Science.gov

Sample records for phosphoinositide 3-kinase-dependent mechanism

  1. RhoG regulates anoikis through a phosphatidylinositol 3-kinase-dependent mechanism

    SciTech Connect

    Yamaki, Nao; Negishi, Manabu; Katoh, Hironori . E-mail: hirokato@pharm.kyoto-u.ac.jp

    2007-08-01

    In normal epithelial cells, cell-matrix interaction is required for cell survival and proliferation, whereas disruption of this interaction causes epithelial cells to undergo apoptosis called anoikis. Here we show that the small GTPase RhoG plays an important role in the regulation of anoikis. HeLa cells are capable of anchorage-independent cell growth and acquire resistance to anoikis. We found that RNA interference-mediated knockdown of RhoG promoted anoikis in HeLa cells. Previous studies have shown that RhoG activates Rac1 and induces several cellular functions including promotion of cell migration through its effector ELMO and the ELMO-binding protein Dock180 that function as a Rac-specific guanine nucleotide exchange factor. However, RhoG-induced suppression of anoikis was independent of the ELMO- and Dock180-mediated activation of Rac1. On the other hand, the regulation of anoikis by RhoG required phosphatidylinositol 3-kinase (PI3K) activity, and constitutively active RhoG bound to the PI3K regulatory subunit p85{alpha} and induced the PI3K-dependent phosphorylation of Akt. Taken together, these results suggest that RhoG protects cells from apoptosis caused by the loss of anchorage through a PI3K-dependent mechanism, independent of its activation of Rac1.

  2. Vav1 transduces T cell receptor signals to the activation of phospholipase C-gamma1 via phosphoinositide 3-kinase-dependent and -independent pathways.

    PubMed

    Reynolds, Lucinda F; Smyth, Lesley A; Norton, Trisha; Freshney, Norman; Downward, Julian; Kioussis, Dimitris; Tybulewicz, Victor L J

    2002-05-06

    Vav1 is a signal transducing protein required for T cell receptor (TCR) signals that drive positive and negative selection in the thymus. Furthermore, Vav1-deficient thymocytes show greatly reduced TCR-induced intracellular calcium flux. Using a novel genetic system which allows the study of signaling in highly enriched populations of CD4(+)CD8(+) double positive thymocytes, we have studied the mechanism by which Vav1 regulates TCR-induced calcium flux. We show that in Vav1-deficient double positive thymocytes, phosphorylation, and activation of phospholipase C-gamma1 (PLCgamma1) is defective. Furthermore, we demonstrate that Vav1 regulates PLCgamma1 phosphorylation by at least two distinct pathways. First, in the absence of Vav1 the Tec-family kinases Itk and Tec are no longer activated, most likely as a result of a defect in phosphoinositide 3-kinase (PI3K) activation. Second, Vav1-deficient thymocytes show defective assembly of a signaling complex containing PLCgamma1 and the adaptor molecule Src homology 2 domain-containing leukocyte phosphoprotein 76. We show that this latter function is independent of PI3K.

  3. Vav1 Transduces T Cell Receptor Signals to the Activation of Phospholipase C-γ1 via Phosphoinositide 3-Kinase-dependent and -independent Pathways

    PubMed Central

    Reynolds, Lucinda F.; Smyth, Lesley A.; Norton, Trisha; Freshney, Norman; Downward, Julian; Kioussis, Dimitris; Tybulewicz, Victor L.J.

    2002-01-01

    Vav1 is a signal transducing protein required for T cell receptor (TCR) signals that drive positive and negative selection in the thymus. Furthermore, Vav1-deficient thymocytes show greatly reduced TCR-induced intracellular calcium flux. Using a novel genetic system which allows the study of signaling in highly enriched populations of CD4+CD8+ double positive thymocytes, we have studied the mechanism by which Vav1 regulates TCR-induced calcium flux. We show that in Vav1-deficient double positive thymocytes, phosphorylation, and activation of phospholipase C-γ1 (PLCγ1) is defective. Furthermore, we demonstrate that Vav1 regulates PLCγ1 phosphorylation by at least two distinct pathways. First, in the absence of Vav1 the Tec-family kinases Itk and Tec are no longer activated, most likely as a result of a defect in phosphoinositide 3-kinase (PI3K) activation. Second, Vav1-deficient thymocytes show defective assembly of a signaling complex containing PLCγ1 and the adaptor molecule Src homology 2 domain–containing leukocyte phosphoprotein 76. We show that this latter function is independent of PI3K. PMID:11994416

  4. Diacylglycerol kinase theta is translocated and phosphoinositide 3-kinase-dependently activated by noradrenaline but not angiotensin II in intact small arteries.

    PubMed Central

    Walker, A J; Draeger, A; Houssa, B; van Blitterswijk , W J; Ohanian, V; Ohanian, J

    2001-01-01

    Diacylglycerol (DG) kinase (DGK) phosphorylates the lipid second messenger DG to phosphatidic acid. We reported previously that noradrenaline (NA), but not angiotensin II (AII), increases membrane-associated DGK activity in rat small arteries [Ohanian and Heagerty (1994) Biochem. J. 300, 51-56]. Here, we have identified this DGK activity as DGKtheta, present in both smooth muscle and endothelial cells of these small vessels. Subcellular fractionation of artery homogenates revealed that DGKtheta was present in nuclear, plasma membrane (and/or Golgi) and cytosolic fractions. Upon NA stimulation, DGKtheta translocated towards the membrane and cytosol (155 and 153% increases relative to the control, respectively) at 30 s, followed by a return to near-basal levels at 5 min; AII was without effect. Translocation to the membrane was to both Triton-soluble and -insoluble fractions. NA, but not AII, transiently increased DGKtheta activity in immunoprecipitates (126% at 60 s). Membrane translocation and DGKtheta activation were regulated differently: NA-induced DGKtheta activation, but not translocation, was dependent on transient activation of phosphoinositide 3-kinase (PI 3-K). In addition, DGK activity co-immunoprecipitated with protein kinase B, a downstream effector of PI 3-K, and was increased greatly by NA stimulation. The rapid and agonist-specific activation of DGKtheta suggests that this pathway may have a physiological role in vascular smooth-muscle responses. PMID:11115406

  5. Progesterone increases brain-derived neuroptrophic factor expression and protects against glutamate toxicity in a mitogen-activated protein kinase- and phosphoinositide-3 kinase-dependent manner in cerebral cortical explants.

    PubMed

    Kaur, Paramjit; Jodhka, Parmeet K; Underwood, Wendy A; Bowles, Courtney A; de Fiebre, Nancyellen C; de Fiebre, Christopher M; Singh, Meharvan

    2007-08-15

    The higher prevalence and risk for Alzheimer's disease in women relative to men has been partially attributed to the precipitous decline in gonadal hormone levels that occurs in women following the menopause. Although considerable attention has been focused on the consequence of estrogen loss, and thus estrogen's neuroprotective potential, it is important to recognize that the menopause results in a precipitous decline in progesterone levels as well. In fact, progesterone is neuroprotective, although the precise mechanisms involved remain unclear. Based on our previous observation that progesterone elicits the phosphorylation of ERK and Akt, key effectors of the neuroprotective mitogen-activated protein kinase (MAPK) and phosphoinositide-3 kinase (PI3-K) pathways, respectively, we determined whether activation of either of these pathways was necessary for progesterone-induced protection. With organotypic explants (slice culture) of the cerebral cortex, we found that progesterone protected against glutamate-induced toxicity. Furthermore, these protective effects were inhibited by either the MEK1/2 inhibitor UO126 or the PI3-K inhibitor LY294002, supporting the requirement for both the MAPK and PI3-K pathways in progesterone-induced protection. In addition, at a concentration and duration of treatment consistent with our neuroprotection data, progesterone also increased the expression of brain-derived neurotrophic factor (BDNF), at the level of both protein and mRNA. This induction of BDNF may be relevant to the protective effects of progesterone, in that inhibition of Trk signaling, with K252a, inhibited the protective effects of progesterone. Collectively, these data suggest that progesterone is protective via multiple and potentially related mechanisms. (c) 2007 Wiley-Liss, Inc.

  6. Polycystin-1 Induces Cell Migration by Regulating Phosphatidylinositol 3-kinase-dependent Cytoskeletal Rearrangements and GSK3β-dependent Cell–Cell Mechanical Adhesion

    PubMed Central

    Boca, Manila; D'Amato, Lisa; Distefano, Gianfranco; Polishchuk, Roman S.; Germino, Gregory G.

    2007-01-01

    Polycystin-1 (PC-1) is a large plasma-membrane receptor encoded by the PKD1 gene mutated in autosomal dominant polycystic kidney disease (ADPKD). Although the disease is thought to be recessive on a molecular level, the precise mechanism of cystogenesis is unclear, although cytoarchitecture defects seem to be the most likely initiating events. Here we show that PC-1 regulates the actin cytoskeleton in renal epithelial cells (MDCK) and induces cell scattering and cell migration. All of these effects require phosphatidylinositol 3-kinase (PI3-K) activity. Consistent with these observations Pkd1−/− mouse embryonic fibroblasts (MEFs) have reduced capabilities to migrate compared with controls. PC-1 overexpressing MDCK cells are able to polarize normally with proper adherens and tight junctions formation, but show quick reabsorption of ZO-1, E-cadherin, and β-catenin upon wounding of a monolayer and a transient epithelial-to-mesenchymal transition (EMT) that favors a rapid closure of the wound and repolarization. Finally, we show that PC-1 is able to control the turnover of cytoskeletal-associated β-catenin through activation of GSK3β. Expression of a nondegradable form of β-catenin in PC-1 MDCK cells restores strong cell–cell mechanical adhesion. We propose that PC-1 might be a central regulator of epithelial plasticity and its loss results in impaired normal epithelial homeostasis. PMID:17671167

  7. Hypoxia Up-regulates CD36 Expression and Function via Hypoxia-inducible Factor-1- and Phosphatidylinositol 3-Kinase-dependent Mechanisms*

    PubMed Central

    Mwaikambo, Bupe R.; Yang, Chun; Chemtob, Sylvain; Hardy, Pierre

    2009-01-01

    Neovascular and degenerative diseases of the eye are leading causes of impaired vision and blindness in the world. Hypoxia or reduced oxygen tension is considered central to the pathogenesis of these disorders. Although the CD36 scavenger receptor features prominently in ocular homeostasis and pathology, little is known regarding its modulation by hypoxia. Herein we investigated the role and regulation of CD36 by hypoxia and by the major hypoxia effector, hypoxia-inducible factor (HIF)-1. In vivo, hypoxia markedly induced CD36 mRNA in corneal and retinal tissue. Subsequent experiments on human retinal pigment epithelial cells revealed that hypoxia time-dependently increased CD36 mRNA, protein, and surface expression; these responses were reliant upon reactive oxygen species production. As an important novel finding, we demonstrate that hypoxic stimulation of CD36 is mediated by HIF-1; HIF-1α down-regulation abolished CD36 induction by both hypoxia and cobalt chloride. Sequence analysis of the human CD36 promoter region revealed a functional HIF-1 binding site. A luciferase reporter construct containing this promoter fragment was activated by hypoxia, whereas mutation at the HIF-1 consensus site decreased promoter activation. Specific binding of HIF-1 to this putative site in hypoxic cells was detected by a chromatin immunoprecipitation assay. Interestingly, inhibition of the phosphatidylinositol 3-kinase pathway blocked the hypoxia-dependent induction of CD36 expression and promoter activity. Functional ramifications of CD36 hypoxic accumulation were evinced by CD36-dependent increases in scavenging and anti-angiogenic activities. Together, our findings indicate a novel mechanism by which hypoxia induces CD36 expression via activation of HIF-1 and the phosphatidylinositol 3-kinase pathway. PMID:19640849

  8. Cellular Notch responsiveness is defined by phosphoinositide 3-kinase-dependent signals

    PubMed Central

    Mckenzie, Grahame; Ward, George; Stallwood, Yvette; Briend, Emmanuel; Papadia, Sofia; Lennard, Andrew; Turner, Martin; Champion, Brian; Hardingham, Giles E

    2006-01-01

    Background Notch plays a wide-ranging role in controlling cell fate, differentiation and development. The PI3K-Akt pathway is a similarly conserved signalling pathway which regulates processes such as differentiation, proliferation and survival. Mice with disrupted Notch and PI3K signalling show phenotypic similarities during haematopoietic cell development, suggesting functional interaction between these pathways. Results We show that cellular responsiveness to Notch signals depends on the activity of the PI3K-Akt pathway in cells as diverse as CHO cells, primary T-cells and hippocampal neurons. Induction of the endogenous PI3K-Akt pathway in CHO cells (by the insulin pathway), in T-cells (via TCR activation) or in neurons (via TrKB activation) potentiates Notch-dependent responses. We propose that the PI3K-Akt pathway exerts its influence on Notch primarily via inhibition of GSK3-beta, a kinase known to phosphorylate and regulate Notch signals. Conclusion The PI3K-Akt pathway acts as a "gain control" for Notch signal responses. Since physiological levels of intracellular Notch are often low, coincidence with PI3K-activation may be crucial for induction of Notch-dependent responses. PMID:16507111

  9. Phosphoinositide 3-kinase: the key switch mechanism in insulin signalling.

    PubMed Central

    Shepherd, P R; Withers, D J; Siddle, K

    1998-01-01

    Insulin plays a key role in regulating a wide range of cellular processes. However, until recently little was known about the signalling pathways that are involved in linking the insulin receptor with downstream responses. It is now apparent that the activation of class 1a phosphoinositide 3-kinase (PI 3-kinase) is necessary and in some cases sufficient to elicit many of insulin's effects on glucose and lipid metabolism. The lipid products of PI 3-kinase act as both membrane anchors and allosteric regulators, serving to localize and activate downstream enzymes and their protein substrates. One of the major ways these lipid products of PI 3-kinase act in insulin signalling is by binding to pleckstrin homology (PH) domains of phosphoinositide-dependent protein kinase (PDK) and protein kinase B (PKB) and in the process regulating the phosphorylation of PKB by PDK. Using mechanisms such as this, PI 3-kinase is able to act as a molecular switch to regulate the activity of serine/threonine-specific kinase cascades important in mediating insulin's effects on endpoint responses. PMID:9677303

  10. Phosphoinositide lipid phosphatases: natural regulators of phosphoinositide 3-kinase signaling in T lymphocytes.

    PubMed

    Harris, Stephanie J; Parry, Richard V; Westwick, John; Ward, Stephen G

    2008-02-01

    The phosphoinositide 3-kinase signaling pathway has been implicated in a range of T lymphocyte cellular functions, particularly growth, proliferation, cytokine secretion, and survival. Dysregulation of phosphoinositide 3-kinase-dependent signaling and function in leukocytes, including B and T lymphocytes, has been implicated in many inflammatory and autoimmune diseases. As befits a pivotal signaling cascade, several mechanisms exist to ensure that the pathway is tightly regulated. This minireview focuses on two lipid phosphatases, viz. the 3'-phosphatase PTEN (phosphatase and tensin homolog deleted on chromosome 10) and SHIP (Src homology 2 domain-containing inositol-5-phosphatase). We discuss their role in regulating T lymphocyte signaling as well their potential as future therapeutic targets.

  11. Arf6 controls retromer traffic and intracellular cholesterol distribution via a phosphoinositide-based mechanism

    PubMed Central

    Marquer, Catherine; Tian, Huasong; Yi, Julie; Bastien, Jayson; Dall'Armi, Claudia; Yang-Klingler, YoungJoo; Zhou, Bowen; Chan, Robin Barry; Di Paolo, Gilbert

    2016-01-01

    Small GTPases play a critical role in membrane traffic. Among them, Arf6 mediates transport to and from the plasma membrane, as well as phosphoinositide signalling and cholesterol homeostasis. Here we delineate the molecular basis for the link between Arf6 and cholesterol homeostasis using an inducible knockout (KO) model of mouse embryonic fibroblasts (MEFs). We find that accumulation of free cholesterol in the late endosomes/lysosomes of Arf6 KO MEFs results from mistrafficking of Niemann–Pick type C protein NPC2, a cargo of the cation-independent mannose-6-phosphate receptor (CI-M6PR). This is caused by a selective increase in an endosomal pool of phosphatidylinositol-4-phosphate (PI4P) and a perturbation of retromer, which controls the retrograde transport of CI-M6PR via sorting nexins, including the PI4P effector SNX6. Finally, reducing PI4P levels in KO MEFs through independent mechanisms rescues aberrant retromer tubulation and cholesterol mistrafficking. Our study highlights a phosphoinositide-based mechanism for control of cholesterol distribution via retromer. PMID:27336679

  12. Sac1--Vps74 structure reveals a mechanism to terminate phosphoinositide signaling in the Golgi apparatus

    SciTech Connect

    Cai, Yiying; Deng, Yongqiang; Horenkamp, Florian; Reinisch, Karin M.; Burd, Christopher G.

    2014-08-25

    Sac1 is a phosphoinositide phosphatase of the endoplasmic reticulum and Golgi apparatus that controls organelle membrane composition principally via regulation of phosphatidylinositol 4-phosphate signaling. We present a characterization of the structure of the N-terminal portion of yeast Sac1, containing the conserved Sac1 homology domain, in complex with Vps74, a phosphatidylinositol 4-kinase effector and the orthologue of human GOLPH3. The interface involves the N-terminal subdomain of the Sac1 homology domain, within which mutations in the related Sac3/Fig4 phosphatase have been linked to Charcot–Marie–Tooth disorder CMT4J and amyotrophic lateral sclerosis. Disruption of the Sac1–Vps74 interface results in a broader distribution of phosphatidylinositol 4-phosphate within the Golgi apparatus and failure to maintain residence of a medial Golgi mannosyltransferase. The analysis prompts a revision of the membrane-docking mechanism for GOLPH3 family proteins and reveals how an effector of phosphoinositide signaling serves a dual function in signal termination.

  13. Sac1-Vps74 structure reveals a mechanism to terminate phosphoinositide signaling in the Golgi apparatus.

    PubMed

    Cai, Yiying; Deng, Yongqiang; Horenkamp, Florian; Reinisch, Karin M; Burd, Christopher G

    2014-08-18

    Sac1 is a phosphoinositide phosphatase of the endoplasmic reticulum and Golgi apparatus that controls organelle membrane composition principally via regulation of phosphatidylinositol 4-phosphate signaling. We present a characterization of the structure of the N-terminal portion of yeast Sac1, containing the conserved Sac1 homology domain, in complex with Vps74, a phosphatidylinositol 4-kinase effector and the orthologue of human GOLPH3. The interface involves the N-terminal subdomain of the Sac1 homology domain, within which mutations in the related Sac3/Fig4 phosphatase have been linked to Charcot-Marie-Tooth disorder CMT4J and amyotrophic lateral sclerosis. Disruption of the Sac1-Vps74 interface results in a broader distribution of phosphatidylinositol 4-phosphate within the Golgi apparatus and failure to maintain residence of a medial Golgi mannosyltransferase. The analysis prompts a revision of the membrane-docking mechanism for GOLPH3 family proteins and reveals how an effector of phosphoinositide signaling serves a dual function in signal termination.

  14. Small GTPases and phosphoinositides in the regulatory mechanisms of macropinosome formation and maturation

    PubMed Central

    Egami, Youhei; Taguchi, Tomohiko; Maekawa, Masashi; Arai, Hiroyuki; Araki, Nobukazu

    2014-01-01

    Macropinosome formation requires the sequential activation of numerous signaling pathways that coordinate the actin-driven formation of plasma membrane protrusions (ruffles) and circular ruffles (macropinocytic cups), followed by the closure of these macropinocytic cups into macropinosomes. In the process of macropinosome formation, localized productions of phosphoinositides such as PI(4,5)P2 and PI(3,4,5)P3 spatiotemporally orchestrate actin polymerization and rearrangement through recruiting and activating a variety of actin-associated proteins. In addition, the sequential activation of small GTPases, which are known to be master regulators of the actin cytoskeleton, plays a pivotal role in parallel with phosphoinositides. To complete macropinosome formation, phosphoinositide breakdown and Rho GTPase deactivation must occur in appropriate timings. After the nascent macropinosomes are formed, phosphoinositides and several Rab GTPases control macropinosome maturation by regulating vesicle trafficking and membrane fusion. In this review, we summarize recent advances in our understanding of the critical functions of phosphoinositide metabolism and small GTPases in association with their downstream effectors in macropinocytosis. PMID:25324782

  15. Oxidative stress stimulates skeletal muscle glucose uptake through a phosphatidylinositol 3-kinase-dependent pathway

    PubMed Central

    Higaki, Yasuki; Mikami, Toshio; Fujii, Nobuharu; Hirshman, Michael F.; Koyama, Katsuhiro; Seino, Tetsuya; Tanaka, Keitaro; Goodyear, Laurie J.

    2010-01-01

    We determined the acute effects of oxidative stress on glucose uptake and intracellular signaling in skeletal muscle by incubating muscles with reactive oxygen species (ROS). Xanthine oxidase (XO) is a superoxide-generating enzyme that increases ROS. Exposure of isolated rat extensor digitorum longus (EDL) muscles to Hx/XO (Hx/XO) for 20 min resulted in a dose-dependent increase in glucose uptake. To determine whether the mechanism leading to Hx/XO-stimulated glucose uptake is associated with the production of H2O2, EDL muscles from rats were preincubated with the H2O2 scavenger catalase or the superoxide scavenger superoxide dismutase (SOD) prior to incubation with Hx/XO. Catalase treatment, but not SOD, completely inhibited the increase in Hx/XO-stimulated 2-deoxyglucose (2-DG) uptake, suggesting that H2O2 is an intermediary leading to Hx/XO-stimulated glucose uptake with incubation. Direct H2O2 also resulted in a dose-dependent increase in 2-DG uptake in isolated EDL muscles, and the maximal increase was threefold over basal levels at a concentration of 600 μmol/l H2O2. H2O2-stimulated 2-DG uptake was completely inhibited by the phosphatidylinositol 3-kinase (PI3K) inhibitor wortmannin, but not the nitric oxide inhibitor NG-monomethyl-L-arginine. H2O2 stimulated the phosphorylation of Akt Ser473 (7-fold) and Thr308 (2-fold) in isolated EDL muscles. H2O2 at 600 μmol/l had no effect on ATP concentrations and did not increase the activities of either the α1 or α2 catalytic isoforms of AMP-activated protein kinase. These results demonstrate that acute exposure of muscle to ROS is a potent stimulator of skeletal muscle glucose uptake and that this occurs through a PI3K-dependent mechanism. PMID:18303121

  16. Phosphatidylinositol-3 kinase-dependent translational regulation of Id1 involves the PPM1G phosphatase

    PubMed Central

    Xu, Kaiming; Wang, Lanfang; Feng, Wei; Feng, Yue; Shu, Hui-Kuo G.

    2016-01-01

    Id1 is a helix-loop-helix transcriptional modulator that increases the aggressiveness of malignant glial neoplasms. Since most glioblastomas (GBMs) show increased phosphatidylinositol-3 kinase (PI-3K) signaling, we sought to determine whether this pathway regulates Id1 expression. Higher basal Id1 expression correlates with dysregulated PI-3K signaling in multiple established GBM cell lines. Further characterization of PI-3K-dependent Id1 regulation reveals that chemical or genetic inhibition of PI-3K signaling reduces Id1 protein but not mRNA expression. Overall, PI-3K signaling appears to enhance Id1 translation with no significant effect on its stability. PI-3K signaling is known to regulate protein translation through mTORC1-dependent phosphorylation of 4E-BP1, which reduces its association with and inhibition of the translation initiation factor eIF4E. Interestingly, while inhibition of PI-3K and AKT lowers 4E-BP1 phosphorylation and expression of Id1 in all cases, inhibition of TORC1 with rapamycin does not consistently have a similar effect suggesting an alternative mechanism for PI-3K-dependent regulation of Id1 translation. We now identify a potential role for the serine-threonine phosphatase PPM1G in translational regulation of Id1 protein expression. PPM1G knockdown by siRNA increase both 4E-BP1 phosphorylation and Id1 expression and PPM1G and 4E-BP1 co-associates in GBM cells. Furthermore, PPM1G is a phosphoprotein and this phosphorylation appears to be regulated by PI-3K activity. Finally, PI-3K inhibition increases PPM1G activity when assessed by an in vitro phosphatase assay. Our findings provide the first evidence that the PI-3K/AKT signaling pathway modulates PPM1G activity resulting in a shift in the balance between hyper- and hypo-phosphorylated 4E-BP1 and translational regulation of Id1 expression. PMID:27065332

  17. Possible mechanism for preterm labor associated with bacterial infection. I. Stimulation of phosphoinositide metabolism by endotoxin in endometrial fibroblasts

    SciTech Connect

    Khan, A.A.; Imai, A.; Tamaya, T. )

    1990-07-01

    Growing evidence suggests an association between intra-amniotic infection and premature initiation of parturition. We recently demonstrated that some factor(s) including endotoxin produced by the organism stimulates endogenous phospholipase A2 resulting in liberation of arachidonic acid and prostaglandin formation. The studies presented in this report were designated to evaluate the mechanism for endotoxin to stimulate phospholipase A2 using human endometrial fibroblasts. Exposure of the fibroblasts to endotoxin from Escherichia coli in the presence of ({sup 32}P) phosphate increased {sup 32}P-labeling of phosphatidic acid (PA) and phosphatidyl-inositol (PI) in a dose-dependent and a time-dependent manners. The PA labeling occurred without a measurable lag time. These findings demonstrate that the endotoxin stimulates phosphoinositide metabolism in human endometrial fibroblasts by a receptor-mediated mechanism. Membrane phosphoinositide turnover stimulated by endotoxin results in cytosolic Ca{sup 2+} increment, liberation of arachidonic acid, which may be involved in the initiation of parturition.

  18. Contraction inhibits insulin-stimulated insulin receptor substrate-1/2-associated phosphoinositide 3-kinase activity, but not protein kinase B activation or glucose uptake, in rat muscle.

    PubMed Central

    Whitehead, J P; Soos, M A; Aslesen, R; O'rahilly, S; Jensen, J

    2000-01-01

    The initial stages of insulin-stimulated glucose uptake are thought to involve tyrosine phosphorylation of insulin receptor substrates (IRSs), which recruit and activate phosphoinositide 3-kinase (PI 3-kinase), leading to the activation of protein kinase B (PKB) and other downstream effectors. In contrast, contraction stimulates glucose uptake via a PI 3-kinase-independent mechanism. The combined effects of insulin and contraction on glucose uptake are additive. However, it has been reported that contraction causes a decrease in insulin-stimulated IRS-1-associated PI 3-kinase activity. To investigate this paradox, we have examined the effects of contraction on insulin-stimulated glucose uptake and proximal insulin-signalling events in isolated rat epitrochlearis muscle. Stimulation by insulin or contraction produced a 3-fold increase in glucose uptake, with the effects of simultaneous treatment by insulin and contraction being additive. Wortmannin completely blocked the additive effect of insulin in contracting skeletal muscle, indicating that this is a PI 3-kinase-dependent effect. Insulin-stimulated recruitment of PI 3-kinase to IRS-1 was unaffected by contraction; however, insulin produced no discernible increase in PI 3-kinase activity in IRS-1 or IRS-2 immunocomplexes in contracting skeletal muscle. Consistent with this, contraction inhibited insulin-stimulated p70(S6K) activation. In contrast, insulin-stimulated activation of PKB was unaffected by contraction. Thus, in contracting skeletal muscle, insulin stimulates glucose uptake and activates PKB, but not p70(S6K), by a PI 3-kinase-dependent mechanism that is independent of changes in IRS-1- and IRS-2-associated PI 3-kinase activity. PMID:10903138

  19. Role of phosphoinositides at the neuronal synapse

    PubMed Central

    Frere, Samuel G.; Chang-Ileto, Belle; Di Paolo, Gilbert

    2013-01-01

    Synaptic transmission is amongst the most sophisticated and tightly controlled biological phenomena in higher eukaryotes. In the past few decades, tremendous progress has been made in our understanding of the molecular mechanisms underlying multiple facets of neurotransmission, both pre- and postsynaptically. Brought under the spotlight by pioneer studies in the areas of secretion and signal transduction, phosphoinositides and their metabolizing enzymes have been increasingly recognized as key protagonists in fundamental aspects of neurotransmission. Not surprisingly, dysregulation of phosphoinositide metabolism has also been implicated in synaptic malfunction associated with a variety of brain disorders. In the present chapter, we summarize current knowledge on the role of phosphoinositides at the neuronal synapse and highlight some of the outstanding questions in this research field. PMID:22374090

  20. The emerging role of phosphoinositide clustering in intracellular trafficking and signal transduction

    PubMed Central

    Picas, Laura; Gaits-Iacovoni, Frederique; Goud, Bruno

    2016-01-01

    Phosphoinositides are master regulators of multiple cellular processes: from vesicular trafficking to signaling, cytoskeleton dynamics, and cell growth. They are synthesized by the spatiotemporal regulated activity of phosphoinositide-metabolizing enzymes. The recent observation that some protein modules are able to cluster phosphoinositides suggests that alternative or complementary mechanisms might operate to stabilize the different phosphoinositide pools within cellular compartments. Herein, we discuss the different known and potential molecular players that are prone to engage phosphoinositide clustering and elaborate on how such a mechanism might take part in the regulation of intracellular trafficking and signal transduction. PMID:27092250

  1. Two-ligand priming mechanism for potentiated phosphoinositide synthesis is an evolutionarily conserved feature of Sec14-like phosphatidylinositol and phosphatidylcholine exchange proteins

    PubMed Central

    Huang, Jin; Ghosh, Ratna; Tripathi, Ashutosh; Lönnfors, Max; Somerharju, Pentti; Bankaitis, Vytas A.

    2016-01-01

    Lipid signaling, particularly phosphoinositide signaling, plays a key role in regulating the extreme polarized membrane growth that drives root hair development in plants. The Arabidopsis AtSFH1 gene encodes a two-domain protein with an amino-terminal Sec14-like phosphatidylinositol transfer protein (PITP) domain linked to a carboxy-terminal nodulin domain. AtSfh1 is critical for promoting the spatially highly organized phosphatidylinositol-4,5-bisphosphate signaling program required for establishment and maintenance of polarized root hair growth. Here we demonstrate that, like the yeast Sec14, the AtSfh1 PITP domain requires both its phosphatidylinositol (PtdIns)- and phosphatidylcholine (PtdCho)-binding properties to stimulate PtdIns-4-phosphate [PtdIns(4)P] synthesis. Moreover, we show that both phospholipid-binding activities are essential for AtSfh1 activity in supporting polarized root hair growth. Finally, we report genetic and biochemical evidence that the two-ligand mechanism for potentiation of PtdIns 4-OH kinase activity is a broadly conserved feature of plant Sec14-nodulin proteins, and that this strategy appeared only late in plant evolution. Taken together, the data indicate that the PtdIns/PtdCho-exchange mechanism for stimulated PtdIns(4)P synthesis either arose independently during evolution in yeast and in higher plants, or a suitable genetic module was introduced to higher plants from a fungal source and subsequently exploited by them. PMID:27193303

  2. An introduction to phosphoinositides.

    PubMed

    Maffucci, Tania

    2012-01-01

    Phosphoinositides (PIs) are minor components of cellular membranes that play critical regulatory roles in several intracellular functions. This chapter describes the main enzymes regulating the turnover of each of the seven PIs in mammalian cells and introduces to some of their intracellular functions and to some evidences of their involvement in human diseases. Due to the complex interrelation between the distinct PIs and the plethora of functions that they can regulate inside a cell, this chapter is not meant to be a comprehensive coverage of all aspects of PI signalling but rather an introduction to this complex signalling field. For more details of their regulation/functions and extensive description of their intracellular roles, more detailed reviews are suggested on each single topic.

  3. Rho GTPases, phosphoinositides, and actin

    PubMed Central

    Croisé, Pauline; Estay-Ahumada, Catherine; Gasman, Stéphane; Ory, Stéphane

    2014-01-01

    Rho GTPases are well known regulators of the actin cytoskeleton that act by binding and activating actin nucleators. They are therefore involved in many actin-based processes, including cell migration, cell polarity, and membrane trafficking. With the identification of phosphoinositide kinases and phosphatases as potential binding partners or effectors, Rho GTPases also appear to participate in the regulation of phosphoinositide metabolism. Since both actin dynamics and phosphoinositide turnover affect the efficiency and the fidelity of vesicle transport between cell compartments, Rho GTPases have emerged as critical players in membrane trafficking. Rho GTPase activity, actin remodeling, and phosphoinositide metabolism need to be coordinated in both space and time to ensure the progression of vesicles along membrane trafficking pathways. Although most molecular pathways are still unclear, in this review, we will highlight recent advances made in our understanding of how Rho-dependent signaling pathways organize actin dynamics and phosphoinositides and how phosphoinositides potentially provide negative feedback to Rho GTPases during endocytosis, exocytosis and membrane exchange between intracellular compartments. PMID:24914539

  4. Nuclear Phosphoinositide Regulation of Chromatin.

    PubMed

    Hamann, Bree L; Blind, Raymond D

    2017-03-03

    Phospholipid signaling has clear connections to a wide array of cellular processes, particularly in gene expression and in controlling the chromatin biology of cells. However, most of the work elucidating how phospholipid signaling pathways contribute to cellular physiology have studied cytoplasmic membranes, while relatively little attention has been paid to the role of phospholipid signaling in the nucleus. Recent work from several labs has shown that nuclear phospholipid signaling can have important roles that are specific to this cellular compartment. This review focuses on the nuclear phospholipid functions and the activities of phospholipid signaling enzymes that regulate metazoan chromatin and gene expression. In particular, we highlight the roles that nuclear phosphoinositides play in several nuclear-driven physiological processes, such as differentiation, proliferation, and gene expression. Taken together, the recent discovery of several specifically nuclear phospholipid functions could have dramatic impact on our understanding of the fundamental mechanisms that enable tight control of cellular physiology. This article is protected by copyright. All rights reserved.

  5. Biochemistry and structure of phosphoinositide phosphatases.

    PubMed

    Kim, Young Jun; Jahan, Nusrat; Bahk, Young Yil

    2013-01-01

    Phosphoinositides are the phosphorylated derivatives of phosphatidylinositol, and play a very significant role in a diverse range of signaling processes in eukaryotic cells. A number of phosphoinositide-metabolizing enzymes, including phosphoinositide-kinases and phosphatases are involved in the synthesis and degradation of these phospholipids. Recently, the function of various phosphatases in the phosphatidylinositol signaling pathway has been of great interest. In the present review we summarize the structural insights and biochemistry of various phosphatases in regulating phosphoinositide metabolism.

  6. Class III phosphoinositide 3-kinase--Beclin1 complex mediates the amino acid-dependent regulation of autophagy in C2C12 myotubes.

    PubMed Central

    Tassa, Amina; Roux, Marie Paule; Attaix, Didier; Bechet, Daniel M

    2003-01-01

    Increased proteolysis contributes to muscle atrophy that prevails in many diseases. Elucidating the signalling pathways responsible for this activation is of obvious clinical importance. Autophagy is a ubiquitous degradation process, induced by amino acid starvation, that delivers cytoplasmic components to lysosomes. Starvation markedly stimulates autophagy in myotubes, and the present studies investigate the mechanisms of this regulation. In C(2)C(12) myotubes incubated with serum growth factors, amino acid starvation stimulated autophagic proteolysis independently of p38 and p42/p44 mitogen-activated protein kinases, but in a PI3K (phosphoinositide 3-kinase)-dependent manner. Starvation, however, did not alter activities of class I and class II PI3Ks, and was not sufficient to affect major signalling proteins downstream from class I PI3K (glycogen synthase kinase, Akt/protein kinase B and protein S6). In contrast, starvation increased class III PI3K activity in whole-myotube extracts. In fact, this increase was most pronounced for a population of class III PI3K that coimmunoprecipitated with Beclin1/Apg6 protein, a major determinant in the initiation of autophagy. Stimulation of proteolysis was reproduced by feeding myotubes with synthetic dipalmitoyl-PtdIns3 P, the class III PI3K product. Conversely, protein transfection of anti-class III PI3K inhibitory antibody into starved myotubes inverted the induction of proteolysis. Therefore, independently of class I PI3K/Akt, protein S6 and mitogen-activated protein kinase pathways, amino acid starvation stimulates proteolysis in myotubes by regulating class III PI3K-Beclin1 autophagic complexes. PMID:12967324

  7. Inhibition of neointimal formation by trans-resveratrol: role of phosphatidyl inositol 3-kinase-dependent Nrf2 activation in heme oxygenase-1 induction.

    PubMed

    Kim, Jung Woo; Lim, Sung Chul; Lee, Moo Yeol; Lee, Jeong Woon; Oh, Won Keun; Kim, Sang Kyum; Kang, Keon Wook

    2010-10-01

    Neointima, defined as abnormal growth of the intimal layer of blood vessels, is believed to be a critical event in the development of vascular occlusive disease. Although resveratrol's inhibitory effects on proliferation and migration of vascular smooth muscle cells has been reported, its activity on neointimal formation is still unclear. Oral administration of trans-resveratrol significantly suppressed intimal hyperplasia in a wire-injured femoral artery mouse model. In cultured vascular smooth muscle cells, trans-resveratrol inhibited platelet-derived growth factor-stimulated DNA synthesis and cell proliferation with down-regulation of cyclin D and pRB. Moreover, platelet-derived growth factor-induced production of reactive oxygen species was inhibited by trans-resveratrol and the compound induced heme oxygenase-1 (HO-1). The anti-proliferative activity of trans-resveratrol was reversed by an HO-1 inhibitor, ZnPPIX. Subcellular fractionation and reporter gene analyses revealed that trans-resveratrol increased the level of nuclear Nrf2 and antioxidant response element reporter activity, and that these were essential for the induction of HO-1. Trans-resveratrol also enhanced the activities of phosphatidyl inositol 3-kinase and extracellular signal regulated kinase, and phosphatidyl inositol 3-kinase was required for Nrf2/antioxidant response element-dependent HO-1 induction. These data have significant implications for the elucidation of the pharmacological mechanism by which trans-resveratrol prevents vascular occlusive diseases.

  8. The roles of phosphoinositides in mammalian autophagy.

    PubMed

    Jang, Deok-Jin; Lee, Jin-A

    2016-08-01

    Autophagy is an evolutionarily conserved cellular process for lysosomal degradation, which is involved in various physiological processes within cells. Its dysfunction is associated with many human diseases, such as cancer, liver diseases, heart diseases, and infectious diseases, including neurodegenerative diseases. Autophagy involves the formation of a double-membrane bound autophagosome and the degradation of cytosolic components via its fusion and maturation with the lysosome. One of the most important steps in the process of autophagy is membrane biogenesis during autophagosome formation/maturation from different membrane sources within cells. However, there is limited knowledge regarding: (1) how the core autophagy machinery is recruited to the initial site to initiate the formation of the isolation membrane and (2) how the autophagosome matures into the functional autolysosome. Lipid supply for nucleation/elongation of the autophagosome has been proposed as one possible mechanism. Accumulating evidence suggests the important role of phosphoinositides as phospholipids, which represent key membrane-localized signals in the regulation of fundamental cellular processes, in autophagosome formation and maturation. This review focuses on how phosphoinositides influence autophagy induction or autophagosome biogenesis/maturation, because the way they are altered by autophagy might contribute to the pathogenesis of human diseases.

  9. Phosphoinositide turnover in Toll-like receptor signaling and trafficking

    PubMed Central

    Tu Le, Oanh Thi; Ngoc Nguyen, Tu Thi; Lee, Sang Yoon

    2014-01-01

    Lipid components in biological membranes are essential for maintaining cellular function. Phosphoinositides, the phosphorylated derivatives of phosphatidylinositol (PI), regulate many critical cell processes involving membrane signaling, trafficking, and reorganization. Multiple metabolic pathways including phosphoinositide kinases and phosphatases and phospholipases tightly control spatio-temporal concentration of membrane phosphoinositides. Metabolizing enzymes responsible for PI 4,5-bisphosphate (PI(4,5)P2) production or degradation play a regulatory role in Toll-like receptor (TLR) signaling and trafficking. These enzymes include PI 4-phosphate 5-kinase, phosphatase and tensin homolog, PI 3-kinase, and phospholipase C. PI(4,5)P2 mediates the interaction with target cytosolic proteins to induce their membrane translocation, regulate vesicular trafficking, and serve as a precursor for other signaling lipids. TLR activation is important for the innate immune response and is implicated in diverse pathophysiological disorders. TLR signaling is controlled by specific interactions with distinct signaling and sorting adaptors. Importantly, TLR signaling machinery is differentially formed depending on a specific membrane compartment during signaling cascades. Although detailed mechanisms remain to be fully clarified, phosphoinositide metabolism is promising for a better understanding of such spatio-temporal regulation of TLR signaling and trafficking. [BMB Reports 2014; 47(7): 361-368] PMID:24856829

  10. The phosphoinositide 3-kinase pathway.

    PubMed

    Cantley, Lewis C

    2002-05-31

    Phosphorylated lipids are produced at cellular membranes during signaling events and contribute to the recruitment and activation of various signaling components. The role of phosphoinositide 3-kinase (PI3K), which catalyzes the production of phosphatidylinositol-3,4,5-trisphosphate, in cell survival pathways; the regulation of gene expression and cell metabolism; and cytoskeletal rearrangements are highlighted. The PI3K pathway is implicated in human diseases including diabetes and cancer, and understanding the intricacies of this pathway may provide new avenues for therapuetic intervention.

  11. Signal transduction abnormalities in suicide: focus on phosphoinositide signaling system.

    PubMed

    Pandey, Ghanshyam N

    2013-11-01

    Suicide is a major public health concern and each year about one million people die by suicide worldwide. Recent studies suggest that suicide may be associated with specific neurobiological abnormalities. Earlier studies of neurobiology of suicide focused on abnormalities of the serotonergic mechanism. These studies suggested that some serotonin receptor subtypes may be abnormal in the postmortem brain of suicide victims. Since these receptors are linked to signal transduction pathways, abnormalities of signaling mechanisms have been recently studied in the postmortem brain of suicide victims. Of particular interest is the 5-hydroxytryptamine2A receptor-linked phosphoinositide signaling system. Several studies have focused on the abnormalities on the component of this signaling system and these studies suggest the abnormalities of G proteins, the effectors phospholipase C and the second or the third messenger systems, such as protein kinase A. Further studies revealed abnormalities in the downstream transcription factors such as the cyclic AMP response element binding protein and some of the targeted genes of these transcription factors. The most important gene in this aspect which has been studied in the suicide is the brain-derived neurotrophic factor. Here we critically review the studies focusing on these components of the phosphoinositide signaling system in the postmortem brain of both adult and teenage suicide victims. These studies provide a better understanding of the signal transduction abnormalities in suicide focusing on the phosphoinositide signaling pathway. These studies may lead to new therapeutic agents targeting specific sites in this signaling cascade.

  12. Regulation of platelet plug formation by phosphoinositide metabolism

    PubMed Central

    Min, Sang H.

    2013-01-01

    Phosphatidylinositol and its phosphorylated derivatives, phosphoinositides, are minor constituents of phospholipids at the cellular membrane level. Nevertheless, phosphatidylinositol and phosphoinositides represent essential components of intracellular signaling that regulate diverse cellular processes, including platelet plug formation. Accumulating evidence indicates that the metabolism of phosphoinositides is temporally and spatially modulated by the opposing effects of specific phosphoinositide-metabolizing enzymes, including lipid kinases, lipid phosphatases, and phospholipases. Each of these enzymes generates a selective phosphoinositide or second messenger within precise cellular compartments. Intriguingly, phosphoinositide-metabolizing enzymes exist in different isoforms, which all produce the same phosphoinositide products. Recent studies using isoform-specific mouse models and chemical inhibitors have elucidated that the different isoforms of phosphoinositide-metabolizing enzymes have nonredundant functions and provide an additional layer of complexity to the temporo-spatial organization of intracellular signaling events. In this review, we will discuss recent advances in our understanding of phosphoinositide organization during platelet activation. PMID:23757731

  13. BIN1/M-Amphiphysin2 induces clustering of phosphoinositides to recruit its downstream partner dynamin

    NASA Astrophysics Data System (ADS)

    Picas, Laura; Viaud, Julien; Schauer, Kristine; Vanni, Stefano; Hnia, Karim; Fraisier, Vincent; Roux, Aurélien; Bassereau, Patricia; Gaits-Iacovoni, Frédérique; Payrastre, Bernard; Laporte, Jocelyn; Manneville, Jean-Baptiste; Goud, Bruno

    2014-12-01

    Phosphoinositides play a central role in many physiological processes by assisting the recruitment of proteins to membranes through specific phosphoinositide-binding motifs. How this recruitment is coordinated in space and time is not well understood. Here we show that BIN1/M-Amphiphysin2, a protein involved in T-tubule biogenesis in muscle cells and frequently mutated in centronuclear myopathies, clusters PtdIns(4,5)P2 to recruit its downstream partner dynamin. By using several mutants associated with centronuclear myopathies, we find that the N-BAR and the SH3 domains of BIN1 control the kinetics and the accumulation of dynamin on membranes, respectively. We show that phosphoinositide clustering is a mechanism shared by other proteins that interact with PtdIns(4,5)P2, but do not contain a BAR domain. Our numerical simulations point out that clustering is a diffusion-driven process in which phosphoinositide molecules are not sequestered. We propose that this mechanism plays a key role in the recruitment of downstream phosphoinositide-binding proteins.

  14. Stimulatory effect of bombesin on phosphoinositide metabolism in the rat pineal gland.

    PubMed

    Novotná, R; Novotný, I

    1997-10-03

    The pineal gland is under complex peptidergic nervous control originating from hypothalamic nuclei. The daily rhythm of bombesin-like peptide in the hypothalamus suggests that this neuropeptide, similarly as other neuropeptides, might be involved in modulation of the physiological activity of the pineal gland. In our experiments we studied the mechanism of signal transduction of bombesin in the isolated pineal glands of rats. The phosphoinositide signalling system was examined by measuring 32P-labelling of phosphatidylinositol (PI), phosphatidylinositol phosphate (PIP) and phosphatidylinositol bisphosphate (PIP2), which reflects phosphoinositide cycle activation. Bombesin induced a significant increase in 32P-labelling of PI, PIP and PIP2. The antagonist of this neuropeptide, (D-Phe12-Leu14)-bombesin, suppressed the increase in 32P-labelling of all phosphoinositides. Bombesin was without effect on cAMP dependent protein phosphorylation. The data indicate that bombesin activates the PI signalling system via specific receptors.

  15. CDP-diacylglycerol synthetase-controlled phosphoinositide availability limits VEGFA signaling and vascular morphogenesis

    PubMed Central

    Pan, Weijun; Pham, Van N.; Stratman, Amber N.; Castranova, Daniel; Kamei, Makoto; Kidd, Kameha R.; Lo, Brigid D.; Shaw, Kenna M.; Torres-Vazquez, Jesus; Mikelis, Constantinos M.; Gutkind, J. Silvio; Davis, George E.

    2012-01-01

    Understanding the mechanisms that regulate angiogenesis and translating these into effective therapies are of enormous scientific and clinical interests. In this report, we demonstrate the central role of CDP-diacylglycerol synthetase (CDS) in the regulation of VEGFA signaling and angiogenesis. CDS activity maintains phosphoinositide 4,5 bisphosphate (PIP2) availability through resynthesis of phosphoinositides, whereas VEGFA, mainly through phospholipase Cγ1, consumes PIP2 for signal transduction. Loss of CDS2, 1 of 2 vertebrate CDS enzymes, results in vascular-specific defects in zebrafish in vivo and failure of VEGFA-induced angiogenesis in endothelial cells in vitro. Absence of CDS2 also results in reduced arterial differentiation and reduced angiogenic signaling. CDS2 deficit-caused phenotypes can be successfully rescued by artificial elevation of PIP2 levels, and excess PIP2 or increased CDS2 activity can promote excess angiogenesis. These results suggest that availability of CDS-controlled resynthesis of phosphoinositides is essential for angiogenesis. PMID:22649102

  16. Decoding the role of phosphoinositides in phototropin signaling involved in chloroplast movements.

    PubMed

    Aggarwal, Chhavi; Labuz, Justyna; Gabryś, Halina

    2013-08-01

    In angiosperms, light-dependent chloroplast movements are exclusively mediated by UVA/blue light receptors - phototropins. The two photoreceptors of Arabidopsis thaliana, phot1 and phot2, have overlapping roles in the control of these movements. Experiments performed in different plant species point to the participation of phosphoinositides in blue light-controlled chloroplast relocations. Here, we report a summary of recent findings presenting the involvement of phosphatidylinositol 4,5-bisphosphate as well as phosphatidylinositol 3- and 4-phosphates in weak blue light-mediated (accumulation) and strong blue light-mediated (avoidance) responses of chloroplasts. The blue light-activated alterations in phosphoinositide concentration are partly responsible for cytosolic Ca (2+) changes. Ca (2+) influx from apoplast does not seem to be involved in the mechanism of movement responses. In summary, interplay between phosphoinositides and intracellular Ca (2+) regulates chloroplast redistribution in response to blue light in higher plants.

  17. Phosphoinositide hydrolysis mediated by H1 receptors in autoimmune myocarditis mice

    PubMed Central

    Goren, Nora; Leiros, Claudia Perez; Sterin-Borda, Leonor

    1993-01-01

    Stimulation of phosphoinositide hydrolysis in myocardium from autoimmune myocarditis mice by ThEA and histamine was assayed. Myocardium from autoimmune heart, but not the normal forms, specifically increased phosphoinositide turnover in the presence of histaminergic agonists. This increment was blocked by a specific H1 antagonist mepyramine and to the same extent by the phospholipase C inhibitor NCDC. By using a binding assay H1 histaminergic receptors were detected in autoimmune heart membrane preparations, but this was not observed in normal heart. These data suggest that autoimmune myocardium expressed a functional H1 receptor that could involve a distinctive mechanism operating in the disease. PMID:18475540

  18. Physical Foundations of PTEN/Phosphoinositide Interaction

    NASA Astrophysics Data System (ADS)

    Gericke, Arne; Jiang, Zhiping; Redfern, Roberta E.; Kooijman, Edgar E.; Ross, Alonzo H.

    2009-03-01

    Phosphoinositides act as signaling molecules by recruiting critical effectors to specific subcellular membranes to regulate cell proliferation, apoptosis and cytoskeletal reorganization, which requires a tight regulation of phosphoinositide generation and turnover as well as a high degree of compartmentalization. PTEN is a phosphatase specific for the 3 position of the phosophoinositide ring that is deleted or mutated in many different disease states. PTEN association with membranes requires the interaction of its C2 domain with phosphatidylserine and the interaction of its N-terminal end with phosphatidylinositol-4,5-bisphophate (PI(4,5)P2). We have investigated PTEN/PI(4,5)P2 interaction and found that Lys13 is crucial for the observed binding. We also found that the presence of cholesterol enhances PTEN binding to mixed PI(4,5)P2/POPC vesicles. Fluorescence microscopy experiments utilizing GUVs yielded results consistent with enhanced phosphoinositide domain formation in the presence of cholesterol. These experiments were accompanied by zeta potential measurements and solid state MAS ^31P-NMR experiments aimed at investigating the ionization behavior of phosphoinositides.

  19. Metabotropic glutamate receptor 5 (mGluR5)-mediated phosphoinositide hydrolysis and NMDA-potentiating effects are blunted in the striatum of aged rats: a possible additional mechanism in striatal senescence.

    PubMed

    Domenici, Maria Rosaria; Pintor, Annita; Potenza, Rosa Luisa; Gaudi, Simona; Grò, Maria Cristina; Passarelli, Francesca; Reggio, Rosaria; Galluzzo, Mariangela; Massotti, Marino; Popoli, Patrizia

    2003-05-01

    The aim of the present work was to verify whether an impairment of subtype 5 metabotropic glutamate receptor-mediated neurotransmission did occur in the aged striatum. To this end, the ability of the subtype 5 metabotropic glutamate receptor agonist, RS-2-chloro-5-hydroxyphenylglycine, to stimulate phosphoinositide hydrolysis and to potentiate N-methyl-d-aspartate-induced effects in striatal slices from young (3 months) and aged (24 months) rats was compared. The ability of RS-2-chloro-5-hydroxyphenylglycine to induce maximal phosphoinositide turnover and to potentiate N-methyl-d-aspartate effects was significantly reduced in slices from old vs. young rats. These changes were associated with a significant reduction in the expression of subtype 5 metabotropic glutamate receptor protein (-28.8%) and phospholipase C-beta1 (-55.8%) in old striata, while receptor messenger ribonucleic acid expression was unchanged. These results show that the signalling associated with subtype 5 metabotropic glutamate receptors undergoes significant age-related changes and that a reduced expression of subtype 5 metabotropic glutamate receptors and, more importantly, phospholipase C-beta1 may account for the functional decline of subtype 5 metabotropic glutamate receptors.

  20. Activation of Phosphoinositide Metabolism by Cholinergic Agents.

    DTIC Science & Technology

    1990-12-16

    acid significantly inhibited NE-induced [3H]IP1 production in slices that had been prelabelled with [3H]inositol and baclofen , a specific GABAB...agonist, was as effective as GABA in enhancing the response to NE (Figure 15). Neither GABA nor baclofen significantly blocked the inhibitory effect of...quisqualate, but baclofen reduced the inhibitory effect of arachidonic acid. Effects of NMDA receptor antagonists on phosphoinositide hydrolysis MK-801 is

  1. Specificity of Collybistin-Phosphoinositide Interactions

    PubMed Central

    Ludolphs, Michaela; Schneeberger, Daniela; Soykan, Tolga; Schäfer, Jonas; Papadopoulos, Theofilos; Brose, Nils; Schindelin, Hermann; Steinem, Claudia

    2016-01-01

    The regulatory protein collybistin (CB) recruits the receptor-scaffolding protein gephyrin to mammalian inhibitory glycinergic and GABAergic postsynaptic membranes in nerve cells. CB is tethered to the membrane via phosphoinositides. We developed an in vitro assay based on solid-supported 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine membranes doped with different phosphoinositides on silicon/silicon dioxide substrates to quantify the binding of various CB2 constructs using reflectometric interference spectroscopy. Based on adsorption isotherms, we obtained dissociation constants and binding capacities of the membranes. Our results show that full-length CB2 harboring the N-terminal Src homology 3 (SH3) domain (CB2SH3+) adopts a closed and autoinhibited conformation that largely prevents membrane binding. This autoinhibition is relieved upon introduction of the W24A/E262A mutation, which conformationally “opens” CB2SH3+ and allows the pleckstrin homology domain to properly bind lipids depending on the phosphoinositide species with a preference for phosphatidylinositol 3-monophosphate and phosphatidylinositol 4-monophosphate. This type of membrane tethering under the control of the release of the SH3 domain of CB is essential for regulating gephyrin clustering. PMID:26546675

  2. Enhanced phosphodiesteratic breakdown and turnover of phosphoinositides during reperfusion of ischemic rat heart.

    PubMed

    Otani, H; Prasad, M R; Engelman, R M; Otani, H; Cordis, G A; Das, D K

    1988-11-01

    In this study, we examined phosphoinositide metabolism during ischemia and reperfusion using an isolated and perfused rat heart. When myocardial phosphoinositides were prelabeled with [3H]inositol, reperfusion after 30 minutes of normothermic global ischemia resulted in significant accumulations of radiolabeled inositol phosphate, inositol bisphosphate, and inositol trisphosphate. Isotopic incorporation of [3H]inositol into phosphatidylinositol, phosphatidylinositol-4-phosphate, and phosphatidylinositol-4,5-bisphosphate was increased significantly in the heart reperfused with [3H]inositol after 30 minutes of ischemia compared with that perfused with [3H]inositol after 30 minutes of nonischemic perfusion. However, isotopic incorporation of [3H]glycerol into diacylglycerol, phosphatidic acid, and all of the three phosphoinositides was diminished in the reperfused hearts. Reperfusion of the ischemic heart prelabeled with [14C]arachidonic acid resulted in significant increases in [14C]diacylglycerol and [14C]phosphatidic acid. The enhanced accumulations of [3H]inositol phosphates during reperfusion were not affected by treatment with prazosin plus atropine or indomethacin, but were inhibited by hypoxic reperfusion, reperfusion with Ca2+-free buffer, or by mepacrine. These results suggest that myocardial reperfusion stimulates phosphodiesteratic breakdown and turnover of phosphoinositides, and increased Ca2+ influx caused by reperfusion may be involved in the mechanism of stimulation of phosphatidylinositol-specific phospholipase C activity in the rat heart.

  3. HGF/c-Met signaling promotes liver progenitor cell migration and invasion by an epithelial-mesenchymal transition-independent, phosphatidyl inositol-3 kinase-dependent pathway in an in vitro model.

    PubMed

    Suárez-Causado, A; Caballero-Díaz, D; Bertrán, E; Roncero, C; Addante, A; García-Álvaro, M; Fernández, M; Herrera, B; Porras, A; Fabregat, I; Sánchez, A

    2015-10-01

    Oval cells constitute an interesting hepatic cell population. They contribute to sustain liver regeneration during chronic liver damage, but in doing this they can be target of malignant conversion and become tumor-initiating cells and drive hepatocarcinogenesis. The molecular mechanisms beneath either their pro-regenerative or pro-tumorigenic potential are still poorly understood. In this study, we have investigated the role of the HGF/c-Met pathway in regulation of oval cell migratory and invasive properties. Our results show that HGF induces c-Met-dependent oval cell migration both in normal culture conditions and after in vitro wounding. HGF-triggered migration involves F-actin cytoskeleton reorganization, which is also evidenced by activation of Rac1. Furthermore, HGF causes ZO-1 translocation from cell-cell contact sites to cytoplasm and its concomitant activation by phosphorylation. However, no loss of expression of cell-cell adhesion proteins, including E-cadherin, ZO-1 and Occludin-1, is observed. Additionally, migration does not lead to cell dispersal but to a characteristic organized pattern in rows, in turn associated with Golgi compaction, providing strong evidence of a morphogenic collective migration. Besides migration, HGF increases oval cell invasion through extracellular matrix, a process that requires PI3K activation and is at least partly mediated by expression and activation of metalloproteases. Altogether, our findings provide novel insights into the cellular and molecular mechanisms mediating the essential role of HGF/c-Met signaling during oval cell-mediated mouse liver regeneration.

  4. Phosphoinositide kinase signaling controls ER-PM cross-talk

    PubMed Central

    Omnus, Deike J.; Manford, Andrew G.; Bader, Jakob M.; Emr, Scott D.; Stefan, Christopher J.

    2016-01-01

    Membrane lipid dynamics must be precisely regulated for normal cellular function, and disruptions in lipid homeostasis are linked to the progression of several diseases. However, little is known about the sensory mechanisms for detecting membrane composition and how lipid metabolism is regulated in response to membrane stress. We find that phosphoinositide (PI) kinase signaling controls a conserved PDK-TORC2-Akt signaling cascade as part of a homeostasis network that allows the endoplasmic reticulum (ER) to modulate essential responses, including Ca2+-regulated lipid biogenesis, upon plasma membrane (PM) stress. Furthermore, loss of ER-PM junctions impairs this protective response, leading to PM integrity defects upon heat stress. Thus PI kinase–mediated ER-PM cross-talk comprises a regulatory system that ensures cellular integrity under membrane stress conditions. PMID:26864629

  5. FERM Domain Phosphoinositide Binding Targets Merlin to the Membrane and Is Essential for Its Growth-Suppressive Function ▿

    PubMed Central

    Mani, Timmy; Hennigan, Robert F.; Foster, Lauren A.; Conrady, Deborah G.; Herr, Andrew B.; Ip, Wallace

    2011-01-01

    The neurofibromatosis type 2 tumor suppressor protein, merlin, is related to the ERM (ezrin, radixin, and moesin) family of plasma membrane-actin cytoskeleton linkers. For ezrin, phosphatidylinositol 4,5-bisphosphate (PIP2) binding to the amino-terminal FERM domain is required for its conformational activation, proper subcellular localization, and function, but less is known about the role of phosphoinositide binding for merlin. Current evidence indicates that association with the membrane is important for merlin to function as a growth regulator; however, the mechanisms by which merlin localizes to the membrane are less clear. Here, we report that merlin binds phosphoinositides, including PIP2, via a conserved binding motif in its FERM domain. Abolition of FERM domain-mediated phosphoinositide binding of merlin displaces merlin from the membrane and releases it into the cytosol without altering the folding of merlin. Importantly, a merlin protein whose FERM domain cannot bind phosphoinositide is defective in growth suppression. Retargeting the mutant merlin into the membrane using a dual-acylated amino-terminal decapeptide from Fyn is sufficient to restore the growth-suppressive properties to the mutant merlin. Thus, FERM domain-mediated phosphoinositide binding and membrane association are critical for the growth-regulatory function of merlin. PMID:21402777

  6. Tyrosine phosphorylation of phosphoinositide-dependent kinase 1 by the insulin receptor is necessary for insulin metabolic signaling.

    PubMed

    Fiory, Francesca; Alberobello, Anna Teresa; Miele, Claudia; Oriente, Francesco; Esposito, Iolanda; Corbo, Vincenzo; Ruvo, Menotti; Tizzano, Barbara; Rasmussen, Thomas E; Gammeltoft, Steen; Formisano, Pietro; Beguinot, Francesco

    2005-12-01

    In L6 myoblasts, insulin receptors with deletion of the C-terminal 43 amino acids (IR(Delta43)) exhibited normal autophosphorylation and IRS-1/2 tyrosine phosphorylation. The L6 cells expressing IR(Delta43) (L6(IRDelta43)) also showed no insulin effect on glucose uptake and glycogen synthase, accompanied by a >80% decrease in insulin induction of 3-phosphoinositide-dependent protein kinase 1 (PDK-1) activity and tyrosine phosphorylation and of protein kinase B (PKB) phosphorylation at Thr(308). Insulin induced the phosphatidylinositol 3 kinase-dependent coprecipitation of PDK-1 with wild-type IR (IR(WT)), but not IR(Delta43). Based on overlay blotting, PDK-1 directly bound IR(WT), but not IR(Delta43). Insulin-activated IR(WT), and not IR(Delta43), phosphorylated PDK-1 at tyrosines 9, 373, and 376. The IR C-terminal 43-amino-acid peptide (C-terminal peptide) inhibited in vitro PDK-1 tyrosine phosphorylation by the IR. Tyr-->Phe substitution prevented this inhibitory action. In the L6(hIR) cells, the C-terminal peptide coprecipitated with PDK-1 in an insulin-stimulated fashion. This peptide simultaneously impaired the insulin effect on PDK-1 coprecipitation with IR(WT), on PDK-1 tyrosine phosphorylation, on PKB phosphorylation at Thr(308), and on glucose uptake. Upon insulin exposure, PDK-1 membrane persistence was significantly reduced in L6(IRDelta43) compared to control cells. In L6 cells expressing IR(WT), the C-terminal peptide also impaired insulin-dependent PDK-1 membrane persistence. Thus, PDK-1 directly binds to the insulin receptor, followed by PDK-1 activation and insulin metabolic effects.

  7. The structure of phosphoinositide phosphatases: Insights into substrate specificity and catalysis.

    PubMed

    Hsu, FoSheng; Mao, Yuxin

    2015-06-01

    Phosphoinositides (PIs) are a group of key signaling and structural lipid molecules involved in a myriad of cellular processes. PI phosphatases, together with PI kinases, are responsible for the conversion of PIs between distinctive phosphorylation states. PI phosphatases are a large collection of enzymes that are evolved from at least two disparate ancestors. One group is distantly related to endonucleases, which apply divalent metal ions for phosphoryl transfer. The other group is related to protein tyrosine phosphatases, which contain a highly conserved active site motif Cys-X5-Arg (CX5R). In this review, we focus on structural insights to illustrate current understandings of the molecular mechanisms of each PI phosphatase family, with emphasis on their structural basis for substrate specificity determinants and catalytic mechanisms. This article is part of a Special Issue entitled Phosphoinositides.

  8. The association of phosphoinositide 3-kinase enhancer A with hepatic insulin receptor enhances its kinase activity.

    PubMed

    Chan, Chi Bun; Liu, Xia; He, Kunyan; Qi, Qi; Jung, Dae Y; Kim, Jason K; Ye, Keqiang

    2011-07-01

    Dysfunction of hepatic insulin receptor tyrosine kinase (IRTK) causes the development of type 2 diabetes. However, the molecular mechanism regulating IRTK activity in the liver remains poorly understood. Here, we show that phosphoinositide 3-kinase enhancer A (PIKE-A) is a new insulin-dependent enhancer of hepatic IRTK. Liver-specific Pike-knockout (LPKO) mice display glucose intolerance with impaired hepatic insulin sensitivity. Specifically, insulin-provoked phosphoinositide 3-kinase/Akt signalling is diminished in the liver of LPKO mice, leading to the failure of insulin-suppressed gluconeogenesis and hyperglycaemia. Thus, hepatic PIKE-A has a key role in mediating insulin signal transduction and regulating glucose homeostasis in the liver.

  9. The Skap-hom dimerization and PH domains comprise a 3'-phosphoinositide-gated molecular switch.

    PubMed

    Swanson, Kenneth D; Tang, Yong; Ceccarelli, Derek F; Poy, Florence; Sliwa, Jan P; Neel, Benjamin G; Eck, Michael J

    2008-11-21

    PH domains, by binding to phosphoinositides, often serve as membrane-targeting modules. Using crystallographic, biochemical, and cell biological approaches, we have uncovered a mechanism that the integrin-signaling adaptor Skap-hom uses to mediate cytoskeletal interactions. Skap-hom is a homodimer containing an N-terminal four-helix bundle dimerization domain, against which its two PH domains pack in a conformation incompatible with phosphoinositide binding. The isolated PH domains bind PI[3,4,5]P(3), and mutations targeting the dimerization domain or the PH domain's PI[3,4,5]P(3)-binding pocket prevent Skap-hom localization to ruffles. Targeting is retained when the PH domain is deleted or by combined mutation of the PI[3,4,5]P(3)-binding pocket and the PH/dimerization domain interface. Thus, the dimerization and PH domain form a PI[3,4,5]P(3)-responsive molecular switch that controls Skap-hom function.

  10. The Receptor Binding Domain of Botulinum Neurotoxin Stereotype C Binds Phosphoinositides

    SciTech Connect

    Zhang, Yanfeng; Varnum, Susan M.

    2012-03-01

    Botulinum neurotoxins (BoNTs) are the most toxic proteins known for humans and animals with an extremely low LD50 of {approx} 1 ng/kg. BoNTs generally require a protein and a ganglioside on the cell membrane surface for binding, which is known as a 'dual receptor' mechanism for host intoxication. Recent studies have suggested that in addition to gangliosides, other membrane lipids such as phosphoinositides may be involved in the interactions with the receptor binding domain (HCR) of BoNTs for better membrane penetration. Here, using two independent lipid-binding assays, we tested the interactions of BoNT/C-HCR with lipids in vitro. BoNT/C-HCR was found to bind negatively charged phospholipids, preferentially phosphoinositides. Additional interactions to phosphoinositides may help BoNT/C bind membrane more tightly and transduct signals for subsequent steps of intoxication. Our results provide new insights into the mechanisms of host cell membrane recognition by BoNTs.

  11. Phosphoinositide 5-phosphatases: How do they affect tumourigenesis?

    PubMed

    Miyazawa, Keiji

    2013-01-01

    The activity of biological molecules is often affected by their phosphorylation state. Regulatory phosphorylation operates as a binary switch and is usually controlled by counteracting kinases and phosphatases. However, phosphatidylinositol (PtdIns) has three phosphorylation sites on its inositol ring. The phosphorylation status of PtdIns is controlled by multiple kinases and phosphatases with distinct substrate specificities, serving as a 'lipid code' or 'phosphoinositide code'. Class I phosphoinositide 3-kinase (PI3K) converts PtdIns(4,5)P₂ to PtdIns(3,4,5)P₃, which plays a pivotal role in signals controlling glucose uptake, cytoskeletal reorganization, cell proliferation and apoptosis. PI3K is pro-oncogenic, whereas phosphoinositide phosphatases that degrade PtdIns(3,4,5)P₃ are not always anti-oncogenic. Recent studies have revealed the unique characteristics of phosphoinositide 5-phosphatases.

  12. Phosphoinositide-specific phospholipase C in health and disease.

    PubMed

    Cocco, Lucio; Follo, Matilde Y; Manzoli, Lucia; Suh, Pann-Ghill

    2015-10-01

    Phospholipases are widely occurring and can be found in several different organisms, including bacteria, yeast, plants, animals, and viruses. Phospholipase C (PLC) is a class of phospholipases that cleaves phospholipids on the diacylglycerol (DAG) side of the phosphodiester bond producing DAGs and phosphomonoesters. Among PLCs, phosphoinositide-specific PLC (PI-PLC) constitutes an important step in the inositide signaling pathways. The structures of PI-PLC isozymes show conserved domains as well as regulatory specific domains. This is important, as most PI-PLCs share a common mechanism, but each of them has a peculiar role and can have a specific cell distribution that is linked to a specific function. More importantly, the regulation of PLC isozymes is fundamental in health and disease, as there are several PLC-dependent molecular mechanisms that are associated with the activation or inhibition of important physiopathological processes. Moreover, PI-PLC alternative splicing variants can play important roles in complex signaling networks, not only in cancer but also in other diseases. That is why PI-PLC isozymes are now considered as important molecules that are essential for better understanding the molecular mechanisms underlying both physiology and pathogenesis, and are also potential molecular targets useful for the development of innovative therapeutic strategies.

  13. A new TIPE of phosphoinositide regulator in cancer.

    PubMed

    Moniz, Larissa S; Vanhaesebroeck, Bart

    2014-10-13

    Specific phosphoinositide lipids promote cell growth and cancer. In this issue of Cancer Cell, Fayngerts and colleagues demonstrate that the TIPE3 protein enhances PtdIns(4,5)P2 and PtdIns(3,4,5)P3, is overexpressed in certain cancers, and promotes tumorigenesis. TIPE3 can act as a lipid transfer protein and may constitute a novel phosphoinositide metabolism regulator.

  14. Bradykinin stimulation of phosphoinositide hydrolysis in guinea-pig ileum longitudinal muscle.

    PubMed Central

    Ransom, R. W.; Goodman, C. B.; Young, G. S.

    1992-01-01

    1. Bradykinin (BK)-induced contraction of ileal smooth muscle is assumed to be due to phosphoinositide hydrolysis but this has never been reported. We have investigated whether BK receptors are linked to this transduction mechanism in guinea-pig ileum longitudinal muscle and determined whether these receptors are equivalent to those labelled in [3H]-BK binding assays. 2. In membranes prepared from longitudinal muscle, [3H]-BK bound to a single class of sites with high affinity. Characterization of the binding with BK analogues indicated that the radioligand selectivity labelled a B2 type receptor. 3. BK significantly elevated tissue levels of [3H]-inositol phosphates in longitudinal muscle slices preincubated with [3H]-myo-inositol. The agonists potencies of BK, Lys-BK, Met-Lys-BK, Tyr5-BK and Tyr8-BK were in agreement with their relative potencies in the binding assay. The B1 receptor agonist des-Arg9-BK, did not stimulate inositol phosphate production. The response to BK was blocked by known B2 receptor antagonists but not by the B1 antagonist des-Arg9, Leu8-BK. 4. BK-induced phosphoinositide hydrolysis was unaffected by exposure of muscle slices to either atropine or indomethacin. 5. The results indicate that the B2 receptors linked to phosphoinositide turnover in ileal longitudinal muscle exhibit properties similar to those involved in contractile responses. Also, the receptor mediating the phosphoinositide response is likely to be that labelled in the [3H]-BK binding studies. PMID:1324057

  15. Cloned M1 muscarinic receptors mediate both adenylate cyclase inhibition and phosphoinositide turnover.

    PubMed Central

    Stein, R; Pinkas-Kramarski, R; Sokolovsky, M

    1988-01-01

    The rat M1 muscarinic receptor gene was cloned and expressed in a rat cell line lacking endogenous muscarinic receptors. Assignment of the cloned receptors to the M1 class was pharmacologically confirmed by their high affinity for the M1-selective muscarinic antagonist pirenzepine and low affinity for the M2-selective antagonist AF-DX-116. Guanylyl imidodiphosphate [Gpp(NH)p] converted agonist binding sites on the receptor, from high-affinity to the low-affinity state, thus indicating that the cloned receptors couple to endogenous G-proteins. The cloned receptors mediated both adenylate cyclase inhibition and phosphoinositide hydrolysis, but by different mechanisms. Pertussis toxin blocked the inhibition of adenylate cyclase (indicating coupling of the receptor to inhibitory G-protein), but did not affect phosphoinositide turnover. Furthermore, the stimulation of phosphoinositide hydrolysis was less efficient than the inhibition of adenylate cyclase. These findings demonstrate that cloned M1 receptors are capable of mediating multiple responses in the cell by coupling to different effectors, possibly to different G-proteins. Images PMID:2846274

  16. Molecular insights into the binding of phosphoinositides to the TH domain region of TIPE proteins.

    PubMed

    Antony, Priya; Baby, Bincy; Vijayan, Ranjit

    2016-11-01

    Phosphatidylinositols and their phosphorylated derivatives, phosphoinositides, play a central role in regulating diverse cellular functions. These phospholipids have been shown to interact with the hydrophobic TH domain of the tumor necrosis factor (TNF)-α-induced protein 8 (TIPE) family of proteins. However, the precise mechanism of interaction of these lipids is unclear. Here we report the binding mode and interactions of these phospholipids in the TH domain, as elucidated using molecular docking and simulations. Results indicate that phosphoinositides bind to the TH domain in a similar way by inserting their lipid tails in the hydrophobic cavity. The exposed head group is stabilized by interactions with critical positively charged residues on the surface of these proteins. Further MD simulations confirmed the dynamic stability of these lipids in the TH domain. This computational analysis thus provides insight into the binding mode of phospholipids in the TH domain of the TIPE family of proteins. Graphical abstract A phosphoinositide (phosphatidylinositol 4-phosphate; PtdIns4P) docked to TIPE2.

  17. Involvement of Sac1 phosphoinositide phosphatase in the metabolism of phosphatidylserine in the yeast Saccharomyces cerevisiae.

    PubMed

    Tani, Motohiro; Kuge, Osamu

    2014-04-01

    Sac1 is a phosphoinositide phosphatase that preferentially dephosphorylates phosphatidylinositol 4-phosphate. Mutation of SAC1 causes not only the accumulation of phosphoinositides but also reduction of the phosphatidylserine (PS) level in the yeast Saccharomyces cerevisiae. In this study, we characterized the mechanism underlying the PS reduction in SAC1-deleted cells. Incorporation of (32) P into PS was significantly delayed in sac1∆ cells. Such a delay was also observed in SAC1- and PS decarboxylase gene-deleted cells, suggesting that the reduction in the PS level is caused by a reduction in the rate of biosynthesis of PS. A reduction in the PS level was also observed with repression of STT4 encoding phosphatidylinositol 4-kinase or deletion of VPS34 encoding phophatidylinositol 3-kinase. However, the combination of mutations of SAC1 and STT4 or VPS34 did not restore the reduced PS level, suggesting that both the synthesis and degradation of phosphoinositides are important for maintenance of the PS level. Finally, we observed an abnormal PS distribution in sac1∆ cells when a specific probe for PS was expressed. Collectively, these results suggested that Sac1 is involved in the maintenance of a normal rate of biosynthesis and distribution of PS.

  18. Assaying inositol and phosphoinositide phosphatase enzymes.

    PubMed

    Donahue, Janet L; Ercetin, Mustafa; Gillaspy, Glenda E

    2013-01-01

    One critical aspect of phosphoinositide signaling is the turnover of signaling molecules in the pathway. These signaling molecules include the phosphatidylinositol phosphates (PtdInsPs) and inositol phosphates (InsPs). The enzymes that catalyze the breakdown of these molecules are thus important potential regulators of signaling, and in many cases the activity of such enzymes needs to be measured and compared to other enzymes. PtdInsPs and InsPs are broken down by sequential dephosphorylation reactions which are catalyzed by a set of specific phosphatases. Many of the phosphatases can act on both PtdInsP and InsP substrates. The protocols described in this chapter detail activity assays that allow for the measurement of PtdInsP and InsP phosphatase activities in vitro starting with native or recombinant enzymes. Three different assays are described that have different equipment requirements and allow one to test a range of PtdInsP and InsP phosphatases that act on different substrates.

  19. Phosphoinositide metabolism and adrenergic receptors in astrocytes

    SciTech Connect

    Noble, E.P.; Ritchie, T.; de Vellis, J.

    1986-03-01

    Agonist-induced phosphoinositide (PI) breakdown functions as a signal generating system. Diacylglycerol, one breakdown product of phosphotidylinositol-4,5-diphosphate hydrolysis, can stimulate protein kinase C, whereas inositol triphosphate, the other product, has been proposed to be a second messenger for Ca/sup + +/ mobilization. Using purified astrocyte cultures from neonatal rat brain, the effects of adrenergic agonists and antagonists at 10/sup -5/ M were measured on PI breakdown. Astrocytes grown in culture were prelabeled with (/sup 3/H)inositol, and basal (/sup 3/H) inositol phosphate (IP/sub 1/) accumulation was measured in the presence of Li/sup +/. Epinephrine > norepinephrine (NE) were the most active stimulants of IP/sub 1/ production. The ..cap alpha../sub 1/ adrenoreceptor blockers, phentolamine and phenoxybenzamine, added alone had no effect on IP/sub 1/ production was reduced below basal levels. Propranolol partially blocked the effects of NE. Clonidine and isoproterenol, separately added, reduced IP/sub 1/ below basal levels and when added together diminished IP/sub 1/ accumulation even further. The role of adrenergic stimulation in the production of c-AMP.

  20. Cellular and molecular interactions of phosphoinositides and peripheral proteins.

    PubMed

    Stahelin, Robert V; Scott, Jordan L; Frick, Cary T

    2014-09-01

    Anionic lipids act as signals for the recruitment of proteins containing cationic clusters to biological membranes. A family of anionic lipids known as the phosphoinositides (PIPs) are low in abundance, yet play a critical role in recruitment of peripheral proteins to the membrane interface. PIPs are mono-, bis-, or trisphosphorylated derivatives of phosphatidylinositol (PI) yielding seven species with different structure and anionic charge. The differential spatial distribution and temporal appearance of PIPs is key to their role in communicating information to target proteins. Selective recognition of PIPs came into play with the discovery that the substrate of protein kinase C termed pleckstrin possessed the first PIP binding region termed the pleckstrin homology (PH) domain. Since the discovery of the PH domain, more than ten PIP binding domains have been identified including PH, ENTH, FYVE, PX, and C2 domains. Representative examples of each of these domains have been thoroughly characterized to understand how they coordinate PIP headgroups in membranes, translocate to specific membrane docking sites in the cell, and function to regulate the activity of their full-length proteins. In addition, a number of novel mechanisms of PIP-mediated membrane association have emerged, such as coincidence detection-specificity for two distinct lipid headgroups. Other PIP-binding domains may also harbor selectivity for a membrane physical property such as charge or membrane curvature. This review summarizes the current understanding of the cellular distribution of PIPs and their molecular interaction with peripheral proteins.

  1. Phosphoinositide 3-kinase p85beta regulates invadopodium formation

    PubMed Central

    Cariaga-Martínez, Ariel E.; Cortés, Isabel; García, Esther; Pérez-García, Vicente; Pajares, María J.; Idoate, Miguel A.; Redondo-Muñóz, Javier; Antón, Inés M.; Carrera, Ana C.

    2014-01-01

    ABSTRACT The acquisition of invasiveness is characteristic of tumor progression. Numerous genetic changes are associated with metastasis, but the mechanism by which a cell becomes invasive remains unclear. Expression of p85β, a regulatory subunit of phosphoinositide-3-kinase, markedly increases in advanced carcinoma, but its mode of action is unknown. We postulated that p85β might facilitate cell invasion. We show that p85β localized at cell adhesions in complex with focal adhesion kinase and enhanced stability and maturation of cell adhesions. In addition, p85β induced development at cell adhesions of an F-actin core that extended several microns into the cell z-axis resembling the skeleton of invadopodia. p85β lead to F-actin polymerization at cell adhesions by recruiting active Cdc42/Rac at these structures. In accordance with p85β function in invadopodium-like formation, p85β levels increased in metastatic melanoma and p85β depletion reduced invadopodium formation and invasion. These results show that p85β enhances invasion by inducing cell adhesion development into invadopodia-like structures explaining the metastatic potential of tumors with increased p85β levels. PMID:25217619

  2. Role of calcium in regulation of phosphoinositide signaling pathway.

    PubMed

    Patel, J; Keith, R A; Salama, A I; Moore, W C

    1991-01-01

    Using primary neuronal cultures we have examined the role of extracellular Ca2+ in a receptor-regulated phosphoinositide turnover. We report that receptor (glutamic acid and acetylcholine)-activated phosphoinositide turnover requires the presence of extracellular Ca2+ (EC50 = 21.1 microM). The requirement for Ca2+ appears to be at an intracellular level and is highly selective for Ca2+. We also found that several inorganic and organic Ca2+ channel blockers, including La3+ and verapamil, inhibit phosphoinositide turnover. However, the pharmacological profile of these agents in this regard was distinct from their actions at the voltage-sensitive Ca2+ channels. To explain the above requirement for extracellular Ca2+ in agonist-stimulated phosphoinositide turnover and its sensitivity to Ca(2+)-channel blockers, we propose a hypothetical model suggesting that Ca2+, following IP-3-mediated mobilization, exerts a facilitatory action on the activity of receptor-phospholipase C complex. We further propose that in the absence of extracellular Ca2+ or in the presence of certain Ca(2+)-channel blockers, refilling of calciosomes is ineffectual or inhibited, causing its depletion and subsequent inactivation of agonist-stimulated phosphoinositide turnover.

  3. Phosphoinositide 3-kinase signaling in the vertebrate retina

    PubMed Central

    Rajala, Raju V. S.

    2010-01-01

    The phosphoinositide (PI) cycle, discovered over 50 years ago by Mabel and Lowell Hokin, describes a series of biochemical reactions that occur on the inner leaflet of the plasma membrane of cells in response to receptor activation by extracellular stimuli. Studies from our laboratory have shown that the retina and rod outer segments (ROSs) have active PI metabolism. Biochemical studies revealed that the ROSs contain the enzymes necessary for phosphorylation of phosphoinositides. We showed that light stimulates various components of the PI cycle in the vertebrate ROS, including diacylglycerol kinase, PI synthetase, phosphatidylinositol phosphate kinase, phospholipase C, and phosphoinositide 3-kinase (PI3K). This article describes recent studies on the PI3K-generated PI lipid second messengers in the control and regulation of PI-binding proteins in the vertebrate retina. PMID:19638643

  4. Heregulin-dependent activation of phosphoinositide 3-kinase and Akt via the ErbB2/ErbB3 co-receptor.

    PubMed

    Hellyer, N J; Kim, M S; Koland, J G

    2001-11-09

    The ErbB2/ErbB3 heregulin co-receptor has been shown to couple to phosphoinositide (PI) 3-kinase in a heregulin-dependent manner. The recruitment and activation of PI 3-kinase by this co-receptor is presumed to occur via its interaction with phosphorylated Tyr-Xaa-Xaa-Met (YXXM) motifs occurring in the ErbB3 C terminus. In this study, mutant ErbB3 receptor proteins expressed in COS7 cells were used to investigate PI 3-kinase-dependent signaling pathways activated by the ErbB2/ErbB3 co-receptor. We observed that a mutant ErbB3 protein with each of its six YXXM motifs containing a Tyr --> Phe substitution was unable to bind either the p85 regulatory or p110 catalytic subunit of PI 3-kinase. However, restoration of a single YXXM motif was sufficient to mediate association with the PI 3-kinase holoenzyme, although at a lower level than wild-type ErbB3. When ErbB3 YXXM motifs were restored in pairs, evidence for cooperativity between two, those incorporating Tyr-1273 and Tyr-1286, was observed. Interestingly, we have shown that an apparent association of PI 3-kinase activity with ErbB2/Neu was due to the residual presence of ErbB3 in ErbB2 immunoprecipitates. The necessity of ErbB3 association with PI 3-kinase for downstream signaling to the effector kinase Akt was also investigated. Here, the heregulin-dependent translocation of Akt to the plasma membrane and its subsequent activation was observed in intact NIH-3T3 fibroblasts. Recruitment of PI 3-kinase to ErbB3 was required for both activities, and it appeared that ErbB2 activation alone was not sufficient to activate PI 3-kinase signaling in these cells.

  5. Synthesis and function of membrane phosphoinositides in budding yeast, Saccharomyces cerevisiae.

    PubMed

    Strahl, Thomas; Thorner, Jeremy

    2007-03-01

    It is now well appreciated that derivatives of phosphatidylinositol (PtdIns) are key regulators of many cellular processes in eukaryotes. Of particular interest are phosphoinositides (mono- and polyphosphorylated adducts to the inositol ring in PtdIns), which are located at the cytoplasmic face of cellular membranes. Phosphoinositides serve both a structural and a signaling role via their recruitment of proteins that contain phosphoinositide-binding domains. Phosphoinositides also have a role as precursors of several types of second messengers for certain intracellular signaling pathways. Realization of the importance of phosphoinositides has brought increased attention to characterization of the enzymes that regulate their synthesis, interconversion, and turnover. Here we review the current state of our knowledge about the properties and regulation of the ATP-dependent lipid kinases responsible for synthesis of phosphoinositides and also the additional temporal and spatial controls exerted by the phosphatases and a phospholipase that act on phosphoinositides in yeast.

  6. Synthesis and Function of Membrane Phosphoinositides in Budding Yeast, Saccharomyces cerevisiae

    PubMed Central

    Strahl, Thomas; Thorner, Jeremy

    2007-01-01

    It is now well appreciated that derivatives of phosphatidylinositol (PtdIns) are key regulators of many cellular processes in eukaryotes. Of particular interest are phosphoinositides (mono- and polyphosphorylated adducts to the inositol ring in PtdIns), which are located at the cytoplasmic face of cellular membranes. Phosphoinositides serve both a structural and a signaling role via their recruitment of proteins that contain phosphoinositide-binding domains. Phosphoinositides also have a role as precursors of several types of second messengers for certain intracellular signaling pathways. Realization of the importance of phosphoinositides has brought increased attention to characterization of the enzymes that regulate their synthesis, interconversion, and turnover. Here we review the current state of our knowledge about the properties and regulation of the ATP-dependent lipid kinases responsible for synthesis of phosphoinositides and also the additional temporal and spatial controls exerted by the phosphatases and a phospholipase that act on phosphoinositides in yeast. PMID:17382260

  7. Dynamics of Phosphoinositide-Dependent Signaling in Sympathetic Neurons

    PubMed Central

    Kruse, Martin; Vivas, Oscar; Traynor-Kaplan, Alexis

    2016-01-01

    In neurons, loss of plasma membrane phosphatidylinositol 4,5-bisphosphate [PI(4,5)P2] leads to a decrease in exocytosis and changes in electrical excitability. Restoration of PI(4,5)P2 levels after phospholipase C activation is therefore essential for a return to basal neuronal activity. However, the dynamics of phosphoinositide metabolism have not been analyzed in neurons. We measured dynamic changes of PI(4,5)P2, phosphatidylinositol 4-phosphate, diacylglycerol, inositol 1,4,5-trisphosphate, and Ca2+ upon muscarinic stimulation in sympathetic neurons from adult male Sprague-Dawley rats with electrophysiological and optical approaches. We used this kinetic information to develop a quantitative description of neuronal phosphoinositide metabolism. The measurements and analysis show and explain faster synthesis of PI(4,5)P2 in sympathetic neurons than in electrically nonexcitable tsA201 cells. They can be used to understand dynamic effects of receptor-mediated phospholipase C activation on excitability and other PI(4,5)P2-dependent processes in neurons. SIGNIFICANCE STATEMENT Phosphatidylinositol 4,5-bisphosphate [PI(4,5)P2] is a minor phospholipid in the cytoplasmic leaflet of the plasma membrane. Depletion of PI(4,5)P2 via phospholipase C-mediated hydrolysis leads to a decrease in exocytosis and alters electrical excitability in neurons. Restoration of PI(4,5)P2 is essential for a return to basal neuronal activity. However, the dynamics of phosphoinositide metabolism have not been analyzed in neurons. We studied the dynamics of phosphoinositide metabolism in sympathetic neurons upon muscarinic stimulation and used the kinetic information to develop a quantitative description of neuronal phosphoinositide metabolism. The measurements and analysis show a several-fold faster synthesis of PI(4,5)P2 in sympathetic neurons than in an electrically nonexcitable cell line, and provide a framework for future studies of PI(4,5)P2-dependent processes in neurons. PMID:26818524

  8. Two structural components in CNGA3 support regulation of cone CNG channels by phosphoinositides

    PubMed Central

    Dai, Gucan; Peng, Changhong; Liu, Chunming

    2013-01-01

    Cyclic nucleotide-gated (CNG) channels in retinal photoreceptors play a crucial role in vertebrate phototransduction. The ligand sensitivity of photoreceptor CNG channels is adjusted during adaptation and in response to paracrine signals, but the mechanisms involved in channel regulation are only partly understood. Heteromeric cone CNGA3 (A3) + CNGB3 (B3) channels are inhibited by membrane phosphoinositides (PIPn), including phosphatidylinositol 3,4,5-triphosphate (PIP3) and phosphatidylinositol 4,5-bisphosphate (PIP2), demonstrating a decrease in apparent affinity for cyclic guanosine monophosphate (cGMP). Unlike homomeric A1 or A2 channels, A3-only channels paradoxically did not show a decrease in apparent affinity for cGMP after PIPn application. However, PIPn induced an ∼2.5-fold increase in cAMP efficacy for A3 channels. The PIPn-dependent change in cAMP efficacy was abolished by mutations in the C-terminal region (R643Q/R646Q) or by truncation distal to the cyclic nucleotide-binding domain (613X). In addition, A3-613X unmasked a threefold decrease in apparent cGMP affinity with PIPn application to homomeric channels, and this effect was dependent on conserved arginines within the N-terminal region of A3. Together, these results indicate that regulation of A3 subunits by phosphoinositides exhibits two separable components, which depend on structural elements within the N- and C-terminal regions, respectively. Furthermore, both N and C regulatory modules in A3 supported PIPn regulation of heteromeric A3+B3 channels. B3 subunits were not sufficient to confer PIPn sensitivity to heteromeric channels formed with PIPn-insensitive A subunits. Finally, channels formed by mixtures of PIPn-insensitive A3 subunits, having complementary mutations in N- and/or C-terminal regions, restored PIPn regulation, implying that intersubunit N–C interactions help control the phosphoinositide sensitivity of cone CNG channels. PMID:23530136

  9. miR-508 sustains phosphoinositide signalling and promotes aggressive phenotype of oesophageal squamous cell carcinoma.

    PubMed

    Lin, Chuyong; Liu, Aibin; Zhu, Jinrong; Zhang, Xin; Wu, Geyan; Ren, Pengli; Wu, Jueheng; Li, Mengfeng; Li, Jun; Song, Libing

    2014-08-06

    The strength and duration of phosphoinositide signalling from phosphatidylinositol-3-kinase (PI3K) activation to Akt is tightly balanced by phosphoinositide kinases and phosphatases. However, how phosphatase-mediated negative regulatory effects are concomitantly disrupted in cancers, which commonly exhibit constitutively activated PI3K/Akt signalling, remains undefined. Here we report that miR-508 directly suppresses multiple phosphatases, including inositol polyphosphate-5-phosphatase J (INPP5J), phosphatase and tensin homologue (PTEN) and inositol polyphosphate 4-phosphatase type I (INPP4A), resulting in constitutive activation of PI3K/Akt signalling. Furthermore, we find that overexpressing miR-508 promotes, while silencing miR-508 impairs, the aggressive phenotype of oesophageal squamous cell carcinoma (ESCC) both in vitro and in vivo. Importantly, the level of miR-508 correlates with poor survival and activated PI3K/Akt signalling in a large cohort of ESCC specimens. These findings uncover a mechanism for constitutive PI3K/Akt activation in ESCC, and support a functionally and clinically relevant epigenetic mechanism in cancer progression.

  10. Activation of TRPV1 channels inhibits mechanosensitive Piezo channel activity by depleting membrane phosphoinositides.

    PubMed

    Borbiro, Istvan; Badheka, Doreen; Rohacs, Tibor

    2015-02-10

    Capsaicin is an activator of the heat-sensitive TRPV1 (transient receptor potential vanilloid 1) ion channels and has been used as a local analgesic. We found that activation of TRPV1 channels with capsaicin either in dorsal root ganglion neurons or in a heterologous expression system inhibited the mechanosensitive Piezo1 and Piezo2 channels by depleting phosphatidylinositol 4,5-bisphosphate [PI(4,5)P2] and its precursor phosphatidylinositol 4-phosphate [PI(4)P] from the plasma membrane through Ca(2+)-induced phospholipase Cδ (PLCδ) activation. Experiments with chemically inducible phosphoinositide phosphatases and receptor-induced activation of PLCβ indicated that inhibition of Piezo channels required depletion of both PI(4)P and PI(4,5)P2. The mechanically activated current amplitudes decreased substantially in the excised inside-out configuration, where the membrane patch containing Piezo1 channels is removed from the cell. PI(4,5)P2 and PI(4)P applied to these excised patches inhibited this decrease. Thus, we concluded that Piezo channel activity requires the presence of phosphoinositides, and the combined depletion of PI(4,5)P2 and PI(4)P reduces channel activity. In addition to revealing a role for distinct membrane lipids in mechanosensitive ion channel regulation, these data suggest that inhibition of Piezo2 channels may contribute to the analgesic effect of capsaicin.

  11. Sec14-nodulin proteins and the patterning of phosphoinositide landmarks for developmental control of membrane morphogenesis

    PubMed Central

    Ghosh, Ratna; de Campos, Marília K. F.; Huang, Jin; Huh, Seong K.; Orlowski, Adam; Yang, Yuan; Tripathi, Ashutosh; Nile, Aaron; Lee, Hsin-Chieh; Dynowski, Marek; Schäfer, Helen; Róg, Tomasz; Lete, Marta G.; Ahyayauch, Hasna; Alonso, Alicia; Vattulainen, Ilpo; Igumenova, Tatyana I.; Schaaf, Gabriel; Bankaitis, Vytas A.

    2015-01-01

    Polarized membrane morphogenesis is a fundamental activity of eukaryotic cells. This process is essential for the biology of cells and tissues, and its execution demands exquisite temporal coordination of functionally diverse membrane signaling reactions with high spatial resolution. Moreover, mechanisms must exist to establish and preserve such organization in the face of randomizing forces that would diffuse it. Here we identify the conserved AtSfh1 Sec14-nodulin protein as a novel effector of phosphoinositide signaling in the extreme polarized membrane growth program exhibited by growing Arabidopsis root hairs. The data are consistent with Sec14-nodulin proteins controlling the lateral organization of phosphatidylinositol 4,5-bisphosphate (PtdIns(4,5)P2) landmarks for polarized membrane morphogenesis in plants. This patterning activity requires both the PtdIns(4,5)P2 binding and homo-oligomerization activities of the AtSfh1 nodulin domain and is an essential aspect of the polarity signaling program in root hairs. Finally, the data suggest a general principle for how the phosphoinositide signaling landscape is physically bit mapped so that eukaryotic cells are able to convert a membrane surface into a high-definition lipid-signaling screen. PMID:25739452

  12. Phenylephrine stimulated breakdown of phosphoinositides in brown adipocytes is attenuated by adenosine

    SciTech Connect

    Schimmel, R.J.

    1986-03-01

    Selective activation of alpha adrenergic receptors on brown adipocytes brings about increased mitochondrial respiration. This response is associated with a rapid breakdown of phosphoinositides in the plasma membrane. The authors have shown that respiration increased by alpha receptor activation can be inhibited by adenosine but the mechanisms underlying this effect are unknown. The present study probes the possibility that adenosine inhibition of alpha receptor stimulated respiration is secondary to an inhibition of stimulated breakdown of inositol phospholipids. Phospholipids were labeled with (/sup 32/P) by incubation with (/sup 32/P)-Pi for up to four hours. Phenylephrine and other ligands were then added and the radioactivity present in individual lipids determined following their resolution by thin layer chromatography. Addition of 2-chloroadenosine or phenylisopropyl adenosine, but not 2',5'-dideoxyadenosine, inhibited phenylephrine promoted breakdown of phosphoinositides. The dose response relation for this effect was similar to that for attenuation of stimulated respiration. This finding demonstrates adenosine inhibition of a phospholipase in brown fat cells and suggests the possibility that breakdown of inositol phospholipids is a critical control site for stimulation and attenuation of respiration.

  13. Phosphoinositides, Major Actors in Membrane Trafficking and Lipid Signaling Pathways

    PubMed Central

    De Craene, Johan-Owen; Bertazzi, Dimitri L.; Bär, Séverine; Friant, Sylvie

    2017-01-01

    Phosphoinositides are lipids involved in the vesicular transport of proteins and lipids between the different compartments of eukaryotic cells. They act by recruiting and/or activating effector proteins and thus are involved in regulating various cellular functions, such as vesicular budding, membrane fusion and cytoskeleton dynamics. Although detected in small concentrations in membranes, their role is essential to cell function, since imbalance in their concentrations is a hallmark of many cancers. Their synthesis involves phosphorylating/dephosphorylating positions D3, D4 and/or D5 of their inositol ring by specific lipid kinases and phosphatases. This process is tightly regulated and specific to the different intracellular membranes. Most enzymes involved in phosphoinositide synthesis are conserved between yeast and human, and their loss of function leads to severe diseases (cancer, myopathy, neuropathy and ciliopathy). PMID:28294977

  14. Soman-induced seizures impair norepinephrine-stimulated phosphoinositide turnover

    SciTech Connect

    Filbert, M.G.; Phann, S.; Forster, J.; Ballough, G.P.; Cann, F.J.

    1993-05-13

    Seizure activity increases turnover of phosphoinositide bisphosphate (PIP2). Turnover of PIP2 is thought to be modulated by neurotransmitter interactions. The effect of soman-induced seizures on neurotransmitter-stimulated PIP 2 turnover was examined in rats. Thirty minutes after induction of seizure activity, rats were euthanized and slices prepared from the hippocampus or cerebral cortex were incubated with myo-(2-3H) inositol for incorporation into phospholipids. Hydrolysis of phosphoinositides was determined by measuring the accumulation of (3H) inositol-l-phosphate (IP1) in the presence of LiCl. Carbachol, norepinephrine (NE) and high K+ increased accumulation of IP1 in slices from control rats. GABA was without effect on IP1 accumulation but potentiated the stimulation of PIP, hydrolysis by NE. NE-stimulated IP1 accumulation in slices from rats undergoing seizures was significantly reduced. GABA potentiation of the NE-stimulated hydrolysis was also reduced.

  15. DAPP1: a dual adaptor for phosphotyrosine and 3-phosphoinositides.

    PubMed

    Dowler, S; Currie, R A; Downes, C P; Alessi, D R

    1999-08-15

    We have identified a novel 280 amino acid protein which contains a putative myristoylation site at its N-terminus followed by an Src homology (SH2) domain and a pleckstrin homology (PH) domain at its C-terminus. It has been termed dual adaptor for phosphotyrosine and 3-phosphoinositides (DAPP1). DAPP1 is widely expressed and exhibits high-affinity interactions with PtdIns(3,4,5)P(3) and PtdIns(3,4)P(2), but not with other phospholipids tested. These observations predict that DAPP1 will interact with both tyrosine phosphorylated proteins and 3-phosphoinositides and may therefore play a role in regulating the location and/or activity of such proteins(s) in response to agonists that elevate PtdIns(3,4,5)P(3) and PtdIns(3,4)P(2).

  16. Phosphoinositide phosphatases: just as important as the kinases.

    PubMed

    Dyson, Jennifer M; Fedele, Clare G; Davies, Elizabeth M; Becanovic, Jelena; Mitchell, Christina A

    2012-01-01

    Phosphoinositide phosphatases comprise several large enzyme families with over 35 mammalian enzymes identified to date that degrade many phosphoinositide signals. Growth factor or insulin stimulation activates the phosphoinositide 3-kinase that phosphorylates phosphatidylinositol (4,5)-bisphosphate [PtdIns(4,5)P(2)] to form phosphatidylinositol (3,4,5)-trisphosphate [PtdIns(3,4,5)P(3)], which is rapidly dephosphorylated either by PTEN (phosphatase and tensin homologue deleted on chromosome 10) to PtdIns(4,5)P(2), or by the 5-phosphatases (inositol polyphosphate 5-phosphatases), generating PtdIns(3,4)P(2). 5-phosphatases also hydrolyze PtdIns(4,5)P(2) forming PtdIns(4)P. Ten mammalian 5-phosphatases have been identified, which regulate hematopoietic cell proliferation, synaptic vesicle recycling, insulin signaling, and embryonic development. Two 5-phosphatase genes, OCRL and INPP5E are mutated in Lowe and Joubert syndrome respectively. SHIP [SH2 (Src homology 2)-domain inositol phosphatase] 2, and SKIP (skeletal muscle- and kidney-enriched inositol phosphatase) negatively regulate insulin signaling and glucose homeostasis. SHIP2 polymorphisms are associated with a predisposition to insulin resistance. SHIP1 controls hematopoietic cell proliferation and is mutated in some leukemias. The inositol polyphosphate 4-phosphatases, INPP4A and INPP4B degrade PtdIns(3,4)P(2) to PtdIns(3)P and regulate neuroexcitatory cell death, or act as a tumor suppressor in breast cancer respectively. The Sac phosphatases degrade multiple phosphoinositides, such as PtdIns(3)P, PtdIns(4)P, PtdIns(5)P and PtdIns(3,5)P(2) to form PtdIns. Mutation in the Sac phosphatase gene, FIG4, leads to a degenerative neuropathy. Therefore the phosphatases, like the lipid kinases, play major roles in regulating cellular functions and their mutation or altered expression leads to many human diseases.

  17. Phosphoinositides: Tiny Lipids With Giant Impact on Cell Regulation

    PubMed Central

    2013-01-01

    Phosphoinositides (PIs) make up only a small fraction of cellular phospholipids, yet they control almost all aspects of a cell's life and death. These lipids gained tremendous research interest as plasma membrane signaling molecules when discovered in the 1970s and 1980s. Research in the last 15 years has added a wide range of biological processes regulated by PIs, turning these lipids into one of the most universal signaling entities in eukaryotic cells. PIs control organelle biology by regulating vesicular trafficking, but they also modulate lipid distribution and metabolism via their close relationship with lipid transfer proteins. PIs regulate ion channels, pumps, and transporters and control both endocytic and exocytic processes. The nuclear phosphoinositides have grown from being an epiphenomenon to a research area of its own. As expected from such pleiotropic regulators, derangements of phosphoinositide metabolism are responsible for a number of human diseases ranging from rare genetic disorders to the most common ones such as cancer, obesity, and diabetes. Moreover, it is increasingly evident that a number of infectious agents hijack the PI regulatory systems of host cells for their intracellular movements, replication, and assembly. As a result, PI converting enzymes began to be noticed by pharmaceutical companies as potential therapeutic targets. This review is an attempt to give an overview of this enormous research field focusing on major developments in diverse areas of basic science linked to cellular physiology and disease. PMID:23899561

  18. Phosphoinositides differentially regulate alpha-actinin flexibility and function.

    PubMed

    Corgan, Anne Marie; Singleton, CoreyAyne; Santoso, Cynthia B; Greenwood, Jeffrey A

    2004-03-15

    Alpha-actinin is a cell-adhesion and cytoskeletal protein that bundles actin microfilaments and links these filaments directly to integrin-adhesion receptors. Phosphoinositides bind to and regulate the interaction of a-actinin with actin filaments and integrin receptors. In the present study, we demonstrate that PtdIns(3,4,5)P3 inhibits and disrupts a-actinin-bundling activity, whereas PtdIns(4,5)P2 can only inhibit activity. In addition, a protease-sensitivity assay was developed to examine the flexibility of the linker region between the actin-binding domain and the spectrin repeats of a-actinin. Both phosphoinositides influenced the extent of proteolysis and the cleavage sites. PtdIns(4,5)P2 binding decreased the proteolysis of a-actinin, suggesting a role in stabilizing the structure of the protein. In contrast, PtdIns(3,4,5)P3 binding enhanced a-actinin proteolysis, indicating an increase in the flexibility of the protein. Furthermore, phosphoinositide binding influenced the proteolysis of the N- and C-terminal domains of a-actinin, indicating regulation of structure within both domains. These results support the hypothesis that PtdIns(4,5)P2 and PtdIns(3,4,5)P3 differentially regulate a-actinin function by modulating the structure and flexibility of the protein.

  19. Different phosphoinositide 3-kinase isoforms mediate carrageenan nociception and inflammation.

    PubMed

    Pritchard, Rory A; Falk, Lovissa; Larsson, Mathilda; Leinders, Mathias; Sorkin, Linda S

    2016-01-01

    Phosphoinositide 3-kinases (PI3Ks) participate in signal transduction cascades that can directly activate and sensitize nociceptors and enhance pain transmission. They also play essential roles in chemotaxis and immune cell infiltration leading to inflammation. We wished to determine which PI3K isoforms were involved in each of these processes. Lightly anesthetized rats (isoflurane) were injected subcutaneously with carrageenan in their hind paws. This was preceded by a local injection of 1% DMSO vehicle or an isoform-specific antagonist to PI3K-α (compound 15-e), -β (TGX221), -δ (Cal-101), or -γ (AS252424). We measured changes in the mechanical pain threshold and spinal c-Fos expression (4 hours after injection) as indices of nociception. Paw volume, plasma extravasation (Evans blue, 0.3 hours after injection), and neutrophil (myeloperoxidase; 1 hour after injection) and macrophage (CD11b+; 4 hour after injection) infiltration into paw tissue were the measured inflammation endpoints. Only PI3K-γ antagonist before treatment reduced the carrageenan-induced pain behavior and spinal expression of c-Fos (P ≤ 0.01). In contrast, pretreatment with PI3K-α, -δ, and-γ antagonists reduced early indices of inflammation. Plasma extravasation PI3K-α (P ≤ 0.05), -δ (P ≤ 0.05), and -γ (P ≤ 0.01), early (0-2 hour) edema -α (P ≤ 0.05), -δ (P ≤ 0.001), and -γ (P ≤ 0.05), and neutrophil infiltration (all P ≤ 0.001) were all reduced compared to vehicle pretreatment. Later (2-4 hour), edema and macrophage infiltration (P ≤ 0.05) were reduced by only the PI3K-δ and -γ isoform antagonists, with the PI3K-δ antagonist having a greater effect on edema. PI3K-β antagonism was ineffective in all paradigms. These data indicate that pain and clinical inflammation are pharmacologically separable and may help to explain clinical conditions in which inflammation naturally wanes or goes into remission, but pain continues unabated.

  20. Alcohol induced changes in phosphoinositide signaling system in rat brain

    SciTech Connect

    Pandey, S.; Piano, M.; Schwertz, D.; Davis, J.; Pandey, G. )

    1991-03-11

    Agonist-induced phosphoinositide break down functions as a signal generating system in a manner similar to the C-AMP system. In order to examine if the changes produced by chronic ethanol treatment on membrane lipid composition and metabolism effect the cellular functions of the neuron, the authors have examined the effect of chronic ethanol exposure on norepinephrine (NE) serotonin (5HT) and calcium ionophore (CI) stimulated phosphoinositide (PI) hydrolysis in rat cortical slices. Rats were maintained on liber-decarli diet alcohol and control liquid diet containing isocaloric sucrose substitute for two months. They were then sacrificed and brain was removed for determination of PI turnover. 5HT stimulated {sup 3}H- inositol monophosphate ({sup 3}H-IPI) formation was significantly lower in the cortex of alcohol treated rats as compared to control rats. However, neither CI nor NE stimulated IP1 formation was significantly different from control rats. The results thus indicate that chronic exposure to ethanol decreases 5HT induced PI breakdown in rat cortex. In order to examine if this decrease is related to a decrease in 5HT2 receptors, or decreased in coupling of receptor to the effector pathway, the authors are currently determining the number and affinity of 5HT2 receptors in alcohol treated rats.

  1. Phosphoinositides in the hepatitis C virus life cycle.

    PubMed

    Bishé, Bryan; Syed, Gulam; Siddiqui, Aleem

    2012-10-19

    Eukaryotes possess seven different phosphoinositides (PIPs) that help form the unique signatures of various intracellular membranes. PIPs serve as docking sites for the recruitment of specific proteins to mediate membrane alterations and integrate various signaling cascades. The spatio-temporal regulation of PI kinases and phosphatases generates distinct intracellular hubs of PIP signaling. Hepatitis C virus (HCV), like other plus-strand RNA viruses, promotes the rearrangement of intracellular membranes to assemble viral replication complexes. HCV stimulates enrichment of phosphatidylinositol 4-phosphate (PI4P) pools near endoplasmic reticulum (ER) sites by activating PI4KIIIα, the kinase responsible for generation of ER-specific PI4P pools. Inhibition of PI4KIIIα abrogates HCV replication. PI4P, the most abundant phosphoinositide, predominantly localizes to the Golgi and plays central roles in Golgi secretory functions by recruiting effector proteins involved in transport vesicle generation. The PI4P effector proteins also include the lipid-transfer and structural proteins such as ceramide transfer protein (CERT), oxysterol binding protein (OSBP) and Golgi phosphoprotein 3 (GOLPH3) that help maintain Golgi-membrane composition and structure. Depletion of Golgi-specific PI4P pools by silencing PI4KIIIβ, expression of dominant negative CERT and OSBP mutants, or silencing GOLPH3 perturb HCV secretion. In this review we highlight the role of PIPs and specifically PI4P in the HCV life cycle.

  2. Phosphoinositide-3-Kinase Is the Primary Mediator of Phosphoinositide-Dependent Inhibition in Mammalian Olfactory Receptor Neurons

    PubMed Central

    Ukhanov, Kirill; Corey, Elizabeth; Ache, Barry W.

    2016-01-01

    Odorants inhibit as well as excite primary olfactory receptor neurons (ORNs) in many animal species. Growing evidence suggests that inhibition of mammalian ORNs is mediated by phosphoinositide (PI) signaling through activation of phosphoinositide 3-kinase (PI3K), and that canonical adenylyl cyclase III signaling and PI3K signaling interact to provide the basis for ligand-induced selective signaling. As PI3K is known to act in concert with phospholipase C (PLC) in some cellular systems, the question arises as to whether they work together to mediate inhibitory transduction in mammalian ORNs. The present study is designed to test this hypothesis. While we establish that multiple PLC isoforms are expressed in the transduction zone of rat ORNs, that odorants can activate PLC in ORNs in situ, and that pharmacological blockade of PLC enhances the excitatory response to an odorant mixture in some ORNs in conjunction with PI3K blockade, we find that by itself PLC does not account for an inhibitory response. We conclude that PLC does not make a measurable independent contribution to odor-evoked inhibition, and that PI3K is the primary mediator of PI-dependent inhibition in mammalian ORNs. PMID:27147969

  3. Characterisation of a plant 3-phosphoinositide-dependent protein kinase-1 homologue which contains a pleckstrin homology domain.

    PubMed

    Deak, M; Casamayor, A; Currie, R A; Downes, C P; Alessi, D R

    1999-05-28

    A plant homologue of mammalian 3-phosphoinositide-dependent protein kinase-1 (PDK1) has been identified in Arabidopsis and rice which displays 40% overall identity with human 3-phosphoinositide-dependent protein kinase-1. Like the mammalian 3-phosphoinositide-dependent protein kinase-1, Arabidopsis 3-phosphoinositide-dependent protein kinase-1 and rice 3-phosphoinositide-dependent protein kinase-1 possess a kinase domain at N-termini and a pleckstrin homology domain at their C-termini. Arabidopsis 3-phosphoinositide-dependent protein kinase-1 can rescue lethality in Saccharomyces cerevisiae caused by disruption of the genes encoding yeast 3-phosphoinositide-dependent protein kinase-1 homologues. Arabidopsis 3-phosphoinositide-dependent protein kinase-1 interacts via its pleckstrin homology domain with phosphatidic acid, PtdIns3P, PtdIns(3,4,5)P3 and PtdIns(3,4)P2 and to a lesser extent with PtdIns(4,5)P2 and PtdIns4P. Arabidopsis 3-phosphoinositide-dependent protein kinase-1 is able to activate human protein kinase B alpha (PKB/AKT) in the presence of PtdIns(3,4,5)P3. Arabidopsis 3-phosphoinositide-dependent protein kinase-1 is only the second plant protein reported to possess a pleckstrin homology domain and the first plant protein shown to bind 3-phosphoinositides.

  4. VISUALIZIATION OF CELLULAR PHOSPHOINOSITIDE POOLS WITH GFP-FUSED PROTEIN-DOMAINS

    PubMed Central

    Balla, Tamas; Várnai, Péter

    2011-01-01

    This unit describes the method of following phosphoinositide dynamics in live cells. Inositol phospholipids have emerged as universal signaling molecules present in virtually every membrane of eukaryotic cells. Phosphoinositides are present only in tiny amounts compared to structural lipids but are metabolically very active as they are produced and degraded by the numerous inositide kinase and phosphatase enzymes. Phosphoinositides control the membrane-recruitment and activity of many protein signaling-complexes in specific membrane compartments and have been implicated in the regulation of a variety of signaling and trafficking pathways. It has been a challenge to develop methods that allow detection of phosphoinositides at the single cell level. The only available technique in live cell application is based on the use of the same protein domains selected by evolution to recognize cellular phosphoinositides. Some of these isolated protein modules when fused to fluorescent proteins can follow dynamic changes in phosphoinositides. While this technique can provide information on phosphoinositide dynamics in live cells with subcellular resolution and rapidly gained popularity, it also has several limitations that must be taken into account when interpreting the data. Here, we summarize the design and practical use of these constructs and also review important considerations for the interpretation of the data obtained by this technique. PMID:19283730

  5. F-actin waves, actin cortex disassembly and focal exocytosis driven by actin-phosphoinositide positive feedback.

    PubMed

    Masters, Thomas A; Sheetz, Michael P; Gauthier, Nils C

    2016-04-01

    Actin polymerization is controlled by the phosphoinositide composition of the plasma membrane. However, the molecular mechanisms underlying the spatiotemporal regulation of actin network organization over extended length scales are still unclear. To observe phosphoinositide-dependent cytoskeletal dynamics we combined the model system of frustrated phagocytosis, total internal reflection microscopy and manipulation of the buffer tonicity. We found that macrophages interacting with IgG-coated glass substrates formed circular F-actin waves on their ventral surface enclosing a region of plasma membrane devoid of cortical actin. Plasma membrane free of actin cortex was strongly depleted of PI(4,5)P2 , but enriched in PI(3,4)P2 and displayed a fivefold increase in exocytosis. Wave formation could be promoted by application of a hypotonic shock. The actin waves were characteristic of a bistable wavefront at the boundary between the regions of membrane containing and lacking cortical actin. Phosphoinositide modifiers and RhoGTPase activities dramatically redistributed with respect to the wavefronts, which often exhibited spatial oscillations. Perturbation of either lipid or actin cytoskeleton-related pathways led to rapid loss of both the polarized lipid distribution and the wavefront. As waves travelled over the plasma membrane, wavefront actin was seen to rapidly polymerize and depolymerize at pre-existing clusters of FcγRIIA, coincident with rapid changes in lipid composition. Thus the potential of receptors to support rapid F-actin polymerization appears to depend acutely on the local concentrations of multiple lipid species. We propose that interdependence through positive feedback from the cytoskeleton to lipid modifiers leads to coordinated local cortex remodeling, focal exocytosis, and organizes extended actin networks.

  6. Interactions of legionella effector proteins with host phosphoinositide lipids.

    PubMed

    Weber, Stephen; Dolinsky, Stephanie; Hilbi, Hubert

    2013-01-01

    By means of the Icm/Dot type IV secretion system Legionella pneumophila translocates several effector proteins into host cells, where they anchor to the cytoplasmic face of the LCV membrane by binding to phosphoinositide (PI) lipids. Thus, phosphatidylinositol-4-phosphate anchors the effector proteins SidC and SidM, which promote the interaction of LCVs with the ER and the secretory vesicle trafficking -pathway. In this chapter, we describe protocols to (1) identify PI-binding proteins in Legionella lysates using PI-beads, (2) determine PI-binding specificities and affinities of recombinant Legionella effector proteins by protein-lipid overlays, and (3) use Legionella effectors to identify cellular PI lipids.

  7. Sec14-like Phosphatidylinositol Transfer Proteins and the Biological Landscape of Phosphoinositide Signaling in Plants

    PubMed Central

    Huang, Jin; Ghosh, Ratna; Bankaitis, Vytas A.

    2017-01-01

    Phosphoinositides and soluble inositol phosphates are essential components of a complex intracellular chemical code that regulates major aspects of lipid signaling in eukaryotes. These involvements span a broad array of biological outcomes and activities, and cells are faced with the problem of how to compartmentalize and organize these various signaling events into a coherent scheme. It is in the arena of how phosphoinositide signaling circuits are integrated and, and how phosphoinositide pools are functionally defined and channeled to privileged effectors, that phosphatidylinositol (PtdIns) transfer proteins (PITPs) are emerging as critical players. As plant systems offer some unique advantages and opportunities for study of these proteins, we discuss herein our perspectives regarding the progress made in plant systems regarding PITP function. We also suggest interesting prospects that plant systems hold for interrogating how PITPs work, particularly in multi-domain contexts, to diversify the biological outcomes for phosphoinositide signaling. PMID:27038688

  8. Phosphoinositide kinases and the synthesis of polyphosphoinositides in higher plant cells

    NASA Technical Reports Server (NTRS)

    Drobak, B. K.; Dewey, R. E.; Boss, W. F.; Davies, E. (Principal Investigator)

    1999-01-01

    Phosphoinositides are a family of inositol-containing phospholipids which are present in all eukaryotic cells. Although in most cells these lipids, with the exception of phosphatidylinositol, constitute only a very minor proportion of total cellular lipids, they have received immense attention by researchers in the past 15-20 years. This is due to the discovery that these lipids, rather than just having structural functions, play key roles in a wide range of important cellular processes. Much less is known about the plant phosphoinositides than about their mammalian counterparts. However, it has been established that a functional phosphoinositide system exists in plant cells and it is becoming increasingly clear that inositol-containing lipids are likely to play many important roles throughout the life of a plant. It is not our intention to give an exhaustive overview of all aspects of the field, but rather we focus on the phosphoinositide kinases responsible for the synthesis of all phosphorylated forms of phosphatidylinositol. Also, we mention some of the aspects of current phosphoinositide research which, in our opinion, are most likely to provide a suitable starting point for further research into the role of phosphoinositides in plants.

  9. Regional development of carbachol-, glutamate-, norepinephrine-, and serotonin-stimulated phosphoinositide metabolism in rat brain.

    PubMed

    Balduini, W; Candura, S M; Costa, L G

    1991-09-19

    Phosphoinositide metabolism stimulated by activation of cholinergic muscarinic, glutamatergic, alpha-adrenergic and serotoninergic receptors was measured in brain regions of the developing rats. Accumulation of [3H]inositol phosphates ([3H]InsPs) in [3H]inositol-prelabeled slices from cerebral cortex, hippocampus, brainstem and cerebellum was measured as an index of phosphoinositide metabolism. Large age-, neurotransmitter receptor-, and brain region-dependent differences were found. Carbachol-stimulated [3H]InsPs accumulation peaked on postnatal day 7 in cerebral cortex and hippocampus while in cerebellum and brainstem the effect of muscarinic stimulation was maximal at birth and then declined to adulthood. The effect of glutamate also showed a peak on day 7 in hippocampus and brainstem and a developmentally related decrease in cerebral cortex. In the cerebellum, on the other hand, the response to glutamate remained sustained through adulthood. Stimulation of phosphoinositide metabolism by norepinephrine increased with age in hippocampus and cerebral cortex, but decreased in the cerebellum, while the effect of serotonin did not change significantly with age except in cerebellum. These changes in receptor-stimulated phosphoinositide metabolism do not parallel, for the most part, the ontogeny of receptor recognition sites. Activation of the phosphoinositide metabolism pathway leads to an increase in intracellular calcium levels and to stimulation of protein kinase C, which are believed to play significant roles in cellular proliferation and differentiation. Thus, the differential ability of neurotransmitters to stimulate phosphoinositide hydrolysis might play a role in the development of brain regions.

  10. Functional Anatomy of Phospholipid Binding And Regulation of Phosphoinositide Homeostasis By Proteins of the Sec14 Superfamily

    SciTech Connect

    Schaaf, G.; Ortlund, E.A.; Tyeryar, K.R.; Mousley, C.J.; Ile, K.E.; Garrett, T.A.; Ren, J.; Woolls, M.J.; Raetz, C.R.H.; Redinbo, M.R.; Bankaitis, V.A.

    2009-05-27

    Sec14, the major yeast phosphatidylinositol (PtdIns)/phosphatidylcholine (PtdCho) transfer protein, regulates essential interfaces between lipid metabolism and membrane trafficking from the trans-Golgi network (TGN). How Sec14 does so remains unclear. We report that Sec14 binds PtdIns and PtdCho at distinct (but overlapping) sites, and both PtdIns- and PtdCho-binding activities are essential Sec14 activities. We further show both activities must reside within the same molecule to reconstitute a functional Sec14 and for effective Sec14-mediated regulation of phosphoinositide homeostasis in vivo. This regulation is uncoupled from PtdIns-transfer activity and argues for an interfacial presentation mode for Sec14-mediated potentiation of PtdIns kinases. Such a regulatory role for Sec14 is a primary counter to action of the Kes1 sterol-binding protein that antagonizes PtdIns 4-OH kinase activity in vivo. Collectively, these findings outline functional mechanisms for the Sec14 superfamily and reveal additional layers of complexity for regulating phosphoinositide homeostasis in eukaryotes.

  11. Arginine vasotocin activates phosphoinositide signal transduction system and potentiates N-acetyltransferase activity in the rat pineal gland.

    PubMed

    Novotná, R; Jác, M; Hájek, I; Novotný, I

    1999-03-05

    The pineal gland is innervated by pinealopetal peptidergic fibers originating in the hypothalamic nuclei which release arginine vasopressin (AVP) and arginine vasotocin (AVT) from their endings. Since the mechanism of AVT action on the pineal signal transduction and melatonin synthesis has not been determined so far, we examined the effect of AVT on the phosphoinositide signalling system and the N-acetyltransferase (NAT) activity in the rat pineal gland. The effect of AVP 4-9 fragment and AVP analogue desmopressin was also tested. The phosphoinositide signalling system was studied by measuring 32P labelling of phosphatidylinositol (PI), phosphatidylinositol phosphate (PIP) and phosphatidylinositol bisphosphate (PIP2) which reflects PI cycle activation. AVT (10(-5) and 10(-4) M) induced a significant increase in 32P labelling of PI, PIP and PIP2. The AVT mediated activation of the PI signal cascade was supressed by the vasopressin V1 receptor antagonist. The desmopressin and AVP 4-9 fragment were without the effect on PI signalling. To assess the AVT role in the melatonin synthesis we studied the daily pattern of the pineal NAT activity in rats treated by AVT (10 microg/100 g b.w). AVT application in the dark period of the day significantly increased nocturnal NAT activity. It can be summarized that AVT activates PI signalling system and potentiates NAT activity in the rat pineal gland.

  12. The antiepileptic drug valproic acid and other medium-chain fatty acids acutely reduce phosphoinositide levels independently of inositol in Dictyostelium.

    PubMed

    Chang, Pishan; Orabi, Benoit; Deranieh, Rania M; Dham, Manik; Hoeller, Oliver; Shimshoni, Jakob A; Yagen, Boris; Bialer, Meir; Greenberg, Miriam L; Walker, Matthew C; Williams, Robin S B

    2012-01-01

    Valproic acid (VPA) is the most widely prescribed epilepsy treatment worldwide, but its mechanism of action remains unclear. Our previous work identified a previously unknown effect of VPA in reducing phosphoinositide production in the simple model Dictyostelium followed by the transfer of data to a mammalian synaptic release model. In our current study, we show that the reduction in phosphoinositide [PtdInsP (also known as PIP) and PtdInsP(2) (also known as PIP(2))] production caused by VPA is acute and dose dependent, and that this effect occurs independently of phosphatidylinositol 3-kinase (PI3K) activity, inositol recycling and inositol synthesis. In characterising the structural requirements for this effect, we also identify a family of medium-chain fatty acids that show increased efficacy compared with VPA. Within the group of active compounds is a little-studied group previously associated with seizure control, and analysis of two of these compounds (nonanoic acid and 4-methyloctanoic acid) shows around a threefold enhanced potency compared with VPA for protection in an in vitro acute rat seizure model. Together, our data show that VPA and a newly identified group of medium-chain fatty acids reduce phosphoinositide levels independently of inositol regulation, and suggest the reinvestigation of these compounds as treatments for epilepsy.

  13. Computational studies of the binding profile of phosphoinositide PtdIns (3,4,5) P3 with the pleckstrin homology domain of an oomycete cellulose synthase

    NASA Astrophysics Data System (ADS)

    Kuang, Guanglin; Bulone, Vincent; Tu, Yaoquan

    2016-02-01

    Saprolegnia monoica is a model organism to investigate Saprolegnia parasitica, an important oomycete which causes considerable loss in aquaculture every year. S. monoica contains cellulose synthases vital for oomycete growth. However, the molecular mechanism of the cellulose biosynthesis process in the oomycete growth is still poorly understood. Some cellulose synthases of S. monoica, such as SmCesA2, are found to contain a plecsktrin homology (PH) domain, which is a protein module widely found in nature and known to bind to phosphoinositides, a class of signaling compounds involved in many biological processes. Understanding the molecular interactions between the PH domain and phosphoinositides would help to unravel the cellulose biosynthesis process of oomycetes. In this work, the binding profile of PtdIns (3,4,5) P3, a typical phosphoinositide, with SmCesA2-PH was studied by molecular docking, molecular dynamics and metadynamics simulations. PtdIns (3,4,5) P3 is found to bind at a specific site located at β1, β2 and β1-β2 loop of SmCesA2-PH. The high affinity of PtdIns (3,4,5) P3 to SmCesA2-PH is contributed by the free phosphate groups, which have electrostatic and hydrogen-bond interactions with Lys88, Lys100 and Arg102 in the binding site.

  14. Vav3 modulates B cell receptor responses by regulating phosphoinositide 3-kinase activation.

    PubMed

    Inabe, Kazunori; Ishiai, Masamichi; Scharenberg, Andrew M; Freshney, Norman; Downward, Julian; Kurosaki, Tomohiro

    2002-01-21

    To elucidate the mechanism(s) by which Vav3, a new member of the Vav family proteins, participates in B cell antigen receptor (BCR) signaling, we have generated a B cell line deficient in Vav3. Here we report that Vav3 influences phosphoinositide 3-kinase (PI3K) function through Rac1 in that phosphatidylinositol-3,4,5-trisphosphate (PIP3) generation was attenuated by loss of Vav3 or by expression of a dominant negative form of Rac1. The functional interaction between PI3K and Rac1 was also demonstrated by increased PI3K activity in the presence of GTP-bound Rac1. In addition, we show that defects of calcium mobilization and c-Jun NH2-terminal kinase (JNK) activation in Vav3-deficient cells are relieved by deletion of a PIP3 hydrolyzing enzyme, SH2 domain-containing inositol polyphosphate 5'-phosphatase (SHIP). Hence, our results suggest a role for Vav3 in regulating the B cell responses by promoting the sustained production of PIP3 and thereby calcium flux.

  15. Vav3 Modulates B Cell Receptor Responses by Regulating Phosphoinositide 3-Kinase Activation

    PubMed Central

    Inabe, Kazunori; Ishiai, Masamichi; Scharenberg, Andrew M.; Freshney, Norman; Downward, Julian; Kurosaki, Tomohiro

    2002-01-01

    To elucidate the mechanism(s) by which Vav3, a new member of the Vav family proteins, participates in B cell antigen receptor (BCR) signaling, we have generated a B cell line deficient in Vav3. Here we report that Vav3 influences phosphoinositide 3-kinase (PI3K) function through Rac1 in that phosphatidylinositol-3,4,5-trisphosphate (PIP3) generation was attenuated by loss of Vav3 or by expression of a dominant negative form of Rac1. The functional interaction between PI3K and Rac1 was also demonstrated by increased PI3K activity in the presence of GTP-bound Rac1. In addition, we show that defects of calcium mobilization and c-Jun NH2-terminal kinase (JNK) activation in Vav3-deficient cells are relieved by deletion of a PIP3 hydrolyzing enzyme, SH2 domain-containing inositol polyphosphate 5′-phosphatase (SHIP). Hence, our results suggest a role for Vav3 in regulating the B cell responses by promoting the sustained production of PIP3 and thereby calcium flux. PMID:11805146

  16. Phosphoinositide 3-kinase inhibitors induce DNA damage through nucleoside depletion

    PubMed Central

    Juvekar, Ashish; Hu, Hai; Yadegarynia, Sina; Lyssiotis, Costas A.; Ullas, Soumya; Lien, Evan C.; Bellinger, Gary; Son, Jaekyoung; Hok, Rosanna C.; Seth, Pankaj; Daly, Michele B.; Kim, Baek; Scully, Ralph; Asara, John M.; Cantley, Lewis C.; Wulf, Gerburg M.

    2016-01-01

    We previously reported that combining a phosphoinositide 3-kinase (PI3K) inhibitor with a poly-ADP Rib polymerase (PARP)-inhibitor enhanced DNA damage and cell death in breast cancers that have genetic aberrations in BRCA1 and TP53. Here, we show that enhanced DNA damage induced by PI3K inhibitors in this mutational background is a consequence of impaired production of nucleotides needed for DNA synthesis and DNA repair. Inhibition of PI3K causes a reduction in all four nucleotide triphosphates, whereas inhibition of the protein kinase AKT is less effective than inhibition of PI3K in suppressing nucleotide synthesis and inducing DNA damage. Carbon flux studies reveal that PI3K inhibition disproportionately affects the nonoxidative pentose phosphate pathway that delivers Rib-5-phosphate required for base ribosylation. In vivo in a mouse model of BRCA1-linked triple-negative breast cancer (K14-Cre BRCA1f/fp53f/f), the PI3K inhibitor BKM120 led to a precipitous drop in DNA synthesis within 8 h of drug treatment, whereas DNA synthesis in normal tissues was less affected. In this mouse model, combined PI3K and PARP inhibition was superior to either agent alone to induce durable remissions of established tumors. PMID:27402769

  17. The acyltransferase LYCAT controls specific phosphoinositides and related membrane traffic

    PubMed Central

    Bone, Leslie N.; Dayam, Roya M.; Lee, Minhyoung; Kono, Nozomu; Fairn, Gregory D.; Arai, Hiroyuki; Botelho, Roberto J.; Antonescu, Costin N.

    2017-01-01

    Phosphoinositides (PIPs) are key regulators of membrane traffic and signaling. The interconversion of PIPs by lipid kinases and phosphatases regulates their functionality. Phosphatidylinositol (PI) and PIPs have a unique enrichment of 1-stearoyl-2-arachidonyl acyl species; however, the regulation and function of this specific acyl profile remains poorly understood. We examined the role of the PI acyltransferase LYCAT in control of PIPs and PIP-dependent membrane traffic. LYCAT silencing selectively perturbed the levels and localization of phosphatidylinositol-4,5-bisphosphate [PI(4,5)P2] and phosphatidylinositol-3-phosphate and the membrane traffic dependent on these specific PIPs but was without effect on phosphatidylinositol-4-phosphate or biosynthetic membrane traffic. The acyl profile of PI(4,5)P2 was selectively altered in LYCAT-deficient cells, whereas LYCAT localized with phosphatidylinositol synthase. We propose that LYCAT remodels the acyl chains of PI, which is then channeled into PI(4,5)P2. Our observations suggest that the PIP acyl chain profile may exert broad control of cell physiology. PMID:28035047

  18. Multiple roles of phosphoinositide-specific phospholipase C isozymes.

    PubMed

    Suh, Pann-Ghill; Park, Jae-Il; Manzoli, Lucia; Cocco, Lucio; Peak, Joanna C; Katan, Matilda; Fukami, Kiyoko; Kataoka, Tohru; Yun, Sanguk; Ryu, Sung Ho

    2008-06-30

    Phosphoinositide-specific phospholipase C is an effector molecule in the signal transduction process. It generates two second messengers, inositol-1,4,5-trisphosphate and diacylglycerol from phosphatidylinositol 4,5-bisphosphate. Currently, thirteen mammal PLC isozymes have been identified, and they are divided into six groups: PLC-beta, -gamma, -delta, -epsilon, -zeta and -eta. Sequence analysis studies demonstrated that each isozyme has more than one alternative splicing variant. PLC isozymes contain the X and Y domains that are responsible for catalytic activity. Several other domains including the PH domain, the C2 domain and EF hand motifs are involved in various biological functions of PLC isozymes as signaling proteins. The distribution of PLC isozymes is tissue and organ specific. Recent studies on isolated cells and knockout mice depleted of PLC isozymes have revealed their distinct phenotypes. Given the specificity in distribution and cellular localization, it is clear that each PLC isozyme bears a unique function in the modulation of physiological responses. In this review, we discuss the structural organization, enzymatic properties and molecular diversity of PLC splicing variants and study functional and physiological roles of each isozyme.

  19. Live cell imaging of phosphoinositide dynamics during Legionella infection.

    PubMed

    Weber, Stephen; Hilbi, Hubert

    2014-01-01

    The "accidental" pathogen Legionella pneumophila replicates intracellularly in a distinct compartment, the Legionella-containing vacuole (LCV). To form this specific pathogen vacuole, the bacteria translocate via the Icm/Dot type IV secretion system approximately 300 different effector proteins into the host cell. Several of these secreted effectors anchor to the cytoplasmic face of the LCV membrane by binding to phosphoinositide (PI) lipids. L. pneumophila thus largely controls the localization of secreted bacterial effectors and the recruitment of host factors to the LCV through the modulation of the vacuole membrane PI pattern. The LCV PI pattern and its dynamics can be studied in real-time using fluorescently labeled protein probes stably produced by the soil amoeba Dictyostelium discoideum. In this chapter, we describe a protocol to (1) construct and handle amoeba model systems as a tool for observing PIs in live cell imaging, (2) capture rapid changes in membrane PI patterning during uptake events, and (3) observe the dynamics of LCV PIs over the course of a Legionella infection.

  20. Targeting phosphoinositide 3-kinase δ for allergic asthma.

    PubMed

    Rowan, Wendy C; Smith, Janet L; Affleck, Karen; Amour, Augustin

    2012-02-01

    Chronic inflammation in the lung has long been linked to the pathogenesis of asthma. Central to this airway inflammation is a T-cell response to allergens, with Th2 cytokines driving the differentiation, survival and function of the major inflammatory cells involved in the allergic cascade. PI3Kδ (phosphoinositide 3-kinase δ) is a lipid kinase, expressed predominantly in leucocytes, where it plays a critical role in immune receptor signalling. A selective PI3Kδ inhibitor is predicted to block T-cell activation in the lung, reducing the production of pro-inflammatory Th2 cytokines. PI3Kδ is also involved in B-cell and mast cell activation. Therefore the inhibition of PI3Kδ should dampen down the inflammatory cascade involved in the asthmatic response through a wide breadth of pharmacology. Current anti-inflammatory therapies, which are based on corticosteroids, are effective in controlling inflammation in mild asthmatics, but moderate/severe asthmatic patients remain poorly controlled, experiencing recurrent exacerbations. Corticosteroids have no effect on mast cell degranulation and do not act directly on B-cells, so, overall, a PI3Kδ inhibitor has the potential to deliver improvements in onset of action, efficacy and reduced exacerbations in moderate/severe asthmatics. Additionally, PI3Kδ inhibition is expected to block effects of Th17 cells, which are increasingly implicated in steroid-insensitive asthma.

  1. Kappa opioid receptors stimulate phosphoinositide turnover in rat brain

    SciTech Connect

    Periyasamy, S.; Hoss, W. )

    1990-01-01

    The effects of various subtype-selective opioid agonists and antagonists on the phosphoinositide (PI) turnover response were investigated in the rat brain. The {kappa}-agonists U-50,488H and ketocyclazocine produced a concentration-dependent increase in the accumulation of IP's in hippocampal slices. The other {kappa}-agonists Dynorphin-A (1-13) amide, and its protected analog D(Ala){sup 2}-dynorphin-A (1-13) amide also produced a significant increase in the formation of ({sup 3}H)-IP's, whereas the {mu}-selective agonists (D-Ala{sup 2}-N-Me-Phe{sup 4}-Gly{sup 5}-ol)-enkephalin and morphine and the {delta}-selective agonist (D-Pen{sup 2,5})-enkephalin were ineffective. The increase in IP's formation elicited by U-50,488H was partially antagonized by naloxone and more completely antagonized by the {kappa}-selective antagonists nor-binaltorphimine and MR 2266. The formation of IP's induced by U-50,488H varies with the regions of the brain used, being highest in hippocampus and amygdala, and lowest in striatum and pons-medullar. The results indicate that brain {kappa}- but neither {mu}- nor {delta}- receptors are coupled to the PI turnover response.

  2. Tools for visualization of phosphoinositides in the cell nucleus.

    PubMed

    Kalasova, Ilona; Fáberová, Veronika; Kalendová, Alžběta; Yildirim, Sukriye; Uličná, Lívia; Venit, Tomáš; Hozák, Pavel

    2016-04-01

    Phosphoinositides (PIs) are glycerol-based phospholipids containing hydrophilic inositol ring. The inositol ring is mono-, bis-, or tris-phosphorylated yielding seven PIs members. Ample evidence shows that PIs localize both to the cytoplasm and to the nucleus. However, tools for direct visualization of nuclear PIs are limited and many studies thus employ indirect approaches, such as staining of their metabolic enzymes. Since localization and mobility of PIs differ from their metabolic enzymes, these approaches may result in incomplete data. In this paper, we tested commercially available PIs antibodies by light microscopy on fixed cells, tested their specificity using protein-lipid overlay assay and blocking assay, and compared their staining patterns. Additionally, we prepared recombinant PIs-binding domains and tested them on both fixed and live cells by light microscopy. The results provide a useful overview of usability of the tools tested and stress that the selection of adequate tools is critical. Knowing the localization of individual PIs in various functional compartments should enable us to better understand the roles of PIs in the cell nucleus.

  3. Cholinergic stimulation of phosphoinositide hydrolysis in rabbit kidney slices

    SciTech Connect

    Garg, L.C.; McArdle, S.; Crews, F.T.

    1986-03-01

    The release of inositol phosphates (IP) from phosphoinositides (PI) by carbachol was studied in the tissue slices from cortex (C), outer medulla (OM) and inner medulla (IM) of rabbit kidneys. The method involved the incubation of the slices with (/sup 3/H)inositol for its incorporation into the PI and measurement of the release of IP in presence of lithium which prevents dephosphorylation of IP. The results of (/sup 3/H)IP formation are expressed as % of total (/sup 3/H)inositol incorporation in the tissue. No significant effect of carbachol was found on the release of IP in the C. The drug produced a 48% increase in IP release in the OM. In the IM, carbachol produced a concentration dependent increase in IP release with a maximum of 772% at 1 mM. The release of IP in the IM by 1 mM carbachol was completely blocked by 1 ..mu..M atropine. Our results indicate that IP release by carbachol is due to activation of muscarinic receptors in the IM of the rabbit kidney.

  4. Phosphoinositide 3-Kinase Beta Protects Nuclear Envelope Integrity by Controlling RCC1 Localization and Ran Activity

    PubMed Central

    Redondo-Muñoz, Javier; Pérez-García, Vicente; Rodríguez, María J.; Valpuesta, José M.

    2014-01-01

    The nuclear envelope (NE) forms a barrier between the nucleus and the cytosol that preserves genomic integrity. The nuclear lamina and nuclear pore complexes (NPCs) are NE components that regulate nuclear events through interaction with other proteins and DNA. Defects in the nuclear lamina are associated with the development of laminopathies. As cells depleted of phosphoinositide 3-kinase beta (PI3Kβ) showed an aberrant nuclear morphology, we studied the contribution of PI3Kβ to maintenance of NE integrity. pik3cb depletion reduced the nuclear membrane tension, triggered formation of areas of lipid bilayer/lamina discontinuity, and impaired NPC assembly. We show that one mechanism for PI3Kβ regulation of NE/NPC integrity is its association with RCC1 (regulator of chromosome condensation 1), the activator of nuclear Ran GTPase. PI3Kβ controls RCC1 binding to chromatin and, in turn, Ran activation. These findings suggest that PI3Kβ regulates the nuclear envelope through upstream regulation of RCC1 and Ran. PMID:25348717

  5. Oxysterol-binding proteins: sterol and phosphoinositide sensors coordinating transport, signaling and metabolism.

    PubMed

    Olkkonen, Vesa M; Li, Shiqian

    2013-10-01

    Oxysterol-binding protein (OSBP) and OSBP-related proteins (ORPs) constitute a family of sterol and phosphoinositide binding proteins conserved in eukaryotes. The mechanisms of ORP function have remained incompletely understood. However, several ORPs are present at membrane contact sites and control the activity of enzymatic effectors or assembly of protein complexes, with impacts on signaling, vesicle transport, and lipid metabolism. An increasing number of protein interaction partners of ORPs have been identified, providing clues of their involvement in multiple aspects of cell regulation. The functions assigned for mammalian ORPs include coordination of sterol and sphingolipid metabolism and mitogenic signaling (OSBP), control of ER-late endosome (LE) contacts and LE motility (ORP1L), neutral lipid metabolism (ORP2), cell adhesion (ORP3), cholesterol eggress from LE (ORP5), macrophage lipid homeostasis, migration and high-density lipoprotein metabolism (ORP8), apolipoprotein B-100 secretion (ORP10), and adipogenesis (ORP11). The anti-proliferative ORPphilin compounds target OSBP and ORP4, revealing a function of ORPs in cell proliferation and survival. The Saccharomyces cerevisiae OSBP homologue (Osh) proteins execute multifaceted functions in sterol and sphingolipid homeostasis, post-Golgi vesicle transport, as well as phosphatidylinositol-4-phosphate and target of rapamycin complex 1 (TORC1) signaling. These observations identify ORPs as coordinators of lipid signals with an unforeseen variety of cellular processes.

  6. Membrane targeting of TIRAP is negatively regulated by phosphorylation in its phosphoinositide-binding motif

    PubMed Central

    Zhao, Xiaolin; Xiong, Wen; Xiao, Shuyan; Tang, Tuo-Xian; Ellena, Jeffrey F.; Armstrong, Geoffrey S.; Finkielstein, Carla V.; Capelluto, Daniel G. S.

    2017-01-01

    Pathogen-activated Toll-like receptors (TLRs), such as TLR2 and TLR4, dimerize and move laterally across the plasma membrane to phosphatidylinositol (4,5)-bisphosphate-enriched domains. At these sites, TLRs interact with the TIR domain-containing adaptor protein (TIRAP), triggering a signaling cascade that leads to innate immune responses. Membrane recruitment of TIRAP is mediated by its phosphoinositide (PI)-binding motif (PBM). We show that TIRAP PBM transitions from a disordered to a helical conformation in the presence of either zwitterionic micelles or monodispersed PIs. TIRAP PBM bound PIs through basic and nonpolar residues with high affinity, favoring a more ordered structure. TIRAP is phosphorylated at Thr28 within its PBM, which leads to its ubiquitination and degradation. We demonstrate that phosphorylation distorts the helical structure of TIRAP PBM, reducing PI interactions and cell membrane targeting. Our study provides the basis for TIRAP membrane insertion and the mechanism by which it is removed from membranes to avoid sustained innate immune responses. PMID:28225045

  7. Specific interactions among transmembrane 4 superfamily (TM4SF) proteins and phosphoinositide 4-kinase.

    PubMed Central

    Yauch, R L; Hemler, M E

    2000-01-01

    In earlier work we established that phosphoinositide 4-kinase (PI 4-kinase) may associate with transmembrane 4 superfamily (TM4SF, tetraspanin) proteins, but critical specificity issues were not addressed. Here we demonstrate that at least five different TM4SF proteins (CD9, CD63, CD81, CD151 and A15/TALLA1) can associate with a similar or identical 55 kDa type II PI 4-kinase. These associations were specific, since we found no evidence for other phosphoinositide kinases (e.g. phosphoinositide 3-kinase and phosphoinositide-4-phosphate 5-kinase) associating with TM4SF proteins, and many other TM4SF proteins (including CD82 and CD53) did not associate with PI 4-kinase. CD63-PI 4-kinase complexes were almost entirely intracellular, and thus are distinct from other TM4SF-PI 4-kinase complexes (e.g. involving CD9), which are largely located in the plasma membrane. These results suggest that a specific subset of TM4SF proteins may recruit PI 4-kinase to specific membrane locations, and thereby influence phosphoinositide-dependent signalling. PMID:11042117

  8. Class (I) Phosphoinositide 3-Kinases in the Tumor Microenvironment

    PubMed Central

    Gyori, David; Chessa, Tamara; Hawkins, Phillip T.; Stephens, Len R.

    2017-01-01

    Phosphoinositide 3-kinases (PI3Ks) are a diverse family of enzymes which regulate various critical biological processes, such as cell proliferation and survival. Class (I) PI3Ks (PI3Kα, PI3Kβ, PI3Kγ and PI3Kδ) mediate the phosphorylation of the inositol ring at position D3 leading to the generation of PtdIns(3,4,5)P3. PtdIns(3,4,5)P3 can be dephosphorylated by several phosphatases, of which the best known is the 3-phosphatase PTEN (phosphatase and tensin homolog). The Class (I) PI3K pathway is frequently disrupted in human cancers where mutations are associated with increased PI3K-activity or loss of PTEN functionality within the tumor cells. However, the role of PI3Ks in the tumor stroma is less well understood. Recent evidence suggests that the white blood cell-selective PI3Kγ and PI3Kδ isoforms have an important role in regulating the immune-suppressive, tumor-associated myeloid cell and regulatory T cell subsets, respectively, and as a consequence are also critical for solid tumor growth. Moreover, PI3Kα is implicated in the direct regulation of tumor angiogenesis, and dysregulation of the PI3K pathway in stromal fibroblasts can also contribute to cancer progression. Therefore, pharmacological inhibition of the Class (I) PI3K family in the tumor microenvironment can be a highly attractive anti-cancer strategy and isoform-selective PI3K inhibitors may act as potent cancer immunotherapeutic and anti-angiogenic agents. PMID:28273837

  9. Nuclear phosphoinositide specific phospholipase C (PI-PLC)-beta 1: a central intermediary in nuclear lipid-dependent signal transduction.

    PubMed

    Martelli, A M; Fiume, R; Faenza, I; Tabellini, G; Evangelista, C; Bortul, R; Follo, M Y; Falà, F; Cocco, L

    2005-10-01

    Several studies have demonstrated the existence of an autonomous intranuclear phospho-inositide cycle that involves the activation of nuclear PI-PLC and the generation of diacylglycerol (DG) within the nucleus. Although several distinct isozymes of PI-PLC have been detected in the nucleus, the isoform that has been most consistently highlighted as being nuclear is PI-PLC-beta1. Nuclear PI-PLC-beta1 has been linked with either cell proliferation or differentiation. Remarkably, the activation mechanism of nuclear PI-PLC-beta1 has been shown to be different from its plasma membrane counterpart, being dependent on phosphorylation effected by p44/42 mitogen activated protein (MAP) kinase. In this review, we report the most up-dated findings about nuclear PI-PLC-beta1, such as the localization in nuclear speckles, the activity changes during the cell cycle phases, and the possible involvement in the progression of myelodisplastic syndrome to acute myeloid leukemia.

  10. Decrease in platelet activating factor stimulated phosphoinositide turnover during storage of human platelets in plasma

    SciTech Connect

    Carter, M.G.; Shukla, S.D. )

    1987-05-01

    Human platelet concentrate from the American Red Cross Blood Center was stored at 24{degree}C in a shaker and aliquots were taken out at time intervals aseptically. Platelet activating factor (PAF) stimulated turnover of phosphoinositide (PPI) was monitored by assaying {sup 32}P incorporation into phosphoinositides using platelet rich plasma (PRP). Platelets in PRP were incubated with 1 {times} 10{sup {minus}7} M PAF at 37{degree}C with gentle shaking and after 5 min their lipids were extracted and analysed by TLC for {sup 32}P-phosphoinositides. The percent stimulation of {sup 32}P incorporation by PAF (over control) into PPI was approximately 250, 100, 60, 25 and 20 on days 1, 2, 3, 5 and 6, respectively. This indicated a dramatic decrease in PAF responsive turnover of platelet PPI during storage. These findings have important implications in relation to PAF receptor activity and viability of platelets at different periods of storage.

  11. Transient receptor potential melastatin 3 is a phosphoinositide-dependent ion channel.

    PubMed

    Badheka, Doreen; Borbiro, Istvan; Rohacs, Tibor

    2015-07-01

    Phosphoinositides are emerging as general regulators of the functionally diverse transient receptor potential (TRP) ion channel family. Phosphatidylinositol 4,5-bisphosphate (PI(4,5)P2) has been reported to positively regulate many TRP channels, but in several cases phosphoinositide regulation is controversial. TRP melastatin 3 (TRPM3) is a heat-activated ion channel that is also stimulated by chemical agonists, such as pregnenolone sulfate. Here, we used a wide array of approaches to determine the effects of phosphoinositides on TRPM3. We found that channel activity in excised inside-out patches decreased over time (rundown), an attribute of PI(4,5)P2-dependent ion channels. Channel activity could be restored by application of either synthetic dioctanoyl (diC8) or natural arachidonyl stearyl (AASt) PI(4,5)P2. The PI(4,5)P2 precursor phosphatidylinositol 4-phosphate (PI(4)P) was less effective at restoring channel activity. TRPM3 currents were also restored by MgATP, an effect which was inhibited by two different phosphatidylinositol 4-kinase inhibitors, or by pretreatment with a phosphatidylinositol-specific phospholipase C (PI-PLC) enzyme, indicating that MgATP acted by generating phosphoinositides. In intact cells, reduction of PI(4,5)P2 levels by chemically inducible phosphoinositide phosphatases or a voltage-sensitive 5'-phosphatase inhibited channel activity. Activation of PLC via muscarinic receptors also inhibited TRPM3 channel activity. Overall, our data indicate that TRPM3 is a phosphoinositide-dependent ion channel and that decreasing PI(4,5)P2 abundance limits its activity. As all other members of the TRPM family have also been shown to require PI(4,5)P2 for activity, our data establish PI(4,5)P2 as a general positive cofactor of this ion channel subfamily.

  12. Sec14 Like PITPs Couple Lipid Metabolism with Phosphoinositide Synthesis to Regulate Golgi Functionality

    PubMed Central

    Davison, James M.; Bankaitis, Vytas A.

    2017-01-01

    An interface coordinating lipid metabolism with proteins that regulate membrane trafficking is necessary to regulate Golgi morphology and dynamics. Such an interface facilitates the membrane deformations required for vesicularization, forms platforms for protein recruitment and assembly on appropriate sites on a membrane surface and provides lipid co-factors for optimal protein activity in the proper spatio-temporally regulated manner. Importantly, Sec14 and Sec14-like proteins are a unique superfamily of proteins that sense specific aspects of lipid metabolism, employing this information to potentiate phosphoinositide production. Therefore, Sec14 and Sec14 like proteins form central conduits to integrate multiple aspects of lipid metabolism with productive phosphoinositide signaling. PMID:22374094

  13. Rapamycin regulates connective tissue growth factor expression of lung epithelial cells via phosphoinositide 3-kinase.

    PubMed

    Xu, Xuefeng; Wan, Xuan; Geng, Jing; Li, Fei; Yang, Ting; Dai, Huaping

    2013-09-01

    The pathogenesis of idiopathic pulmonary fibrosis (IPF) remains largely unknown. It is believed that IPF is mainly driven by activated alveolar epithelial cells that have a compromised migration capacity, and that also produce substances (such as connective tissue growth factor, CTGF) that contribute to fibroblast activation and matrix protein accumulation. Because the mechanisms regulating these processes are unclear, the aim of this study was to determine the role of rapamycin in regulating epithelial cell migration and CTGF expression. Transformed epithelial cell line A549 and normal human pulmonary alveolar or bronchial epithelial cells were cultured in regular medium or medium containing rapamycin. Real time reverse transcriptase polymerase chain reaction was employed to determine CTGF mRNA expression. Western blotting and an enzyme-linked immunosorbent assay were used for detecting CTGF protein. Wound healing and migration assays were used to determine the cell migration potential. Transforming growth factor (TGF)-β type I receptor (TβRI) inhibitor, SB431542 and phosphoinositide 3-kinase (PI3K) inhibitor, LY294002 were used to determine rapamycin's mechanism of action. It was found that treatment of A549 and normal human alveolar or bronchial epithelial cells with rapamycin significantly promoted basal or TGF-β1 induced CTGF expression. LY294002, not SB431542 attenuated the promotional effect of rapamycin on CTGF expression. Cell mobility was not affected by rapamycin in wound healing and migration assays. These data suggest rapamycin has a profibrotic effect in vitro and underscore the potential of combined therapeutic approach with PI3K and mammalian target of rapamycin inhibitors for the treatment of animal or human lung fibrosis.

  14. A plasma-membrane linker for the phosphoinositide-specific phospholipase C in tobacco plants.

    PubMed

    Nakamura, Kimiyo; Sano, Hiroshi

    2009-01-01

    We previously screened genes that were transcriptionally activated during the early stage of wound response in tobacco plants (Nicotiana tabacum), and isolated a particular clone, which encoded a membrane-located protein, designated as NtC7. Upon overexpression in tobacco plants, NtC7 conferred a marked tolerance to osmotic stress, suggesting it to be involved in maintenance of osmotic adjustments. In this study, we searched for proteins which interact with NtC7 by the yeast two-hybrid screening, and isolated a clone encoding phosphoinositide-specific phospholipase C, designated as NtPI-PLC. Physical interaction between NtC7 and C2 domain of NtPI-PLC was confirmed by the pull-down assay. Expression of fused protein to green-fluorescence protein in onion epidermal cell layers indicated both proteins to predominantly localize to the plasma membrane. Their interaction in planta was shown by the bimolecular fluorescence complementation, which exhibited a clear fluorescence of reconstituted yellow fluorescence protein. Transcripts of NtC7 and NtPI-PLC were markedly increased 30 to 60 min after wounding. PI-PLC is one of key enzymes in metabolism of inositol phospholipids, which function in signal transduction and also in response to stresses including osmotic changes. It was shown to localize to plasma-membrane and, to a lesser extent, to cytosol. However, molecular mechanism of membrane localization has remained to be determined, because of the apparent lack of domains for membrane association. The present results suggest that one of such mechanisms is tethering NtPI-PLC to the plasma membrane through interaction with NtC7, which possesses a transmembrane domain at the C-terminus.

  15. Genome-Wide Analysis of the Phosphoinositide Kinome from Two Ciliates Reveals Novel Evolutionary Links for Phosphoinositide Kinases in Eukaryotic Cells

    PubMed Central

    Leondaritis, George; Siokos, John; Skaripa, Irini; Galanopoulou, Dia

    2013-01-01

    Background The complexity of phosphoinositide signaling in higher eukaryotes is partly due to expansion of specific families and types of phosphoinositide kinases (PIKs) that can generate all phosphoinositides via multiple routes. This is particularly evident in the PI3Ks and PIPKs, and it is considered an evolutionary trait associated with metazoan diversification. Yet, there are limited comprehensive studies on the PIK repertoire of free living unicellular organisms. Methodology/Principal Findings We undertook a genome-wide analysis of putative PIK genes in two free living ciliated cells, Tetrahymena and Paramecium. The Tetrahymena thermophila and Paramecium tetraurelia genomes were probed with representative kinases from all families and types. Putative homologs were verified by EST, microarray and deep RNA sequencing database searches and further characterized for domain structure, catalytic efficiency, expression patterns and phylogenetic relationships. In total, we identified and characterized 22 genes in the Tetrahymena thermophila genome and 62 highly homologues genes in Paramecium tetraurelia suggesting a tight evolutionary conservation in the ciliate lineage. Comparison to the kinome of fungi reveals a significant expansion of PIK genes in ciliates. Conclusions/Significance Our study highlights four important aspects concerning ciliate and other unicellular PIKs. First, ciliate-specific expansion of PI4KIII-like genes. Second, presence of class I PI3Ks which, at least in Tetrahymena, are associated with a metazoan-type machinery for PIP3 signaling. Third, expansion of divergent PIPK enzymes such as the recently described type IV transmembrane PIPKs. Fourth, presence of possible type II PIPKs and presumably inactive PIKs (hence, pseudo-PIKs) not previously described. Taken together, our results provide a solid framework for future investigation of the roles of PIKs in ciliates and indicate that novel functions and novel regulatory pathways of

  16. Coordinated Expression of Phosphoinositide Metabolic Genes during Development and Aging of Human Dorsolateral Prefrontal Cortex

    PubMed Central

    Rapoport, Stanley I.; Primiani, Christopher T.; Chen, Chuck T.; Ahn, Kwangmi; Ryan, Veronica H.

    2015-01-01

    Background Phosphoinositides, lipid-signaling molecules, participate in diverse brain processes within a wide metabolic cascade. Hypothesis Gene transcriptional networks coordinately regulate the phosphoinositide cascade during human brain Development and Aging. Methods We used the public BrainCloud database for human dorsolateral prefrontal cortex to examine age-related expression levels of 49 phosphoinositide metabolic genes during Development (0 to 20+ years) and Aging (21+ years). Results We identified three groups of partially overlapping genes in each of the two intervals, with similar intergroup correlations despite marked phenotypic differences between Aging and Development. In each interval, ITPKB, PLCD1, PIK3R3, ISYNA1, IMPA2, INPPL1, PI4KB, and AKT1 are in Group 1, PIK3CB, PTEN, PIK3CA, and IMPA1 in Group 2, and SACM1L, PI3KR4, INPP5A, SYNJ1, and PLCB1 in Group 3. Ten of the genes change expression nonlinearly during Development, suggesting involvement in rapidly changing neuronal, glial and myelination events. Correlated transcription for some gene pairs likely is facilitated by colocalization on the same chromosome band. Conclusions Stable coordinated gene transcriptional networks regulate brain phosphoinositide metabolic pathways during human Development and Aging. PMID:26168237

  17. Role of Phosphoinositide 3-OH Kinase p110β in Skeletal Myogenesis

    PubMed Central

    Riddle-Kottke, Melissa A.; Leandry, Luis A.; Lynch, Christine M.; Abdalla, Mary N.; Geddis, Alyssa V.; Piper, David R.; Zhao, Jean J.

    2015-01-01

    Phosphoinositide 3-OH kinase (PI3K) regulates a number of developmental and physiologic processes in skeletal muscle; however, the contributions of individual PI3K p110 catalytic subunits to these processes are not well-defined. To address this question, we investigated the role of the 110-kDa PI3K catalytic subunit β (p110β) in myogenesis and metabolism. In C2C12 cells, pharmacological inhibition of p110β delayed differentiation. We next generated mice with conditional deletion of p110β in skeletal muscle (p110β muscle knockout [p110β-mKO] mice). While young p110β-mKO mice possessed a lower quadriceps mass and exhibited less strength than control littermates, no differences in muscle mass or strength were observed between genotypes in old mice. However, old p110β-mKO mice were less glucose tolerant than old control mice. Overexpression of p110β accelerated differentiation in C2C12 cells and primary human myoblasts through an Akt-dependent mechanism, while expression of kinase-inactive p110β had the opposite effect. p110β overexpression was unable to promote myoblast differentiation under conditions of p110α inhibition, but expression of p110α was able to promote differentiation under conditions of p110β inhibition. These findings reveal a role for p110β during myogenesis and demonstrate that long-term reduction of skeletal muscle p110β impairs whole-body glucose tolerance without affecting skeletal muscle size or strength in old mice. PMID:25605332

  18. Dual roles of hemidesmosomal proteins in the pancreatic epithelium: the phosphoinositide 3-kinase decides.

    PubMed

    Laval, S; Laklai, H; Fanjul, M; Pucelle, M; Laurell, H; Billon-Galés, A; Le Guellec, S; Delisle, M-B; Sonnenberg, A; Susini, C; Pyronnet, S; Bousquet, C

    2014-04-10

    Given the failure of chemo- and biotherapies to fight advanced pancreatic cancer, one major challenge is to identify critical events that initiate invasion. One priming step in epithelia carcinogenesis is the disruption of epithelial cell anchorage to the basement membrane which can be provided by hemidesmosomes (HDs). However, the existence of HDs in pancreatic ductal epithelium and their role in carcinogenesis remain unexplored. HDs have been explored in normal and cancer pancreatic cells, and patient samples. Unique cancer cell models where HD assembly can be pharmacologically manipulated by somatostatin/sst2 signaling have been then used to investigate the role and molecular mechanisms of dynamic HD during pancreatic carcinogenesis. We surprisingly report the presence of mature type-1 HDs comprising the integrin α6β4 and bullous pemphigoid antigen BP180 in the human pancreatic ductal epithelium. Importantly, HDs are shown to disassemble during pancreatic carcinogenesis. HD breakdown requires phosphoinositide 3-kinase (PI3K)-dependent induction of the matrix-metalloprotease MMP-9, which cleaves BP180. Consequently, integrin α6β4 delocalizes to the cell-leading edges where it paradoxically promotes cell migration and invasion through S100A4 activation. As S100A4 in turn stimulates MMP-9 expression, a vicious cycle maintains BP180 cleavage. Inactivation of this PI3K-MMP-9-S100A4 signaling loop conversely blocks BP180 cleavage, induces HD reassembly and inhibits cell invasion. We conclude that mature type-1 HDs are critical anchoring structures for the pancreatic ductal epithelium whose disruption, upon PI3K activation during carcinogenesis, provokes pancreatic cancer cell migration and invasion.

  19. D-3 phosphoinositides of the ciliate Tetrahymena: characterization and study of their regulatory role in lysosomal enzyme secretion.

    PubMed

    Leondaritis, George; Tiedtke, Arno; Galanopoulou, Dia

    2005-09-30

    Phosphatidylinositol 3-phosphate, PtdIns3P, is a phosphoinositide which is implicated in regulating membrane trafficking in both mammalian and yeast cells. It also serves as a precursor for the synthesis of phosphatidylinositol 3,5-bisphosphate, PtdIns3,5P2, a phosphoinositide, the exact functions of which remain unknown. In this report, we show that these two phosphoinositides are constitutive lipid components of the ciliate Tetrahymena. Using HPLC analysis, PtdIns3P and PtdIns3,5P2 were found to comprise 16% and 30-40% of their relevant phosphoinositide pools, respectively. Treatment of Tetrahymena cells with wortmannin (0.1-10 microM) resulted in the depletion of PtdIns3P and PtdIns3,5P2 without any effect on D-4 phosphoinositides. Wortmannin was further used for the investigation of D-3 phosphoinositide involvement in the regulation of lysosomal vesicular trafficking. Incubation of Tetrahymena cells with wortmannin resulted in enhanced secretion of two different lysosomal enzymes without any change in their total activities. Experiments performed with a T. thermophila secretion mutant strain verified that the wortmannin-induced secretion is specific and it is not due to a diversion of lysosomal enzymes to other secretory pathways. Moreover, experiments performed with a phagocytosis-deficient T. thermophila strain showed that a substantial fraction of wortmannin-induced secretion was dependent on the presence of functional phagosomes/phagolysosomes.

  20. Down-regulation of the tumor suppressor gene retinoic acid receptor beta2 through the phosphoinositide 3-kinase/Akt signaling pathway.

    PubMed

    Lefebvre, Bruno; Brand, Céline; Flajollet, Sébastien; Lefebvre, Philippe

    2006-09-01

    The retinoic acid receptor beta2 (RARbeta2) is a potent, retinoid-inducible tumor suppressor gene, which is a critical molecular relay for retinoid actions in cells. Its down-regulation, or loss of expression, leads to resistance of cancer cells to retinoid treatment. Up to now, no primary mechanism underlying the repression of the RARbeta2 gene expression, hence affecting cellular retinoid sensitivity, has been identified. Here, we demonstrate that the phosphoinositide 3-kinase/Akt signaling pathway affects cellular retinoid sensitivity, by regulating corepressor recruitment to the RARbeta2 promoter. Through direct phosphorylation of the corepressor silencing mediator for retinoic and thyroid hormone receptors (SMRT), Akt stabilized RAR/SMRT interaction, leading to an increased tethering of SMRT to the RARbeta2 promoter, decreased histone acetylation, down-regulation of the RARbeta2 expression, and impaired cellular differentiation in response to retinoid. The phosphoinositide 3-kinase/Akt signaling pathway, an important modulator of cellular survival, has thus a direct impact on cellular retinoid sensitivity, and its deregulation may be the triggering event in retinoid resistance of cancer cells.

  1. Phosphoinositide-specific Phospholipase C β1 gene deletion in bipolar disorder affected patient.

    PubMed

    Lo Vasco, Vincenza Rita; Longo, Lucia; Polonia, Patrizia

    2013-03-01

    The involvement of phosphoinositides (PI) signal transduction pathway and related molecules, such as the Phosphoinositide-specific Phospholipase C (PI-PLC) enzymes, in the pathophysiology of mood disorders is corroborated by a number of recent evidences. Our previous works identified the deletion of PLCB1 gene, which codifies for the PI-PLC β1 enzyme, in 4 out 15 patients affected with schizophrenia, and no deletion both in major depression affected patients and in normal controls. By using interphase fluorescent in situ hybridization methodology, we analyzed PLCB1 in paraffin embedded samples of orbito-frontal cortex of 15 patients affected with bipolar disorder. Deletion of PLCB1 was identified in one female patient.

  2. LIVE CELL IMAGING OF PHOSPHOINOSITIDES WITH EXPRESSED INOSITIDE-BINDING PROTEIN DOMAINS

    PubMed Central

    Várnai, Péter; Balla, Tamas

    2008-01-01

    Summary Inositol lipids and calcium signaling has been inseparable twins during the 1980s when the molecular details of phospholipase C-mediated generation of inositol 1,4,5-trisphosphate (InsP3) and its Ca2+ mobilizing action were discovered. Since then, both the Ca2+- and inositol lipid signaling fields have hugely expanded and the tools allowing dissection of the finest details of their molecular organization also followed closely. Although phosphoinositides regulate many cell functions unrelated to Ca2+ signaling there are still many open questions even in the Ca2+ field that would benefit from single cell monitoring of PtdIns(4,5)P2 or InsP3 changes during agonist stimulation. This chapter is designed to provide practical guidance as well as some theoretical background on measurements of phosphoinositides in live cells using protein domain-GFP chimeras that could be also useful for people working on calcium signaling. PMID:18930153

  3. Interaction of PDK1 with Phosphoinositides Is Essential for Neuronal Differentiation but Dispensable for Neuronal Survival

    PubMed Central

    Zurashvili, Tinatin; Cordón-Barris, Lluís; Ruiz-Babot, Gerard; Zhou, Xiangyu; Lizcano, Jose M.; Gómez, Nestor; Giménez-Llort, Lydia

    2013-01-01

    3-Phosphoinositide-dependent protein kinase 1 (PDK1) operates in cells in response to phosphoinositide 3-kinase activation and phosphatidylinositol-3,4,5-trisphosphate [PtdIns(3,4,5)P3] production by activating a number of AGC kinases, including protein kinase B (PKB)/Akt. Both PDK1 and PKB contain pleckstrin homology (PH) domains that interact with the PtdIns(3,4,5)P3 second messenger. Disrupting the interaction of the PDK1 PH domain with phosphoinositides by expressing the PDK1 K465E knock-in mutation resulted in mice with reduced PKB activation. We explored the physiological consequences of this biochemical lesion in the central nervous system. The PDK1 knock-in mice displayed a reduced brain size due to a reduction in neuronal cell size rather than cell number. Reduced BDNF-induced phosphorylation of PKB at Thr308, the PDK1 site, was observed in the mutant neurons, which was not rate limiting for the phosphorylation of those PKB substrates governing neuronal survival and apoptosis, such as FOXO1 or glycogen synthase kinase 3 (GSK3). Accordingly, the integrity of the PDK1 PH domain was not essential to support the survival of different embryonic neuronal populations analyzed. In contrast, PKB-mediated phosphorylation of PRAS40 and TSC2, allowing optimal mTORC1 activation and brain-specific kinase (BRSK) protein synthesis, was markedly reduced in the mutant mice, leading to impaired neuronal growth and differentiation. PMID:23275438

  4. Qualitative and quantitative characterization of protein-phosphoinositide interactions with liposome-based methods.

    PubMed

    Busse, Ricarda A; Scacioc, Andreea; Hernandez, Javier M; Krick, Roswitha; Stephan, Milena; Janshoff, Andreas; Thumm, Michael; Kühnel, Karin

    2013-05-01

    We characterized phosphoinositide binding of the S. cerevisiae PROPPIN Hsv2 qualitatively with density flotation assays and quantitatively through isothermal titration calorimetry (ITC) measurements using liposomes. We discuss the design of these experiments and show with liposome flotation assays that Hsv2 binds with high specificity to both PtdIns3P and PtdIns(3,5)P 2. We propose liposome flotation assays as a more accurate alternative to the commonly used PIP strips for the characterization of phosphoinositide-binding specificities of proteins. We further quantitatively characterized PtdIns3P binding of Hsv2 with ITC measurements and determined a dissociation constant of 0.67 µM and a stoichiometry of 2:1 for PtdIns3P binding to Hsv2. PtdIns3P is crucial for the biogenesis of autophagosomes and their precursors. Besides the PROPPINs there are other PtdIns3P binding proteins with a link to autophagy, which includes the FYVE-domain containing proteins ZFYVE1/DFCP1 and WDFY3/ALFY and the PX-domain containing proteins Atg20 and Snx4/Atg24. The methods described could be useful tools for the characterization of these and other phosphoinositide-binding proteins.

  5. Voltage-sensing phosphatase reveals temporal regulation of TRPC3/C6/C7 channels by membrane phosphoinositides.

    PubMed

    Itsuki, Kyohei; Imai, Yuko; Okamura, Yasushi; Abe, Kihachiro; Inoue, Ryuji; Mori, Masayuki X

    2012-01-01

    TRPC3/C6/C7 channels, a subgroup of classical/canonical TRP channels, are activated by diacylglycerol produced via activation of phospholipase C (PLC)-coupled receptors. Recognition of the physiological importance of these channels has been steadily growing, but the mechanism by which they are regulated remains largely unknown. We recently used a membrane-resident danio rerio voltage-sensing phosphatase (DrVSP) to study TRPC3/C6/C7 regulation and found that the channel activity was controlled by PtdIns(4,5)P(2)-DAG signaling in a self-limiting manner (Imai Y et al., the Journal of Physiology, 2012). In this addendum, we present the advantages of using DrVSP as a molecular tool to study PtdIns(4,5)P(2) regulation. DrVSP should be readily applicable for studying phosphoinositide metabolism-linked channel regulation as well as lipid dynamics. Furthermore, in comparison to other modes of self-limiting ion channel regulation, the regulation of TRPC3/C6/C7 channels seems highly susceptible to activation signal strength, which could potentially affect both open duration and the time to peak activation and inactivation. Dysfunction of such self-limiting regulation may contribute to the pathology of the cardiovascular system, gastrointestinal tract and brain, as these channels are broadly distributed and affected by numerous neurohormonal agonists.

  6. Phorbol esters inhibit alpha/sub 1/-adrenergic receptor stimulated phosphoinositide hydrolysis and contraction in rat aorta

    SciTech Connect

    Not Available

    1986-03-01

    The mechanisms of pharmacomechanical coupling in vascular tissue are at the present time unclear. The authors and others have proposed that receptor-induced activation of phosphoinositide (PI) hydrolysis may be involved. To investigate this possibility they studied the actions of two biologically active phorbol esters: phorbol dibutyrate (PDB) and phorbol myristate diacetate (PMA) on receptor-stimulated PI hydrolysis in rat aortic rings. They found both PDB (IC/sub 5//sup 0/ approx. 5nM) and PMA (IC/sub 50/ approx. 30 nM) but not 4-..cap alpha..-phorbol (IC32%/sub 0/ > 10,000 nM) inhibited norepinephrine-stimulated PI hydrolysis. In the presence of the calcium channel antagonist nitrendipine, PDB potently inhibited both the phasic and tonic components of norepinephrine-induced vascular contraction. In the presence of 10/sup -7/M nitrendipine, PDB had an IC/sub 50/ for contraction of approximately 10nM. The results thus suggest a functional coupling between ..cap alpha../sub 1/-adrenergic receptor-stimulated PI hydrolysis and vascular contraction. The findings further imply a mode of feed-back regulation in vascular tissue involving phorbol ester and receptor-stimulated PI hydrolysis.

  7. Kinetic analysis of platelet-derived growth factor receptor/phosphoinositide 3-kinase/Akt signaling in fibroblasts.

    PubMed

    Park, Chang Shin; Schneider, Ian C; Haugh, Jason M

    2003-09-26

    Isoforms of the serine-threonine kinase Akt coordinate multiple cell survival pathways in response to stimuli such as platelet-derived growth factor (PDGF). Activation of Akt is a multistep process, which relies on the production of 3'-phosphorylated phosphoinositide (PI) lipids by PI 3-kinases. To quantitatively assess the kinetics of PDGF receptor/PI 3-kinase/Akt signaling in fibroblasts, a systematic study of this pathway was performed, and a mechanistic mathematical model that describes its operation was formulated. We find that PDGF receptor phosphorylation exhibits positive cooperativity with respect to PDGF concentration, and its kinetics are quantitatively consistent with a mechanism in which receptor dimerization is initially mediated by the association of two 1:1 PDGF/PDGF receptor complexes. Receptor phosphorylation is transient at high concentrations of PDGF, consistent with the loss of activated receptors upon endocytosis. By comparison, Akt activation responds to lower PDGF concentrations and exhibits more sustained kinetics. Further analysis and modeling suggest that the pathway is saturated at the level of PI 3-kinase activation, and that the p110alpha catalytic subunit of PI 3-kinase contributes most to PDGF-stimulated 3'-PI production. Thus, at high concentrations of PDGF the kinetics of 3'-PI production are limited by the turnover rate of these lipids, while the Akt response is additionally influenced by the rate of Akt deactivation.

  8. ERK and phosphoinositide 3-kinase temporally coordinate different modes of actin-based motility during embryonic wound healing.

    PubMed

    Li, Jingjing; Zhang, Siwei; Soto, Ximena; Woolner, Sarah; Amaya, Enrique

    2013-11-01

    Embryonic wound healing provides a perfect example of efficient recovery of tissue integrity and homeostasis, which is vital for survival. Tissue movement in embryonic wound healing requires two functionally distinct actin structures: a contractile actomyosin cable and actin protrusions at the leading edge. Here, we report that the discrete formation and function of these two structures is achieved by the temporal segregation of two intracellular upstream signals and distinct downstream targets. The sequential activation of ERK and phosphoinositide 3-kinase (PI3K) signalling divides Xenopus embryonic wound healing into two phases. In the first phase, activated ERK suppresses PI3K activity, and is responsible for the activation of Rho and myosin-2, which drives actomyosin cable formation and constriction. The second phase is dominated by restored PI3K signalling, which enhances Rac and Cdc42 activity, leading to the formation of actin protrusions that drive migration and zippering. These findings reveal a new mechanism for coordinating different modes of actin-based motility in a complex tissue setting, namely embryonic wound healing.

  9. Phosphoinositide Kinase-3 Status Associated With Presence or Absence of Human Papillomavirus in Head and Neck Squamous Cell Carcinomas

    SciTech Connect

    Yarbrough, Wendell G. Whigham, Amy; Brown, Brandee; Roach, Michael; Slebos, Robbert

    2007-10-01

    Purpose: To investigate phosphoinositide kinase-3 (PI3K) activation in relation to human papillomavirus (HPV) status in head and neck squamous cell carcinoma (HNSCC). Methods and Materials: Gene expression microarray data were analyzed to determine differentially expressed genes between HPV(+) and HPV(-) HNSCC. PIK3CA gene expression was confirmed by quantitative reverse transcriptase-polymerase chain reaction in seven HPV(+) and seven HPV(-) primary HNSCCs. PIK3CA mutation status in three HPV(+) and nine HPV(-) cell lines was determined by polymerase chain reaction amplification of hot spot exons (1, 9, 20) followed by direct sequencing. Results: PIK3CA was overexpressed in HPV(+)-associated HNSCC compared with the expression in HPV(-) HNSCC. Activation of PIK3CA by mutation was found in 1 of the 12 tested HNSCC cell lines. Conclusion: Activation of PI3K by mutation of PIK3CA is rare in HNSCC cell lines and was not found in three HPV(+) cell lines. One mechanism by which HPV-associated HNSCC might activate PI3K is increased expression of PIK3CA.

  10. A secreted salivary inositol polyphosphate 5-phosphatase from a blood-feeding insect: allosteric activation by soluble phosphoinositides and phosphatidylserine.

    PubMed

    Andersen, John F; Ribeiro, José M C

    2006-05-02

    Type II inositol polyphosphate 5-phosphatases (IPPs) act on both soluble inositol phosphate and phosphoinositide substrates. In many cases, these enzymes occur as multidomain proteins in which the IPP domain is linked to lipid-binding or additional catalytic domains. Rhodnius prolixus IPPRp exists as an isolated IPP domain which is secreted into the saliva of this blood-feeding insect. It shows selectivity for soluble and lipid substrates having a 1,4,5-trisphosphate substitution pattern while only poorly hydrolyzing substrates containing a D3 phosphate. With soluble diC8 PI(4,5)P(2) as a substrate, sigmoidal kinetics were observed, suggesting the presence of allosteric activation sites. Surprisingly, IPPRp-mediated hydrolysis of PI(4,5)P(2) and PI(3,4,5)P(3) was also stimulated up to 100-fold by diC8 PI(4)P and diC8 phosphatidylserine (PS). The activation kinetics were again sigmoidal, demonstrating that the allosteric sites recognize nonsubstrate phospholipids. Activation was positively cooperative, and analysis by the Hill equation suggests that at least three to four allosteric sites are present. In a vesicular system, hydrolysis of PI(4,5)P(2) followed a surface dilution kinetic model, and as expected, PS was found to be strongly stimulatory. If allosteric activation of type II IPPs by PI(4)P and PS is a widespread feature of the group, it may represent a novel regulatory mechanism for these important enzymes.

  11. Phosphoinositide-3-kinase and mitogen activated protein kinase signaling pathways mediate acute NGF sensitization of TRPV1.

    PubMed

    Zhu, Weiguo; Oxford, Gerry S

    2007-04-01

    Nerve growth factor (NGF) induces an acute sensitization of nociceptive DRG neurons, in part, through sensitization of the capsaicin receptor TRPV1 via the high affinity trkA receptor. The mechanisms linking trkA and TRPV1 remain controversial with several candidate signaling pathways proposed. Utilizing adult rat and mouse DRG neurons and CHO cells co-expressing trkA and TRPV1, we have investigated the signaling events underlying acute TRPV1 sensitization by NGF combining biochemical, electrophysiological, pharmacological, mutational and genetic knockout approaches. Pharmacological interference with p42/p44 mitogen activated protein kinase (MAPK) or phosphoinositide-3-kinase (PI3K), but not PLC abrogated sensitization of capsaicin responses. Co-expression of TRPV1 with wild-type or Y785F (PLC signal deficient) mutant human trkA reconstituted NGF sensitization. In contrast, TRPV1 co-expressed with MAPK signaling deficient Y490A or PI3K signaling deficient Y751F trkA mutants exhibited weaker sensitization. Biochemical analysis of p42/p44 and Akt phosphorylation confirmed the specificity of pharmacological agents and trkA mutants. Finally, NGF sensitization of capsaicin responses was greatly reduced in neurons from p85alpha (regulatory subunit of PI3K) null mice. These data strongly suggest that PI3K and MAPK pathways, but not the PLC pathway underlie the acute sensitization of TRPV1 by NGF.

  12. The Protein Complex of Neurodegeneration-related Phosphoinositide Phosphatase Sac3 and ArPIKfyve Binds the Lewy Body-associated Synphilin-1, Preventing Its Aggregation*

    PubMed Central

    Ikonomov, Ognian C.; Sbrissa, Diego; Compton, Lauren M.; Kumar, Rita; Tisdale, Ellen J.; Chen, Xuequn; Shisheva, Assia

    2015-01-01

    The 5-phosphoinositide phosphatase Sac3, in which loss-of-function mutations are linked to neurodegenerative disorders, forms a stable cytosolic complex with the scaffolding protein ArPIKfyve. The ArPIKfyve-Sac3 heterodimer interacts with the phosphoinositide 5-kinase PIKfyve in a ubiquitous ternary complex that couples PtdIns(3,5)P2 synthesis with turnover at endosomal membranes, thereby regulating the housekeeping endocytic transport in eukaryotes. Neuron-specific associations of the ArPIKfyve-Sac3 heterodimer, which may shed light on the neuropathological mechanisms triggered by Sac3 dysfunction, are unknown. Here we conducted mass spectrometry analysis for brain-derived interactors of ArPIKfyve-Sac3 and unraveled the α-synuclein-interacting protein Synphilin-1 (Sph1) as a new component of the ArPIKfyve-Sac3 complex. Sph1, a predominantly neuronal protein that facilitates aggregation of α-synuclein, is a major component of Lewy body inclusions in neurodegenerative α-synucleinopathies. Modulations in ArPIKfyve/Sac3 protein levels by RNA silencing or overexpression in several mammalian cell lines, including human neuronal SH-SY5Y or primary mouse cortical neurons, revealed that the ArPIKfyve-Sac3 complex specifically altered the aggregation properties of Sph1-GFP. This effect required an active Sac3 phosphatase and proceeded through mechanisms that involved increased Sph1-GFP partitioning into the cytosol and removal of Sph1-GFP aggregates by basal autophagy but not by the proteasomal system. If uncoupled from ArPIKfyve elevation, overexpressed Sac3 readily aggregated, markedly enhancing the aggregation potential of Sph1-GFP. These data identify a novel role of the ArPIKfyve-Sac3 complex in the mechanisms controlling aggregate formation of Sph1 and suggest that Sac3 protein deficiency or overproduction may facilitate aggregation of aggregation-prone proteins, thereby precipitating the onset of multiple neuronal disorders. PMID:26405034

  13. Phosphoinositide-mediated oligomerization of a defensin induces cell lysis

    PubMed Central

    Poon, Ivan KH; Baxter, Amy A; Lay, Fung T; Mills, Grant D; Adda, Christopher G; Payne, Jennifer AE; Phan, Thanh Kha; Ryan, Gemma F; White, Julie A; Veneer, Prem K; van der Weerden, Nicole L; Anderson, Marilyn A; Kvansakul, Marc; Hulett, Mark D

    2014-01-01

    Cationic antimicrobial peptides (CAPs) such as defensins are ubiquitously found innate immune molecules that often exhibit broad activity against microbial pathogens and mammalian tumor cells. Many CAPs act at the plasma membrane of cells leading to membrane destabilization and permeabilization. In this study, we describe a novel cell lysis mechanism for fungal and tumor cells by the plant defensin NaD1 that acts via direct binding to the plasma membrane phospholipid phosphatidylinositol 4,5-bisphosphate (PIP2). We determined the crystal structure of a NaD1:PIP2 complex, revealing a striking oligomeric arrangement comprising seven dimers of NaD1 that cooperatively bind the anionic headgroups of 14 PIP2 molecules through a unique ‘cationic grip’ configuration. Site-directed mutagenesis of NaD1 confirms that PIP2-mediated oligomerization is important for fungal and tumor cell permeabilization. These observations identify an innate recognition system by NaD1 for direct binding of PIP2 that permeabilizes cells via a novel membrane disrupting mechanism. DOI: http://dx.doi.org/10.7554/eLife.01808.001 PMID:24692446

  14. The role of phosphoinositide 3-kinase and phosphatidic acid in the regulation of mammalian target of rapamycin following eccentric contractions.

    PubMed

    O'Neil, T K; Duffy, L R; Frey, J W; Hornberger, T A

    2009-07-15

    Resistance exercise induces a hypertrophic response in skeletal muscle and recent studies have begun to shed light on the molecular mechanisms involved in this process. For example, several studies indicate that signalling by the mammalian target of rapamycin (mTOR) is necessary for a hypertrophic response. Furthermore, resistance exercise has been proposed to activate mTOR signalling through an upstream pathway involving the phosphoinositide 3-kinase (PI3K) and protein kinase B (PKB); however, this hypothesis has not been thoroughly tested. To test this hypothesis, we first evaluated the temporal pattern of signalling through PI3K-PKB and mTOR following a bout of resistance exercise with eccentric contractions (EC). Our results indicated that the activation of signalling through PI3K-PKB is a transient event (<15 min), while the activation of mTOR is sustained for a long duration (>12 h). Furthermore, inhibition of PI3K-PKB activity did not prevent the activation of mTOR signalling by ECs, indicating that PI3K-PKB is not part of the upstream regulatory pathway. These observations led us to investigate an alternative pathway for the activation of mTOR signalling involving the synthesis of phosphatidic acid (PA) by phospholipase D (PLD). Our results demonstrate that ECs induce a sustained elevation in [PA] and inhibiting the synthesis of PA by PLD prevented the activation of mTOR. Furthermore, we determined that similar to ECs, PA activates mTOR signalling through a PI3K-PKB-independent mechanism. Combined, the results of this study indicate that the activation of mTOR following eccentric contractions occurs through a PI3K-PKB-independent mechanism that requires PLD and PA.

  15. Modulation of phosphoinositide metabolism in aortic smooth muscle cells by allylamine

    SciTech Connect

    Cox, L.R.; Murphy, S.K.; Ramos, K. )

    1990-08-01

    Aortic smooth muscle cells (SMC) modulate from a contractile to a proliferative phenotype upon subchronic exposure to allylamine. The present studies were designed to determine if this phenotypic modulation is associated with alterations in the metabolism of membrane phosphoinositides. 32P incorporation into phosphatidylinositol 4-phosphate (PIP), phosphatidylinositol 4,5-bisphosphate (PIP2), and phosphatidic acid (PA) was lower by 31, 35, and 22%, respectively, in SMC from allylamine-treated animals relative to controls. In contrast, incorporation of (3H)myoinositol into inositol phosphates did not differ in allylamine cells relative to control cells. Exposure to dibutyryl (db) cAMP (0.2 mM) and theophylline (0.1 mM) reduced 32P incorporation into PIP and PIP2 in SMC from both experimental groups. Under these conditions, a decrease in (3H)myoinositol incorporation into inositol 1-phosphate was only observed in allylamine cells. The effects of db cAMP and theophylline in allylamine and control SMC correlated with a marked decrease in cellular proliferation. These results suggest that alterations in phosphoinositide synthesis and/or degradation contribute to the enhanced proliferation of SMC induced by allylamine. To further examine this concept, the effects of agents which modulate protein kinase C (PKC) activity were evaluated. Sphingosine (125-500 ng/ml), a PKC inhibitor, decreased SMC proliferation in allylamine, but not control cells. 12-O-Tetradecanoylphorbol-13-acetate (1-100 ng/ml), a PKC agonist, stimulated proliferation in control cells, but inhibited proliferation in cells from allylamine-treated animals. We conclude that allylamine-induced phenotypic modulation of SMC is associated with alterations in phosphoinositide metabolism.

  16. Assessing the subcellular distribution of oncogenic phosphoinositide 3-kinase using microinjection into live cells

    PubMed Central

    Layton, Meredith J.; Rynkiewicz, Natalie K.; Ivetac, Ivan; Horan, Kristy A.; Mitchell, Christina A.; Phillips, Wayne A.

    2014-01-01

    Oncogenic mutations in PIK3CA lead to an increase in intrinsic phosphoinositide kinase activity, but it is thought that increased access of PI3Kα (phosphoinositide 3-kinase α) to its PM (plasma membrane) localized substrate is also required for increased levels of downstream PIP3/Akt [phosphoinositide-3,4,5-trisphosphate/also called PKB (protein kinase B)] signalling. We have studied the subcellular localization of wild-type and the two most common oncogenic mutants of PI3Kα in cells maintained in growth media, and starved or stimulated cells using a novel method in which PI3Kα is pre-formed as a 1:1 p110α:p85α complex in vitro then introduced into live cells by microinjection. Oncogenic E545K and H1047R mutants did not constitutively interact with membrane lipids in vitro or in cells maintained in 10% (v/v) FBS. Following stimulation of RTKs (receptor tyrosine kinases), microinjected PI3Kα was recruited to the PM, but oncogenic forms of PI3Kα were not recruited to the PM to a greater extent and did not reside at the PM longer than the wild-type PI3Kα. Instead, the E545K mutant specifically bound activated Cdc42 in vitro and microinjection of E545K was associated with the formation of cellular protrusions, providing some preliminary evidence that changes in protein–protein interactions may play a role in the oncogenicity of the E545K mutant in addition to the well-known changes in lipid kinase activity. PMID:27919038

  17. Spatial Regulation of Membrane Fusion Controlled by Modification of Phosphoinositides

    PubMed Central

    Dumas, Fabrice; Byrne, Richard D.; Vincent, Ben; Hobday, Tina M. C.; Poccia, Dominic L.; Larijani, Banafshé

    2010-01-01

    Membrane fusion plays a central role in many cell processes from vesicular transport to nuclear envelope reconstitution at mitosis but the mechanisms that underlie fusion of natural membranes are not well understood. Studies with synthetic membranes and theoretical considerations indicate that accumulation of lipids characterised by negative curvature such as diacylglycerol (DAG) facilitate fusion. However, the specific role of lipids in membrane fusion of natural membranes is not well established. Nuclear envelope (NE) assembly was used as a model for membrane fusion. A natural membrane population highly enriched in the enzyme and substrate needed to produce DAG has been isolated and is required for fusions leading to nuclear envelope formation, although it contributes only a small amount of the membrane eventually incorporated into the NE. It was postulated to initiate and regulate membrane fusion. Here we use a multidisciplinary approach including subcellular membrane purification, fluorescence spectroscopy and Förster resonance energy transfer (FRET)/two-photon fluorescence lifetime imaging microscopy (FLIM) to demonstrate that initiation of vesicle fusion arises from two unique sites where these vesicles bind to chromatin. Fusion is subsequently propagated to the endoplasmic reticulum-derived membranes that make up the bulk of the NE to ultimately enclose the chromatin. We show how initiation of multiple vesicle fusions can be controlled by localised production of DAG and propagated bidirectionally. Phospholipase C (PLCγ), GTP hydrolysis and (phosphatidylinsositol-(4,5)-bisphosphate (PtdIns(4,5)P2) are required for the latter process. We discuss the general implications of membrane fusion regulation and spatial control utilising such a mechanism. PMID:20808914

  18. Structural basis for isoform selectivity in a class of benzothiazole inhibitors of phosphoinositide 3-kinase γ.

    PubMed

    Collier, Philip N; Martinez-Botella, Gabriel; Cornebise, Mark; Cottrell, Kevin M; Doran, John D; Griffith, James P; Mahajan, Sudipta; Maltais, François; Moody, Cameron S; Huck, Emilie Porter; Wang, Tiansheng; Aronov, Alex M

    2015-01-08

    Phosphoinositide 3-kinase γ (PI3Kγ) is an attractive target to potentially treat a range of disease states. Herein, we describe the evolution of a reported phenylthiazole pan-PI3K inhibitor into a family of potent and selective benzothiazole inhibitors. Using X-ray crystallography, we discovered that compound 22 occupies a previously unreported hydrophobic binding cleft adjacent to the ATP binding site of PI3Kγ, and achieves its selectivity by exploiting natural sequence differences among PI3K isoforms in this region.

  19. [Characteristics of interaction of adenylate cyclase modulators and phosphoinositide cell signaling systems with lipid langmuir monolayers].

    PubMed

    Liakhov, O M; Prokopenko, V V; Prokopenko, R A; Mohylevych, S Ie

    2006-01-01

    Interaction of two groups of bioregulators, which oppositely affect activity of adenylate cyclase and phosphoinositide cellular signaling systems, with the Langmuir monolayer films made of natural lecithin was studied. Most significant influence on the structural and energy characteristics of lipid monolayers was revealed for the group of bioregulators, which inhibit polyphosphoinositide signaling system or/and activate adenylate cyclase signaling system. It is shown, that using the cluster analysis the bioregulators can be divided into two groups according to general orientation of their action on the considered systems of transduction of a signal.

  20. Cloning and expression analysis of some genes involved in the phosphoinositide and phospholipid signaling pathways from maize (Zea mays L.).

    PubMed

    Sui, Zhenhua; Niu, Linyuan; Yue, Guidong; Yang, Aifang; Zhang, Juren

    2008-12-15

    Previous studies have indicated the phosphoinositide and phospholipid signaling pathways play a key role in plant growth, development and responses to environmental stresses. However, little is known about the phosphoinositide and phospholipid signaling pathways in maize (Zea mays L.). To better understand the function of genes involved in the phosphoinositide and phospholipid signaling pathways in maize, the cDNA sequences of ZmPIS2, ZmPLC2, ZmDGK1, ZmDGK2 and ZmDGK3 were obtained by RACE (rapid amplification of cDNA ends) or in silico cloning combined with PCR. RT-PCR analysis of cDNA from five tissues (roots, stems, leaves, tassels, and ears) indicated that the expression patterns of the five cDNAs we isolated as well as ZmPIS, ZmPLC, ZmPLD varied in different tissues. To determine the effects of different environmental conditions such as cold, drought and various phytohormones (abscisic acid, indole-3-acetic acid and gibberellic acid) on gene expression, we analyzed expression by Real-Time (RT-PCR), and found that the different isoforms of these gene families involved in the phosphoinositide and phospholipid signaling pathways have specific expression patterns. Our results suggested that these genes may be involved in the responses to environmental stresses, but have different functions. The isolation and analysis of expression patterns of genes involved in the phosphoinositide and phospholipid signaling pathways provides a good basis for further research of the phosphoinositide and phospholipid signaling pathways in maize and is a novel supplement to our comprehension of these pathways in plants.

  1. Electrostatics of phosphoinositide bilayer membranes. Theoretical and experimental results.

    PubMed Central

    Langner, M; Cafiso, D; Marcelja, S; McLaughlin, S

    1990-01-01

    We made fluorescence, electron paramagnetic resonance (EPR), electrophoretic mobility, and ionizing electrode measurements to study the effect of the monovalent lipid phosphatidylinositol (PI) and the trivalent lipid phosphatidylinositol 4,5-bisphosphate (PIP2) on the electrostatic potential adjacent to bilayer membranes. When the membranes were formed from mixtures of PI and the zwitterionic lipid phosphatidylcholine (PC), the Gouy-Chapman-Stern (GCS) theory described adequately the dependence of potential on distance (0, 1, 2 nm) from the membrane, mole % negative lipid, and [KCI]. Furthermore, all EPR and fluorescence probes reported identical surface potentials with a PC/PI membrane. With PC/PIP2 membranes, however, the anionic (coion) probes reported less negative potentials than the cationic (counterion) probes; the deviations from the GCS theory were greater for the coions than the counterions. Discreteness-of-charge theories based on the Poisson-Boltzmann equation incorrectly predict that deviations from the GCS theory should be greater for counterions than for coions. We discuss a consistent statistical mechanical theory that takes into account three effects ignored in the GCS theory: the finite size of the ions in the double layer, the electrical interaction between pairs of ions (correlation effects), and the mobile discrete nature of the surface charges. This theory correctly predicts that deviations from GCS theory should be negligible for monovalent lipids, significant for trivalent lipids, and greater for coions than for counterions. PMID:2156577

  2. Epigallocatechin gallate (EGCG), a major component of green tea, is a dual phosphoinositide-3-kinase/mTOR inhibitor

    SciTech Connect

    Van Aller, Glenn S.; Carson, Jeff D.; Tang, Wei; Peng, Hao; Zhao, Lin; Copeland, Robert A.; Tummino, Peter J.; Luo, Lusong

    2011-03-11

    Research highlights: {yields} Epigallocatechin-3-gallate (EGCG) is an ATP-competitive inhibitor of PI3K and mTOR with Ki values around 300 nM. {yields} EGCG inhibits cell proliferation and AKT phosphorylation at Ser473 in MDA-MB-231and A549 cells. {yields} Molecular docking studies show that EGCG binds well to the PI3K kinase domain active site. {yields} These results suggest another important molecular mechanism for the anticancer activities of EGCG. -- Abstract: The PI3K signaling pathway is activated in a broad spectrum of human cancers, either directly by genetic mutation or indirectly via activation of receptor tyrosine kinases or inactivation of the PTEN tumor suppressor. The key nodes of this pathway have emerged as important therapeutic targets for the treatment of cancer. In this study, we show that (-)-epigallocatechin-3-gallate (EGCG), a major component of green tea, is an ATP-competitive inhibitor of both phosphoinositide-3-kinase (PI3K) and mammalian target of rapamycin (mTOR) with K{sub i} values of 380 and 320 nM respectively. The potency of EGCG against PI3K and mTOR is within physiologically relevant concentrations. In addition, EGCG inhibits cell proliferation and AKT phosphorylation at Ser473 in MDA-MB-231 and A549 cells. Molecular docking studies show that EGCG binds well to the PI3K kinase domain active site, agreeing with the finding that EGCG competes for ATP binding. Our results suggest another important molecular mechanism for the anticancer activities of EGCG.

  3. Characterization of the quisqualate receptor linked to phosphoinositide hydrolysis in neurocortical cultures.

    PubMed

    Patel, J; Moore, W C; Thompson, C; Keith, R A; Salama, A I

    1990-05-01

    Activation of phosphoinositide metabolism is an early event in signal transduction for a number of neurotransmitters and hormones. In primary cultures of rat neurocortical cells, various excitatory amino acids stimulate inositol phosphate production with a rank order of potency of quisqualate greater than ibotenate greater than glutamate greater than kainate, N-methyl-D-aspartate greater than alpha-amino-3-hydroxyl-5-methyl-4-isoxazole propionate. This response to excitatory amino acids was insensitive to a variety of excitatory amino acid antagonists including 6-cyano-7-nitroquinoxaline-2,3-dione, 3-3(2-carboxypiperazine-4-yl)propyl-1-phosphonate, and 2-amino-4-phosphonobutyrate. The individual responses of quisqualate-, ibotenate-, and kainate-stimulated inositol phosphate production were not additive. These results suggest that phosphoinositide metabolism activated by excitatory amino acids is mediated by a unique quisqualate-preferring receptor that is not antagonized by known N-methyl-D-aspartate and non-N-methyl-D-aspartate antagonists, and is relatively insensitive to alpha-amino-3-hydroxyl-5-methyl-4-isoxazole propionate.

  4. INPP5E regulates phosphoinositide-dependent cilia transition zone function.

    PubMed

    Dyson, Jennifer M; Conduit, Sarah E; Feeney, Sandra J; Hakim, Sandra; DiTommaso, Tia; Fulcher, Alex J; Sriratana, Absorn; Ramm, Georg; Horan, Kristy A; Gurung, Rajendra; Wicking, Carol; Smyth, Ian; Mitchell, Christina A

    2017-01-02

    Human ciliopathies, including Joubert syndrome (JBTS), arise from cilia dysfunction. The inositol polyphosphate 5-phosphatase INPP5E localizes to cilia and is mutated in JBTS. Murine Inpp5e ablation is embryonically lethal and recapitulates JBTS, including neural tube defects and polydactyly; however, the underlying defects in cilia signaling and the function of INPP5E at cilia are still emerging. We report Inpp5e(-/-) embryos exhibit aberrant Hedgehog-dependent patterning with reduced Hedgehog signaling. Using mouse genetics, we show increasing Hedgehog signaling via Smoothened M2 expression rescues some Inpp5e(-/-) ciliopathy phenotypes and "normalizes" Hedgehog signaling. INPP5E's phosphoinositide substrates PI(4,5)P2 and PI(3,4,5)P3 accumulated at the transition zone (TZ) in Hedgehog-stimulated Inpp5e(-/-) cells, which was associated with reduced recruitment of TZ scaffolding proteins and reduced Smoothened levels at cilia. Expression of wild-type, but not 5-phosphatase-dead, INPP5E restored TZ molecular organization and Smoothened accumulation at cilia. Therefore, we identify INPP5E as an essential point of convergence between Hedgehog and phosphoinositide signaling at cilia that maintains TZ function and Hedgehog-dependent embryonic development.

  5. Novel small molecule inhibitors of 3-phosphoinositide-dependent kinase-1.

    PubMed

    Feldman, Richard I; Wu, James M; Polokoff, Mark A; Kochanny, Monica J; Dinter, Harald; Zhu, Daguang; Biroc, Sandra L; Alicke, Bruno; Bryant, Judi; Yuan, Shendong; Buckman, Brad O; Lentz, Dao; Ferrer, Mike; Whitlow, Marc; Adler, Marc; Finster, Silke; Chang, Zheng; Arnaiz, Damian O

    2005-05-20

    The phosphoinositide 3-kinase/3-phosphoinositide-dependent kinase 1 (PDK1)/Akt signaling pathway plays a key role in cancer cell growth, survival, and tumor angiogenesis and represents a promising target for anticancer drugs. Here, we describe three potent PDK1 inhibitors, BX-795, BX-912, and BX-320 (IC(50) = 11-30 nm) and their initial biological characterization. The inhibitors blocked PDK1/Akt signaling in tumor cells and inhibited the anchorage-dependent growth of a variety of tumor cell lines in culture or induced apoptosis. A number of cancer cell lines with elevated Akt activity were >30-fold more sensitive to growth inhibition by PDK1 inhibitors in soft agar than on tissue culture plastic, consistent with the cell survival function of the PDK1/Akt signaling pathway, which is particularly important for unattached cells. BX-320 inhibited the growth of LOX melanoma tumors in the lungs of nude mice after injection of tumor cells into the tail vein. The effect of BX-320 on cancer cell growth in vitro and in vivo indicates that PDK1 inhibitors may have clinical utility as anticancer agents.

  6. Dynamic formation of ER–PM junctions presents a lipid phosphatase to regulate phosphoinositides

    PubMed Central

    Jensen, Jill B.; Vivas, Oscar; Kruse, Martin; Traynor-Kaplan, Alexis E.; Hille, Bertil

    2016-01-01

    Endoplasmic reticulum–plasma membrane (ER–PM) contact sites play an integral role in cellular processes such as excitation–contraction coupling and store-operated calcium entry (SOCE). Another ER–PM assembly is one tethered by the extended synaptotagmins (E-Syt). We have discovered that at steady state, E-Syt2 positions the ER and Sac1, an integral ER membrane lipid phosphatase, in discrete ER–PM junctions. Here, Sac1 participates in phosphoinositide homeostasis by limiting PM phosphatidylinositol 4-phosphate (PI(4)P), the precursor of PI(4,5)P2. Activation of G protein–coupled receptors that deplete PM PI(4,5)P2 disrupts E-Syt2–mediated ER–PM junctions, reducing Sac1’s access to the PM and permitting PM PI(4)P and PI(4,5)P2 to recover. Conversely, depletion of ER luminal calcium and subsequent activation of SOCE increases the amount of Sac1 in contact with the PM, depleting PM PI(4)P. Thus, the dynamic presence of Sac1 at ER–PM contact sites allows it to act as a cellular sensor and controller of PM phosphoinositides, thereby influencing many PM processes. PMID:27044890

  7. Phosphoinositide 3-kinase beta controls replication factor C assembly and function

    PubMed Central

    Redondo-Muñoz, Javier; Josefa Rodríguez, María; Silió, Virginia; Pérez-García, Vicente; María Valpuesta, José; Carrera, Ana C.

    2013-01-01

    Genomic integrity is preserved by the action of protein complexes that control DNA homeostasis. These include the sliding clamps, trimeric protein rings that are arranged around DNA by clamp loaders. Replication factor C (RFC) is the clamp loader for proliferating cell nuclear antigen, which acts on DNA replication. Other processes that require mobile contact of proteins with DNA use alternative RFC complexes that exchange RFC1 for CTF18 or RAD17. Phosphoinositide 3-kinases (PI3K) are lipid kinases that generate 3-poly-phosphorylated-phosphoinositides at the plasma membrane following receptor stimulation. The two ubiquitous isoforms, PI3Kalpha and PI3Kbeta, have been extensively studied due to their involvement in cancer and nuclear PI3Kbeta has been found to regulate DNA replication and repair, processes controlled by molecular clamps. We studied here whether PI3Kbeta directly controls the process of molecular clamps loading. We show that PI3Kbeta associated with RFC1 and RFC1-like subunits. Only when in complex with PI3Kbeta, RFC1 bound to Ran GTPase and localized to the nucleus, suggesting that PI3Kbeta regulates RFC1 nuclear import. PI3Kbeta controlled not only RFC1– and RFC–RAD17 complexes, but also RFC–CTF18, in turn affecting CTF18-mediated chromatid cohesion. PI3Kbeta thus has a general function in genomic stability by controlling the localization and function of RFC complexes. PMID:23175608

  8. Upregulation of the alpha1-adrenoceptor-induced phosphoinositide and inotropic response in hypothyroid rat heart.

    PubMed

    Jalali, Shahrzad; Durston, Melanie; Panagia, Vincenzo; Mesaeli, Nasrin

    2006-02-01

    In this study, we examined changes in the biochemical and inotropic events of the alpha(1)-adrenoceptor signaling pathway in hypothyroid rat hearts. Hypothyroidism was induced by treating experimental animals with 0.05% 6-n-propyl-2-thiouracil (PTU) in drinking water for 7 weeks. A significant decrease of beta- and an increase in alpha(1)-adrenoceptor density as well as an increase in the basal activity of the phosphoinositide (4,5) bisphosphate hydrolyzing phospholipase C was observed in sarcolemmal membranes purified from hypothyroid hearts as compared to age-matched euthyroid controls. Following stimulation with 10 microM phenylephrine (in the presence of 10 microM atenolol), the increase of contractile parameters over baseline values was significantly higher in hypo- than euthyroid hearts, while the opposite occurred under beta-stimulation with 0.1 microM isoproterenol. Interestingly, the increase in phenylephrine-mediated positive inotropy was accompanied by a significant increase in the sarcolemmal phospholipase C activity and in the inositol 1,4,5-trisphosphate content in hypothyroid as compared to euthyroid controls. Our results suggest that cardiac alpha(1)-adrenoceptor and its associated phosphoinositide signaling pathway may act as a reserve for catecholamine inotropic response in hypothyroidism, where the beta-adrenoceptors are compromised.

  9. LipidFinder: A computational workflow for discovery of lipids identifies eicosanoid-phosphoinositides in platelets

    PubMed Central

    O’Connor, Anne; Brasher, Christopher J.; Slatter, David A.; Meckelmann, Sven W.; Hawksworth, Jade I.; Allen, Stuart M.; O’Donnell, Valerie B.

    2017-01-01

    Accurate and high-quality curation of lipidomic datasets generated from plasma, cells, or tissues is becoming essential for cell biology investigations and biomarker discovery for personalized medicine. However, a major challenge lies in removing artifacts otherwise mistakenly interpreted as real lipids from large mass spectrometry files (>60 K features), while retaining genuine ions in the dataset. This requires powerful informatics tools; however, available workflows have not been tailored specifically for lipidomics, particularly discovery research. We designed LipidFinder, an open-source Python workflow. An algorithm is included that optimizes analysis based on users’ own data, and outputs are screened against online databases and categorized into LIPID MAPS classes. LipidFinder outperformed three widely used metabolomics packages using data from human platelets. We show a family of three 12-hydroxyeicosatetraenoic acid phosphoinositides (16:0/, 18:1/, 18:0/12-HETE-PI) generated by thrombin-activated platelets, indicating crosstalk between eicosanoid and phosphoinositide pathways in human cells. The software is available on GitHub (https://github.com/cjbrasher/LipidFinder), with full userguides.

  10. Phospholipase C-dependent phosphoinositide breakdown induced by ELF-EMF in Peganum harmala calli.

    PubMed

    Piacentini, Maria Piera; Piatti, Elena; Fraternale, Daniele; Ricci, Donata; Albertini, Maria Cristina; Accorsi, Augusto

    2004-01-01

    With the aim of examining the response of plant cells to extremely low frequency (ELF) electromagnetic fields (EMF), we investigated the behaviour of the phosphatidylinositol 4,5 bisphosphate (PtdIns 4,5-P(2)) molecule (the precursor of the phosphoinositide signal transduction cascade) by exposing callus cells from Peganum harmala to 50 Hz, 1 gauss EMF for 10 min and by examining the level and the fatty acid composition of PtdIns 4,5-P(2) after the exposure. Our results evidenced a statistically significant decrease in PtdIns 4,5-P(2) concentrations and a different involvement of the constituting fatty acids in the induced breakdown. The manipulation of the lipid-based signalling pathway by phosphoinositide-phospholipase C (PI-PLC) inhibitors (i.e., neomycin, U-73122 and ET-18-OCH(3)) seems to support the hypothesis that, as in animals, also in plants, the cell membrane is the primary impact site of ELF electromagnetic stimulus and that this interaction could probably involve the activation of PI signal transduction pathway including a heterotrimeric G protein.

  11. Phosphoinositide-dependent kinase-1 inhibits TRAF6 ubiquitination by interrupting the formation of TAK1-TAB2 complex in TLR4 signaling.

    PubMed

    Moon, Gyuyoung; Kim, Juhong; Min, Yoon; Wi, Sae Mi; Shim, Jae-Hyuck; Chun, Eunyoung; Lee, Ki-Young

    2015-12-01

    Phosphoinositide-dependent protein kinase 1 (PDK1) plays a key role in the phosphoinositide 3-kinase (PI3K)-PDK1-Akt pathway that induces cell survival and cardiovascular protections through anti-apoptosis, vasodilation, anti-inflammation, and anti-oxidative stress activities. Although several reports have proposed the negative role of PDK1 in Toll-like receptor 4 (TLR4) signaling, the molecular mechanism is still unknown. Here we show that PDK1 inhibits tumor necrosis factor (TNF) receptor-associated factor 6 (TRAF6) ubiquitination by interrupting the complex between transforming growth factor beta-activated kinase 1 (TAK1) and TAK1 binding protein 2 (TAB2), which negatively regulates TAK1 activity. The overexpression of PDK1 in 293/TLR4 cells resulted in suppressions of nuclear factor kappa B (NF-κB) activation and production of proinflammatory cytokines including interleukin (IL)-6 and TNF-α in response to lipopolysaccharide stimulation. Conversely, THP-1 human monocytes transiently cultured in low glucose medium displayed down-regulated PDK1 expression, and significantly enhanced TLR4-mediated signaling for the activation of NF-κB, demonstrating a negative role of PDK1. Biochemical studies revealed that PDK1 significantly interacted with TAK1, resulting in the inhibition of the association of TAB2 with TAK1, which led to the attenuation of TRAF6 ubiquitination. Moreover, PDK1-knockdown THP-1 cells displayed enhancement of downstream signals, activation of NF-κB, and increased production of pro-inflammatory cytokines IL-6, IL-1β, and TNF-α, which potentially led to the up-regulation of NF-κB-dependent genes in response to TLR4 stimulation. Collectively, the results demonstrate that PDK1 inhibits the formation of the TAK1-TAB2-TRAF6 complex and leads to the inhibition of TRAF6 ubiquitination, which negatively regulates the TLR4-mediated signaling for NF-κB activation.

  12. Modulation in Activation and Expression of PTEN, Akt1, and PDK1: Further Evidence Demonstrating Altered Phosphoinositide 3-kinase Signaling in Postmortem Brain of Suicide Subjects

    PubMed Central

    Dwivedi, Yogesh; Rizavi, Hooriyah S.; Zhang, Hui; Roberts, Rosalinda C.; Conley, Robert R.; Pandey, Ghanshyam N.

    2010-01-01

    Background Phosphoinositide 3-kinase (PI 3-K) signaling plays a crucial role in neuronal growth and plasticity. Recently, we demonstrated that suicide brain is associated with decreased activation and expression of selective catalytic and regulatory subunits of PI 3-K. The present investigation examined the regulation and functional significance of compromised PI 3-K in suicide brain at the level of upstream phosphatase and tensin homolog on chromosome ten (PTEN) and downstream substrates 3-phosphoinositide-dependent kinase 1 (PDK1) and Akt. Method mRNA expression of Akt1, Akt3, PTEN, and PDK1 by competitive RT-PCR; protein expression of Akt1, Akt3, PTEN, PDK1, phosphorylated-Akt1 (Ser473), phosphorylated-Akt1(Thr308), phosphorylated-PDK1, and phosphorylated-PTEN by Western blot; and catalytic activities of Akt1, Akt3, and PDK1 by enzymatic assays were determined in prefrontal cortex (PFC) and hippocampus obtained from suicide subjects and nonpsychiatric controls. Results No significant changes in the expression of Akt1 or Akt3 were observed; however, catalytic activity of Akt1, but not of Akt3, was decreased in PFC and hippocampus of suicide subjects, which was associated with decreased phosphorylation of Akt1 at Ser473 and Thr308. The catalytic activity of PDK1 and the level of phosphorylated-PDK1 were also decreased in both brain areas without any change in expression levels of PDK1. On the other hand, mRNA and protein expression of PTEN was increased, whereas the level of phosphorylated-PTEN was decreased. Conclusion Our study demonstrates abnormalities in PI 3-K signaling at several levels in brain of suicide subjects and suggests the possible involvement of aberrant PI 3-K/Akt signaling in the pathogenic mechanisms of suicide. PMID:20163786

  13. Role of specific muscarinic receptor subtypes in cholinergic parasympathomimetic responses, in vivo phosphoinositide hydrolysis, and pilocarpine-induced seizure activity.

    PubMed

    Bymaster, Frank P; Carter, Petra A; Yamada, Masahisa; Gomeza, Jesus; Wess, Jürgen; Hamilton, Susan E; Nathanson, Neil M; McKinzie, David L; Felder, Christian C

    2003-04-01

    Muscarinic agonist-induced parasympathomimetic effects, in vivo phosphoinositide hydrolysis and seizures were evaluated in wild-type and muscarinic M1-M5 receptor knockout mice. The muscarinic agonist oxotremorine induced marked hypothermia in all the knockout mice, but the hypothermia was reduced in M2 and to a lesser extent in M3 knockout mice. Oxotremorine-induced tremor was abolished only in the M2 knockout mice. Muscarinic agonist-induced salivation was reduced to the greatest extent in M3 knockout mice, to a lesser degree in M1 and M4 knockout mice, and was not altered in M2 and M5 knockout mice. Pupil diameter under basal conditions was increased only in the M3 knockout mice. Pilocarpine-induced increases in in vivo phosphoinositide hydrolysis were completely absent in hippocampus and cortex of M1 knockout mice, but in vivo phosphoinositide hydrolysis was unaltered in the M2-M5 knockout mice. A high dose of pilocarpine (300 mg/kg) caused seizures and lethality in wild-type and M2-M5 knockout mice, but produced neither effect in the M1 knockout mice. These data demonstrate a major role for M2 and M3 muscarinic receptor subtypes in mediating parasympathomimetic effects. Muscarinic M1 receptors activate phosphoinositide hydrolysis in cortex and hippocampus of mice, consistent with the role of M1 receptors in cognition. Muscarinic M1 receptors appear to be the only muscarinic receptor subtype mediating seizures.

  14. The yeast VAP homolog Scs2p has a phosphoinositide-binding ability that is correlated with its activity

    SciTech Connect

    Kagiwada, Satoshi Hashimoto, Misa

    2007-12-28

    The yeast VAMP-associated protein (VAP) homolog Scs2p is an endoplasmic reticulum (ER)/nuclear membrane protein that binds to an FFAT (diphenylalanine in an acidic tract) motif found in various lipid-metabolic proteins, including Opi1p, a negative regulator of phospholipid biosynthesis. Here, we show that Scs2p is a novel phosphoinositide-binding protein that can bind to phosphatidylinositol monophosphates and bisphosphates in vitro. The phosphoinositide-binding domain was assigned to the N-terminal major sperm protein (MSP) domain which also contains the FFAT-binding domain. When several lysine residues in the MSP domain were substituted for alanine, the resulting mutant Scs2 proteins lost the phosphoinositide-binding ability and failed to complement the inositol auxotrophy of an scs2 deletion strain. However, the mutant proteins still localized in the ER/nuclear membrane, in a similar manner to wild-type Scs2p. These results suggest the possibility that Scs2p activity is regulated by phosphoinositides to coordinate phospholipid biosynthesis in response to changes in phospholipid composition.

  15. Pulmonary administration of phosphoinositide 3-kinase inhibitor is a curative treatment for chronic obstructive pulmonary disease by alveolar regeneration.

    PubMed

    Horiguchi, Michiko; Oiso, Yuki; Sakai, Hitomi; Motomura, Tomoki; Yamashita, Chikamasa

    2015-09-10

    Chronic obstructive pulmonary disease (COPD) is an intractable pulmonary disease, causing widespread and irreversible alveoli collapse. The discovery of a low-molecular-weight compound that induces regeneration of pulmonary alveoli is of utmost urgency to cure intractable pulmonary diseases such as COPD. However, a practically useful compound for regenerating pulmonary alveoli is yet to be reported. Previously, we have elucidated that Akt phosphorylation is involved in a differentiation-inducing molecular mechanism of human alveolar epithelial stem cells, which play a role in regenerating pulmonary alveoli. In the present study, we directed our attention to phosphoinositide 3-kinase (PI3K)-Akt signaling and examined whether PI3K inhibitors display the pulmonary alveolus regeneration. Three PI3K inhibitors with different PI3K subtype specificities (Wortmannin, AS605240, PIK-75 hydrochloride) were tested for the differentiation-inducing effect on human alveolar epithelial stem cells, and Wortmannin demonstrated the most potent differentiation-inducing activity. We evaluated Akt phosphorylation in pulmonary tissues of an elastase-induced murine COPD model and found that Akt phosphorylation in the pulmonary tissue was enhanced in the murine COPD model compared with normal mice. Then, the alveolus-repairing effect of pulmonary administration of Wortmannin to murine COPD model was evaluated using X-ray CT analysis and hematoxylin-eosin staining. As a result, alveolar damages were repaired in the Wortmannin-administered group to a similar level of normal mice. Furthermore, pulmonary administration of Wortmannin induced a significant recovery of the respiratory function, compared to the control group. These results indicate that Wortmannin is capable of inducing differentiation of human alveolar epithelial stem cells and represents a promising drug candidate for curative treatment of pulmonary alveolar destruction in COPD.

  16. Euphorbia fischeriana Steud inhibits malignant melanoma via modulation of the phosphoinositide-3-kinase/Akt signaling pathway

    PubMed Central

    DONG, MENG-HUA; ZHANG, QIAN; WANG, YUAN-YUAN; ZHOU, BAI-SUI; SUN, YU-FEI; FU, QIANG

    2016-01-01

    Euphorbia fischeriana Steud, a traditional Chinese medicine, has been shown to inhibit the growth of various cancers by the induction of apoptosis and cell cycle arrest. The purpose of the present study was to investigate the association between the phosphoinositide-3-kinase (PI3K)/protein kinase B (Akt) signaling pathway and the inhibitory effect of Euphorbia fischeriana Steud on the growth and metastasis of melanoma B16 cells in vitro, and the underlying mechanisms. MTT assay results indicated that Euphorbia fischeriana Steud inhibited the growth of B16 cells in a time- and dose-dependent manner. Flow cytometric analysis revealed that Euphorbia fischeriana Steud markedly induced apoptosis of the B16 cells, with arrest at the G0/G1 phase of the cell cycle. In addition, in a Transwell assay Euphorbia fischeriana Steud significantly suppressed the migration of B16 cells. Western blot analysis revealed that the expression levels of phosphatase and tensin homolog (PTEN) were upregulated, and the phosphorylation of Akt was downregulated, which resulted in inhibition of the PI3K/Akt signaling pathway and the eventual suppression of its downstream targets, such as matrix metalloproteinase-2 mRNA, in B16 cells. The results demonstrated that Euphorbia fischeriana Steud inhibited the growth and migration of B16 cells, possibly via modulation of the PI3K/Akt signaling pathway and upregulation of PTEN expression levels, in addition to downregulation of p-Akt expression. The aforementioned findings suggest that Euphorbia fischeriana Steud may have broad therapeutic applications in the treatment of malignant melanoma. PMID:27073468

  17. The metastasis-promoting phosphatase PRL-3 shows activity toward phosphoinositides.

    PubMed

    McParland, Victoria; Varsano, Giulia; Li, Xun; Thornton, Janet; Baby, Jancy; Aravind, Ajay; Meyer, Christoph; Pavic, Karolina; Rios, Pablo; Köhn, Maja

    2011-09-06

    Phosphatase of regenerating liver 3 (PRL-3) is suggested as a biomarker and therapeutic target in several cancers. It has a well-established causative role in cancer metastasis. However, little is known about its natural substrates, pathways, and biological functions, and only a few protein substrates have been suggested so far. To improve our understanding of the substrate specificity and molecular determinants of PRL-3 activity, the wild-type (WT) protein, two supposedly catalytically inactive mutants D72A and C104S, and the reported hyperactive mutant A111S were tested in vitro for substrate specificity and activity toward phosphopeptides and phosphoinositides (PIPs), their structural stability, and their ability to promote cell migration using stable HEK293 cell lines. We discovered that WT PRL-3 does not dephosphorylate the tested phosphopeptides in vitro. However, as shown by two complementary biochemical assays, PRL-3 is active toward the phosphoinositide PI(4,5)P(2). Our experimental results substantiated by molecular docking studies suggest that PRL-3 is a phosphatidylinositol 5-phosphatase. The C104S variant was shown to be not only catalytically inactive but also structurally destabilized and unable to promote cell migration, whereas WT PRL-3 promotes cell migration. The D72A mutant is structurally stable and does not dephosphorylate the unnatural substrate 3-O-methylfluorescein phosphate (OMFP). However, we observed residual in vitro activity of D72A against PI(4,5)P(2), and in accordance with this, it exhibits the same cellular phenotype as WT PRL-3. Our analysis of the A111S variant shows that the hyperactivity toward the unnatural OMFP substrate is not apparent in dephosphorylation assays with phosphoinositides: the mutant is completely inactive against PIPs. We observed significant structural destabilization of this variant. The cellular phenotype of this mutant equals that of the catalytically inactive C104S mutant. These results provide a possible

  18. Salicylic acid modulates levels of phosphoinositide dependent-phospholipase C substrates and products to remodel the Arabidopsis suspension cell transcriptome

    PubMed Central

    Ruelland, Eric; Pokotylo, Igor; Djafi, Nabila; Cantrel, Catherine; Repellin, Anne; Zachowski, Alain

    2014-01-01

    Basal phosphoinositide-dependent phospholipase C (PI-PLC) activity controls gene expression in Arabidopsis suspension cells and seedlings. PI-PLC catalyzes the production of phosphorylated inositol and diacylglycerol (DAG) from phosphoinositides. It is not known how PI-PLC regulates the transcriptome although the action of DAG-kinase (DGK) on DAG immediately downstream from PI-PLC is responsible for some of the regulation. We previously established a list of genes whose expression is affected in the presence of PI-PLC inhibitors. Here this list of genes was used as a signature in similarity searches of curated plant hormone response transcriptome data. The strongest correlations obtained with the inhibited PI-PLC signature were with salicylic acid (SA) treatments. We confirm here that in Arabidopsis suspension cells SA treatment leads to an increase in phosphoinositides, then demonstrate that SA leads to a significant 20% decrease in phosphatidic acid, indicative of a decrease in PI-PLC products. Previous sets of microarray data were re-assessed. The SA response of one set of genes was dependent on phosphoinositides. Alterations in the levels of a second set of genes, mostly SA-repressed genes, could be related to decreases in PI-PLC products that occur in response to SA action. Together, the two groups of genes comprise at least 40% of all SA-responsive genes. Overall these two groups of genes are distinct in the functional categories of the proteins they encode, their promoter cis-elements and their regulation by DGK or phospholipase D. SA-regulated genes dependent on phosphoinositides are typical SA response genes while those with an SA response that is possibly dependent on PI-PLC products are less SA-specific. We propose a model in which SA inhibits PI-PLC activity and alters levels of PI-PLC products and substrates, thereby regulating gene expression divergently. PMID:25426125

  19. Structural basis for phosphoinositide substrate recognition, catalysis, and membrane interactions in human inositol polyphosphate 5-phosphatases.

    PubMed

    Trésaugues, Lionel; Silvander, Camilla; Flodin, Susanne; Welin, Martin; Nyman, Tomas; Gräslund, Susanne; Hammarström, Martin; Berglund, Helena; Nordlund, Pär

    2014-05-06

    SHIP2, OCRL, and INPP5B belong to inositol polyphosphate 5-phophatase subfamilies involved in insulin regulation and Lowes syndrome. The structural basis for membrane recognition, substrate specificity, and regulation of inositol polyphosphate 5-phophatases is still poorly understood. We determined the crystal structures of human SHIP2, OCRL, and INPP5B, the latter in complex with phosphoinositide substrate analogs, which revealed a membrane interaction patch likely to assist in sequestering substrates from the lipid bilayer. Residues recognizing the 1-phosphate of the substrates are highly conserved among human family members, suggesting similar substrate binding modes. However, 3- and 4-phosphate recognition varies and determines individual substrate specificity profiles. The high conservation of the environment of the scissile 5-phosphate suggests a common reaction geometry for all members of the human 5-phosphatase family.

  20. Measurement of phosphoinositide 3-kinase products in cultured Mammalian cells by HPLC.

    PubMed

    Cooke, Frank T

    2010-01-01

    The phosphoinositide 3-kinase (PI3K) family catalyses the addition of a phosphate group to the D-3 position of polyphosphoinositides (PPIn). Since the discovery in the late 80s that phosphatidylinositol is phosphorylated in the D-3 position in eukaryotic cells, there has been an explosion of interest in these PPIn. Although the four D-3 PPIn (phosphatidylinositol 3-phophate (PtdIns3P), PtdIns(3,4)P(2), PtdIns(3,5)P(2), and PtdIns(3,4,5)P(3)) represent only a small proportion of PPIn, production of D-3 PPIn is required for an ever-increasing number of processes. Measurement of the PPIn levels in intact cells cultured cells has been vital to our understanding of the metabolism and function of these important signalling molecules; methods are described herein that allow measurement of PPIn levels in cultured cells, with emphasis on the 3-OH PPIn.

  1. Type II phosphoinositide 5-phosphatases have unique sensitivities towards fatty acid composition and head group phosphorylation.

    PubMed

    Schmid, Annette C; Wise, Helen M; Mitchell, Christina A; Nussbaum, Robert; Woscholski, Rüdiger

    2004-10-08

    The catalytic properties of the type II phosphoinositide 5-phosphatases of Lowe's oculocerebrorenal syndrome, INPP5B, Synaptojanin1, Synaptojanin2 and SKIP were analysed with respect to their substrate specificity and enzymological properties. Our data reveal that all phosphatases have unique substrate specificities as judged by their corresponding KM and VMax values. They also possessed an exclusive sensitivity towards fatty acid composition, head group phosphorylation and micellar presentation. Thus, the biological function of these enzymes will not just be determined by their corresponding regulatory domains, but will be distinctly influenced by their catalytic properties as well. This suggests that the phosphatase domains fulfil a unique catalytic function that cannot be fully compensated by other phosphatases.

  2. MTM-6, a Phosphoinositide Phosphatase, is Required to Promote Synapse Formation in Caenorhabditis elegans

    PubMed Central

    Ericson, Vivian R.; Spilker, Kerri A.; Tugizova, Madina S.; Shen, Kang

    2014-01-01

    Forming the proper number of synapses is crucial for normal neuronal development. We found that loss of function of the phosphoinositide phosphatase mtm-6 results in a reduction in the number of synaptic puncta. The reduction in synapses is partially the result of MTM-6 regulation of the secretion of the Wnt ligand EGL-20 from cells in the tail and partially the result of neuronal action. MTM-6 shows relative specificity for EGL-20 over the other Wnt ligands. We suggest that the ability of MTM-6 to regulate EGL-20 secretion is a function of its expression pattern. We conclude that regulation of secretion of different Wnt ligands can use different components. Additionally, we present a novel neuronal function for MTM-6. PMID:25479419

  3. Phosphoinositide binding differentially regulates NHE1 Na+/H+ exchanger-dependent proximal tubule cell survival.

    PubMed

    Abu Jawdeh, Bassam G; Khan, Shenaz; Deschênes, Isabelle; Hoshi, Malcolm; Goel, Monu; Lock, Jeffrey T; Shinlapawittayatorn, Krekwit; Babcock, Gerald; Lakhe-Reddy, Sujata; DeCaro, Garren; Yadav, Satya P; Mohan, Maradumane L; Naga Prasad, Sathyamangla V; Schilling, William P; Ficker, Eckhard; Schelling, Jeffrey R

    2011-12-09

    Tubular atrophy predicts chronic kidney disease progression, and is caused by proximal tubular epithelial cellcaused by proximal tubular epithelial cell (PTC) apoptosis. The normally quiescent Na(+)/H(+) exchanger-1 (NHE1) defends against PTC apoptosis, and is regulated by PI(4,5)P(2) binding. Because of the vast array of plasma membrane lipids, we hypothesized that NHE1-mediated cell survival is dynamically regulated by multiple anionic inner leaflet phospholipids. In membrane overlay and surface plasmon resonance assays, the NHE1 C terminus bound phospholipids with low affinity and according to valence (PIP(3) > PIP(2) > PIP = PA > PS). NHE1-phosphoinositide binding was enhanced by acidic pH, and abolished by NHE1 Arg/Lys to Ala mutations within two juxtamembrane domains, consistent with electrostatic interactions. PI(4,5)P(2)-incorporated vesicles were distributed to apical and lateral PTC domains, increased NHE1-regulated Na(+)/H(+) exchange, and blunted apoptosis, whereas NHE1 activity was decreased in cells enriched with PI(3,4,5)P(3), which localized to basolateral membranes. Divergent PI(4,5)P(2) and PI(3,4,5)P(3) effects on NHE1-dependent Na(+)/H(+) exchange and apoptosis were confirmed by selective phosphoinositide sequestration with pleckstrin homology domain-containing phospholipase Cδ and Akt peptides, PI 3-kinase, and Akt inhibition in wild-type and NHE1-null PTCs. The results reveal an on-off switch model, whereby NHE1 toggles between weak interactions with PI(4,5)P(2) and PI(3,4,5)P(3). In response to apoptotic stress, NHE1 is stimulated by PI(4,5)P(2), which leads to PI 3-kinase activation, and PI(4,5)P(2) phosphorylation. The resulting PI(3,4,5)P(3) dually stimulates sustained, downstream Akt survival signaling, and dampens NHE1 activity through competitive inhibition and depletion of PI(4,5)P(2).

  4. Alternative Splicing Governs Cone Cyclic Nucleotide-gated (CNG) Channel Sensitivity to Regulation by Phosphoinositides*

    PubMed Central

    Dai, Gucan; Sherpa, Tshering; Varnum, Michael D.

    2014-01-01

    Precursor mRNA encoding CNGA3 subunits of cone photoreceptor cyclic nucleotide-gated (CNG) channels undergoes alternative splicing, generating isoforms differing in the N-terminal cytoplasmic region of the protein. In humans, four variants arise from alternative splicing, but the functional significance of these changes has been a persistent mystery. Heterologous expression of the four possible CNGA3 isoforms alone or with CNGB3 subunits did not reveal significant differences in basic channel properties. However, inclusion of optional exon 3, with or without optional exon 5, produced heteromeric CNGA3 + CNGB3 channels exhibiting an ∼2-fold greater shift in K1/2,cGMP after phosphatidylinositol 4,5-biphosphate or phosphatidylinositol 3,4,5-trisphosphate application compared with channels lacking the sequence encoded by exon 3. We have previously identified two structural features within CNGA3 that support phosphoinositides (PIPn) regulation of cone CNG channels: N- and C-terminal regulatory modules. Specific mutations within these regions eliminated PIPn sensitivity of CNGA3 + CNGB3 channels. The exon 3 variant enhanced the component of PIPn regulation that depends on the C-terminal region rather than the nearby N-terminal region, consistent with an allosteric effect on PIPn sensitivity because of altered N-C coupling. Alternative splicing of CNGA3 occurs in multiple species, although the exact variants are not conserved across CNGA3 orthologs. Optional exon 3 appears to be unique to humans, even compared with other primates. In parallel, we found that a specific splice variant of canine CNGA3 removes a region of the protein that is necessary for high sensitivity to PIPn. CNGA3 alternative splicing may have evolved, in part, to tune the interactions between cone CNG channels and membrane-bound phosphoinositides. PMID:24675082

  5. Lithium potentiates GSK-3β activity by inhibiting phosphoinositide 3-kinase-mediated Akt phosphorylation

    SciTech Connect

    Tian, Nie; Kanno, Takeshi; Jin, Yu; Nishizaki, Tomoyuki

    2014-07-18

    Highlights: • Lithium suppresses Akt activity by reducing PI3K-mediated Akt phosphorylation. • Lithium enhances GSK-3β activity by reducing Akt-mediated GSK-3β phosphorylation. • Lithium suppresses GSK-3β activity through its direct inhibition. - Abstract: Accumulating evidence has pointed to the direct inhibitory action of lithium, an anti-depressant, on GSK-3β. The present study investigated further insight into lithium signaling pathways. In the cell-free assay Li{sub 2}CO{sub 3} significantly inhibited phosphoinositide 3-kinase (PI3K)-mediated phosphorylation of Akt1 at Ser473, but Li{sub 2}CO{sub 3} did not affect PI3K-mediated PI(3,4,5)P{sub 3} production and 3-phosphoinositide-dependent protein kinase 1 (PDK1)-mediated phosphorylation of Akt1 at Thr308. This indicates that lithium could enhance GSK-3β activity by suppressing Akt-mediated Ser9 phosphorylation of GSK-3β in association with inhibition of PI3K-mediated Akt activation. There was no direct effect of Li{sub 2}CO{sub 3} on Akt1-induced phosphorylation of GSK-3β at Ser9, but otherwise Li{sub 2}CO{sub 3} significantly reduced GSK-3β-mediated phosphorylation of β-catenin at Ser33/37 and Thr41. This indicates that lithium directly inhibits GSK-3β in an Akt-independent manner. In rat hippocampal slices Li{sub 2}CO{sub 3} significantly inhibited phosphorylation of Akt1/2 at Ser473/474, GSK-3β at Ser9, and β-catenin at Ser33/37 and Thr41. Taken together, these results indicate that lithium exerts its potentiating and inhibiting bidirectional actions on GSK-3β activity.

  6. Muscarinic receptor activation of phosphatidylcholine hydrolysis. Relationship to phosphoinositide hydrolysis and diacylglycerol metabolism

    SciTech Connect

    Martinson, E.A.; Goldstein, D.; Brown, J.H. )

    1989-09-05

    We examined the relationship between phosphatidylcholine (PC) hydrolysis, phosphoinositide hydrolysis, and diacylglycerol (DAG) formation in response to muscarinic acetylcholine receptor (mAChR) stimulation in 1321N1 astrocytoma cells. Carbachol increases the release of (3H)choline and (3H)phosphorylcholine ((3H)Pchol) from cells containing (3H)choline-labeled PC. The production of Pchol is rapid and transient, while choline production continues for at least 30 min. mAChR-stimulated release of Pchol is reduced in cells that have been depleted of intracellular Ca2+ stores by ionomycin pretreatment, whereas choline release is unaffected by this pretreatment. Phorbol 12-myristate 13-acetate (PMA) increases the release of choline, but not Pchol, from 1321N1 cells, and down-regulation of protein kinase C blocks the ability of carbachol to stimulate choline production. Taken together, these results suggest that Ca2+ mobilization is involved in mAChR-mediated hydrolysis of PC by a phospholipase C, whereas protein kinase C activation is required for mAChR-stimulated hydrolysis of PC by a phospholipase D. Both carbachol and PMA rapidly increase the formation of (3H)phosphatidic acid ((3H)PA) in cells containing (3H)myristate-labeled PC. (3H)Diacylglycerol ((3H)DAG) levels increase more slowly, suggesting that the predominant pathway for PC hydrolysis is via phospholipase D. When cells are labeled with (3H)myristate and (14C)arachidonate such that there is a much greater 3H/14C ratio in PC compared with the phosphoinositides, the 3H/14C ratio in DAG and PA increases with PMA treatment but decreases in response to carbachol.

  7. Expression of phosphoinositide-specific phospholipase C isoenzymes in cultured astrocytes activated after stimulation with lipopolysaccharide.

    PubMed

    Lo Vasco, Vincenza Rita; Fabrizi, Cinzia; Fumagalli, Lorenzo; Cocco, L

    2010-04-01

    Signal transduction pathways, involved in cell cycle and activities, depend on various components including lipid signalling molecules, such as phosphoinositides and related enzymes. Many evidences support the hypothesis that inositol lipid cycle is involved in astrocytes activation during neurodegeneration. Previous studies investigated the pattern of expression of phosphoinositide-specific phospholipase C (PI-PLC) family isoforms in astrocytes, individuating in cultured neonatal rat astrocytes, supposed to be quiescent cells, the absence of some isoforms, accordingly to their well known tissue specificity. The same study was conducted in cultured rat astrocytoma C6 cells and designed a different pattern of expression of PI-PLCs in the neoplastic counterpart, accordingly to literature suggesting a PI signalling involvement in tumour progression. It is not clear the role of PI-PLC isoforms in inflammation; recent data demonstrate they are involved in cytokines production, with special regard to IL-6. PI-PLCs expression in LPS treated neonatal rat astrocytes performed by using RT-PCR, observed at 3, 6, 18 and 24 h intervals, expressed: PI-PLC beta1, beta4 and gamma1 in all intervals analysed; PI-PLC delta1 at 6, 18 and 24 h; PI-PLC delta3 at 6 h after treatment. PI-PLC beta3, delta4 and epsilon, present in untreated astrocytes, were not detected after LPS treatment. Immunocytochemical analysis, performed to visualize the sub-cellular distribution of the expressed isoforms, demonstrated different patterns of localisation at different times of exposure. These observations suggest that PI-PLCs expression and distribution may play a role in ongoing inflammation process of CNS.

  8. Distinctive changes in plasma membrane phosphoinositides underlie differential regulation of TRPV1 in nociceptive neurons.

    PubMed

    Lukacs, Viktor; Yudin, Yevgen; Hammond, Gerald R; Sharma, Esseim; Fukami, Kiyoko; Rohacs, Tibor

    2013-07-10

    Transient Receptor Potential Vanilloid 1 (TRPV1) is a polymodal, Ca(2+)-permeable cation channel crucial to regulation of nociceptor responsiveness. Sensitization of TRPV1 by G-protein coupled receptor (GPCR) agonists to its endogenous activators, such as low pH and noxious heat, is a key factor in hyperalgesia during tissue injury as well as pathological pain syndromes. Conversely, chronic pharmacological activation of TRPV1 by capsaicin leads to calcium influx-induced adaptation of the channel. Paradoxically, both conditions entail activation of phospholipase C (PLC) enzymes, which hydrolyze phosphoinositides. We found that in sensory neurons PLCβ activation by bradykinin led to a moderate decrease in phosphatidylinositol-4,5-bisphosphate (PI(4,5)P2), but no sustained change in the levels of its precursor PI(4)P. Preventing this selective decrease in PI(4,5)P2 inhibited TRPV1 sensitization, while selectively decreasing PI(4,5)P2 independently of PLC potentiated the sensitizing effect of protein kinase C (PKC) on the channel, thereby inducing increased TRPV1 responsiveness. Maximal pharmacological TRPV1 stimulation led to a robust decrease of both PI(4,5)P2 and its precursor PI(4)P in sensory neurons. Attenuating the decrease of either lipid significantly reduced desensitization, and simultaneous reduction of PI(4,5)P2 and PI(4)P independently of PLC inhibited TRPV1. We found that, on the mRNA level, the dominant highly Ca(2+)-sensitive PLC isoform in dorsal root ganglia is PLCδ4. Capsaicin-induced desensitization of TRPV1 currents was significantly reduced, whereas capsaicin-induced nerve impulses in the skin-nerve preparation increased in mice lacking this isoform. We propose a comprehensive model in which differential changes in phosphoinositide levels mediated by distinct PLC isoforms result in opposing changes in TRPV1 activity.

  9. Pharmacological characterization of the phosphoinositide second messenger system in the rabbit kidney

    SciTech Connect

    McArdle, S.

    1988-01-01

    The cellular response to hormones and neurotransmitters is a result of receptor activation of a second messenger system to initiate the intracellular cascade. In several tissues, such as brain and liver, one of the second messenger systems involves the hydrolysis of phosphoinositides (PIs) for the formation of inositol phosphate and diacylglycerol as the intracellular messengers. In the present study, they examined the effect of various agents on the hydrolysis of PIs in the rabbit kidney. In the kidney, the effect of the various hormones and neurotransmitters was region specific. Hydrolysis of PIs was stimulated in the inner medulla by (arg{sup 8})-vasopressin, angiotensin II, and atriopeptin I, and in the outer medulla by histamine, adenosine, and secretin. Only carbachol was able to stimulate the hydrolysis of PIs in both the inner and outer medulla. None of the substances tested were able to stimulate this response in the cortex. The following agents did not have an effect in any of the three zones of the kidney: norepinephrine, dopamine, atriopeptins II, and III. They have directly demonstrated the presence of a high affinity saturable binding site on inner medullary collecting duct (IMCD) cells with studies of binding characteristics of the radiolabelled muscarinic antagonist, 1-quinuclidinyl (phenyl-4-{sup 3}H) benzilate (({sup 3}H)QNB). The K{sub d} of 0.27 nM and the B{sub max} of 27.5 fmol/mg protein were determined from Scatchard analysis of the saturation data. In summary, they have demonstrated that cholinergic muscarinic receptors are present in the rabbit kidney, specifically in the IMCD cells. These receptors, which are coupled to the hydrolysis of phosphoinositides, may be involved in the vasodilatory and/or diuretic effects of cholinergic agents.

  10. The Development of Novel Small Molecule Inhibitors of the Phosphoinositide-3-Kinase Pathway Through High-Throughput Cell-Based Screens

    DTIC Science & Technology

    2005-02-01

    cells. Psycho- Calmodulin antagonists inhibit insulin -stimulated GLUT4 ( glucose trans- pharmacology (Berl.) 150, 383-390. porter 4) translocation by...AD Award Number: W81XWH-04-1-0169 TITLE: The Development of Novel Small Molecule Inhibitors of the Phosphoinositide-3-Kinase Pathway Through High ...Phosphoinositide-3-Kinase Pathway Through High -Throughput Cell-Based Screens 6. AUTHOR(S) William R. Sellers, M.D. 7. PERFORMING ORGANIZA TION NAME(S) AND

  11. Differential regulation of phosphoinositide metabolism by alphaVbeta3 and alphaVbeta5 integrins upon smooth muscle cell migration.

    PubMed

    Paulhe, F; Racaud-Sultan, C; Ragab, A; Albiges-Rizo, C; Chap, H; Iberg, N; Morand, O; Perret, B

    2001-11-09

    Smooth muscle cell migration is a key step of atherosclerosis and angiogenesis. We demonstrate that alpha(V)beta(3) and alpha(V)beta(5) integrins synergistically regulate smooth muscle cell migration onto vitronectin. Using an original haptotactic cell migration assay, we measured a strong stimulation of phosphoinositide metabolism in migrating vascular smooth muscle cells. Phosphatidic acid production and phosphoinositide 3-kinase IA activation were triggered only upon alpha(V)beta(3) engagement. Blockade of alpha(V)beta(3) engagement or phospholipase C activity resulted in a strong inhibition of smooth muscle cell spreading on vitronectin. By contrast, blockade of alpha(V)beta(5) reinforced elongation and polarization of cell shape. Moreover, Pyk2-associated tyrosine kinase and phosphoinositide 4-kinase activities measured in Pyk2 immunoprecipitates were stimulated upon cell migration. Blockade of either alpha(V)beta(3) or alpha(V)beta(5) function, as well as inhibition of phospholipase C activity, decreased both Pyk2-associated activities. We demonstrated that the Pyk2-associated phosphoinositide 4-kinase corresponded to the beta isoform. Our data point to the metabolism of phosphoinositides as a regulatory pathway for the differential roles played by alpha(V)beta(3) and alpha(V)beta(5) upon cell migration and identify the Pyk2-associated phosphoinositide 4-kinase beta as a common target for both integrins.

  12. Effects of acetylcholine and other agents on /sup 32/P-prelabeled phosphoinositides and phosphatidate in crude synaptosomal preparations

    SciTech Connect

    White, H.L.

    1988-05-01

    Experimental conditions are described which permit effects of various agents on polyphosphoinositides and phosphatidic acid (PA) to be evaluated simultaneously in crude nerve-ending preparations from rat brain. Acetylcholine (3-100 microM) or carbachol (30-1,000 microM) induced the hydrolysis of prelabeled polyphosphoinositides and, at the same time, stimulated the net label incorporated in phosphatidic acid. All muscarinic effects were blocked by atropine or pirenzepine. Non-muscarinic agonists (glutamate, adenosine, norepinephrine) stimulated polyphosphoinositide hydrolysis in this preparation, but of these only norepinephrine affected phosphatidic acid turnover. A potentiation of acetylcholine-induced phosphoinositide turnover by KCl was observed, as well as an apparent selective inhibition of PIP2 hydrolysis by LiCl. Acetylcholine-stimulated turnover of PA was not necessarily coupled to phosphoinositide hydrolysis.

  13. Phosphoinositide-Dependent Pathways in Mouse Sperm are Regulated by Egg ZP3 and Drive the Acrosome Reaction

    PubMed Central

    Jungnickel, Melissa K.; Sutton, Keith A.; Wang, Yanli; Florman, Harvey M.

    2007-01-01

    Sperm of many animals must complete an exocytotic event, the acrosome reaction, in order to fuse with eggs. In mammals, acrosome reactions are triggered during sperm contact with the egg extracellular matrix, or zona pellucida, by the matrix glycoprotein ZP3. Here, we show that ZP3 stimulates production of phosphatidylinositol-(3,4,5)-triphosphate in sperm membranes. Phosphatidylinositol-3-kinase antagonists that prevent the production of this phosphoinositide blocked acrosome reactions and fertilization in vitro, while generation of this phosphoinositide in the absence of ZP3 triggered acrosome reactions. Downstream effectors of phosphatidylinositol-(3,4,5)-triphosphate in sperm include the protein kinases, Akt and PKCζ. These studies outline a signal transduction pathway that plays an essential role in the early events of mammalian fertilization. PMID:17258189

  14. Effects of glucose on sorbitol pathway activation, cellular redox, and metabolism of myo-inositol, phosphoinositide, and diacylglycerol in cultured human retinal pigment epithelial cells.

    PubMed Central

    Thomas, T P; Porcellati, F; Kato, K; Stevens, M J; Sherman, W R; Greene, D A

    1994-01-01

    Sorbitol (aldose reductase) pathway flux in diabetes perturbs intracellular metabolism by two putative mechanisms: reciprocal osmoregulatory depletion of other organic osmolytes e.g., myo-inositol, and alterations in NADPH/NADP+ and/or NADH/NAD+. The "osmolyte" and "redox" hypotheses predict secondary elevations in CDP-diglyceride, the rate-limiting precursor for phosphatidylinositol synthesis, but through different mechanisms: the "osmolyte" hypothesis via depletion of intracellular myo-inositol (the cosubstrate for phosphatidylinositol-synthase) and the "redox" hypothesis through enhanced de novo synthesis from triose phosphates. The osmolyte hypothesis predicts diminished phosphoinositide-derived arachidonyl-diacylglycerol, while the redox hypothesis predicts increased total diacylglycerol and phosphatidic acid. In high aldose reductase expressing retinal pigment epithelial cells, glucose-induced, aldose reductase inhibitor-sensitive CDP-diglyceride accumulation and inhibition of 32P-incorporation into phosphatidylinositol paralleled myo-inositol depletion (but not cytoplasmic redox, that was unaffected by glucose) and depletion of arachidonyl-diacylglycerol. 3 mM pyruvate added to the culture medium left cellular redox unaltered, but stimulated Na(+)-dependent myo-inositol uptake, accumulation, and incorporation into phosphatidylinositol. These results favor myo-inositol depletion rather than altered redox as the primary cause of glucose-induced aldose reductase-related defects in phospholipid metabolism in cultured retinal pigment epithelial cells. Images PMID:8201009

  15. Fucoidan inhibits the migration and proliferation of HT-29 human colon cancer cells via the phosphoinositide-3 kinase/Akt/mechanistic target of rapamycin pathways.

    PubMed

    Han, Yong-Seok; Lee, Jun Hee; Lee, Sang Hun

    2015-09-01

    Fucoidan, a sulfated polysaccharide, has a variety of biological activities, including anti-cancer, anti-angiogenic and anti-inflammatory effects. However, the underlying mechanisms of fucoidan as an anti‑cancer agent remain to be elucidated. The present study examined the anti‑cancer effect of fucoidan on HT‑29 human colon cancer cells. The cell growth of HT29 cells was significantly decreased following treatment with fucoidan (200 µg/ml). In addition, fucoidan inhibited the migration of HT‑29 cells by decreasing the expression levels of matrix metalloproteinase‑2 in a dose‑dependent manner (0‑200 µg/ml). The underlying mechanism of these inhibitory effects included the downregulation of phosphoinositide 3‑kinase (PI3K)/Akt/mammalian target of rapamycin (mTOR) by treatment with fucoidan. Furthermore, fucoidan increased the expression of cleaved caspase‑3 and decreased cancer sphere formation. The present study suggested that fucoidan exerts an anti‑cancer effect on HT‑29 human colon cancer cells by downregulating the PI3K‑Akt‑mTOR signaling pathway. Therefore, fucoidan may be a potential therapeutic reagent against the growth of human colon cancer cells.

  16. Phosphoinositides and membrane curvature switch the mode of actin polymerization via selective recruitment of toca-1 and Snx9.

    PubMed

    Gallop, Jennifer L; Walrant, Astrid; Cantley, Lewis C; Kirschner, Marc W

    2013-04-30

    The membrane-cytosol interface is the major locus of control of actin polymerization. At this interface, phosphoinositides act as second messengers to recruit membrane-binding proteins. We show that curved membranes, but not flat ones, can use phosphatidylinositol 3-phosphate [PI(3)P] along with phosphatidylinositol 4,5-bisphosphate [PI(4,5)P2] to stimulate actin polymerization. In this case, actin polymerization requires the small GTPase cell cycle division 42 (Cdc42), the nucleation-promoting factor neural Wiskott-Aldrich syndrome protein (N-WASP) and the actin nucleator the actin-related protein (Arp) 2/3 complex. In liposomes containing PI(4,5)P2 as the sole phosphoinositide, actin polymerization requires transducer of Cdc42 activation-1 (toca-1). In the presence of phosphatidylinositol 3-phosphate, polymerization is both more efficient and independent of toca-1. Under these conditions, sorting nexin 9 (Snx9) can be implicated as a specific adaptor that replaces toca-1 to mobilize neural Wiskott-Aldrich syndrome protein and the Arp2/3 complex. This switch in phosphoinositide and adaptor specificity for actin polymerization from membranes has implications for how different types of actin structures are generated at precise times and locations in the cell.

  17. Structural Basis for Different Phosphoinositide Specificities of the PX Domains of Sorting Nexins Regulating G-protein Signaling*

    PubMed Central

    Mas, Caroline; Norwood, Suzanne J.; Bugarcic, Andrea; Kinna, Genevieve; Leneva, Natalya; Kovtun, Oleksiy; Ghai, Rajesh; Ona Yanez, Lorena E.; Davis, Jasmine L.; Teasdale, Rohan D.; Collins, Brett M.

    2014-01-01

    Sorting nexins (SNXs) or phox homology (PX) domain containing proteins are central regulators of cell trafficking and signaling. A subfamily of PX domain proteins possesses two unique PX-associated domains, as well as a regulator of G protein-coupled receptor signaling (RGS) domain that attenuates Gαs-coupled G protein-coupled receptor signaling. Here we delineate the structural organization of these RGS-PX proteins, revealing a protein family with a modular architecture that is conserved in all eukaryotes. The one exception to this is mammalian SNX19, which lacks the typical RGS structure but preserves all other domains. The PX domain is a sensor of membrane phosphoinositide lipids and we find that specific sequence alterations in the PX domains of the mammalian RGS-PX proteins, SNX13, SNX14, SNX19, and SNX25, confer differential phosphoinositide binding preferences. Although SNX13 and SNX19 PX domains bind the early endosomal lipid phosphatidylinositol 3-phosphate, SNX14 shows no membrane binding at all. Crystal structures of the SNX19 and SNX14 PX domains reveal key differences, with alterations in SNX14 leading to closure of the binding pocket to prevent phosphoinositide association. Our findings suggest a role for alternative membrane interactions in spatial control of RGS-PX proteins in cell signaling and trafficking. PMID:25148684

  18. Structural basis for different phosphoinositide specificities of the PX domains of sorting nexins regulating G-protein signaling.

    PubMed

    Mas, Caroline; Norwood, Suzanne J; Bugarcic, Andrea; Kinna, Genevieve; Leneva, Natalya; Kovtun, Oleksiy; Ghai, Rajesh; Ona Yanez, Lorena E; Davis, Jasmine L; Teasdale, Rohan D; Collins, Brett M

    2014-10-10

    Sorting nexins (SNXs) or phox homology (PX) domain containing proteins are central regulators of cell trafficking and signaling. A subfamily of PX domain proteins possesses two unique PX-associated domains, as well as a regulator of G protein-coupled receptor signaling (RGS) domain that attenuates Gαs-coupled G protein-coupled receptor signaling. Here we delineate the structural organization of these RGS-PX proteins, revealing a protein family with a modular architecture that is conserved in all eukaryotes. The one exception to this is mammalian SNX19, which lacks the typical RGS structure but preserves all other domains. The PX domain is a sensor of membrane phosphoinositide lipids and we find that specific sequence alterations in the PX domains of the mammalian RGS-PX proteins, SNX13, SNX14, SNX19, and SNX25, confer differential phosphoinositide binding preferences. Although SNX13 and SNX19 PX domains bind the early endosomal lipid phosphatidylinositol 3-phosphate, SNX14 shows no membrane binding at all. Crystal structures of the SNX19 and SNX14 PX domains reveal key differences, with alterations in SNX14 leading to closure of the binding pocket to prevent phosphoinositide association. Our findings suggest a role for alternative membrane interactions in spatial control of RGS-PX proteins in cell signaling and trafficking.

  19. Full-contact domain labeling: identification of a novel phosphoinositide binding site on gelsolin that requires the complete protein.

    PubMed

    Feng, L; Mejillano, M; Yin, H L; Chen, J; Prestwich, G D

    2001-01-30

    Gelsolin, an actin and phosphoinositide binding protein, was photoaffinity labeled using a variety of benzophenone-containing phosphoinositide polyphosphate analogues. The N-terminal half and the C-terminal half of gelsolin showed synergy in the binding of phosphatidylinositol 4,5-bisphosphate [PtdIns(4,5)P2]. Competitive displacement experiments with dibutyryl, dioctanoyl, or dipalmitoyl derivatives of PtdIns(4,5)P(2) suggested that, in addition to the inositol headgroup, a diacylglyceryl moiety was important for binding; these analogues also inhibited the gelsolin-severing activity of F-actin. In addition to the previously identified PtdIns(4,5)P2 binding site in the N-terminal half of gelsolin, a new binding site was identified in the C-terminal half by mapping the photocovalently modified peptide fragments. Moreover, increasing concentrations of Ca(2+) decreased the binding of the photolabile analogues to the C-terminal phosphoinositide binding site on gelsolin. A molecular model of the binding of PtdIns(4,5)P2 within two folded repeats of gelsolin has been calculated using these data.

  20. Noradrenaline stimulation of the phosphoinositide system: evidence for a novel hydrophobic inositol-containing compound in resistance arterioles.

    PubMed Central

    Ollerenshaw, J. D.; Heagerty, A. M.; Swales, J. D.

    1988-01-01

    1. Five inositol phosphates were extracted from adult rat resistance arterioles and separated by ion-exchange high performance liquid chromatography. 2. By use of this technique, inositol phosphates liberated were identified as inositol 1-phosphate, inositol 1,4-bisphosphate, inositol 1,3,4-trisphosphate, inositol 1,4,5-trisphosphate and inositol 1,3,4,5-tetrakisphosphate. Stimulation of phosphoinositide hydrolysis with noradrenaline produced increases in inositol phosphate production. 3. Three inositol-containing phospholipids extracted from resistance arterioles were measured as their glycerol esters following deacylation, thereby permitting an analysis of both membrane and cytosolic components of the phosphoinositide signalling system. 4. A substantial agonist-sensitive pool of a previously undescribed inositol but not glycerol-containing lipid extract component was also identified in this tissue. 5. These experiments for the first time allow a precise description of phosphoinositide metabolism in resting and agonist-stimulated resistance arterioles and provide data on a novel compound possibly similar to that recently described in other tissues. PMID:2840158

  1. Regulation of PI3K effector signalling in cancer by the phosphoinositide phosphatases

    PubMed Central

    Rodgers, Samuel J.; Ferguson, Daniel T.; Mitchell, Christina A.

    2017-01-01

    Class I phosphoinositide 3-kinase (PI3K) generates phosphatidylinositol 3,4,5-trisphosphate (PtdIns(3,4,5)P3) at the plasma membrane in response to growth factors, activating a signalling cascade that regulates many cellular functions including cell growth, proliferation, survival, migration and metabolism. The PI3K pathway is commonly dysregulated in human cancer, and drives tumorigenesis by promoting aberrant cell growth and transformation. PtdIns(3,4,5)P3 facilitates the activation of many pleckstrin homology (PH) domain-containing proteins including the serine/threonine kinase AKT. There are three AKT isoforms that are frequently hyperactivated in cancer through mutation, amplification or dysregulation of upstream regulatory proteins. AKT isoforms have converging and opposing functions in tumorigenesis. PtdIns(3,4,5)P3 signalling is degraded and terminated by phosphoinositide phosphatases such as phosphatase and tensin homologue (PTEN), proline-rich inositol polyphosphate 5-phosphatase (PIPP) (INPP5J) and inositol polyphosphate 4-phosphatase type II (INPP4B). PtdIns(3,4,5)P3 is rapidly hydrolysed by PIPP to generate phosphatidylinositol 3,4-bisphosphate (PtdIns(3,4)P2), which is further hydrolysed by INPP4B to form phosphatidylinositol 3-phosphate (PtdIns3P). PtdIns(3,4)P2 and PtdIns3P are also important signalling molecules; PtdIns(3,4)P2 together with PtdIns(3,4,5)P3 are required for maximal AKT activation and PtdIns3P activates PI3K-dependent serum and glucocorticoid-regulated kinase (SGK3) signalling. Loss of Pten, Pipp or Inpp4b expression or function promotes tumour growth in murine cancer models through enhanced AKT isoform-specific signalling. INPP4B inhibits PtdIns(3,4)P2-mediated AKT activation in breast and prostate cancer; however, INPP4B expression is increased in acute myeloid leukaemia (AML), melanoma and colon cancer where it paradoxically promotes cell proliferation, transformation and/or drug resistance. This review will discuss how PTEN, PIPP

  2. Class II phosphoinositide 3-kinase C2β regulates a novel signaling pathway involved in breast cancer progression

    PubMed Central

    Abbott, Jonathan J.; Piñeiro, Roberto; Buus, Richard; Iezzi, Manuela; Ricci, Francesca; Bergamaschi, Daniele; Ostano, Paola; Chiorino, Giovanna; Lattanzio, Rossano; Broggini, Massimo; Piantelli, Mauro; Maffucci, Tania; Falasca, Marco

    2016-01-01

    It is now well established that the enzymes phosphoinositide 3-kinases (PI3Ks) have a key role in the development and progression of many cancer types and indeed PI3Ks inhibitors are currently being tested in clinical trials. Although eight distinct PI3K isoforms exist, grouped into three classes, most of the evidence currently available are focused on one specific isoform with very little known about the potential role of the other members of this family in cancer. Here we demonstrate that the class II enzyme PI3K-C2β is overexpressed in several human breast cancer cell lines and in human breast cancer specimens. Our data indicate that PI3K-C2β regulates breast cancer cell growth in vitro and in vivo and that PI3K-C2β expression in breast tissues is correlated with the proliferative status of the tumor. Specifically we show that downregulation of PI3K-C2β in breast cancer cell lines reduces colony formation, induces cell cycle arrest and inhibits tumor growth, in particular in an estrogen-dependent in vivo xenograft. Investigation of the mechanism of the PI3K-C2β-dependent regulation of cell cycle progression and cell growth revealed that PI3K-C2β regulates cyclin B1 protein levels through modulation of microRNA miR-449a levels. Our data further demonstrate that downregulation of PI3K-C2β inhibits breast cancer cell invasion in vitro and breast cancer metastasis in vivo. Consistent with this, PI3K-C2β is highly expressed in lymph-nodes metastases compared to matching primary tumors. These data demonstrate that PI3K-C2β plays a pivotal role in breast cancer progression and in metastasis development. Our data indicate that PI3K-C2β may represent a key molecular switch that regulates a rate-limiting step in breast tumor progression and therefore it may be targeted to limit breast cancer spread. PMID:26934321

  3. TRAF4 Is a Novel Phosphoinositide-Binding Protein Modulating Tight Junctions and Favoring Cell Migration

    PubMed Central

    Rousseau, Adrien; McEwen, Alastair G.; Poussin-Courmontagne, Pierre; Rognan, Didier; Nominé, Yves; Rio, Marie-Christine; Tomasetto, Catherine; Alpy, Fabien

    2013-01-01

    Tumor necrosis factor (TNF) receptor-associated factor 4 (TRAF4) is frequently overexpressed in carcinomas, suggesting a specific role in cancer. Although TRAF4 protein is predominantly found at tight junctions (TJs) in normal mammary epithelial cells (MECs), it accumulates in the cytoplasm of malignant MECs. How TRAF4 is recruited and functions at TJs is unclear. Here we show that TRAF4 possesses a novel phosphoinositide (PIP)-binding domain crucial for its recruitment to TJs. Of interest, this property is shared by the other members of the TRAF protein family. Indeed, the TRAF domain of all TRAF proteins (TRAF1 to TRAF6) is a bona fide PIP-binding domain. Molecular and structural analyses revealed that the TRAF domain of TRAF4 exists as a trimer that binds up to three lipids using basic residues exposed at its surface. Cellular studies indicated that TRAF4 acts as a negative regulator of TJ and increases cell migration. These functions are dependent from its ability to interact with PIPs. Our results suggest that TRAF4 overexpression might contribute to breast cancer progression by destabilizing TJs and favoring cell migration. PMID:24311986

  4. Phosphoinositide 3-kinase δ gene mutation predisposes to respiratory infection and airway damage

    PubMed Central

    Angulo, Ivan; Vadas, Oscar; Garçon, Fabien; Banham-Hall, Edward; Plagnol, Vincent; Leahy, Timothy R.; Baxendale, Helen; Coulter, Tanya; Curtis, James; Wu, Changxin; Blake-Palmer, Katherine; Perisic, Olga; Smyth, Deborah; Maes, Mailis; Fiddler, Christine; Juss, Jatinder; Cilliers, Deirdre; Markelj, Gašper; Chandra, Anita; Farmer, George; Kielkowska, Anna; Clark, Jonathan; Kracker, Sven; Debré, Marianne; Picard, Capucine; Pellier, Isabelle; Jabado, Nada; Morris, James A.; Barcenas-Morales, Gabriela; Fischer, Alain; Stephens, Len; Hawkins, Phillip; Barrett, Jeffrey C.; Abinun, Mario; Clatworthy, Menna; Durandy, Anne; Doffinger, Rainer; Chilvers, Edwin; Cant, Andrew J.; Kumararatne, Dinakantha; Okkenhaug, Klaus; Williams, Roger L.; Condliffe, Alison; Nejentsev, Sergey

    2014-01-01

    Genetic mutations cause primary immunodeficiencies (PIDs), which predispose to infections. Here we describe Activated PI3K-δ Syndrome (APDS), a PID associated with a dominant gain-of-function mutation E1021K in the p110δ protein, the catalytic subunit of phosphoinositide 3-kinase δ (PI3Kδ), encoded by the PIK3CD gene. We found E1021K in 17 patients from seven unrelated families, but not among 3,346 healthy subjects. APDS was characterized by recurrent respiratory infections, progressive airway damage, lymphopenia, increased circulating transitional B cells, increased IgM and reduced IgG2 levels in serum and impaired vaccine responses. The E1021K mutation enhanced membrane association and kinase activity of p110δ. Patient-derived lymphocytes had increased levels of phosphatidylinositol 3,4,5-trisphosphate and phosphorylated AKT protein and were prone to activation-induced cell death. Selective p110δ inhibitors IC87114 and GS-1101 reduced the activity of the mutant enzyme in vitro, suggesting a therapeutic approach for patients with APDS. PMID:24136356

  5. Identification of alpha1-adrenergic receptors and their involvement in phosphoinositide hydrolysis in the frog heart.

    PubMed

    Lazou, Antigone; Gaitanaki, Catherine; Vaxevanellis, Spiros; Pehtelidou, Anastasia

    2002-07-01

    The aim of this study was to characterize alpha(1)-adrenergic receptors in frog heart and to examine their related signal transduction pathway. alpha(1)-Adrenergic binding sites were studied in purified heart membranes using the specific alpha(1)-adrenergic antagonist [(3)H]prazosin. Analysis of the binding data indicated one class of binding sites displaying a K(d) of 4.19 +/- 0.56 nM and a B(max) of 14.66 +/- 1.61 fmol/mg original wet weight. Adrenaline, noradrenaline, or phenylephrine, in the presence of propranolol, competed with [(3)H]prazosin binding with a similar potency and a K(i) value of about 10 microM. The kinetics of adrenaline binding was closely related to its biological effect. Adrenaline concentration dependently increased the production of inositol phosphates in the heart in the presence or absence of propranolol. Maximal stimulation was about 8.5-fold, and the half-maximum effective concentration was 30 and 21 microM in the absence and presence of propranolol, respectively. These data clearly show that alpha(1)-adrenergic receptors are coupled to the phosphoinositide hydrolysis in frog heart. To our knowledge, this is the first direct evidence supporting the presence of functional alpha(1)-adrenergic receptors in the frog heart.

  6. Alpha-1 adrenergic receptor: Binding and phosphoinositide breakdown in human myometrium

    SciTech Connect

    Breuiller-Fouche, M.; Doualla-Bell Kotto Maka, F.; Geny, B.; Ferre, F. )

    1991-07-01

    Alpha-1 adrenergic receptors were examined in both inner and outer layers of human pregnant myometrium using radioligand binding of (3H)prazosin. (3H)prazosin bound rapidly and reversibly to a single class of high affinity binding sites in myometrial membrane preparations. Scatchard analysis gave similar values of equilibrium dissociation constants in both myometrial layers. In contrast, more alpha-1 adrenergic receptors were detected in the outer layer than in the inner layer. Antagonist inhibited (3H)prazosin binding with an order of potency of prazosin greater than phentolamine greater than idazoxan. Competition experiments have also revealed that a stable guanine nucleotide decreases the apparent affinity of norepinephrine for myometrial (3H)prazosin binding sites. The functional status of these alpha-1 adrenergic receptors was also assessed by measuring the norepinephrine-induced accumulation of inositol phosphates in myometrial tissue. Norepinephrine produced a concentration-dependent accumulation of inositol phosphates in both myometrial layers. However, norepinephrine-induced increases in inositol 1,4,5-triphosphate were only observed in the outer layer. These results indicate that alpha-1 adrenergic receptors in human myometrium at the end of pregnancy are linked to phosphoinositide hydrolysis and that this response occurs mainly in the outer layer.

  7. Class IA phosphoinositide 3-kinase regulates heart size and physiological cardiac hypertrophy.

    PubMed

    Luo, Ji; McMullen, Julie R; Sobkiw, Cassandra L; Zhang, Li; Dorfman, Adam L; Sherwood, Megan C; Logsdon, M Nicole; Horner, James W; DePinho, Ronald A; Izumo, Seigo; Cantley, Lewis C

    2005-11-01

    Class I(A) phosphoinositide 3-kinases (PI3Ks) are activated by growth factor receptors, and they regulate, among other processes, cell growth and organ size. Studies using transgenic mice overexpressing constitutively active and dominant negative forms of the p110alpha catalytic subunit of class I(A) PI3K have implicated the role of this enzyme in regulating heart size and physiological cardiac hypertrophy. To further understand the role of class I(A) PI3K in controlling heart growth and to circumvent potential complications from the overexpression of dominant negative and constitutively active proteins, we generated mice with muscle-specific deletion of the p85alpha regulatory subunit and germ line deletion of the p85beta regulatory subunit of class I(A) PI3K. Here we show that mice with cardiac deletion of both p85 subunits exhibit attenuated Akt signaling in the heart, reduced heart size, and altered cardiac gene expression. Furthermore, exercise-induced cardiac hypertrophy is also attenuated in the p85 knockout hearts. Despite such defects in postnatal developmental growth and physiological hypertrophy, the p85 knockout hearts exhibit normal contractility and myocardial histology. Our results therefore provide strong genetic evidence that class I(A) PI3Ks are critical regulators for the developmental growth and physiological hypertrophy of the heart.

  8. Differential regulatory functions of three classes of phosphatidylinositol and phosphoinositide 3-kinases in autophagy.

    PubMed

    Yu, Xinlei; Long, Yun Chau; Shen, Han-Ming

    2015-01-01

    Autophagy is an evolutionarily conserved and exquisitely regulated self-eating cellular process with important biological functions. Phosphatidylinositol 3-kinases (PtdIns3Ks) and phosphoinositide 3-kinases (PI3Ks) are involved in the autophagic process. Here we aim to recapitulate how 3 classes of these lipid kinases differentially regulate autophagy. Generally, activation of the class I PI3K suppresses autophagy, via the well-established PI3K-AKT-MTOR (mechanistic target of rapamycin) complex 1 (MTORC1) pathway. In contrast, the class III PtdIns3K catalytic subunit PIK3C3/Vps34 forms a protein complex with BECN1 and PIK3R4 and produces phosphatidylinositol 3-phosphate (PtdIns3P), which is required for the initiation and progression of autophagy. The class II enzyme emerged only recently as an alternative source of PtdIns3P and autophagic initiator. However, the orthodox paradigm is challenged by findings that the PIK3CB catalytic subunit of class I PI3K acts as a positive regulator of autophagy, and PIK3C3 was thought to be an amino acid sensor for MTOR, which curbs autophagy. At present, a number of PtdIns3K and PI3K inhibitors, including specific PIK3C3 inhibitors, have been developed for suppression of autophagy and for clinical applications in autophagy-related human diseases.

  9. Phosphoinositide-3-kinases as the novel therapeutic targets for the inflammatory diseases: Current and future perspectives.

    PubMed

    Vyas, Preeti; Vohora, Divya

    2016-10-13

    Recent findings have publicized phosphoinositide-3-kinases (PI3Ks) as novel therapeutic targets, which are also purported to be involved in the complex pathophysiology of inflammatory and various other diseases. They are recognized to participate in the inflammatory cellular responses by modulating the growth, development and proliferation of various immune cells and hence, affect the release of various cytokines and other inflammatory mediators involved in these manifestations. The review presents a brief synopsis of the PI3K/AKT/mTOR signalling pathway along with the current and future prospects of targeting PI3Ks for various diseases, like malignant, autoimmune, inflammatory, cardiovascular, neurological disorders etc., laying special emphasis on the inflammatory diseases and associated cellular responses. The recent literature relating this pathway with these diseases is highlighted, with a hope, which remains for the progression of PI3K inhibitors in the market as a treatment option. With Idelalisib entering the market for cancer, PI3K/AKT signalling has also gained significance as an investigational target for other diseases, particularly for inflammation. Further exploration of this pathway may also uncover its involvement in these disorders, which may further contribute to developing the new treatments and can turn out to be an innovative brainwave in the field of experimental and clinical pharmacology in future.

  10. Calcium mobilization and phosphoinositide turnover in fluoride-activated human neutrophils

    SciTech Connect

    Strnad, C.F.; Wong, K.

    1986-05-01

    Fluoride ion, at concentrations above 10 mM, has been found to activate a superoxide production response in human neutrophils which is strongly dependent on the presence of extracellular calcium. In an attempt to further explore the calcium requirement of fluoride-induced neutrophil activation, intracellular calcium concentrations were monitored through use of the fluorescent calcium probe, Quin 2. Fluoride ion, at concentrations between 10 and 20 mM, was found to elicit a rise in intracellular calcium levels which was characterized by a lag period of 4 to 10 min and a prolonged duration of action (greater than 20 min). In contrast, the chemotactic peptide, formylmethionyl-leucyl-phenylalanine (FMLP), induced a rise in intracellular calcium concentration which peaked within 1 min. Preincubation of cells with 1 ..mu..g/ml pertussis toxin resulted in inhibition of the FMLP-induced response, but not that elicited by fluoride. Furthermore, anion exchange chromatography indicated that inositol phosphate accumulation occurred in fluoride-treated cells in association with calcium mobilization. Recent evidence suggests that the FMLP receptor is coupled to phospholipase C and phosphoinositide turnover through a guanine nucleotide binding protein susceptible to inhibition by pertussis toxin. Present results suggest that fluoride ion may serve to activate this protein in a manner resistant to inhibition by pertussis toxin.

  11. Nuclear but Not Cytosolic Phosphoinositide 3-Kinase Beta Has an Essential Function in Cell Survival ▿

    PubMed Central

    Kumar, Amit; Redondo-Muñoz, Javier; Perez-García, Vicente; Cortes, Isabel; Chagoyen, Monica; Carrera, Ana C.

    2011-01-01

    Class IA phosphoinositide 3-kinases (PI3Ks) are heterodimeric enzymes composed of a p85 regulatory and a p110 catalytic subunit that induce the formation of 3-polyphosphoinositides, which mediate cell survival, division, and migration. There are two ubiquitous PI3K isoforms p110α and p110β that have nonredundant functions in embryonic development and cell division. However, whereas p110α concentrates in the cytoplasm, p110β localizes to the nucleus and modulates nuclear processes such as DNA replication and repair. At present, the structural features that determine p110β nuclear localization remain unknown. We describe here that association with the p85β regulatory subunit controls p110β nuclear localization. We identified a nuclear localization signal (NLS) in p110β C2 domain that mediates its nuclear entry, as well as a nuclear export sequence (NES) in p85β. Deletion of p110β induced apoptosis, and complementation with the cytoplasmic C2-NLS p110β mutant was unable to restore cell survival. These studies show that p110β NLS and p85β NES regulate p85β/p110β nuclear localization, supporting the idea that nuclear, but not cytoplasmic, p110β controls cell survival. PMID:21383062

  12. Cell Activation-Induced Phosphoinositide 3-Kinase Alpha/Beta Dimerization Regulates PTEN Activity

    PubMed Central

    Pérez-García, Vicente; Redondo-Muñoz, Javier; Kumar, Amit

    2014-01-01

    The phosphoinositide 3-kinase (PI3K)/PTEN (phosphatase and tensin homolog) pathway is one of the central routes that enhances cell survival, division, and migration, and it is frequently deregulated in cancer. PI3K catalyzes formation of phosphatidylinositol 3,4,5-triphosphate [PI(3,4,5)P3] after cell activation; PTEN subsequently reduces these lipids to basal levels. Activation of the ubiquitous p110α isoform precedes that of p110β at several points during the cell cycle. We studied the potential connections between p110α and p110β activation, and we show that cell stimulation promotes p110α and p110β association, demonstrating oligomerization of PI3K catalytic subunits within cells. Cell stimulation also promoted PTEN incorporation into this complex, which was necessary for PTEN activation. Our results show that PI3Ks dimerize in vivo and that PI3K and PTEN activities modulate each other in a complex that controls cell PI(3,4,5)P3 levels. PMID:24958106

  13. Phosphoinositide-specific phospholipase C in oat roots: association with the actin cytoskeleton.

    PubMed

    Huang, Chiung-Hua; Crain, Richard C

    2009-10-01

    Phosphoinositide-specific phospholipase C (PI-PLC) activities are involved in mediating plant cell responses to environmental stimuli. Two variants of PI-PLC have been partially purified from the roots of oat seedlings; one cytosolic and one particulate. Although the cytosolic enzyme was significantly purified, the activity still co-migrated with a number of other proteins on heparin HPLC and also on size-exclusion chromatography. The partially purified PI-PLC was tested by Western blotting, and we found that actin and actin-binding proteins, profilin and tropomyosin, co-purified with cytosolic phospholipase C. After a non-ionic detergent (Triton X-100) treatment, PI-PLC activities still remained with the actin cytoskeleton. The effects of phalloidin and F-buffer confirmed this association; these conditions, which favor actin polymerization, decreased the release of PI-PLC from the cytoskeleton. The treatments of latrunculin and G-buffer, the conditions that favor actin depolymerization, increased the release of PI-PLC from the cytoskeleton. These results suggest that oat PI-PLC associates with the actin cytoskeleton.

  14. Activation of phosphoinositide 3-kinase by D2 receptor prevents apoptosis in dopaminergic cell lines.

    PubMed

    Nair, Venugopalan D; Olanow, C Warren; Sealfon, Stuart C

    2003-07-01

    Whereas dopamine agonists are known to provide symptomatic benefits for Parkinson's disease, recent clinical trials suggest that they might also be neuroprotective. Laboratory studies demonstrate that dopamine agonists can provide neuroprotective effects in a number of model systems, but the role of receptor-mediated signalling in these effects is controversial. We find that dopamine agonists have robust, concentration-dependent anti-apoptotic activity in PC12 cells that stably express human D(2L) receptors from cell death due to H(2)O(2) or trophic withdrawal and that the protective effects are abolished in the presence of D(2)-receptor antagonists. D(2) agonists are also neuroprotective in the nigral dopamine cell line SN4741, which express endogenous D(2) receptors, whereas no anti-apoptotic activity is observed in native PC12 cells, which do not express detectable D(2) receptors. Notably, the agonists studied differ in their relative efficacy to mediate anti-apoptotic effects and in their capacity to stimulate [(35)S]guanosine 5'-[gamma-thio]triphosphate ([(35)S]GTP[S]) binding, an indicator of G-protein activation. Studies with inhibitors of phosphoinositide 3-kinase (PI 3-kinase), extracellular-signal-regulated kinase or p38 mitogen-activated protein kinase indicate that the PI 3-kinase pathway is required for D(2) receptor-mediated cell survival. These studies indicate that certain dopamine agonists can complex with D(2) receptors to preferentially transactivate neuroprotective signalling pathways and to mediate increased cell survival.

  15. Involvement of phosphoinositide 3-kinase in insulin- or IGF-1-induced membrane ruffling.

    PubMed Central

    Kotani, K; Yonezawa, K; Hara, K; Ueda, H; Kitamura, Y; Sakaue, H; Ando, A; Chavanieu, A; Calas, B; Grigorescu, F

    1994-01-01

    Insulin, IGF-1 or EGF induce membrane ruffling through their respective tyrosine kinase receptors. To elucidate the molecular link between receptor activation and membrane ruffling, we microinjected phosphorylated peptides containing YMXM motifs or a mutant 85 kDa subunit of phosphoinositide (PI) 3-kinase (delta p85) which lacks a binding site for the catalytic 110 kDa subunit of PI 3-kinase into the cytoplasm of human epidermoid carcinoma KB cells. Both inhibited the association of insulin receptor substrate-1 (IRS-1) with PI 3-kinase in a cell-free system and also inhibited insulin- or IGF-1-induced, but not EGF-induced, membrane ruffling in KB cells. Microinjection of nonphosphorylated analogues, phosphorylated peptides containing the EYYE motif or wild-type 85 kDa subunit (Wp85), all of which did not inhibit the association of IRS-1 with PI 3-kinase in a cell-free system, did not inhibit membrane ruffling in KB cells. In addition, wortmannin, an inhibitor of PI 3-kinase activity, inhibited insulin- or IGF-1-induced membrane ruffling. These results suggest that the association of IRS-1 with PI 3-kinase followed by the activation of PI 3-kinase are required for insulin- or IGF-1-induced, but not for EGF-induced, membrane ruffling. Images PMID:8194523

  16. Tyrosol Suppresses Allergic Inflammation by Inhibiting the Activation of Phosphoinositide 3-Kinase in Mast Cells.

    PubMed

    Je, In-Gyu; Kim, Duk-Sil; Kim, Sung-Wan; Lee, Soyoung; Lee, Hyun-Shik; Park, Eui Kyun; Khang, Dongwoo; Kim, Sang-Hyun

    2015-01-01

    Allergic diseases such as atopic dermatitis, rhinitis, asthma, and anaphylaxis are attractive research areas. Tyrosol (2-(4-hydroxyphenyl)ethanol) is a polyphenolic compound with diverse biological activities. In this study, we investigated whether tyrosol has anti-allergic inflammatory effects. Ovalbumin-induced active systemic anaphylaxis and immunoglobulin E-mediated passive cutaneous anaphylaxis models were used for the immediate-type allergic responses. Oral administration of tyrosol reduced the allergic symptoms of hypothermia and pigmentation in both animal models. Mast cells that secrete allergic mediators are key regulators on allergic inflammation. Tyrosol dose-dependently decreased mast cell degranulation and expression of inflammatory cytokines. Intracellular calcium levels and activation of inhibitor of κB kinase (IKK) regulate cytokine expression and degranulation. Tyrosol blocked calcium influx and phosphorylation of the IKK complex. To define the molecular target for tyrosol, various signaling proteins involved in mast cell activation such as Lyn, Syk, phosphoinositide 3-kinase (PI3K), and Akt were examined. Our results showed that PI3K could be a molecular target for tyrosol in mast cells. Taken together, these findings indicated that tyrosol has anti-allergic inflammatory effects by inhibiting the degranulation of mast cells and expression of inflammatory cytokines; these effects are mediated via PI3K. Therefore, we expect tyrosol become a potential therapeutic candidate for allergic inflammatory disorders.

  17. Metal cations for the determination of fluorescent phosphoinositides by capillary electrophoresis.

    PubMed

    Otieno, Anthony C; Quainoo, Emmanuel W; Mwongela, Simon M

    2008-12-01

    Phosphatidylinositol (PI) and its phosphorylated derivatives known as phosphoinositides (PIPs), are essential regulators of cell signaling and membrane trafficking, cytoskeletal dynamics, and nuclear functions. Disruption of PI metabolism is associated with disorders such as immune dysfunction, cardiovascular disease, and cancer; therefore, there is currently great interest in studying PIPs and their metabolic enzymes. Here, we describe a method for the separation of fluorescent PI and its seven fluorescent phosphorylated derivatives by CE-LIF. The CE method utilizes a Tris buffer and sodium deoxycholate in the presence of 30% 1-propanol and 5% of a dynamic coating reagent, EOTrol low reverse (EOTrol LR). It is simple, fast, highly sensitive, and it offers LODs in the order of 1.5 amol. The effect of cations such as lithium, sodium, potassium, cesium, barium, manganese, zinc, magnesium, calcium, spermine, and gentamicin were evaluated. Calcium and magnesium provided the best selectivity and resolution for the separation of the analytes while magnesium offered the best data reproducibility. The developed CE method would be useful in the studies of enzymatic activity in the PI and PIPs metabolic pathways using CE-based in vitro and CE cell-based assays, and/or for drug screening.

  18. Targeting phosphoinositide 3-kinase δ for the treatment of respiratory diseases.

    PubMed

    Sriskantharajah, Srividya; Hamblin, Nicole; Worsley, Sally; Calver, Andrew R; Hessel, Edith M; Amour, Augustin

    2013-03-01

    Asthma and chronic obstructive pulmonary disease (COPD) are characterized in their pathogenesis by chronic inflammation in the airways. Phosphoinositide 3-kinase δ (PI3Kδ), a lipid kinase expressed predominantly in leukocytes, is thought to hold much promise as a therapeutic target for such inflammatory conditions. Of particular interest for the treatment of severe respiratory disease is the observation that inhibition of PI3Kδ may restore steroid effectiveness under conditions of oxidative stress. PI3Kδ inhibition may also prevent recruitment of inflammatory cells, including T lymphocytes and neutrophils, as well as the release of proinflammatory mediators, such as cytokines, chemokines, reactive oxygen species, and proteolytic enzymes. In addition, targeting the PI3Kδ pathway could reduce the incidence of pathogen-induced exacerbations by improving macrophage-mediated bacterial clearance. In this review, we discuss the potential and highlight the unknowns of targeting PI3Kδ for the treatment of respiratory disease, focusing on recent developments in the role of the PI3Kδ pathway in inflammatory cell types believed to be critical to the pathogenesis of COPD.

  19. Phosphoinositide 3-kinase: a new kid on the block in vascular anomalies.

    PubMed

    Castillo, Sandra D; Vanhaesebroeck, Bart; Sebire, Neil J

    2016-12-01

    Vascular anomalies are broadly divided into vascular tumours and malformations. These lesions are composed of abnormal vascular elements of various types, and mainly affect infants, children, and young adults. Vascular anomalies may be painful, may be complicated by bleeding, infection, or organ dysfunction, and can have secondary effects on other tissues. Current treatment strategies include surgical excision, pulsed laser, and sclerotherapy, which are invasive, with risks of recurrence. There are growing pharmacological options for these vascular anomalies, but, to date, no specific targeted therapies have been developed. Phosphoinositide 3-kinases (PI3Ks) constitute a family of lipid kinases that are involved in signal transduction and vesicular traffic, and that modulate important cellular processes such as proliferation, growth, and migration. Recent findings have indicated that the PI3K signalling pathway is important in the pathogenesis of vascular anomalies. This provides an opportunity to use PI3K inhibitors, which are in clinical trials for cancer treatment, for such lesions. Here, we provide an update on the classification of vascular anomalies, with their major features, and discuss the role of the PI3K signalling pathway in the pathogenesis of vascular anomalies, and their clinical implications and therapeutic opportunities. Copyright © 2016 Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd.

  20. Evaluation of variation in the phosphoinositide-3-kinase catalytic subunit alpha oncogene and breast cancer risk

    PubMed Central

    Stevens, K N; Garcia-Closas, M; Fredericksen, Z; Kosel, M; Pankratz, V S; Hopper, J L; Dite, G S; Apicella, C; Southey, M C; Schmidt, M K; Broeks, A; Van ‘t Veer, L J; Tollenaar, R A E M; Fasching, P A; Beckmann, M W; Hein, A; Ekici, A B; Johnson, N; Peto, J; dos Santos Silva, I; Gibson, L; Sawyer, E; Tomlinson, I; Kerin, M J; Chanock, S; Lissowska, J; Hunter, D J; Hoover, R N; Thomas, G D; Milne, R L; Pérez, JI Arias; González-Neira, A; Benítez, J; Burwinkel, B; Meindl, A; Schmutzler, R K; Bartrar, C R; Hamann, U; Ko, Y D; Brüning, T; Chang-Claude, J; Hein, R; Wang-Gohrke, S; Dörk, T; Schürmann, P; Bremer, M; Hillemanns, P; Bogdanova, N; Zalutsky, J V; Rogov, Y I; Antonenkova, N; Lindblom, A; Margolin, S; Mannermaa, A; Kataja, V; Kosma, V-M; Hartikainen, J; Chenevix-Trench, G; Chen, X; Peterlongo, P; Bonanni, B; Bernard, L; Manoukian, S; Wang, X; Cerhan, J; Vachon, C M; Olson, J; Giles, G G; Baglietto, L; McLean, C A; Severi, G; John, E M; Miron, A; Winqvist, R; Pylkäs, K; Jukkola-Vuorinen, A; Grip, M; Andrulis, I; Knight, J A; Glendon, G; Mulligan, A M; Cox, A; Brock, I W; Elliott, G; Cross, S S; Pharoah, P P; Dunning, A M; Pooley, K A; Humphreys, M K; Wang, J; Kang, D; Yoo, K-Y; Noh, D-Y; Sangrajrang, S; Gabrieau, V; Brennan, P; McKay, J; Anton-Culver, H; Ziogas, A; Couch, F J; Easton, D F

    2011-01-01

    Background: Somatic mutations in phosphoinositide-3-kinase catalytic subunit alpha (PIK3CA) are frequent in breast tumours and have been associated with oestrogen receptor (ER) expression, human epidermal growth factor receptor-2 overexpression, lymph node metastasis and poor survival. The goal of this study was to evaluate the association between inherited variation in this oncogene and risk of breast cancer. Methods: A single-nucleotide polymorphism from the PIK3CA locus that was associated with breast cancer in a study of Caucasian breast cancer cases and controls from the Mayo Clinic (MCBCS) was genotyped in 5436 cases and 5280 controls from the Cancer Genetic Markers of Susceptibility (CGEMS) study and in 30 949 cases and 29 788 controls from the Breast Cancer Association Consortium (BCAC). Results: Rs1607237 was significantly associated with a decreased risk of breast cancer in MCBCS, CGEMS and all studies of white Europeans combined (odds ratio (OR)=0.97, 95% confidence interval (CI) 0.95–0.99, P=4.6 × 10−3), but did not reach significance in the BCAC replication study alone (OR=0.98, 95% CI 0.96–1.01, P=0.139). Conclusion: Common germline variation in PIK3CA does not have a strong influence on the risk of breast cancer PMID:22033276

  1. Molecular cloning and biochemical characterization of a Drosophila phosphatidylinositol-specific phosphoinositide 3-kinase.

    PubMed

    Linassier, C; MacDougall, L K; Domin, J; Waterfield, M D

    1997-02-01

    Molecular, biochemical and genetic characterization of phosphoinositide 3-kinases (PI3Ks) have identified distinct classes of enzymes involved in processes mediated by activation of cell-surface receptors and in constitutive intracellular protein trafficking events. The latter process appears to involve a PtdIns-specific PI3K first described in yeast as a mutant, vps34, defective in the sorting of newly synthesized proteins from the Golgi to the vacuole. We have identified a representative member of each class of PI3Ks in Drosophila using a PCR-based approach. In the present paper we describe the molecular cloning of a PI3K from Drosophila, P13K_59F, that shows sequence similarity to Vps34. PI3K_59F encodes a protein of 108 kDa co-linear with Vps34 homologues, and with three regions of sequence similarity to other PI3Ks. Biochemical characterization of the enzyme, by expression of the complete coding sequence as a glutathione S-transferase fusion protein in Sf9 cells, demonstrates that PI3K_59F is a PtdIns-specific PI3K that can utilize either Mg2+ or Mn2+. This activity is sensitive to inhibition both by non-ionic detergent (Nonidet P40) and by wortmannin (IC50 10 nM). PI3K_59F, therefore, conserves both the structural and biochemical properties of the Vps34 class of enzymes.

  2. Involvement of phosphoinositide 3-kinases in neutrophil activation and the development of acute lung injury.

    PubMed

    Yum, H K; Arcaroli, J; Kupfner, J; Shenkar, R; Penninger, J M; Sasaki, T; Yang, K Y; Park, J S; Abraham, E

    2001-12-01

    Activated neutrophils contribute to the development and severity of acute lung injury (ALI). Phosphoinositide 3-kinases (PI3-K) and the downstream serine/threonine kinase Akt/protein kinase B have a central role in modulating neutrophil function, including respiratory burst, chemotaxis, and apoptosis. In the present study, we found that exposure of neutrophils to endotoxin resulted in phosphorylation of Akt, activation of NF-kappaB, and expression of the proinflammatory cytokines IL-1beta and TNF-alpha through PI3-K-dependent pathways. In vivo, endotoxin administration to mice resulted in activation of PI3-K and Akt in neutrophils that accumulated in the lungs. The severity of endotoxemia-induced ALI was significantly diminished in mice lacking the p110gamma catalytic subunit of PI3-K. In PI3-Kgamma(-/-) mice, lung edema, neutrophil recruitment, nuclear translocation of NF-kappaB, and pulmonary levels of IL-1beta and TNF-alpha were significantly lower after endotoxemia as compared with PI3-Kgamma(+/+) controls. Among neutrophils that did accumulate in the lungs of the PI3-Kgamma(-/-) mice after endotoxin administration, activation of NF-kappaB and expression of proinflammatory cytokines was diminished compared with levels present in lung neutrophils from PI3-Kgamma(+/+) mice. These results show that PI3-K, and particularly PI3-Kgamma, occupies a central position in regulating endotoxin-induced neutrophil activation, including that involved in ALI.

  3. Class IA phosphoinositide 3-kinases are obligate p85-p110 heterodimers

    PubMed Central

    Geering, Barbara; Cutillas, Pedro R.; Nock, Gemma; Gharbi, Severine I.; Vanhaesebroeck, Bart

    2007-01-01

    Class IA phosphoinositide 3-kinases (PI3Ks) signal downstream of tyrosine kinases and Ras and control a wide variety of biological responses. In mammals, these heterodimeric PI3Ks consist of a p110 catalytic subunit (p110α, p110β, or p110δ) bound to any of five distinct regulatory subunits (p85α, p85β, p55γ, p55α, and p50α, collectively referred to as “p85s”). The relative expression levels of p85 and p110 have been invoked to explain key features of PI3K signaling. For example, free (i.e., non-p110-bound) p85α has been proposed to negatively regulate PI3K signaling by competition with p85/p110 for recruitment to phosphotyrosine docking sites. Using affinity and ion exchange chromatography and quantitative mass spectrometry, we demonstrate that the p85 and p110 subunits are present in equimolar amounts in mammalian cell lines and tissues. No evidence for free p85 or p110 subunits could be obtained. Cell lines contain 10,000–15,000 p85/p110 complexes per cell, with p110β and p110δ being the most prevalent catalytic subunits in nonleukocytes and leukocytes, respectively. These results argue against a role of free p85 in PI3K signaling and provide insights into the nonredundant functions of the different class IA PI3K isoforms. PMID:17470792

  4. A Functional Genetic Screen Identifies the Phosphoinositide 3-kinase Pathway as a Determinant of Resistance to Fibroblast Growth Factor Receptor Inhibitors in FGFR Mutant Urothelial Cell Carcinoma.

    PubMed

    Wang, Liqin; Šuštić, Tonći; Leite de Oliveira, Rodrigo; Lieftink, Cor; Halonen, Pasi; van de Ven, Marieke; Beijersbergen, Roderick L; van den Heuvel, Michel M; Bernards, René; van der Heijden, Michiel S

    2017-01-17

    Activating mutations and translocations of the FGFR3 gene are commonly seen in urothelial cell carcinoma (UCC) of the bladder and urinary tract. Several fibroblast growth factor receptor (FGFR) inhibitors are currently in clinical development and response rates appear promising for advanced UCC. A common problem with targeted therapeutics is intrinsic or acquired resistance of the cancer cells. To find potential drug targets that can act synergistically with FGFR inhibition, we performed a synthetic lethality screen for the FGFR inhibitor AZD4547 using a short hairpin RNA library targeting the human kinome in the UCC cell line RT112 (FGFR3-TACC3 translocation). We identified multiple members of the phosphoinositide 3-kinase (PI3K) pathway and found that inhibition of PIK3CA acts synergistically with FGFR inhibitors. The PI3K inhibitor BKM120 acted synergistically with inhibition of FGFR in multiple UCC and lung cancer cell lines having FGFR mutations. Consistently, we observed an elevated PI3K-protein kinase B pathway activity resulting from epidermal growth factor receptor or Erb-B2 receptor tyrosine kinase 3 reactivation caused by FGFR inhibition as the underlying molecular mechanism of the synergy. Our data show that feedback pathways activated by FGFR inhibition converge on the PI3K pathway. These findings provide a strong rationale to test FGFR inhibitors in combination with PI3K inhibitors in cancers harboring genetic activation of FGFR genes.

  5. Effects of agonist efficacy on desensitization of phosphoinositide hydrolysis mediated by m1 and m3 muscarinic receptors expressed in Chinese hamster ovary cells

    SciTech Connect

    Hu, J.; Wang, S.Z.; el-Fakahany, E.E. )

    1991-06-01

    Muscarinic receptor agonist-induced desensitization of phosphoinositide (PI) hydrolysis and loss of receptors were studied in Chinese hamster ovary (CHO) cells transfected with the m1 and m3 muscarinic receptor genes. Long-term exposure to the full agonist carbamylcholine (CBC) resulted in a time-dependent attenuation of the maximal PI response and a decrease in agonist potency. This desensitization was accompanied by a parallel loss of maximal ligand binding without an alteration of the binding affinity. The time course of both receptor desensitization and down-regulation was similar in m1 and m3 CHO cells. The PI response to the partial agonist McN-A-343 (McN) in m1 cells was more sensitive to desensitization by CBC than the response to the latter agonist, and this desensitization was faster than receptor down-regulation. Desensitization of the PI response to McN was reflected as a decrease in the maximal response without a marked change in potency. McN induced slow desensitization of the PI response to CBC but a much faster desensitization of its own response. Our data provide evidence that although muscarinic agonist-induced desensitization of PI hydrolysis in CHO cells is due mainly to loss of receptors, there are other important factors which play a role in this process, e.g., receptor-effector uncoupling. The relative contribution of these different mechanisms depends on the efficacy of the agonists used for the receptor desensitization and activation steps.

  6. TULP3 bridges the IFT-A complex and membrane phosphoinositides to promote trafficking of G protein-coupled receptors into primary cilia.

    PubMed

    Mukhopadhyay, Saikat; Wen, Xiaohui; Chih, Ben; Nelson, Christopher D; Lane, William S; Scales, Suzie J; Jackson, Peter K

    2010-10-01

    Primary cilia function as a sensory signaling compartment in processes ranging from mammalian Hedgehog signaling to neuronal control of obesity. Intraflagellar transport (IFT) is an ancient, conserved mechanism required to assemble cilia and for trafficking within cilia. The link between IFT, sensory signaling, and obesity is not clearly defined, but some novel monogenic obesity disorders may be linked to ciliary defects. The tubby mouse, which presents with adult-onset obesity, arises from mutation in the Tub gene. The tubby-like proteins comprise a related family of poorly understood proteins with roles in neural development and function. We find that specific Tubby family proteins, notably Tubby-like protein 3 (TULP3), bind to the IFT-A complex. IFT-A is linked to retrograde ciliary transport, but, surprisingly, we find that the IFT-A complex has a second role directing ciliary entry of TULP3. TULP3 and IFT-A, in turn, promote trafficking of a subset of G protein-coupled receptors (GPCRs), but not Smoothened, to cilia. Both IFT-A and membrane phosphoinositide-binding properties of TULP3 are required for ciliary GPCR localization. TULP3 and IFT-A proteins both negatively regulate Hedgehog signaling in the mouse embryo, and the TULP3-IFT-A interaction suggests how these proteins cooperate during neural tube patterning.

  7. Phosphoinositide 3-kinase enables phagocytosis of large particles by terminating actin assembly through Rac/Cdc42 GTPase-activating proteins

    PubMed Central

    Schlam, Daniel; Bagshaw, Richard D.; Freeman, Spencer A.; Collins, Richard F.; Pawson, Tony; Fairn, Gregory D.; Grinstein, Sergio

    2015-01-01

    Phagocytosis is responsible for the elimination of particles of widely disparate sizes, from large fungi or effete cells to small bacteria. Though superficially similar, the molecular mechanisms involved differ: engulfment of large targets requires phosphoinositide 3-kinase (PI3K), while that of small ones does not. Here, we report that inactivation of Rac and Cdc42 at phagocytic cups is essential to complete internalization of large particles. Through a screen of 62 RhoGAP-family members, we demonstrate that ARHGAP12, ARHGAP25 and SH3BP1 are responsible for GTPase inactivation. Silencing these RhoGAPs impairs phagocytosis of large targets. The GAPs are recruited to large—but not small—phagocytic cups by products of PI3K, where they synergistically inactivate Rac and Cdc42. Remarkably, the prominent accumulation of phosphatidylinositol 3,4,5-trisphosphate characteristic of large-phagosome formation is less evident during phagocytosis of small targets, accounting for the contrasting RhoGAP distribution and the differential requirement for PI3K during phagocytosis of dissimilarly sized particles. PMID:26465210

  8. WNT16B is a new marker of cellular senescence that regulates p53 activity and the phosphoinositide 3-kinase/AKT pathway.

    PubMed

    Binet, Romuald; Ythier, Damien; Robles, Ana I; Collado, Manuel; Larrieu, Delphine; Fonti, Claire; Brambilla, Elisabeth; Brambilla, Christian; Serrano, Manuel; Harris, Curtis C; Pedeux, Rémy

    2009-12-15

    Senescence is a tumor suppression mechanism that is induced by several stimuli, including oncogenic signaling and telomere shortening, and controlled by the p53/p21(WAF1) signaling pathway. Recently, a critical role for secreted factors has emerged, suggesting that extracellular signals are necessary for the onset and maintenance of senescence. Conversely, factors secreted by senescent cells may promote tumor growth. By using expression profiling techniques, we searched for secreted factors that were overexpressed in fibroblasts undergoing replicative senescence. We identified WNT16B, a member of the WNT family of secreted proteins. We found that WNT16B is overexpressed in cells undergoing stress-induced premature senescence and oncogene-induced senescence in both MRC5 cell line and the in vivo murine model of K-Ras(V12)-induced senescence. By small interfering RNA experiments, we observed that both p53 and WNT16B are necessary for the onset of replicative senescence. WNT16B expression is required for the full transcriptional activation of p21(WAF1). Moreover, WNT16B regulates activation of the phosphoinositide 3-kinase (PI3K)/AKT pathway. Overall, we identified WNT16B as a new marker of senescence that regulates p53 activity and the PI3K/AKT pathway and is necessary for the onset of replicative senescence.

  9. Phosphoinositide 3-Kinase Gamma Contributes to Neuroinflammation in a Rat Model of Surgical Brain Injury

    PubMed Central

    Huang, Lei; Sherchan, Prativa; Wang, Yuechun; Reis, Cesar; Applegate, Richard L.; Tang, Jiping

    2015-01-01

    Neuroinflammation plays an important role in the pathophysiology of surgical brain injury (SBI). Phosphoinositide 3-kinase gamma (PI3Kγ), predominately expressed in immune and endothelial cells, activates multiple inflammatory responses. In the present study, we investigated the role of PI3Kγ and PI3Kγ-activated phosphodiesterase 3B (PDE3B) in neuroinflammation in a rat model of SBI. One hundred and fifty-two male Sprague Dawley rats (weight 280–350 g) were subjected to a partial right frontal lobe corticotomy model of SBI. A PI3Kγ pharmacological inhibitor (AS252424 or AS605240) was administered intraperitoneally. PI3Kγ siRNA, human recombinant active-PI3Kγ protein, or human recombinant active-PDE3B protein were administered intracerebroventricularly. Post-SBI assessments included neurobehavioral tests, brain water content, Western blot, and immunohistochemistry. Endogenous PI3Kγ levels were increased within peri-resection brain tissues after SBI, accompanied by increased brain water content and neurological functional deficits. There was a trend toward increased endogenous PDE3B phosphorylation after SBI. The selective PI3Kγ inhibitors AS252424 and AS605240 reduced brain water content surrounding corticotomy and improved neurological function after SBI. SBI increased and PI3Kγ inhibitor decreased levels of myeloperoxidase, cluster of differentiation 3, mast cell degranulation, E-selectin, and IL-1 in peri-resection brain tissues. Direct administration of human recombinant active-PI3Kγ protein and active-PDE3B protein countered the protective effect of AS252424. PI3Kγ siRNA reduced PI3Kγ levels, decreased brain water content within peri-resection brain tissues, and improved neurological function after SBI. Collectively, our findings suggest that PI3Kγ contributed to neuroinflammation after SBI. The use of selective PI3Kγ inhibitors may be a novel approach to ameliorating SBI via their anti-inflammation effects. SIGNIFICANCE STATEMENT Life-saving or

  10. Phosphoinositide hydrolysis and insulin release from isolated perifused rat islets. Studies with glucose.

    PubMed

    Zawalich, W S; Zawalich, K C

    1988-09-01

    The ability of glucose to promote the hydrolysis of prelabeled [2-3H]inositol-containing phosphoinositides (PI) was assessed by measuring the efflux of 3H in response to glucose and the accumulation of labeled inositol phosphates. The inclusion of nonradioactive inositol (1 mM) in the perifusion medium dramatically improved our ability to monitor glucose-induced increases in 3H efflux. Efflux studies with this method revealed the following. 1) 3H efflux is significantly greater at 7 than at 2.75 mM glucose, and this parallels a small but significant increase in insulin secretion. 2) D-manno-Heptulose reduces 3H efflux with 7 mM glucose to a level approximating that seen in the presence of 2.75 mM glucose and has no effect on 3H efflux with 2.75 mM glucose. 3) In the presence of 20 mM glucose plus 1 mM inositol, 3H efflux is rapid and biphasic, a response that parallels the timing and amplitude of the biphasic pattern of insulin secretion. Direct measurements of labeled inositol and inositol phosphate levels in islets revealed the following. 4) After 50 min of perifusion with 2.75 or 7 mM glucose, labeled inositol phosphates were significantly greater with 7 mM glucose. 5) In response to 20 mM glucose alone, islet levels of free inositol, inositol monophosphate (IP1), and inositol bisphosphate (IP2) increased. 6) In response to 20 mM glucose plus 1 mM cold inositol, islet levels of free inositol increased, whereas islet levels of IP1, IP2, and inositol trisphosphate (IP3) were reduced compared with values obtained with 20 mM glucose alone.(ABSTRACT TRUNCATED AT 250 WORDS)

  11. Supramolecular nanoparticles that target phosphoinositide-3-kinase overcome insulin resistance and exert pronounced antitumor efficacy.

    PubMed

    Kulkarni, Ashish A; Roy, Bhaskar; Rao, Poornima S; Wyant, Gregory A; Mahmoud, Ayaat; Ramachandran, Madhumitha; Sengupta, Poulomi; Goldman, Aaron; Kotamraju, Venkata Ramana; Basu, Sudipta; Mashelkar, Raghunath A; Ruoslahti, Erkki; Dinulescu, Daniela M; Sengupta, Shiladitya

    2013-12-01

    The centrality of phosphoinositide-3-kinase (PI3K) in cancer etiology is well established, but clinical translation of PI3K inhibitors has been limited by feedback signaling, suboptimal intratumoral concentration, and an insulin resistance "class effect." This study was designed to explore the use of supramolecular nanochemistry for targeting PI3K to enhance antitumor efficacy and potentially overcome these limitations. PI3K inhibitor structures were rationally modified using a cholesterol-based derivative, facilitating supramolecular nanoassembly with L-α-phosphatidylcholine and DSPE-PEG [1,2-distearoyl-sn-glycero-3-phosphoethanolamine-N-[amino(polythylene glycol)]. The supramolecular nanoparticles (SNP) that were assembled were physicochemically characterized and functionally evaluated in vitro. Antitumor efficacy was quantified in vivo using 4T1 breast cancer and K-Ras(LSL/+)/Pten(fl/fl) ovarian cancer models, with effects on glucose homeostasis evaluated using an insulin sensitivity test. The use of PI103 and PI828 as surrogate molecules to engineer the SNPs highlighted the need to keep design principles in perspective; specifically, potency of the active molecule and the linker chemistry were critical principles for efficacy, similar to antibody-drug conjugates. We found that the SNPs exerted a temporally sustained inhibition of phosphorylation of Akt, mTOR, S6K, and 4EBP in vivo. These effects were associated with increased antitumor efficacy and survival as compared with PI103 and PI828. Efficacy was further increased by decorating the nanoparticle surface with tumor-homing peptides. Notably, the use of SNPs abrogated the insulin resistance that has been associated widely with other PI3K inhibitors. This study provides a preclinical foundation for the use of supramolecular nanochemistry to overcome current challenges associated with PI3K inhibitors, offering a paradigm for extension to other molecularly targeted therapeutics being explored for cancer

  12. Phosphoinositides regulate membrane-dependent actin assembly by latex bead phagosomes.

    PubMed

    Defacque, Hélène; Bos, Evelyne; Garvalov, Boyan; Barret, Cécile; Roy, Christian; Mangeat, Paul; Shin, Hye-Won; Rybin, Vladimir; Griffiths, Gareth

    2002-04-01

    Actin assembly on membrane surfaces is an elusive process in which several phosphoinositides (PIPs) have been implicated. We have reconstituted actin assembly using a defined membrane surface, the latex bead phagosome (LBP), and shown that the PI(4,5)P(2)-binding proteins ezrin and/or moesin were essential for this process (). Here, we provide several lines of evidence that both preexisting and newly synthesized PI(4,5)P(2), and probably PI(4)P, are essential for phagosomal actin assembly; only these PIPs were routinely synthesized from ATP during in vitro actin assembly. Treatment of LBP with phospholipase C or with adenosine, an inhibitor of type II PI 4-kinase, as well as preincubation with anti-PI(4)P or anti-PI(4,5)P(2) antibodies all inhibited this process. Incorporation of extra PI(4)P or PI(4,5)P(2) into the LBP membrane led to a fivefold increase in the number of phagosomes that assemble actin. An ezrin mutant mutated in the PI(4,5)P(2)-binding sites was less efficient in binding to LBPs and in reconstituting actin assembly than wild-type ezrin. Our data show that PI 4- and PI 5-kinase, and under some conditions also PI 3-kinase, activities are present on LBPs and can be activated by ATP, even in the absence of GTP or cytosolic components. However, PI 3-kinase activity is not required for actin assembly, because the process was not affected by PI 3-kinase inhibitors. We suggest that the ezrin-dependent actin assembly on the LBP membrane may require active turnover of D4 and D5 PIPs on the organelle membrane.

  13. Vasopressin stimulates phosphoinositide hydrolysis in LLC-PK sub 1 cells

    SciTech Connect

    Garg, L.C.; Kapturczak, E.; Steiner, M.; Phillips, M.I. )

    1988-10-01

    LLC-PK{sub 1} cells have been shown to possess vasopressin (VP) receptors (V{sub 2} type) that are coupled to adenyl cyclase to generate adenosine 3,5{prime}-cyclic monophosphate (cAMP). To determine whether VP also stimulates phosphoinositide (PI) hydrolysis to generate inositol phosphate (IP) and diacylglycerol (DAG) messenger system in LLC-PK{sub 1} cells, the authors measured the release of IP in LLC-PK{sub 1} cells in the absence and presence of various concentrations of VP. In addition, the authors also determined the effect of an increase in osmolality of the incubation medium on VP-stimulated PI hydrolysis in LLC-PK{sub 1} cells. The methods involved the incubation of LLC-PK{sub 1} cells with ({sup 3}H)inositol for its incorporation into membrane PI and the measurement of the release of ({sup 3}H)IP in the presence of LiCl which prevents dephosphorylation. The osmolality of the incubation media was increased from 300 to 600, 900, and 1,200 mosmol/kgH{sub 2}O by the addition of NaCl and urea. In an isosmotic incubation medium, VP (10{sup {minus}8} M) produced a 100% increase in PI hydrolysis in LLC-PK{sub 1} cells. The effect was much greater at higher concentrations of the hormone. The results suggest that in LLC-PK{sub 1} cells, VP stimulates PI hydrolysis probably through VP receptors that are coupled to phospholipase C. Furthermore, VP-stimulated PI messenger system in LLC-PK{sub 1} cells is influenced by osmolality of the extracellular fluid.

  14. PHOSPHOINOSITIDE 3-KINASE REGULATES THE ROLE OF RETROMER IN TRANSCYTOSIS OF THE POLYMERIC IMMUNOGLOBULIN RECEPTOR

    PubMed Central

    Vergés, Marcel; Sebastián, Isabel; Mostov, Keith E.

    2007-01-01

    Retromer is a multimeric protein complex that mediates intracellular receptor sorting. One of the roles of retromer is to promote transcytosis of the polymeric immunoglobulin receptor (pIgR) and its ligand polymeric immunoglobulin A (pIgA) in polarized epithelial cells. In Madin-Darby Canine Kidney (MDCK) cells, overexpression of Vps35, the retromer subunit key for cargo recognition, restores transcytosis to a pIgR mutant that is normally degraded. Here we show that pIgA transcytosis was not restored in these cells when treated with the specific phosphoinositide 3-kinase (PI3K) inhibitor LY294002. Likewise, the decrease in pIgA transcytosis by wild-type pIgR seen upon PI3K inhibition was not reverted by Vps35 overexpression. PI3K inhibition reduced membrane association of sorting-nexins (SNX) 1 and 2, which constitute the retromer subcomplex involved in membrane deformation, while association of the Vps35-Vps26-Vps29 subcomplex, involved in cargo recognition, remained virtually unaffected. Colocalization between the two retromer subcomplexes was reduced upon the treatment. Whereas the interaction among the subunits of the Vps35-Vps26-Vps29 subcomplex remained unchanged, less Vps35 was found associated with pIgR upon PI3K inhibition. In addition, colocalization of internalized pIgA with subunits of both retromer subcomplexes throughout the transcytotic pathway was substantially reduced by LY294002 treatment. These data implicate PI3K in controlling retromer’s role in pIgR-pIgA transcytosis. PMID:17184770

  15. Role of phosphoinositide 3-kinase in the pathogenesis of acute pancreatitis

    PubMed Central

    Lupia, Enrico; Pigozzi, Luca; Goffi, Alberto; Hirsch, Emilio; Montrucchio, Giuseppe

    2014-01-01

    A large body of experimental and clinical data supports the notion that inflammation in acute pancreatitis has a crucial role in the pathogenesis of local and systemic damage and is a major determinant of clinical severity. Thus, research has recently focused on molecules that can regulate the inflammatory processes, such as phosphoinositide 3-kinases (PI3Ks), a family of lipid and protein kinases involved in intracellular signal transduction. Studies using genetic ablation or pharmacologic inhibitors of different PI3K isoforms, in particular the class I PI3Kδ and PI3Kγ, have contributed to a greater understanding of the roles of these kinases in the modulation of inflammatory and immune responses. Recent data suggest that PI3Ks are also involved in the pathogenesis of acute pancreatitis. Activation of the PI3K signaling pathway, and in particular of the class IB PI3Kγ isoform, has a significant role in those events which are necessary for the initiation of acute pancreatic injury, namely calcium signaling alteration, trypsinogen activation, and nuclear factor-κB transcription. Moreover, PI3Kγ is instrumental in modulating acinar cell apoptosis, and regulating local neutrophil infiltration and systemic inflammatory responses during the course of experimental acute pancreatitis. The availability of PI3K inhibitors selective for specific isoforms may provide new valuable therapeutic strategies to improve the clinical course of this disease. This article presents a brief summary of PI3K structure and function, and highlights recent advances that implicate PI3Ks in the pathogenesis of acute pancreatitis. PMID:25386068

  16. Selective Inhibition of Phosphoinositide 3-Kinase p110α Preserves Lymphocyte Function*

    PubMed Central

    So, Lomon; Yea, Sung Su; Oak, Jean S.; Lu, Mengrou; Manmadhan, Arun; Ke, Qiao Han; Janes, Matthew R.; Kessler, Linda V.; Kucharski, Jeff M.; Li, Lian-Sheng; Martin, Michael B.; Ren, Pingda; Jessen, Katti A.; Liu, Yi; Rommel, Christian; Fruman, David A.

    2013-01-01

    Class IA phosphoinositide 3-kinase (PI3K) is essential for clonal expansion, differentiation, and effector function of B and T lymphocytes. The p110δ catalytic isoform of PI3K is highly expressed in lymphocytes and plays a prominent role in B and T cell responses. Another class IA PI3K catalytic isoform, p110α, is a promising drug target in cancer but little is known about its function in lymphocytes. Here we used highly selective inhibitors to probe the function of p110α in lymphocyte responses in vitro and in vivo. p110α inhibition partially reduced B cell receptor (BCR)-dependent AKT activation and proliferation, and diminished survival supported by the cytokines BAFF and IL-4. Selective p110δ inhibition suppressed B cell responses much more strongly, yet maximal suppression was achieved by targeting multiple PI3K isoforms. In mouse and human T cells, inhibition of single class IA isoforms had little effect on proliferation, whereas pan-class I inhibition did suppress T cell expansion. In mice, selective p110α inhibition using the investigational agent MLN1117 (previously known as INK1117) did not disrupt the marginal zone B cell compartment and did not block T cell-dependent germinal center formation. In contrast, the selective p110δ inhibitor IC87114 strongly suppressed germinal center formation and reduced marginal zone B cell numbers, similar to a pan-class I inhibitor. These findings show that although acute p110α inhibition partially diminishes AKT activation, selective p110α inhibitors are likely to be less immunosuppressive in vivo compared with p110δ or pan-class I inhibitors. PMID:23275335

  17. Selective inhibition of phosphoinositide 3-kinase p110α preserves lymphocyte function.

    PubMed

    So, Lomon; Yea, Sung Su; Oak, Jean S; Lu, Mengrou; Manmadhan, Arun; Ke, Qiao Han; Janes, Matthew R; Kessler, Linda V; Kucharski, Jeff M; Li, Lian-Sheng; Martin, Michael B; Ren, Pingda; Jessen, Katti A; Liu, Yi; Rommel, Christian; Fruman, David A

    2013-02-22

    Class IA phosphoinositide 3-kinase (PI3K) is essential for clonal expansion, differentiation, and effector function of B and T lymphocytes. The p110δ catalytic isoform of PI3K is highly expressed in lymphocytes and plays a prominent role in B and T cell responses. Another class IA PI3K catalytic isoform, p110α, is a promising drug target in cancer but little is known about its function in lymphocytes. Here we used highly selective inhibitors to probe the function of p110α in lymphocyte responses in vitro and in vivo. p110α inhibition partially reduced B cell receptor (BCR)-dependent AKT activation and proliferation, and diminished survival supported by the cytokines BAFF and IL-4. Selective p110δ inhibition suppressed B cell responses much more strongly, yet maximal suppression was achieved by targeting multiple PI3K isoforms. In mouse and human T cells, inhibition of single class IA isoforms had little effect on proliferation, whereas pan-class I inhibition did suppress T cell expansion. In mice, selective p110α inhibition using the investigational agent MLN1117 (previously known as INK1117) did not disrupt the marginal zone B cell compartment and did not block T cell-dependent germinal center formation. In contrast, the selective p110δ inhibitor IC87114 strongly suppressed germinal center formation and reduced marginal zone B cell numbers, similar to a pan-class I inhibitor. These findings show that although acute p110α inhibition partially diminishes AKT activation, selective p110α inhibitors are likely to be less immunosuppressive in vivo compared with p110δ or pan-class I inhibitors.

  18. Changes in phosphoinositide turnover, Ca sup 2+ mobilization, and protein phosphorylation in platelets from NIDDM patients

    SciTech Connect

    Ishii, H.; Umeda, F.; Hashimoto, T.; Nawata, H. )

    1990-12-01

    Enhanced platelet functions have been demonstrated in patients with non-insulin-dependent diabetes mellitus (NIDDM). This study evaluated abnormalities in platelet signal transduction in diabetic patients, including turnover of phosphoinositides, mobilization of intracellular Ca2+, and phosphorylation of 20,000- and 47,000-Mr proteins (P20 and P47). Washed platelets were obtained from 6 patients with NIDDM whose platelet aggregation rates were abnormally elevated (DM-A group), 11 NIDDM patients with normal platelet aggregation rates (DM-B group), and 8 age-matched healthy control subjects. The mass and specific radioactivity of phosphatidylinositol 4,5-bisphosphate (PIP2), phosphatidylinositol 4-phosphate (PIP), phosphatidylinositol (PI), and phosphatidic acid (PA) in 32P-labeled platelets were not different among the three groups. Hydrolysis of PIP2, PIP, and PI; accumulation of PA; and phosphorylation of P20 in platelets stimulated by 0.05 U/ml thrombin were significantly increased in the DM-A group compared with the control or DM-B group. There was no difference in P47 phosphorylation among the three groups. On the contrary, P20 and P47 phosphorylation induced by 50 nM of 12-O-tetradecanoylphorbol-13-acetate, an activator of protein kinase C, was significantly decreased in the DM-A group. Additionally, the intracellular free Ca2+ concentration (( Ca2+)i) was measured with the fluorescent Ca2+ indicator fura 2. Although the basal (Ca2+)i value was similar in the three groups, the rise in (Ca2+)i induced by 0.05 U/ml thrombin in the presence and the absence of extracellular Ca2+ was significantly higher in the DM-A group than the other groups.

  19. Phosphoinositides play differential roles in regulating phototropin1- and phototropin2-mediated chloroplast movements in Arabidopsis.

    PubMed

    Aggarwal, Chhavi; Labuz, Justyna; Gabryś, Halina

    2013-01-01

    Phototropins are UVA/blue-light receptors involved in controlling the light-dependent physiological responses which serve to optimize the photosynthetic activity of plants and promote growth. The phototropin-induced phosphoinositide (PI) metabolism has been shown to be essential for stomatal opening and phototropism. However, the role of PIs in phototropin-induced chloroplast movements remains poorly understood. The aim of this work is to determine which PI species are involved in the control of chloroplast movements in Arabidopsis and the nature of their involvement. We present the effects of the inactivation of phospholipase C (PLC), PI3-kinase (PI3K) and PI4-kinase (PI4K) on chloroplast relocations in Arabidopsis. The inhibition of the phosphatidylinositol 4,5-bisphospahte [PI(4,5)P2]-PLC pathway, using neomycin and U73122, suppressed the phot2-mediated chloroplast accumulation and avoidance responses, without affecting movement responses controlled by phot1. On the other hand, PI3K and PI4K activities are more restricted to phot1- and phot2-induced weak-light responses. The inactivation of PI3K and PI4K by wortmannin and LY294002 severely affected the weak blue-light-activated accumulation response but had little effect on the strong blue-light-activated avoidance response. The inhibitory effect observed with PI metabolism inhibitors is, at least partly, due to a disturbance in Ca(2+) ((c)) signaling. Using the transgenic aequorin system, we show that the application of these inhibitors suppresses the blue-light-induced transient Ca(2+) ((c)) rise. These results demonstrate the importance of PIs in chloroplast movements, with the PI(4,5)P2-PLC pathway involved in phot2 signaling while PI3K and PI4K are required for the phot1- and phot2-induced accumulation response. Our results suggest that these PIs modulate cytosolic Ca(2+) signaling during movements.

  20. IQGAP Proteins Reveal an Atypical Phosphoinositide (aPI) Binding Domain with a Pseudo C2 Domain Fold

    SciTech Connect

    Dixon, Miles J.; Gray, Alexander; Schenning, Martijn; Agacan, Mark; Tempel, Wolfram; Tong, Yufeng; Nedyalkova, Lyudmila; Park, Hee-Won; Leslie, Nicholas R.; van Aalten, Daan M.F.; Downes, C. Peter; Batty, Ian H.

    2012-10-16

    Class I phosphoinositide (PI) 3-kinases act through effector proteins whose 3-PI selectivity is mediated by a limited repertoire of structurally defined, lipid recognition domains. We describe here the lipid preferences and crystal structure of a new class of PI binding modules exemplified by select IQGAPs (IQ motif containing GTPase-activating proteins) known to coordinate cellular signaling events and cytoskeletal dynamics. This module is defined by a C-terminal 105-107 amino acid region of which IQGAP1 and -2, but not IQGAP3, binds preferentially to phosphatidylinositol 3,4,5-trisphosphate (PtdInsP3). The binding affinity for PtdInsP3, together with other, secondary target-recognition characteristics, are comparable with those of the pleckstrin homology domain of cytohesin-3 (general receptor for phosphoinositides 1), an established PtdInsP3 effector protein. Importantly, the IQGAP1 C-terminal domain and the cytohesin-3 pleckstrin homology domain, each tagged with enhanced green fluorescent protein, were both re-localized from the cytosol to the cell periphery following the activation of PI 3-kinase in Swiss 3T3 fibroblasts, consistent with their common, selective recognition of endogenous 3-PI(s). The crystal structure of the C-terminal IQGAP2 PI binding module reveals unexpected topological similarity to an integral fold of C2 domains, including a putative basic binding pocket. We propose that this module integrates select IQGAP proteins with PI 3-kinase signaling and constitutes a novel, atypical phosphoinositide binding domain that may represent the first of a larger group, each perhaps structurally unique but collectively dissimilar from the known PI recognition modules.

  1. Phosphoinositides Are Involved in Control of the Glucose-Dependent Growth Resumption That Follows the Transition Phase in Streptomyces lividans▿

    PubMed Central

    Chouayekh, H.; Nothaft, H.; Delaunay, S.; Linder, M.; Payrastre, B.; Seghezzi, N.; Titgemeyer, F.; Virolle, M. J.

    2007-01-01

    The interruption of the sblA gene of Streptomyces lividans was previously shown to lead to relief of glucose repression of the normally strongly glucose-repressed α-amylase gene. In addition to this relief, an early entry into stationary phase was observed when cells were grown in a minimal medium containing glucose as the main carbon source. In this study, we established that this mutant does not resume growth after the transition phase when cultured in the complex glucose-rich liquid medium R2YE and sporulates much earlier than the wild-type strain when plated on solid R2YE. These phenotypic differences, which were abolished when glucose was omitted from the R2YE medium, correlated with a reduced glucose uptake ability of the sblA mutant strain. sblA was shown to encode a bifunctional enzyme possessing phospholipase C-like and phosphoinositide phosphatase activities. The cleavage of phosphoinositides by SblA seems necessary to trigger the glucose-dependent renewed growth that follows the transition phase. The transient expression of sblA that takes place just before the transition phase is consistent with a regulatory role for this gene during the late stages of growth. The tight temporal control of sblA expression was shown to depend on two operator sites. One, located just upstream of the −35 promoter region, likely constitutes a repressor binding site. The other, located 170 bp downstream of the GTG sblA translational start codon, may be involved in the regulation of the degradation of the sblA transcript. This study suggests that phosphoinositides constitute important regulatory molecules in Streptomyces, as they do in eukaryotes. PMID:17122350

  2. Hepatoprotective Effect of Quercetin on Endoplasmic Reticulum Stress and Inflammation after Intense Exercise in Mice through Phosphoinositide 3-Kinase and Nuclear Factor-Kappa B

    PubMed Central

    Tang, Yuhan; Li, Juan; Gao, Chao; Xu, Yanyan; Li, Yanyan; Yu, Xiao; Wang, Jing; Liu, Liegang

    2016-01-01

    The mechanisms underlying intense exercise-induced liver damage and its potential treatments remain unclear. We explored the hepatoprotection and mechanisms of quercetin, a naturally occurring flavonoid, in strenuous exercise-derived endoplasmic reticulum stress (ERS) and inflammation. Intense exercise (28 m/min at a 5° slope for 90 min) resulted in the leakage of aminotransferases in the BALB/C mice. The hepatic ultrastructural malformations and oxidative stress levels were attenuated by quercetin (100 mg/kg·bw). Intense exercise and thapsigargin- (Tg-) induced ERS (glucose-regulated protein 78, GRP78) and inflammatory cytokines levels (IL-6 and TNF-α) were decreased with quercetin. Furthermore, quercetin resulted in phosphoinositide 3-kinase (PI3K) induction, Ca2+ restoration, and blockade of the activities of Jun N-terminal kinase (JNK), activating transcription factor 6 (ATF6) and especially NF-κB (p65 and p50 nuclear translocation). A PI3K inhibitor abrogated the protection of quercetin on ERS and inflammation of mouse hepatocytes. SP600125 (JNK inhibitor), AEBSF (ATF6 inhibitor), and especially PDTC (NF-κB inhibitor) enhanced the quercetin-induced protection against Tg stimulation. Collectively, intense exercise-induced ERS and inflammation were attenuated by quercetin. PI3K/Akt activation and JNK, ATF6, and especially NF-κB suppression were involved in the protection. Our results highlight a novel preventive strategy for treating ERS and inflammation-mediated liver damage induced by intense exercise using natural phytochemicals. PMID:27504150

  3. Nitric oxide decreases subventricular zone stem cell proliferation by inhibition of epidermal growth factor receptor and phosphoinositide-3-kinase/Akt pathway.

    PubMed

    Torroglosa, Ana; Murillo-Carretero, Maribel; Romero-Grimaldi, Carmen; Matarredona, Esperanza R; Campos-Caro, Antonio; Estrada, Carmen

    2007-01-01

    Nitric oxide (NO) inhibits proliferation of subventricular zone (SVZ) neural precursor cells in adult mice in vivo under physiological conditions. The mechanisms underlying this NO effect have now been investigated using SVZ-derived neural stem cells, which generate neurospheres in vitro when stimulated by epidermal growth factor (EGF). In these cultures, NO donors decreased the number of newly formed neurospheres as well as their size, which indicates that NO was acting on the neurosphere-forming neural stem cells and the daughter neural progenitors. The effect of NO was cytostatic, not proapoptotic, and did not involve cGMP synthesis. Neurosphere cells expressed the neuronal and endothelial isoforms of NO synthase (NOS) and produced NO in culture. Inhibition of NOS activity by N(omega)-nitro-L-arginine methylester (L-NAME) promoted neurosphere formation and growth, thus revealing an autocrine/paracrine action of NO on the neural precursor cells. Both exogenous and endogenous NO impaired the EGF-induced activation of the EGF receptor (EGFR) tyrosine kinase and prevented the EGF-induced Akt phosphorylation in neurosphere cells. Inhibition of the phosphoinositide-3-kinase (PI3-K)/Akt pathway by LY294002 significantly reduced the number of newly formed neurospheres, which indicates that this is an essential pathway for neural stem cell self-renewal. Chronic administration of l-NAME to adult mice enhanced phospho-Akt staining in the SVZ and reduced nuclear p27(Kip1) in the SVZ and olfactory bulb. The inhibition of EGFR and PI3-K pathway by NO explains, at least in part, its antimitotic effect on neurosphere cells and may be a mechanism involved in the physiological role of NO as a negative regulator of SVZ neurogenesis in adult mice.

  4. Modulation of membrane phosphoinositide dynamics by the phosphatidylinositide 4-kinase activity of the Legionella LepB effector.

    PubMed

    Dong, Na; Niu, Miao; Hu, Liyan; Yao, Qing; Zhou, Rui; Shao, Feng

    2016-12-12

    Legionella pneumophila, the causative bacterium for Legionnaires' disease, hijacks host membrane trafficking for the maturation of the Legionella-containing vacuole (LCV). The LCV membrane mainly contains PtdIns4P, which is important for anchoring many secreted Legionella effectors onto the LCV. Here, we identify a cryptic functional domain (LepB_NTD) preceding the well-characterized RabGAP domain in the Legionella Dot/Icm type IV secretion system effector LepB. LepB_NTD alone is toxic to yeast and can disrupt the Golgi in mammalian cells. The crystal structure reveals an unexpected kinase fold and catalytic motif important for LepB_NTD function in eukaryotes. Cell biology-guided biochemical analyses uncovered a lipid kinase activity in LepB_NTD that specifically converts PtdIns3P into PtdIns(3,4)P2. PtdIns(3,4)P2 is efficiently hydrolysed into PtdIns4P by another Dot/Icm effector SidF that is known to possess phosphoinositide phosphatase activity. Consistently, SidF is capable of counteracting the cellular functions of LepB_NTD. Genetic analyses show a requirement for LepB kinase activity as well as lipid phosphatase activity of SidF for PtdIns4P biosynthesis on the LCV membrane. Our study identifies an unprecedented phosphatidylinositide 4-kinase activity from bacteria and highlights a sophisticated manipulation of host phosphoinositide metabolism by a bacterial pathogen.

  5. Effect of aging on alpha-1 adrenergic stimulation of phosphoinositide hydrolysis in various regions of rat brain

    SciTech Connect

    Burnett, D.M.; Bowyer, J.F.; Masserano, J.M.; Zahniser, N.R. )

    1990-12-01

    The effects of aging were examined on the ability of alpha-1 adrenergic receptor agonists to stimulate phosphoinositide hydrolysis in three brain regions. Tissue minces of thalamus, cerebral cortex and hippocampus from 3-, 18- and 28-month-old male Fischer 344 rats were prelabeled with ({sup 3}H)myoinositol. Exposure of these prelabeled minces to phenylephrine and (-)-norepinephrine revealed that accumulation of ({sup 3}H)inositol phosphates was selectively reduced by 20 to 30% in the thalamus and cerebral cortex of the oldest age group. Analysis of concentration-response and competition binding curves indicated that this decrease was due to diminished agonist efficacy rather than diminished receptor affinity. The reduction in responsiveness to phenylephrine and (-)-norepinephrine in the cerebral cortex and the lack of any changes in the hippocampus parallel previously reported changes in the density of alpha-1 adrenergic receptors with aging. These data indicate that the ability of alpha-1 adrenergic receptor agonists to stimulate phosphoinositide hydrolysis is reduced in some, but not all, brain regions of aged Fischer 344 rats.

  6. Acadesine Inhibits Tissue Factor Induction and Thrombus Formation by Activating the Phosphoinositide 3-Kinase/Akt Signaling Pathway

    PubMed Central

    Zhang, Weiyu; Wang, Jianguo; Wang, Huan; Tang, Rong; Belcher, John D.; Viollet, Benoit; Geng, Jian-Guo; Zhang, Chunxiang; Wu, Chaodong; Slungaard, Arne; Zhu, Chuhong; Huo, Yuqing

    2013-01-01

    Objective Acadesine, an adenosine-regulating agent and activator of AMP-activated protein kinase, has been shown to possess antiinflammatory activity. This study investigated whether and how acadesine inhibits tissue factor (TF) expression and thrombus formation. Methods and Results Human umbilical vein endothelial cells and human peripheral blood monocytes were stimulated with lipopolysaccharide to induce TF expression. Pretreatment with acadesine dramatically suppressed the clotting activity and expression of TF (protein and mRNA). These inhibitory effects of acadesine were unchanged for endothelial cells treated with ZM241385 (a specific adenosine A2A receptor antagonist) or AMP-activated protein kinase inhibitor compound C, and in macrophages lacking adenosine A2A receptor or α1–AMP-activated protein kinase. In endothelial cells and macrophages, acadesine activated the phosphoinositide 3-kinase/Akt signaling pathway, reduced the activity of mitogen-activated protein kinases, and consequently suppressed TF expression by inhibiting the activator protein-1 and NF-κB pathways. In mice, acadesine suppressed lipopolysaccharide-mediated increases in blood coagulation, decreased TF expression in atherosclerotic lesions, and reduced deep vein thrombus formation. Conclusion Acadesine inhibits TF expression and thrombus formation by activating the phosphoinositide 3-kinase/Akt pathway. This novel finding implicates acadesine as a potentially useful treatment for many disorders associated with thrombotic pathology, such as angina pain, deep vein thrombosis, and sepsis. PMID:20185792

  7. Phosphoinositide 3-kinase p110δ promotes lumen formation through enhancement of apico-basal polarity and basal membrane organization

    PubMed Central

    Sar, Sokhavuth; Komaiha, Ola Hamze; Moyano, Romina; Rayal, Amel; Samuel, Didier; Shewan, Annette; Vanhaesebroeck, Bart; Mostov, Keith; Gassama-Diagne, Ama

    2016-01-01

    Signaling triggered by adhesion to the extracellular matrix plays a key role in the spatial orientation of epithelial polarity and formation of lumens in glandular tissues. Phosphoinositide 3-kinase signaling in particular is known to influence the polarization process during epithelial cell morphogenesis. Here, using Madin-Darby canine kidney epithelial cells grown in 3D culture, we show that the p110δ isoform of phosphoinositide 3-kinase colocalizes with focal adhesion proteins at the basal surface of polarized cells. Pharmacological, siRNA- or kinase-dead mediated inhibition of p110δ impair the early stages of lumen formation, resulting in inverted polarized cysts, with no laminin or type IV collagen assembly at cell/extracellular matrix contacts. p110δ also regulates the organization of focal adhesions and membrane localization of dystroglycan. Thus, we uncover a previously unrecognized role for p110δ in epithelial cells in the orientation of the apico-basal axis and lumen formation. PMID:25583025

  8. Yunis-Varón Syndrome Is Caused by Mutations in FIG4, Encoding a Phosphoinositide Phosphatase

    PubMed Central

    Campeau, Philippe M.; Lenk, Guy M.; Lu, James T.; Bae, Yangjin; Burrage, Lindsay; Turnpenny, Peter; Román Corona-Rivera, Jorge; Morandi, Lucia; Mora, Marina; Reutter, Heiko; Vulto-van Silfhout, Anneke T.; Faivre, Laurence; Haan, Eric; Gibbs, Richard A.; Meisler, Miriam H.; Lee, Brendan H.

    2013-01-01

    Yunis-Varón syndrome (YVS) is an autosomal-recessive disorder with cleidocranial dysplasia, digital anomalies, and severe neurological involvement. Enlarged vacuoles are found in neurons, muscle, and cartilage. By whole-exome sequencing, we identified frameshift and missense mutations of FIG4 in affected individuals from three unrelated families. FIG4 encodes a phosphoinositide phosphatase required for regulation of PI(3,5)P2 levels, and thus endosomal trafficking and autophagy. In a functional assay, both missense substitutions failed to correct the vacuolar phenotype of Fig4-null mouse fibroblasts. Homozygous Fig4-null mice exhibit features of YVS, including neurodegeneration and enlarged vacuoles in neurons. We demonstrate that Fig4-null mice also have small skeletons with reduced trabecular bone volume and cortical thickness and that cultured osteoblasts accumulate large vacuoles. Our findings demonstrate that homozygosity or compound heterozygosity for null mutations of FIG4 is responsible for YVS, the most severe known human phenotype caused by defective phosphoinositide metabolism. In contrast, in Charcot-Marie-Tooth disease type 4J (also caused by FIG4 mutations), one of the FIG4 alleles is hypomorphic and disease is limited to the peripheral nervous system. This genotype-phenotype correlation demonstrates that absence of FIG4 activity leads to central nervous system dysfunction and extensive skeletal anomalies. Our results describe a role for PI(3,5)P2 signaling in skeletal development and maintenance. PMID:23623387

  9. Phylogenomics of phosphoinositide lipid kinases: perspectives on the evolution of second messenger signaling and drug discovery

    PubMed Central

    2011-01-01

    Background Phosphoinositide lipid kinases (PIKs) generate specific phosphorylated variants of phosatidylinositols (PtdIns) that are critical for second messenger signaling and cellular membrane remodeling. Mammals have 19 PIK isoforms spread across three major families: the PtIns 3-kinases (PI3Ks), PtdIns 4-kinases (PI4Ks), and PtdIns-P (PIP) kinases (PIPKs). Other eukaryotes have fewer yet varying PIK complements. PIKs are also an important, emerging class of drug targets for many therapeutic areas including cancer, inflammatory and metabolic diseases and host-pathogen interactions. Here, we report the genomic occurrences and evolutionary relationships or phylogenomics of all three PIK families across major eukaryotic groups and suggest potential ramifications for drug discovery. Results Our analyses reveal four core eukaryotic PIKs which are type III PIK4A and PIK4B, and at least one homolog each from PI3K (possibly PIK3C3 as the ancestor) and PIP5K families. We also applied evolutionary analyses to PIK disease ontology and drug discovery. Mutated PIK3CA are known to be oncogenic and several inhibitors are in anti-cancer clinical trials. We found conservation of activating mutations of PIK3CA in paralogous isoforms suggesting specific functional constraints on these residues. By mapping published compound inhibition data (IC50s) onto a phylogeny of PI3Ks, type II PI4Ks and distantly related, MTOR, ATM, ATR and PRKDC kinases, we also show that compound polypharmacology corresponds to kinase evolutionary relationships. Finally, we extended the rationale for drugs targeting PIKs of malarial Plasmodium falciparum, and the parasites, Leishmania sp. and Trypanosoma sp. by identifying those PIKs highly divergent from human homologs. Conclusion Our phylogenomic analysis of PIKs provides new insights into the evolution of second messenger signaling. We postulate two waves of PIK diversification, the first in metazoans with a subsequent expansion in cold

  10. Pharmacologic Profiling of Phosphoinositide 3-Kinase Inhibitors as Mitigators of Ionizing Radiation–Induced Cell Death

    PubMed Central

    Sharlow, Elizabeth R.; Epperly, Michael W.; Lira, Ana; Leimgruber, Stephanie; Skoda, Erin M.; Wipf, Peter; Greenberger, Joel S.

    2013-01-01

    Ionizing radiation (IR) induces genotoxic stress that triggers adaptive cellular responses, such as activation of the phosphoinositide 3-kinase (PI3K)/Akt signaling cascade. Pluripotent cells are the most important population affected by IR because they are required for cellular replenishment. Despite the clear danger to large population centers, we still lack safe and effective therapies to abrogate the life-threatening effects of any accidental or intentional IR exposure. Therefore, we computationally analyzed the chemical structural similarity of previously published small molecules that, when given after IR, mitigate cell death and found a chemical cluster that was populated with PI3K inhibitors. Subsequently, we evaluated structurally diverse PI3K inhibitors. It is remarkable that 9 of 14 PI3K inhibitors mitigated γIR-induced death in pluripotent NCCIT cells as measured by caspase 3/7 activation. A single intraperitoneal dose of LY294002 [2-(4-morpholinyl)-8-phenyl-4H-1-benzopyran-4-one], administered to mice at 4 or 24 hours, or PX-867 [(4S,4aR,5R,6aS,9aR,Z)-11-hydroxy-4-(methoxymethyl)-4a,6a-dimethyl-2,7,10-trioxo-1-(pyrrolidin-1-ylmethylene)-1,2,4,4a,5,6,6a,7,8,9,9a,10-dodecahydroindeno[4,5-H]isochromen-5-yl acetate (CID24798773)], administered 4 hours after a lethal dose of γIR, statistically significantly (P < 0.02) enhanced in vivo survival. Because cell cycle checkpoints are important regulators of cell survival after IR, we examined cell cycle distribution in NCCIT cells after γIR and PI3K inhibitor treatment. LY294002 and PX-867 treatment of nonirradiated cells produced a marked decrease in S phase cells with a concomitant increase in the G1 population. In irradiated cells, LY294002 and PX-867 treatment also decreased S phase and increased the G1 and G2 populations. Treatment with LY294002 or PX-867 decreased γIR-induced DNA damage as measured by γH2AX, suggesting reduced DNA damage. These results indicate pharmacologic inhibition of PI3K after

  11. The phosphoinositide 3-kinase inhibitor PI-103 downregulates choline kinase alpha leading to phosphocholine and total choline decrease detected by magnetic resonance spectroscopy.

    PubMed

    Al-Saffar, Nada M S; Jackson, L Elizabeth; Raynaud, Florence I; Clarke, Paul A; Ramírez de Molina, Ana; Lacal, Juan C; Workman, Paul; Leach, Martin O

    2010-07-01

    The phosphoinositide 3-kinase (PI3K) pathway is a major target for cancer drug development. PI-103 is an isoform-selective class I PI3K and mammalian target of rapamycin inhibitor. The aims of this work were as follows: first, to use magnetic resonance spectroscopy (MRS) to identify and develop a robust pharmacodynamic (PD) biomarker for target inhibition and potentially tumor response following PI3K inhibition; second, to evaluate mechanisms underlying the MRS-detected changes. Treatment of human PTEN null PC3 prostate and PIK3CA mutant HCT116 colon carcinoma cells with PI-103 resulted in a concentration- and time-dependent decrease in phosphocholine (PC) and total choline (tCho) levels (P < 0.05) detected by phosphorus ((31)P)- and proton ((1)H)-MRS. In contrast, the cytotoxic microtubule inhibitor docetaxel increased glycerophosphocholine and tCho levels in PC3 cells. PI-103-induced MRS changes were associated with alterations in the protein expression levels of regulatory enzymes involved in lipid metabolism, including choline kinase alpha (ChoK(alpha)), fatty acid synthase (FAS), and phosphorylated ATP-citrate lyase (pACL). However, a strong correlation (r(2) = 0.9, P = 0.009) was found only between PC concentrations and ChoK(alpha) expression but not with FAS or pACL. This study identified inhibition of ChoK(alpha) as a major cause of the observed change in PC levels following PI-103 treatment. We also showed the capacity of (1)H-MRS, a clinically well-established technique with higher sensitivity and wider applicability compared with (31)P-MRS, to assess response to PI-103. Our results show that monitoring the effects of PI3K inhibitors by MRS may provide a noninvasive PD biomarker for PI3K inhibition and potentially of tumor response during early-stage clinical trials with PI3K inhibitors.

  12. RNA interference-mediated knockdown of Aurora-B alters the metastatic behavior of A549 cells via modulation of the phosphoinositide 3-kinase/Akt signaling pathway.

    PubMed

    Zhou, Long Dian; Xiong, Xu; Long, Xin Hua; Liu, Zhi Li; Huang, Shan Hu; Zhang, Wei

    2014-11-01

    Accumulating evidence has revealed that an elevated expression level of Aurora-B is associated with metastasis in various types of malignant tumor. However, it is currently unclear whether this molecule is involved in non-small lung cancer (NSCLC) metastasis, and the molecular mechanisms associated with Aurora-B and metastasis remain unknown. In the present study, in order to investigate whether Aurora-B is involved in the development and metastasis of NSCLC, the Aurora-B protein expression in NSCLC tissues was detected by immunohistochemistry and its association with metastasis was analyzed. The results revealed that the expression levels of the Aurora-B protein in tissues obtained from NSCLC patients with lymph node metastasis were significantly higher than those without metastatic disease. Furthermore, the effect of Aurora-B inhibition on A549 cell migration and invasion, as well as the activity of the phosphoinositide 3-kinase (PI3K)/Akt signaling pathway was evaluated. Aurora-B was inhibited in the A549 cells using short hairpin RNA, and the cell migration and invasion rates were investigated using wound healing and Transwell invasion assays. In addition, the expression of the main proteins in the PI3K/Akt/nuclear factor-κB (NF-κB) signaling pathway, and matrix metalloproteinase (MMP)-2 and -9 were measured by western blot analysis. The results demonstrated that cell migration and invasion were decreased as a result of silencing Aurora-B. Furthermore, the activity of the PI3K/Akt/NF-κB signaling pathway and the expression of MMP-2 and -9 protein were suppressed by silencing Aurora-B. The results of the present study indicate that the knockdown of Aurora-B suppresses A549 cell invasion and migration via the inhibition of the PI3K/Akt signaling pathway in vitro and thus, targeting Aurora-B may present a potential treatment strategy for NSCLC.

  13. RNA interference-mediated knockdown of Aurora-B alters the metastatic behavior of A549 cells via modulation of the phosphoinositide 3-kinase/Akt signaling pathway

    PubMed Central

    ZHOU, LONG DIAN; XIONG, XU; LONG, XIN HUA; LIU, ZHI LI; HUANG, SHAN HU; ZHANG, WEI

    2014-01-01

    Accumulating evidence has revealed that an elevated expression level of Aurora-B is associated with metastasis in various types of malignant tumor. However, it is currently unclear whether this molecule is involved in non-small lung cancer (NSCLC) metastasis, and the molecular mechanisms associated with Aurora-B and metastasis remain unknown. In the present study, in order to investigate whether Aurora-B is involved in the development and metastasis of NSCLC, the Aurora-B protein expression in NSCLC tissues was detected by immunohistochemistry and its association with metastasis was analyzed. The results revealed that the expression levels of the Aurora-B protein in tissues obtained from NSCLC patients with lymph node metastasis were significantly higher than those without metastatic disease. Furthermore, the effect of Aurora-B inhibition on A549 cell migration and invasion, as well as the activity of the phosphoinositide 3-kinase (PI3K)/Akt signaling pathway was evaluated. Aurora-B was inhibited in the A549 cells using short hairpin RNA, and the cell migration and invasion rates were investigated using wound healing and Transwell invasion assays. In addition, the expression of the main proteins in the PI3K/Akt/nuclear factor-κB (NF-κB) signaling pathway, and matrix metalloproteinase (MMP)-2 and -9 were measured by western blot analysis. The results demonstrated that cell migration and invasion were decreased as a result of silencing Aurora-B. Furthermore, the activity of the PI3K/Akt/NF-κB signaling pathway and the expression of MMP-2 and -9 protein were suppressed by silencing Aurora-B. The results of the present study indicate that the knockdown of Aurora-B suppresses A549 cell invasion and migration via the inhibition of the PI3K/Akt signaling pathway in vitro and thus, targeting Aurora-B may present a potential treatment strategy for NSCLC. PMID:25295091

  14. Response to platelet-activating factor in human platelets stored and aged in plasma. Decrease in aggregation, phosphoinositide turnover, and receptor affinity

    SciTech Connect

    Shukla, S.D.; Morrison, W.J.; Klachko, D.M.

    1989-07-01

    Human platelet concentrates were stored in polyolefin bags at 22 to 24 degrees C on a horizontal shaker for up to 8 days. At different intervals, aliquots of platelet-rich plasma (PRP) were removed aseptically and five variables, i.e., platelet counts, morphology, platelet-activating factor (PAF)-stimulated aggregation, phosphoinositide turnover, and (3H)PAF binding to platelet receptors, were studied. The number of platelets did not change during the 8 days of storage. Scanning electron microscopy of the platelets revealed a gradual morphologic change from biconcave flat discs to irregular, crenated forms. The PAF-induced aggregation of platelets declined with time of storage. A decrease to 50 percent of the Day 1 aggregatory response to PAF was evident on Day 2, and there was a further decline to about 20 percent by Day 6. Similarly, PAF receptor-coupled phosphoinositide turnover, as monitored by 32P incorporation into individual phosphoinositides, decreased dramatically with storage. After 2 to 3 days of storage, the phosphoinositide turnover was reduced to 50 percent of the original response, and it continued to decline to about 25 percent of original response by Day 5 or 6. The binding of (3H)PAF to washed human platelets indicated subtle changes between Days 2 and 4, which became more noticeable by Day 6. These results have raised the possibility of changes in the number of the receptors and/or their affinity for the ligand during storage. We conclude that although the number of platelets was maintained during storage for 8 days, a general deterioration of their responses to PAF occurred at the levels of cell surface receptor, transmembrane signaling (phosphoinositide turnover), and response (aggregation).

  15. Structure-Based Design of Potent and Selective 3-Phosphoinositide-Dependent Kinase-1 (PDK1) Inhibitors

    SciTech Connect

    Medina, Jesus R.; Becker, Christopher J.; Blackledge, Charles W.; Duquenne, Celine; Feng, Yanhong; Grant, Seth W.; Heerding, Dirk; Li, William H.; Miller, William H.; Romeril, Stuart P.; Scherzer, Daryl; Shu, Arthur; Bobko, Mark A.; Chadderton, Antony R.; Dumble, Melissa; Gardiner, Christine M.; Gilbert, Seth; Liu, Qi; Rabindran, Sridhar K.; Sudakin, Valery; Xiang, Hong; Brady, Pat G.; Campobasso, Nino; Ward, Paris; Axten, Jeffrey M.

    2014-10-02

    Phosphoinositide-dependent protein kinase-1(PDK1) is a master regulator of the AGC family of kinases and an integral component of the PI3K/AKT/mTOR pathway. As this pathway is among the most commonly deregulated across all cancers, a selective inhibitor of PDK1 might have utility as an anticancer agent. Herein we describe our lead optimization of compound 1 toward highly potent and selective PDK1 inhibitors via a structure-based design strategy. The most potent and selective inhibitors demonstrated submicromolar activity as measured by inhibition of phosphorylation of PDK1 substrates as well as antiproliferative activity against a subset of AML cell lines. In addition, reduction of phosphorylation of PDK1 substrates was demonstrated in vivo in mice bearing OCl-AML2 xenografts. These observations demonstrate the utility of these molecules as tools to further delineate the biology of PDK1 and the potential pharmacological uses of a PDK1 inhibitor.

  16. Regioselective synthesis of 5- and 6-methoxybenzimidazole-1,3,5-triazines as inhibitors of phosphoinositide 3-kinase.

    PubMed

    Miller, Michelle S; Pinson, Jo-Anne; Zheng, Zhaohua; Jennings, Ian G; Thompson, Philip E

    2013-02-01

    Phosphoinositide 3-kinases (PI3K) hold significant therapeutic potential as novel targets for the treatment of cancer. ZSTK474 (4a) is a potent, pan-PI3K inhibitor currently under clinical evaluation for the treatment of cancer. Structural studies have shown that derivatisation at the 5- or 6-position of the benzimidazole ring may influence potency and isoform selectivity. However, synthesis of these derivatives by the traditional route results in a mixture of the two regioisomers. We have developed a straightforward regioselective synthesis that gave convenient access to 5- and 6-methoxysubstituted benzimidazole derivatives of ZSTK474. While 5-methoxy substitution abolished activity at all isoforms, the 6-methoxy substitution is consistently 10-fold more potent. This synthesis will allow convenient access to further 6-position derivatives, thus allowing the full scope of the structure-activity relationships of ZSTK474 to be probed.

  17. A novel class of PTEN protein in Arabidopsis displays unusual phosphoinositide phosphatase activity and efficiently binds phosphatidic acid.

    PubMed

    Pribat, Anne; Sormani, Rodnay; Rousseau-Gueutin, Mathieu; Julkowska, Magdalena M; Testerink, Christa; Joubès, Jerôme; Castroviejo, Michel; Laguerre, Michel; Meyer, Christian; Germain, Véronique; Rothan, Christophe

    2012-01-01

    PTEN (phosphatase and tensin homologue deleted on chromosome ten) proteins are dual phosphatases with both protein and phosphoinositide phosphatase activity. They modulate signalling pathways controlling growth, metabolism and apoptosis in animals and are implied in several human diseases. In the present paper we describe a novel class of PTEN pro-teins in plants, termed PTEN2, which comprises the AtPTEN (Arabidopsis PTEN) 2a and AtPTEN2b proteins in Arabidopsis. Both display low in vitro tyrosine phosphatase activity. In addition, AtPTEN2a actively dephosphorylates in vitro the 3' phosphate group of PI3P (phosphatidylinositol 3-phosphate), PI(3,4)P2 (phosphatidylinositol 3,4-bisphosphate) and PI(3,5)P2 (phosphatidylinositol 3,5-bisphosphate). In contrast with animal PTENs, PI(3,4,5)P3 (phosphatidylinositol 3,4,5-trisphosphate) is a poor substrate. Site-directed mutagenesis of AtPTEN2a and molecular modelling of protein-phosphoinositide interactions indicated that substitutions at the PTEN2 core catalytic site of the Lys267 and Gly268 residues found in animals, which are critical for animal PTEN activity, by Met267 and Ala268 found in the eudicot PTEN2 are responsible for changes in substrate specificity. Remarkably, the AtPTEN2a protein also displays strong binding activity for PA (phosphatidic acid), a major lipid second messenger in plants. Promoter::GUS (β-glucuronidase) fusion, transcript and protein analyses further showed the transcriptional regulation of the ubiquitously expressed AtPTEN2a and AtPTEN2b by salt and osmotic stress. The results of the present study suggest a function for this novel class of plant PTEN proteins as an effector of lipid signalling in plants.

  18. CNGA3 achromatopsia-associated mutation potentiates the phosphoinositide sensitivity of cone photoreceptor CNG channels by altering intersubunit interactions

    PubMed Central

    Dai, Gucan

    2013-01-01

    Cyclic nucleotide-gated (CNG) channels are critical for sensory transduction in retinal photoreceptors and olfactory receptor cells; their activity is modulated by phosphoinositides (PIPn) such as phosphatidylinositol 4,5-bisphosphate (PIP2) and phosphatidylinositol 3,4,5-trisphosphate (PIP3). An achromatopsia-associated mutation in cone photoreceptor CNGA3, L633P, is located in a carboxyl (COOH)-terminal leucine zipper domain shown previously to be important for channel assembly and PIPn regulation. We determined the functional consequences of this mutation using electrophysiological recordings of patches excised from cells expressing wild-type and mutant CNG channel subunits. CNGA3-L633P subunits formed functional channels with or without CNGB3, producing an increase in apparent cGMP affinity. Surprisingly, L633P dramatically potentiated PIPn inhibition of apparent cGMP affinity for these channels. The impact of L633P on PIPn sensitivity depended on an intact amino (NH2) terminal PIPn regulation module. These observations led us to hypothesize that L633P enhances PIPn inhibition by altering the coupling between NH2- and COOH-terminal regions of CNGA3. A recombinant COOH-terminal fragment partially restored normal PIPn sensitivity to channels with COOH-terminal truncation, but L633P prevented this effect. Furthermore, coimmunoprecipitation of channel fragments, and thermodynamic linkage analysis, also provided evidence for NH2-COOH interactions. Finally, tandem dimers of CNGA3 subunits that specify the arrangement of subunits containing L633P and other mutations indicated that the putative interdomain interaction occurs between channel subunits (intersubunit) rather than exclusively within the same subunit (intrasubunit). Collectively, these studies support a model in which intersubunit interactions control the sensitivity of cone CNG channels to regulation by phosphoinositides. Aberrant channel regulation may contribute to disease progression in patients with the

  19. Nuclear envelope assembly is promoted by phosphoinositide-specific phospholipase C with selective recruitment of phosphatidylinositol-enriched membranes

    PubMed Central

    2004-01-01

    Nuclear envelope (NE) formation in a cell-free egg extract proceeds by precursor membrane vesicle binding to chromatin in an ATP-dependent manner, followed by a GTP-induced NE assembly step. The requirement for GTP in the latter step of this process can be mimicked by addition of bacterial PI-PLC [phosphoinositide (PtdIns)-specific phospholipase C]. The NE assembly process is here dissected in relation to the requirement for endogenous phosphoinositide metabolism, employing recombinant eukaryotic PI-PLC, inhibitors and direct phospholipid analysis using ESI-MS (electrospray ionization mass spectrometry). PtdIns (phosphatidylinositol) species analysis by ESI-MS indicates that the chromatin-bound NE precursor vesicles are enriched for specific PtdIns species. Moreover, during GTP-induced precursor vesicle fusion, the membrane vesicles become partially depleted of the PtdIns 18:0/20:4 species. These data indicate that eukaryotic PI-PLC can support NE formation, and the sensitivity to exogenous recombinant PtdIns-5-phosphatases shows that the endogenous PLC hydrolyses a 5-phosphorylated species. It is shown further that the downstream target of this DAG (diacylglycerol) pathway does not involve PKC (protein kinase C) catalytic function, but is mimicked by phorbol esters, indicating a possible engagement of one of the non-PKC phorbol ester receptors. The results show that ESI-MS can be used as a sensitive means to measure the lipid composition of biological membranes and their changes during, for example, membrane fusogenic events. We have exploited this and the intervention studies to illustrate a pivotal role for PI-PLC and its product DAG in the formation of NEs. PMID:15554872

  20. PAQR3 modulates insulin signaling by shunting phosphoinositide 3-kinase p110α to the Golgi apparatus.

    PubMed

    Wang, Xiao; Wang, Lingdi; Zhu, Lu; Pan, Yi; Xiao, Fei; Liu, Weizhong; Wang, Zhenzhen; Guo, Feifan; Liu, Yong; Thomas, Walter G; Chen, Yan

    2013-02-01

    Phosphoinositide 3-kinase (PI3K) mediates insulin actions by relaying signals from insulin receptors (IRs) to downstream targets. The p110α catalytic subunit of class IA PI3K is the primary insulin-responsive PI3K implicated in insulin signaling. We demonstrate here a new mode of spatial regulation for the p110α subunit of PI3K by PAQR3 that is exclusively localized in the Golgi apparatus. PAQR3 interacts with p110α, and the intracellular targeting of p110α to the Golgi apparatus is reduced by PAQR3 downregulation and increased by PAQR3 overexpression. Insulin-stimulated PI3K activity and phosphoinositide (3,4,5)-triphosphate production are enhanced by Paqr3 deletion and reduced by PAQR3 overexpression in hepatocytes. Deletion of Paqr3 enhances insulin-stimulated phosphorylation of AKT and glycogen synthase kinase 3β, but not phosphorylation of IR and IR substrate-1 (IRS-1), in hepatocytes, mouse liver, and skeletal muscle. Insulin-stimulated GLUT4 translocation to the plasma membrane and glucose uptake are enhanced by Paqr3 ablation. Furthermore, PAQR3 interacts with the domain of p110α involved in its binding with p85, the regulatory subunit of PI3K. Overexpression of PAQR3 dose-dependently reduces the interaction of p85α with p110α. Thus, PAQR3 negatively regulates insulin signaling by shunting cytosolic p110α to the Golgi apparatus while competing with p85 subunit in forming a PI3K complex with p110α.

  1. Reversible Ser/Thr SHIP phosphorylation: a new paradigm in phosphoinositide signalling?: Targeting of SHIP1/2 phosphatases may be controlled by phosphorylation on Ser and Thr residues.

    PubMed

    Edimo, William's Elong; Janssens, Veerle; Waelkens, Etienne; Erneux, Christophe

    2012-08-01

    Phosphoinositide (PI) phosphatases such as the SH2 domain-containing inositol 5-phosphatases 1/2 (SHIP1 and 2) are important signalling enzymes in human physiopathology. SHIP1/2 interact with a large number of immune and growth factor receptors. Tyrosine phosphorylation of SHIP1/2 has been considered to be the determining regulatory modification. However, here we present a hypothesis, based on recent key publications, highlighting the determining role of Ser/Thr phosphorylation in regulating several key properties of SHIP1/2. Since a subunit of the Ser/Thr phosphatase PP2A has been shown to interact with SHIP2, a putative mechanism for reversing SHIP2 Ser/Thr phosphorylation can be anticipated. PI phosphatases are potential target molecules in human diseases, particularly, but not exclusively, in cancer and diabetes. Therefore, this novel regulatory mechanism deserves further attention in the hunt for discovering novel or complementary therapeutic strategies. This mechanism may be more broadly involved in regulating PI signalling in the case of synaptojanin1 or the phosphatase, tensin homolog, deleted on chromosome TEN.

  2. Cudraflavone C Induces Tumor-Specific Apoptosis in Colorectal Cancer Cells through Inhibition of the Phosphoinositide 3-Kinase (PI3K)-AKT Pathway

    PubMed Central

    Soo, Hsien-Chuen; Chung, Felicia Fei-Lei; Lim, Kuan-Hon; Yap, Veronica Alicia; Bradshaw, Tracey D.; Hii, Ling-Wei; Tan, Si-Hoey; See, Sze-Jia; Tan, Yuen-Fen; Leong, Chee-Onn

    2017-01-01

    Cudraflavone C (Cud C) is a naturally-occurring flavonol with reported anti-proliferative activities. However, the mechanisms by which Cud C induced cytotoxicity have yet to be fully elucidated. Here, we investigated the effects of Cud C on cell proliferation, caspase activation andapoptosis induction in colorectal cancer cells (CRC). We show that Cud C inhibits cell proliferation in KM12, Caco-2, HT29, HCC2998, HCT116 and SW48 CRC but not in the non-transformed colorectal epithelial cells, CCD CoN 841. Cud C induces tumor-selective apoptosis via mitochondrial depolarization and activation of the intrinsic caspase pathway. Gene expression profiling by microarray analyses revealed that tumor suppressor genes EGR1, HUWE1 and SMG1 were significantly up-regulated while oncogenes such as MYB1, CCNB1 and GPX2 were down-regulated following treatment with Cud C. Further analyses using Connectivity Map revealed that Cud C induced a gene signature highly similar to that of protein synthesis inhibitors and phosphoinositide 3-kinase (PI3K)-AKT inhibitors, suggesting that Cud C might inhibit PI3K-AKT signaling. A luminescent cell free PI3K lipid kinase assay revealed that Cud C significantly inhibited p110β/p85α PI3K activity, followed by p120γ, p110δ/p85α, and p110α/p85α PI3K activities. The inhibition by Cud C on p110β/p85α PI3K activity was comparable to LY-294002, a known PI3K inhibitor. Cud C also inhibited phosphorylation of AKT independent of NFκB activity in CRC cells, while ectopic expression of myristoylated AKT completely abrogated the anti-proliferative effects, and apoptosis induced by Cud C in CRC. These findings demonstrate that Cud C induces tumor-selective cytotoxicity by targeting the PI3K-AKT pathway. These findings provide novel insights into the mechanism of action of Cud C, and indicate that Cud C further development of Cud C derivatives as potential therapeutic agents is warranted. PMID:28107519

  3. Molecular cytogenetic interphase analysis of Phosphoinositide-specific Phospholipase C β1 gene in paraffin-embedded brain samples of major depression patients.

    PubMed

    Lo Vasco, Vincenza Rita; Polonia, Patrizia

    2012-01-01

    Mood disorders represent a major medical need, as their chronic treatments are not effective in all patients. Literature data suggested that phosphoinositides (PI) signal transduction pathway and related molecules such as the Phosphoinositide-specific Phospholipase C (PI-PLC) enzymes, might be involved in the pathophysiology of mood disorders, including major depression. By using interphase fluorescent in situ hybridization methodology, we analyzed PLCB1 gene, which codifies for the PI-PLC β1 enzyme, in paraffin embedded samples of orbito-frontal cortex of 15 patients affected with major depression and in 15 normal controls. No deletions of PLCB1 were identified with the methodology used, which allows to exclude wide gene deletions. The results, the technical aspects of the FISH methodology, and its limitations are discussed.

  4. Opposing effects of a ras oncogene on growth factor-stimulated phosphoinositide hydrolysis: desensitization to platelet-derived growth factor and enhanced sensitivity to bradykinin

    SciTech Connect

    Parries, G.; Hoebel, R.; Racker, E.

    1987-05-01

    Expression of a transforming Harvey or Kirsten ras gene caused opposing effects in the ability of platelet-derived growth factor (PDGF) and bradyknin to activate phospholipase C-mediated phosphoinositide hydrolysis. In (/sup 3/H)inositol-labeled rat-1 fibroblasts, PDGF resulted in a 2-fold increase in the level of (/sup 3/H)inositol trisphosphate (InsP/sub 3/) after 2 min and, in the presence of LiCl, a 3- to 8-fold increase in the level of (/sup 3/H)inositol monophosphate (InsP/sub 1/) after 30 min. However, in EJ-ras-transfected rat-1 cells, which exhibit near normal levels of PDGF receptors, PDGF resulted in little or no accumulation of either (/sup 3/H)InsP/sub 3/ or (/sup 3/H)InsP/sub 1/. Similarly, marked stimulations by PDGF were observed in NIH 3T3 cells, as well as in v-src-transformed 3T3 cells, but not in 3T3 cells transformed by Kirsten sarcoma virus or by transfection with v-Ha-ras DNA. This diminished phosphoinositide response in ras-transformed cells was associated with a markedly attenuated mitogenic response to PDGF. On the other hand, both phosphoinositide metabolism and DNA synthesis in ras-transformed fibroblasts were stimulated several-fold by serum. In NIH 3T3 cells carrying a glucocorticoid-inducible v-Ha-ras gene, a close correlation was found between the expression of p21/sup ras/ and the loss of PDGF-stimulated (/sup 3/H)InsP/sub 1/ accumulation. The authors propose that a ras gene product (p21) can, directly or indirectly, influence growth factor-stimulated phosphoinositide hydrolysis, as well as DNA synthesis, via alterations in the properties of specific growth factor receptors.

  5. Identification of Toxoplasma TgPH1, a pleckstrin homology domain-containing protein that binds to the phosphoinositide PI(3,5)P2.

    PubMed

    Daher, Wassim; Morlon-Guyot, Juliette; Alayi, Tchilabalo Dilezitoko; Tomavo, Stan; Wengelnik, Kai; Lebrun, Maryse

    2016-05-01

    The phosphoinositide phosphatidylinositol-3,5-bisphosphate (PI(3,5)P2) plays crucial roles in the maintenance of lysosome/vacuole morphology, membrane trafficking and regulation of endolysosome-localized membrane channel activity. In Toxoplasma gondii, we previously reported that PI(3,5)P2 is essential for parasite survival by controlling homeostasis of the apicoplast, a particular organelle of algal origin. Here, by using a phosphoinositide pull-down assay, we identified TgPH1 in Toxoplasma a protein conserved in many apicomplexan parasites. TgPH1 binds specifically to PI(3,5)P2, shows punctate intracellular localization, but plays no vital role for tachyzoite growth in vitro. TgPH1 is a protein predominantly formed by a pleckstrin homology (PH) domain. So far, PH domains have been described to bind preferentially to bis- or trisphosphate phosphoinositides containing two adjacent phosphates (i.e. PI(3,4)P2, PI(4,5)P2, PI(3,4,5)P3). Therefore, our study reveals an unusual feature of TgPH1 which binds preferentially to PI(3,5)P2.

  6. Phosphoinositide Metabolism Links cGMP-Dependent Protein Kinase G to Essential Ca2+ Signals at Key Decision Points in the Life Cycle of Malaria Parasites

    PubMed Central

    Brochet, Mathieu; Collins, Mark O.; Smith, Terry K.; Thompson, Eloise; Sebastian, Sarah; Volkmann, Katrin; Schwach, Frank; Chappell, Lia; Gomes, Ana Rita; Berriman, Matthew; Rayner, Julian C.; Baker, David A.; Choudhary, Jyoti; Billker, Oliver

    2014-01-01

    Many critical events in the Plasmodium life cycle rely on the controlled release of Ca2+ from intracellular stores to activate stage-specific Ca2+-dependent protein kinases. Using the motility of Plasmodium berghei ookinetes as a signalling paradigm, we show that the cyclic guanosine monophosphate (cGMP)-dependent protein kinase, PKG, maintains the elevated level of cytosolic Ca2+ required for gliding motility. We find that the same PKG-dependent pathway operates upstream of the Ca2+ signals that mediate activation of P. berghei gametocytes in the mosquito and egress of Plasmodium falciparum merozoites from infected human erythrocytes. Perturbations of PKG signalling in gliding ookinetes have a marked impact on the phosphoproteome, with a significant enrichment of in vivo regulated sites in multiple pathways including vesicular trafficking and phosphoinositide metabolism. A global analysis of cellular phospholipids demonstrates that in gliding ookinetes PKG controls phosphoinositide biosynthesis, possibly through the subcellular localisation or activity of lipid kinases. Similarly, phosphoinositide metabolism links PKG to egress of P. falciparum merozoites, where inhibition of PKG blocks hydrolysis of phosphatidylinostitol (4,5)-bisphosphate. In the face of an increasing complexity of signalling through multiple Ca2+ effectors, PKG emerges as a unifying factor to control multiple cellular Ca2+ signals essential for malaria parasite development and transmission. PMID:24594931

  7. Regulation of the phosphoinositide pathway in cultured Sertoli cells from immature rats: effects of follicle-stimulating hormone and fluoride

    SciTech Connect

    Quirk, S.M.; Reichert, L.E. Jr.

    1988-07-01

    Many hormones elicit effects on target cells by stimulating the enzyme phospholipase-C, which catalyzes the hydrolysis of phosphoinositides to the intracellular second messengers diacylglycerol and inositol phosphates. The present study examined the roles of FSH and guanine nucleotide-binding proteins (G-proteins) in regulating the hydrolysis of phosphoinositides in Sertoli cells. Sertoli cell cultures prepared from 16- to 18-day-old rats were incubated for 24 h with myo-(2-3H) inositol to label endogenous phospholipids. Treatment of cells from 0.5-20 min with preparations of ovine FSH ranging in potency from 1-60 times that of NIH FSH S1 did not affect accumulation of inositol phosphates. Levels of total (3H)inositol phosphates ((3H)inositol mono-, di-, and triphosphates (IP, IP2, and IP3)) in FSH-treated cultures was 75-120% the levels in control cultures over the various time intervals studied. Addition of testosterone and the combination of testosterone plus retinoic acid, agents that have been shown to potentiate effects of FSH in other systems, did not affect accumulation of inositol phosphates in response to FSH. In contrast to the lack of effect on accumulation of inositol phosphates, FSH stimulated 4- to 11-fold increases in estradiol secretion over 24 h of culture, indicating that Sertoli cells were viable and responsive to FSH. AIF4- has been shown to activate G-proteins involved in regulation of adenylate cyclase activity. In the present study, AIF4- induced 4- to 5-fold increases in IP, IP2, and IP3 in experiments wherein FSH had no effect. Pretreatment of Sertoli cells with pertussis toxin (100 and 1000 ng/ml) for 24 h inhibited fluoride-induced generation of IP, IP2, and IP3 by 24-51%. Similar treatment with cholera toxin had no effect on basal or fluoride-induced generation of IP2 or IP3, but increased fluoride-induced generation of IP by 20-34%.

  8. Repression of phosphoinositide-dependent protein kinase 1 expression by ciglitazone via Egr-1 represents a new approach for inhibition of lung cancer cell growth

    PubMed Central

    2014-01-01

    Background Peroxisome proliferator-activated receptors gamma (PPARγ) ligands have been shown to inhibit the growth of non-small cell lung cancer (NSCLC) cells. However, the mechanisms underlying this effect remain incompletely elucidated. Methods Cell proliferation and apoptosis were measured by cell viability, MTT and caspase3/7 activity assays. Phosphorylation/protein expression and gene silence/overexpression of AMPKα, phosphoinositide-dependent protein kinase 1 (PDK1), Egr-1 and PPARγ were performed by Western blot and siRNA/transfection assays. Dual-Luciferase Reporter Kit was used to measure the PPAR response elements (PPRE) reporter and PDK1 promoter activities, and ChIP assay was used to detect the Egr-1 protein binding to the DNA site in the PDK1 gene promoter. Results We found that ciglitazone, one synthetic PPARγ ligand, inhibited growth and induced apoptosis of NSCLC cells through decreased expression of PDK1, which was not blocked by GW9662 (a specific PPARγ antagonist). Overexpression of PDK1 overcame the effect of ciglitazone on cell growth and caspase 3/7 activity. Ciglitazone increased the phosphorylation of AMPKα and c-Jun N-terminal kinase (JNK), and the inhibitor of AMPK (compound C), but not JNK (SP600125), reversed the effect of ciglitazone on PDK1 protein expression. Ciglitazone reduced PDK1 gene promoter activity, which was not observed in cells exposed to compound C, but not silenced of PPARγ siRNA. Combination of ciglitazone and metformin further reduced PDK1 expression and promoter activity. Furthermore, we showed that ciglitazone induced the protein expression of Egr-1, which was not observed in cells silencing of AMPKα. Moreover, silencing of Egr-1 abrogated the effect of ciglitazone on PDK1 promoter activity and cell growth. On the contrary, overexpression of Egr-1 enhanced the effect of ciglitazone on PDK1 gene promoter activity. ChIP assays demonstrated that ciglitazone induced Egr-1 protein bind to the specific DNA site

  9. Serine/Threonine Kinase 3-Phosphoinositide-Dependent Protein Kinase-1 (PDK1) as a Key Regulator of Cell Migration and Cancer Dissemination

    PubMed Central

    Di Blasio, Laura; Gagliardi, Paolo A.; Puliafito, Alberto; Primo, Luca

    2017-01-01

    Dissecting the cellular signaling that governs the motility of eukaryotic cells is one of the fundamental tasks of modern cell biology, not only because of the large number of physiological processes in which cell migration is crucial, but even more so because of the pathological ones, in particular tumor invasion and metastasis. Cell migration requires the coordination of at least four major processes: polarization of intracellular signaling, regulation of the actin cytoskeleton and membrane extension, focal adhesion and integrin signaling and contractile forces generation and rear retraction. Among the molecular components involved in the regulation of locomotion, the phosphatidylinositol-3-kinase (PI3K) pathway has been shown to exert fundamental role. A pivotal node of such pathway is represented by the serine/threonine kinase 3-phosphoinositide-dependent protein kinase-1 (PDPK1 or PDK1). PDK1, and the majority of its substrates, belong to the AGC family of kinases (related to cAMP-dependent protein kinase 1, cyclic Guanosine monophosphate-dependent protein kinase and protein kinase C), and control a plethora of cellular processes, downstream either to PI3K or to other pathways, such as RAS GTPase-MAPK (mitogen-activated protein kinase). Interestingly, PDK1 has been demonstrated to be crucial for the regulation of each step of cell migration, by activating several proteins such as protein kinase B/Akt (PKB/Akt), myotonic dystrophy-related CDC42-binding kinases alpha (MRCKα), Rho associated coiled-coil containing protein kinase 1 (ROCK1), phospholipase C gamma 1 (PLCγ1) and β3 integrin. Moreover, PDK1 regulates cancer cell invasion as well, thus representing a possible target to prevent cancer metastasis in human patients. The aim of this review is to summarize the various mechanisms by which PDK1 controls the cell migration process, from cell polarization to actin cytoskeleton and focal adhesion regulation, and finally, to discuss the evidence supporting a

  10. Factors Influencing the Central Nervous System Distribution of a Novel Phosphoinositide 3-Kinase/Mammalian Target of Rapamycin Inhibitor GSK2126458: Implications for Overcoming Resistance with Combination Therapy for Melanoma Brain Metastases

    PubMed Central

    Vaidhyanathan, Shruthi; Wilken-Resman, Brynna; Ma, Daniel J.; Parrish, Karen E.; Mittapalli, Rajendar K.; Carlson, Brett L.; Sarkaria, Jann N.

    2016-01-01

    Small molecule inhibitors targeting the mitogen-activated protein kinase pathway (Braf/mitogen-activated protein kinase kinase/extracellular signal-regulated kinase) have had success in extending survival for patients with metastatic melanoma. Unfortunately, resistance may occur via cross-activation of alternate signaling pathways. One approach to overcome resistance is to simultaneously target the phosphoinositide 3-kinase/mammalian target of rapamycin signaling pathway. Recent reports have shown that GSK2126458 [2,4-difluoro-N-(2-methoxy-5-(4-(pyridazin-4-yl)quinolin-6-yl)pyridin-3-yl) benzenesulfonamide], a dual phosphoinositide 3-kinase/mammalian target of rapamycin inhibitor, can overcome acquired resistance to Braf and mitogen-activated protein kinase kinase inhibitors in vitro. These resistance mechanisms may be especially important in melanoma brain metastases because of limited drug delivery across the blood–brain barrier. The purpose of this study was to investigate factors that influence the brain distribution of GSK2126458 and to examine the efficacy of GSK2126458 in a novel patient-derived melanoma xenograft (PDX) model. Both in vitro and in vivo studies indicate that GSK2126458 is a substrate for P-glycoprotein (P-gp) and breast cancer resistance protein (Bcrp), two dominant active efflux transporters in the blood–brain barrier. The steady-state brain distribution of GSK2126458 was 8-fold higher in the P-gp/Bcrp knockout mice compared with the wild type. We also observed that when simultaneously infused to steady state, GSK212658, dabrafenib, and trametinib, a rational combination to overcome mitogen-activated protein kinase inhibitor resistance, all had limited brain distribution. Coadministration of elacridar, a P-gp/Bcrp inhibitor, increased the brain distribution of GSK2126458 by approximately 7-fold in wild-type mice. In the PDX model, GSK2126458 showed efficacy in flank tumors but was ineffective in intracranial melanoma. These results show

  11. Internal calcium release and activation of sea urchin eggs by cGMP are independent of the phosphoinositide signaling pathway.

    PubMed Central

    Whalley, T; McDougall, A; Crossley, I; Swann, K; Whitaker, M

    1992-01-01

    We show that microinjecting cyclic GMP (cGMP) into unfertilized sea urchin eggs activates them by stimulating a rise in the intracellular free calcium ion concentration ([Ca2+]i). The increase in [Ca2+]i is similar in both magnitude and duration to the transient that activates the egg at fertilization. It is due to mobilization of calcium from intracellular stores but is not prevented by the inositol trisphosphate (InsP3) antagonist heparin. Furthermore, cGMP does not stimulate the eggs Na+/H+ antiport when the [Ca2+]i transient is blocked by the calcium chelator bis-(O-aminophenoxy)-N,N,N',N'-tetraacetic acid (BAPTA), suggesting that cGMP does not activate eggs by interacting with the their phosphoinositide signaling pathway. However, the [Ca2+]i increase and activation are prevented in eggs in which the InsP3-sensitive calcium stores have been emptied by the prior microinjection of the InsP3 analogue inositol 1,4,5-trisphosphorothioate. These data indicate that cGMP activates eggs by stimulating the release of calcium from an InsP3-sensitive calcium store via a novel, though unidentified, route independent of the InsP3 receptor. PMID:1320962

  12. Phosphoinositides in Ca(2+) signaling and excitation-contraction coupling in skeletal muscle: an old player and newcomers.

    PubMed

    Csernoch, Laszlo; Jacquemond, Vincent

    2015-12-01

    Since the postulate, 30 years ago, that phosphatidylinositol 4,5-bisphosphate (PtdIns(4,5)P 2) as the precursor of inositol 1,4,5-trisphosphate (Ins(1,4,5)P 3) would be critical for skeletal muscle excitation-contraction (EC) coupling, the issue of whether phosphoinositides (PtdInsPs) may have something to do with Ca(2+) signaling in muscle raised limited interest, if any. In recent years however, the PtdInsP world has expanded considerably with new functions for PtdIns(4,5)P 2 but also with functions for the other members of the PtdInsP family. In this context, the discovery that genetic deficiency in a PtdInsP phosphatase has dramatic consequences on Ca(2+) homeostasis in skeletal muscle came unanticipated and opened up new perspectives in regards to how PtdInsPs modulate muscle Ca(2+) signaling under normal and disease conditions. This review intends to make an update of the established, the questioned, and the unknown regarding the role of PtdInsPs in skeletal muscle Ca(2+) homeostasis and EC coupling, with very specific emphasis given to Ca(2+) signals in differentiated skeletal muscle fibers.

  13. Role of calcium in phosphoinositide metabolism and inhibition of norepinephrine transport into synaptic vesicles by amphetamine analogs

    SciTech Connect

    Knepper, S.M.

    1985-01-01

    Norepinephrine-(NE) and calcium ionophore A23187-stimulated phosphoinositide (PIn) metabolism in rat brain slices was studied under varying calcium conditions. Tissue was labelled with /sup 3/H-myo-inositol and /sup 3/H-inositol phosphates (IPn), products of PIn metabolism were measured. In the absence of media calcium the response to NE was decreased while that to A23187 was little affected A23187 can release calcium from intracellular stores. Basal and stimulated accumulation of /sup 3/H-IPn was reversibly antagonized with EGTA by addition of calcium. Using calcium buffers, approximately 10/sup -7/ M free calcium was required to support hydrolysis. Free intracellular calcium is maintained at approximately this level. Thus calcium is required for PIn hydrolysis but appears to play a permissive role, basal levels being sufficient to support metabolism. Conformationally-defined (rigid) and -restricted (semi-rigid) analogs of the most stable conformations of amphetamine, antiperiplanar (exo) and gauche (endo), were utilized to probe the conformational requirements of vesicular NE transport. Analogs tested were 2-aminotetralin (2AT), 3-methyltetrahydroisoquinoline, anti- and syn-9-aminobenzobicyclo(2.2.1)heptene, and endo and exo conformers of 2-aminobenzobicyclo(2.2.1)heptene and 2-aminobenzobicyclo(2.2.2)octene.

  14. The effect of oxytocin on progesterone secretion, phosphoinositide hydrolysis and intracellular mobilisation of Ca2+ in porcine luteal cells.

    PubMed

    Franczak, Anita; Kurowicka, Beata; Kowalik, Magdalena; Ciereszko, Renata Elzbieta; Kotwica, Genowefa

    2009-03-01

    Oxytocin (OT) is involved in the regulation of steroid secretion by the corpus luteum (CL) in pigs, but OT signal transduction in the porcine CL has not been identified. In this study, the effects of OT on in vitro progesterone (P4) secretion, phosphoinositide (PI) hydrolysis and intracellular mobilisation of Ca2+ ([Ca2+]i) were investigated in porcine luteal cells during the early (days 3-5), mid(days 8-10) and late luteal phases (days 12-14) of the oestrous cycle. Basal concentrations of P4 and accumulation of inositol phosphates (IPs) were higher (P < 0.05) on days 3-5 and 8-10 of the oestrous cycle than on days 12-14. Basal [Ca2+]i mobilisation did not differ among studied periods of the oestrous cycle. Oxytocin (10(-7) M) enhanced P4 secretion and PI hydrolysis (P < 0.05) by luteal cells harvested on days 8-10 of the oestrous cycle. Moreover, OT started to increase mobilisation of [Ca2+]i at the 15th (days 3-5 and 8-10) or 30th second (days 12-14) in porcine luteal cells. It was concluded that in pigs OT acts as a regulator of steroidogenesis, stimulating P4 secretion in mature CL. This OT action may be mediated by changes in PI hydrolysis and [Ca2+]i mobilisation.

  15. Leukotriene D4 receptor-mediated hydrolysis of phosphoinositide and mobilization of calcium in sheep tracheal smooth muscle cells

    SciTech Connect

    Mong, S.; Miller, J.; Wu, H.L.; Crooke, S.T.

    1988-02-01

    A sheep tracheal smooth muscle primary culture cell system was developed to characterize leukotriene D4 (LTD4) receptor-mediated biochemical and pharmacological effects. (/sup 3/H)LTD4 binding to the enriched plasma membrane receptor was specific, stereoselective and saturable. LTE4 and high affinity receptor antagonists bound to the receptors with a rank-order potency that was expected from previous smooth muscle contraction studies. In the (/sup 3/H)myoinositol labeled cells, LTD4 and LTE4 induced phosphoinositide hydrolysis. The biosynthesis of (/sup 3/H)inositol-trisphosphate was rapid and the induction of biosynthesis of (/sup 3/H)inositol-monophosphate by LTs was stereoselective and specific and was inhibited specifically by a receptor antagonist, SKF 104353. In the fura-2 loaded smooth muscle cells, LTD4 and LTE4 induced transient intracellular Ca++ mobilization. The fura-2/Ca++ transient was stereoselective and specific and was inhibited by receptor antagonist, SKF 104353. These results suggest that the cultured sheep tracheal smooth muscle cells have plasma membrane receptors for LTD4. These receptors were coupled to a phospholipase C that, when activated by agonists, induced hydrolysis of inositol containing phospholipids. The hydrolysis products, e.g. diacylglycerol and inositol-trisphosphate, may serve as intracellular messengers that trigger or contribute to the contractile effect in sheep tracheal smooth muscle.

  16. Cobalt chloride stimulates phosphoinositide 3-kinase/Akt signaling through the epidermal growth factor receptor in oral squamous cell carcinoma.

    PubMed

    Ryu, Mi Heon; Park, Jeong Hee; Park, Ji Eun; Chung, Jin; Lee, Chang Hun; Park, Hae Ryoun

    2010-04-01

    Tumor cells are often found under hypoxic conditions due to the rapid outgrowth of their vascular supply, and, in order to survive hypoxia, these cells induce numerous signaling factors. Akt is an important kinase in cell survival, and its activity is regulated by the upstream phosphoinositide 3-kinase (PI3K) and receptor tyrosine kinases (RTKs). In this study, we examined Akt activation and RTKs/PI3K/Akt signaling using the hypoxia-mimetic cobalt chloride in oral squamous carcinoma cells. Cobalt chloride increases Akt phosphorylation in both a dose- and time-dependent manner. Blocking the activation of the PI3K/Akt pathway using LY294002 abolished Akt activation in response to cobalt chloride, suggesting that Akt phosphorylation by cobalt chloride is dependent on PI3K. In addition, activation of the PI3K/Akt pathway seems to rely on the epidermal growth factor receptor (EGFR), since the inhibition of EGFR attenuated cobalt chloride-induced Akt activation. The results in this study also demonstrate that cobalt chloride increases EGFR protein levels and induces oral squamous cell carcinoma cells to enter S phase.

  17. Novel roles for class II Phosphoinositide 3-Kinase C2β in signalling pathways involved in prostate cancer cell invasion

    PubMed Central

    Mavrommati, Ioanna; Cisse, Ouma; Falasca, Marco; Maffucci, Tania

    2016-01-01

    Phosphoinositide 3-kinases (PI3Ks) regulate several cellular functions such as proliferation, growth, survival and migration. The eight PI3K isoforms are grouped into three classes and the three enzymes belonging to the class II subfamily (PI3K-C2α, β and γ) are the least investigated amongst all PI3Ks. Interest on these isoforms has been recently fuelled by the identification of specific physiological roles for class II PI3Ks and by accumulating evidence indicating their involvement in human diseases. While it is now established that these isoforms can regulate distinct cellular functions compared to other PI3Ks, there is still a limited understanding of the signalling pathways that can be specifically regulated by class II PI3Ks. Here we show that PI3K-C2β regulates mitogen-activated protein kinase kinase (MEK1/2) and extracellular signal-regulated kinase (ERK1/2) activation in prostate cancer (PCa) cells. We further demonstrate that MEK/ERK and PI3K-C2β are required for PCa cell invasion but not proliferation. In addition we show that PI3K-C2β but not MEK/ERK regulates PCa cell migration as well as expression of the transcription factor Slug. These data identify novel signalling pathways specifically regulated by PI3K-C2β and they further identify this enzyme as a key regulator of PCa cell migration and invasion. PMID:26983806

  18. A method to control phosphoinositides and to analyze PTEN function in living cells using voltage sensitive phosphatases

    PubMed Central

    Mavrantoni, Angeliki; Thallmair, Veronika; Leitner, Michael G.; Schreiber, Daniela N.; Oliver, Dominik; Halaszovich, Christian R.

    2015-01-01

    Voltage sensitive phosphatases (VSPs), including engineered voltage sensitive PTEN, are excellent tools to rapidly and reversibly alter the phosphoinositide (PI) content of the plasma membrane in vivo and study the tumor suppressor PTEN. However, widespread adoption of these tools is hampered by the requirement for electrophysiological instrumentation to control the activity of VSPs. Additionally, monitoring and quantifying the PI changes in living cells requires sophisticated microscopy equipment and image analysis. Here we present methods that bypass these obstacles. First, we explore technically simple means for activation of VSPs via extracellularly applied agents or light. Secondly, we characterize methods to monitor PI(4,5)P2 and PI(3,4,5)P3 levels using fluorescence microscopy or photometry in conjunction with translocation or FRET based PI probes, respectively. We then demonstrate the application of these techniques by characterizing the effect of known PTEN mutations on its enzymatic activity, analyzing the effect of PTEN inhibitors, and detecting in real time rapid inhibition of protein kinase B following depletion of PI(3,4,5)P3. Thus, we established an approach that does not only allow for rapidly manipulating and monitoring PI(4,5)P2 and PI(3,4,5)P3 levels in a population of cells, but also facilitates the study of PTEN mutants and pharmacological targeting in mammalian cells. PMID:25873899

  19. SDF-1α/CXCR4 Signaling in Lipid Rafts Induces Platelet Aggregation via PI3 Kinase-Dependent Akt Phosphorylation

    PubMed Central

    Hayashi, Moyuru; Kaneda, Mizuho; Iida, Kazuko; Shimonaka, Motoyuki; Hara, Takahiko; Arai, Morio; Koike, Yuichi; Yamamoto, Naomasa; Kasahara, Kohji

    2017-01-01

    Stromal cell-derived factor-1α (SDF-1α)-induced platelet aggregation is mediated through its G protein-coupled receptor CXCR4 and phosphatidylinositol 3 kinase (PI3K). Here, we demonstrate that SDF-1α induces phosphorylation of Akt at Thr308 and Ser473 in human platelets. SDF-1α-induced platelet aggregation and Akt phosphorylation are inhibited by pretreatment with the CXCR4 antagonist AMD3100 or the PI3K inhibitor LY294002. SDF-1α also induces the phosphorylation of PDK1 at Ser241 (an upstream activator of Akt), GSK3β at Ser9 (a downstream substrate of Akt), and myosin light chain at Ser19 (a downstream element of the Akt signaling pathway). SDF-1α-induced platelet aggregation is inhibited by pretreatment with the Akt inhibitor MK-2206 in a dose-dependent manner. Furthermore, SDF-1α-induced platelet aggregation and Akt phosphorylation are inhibited by pretreatment with the raft-disrupting agent methyl-β-cyclodextrin. Sucrose density gradient analysis shows that 35% of CXCR4, 93% of the heterotrimeric G proteins Gαi-1, 91% of Gαi-2, 50% of Gβ and 4.0% of PI3Kβ, and 4.5% of Akt2 are localized in the detergent-resistant membrane raft fraction. These findings suggest that SDF-1α/CXCR4 signaling in lipid rafts induces platelet aggregation via PI3K-dependent Akt phosphorylation. PMID:28072855

  20. SDF-1α/CXCR4 Signaling in Lipid Rafts Induces Platelet Aggregation via PI3 Kinase-Dependent Akt Phosphorylation.

    PubMed

    Ohtsuka, Hiroko; Iguchi, Tomohiro; Hayashi, Moyuru; Kaneda, Mizuho; Iida, Kazuko; Shimonaka, Motoyuki; Hara, Takahiko; Arai, Morio; Koike, Yuichi; Yamamoto, Naomasa; Kasahara, Kohji

    2017-01-01

    Stromal cell-derived factor-1α (SDF-1α)-induced platelet aggregation is mediated through its G protein-coupled receptor CXCR4 and phosphatidylinositol 3 kinase (PI3K). Here, we demonstrate that SDF-1α induces phosphorylation of Akt at Thr308 and Ser473 in human platelets. SDF-1α-induced platelet aggregation and Akt phosphorylation are inhibited by pretreatment with the CXCR4 antagonist AMD3100 or the PI3K inhibitor LY294002. SDF-1α also induces the phosphorylation of PDK1 at Ser241 (an upstream activator of Akt), GSK3β at Ser9 (a downstream substrate of Akt), and myosin light chain at Ser19 (a downstream element of the Akt signaling pathway). SDF-1α-induced platelet aggregation is inhibited by pretreatment with the Akt inhibitor MK-2206 in a dose-dependent manner. Furthermore, SDF-1α-induced platelet aggregation and Akt phosphorylation are inhibited by pretreatment with the raft-disrupting agent methyl-β-cyclodextrin. Sucrose density gradient analysis shows that 35% of CXCR4, 93% of the heterotrimeric G proteins Gαi-1, 91% of Gαi-2, 50% of Gβ and 4.0% of PI3Kβ, and 4.5% of Akt2 are localized in the detergent-resistant membrane raft fraction. These findings suggest that SDF-1α/CXCR4 signaling in lipid rafts induces platelet aggregation via PI3K-dependent Akt phosphorylation.

  1. WAVE2, N-WASP, and Mena facilitate cell invasion via phosphatidylinositol 3-kinase-dependent local accumulation of actin filaments.

    PubMed

    Takahashi, Kazuhide; Suzuki, Katsuo

    2011-11-01

    Cell migration is accomplished by the formation of cellular protrusions such as lamellipodia and filopodia. These protrusions result from actin filament (F-actin) rearrangement at the cell cortex by WASP/WAVE family proteins and Drosophila enabled (Ena)/vasodilator-stimulated factor proteins. However, the role of each of these actin cytoskeletal regulatory proteins in the regulation of three-dimensional cell invasion remains to be clarified. We found that platelet-derived growth factor (PDGF) induces invasion of MDA-MB-231 human breast cancer cells through invasion chamber membrane pores. This invasion was accompanied by intensive F-actin accumulation at the sites of cell infiltration. After PDGF stimulation, WAVE2, N-WASP, and a mammalian Ena (Mena) colocalized with F-actin at the sites of cell infiltration in a phosphatidylinositol 3-kinase (PI3K)-dependent manner. Depletion of WAVE2, N-WASP, or Mena by RNA interference (RNAi) abrogated both cell invasion and intensive F-actin accumulation at the invasion site. These results indicate that by mediating intensive F-actin accumulation at the sites of cell infiltration, WAVE2, N-WASP, and Mena are crucial for PI3K-dependent cell invasion induced by PDGF.

  2. Activation of sonic hedgehog signaling enhances cell migration and invasion by induction of matrix metalloproteinase-2 and -9 via the phosphoinositide-3 kinase/AKT signaling pathway in glioblastoma.

    PubMed

    Chang, Liang; Zhao, Dan; Liu, Hui-Bin; Wang, Qiu-Shi; Zhang, Ping; Li, Chen-Long; Du, Wen-Zhong; Wang, Hong-Jun; Liu, Xing; Zhang, Zhi-Ren; Jiang, Chuan-Lu

    2015-11-01

    Aberrant hedgehog signaling contributes to the development of various malignancies, including glioblastoma (GBM). However, the potential mechanism of hedgehog signaling in GBM migration and invasion has remained to be elucidated. The present study showed that enhanced hedgehog signaling by recombinant human sonic hedgehog N‑terminal peptide (rhSHH) promoted the adhesion, invasion and migration of GBM cells, accompanied by increases in mRNA and protein levels of matrix metalloproteinase‑2 (MMP‑2) and MMP‑9. However, inhibition of hedgehog signaling with cyclopamine suppressed the adhesion, invasion and migration of GBM cells, accompanied by decreases in mRNA and protein levels of MMP‑2 and ‑9. Furthermore, it was found that MMP‑2- and MMP‑9-neutralizing antibodies or GAM6001 reversed the inductive effects of rhSHH on cell migration and invasion. In addition, enhanced hedgehog signaling by rhSHH increased AKT phosphorylation, whereas blockade of hedgehog signaling decreased AKT phosphorylations. Further experiments showed that LY294002, an inhibitor of phosphoinositide-3 kinase (PI3K), decreased rhSHH‑induced upregulation of MMP‑2 and ‑9. Finally, the protein expression of glioblastoma-associated oncogene 1 was positively correlated with levels of phosphorylated AKT as well as protein expressions of MMP‑2 and ‑9 in GBM tissue samples. In conclusion, the present study indicated that the hedgehog pathway regulates GBM-cell migration and invasion by increasing MMP-2 and MMP-9 production via the PI3K/AKT pathway.

  3. Static magnetic field enhances the viability and proliferation rate of adipose tissue-derived mesenchymal stem cells potentially through activation of the phosphoinositide 3-kinase/Akt (PI3K/Akt) pathway.

    PubMed

    Marędziak, Monika; Tomaszewski, Krzysztof; Polinceusz, Paulina; Lewandowski, Daniel; Marycz, Krzysztof

    2017-01-01

    The aim of this work was to investigate the effects of 0.5T static magnetic field (sMF) on the viability and proliferation rate of human adipose-derived mesenchymal stromal stem cells (hASCs) via activation of the phosphoinositide 3-kinase/Akt (PI3K/Akt) signaling pathway. In a 7-d culture we examined cell growth kinetic and population doubling time (PDT). We also examined cell morphology and the cellular senescence markers level. Exposure to sMF enhanced the viability of these cells. However, the effect was blocked by treating the cells with LY294002, a P13K inhibitor. We compared this effect by Western Blot analysis of Akt protein expression. We also examined whether the cell response on sMF stimulation is dependent on integrin engagement and we measured integrin gene expression. Our results suggest that stimulation using sMF is a viable method to improve hASC viability. sMF is involved in mechanisms associated with controlling cell proliferative potential signaling events.

  4. Activation of phosphoinositide 3-kinase/PKB pathway by CB(1) and CB(2) cannabinoid receptors expressed in prostate PC-3 cells. Involvement in Raf-1 stimulation and NGF induction.

    PubMed

    Sánchez, María G; Ruiz-Llorente, Lidia; Sánchez, Ana M; Díaz-Laviada, Inés

    2003-09-01

    Cannabinoids exert a variety of physiological and pharmacological responses in humans through interaction with specific cannabinoid receptors. Cannabinoid receptors described to date belong to the seven-transmembrane-domain receptor superfamily and are coupled through the inhibitory G(i) protein to adenylyl cyclase inhibition. However, downstream signal transduction mechanisms triggered by cannabinoids are poorly understood. We examined here the involvement of the phosphoinositide 3-kinase (PI3K)/PKB pathway in the mechanism of action of cannabinoids in human prostate epithelial PC-3 cells. Cannabinoid receptors CB(1) and CB(2) are expressed in these cells, as shown by RT-PCR, Western blot and immunofluorescence techniques. Treatment of PC-3 cells with either Delta(9)-tetrahydrocannabinol (THC), the major psychoactive ingredient of marijuana, or R-(+)-methanandamide (MET), an analogue of the endogenous cannabinoid anandamide, increased phosphorylation of PKB in Thr308 and Ser473. The stimulation of PKB induced by cannabinoids was blocked by the two cannabinoid receptor antagonists, SR 141716 and SR 144528, and by the PI3K inhibitor LY 294002. These results indicate that activation of cannabinoid receptors in PC-3 cells stimulate the PI3K/PKB pathway. We further investigated the involvement of Raf-1/Erk activation in the mechanism of action of cannabinoid receptors. THC and MET induced translocation of Raf-1 to the membrane and phosphorylation of p44/42 Erk kinase, which was reversed by cannabinoid receptor antagonists and PI3K inhibitor. These results point to a sequential connection between cannabinoid receptors/PI3K/PKB pathway and Raf-1/Erk in prostate PC-3 cells. We also show that this pathway is involved in the mechanism of NGF induction exerted by cannabinoids in PC-3 cells.

  5. Dihydrotestosterone differentially modulates the mitogen-activated protein kinase and the phosphoinositide 3-kinase/Akt pathways through the nuclear and novel membrane androgen receptor in C6 cells.

    PubMed

    Gatson, Joshua W; Kaur, Paramjit; Singh, Meharvan

    2006-04-01

    Androgens such as dihydrotestosterone (DHT) are known to exert their effects through the activation of intracellular receptors that regulate the transcription of target genes. Alternatively, nongenomic mechanisms, including the activation of such signaling pathways as the MAPK pathways, have been described. It is unclear, however, whether this latter mechanism of action is mediated by the classical androgen receptor (AR) or some alternative mechanism. In this study, using a glial cell model (C6 cells) that we found to express the AR, we identified that DHT increased the phosphorylation of both ERK and Akt, key effectors of the neuroprotection-associated MAPK and phosphoinositide 3-kinase signaling pathways, respectively, and ERK phosphorylation was blocked by the AR antagonist, flutamide. In contrast, the membrane-impermeable, BSA-conjugated androgen (DHT-BSA) caused a dose-dependent suppression of ERK and Akt phosphorylation, suggesting the existence of a novel membrane-associated AR that mediates this opposite effect on neuroprotective signaling. This is also supported by the observation of DHT-displaceable binding sites on the cell surface of live C6 cells. Collectively, these data support the existence of a novel membrane-associated AR in glial cells and argue for the existence of two, potentially competing, pathways in a given cell or tissue. This mutual antagonism was supported by the ability of DHT-BSA to attenuate DHT-induced ERK phosphorylation. Thus, depending on the predominance of one receptor mechanism over another, the outcome of androgen treatment may be very different and, as such, could help explain existing discrepancies as to whether androgens are protective or damage inducing.

  6. The anti-esophageal cancer cell activity by a novel tyrosine/phosphoinositide kinase inhibitor PP121

    SciTech Connect

    Peng, Yi; Zhou, Yajuan; Cheng, Long; Hu, Desheng; Zhou, Xiaoyi; Wang, Zhaohua; Xie, Conghua; Zhou, Fuxiang

    2015-09-11

    Here we explored the potential effect of PP121, a novel dual inhibitor of tyrosine and phosphoinositide kinases, against human esophageal cancer cells. We showed that PP121 exerted potent cytotoxic effect in primary (patient-derived) and established (Eca-109, TE-1 and TE-3 lines) esophageal cancer cells, possibly through activating caspase-3-dependnent apoptosis. PP121 was, however, non-cytotoxic to the normal human esophageal epithelial cells (EECs). At the molecular level, we showed that PP121 blocked Akt-mTOR (mammalian target of rapamycin) activation in esophageal cancer cells, which was restored by introducing a constitutively-active Akt (CA-Akt). Yet, CA-Akt only partly inhibited cytotoxicity by PP121 in Eca-109 cells. Importantly, we showed that PP121 inhibited nuclear factor kappa B (NFκB) signaling activation in esophageal cancer cells, which appeared independent of Akt-mTOR blockage. In vivo, oral administration of PP121 remarkably inhibited Eca-109 xenograft growth in nude mice, and significantly improved mice survival. Further, the immunohistochemistry (IHC) and Western blot assays analyzing xenografted tumors showed that PP121 inhibited Akt-mTOR and NFκB activations in vivo. Together, we demonstrate that PP121 potently inhibits esophageal cancer cells in vitro and in vivo, possibly through concurrently inhibiting Akt-mTOR and NFκB signalings. - Highlights: • PP121 is cytotoxic against primary and established esophageal cancer cells. • PP121 induces caspase-3-dependnent apoptosis in esophageal cancer cells. • PP121 blocks Akt-mTOR activation in esophageal cancer cells. • PP121 inhibits NFκB activation, independent of Akt-mTOR blockage. • PP121 inhibits Eca-109 xenograft growth and Akt-mTOR/NFκB activation in vivo.

  7. Exocyst SEC3 and Phosphoinositides Define Sites of Exocytosis in Pollen Tube Initiation and Growth1[OPEN

    PubMed Central

    Bloch, Daria; Pleskot, Roman; Vukašinović, Nemanja

    2016-01-01

    Polarized exocytosis is critical for pollen tube growth, but its localization and function are still under debate. The exocyst vesicle-tethering complex functions in polarized exocytosis. Here, we show that a sec3a exocyst subunit null mutant cannot be transmitted through the male gametophyte due to a defect in pollen tube growth. The green fluorescent protein (GFP)-SEC3a fusion protein is functional and accumulates at or proximal to the pollen tube tip plasma membrane. Partial complementation of sec3a resulted in the development of pollen with multiple tips, indicating that SEC3 is required to determine the site of pollen germination pore formation. Time-lapse imaging demonstrated that SEC3a and SEC8 were highly dynamic and that SEC3a localization on the apical plasma membrane predicts the direction of growth. At the tip, polar SEC3a domains coincided with cell wall deposition. Labeling of GFP-SEC3a-expressing pollen with the endocytic marker FM4-64 revealed the presence of subdomains on the apical membrane characterized by extensive exocytosis. In steady-state growing tobacco (Nicotiana tabacum) pollen tubes, SEC3a displayed amino-terminal Pleckstrin homology-like domain (SEC3a-N)-dependent subapical membrane localization. In agreement, SEC3a-N interacted with phosphoinositides in vitro and colocalized with a phosphatidylinositol 4,5-bisphosphate (PIP2) marker in pollen tubes. Correspondingly, molecular dynamics simulations indicated that SEC3a-N associates with the membrane by interacting with PIP2. However, the interaction with PIP2 is not required for polar localization and the function of SEC3a in Arabidopsis (Arabidopsis thaliana). Taken together, our findings indicate that SEC3a is a critical determinant of polar exocytosis during tip growth and suggest differential regulation of the exocytotic machinery depending on pollen tube growth modes. PMID:27516531

  8. The CIL-1 phosphoinositide 5-phosphatase regulates ciliary localization of the TRP polycystins and sperm function in C. elegans

    PubMed Central

    Bae, Young-Kyung; Kim, Eunsoo; L'Hernault, Steven W.; Barr, Maureen M.

    2009-01-01

    Summary Background C. elegans male sexual behaviors include chemotaxis and response to hermaphrodites, backing/turning, vulva location, spicule insertion and sperm transfer, culminating in cross fertilization of hermaphrodite oocytes with male sperm. The LOV-1 and PKD-2 transient receptor potential polycystin (TRPP) complex localizes to ciliated endings of C. elegans male-specific sensory neurons and mediates several aspects of male mating behavior. TRPP complex ciliary localization and sensory function is evolutionarily conserved. A genetic screen for C. elegans mutants with PKD-2 ciliary localization (Cil) defects led to the isolation of a mutation in the cil-1 gene. Results Here, we report that a phosphoinositide (PI) 5-phosphatase CIL-1 regulates TRPP complex ciliary receptor localization and sperm activation. cil-1 does not regulate the localization of other ciliary proteins, including intraflagellar transport (IFT) components, sensory receptors, or other TRP channels in different cell types. Rather, cil-1 specifically controls TRPP complex trafficking in male-specific sensory neurons and does so in a cell autonomous fashion. In these cells, cil-1 is required for normal PI(3)P distribution, indicating that a balance between PI(3,5)P2 and PI(3)P is important for TRPP localization. cil-1 mutants are infertile due to sperm activation and motility defects. In sperm, the CIL-1 5-phosphatase and a wortmannin sensitive PI 3-kinase act antagonistically to regulate the conversion of sessile spermatids into motile spermatozoa, implicating PI(3,4,5)P3 signaling in nematode sperm activation. Conclusion Our studies identify the CIL-1 5-phosphatase as key regulator of PI metabolism in cell types that are important in several aspects of male reproductive biology. PMID:19781942

  9. Up-regulation of phosphoinositide metabolism in tobacco cells constitutively expressing the human type I inositol polyphosphate 5-phosphatase

    NASA Technical Reports Server (NTRS)

    Perera, Imara Y.; Love, John; Heilmann, Ingo; Thompson, William F.; Boss, Wendy F.; Brown, C. S. (Principal Investigator)

    2002-01-01

    To evaluate the impact of suppressing inositol 1,4,5-trisphosphate (InsP(3)) in plants, tobacco (Nicotiana tabacum) cells were transformed with the human type I inositol polyphosphate 5-phosphatase (InsP 5-ptase), an enzyme which specifically hydrolyzes InsP(3). The transgenic cell lines showed a 12- to 25-fold increase in InsP 5-ptase activity in vitro and a 60% to 80% reduction in basal InsP(3) compared with wild-type cells. Stimulation with Mas-7, a synthetic analog of the wasp venom peptide mastoparan, resulted in an approximately 2-fold increase in InsP(3) in both wild-type and transgenic cells. However, even with stimulation, InsP(3) levels in the transgenic cells did not reach wild-type basal values, suggesting that InsP(3) signaling is compromised. Analysis of whole-cell lipids indicated that phosphatidylinositol 4,5-bisphosphate (PtdInsP(2)), the lipid precursor of InsP(3), was greatly reduced in the transgenic cells. In vitro assays of enzymes involved in PtdInsP(2) metabolism showed that the activity of the PtdInsP(2)-hydrolyzing enzyme phospholipase C was not significantly altered in the transgenic cells. In contrast, the activity of the plasma membrane PtdInsP 5 kinase was increased by approximately 3-fold in the transgenic cells. In vivo labeling studies revealed a greater incorporation of (32)P into PtdInsP(2) in the transgenic cells compared with the wild type, indicating that the rate of PtdInsP(2) synthesis was increased. These studies show that the constitutive expression of the human type I InsP 5-ptase in tobacco cells leads to an up-regulation of the phosphoinositide pathway and highlight the importance of PtdInsP(2) synthesis as a regulatory step in this system.

  10. Regulation of the transient receptor potential channel TRPM3 by phosphoinositides.

    PubMed

    Tóth, Balázs I; Konrad, Maik; Ghosh, Debapriya; Mohr, Florian; Halaszovich, Christian R; Leitner, Michael G; Vriens, Joris; Oberwinkler, Johannes; Voets, Thomas

    2015-07-01

    The transient receptor potential (TRP) channel TRPM3 is a calcium-permeable cation channel activated by heat and by the neurosteroid pregnenolone sulfate (PregS). TRPM3 is highly expressed in sensory neurons, where it plays a key role in heat sensing and inflammatory hyperalgesia, and in pancreatic β cells, where its activation enhances glucose-induced insulin release. However, despite its functional importance, little is known about the cellular mechanisms that regulate TRPM3 activity. Here, we provide evidence for a dynamic regulation of TRPM3 by membrane phosphatidylinositol phosphates (PIPs). Phosphatidylinositol 4,5-bisphosphate (PI[4,5]P2) and ATP applied to the intracellular side of excised membrane patches promote recovery of TRPM3 from desensitization. The stimulatory effect of cytosolic ATP on TRPM3 reflects activation of phosphatidylinositol kinases (PI-Ks), leading to resynthesis of PIPs in the plasma membrane. Various PIPs directly enhance TRPM3 activity in cell-free inside-out patches, with a potency order PI(3,4,5)P3 > PI(3,5)P2 > PI(4,5)P2 ≈ PI(3,4)P2 > PI(4)P. Conversely, TRPM3 activity is rapidly and reversibly inhibited by activation of phosphatases that remove the 5-phosphate from PIPs. Finally, we show that recombinant TRPM3, as well as the endogenous TRPM3 in insuloma cells, is rapidly and reversibly inhibited by activation of phospholipase C-coupled muscarinic acetylcholine receptors. Our results reveal basic cellular mechanisms whereby membrane receptors can regulate TRPM3 activity.

  11. PTEN-mediated segregation of phosphoinositides at the apical membrane controls epithelial morphogenesis through Cdc42

    PubMed Central

    Martin-Belmonte, Fernando; Gassama, Ama; Datta, Anirban; Yu, Wei; Rescher±, Ursula; Gerke±, Volker; Mostov, Keith

    2007-01-01

    Summary Formation of the apical surface and lumen is a fundamental, yet poorly understood, step in epithelial organ development. We show that PTEN localizes to the apical plasma membrane during epithelial morphogenesis to mediate the enrichment of PtdIns(4,5)P2 at this domain during cyst development in three dimensional culture. Ectopic PtdIns(4,5)P2 at the basolateral surface causes apical proteins to relocalize to the basolateral surface. Annexin 2 (Ax2) binds PtdIns(4,5)P2 and is recruited to the apical surface. Ax2 binds Cdc42, recruiting it to the apical surface. Cdc42 recruits aPKC to the apical surface. Loss of function of PTEN, Ax2, Cdc42 or aPKC prevents normal development of the apical surface and lumen. We conclude that the mechanism of PTEN, PtdIns(4,5)P2, Ax2, Cdc42 and aPKC controls apical plasma membrane and lumen formation. PMID:17254974

  12. SNX-BAR proteins in phosphoinositide-mediated, tubular-based endosomal sorting.

    PubMed

    van Weering, Jan R T; Verkade, Paul; Cullen, Peter J

    2010-06-01

    The endocytic network is morphologically characterized by a wide variety of membrane bound compartments that are able to undergo dynamic re-modeling through tubular and vesicular structures. The precise molecular mechanisms governing such re-modeling, and the events that co-ordinated this with the major role of endosomes, cargo sorting, remain unclear. That said, recent work on a protein family of sorting nexins (SNX) - especially a subfamily of SNX that contain a BAR domain (SNX-BARs) - has begun to shed some much needed light on these issues and in particular the process of tubular-based endosomal sorting. SNX-BARs are evolutionary conserved in endosomal protein complexes such as retromer, where they co-ordinate membrane deformation with cargo selection. Furthermore a central theme emerges of SNX-BARs linking the forming membrane carrier to cytoskeletal elements for transport through motor proteins such as dynein. By studying these SNX-BARs, we are gaining an increasingly detailed appreciation of the mechanistic basis of endosomal sorting and how this highly dynamic process functions in health and disease.

  13. Daclatasvir inhibits hepatitis C virus NS5A motility and hyper-accumulation of phosphoinositides

    PubMed Central

    Chukkapalli, Vineela; Berger, Kristi L.; Kelly, Sean M.; Thomas, Meryl; Deiters, Alexander; Randall, Glenn

    2014-01-01

    Combinations of direct-acting antivirals (DAAs) against the hepatitis C virus (HCV) have the potential to revolutionize the HCV therapeutic regime. An integral component of DAA combination therapies are HCV NS5A inhibitors. It has previously been proposed that NS5A DAAs inhibit two functions of NS5A: RNA replication and virion assembly. In this study, we characterize the impact of a prototype NS5A DAA, daclatasvir (DCV), on HCV replication compartment formation. DCV impaired HCV replicase localization and NS5A motility. In order to characterize the mechanism behind altered HCV replicase localization, we examined the impact of DCV on the interaction of NS5A with its essential cellular cofactor, phosphatidylinositol-4-kinase III α (PI4KA). We observed that DCV does not inhibit PI4KA directly, nor does it impair early events of the NS5A-PI4KA interaction that can occur when NS5A is expressed alone. NS5A functions that are unaffected by DCV include PI4KA binding, as determined by co-immunoprecipitation, and a basal accumulation of the PI4KA product, PI4P. However, DCV impairs late steps in PI4KA activation that requires NS5A expressed in the context of the HCV polyprotein. These NS5A functions include hyper-stimulation of PI4P levels and appropriate replication compartment formation. The data are most consistent with a model wherein DCV inhibits conformational changes in the NS5A protein or protein complex formations that occur in the context of HCV polyprotein expression and stimulate PI4P hyper-accumulation and replication compartment formation. PMID:25546252

  14. Integrin αvβ3 mediates the synergetic regulation of core-binding factor α1 transcriptional activity by gravity and insulin-like growth factor-1 through phosphoinositide 3-kinase signaling.

    PubMed

    Dai, Zhongquan; Guo, Feima; Wu, Feng; Xu, Hongjie; Yang, Chao; Li, Jinqiao; Liang, Peilong; Zhang, Hongyu; Qu, Lina; Tan, Yingjun; Wan, Yumin; Li, Yinghui

    2014-12-01

    Mechanical stimulation and biological factors coordinately regulate bone development and regeneration; however, the underlying mechanisms are poorly understood. Microgravity induces bone loss, which may be partly related to the development of resistance to local cytokines, including insulin-like growth factor 1 (IGF-1). Here, we report the involvement of integrin αvβ3 in microgravity-associated bone loss. An established OSE-3T3 cell model was stably transfected with a 6OSE2 (Osteoblast-Specific Element 2)-luciferase reporter and cultured under simulated microgravity (SMG) and hypergravity (HG) conditions in the presence or absence of IGF-1, the disintegrin echistatin, the phosphoinositide 3-kinase (PI3K) inhibitor LY294002, or combinations of these agents. Activity of core-binding factor α1 (Cbfa1), an essential transcription factor for osteoblastic differentiation and osteogenesis, was reflected by luciferase activity. Different gravity conditions affected the induction of IGF-1 and subsequent effects on Cbfa1 transcription activity. SMG and HG influenced the expression and activity of integrin αvβ3 and phosphorylation level of p85. LY294002 inhibited the effects of HG or IGF-1 on Cbfa1 activity, indicating that HG and IGF-1 could increase Cbfa1 activity via PI3K signaling. Inhibition of integrin αvβ3 by echistatin attenuated the induction of IGF-1 and thus its effect on Cbfa1 activity under normal and HG conditions. Co-immunoprecipitation demonstrated that integrin β3 interacted with insulin receptor substrate 1, and that this interaction was decreased under SMG and increased under HG conditions. These results suggest that integrin αvβ3 mediates the synergetic regulation of Cbfa1 transcription activity by gravity and IGF-1 via PI3K signaling.

  15. Dietary omega-3 polyunsaturated fatty acids inhibit phosphoinositide formation and chemotaxis in neutrophils.

    PubMed Central

    Sperling, R I; Benincaso, A I; Knoell, C T; Larkin, J K; Austen, K F; Robinson, D R

    1993-01-01

    Earlier studies demonstrated that dietary omega-3 polyunsaturated fatty acid (PUFA) supplementation attenuates the chemotactic response of neutrophils and the generation of leukotriene (LT) B4 by neutrophils stimulated with calcium ionophore; however, the mechanisms and relationship of these effects were not examined. Neutrophils and monocytes from eight healthy individuals were examined before and after 3 and 10 wk of dietary supplementation with 20 g SuperEPA daily, which provides 9.4 g eicosapentaenoic acid (EPA) and 5 g docosahexaenoic acid. The maximal neutrophil chemotactic response to LTB4, assessed in Boyden microchambers, decreased by 69% after 3 wk and by 93% after 10 wk from prediet values. The formation of [3H]inositol tris-phosphate (IP3) by [3H]inositol-labeled neutrophils stimulated by LTB4 decreased by 71% after 3 wk (0.033 +/- 0.013% [3H] release, mean +/- SEM) and by 90% after 10 wk (0.011 +/- 0.011%) from predict values (0.114 +/- 0.030%) as quantitated by beta-scintillation counting after resolution on HPLC. LTB4-stimulated neutrophil chemotaxis and IP3 formation correlated significantly (P < 0.0001); each response correlated closely and negatively with the EPA content of the neutrophil phosphatidylinositol (PI) pool (P = 0.0003 and P = 0.0005, respectively). Neither the affinities and densities of the high and low affinity LTB4 receptors on neutrophils nor LTB4-mediated diglyceride formation changed appreciably during the study. Similar results were observed in neutrophils activated with platelet-activating factor (PAF). The summed formation of LTB4 plus LTB5 was selectively inhibited in calcium ionophore-stimulated neutrophils and was also inhibited in zymosan-stimulated neutrophils. The inhibition of the summed formation of LTB4 plus LTB5 in calcium ionophore-stimulated neutrophils and in zymosan-stimulated neutrophils did not correlate significantly with the EPA content of the PI pool. The data indicate that dietary omega-3 PUFA

  16. Interaction between phosphoinositide turnover system and cyclic AMP pathway for the secretion of pancreastatin and somatostatin from QGP-1N cells.

    PubMed

    Tateishi, K; Funakoshi, A; Kitayama, N; Matsuoka, Y

    1992-06-30

    It is found that secretion of pancreastatin and somatostatin from QGP-1N cells is regulated through muscarinic receptor-mediated activation of phosphatidylinositide hydrolysis system. In this report, whether the cAMP pathway interacts with the phosphoinositide turnover system for the secretion of pancreastatin and somatostatin from QGP-1N cells through muscarinic receptors was studied. Stimulation of QGP-1N cells with carbachol increased intracellular cAMP levels. The carbachol-induced increase in cAMP levels was inhibited by atropine. Calcium ionophore (A23187) and phorbol 12-myristate 13-acetate increased cAMP synthesis. Dibutyryl cAMP, forskolin and theophylline stimulated secretion of pancreastatin and somatostatin. When either dibutyryl cAMP, forskolin or theophylline was added in culture medium with A23187, phorbol ester or carbachol, a synergistic effect was found on pancreastatin and somatostatin secretion. These results suggest that interaction between the phosphoinositide turnover system and the cAMP pathway occurs in QGP-1N cells through muscarinic receptor stimulation for the secretion of pancreastatin and somatostatin.

  17. A phosphatidylinositol transfer protein integrates phosphoinositide signaling with lipid droplet metabolism to regulate a developmental program of nutrient stress-induced membrane biogenesis

    SciTech Connect

    Ren, Jihui; Lin, Coney Pei-Chen; Pathak, Manish C.; Temple, Brenda R.S.; Nile, Aaron H.; Mousley, Carl J.; Duncan, Mara C.; Eckert, Debra M.; Leiker, Thomas J.; Ivanova, Pavlina T.; Myers, David S.; Murphy, Robert C.; Brown, H. Alex; Verdaasdonk, Jolien; Bloom, Kerry S.; Ortlund, Eric A.; Neiman, Aaron M.; Bankaitis, Vytas A.

    2014-07-11

    Lipid droplet (LD) utilization is an important cellular activity that regulates energy balance and release of lipid second messengers. Because fatty acids exhibit both beneficial and toxic properties, their release from LDs must be controlled. Here we demonstrate that yeast Sfh3, an unusual Sec14-like phosphatidylinositol transfer protein, is an LD-associated protein that inhibits lipid mobilization from these particles. We further document a complex biochemical diversification of LDs during sporulation in which Sfh3 and select other LD proteins redistribute into discrete LD subpopulations. The data show that Sfh3 modulates the efficiency with which a neutral lipid hydrolase-rich LD subclass is consumed during biogenesis of specialized membrane envelopes that package replicated haploid meiotic genomes. These results present novel insights into the interface between phosphoinositide signaling and developmental regulation of LD metabolism and unveil meiosis-specific aspects of Sfh3 (and phosphoinositide) biology that are invisible to contemporary haploid-centric cell biological, proteomic, and functional genomics approaches.

  18. Phosphoinositide-3-kinases p110α and p110β mediate S phase entry in astroglial cells in the marginal zone of rat neocortex.

    PubMed

    Müller, Rabea; Fischer, Catharina; Wilmes, Thomas; Heimrich, Bernd; Distel, Vanessa; Klugbauer, Norbert; Meyer, Dieter K

    2013-01-01

    In cells cultured from neocortex of newborn rats, phosphoinositide-3-kinases of class I regulate the DNA synthesis in a subgroup of astroglial cells. We have studied the location of these cells as well as the kinase isoforms which facilitate the S phase entry. Using dominant negative (dn) isoforms as well as selective pharmacological inhibitors we quantified S phase entry by nuclear labeling with bromodeoxyuridine (BrdU). Only in astroglial cells harvested from the marginal zone (MZ) of the neocortex inhibition of phosphoinositide-3-kinases reduced the nuclear labeling with BrdU, indicating that neocortical astroglial cells differ in the regulation of proliferation. The two kinase isoforms p110α and p110β were essential for S phase entry. p110α diminished the level of the p27(Kip1) which inactivates the complex of cyclin E and CDK2 necessary for entry into the S phase. p110β phosphorylated and inhibited glycogen synthase kinase-3β which can prevent S-phase entry. Taken together, both isoforms mediated S phase in a subgroup of neocortical astroglial cells and acted via distinct pathways.

  19. A phosphatidylinositol transfer protein integrates phosphoinositide signaling with lipid droplet metabolism to regulate a developmental program of nutrient stress-induced membrane biogenesis

    SciTech Connect

    Ren, J.; Pei-Chen Lin, C.; Pathak, M. C.; Temple, B. R. S.; Nile, A. H.; Mousley, C. J.; Duncan, M. C.; Eckert, D. M.; Leiker, T. J.; Ivanova, P. T.; Myers, D. S.; Murphy, R. C.; Brown, H. A.; Verdaasdonk, J.; Bloom, K. S.; Ortlund, E. A.; Neiman, A. M.; Bankaitis, V. A.

    2016-07-06

    Lipid droplet (LD) utilization is an important cellular activity that regulates energy balance and release of lipid second messengers. Because fatty acids exhibit both beneficial and toxic properties, their release from LDs must be controlled. Here we demonstrate that yeast Sfh3, an unusual Sec14-like phosphatidylinositol transfer protein, is an LD-associated protein that inhibits lipid mobilization from these particles. We further document a complex biochemical diversification of LDs during sporulation in which Sfh3 and select other LD proteins redistribute into discrete LD subpopulations. The data show that Sfh3 modulates the efficiency with which a neutral lipid hydrolase-rich LD subclass is consumed during biogenesis of specialized membrane envelopes that package replicated haploid meiotic genomes. These results present novel insights into the interface between phosphoinositide signaling and developmental regulation of LD metabolism and unveil meiosis-specific aspects of Sfh3 (and phosphoinositide) biology that are invisible to contemporary haploid-centric cell biological, proteomic, and functional genomics approaches.

  20. Phosphoinositide Dependent Protein Kinase 1 is Required for Exercise-induced Cardiac Hypertrophy but not the Associated Mitochondrial Adaptations

    PubMed Central

    Noh, Junghyun; Wende, Adam R.; Olsen, Curtis D; Kim, Bumjun; Bevins, Jack; Zhu, Yi; Zhang, Quan-Jiang; Riehle, Christian; Abel, E. Dale

    2015-01-01

    Phosphoinositide-dependent protein kinase-1 (PDPK1) is an important mediator of phosphatidylinositol 3-kinase (PI3K) signaling. We previously reported that PI3K but not Akt signaling mediates the increase of mitochondrial oxidative capacity to physiological cardiac hypertrophy. To determine if PDPK1 regulates these metabolic adaptations we examined mice with cardiomyocyte-specific heterozygous knockout of PDPK1 (cPDPK1+/−) after 5 wk. exercise swim training. Akt phosphorylation at Thr308 increased by 43% in wildtype (WT) mice but not in cPDPK1+/− mice following exercise training. Ventricular contractile function was not different between WT and cPDPK1+/− mice at baseline. In addition, exercise did not influence ventricular function in WT or cPDPK1+/− mice. Heart weight normalized to tibia length ratios increased by 13.8% in WT mice (6.2 ± 0.2 vs. 7.1 ± 0.2, P=0.001), but not in cPDPK1+/− (6.2 ± 0.3 vs. 6.5 ± 0.2, P=0.20) mice after swim training. Diastolic LV dimension increased in WT mice (3.7 ± 0.1 vs. 4.0 ± 0.1 mm, P=0.01) but not in cPDPK1+/− (3.8 ± 0.1 vs. 3.7 ± 0.1 mm, P=0.56) following swim training. Maximal mitochondrial oxygen consumption (VADP, nmol/min/mg) using palmitoyl carnitine as a substrate was significantly increased in mice of all genotypes following swim training (WT: 13.6 ± 0.6 vs.16.1 ± 0.9, P=0.04; cPDPK1+/−: 12.4 ± 0.6 vs.15.9 ± 1.2, P=0.04). These findings suggest that PDPK1 is required for exercise-induced cardiac hypertrophy but does not contribute to exercise-induced increases in mitochondrial function. PMID:26476238

  1. Phosphoinositide dependent protein kinase 1 is required for exercise-induced cardiac hypertrophy but not the associated mitochondrial adaptations.

    PubMed

    Noh, Junghyun; Wende, Adam R; Olsen, Curtis D; Kim, Bumjun; Bevins, Jack; Zhu, Yi; Zhang, Quan-Jiang; Riehle, Christian; Abel, E Dale

    2015-12-01

    Phosphoinositide-dependent protein kinase-1 (PDPK1) is an important mediator of phosphatidylinositol 3-kinase (PI3K) signaling. We previously reported that PI3K but not Akt signaling mediates the increase in mitochondrial oxidative capacity following physiological cardiac hypertrophy. To determine if PDPK1 regulates these metabolic adaptations we examined mice with cardiomyocyte-specific heterozygous knockout of PDPK1 (cPDPK1(+/-)) after 5 wk. exercise swim training. Akt phosphorylation at Thr308 increased by 43% in wildtype (WT) mice but not in cPDPK1(+/-) mice following exercise training. Ventricular contractile function was not different between WT and cPDPK1(+/-) mice at baseline. In addition, exercise did not influence ventricular function in WT or cPDPK1(+/-) mice. Heart weight normalized to tibia length ratios increased by 13.8% in WT mice (6.2±0.2 vs. 7.1±0.2, P=0.001), but not in cPDPK1(+/-) (6.2±0.3 vs. 6.5±0.2, P=0.20) mice after swim training. Diastolic LV dimension increased in WT mice (3.7±0.1 vs. 4.0±0.1 mm, P=0.01) but not in cPDPK1(+/-) (3.8±0.1 vs. 3.7±0.1 mm, P=0.56) following swim training. Maximal mitochondrial oxygen consumption (VADP, nmol/min/mg) using palmitoyl carnitine as a substrate was significantly increased in mice of all genotypes following swim training (WT: 13.6±0.6 vs.16.1±0.9, P=0.04; cPDPK1(+/-): 12.4±0.6 vs.15.9±1.2, P=0.04). These findings suggest that PDPK1 is required for exercise-induced cardiac hypertrophy but does not contribute to exercise-induced increases in mitochondrial function.

  2. Phosphoinositide 5- and 3-phosphatase activities of a voltage-sensing phosphatase in living cells show identical voltage dependence

    PubMed Central

    Keum, Dongil; Kim, Dong-Il; Suh, Byung-Chang

    2016-01-01

    Voltage-sensing phosphatases (VSPs) are homologs of phosphatase and tensin homolog (PTEN), a phosphatidylinositol 3,4-bisphosphate [PI(3,4)P2] and phosphatidylinositol 3,4,5-trisphosphate [PI(3,4,5)P3] 3-phosphatase. However, VSPs have a wider range of substrates, cleaving 3-phosphate from PI(3,4)P2 and probably PI(3,4,5)P3 as well as 5-phosphate from phosphatidylinositol 4,5-bisphosphate [PI(4,5)P2] and PI(3,4,5)P3 in response to membrane depolarization. Recent proposals say these reactions have differing voltage dependence. Using Förster resonance energy transfer probes specific for different PIs in living cells with zebrafish VSP, we quantitate both voltage-dependent 5- and 3-phosphatase subreactions against endogenous substrates. These activities become apparent with different voltage thresholds, voltage sensitivities, and catalytic rates. As an analytical tool, we refine a kinetic model that includes the endogenous pools of phosphoinositides, endogenous phosphatase and kinase reactions connecting them, and four exogenous voltage-dependent 5- and 3-phosphatase subreactions of VSP. We show that apparent voltage threshold differences for seeing effects of the 5- and 3-phosphatase activities in cells are not due to different intrinsic voltage dependence of these reactions. Rather, the reactions have a common voltage dependence, and apparent differences arise only because each VSP subreaction has a different absolute catalytic rate that begins to surpass the respective endogenous enzyme activities at different voltages. For zebrafish VSP, our modeling revealed that 3-phosphatase activity against PI(3,4,5)P3 is 55-fold slower than 5-phosphatase activity against PI(4,5)P2; thus, PI(4,5)P2 generated more slowly from dephosphorylating PI(3,4,5)P3 might never accumulate. When 5-phosphatase activity was counteracted by coexpression of a phosphatidylinositol 4-phosphate 5-kinase, there was accumulation of PI(4,5)P2 in parallel to PI(3,4,5)P3 dephosphorylation

  3. ErbB3 (HER3) interaction with the p85 regulatory subunit of phosphoinositide 3-kinase.

    PubMed Central

    Hellyer, N J; Cheng, K; Koland, J G

    1998-01-01

    ErbB3 (HER3), a unique member of the ErbB receptor family, lacks intrinsic protein tyrosine kinase activity and contains six Tyr-Xaa-Xaa-Met (YXXM) consensus binding sites for the SH2 domains of the p85 regulatory subunit of phosphoinositide 3-kinase. ErbB3 also has a proline-rich sequence that forms a consensus binding site for the SH3 domain of p85. Here we have investigated the interacting domains of ErbB3 and p85 by a unique application of the yeast two-hybrid system. A chimaeric ErbB3 molecule containing the epidermal growth factor receptor protein tyrosine kinase domain was developed so that the C-terminal domain of ErbB3 could become phosphorylated in the yeast system. We also generated several ErbB3 deletion and Tyr-->Phe site-specific mutants, and observed that a single ErbB3 YXXM motif was necessary and sufficient for the association of ErbB3 with p85. The incorporation of multiple YXXM motifs into the ErbB3 C-terminus enabled a stronger ErbB3/p85 interaction. The proline-rich region of ErbB3 was not necessary for interaction with p85. However, either deletion or mutation of the p85 SH3 domain decreased the observed ErbB3/p85 association. Additionally an ErbB3/p85 SH3 domain interaction was detected by an assay in vitro. These results were consistent with a model in which pairs of phosphorylated ErbB3 YXXM motifs co-operate in binding to the tandem SH2 domains of p85. Although a contributing role for the p85 SH3 domain was suggested, the N- and C-terminal SH2 domains seemed to be primarily responsible for the high-affinity association of p85 and ErbB3. PMID:9677338

  4. ErbB3 (HER3) interaction with the p85 regulatory subunit of phosphoinositide 3-kinase.

    PubMed

    Hellyer, N J; Cheng, K; Koland, J G

    1998-08-01

    ErbB3 (HER3), a unique member of the ErbB receptor family, lacks intrinsic protein tyrosine kinase activity and contains six Tyr-Xaa-Xaa-Met (YXXM) consensus binding sites for the SH2 domains of the p85 regulatory subunit of phosphoinositide 3-kinase. ErbB3 also has a proline-rich sequence that forms a consensus binding site for the SH3 domain of p85. Here we have investigated the interacting domains of ErbB3 and p85 by a unique application of the yeast two-hybrid system. A chimaeric ErbB3 molecule containing the epidermal growth factor receptor protein tyrosine kinase domain was developed so that the C-terminal domain of ErbB3 could become phosphorylated in the yeast system. We also generated several ErbB3 deletion and Tyr-->Phe site-specific mutants, and observed that a single ErbB3 YXXM motif was necessary and sufficient for the association of ErbB3 with p85. The incorporation of multiple YXXM motifs into the ErbB3 C-terminus enabled a stronger ErbB3/p85 interaction. The proline-rich region of ErbB3 was not necessary for interaction with p85. However, either deletion or mutation of the p85 SH3 domain decreased the observed ErbB3/p85 association. Additionally an ErbB3/p85 SH3 domain interaction was detected by an assay in vitro. These results were consistent with a model in which pairs of phosphorylated ErbB3 YXXM motifs co-operate in binding to the tandem SH2 domains of p85. Although a contributing role for the p85 SH3 domain was suggested, the N- and C-terminal SH2 domains seemed to be primarily responsible for the high-affinity association of p85 and ErbB3.

  5. Influence of a ras oncogene on platelet-derived growth factor (PDGF)-stimulated phosphoinositide hydrolysis in murine fibroblasts

    SciTech Connect

    Parries, G.; Racker, E.

    1986-05-01

    The authors have examined the effects of transfection of rat-1 fibroblasts with the ras oncogene on the metabolism of phosphatidylinositol (PI). Incubation of (/sup 3/H)inositol-labeled rat-1 cells with PDGF resulted in a 2- to 3-fold increase in (/sup 3/H)IP3 levels within 90 s. In the presence of 25 mM Li+, (/sup 3/H)IP1 levels were increased 8-fold after 30 min. In contrast, incubation of ras-transfected fibroblasts (EJ-2 line) with PDGF had little or no effect on the level of either (/sup 3/H)IP3 or (/sup 3/H)IP1. Similar stimulations by PDGF were observed in NIH 3T3 cells, but not in Kirsten virus-transformed or Harvey ras-transfected cell lines. On the other hand, NIH 3T3 cells transfected with v-src responded to PDGF by stimulation of PI turnover similar to the parent cell line. In NIH 3T3 cells transfected with an expression vector containing the v-Ha-ras gene under transcriptional control of the glucocorticoid-inducible mouse mammary tumor virus promoter, the PDGF stimulation of (/sup 3/H)inositol incorporation into PI was reduced from 10-fold in the absence of dexamethasone to 1.8-fold when the cells were pretreated for 26 h with 2 ..mu..M dexamethasone. In the parental 3T3 cells PDGF stimulation was reduced by about 40% in the presence of dexamethasone. In the absence of PDGF the rate of PI turnover (i.e., the kinetics of (/sup 3/H)IP1 accumulation in the presence of Li+) in EJ-2 cells was similar to that in rat-1 cells. Thus, in the presence of PDGF, the rate of PI turnover in rat-1 cells was several fold higher than in the transfected cells. These results suggest that the ras gene product (p21) may exert an inhibitory effect on PDGF-stimulated phosphoinositide metabolism.

  6. Hepatocyte growth factor activates phosphoinositide 3-kinase C2 beta in renal brush-border plasma membranes.

    PubMed Central

    Crljen, Vladiana; Volinia, Stefano; Banfic, Hrvoje

    2002-01-01

    Upon stimulation of renal cortical slices with hepatocyte growth factor (HGF), inositol lipid metabolism was studied in basal-lateral plasma membranes (BLM) and brush-border plasma membranes (BBM). Whereas in BLM rapid increases in 1,2-diacylglycerol, PtdIns(3,4,5)P(3) and PtdIns(3,4)P(2) were observed, suggesting that in BLM HGF activates both phospholipase C (PLC) and phosphoinositide 3-kinase (PI3K), in BBM only HGF-induced transient accumulation of PtdIns3P was seen, which was temporarily delayed from signalling events in BLM and could be blocked by the PtdIns-specific-PLC inhibitor ET-18-OCH(3) and the calpain inhibitor calpeptin, suggesting that 3-kinase activation in BBM lies downstream of PLC activation in BLM and is a calpain-mediated event. Moreover, the increase in immunoprecipitable PI3K-C2 beta activity, which is sensitive to wortmannin (10 nM) and shows strong preference for PtdIns over PtdIns4P as a substrate, was observed only in BBM upon stimulation of renal cortical slices with HGF and could be mimicked by the Ca(2+) ionophore A23187 and blocked by the cell-penetrant Ca(2+) chelator BAPTA-AM [1,2-bis-(2-aminophenoxy)ethane-N,N,N',N'-tetra-acetic acid tetrakis(acetoxymethyl ester)]. On Western blots PI3K-C2 beta revealed a single immunoreactive band of 180 kDa in BLM and BBM, while after stimulation with HGF a gel shift of 18 kDa was noticed only in BBM, suggesting that the observed enzyme activation is achieved by proteolysis. When BBM were subjected to short-term (15 min) exposure to mu-calpain, a similar gel shift together with an increase in PI3K-C2 beta activity was observed, when compared with the BBM harvested after HGF stimulation. The above-mentioned gel shift and increase in PI3K-C2 beta activity could be prevented by the calpain inhibitor calpeptin. The data presented in this report show that in renal cells there is a spatial separation of the inositol lipid signalling system between BLM and BBM, and that HGF causes activation of PLC and

  7. Involvement of p21racA, phosphoinositide 3-kinase, and vacuolar ATPase in phagocytosis of bacteria and erythrocytes by Entamoeba histolytica: suggestive evidence for coincidental evolution of amebic invasiveness.

    PubMed Central

    Ghosh, S K; Samuelson, J

    1997-01-01

    Trophozoites of Entamoeba histolytica, the protozoan parasite that causes amebic dysentery, phagocytose bacteria in the colonic lumen and erythrocytes (RBC) in host tissues. Because tissue invasion is an evolutionary dead end, it is likely that amebic pathogenicity is coincidentally selected, i.e., the same methods used to kill bacteria in the colonic lumen are used by parasites to damage host cells and cause disease. In support of this idea, the amebic lectin and pore-forming peptide are involved in binding and killing, respectively, bacteria and host epithelial cells. Here amebic phagocytosis of bacteria, RBC, and mucin-coated beads was disrupted by overexpression of E. histolytica p21(racA-V12), a ras-family protein involved in selection of sites of actin polymerization, which had been mutated to eliminate its GTPase activity. p21(racA-V12) transformants were also defective in capping and cytokinesis, while pinocytosis of fluorescent dextrans was not affected. Wortmannin, a fungal inhibitor of phosphoinositide 3-kinase, markedly inhibited phagocytosis of bacteria, RBC, and mucin-coated beads by wild-type amebae. In contrast to p21(racA-V12) overexpression, wortmannin abolished amebic pinocytosis of dextrans but had no inhibitory effects on capping. Inhibition of amebic vacuolar acidification by bafilomycin also decreased bacterial and RBC uptake. These results, which demonstrate similarities between mechanisms of phagocytosis of bacteria and RBC by amebae and macrophages, support the idea of coincidental selection of amebic genes encoding proteins that mediate destruction of host cells. PMID:9317033

  8. Sann-Joong-Kuey-Jian-Tang induces autophagy in HepG2 cells via regulation of the phosphoinositide-3 kinase/Akt/mammalian target of rapamycin and p38 mitogen-activated protein kinase pathways.

    PubMed

    Chuang, Wan-Ling; Su, Chin-Cheng; Lin, Ping-Yi; Lin, Chi-Chen; Chen, Yao-Li

    2015-08-01

    Sann-Joong-Kuey-Jian-Tang (SJKJT), a traditional Chinese medicine, was previously reported to induce autophagy and inhibit the proliferation of the human HepG2 hepatocellular carcinoma cell line via an extrinsic pathway. In the present study, the effects of SJKJT-induced autophagy and the cytotoxic mechanisms mediating these effects were investigated in HepG2 cells. The cytotoxicity of SJKJT in the HepG2 cells was evaluated using a 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay. The results demonstrated that the half-maximal inhibitory concentration of SJKJT was 2.91 mg/ml at 24 h, 1.64 mg/ml at 48 h and 1.26 mg/ml at 72 h. The results of confocal fluorescence microscopy indicated that SJKJT resulted in the accumulation of green fluorescent protein-LC3 and vacuolation of the cytoplasm. Flow cytometric analysis revealed the accumulation of acidic vesicular organelles. Furthermore, western blot analysis, used to determine the expression levels of autophagy-associated proteins, demonstrated that the HepG2 cells treated with SJKJT exhibited LC3B-I/LC3B-II conversion, increased expression levels of Beclin, Atg-3 and Atg-5 and reduced expression levels of p62 and decreased signaling of the phosphoinositide-3 kinase/Akt/mammalian target of rapamycin and the p38 mitogen-activated protein kinase pathways. Taken together, these findings may assist in the development of novel chemotherapeutic agents for the treatment of malignant types of liver cancer.

  9. Sann-Joong-Kuey-Jian-Tang induces autophagy in HepG2 cells via regulation of the phosphoinositide-3 kinase/Akt/mammalian target of rapamycin and p38 mitogen-activated protein kinase pathways

    PubMed Central

    CHUANG, WAN-LING; SU, CHIN-CHENG; LIN, PING-YI; LIN, CHI-CHEN; CHEN, YAO-LI

    2015-01-01

    Sann-Joong-Kuey-Jian-Tang (SJKJT), a traditional Chinese medicine, was previously reported to induce autophagy and inhibit the proliferation of the human HepG2 hepatocellular carcinoma cell line via an extrinsic pathway. In the present study, the effects of SJKJT-induced autophagy and the cytotoxic mechanisms mediating these effects were investigated in HepG2 cells. The cytotoxicity of SJKJT in the HepG2 cells was evaluated using a 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay. The results demonstrated that the half-maximal inhibitory concentration of SJKJT was 2.91 mg/ml at 24 h, 1.64 mg/ml at 48 h and 1.26 mg/ml at 72 h. The results of confocal fluorescence microscopy indicated that SJKJT resulted in the accumulation of green fluorescent protein-LC3 and vacuolation of the cytoplasm. Flow cytometric analysis revealed the accumulation of acidic vesicular organelles. Furthermore, western blot analysis, used to determine the expression levels of autophagy-associated proteins, demonstrated that the HepG2 cells treated with SJKJT exhibited LC3B-I/LC3B-II conversion, increased expression levels of Beclin, Atg-3 and Atg-5 and reduced expression levels of p62 and decreased signaling of the phosphoinositide-3 kinase/Akt/mammalian target of rapamycin and the p38 mitogen-activated protein kinase pathways. Taken together, these findings may assist in the development of novel chemotherapeutic agents for the treatment of malignant types of liver cancer. PMID:25847489

  10. Progress in the Preclinical Discovery and Clinical Development of Class I and Dual Class I/IV Phosphoinositide 3-Kinase (PI3K) Inhibitors

    PubMed Central

    Shuttleworth, S.J; Silva, F.A; Cecil, A.R.L; Tomassi, C.D; Hill, T.J; Raynaud, F.I; Clarke, P.A; Workman, P

    2011-01-01

    The phosphoinositide 3-kinases (PI3Ks) constitute an important family of lipid kinase enzymes that control a range of cellular processes through their regulation of a network of signal transduction pathways, and have emerged as important therapeutic targets in the context of cancer, inflammation and cardiovascular diseases. Since the mid-late 1990s, considerable progress has been made in the discovery and development of small molecule ATP-competitive PI3K inhibitors, a number of which have entered early phase human trials over recent years from which key clinical results are now being disclosed. This review summarizes progress made to date, primarily on the discovery and characterization of class I and dual class I/IV subtype inhibitors, together with advances that have been made in translational and clinical research, notably in cancer. PMID:21649578

  11. PDGF-induced receptor phosphorylation and phosphoinositide hydrolysis are unaffected by protein kinase C activation in mouse swiss 3T3 and human skin fibroblasts

    SciTech Connect

    Sturani, E.; Vicentini, L.M.; Zippel, R.; Toschi, L.; Pandiella-Alonso, A.; Comoglio, P.M.; Meldolesi, J.

    1986-05-29

    Short (1-10 min) pretreatment of intact cells with activators of protein kinase C (e.g. phorbol-12 myristate, 13-acetate, PMA) affects the activity of a variety of surface receptors (for growth factors, hormones and neurotransmitters), with inhibition of transmembrane signal generation. In two types of fibroblasts it is demonstrated that the PDGF receptor is unaffected by PMA. Exposure to PMA at concentrations up to 100 nM for 10 min failed to inhibit either one of the agonist-induced, receptor-coupled responses of PDGF: the autophosphorylation of receptor molecules at tyrosine residues, and the hydrolysis of membrane polyphosphoinositides. In contrast, the EGF receptor autophosphorylation (in A 431 cells) and the bombesin-induced phosphoinositide hydrolysis were readily inhibited by PMA.

  12. A retinoic acid receptor beta agonist (CD2019) overcomes inhibition of axonal outgrowth via phosphoinositide 3-kinase signalling in the injured adult spinal cord.

    PubMed

    Agudo, Marta; Yip, Ping; Davies, Meirion; Bradbury, Elizabeth; Doherty, Patrick; McMahon, Stephen; Maden, Malcolm; Corcoran, Jonathan P T

    2010-01-01

    After spinal cord injury in the adult mammal, axons do not normally regrow and this commonly leads to paralysis. Retinoic acid (RA) can stimulate neurite outgrowth in vitro of both the embryonic central and peripheral nervous system, via activation of the retinoic acid receptor (RAR) beta2. We show here that regions of the adult CNS, including the cerebellum and cerebral cortex, express RARbeta2. We show that when cerebellar neurons are grown in the presence of myelin-associated glycoprotein (MAG) which inhibits neurite outgrowth, RARbeta can be activated in a dose dependent manner by a RARbeta agonist (CD2019) and neurite outgrowth can occur via phosphoinositide 3-kinase (PI3K) signalling. In a model of spinal cord injury CD2019 also acts through PI3K signalling to induce axonal outgrowth of descending corticospinal fibres and promote functional recovery. Our data suggest that RARbeta agonists may be of therapeutic potential for human spinal cord injuries.

  13. Mutations of the lutropin/choriogonadotropin receptor that do not activate the phosphoinositide cascade allow hCG to induce aromatase expression in immature rat granulosa cells

    PubMed Central

    Andric, Nebojsa; Ascoli, Mario

    2008-01-01

    Using primary cultures of immature rat granulosa cells and adenoviral infections we expressed two mutants of the human lutropin receptor (hLHR) that do not activate the phosphoinositide cascade. One mutant (hLFF) has the extracellular domain of the hLHR and the transmembrane and intracellular domains of the hFSHR. The other (hLHR-L457D) has a leucine to aspartate mutation in residue 457 of transmembrane helix 3. When expressed in immature rat granulosa cells the hLHR stimulates cAMP and inositol phosphate accumulation, transactivates the epidermal growth factor receptor (EGFR), elicits a transient increase in Akt phosphorylation, and a sustained increase in ERK1/2 phosphorylation but aromatase expression is not enhanced. When expressed at comparable densities, hLFF and hLHR-L457D support cAMP accumulation and transient Akt phosphorylation but do not support inositol phosphate accumulation, EGFR transactivation or a sustained phosphorylation of ERK1/2. Cells expressing either of these two mutants respond to hCG with increased aromatase expression. We also show that addition of hCG to cells expressing the hLHR antagonizes the effects of hFSH on aromatase expression whereas addition of hCG to cells expressing the hLHR-L457D mutant does not. These results show that activation of the phosphoinositide cascade is upstream of EGFR transactivation and ERK1/2 phosphorylation and that this pathway is a negative regulator of aromatase expression in granulosa cells. PMID:18313839

  14. Muscarinic M1 receptors activate phosphoinositide turnover and Ca2+ mobilisation in rat sympathetic neurones, but this signalling pathway does not mediate M-current inhibition

    PubMed Central

    del Río, Elena; Bevilacqua, Jorge A; Marsh, Stephen J; Halley, Pamela; Caulfield, Malcolm P

    1999-01-01

    The relationship between muscarinic receptor activation, phosphoinositide turnover, calcium mobilisation and M-current inhibition has been studied in rat superior cervical ganglion (SCG) neurones in primary culture. Phosphoinositide-specific phospholipase C (PLC) stimulation was measured by the accumulation of [3H]-cytidine monophosphate phosphatidate (CMP-PA) after incubation with [3H]-cytidine in the presence of Li+. The muscarinic agonist oxotremorine methiodide (oxo-M) stimulated PLC in a dose-dependent manner with an EC50 of approximately 3.5 μm. The concentration-response curve for oxo-M was shifted to the right by a factor of about 10 by pirenzepine (100 nm), suggesting a pKB (—log of the apparent dissociation constant) of 7.9 ± 0.4, while himbacine (1 μm) shifted the curve by a factor of about 13 (pKB∼7.1 ± 0.6). This indicates involvement of the M1 muscarinic receptor in this response. The accumulation of CMP-PA was localised by in situ autoradiography to SCG principal neurones, with no detectable signal in glial cells present in the primary cultures. The ability of oxo-M to release Ca2+ from inositol(1,4,5)trisphosphate (InsP3)-sensitive stores was determined by fura-2 microfluorimetry of SCG neurones voltage clamped in perforated patch mode. Oxo-M failed to evoke intracellular Ca2+ (Cai2+) mobilisation in SCG neurones voltage clamped at −60 mV, but produced a significant Cai2+ rise (67 ± 15 nm, n = 9) in cells voltage clamped at −25 mV. Thapsigargin (0.5–1 μm) caused a 70% inhibition of the oxo-M-induced Cai2+ increase, indicating its intracellular origin, while oxo-M-induced inhibition of M-current in the same cells was unaffected by thapsigargin. Our results do not support the involvement of InsP3-sensitive calcium mobilisation in M-current inhibition. PMID:10517804

  15. Integrin-dependent translocation of phosphoinositide 3-kinase to the cytoskeleton of thrombin-activated platelets involves specific interactions of p85 alpha with actin filaments and focal adhesion kinase

    PubMed Central

    1995-01-01

    Thrombin-induced accumulation of phosphatidylinositol 3,4-bisphosphate (PtdIns(3,4)P2) but not of PtdIns(3,4,5,)P3 is strongly correlated with the relocation to the cytoskeleton of 29% of the p85 alpha regulatory subunit of phosphoinositide 3-kinase (PtdIns 3-kinase) and is accompanied by a significant increase in PtdIns 3-kinase activity in this subcellular fraction. Actually, PtdIns(3,4)P2 accumulation and PtdIns 3-kinase, pp60c-src, and p125FAK translocations as well as aggregation were concomitant events occurring with a distinct lag after actin polymerization. The accumulation of PtdIns(3,4)P2 and the relocalization of PtdIns 3-kinase to the cytoskeleton were both dependent on tyrosine phosphorylation, integrin signaling, and aggregation. Furthermore, although p85 alpha was detected in anti- phosphotyrosine immunoprecipitates obtained from the cytoskeleton of thrombin-activated platelets, we failed to demonstrate tyrosine phosphorylation of cytoskeletal p85 alpha. Tyrphostin treatment clearly reduced its presence in this subcellular fraction, suggesting a physical interaction of p85 alpha with a phosphotyrosyl protein. These data led us to investigate the proteins that are able to interact with PtdIns 3-kinase in the cytoskeleton. We found an association of this enzyme with actin filaments: this interaction was spontaneously restored after one cycle of actin depolymerization-repolymerization in vitro. This association with F-actin appeared to be at least partly indirect, since we demonstrated a thrombin-dependent interaction of p85 alpha with a proline-rich sequence of the tyrosine-phosphorylated cytoskeletal focal adhesion kinase, p125FAK. In addition, we show that PtdIns 3-kinase is significantly activated by the p125FAK proline-rich sequence binding to the src homology 3 domain of p85 alpha subunit. This interaction may represent a new mechanism for PtdIns 3-kinase activation at very specific areas of the cell and indicates that the focal contact-like areas

  16. Phosphatidic acid and phosphoinositides facilitate liposome association of Yas3p and potentiate derepression of ARE1 (alkane-responsive element one)-mediated transcription control.

    PubMed

    Kobayashi, Satoshi; Hirakawa, Kiyoshi; Horiuchi, Hiroyuki; Fukuda, Ryouichi; Ohta, Akinori

    2013-12-01

    In the n-alkane assimilating yeast Yarrowia lipolytica, the expression of ALK1, encoding a cytochrome P450 that catalyzes terminal mono-oxygenation of n-alkanes, is induced by n-alkanes. The transcription of ALK1 is regulated by a heterocomplex that comprises the basic helix-loop-helix transcription activators, Yas1p and Yas2p, and binds to alkane-responsive element 1 (ARE1) in the ALK1 promoter. An Opi1 family transcription repressor, Yas3p, represses transcription by binding to Yas2p. Yas3p localizes in the nucleus when Y. lipolytica is grown on glucose but localizes to the endoplasmic reticulum (ER) upon the addition of n-alkanes. In this study, we showed that recombinant Yas3p binds to the acidic phospholipids, phosphatidic acid (PA) and phosphoinositides (PIPs), in vitro. The ARE1-mediated transcription was enhanced in vivo in mutants defective in an ortholog of the Saccharomyces cerevisiae gene PAH1, encoding PA phosphatase, and in an ortholog of SAC1, encoding PIP phosphatase in the ER. Truncation mutation analyses for Yas3p revealed two regions that bound to PA and PIPs. These results suggest that the interaction with acidic phospholipids is important for the n-alkane-induced association of Yas3p with the ER membrane.

  17. Modulation of Ras/ERK and Phosphoinositide Signaling by Long-Chain n-3 PUFA in Breast Cancer and Their Potential Complementary Role in Combination with Targeted Drugs

    PubMed Central

    Serini, Simona; Calviello, Gabriella

    2017-01-01

    A potential complementary role of the dietary long-chain n-3 polyunsaturated fatty acids (LCn-3 PUFA) in combination with innovative mono-targeted therapies has recently been proposed. These compounds are thought to act pleiotropically to prevent the development and progression of a variety of cancers, including breast cancer. We hereinafter critically analyze the reports investigating the ability of LCn-3 PUFA to modulate the Ras/ERK and the phosphoinositide survival signaling pathways often aberrantly activated in breast cancer and representing the main targets of innovative therapies. The in vitro or in vivo animal and human interventional studies published up to January 2017 investigating the effects of LCn-3 PUFA on these pathways in normal and cancerous breast cells or tissues were identified through a systematic search of literature in the PubMed database. We found that, in most cases, both the in vitro and in vivo studies demonstrated the ability of LCn-3 PUFA to inhibit the activation of these pro-survival pathways. Altogether, the analyzed results strongly suggest a potential role of LCn-3 PUFA as complementary agents in combination with mono-targeted therapies. Moreover, the results indicate the need for further in vitro and human interventional studies designed to unequivocally prove the potential adjuvant role of these fatty acids. PMID:28241486

  18. Isoform-selective phosphoinositide 3'-kinase inhibitors inhibit CXCR4 signaling and overcome stromal cell-mediated drug resistance in chronic lymphocytic leukemia: a novel therapeutic approach.

    PubMed

    Niedermeier, Matthias; Hennessy, Bryan T; Knight, Zachary A; Henneberg, Marina; Hu, Jianhua; Kurtova, Antonina V; Wierda, William G; Keating, Michael J; Shokat, Kevan M; Burger, Jan A

    2009-05-28

    Phosphoinositide 3-kinases (PI3Ks) are among the most frequently activated signaling pathways in cancer. In chronic lymphocytic leukemia (CLL), signals from the microenvironment are critical for expansion of the malignant B cells, and cause constitutive activation of PI3Ks. CXCR4 is a key receptor for CLL cell migration and adhesion to marrow stromal cells (MSCs). Because of the importance of CXCR4 and PI3Ks for CLL-microenvironment cross-talk, we investigated the activity of novel, isoform-selective PI3K inhibitors that target different isoforms of the p110-kDa subunit. Inhibition with p110alpha inhibitors (PIK-90 and PI-103) resulted in a significant reduction of chemotaxis and actin polymerization to CXCL12 and reduced migration beneath MSC (pseudoemperipolesis). Western blot and reverse phase protein array analyses consistently demonstrated that PIK-90 and PI-103 inhibited phosphorylation of Akt and S6, whereas p110delta or p110beta/p110delta inhibitors were less effective. In suspension and MSC cocultures, PI-103 and PIK-90 were potent inducers of CLL cell apoptosis. Moreover, these p110alpha inhibitors enhanced the cytotoxicity of fludarabine and reversed the protective effect of MSC on fludarabine-induced apoptosis. Collectively, our data demonstrate that p110alpha inhibitors antagonize stromal cell-derived migration, survival, and drug-resistance signals and therefore provide a rational to explore the therapeutic activity of these promising agents in CLL.

  19. The phosphoinositide 3-kinase signaling pathway is involved in the control of modified low-density lipoprotein uptake by human macrophages.

    PubMed

    Michael, Daryn R; Davies, Thomas S; Laubertová, Lucia; Gallagher, Hayley; Ramji, Dipak P

    2015-03-01

    The transformation of macrophages into lipid-loaded foam cells is a critical early event in the pathogenesis of atherosclerosis. Both receptor-mediated uptake of modified LDL, mediated primarily by scavenger receptors-A (SR-A) and CD36 along with other proteins such as lipoprotein lipase (LPL), and macropinocytosis contribute to macrophage foam cell formation. The signaling pathways that are involved in the control of foam cell formation are not fully understood. In this study, we have investigated the role of phosphoinositide 3-kinase (PI3K) in relation to foam cell formation in human macrophages. The pan PI3K inhibitor LY294002 attenuated the uptake of modified LDL and macropinocytosis, as measured by Lucifer Yellow uptake, by human macrophages. In addition, the expression of SR-A, CD36 and LPL was attenuated by LY294002. The use of isoform-selective PI3K inhibitors showed that PI3K-β, -γ and -δ were all required for the expression of SR-A and CD36 whereas only PI3K-γ was necessary in the case of LPL. These studies reveal a pivotal role of PI3K in the control of macrophage foam cell formation and provide further evidence for their potential as therapeutic target against atherosclerosis.

  20. Expression pattern and sub-cellular distribution of phosphoinositide specific phospholipase C enzymes after treatment with U-73122 in rat astrocytoma cells.

    PubMed

    Lo Vasco, Vincenza Rita; Fabrizi, Cinzia; Panetta, Barbara; Fumagalli, Lorenzo; Cocco, Lucio

    2010-07-01

    Phosphoinositide specific phospholipase C (PI-PLC) enzymes interfere with the metabolism of inositol phospholipids (PI), molecules involved in signal transduction, a complex process depending on various components. Many evidences support the hypothesis that, in the glia, isoforms of PI-PLC family display different expression and/or sub cellular distribution under non-physiological conditions such as the rat astrocytes activation during neurodegeneration, the tumoural progression of some neoplasms and the inflammatory cascade activation after lipopolysaccharide administration, even if their role remains not completely elucidated. Treatment of a cultured established glioma cell line (C6 rat astrocytoma cell line) induces a modification in the pattern of expression and of sub cellular distribution of PI-PLCs compared to untreated cells. Special attention require PI-PLC beta3 and PI-PLC gamma2 isoforms, whose expression and sub cellular localization significantly differ after U-73122 treatment. The meaning of these modifications is unclear, also because the use of this N-aminosteroid compound remains controversial, inasmuch it has further actions which might contribute to the global effect recorded on the treated cells.

  1. cDNA sequence and gene locus of the human retinal phosphoinositide-specific phospholipase-C{beta}4 (PLCB4)

    SciTech Connect

    Alvarez, R.A.; Ghalayini, A.J.; Anderson, R.E.

    1995-09-01

    Defects in the Drosophila norpA (no receptor potential A) gene encoding a phosphoinositide-specific phospholipase C (PLC) block invertebrate phototransduction and lead to retinal degeneration. The mammalian homolog, PLCB4, is expressed in rat brain, bovine cerebellum, and the bovine retina in several splice variants. To determine a possible role of PLCB4 gene defects in human disease, we isolated several overlapping cDNA clones from a human retina library. The composite cDNA sequence predicts a human PLC{beta}4 polypeptide of 1022 amino acid residues (MW 117,000). This PLC{beta}4 variant lacks a 165-amino-acid N-terminal domain characteristic for the rat brain isoforms, but has a distinct putative exon 1 unique for human and bovine retina isoforms. A PLC{beta}4 monospecific antibody detected a major (130 kDa) and a minor (160 kDa) isoform in retina homogenates. Somatic cell hybrids and deletion panels were used to localize the PCLB4 gene to the short arm of chromosome 20. The gene was further sublocalized to 20p12 by florescence in situ hybridization. 4 refs., 5 figs.

  2. Visualization of phosphoinositides via the development of the transient expression system of a cyan fluorescent protein in the red alga Porphyra yezoensis.

    PubMed

    Mikami, Koji; Uji, Toshiki; Li, Lin; Takahashi, Megumu; Yasui, Hajime; Saga, Naotsune

    2009-01-01

    Phosphoinositides (PIs) play important roles in signal transduction pathways and the regulation of cytoskeleton and membrane functions in eukaryotes. Subcellular localization of individual PI derivative is successfully visualized in yeast, animal, and green plant cells using PI derivative-specific pleckstrin homology (PH) domains fused with a variety of fluorescent proteins; however, expression of fluorescent proteins has not yet been reported in any red algal cells. In the present study, we developed the system to visualize these PIs using human PH domains fused with a humanized cyan fluorescent protein (AmCFP) in the red alga Porphyra yezoensis. Plasma membrane localization of AmCFP fused with the PH domain from phospholipase Cdelta1 and Akt1, but not Bruton's tyrosine kinase, was observed in cell wall-free monospores, demonstrating the presence of phosphatidylinositol-4,5-bisphosphate and phosphatidylinositol-3,4-bisphosphate in P. yezoensis cells. This is the first report of the successful expression of fluorescent protein and the monitoring of PI derivatives in red algal cells. Our system, based on transient expression of AmCFP, could be applicable for the analysis of subcellular localization of other proteins in P. yezoensis and other red algal cells.

  3. Ca2+ influx and phosphoinositide signalling are essential for the establishment and maintenance of cell polarity in monospores from the red alga Porphyra yezoensis.

    PubMed

    Li, Lin; Saga, Naotsune; Mikami, Koji

    2009-01-01

    The asymmetrical distribution of F-actin directed by cell polarity has been observed during the migration of monospores from the red alga Porphyra yezoensis. The significance of Ca2+ influx and phosphoinositide signalling during the formation of cell polarity in migrating monospores was analysed pharmacologically. The results indicate that the inhibition of the establishment of cell polarity, as judged by the ability of F-actin to localize asymmetrically, cell wall synthesis, and development into germlings, occurred when monospores were treated with inhibitors of the Ca2+ permeable channel, phospholipase C (PLC), diacylglycerol kinase, and inositol-1,4,5-trisphosphate receptor. Moreover, it was also found that light triggered the establishment of cell polarity via photosynthetic activity but not its direction, indicating that the Ca2+ influx and PLC activation required for the establishment of cell polarity are light dependent. By contrast, inhibition of phospholipase D (PLD) prevented the migration of monospores but not the asymmetrical localization of F-actin. Taken together, these findings suggest that there is functional diversity between the PLC and PLD signalling systems in terms of the formation of cell polarity; the former being critical for the light-dependent establishment of cell polarity and the latter playing a role in the maintenance of established cell polarity.

  4. Autophosphorylation of p110delta phosphoinositide 3-kinase: a new paradigm for the regulation of lipid kinases in vitro and in vivo.

    PubMed Central

    Vanhaesebroeck, B; Higashi, K; Raven, C; Welham, M; Anderson, S; Brennan, P; Ward, S G; Waterfield, M D

    1999-01-01

    Phosphoinositide 3-kinases (PI3Ks) are lipid kinases which also possess an in vitro protein kinase activity towards themselves or their adaptor proteins. The physiological relevance of these phosphorylations is unclear at present. Here, the protein kinase activity of the tyrosine kinase-linked PI3K, p110delta, is characterized and its functional impact assessed. In vitro autophosphorylation of p110delta completely down-regulates its lipid kinase activity. The single site of autophosphorylation was mapped to Ser1039 at the C-terminus of p110delta. Antisera specific for phospho-Ser1039 revealed a very low level of phosphorylation of this residue in cell lines. However, p110delta that is recruited to activated receptors (such as CD28 in T cells) shows a time-dependent increase in Ser1039 phosphorylation and a concomitant decrease in associated lipid kinase activity. Treatment of cells with okadaic acid, an inhibitor of Ser/Thr phosphatases, also dramatically increases the level of Ser1039-phosphorylated p110delta. LY294002 and wortmannin blocked these in vivo increases in Ser1039 phosphorylation, consistent with the notion that PI3Ks, and possibly p110delta itself, are involved in the in vivo phosphorylation of p110delta. In summary, we show that PI3Ks are subject to regulatory phosphorylations in vivo similar to those identified under in vitro conditions, identifying a new level of control of these signalling molecules. PMID:10064595

  5. miR-502 inhibits cell proliferation and tumor growth in hepatocellular carcinoma through suppressing phosphoinositide 3-kinase catalytic subunit gamma

    SciTech Connect

    Chen, Suling; Li, Fang; Chai, Haiyun; Tao, Xin; Wang, Haili; Ji, Aifang

    2015-08-21

    MicroRNAs (miRNAs) play a key role in carcinogenesis and tumor progression in hepatocellular carcinoma (HCC). In the present study, we demonstrated that miR-502 significantly inhibits HCC cell proliferation in vitro and tumor growth in vivo. G1/S cell cycle arrest and apoptosis of HCC cells were induced by miR-502. Phosphoinositide 3-kinase catalytic subunit gamma (PIK3CG) was identified as a direct downstream target of miR-502 in HCC cells. Notably, overexpression of PIK3CG reversed the inhibitory effects of miR-502 in HCC cells. Our findings suggest that miR-502 functions as a tumor suppressor in HCC via inhibition of PI3KCG, supporting its utility as a promising therapeutic gene target for this tumor type. - Highlights: • miR-502 suppresses HCC cell proliferation in vitro and tumorigenicity in vivo. • miR-502 regulates cell cycle and apoptosis in HCC cells. • PIK3CG is a direct target of miR-502. • miR-502 and PIK3CG expression patterns are inversely correlated in HCC tissues.

  6. Synergistic inhibition of colon carcinoma cell growth by Hedgehog-Gli1 inhibitor arsenic trioxide and phosphoinositide 3-kinase inhibitor LY294002.

    PubMed

    Cai, Xinyi; Yu, Kun; Zhang, Lijuan; Li, Yunfeng; Li, Qiang; Yang, Zhibin; Shen, Tao; Duan, Lincan; Xiong, Wei; Wang, Weiya

    2015-01-01

    The Hedgehog (Hh) signaling pathway not only plays important roles in embryogenesis and adult tissue homeostasis, but also in tumorigenesis. Aberrant Hh pathway activation has been reported in a variety of malignant tumors including colon carcinoma. Here, we sought to investigate the regulation of the Hh pathway transcription factor Gli1 by arsenic trioxide and phosphoinositide 3-kinase (PI3K) inhibitor LY294002 in colon carcinoma cells. We transfected cells with siGli1 and observed a significant reduction of Gli1 expression in HCT116 and HT29 cells, which was confirmed by quantitative real-time polymerase chain reaction and Western blots. Knocking down endogenous Gli1 reduced colon carcinoma cell viability through inducing cell apoptosis. Similarly, knocking down Gli2 using short interfering RNA impaired colon carcinoma cell growth in vitro. To elucidate the regulation of Gli1 expression, we found that both Gli inhibitor arsenic trioxide and PI3K inhibitor LY294002 significantly reduced Gli1 protein expression and colon carcinoma cell proliferation. Arsenic trioxide treatment also reduced Gli1 downstream target gene expression, such as Bcl2 and CCND1. More importantly, the inhibition of Hedgehog-Gli1 by arsenic trioxide showed synergistic anticancer effect with the PI3K inhibitor LY294002 in colon carcinoma cells. Our findings suggest that the Hh pathway transcription factor Gli1 is involved in the regulation of colon carcinoma cell viability. Inhibition of Hedgehog-Gli1 expression by arsenic trioxide and PI3K inhibitor synergistically reduces colon cancer cell proliferation, indicating that they could be used as an effective anti-colon cancer combination therapy.

  7. Platelet activation by bacterial phospholipase C involves phosphoinositide turnover and phosphorylation of 47,000 dalton but not 20,000 dalton protein

    SciTech Connect

    Huzoor-Akbar; Anwer, K.

    1986-05-01

    This study was conducted to examine the role of phosphoinositides (PIns) and phosphorylation of 47,000 dalton (P47) and 20,000 dalton (P20) proteins in platelet activation by bacterial phospholipase C (PLC). PLC induced serotonin secretion (SS) and platelet aggregation (PA) in a concentration dependent manner. PLC (0.02 U/ml) caused phosphorylation of P47 in a time dependent manner (27% at 0.5 min to 378% at 7 min). PLC did not induce more than 15% phosphorylation of P20 by 7 min. Aspirin (500 ..mu..M) blocked phosphorylation of P20 but did not inhibit SS, PA or phosphorylation of P47. PLC (0.04 U/ml) decreased radioactivity (cpm) in /sup 32/P labeled phosphatidylinositol (PI), PI-4,5-bis-PO4 (PIP2) and PI-4-PO4 (PIP) by 20%, 12% and 7.5% respectively at 15 sec. The level of PI but not that of PIP2 returned to base line in 3 min. PIP level increased above control values within one min. PLC increased phosphatidic acid level (75% at 0.5 min. to 1545% at 3 min). In other experiments PLC produced diacylglycerol (DAG) in a time and concentration dependent manner. However, no DAG was detectable in the first 60 sec. These data suggest that: (a) PIns turnover and phosphorylation of P47 but not that of P20 is involved in platelet activation by PLC; and (b) DAG production from outer membrane phospholipids is not a prerequisite for platelet activation by PLC.

  8. Overexpression of phospholipase D prevents actinomycin D-induced apoptosis through potentiation of phosphoinositide 3-kinase signalling pathways in Chinese-hamster ovary cells.

    PubMed Central

    Yamada, Momoko; Banno, Yoshiko; Takuwa, Yoh; Koda, Masahiro; Hara, Akira; Nozawa, Yoshinori

    2004-01-01

    To examine the roles of PLD (phospholipase D) in the regulation of the apoptotic process, PLD1 and PLD2 were stably overexpressed in S1P3-CHO cells [CHO (Chinese-hamster ovary) cells expressing the S1P (sphingosine 1-phosphate) receptor S1P3]. Treatment of S1P3-CHO cells with ActD (actinomycin D) induced apoptosis, as shown by the occurrence of nuclear fragmentation and the caspase-dependent proteolytic cleavage of PARP [poly(ADP-ribose) polymerase] and protein kinase Cd. Overexpression of either PLD1 or PLD2 protected S1P3-CHO cells from ActD-induced apoptosis, as demonstrated by an increased number of viable cells and inhibition of PARP and protein kinase Cd cleavage. However, in the early phase of apoptosis, ActD induced an increase in PLD activity and activation of key factors in the cell-survival signalling pathways, such as PI3K (phosphoinositide 3-kinase), Akt, p70S6K (p70 S6 kinase) and ERK (extracellular-signal-regulated kinase). Furthermore, the ActD-induced activation of these survival signalling enzymes was potentiated by overexpression of either PLD1 or PLD2. The PI3K inhibitor LY294002 inhibited the ActD-induced activation of Akt and p70S6K, and completely abolished the effects of PLD1 or PLD2, whereas inhibition of ERK activity by the MEK inhibitor U0126 had a milder effect. The ActD-induced activation of p70S6K and ERKs was blocked by 1-butanol, but not by t-butanol; similar to S1P, exogenous PLD suppressed the ActD-induced events in the apoptosis signalling pathways. These results show that, in S1P3-CHO cells, increased expression of PLDs prevents ActD-induced apoptosis by enhanced activation of the PI3K signalling pathways. PMID:14640974

  9. Phosphoinositide 3-Kinases Upregulate System xc− via Eukaryotic Initiation Factor 2α and Activating Transcription Factor 4 – A Pathway Active in Glioblastomas and Epilepsy

    PubMed Central

    Baxter, Paul; Kassubek, Rebecca; Albrecht, Philipp; Van Liefferinge, Joeri; Westhoff, Mike-Andrew; Halatsch, Marc-Eric; Karpel-Massler, Georg; Meakin, Paul J.; Hayes, John D.; Aronica, Eleonora; Smolders, Ilse; Ludolph, Albert C.; Methner, Axel; Conrad, Marcus; Massie, Ann; Hardingham, Giles E.

    2014-01-01

    Abstract Aims: Phosphoinositide 3-kinases (PI3Ks) relay growth factor signaling and mediate cytoprotection and cell growth. The cystine/glutamate antiporter system xc− imports cystine while exporting glutamate, thereby promoting glutathione synthesis while increasing extracellular cerebral glutamate. The aim of this study was to analyze the pathway through which growth factor and PI3K signaling induce the cystine/glutamate antiporter system xc− and to demonstrate its biological significance for neuroprotection, cell growth, and epilepsy. Results: PI3Ks induce system xc− through glycogen synthase kinase 3β (GSK-3β) inhibition, general control non-derepressible-2-mediated eukaryotic initiation factor 2α phosphorylation, and the subsequent translational up-regulation of activating transcription factor 4. This pathway is essential for PI3Ks to modulate oxidative stress resistance of nerve cells and insulin-induced growth in fibroblasts. Moreover, the pathway is active in human glioblastoma cells. In addition, it is induced in primary cortical neurons in response to robust neuronal activity and in hippocampi from patients with temporal lobe epilepsy. Innovation: Our findings further extend the concepts of how growth factors and PI3Ks induce neuroprotection and cell growth by adding a new branch to the signaling network downstream of GSK-3β, which, ultimately, leads to the induction of the cystine/glutamate antiporter system xc−. Importantly, the induction of this pathway by neuronal activity and in epileptic hippocampi points to a potential role in epilepsy. Conclusion: PI3K-regulated system xc− activity is not only involved in the stress resistance of neuronal cells and in cell growth by increasing the cysteine supply and glutathione synthesis, but also plays a role in the pathophysiology of tumor- and non-tumor-associated epilepsy by up-regulating extracellular cerebral glutamate. Antioxid. Redox Signal. 20: 2907–2922. PMID:24219064

  10. Inhibition by islet-activating protein, pertussis toxin, of P2-purinergic receptor-mediated iodide efflux and phosphoinositide turnover in FRTL-5 cells

    SciTech Connect

    Okajima, F.; Sho, K.; Kondo, Y.

    1988-08-01

    Exposure of FRTL-5 thyroid cells to ATP (1 microM to 1 mM) resulted in the stimulation of I- efflux in association with the induction of inositol trisphosphate production and intracellular Ca2+ mobilization. Nonhydrolyzable ATP derivatives, ADP and GTP, were also as effective in magnitude as ATP, whereas neither AMP nor adenosine exerted significant effect on I- efflux, suggesting a P2-purinergic receptor-mediated activation of I- efflux. Treatment of the cells with the islet-activating protein (IAP) pertussis toxin, which ADP-ribosylated a 41,000 mol wt membrane protein, effectively suppressed the phosphoinositide response to ATP in addition to ATP-dependent I- efflux at agonist concentrations below 10 microM. In contrast, the I- efflux stimulated by TSH, A23187, or phorbol myristate acetate was insusceptible to IAP. The IAP substrate, probably GTP-binding protein, is hence proposed to mediate the activation of P2-purinergic receptor-linked phospholipase-C in FRTL-5 cells. However, the responses to ATP, its nonhydrolyzable derivatives, or ADP at the higher agonist concentrations, especially above 100 microM, were only partially inhibited by IAP, even though the IAP substrate was totally ADP ribosylated by the toxin. The responses to GTP in the whole concentration range tested were not influenced by IAP treatment. Thus, signals arising from the P2-receptor might be transduced to phospholipase-C by two different pathways, i.e. IAP-sensitive and insensitive ones, and result in the stimulation of I- efflux.

  11. ETP-46321, a dual p110α/δ class IA phosphoinositide 3-kinase inhibitor modulates T lymphocyte activation and collagen-induced arthritis.

    PubMed

    Aragoneses-Fenoll, L; Montes-Casado, M; Ojeda, G; Acosta, Y Y; Herranz, J; Martínez, S; Blanco-Aparicio, C; Criado, G; Pastor, J; Dianzani, U; Portolés, P; Rojo, J M

    2016-04-15

    Class IA phosphoinositide 3-kinases (PI3Ks) are essential to function of normal and tumor cells, and to modulate immune responses. T lymphocytes express high levels of p110α and p110δ class IA PI3K. Whereas the functioning of PI3K p110δ in immune and autoimmune reactions is well established, the role of p110α is less well understood. Here, a novel dual p110α/δ inhibitor (ETP-46321) and highly specific p110α (A66) or p110δ (IC87114) inhibitors have been compared concerning T cell activation in vitro, as well as the effect on responses to protein antigen and collagen-induced arthritis in vivo. In vitro activation of naive CD4(+) T lymphocytes by anti-CD3 and anti-CD28 was inhibited more effectively by the p110δ inhibitor than by the p110α inhibitor as measured by cytokine secretion (IL-2, IL-10, and IFN-γ), T-bet expression and NFAT activation. In activated CD4(+) T cells re-stimulated through CD3 and ICOS, IC87114 inhibited Akt and Erk activation, and the secretion of IL-2, IL-4, IL-17A, and IFN-γ better than A66. The p110α/δ inhibitor ETP-46321, or p110α plus p110δ inhibitors also inhibited IL-21 secretion by differentiated CD4(+) T follicular (Tfh) or IL-17-producing (Th17) helper cells. In vivo, therapeutic administration of ETP-46321 significantly inhibited responses to protein antigen as well as collagen-induced arthritis, as measured by antigen-specific antibody responses, secretion of IL-10, IL-17A or IFN-γ, or clinical symptoms. Hence, p110α as well as p110δ Class IA PI3Ks are important to immune regulation; inhibition of both subunits may be an effective therapeutic approach in inflammatory autoimmune diseases like rheumatoid arthritis.

  12. Genomic organization and complete cDNA sequence of the human phosphoinositide-specific phospholipase C {beta}3 gene (PLCB3)

    SciTech Connect

    Lagercrantz, J.; Carson, E.; Phelan, C.

    1995-04-10

    We have characterized the complete cDNA sequence, genomic structure, and expression of the human phosphoinositide-specific phospholipase C {beta}3 (PLC {beta}3) gene (gene symbol PLCB3). PLC {beta}3 plays an important role in initiating receptor-mediated signal transduction. Activation of PLC takes place in many cells as a response to stimulation by hormones, growth factors, neurotransmitters, and other ligands. The partial cDNA sequence of PLC {beta}3, previously published, was extended with 876 bp in the 5{prime} direction, giving a transcript of 4400 bp and a total open reading frame of 1234 amino acids. This was in accordance with expression analysis by Northern blotting that revealed a single 4.4-kb transcript in all tissues tested. Genomic data were obtained by sequencing plasmid subclones of a cosmid that contained the whole gene. The size of the complete transcription unit was estimated to be on the order of 15 kb. The gene contains 31 exons, with all splice donor and acceptor sites conforming to the GT/AG rule. No exon exceeds 571 bp in length, and the shortest exon spans only 36 bp. More than half of the introns are smaller than 200 bp, with the smallest being only 79 bp long. The transcription initiation site was determined to be within an 8-bp cluster 328-321 bp upstream of the translation initiation site. The 5{prime} flanking region is highly GC rich, with multiple CpG doublets, and contains multiple binding sites for Sp1. Lacking typical transcriptional regulatory sequences such as TATA and CAAT boxes, the putative promoter region conforms to the group of housekeeping promoters. 28 refs., 4 figs., 1 tab.

  13. Ellagic acid prevents rat colon carcinogenesis induced by 1, 2 dimethyl hydrazine through inhibition of AKT-phosphoinositide-3 kinase pathway.

    PubMed

    Umesalma, Syed; Sudhandiran, Ganapasam

    2011-06-25

    Colon cancer is the third most malignant neoplasm in the world and chemoprevention through dietary intervention is an emerging option to reduce its mortality. Ellagic acid (EA) a major component of berries possesses attractive biological deeds. This study is aimed to investigate the effect of ellagic acid in fostering apoptosis in 1,2-dimethyl hydrazine (DMH) mediated experimental colon carcinogenesis model. Wistar male rats were segregated into four groups: group I-control rats, group II-rats received ellagic acid (60 mg/kg body weight p.o. every day), rats in group III-induced with DMH (20 mg/kg body weight, s.c.) for 15 weeks, DMH-induced group IV rats were initiated with ellagic acid treatment. The present study is designed to explore the significance of phosphoinositide-3-kinase (PI3K)/Akt molecular pathway as well as ellagic acid's chemopreventive effect in colon cancer. DMH-induced rats exhibited elevated expressions of PI3K and Akt as confirmed by immunofluorescence, immunoblot and confocal microscopic analysis. Mechanistically, ellagic acid was found to prevent PI3K/Akt activation that in turn, results in modulation of its downstream Bcl-2 family proteins. Bax expression and caspase-3 activation was noted after ellagic acid supplementation leading to elevation of cytochrome c (cyt c) levels and finally cell death. These observations were supported by the DNA fragmentation results, which showed the occurrence of apoptosis. This study reveals the involvement of PI3K-Akt signaling through which ellagic acid induces apoptosis and subsequently suppresses colon cancer during DMH-induced rat colon carcinogenesis. In conclusion, our findings demonstrate that ellagic acid begets apoptosis in DMH-induced colon carcinoma.

  14. Phosphoinositide 3-kinase alpha-dependent regulation of branching morphogenesis in murine embryonic lung: evidence for a role in determining morphogenic properties of FGF7.

    PubMed

    Carter, Edward; Miron-Buchacra, Gabriela; Goldoni, Silvia; Danahay, Henry; Westwick, John; Watson, Malcolm L; Tosh, David; Ward, Stephen G

    2014-01-01

    Branching morphogenesis is a critical step in the development of many epithelial organs. The phosphoinositide-3-kinase (PI3K) pathway has been identified as a central component of this process but the precise role has not been fully established. Herein we sought to determine the role of PI3K in murine lung branching using a series of pharmacological inhibitors directed at this pathway. The pan-class I PI3K inhibitor ZSTK474 greatly enhanced the branching potential of whole murine lung explants as measured by an increase in the number of terminal branches compared with controls over 48 hours. This enhancement of branching was also observed following inhibition of the downstream signalling components of PI3K, Akt and mTOR. Isoform selective inhibitors of PI3K identified that the alpha isoform of PI3K is a key driver in branching morphogenesis. To determine if the effect of PI3K inhibition on branching was specific to the lung epithelium or secondary to an effect on the mesenchyme we assessed the impact of PI3K inhibition in cultures of mesenchyme-free lung epithelium. Isolated lung epithelium cultured with FGF7 formed large cyst-like structures, whereas co-culture with FGF7 and ZSTK474 induced the formation of defined branches with an intact lumen. Together these data suggest a novel role for PI3K in the branching program of the murine embryonic lung contradictory to that reported in other branching organs. Our observations also point towards PI3K acting as a morphogenic switch for FGF7 signalling.

  15. Impaired activation of phosphoinositide 3-kinase by insulin in fibroblasts from patients with severe insulin resistance and pseudoacromegaly. A disorder characterized by selective postreceptor insulin resistance.

    PubMed Central

    Dib, K; Whitehead, J P; Humphreys, P J; Soos, M A; Baynes, K C; Kumar, S; Harvey, T; O'Rahilly, S

    1998-01-01

    Some patients with severe insulin resistance develop pathological tissue growth reminiscent of acromegaly. Previous studies of such patients have suggested the presence of a selective postreceptor defect of insulin signaling, resulting in the impairment of metabolic but preservation of mitogenic signaling. As the activation of phosphoinositide 3-kinase (PI 3-kinase) is considered essential for insulin's metabolic signaling, we have examined insulin-stimulated PI 3-kinase activity in anti-insulin receptor substrate (IRS)-1 immunoprecipitates from cultured dermal fibroblasts obtained from pseudoacromegalic (PA) patients and controls. At a concentration of insulin (1 nM) similar to that seen in vivo in PA patients, the activation of IRS-1-associated PI 3-kinase was reduced markedly in fibroblasts from the PA patients (32+/-7% of the activity of normal controls, P < 0.01). Genetic and biochemical studies indicated that this impairment was not secondary to a defect in the structure, expression, or activation of the insulin receptor, IRS-1, or p85alpha. Insulin stimulation of mitogenesis in PA fibroblasts, as determined by thymidine incorporation, was indistinguishable from controls, as was mitogen-activated protein kinase phosphorylation, confirming the integrity of insulin's mitogenic signaling pathways in this condition. These findings support the existence of an intrinsic defect of postreceptor insulin signaling in the PA subtype of insulin resistance, which involves impairment of the activation of PI 3-kinase. The PA tissue growth seen in such patients is likely to result from severe in vivo hyperinsulinemia activating intact mitogenic signaling pathways emanating from the insulin receptor. PMID:9486982

  16. Inhibitory Effects of Isoquinoline Alkaloid Berberine on Ischemia-Induced Apoptosis via Activation of Phosphoinositide 3-Kinase/Protein Kinase B Signaling Pathway

    PubMed Central

    Kim, Mia; Shin, Mal Soon; Lee, Jae Min; Cho, Han Sam; Kim, Chang Ju; Kim, Young Joon; Choi, Hey Ran

    2014-01-01

    Purpose Berberine is a type of isoquinoline alkaloid that has been used to treat various diseases. A neuroprotective effect of berberine against cerebral ischemia has been reported; however, the effects of berberine on apoptosis in relation to reactive astrogliosis and microglia activation under ischemic conditions have not yet been fully evaluated. In the present study, we investigated the effects of berberine on global ischemia-induced apoptosis, and focused on the phosphoinositide 3-kinase (PI3K)/protein kinase B (Akt) signaling pathway in the hippocampus using gerbils. Methods Gerbils received berberine orally once a day for 14 consecutive days, starting one day after surgery. In this study, a step-down avoidance task was used to assess short-term memory. Furthermore, we employed the terminal deoxynucleotidyl transferase-mediated dUTP nick end labeling (TUNEL) assay to evaluate DNA fragmentation, immunohistochemistry to investigate glial fibriallary acidic protein, CD11b, and caspase-3, and western blot to assess PI3K, Akt, Bax, Bcl-2, and cytochrome c. Results Our results revealed that berberine treatment alleviated ischemia-induced short-term memory impairment. Treatment with berbeine also attenuated ischemia-induced apoptosis and inhibited reactive astrogliosis and microglia activation. Furthermore, berberine enhanced phospho-PI3K and phospho-Akt expression in the hippocampus of ischemic gerbils. Conclusions Berberine exerted a neuroprotective effect against ischemic insult by inhibiting neuronal apoptosis via activation of the PI3K/Akt signaling pathway. The antiapoptotic effect of berberine was achieved through inhibition of reactive astrogliosis and microglia activation. Berberine may therefore serve as a therapeutic agent for stroke-induced neurourological problems. PMID:25279238

  17. Binding of phosphoinositide-specific phospholipase C-zeta (PLC-zeta) to phospholipid membranes: potential role of an unstructured cluster of basic residues.

    PubMed

    Nomikos, Michail; Mulgrew-Nesbitt, Anna; Pallavi, Payal; Mihalyne, Gyongyi; Zaitseva, Irina; Swann, Karl; Lai, F Anthony; Murray, Diana; McLaughlin, Stuart

    2007-06-01

    Phospholipase C-zeta (PLC-zeta) is a sperm-specific enzyme that initiates the Ca2+ oscillations in mammalian eggs that activate embryo development. It shares considerable sequence homology with PLC-delta1, but lacks the PH domain that anchors PLC-delta1 to phosphatidylinositol 4,5-bisphosphate, PIP2. Thus it is unclear how PLC-zeta interacts with membranes. The linker region between the X and Y catalytic domains of PLC-zeta, however, contains a cluster of basic residues not present in PLC-delta1. Application of electrostatic theory to a homology model of PLC-zeta suggests this basic cluster could interact with acidic lipids. We measured the binding of catalytically competent mouse PLC-zeta to phospholipid vesicles: for 2:1 phosphatidylcholine/phosphatidylserine (PC/PS) vesicles, the molar partition coefficient, K, is too weak to be of physiological significance. Incorporating 1% PIP2 into the 2:1 PC/PS vesicles increases K about 10-fold, to 5x10(3) M-1, a biologically relevant value. Expressed fragments corresponding to the PLC-zeta X-Y linker region also bind with higher affinity to polyvalent than monovalent phosphoinositides on nitrocellulose filters. A peptide corresponding to the basic cluster (charge=+7) within the linker region, PLC-zeta-(374-385), binds to PC/PS vesicles with higher affinity than PLC-zeta, but its binding is less sensitive to incorporating PIP2. The acidic residues flanking this basic cluster in PLC-zeta may account for both these phenomena. FRET experiments suggest the basic cluster could not only anchor the protein to the membrane, but also enhance the local concentration of PIP2 adjacent to the catalytic domain.

  18. Biomaterials differentially regulate Src kinases and phosphoinositide 3-kinase-γ in polymorphonuclear leukocyte primary and tertiary granule release.

    PubMed

    Cohen, Hannah Caitlin; Frost, Dustin C; Lieberthal, Tyler Jacob; Li, Lingjun; Kao, W John

    2015-05-01

    In the foreign body response, infiltrating PMNs exocytose granule subsets to influence subsequent downstream inflammatory and wound healing events. In previous studies, we found that PMNs cultured on poly(ethylene glycol) (PEG)-containing hydrogels (i.e., PEG and gelatin + PEG hydrogels) had enhanced primary granule release, yet similar tertiary granule release compared with PMNs cultured on polydimethylsiloxane or tissue culture polystyrene. PMN primary granules contain microbicidal proteins and proteases, which can potentially injure bystander cells, degrade the extracellular matrix, and promote inflammation. Here, we sought to understand the mechanism of the enhanced primary granule release from PMNs on PEG hydrogels. We found that primary granule release from PMNs on PEG hydrogels was adhesion mediated and involved Src family kinases and PI3K-γ. The addition of gelatin to PEG hydrogels did not further enhance PMN primary granule release. Using stable-isotope dimethyl labeling-based shotgun proteomics, we identified many serum proteins - including Ig gamma constant chain region proteins and alpha-1-acid glycoprotein 1 - that were absorbed/adsorbed in higher quantities on PEG hydrogels than on TCPS, and may be involved in mediating PMN primary granule release. Ultimately, this mechanistic knowledge can be used to direct inflammation and wound healing following biomaterial implantation to promote a more favorable healing response.

  19. Phosphoinositide interacting regulator of TRP (Pirt) enhances TRPM8 channel activity in vitro via increasing channel conductance

    PubMed Central

    Tang, Min; Wu, Guang-yi; Dong, Xin-zhong; Tang, Zong-xiang

    2016-01-01

    Aim: Pirt is a two-transmembrane domain protein that regulates the function of a variety of ion channels. Our previous study indicated that Pirt acts as a positive endogenous regulator of the TRPM8 channel. The aim of this study was to investigate the mechanism underlying the regulation of TRPM8 channel by Pirt. Methods: HEK293 cells were transfected with TRPM8+Pirt or TRPM8 alone. Menthol (1 mmol/L) was applied through perfusion to induce TRPM8-mediated voltage-dependent currents, which were recorded using a whole-cell recording technique. PIP2 (10 μmol/L) was added into the electrode pipettes (PI was taken as a control). Additionally, cell-attached single-channel recordings were conducted in CHO cells transfected with TRPM8+Pirt or TRPM8 alone, and menthol (1 mmol/L) was added into the pipette solution. Results: Either co-transfection with Pirt or intracellular application of PIP2 (but not PI) significantly enhanced menthol-induced TRPM8 currents. Furthermore, Pirt and PIP2 synergistically modulated menthol-induced TRPM8 currents. Single-channel recordings revealed that co-transfection with Pirt significantly increased the single channel conductance. Conclusion: Pirt and PIP2 synergistically enhance TRPM8 channel activity, and Pirt regulates TRPM8 channel activity by increasing the single channel conductance. PMID:26657057

  20. Dual inhibition of histone deacetylases and phosphoinositide 3-kinases: effects on Burkitt lymphoma cell growth and migration.

    PubMed

    Ferreira, Ana Carolina dos Santos; de-Freitas-Junior, Julio Cesar Madureira; Morgado-Díaz, Jose Andres; Ridley, Anne J; Klumb, Claudete Esteves

    2016-04-01

    Burkitt lymphoma is a highly aggressive non-Hodgkin lymphoma that is characterized by MYC deregulation. Recently, the PI3K pathway has emerged as a cooperative prosurvival mechanism in Burkitt lymphoma. Despite the highly successful results of treatment that use high-dose chemotherapy regimens in pediatric Burkitt lymphoma patients, the survival rate of pediatric patients with progressive or recurrent disease is low. PI3Ks are also known to regulate cell migration, and abnormal cell migration may contribute to cancer progression and dissemination in Burkitt lymphoma. Little is known about Burkitt lymphoma cell migration, but the cooperation between MYC and PI3K in Burkitt lymphoma pathogenesis suggests that a drug combination could be used to target the different steps involved in Burkitt lymphoma cell dissemination and disease progression. The aim of this study was to investigate the effects of the histone deacetylase inhibitor suberoylanilide hydroxamic acid combined with the PI3K inhibitor LY294002 on Burkitt lymphoma cell growth and migration. The combination enhanced the cell growth inhibition and cell-cycle arrest induced by the PI3K inhibitor or histone deacetylase inhibitor individually. Moreover, histone deacetylase inhibitor/PI3K inhibitor cotreatment suppressed Burkitt lymphoma cell migration and decreased cell polarization, Akt and ERK1/2 phosphorylation, and leads to RhoB induction. In summary, the histone deacetylase inhibitor/PI3Ki combination inhibits cell proliferation and migration via alterations in PI3K signaling and histone deacetylase activity, which is involved in the acetylation of α-tubulin and the regulation of RhoB expression.

  1. Granulocyte macrophage-colony stimulating factor stimulates both association and activation of phosphoinositide 3OH-kinase and src-related tyrosine kinase(s) in human myeloid derived cells.

    PubMed Central

    Corey, S; Eguinoa, A; Puyana-Theall, K; Bolen, J B; Cantley, L; Mollinedo, F; Jackson, T R; Hawkins, P T; Stephens, L R

    1993-01-01

    The signalling pathways used by the GM-CSF receptor are currently unknown. Here we show that in human myeloid derived cells GM-CSF can stimulate; (i) the accumulation of PtdIns(3,4,5)P3; (ii) increases in p53/p56lyn and p62c-yes directed protein tyrosine kinase activities in anti-lyn and anti-c-yes antibody directed immunoprecipitates, respectively and; (iii) increases in phosphoinositide 3OH-kinase activity in antiphosphotyrosine, anti-p53/p56lyn and anti-p62c-yes antibody directed immunoprecipitates. These results suggest that GM-CSF can stimulate formation of protein tyrosine kinase co-ordinated signalling complexes, that contain p53/p56lyn, p62c-yes and an activated PtdInsP2 directed phosphoinositide 3OH-kinase, which can drive the accumulation of the putative second-messenger PtdIns(3,4,5)P3. Images PMID:8392933

  2. Structure of the Toll/Interleukin-1 Receptor (TIR) Domain of the B-cell Adaptor That Links Phosphoinositide Metabolism with the Negative Regulation of the Toll-like Receptor (TLR) Signalosome*

    PubMed Central

    Halabi, Samer; Sekine, Eiki; Verstak, Brett; Gay, Nicholas J.; Moncrieffe, Martin C.

    2017-01-01

    Ligand binding to Toll-like receptors (TLRs) results in dimerization of their cytosolic Toll/interleukin-1 receptor (TIR) domains and recruitment of post-receptor signal transducers into a complex signalosome. TLR activation leads to the production of transcription factors and pro-inflammatory molecules and the activation of phosphoinositide 3-kinases (PI3K) in a process that requires the multimodular B-cell adaptor for phosphoinositide 3-kinase (BCAP). BCAP has a sequence previously proposed as a “cryptic” TIR domain. Here, we present the structure of the N-terminal region of human BCAP and show that it possesses a canonical TIR fold. Dimeric BCAP associates with the TIR domains of TLR2/4 and MAL/TIRAP, suggesting that it is recruited to the TLR signalosome by multitypic TIR-TIR interactions. BCAP also interacts with the p85 subunit of PI3K and phospholipase Cγ, enzymes that deplete plasma membrane phosphatidylinositol 4,5-bisphosphate (PIP2), and these interactions provide a molecular explanation for BCAP-mediated down-regulation of inflammatory signaling. PMID:27909057

  3. Inhibitory Role of α6β4-Associated Erbb-2 and Phosphoinositide 3-Kinase in Keratinocyte Haptotactic Migration Dependent on α3β1 Integrin

    PubMed Central

    Hintermann, Edith; Bilban, Martin; Sharabi, Andrew; Quaranta, Vito

    2001-01-01

    Keratinocytes and other epithelial cells express two receptors for the basement membrane (BM) extracellular matrix component laminin-5 (Ln-5), integrins α3β1 and α6β4. While α3β1 mediates adhesion, spreading, and migration (Kreidberg, J.A. 2000. Curr. Opin. Cell Biol. 12:548–553), α6β4 is involved in BM anchorage via hemidesmosomes (Borradori, L., and A. Sonnenberg. 1999. J. Invest. Dermatol. 112:411–418). We investigated a possible regulatory interplay between α3β1 and α6β4 in cell motility using HaCaT keratinocytes as a model. We found that α6β4 antibodies inhibit α3β1-mediated migration on Ln-5, but only when migration is haptotactic (i.e., spontaneous or stimulated by α3β1 activation), and not when chemotactic (i.e., triggered by epidermal growth factor receptor). Inhibition of migration by α6β4 depends upon phosphoinositide 3-kinase (PI3-K) since it is abolished by PI3-K blockers and by dominant-negative PI3-K, and constitutively active PI3-K prevents haptotaxis. In HaCaT cells incubated with anti–α6β4 antibodies, activation of PI3-K is mediated by α6β4-associated erbB-2, as indicated by erbB-2 autophosphorylation and erbB-2/p85 PI3-K coprecipitation. Furthermore, dominant-negative erbB-2 abolishes inhibition of haptotaxis by anti–α6β4 antibodies. These results support a model whereby (a) haptotactic cell migration on Ln-5 is regulated by concerted action of α3β1 and α6β4 integrins, (b) α6β4-associated erbB-2 and PI3-K negatively affect haptotaxis, and (c) chemotaxis on Ln-5 is not affected by α6β4 antibodies and may require PI3-K activity. This model could be of general relevance to motility of epithelial cells in contact with BM. PMID:11331299

  4. Roles of mitogen-activated protein kinase and phosphoinositide 3'-kinase in ErbB2/ErbB3 coreceptor-mediated heregulin signaling.

    PubMed

    Vijapurkar, Ulka; Kim, Myong-Soo; Koland, John G

    2003-04-01

    ErbB2/HER2 and ErbB3/HER3, two members of the ErbB/HER family, together constitute a heregulin coreceptor complex that elicits a potent mitogenic and transforming signal. Among known intracellular effectors of the ErbB2/ErbB3 heregulin coreceptor are mitogen-activated protein kinase (MAPK) and phosphoinositide (PI) 3-kinase. Activation of the distinct MAPK and PI 3-kinase signaling pathways by the ErbB2/ErbB3 coreceptor in response to heregulin and their relative contributions to the mitogenic and transformation potentials of the activated coreceptor were investigated here. To this end, cDNAs encoding the wild-type ErbB3 protein (ErbB3-WT) and ErbB3 proteins with amino acid substitutions in either the Shc-binding site (ErbB3-Y1325F), the six putative PI 3-kinase-binding sites (ErbB3-6F), or both (ErbB3-7F) were generated and expressed in NIH-3T3 cells to form functional ErbB2/ErbB3 heregulin coreceptors. While the coreceptor incorporating ErbB3-WT activated both the MAPK and the PI 3-kinase signaling pathways, those incorporating ErbB3-Y1325F or ErbB3-6F activated either PI 3-kinase or MAPK, respectively. The ErbB2/ErbB3-7F coreceptor activated neither. Elimination of either signaling pathway lowered basal and eliminated heregulin-dependent expression of cyclin D1, which was in each case accompanied by an attenuated mitogenic response. Selective elimination of the PI 3-kinase pathway severely impaired the ability of heregulin to transform cells expressing the coreceptor, whereas attenuation of the MAPK pathway had a lesser effect. Thus, while both pathways contributed in a roughly additive manner to the mitogenic response elicited by the activated ErbB2/ErbB3 coreceptor, the PI 3-kinase pathway predominated in the induction of cellular transformation.

  5. Selective inhibitors of phosphoinositide 3-kinase delta: modulators of B-cell function with potential for treating autoimmune inflammatory diseases and B-cell malignancies

    PubMed Central

    Puri, Kamal D.; Gold, Michael R.

    2012-01-01

    The delta isoform of the p110 catalytic subunit (p110δ) of phosphoinositide 3-kinase is expressed primarily in hematopoietic cells and plays an essential role in B-cell development and function. Studies employing mice lacking a functional p110δ protein, as well as the use of highly-selective chemical inhibitors of p110δ, have revealed that signaling via p110δ-containing PI3K complexes (PI3Kδ) is critical for B-cell survival, migration, and activation, functioning downstream of key receptors on B cells including the B-cell antigen receptor, chemokine receptors, pro-survival receptors such as BAFF-R and the IL-4 receptor, and co-stimulatory receptors such as CD40 and Toll-like receptors (TLRs). Similarly, this PI3K isoform plays a key role in the survival, proliferation, and dissemination of B-cell lymphomas. Herein we summarize studies showing that these processes can be inhibited in vitro and in vivo by small molecule inhibitors of p110δ enzymatic activity, and that these p110δ inhibitors have shown efficacy in clinical trials for the treatment of several types of B-cell malignancies including chronic lymphocytic leukemia (CLL) and non-Hodgkin lymphoma (NHL). PI3Kδ also plays a critical role in the activation, proliferation, and tissue homing of self-reactive B cells that contribute to autoimmune diseases, in particular innate-like B-cell populations such as marginal zone (MZ) B cells and B-1 cells that have been strongly linked to autoimmunity. We discuss the potential utility of p110δ inhibitors, either alone or in combination with B-cell depletion, for treating autoimmune diseases such as lupus, rheumatoid arthritis, and type 1 diabetes. Because PI3Kδ plays a major role in both B-cell-mediated autoimmune inflammation and B-cell malignancies, PI3Kδ inhibitors may represent a promising therapeutic approach for treating these diseases. PMID:22936933

  6. The essential phosphoinositide kinase MSS-4 is required for polar hyphal morphogenesis, localizing to sites of growth and cell fusion in Neurospora crassa.

    PubMed

    Mähs, Anette; Ischebeck, Till; Heilig, Yvonne; Stenzel, Irene; Hempel, Franziska; Seiler, Stephan; Heilmann, Ingo

    2012-01-01

    Fungal hyphae and plant pollen tubes are among the most highly polarized cells known and pose extraordinary requirements on their cell polarity machinery. Cellular morphogenesis is driven through the phospholipid-dependent organization at the apical plasma membrane. We characterized the contribution of phosphoinositides (PIs) in hyphal growth of the filamentous ascomycete Neurospora crassa. MSS-4 is an essential gene and its deletion resulted in spherically growing cells that ultimately lyse. Two conditional mss-4-mutants exhibited altered hyphal morphology and aberrant branching at restrictive conditions that were complemented by expression of wild type MSS-4. Recombinant MSS-4 was characterized as a phosphatidylinositolmonophosphate-kinase phosphorylating phosphatidylinositol 4-phosphate (PtdIns4P) to phosphatidylinositol 4,5-bisphosphate (PtdIns(4,5)P(2)). PtdIns3P was also used as a substrate. Sequencing of two conditional mss-4 alleles identified a single substitution of a highly conserved Y750 to N. The biochemical characterization of recombinant protein variants revealed Y750 as critical for PI4P 5-kinase activity of MSS-4 and of plant PI4P 5-kinases. The conditional growth defects of mss-4 mutants were caused by severely reduced activity of MSS-4(Y750N), enabling the formation of only trace amounts of PtdIns(4,5)P(2). In N. crassa hyphae, PtdIns(4,5)P(2) localized predominantly in the plasma membrane of hyphae and along septa. Fluorescence-tagged MSS-4 formed a subapical collar at hyphal tips, localized to constricting septa and accumulated at contact points of fusing N. crassa germlings, indicating MSS-4 is responsible for the formation of relevant pools of PtdIns(4,5)P(2) that control polar and directional growth and septation. N. crassa MSS-4 differs from yeast, plant and mammalian PI4P 5-kinases by containing additional protein domains. The N-terminal domain of N. crassa MSS-4 was required for correct membrane association. The data presented for N

  7. CD40 ligand exhibits a direct antiviral effect on Herpes Simplex Virus type-1 infection via a PI3K-dependent, autophagy-independent mechanism.

    PubMed

    Vlahava, Virginia-Maria; Eliopoulos, Aristides G; Sourvinos, George

    2015-06-01

    The interaction between CD40 and its ligand, CD40L/CD154, is crucial for the efficient initiation and regulation of immune responses against viruses. Herpes Simplex Virus type-1 (HSV-1) is a neurotropic virus capable of manipulating host responses and exploiting host proteins to establish productive infection. Herein we have examined the impact of CD40L-mediated CD40 activation on HSV-1 replication in U2OS cells stably expressing the CD40 receptor. Treatment of these cells with CD40L significantly reduced the HSV-1 progeny virus compared to non-treated cells. The activation of CD40 signaling did not affect the binding of HSV-1 virions on the cell surface but rather delayed the translocation of VP16 to the nucleus, affecting all stages of viral life cycle. Using pharmacological inhibitors and RNAi we show that inhibition of PI3 kinase but not autophagy reverses the effects of CD40L on HSV-1 replication. Collectively, these data demonstrate that CD40 activation exerts a direct inhibitory effect on HSV-1, initiating from the very early stages of the infection by exploiting PI3 kinase-dependent but autophagy-independent mechanisms.

  8. PI 3-kinase-dependent phosphorylation of Plk1–Ser99 promotes association with 14-3-3γ and is required for metaphase–anaphase transition

    PubMed Central

    Kasahara, Kousuke; Goto, Hidemasa; Izawa, Ichiro; Kiyono, Tohru; Watanabe, Nobumoto; Elowe, Sabine; Nigg, Erich A; Inagaki, Masaki

    2013-01-01

    Polo-like kinase 1 (Plk1) controls multiple aspects of mitosis and is activated through its phosphorylation at Thr210. Here we identify Ser99 on Plk1 as a novel mitosis-specific phosphorylation site, which operates independently of Plk1–Thr210 phosphorylation. Plk1–Ser99 phosphorylation creates a docking site for 14-3-3γ, and this interaction stimulates the catalytic activity of Plk1. Knockdown of 14-3-3γ or replacement of wild-type (WT) Plk1 by a Ser99-phospho-blocking mutant leads to a prometaphase/metaphase-like arrest due to the activation of the spindle assembly checkpoint. Inhibition of phosphatidylinositol 3-kinase (PI3K) and Akt significantly reduces the level of Plk1–Ser99 phosphorylation and delays metaphase to anaphase transition. Plk1–Ser99 phosphorylation requires not only Akt activity but also protein(s) associated with Plk1 in a mitosis-specific manner. Therefore, mitotic Plk1 activity is regulated not only by Plk1–Thr210 phosphorylation, but also by Plk1 binding to 14-3-3γ following Plk1–Ser99 phosphorylation downstream of the PI3K–Akt signalling pathway. This novel Plk1 activation pathway controls proper progression from metaphase to anaphase. PMID:23695676

  9. Phosphoinositide 3-kinase targeting by the β galactoside binding protein cytokine negates akt gene expression and leads aggressive breast cancer cells to apoptotic death

    PubMed Central

    Wells, Valerie; Mallucci, Livio

    2009-01-01

    Introduction Phosphoinositide 3-kinase (PI3K)-activated signalling has a critical role in the evolution of aggressive tumourigenesis and is therefore a prime target for anticancer therapy. Previously we have shown that the β galactoside binding protein (βGBP) cytokine, an antiproliferative molecule, induces functional inhibition of class 1A and class 1B PI3K. Here, we have investigated whether, by targeting PI3K, βGBP has therapeutic efficacy in aggressive breast cancer cells where strong mitogenic input is fuelled by overexpression of the ErbB2 (also known as HER/neu, for human epidermal growth factor receptor 2) oncoprotein receptor and have used immortalised ductal cells and non-aggressive mammary cancer cells, which express ErbB2 at low levels, as controls. Methods Aggressive BT474 and SKBR3 cancer cells where ErbB2 is overexpressed, MCF10A immortalised ductal cells and non-invasive MCF-7 cancer cells which express low levels of ErbB2, both in their naive state and when forced to mimic aggressive behaviour, were used. Class IA PI3K was immunoprecipitated and the conversion of phosphatidylinositol (4,5)-biphosphate (PIP2) to phosphatidylinositol (3,4,5)-trisphosphate (PIP3) assessed by ELISA. The consequences of PI3K inhibition by βGBP were analysed at proliferation level, by extracellular signal-regulated kinase (ERK) activation, by akt gene expression and by apoptosis. Apoptosis was documented by changes in mitochondrial membrane potential, alteration of the plasma membrane, caspase 3 activation and DNA fragmentation. Phosphorylated and total ERK were measured by Western blot analysis and akt mRNA levels by Northern blot analysis. The results obtained with the BT474 and SKBR3 cells were validated in the MCF10A ductal cells and in non-invasive MCF-7 breast cancer cells forced into mimicking the in vitro behaviour of the BT474 and SKBR3 cells. Results In aggressive breast cancer cells, where mitogenic signalling is enforced by the ErbB2 oncoprotein receptor

  10. Cellular and Molecular Mechanisms of Chronic Kidney Disease with Diabetes Mellitus and Cardiovascular Diseases as Its Comorbidities

    PubMed Central

    Gajjala, Prathibha Reddy; Sanati, Maryam; Jankowski, Joachim

    2015-01-01

    Chronic kidney disease (CKD), diabetes mellitus (DM), and cardiovascular diseases (CVD) are complex disorders of partly unknown genesis and mostly known progression factors. CVD and DM are the risk factors of CKD and are strongly intertwined since DM can lead to both CKD and/or CVD, and CVD can lead to kidney disease. In recent years, our knowledge of CKD, DM, and CVD has been expanded and several important experimental, clinical, and epidemiological associations have been reported. The tight cellular and molecular interactions between the renal, diabetic, and cardiovascular systems in acute or chronic disease settings are becoming increasingly evident. However, the (patho-) physiological basis of the interactions of CKD, DM, and CVD with involvement of multiple endogenous and environmental factors is highly complex and our knowledge is still at its infancy. Not only single pathways and mediators of progression of these diseases have to be considered in these processes but also the mutual interactions of these factors are essential. The recent advances in proteomics and integrative analysis technologies have allowed rapid progress in analyzing complex disorders and clearly show the opportunity for new efficient and specific therapies. More than a dozen pathways have been identified so far, including hyperactivity of the renin–angiotensin (RAS)–aldosterone system, osmotic sodium retention, endothelial dysfunction, dyslipidemia, RAS/RAF/extracellular-signal-regulated kinase pathway, modification of the purinergic system, phosphatidylinositol 3-kinase (PI 3-kinase)-dependent signaling pathways, and inflammation, all leading to histomorphological alterations of the kidney and vessels of diabetic and non-diabetic patients. Since a better understanding of the common cellular and molecular mechanisms of these diseases may be a key to successful identification of new therapeutic targets, we review in this paper the current literature about cellular and molecular

  11. Shear stress stimulates phosphorylation of eNOS at Ser(635) by a protein kinase A-dependent mechanism

    NASA Technical Reports Server (NTRS)

    Boo, Yong Chool; Hwang, Jinah; Sykes, Michelle; Michell, Belinda J.; Kemp, Bruce E.; Lum, Hazel; Jo, Hanjoong

    2002-01-01

    Shear stress stimulates nitric oxide (NO) production by phosphorylating endothelial NO synthase (eNOS) at Ser(1179) in a phosphoinositide-3-kinase (PI3K)- and protein kinase A (PKA)-dependent manner. The eNOS has additional potential phosphorylation sites, including Ser(116), Thr(497), and Ser(635). Here, we studied these potential phosphorylation sites in response to shear, vascular endothelial growth factor (VEGF), and 8-bromocAMP (8-BRcAMP) in bovine aortic endothelial cells (BAEC). All three stimuli induced phosphorylation of eNOS at Ser(635), which was consistently slower than that at Ser(1179). Thr(497) was rapidly dephosphorylated by 8-BRcAMP but not by shear and VEGF. None of the stimuli phosphorylated Ser(116). Whereas shear-stimulated Ser(635) phosphorylation was not affected by phosphoinositide-3-kinase inhibitors wortmannin and LY-294002, it was blocked by either treating the cells with a PKA inhibitor H89 or infecting them with a recombinant adenovirus-expressing PKA inhibitor. These results suggest that shear stress stimulates eNOS by two different mechanisms: 1) PKA- and PI3K-dependent and 2) PKA-dependent but PI3K-independent pathways. Phosphorylation of Ser(635) may play an important role in chronic regulation of eNOS in response to mechanical and humoral stimuli.

  12. Isoform-selective phosphoinositide 3′-kinase inhibitors inhibit CXCR4 signaling and overcome stromal cell–mediated drug resistance in chronic lymphocytic leukemia: a novel therapeutic approach

    PubMed Central

    Niedermeier, Matthias; Hennessy, Bryan T.; Knight, Zachary A.; Henneberg, Marina; Hu, Jianhua; Kurtova, Antonina V.; Wierda, William G.; Keating, Michael J.; Shokat, Kevan M.

    2009-01-01

    Phosphoinositide 3-kinases (PI3Ks) are among the most frequently activated signaling pathways in cancer. In chronic lymphocytic leukemia (CLL), signals from the microenvironment are critical for expansion of the malignant B cells, and cause constitutive activation of PI3Ks. CXCR4 is a key receptor for CLL cell migration and adhesion to marrow stromal cells (MSCs). Because of the importance of CXCR4 and PI3Ks for CLL-microenvironment cross-talk, we investigated the activity of novel, isoform-selective PI3K inhibitors that target different isoforms of the p110-kDa subunit. Inhibition with p110α inhibitors (PIK-90 and PI-103) resulted in a significant reduction of chemotaxis and actin polymerization to CXCL12 and reduced migration beneath MSC (pseudoemperipolesis). Western blot and reverse phase protein array analyses consistently demonstrated that PIK-90 and PI-103 inhibited phosphorylation of Akt and S6, whereas p110δ or p110β/p110δ inhibitors were less effective. In suspension and MSC cocultures, PI-103 and PIK-90 were potent inducers of CLL cell apoptosis. Moreover, these p110α inhibitors enhanced the cytotoxicity of fludarabine and reversed the protective effect of MSC on fludarabine-induced apoptosis. Collectively, our data demonstrate that p110α inhibitors antagonize stromal cell-derived migration, survival, and drug-resistance signals and therefore provide a rational to explore the therapeutic activity of these promising agents in CLL. PMID:19318683

  13. Insulin-sensitizing and beneficial lipid-metabolic effects of the water-soluble melanin complex extracted from Inonotus obliquus.

    PubMed

    Lee, Jung-Han; Hyun, Chang-Kee

    2014-09-01

    Inonotus obliquus has been traditionally used for treatment of metabolic diseases; however, the mechanism remains to be elucidated. In this study, we found that the water-soluble melanin complex extracted from I. obliquus improved insulin sensitivity and reduced adiposity in high fat (HF)-fed obese mice. When the melanin complex was treated to 3T3-L1 adipocytes, insulin-stimulated glucose uptake was increased significantly, and its phosphoinositide 3-kinase-dependent action was proven with wortmannin treatment. Additionally, dose-dependent increases in Akt phosphorylation and glucose transporter 4 translocation into the plasma membrane were observed in melanin complex-treated cells. Adiponectin gene expression in 3T3-L1 cells incubated with melanin complex increased which was corroborated by increased AMP-activated protein kinase phosphorylation in HepG2 and C2C12 cells treated with conditioned media from the 3T3-L1 culture. Melanin complex-treated 3T3-L1 cells showed no significant change in expression of several lipogenic genes, whereas enhanced expressions of fatty acid oxidative genes were observed. Similarly, the epididymal adipose tissue of melanin complex-treated HF-fed mice had higher expression of fatty acid oxidative genes without significant change in lipogenic gene expression. Together, these results suggest that the water-soluble melanin complex of I. obliquus exerts antihyperglycemic and beneficial lipid-metabolic effects, making it a candidate for promising antidiabetic agent.

  14. Characterization of VPS34-IN1, a selective inhibitor of Vps34, reveals that the phosphatidylinositol 3-phosphate-binding SGK3 protein kinase is a downstream target of class III phosphoinositide 3-kinase.

    PubMed

    Bago, Ruzica; Malik, Nazma; Munson, Michael J; Prescott, Alan R; Davies, Paul; Sommer, Eeva; Shpiro, Natalia; Ward, Richard; Cross, Darren; Ganley, Ian G; Alessi, Dario R

    2014-11-01

    The Vps34 (vacuolar protein sorting 34) class III PI3K (phosphoinositide 3-kinase) phosphorylates PtdIns (phosphatidylinositol) at endosomal membranes to generate PtdIns(3)P that regulates membrane trafficking processes via its ability to recruit a subset of proteins possessing PtdIns(3)P-binding PX (phox homology) and FYVE domains. In the present study, we describe a highly selective and potent inhibitor of Vps34, termed VPS34-IN1, that inhibits Vps34 with 25 nM IC50 in vitro, but does not significantly inhibit the activity of 340 protein kinases or 25 lipid kinases tested that include all isoforms of class I as well as class II PI3Ks. Administration of VPS34-IN1 to cells induces a rapid dose-dependent dispersal of a specific PtdIns(3)P-binding probe from endosome membranes, within 1 min, without affecting the ability of class I PI3K to regulate Akt. Moreover, we explored whether SGK3 (serum- and glucocorticoid-regulated kinase-3), the only protein kinase known to interact specifically with PtdIns(3)P via its N-terminal PX domain, might be controlled by Vps34. Mutations disrupting PtdIns(3)P binding ablated SGK3 kinase activity by suppressing phosphorylation of the T-loop [PDK1 (phosphoinositide-dependent kinase 1) site] and hydrophobic motif (mammalian target of rapamycin site) residues. VPS34-IN1 induced a rapid ~50-60% loss of SGK3 phosphorylation within 1 min. VPS34-IN1 did not inhibit activity of the SGK2 isoform that does not possess a PtdIns(3)P-binding PX domain. Furthermore, class I PI3K inhibitors (GDC-0941 and BKM120) that do not inhibit Vps34 suppressed SGK3 activity by ~40%. Combining VPS34-IN1 and GDC-0941 reduced SGK3 activity ~80-90%. These data suggest SGK3 phosphorylation and hence activity is controlled by two pools of PtdIns(3)P. The first is produced through phosphorylation of PtdIns by Vps34 at the endosome. The second is due to the conversion of class I PI3K product, PtdIns(3,4,5)P3 into PtdIns(3)P, via the sequential actions of the Ptd

  15. Hyaluronan Activates Cell Motility of v-Src-transformed Cells via Ras-Mitogen–activated Protein Kinase and Phosphoinositide 3-Kinase-Akt in a Tumor-specific Manner

    PubMed Central

    Sohara, Yasuyoshi; Ishiguro, Naoki; Machida, Kazuya; Kurata, Hisashi; Thant, Aye Aye; Senga, Takeshi; Matsuda, Satoru; Kimata, Koji; Iwata, Hisashi; Hamaguchi, Michinari

    2001-01-01

    We investigated the production of hyaluronan (HA) and its effect on cell motility in cells expressing the v-src mutants. Transformation of 3Y1 by v-src virtually activated HA secretion, whereas G2A v-src, a nonmyristoylated form of v-src defective in cell transformation, had no effect. In cells expressing the temperature-sensitive mutant of v-Src, HA secretion was temperature dependent. In addition, HA as small as 1 nM, on the other side, activated cell motility in a tumor-specific manner. HA treatment strongly activated the motility of v-Src–transformed 3Y1, whereas it showed no effect on 3Y1- and 3Y1-expressing G2A v-src. HA-dependent cell locomotion was strongly blocked by either expression of dominant-negative Ras or treatment with a Ras farnesyltransferase inhibitor. Similarly, both the MEK1 inhibitor and the kinase inhibitor clearly inhibited HA-dependent cell locomotion. In contrast, cells transformed with an active MEK1 did not respond to the HA. Finally, an anti-CD44–neutralizing antibody could block the activation of cell motility by HA as well as the HA-dependent phosphorylation of mitogen-activated protein kinase and Akt. Taken together, these results suggest that simultaneous activation of the Ras-mitogen-activated protein kinase pathway and the phosphoinositide 3-kinase pathway by the HA-CD44 interaction is required for the activation of HA-dependent cell locomotion in v-Src–transformed cells. PMID:11408591

  16. The N-terminal fragment of the β-amyloid precursor protein of Alzheimer's disease (N-APP) binds to phosphoinositide-rich domains on the surface of hippocampal neurons.

    PubMed

    Dawkins, Edgar; Gasperini, Robert; Hu, Yanling; Cui, Hao; Vincent, Adele J; Bolós, Marta; Young, Kaylene M; Foa, Lisa; Small, David H

    2014-11-01

    The function of the β-amyloid precursor protein (APP) of Alzheimer's disease is poorly understood. The secreted ectodomain fragment of APP (sAPPα) can be readily cleaved to produce a small N-terminal fragment (N-APP) that contains heparin-binding and metal-binding domains and that has been found to have biological activity. In the present study, we examined whether N-APP can bind to lipids. We found that N-APP binds selectively to phosphoinositides (PIPs) but poorly to most other lipids. Phosphatidylinositol 4,5-bisphosphate (PI(4,5)P2 )-rich microdomains were identified on the extracellular surface of neurons and glia in primary hippocampal cultures. N-APP bound to neurons and colocalized with PIPs on the cell surface. Furthermore, the binding of N-APP to neurons increased the level of cell-surface PI(4,5)P2 and phosphatidylinositol 3,4,5-trisphosphate. However, PIPs were not the principal cell-surface binding site for N-APP, because N-APP binding to neurons was not inhibited by a short-acyl-chain PIP analogue, and N-APP did not bind to glial cells which also possessed PI(4,5)P2 on the cell surface. The data are explained by a model in which N-APP binds to two distinct components on neurons, one of which is an unidentified receptor and the second of which is a PIP lipid, which binds more weakly to a distinct site within N-APP. Our data provide further support for the idea that N-APP may be an important mediator of APP's biological activity.

  17. Estrogen Receptor β Signaling through Phosphatase and Tensin Homolog/Phosphoinositide 3-Kinase/Akt/Glycogen Synthase Kinase 3 Down-Regulates Blood-Brain Barrier Breast Cancer Resistance Protein

    PubMed Central

    Hartz, A. M. S.; Madole, E. K.; Miller, D. S.

    2010-01-01

    Breast cancer resistance protein (BCRP) is an ATP-driven efflux pump at the blood-brain barrier that limits central nervous system pharmacotherapy. Our previous studies showed rapid loss of BCRP transport activity in rat brain capillaries exposed to low concentrations of 17-β-estradiol (E2); this occurred without acute change in BCRP protein expression. Here, we describe a pathway through which sustained, extended exposure to E2 signals down-regulation of BCRP at the blood-brain barrier. Six-hour exposure of isolated rat and mouse brain capillaries to E2 reduced BCRP transport activity and BCRP monomer and dimer expression. Experiments with brain capillaries from estrogen receptor (ER)α and ERβ knockout mice and with ER agonists and antagonists showed that E2 signaled through ERβ to down-regulate BCRP expression. In rat brain capillaries, E2 increased unphosphorylated, active phosphatase and tensin homolog (PTEN); decreased phosphorylated, active Akt; and increased phosphorylated, active glycogen synthase kinase (GSK)3. Consistent with this, inhibition of phosphoinositide 3-kinase (PI3K) or Akt decreased BCRP activity and protein expression, and inhibition of PTEN or GSK3 reversed the E2 effect on BCRP. Lactacystin, a proteasome inhibitor, abolished E2-mediated BCRP down-regulation, suggesting internalization followed by transporter degradation. Dosing mice with E2 reduced BCRP activity in brain capillaries within 1 h; this reduction persisted for 24 h. BCRP protein expression in brain capillaries was unchanged 1 h after E2 dosing but was substantially reduced 6 and 24 h after dosing. Thus, E2 signals through ERβ, PTEN/PI3K/Akt/GSK3 to stimulate proteasomal degradation of BCRP. These in vitro and in vivo findings imply that E2-mediated down-regulation of blood-brain barrier BCRP has the potential to increase brain uptake of chemotherapeutics that are BCRP substrates. PMID:20460386

  18. Differential sensitivities of trastuzumab (Herceptin)-resistant human breast cancer cells to phosphoinositide-3 kinase (PI-3K) and epidermal growth factor receptor (EGFR) kinase inhibitors.

    PubMed

    Chan, Carmel T; Metz, Marianne Z; Kane, Susan E

    2005-05-01

    Her2 (erbB2/neu) is overexpressed in 25-30% of human breast cancers. Herceptin is a recombinant humanized Her2 antibody used to treat breast cancer patients with Her2 overexpression. Over a 5-month selection process, we isolated clones of BT474 (BT) human breast carcinoma cells (BT/Her(R)) that were resistant to Herceptin in vitro. In BT/Her(R) subclones, cell-surface, phosphorylated and total cellular Her2 protein remained high in the continuous presence of Herceptin. Likewise, the levels of cell-surface, phosphorylated, and total cellular Her3 and EGFR were either unchanged or only slightly elevated in BT/Her(R) subclones relative to BT cells. One BT/Her(R) subclone had substantially upregulated cell-surface EGFR, but this did not correlate with a higher relative resistance to Herceptin. In looking at the downstream PI-3K/Akt signaling pathway, phosphorylated and total Akt levels and Akt kinase activities were all sustained in BT/Her(R) subclones in the presence of Herceptin, but significantly downregulated in BT cells exposed to Herceptin. Whereas BT cells lost sensitivity to the PI-3K inhibitor LY294002 in the presence of Herceptin, BT/Her(R) subclones were equally sensitive to this agent in the presence and absence of Herceptin. This suggests that BT/Her(R) subclones acquired a Herceptin-resistant mechanism of PI-3K signaling. BT/Her(R) subclones were also sensitive to the EGFR kinase inhibitor AG1478 in the presence of Herceptin, to the same extent as BT cells. The BT/Her(R) subclones provide new insights into mechanisms of Herceptin resistance and suggest new treatment strategies in combination with other inhibitors targeted to signal transduction pathways.

  19. HspB8 mediates neuroprotection against OGD/R in N2A cells through the phosphoinositide 3-kinase/Akt pathway.

    PubMed

    Hu, Zhiping; Yang, Binbin; Mo, Xiaoye; Zhou, Fangfang

    2016-08-01

    In a previous study, we found that Heat shock protein B8 (HspB8) overexpression could prevent the apoptosis and reduced cell viability induced by OGD/R and showed that the neuroprotective effect of HspB8 was mediated by inhibition of the mitochondrial apoptotic pathway. In recent study, HspB8 has been shown to protect the heart against ischemia/reperfusion (I/R) injury via activation of the phosphatidylinositol 3-kinase (PI3K)/Akt pathway. However, whether this protective effect applied to brain I/R injury remained unexplored. To further test the mechanism of HspB8's effects in brain, we used oxygen-glucose deprivation followed by reperfusion (OGD/R), an in vitro model of ischemia to examine the involvement of PI3K/Akt signaling by treating mouse neuroblastoma cells (N2A cells) (untransfected or transfected with an HspB8 expression vector) with the PI3K inhibitor LY294002 before OGD/R. Our results revealed that the apoptosis-suppressing effect of HspB8 was mediated by the PI3K/Akt pathway. Therefore, HspB8 protected the N2A cells against OGD/R insult, possibly by activating the PI3K/Akt signaling pathway.

  20. Phosphoinositide 3-Kinase (PI3K) Subunit p110δ Is Essential for Trophoblast Cell Differentiation and Placental Development in Mouse

    PubMed Central

    Hu, Xiwen; Li, Jiangchao; Zhang, Qianqian; Zheng, Lingyun; Wang, Guang; Zhang, Xiaohan; Zhang, Jingli; Gu, Quliang; Ye, Yuxiang; Guo, Sun-Wei; Yang, Xuesong; Wang, Lijing

    2016-01-01

    Maternal PI3K p110δ has been implicated in smaller litter sizes in mice, but its underlying mechanism remains unclear. The placenta is an indispensable chimeric organ that supports mammalian embryonic development. Using a mouse model of genetic inactivation of PI3K p110δ (p110δD910A/D910A), we show that fetuses carried by p110δD910A/D910A females were growth retarded and showed increased mortality in utero mainly during placentation. The placentas in p110δD910A/D910A females were anomalously anemic, exhibited thinner spongiotrophoblast layer and looser labyrinth zone, which indicate defective placental vasculogenesis. In addition, p110δ was detected in primary trophoblast giant cells (P-TGC) at early placentation. Maternal PI3K p110δ inactivation affected normal TGCs generation and expansion, impeded the branching of chorioallantoic placenta but enhanced the expression of matrix metalloproteinases (MMP-2, MMP-12). Poor vasculature support for the developing fetoplacental unit resulted in fetal death or gross growth retardation. These data, taken together, provide the first in vivo evidence that p110δ may play an important role in placental vascularization through manipulating trophoblast giant cell. PMID:27306493

  1. The phosphoinositide 3-kinase/Akt-signal pathway mediates proliferation and secretory function of hepatic sinusoidal endothelial cells in rats after partial hepatectomy

    SciTech Connect

    Chen Ping . E-mail: chenping@263.net; Zhang Lin; Ding Jiming; Zhu Jin; Li Ying; Duan Shigang; Yan Hongtao; Huan Yongwei; Dong Jiahong

    2006-04-14

    Objective: To investigate the role of AKT signaling pathway in hepatic sinusoidal endothelial cells (SECs) early after partial hepatectomy in rats and the regulatory mechanisms involved. Methods: The animal model of 70% hepatectomy was made. Hepatic SECs were isolated and cultured according to Braet et al.'s method with some modifications. The cultured hepatic SECs were divided into two groups: 70% partial hepatectomy groups and LY294002 group (LY). We observed the expressions of AKT and NF-{kappa}B in cultured hepatic SECs by Western blot, measured the levels of NO, NOs, IL-6, and HGF in the supernatants of hepatic SEC cultures and [{sup 3}H]thymidine incorporation, and analyzed cell cycle of cultured hepatic SECs by flow cytometer. The relationship of the Akt pathway with secretions and proliferation of hepatic SECs after partial hepatectomy was probed. Results: The levels of Akt protein expression increased significantly after partial hepatectomy in OG group and with a peak at 24 h post operation. Meanwhile, there was a markedly increase in phosphorylated Akt protein during 2-72 h after operation. But the expression and activity of Akt protein did not change significantly after partial hepatectomy in the LY group. So, partial hepatectomy can marked induce Akt expression and result in rapid and marked phosphorylation of Akt from 2 to 72 h thereafter. The changes of NF-{kappa}B expression in cultured hepatic SECs were similar to those of Akt expression after operation. The concentrations of HGF and IL-6 in the supernatants of cultured hepatic SECs were relatively low in the LY group, and were markedly increased after partial hepatectomy, with a peak at 24 h in the OG group. There were significant differences between the OG and LY groups at 6 and 24 h (P < 0.05). Both NO and NOS secretion was increased in the OG group compared to the LY group within 24 h after partial hepatectomy. But the secretion of NO and NOS was increased more markedly in the LY group than that

  2. Different inhibition of Gβγ-stimulated class IB phosphoinositide 3-kinase (PI3K) variants by a monoclonal antibody. Specific function of p101 as a Gβγ-dependent regulator of PI3Kγ enzymatic activity.

    PubMed

    Shymanets, Aliaksei; Prajwal; Vadas, Oscar; Czupalla, Cornelia; LoPiccolo, Jaclyn; Brenowitz, Michael; Ghigo, Alessandra; Hirsch, Emilio; Krause, Eberhard; Wetzker, Reinhard; Williams, Roger L; Harteneck, Christian; Nürnberg, Bernd

    2015-07-01

    Class IB phosphoinositide 3-kinases γ (PI3Kγ) are second-messenger-generating enzymes downstream of signalling cascades triggered by G-protein-coupled receptors (GPCRs). PI3Kγ variants have one catalytic p110γ subunit that can form two different heterodimers by binding to one of a pair of non-catalytic subunits, p87 or p101. Growing experimental data argue for a different regulation of p87-p110γ and p101-p110γ allowing integration into distinct signalling pathways. Pharmacological tools enabling distinct modulation of the two variants are missing. The ability of an anti-p110γ monoclonal antibody [mAb(A)p110γ] to block PI3Kγ enzymatic activity attracted us to characterize this tool in detail using purified proteins. In order to get insight into the antibody-p110γ interface, hydrogen-deuterium exchange coupled to MS (HDX-MS) measurements were performed demonstrating binding of the monoclonal antibody to the C2 domain in p110γ, which was accompanied by conformational changes in the helical domain harbouring the Gβγ-binding site. We then studied the modulation of phospholipid vesicles association of PI3Kγ by the antibody. p87-p110γ showed a significantly reduced Gβγ-mediated phospholipid recruitment as compared with p101-p110γ. Concomitantly, in the presence of mAb(A)p110γ, Gβγ did not bind to p87-p110γ. These data correlated with the ability of the antibody to block Gβγ-stimulated lipid kinase activity of p87-p110γ 30-fold more potently than p101-p110γ. Our data argue for differential regulatory functions of the non-catalytic subunits and a specific Gβγ-dependent regulation of p101 in PI3Kγ activation. In this scenario, we consider the antibody as a valuable tool to dissect the distinct roles of the two PI3Kγ variants downstream of GPCRs.

  3. Overexpression of protein-tyrosine phosphatase-1B in adipocytes inhibits insulin-stimulated phosphoinositide 3-kinase activity without altering glucose transport or Akt/Protein kinase B activation.

    PubMed

    Venable, C L; Frevert, E U; Kim, Y B; Fischer, B M; Kamatkar, S; Neel, B G; Kahn, B B

    2000-06-16

    Previous studies suggested that protein-tyrosine phosphatase 1B (PTP1B) antagonizes insulin action by catalyzing dephosphorylation of the insulin receptor (IR) and/or other key proteins in the insulin signaling pathway. In adipose tissue and muscle of obese humans and rodents, PTP1B expression is increased, which led to the hypothesis that PTP1B plays a role in the pathogenesis of insulin resistance. Consistent with this, mice in which the PTP1B gene was disrupted exhibit increased insulin sensitivity. To test whether increased expression of PTP1B in an insulin-sensitive cell type could contribute to insulin resistance, we overexpressed wild-type PTP1B in 3T3L1 adipocytes using adenovirus-mediated gene delivery. PTP1B expression was increased approximately 3-5-fold above endogenous levels at 16 h, approximately 14-fold at 40 h, and approximately 20-fold at 72 h post-transduction. Total protein-tyrosine phosphatase activity was increased by 50% at 16 h, 3-4-fold at 40 h, and 5-6-fold at 72 h post-transduction. Compared with control cells, cells expressing high levels of PTP1B showed a 50-60% decrease in maximally insulin-stimulated tyrosyl phosphorylation of IR and insulin receptor substrate-1 (IRS-1) and phosphoinositide 3-kinase (PI3K) activity associated with IRS-1 or with phosphotyrosine. Akt phosphorylation and activity were unchanged. Phosphorylation of p42 and p44 MAP kinase (MAPK) was reduced approximately 32%. Overexpression of PTP1B had no effect on basal, submaximally or maximally (100 nm) insulin-stimulated glucose transport or on the EC(50) for transport. Our results suggest that: 1) insulin stimulation of glucose transport in adipocytes requires

  4. Galanin-like peptide (GALP) neurone-specific phosphoinositide 3-kinase signalling regulates GALP mRNA levels in the hypothalamus of males and luteinising hormone levels in both sexes.

    PubMed

    Aziz, R; Beymer, M; Negrón, A L; Newshan, A; Yu, G; Rosati, B; McKinnon, D; Fukuda, M; Lin, R Z; Mayer, C; Boehm, U; Acosta-Martínez, M

    2014-07-01

    Galanin-like peptide (GALP) neurones participate in the metabolic control of reproduction and are targets of insulin and leptin regulation. Phosphoinositide 3-kinase (PI3K) is common to the signalling pathways utilised by both insulin and leptin. Therefore, we investigated whether PI3K signalling in neurones expressing GALP plays a role in the transcriptional regulation of the GALP gene and in the metabolic control of luteinising hormone (LH) release. Accordingly, we deleted PI3K catalytic subunits p110α and p110β via conditional gene targeting (cKO) in mice (GALP-p110α/β cKO). To monitor PI3K signalling in GALP neurones, these animals were also crossed with Cre-dependent FoxO1GFP reporter mice. Compared to insulin-infused control animals, the PI3K-Akt-dependent FoxO1GFP nuclear exclusion in GALP neurones was abolished in GALP-p110α/β cKO mice. We next used food deprivation to investigate whether the GALP-neurone specific ablation of PI3K activity affected the susceptibility of the gonadotrophic axis to negative energy balance. Treatment did not affect LH levels in either sex. However, a significant genotype effect on LH levels was observed in females. By contrast, no genotype effect on LH levels was observed in males. A sex-specific genotype effect on hypothalamic GALP mRNA was observed, with fed and fasted GALP-p110α/β cKO males having lower GALP mRNA expression compared to wild-type fed males. Finally, the effects of gonadectomy and steroid hormone replacement on GALP mRNA levels were investigated. Compared to vehicle-treated mice, steroid hormone replacement reduced mediobasal hypothalamus GALP expression in wild-type and GALP-p110α/β cKO animals. In addition, within the castrated and vehicle-treated group and compared to wild-type mice, LH levels were lower in GALP-p110α/β cKO males. Double immunofluorescence using GALP-Cre/R26-YFP mice showed androgen and oestrogen receptor co-localisation within GALP neurones. Our data demonstrate that GALP

  5. Puzzling Mechanisms

    ERIC Educational Resources Information Center

    van Deventer, M. Oskar

    2009-01-01

    The basis of a good mechanical puzzle is often a puzzling mechanism. This article will introduce some new puzzling mechanisms, like two knots that engage like gears, a chain whose links can be interchanged, and flat gears that do not come apart. It illustrates how puzzling mechanisms can be transformed into real mechanical puzzles, e.g., by…

  6. Investigation of molecular mechanisms and regulatory pathways of pro-angiogenic nanorods

    NASA Astrophysics Data System (ADS)

    Nethi, Susheel Kumar; Veeriah, Vimal; Barui, Ayan Kumar; Rajendran, Saranya; Mattapally, Saidulu; Misra, Sanjay; Chatterjee, Suvro; Patra, Chitta Ranjan

    2015-05-01

    Angiogenesis, a process involving the growth of new blood vessels from the pre-existing vasculature, plays a crucial role in various pathophysiological conditions. We have previously demonstrated that europium hydroxide [EuIII(OH)3] nanorods (EHNs) exhibit pro-angiogenic properties through the generation of reactive oxygen species (ROS) and mitogen activated protein kinase (MAPK) activation. Considering the enormous implication of angiogenesis in cardiovascular diseases (CVDs) and cancer, it is essential to understand in-depth molecular mechanisms and signaling pathways in order to develop the most efficient and effective alternative treatment strategy for CVDs. However, the exact underlying mechanism and cascade signaling pathways behind the pro-angiogenic properties exhibited by EHNs still remain unclear. Herein, we report for the first time that the hydrogen peroxide (H2O2), a redox signaling molecule, generated by these EHNs activates the endothelial nitric oxide synthase (eNOS) that promotes the nitric oxide (NO) production in a PI3K (phosphoinositide 3-kinase)/Akt dependent manner, eventually triggering angiogenesis. We intensely believe that the investigation and understanding of the in-depth molecular mechanism and signaling pathways of EHNs induced angiogenesis will help us in developing an effective alternative treatment strategy for cardiovascular related and ischemic diseases where angiogenesis plays an important role.Angiogenesis, a process involving the growth of new blood vessels from the pre-existing vasculature, plays a crucial role in various pathophysiological conditions. We have previously demonstrated that europium hydroxide [EuIII(OH)3] nanorods (EHNs) exhibit pro-angiogenic properties through the generation of reactive oxygen species (ROS) and mitogen activated protein kinase (MAPK) activation. Considering the enormous implication of angiogenesis in cardiovascular diseases (CVDs) and cancer, it is essential to understand in-depth molecular

  7. Mechanical Systems

    NASA Technical Reports Server (NTRS)

    Davis, Robert E.

    2002-01-01

    The presentation provides an overview of requirement and interpretation letters, mechanical systems safety interpretation letter, design and verification provisions, and mechanical systems verification plan.

  8. Activation of Phosphoinositide Metabolism by Cholinergic Agents.

    DTIC Science & Technology

    1992-03-15

    production in slices that had been prelabelled with [3H]inositol and baclofen , a specific GABAB agonist, was as effective as GABA in enhancing the response...to NE (Figure 15). Neither GABA nor baclofen significantly blocked the inhibitory effect of quisqualate, but baclofen reduced the inhibitory effect of...hydrolysis (Figure 60). Propranolol , a 0- adrenergic-receptor antagonist, did not alter phosphcinositide hydrolysis induced by NE, ACPD, 37 or both agonists

  9. Plasma membrane nanoporation as a possible mechanism behind infrared excitation of cells

    NASA Astrophysics Data System (ADS)

    Beier, Hope T.; Tolstykh, Gleb P.; Musick, Joshua D.; Thomas, Robert J.; Ibey, Bennett L.

    2014-12-01

    Objective. Short infrared (IR) laser pulses have been used to stimulate action potentials in neurons both in vivo and in vitro. However, the mechanism(s) underlying this phenomenon has remained elusive. In vitro studies have found that pulsed IR exposure generates a nearly instant change in capacitance in the plasma membrane, characterized by inward rectification, a common feature in pore-forming exposures, such as electrical pulses and acoustic shock waves. Based on this similarity, we hypothesize that the mechanism of IR stimulation is the formation of short-lived nanopores in the plasma membrane. These transient, small-diameter pores allow the influx of extracellular ions that lead to action potential generation, possibly through activation of secondary messenger pathways or depolarization of the cell membrane resulting in activation of voltage-gated ion channels. Approach. A variety of fluorescent markers are used to observe the cell response to IR stimulation to monitor for effects indicative of nanoporation in other modalities. Main results. We observe rapid, transient rises in intracellular Ca2+, influx of YO-PRO-1 and propidium iodide into the cell signifying membrane permeabilization, cellular blebbing and swelling, and activation of the intracellular phosphoinositides lipid signaling pathway. Significance. This conclusion better explains the experimental observations and limitations of IR-induced neurological stimulation and represents a distinct theoretical shift in the understanding of the mechanism of IR-induced stimulation.

  10. Pulmonary mechanics during mechanical ventilation.

    PubMed

    Henderson, William R; Sheel, A William

    2012-03-15

    The use of mechanical ventilation has become widespread in the management of hypoxic respiratory failure. Investigations of pulmonary mechanics in this clinical scenario have demonstrated that there are significant differences in compliance, resistance and gas flow when compared with normal subjects. This paper will review the mechanisms by which pulmonary mechanics are assessed in mechanically ventilated patients and will review how the data can be used for investigative research purposes as well as to inform rational ventilator management.

  11. Predicting the structures of complexes between phosphoinositide 3-kinase (PI3K) and romidepsin-related compounds for the drug design of PI3K/histone deacetylase dual inhibitors using computational docking and the ligand-based drug design approach.

    PubMed

    Oda, Akifumi; Saijo, Ken; Ishioka, Chikashi; Narita, Koichi; Katoh, Tadashi; Watanabe, Yurie; Fukuyoshi, Shuichi; Takahashi, Ohgi

    2014-11-01

    Predictions of the three-dimensional (3D) structures of the complexes between phosphoinositide 3-kinase (PI3K) and two inhibitors were conducted using computational docking and the ligand-based drug design approach. The obtained structures were refined by structural optimizations and molecular dynamics (MD) simulations. The ligands were located deep inside the ligand binding pocket of the p110α subunit of PI3K, and the hydrogen bond formations and hydrophobic effects of the surrounding amino acids were predicted. Although rough structures were obtained for the PI3K-inhibitor complexes before the MD simulations, the refinement of the structures by these simulations clarified the hydrogen bonding patterns of the complexes.

  12. Investigation of molecular mechanisms and regulatory pathways of pro-angiogenic nanorods†

    PubMed Central

    Nethi, Susheel Kumar; Veeriah, Vimal; Barui, Ayan Kumar; Rajendran, Saranya; Mattapally, Saidulu; Misra, Sanjay

    2016-01-01

    Angiogenesis, a process involving the growth of new blood vessels from the pre-existing vasculature, plays a crucial role in various pathophysiological conditions. We have previously demonstrated that europium hydroxide [EuIII(OH)3] nanorods (EHNs) exhibit pro-angiogenic properties through the generation of reactive oxygen species (ROS) and mitogen activated protein kinase (MAPK) activation. Considering the enormous implication of angiogenesis in cardiovascular diseases (CVDs) and cancer, it is essential to understand in-depth molecular mechanisms and signaling pathways in order to develop the most efficient and effective alternative treatment strategy for CVDs. However, the exact underlying mechanism and cascade signaling pathways behind the pro-angiogenic properties exhibited by EHNs still remain unclear. Herein, we report for the first time that the hydrogen peroxide (H2O2), a redox signaling molecule, generated by these EHNs activates the endothelial nitric oxide synthase (eNOS) that promotes the nitric oxide (NO) production in a PI3K (phosphoinositide 3-kinase)/Akt dependent manner, eventually triggering angiogenesis. We intensely believe that the investigation and understanding of the in-depth molecular mechanism and signaling pathways of EHNs induced angiogenesis will help us in developing an effective alternative treatment strategy for cardiovascular related and ischemic diseases where angiogenesis plays an important role. PMID:25963768

  13. Quantum Mechanics

    NASA Astrophysics Data System (ADS)

    Commins, Eugene D.

    2014-10-01

    Preface; 1. Introduction; 2. Mathematical preliminaries; 3. The rules of quantum mechanics; 4. The connection between the fundamental rules and wave mechanics; 5. Further illustrations of the rules of quantum mechanics; 6. Further developments in one-dimensional wave mechanics; 7. The theory of angular momentum; 8. Wave mechanics in three dimensions: hydrogenic atoms; 9. Time-independent approximations for bound state problems; 10. Applications of static perturbation theory; 11. Identical particles; 12. Atomic structure; 13. Molecules; 14. The stability of matter; 15. Photons; 16. Interaction of non-relativistic charged particles and radiation; 17. Further topics in perturbation theory; 18. Scattering; 19. Special relativity and quantum mechanics: the Klein-Gordon equation; 20. The Dirac equation; 21. Interaction of a relativistic spin 1/2 particle with an external electromagnetic field; 22. The Dirac field; 23. Interaction between relativistic electrons, positrons, and photons; 24. The quantum mechanics of weak interactions; 25. The quantum measurement problem; Appendix A: useful inequalities for quantum mechanics; Appendix B: Bell's inequality; Appendix C: spin of the photon: vector spherical waves; Works cited; Bibliography; Index.

  14. Geometric Mechanics

    NASA Astrophysics Data System (ADS)

    Talman, Richard

    1999-10-01

    Mechanics for the nonmathematician-a modern approach For physicists, mechanics is quite obviously geometric, yet the classical approach typically emphasizes abstract, mathematical formalism. Setting out to make mechanics both accessible and interesting for nonmathematicians, Richard Talman uses geometric methods to reveal qualitative aspects of the theory. He introduces concepts from differential geometry, differential forms, and tensor analysis, then applies them to areas of classical mechanics as well as other areas of physics, including optics, crystal diffraction, electromagnetism, relativity, and quantum mechanics. For easy reference, Dr. Talman treats separately Lagrangian, Hamiltonian, and Newtonian mechanics-exploring their geometric structure through vector fields, symplectic geometry, and gauge invariance respectively. Practical perturbative methods of approximation are also developed. Geometric Mechanics features illustrative examples and assumes only basic knowledge of Lagrangian mechanics. Of related interest . . . APPLIED DYNAMICS With Applications to Multibody and Mechatronic Systems Francis C. Moon A contemporary look at dynamics at an intermediate level, including nonlinear and chaotic dynamics. 1998 (0-471-13828-2) 504 pp. MATHEMATICAL PHYSICS Applied Mathematics for Scientists and Engineers Bruce Kusse and Erik Westwig A comprehensive treatment of the mathematical methods used to solve practical problems in physics and engineering. 1998 (0-471-15431-8) 680 pp.

  15. Ca2+ transport in plant cells and mechanisms of transformation of phytochrome-induced photosignals

    NASA Astrophysics Data System (ADS)

    Volotovski, Igor D.

    1995-01-01

    The recent data on the influence of phytochrome on the efficiency of Ca2+ translocation across the membranes of oat protoplasts are given. Ca2+ uptake in the protoplasts was shown to be influenced by the red light (R) illumination. This effect was reverted by the following far-red light (FR) illumination. To elucidate the sensitivity to phytochrome-controlling action the screening between the mechanisms of Ca2+ transport across the plasma membranes of oat protoplasts, Na+/Ca2+ and Ca2+/H+ exchangers, Ca2+-pump and Ca2+-channel was done. It was established that phytochrome modulated the activity of Na+/Ca2+-exchanger and Ca2+-pump. The light-mediated oscillations of cytoplasmic Ca2+ concentration in the oat protoplasts were demonstrated using fluorescence probe quin2 loaded into the cells and laser monitoring of fluorescence signal. The evidences were obtained that the oscillations were not the result of the elevation of cytoplasmic Ca2+ concentration and had no connection with Ca2+ pool of mitochondria. The possibility of the relation between the Ca2+ oscillations and phosphoinositide metabolism in plant cell membranes is analyzed. The mechanisms of transformation of primary phytochrome signal into biological effects were discussed.

  16. Galangin suppresses human osteosarcoma cells: An exploration of its underlying mechanism.

    PubMed

    Yang, Zhifan; Li, Xiucheng; Han, Weiqi; Lu, Xuanyuan; Jin, Songtao; Yang, Wanlei; Li, Jianlei; He, Wei; Qian, Yu

    2017-01-01

    Osteosarcoma is the most common malignant bone tumor that frequently affects adolescents. Osteosarcoma cells tend to proliferate and invade other tissues such as those of the lungs. Currently, neoadjuvant chemotherapy is the primary strategy to prevent tumor progression. However, its adverse effects result in poor long-term outcomes. Previous research has shown that galangin exhibits antitumor properties on several types of cancer cells; however its effect on osteosarcoma cells is yet unknown. The aims of this study were to evaluate the effects of galangin on the proliferation, apoptosis, migration, and invasion of osteosarcoma cells and to explore the underlying mechanisms. We found that the proliferation of MG63 and U20S osteosarcoma cells decreased significantly, while the apoptosis of MG63 cells accelerated significantly after exposure to galangin. In addition, the migration and invasion of MG63 cells were significantly inhibited by galangin. Moreover, phosphoinositide 3-kinase (PI3K) and Aktp-Thr308 expression levels were found to be significantly lower in galangin-treated MG63 cells than in the control cells, and the protein expression levels of their downstream regulators cyclin D1 and matrix metalloproteinase 2/9 were also downregulated in galangin-treated groups, while those of p27Kip1, caspase-3, and caspase-8 were upregulated. These findings suggest that galangin suppresses osteosarcoma cells by inhibiting their proliferation and invasion and accelerating their apoptosis, and the mechanism may be associated with the inhibition of PI3K and its downstream signaling pathway.

  17. Mechanical memory

    DOEpatents

    Gilkey, Jeffrey C.; Duesterhaus, Michelle A.; Peter, Frank J.; Renn, Rosemarie A.; Baker, Michael S.

    2006-08-15

    A first-in-first-out (FIFO) microelectromechanical memory apparatus (also termed a mechanical memory) is disclosed. The mechanical memory utilizes a plurality of memory cells, with each memory cell having a beam which can be bowed in either of two directions of curvature to indicate two different logic states for that memory cell. The memory cells can be arranged around a wheel which operates as a clocking actuator to serially shift data from one memory cell to the next. The mechanical memory can be formed using conventional surface micromachining, and can be formed as either a nonvolatile memory or as a volatile memory.

  18. Mechanical memory

    DOEpatents

    Gilkey, Jeffrey C.; Duesterhaus, Michelle A.; Peter, Frank J.; Renn, Rosemarie A.; Baker, Michael S.

    2006-05-16

    A first-in-first-out (FIFO) microelectromechanical memory apparatus (also termed a mechanical memory) is disclosed. The mechanical memory utilizes a plurality of memory cells, with each memory cell having a beam which can be bowed in either of two directions of curvature to indicate two different logic states for that memory cell. The memory cells can be arranged around a wheel which operates as a clocking actuator to serially shift data from one memory cell to the next. The mechanical memory can be formed using conventional surface micromachining, and can be formed as either a nonvolatile memory or as a volatile memory.

  19. Translocation of the Na+/H+ exchanger 1 (NHE1) in cardiomyocyte responses to insulin and energy-status signalling.

    PubMed

    Lawrence, Scott P; Holman, Geoffrey D; Koumanov, Françoise

    2010-12-15

    The Na+/H+ exchanger NHE1 is a highly regulated membrane protein that is required for pH homoeostasis in cardiomyocytes. The activation of NHE1 leads to proton extrusion, which is essential for counteracting cellular acidity that occurs following increased metabolic activity or ischaemia. The activation of NHE1 intrinsic catalytic activity has been well characterized and established experimentally. However, we have examined in the present study whether a net translocation of NHE1 to the sarcolemma of cardiomyocytes may also be involved in the activation process. We have determined the distribution of NHE1 by means of immunofluorescence microscopy and cell-surface biotinylation. We have discovered changes in the distribution of NHE1 that occur when cardiomyocytes are stimulated with insulin that are PI3K (phosphoinositide 3-kinase)-dependent. Translocation of NHE1 also occurs when cardiomyocytes are challenged by hypoxia, or inhibition of mitochondrial oxidative metabolism or electrically induced contraction, but these responses occur through a PI3K-independent process. As the proposed additional level of control of NHE1 through translocation was unexpected, we have compared this process with the well-established translocation of the glucose transporter GLUT4. In immunofluorescence microscopy comparisons, the translocation of NHE1 and GLUT4 to the sarcolemma that occur in response to insulin appear to be very similar. However, in basal unstimulated cells the two proteins are mainly located, with the exception of some co-localization in the perinuclear region, in distinct subcellular compartments. We propose that the mechanisms of translocation of NHE1 and GLUT4 are linked such that they provide spatially and temporally co-ordinated responses to cardiac challenges that necessitate re-adjustments in glucose transport, glucose metabolism and cell pH.

  20. Lysophosphatidylcholine and 7-oxocholesterol modulate Ca2+ signals and inhibit the phosphorylation of endothelial NO synthase and cytosolic phospholipase A2.

    PubMed Central

    Millanvoye-Van Brussel, Elisabeth; Topal, Gökce; Brunet, Annie; Do Pham, Thuc; Deckert, Valérie; Rendu, Francine; David-Dufilho, Monique

    2004-01-01

    The oxidation of plasma LDLs (low-density lipoproteins) is a key event in the pathogenesis of atherosclerosis. LPC (lysophosphatidylcholine) and oxysterols are major lipid constitutents of oxidized LDLs. In particular, 7-oxocholesterol has been found in plasma from cardiac patients and atherosclerotic plaque. In the present study, we investigated the ability of 7-oxocholesterol and LPC to regulate the activation of eNOS (endothelial nitric oxide synthase) and cPLA2 (cytosolic phospholipase A2) that synthesize two essential factors for vascular wall integrity, NO (nitric oxide) and arachidonic acid. In endothelial cells from human umbilical vein cords, both 7-oxocholesterol (150 microM) and LPC (20 microM) decreased histamine-induced NO release, but not the release activated by thapsigargin. The two lipids decreased NO release through a PI3K (phosphoinositide 3-kinase)-dependent pathway, and decreased eNOS phosphorylation. Their mechanisms of action were, however, different. The NO release reduction was dependent on superoxide anions in LPC-treated cells and not in 7-oxocholesterol-treated ones. The Ca2+ signals induced by histamine were abolished by LPC, but not by 7-oxocholesterol. The oxysterol also inhibited (i) the histamine- and thapsigargin-induced arachidonic acid release, and (ii) the phosphorylation of both cPLA2 and ERK1/2 (extracellular-signal-regulated kinases 1/2). The results show that 7-oxocholesterol inhibits eNOS and cPLA2 activation by altering a Ca2+-independent upstream step of PI3K and ERK1/2 cascades, whereas LPC desensitizes eNOS by interfering with receptor-activated signalling pathways. This suggests that 7-oxocholesterol and LPC generate signals which cross-talk with heterologous receptors, effects which could appear at early stage of atherosclerosis. PMID:14992685

  1. Fault mechanics

    SciTech Connect

    Segall, P. )

    1991-01-01

    Recent observational, experimental, and theoretical modeling studies of fault mechanics are discussed in a critical review of U.S. research from the period 1987-1990. Topics examined include interseismic strain accumulation, coseismic deformation, postseismic deformation, and the earthquake cycle; long-term deformation; fault friction and the instability mechanism; pore pressure and normal stress effects; instability models; strain measurements prior to earthquakes; stochastic modeling of earthquakes; and deep-focus earthquakes. Maps, graphs, and a comprehensive bibliography are provided. 220 refs.

  2. Cellular Mechanisms of Gravitropic Response in Higher Plants

    NASA Astrophysics Data System (ADS)

    Medvedev, Sergei; Smolikova, Galina; Pozhvanov, Gregory; Suslov, Dmitry

    The evolutionary success of land plants in adaptation to the vectorial environmental factors was based mainly on the development of polarity systems. In result, normal plant ontogenesis is based on the positional information. Polarity is a tool by which the developing plant organs and tissues are mapped and the specific three-dimensional structure of the organism is created. It is due to their polar organization plants are able to orient themselves relative to the gravity vector and different vectorial cues, and to respond adequately to various stimuli. Gravitation is one of the most important polarized environmental factor that guides the development of plant organisms in space. Every plant can "estimate" its position relative to the gravity vector and correct it, if necessary, by means of polarized growth. The direction and the magnitude of gravitational stimulus are constant during the whole plant ontogenesis. The key plant response to the action of gravity is gravitropism, i.e. the directed growth of organs with respect to the gravity vector. This response is a very convenient model to study the mechanisms of plant orientation in space. The present report is focused on the main cellular mechanisms responsible for graviropic bending in higher plants. These mechanisms and structures include electric polarization of plant cells, Ca ({2+) }gradients, cytoskeleton, G-proteins, phosphoinositides and the machinery responsible for asymmetric auxin distribution. Those mechanisms tightly interact demonstrating some hierarchy and multiple feedbacks. The Ca (2+) gradients provide the primary physiological basis of polarity in plant cells. Calcium ions influence on the bioelectric potentials, the organization of actin cytoskeleton, the activity of Ca (2+) -binding proteins and Ca (2+) -dependent protein kinases. Protein kinases modulate transcription factors activity thereby regulating the gene expression and switching the developmental programs. Actin cytoskeleton affects

  3. Computational mechanics

    SciTech Connect

    Goudreau, G.L.

    1993-03-01

    The Computational Mechanics thrust area sponsors research into the underlying solid, structural and fluid mechanics and heat transfer necessary for the development of state-of-the-art general purpose computational software. The scale of computational capability spans office workstations, departmental computer servers, and Cray-class supercomputers. The DYNA, NIKE, and TOPAZ codes have achieved world fame through our broad collaborators program, in addition to their strong support of on-going Lawrence Livermore National Laboratory (LLNL) programs. Several technology transfer initiatives have been based on these established codes, teaming LLNL analysts and researchers with counterparts in industry, extending code capability to specific industrial interests of casting, metalforming, and automobile crash dynamics. The next-generation solid/structural mechanics code, ParaDyn, is targeted toward massively parallel computers, which will extend performance from gigaflop to teraflop power. Our work for FY-92 is described in the following eight articles: (1) Solution Strategies: New Approaches for Strongly Nonlinear Quasistatic Problems Using DYNA3D; (2) Enhanced Enforcement of Mechanical Contact: The Method of Augmented Lagrangians; (3) ParaDyn: New Generation Solid/Structural Mechanics Codes for Massively Parallel Processors; (4) Composite Damage Modeling; (5) HYDRA: A Parallel/Vector Flow Solver for Three-Dimensional, Transient, Incompressible Viscous How; (6) Development and Testing of the TRIM3D Radiation Heat Transfer Code; (7) A Methodology for Calculating the Seismic Response of Critical Structures; and (8) Reinforced Concrete Damage Modeling.

  4. Fluid Mechanics

    NASA Astrophysics Data System (ADS)

    Pnueli, David; Gutfinger, Chaim

    1997-01-01

    This text is intended for the study of fluid mechanics at an intermediate level. The presentation starts with basic concepts, in order to form a sound conceptual structure that can support engineering applications and encourage further learning. The presentation is exact, incorporating both the mathematics involved and the physics needed to understand the various phenomena in fluid mechanics. Where a didactical choice must be made between the two, the physics prevails. Throughout the book the authors have tried to reach a balance between exact presentation, intuitive grasp of new ideas, and creative applications of concepts. This approach is reflected in the examples presented in the text and in the exercises given at the end of each chapter. Subjects treated are hydrostatics, viscous flow, similitude and order of magnitude, creeping flow, potential flow, boundary layer flow, turbulent flow, compressible flow, and non-Newtonian flows. This book is ideal for advanced undergraduate students in mechanical, chemical, aerospace, and civil engineering. Solutions manual available.

  5. Computational mechanics

    SciTech Connect

    Raboin, P J

    1998-01-01

    The Computational Mechanics thrust area is a vital and growing facet of the Mechanical Engineering Department at Lawrence Livermore National Laboratory (LLNL). This work supports the development of computational analysis tools in the areas of structural mechanics and heat transfer. Over 75 analysts depend on thrust area-supported software running on a variety of computing platforms to meet the demands of LLNL programs. Interactions with the Department of Defense (DOD) High Performance Computing and Modernization Program and the Defense Special Weapons Agency are of special importance as they support our ParaDyn project in its development of new parallel capabilities for DYNA3D. Working with DOD customers has been invaluable to driving this technology in directions mutually beneficial to the Department of Energy. Other projects associated with the Computational Mechanics thrust area include work with the Partnership for a New Generation Vehicle (PNGV) for ''Springback Predictability'' and with the Federal Aviation Administration (FAA) for the ''Development of Methodologies for Evaluating Containment and Mitigation of Uncontained Engine Debris.'' In this report for FY-97, there are five articles detailing three code development activities and two projects that synthesized new code capabilities with new analytic research in damage/failure and biomechanics. The article this year are: (1) Energy- and Momentum-Conserving Rigid-Body Contact for NIKE3D and DYNA3D; (2) Computational Modeling of Prosthetics: A New Approach to Implant Design; (3) Characterization of Laser-Induced Mechanical Failure Damage of Optical Components; (4) Parallel Algorithm Research for Solid Mechanics Applications Using Finite Element Analysis; and (5) An Accurate One-Step Elasto-Plasticity Algorithm for Shell Elements in DYNA3D.

  6. GRAB MECHANISMS

    DOEpatents

    Dent, K.H.

    1948-03-01

    This patent relates to a device for ltfting objects having specially designed arms that fit into aligned slots within concentric sleeves of the grab mechanism. Upon the application of an electric current the sleeves are rotated relative to one another to the aforesaid aligned position, aliowing the entry or removal of the arms of the lifted object. The sleeves are spring biased to an unailgned positione thus locking the arms within the grab mechanism when the current is off. This arrangement provides a device that will remotely secure, life, and release an object, wtth the assurance that the object wiil remain securely locked during the lifting operation.

  7. Controlled pseudopod extension of human neutrophils stimulated with different chemoattractants.

    PubMed

    Zhelev, Doncho V; Alteraifi, Abdullatif M; Chodniewicz, David

    2004-07-01

    inhibition of the activity of phosphoinositide-3 kinase (PI3K) with wortmannin showed that 72%-80% of the rate of pseudopod extension induced with N-formyl-methionyl-leucyl-phenylalanine, platelet activating factor, and leukotriene B4 was phosphoinositide-3 kinase-dependent, in contrast to 55% of the rate of pseudopod extension induced with interleukin-8. The dependence of the rate of pseudopod extension on the concentration of individual chemoattractants and their equimolar mixture suggests that there is a common rate-limiting mechanism for the polymerization of cytoskeletal F-actin in the pseudopod region induced by G-protein coupled chemoattractant receptors.

  8. Controlled Pseudopod Extension of Human Neutrophils Stimulated with Different Chemoattractants

    PubMed Central

    Zhelev, Doncho V.; Alteraifi, Abdullatif M.; Chodniewicz, David

    2004-01-01

    inhibition of the activity of phosphoinositide-3 kinase (PI3K) with wortmannin showed that 72%–80% of the rate of pseudopod extension induced with N-formyl-methionyl-leucyl-phenylalanine, platelet activating factor, and leukotriene B4 was phosphoinositide-3 kinase-dependent, in contrast to 55% of the rate of pseudopod extension induced with interleukin-8. The dependence of the rate of pseudopod extension on the concentration of individual chemoattractants and their equimolar mixture suggests that there is a common rate-limiting mechanism for the polymerization of cytoskeletal F-actin in the pseudopod region induced by G-protein coupled chemoattractant receptors. PMID:15240502

  9. Automotive Mechanics.

    ERIC Educational Resources Information Center

    Brown, Desmond

    This curriculum guide provides materials for a competency-based course in automotive mechanics at the secondary level. The curriculum design uses the curriculum infused model for the teaching of basic skills as part of vocational education and demonstrates the relationship of vocationally related skills to communication, mathematics, and science…

  10. Restraining mechanism

    NASA Technical Reports Server (NTRS)

    Hardy, J. C. (Inventor)

    1970-01-01

    A restraining mechanism restraining a pressurized garment so as to limit its ballooning effect is described. A helically wound spring is bonded at its outer periphery to an elongated flat plate which permits the flat plate to bend in a single direction. The flat plate is attached to an inflatable glove to the palm side for restraining the glove from ballooning when inflated.

  11. Fluid Mechanics.

    ERIC Educational Resources Information Center

    Drazin, Philip

    1987-01-01

    Outlines the contents of Volume II of "Principia" by Sir Isaac Newton. Reviews the contributions of subsequent scientists to the physics of fluid dynamics. Discusses the treatment of fluid mechanics in physics curricula. Highlights a few of the problems of modern research in fluid dynamics. Shows that problems still remain. (CW)

  12. Cratering mechanics

    NASA Technical Reports Server (NTRS)

    Ivanov, B. A.

    1986-01-01

    Main concepts and theoretical models which are used for studying the mechanics of cratering are discussed. Numerical two-dimensional calculations are made of explosions near a surface and high-speed impact. Models are given for the motion of a medium during cratering. Data from laboratory modeling are given. The effect of gravitational force and scales of cratering phenomena is analyzed.

  13. Resistance mechanisms

    PubMed Central

    Cag, Yasemin; Caskurlu, Hulya; Fan, Yanyan; Cao, Bin

    2016-01-01

    By definition, the terms sepsis and septic shock refer to a potentially fatal infectious state in which the early administration of an effective antibiotic is the most significant determinant of the outcome. Because of the global spread of resistant bacteria, the efficacy of antibiotics has been severely compromised. S. pneumonia, Escherichia coli (E. coli), Klebsiella, Acinetobacter, and Pseudomonas are the predominant pathogens of sepsis and septic shock. It is common for E. coli, Klebsiella, Acinetobacter and Pseudomonas to be resistant to multiple drugs. Multiple drug resistance is caused by the interplay of multiple resistance mechanisms those emerge via the acquisition of extraneous resistance determinants or spontaneous mutations. Extended-spectrum beta-lactamases (ESBLs), carbapenemases, aminoglycoside-modifying enzymes (AMEs) and quinolone resistance determinants are typically external and disseminate on mobile genetic elements, while porin-efflux mechanisms are activated by spontaneous modifications of inherited structures. Porin and efflux mechanisms are frequent companions of multiple drug resistance in Acinetobacter and P. aeruginosa, but only occasionally detected among E. coli and Klebsiella. Antibiotic resistance became a global health threat. This review examines the major resistance mechanisms of the leading microorganisms of sepsis. PMID:27713884

  14. Mechanical Drafting.

    ERIC Educational Resources Information Center

    McClain, Gerald R.

    This publication, the third in a series on drafting, is intended to strengthen students' competence in the specialized field of mechanical drafting. The text consists of instructional materials for both teacher and students, written in terms of student performance using measurable objectives. The course includes 11 units. Each instructional unit…

  15. Mechanical Technician.

    ERIC Educational Resources Information Center

    Ohio State Univ., Columbus. Center on Education and Training for Employment.

    This document contains 33 units to consider for use in a tech prep competency profile for the occupation of mechanical technician. All the units listed will not necessarily apply to every situation or tech prep consortium, nor will all the competencies within each unit be appropriate. Several units appear within each specific occupation and would…

  16. Classical Mechanics

    NASA Astrophysics Data System (ADS)

    Chow, Tai L.

    1995-05-01

    Bring Classical Mechanics To Life With a Realistic Software Simulation! You can enhance the thorough coverage of Chow's Classical Mechanics with a hands-on, real-world experience! John Wiley & Sons, Inc. is proud to announce a new computer simulation for classical mechanics. Developed by the Consortium for Upper-Level Physics Software (CUPS), this simulation offers complex, often realistic calculations of models of various physical systems. Classical Mechanics Simulations (54881-2) is the perfect complement to Chow's text. Like all of the CUPS simulations, it is remarkably easy to use, yet sophisticated enough for explorations of new ideas. Other Important Features Include: * Six powerful simulations include: The Motion Generator, Rotation of Three-Dimensional Objects, Coupled Oscillators, Anharmonic Oscillators, Gravitational Orbits, and Collisions * Pascal source code for all programs is supplied and a number of exercises suggest specific ways the programs can be modified. * Simulations usually include graphical (often animated) displays. The entire CUPS simulation series consists of nine book/software simulations which comprise most of the undergraduate physics major's curriculum.

  17. Mechanism of prolactin action on Nb/sub 2/ node lymphoma cells

    SciTech Connect

    Ofenstein, J.P.

    1987-01-01

    The post-receptor mechanism of action by which the pituitary hormone prolactin stimulates cell division was investigated in the Nb/sub 2/ rat lymphoma cell. The replication of Nb/sub 2/ rat lymphoma cells is specifically stimulated by prolactin in a dose dependent manner in the concentration range from 50 pg/ml to 1 ng/ml. Prolactin stimulates proteins synthesis in these cells between 0 and 2 hrs; DNA synthesis between 12 and 16 hrs, and cell replication between 16 and 24 hrs. The effect of prolactin on phospholipid metabolism was tested by measuring the rate of incorporation of (/sup 3/H) myo-inositol, (/sup 3/H) choline and (/sup 14/C) acetate over a 14 hr period. Two significant increases in phospholipid metabolism occur from 30-90 min and from 3-8 hrs. Only the increase in phosphoinositide metabolism was shown to be non-transient. The role of the phospholipase enzymes in the prolactin stimulation of mitogenesis was investigated in the Nb/sub 2/ lymphoma cells.

  18. Mechanisms of Hypoxic Up-Regulation of Versican Gene Expression in Macrophages

    PubMed Central

    Sotoodehnejadnematalahi, Fattah; Staples, Karl J.; Chrysanthou, Elvina; Pearson, Helen; Ziegler-Heitbrock, Loems; Burke, Bernard

    2015-01-01

    Hypoxia is a hallmark of many pathological tissues. Macrophages accumulate in hypoxic sites and up-regulate a range of hypoxia-inducible genes. The matrix proteoglycan versican has been identified as one such gene, but the mechanisms responsible for hypoxic induction are not fully characterised. Here we investigate the up-regulation of versican by hypoxia in primary human monocyte-derived macrophages (HMDM), and, intriguingly, show that versican mRNA is up-regulated much more highly (>600 fold) by long term hypoxia (5 days) than by 1 day of hypoxia (48 fold). We report that versican mRNA decay rates are not affected by hypoxia, demonstrating that hypoxic induction of versican mRNA is mediated by increased transcription. Deletion analysis of the promoter identified two regions required for high level promoter activity of luciferase reporter constructs in human macrophages. The hypoxia-inducible transcription factor HIF-1 has previously been implicated as a key potential regulator of versican expression in hypoxia, however our data suggest that HIF-1 up-regulation is unlikely to be principally responsible for the high levels of induction observed in HMDM. Treatment of HMDM with two distinct specific inhibitors of Phosphoinositide 3-kinase (PI3K), LY290042 and wortmannin, significantly reduced induction of versican mRNA by hypoxia and provides evidence of a role for PI3K in hypoxic up-regulation of versican expression. PMID:26057378

  19. Antiangiogenic mechanisms of PJ-8, a novel inhibitor of vascular endothelial growth factor receptor signaling.

    PubMed

    Huang, Shiu-Wen; Lien, Jin-Cherng; Kuo, Sheng-Chu; Huang, Tur-Fu

    2012-05-01

    Angiogenesis occurs not only during tissue growth and development but also during wound healing and tumor progression. Angiogenesis is a balanced process controlled by proangiogenic and antiangiogenic molecules. As a critical factor in the induction of angiogenesis, vascular endothelial growth factor (VEGF) has become an attractive target for antiangiogenic and cancer therapeutic agents. In an effort to develop novel inhibitors to block VEGF signaling, we selected Pj-8, a benzimidazole derivative, and investigated its inhibitory mechanisms in human umbilical vascular endothelial cells (HUVECs). Pj-8 concentration-dependently inhibited VEGF-induced proliferation, migration and tube formation of HUVECs. Pj-8 also suppressed VEGF-induced microvessel sprouting from aortic rings ex vivo and suppressed neovascularization of implanted matrigel plugs in vivo. Pj-8 inhibited VEGF-induced phosphorylation of VEGF receptor (VEGFR) 2 and the downstream protein kinases, including Akt, focal adhesion kinase, extracellular signal-regulated kinases and Src. Results from in vitro kinase assay further demonstrated that Pj-8 suppressed the kinase activity of 3-phosphoinositide-dependent kinase 1 (PDK1). Using xenograft tumor angiogenesis model, Pj-8 markedly eliminated tumor-associated angiogenesis. Taken together, our findings suggest that Pj-8 inhibits VEGF and tumor cells MDA-MB-231-induced angiogenesis, and it may be a potential drug candidate in anticancer therapy. Downregulation of VEGFR2-mediated signaling may contribute to its antiangiogenic actions.

  20. A Molecular Mechanism to Regulate Lysosome Motility for Lysosome Positioning and Tubulation

    PubMed Central

    Li, Xinran; Rydzewski, Nicholas; Hider, Ahmad; Zhang, Xiaoli; Yang, Junsheng; Wang, Wuyang; Gao, Qiong; Cheng, Xiping; Xu, Haoxing

    2016-01-01

    To mediate the degradation of bio-macromolecules, lysosomes must traffic towards cargo-carrying vesicles for subsequent membrane fusion or fission. Mutations of the lysosomal Ca2+ channel TRPML1 cause lysosome storage disease (LSD) characterized by disordered lysosomal membrane trafficking in cells. Here we show that TRPML1 activity is required to promote Ca2+-dependent centripetal movement of lysosomes towards the perinuclear region, where autophagosomes accumulate, upon autophagy induction. ALG-2, an EF-hand-containing protein, serves as a lysosomal Ca2+ sensor that associates physically with the minus-end directed dynactin-dynein motor, while PI(3,5)P2, a lysosome-localized phosphoinositide, acts upstream of TRPML1. Furthermore, the PI(3,5)P2-TRPML1-ALG-2-dynein signaling is necessary for lysosome tubulation and reformation. In contrast, the TRPML1 pathway is not required for the perinuclear accumulation of lysosomes observed in many LSDs, which is instead likely caused by secondary cholesterol accumulation that constitutively activates Rab7-RILP-dependent retrograde transport. Collectively, Ca2+ release from lysosomes provides an on-demand mechanism regulating lysosome motility, positioning, and tubulation. PMID:26950892

  1. Mechanical capacitor

    NASA Technical Reports Server (NTRS)

    Kirk, J. A.; Studer, P. A.; Evans, H. E.

    1976-01-01

    A new energy storage system (the mechanical capacitor), using a spokeless magnetically levitated composite ring rotor, is described and design formulas for sizing the components are presented. This new system is configured around a permanent magnet (flux biased) suspension which has active servo control in the radial direction and passive control in the axial direction. The storage ring is used as a moving rotor and electronic commutation of the stationary armature coils is proposed. There is no mechanical contact with the rotating spokeless ring; therefore, long life and near zero rundown losses are projected. A 7-kW h system is sized to demonstrate feasibility. A literature review of flywheel energy storage systems is also presented and general formulas are developed for comparing rotor geometries.

  2. [Mechanical ventilator].

    PubMed

    Kimura, Akio; Hashimoto, S

    2009-07-01

    The development of the computer technology brought reform in the field of medical equipment. Originally the mechanical ventilator was an instrument only as for running by pressure and the tool that let you breathe. However, it has a function to assist a measurement (tidal volume, peek pressure, etc.) and to wean from a ventilator. There is a case to use a mechanical ventilator for after a chest surgical operation. After the operation without the complication, it seems that there is not the special administration. However, special respiratory management is necessary in case of chronic respiratory failure and acute lung injury, acute respiratory distress syndrome. Therefore I introduce a method to use a respirator after an operation in our institution.

  3. Mechanical graphene

    NASA Astrophysics Data System (ADS)

    Socolar, Joshua E. S.; Lubensky, Tom C.; Kane, Charles L.

    2017-02-01

    We present a model of a mechanical system with a vibrational mode spectrum identical to the spectrum of electronic excitations in a tight-binding model of graphene. The model consists of point masses connected by elastic couplings, called ‘tri-bonds’, that implement certain three-body interactions, which can be tuned by varying parameters that correspond to the relative hopping amplitudes on the different bond directions in graphene. In the mechanical model, this is accomplished by varying the location of a pivot point that determines the allowed rigid rotations of a single tri-bond. The infinite system constitutes a Maxwell lattice, with the number of degrees of freedom equal to the number of constraints imposed by the tri-bonds. We construct the equilibrium and compatibility matrices and analyze the model’s phase diagram, which includes spectra with Weyl points for some placements of the pivot and topologically polarized phases for others. We then discuss the edge modes and associated states of self stress for strips cut from the periodic lattice. Finally, we suggest a physical realization of the tri-bond, which allows access to parameter regimes not available to experiments on (strained) graphene and may be used to create other two-dimensional mechanical metamaterials with different spectral features.

  4. ELEVATING MECHANISM

    DOEpatents

    Frederick, H.S.; Kinsella, M.A.

    1959-02-24

    An elevator is described, which is arranged for movement both in a horizontal and in a vertical direction so that the elevating mechanism may be employed for servicing equipment at separated points in a plant. In accordance with the present invention, the main elevator chassis is suspended from a monorail. The chassis, in turn supports a vertically moveable carriage, a sub- carriage vertically moveable on the carriage, and a turntable carried by the sub- carriage and moveable through an arc of 90 with the equipment attached thereto. In addition, the chassis supports all the means required to elevate or rotate the equipment.

  5. Fracture Mechanics

    DTIC Science & Technology

    1974-01-31

    2219 -T851 aluminum (fractures at low stresses). The parameter KF is alloy compact specimens 1 2 and demonstrate consistent a function of specimen...Congress of 20. Walker, E. K., "The Effect of Stress Ratio Applied Mechanics, 1924. During Crack Propagation and Fatigue for 2024-T3 and 7015- T6 Aluminum ...34Stress- Corrosion Cracking in 12. Kaufman, J. G., and Nelson, F. G., "More Ti-6A1-4V Titanium Alloy in Nitrogen Tetroxide," on Specimen Size Effect in 2219

  6. Transactivation of ErbB receptors by leptin in the cardiovascular system: mechanisms, consequences and target for therapy.

    PubMed

    Bełtowski, Jerzy; Jazmroz-Wiśniewska, Anna

    2014-01-01

    Many experimental and clinical studies have demonstrated that elevated leptin concentration in patients with obesity/metabolic syndrome contributes to the pathogenesis of cardiovascular disorders including arterial hypertension, atherosclerosis, restenosis after coronary angioplasty and myocardial hypertrophy. Receptor tyrosine kinases belonging to the ErbB family, especially ErbB1 (epidermal growth factor receptor) and ErbB2 are abundantly expressed in the blood vessels and the heart. EGFR is activated not only by its multiple peptide ligands but also by many other factors including angiotensin II, endothelin-1, norepinephrine, thrombin and prorenin; the phenomenon referred to as "transactivation". Augmented EGFR signaling contributes to abnormalities of vascular tone and renal sodium handling as well as vascular remodeling and myocardial hypertrophy through various intracellular mechanisms, in particular extracellular signal-regulated kinases (ERK) and phosphoinositide 3-kinase (PI3K). Recent experimental studies indicate that chronically elevated leptin transactivates the EGFR through the mechanisms requiring reactive oxygen species and cytosolic tyrosine kinase, c-Src. In addition, hyperleptinemia increases ErbB2 activity in the arterial wall. Stimulation of EGFR and ErbB2 downstream signaling pathways such as ERK and PI3K in the vascular wall and the kidney may contribute to the increase in vascular tone, enhanced tubular sodium reabsorption as well as vascular and renal lesions in hyperleptinemic obese subjects.

  7. Intact subepidermal nerve fibers mediate mechanical hypersensitivity via the activation of protein kinase C gamma in spared nerve injury

    PubMed Central

    Ko, Miau-Hwa; Yang, Ming-Ling; Youn, Su-Chung; Tseng, To-Jung

    2016-01-01

    Background Spared nerve injury is an important neuropathic pain model for investigating the role of intact primary afferents in the skin on pain hypersensitivity. However, potential cellular mechanisms remain poorly understood. In phosphoinositide-3 kinase pathway, pyruvate dehydrogenase kinase 1 (PDK1) participates in the regulation of neuronal plasticity for central sensitization. The downstream cascades of PDK1 include: (1) protein kinase C gamma (PKCγ) controls the trafficking and phosphorylation of ionotropic glutamate receptor; (2) protein kinase B (Akt)/the mammalian target of rapamycin (mTOR) signaling is responsible for local protein synthesis. Under these statements, we therefore hypothesized that an increase of PKCγ activation and mTOR-dependent PKCγ synthesis in intact primary afferents after SNI might contribute to pain hypersensitivity. Results The variants of spared nerve injury were performed in Sprague-Dawley rats by transecting any two of the three branches of the sciatic nerve, leaving only one branch intact. Following SNIt (spared tibial branch), mechanical hyperalgesia and mechanical allodynia, but not thermal hyperalgesia, were significantly induced. In the first footpad, normal epidermal innervations were verified by the protein gene product 9.5 (PGP9.5)- and growth-associated protein 43 (GAP43)-immunoreactive (IR) intraepidermal nerve fibers (IENFs) densities. Furthermore, the rapid increases of phospho-PKCγ- and phospho-mTOR-IR subepidermal nerve fibers (SENFs) areas were distinct gathered from the results of PGP9.5-, GAP43-, and neurofilament 200 (NF200)-IR SENFs areas. The efficacy of PKC inhibitor (GF 109203X) or mTOR complex 1 inhibitor (rapamycin) for attenuating mechanical hyperalgesia and mechanical allodynia by intraplantar injection was dose-dependent. Conclusions From results obtained in this study, we strongly recommend that the intact SENFs persistently increase PKCγ activation and mTOR-dependent PKCγ synthesis participate

  8. Mechanisms of insulin resistance in the amygdala: influences on food intake.

    PubMed

    Areias, Maria Fernanda Condes; Prada, Patricia Oliveira

    2015-04-01

    Obesity is increasing worldwide and is triggered, at least in part, by enhanced caloric intake. Food intake is regulated by a complex mechanism involving the hypothalamus and hindbrain circuitries. However, evidences have showing that reward systems are also important in regulating feeding behavior. In this context, amygdala is considered a key extra-hypothalamic area regulating feeding behavior in human beings and rodents. This review focuses on the regulation of food intake by amygdala and the mechanisms of insulin resistance in this brain area. Similar to the hypothalamus the anorexigenic effect of insulin is mediated via PI3K (phosphoinositide 3-kinase)/Akt (protein kinase B) pathway in the amygdala. Insulin decreases NPY (neuropeptide Y) and increases oxytocin mRNA levels in the amygdala. High fat diet and saturated fatty acids induce inflammation, ER (endoplasmic reticulum) stress and the activation of serine kinases such as PKCθ (protein kinase C theta), JNK (c-Jun N-terminal kinase) and IKKβ (inhibitor of nuclear factor kappa-B kinase beta) in the amygdala, which have an important role in insulin resistance in this brain region. Overexpressed PKCθ in the CeA (central nucleus of amygdala) of rats increases weight gain, food intake, insulin resistance and hepatic triglycerides content. The inhibition of ER stress ameliorates insulin action/signaling, increases oxytocin and decreases NPY gene expression in the amygdala of high fat feeding rodents. Those data suggest that PKCθ and ER stress are main mechanisms of insulin resistance in the amygdala of obese rats and play an important role regulating feeding behavior.

  9. INDEXING MECHANISM

    DOEpatents

    Kock, L.J.

    1959-09-22

    A device is presented for loading and unloading fuel elements containing material fissionable by neutrons of thermal energy. The device comprises a combination of mechanical features Including a base, a lever pivotally attached to the base, an Indexing plate on the base parallel to the plane of lever rotation and having a plurality of apertures, the apertures being disposed In rows, each aperture having a keyway, an Index pin movably disposed to the plane of lever rotation and having a plurality of apertures, the apertures being disposed in rows, each aperture having a keyway, an index pin movably disposed on the lever normal to the plane rotation, a key on the pin, a sleeve on the lever spaced from and parallel to the index pin, a pair of pulleys and a cable disposed between them, an open collar rotatably attached to the sleeve and linked to one of the pulleys, a pin extending from the collar, and a bearing movably mounted in the sleeve and having at least two longitudinal grooves in the outside surface.

  10. Windmill mechanism

    SciTech Connect

    Yang, W. H.

    1985-07-23

    An improved windmill mechanism for adjusting the position of a wind responsive assembly in relation to wind is disclosed. The preferred embodiment comprises a fabric sail mounted on the end of an arm which extends from a power output shaft. A torque sensor is disposed on the arm to sense the torque contribution through that arm to the power output shaft in response to wind acting upon the fabric sail on that arm. The position of the fabric sail is adjusted on the arm by means of a control processor which controls a trim-motor and a magnetic brake. The control processor receives the torque signal provided from the sensor and provides adjustment of the fabric sail in accordance with the torque signal. The control operates to position the sail in a running mode over the semi-circular path segment of rotation of the arm which has a leeward component of motion. It is also effective to position the sail to tacking modes at the beginning and ending of the semi-circular path segment and the flutter mode in the middle of that segment which has a windward component of motion. The control is also effective to automatically adjust for changes in the prevailing wind direction. The sails are supported on flexible mast elements which provide automatic feathering of the sails in response to wind gusts and high wind velocities.

  11. Cyberspatial mechanics.

    PubMed

    Bayne, Jay S

    2008-06-01

    In support of a generalization of systems theory, this paper introduces a new approach in modeling complex distributed systems. It offers an analytic framework for describing the behavior of interactive cyberphysical systems (CPSs), which are networked stationary or mobile information systems responsible for the real-time governance of physical processes whose behaviors unfold in cyberspace. The framework is predicated on a cyberspace-time reference model comprising three spatial dimensions plus time. The spatial domains include geospatial, infospatial, and sociospatial references, the latter describing relationships among sovereign enterprises (rational agents) that choose voluntarily to organize and interoperate for individual and mutual benefit through geospatial (physical) and infospatial (logical) transactions. Of particular relevance to CPSs are notions of timeliness and value, particularly as they relate to the real-time governance of physical processes and engagements with other cooperating CPS. Our overarching interest, as with celestial mechanics, is in the formation and evolution of clusters of cyberspatial objects and the federated systems they form.

  12. Mechanical Design

    SciTech Connect

    Shook, Richard; /Marquette U. /SLAC

    2010-08-25

    The particle beam of the SXR (soft x-ray) beam line in the LCLS (Linac Coherent Light Source) has a high intensity in order to penetrate through samples at the atomic level. However, the intensity is so high that many experiments fail because of severe damage. To correct this issue, attenuators are put into the beam line to reduce this intensity to a level suitable for experimentation. Attenuation is defined as 'the gradual loss in intensity of any flux through a medium' by [1]. It is found that Beryllium and Boron Carbide can survive the intensity of the beam. At very thin films, both of these materials work very well as filters for reducing the beam intensity. Using a total of 12 filters, the first 9 being made of Beryllium and the rest made of Boron Carbide, the beam's energy range of photons can be attenuated between 800 eV and 9000 eV. The design of the filters allows attenuation for different beam intensities so that experiments can obtain different intensities from the beam if desired. The step of attenuation varies, but is relative to the thickness of the filter as a power function of 2. A relationship for this is f(n) = x{sub 0}2{sup n} where n is the step of attenuation desired and x{sub 0} is the initial thickness of the material. To allow for this desired variation, a mechanism must be designed within the test chamber. This is visualized using a 3D computer aided design modeling tool known as Solid Edge.

  13. Differential Proteomic Analysis by iTRAQ Reveals the Mechanism of Pyropia haitanensis Responding to High Temperature Stress

    PubMed Central

    Shi, Jianzhi; Chen, Yuting; Xu, Yan; Ji, Dehua; Chen, Changsheng; Xie, Chaotian

    2017-01-01

    Global warming increases sea temperature and leads to high temperature stress, which affects the yield and quality of Pyropia haitanensis. To understand the molecular mechanisms underlying high temperature stress in a high temperature tolerance strain Z-61, the iTRAQ technique was employed to reveal the global proteomic response of Z-61 under different durations of high temperature stress. We identified 151 differentially expressed proteins and classified them into 11 functional categories. The 4 major categories of these are protein synthesis and degradation, photosynthesis, defense response, and energy and carbohydrate metabolism. These findings indicated that photosynthesis, protein synthesis, and secondary metabolism are inhibited by heat to limit damage to a repairable level. As time progresses, misfolded proteins and ROS accumulate and lead to the up-regulation of molecular chaperones, proteases, and antioxidant systems. Furthermore, to cope with cells injured by heat, PCD works to remove them. Additionally, sulfur assimilation and cytoskeletons play essential roles in maintaining cellular and redox homeostasis. These processes are based on signal transduction in the phosphoinositide pathway and multiple ways to supply energy. Conclusively, Z-61 establishes a new steady-state balance of metabolic processes and survives under higher temperature stress. PMID:28303955

  14. Differential Proteomic Analysis by iTRAQ Reveals the Mechanism of Pyropia haitanensis Responding to High Temperature Stress.

    PubMed

    Shi, Jianzhi; Chen, Yuting; Xu, Yan; Ji, Dehua; Chen, Changsheng; Xie, Chaotian

    2017-03-17

    Global warming increases sea temperature and leads to high temperature stress, which affects the yield and quality of Pyropia haitanensis. To understand the molecular mechanisms underlying high temperature stress in a high temperature tolerance strain Z-61, the iTRAQ technique was employed to reveal the global proteomic response of Z-61 under different durations of high temperature stress. We identified 151 differentially expressed proteins and classified them into 11 functional categories. The 4 major categories of these are protein synthesis and degradation, photosynthesis, defense response, and energy and carbohydrate metabolism. These findings indicated that photosynthesis, protein synthesis, and secondary metabolism are inhibited by heat to limit damage to a repairable level. As time progresses, misfolded proteins and ROS accumulate and lead to the up-regulation of molecular chaperones, proteases, and antioxidant systems. Furthermore, to cope with cells injured by heat, PCD works to remove them. Additionally, sulfur assimilation and cytoskeletons play essential roles in maintaining cellular and redox homeostasis. These processes are based on signal transduction in the phosphoinositide pathway and multiple ways to supply energy. Conclusively, Z-61 establishes a new steady-state balance of metabolic processes and survives under higher temperature stress.

  15. Diet controls normal and tumorous germline stem cells via insulin-dependent and -independent mechanisms in Drosophila.

    PubMed

    Hsu, Hwei-Jan; LaFever, Leesa; Drummond-Barbosa, Daniela

    2008-01-15

    The external environment influences stem cells, but this process is poorly understood. Our previous work showed that germline stem cells (GSCs) respond to diet via neural insulin-like peptides (DILPs) that act directly on the germ line to upregulate stem cell division and cyst growth under a protein-rich diet in Drosophila. Here, we report that DILPs specifically control the G2 phase of the GSC cell cycle via phosphoinositide-3 kinase (PI3K) and dFOXO, and that a separate diet mediator regulates the G1 phase. Furthermore, GSC tumors, which escape the normal stem cell regulatory microenvironment, or niche, still respond to diet via both mechanisms, indicating that niche signals are not required for GSCs to sense or respond to diet. Our results document the effects of diet and insulin-like signals on the cell cycle of stem cells within an intact organism and demonstrate that the response to diet requires multiple signals. Moreover, the retained ability of GSC tumors to respond to diet parallels the long known connections between diet, insulin signaling, and cancer risk in humans.

  16. EGF raises cytosolic Ca sup 2+ in A431 and Swiss 3T3 cells by a dual mechanism

    SciTech Connect

    Pandiella, A.; Malgaroli, A.; Meldolesi, J.; Vicentini, L.M. )

    1987-05-01

    The changes in Ca{sup 2+} homeostasis and phosphoinositide hydrolysis induced by EGF were studied in human epidermoid carcinoma A431 cells both when attached to a substratum and after detachment and suspension. The cytosolic Ca{sup 2+} concentration was measured by the conventional fluorimetric technique, using the specific probe, quin2, as well as by a new microscopic technique in which single cells are investigated after loading with another probe, fura-2. EGF applied in the complete, Ca{sup 2+}-containing medium caused a rapid rise in the cytosolic {sup 45}Ca{sup 2+} concentration, that remained elevated for several minutes. In Ca{sup 2+}-free, EGTA-containing medium, part of this response persisted, as revealed by quin2 results in suspended cells and microscopic results with fura-2. These results, as well as additional microscopic fura-2 results in Swiss 3T3 fibroblasts, demonstrate that the Ca{sup 2+} signal elicited by EGF is due to two components: redistribution from an intracellular store and stimulated influx across the plasmalemma. This latter process was not detected in 3T3 cells treated with either PDGF or bombesin. It is therefore suggested that the {sup 45}Ca{sup 2+} influx effect of EGF is under the control of a separate, as yet unidentified mechanism.

  17. Mechanism of Enzymatic Reaction and Protein-Protein Interactions of PLD from a 3D Structural Model

    PubMed Central

    Mahankali, Madhu; Alter, Gerald; Gomez-Cambronero, Julian

    2014-01-01

    The phospholipase D (PLD) superfamily catalyzes the hydrolysis of cell membrane phospholipids generating the key intracellular lipid second messenger phosphatidic acid. However, there is not yet any resolved structure either from a crystallized protein or from NMR of any mammalian PLDs. We propose here a 3D model of the PLD2 by combining homology and ab initio 3 dimensional structural modeling methods, and docking conformation. This model is in agreement with the biochemical and physiological behavior of PLD in cells. For the lipase activity, the N- and C-terminal histidines of the HKD motifs (His 442/His 756) form a catalytic pocket, which accommodates phosphatidylcholine head group (but not phosphatidylethanolamine or phosphatidyl serine). The model explains the mechanism of the reaction catalysis, with nucleophilic attacks of His 442 and water, the latter aided by His 756. Further, the secondary structure regions superimposed with bacterial PLD crystal structure, which indicated an agreement structure model obtained. It also explains protein-protein interactions, such as PLD2-Rac2 transmodulation (with a 1:2 stoichiometry), PLD2 GEF activity on Rac2 that is relevant for actin polymerization and cell migration, and a biding site for phosphoinositides. Since tumor-aggravating properties have been found in mice overexpressing PLD2 enzyme, the 3D model of PLD2 will be also useful, to a large extent, in developing pharmaceuticals to modulate its in vivo activity. PMID:25308783

  18. Mechanism analysis of colorectal cancer according to the microRNA expression profile

    PubMed Central

    Li, Hong; Zhang, Huichao; Lu, Gang; Li, Qingjing; Gu, Jifeng; Song, Yuan; Gao, Shejun; Ding, Yawen

    2016-01-01

    The present study aimed to identify specific microRNAs (miRs) and their predicted target genes to clarify the molecular mechanisms of colorectal cancer (CRC). An miR expression profile (array ID, GSE39833), which consisted of 88 CRC samples with various tumor-necrosis-metastasis stages and 11 healthy controls, was downloaded from the Gene Expression Omnibus database. Subsequently, the differentially expressed miRs and their target genes were screened. Gene Ontology and Kyoto Encyclopedia of Genes and Genomes pathways of target genes were analyzed using the Database for Annotation Visualization and Integrated Discovery. A protein-protein interaction (PPI) network of the target genes was constructed using the Search Tool for the Retrieval of Interacting Genes database. The present study identified a total of 18 differentially expressed miRs (upregulated, 8; downregulated, 10) in the sera of the CRC patients compared with the healthy controls. Of these, 3 upregulated (let-7b, miR-1290 and miR-126) and 2 downregulated (miR-16 and miR-760) differentially expressed miRs and their target genes, including cyclin D1 (CCND1), v-myc avian myelocytomatosis viral oncogene homolog (MYC), phosphoinositide-3-kinase, regulatory subunit 2 (beta) (PIK3R2) and SMAD family member 3 (SMAD3), were significantly enriched in the CRC developmental pathway. All these target genes had higher node degrees in the PPI network. In conclusion, let-7b, miR-1290, miR-126, miR-16 and miR-760 and their target genes, CCND1, MYC, PIK3R2 and SMAD3, may be important in the molecular mechanisms for the progression of CRC. PMID:27698796

  19. Cellular and molecular mechanisms of HGF/Met in the cardiovascular system.

    PubMed

    Gallo, Simona; Sala, Valentina; Gatti, Stefano; Crepaldi, Tiziana

    2015-12-01

    Met tyrosine kinase receptor, also known as c-Met, is the HGF (hepatocyte growth factor) receptor. The HGF/Met pathway has a prominent role in cardiovascular remodelling after tissue injury. The present review provides a synopsis of the cellular and molecular mechanisms underlying the effects of HGF/Met in the heart and blood vessels. In vivo, HGF/Met function is particularly important for the protection of the heart in response to both acute and chronic insults, including ischaemic injury and doxorubicin-induced cardiotoxicity. Accordingly, conditional deletion of Met in cardiomyocytes results in impaired organ defence against oxidative stress. After ischaemic injury, activation of Met provides strong anti-apoptotic stimuli for cardiomyocytes through PI3K (phosphoinositide 3-kinase)/Akt and MAPK (mitogen-activated protein kinase) cascades. Recently, we found that HGF/Met is also important for autophagy regulation in cardiomyocytes via the mTOR (mammalian target of rapamycin) pathway. HGF/Met induces proliferation and migration of endothelial cells through Rac1 (Ras-related C3 botulinum toxin substrate 1) activation. In fibroblasts, HGF/Met antagonizes the actions of TGFβ1 (transforming growth factor β1) and AngII (angiotensin II), thus preventing fibrosis. Moreover, HGF/Met influences the inflammatory response of macrophages and the immune response of dendritic cells, indicating its protective function against atherosclerotic and autoimmune diseases. The HGF/Met axis also plays an important role in regulating self-renewal and myocardial regeneration through the enhancement of cardiac progenitor cells. HGF/Met has beneficial effects against myocardial infarction and endothelial dysfunction: the cellular and molecular mechanisms underlying repair function in the heart and blood vessels are common and include pro-angiogenic, anti-inflammatory and anti-fibrotic actions. Thus administration of HGF or HGF mimetics may represent a promising therapeutic agent for the

  20. FTY720 and two novel butterfly derivatives exert a general anti-inflammatory potential by reducing immune cell adhesion to endothelial cells through activation of S1P(3) and phosphoinositide 3-kinase.

    PubMed

    Imeri, Faik; Blanchard, Olivier; Jenni, Aurelio; Schwalm, Stephanie; Wünsche, Christin; Zivkovic, Aleksandra; Stark, Holger; Pfeilschifter, Josef; Huwiler, Andrea

    2015-12-01

    Sphingosine-1-phosphate (S1P) is a key lipid regulator of a variety of cellular responses including cell proliferation and survival, cell migration, and inflammatory reactions. Here, we investigated the effect of S1P receptor activation on immune cell adhesion to endothelial cells under inflammatory conditions. We show that S1P reduces both tumor necrosis factor (TNF)-α- and lipopolysaccharide (LPS)-stimulated adhesion of Jurkat and U937 cells to an endothelial monolayer. The reducing effect of S1P was reversed by the S1P1+3 antagonist VPC23019 but not by the S1P1 antagonist W146. Additionally, knockdown of S1P3, but not S1P1, by short hairpin RNA (shRNA) abolished the reducing effect of S1P, suggesting the involvement of S1P3. A suppression of immune cell adhesion was also seen with the immunomodulatory drug FTY720 and two novel butterfly derivatives ST-968 and ST-1071. On the molecular level, S1P and all FTY720 derivatives reduced the mRNA expression of LPS- and TNF-α-induced adhesion molecules including ICAM-1, VCAM-1, E-selectin, and CD44 which was reversed by the PI3K inhibitor LY294002, but not by the MEK inhibitor U0126.In summary, our data demonstrate a novel molecular mechanism by which S1P, FTY720, and two novel butterfly derivatives acted anti-inflammatory that is by suppressing gene transcription of various endothelial adhesion molecules and thereby preventing adhesion of immune cells to endothelial cells and subsequent extravasation.

  1. Role of a Novel PH-Kinase Domain Interface in PKB/Akt Regulation: Structural Mechanism for Allosteric Inhibition

    PubMed Central

    Parker, Peter J; Larijani, Banafshé

    2009-01-01

    Protein kinase B (PKB/Akt) belongs to the AGC superfamily of related serine/threonine protein kinases. It is a key regulator downstream of various growth factors and hormones and is involved in malignant transformation and chemo-resistance. Full-length PKB protein has not been crystallised, thus studying the molecular mechanisms that are involved in its regulation in relation to its structure have not been simple. Recently, the dynamics between the inactive and active conformer at the molecular level have been described. The maintenance of PKB's inactive state via the interaction of the PH and kinase domains prevents its activation loop to be phosphorylated by its upstream activator, phosphoinositide-dependent protein kinase-1 (PDK1). By using a multidisciplinary approach including molecular modelling, classical biochemical assays, and Förster resonance energy transfer (FRET)/two-photon fluorescence lifetime imaging microscopy (FLIM), a detailed model depicting the interaction between the different domains of PKB in its inactive conformation was demonstrated. These findings in turn clarified the molecular mechanism of PKB inhibition by AKT inhibitor VIII (a specific allosteric inhibitor) and illustrated at the molecular level its selectivity towards different PKB isoforms. Furthermore, these findings allude to the possible function of the C-terminus in sustaining the inactive conformer of PKB. This study presents essential insights into the quaternary structure of PKB in its inactive conformation. An understanding of PKB structure in relation to its function is critical for elucidating its mode of activation and discovering how to modulate its activity. The molecular mechanism of inhibition of PKB activation by the specific drug AKT inhibitor VIII has critical implications for determining the mechanism of inhibition of other allosteric inhibitors and for opening up opportunities for the design of new generations of modulator drugs. PMID:19166270

  2. (-)-3,5-Dicaffeoyl-muco-quinic acid isolated from Aster scaber contributes to the differentiation of PC12 cells: through tyrosine kinase cascade signaling.

    PubMed

    Hur, Jin Young; Lee, Pyeongjae; Kim, Hocheol; Kang, Insug; Lee, Kang Ro; Kim, Sun Yeou

    2004-01-23

    Aster scaber T. (Asteraceae) has been used in traditional Korean and Chinese medicine to treat bruises, snakebites, headaches, and dizziness. (-)-3,5-Dicaffeoyl-muco-quinic acid (DQ) isolated from A. scaber induced neurite outgrowth in PC12 cells. It has been reported that the activation of the extracellular signal regulated kinase 1/2 (Erk 1/2) and phosphoinositide 3 (PI3) kinase plays a crucial role in the NGF-induced differentiation of PC12 cells. This study showed that the effect of DQ on neurite outgrowth is mediated via the Erk 1/2 and PI3 kinase-dependent pathways like NGF. Furthermore, DQ stimulated the phosphorylation of Trk A. Overall, DQ elicited the differentiation of PC12 cells through Trk A phosphorylation followed by Erk 1/2 and PI3 kinase activation.

  3. Phospholipase A{sub 2} is involved in the mechanism of activation of neutrophils by polychlorinated biphenyls

    SciTech Connect

    Tithof, P.K.; Schiamberg, E.; Ganey, P.E.; Peters-Golden, M.

    1996-01-01

    Aroclor 1242, a mixture of polychlorinated biphenyls (PCBs), activates neutrophils to produce superoxide anion (O{sub 2}{sup {minus}}) by a mechanism that involves phospholipase C-dependent hydrolysis of membrane phosphoinositides; however, subsequent signal transduction mechanisms are unknown. This study determines whether phospholipase A{sub 2}-dependent release of arachidonic acid is involved in PCB-induced O{sub 2}{sup {minus}} production. O{sub 2}{sup {minus}} production was measured in vitro in glycogen-elicited, rat neutrophils in the presence and absence of the inhibitors of phospholipase A{sub 2}: quinacrine, 4-bromophenacyl bromide (BPB), and manoalide. All three agents significantly decreased the amount of O{sub 2}{sup {minus}} detected during stimulation of neutrophils with Aroclor 1242. Similar inhibition occurred when neutrophils were activated with the classical stimuli, formyl-methionyl-leucyl-phenylalanine (fMLP) or phorbol myristate acetate. The effects of BPB and manoalide were not a result of cytotoxicity or other nonspecific effects. Significant release of {sup 3}H-arachidonic acid preceded O{sub 2}{sup {minus}} production in neutrophils stimulated with Aroclor 1242 or fMLP. Manoalide, at a concentration that abolished O{sub 2}{sup {minus}} production, also inhibited the release of {sup 3}H-arachidonate. Aspirin, zileuton, or WEB 2086 did not affect Aroclor 1242-induced O{sub 2}{sup {minus}} production, suggesting that eicosanoids and platelet-activating factor are not needed for neutrophil activation by PCBs. Activation of phos-pholipase A{sub 2} and O{sub 2}{sup {minus}} production do not appear to involve the Ah receptor. These data suggest that Aroclor 1242 stimulates neutrophils to produce O{sub 2}{sup {minus}} by a mechanism that involves phospholipase A{sub 2}-dependent release of arachiodonic acid. 49 refs., 6 figs., 2 tabs.

  4. Distinct Dasatinib-Induced Mechanisms of Apoptotic Response and Exosome Release in Imatinib-Resistant Human Chronic Myeloid Leukemia Cells

    PubMed Central

    Liu, Juan; Zhang, Yujing; Liu, Aichun; Wang, Jinghua; Li, Lianqiao; Chen, Xi; Gao, Xinyu; Xue, Yanming; Zhang, Xiaomin; Liu, Yao

    2016-01-01

    Although dasatinib is effective in most imatinib mesylate (IMT)-resistant chronic myeloid leukemia (CML) patients, the underlying mechanism of its effectiveness in eliminating imatinib-resistant cells is only partially understood. This study investigated the effects of dasatinib on signaling mechanisms driving-resistance in imatinib-resistant CML cell line K562 (K562RIMT). Compared with K562 control cells, exsomal release, the phosphoinositide 3-kinase (PI3K)/protein kinase B (Akt)/ mammalian target of rapamycin (mTOR) signaling and autophagic activity were increased significantly in K562RIMT cells and mTOR-independent beclin-1/Vps34 signaling was shown to be involved in exosomal release in these cells. We found that Notch1 activation-mediated reduction of phosphatase and tensin homolog (PTEN) was responsible for the increased Akt/mTOR activities in K562RIMT cells and treatment with Notch1 γ-secretase inhibitor prevented activation of Akt/mTOR. In addition, suppression of mTOR activity by rapamycin decreased the level of activity of p70S6K, induced upregulation of p53 and caspase 3, and led to increase of apoptosis in K562RIMT cells. Inhibition of autophagy by spautin-1 or beclin-1 knockdown decreased exosomal release, but did not affect apoptosis in K562RIMT cells. In summary, in K562RIMT cells dasatinib promoted apoptosis through downregulation of Akt/mTOR activities, while preventing exosomal release and inhibiting autophagy by downregulating expression of beclin-1 and Vps34. Our findings reveal distinct dasatinib-induced mechanisms of apoptotic response and exosomal release in imatinib-resistant CML cells. PMID:27070592

  5. Antitumor mechanisms of targeting the PDK1 pathway in head and neck cancer.

    PubMed

    Bhola, Neil E; Freilino, Maria L; Joyce, Sonali C; Sen, Malabika; Thomas, Sufi M; Sahu, Anirban; Cassell, Andre; Chen, Ching-Shih; Grandis, Jennifer R

    2012-06-01

    G-protein-coupled receptors (GPCR) activate the epidermal growth factor receptor (EGFR) and mediate EGFR-independent signaling pathways to promote the growth of a variety of cancers, including head and neck squamous cell carcinoma (HNSCC). Identification of the common signaling mechanisms involved in GPCR-induced EGFR-dependent and EGFR-independent processes will facilitate the development of more therapeutic strategies. In this study, we hypothesized that phosphoinositide-dependent kinase 1 (PDK1) contributes to GPCR-EGFR cross-talk and signaling in the absence of EGFR and suggests that inhibition of the PDK1 pathway may be effective in the treatment of HNSCC. The contribution of PDK1 to the EGFR-dependent and EGFR-independent signaling in HNSCC was determined using RNA interference, a kinase-dead mutant, and pharmacologic inhibition. In vivo xenografts studies were also carried out to determine the efficacy of targeting PDK1 alone or in combination with the U.S. Food and Drug Administration-approved EGFR inhibitor cetuximab. PDK1 contributed to both GPCR-induced EGFR activation and cell growth. PDK1 also mediated activation of p70S6K in the absence of EGFR. Blockade of PDK1 with a small molecule inhibitor (AR-12) abrogated HNSCC growth, induced apoptosis, and enhanced the antiproliferative effects of EGFR tyrosine kinase inhibitors in vitro. HNSCC xenografts expressing kinase-dead PDK1 showed increased sensitivity to cetuximab compared with vector-transfected controls. Administration of AR-12 substantially decreased HNSCC tumor growth in vivo. These cumulative results show that PDK1 is a common signaling intermediate in GPCR-EGFR cross-talk and EGFR-independent signaling, and in which targeting the PDK1 pathway may represent a rational therapeutic strategy to enhance clinical responses to EGFR inhibitors in HNSCC.

  6. Reusable Mechanical Pin Puller

    NASA Technical Reports Server (NTRS)

    Ngo, Son; Farley, Rodger; Devine, ED

    1991-01-01

    Reusable mechanical pin puller relatively simple spring-loaded trigger mechanism. Designed to save money and increase safety as substitute for costly and potentially dangerous pyrotechnic pin pullers used in development and testing of deployment mechanisms.

  7. Mechanical systems: A compilation

    NASA Technical Reports Server (NTRS)

    1975-01-01

    A compilation of several mechanized systems is presented. The articles are contained in three sections: robotics, industrial mechanical systems, including several on linear and rotary systems and lastly mechanical control systems, such as brakes and clutches.

  8. Analysis of plasma membrane phosphoinositides from fusogenic carrot cells

    SciTech Connect

    Wheeler, J.J.; Boss, W.F.

    1987-04-01

    Phosphatidylinositol monophosphate (PIP) and phosphatidylinositol bisphosphate (PIP/sub 2/) were found to be associated with the plasma membrane-rich fractions isolated by aqueous polymer two-phase partitioning from fusogenic cells. They represented at least 5% and 0.7% of the total inositol-labeled lipids in the plasma membrane-rich fractions, respectively, and were present in a ratio of about 7:1 (PIP:PIP/sub 2/). In addition, two unidentified inositol-labeled compounds, which together were approximately 3% of the inositol-labeled lipids, were found predominantly in the plasma membrane-rich fractions and migrated between PIP/sub 2/ and PIP. The R/sub f/s of these compounds were approximately 0.31 and 0.34 in the solvent system CHCl/sub 3/:MeOH:15N NH/sub 4/OH:H/sub 2/O (90:90:7:22) using LK5 plates presoaked in 1% potassium oxalate. These compounds incorporated /sup 32/P/sub i/, (/sup 3/H)inositol and were hydrolyzed in mild base. These data suggested that they were glycero-phospholipids. Although the compounds did not comigrate with lysoPIP obtained from bovine brain (R/sub f/ approx. 0.35), when endogenous PIP was hydrolyzed to lysoPIP, the breakdown product migrated in the region of the unidentified inositol lipids.

  9. A molecular determinant of phosphoinositide affinity in mammalian TRPV channels

    PubMed Central

    Velisetty, Phanindra; Borbiro, Istvan; Kasimova, Marina A.; Liu, Luyu; Badheka, Doreen; Carnevale, Vincenzo; Rohacs, Tibor

    2016-01-01

    Phosphatidylinositol 4,5-bisphosphate [PI(4,5)P2] is an important cofactor for ion channels. Affinity for this lipid is a major determinant of channel inhibition by depletion of PI(4,5)P2 upon phospholipase C (PLC) activation. Little is known about what determines PI(4,5)P2 affinity in mammalian ion channels. Here we report that two members of the Transient Receptor Potential Vanilloid (TRPV) ion channel family, TRPV5 and TRPV6 lack a positively charged residue in the TM4-TM5 loop that was shown to interact with PI(4,5)P2 in TRPV1, which shows high affinity for this lipid. When this positively charged residue was introduced to either TRPV6 or TRPV5, they displayed markedly higher affinities for PI(4,5)P2, and were largely resistant to inhibition by PI(4,5)P2 depletion. Furthermore, Ca2+-induced inactivation of TRPV6 was essentially eliminated in the G488R mutant, showing the importance of PLC-mediated PI(4,5)P2 depletion in this process. Computational modeling shows that the introduced positive charge interacts with PI(4,5)P2 in TRPV6. PMID:27291418

  10. Phosphoinositide-Driven Epithelial Proliferation in Prostatic Inflammation

    DTIC Science & Technology

    2008-01-01

    androgen -sensitive prostate cancer cells); and P (PC-3, androgen -insensitive prostate cancer cells). All three responded to IL-1 simulation (concentrations...Background: Among the variety of genetic and environmental factors involved in the development of prostate cancer , chronic prostatic inflammation is...implicated as growth promoters in prostate cancer . In addition, proliferative inflammatory atrophy (PIA), a histologic lesion characterized by

  11. Phosphoinositide-Driven Epithelial Proliferation in Prostatic Inflammation

    DTIC Science & Technology

    2009-04-01

    LNCaP androgen -sensitive prostate cancer cells); and P (PC-3, androgen -insensitive prostate cancer cells). All three responded to IL-1 simulation...INTRODUCTION Background: Among the variety of genetic and environmental factors involved in the development of prostate cancer , chronic prostatic ...been implicated as growth promoters in prostate cancer . In addition, proliferative inflammatory atrophy (PIA), a histologic lesion characterized by

  12. A molecular determinant of phosphoinositide affinity in mammalian TRPV channels

    NASA Astrophysics Data System (ADS)

    Velisetty, Phanindra; Borbiro, Istvan; Kasimova, Marina A.; Liu, Luyu; Badheka, Doreen; Carnevale, Vincenzo; Rohacs, Tibor

    2016-06-01

    Phosphatidylinositol 4,5-bisphosphate [PI(4,5)P2] is an important cofactor for ion channels. Affinity for this lipid is a major determinant of channel inhibition by depletion of PI(4,5)P2 upon phospholipase C (PLC) activation. Little is known about what determines PI(4,5)P2 affinity in mammalian ion channels. Here we report that two members of the Transient Receptor Potential Vanilloid (TRPV) ion channel family, TRPV5 and TRPV6 lack a positively charged residue in the TM4-TM5 loop that was shown to interact with PI(4,5)P2 in TRPV1, which shows high affinity for this lipid. When this positively charged residue was introduced to either TRPV6 or TRPV5, they displayed markedly higher affinities for PI(4,5)P2, and were largely resistant to inhibition by PI(4,5)P2 depletion. Furthermore, Ca2+-induced inactivation of TRPV6 was essentially eliminated in the G488R mutant, showing the importance of PLC-mediated PI(4,5)P2 depletion in this process. Computational modeling shows that the introduced positive charge interacts with PI(4,5)P2 in TRPV6.

  13. The Role of Phosphoinositide 3-Kinase in Breast Cancer

    DTIC Science & Technology

    2010-10-01

    effects in solid tumors. Cancer Res 70, 1164-1172. 15. Raynaud , F.I., Eccles, S.A., Patel, S ., Alix, S ., Box, G., Chuckowree, I., Folkes, A., Gowan...or findings contained in this report are those of the author( s ) and should not be construed as an official Department of the Army position, policy or...ELEMENT NUMBER 6. AUTHOR( S ) Tina Yuan 5d. PROJECT NUMBER 5e. TASK NUMBER 5f. WORK UNIT NUMBER 7. PERFORMING

  14. Pretreatment with light-emitting diode therapy reduces ischemic brain injury in mice through endothelial nitric oxide synthase-dependent mechanisms.

    PubMed

    Lee, Hae In; Lee, Sae-Won; Kim, So Young; Kim, Nam Gyun; Park, Kyoung-Jun; Choi, Byung Tae; Shin, Yong-Il; Shin, Hwa Kyoung

    2017-03-24

    Photostimulation with low-level light emitting diode therapy (LED-T) modulates neurological and psychological functions. The purpose of this study was to evaluate the effects of LED-T pretreatment on the mouse brain after ischemia/reperfusion and to investigate the underlying mechanisms. Ischemia/reperfusion brain injury was induced by middle cerebral artery occlusion. The mice received LED-T twice a day for 2 days prior to cerebral ischemia. After reperfusion, the LED-T group showed significantly smaller infarct and edema volumes, fewer behavioral deficits compared to injured mice that did not receive LED-T and significantly higher cerebral blood flow compared to the vehicle group. We observed lower levels of endothelial nitric oxide synthase (eNOS) phosphorylation in the injured mouse brains, but significantly higher eNOS phosphorylation in LED-T-pretreated mice. The enhanced phospho-eNOS was inhibited by LY294002, indicating that the effects of LED-T on the ischemic brain could be attributed to the upregulation of eNOS phosphorylation through the phosphoinositide 3-kinase (PI3K)/Akt pathway. Moreover, no reductions in infarct or edema volume were observed in LED-T-pretreated eNOS-deficient (eNOS(-/-)) mice. Collectively, we found that pretreatment with LED-T reduced the amount of ischemia-induced brain damage. Importantly, we revealed that these effects were mediated by the stimulation of eNOS phosphorylation via the PI3K/Akt pathway.

  15. Treponema denticola Major Outer Sheath Protein Induces Actin Assembly at Free Barbed Ends by a PIP2-Dependent Uncapping Mechanism in Fibroblasts

    PubMed Central

    Visser, Michelle B.; Koh, Adeline; Glogauer, Michael; Ellen, Richard P.

    2011-01-01

    The major outer sheath protein (Msp) of Treponema denticola perturbs actin dynamics in fibroblasts by inducing actin reorganization, including subcortical actin filament assembly, leading to defective calcium flux, diminished integrin engagement of collagen, and retarded cell migration. Yet, its mechanisms of action are unknown. We challenged Rat-2 fibroblasts with enriched native Msp. Msp activated the small GTPases Rac1, RhoA and Ras, but not Cdc42, yet only Rac1 localized to areas of actin rearrangement. We used Rac1 dominant negative transfection and chemical inhibition of phosphatidylinositol-3 kinase (PI3K) to show that even though Rac1 activation was PI3K-dependent, neither was required for Msp-induced actin rearrangement. Actin free barbed end formation (FBE) by Msp was also PI3K-independent. Immunoblotting experiments showed that gelsolin and CapZ were released from actin filaments, whereas cofilin remained in an inactive state. Msp induced phosphatidylinositol (4,5)-bisphosphate (PIP2) formation through activation of a phosphoinositide 3-phosphatase and its recruitment to areas of actin assembly at the plasma membrane. Using a PIP2 binding peptide or lipid phosphatase inhibitor, PIP2 was shown to be required for Msp-mediated actin uncapping and FBE formation. Evidently, Msp induces actin assembly in fibroblasts by production and recruitment of PIP2 and release of the capping proteins CapZ and gelsolin from actin barbed ends. PMID:21901132

  16. Minocycline ameliorates LPS-induced inflammation in human monocytes by novel mechanisms including LOX-1, Nur77 and LITAF inhibition

    PubMed Central

    Pang, Tao; Wang, Juan; Benicky, Julius; Saavedra, Juan M.

    2012-01-01

    Background Minocycline exhibits anti-inflammatory properties independent of its antibiotic activity, ameliorating inflammatory responses in monocytes and macrophages. However, the mechanisms of minocycline anti-inflammatory effects are only partially understood. Methods Human circulating monocytes were cultured in the presence of lipopolysaccharide (LPS), 50 ng/ml, and minocycline (10–40 µM). Gene expression was determined by RT-PCR, cytokine and prostaglandin E2 (PGE2) release by ELISA, protein expression, phosphorylation and nuclear translocation by Western blotting. Results Minocycline significantly reduced the inflammatory response in LPS-challenged monocytes, decreasing LPS-induced transcription of pro-inflammatory tumor-necrosis factor alpha (TNF-α), interleukin-1 beta, interleukin-6 (IL-6) and cyclooxygenase-2 (COX-2), and the LPS-stimulated TNF-α, IL-6 and PGE2 release. Minocycline inhibited LPS-induced activation of the lectin-like oxidized low density lipoprotein receptor-1 (LOX-1), NF-κB, LPS-induced TNF-α factor (LITAF) and the Nur77 nuclear receptor. Mechanisms involved in the anti-inflammatory effects of minocycline include a reduction of LPS-stimulated p38 mitogen-activated protein kinase (p38 MAPK) activation and stimulation of the phosphoinositide 3-kinase (PI3K)/Akt pathway. Conclusions We provide novel evidence demonstrating that the anti-inflammatory effects of minocycline in human monocytes include, in addition to decreased NF-κB activation, abrogation of the LPS-stimulated LOX-1, LITAF, Nur77 pathways, p38 MAPK inhibition and PI3K/Akt activation. Our results reveal that minocycline inhibits points of convergence of distinct and interacting signaling pathways mediating multiple inflammatory signals which may influence monocyte activation, traffic and recruitment into the brain. General significance Our results in primary human monocytes contribute to explain the profound anti-inflammatory and protective effects of minocycline in

  17. Defense Mechanisms: A Bibliography.

    ERIC Educational Resources Information Center

    Pedrini, D. T.; Pedrini, Bonnie C.

    This bibliography includes studies of defense mechanisms, in general, and studies of multiple mechanisms. Defense mechanisms, briefly and simply defined, are the unconscious ego defendants against unpleasure, threat, or anxiety. Sigmund Freud deserves the clinical credit for studying many mechanisms and introducing them in professional literature.…

  18. Internal pipe attachment mechanism

    DOEpatents

    Bast, R.M.; Chesnut, D.A.; Henning, C.D.; Lennon, J.P.; Pastrnak, J.W.; Smith, J.A.

    1994-12-13

    An attachment mechanism is described for repairing or extending fluid carrying pipes, casings, conduits, etc. utilizing one-way motion of spring tempered fingers to provide a mechanical connection between the attachment mechanism and the pipe. The spring tempered fingers flex to permit insertion into a pipe to a desired insertion depth. The mechanical connection is accomplished by reversing the insertion motion and the mechanical leverage in the fingers forces them outwardly against the inner wall of the pipe. A seal is generated by crushing a sealing assembly by the action of setting the mechanical connection. 6 figures.

  19. Internal pipe attachment mechanism

    DOEpatents

    Bast, Richard M.; Chesnut, Dwayne A.; Henning, Carl D.; Lennon, Joseph P.; Pastrnak, John W.; Smith, Joseph A.

    1994-01-01

    An attachment mechanism for repairing or extending fluid carrying pipes, casings, conduits, etc. utilizing one-way motion of spring tempered fingers to provide a mechanical connection between the attachment mechanism and the pipe. The spring tempered fingers flex to permit insertion into a pipe to a desired insertion depth. The mechanical connection is accomplished by reversing the insertion motion and the mechanical leverage in the fingers forces them outwardly against the inner wall of the pipe. A seal is generated by crushing a sealing assembly by the action of setting the mechanical connection.

  20. Central neural mechanisms governing postural cardiovascular mechanisms

    NASA Technical Reports Server (NTRS)

    Reis, D. J.

    1976-01-01

    The results of the vestibular apparatus and cerebellum in orthostatic reflex control are summarized. Mechanisms within the brain which govern circulation reflexes and the consequences of disturbances in their function are also included.

  1. Mechanical Properties of Polymers.

    ERIC Educational Resources Information Center

    Aklonis, J. J.

    1981-01-01

    Mechanical properties (stress-strain relationships) of polymers are reviewed, taking into account both time and temperature factors. Topics include modulus-temperature behavior of polymers, time dependence, time-temperature correspondence, and mechanical models. (JN)

  2. Ninteenth Aerospace Mechanisms Symposium

    NASA Technical Reports Server (NTRS)

    1985-01-01

    The proceedings of the 19th Aerospace Mechanisms Symposium are reported. Technological areas covered include space lubrication, bearings, aerodynamic devices, spacecraft/Shuttle latches, deployment, positioning, and pointing. Devices for spacecraft docking and manipulator and teleoperator mechanisms are also described.

  3. Missing Mechanism Information

    ERIC Educational Resources Information Center

    Tryon, Warren W.

    2009-01-01

    The first recommendation Kazdin made for advancing the psychotherapy research knowledge base, improving patient care, and reducing the gulf between research and practice was to study the mechanisms of therapeutic change. He noted, "The study of mechanisms of change has received the least attention even though understanding mechanisms may well be…

  4. Basic Engineer Equipment Mechanic.

    ERIC Educational Resources Information Center

    Marine Corps Inst., Washington, DC.

    This student guide, one of a series of correspondence training courses designed to improve the job performance of members of the Marine Corps, deals with the skills needed by basic engineer equipment mechanics. Addressed in the four individual units of the course are the following topics: mechanics and their tools (mechanics, hand tools, and power…

  5. Solar array deployment mechanism

    NASA Technical Reports Server (NTRS)

    Calassa, Mark C.; Kackley, Russell

    1995-01-01

    This paper describes a Solar Array Deployment Mechanism (SADM) used to deploy a rigid solar array panel on a commercial spacecraft. The application required a deployment mechanism design that was not only lightweight, but also could be produced and installed at the lowest possible cost. This paper covers design, test, and analysis of a mechanism that meets these requirements.

  6. Cytosolic phospholipase A2 is coupled to muscarinic receptors in the human astrocytoma cell line 1321N1: characterization of the transducing mechanism.

    PubMed Central

    Bayon, Y; Hernandez, M; Alonso, A; Nuñez, L; Garcia-Sancho, J; Leslie, C; Sanchez Crespo, M; Nieto, M L

    1997-01-01

    The cholinergic agonist carbachol induced the release of arachidonic acid in the 1321N1 astrocytoma cell line, and this was blocked by atropine, suggesting the involvement of muscarinic receptors. To assess the mechanisms of signalling involved in the response to carbachol, a set of compounds characterized by eliciting responses through different mechanisms was tested. A combination of 4beta-phorbol 12beta-myristate 13alpha-acetate and thapsigargin, an inhibitor of endomembrane Ca2+-ATPase that induces a prolonged elevation of cytosolic Ca2+ concentration, induced an optimal response, suggesting at first glance that both protein kinase C (PKC) and Ca2+ mobilization were involved in the response. This was consistent with the observation that carbachol elicited Ca2+ mobilization and PKC-dependent phosphorylation of cytosolic phospholipase A2 (cPLA2; phosphatide sn-2-acylhydrolase, EC 3.1.1.4) as measured by a decrease in electrophoretic mobility. Nevertheless, the release of arachidonate induced by carbachol was unaltered in media containing decreased concentrations of Ca2+ or in the presence of neomycin, a potent inhibitor of phospholipase C which blocks phosphoinositide turnover and Ca2+ mobilization. Guanosine 5'-[gamma-thio]triphosphate added to the cell-free homogenate induced both [3H]arachidonate release and cPLA2 translocation to the cell membrane fraction in the absence of Ca2+, thus suggesting the existence of an alternative mechanism of cPLA2 translocation dependent on G-proteins and independent of Ca2+ mobilization. From the combination of experiments utilizing biochemical and immunological tools the involvement of cPLA2 was ascertained. In summary, these data indicate the existence in the astrocytoma cell line 1321N1 of a pathway involving the cPLA2 which couples the release of arachidonate to the occupancy of receptors for a neurotransmitter, requires PKC activity and G-proteins and might operate in the absence of Ca2+ mobilization. PMID:9173894

  7. Respiratory mechanics in mechanically ventilated patients.

    PubMed

    Hess, Dean R

    2014-11-01

    Respiratory mechanics refers to the expression of lung function through measures of pressure and flow. From these measurements, a variety of derived indices can be determined, such as volume, compliance, resistance, and work of breathing. Plateau pressure is a measure of end-inspiratory distending pressure. It has become increasingly appreciated that end-inspiratory transpulmonary pressure (stress) might be a better indicator of the potential for lung injury than plateau pressure alone. This has resulted in a resurgence of interest in the use of esophageal manometry in mechanically ventilated patients. End-expiratory transpulmonary pressure might also be useful to guide the setting of PEEP to counterbalance the collapsing effects of the chest wall. The shape of the pressure-time curve might also be useful to guide the setting of PEEP (stress index). This has focused interest in the roles of stress and strain to assess the potential for lung injury during mechanical ventilation. This paper covers both basic and advanced respiratory mechanics during mechanical ventilation.

  8. HYDRAULIC SERVO CONTROL MECHANISM

    DOEpatents

    Hussey, R.B.; Gottsche, M.J. Jr.

    1963-09-17

    A hydraulic servo control mechanism of compact construction and low fluid requirements is described. The mechanism consists of a main hydraulic piston, comprising the drive output, which is connected mechanically for feedback purposes to a servo control piston. A control sleeve having control slots for the system encloses the servo piston, which acts to cover or uncover the slots as a means of controlling the operation of the system. This operation permits only a small amount of fluid to regulate the operation of the mechanism, which, as a result, is compact and relatively light. This mechanism is particuiarly adaptable to the drive and control of control rods in nuclear reactors. (auth)

  9. An Adaptable Spectrin/Ankyrin-Based Mechanism for Long-Range Organization of Plasma Membranes in Vertebrate Tissues.

    PubMed

    Bennett, Vann; Lorenzo, Damaris N

    2016-01-01

    Ankyrins are membrane-associated proteins that together with their spectrin partners are responsible for micron-scale organization of vertebrate plasma membranes, including those of erythrocytes, excitable membranes of neurons and heart, lateral membrane domains of columnar epithelial cells, and striated muscle. Ankyrins coordinate functionally related membrane transporters and cell adhesion proteins (15 protein families identified so far) within plasma membrane compartments through independently evolved interactions of intrinsically disordered sequences with a highly conserved peptide-binding groove formed by the ANK repeat solenoid. Ankyrins are coupled to spectrins, which are elongated organelle-sized proteins that form mechanically resilient arrays through cross-linking by specialized actin filaments. In addition to protein interactions, cellular targeting and assembly of spectrin/ankyrin domains also critically depend on palmitoylation of ankyrin-G by aspartate-histidine-histidine-cysteine 5/8 palmitoyltransferases, as well as interaction of beta-2 spectrin with phosphoinositide lipids. These lipid-dependent spectrin/ankyrin domains are not static but are locally dynamic and determine membrane identity through opposing endocytosis of bulk lipids as well as specific proteins. A partnership between spectrin, ankyrin, and cell adhesion molecules first emerged in bilaterians over 500 million years ago. Ankyrin and spectrin may have been recruited to plasma membranes from more ancient roles in organelle transport. The basic bilaterian spectrin-ankyrin toolkit markedly expanded in vertebrates through gene duplications combined with variation in unstructured intramolecular regulatory sequences as well as independent evolution of ankyrin-binding activity by ion transporters involved in action potentials and calcium homeostasis. In addition, giant vertebrate ankyrins with specialized roles in axons acquired new coding sequences by exon shuffling. We speculate that

  10. Mechanical seal assembly

    DOEpatents

    Kotlyar, Oleg M.

    2001-01-01

    An improved mechanical seal assembly is provided for sealing rotating shafts with respect to their shaft housings, wherein the rotating shafts are subject to substantial axial vibrations. The mechanical seal assembly generally includes a rotating sealing ring fixed to the shaft, a non-rotating sealing ring adjacent to and in close contact with the rotating sealing ring for forming an annular seal about the shaft, and a mechanical diode element that applies a biasing force to the non-rotating sealing ring by means of hemispherical joint. The alignment of the mechanical diode with respect to the sealing rings is maintained by a series of linear bearings positioned axially along a desired length of the mechanical diode. Alternative embodiments include mechanical or hydraulic amplification components for amplifying axial displacement of the non-rotating sealing ring and transferring it to the mechanical diode.

  11. Mechanical seal assembly

    DOEpatents

    Kotlyar, Oleg M.

    2002-01-01

    An improved mechanical seal assembly is provided for sealing rotating shafts with respect to their shaft housings, wherein the rotating shafts are subject to substantial axial vibrations. The mechanical seal assembly generally includes a rotating sealing ring fixed to the shaft, a non-rotating sealing ring adjacent to and in close contact with the rotating sealing ring for forming an annular seal about the shaft, and a mechanical diode element that applies a biasing force to the non-rotating sealing ring by means of hemispherical joint. The alignment of the mechanical diode with respect to the sealing rings is maintained by a series of linear bearings positioned axially along a desired length of the mechanical diode. Alternative embodiments include mechanical or hydraulic amplification components for amplifying axial displacement of the non-rotating sealing ring and transfering it to the mechanical diode.

  12. The Antikythera mechanism and the mechanical universe

    NASA Astrophysics Data System (ADS)

    Edmunds, M. G.

    2014-10-01

    How did our view of the Universe develop? By the mid-eighteenth century, a world view had developed of a system constrained by physical laws. These laws, if not entirely understood, showed regularity and could be handled mathematically to provide both explanation and prediction of celestial phenomena. Most of us have at least some hazy idea of the fundamental shift that came through the work of Copernicus, Kepler, Galileo and Newton. The idea of a 'Mechanical Universe' running rather like a clock tends to be associated with these sixteenth- and seventeenth-century pioneers. It remains a useful - and perhaps comforting - analogy. Yet, recent investigations based around the Antikythera Mechanism, an artefact from ancient Greece, reinforce a view that the 'Mechanical' conception has been around for a much longer time - indeed certainly as far back as the third century BC. The extent of mechanical design expertise existing around 100 BC as witnessed by the Antikythera Mechanism comes as a great surprise to most people. It is certainly a very ingenious device, often referred to as 'The World's First Computer' although it is really a sophisticated mechanical astronomical calculator with its functions pre-determined rather than programmable. In this review, the structure and functions of the Antikythera Mechanism are described. The astronomy, cosmology and technology inherent in the machine fit surprisingly well into the context of its contemporary Classical world. A strong claim will be made for the influence of such mechanisms on the development of astronomical and philosophical views, based on literary reference. There is evidence that the technology persisted until its spectacular and rather sudden re-appearance in Western Europe around 1300 AD. From then on it is not hard to chart a path through the astronomical clocks of the sixteenth century to Kepler's aim (expressed in a 1605 letter) to 'show that the heavenly machine is not a kind of divine, live being, but a

  13. Auto Mechanics: Auto Mechanic Service Specialist (Lubrication).

    ERIC Educational Resources Information Center

    Hoover, Virgil

    The unit of individualized learning activities is designed to provide training in the job skill, lubrication, for the prospective auto mechanic service specialist. The materials in the unit are divided into two sections. The developmental, or preliminary phase, for use by the instructor, includes brief descriptions of the job and of the student…

  14. Cell mechanics: a dialogue.

    PubMed

    Tao, Jiaxiang; Li, Yizeng; Vig, Dhruv K; Sun, Sean X

    2017-03-01

    Under the microscope, eukaryotic animal cells can adopt a variety of different shapes and sizes. These cells also move and deform, and the physical mechanisms driving these movements and shape changes are important in fundamental cell biology, tissue mechanics, as well as disease biology. This article reviews some of the basic mechanical concepts in cells, emphasizing continuum mechanics description of cytoskeletal networks and hydrodynamic flows across the cell membrane. We discuss how cells can generate movement and shape changes by controlling mass fluxes at the cell boundary. These mass fluxes can come from polymerization/depolymerization of actin cytoskeleton, as well as osmotic and hydraulic pressure-driven flow of water across the cell membrane. By combining hydraulic pressure control with force balance conditions at the cell surface, we discuss a quantitative mechanism of cell shape and volume control. The broad consequences of this model on cell mechanosensation and tissue mechanics are outlined.

  15. Cell mechanics: a dialogue

    NASA Astrophysics Data System (ADS)

    Tao, Jiaxiang; Li, Yizeng; Vig, Dhruv K.; Sun, Sean X.

    2017-03-01

    Under the microscope, eukaryotic animal cells can adopt a variety of different shapes and sizes. These cells also move and deform, and the physical mechanisms driving these movements and shape changes are important in fundamental cell biology, tissue mechanics, as well as disease biology. This article reviews some of the basic mechanical concepts in cells, emphasizing continuum mechanics description of cytoskeletal networks and hydrodynamic flows across the cell membrane. We discuss how cells can generate movement and shape changes by controlling mass fluxes at the cell boundary. These mass fluxes can come from polymerization/depolymerization of actin cytoskeleton, as well as osmotic and hydraulic pressure-driven flow of water across the cell membrane. By combining hydraulic pressure control with force balance conditions at the cell surface, we discuss a quantitative mechanism of cell shape and volume control. The broad consequences of this model on cell mechanosensation and tissue mechanics are outlined.

  16. Testing Nonassociative Quantum Mechanics.

    PubMed

    Bojowald, Martin; Brahma, Suddhasattwa; Büyükçam, Umut

    2015-11-27

    The familiar concepts of state vectors and operators in quantum mechanics rely on associative products of observables. However, these notions do not apply to some exotic systems such as magnetic monopoles, which have long been known to lead to nonassociative algebras. Their quantum physics has remained obscure. This Letter presents the first derivation of potentially testable physical results in nonassociative quantum mechanics, based on effective potentials. They imply new effects which cannot be mimicked in usual quantum mechanics with standard magnetic fields.

  17. Tunable Mechanical Metamaterials

    DTIC Science & Technology

    2011-03-31

    Mechanical Metamaterials 5a. CONTRACT NUMBER 5b. GRANT NUMBER FA9550-09-1-0709 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR(S) Dr. Siavouche Nemat...creating mechanical metamaterials over a broad range of frequencies. We have shown that it is possible to have stress waves with negative dynamic...scattering can be controlled, and energy can be focused or dissipated. 15. SUBJECT TERMS Mechanical Metamaterials , Tunability 16. SECURITY

  18. Cryogenic Shutter Mechanism

    NASA Technical Reports Server (NTRS)

    Barney, Richard D.; Magner, Thomas J.

    1989-01-01

    Electromagnetic shutter mechanism operates at ambient and cryogenic temperatures to shield optical element, such as mirror, filter, polarizer, beam splitter, or detector, from external light and radiation in cryogenic Dewar equipped with window for optical evaluation. Shutter mechanism in Dewar container alternately shields and exposes optical element as paddle rotates between mechanical stops. Mounted on cold plate of liquid-helium reservoir. Paddle, shaft, and magnet constitutes assembly rotated by electromagnetic field on coil.

  19. Space Mechanisms Technology Workshop

    NASA Technical Reports Server (NTRS)

    Oswald, Fred B. (Editor)

    2002-01-01

    The Mechanical Components Branch at NASA Glenn Research Center hosted a workshop on Tuesday, May 14, 2002, to discuss space mechanisms technology. The theme for this workshop was 'Working in the Cold,' a focus on space mechanisms that must operate at low temperatures. We define 'cold' as below -60C (210 K), such as would be found near the equator of Mars. However, we are also concerned with much colder temperatures such as in permanently dark craters of the Moon (about 40 K).

  20. Mechanics in Material Space

    DTIC Science & Technology

    1992-12-01

    Applied Mechanics Division 0 TEN E L Mechanical Engineering Departet AAR 11 S3 O;76a Stanford, CA 94305-4040 oR I�’ (2DJ6409) L 9. SPONSOR I0:NG...Division of Applied Mechanics Department of Mechanical Engineering Stanford University Stanford CA 94305-4040 3oession F’or OTIS.’ GWAI DTIC TAB 0 Unanno...numerical anaiysis of the sysstem , as well as in providing irnsights into the behavior of the fluid, both mathematically and physically. Restolt obtained

  1. Mechanisms for space applications

    NASA Astrophysics Data System (ADS)

    Meftah, M.; Irbah, A.; Le Letty, R.; Barré, M.; Pasquarella, S.; Bokaie, M.; Bataille, A.; Poiet, G.

    2012-06-01

    All space instruments contain mechanisms or moving mechanical assemblies that must move (sliding, rolling, rotating, or spinning) and their successful operation is usually mission-critical. Generally, mechanisms are not redundant and therefore represent potential single point failure modes. Several space missions have suffered anomalies or failures due to problems in applying space mechanisms technology. Mechanisms require a specific qualification through a dedicated test campaign. This paper covers the design, development, testing, production, and in-flight experience of the PICARD/SODISM mechanisms. PICARD is a space mission dedicated to the study of the Sun. The PICARD Satellite was successfully launched, on June 15, 2010 on a DNEPR launcher from Dombarovskiy Cosmodrome, near Yasny (Russia). SODISM (SOlar Diameter Imager and Surface Mapper) is a 11 cm Ritchey-Chretien imaging telescope, taking solar images at five wavelengths. SODISM uses several mechanisms (a system to unlock the door at the entrance of the instrument, a system to open/closed the door using a stepper motor, two filters wheels using a stepper motor, and a mechanical shutter). For the fine pointing, SODISM uses three piezoelectric devices acting on the primary mirror of the telescope. The success of the mission depends on the robustness of the mechanisms used and their life.

  2. The neuroprotective effects and possible mechanism of action of a methanol extract from Asparagus cochinchinensis: In vitro and in vivo studies.

    PubMed

    Jalsrai, A; Numakawa, T; Kunugi, H; Dieterich, D C; Becker, A

    2016-05-13

    Extracts of Asparagus cochinchinensis (AC) have antitumor, anti-inflammatory, and immunostimulant effects. The neurobiological mechanisms underlying the effects of AC have not been sufficiently explored. Thus we performed in vivo and in vitro experiments to further characterize potential therapeutic effects and to clarify the underlying mechanisms. In the tail suspension test immobility time was significantly reduced after administration of AC which suggests antidepressant-like activity without effect on body core temperature. Moreover, in animals pretreated with AC infarct size after occlusion of the middle cerebral artery was reduced. In vitro experiments confirmed neuroprotective effects. Total saponin obtained from AC significantly inhibited H2O2-induced cell death in cultured cortical neurons. The survival-promoting effect by AC saponins was partially blocked by inhibitors for extracellular signal-regulated kinase (ErK) and phosphoinositide 3-kinase Akt (PI3K/Akt) cascades, both of which are known as survival-promoting signaling molecules. Furthermore, phosphorylation of Scr homology-2 (SH2) domain-containing phosphatase 2 (Shp-2) was induced by AC, and the protective effect of AC was abolished by NSC87877, an inhibitor for Shp-2, suggesting an involvement of Shp-2 mediated intracellular signaling in AC saponins. Moreover, AC-induced activation of pShp-2 and ErK1/2 were blocked by NSC87877 indicating that activation of these signaling pathways was mediated by the Shp-2 signaling pathway. These effects appear to be associated with activation of the Shp-2, ErK1/2 and Akt signaling pathways. Our results suggest that AC has antidepressant-like and neuroprotective (reducing infarct size) effects and that activation of pShp-2 and pErK1/2 pathways may be involved in the effects.

  3. Hippocampal protein expression is differentially affected by chronic paroxetine treatment in adolescent and adult rats: a possible mechanism of “paradoxical” antidepressant responses in young persons

    PubMed Central

    Karanges, Emily A.; Kashem, Mohammed A.; Sarker, Ranjana; Ahmed, Eakhlas U.; Ahmed, Selina; Van Nieuwenhuijzen, Petra S.; Kemp, Andrew H.; McGregor, Iain S.

    2013-01-01

    Selective serotonin reuptake inhibitors (SSRIs) are commonly recognized as the pharmacological treatment of choice for patients with depressive disorders, yet their use in adolescent populations has come under scrutiny following reports of minimal efficacy and an increased risk of suicidal ideation and behavior in this age group. The biological mechanisms underlying these effects are largely unknown. Accordingly, the current study examined changes in hippocampal protein expression following chronic administration of paroxetine in drinking water (target dose = 10 mg/kg for 22 days) to adult and adolescent rats. Results indicated age-specific changes in protein expression, with paroxetine significantly altering expression of 8 proteins in adolescents only and 10 proteins solely in adults. A further 12 proteins were significantly altered in both adolescents and adults. In adults, protein changes were generally suggestive of a neurotrophic and neuroprotective effect of paroxetine, with significant downregulation of apoptotic proteins Galectin 7 and Cathepsin B, and upregulation of the neurotrophic factor Neurogenin 1 and the antioxidant proteins Aldose reductase and Carbonyl reductase 3. Phosphodiesterase 10A, a signaling protein associated with major depressive disorder, was also downregulated (-6.5-fold) in adult rats. Adolescent rats failed to show the neurotrophic and neuroprotective effects observed in adults, instead displaying upregulation of the proapoptotic protein BH3-interacting domain death agonist (4.3-fold). Adolescent protein expression profiles also suggested impaired phosphoinositide signaling (Protein kinase C: -3.1-fold) and altered neurotransmitter transport and release (Syntaxin 7: 5.7-fold; Dynamin 1: -6.9-fold). The results of the present study provide clues as to possible mechanisms underlying the atypical response of human adolescents to paroxetine treatment. PMID:23847536

  4. Ann Wagner, Mechanical Engineer.

    ERIC Educational Resources Information Center

    Bennett, Betsy K.

    1996-01-01

    Presents a profile of Ann Wagner, a mechanical engineer at the Goddard Space Flight Center in Maryland, and her job responsibilities there. Also includes a brief history of mechanical engineering as well as a sample graph and data activity sheet with answers. (AIM)

  5. The Clementine mechanisms

    NASA Technical Reports Server (NTRS)

    Purdy, William; Hurley, Michael

    1995-01-01

    The Clementine spacecraft was developed under the 'faster, better, cheaper' theme. The constraints of a low budget coupled with an unusually tight schedule forced many departures from the normal spacecraft development methods. This paper discusses technical lessons learned about several of the mechanisms on the Clementine spacecraft as well as managerial lessons learned for the entire mechanisms subsystem. A quick overview of the Clementine mission is included; the mission schedule and environment during the mechanisms releases and deployment are highlighted. This paper then describes the entire mechanisms subsystem. The design and test approach and key philosophies for a fast-track program are discussed during the description of the mechanisms subsystem. The mechanism subsystem included a marman clamp separation system, a separation nut separation system, a solar panel deployment and pointing system, a high gain antenna feed deployment system, and two separate sensor cover systems. Each mechanism is briefly discussed. Additional technical discussion is given on the marman clamp design, the sensor cover designs, and the design and testing practices for systems driven by heated actuators (specifically paraffin actuators and frangibolts). All of the other mechanisms were of conventional designs and will receive less emphasis. Lessons learned are discussed throughout the paper as they applied to the systems being discussed. Since there is information on many different systems, this paper is organized so that information on a particular topic can be quickly referenced.

  6. Mechanics: Statics; A Syllabus.

    ERIC Educational Resources Information Center

    Compo, Louis

    The instructor's guide presents material for structuring an engineering fundamentals course covering the basic laws of statistics as part of a mechanical technology program. Detailed behavioral objectives are described for the following five areas of course content: principles of mechanics, two-dimensional equilibrium, equilibrium of internal…

  7. Safety Critical Mechanisms

    NASA Technical Reports Server (NTRS)

    Robertson, Brandan

    2008-01-01

    Spaceflight mechanisms have a reputation for being difficult to develop and operate successfully. This reputation is well earned. Many circumstances conspire to make this so: the environments in which the mechanisms are used are extremely severe, there is usually limited or no maintenance opportunity available during operation due to this environment, the environments are difficult to replicate accurately on the ground, the expense of the mechanism development makes it impractical to build and test many units for long periods of time before use, mechanisms tend to be highly specialized and not prone to interchangeability or off-the-shelf use, they can generate and store a lot of energy, and the nature of mechanisms themselves, as a combination of structures, electronics, etc. designed to accomplish specific dynamic performance, makes them very complex and subject to many unpredictable interactions of many types. In addition to their complexities, mechanism are often counted upon to provide critical vehicle functions that can result in catastrophic events should the functions not be performed. It is for this reason that mechanisms are frequently subjected to special scrutiny in safety processes. However, a failure tolerant approach, along with good design and development practices and detailed design reviews, can be developed to allow such notoriously troublesome mechanisms to be utilized confidently in safety-critical applications.

  8. Engineer Equipment Mechanic.

    ERIC Educational Resources Information Center

    Marine Corps Inst., Washington, DC.

    Developed as part of the Marine Corps Institute (MCI) correspondence training program, this course on engineer equipment mechanics is designed to advance the professional competence of privates through sergeants as equipment mechanics, Military Occupation Specialty 1341, and is adaptable for nonmilitary instruction. Introductory materials include…

  9. Transformable topological mechanical metamaterials

    NASA Astrophysics Data System (ADS)

    Rocklin, D. Zeb; Zhou, Shangnan; Sun, Kai; Mao, Xiaoming

    2017-01-01

    Mechanical metamaterials are engineered materials whose structures give them novel mechanical properties, including negative Poisson's ratios, negative compressibilities and phononic bandgaps. Of particular interest are systems near the point of mechanical instability, which recently have been shown to distribute force and motion in robust ways determined by a nontrivial topological state. Here we discuss the classification of and propose a design principle for mechanical metamaterials that can be easily and reversibly transformed between states with dramatically different mechanical and acoustic properties via a soft strain. Remarkably, despite the low energetic cost of this transition, quantities such as the edge stiffness and speed of sound can change by orders of magnitude. We show that the existence and form of a soft deformation directly determines floppy edge modes and phonon dispersion. Finally, we generalize the soft strain to generate domain structures that allow further tuning of the material.

  10. Mechanical code comparator

    DOEpatents

    Peter, Frank J.; Dalton, Larry J.; Plummer, David W.

    2002-01-01

    A new class of mechanical code comparators is described which have broad potential for application in safety, surety, and security applications. These devices can be implemented as micro-scale electromechanical systems that isolate a secure or otherwise controlled device until an access code is entered. This access code is converted into a series of mechanical inputs to the mechanical code comparator, which compares the access code to a pre-input combination, entered previously into the mechanical code comparator by an operator at the system security control point. These devices provide extremely high levels of robust security. Being totally mechanical in operation, an access control system properly based on such devices cannot be circumvented by software attack alone.

  11. Magnetic capture docking mechanism

    NASA Technical Reports Server (NTRS)

    Howard, Nathan (Inventor); Nguyen, Hai D. (Inventor)

    2010-01-01

    A mechanism uses a magnetic field to dock a satellite to a host vehicle. A docking component of the mechanism residing on the host vehicle has a magnet that is used to induce a coupled magnetic field with a docking component of the mechanism residing on the satellite. An alignment guide axially aligns the docking component of the satellite with the docking component of the host device dependent on the coupled magnetic field. Rotational alignment guides are used to rotationally align the docking component of the satellite with the docking component of the host device. A ball-lock mechanism is used to mechanically secure the docking component of the host vehicle and the docking component of the satellite.

  12. Transformable topological mechanical metamaterials

    PubMed Central

    Rocklin, D. Zeb; Zhou, Shangnan; Sun, Kai; Mao, Xiaoming

    2017-01-01

    Mechanical metamaterials are engineered materials whose structures give them novel mechanical properties, including negative Poisson's ratios, negative compressibilities and phononic bandgaps. Of particular interest are systems near the point of mechanical instability, which recently have been shown to distribute force and motion in robust ways determined by a nontrivial topological state. Here we discuss the classification of and propose a design principle for mechanical metamaterials that can be easily and reversibly transformed between states with dramatically different mechanical and acoustic properties via a soft strain. Remarkably, despite the low energetic cost of this transition, quantities such as the edge stiffness and speed of sound can change by orders of magnitude. We show that the existence and form of a soft deformation directly determines floppy edge modes and phonon dispersion. Finally, we generalize the soft strain to generate domain structures that allow further tuning of the material. PMID:28112155

  13. Mechanism of erbB1 and erbB2 Hetero-Oligomerization

    DTIC Science & Technology

    2004-07-01

    investigated phosphoinositide binding (in quence motif (or related sequences), and many have vitro and in vivo) and subcellular localization , and we been...Oshl p and inositide binding properties with subcellular localization Osh2p PH domains also drove robust Ras recruitment, of isolated yeast PH domains...recognized as modules which target their host proteins to specific subcellular membrane locations through high affinity and stereo-specific recognition of

  14. Mechanics and mechanisms of ultrasonic metal welding

    NASA Astrophysics Data System (ADS)

    de Vries, Edgar

    During ultrasonic welding of sheet metal, normal and shear forces act on the parts to be welded and the weld interface. These forces are a result of the ultrasonic vibrations of the tool, pressed onto the parts to be welded. Furthermore they determine the weld quality and the power that is needed to produce the weld. The main goal in this study is to measure and calculate the tangential forces during ultrasonic metal welding that act on the parts and the weld interface and correlate them to weld quality. In this study a mechanics based model was developed which included a model for the temperature generation during welding and its effect on the mechanical material properties. This model was then used to calculate the interface forces during welding. The model results were in good agreement with the experimental results, which included the measured shear force during welding. With the knowledge of the forces that act at the interface it might be possible to control weld quality (strength) and avoid sonotrode welding (sticking of the sonotrode to the parts). Without a solution to these two problems USMW will never be applicable to large scale automated production use, despite its advantages. In the experiments the influence of part dimensions, friction coefficient, normal force and vibration amplitude on weld quality and sonotrode adhesion were examined. The presented model is capable of predicting and explaining unfavorable welding conditions, therefore making it possible to predetermine weld locations on larger parts or what surface preparation of the parts to be welded would lead to an improved welding result. Furthermore shear force at the anvil measured during welding could be correlated to changing welding conditions. This is a new approach of explaining the process of USMW, because it is based on mechanical considerations. The use of a shear force measuring anvil has the potential to be implemented into welding systems and the shear force would provide an

  15. The orbital mechanics of flight mechanics

    NASA Technical Reports Server (NTRS)

    Dunning, R. S.

    1973-01-01

    A reference handbook on modern dynamic orbit theory is presented. Starting from the most basic inverse-square law, the law of gravity for a sphere is developed, and the motion of point masses under the influence of a sphere is considered. The reentry theory and the orbital theory are discussed along with the relative motion between two bodies in orbit about the same planet. Relative-motion equations, rectangular coordinates, and the mechanics of simple rigid bodies under the influence of a gravity gradient field are also discussed.

  16. Tethered satellite control mechanism

    NASA Technical Reports Server (NTRS)

    Kyrias, G. M.

    1983-01-01

    The tethered satellite control mechanisms consist of four major subsystems. The reel drive mechanism stores the tether. It is motor driven and includes a level wind to uniformly feed the tether to the reel. The lower boom mechanism serves two primary functions: (1) it measures tether length and velocity as the tether runs through the mechanism, and (2) it reads the tether tension at the reel. It also provides change the direction for the tether from the reel to the upper boom mechanism. The deployment boom positions the upper boom mechanism with satellite out of the cargo bay. The deployment function places the 500-kg satellite 20 m away from the Space Shuttle (producing a small natural gravity gradient force), impacts an initial velocity to the satellite for deployment, and allows for satellite docking at a safe distance from the body of the Space Shuttle. The upper boom mechanism (UBM) services three functions: (1) it provides tether control to the satellite as the satellite swings in and out of plane; (2) it reads tether tension in the low range during the early deployment and final retrieval parts of the mission; and (3) it produces additional tether tension at the reel when tether tension to the satellite is in the low range.

  17. Quantum Mechanics From the Cradle?

    ERIC Educational Resources Information Center

    Martin, John L.

    1974-01-01

    States that the major problem in learning quantum mechanics is often the student's ignorance of classical mechanics and that one conceptual hurdle in quantum mechanics is its statistical nature, in contrast to the determinism of classical mechanics. (MLH)

  18. Mechanisms of hypoxemia

    PubMed Central

    Sarkar, Malay; Niranjan, N; Banyal, PK

    2017-01-01

    Oxygen is an essential element for life and without oxygen humans can survive for few minutes only. There should be a balance between oxygen demand and delivery in order to maintain homeostasis within the body. The two main organ systems responsible for oxygen delivery in the body and maintaining homeostasis are respiratory and cardiovascular system. Abnormal function of any of these two would lead to the development of hypoxemia and its detrimental consequences. There are various mechanisms of hypoxemia but ventilation/perfusion mismatch is the most common underlying mechanism of hypoxemia. The present review will focus on definition, various causes, mechanisms, and approach of hypoxemia in human. PMID:28144061

  19. Electronic door locking mechanism

    DOEpatents

    Williams, Gary Lin; Kirby, Patrick Gerald

    1997-01-01

    The invention is a motorized linkage for engaging a thumb piece in a door mechanism. The device has an exterior lock assembly with a small battery cell and combination lock. Proper entry by a user of a security code allows the battery to operate a small motor within the exterior lock assembly. The small motor manipulates a cam-plunger which moves an actuator pin into a thumb piece. The user applies a force on to the thumb piece. This force is transmitted by the thumb piece to a latch engagement mechanism by the actuator pin. The latch engagement mechanism operates the door latch.

  20. Electronic door locking mechanism

    DOEpatents

    Williams, G.L.; Kirby, P.G.

    1997-10-21

    The invention is a motorized linkage for engaging a thumb piece in a door mechanism. The device has an exterior lock assembly with a small battery cell and combination lock. Proper entry by a user of a security code allows the battery to operate a small motor within the exterior lock assembly. The small motor manipulates a cam-plunger which moves an actuator pin into a thumb piece. The user applies a force on to the thumb piece. This force is transmitted by the thumb piece to a latch engagement mechanism by the actuator pin. The latch engagement mechanism operates the door latch. 6 figs.

  1. Mechanisms of hypoxemia.

    PubMed

    Sarkar, Malay; Niranjan, N; Banyal, P K

    2017-01-01

    Oxygen is an essential element for life and without oxygen humans can survive for few minutes only. There should be a balance between oxygen demand and delivery in order to maintain homeostasis within the body. The two main organ systems responsible for oxygen delivery in the body and maintaining homeostasis are respiratory and cardiovascular system. Abnormal function of any of these two would lead to the development of hypoxemia and its detrimental consequences. There are various mechanisms of hypoxemia but ventilation/perfusion mismatch is the most common underlying mechanism of hypoxemia. The present review will focus on definition, various causes, mechanisms, and approach of hypoxemia in human.

  2. Mechanisms of cardiac arrhythmias

    PubMed Central

    Tse, Gary

    2015-01-01

    Blood circulation is the result of the beating of the heart, which provides the mechanical force to pump oxygenated blood to, and deoxygenated blood away from, the peripheral tissues. This depends critically on the preceding electrical activation. Disruptions in the orderly pattern of this propagating cardiac excitation wave can lead to arrhythmias. Understanding of the mechanisms underlying their generation and maintenance requires knowledge of the ionic contributions to the cardiac action potential, which is discussed in the first part of this review. A brief outline of the different classification systems for arrhythmogenesis is then provided, followed by a detailed discussion for each mechanism in turn, highlighting recent advances in this area. PMID:27092186

  3. Is quantum mechanics exact?

    SciTech Connect

    Kapustin, Anton

    2013-06-15

    We formulate physically motivated axioms for a physical theory which for systems with a finite number of degrees of freedom uniquely lead to quantum mechanics as the only nontrivial consistent theory. Complex numbers and the existence of the Planck constant common to all systems arise naturally in this approach. The axioms are divided into two groups covering kinematics and basic measurement theory, respectively. We show that even if the second group of axioms is dropped, there are no deformations of quantum mechanics which preserve the kinematic axioms. Thus, any theory going beyond quantum mechanics must represent a radical departure from the usual a priori assumptions about the laws of nature.

  4. Epigenetic Mechanisms in Asthma

    PubMed Central

    DeVries, Avery

    2016-01-01

    Asthma and allergic diseases are among the most prevalent chronic noncommunicable diseases of childhood, but the underlying pathogenetic mechanisms are poorly understood. Because epigenetic mechanisms link gene regulation to environmental cues and developmental trajectories, their contribution to asthma and allergy pathogenesis is under active investigation. DNA methylation signatures associated with concurrent disease and with the development of asthma during childhood asthma have been identified, but their significance is not easily interpretable. On the other hand, the characterization of early epigenetic predictors of asthma points to a potential role of epigenetic mechanisms in regulating the inception of, and the susceptibility to, this disease. PMID:27027952

  5. Mechanics, Waves and Thermodynamics

    NASA Astrophysics Data System (ADS)

    Ranjan Jain, Sudhir

    2016-05-01

    Figures; Preface; Acknowledgement; 1. Energy, mass, momentum; 2. Kinematics, Newton's laws of motion; 3. Circular motion; 4. The principle of least action; 5. Work and energy; 6. Mechanics of a system of particles; 7. Friction; 8. Impulse and collisions; 9. Central forces; 10. Dimensional analysis; 11. Oscillations; 12. Waves; 13. Sound of music; 14. Fluid mechanics; 15. Water waves; 16. The kinetic theory of gases; 17. Concepts and laws of thermodynamics; 18. Some applications of thermodynamics; 19. Basic ideas of statistical mechanics; Bibliography; Index.

  6. Actin Mechanics and Fragmentation*

    PubMed Central

    De La Cruz, Enrique M.; Gardel, Margaret L.

    2015-01-01

    Cell physiological processes require the regulation and coordination of both mechanical and dynamical properties of the actin cytoskeleton. Here we review recent advances in understanding the mechanical properties and stability of actin filaments and how these properties are manifested at larger (network) length scales. We discuss how forces can influence local biochemical interactions, resulting in the formation of mechanically sensitive dynamic steady states. Understanding the regulation of such force-activated chemistries and dynamic steady states reflects an important challenge for future work that will provide valuable insights as to how the actin cytoskeleton engenders mechanoresponsiveness of living cells. PMID:25957404

  7. Rotary mechanical latch

    DOEpatents

    Spletzer, Barry L.; Martinez, Michael A.; Marron, Lisa C.

    2012-11-13

    A rotary mechanical latch for positive latching and unlatching of a rotary device with a latchable rotating assembly having a latching gear that can be driven to latched and unlatched states by a drive mechanism such as an electric motor. A cam arm affixed to the latching gear interfaces with leading and trailing latch cams affixed to a flange within the drive mechanism. The interaction of the cam arm with leading and trailing latch cams prevents rotation of the rotating assembly by external forces such as those due to vibration or tampering.

  8. Relativity and Quantum Mechanics

    NASA Astrophysics Data System (ADS)

    Brändas, Erkki J.

    2007-12-01

    The old dilemma of quantum mechanics versus the theory of relativity is reconsidered via a first principles relativistically invariant theory. By analytic extension of quantum mechanics into the complex plane one may (i) include dynamical features such as time- and length-scales and (ii) examine the possibility and flexibility of so-called general Jordan block formations. The present viewpoint asks for a new perspective on the age-old problem of quantum mechanics versus the theory of relativity. To bring these ideas together, we will establish the relation with the Klein-Gordon-Dirac relativistic theory and confirm some dynamical features of both the special and the general relativity theory.

  9. Epigenetic Mechanisms in Asthma.

    PubMed

    DeVries, Avery; Vercelli, Donata

    2016-03-01

    Asthma and allergic diseases are among the most prevalent chronic noncommunicable diseases of childhood, but the underlying pathogenetic mechanisms are poorly understood. Because epigenetic mechanisms link gene regulation to environmental cues and developmental trajectories, their contribution to asthma and allergy pathogenesis is under active investigation. DNA methylation signatures associated with concurrent disease and with the development of asthma during childhood asthma have been identified, but their significance is not easily interpretable. On the other hand, the characterization of early epigenetic predictors of asthma points to a potential role of epigenetic mechanisms in regulating the inception of, and the susceptibility to, this disease.

  10. Estimating Respiratory Mechanical Parameters during Mechanical Ventilation

    PubMed Central

    Barbini, Paolo

    1982-01-01

    We propose an algorithm for the estimation of the parameters of the mechanical respiratory system. The algorithm is based on non linear regression analysis with a two-compartment respiratory system model. The model used allows us to take account of the non homogeneous properties of the lungs which may cause uneven distribution of ventilation and thus affect the gas exchange in the lungs. The estimation of the parameters of such a model permits the optimization of the type of ventilation to be used in patients undergoing respiratory treatment. This can be done bearing in mind the effects of the mechanical ventilation on venous return as well as the quality of gas exchange. We have valued the performances of the estimation algorithm which is proposed on the basis of the agreement between the data and the model response, of the stability of the parameter estimates and of the standard deviations of the parameters. The parameter estimation algorithm described does not have recourse to the examination of the impedance spectra and is completely independent of the type of ventilator employed.

  11. GRP1 pleckstrin homology domain: activation parameters and novel search mechanism for rare target lipid.

    PubMed

    Corbin, John A; Dirkx, Ronald A; Falke, Joseph J

    2004-12-28

    Pleckstrin homology (PH) domains play a central role in a wide array of signaling pathways by binding second messenger lipids of the phosphatidylinositol phosphate (PIP) lipid family. A given type of PIP lipid is formed in a specific cellular membrane where it is generally a minor component of the bulk lipid mixture. For example, the signaling lipid PI(3,4,5)P(3) (or PIP(3)) is generated primarily in the inner leaflet of the plasma membrane where it is believed to never exceed 0.02% of the bulk lipid. The present study focuses on the PH domain of the general receptor for phosphoinositides, isoform 1 (GRP1), which regulates the actin cytoskeleton in response to PIP(3) signals at the plasma membrane surface. The study systematically analyzes both the equilibrium and kinetic features of GRP1-PH domain binding to its PIP lipid target on a bilayer surface. Equilibrium binding measurements utilizing protein-to-membrane fluorescence resonance energy transfer (FRET) to detect GRP1-PH domain docking to membrane-bound PIP lipids confirm specific binding to PIP(3). A novel FRET competitive binding measurement developed to quantitate docking affinity yields a K(D) of 50 +/- 10 nM for GRP1-PH domain binding to membrane-bound PIP(3) in a physiological lipid mixture approximating the composition of the plasma membrane inner leaflet. This observed K(D) lies in a suitable range for regulation by physiological PIP(3) signals. Interestingly, the affinity of the interaction decreases at least 12-fold when the background anionic lipids phosphatidylserine (PS) and phosphatidylinositol (PI) are removed from the lipid mixture. Stopped-flow kinetic studies using protein-to-membrane FRET to monitor association and dissociation time courses reveal that this affinity decrease arises from a corresponding decrease in the on-rate for GRP1-PH domain docking with little or no change in the off-rate for domain dissociation from membrane-bound PIP(3). Overall, these findings indicate that the PH

  12. The Mechanisms of Involuntary Attention

    ERIC Educational Resources Information Center

    Prinzmetal, William; Ha, Ruby; Khani, Aniss

    2010-01-01

    We tested 3 mechanisms of involuntary attention: (1) a perceptual enhancement mechanism, (2) a response-decision mechanism, and (3) a serial-search mechanism. Experiment 1 used a response deadline technique to compare the perceptual enhancement and the decision mechanisms and found evidence consistent with the decision mechanism. Experiment 2 used…

  13. Playing at Statistical Mechanics

    ERIC Educational Resources Information Center

    Clark, Paul M.; And Others

    1974-01-01

    Discussed are the applications of counting techniques of a sorting game to distributions and concepts in statistical mechanics. Included are the following distributions: Fermi-Dirac, Bose-Einstein, and most probable. (RH)

  14. Mechanical plasticity of cells

    NASA Astrophysics Data System (ADS)

    Bonakdar, Navid; Gerum, Richard; Kuhn, Michael; Spörrer, Marina; Lippert, Anna; Schneider, Werner; Aifantis, Katerina E.; Fabry, Ben

    2016-10-01

    Under mechanical loading, most living cells show a viscoelastic deformation that follows a power law in time. After removal of the mechanical load, the cell shape recovers only incompletely to its original undeformed configuration. Here, we show that incomplete shape recovery is due to an additive plastic deformation that displays the same power-law dynamics as the fully reversible viscoelastic deformation response. Moreover, the plastic deformation is a constant fraction of the total cell deformation and originates from bond ruptures within the cytoskeleton. A simple extension of the prevailing viscoelastic power-law response theory with a plastic element correctly predicts the cell behaviour under cyclic loading. Our findings show that plastic energy dissipation during cell deformation is tightly linked to elastic cytoskeletal stresses, which suggests the existence of an adaptive mechanism that protects the cell against mechanical damage.

  15. ELECTROMAGNETIC RELEASE MECHANISM

    DOEpatents

    Michelson, C.

    1960-09-13

    An electromagnetic release mechanism is offered that may be used, for example, for supporting a safety rod for a nuclear reactor. The release mechanism is designed to have a large excess holding force and a rapid, uniform, and dependable release. The fast release is accomplished by providing the electromagnet with slotttd polts separated by an insulating potting resin, and by constructing the poles with a ferro-nickel alloy. The combination of these two features materially reduces the eddy current power density whenever the magnetic field changes during a release operation. In addition to these features, the design of the armature is such as to provide ready entrance of fluid into any void that might tend to form during release of the armature. This also improves the release time for the mechanism. The large holding force for the mechanism is accomplished by providing a small, selected, uniform air gap between the inner pole piece and the armature.

  16. Mechanical properties of viruses.

    PubMed

    de Pablo, Pedro J; Mateu, Mauricio G

    2013-01-01

    Structural biology techniques have greatly contributed to unveil the relationships between structure, properties and functions of viruses. In recent years, classic structural approaches are being complemented by single-molecule techniques such as atomic force microscopy and optical tweezers to study physical properties and functions of viral particles that are not accessible to classic structural techniques. Among these features are mechanical properties such as stiffness, intrinsic elasticity, tensile strength and material fatigue. The field of virus mechanics is contributing to materials science by investigating some physical parameters of "soft" biological matter and biological nano-objects. Virus mechanics studies are also starting to unveil the biological implications of physical properties of viruses. Growing evidence indicate that viruses are subjected to internal and external forces, and that they may have adapted to withstand and even use those forces. This chapter describes what is known on the mechanical properties of virus particles, their structural determinants, and possible biological implications, of which several examples are provided.

  17. Boosted Statistical Mechanics

    NASA Astrophysics Data System (ADS)

    Testa, Massimo

    2015-08-01

    Starting with the basic principles of Relativistic Quantum Mechanics, we give a rigorous, but completely elementary proof of the relation between fundamental observables of a statistical system, when measured within two inertial reference frames, related by a Lorentz transformation.

  18. Signaling Mechanisms for Chemotaxis

    PubMed Central

    Wang, Yu; Chen, Chun-Lin; Iijima, Miho

    2011-01-01

    Cells recognize external chemical gradients and translate these environmental cues into amplified intracellular signaling that results in elongated cell shape, actin polymerization toward the leading edge, and movement along the gradient. Mechanisms underlying chemotaxis are conserved evolutionarily from Dictyostelium amoeba to mammalian neutrophils. Recent studies have uncovered several parallel intracellular signaling pathways that crosstalk in chemotaxing cells. Here, we review these signaling mechanisms in Dictyostelium discoideum. PMID:21585354

  19. Mechanical cleaning of graphene

    NASA Astrophysics Data System (ADS)

    Goossens, A. M.; Calado, V. E.; Barreiro, A.; Watanabe, K.; Taniguchi, T.; Vandersypen, L. M. K.

    2012-02-01

    Contamination of graphene due to residues from nanofabrication often introduces background doping and reduces electron mobility. For samples of high electronic quality, post-lithography cleaning treatments are therefore needed. We report that mechanical cleaning based on contact mode atomic force microscopy removes residues and significantly improves the electronic properties. A mechanically cleaned dual-gated bilayer graphene transistor with hexagonal boron nitride dielectrics exhibited a mobility of ˜36 000 cm2/Vs at low temperature.

  20. Phase Field Fracture Mechanics.

    SciTech Connect

    Robertson, Brett Anthony

    2015-11-01

    For this assignment, a newer technique of fracture mechanics using a phase field approach, will be examined and compared with experimental data for a bend test and a tension test. The software being used is Sierra Solid Mechanics, an implicit/explicit finite element code developed at Sandia National Labs in Albuquerque, New Mexico. The bend test experimental data was also obtained at Sandia Labs while the tension test data was found in a report online from Purdue University.

  1. Space Mechanisms Technology Workshop

    NASA Technical Reports Server (NTRS)

    Oswald, Fred B. (Editor)

    2001-01-01

    The Mechanical Components Branch at NASA Glenn Research Center hosted a workshop to discuss the state of drive systems technology needed for space exploration. The Workshop was held Thursday, November 2, 2000. About 70 space mechanisms experts shared their experiences from working in this field and considered technology development that will be needed to support future space exploration in the next 10 to 30 years.

  2. Mechanics in a wheelchair

    NASA Astrophysics Data System (ADS)

    Bernhard, Karin; Bernhard, Jonte

    1999-12-01

    It is not only possible for a student sitting in a wheelchair to participate in many active engagement activities. Using a wheelchair is also of extra value for non-physically disabled students in many experiential mechanics activities since the friction is low and kinesthetic experience involved. A wheelchair can also be used as an engaging "tool" for connecting mechanical concepts and real-world phenomena.

  3. REACTOR CONTROL MECHANISM

    DOEpatents

    Lane, J.A.; Engberg, R.E.; Welch, J.M.

    1959-05-12

    A quick-releasing mechanism is described which may be used to rapidiy drop a device supported from beneath during normal use, such as a safety rod in a nuclear reactor. In accordance with this invention an electrical control signal, such as may be provided by radiation detection or other alarm condition sensing devices, is delivered to an electromagnetic solenoid, the armature of which is coupled to an actuating mechanism. The solenoid is energized when the mechanism is in its upper or cocked position. In such position, the mechanism engages a plurality of retaining balls, forcing them outward into engagement with a shoulder or recess in a corresponding section of a tubular extension on the upheld device. When the control signal to the solenoid suddenly ceases, the armature drops out, allowing the actuating mechanism to move slightly but rapidly under the force of a compressed spring. The weight of the device will urge the balls inward against a beveled portion of the actuating mechanism and away from the engaging section on the tubular extension, thus allowing the upheld device to fall freely under the influence of gravity.

  4. Docking mechanism for spacecraft

    NASA Technical Reports Server (NTRS)

    Lange, Gregory A. (Inventor); Mcmanamen, John P. (Inventor); Schliesing, John A. (Inventor)

    1989-01-01

    A system is presented for docking a space vehicle to a space station where a connecting tunnel for in-flight transfer of personnel is required. Cooperable coupling mechanisms include docking rings on the space vehicle and space station. The space station is provided with a tunnel structure, a retraction mechanism, and a docking ring. The vehicle coupling mechanism is designed to capture the station coupling mechanism, arrest relative spacecraft motions while limiting loads to acceptable levels, and then realign the spacecraft for final docking and tunnel interconnection. The docking ring of the space vehicle coupling mechanism is supported by linear attentuator actuator devices, each of which is controlled by a control system which receives loading information signals and attenuator stroke information signals from each device and supplies output signals for controlling its linear actuation to attenuate impact loading or to realign the spacecraft for final docking and tunnel interconnection. The retraction mechanism is used to draw the spacecraft together after initial contact and coupling. Tunnel trunnions, cooperative with the latches on the space vehicle constitute the primary structural tie between the spacecraft in final docked configuration.

  5. Lung Parenchymal Mechanics

    PubMed Central

    Suki, Béla; Stamenovic, Dimitrije; Hubmayr, Rolf

    2014-01-01

    The lung parenchyma comprises a large number of thin-walled alveoli, forming an enormous surface area, which serves to maintain proper gas exchange. The alveoli are held open by the transpulmonary pressure, or prestress, which is balanced by tissues forces and alveolar surface film forces. Gas exchange efficiency is thus inextricably linked to three fundamental features of the lung: parenchymal architecture, prestress, and the mechanical properties of the parenchyma. The prestress is a key determinant of lung deformability that influences many phenomena including local ventilation, regional blood flow, tissue stiffness, smooth muscle contractility, and alveolar stability. The main pathway for stress transmission is through the extracellular matrix. Thus, the mechanical properties of the matrix play a key role both in lung function and biology. These mechanical properties in turn are determined by the constituents of the tissue, including elastin, collagen, and proteoglycans. In addition, the macroscopic mechanical properties are also influenced by the surface tension and, to some extent, the contractile state of the adherent cells. This article focuses on the biomechanical properties of the main constituents of the parenchyma in the presence of prestress and how these properties define normal function or change in disease. An integrated view of lung mechanics is presented and the utility of parenchymal mechanics at the bedside as well as its possible future role in lung physiology and medicine are discussed. PMID:23733644

  6. Lung parenchymal mechanics.

    PubMed

    Suki, Béla; Stamenović, Dimitrije; Hubmayr, Rolf

    2011-07-01

    The lung parenchyma comprises a large number of thin-walled alveoli, forming an enormous surface area, which serves to maintain proper gas exchange. The alveoli are held open by the transpulmonary pressure, or prestress, which is balanced by tissues forces and alveolar surface film forces. Gas exchange efficiency is thus inextricably linked to three fundamental features of the lung: parenchymal architecture, prestress, and the mechanical properties of the parenchyma. The prestress is a key determinant of lung deformability that influences many phenomena including local ventilation, regional blood flow, tissue stiffness, smooth muscle contractility, and alveolar stability. The main pathway for stress transmission is through the extracellular matrix. Thus, the mechanical properties of the matrix play a key role both in lung function and biology. These mechanical properties in turn are determined by the constituents of the tissue, including elastin, collagen, and proteoglycans. In addition, the macroscopic mechanical properties are also influenced by the surface tension and, to some extent, the contractile state of the adherent cells. This chapter focuses on the biomechanical properties of the main constituents of the parenchyma in the presence of prestress and how these properties define normal function or change in disease. An integrated view of lung mechanics is presented and the utility of parenchymal mechanics at the bedside as well as its possible future role in lung physiology and medicine are discussed.

  7. Mechanics of the Orbita

    PubMed Central

    Demer, Joseph L.

    2008-01-01

    The oculomotor periphery was formerly regarded as a simple mechanism executing complex behaviors explicitly specified by innervation. It is now recognized that several fundamental aspects of ocular motility are properties of the extraocular muscles (EOMs) and their associated connective tissue pulleys. The Active Pulley Hypothesis proposes that rectus and inferior oblique EOMs have connective tissue soft pulleys that are actively controlled by the direction action of the EOMs’ orbital layers. Functional imaging and histology have suggested that the rectus pulley array constitutes an inner mechanism, similar to a gimbal, that is rotated torsionally around the orbital axis by an outer mechanism driven by the oblique EOMs. This arrangement may mechanically account for several commutative aspects of ocular motor control, including Listing’s law, yet permits implementation of noncommutative motility as during the vestibulo-ocular reflex. Recent human behavioral studies, as well neurophysiology in monkeys, are consistent with mechanical rather than central neural implementation of Listing’s law. Pathology of the pulley system is associated with predictable patterns of strabismus that are surgically treatable when the pathologic anatomy is characterized by imaging. This mechanical determination may imply limited possibilities for neural adaptation to some ocular motor pathologies, but indicates greater potential for surgical treatments. PMID:17314483

  8. Wear and Tear - Mechanical

    NASA Technical Reports Server (NTRS)

    Swanson, Theodore

    2008-01-01

    The focus of this chapter is on the long term wear and tear, or aging, of the mechanical subsystem of a spacecraft. The mechanical subsystem is herein considered to be the primary support structure (as in a skeleton or exoskeleton) upon which all other spacecraft systems rest, and the associated mechanisms. Mechanisms are devices which have som