-term nitrogen starvation and treatment of cells with the glutamine synthetase inhibitor methionine sulfoximine (Msx) also elicit nuclear Gln3 localization. The sensitivity of Gln3 localization to glutamine and inhibition of glutamine synthesis prompted us to investigate the effects of a glutamine tRNA mutation (sup70-65) on nitrogen-responsive control of Gln3 and Gat1. We found that nuclear Gln3 localization elicited by short- and long-term nitrogen starvation; growth in a poor, derepressive medium; Msx or rapamycin treatment; or ure2Δ mutation is abolished in a sup70-65 mutant. However, nuclear Gat1 localization, which also exhibits a glutamine tRNACUG requirement for its response to short-term nitrogen starvation or growth in proline medium or a ure2Δ mutation, does not require tRNACUG for its response to rapamycin. Also, in contrast with Gln3, Gat1 localization does not respond to long-term nitrogen starvation. These observations demonstrate the existence of a specific nitrogen-responsive component participating in the control of Gln3 and Gat1 localization and their downstream production of nitrogenous precursors

  16. A novel initiation mechanism of death in Streptococcus pneumoniae induced by the human milk protein-lipid complex HAMLET and activated during physiological death.

    PubMed

    Clementi, Emily A; Marks, Laura R; Duffey, Michael E; Hakansson, Anders P

    2012-08-03

    To cause colonization or infection, most bacteria grow in biofilms where differentiation and death of subpopulations is critical for optimal survival of the whole population. However, little is known about initiation of bacterial death under physiological conditions. Membrane depolarization has been suggested, but never shown to be involved, due to the difficulty of performing such studies in bacteria and the paucity of information that exists regarding ion transport mechanisms in prokaryotes. In this study, we performed the first extensive investigation of ion transport and membrane depolarization in a bacterial system. We found that HAMLET, a human milk protein-lipid complex, kills Streptococcus pneumoniae (the pneumococcus) in a manner that shares features with activation of physiological death from starvation. Addition of HAMLET to pneumococci dissipated membrane polarity, but depolarization per se was not enough to trigger death. Rather, both HAMLET- and starvation-induced death of pneumococci specifically required a sodium-dependent calcium influx, as shown using calcium and sodium transport inhibitors. This mechanism was verified under low sodium conditions, and in the presence of ionomycin or monensin, which enhanced pneumococcal sensitivity to HAMLET- and starvation-induced death. Pneumococcal death was also inhibited by kinase inhibitors, and indicated the involvement of Ser/Thr kinases in these processes. The importance of this activation mechanism was made evident, as dysregulation and manipulation of physiological death was detrimental to biofilm formation, a hallmark of bacterial colonization. Overall, our findings provide novel information on the role of ion transport during bacterial death, with the potential to uncover future antimicrobial targets.

  17. A Novel Initiation Mechanism of Death in Streptococcus pneumoniae Induced by the Human Milk Protein-Lipid Complex HAMLET and Activated during Physiological Death*

    PubMed Central

    Clementi, Emily A.; Marks, Laura R.; Duffey, Michael E.; Hakansson, Anders P.

    2012-01-01

    To cause colonization or infection, most bacteria grow in biofilms where differentiation and death of subpopulations is critical for optimal survival of the whole population. However, little is known about initiation of bacterial death under physiological conditions. Membrane depolarization has been suggested, but never shown to be involved, due to the difficulty of performing such studies in bacteria and the paucity of information that exists regarding ion transport mechanisms in prokaryotes. In this study, we performed the first extensive investigation of ion transport and membrane depolarization in a bacterial system. We found that HAMLET, a human milk protein-lipid complex, kills Streptococcus pneumoniae (the pneumococcus) in a manner that shares features with activation of physiological death from starvation. Addition of HAMLET to pneumococci dissipated membrane polarity, but depolarization per se was not enough to trigger death. Rather, both HAMLET- and starvation-induced death of pneumococci specifically required a sodium-dependent calcium influx, as shown using calcium and sodium transport inhibitors. This mechanism was verified under low sodium conditions, and in the presence of ionomycin or monensin, which enhanced pneumococcal sensitivity to HAMLET- and starvation-induced death. Pneumococcal death was also inhibited by kinase inhibitors, and indicated the involvement of Ser/Thr kinases in these processes. The importance of this activation mechanism was made evident, as dysregulation and manipulation of physiological death was detrimental to biofilm formation, a hallmark of bacterial colonization. Overall, our findings provide novel information on the role of ion transport during bacterial death, with the potential to uncover future antimicrobial targets. PMID:22700972

  18. SU-8 based microdevices to study self-induced chemotaxis in 3D microenvironments

    NASA Astrophysics Data System (ADS)

    Ayuso, Jose; Monge, Rosa; Llamazares, Guillermo; Moreno, Marco; Agirregabiria, Maria; Berganzo, Javier; Doblaré, Manuel; Ochoa, Iñaki; Fernandez, Luis

    2015-05-01

    Tissues are complex three-dimensional structures in which cell behaviour is frequently guided by chemotactic signals. Although starvation and nutrient restriction induce many different chemotactic processes, the recreation of such conditions in vitro remains difficult when using standard cell culture equipment. Recently, microfluidic techniques have arisen as powerful tools to mimic such physiological conditions. In this context, microfluidic three-dimensional cell culture systems require precise control of cell/hydrogel location because samples need to be placed within a microchamber without obstruction of surrounding elements. In this article, SU-8 is studied as structural material for the fabrication of complex cell culture devices due to its good mechanical properties, low gas permeability and sensor integration capacity. In particular, this manuscript presents a SU-8 based microdevice designed to create “self-induced” medium starvation, based on the combination of nutrient restriction and natural cell metabolism. Results show a natural migratory response towards nutrient source, showing how cells adapt to their own microenvironment modifications. The presented results demonstrate the SU-8 potential for microdevice fabrication applied to cell culture.

  19. Characterization of mutant histidine-containing proteins of the phosphoenolpyruvate:sugar phosphotransferase system of Escherichia coli and Salmonella typhimurium

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Waygood, E.B.; Reiche, B.; Hengstenberg, W.

    1987-06-01

    Histidine-containing phosphocarrier protein (HPr) is common to all of the phosphoenolpyruvate:sugar phosphotransferase systems (PTS) in Escherichia coli and Salmonella typhimurium, except the fructose-specific PTS. Strains which lack HPr activity (ptsH) have been characterized in the past, and it has proved difficult to delineate between tight and leaky mutants. In this study four different parameters of ptsH strains were measured: in vitro sugar phosphorylation activity of the mutant HPr; detection of /sup 32/P-labeled P-HPr; ability of monoclonal antibodies to bind mutant HPr; and sensitivity of ptsH strains to fosfomycin. Tight ptsH strains could be defined; they were fosfomycin resistant and producedmore » no HPr protein or completely inactive mutant HPr. All leaky ptsH strains were fosfomycin sensitive, Usually produced normal amounts of mutant HPr protein, and had low but measurable activity, and HPr was detectable as a phosphoprotein. This indicates that the regulatory functions of the PTS require a very low level of HPr activity (about 1%). The antibodies used to detect mutant HPr in crude extracts were two monoclonal immunoglobulin G antibodies Jel42 and Jel44. Both antibodies, which have different pIs, inhibited PTS sugar phosphorylation assays, but the antibody-JPr complex could still be phosphorylated by enzyme I. Preliminary evidence suggests that the antibodies bind to two different epitopes which are in part located in a ..beta..-sheet structure.« less

  20. Induction of a carbon-starvation-related proteolysis in whole maize plants submitted to Light/Dark cycles and to extended darkness

    PubMed

    Brouquisse; Gaudillere; Raymond

    1998-08-01

    Three-week-old maize (Zea mays L.) plants were submitted to light/dark cycles and to prolonged darkness to investigate the occurrence of sugar-limitation effects in different parts of the whole plant. Soluble sugars fluctuated with light/dark cycles and dropped sharply during extended darkness. Significant decreases in protein level were observed after prolonged darkness in mature roots, root tips, and young leaves. Glutamine and asparagine (Asn) changed in opposite ways, with Asn increasing in the dark. After prolonged darkness the increase in Asn accounted for most of the nitrogen released by protein breakdown. Using polyclonal antibodies against a vacuolar root protease previously described (F. James, R. Brouquisse, C. Suire, A. Pradet, P. Raymond [1996] Biochem J 320: 283-292) or the 20S proteasome, we showed that the increase in proteolytic activities was related to an enrichment of roots in the vacuolar protease, with no change in the amount of 20S proteasome in either roots or leaves. Our results show that no significant net proteolysis is induced in any part of the plant during normal light/dark cycles, although changes in metabolism and growth appear soon after the beginning of the dark period, and starvation-related proteolysis probably appears in prolonged darkness earlier in sink than in mature tissues.

  1. Effect of starvation on vein preference of whitefly (Bemisia tabaci) on chilli as host plant

    NASA Astrophysics Data System (ADS)

    Siti Sakinah, A.; Mohamad Roff M., N.; Idris, A. B.

    2014-09-01

    The whitefly, Bemisia tabaci (Gennadius), is a cosmopolitan pest of horticultural crops. It caused serious damaged to the plants by feeding on plant saps as direct damage and transmit virus as indirect damage. Vein preferences of both female and male whitefly (WF) on chilli plant were recorded using Dinolite, a portable microscope, under laboratory conditions. WF adults of both sexes were starved for 2 and 4 hours before used for observation while no starvation for control individual (treatment). Results showed that both female and male preferred to feed on secondary veins rather than lamina, midrib and vein. From the result of whitefly preferred target site, hopefully this information will help to improve control tactics in WF management.

  2. Adaptive Roles of SSY1 and SIR3 During Cycles of Growth and Starvation in Saccharomyces cerevisiae Populations Enriched for Quiescent or Nonquiescent Cells.

    PubMed

    Wloch-Salamon, Dominika M; Tomala, Katarzyna; Aggeli, Dimitra; Dunn, Barbara

    2017-06-07

    Over its evolutionary history, Saccharomyces cerevisiae has evolved to be well-adapted to fluctuating nutrient availability. In the presence of sufficient nutrients, yeast cells continue to proliferate, but upon starvation haploid yeast cells enter stationary phase and differentiate into nonquiescent (NQ) and quiescent (Q) cells. Q cells survive stress better than NQ cells and show greater viability when nutrient-rich conditions are restored. To investigate the genes that may be involved in the differentiation of Q and NQ cells, we serially propagated yeast populations that were enriched for either only Q or only NQ cell types over many repeated growth-starvation cycles. After 30 cycles (equivalent to 300 generations), each enriched population produced a higher proportion of the enriched cell type compared to the starting population, suggestive of adaptive change. We also observed differences in each population's fitness suggesting possible tradeoffs: clones from NQ lines were better adapted to logarithmic growth, while clones from Q lines were better adapted to starvation. Whole-genome sequencing of clones from Q- and NQ-enriched lines revealed mutations in genes involved in the stress response and survival in limiting nutrients ( ECM21 , RSP5 , MSN1 , SIR4 , and IRA2 ) in both Q and NQ lines, but also differences between the two lines: NQ line clones had recurrent independent mutations affecting the Ssy1p-Ptr3p-Ssy5p (SPS) amino acid sensing pathway, while Q line clones had recurrent, independent mutations in SIR3 and FAS1 Our results suggest that both sets of enriched-cell type lines responded to common, as well as distinct, selective pressures. Copyright © 2017 Wloch-Salamon et al.

  3. Influence of post-starvation extraction time and prey-specific diet in Tityus serrulatus scorpion venom composition and hyaluronidase activity.

    PubMed

    Pucca, Manuela Berto; Amorim, Fernanda Gobbi; Cerni, Felipe Augusto; Bordon, Karla de Castro Figueiredo; Cardoso, Iara Aimê; Anjolette, Fernando Antonio Pino; Arantes, Eliane Candiani

    2014-11-01

    The role of diet in venom composition has been a topic of intense research interest. This work presents evidence that the variation in the venom composition from the scorpion Tityus serrulatus (Ts) is closely associated with post-starvation extraction time and prey-specific diet. The scorpions were fed with cockroach, cricket, peanut beetle or giant Tenebrio. The venoms demonstrated a pronounced difference in the total protein and toxins composition, which was evaluated by electrophoresis, reversed-phase chromatography, densitometry, hyaluronidase activity and N-terminal sequencing. Indeed, many toxins and peptides, such as Ts1, Ts2, Ts4, Ts5, Ts6, Ts15, Ts19 frag. II, hypotensins 1 and 3, PAPE peptide and peptide 9797 (first described in Ts venom), were all identified in different proportions in the analyzed Ts venoms. This study is pioneer on assessing the influence of the starvation time and the prey diet on hyaluronidase activity as well as to describe a modification of Tricine-gel-electrophoresis to evaluate this enzyme activity. Altogether, this study reveal a large contribution of the extraction time and diet on Ts venom variability as well as present a background to recommend the cockroach diet to obtain higher protein content and the cricket diet to obtain higher hyaluronidase specific activity. Copyright © 2014 Elsevier Ltd. All rights reserved.

  4. Cloning of cellobiose phosphoenolpyruvate-dependent phosphotransferase genes: Functional expression in recombinant Escherichia coli and identification of a putative binding region for disaccharides

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lai, Xiaokuang; Davis, F.C.; Ingram, L.O.

    1997-02-01

    Genomic libraries from nine cellobiose-metabolizing bacteria were screened for cellobiose utilization. Positive clones were recovered from six libraries, all of which encode phosphoenolpyruvate:carbohydrate phosphotransferase system (PTS) proteins. Clones from Bacillus subtilis, Butyrivibrio fibrisolvens, and Klebsiella oxytoca allowed the growth of recombinant Escherichia coli in cellobiose-M9 minimal medium. The K. oxytoca clone, pLOI1906, exhibited an unusually broad substrate range (cellobiose, arbutin, salicin, and methylumbelliferyl derivatives of glucose, cellobiose, mannose, and xylose) and was sequenced. The insert in this plasmid encoded the carboxy-terminal region of a putative regulatory protein, cellobiose permease (single polypeptide), and phospho-{beta}-glucosidase, which appear to form an operon (casRAB).more » Subclones allowed both casA and casB to be expressed independently, as evidenced by in vitro complementation. An analysis of the translated sequences from the EIIC domains of cellobiose, aryl-{beta}-glucoside, and other disaccharide permeases allowed the identification of a 50-amino-acid conserved region. A disaccharide consensus sequence is proposed for the most conserved segment (13 amino acids), which may represent part of the EIIC active site for binding and phosphorylation. 63 refs., 4 figs., 4 tabs.« less

  5. Changes in the structure and ultrastructure of the intestine of Spadella cephaloptera (Chaetognatha) during feeding and starvation experiments.

    PubMed

    Perez; Casanova; Mazza

    2000-10-05

    Ultrastructural changes in the intestinal epithelium of fed and starved specimens of Spadella cephaloptera are described. Animals were maintained in a circulating natural sea water system and fed with Artemia salina nauplii. After a period of acclimation, they were individually isolated, deprived of food for 24 h and submitted to controlled feeding experiments. The absorption develop in the intestinal absorptive cells (A-cells) 5 min after the ingestion of prey and consist in the formation of endocytotic vesicles and endosome-like vacuoles. During the following steps up to 10 h, a second type of digestive vacuole containing electron-dense material, and probably corresponding to a lysosome-like compartment, appears. Throughout this time, the vacuoles progressively arrange in columns, the youngest at the top and the oldest at the bottom of the A-cells. In addition, large lipid inclusions appear in the apical cytoplasm. The ultrastructural changes of the intestinal secretory cells (S-cells) is less marked, but the number of granules largely diminishes during the first 30 min after the ingestion of prey. In starved specimens, major changes in A-cells occur between the sixth and tenth day of starvation and consist in the increase of endosome-like vacuoles. Lysosome-like vacuoles containing dense material are not observed. At the same time, necrosis features are evident in S-cells. After 30 days of starvation, necrosis features are observed in the totality of the intestinal epithelium and the specimens die few days later.

  6. Fur-dependent detoxification of organic acids by rpoS mutants during prolonged incubation under aerobic, phosphate starvation conditions.

    PubMed

    Guillemet, Mélanie L; Moreau, Patrice L

    2008-08-01

    The activity of amino acid-dependent acid resistance systems allows Escherichia coli to survive during prolonged incubation under phosphate (P(i)) starvation conditions. We show in this work that rpoS-null mutants incubated in the absence of any amino acid survived during prolonged incubation under aerobic, P(i) starvation conditions. Whereas rpoS(+) cells incubated with glutamate excreted high levels of acetate, rpoS mutants grew on acetic acid. The characteristic metabolism of rpoS mutants required the activity of Fur (ferric uptake regulator) in order to decrease the synthesis of the small RNA RyhB that might otherwise inhibit the synthesis of iron-rich proteins. We propose that RpoS (sigma(S)) and the small RNA RyhB contribute to decrease the synthesis of iron-rich proteins required for the activity of the tricarboxylic acid (TCA) cycle, which redirects the metabolic flux toward the production of acetic acid at the onset of stationary phase in rpoS(+) cells. In contrast, Fur activity, which represses ryhB, and the lack of RpoS activity allow a substantial activity of the TCA cycle to continue in stationary phase in rpoS mutants, which decreases the production of acetic acid and, eventually, allows growth on acetic acid and P(i) excreted into the medium. These data may help explain the fact that a high frequency of E. coli rpoS mutants is found in nature.

  7. Regulation of Cigarette Smoke (CS)-Induced Autophagy by Nrf2.

    PubMed

    Zhu, Lingxiang; Barrett, Erika C; Barret, Erika C; Xu, Yuxue; Liu, Zuguo; Manoharan, Aditya; Chen, Yin

    2013-01-01

    Cigarette smoke (CS) has been reported to induce autophagy in airway epithelial cells. The subsequent autophagic cell death has been proposed to play an important pathogenic role in chronic obstructive pulmonary disease (COPD); however, the underlying molecular mechanism is not entirely clear. Using CS extract (CSE) as a surrogate for CS, we found that it markedly increased the expressions of both LC3B-I and LC3B-II as well as autophagosomes in airway epithelial cells. This is in contrast to the common autophagy inducer (i.e., starvation) that increases LC3B-II but reduces LC3B-I. Further studies indicate that CSE regulated LC3B at transcriptional and post-translational levels. In addition, CSE, but not starvation, activated Nrf2-mediated adaptive response. Increase of cellular Nrf2 by either Nrf2 overexpression or the knockdown of Keap1 (an Nrf2 inhibitor) significantly repressed CSE-induced LC3B-I and II as well as autophagosomes. Supplement of NAC (a GSH precursor) or GSH recapitulated the effect of Nrf2, suggesting the increase of cellular GSH level is responsible for Nrf2 effect on LC3B and autophagosome. Interestingly, neither Nrf2 activation nor GSH supplement could restore the repressed activities of mTOR or its downstream effctor-S6K. Thus, the Nrf2-dependent autophagy-suppression was not due to the re-activation of mTOR-the master repressor of autophagy. To search for the downstream effector of Nrf2 on LC3B and autophagosome, we tested Nrf2-dependent genes (i.e., NQO1 and P62) that are also increased by CSE treatment. We found that P62, but not NQO1, could mimic the effect of Nrf2 activation by repressing LC3B expression. Thus, Nrf2->P62 appears to play an important role in the regulation of CSE-induced LC3B and autophagosome.

  8. How do trees die? A test of the hydraulic failure and carbon starvation hypotheses

    PubMed Central

    Sevanto, Sanna; Mcdowell, Nate G; Dickman, L Turin; Pangle, Robert; Pockman, William T

    2014-01-01

    Despite decades of research on plant drought tolerance, the physiological mechanisms by which trees succumb to drought are still under debate. We report results from an experiment designed to separate and test the current leading hypotheses of tree mortality. We show that piñon pine (Pinus edulis) trees can die of both hydraulic failure and carbon starvation, and that during drought, the loss of conductivity and carbohydrate reserves can also co-occur. Hydraulic constraints on plant carbohydrate use determined survival time: turgor loss in the phloem limited access to carbohydrate reserves, but hydraulic control of respiration prolonged survival. Our data also demonstrate that hydraulic failure may be associated with loss of adequate tissue carbohydrate content required for osmoregulation, which then promotes failure to maintain hydraulic integrity. PMID:23730972

  9. Effect of periodical starvation on the life history of Brachionus plicatilis O.F. Müller (Rotifera): a possible strategy for population stability.

    PubMed

    Yoshinaga; Hagiwara; Tsukamoto

    2000-10-25

    To estimate the changes in the life history of the rotifer Brachionus plicatilis O.F. Müller under starvation, we carried out an individual culture and determined the effects of periodical food deprivation on its asexual reproductive characteristics such as lifespan, reproductive period, age at first egg and offspring production, and lifetime fecundity (total number of offspring produced in her lifetime). Rotifers were fed for 1-3 h daily, and were then starved until the next day. Control animals were fed throughout their lifespan. Starved rotifers matured and produced their first offspring at an older age than the control animals. The periodical starvation resulted in a decrease in the lifetime fecundity to less than half that of the non-starved control. The reproductive period and lifespan were 2-3 times longer in the starved animals than in the control animals. The negative relationship between lifespan and lifetime fecundity is interpreted as a trade-off in an alternative life-history strategy of rotifers under starved conditions. The great decrease in fecundity and extension of lifespan enables rotifers to compensate to keep the population in equilibrium.

  10. Host-imposed manganese starvation of invading pathogens: two routes to the same destination

    PubMed Central

    Morey, Jacqueline R.; McDevitt, Christopher A.; Kehl-Fie, Thomas E.

    2015-01-01

    During infection invading pathogens must acquire all essential nutrients, including first row transition metals, from the host. To combat invaders, the host exploits this fact and restricts the availability of these nutrients using a defense mechanism known as nutritional immunity. While iron sequestration is the most well-known aspect of this defense, recent work has revealed that the host restricts the availability of other essential elements, notably manganese, during infection. Furthermore, these studies have revealed that the host utilizes multiple strategies that extend beyond metal sequestration to prevent bacteria from obtaining these metals. This review will discuss the mechanisms by which bacteria attempt to obtain the essential first row transition metal ion manganese during infection, and the approaches utilized by the host to prevent this occurrence. In addition, this review will discuss the impact of host-imposed manganese starvation on invading bacteria. PMID:25836716

  11. Localization and hormonal control of serine dehydratase during metabolic acidosis differ markedly from those of phosphoenolpyruvate carboxykinase in rat kidney.

    PubMed

    Masuda, Tohru; Ogawa, Hirofumi; Matsushima, Takako; Kawamata, Seiichi; Sasahara, Masakiyo; Kuroda, Kazunari; Suzuki, Yasuhiro; Takata, Yoshimi; Yamazaki, Mitsuaki; Takusagawa, Fusao; Pitot, Henry C

    2003-08-01

    Serine dehydratase (SDH) is abundant in the rat liver but scarce in the kidney. When administrated with dexamethasone, the renal SDH activity was augmented 20-fold, whereas the hepatic SDH activity was affected little. In situ hybridization and immunohistochemistry revealed that SDH was localized to the proximal straight tubule of the nephron. To address the role of this hormone, rats were made acidotic by gavage of NH(4)Cl. Twenty-two hours later, the SDH activity was increased three-fold along with a six-fold increment in the phosphoenolpyruvate carboxykinase (PEPCK) activity, a rate-limiting enzyme of gluconeogenesis. PEPCK, which is localized to the proximal tubules under the normal condition, spreads throughout the entire cortex to the outer medullary rays by acidosis, whereas SDH does not change regardless of treatment with dexamethasone or NH(4)Cl. When NH(4)Cl was given to adrenalectomized rats, in contrast to the SDH activity no longer increasing, the PEPCK activity responded to acidosis to the same extent as in the intact rats. A simultaneous administration of dexamethasone and NH(4)Cl into the adrenalectomized rats fully restored the SDH activity, demonstrating that the rise in the SDH activity during acidosis is primarily controlled by glucocorticoids. The present findings clearly indicate that the localization of SDH and its hormonal regulation during acidosis are strikingly different from those of PEPCK.

  12. Moderate mammalian target of rapamycin inhibition induces autophagy in HTR8/SVneo cells via O-linked β-N-acetylglucosamine signaling.

    PubMed

    Zhang, Qiuxia; Na, Quan; Song, Weiwei

    2017-10-01

    Autophagy, a highly regulated process with a dual role (pro-survival or pro-death), has been implicated in adverse pregnancy outcomes. The aim of this study was to explore the mechanism whereby mammalian target of rapamycin (mTOR) signaling regulates autophagy by modulating protein O-GlcNAcylation in human trophoblasts. HTR8/SVneo cells were incubated in serum-free medium for different time intervals or treated with varying doses of Torin1. Protein expression and cell apoptosis were detected by immunoblotting and flow cytometry, respectively. Short-term serum starvation or slight suppression of mTOR signaling promoted autophagy and decreased apoptosis in HTR8/SVneo cells. Conversely, prolonged serum starvation or excessive inhibition of mTOR reduced autophagy and enhanced cell apoptosis. Both serum starvation and mTOR signaling suppression reduced protein O-GlcNAcylation. Upregulation and downregulation of O-linked β-N-acetylglucosamine (O-GlcNAc) levels attenuated and augmented autophagy, respectively. Moderate mTOR inhibition-induced autophagy was blocked by upregulation of protein O-GlcNAcylation. Furthermore, immunoprecipitation studies revealed that Beclin1 and synaptosome associated protein 29 (SNAP29) could be O-GlcNAcylated, and that slight mTOR inhibition resulted in decreased O-GlcNAc modification of Beclin1 and SNAP29. Notably, we observed an inverse correlation between phosphorylation (Ser15) and O-GlcNAcylation of Beclin1. mTOR signaling inhibition played dual roles in regulating autophagy and apoptosis in HTR8/SVneo cells. Moderate mTOR suppression might induce autophagy via modulating O-GlcNAcylation of Beclin1 and SNAP29. Moreover, the negative interplay between Beclin1 O-GlcNAcylation and phosphorylation (Ser15) may be involved in autophagy regulation by mTOR signaling. © 2017 Japan Society of Obstetrics and Gynecology.

  13. SAR11 lipid renovation in response to phosphate starvation

    PubMed Central

    Carini, Paul; Van Mooy, Benjamin A. S.; Thrash, J. Cameron; White, Angelicque; Zhao, Yanlin; Campbell, Emily O.; Fredricks, Helen F.; Giovannoni, Stephen J.

    2015-01-01

    Phytoplankton inhabiting oligotrophic ocean gyres actively reduce their phosphorus demand by replacing polar membrane phospholipids with those lacking phosphorus. Although the synthesis of nonphosphorus lipids is well documented in some heterotrophic bacterial lineages, phosphorus-free lipid synthesis in oligotrophic marine chemoheterotrophs has not been directly demonstrated, implying they are disadvantaged in phosphate-deplete ecosystems, relative to phytoplankton. Here, we show the SAR11 clade chemoheterotroph Pelagibacter sp. str. HTCC7211 renovates membrane lipids when phosphate starved by replacing a portion of its phospholipids with monoglucosyl- and glucuronosyl-diacylglycerols and by synthesizing new ornithine lipids. Lipid profiles of cells grown with excess phosphate consisted entirely of phospholipids. Conversely, up to 40% of the total lipids were converted to nonphosphorus lipids when cells were starved for phosphate, or when growing on methylphosphonate. Cells sequentially limited by phosphate and methylphosphonate transformed >75% of their lipids to phosphorus-free analogs. During phosphate starvation, a four-gene cluster was significantly up-regulated that likely encodes the enzymes responsible for lipid renovation. These genes were found in Pelagibacterales strains isolated from a phosphate-deficient ocean gyre, but not in other strains from coastal environments, suggesting alternate lipid synthesis is a specific adaptation to phosphate scarcity. Similar gene clusters are found in the genomes of other marine α-proteobacteria, implying lipid renovation is a common strategy used by heterotrophic cells to reduce their requirement for phosphorus in oligotrophic habitats. PMID:26056292

  14. Control of cell protein catabolism in rat liver. Effects of starvation and administration of cycloheximide.

    PubMed Central

    Baccino, F M; Tessitore, L; Cecchini, G; Messina, M; Zuretti, M F; Bonelli, G; Gabriel, L; Amenta, J S

    1982-01-01

    1. The loss of liver protein occurring in rats starved for 24 h was largely prevented by the administration of repeated doses of cycloheximide, an inhibitor of protein synthesis. Similar effects were produced on tubulin, a 'fixed' liver protein. 2. Starvation accelerated, whereas cycloheximide markedly lowered, the rate of protein radioactivity decay after labelling with [3H]valine or [14C]bicarbonate, indicating that changes in catabolic rates played an important role in the above regulations of liver protein mass. 3. The total activity of several lysosomal hydrolases showed little change in livers of starved rats, but a marked progressive decline developed after the administration of cycloheximide, particularly in the activities of cathepsins B, D and L as well as acid ribonuclease. There was no evidence that these changes might be due to endogenous inhibitors (at least for cathepsin B activity, which fell to less than 30% of the control values) or enzyme leakage into the bloodstream; rather, plasma beta-galactosidase and beta-N-acetylglucosaminidase activities fell progressively during the cycloheximide treatment. 4. Endogenous proteolytic rates, measured in vitro by incubating subcellular preparations from livers prelabelled in vivo with [3H]valine, were markedly decreased in cycloheximide-treated animals. 5. The osmotic fragility of hepatic lysosomes, appreciably enhanced in starved animals, after cycloheximide treatment was found to be even lower than in fed controls. 6. The present data are consistent with the view that in starved animals the loss of liver protein is mostly accounted for by increased breakdown, due, in part at least, to enhanced autophagocytosis. 7. Cycloheximide largely counteracted these effects of starvation, altering the liver from being 'poised' in a proteolytic direction to a protein-sparing condition. The present data suggest that, besides suppression of the autophagic processes, a decrease in the lysosomal proteolytic enzyme system

  15. Thalassospira sp. isolated from the oligotrophic eastern Mediterranean Sea exhibits chemotaxis toward inorganic phosphate during starvation.

    PubMed

    Hütz, Annemarie; Schubert, Karin; Overmann, Jörg

    2011-07-01

    The eastern Mediterranean Sea represents an ultraoligotrophic environment where soluble phosphate limits the growth of bacterioplankton. Correspondingly, genes coding for high-affinity phosphate uptake systems and for organophosphonate utilization are highly prevalent in the plankton metagenome. Chemotaxis toward inorganic phosphate constitutes an alternative strategy to cope with phosphate limitation, but so far has only been demonstrated for two bacterial pathogens and an archaeon, and not in any free-living planktonic bacterium. In the present study, bacteria affiliated with the genus Thalassospira were found to constitute a regular, low-abundance member of the bacterioplankton that can be detected throughout the water column of the eastern Mediterranean Sea. A representative (strain EM) was isolated in pure culture and exhibited a strong positive chemotaxis toward inorganic phosphate that was induced exclusively in phosphate-starved cultures. Phosphate-depleted cells were 2-fold larger than in exponentially growing cultures, and 43% of the cells retained their motility even during prolonged starvation over 10 days. In addition, Thalassospira sp. strain EM was chemotactically attracted by complex substrates (yeast extract and peptone), amino acids, and 2-aminoethylphosphonate but not by sugar monomers. Similarly to the isolate from the eastern Mediterranean, chemotaxis toward phosphate was observed in starved cultures of the other two available isolates of the genus, T. lucentensis DSM 14000T and T. profundimaris WP0211T. Although Thalassospira sp. represents only up to 1.2% of the total bacterioplankton community in the water column of the eastern Mediterranean Sea, its chemotactic behavior potentially leads to an acceleration of nutrient cycling and may also explain the persistence of marine copiotrophs in this extremely nutrient-limited environment.

  16. DNA microarray analysis of the cyanotroph Pseudomonas pseudoalcaligenes CECT5344 in response to nitrogen starvation, cyanide and a jewelry wastewater.

    PubMed

    Luque-Almagro, V M; Escribano, M P; Manso, I; Sáez, L P; Cabello, P; Moreno-Vivián, C; Roldán, M D

    2015-11-20

    Pseudomonas pseudoalcaligenes CECT5344 is an alkaliphilic bacterium that can use cyanide as nitrogen source for growth, becoming a suitable candidate to be applied in biological treatment of cyanide-containing wastewaters. The assessment of the whole genome sequence of the strain CECT5344 has allowed the generation of DNA microarrays to analyze the response to different nitrogen sources. The mRNA of P. pseudoalcaligenes CECT5344 cells grown under nitrogen limiting conditions showed considerable changes when compared against the transcripts from cells grown with ammonium; up-regulated genes were, among others, the glnK gene encoding the nitrogen regulatory protein PII, the two-component ntrBC system involved in global nitrogen regulation, and the ammonium transporter-encoding amtB gene. The protein coding transcripts of P. pseudoalcaligenes CECT5344 cells grown with sodium cyanide or an industrial jewelry wastewater that contains high concentration of cyanide and metals like iron, copper and zinc, were also compared against the transcripts of cells grown with ammonium as nitrogen source. This analysis revealed the induction by cyanide and the cyanide-rich wastewater of four nitrilase-encoding genes, including the nitC gene that is essential for cyanide assimilation, the cyanase cynS gene involved in cyanate assimilation, the cioAB genes required for the cyanide-insensitive respiration, and the ahpC gene coding for an alkyl-hydroperoxide reductase that could be related with iron homeostasis and oxidative stress. The nitC and cynS genes were also induced in cells grown under nitrogen starvation conditions. In cells grown with the jewelry wastewater, a malate quinone:oxidoreductase mqoB gene and several genes coding for metal extrusion systems were specifically induced. Copyright © 2015 The Authors. Published by Elsevier B.V. All rights reserved.

  17. AI-2 quorum-sensing inhibitors affect the starvation response and reduce virulence in several Vibrio species, most likely by interfering with LuxPQ.

    PubMed

    Brackman, Gilles; Celen, Shari; Baruah, Kartik; Bossier, Peter; Van Calenbergh, Serge; Nelis, Hans J; Coenye, Tom

    2009-12-01

    The increase of disease outbreaks caused by Vibrio species in aquatic organisms as well as in humans, together with the emergence of antibiotic resistance in Vibrio species, has led to a growing interest in alternative disease control measures. Quorum sensing (QS) is a mechanism for regulating microbial gene expression in a cell density-dependent way. While there is good evidence for the involvement of auto-inducer 2 (AI-2)-based interspecies QS in the control of virulence in multiple Vibrio species, only few inhibitors of this system are known. From the screening of a small panel of nucleoside analogues for their ability to disturb AI-2-based QS, an adenosine derivative with a p-methoxyphenylpropionamide moiety at C-3' emerged as a promising hit. Its mechanism of inhibition was elucidated by measuring the effect on bioluminescence in a series of Vibrio harveyi AI-2 QS mutants. Our results indicate that this compound, as well as a truncated analogue lacking the adenine base, block AI-2-based QS without interfering with bacterial growth. The active compounds affected neither the bioluminescence system as such nor the production of AI-2, but most likely interfered with the signal transduction pathway at the level of LuxPQ in V. harveyi. The most active nucleoside analogue (designated LMC-21) was found to reduce the Vibrio species starvation response, to affect biofilm formation in Vibrio anguillarum, Vibrio vulnificus and Vibrio cholerae, to reduce pigment and protease production in V. anguillarum, and to protect gnotobiotic Artemia from V. harveyi-induced mortality.

  18. Potassium Starvation Limits Soybean Growth More than the Photosynthetic Processes across CO2 Levels

    PubMed Central

    Singh, Shardendu K.; Reddy, Vangimalla R.

    2017-01-01

    Elevated carbon dioxide (eCO2) often enhances plant photosynthesis, growth, and productivity. However, under nutrient-limited conditions the beneficial effects of high CO2 are often diminished. To evaluate the combined effects of potassium (K) deficiency and eCO2 on soybean photosynthesis, growth, biomass partitioning, and yields, plants were grown under controlled environment conditions with an adequate (control, 5.0 mM) and two deficient (0.50 and 0.02 mM) levels of K under ambient CO2 (aCO2; 400 μmol mol−1) and eCO2 (800 μmol mol−1). Results showed that K deficiency limited soybean growth traits more than photosynthetic processes. An ~54% reduction in leaf K concentration under 0.5 mM K vs. the control caused about 45% less leaf area, biomass, and yield without decreasing photosynthetic rate (Pnet). In fact, the steady photochemical quenching, efficiency, and quantum yield of photosystem II, chlorophyll concentration (TChl), and stomatal conductance under 0.5 mM K supported the stable Pnet. Biomass decline was primarily attributed to the reduced plant size and leaf area, and decreased pod numbers and seed yield in K-deficient plants. Under severe K deficiency (0.02 mM K), photosynthetic processes declined concomitantly with growth and productivity. Increased specific leaf weight, biomass partitioning to the leaves, decreased photochemical quenching and TChl, and smaller plant size to reduce the nutrient demands appeared to be the means by which plants adjusted to the severe K starvation. Increased K utilization efficiency indicated the ability of K-deficient plants to better utilize the tissue-available K for biomass accumulation, except under severe K starvation. The enhancement of soybean growth by eCO2 was dependent on the levels of K, leading to a K × CO2 interaction for traits such as leaf area, biomass, and yield. A lack of eCO2-mediated growth and photosynthesis stimulation under severe K deficiency underscored the importance of optimum K

  19. Exercise induces autophagy in peripheral tissues and in the brain.

    PubMed

    He, Congcong; Sumpter, Rhea; Levine, Beth

    2012-10-01

    We recently identified physical exercise as a newly defined inducer of autophagy in vivo. Exercise induced autophagy in multiple organs involved in metabolic regulation, such as muscle, liver, pancreas and adipose tissue. To study the physiological role of exercise-induced autophagy, we generated mice with a knock-in nonphosphorylatable mutation in BCL2 (Thr69Ala, Ser70Ala and Ser84Ala) (BCL2 AAA) that are defective in exercise- and starvation-induced autophagy but not in basal autophagy. We found that BCL2 AAA mice could not run on a treadmill as long as wild-type mice, and did not undergo exercise-mediated increases in skeletal glucose muscle uptake. Unlike wild-type mice, the BCL2 AAA mice failed to reverse high-fat diet-induced glucose intolerance after 8 weeks of exercise training, possibly due to defects in signaling pathways that regulate muscle glucose uptake and metabolism during exercise. Together, these findings suggested a hitherto unknown important role of autophagy in mediating exercise-induced metabolic benefits. In the present addendum, we show that treadmill exercise also induces autophagy in the cerebral cortex of adult mice. This observation raises the intriguing question of whether autophagy may in part mediate the beneficial effects of exercise in neurodegeneration, adult neurogenesis and improved cognitive function.

  20. Serum-Nutrient Starvation Induces Cell Death Mediated by Bax and Puma That Is Counteracted by p21 and Unmasked by Bcl-xL Inhibition

    PubMed Central

    Braun, Frédérique; Bertin-Ciftci, Joséphine; Gallouet, Anne-Sophie; Millour, Julie; Juin, Philippe

    2011-01-01

    The cyclin-dependent kinase inhibitor p21 (p21WAF1/Cip1) is a multifunctional protein known to promote cell cycle arrest and survival in response to p53-dependent and p53 independent stimuli. We herein investigated whether and how it might contribute to the survival of cancer cells that are in low-nutrient conditions during tumour growth, by culturing isogenic human colorectal cancer cell lines (HCT116) and breast cancer cell lines in a medium deprived in amino acids and serum. We show that such starvation enhances, independently from p53, the expression of p21 and that of the pro-apoptotic BH3-only protein Puma. Under these conditions, p21 prevents Puma and its downstream effector Bax from triggering the mitochondrial apoptotic pathway. This anti-apoptotic effect is exerted from the cytosol but it is unrelated to the ability of p21 to interfere with the effector caspase 3. The survival function of p21 is, however, overcome by RNA interference mediated Bcl-xL depletion, or by the pharmacological inhibitor ABT-737. Thus, an insufficient supply in nutrients may not have an overt effect on cancer cell viability due to p21 induction, but it primes these cells to die, and sensitizes them to the deleterious effects of Bcl-xL inhibitors regardless of their p53 status. PMID:21887277