Science.gov

Sample records for phospholipid model membranes

  1. Biophysical studies of cholesterol in unsaturated phospholipid model membranes

    NASA Astrophysics Data System (ADS)

    Williams, Justin Adam

    Cellular membranes contain a staggering diversity of lipids. The lipids are heterogeneously distributed to create regions, or domains, whose physical properties differ from the bulk membrane and play an essential role in modulating the function of resident proteins. Many basic questions pertaining to the formation of these lateral assemblies remain. This research employs model membranes of well-defined composition to focus on the potential role of polyunsaturated fatty acids (PUFAs) and their interaction with cholesterol (chol) in restructuring the membrane environment. Omega-3 (n-3) PUFAs are the main bioactive components of fish oil, whose consumption alleviates a variety of health problems by a molecular mechanism that is unclear. We hypothesize that the incorporation of PUFAs into membrane lipids and the effect they have on molecular organization may be, in part, responsible. Chol is a major constituent in the plasma membrane of mammals. It determines the arrangement and collective properties of neighboring lipids, driving the formation of domains via differential affinity for different lipids. The molecular organization of 1-[2H31]palmitoyl-2-eicosapentaenoylphosphatidylcholine (PEPC-d31) and 1-[2H31]palmitoyl-2-docosahexaenoylphosphatidylcholine (PDPC-d31) in membranes with sphingomyelin (SM) and chol (1:1:1 mol) was compared by solid-state 2H NMR spectroscopy. Eicosapentaenoic (EPA) and docosahexaenoic (DHA) acids are the two major n-3 PUFAs found in fish oil, while PEPC-d31 and PDPC-d31 are phospholipids containing the respective PUFAs at the sn-2 position and a perdeuterated palmitic acid at the sn-1 position. Analysis of spectra recorded as a function of temperature indicates that in both cases, formation of PUFA-rich (less ordered) and SM-rich (more ordered) domains occurred. A surprisingly substantial proportion of PUFA was found to infiltrate the more ordered domain. There was almost twice as much DHA (65%) as EPA (30%). The implication is that n-3

  2. Acidic phospholipid bicelles: a versatile model membrane system.

    PubMed Central

    Struppe, J; Whiles, J A; Vold, R R

    2000-01-01

    With the aim of establishing acidic bicellar solutions as a useful membrane model system, we have used deuterium NMR spectroscopy to investigate the properties of dimyristoyl/dihexanoylphosphatidylcholine (DMPC/DHPC) bicelles containing 25% (w/w in H(2)O) of either dimyristoylphosphatidylserine (DMPS) or dimyristoylphosphatidylglycerol (DMPG). The addition of the acidic lipid component to this lyotropic liquid crystalline system reduces its range of stability because of poor miscibility of the two dimyristoylated phospholipids. Compared to the neutral bicelles, which are stable at pH 4 to pH 7, acidic bicelles are stable only from pH 5.5 to pH 7. Solid-state deuterium NMR analysis of d(54)-DMPC showed similar ordering in neutral and acidic bicelles. Fully deuterated DMPS or DMPG is ordered in a way similar to that of DMPC. Study of the binding of the myristoylated N-terminal 14-residue peptide mu-GSSKSKPKDPSQRR from pp60(nu-src) to both neutral and acidic bicelles shows the utility of these novel membrane mimetics. PMID:10620292

  3. A New PAMPA Model Proposed on the Basis of a Synthetic Phospholipid Membrane

    PubMed Central

    Yu, Hui; Wang, Qi; Sun, Ying; Shen, Ming; Li, He; Duan, Yourong

    2015-01-01

    The purpose of this work was to investigate the synthetic phospholipid dependence of permeability measured by parallel artificial membrane permeability assay (PAMPA) method. Three phospholipids with hydrophobic groups of different lengths and phosphorylcholine as the hydrophilic group were concisely synthesized. Ten model drug molecules were selected because of their distinct human fraction absorbed (%FA) values and various pKa characteristics. In vitro drug permeation experiments were designed to determine the effect of the incubation time (4–20 h), pH gradient (4.6–9.32) and carbon chain length (8, 10, 12) on the drug permeability through the synthetic phospholipid membrane in the PAMPA system. The results showed that intensive and significant synthetic phospholipids dependence of permeability influenced by the length of lipid’s hydrophobic carbon chain. The effective permeability constant (Pe) of each drug increased rapidly with time, then decreased slightly after reaching the maximum; the pH gradient changed the drug permeability according to the pH-partition hypothesis for drugs with diverse pKa values; and longer hydrophobic chains in the synthetic phospholipid membrane improved the drug permeability, as observed for all test drugs at almost all incubation time points. This newly proposed PAMPA model considered the synthetic phospholipid membrane and showed good Pe-%FA correlation for the passive transport of drugs, making it a helpful supplementary method for PAMPA systems. PMID:25647086

  4. Phospholipid interactions in model membrane systems. II. Theory.

    PubMed Central

    Stigter, D; Mingins, J; Dill, K A

    1992-01-01

    We describe statistical thermodynamic theory for the lateral interactions among phospholipid head groups in monolayers and bilayers. Extensive monolayer experiments show that at low surface densities, PC head groups have strong lateral repulsions which increase considerably with temperature, whereas PE interactions are much weaker and have no significant temperature dependence (see the preceding paper). In previous work, we showed that the second virial coefficients for these interactions can be explained by: (a) steric repulsions among the head groups, and (b) a tilting of the P-N+ dipole of PC so that the N+ end enters the oil phase, to an extent that increases with temperature. It was also predicted that PE interactions should be weaker and less temperature dependent because the N+ terminal of the PE head-group is hydrophilic, hence, it is tilted into the water phase, so dipolar contributions among PE's are negligible due to the high dielectric constant of water. In the present work, we broaden the theory to treat phospholipid interactions up to higher lateral surface densities. We generalize the Hill interfacial virial expansion to account for dipoles and to include the third virial term. We show that to account for the large third virial coefficients for both PC and PE requires that the short range lateral attractions among the head groups also be taken into account. In addition, the third virial coefficient includes fluctuating head group dipoles, computed by Monte Carlo integration assuming pairwise additivity of the instantaneous pair potentials. We find that because the dipole fluctuations are correlated, the average triplet interactions do not equal the sum of the average dipole pair potentials. This is important for predicting, the magnitude and the independence of temperature of the third virial coefficients for PC. The consistency of the theory with data of both the second and the third virial coefficients extends the applicability of the head

  5. Phospholipid Diffusion Coefficients of Cushioned Model Membranes determined via Z-Scan Fluorescence Correlation Spectroscopy

    PubMed Central

    Sterling, Sarah M.; Allgeyer, Edward S.; Fick, Jörg; Prudovsky, Igor; Mason, Michael D.; Neivandt, David J.

    2013-01-01

    Model cellular membranes enable the study of biological processes in a controlled environment and reduce the traditional challenges associated with live or fixed cell studies. However, model membrane systems based on the air/water or oil/solution interface do not allow for incorporation of transmembrane proteins, or for the study of protein transport mechanisms. Conversely, a phospholipid bilayer deposited via the Langmuir-Blodgett/Langmuir Schaefer method on a hydrogel layer is potentially an effective mimic of the cross-section of a biological membrane, and facilitates both protein incorporation and transport studies. Prior to application, however, such membranes must be fully characterized, particularly with respect to the phospholipid bilayer phase transition temperature. Here we present a detailed characterization of the phase transition temperature of the inner and outer leaflets of a chitosan supported model membrane system. Specifically, the lateral diffusion coefficient of each individual leaflet has been determined as a function of temperature. Measurements were performed utilizing z-scan fluorescence correlation spectroscopy (FCS), a technique that yields calibration-free diffusion information. Analysis via the method of Wawrezinieck and coworkers, revealed that phospholipid diffusion changes from raft-like to free diffusion as the temperature is increased; an insight into the dynamic behavior of hydrogel supported membranes not previously reported. PMID:23705855

  6. Phospholipid diffusion coefficients of cushioned model membranes determined via z-scan fluorescence correlation spectroscopy.

    PubMed

    Sterling, Sarah M; Allgeyer, Edward S; Fick, Jörg; Prudovsky, Igor; Mason, Michael D; Neivandt, David J

    2013-06-25

    Model cellular membranes enable the study of biological processes in a controlled environment and reduce the traditional challenges associated with live or fixed cell studies. However, model membrane systems based on the air/water or oil/solution interface do not allow for incorporation of transmembrane proteins or for the study of protein transport mechanisms. Conversely, a phospholipid bilayer deposited via the Langmuir-Blodgett/Langmuir-Schaefer method on a hydrogel layer is potentially an effective mimic of the cross section of a biological membrane and facilitates both protein incorporation and transport studies. Prior to application, however, such membranes must be fully characterized, particularly with respect to the phospholipid bilayer phase transition temperature. Here we present a detailed characterization of the phase transition temperature of the inner and outer leaflets of a chitosan supported model membrane system. Specifically, the lateral diffusion coefficient of each individual leaflet has been determined as a function of temperature. Measurements were performed utilizing z-scan fluorescence correlation spectroscopy (FCS), a technique that yields calibration-free diffusion information. Analysis via the method of Wawrezinieck and co-workers revealed that phospholipid diffusion changes from raftlike to free diffusion as the temperature is increased-an insight into the dynamic behavior of hydrogel supported membranes not previously reported.

  7. Studies on the interactions of bisphenols with anionic phospholipids of decomposer membranes in model systems.

    PubMed

    Broniatowski, Marcin; Sobolewska, Katarzyna; Flasiński, Michał; Wydro, Paweł

    2016-04-01

    Bisphenol A (BPA) and other bisphenols constitute a class of organic pollutants, which because of their estrogenic properties, low dose activity and bioaccumulation pose considerable risk for public health as well as for the environment. Accumulated in the sediment bisphenols can endanger the decomposers' populations being incorporated into their cellular membranes; however, the mechanism of their membrane activity is unknown. Therefore, to study these phenomena we applied anionic phospholipid Langmuir monolayers as simple but versatile models of decomposers biomembranes. Phosphatidylglycerols and cardiolipins are not only the main components of bacterial membranes but also of crucial importance in mitochondrial and thylakoid membranes in eukaryotic cells. In our investigations we applied five compounds of the bisphenol class most commonly detected in the environment. To characterize the bisphenols-model membrane interactions we applied multiple mutually independent methods of physical chemistry; namely: the Langmuir monolayer technique, surface potential measurements, Brewster angle microscopy for the visualization of the monolayers' texture and grazing incidence X-ray diffraction for the discussion of the phospholipids packing within the monolayers. Our studies indicated that all the investigated bisphenols interact with the model membrane, but the strength of the interactions is dependent on the bisphenol structure and hydrophobicity and the fluidity of the model membranes. We proved that bisphenol S often treated as the least toxic BPA analog can also be incorporated to the model membranes changing their structure and fluidity.

  8. Effects of structure on the interactions between five natural antimicrobial compounds and phospholipids of bacterial cell membrane on model monolayers

    USDA-ARS?s Scientific Manuscript database

    Monolayers composed of bacterial phospholipids were used as model membranes to study interactions of naturally occurring phenolic compounds 2,5-dihydroxybenzaldehyde, 2-hydroxy-5-methoxybenzaldehyde and the plant essential oil compounds carvacrol, cinnamaldehyde, and geraniol, previously found to be...

  9. Number of free hydroxyl groups on bile acid phospholipids determines the fluidity and hydration of model membranes.

    PubMed

    Sreekanth, Vedagopuram; Bajaj, Avinash

    2013-10-10

    Interactions of synthetic phospholipids with model membranes determines the drug release capabilities of phospholipid vesicles at diseased sites. We performed 1,6-diphenyl-1,3,5-hexatriene (DPH)-based fluorescence anisotropy, Laurdan-based membrane hydration, and differential scanning calorimetry (DSC) studies to cognize the interactions of three bile acid phospholipids, lithocholic acid-phosphocholine (LCA-PC), deoxycholic acid-phosphocholine (DCA-PC), and cholic acid-phosphocholine (CA-PC) with model membranes. These studies revealed that bile acid phospholipids increases membrane fluidity in DCA-PC > CA-PC > LCA-PC order, indicating that induction of membrane fluidity is contingent on the number and positioning of free hydroxyl groups on bile acids. Similarly, DCA-PC causes maximum membrane perturbations due to the presence of a free hydroxyl group, whereas LCA-PC induces gel phase in membranes due to hydrophobic bile acid acyl chain interactions. These DCA-PC-induced membrane perturbations induce a drastic decrease in phase transition temperature (Tm) as determined by calorimetric studies, whereas doping of LCA-PC causes phase transition broadening without change in Tm. Doping of CA-PC induces membrane perturbations and membrane hydration like DCA-PC but sharpening of phase transition at higher doping suggests self-association of CA-PC molecules. Therefore these differential mode of interactions between bile acid phospholipids and model membranes would help in the future for their use in drug delivery.

  10. Design, synthesis, and physico-chemical interactions of bile acid derived dimeric phospholipid amphiphiles with model membranes.

    PubMed

    Kumar, Sandeep; Bhargava, Priyanshu; Sreekanth, Vedagopuram; Bajaj, Avinash

    2015-06-15

    Understanding of amphiphile-membrane interactions is crucial in design and development of novel amphiphiles for drug delivery, gene therapy, and biomedical applications. Structure and physico-chemical properties of amphiphiles determine their interactions with biomembranes thereby influencing their drug delivery efficacies. Here, we unravel the interactions of bile acid derived dimeric phospholipid amphiphiles with model membranes using Laurdan-based hydration, DPH-based membrane fluidity, and differential scanning calorimetry studies. We synthesized three dimeric bile acid amphiphiles where lithocholic acid, deoxycholic acid, and cholic acid are conjugated to cholic acid phospholipid using click chemistry. Interactions of these dimeric amphiphiles with model membranes showed that these amphiphiles form different structural assemblies and molecular packing in model membranes depending on the number and position of free hydroxyl groups on bile acids. We discovered that cholic acid-cholic acid dimeric phospholipid form self-assembled aggregates in model membranes without changing membrane fluidity; whereas cholic acid-deoxycholic acid derived amphiphile induces membranes fluidity and hydration of model membranes. Copyright © 2015 Elsevier Inc. All rights reserved.

  11. Conformations of double-headed, triple-tailed phospholipid oxidation lipid products in model membranes.

    PubMed

    Hermetter, Albin; Kopec, Wojciech; Khandelia, Himanshu

    2013-08-01

    Products of phospholipid oxidation can produce lipids with a carbonyl moiety at the end of a shortened lipid acyl tail, such as 1-palmitoyl-2-(5-oxovaleroyl)-sn-glycero-3-phosphocholine (POVPC). The carbonyl tail of POVPC can covalently bond to the free tertiary amine of a phosphatidylethanolamine lipid in a Schiff base reaction to form a conjugate lipid (SCH) with two head groups, and three acyl tails. We investigate the conformations and properties of this unique class of adduct lipids using molecular dynamics simulations, and show that their insertion into lipid bilayers of POPC increases the average cross-sectional area per lipid and decreases bilayer thickness. Significant increase in acyl tail fluidity is only observed at 25% SCH concentration. The SCH occupies a larger area per lipid than expected for a lipid with three acyl tails, owing to the interfacial location of the long spacer between the two head groups of the SCH. Schiff base formation of lipids can alter the concentration, homeostasis and localizations of phosphatidylserine and phosphatidylethanol lipids in membranes, and can therefore influence several membrane-associated processes including fusion and budding. The current work provides the first detailed structural model of this unique new class of lipids that may have important roles to play in modulating membrane properties and cell physiology. Copyright © 2013 Elsevier B.V. All rights reserved.

  12. Mechanics and dynamics of triglyceride-phospholipid model membranes: Implications for cellular properties and function.

    PubMed

    Pakkanen, Kirsi I; Duelund, Lars; Qvortrup, Klaus; Pedersen, Jan S; Ipsen, John H

    2011-08-01

    We demonstrate here that triolein alters the mechanical properties of phospholipid membranes and induces extraordinary conformational dynamics. Triolein containing membranes exhibit fluctuations up to size range of 100μm and with the help of these are e.g. able to squeeze through narrow passages between neighbouring structures. Triolein-phosphatidylcholine membranes were found to have bending rigidity significantly lower than that of corresponding pure phosphatidylcholine membrane. Moreover, the triolein containing membranes were found to be reluctant to fuse, which is in good accordance with larger lamellar distances observed in the TOPOPC membranes. These findings suggest repulsion between adjacent membranes. We provide a comprehensive discussion on the possible explanations for the observed mechanics and dynamics in the TOPOPC system and on their potential cellular implications. Copyright © 2011 Elsevier B.V. All rights reserved.

  13. A Microscopic View of Phospholipid Insertion into Biological Membranes

    PubMed Central

    Vermaas, Josh V.; Tajkhorshid, Emad

    2014-01-01

    Understanding the process of membrane insertion is an essential step in developing a detailed mechanism, e.g., for peripheral membrane protein association and membrane fusion. The Highly Mobile Membrane Mimetic (HMMM) has been used to accelerate the membrane association and binding of peripheral membrane proteins in simulations by increasing the lateral diffusion of phospholipid headgroups while retaining an atomistic description of the interface. Through a comparative study, we assess the difference in insertion rate of a free phospholipid into an HMMM as well as into a conventional phospholipid bilayer, and develop a detailed mechanistic model of free phospholipid insertion into biological membranes. The mechanistic insertion model shows that successful, irreversible association of the free phospholipid to the membrane interface, which results in its insertion, is the rate limiting step. Association is followed by independent, sequential insertion of the acyl tails of the free phospholipid into the membrane, with splayed acyl tail intermediates. Use of the HMMM is found to replicate the same intermediate insertion states as in the full phospholipid bilayer, however it accelerates overall insertion by approximately a factor of three, with the probability of successful association of phospholipid to the membrane being significantly enhanced. PMID:24313792

  14. Supported phospholipid/alkanethiol biomimetic membranes: insulating properties.

    PubMed Central

    Plant, A L; Gueguetchkeri, M; Yap, W

    1994-01-01

    A novel model lipid bilayer membrane is prepared by the addition of phospholipid vesicles to alkanethiol monolayers on gold. This supported hybrid bilayer membrane is rugged, easily and reproducibly prepared in the absence of organic solvent, and is stable for very long periods of time. We have characterized the insulating characteristics of this membrane by examining the rate of electron transfer and by impedance spectroscopy. Supported hybrid bilayers formed from phospholipids and alkanethiols are pinhole-free and demonstrate measured values of conductivity and resistivity which are within an order of magnitude of that reported for black lipid membranes. Capacitance values suggest a dielectric constant of 2.7 for phospholipid membranes in the absence of organic solvent. The protein toxin, melittin, destroys the insulating capability of the phospholipid layer without significantly altering the bilayer structure. This model membrane will allow the assessment of the effect of lipid membrane perturbants on the insulating properties of natural lipid membranes. PMID:7811924

  15. Magnetically aligned phospholipid bilayers with positive ordering: a new model membrane system.

    PubMed Central

    Prosser, R S; Hwang, J S; Vold, R R

    1998-01-01

    A stable smectic phospholipid bilayer phase aligned with the director parallel to the magnetic field can be generated by the addition of certain trivalent paramagnetic lanthanide ions to a bicellar solution of dimyristoylphosphatidylcholine (DMPC) and dihexanoylphosphatidylcholine (DHPC) in water. Suitable lanthanide ions are those with positive anisotropy of their magnetic susceptibility, namely Eu3+, Er3+, Tm3+, and Yb3+. For samples doped with Tm3+, this phase extends over a wide range of Tm3+ concentrations (6-40 mM) and temperatures (35-90 degrees C) and appears to undergo a transition from a fluid nematic discotic to a fluid, but highly ordered, smectic phase at a temperature that depends on the thulium concentration. As a membrane mimetic, these new, positively ordered phospholipid phases have high potential for structural studies using a variety of techniques such as magnetic resonance (EMR and NMR), small-angle x-ray and neutron diffraction, as well as optical and infrared spectroscopy. PMID:9591667

  16. Nonenzymatic Reactions above Phospholipid Surfaces of Biological Membranes: Reactivity of Phospholipids and Their Oxidation Derivatives

    PubMed Central

    Solís-Calero, Christian; Ortega-Castro, Joaquín; Frau, Juan; Muñoz, Francisco

    2015-01-01

    Phospholipids play multiple and essential roles in cells, as components of biological membranes. Although phospholipid bilayers provide the supporting matrix and surface for many enzymatic reactions, their inherent reactivity and possible catalytic role have not been highlighted. As other biomolecules, phospholipids are frequent targets of nonenzymatic modifications by reactive substances including oxidants and glycating agents which conduct to the formation of advanced lipoxidation end products (ALEs) and advanced glycation end products (AGEs). There are some theoretical studies about the mechanisms of reactions related to these processes on phosphatidylethanolamine surfaces, which hypothesize that cell membrane phospholipids surface environment could enhance some reactions through a catalyst effect. On the other hand, the phospholipid bilayers are susceptible to oxidative damage by oxidant agents as reactive oxygen species (ROS). Molecular dynamics simulations performed on phospholipid bilayers models, which include modified phospholipids by these reactions and subsequent reactions that conduct to formation of ALEs and AGEs, have revealed changes in the molecular interactions and biophysical properties of these bilayers as consequence of these reactions. Then, more studies are desirable which could correlate the biophysics of modified phospholipids with metabolism in processes such as aging and diseases such as diabetes, atherosclerosis, and Alzheimer's disease. PMID:25977746

  17. Resonance energy transfer study of hemoglobin complexes with model phospholipid membranes.

    PubMed

    Gorbenko, G P

    1999-10-04

    By examining the resonance energy transfer between fluorescent probes, embedded in the lipid bilayer (4-(dimethylaminostyryl)-1-methylpiridine, 4-(dimethylaminostyryl)-1-dodecylpiridine, N,N'-bishexamethylenrhodamine, rhodamine 6G) as donors, and the heme group of hemoglobin as acceptor, the structure of the protein complexes with the model membranes composed of phosphatidylcholine and cardiolipin was characterized. Quantitative interpretation of the experimental data was performed in terms of the model of energy transfer in two-dimensional systems, using a set of parameters including the distance of closest approach between donor and acceptor, the vertical separation of donor planes, the acceptor distance from the donor plane and the orientation factor. The limits for the heme distance from the lipid bilayer center and the depth of the protein penetration in the membrane interior were estimated. The results obtained suggest that the depth of hemoglobin insertion into liposomal membranes decreases upon increasing CL content in the lipid bilayer.

  18. Extension of CAVS coarse-grained model to phospholipid membranes: The importance of electrostatics.

    PubMed

    Shen, Hujun; Deng, Mingsen; Zhang, Yachao

    2017-05-15

    It is evident from experiment that electrostatic potential (or dipole potential) is positive inside PC or PE lipid bilayers in the absence of ions. MARTINI coarse-grained (CG) model, which has been widely used in simulating physical properties of lipid bilayers, fails to reproduce the positive value for the dipole potential in the membrane interior. Although the total dipole potential can be correctly described by the BMW/MARTINI model, the contribution from the ester dipoles, playing a nontrivial role in the electrostatic potential across lipid membranes, is neglected by this hybrid approach. In the ELBA CG model, the role of the ester dipoles is considered, but it is overweighed because various atomistic models have consistently shown that water is actually the leading contributor of dipole potential. Here, we present a CG approach by combining the BMW-like water model (namely CAVS model) with the ELBA-like lipid model proposed in this work. Our CG model was designed not only to correctly reproduce the positive values for the dipole potential inside PC and PE lipid bilayers but also to properly balance the individual contributions from the ester dipoles and water, surmounting the limitations of current CG models in the calculations of dipole potential. © 2017 Wiley Periodicals, Inc.

  19. Resolution of phospholipid conformational heterogeneity in model membranes by spin-label EPR and frequency-domain fluorescence spectroscopy.

    PubMed Central

    Squier, T C; Mahaney, J E; Yin, J J; Lai, C S; Lakowicz, J R

    1991-01-01

    We have utilized both fluorescent and nitroxide derivatives of stearic acid as probes of membrane structural heterogeneity in phospholipid vesicles under physiological conditions, as well as conditions of varying ionic strengths and temperatures where spectral heterogeneity has been previously observed and attributed to multiple ionization states of the probes. To identify the source of this spectral heterogeneity, we have utilized complimentary measurements of the relaxation properties (lifetimes) and motion of both (a) spin labeled and anthroyloxy derivatives of stearic acid (i.e., SASL and AS) and (b) a diphenylhexatriene derivative of phosphatidylcholine (DPH-PC) in single component membranes containing dimyristoylphosphatidylcholine (DMPC). We use an 15N stearic-acid spin label for optimal sensitivity to membrane heterogeneity. The lifetime and dynamics of the fluorescent phospholipid analogue DPH-PC (with no ionizable groups over this pH range) were compared with those of AS, allowing us to discriminate between changes in membrane structure and the ionization of the label. The quantum yield and rotational dynamics of DPH-PC are independent of pH, indicating that changes in pH do not affect the conformation of the host phospholipids. However, both EPR spectra of SASL and the lifetime or dynamics of AS are affected profoundly by changes in solution pH. The apparent pKa's of these two probes in DMPC membranes were determined to be near pH 6.3, implying that at physiological pH and ionic strength these stearic-acid labels exist predominantly as a single ionized population in membranes. Therefore, the observed temperature- and ionic-strength-dependent alterations in the spectra of SASL as well as the lifetime or dynamics of AS in DMPC membranes at neutral pH are due to changes in membrane structure rather than the ionization of the probes. The possibility that ionic gradients across biological membranes induce alterations in phospholipid structures, thereby

  20. Nanoscale investigation of the interaction of colistin with model phospholipid membranes by Langmuir technique, and combined infrared and force spectroscopies.

    PubMed

    Freudenthal, Oona; Quilès, Fabienne; Francius, Grégory; Wojszko, Kamila; Gorczyca, Marcelina; Korchowiec, Beata; Rogalska, Ewa

    2016-11-01

    Colistin (Polymyxin E), an antimicrobial peptide, is increasingly put forward as salvage for severe multidrug-resistant infections. Unfortunately, colistin is potentially toxic to mammalian cells. A better understanding of the interaction with specific components of the cell membranes may be helpful in controlling the factors that may enhance toxicity. Here, we report a physico-chemical study of model phospholipid (PL) mono- and bilayers exposed to colistin at different concentrations by Langmuir technique, atomic force microscopy (AFM) and attenuated total reflectance Fourier transform infrared spectroscopy (ATR-FTIR). The effect of colistin on chosen PL monolayers was examined. Insights into the topographical and elastic changes in the PL bilayers within time after peptide injection are presented via AFM imaging and force spectra. Finally, changes in the PL bilayers' ATR-FTIR spectra as a function of time within three bilayer compositions, and the influence of colistin on their spectral fingerprint are examined together with the time-evolution of the Amide II and νCO band integrated intensity ratios. Our study reveals a great importance in the role of the PL composition as well as the peptide concentration on the action of colistin on PL model membranes.

  1. Phosphatidate phosphatase regulates membrane phospholipid synthesis via phosphatidylserine synthase.

    PubMed

    Carman, George M; Han, Gil-Soo

    2017-08-16

    The yeast Saccharomyces cerevisiae serves as a model eukaryote to elucidate the regulation of lipid metabolism. In exponentially growing yeast, a diverse set of membrane lipids are synthesized from the precursor phosphatidate via the liponucleotide intermediate CDP-diacylglycerol. As cells exhaust nutrients and progress into the stationary phase, phosphatidate is channeled via diacylglycerol to the synthesis of triacylglycerol. The CHO1-encoded phosphatidylserine synthase, which catalyzes the committed step in membrane phospholipid synthesis via CDP-diacylglycerol, and the PAH1-encoded phosphatidate phosphatase, which catalyzes the committed step in triacylglycerol synthesis are regulated throughout cell growth by genetic and biochemical mechanisms to control the balanced synthesis of membrane phospholipids and triacylglycerol. The loss of phosphatidate phosphatase activity (e.g., pah1Δ mutation) increases the level of phosphatidate and its conversion to membrane phospholipids by inducing Cho1 expression and phosphatidylserine synthase activity. The regulation of the CHO1 expression is mediated through the inositol-sensitive upstream activation sequence (UASINO), a cis-acting element for the phosphatidate-controlled Henry (Ino2-Ino4/Opi1) regulatory circuit. Consequently, phosphatidate phosphatase activity regulates phospholipid synthesis through the transcriptional regulation of the phosphatidylserine synthase enzyme. Copyright © 2017 Elsevier Ltd. All rights reserved.

  2. Self-reproducing catalyst drives repeated phospholipid synthesis and membrane growth.

    PubMed

    Hardy, Michael D; Yang, Jun; Selimkhanov, Jangir; Cole, Christian M; Tsimring, Lev S; Devaraj, Neal K

    2015-07-07

    Cell membranes are dynamic structures found in all living organisms. There have been numerous constructs that model phospholipid membranes. However, unlike natural membranes, these biomimetic systems cannot sustain growth owing to an inability to replenish phospholipid-synthesizing catalysts. Here we report on the design and synthesis of artificial membranes embedded with synthetic, self-reproducing catalysts capable of perpetuating phospholipid bilayer formation. Replacing the complex biochemical pathways used in nature with an autocatalyst that also drives lipid synthesis leads to the continual formation of triazole phospholipids and membrane-bound oligotriazole catalysts from simpler starting materials. In addition to continual phospholipid synthesis and vesicle growth, the synthetic membranes are capable of remodeling their physical composition in response to changes in the environment by preferentially incorporating specific precursors. These results demonstrate that complex membranes capable of indefinite self-synthesis can emerge when supplied with simpler chemical building blocks.

  3. Self-reproducing catalyst drives repeated phospholipid synthesis and membrane growth

    PubMed Central

    Hardy, Michael D.; Yang, Jun; Selimkhanov, Jangir; Cole, Christian M.; Tsimring, Lev S.; Devaraj, Neal K.

    2015-01-01

    Cell membranes are dynamic structures found in all living organisms. There have been numerous constructs that model phospholipid membranes. However, unlike natural membranes, these biomimetic systems cannot sustain growth owing to an inability to replenish phospholipid-synthesizing catalysts. Here we report on the design and synthesis of artificial membranes embedded with synthetic, self-reproducing catalysts capable of perpetuating phospholipid bilayer formation. Replacing the complex biochemical pathways used in nature with an autocatalyst that also drives lipid synthesis leads to the continual formation of triazole phospholipids and membrane-bound oligotriazole catalysts from simpler starting materials. In addition to continual phospholipid synthesis and vesicle growth, the synthetic membranes are capable of remodeling their physical composition in response to changes in the environment by preferentially incorporating specific precursors. These results demonstrate that complex membranes capable of indefinite self-synthesis can emerge when supplied with simpler chemical building blocks. PMID:26100914

  4. Finite element method (FEM) model of the mechanical stress on phospholipid membranes from shock waves produced in nanosecond electric pulses (nsEP)

    NASA Astrophysics Data System (ADS)

    Barnes, Ronald; Roth, Caleb C.; Shadaram, Mehdi; Beier, Hope; Ibey, Bennett L.

    2015-03-01

    The underlying mechanism(s) responsible for nanoporation of phospholipid membranes by nanosecond pulsed electric fields (nsEP) remains unknown. The passage of a high electric field through a conductive medium creates two primary contributing factors that may induce poration: the electric field interaction at the membrane and the shockwave produced from electrostriction of a polar submersion medium exposed to an electric field. Previous work has focused on the electric field interaction at the cell membrane, through such models as the transport lattice method. Our objective is to model the shock wave cell membrane interaction induced from the density perturbation formed at the rising edge of a high voltage pulse in a polar liquid resulting in a shock wave propagating away from the electrode toward the cell membrane. Utilizing previous data from cell membrane mechanical parameters, and nsEP generated shockwave parameters, an acoustic shock wave model based on the Helmholtz equation for sound pressure was developed and coupled to a cell membrane model with finite-element modeling in COMSOL. The acoustic structure interaction model was developed to illustrate the harmonic membrane displacements and stresses resulting from shockwave and membrane interaction based on Hooke's law. Poration is predicted by utilizing membrane mechanical breakdown parameters including cortical stress limits and hydrostatic pressure gradients.

  5. Anionic phospholipids modulate peptide insertion into membranes.

    PubMed

    Liu, L P; Deber, C M

    1997-05-06

    While the insertion of a hydrophobic peptide or membrane protein segment into the bilayer can be spontaneous and driven mainly by the hydrophobic effect, anionic lipids, which comprise ca. 20% of biological membranes, provide a source of electrostatic attractions for binding of proteins/peptides into membranes. To unravel the interplay of hydrophobicity and electrostatics in the binding of peptides into membranes, we designed peptides de novo which possess the typical sequence Lys-Lys-Ala-Ala-Ala-X-Ala-Ala-Ala-Ala-Ala-X-Ala-Ala-Trp-Ala-Ala-X-Ala-Al a-Ala-Lys-Lys-Lys-Lys-amide, where X residues correspond to "guest" residues which encompass a range of hydrophobicity (Leu, Ile, Gly, and Ser). Circular dichroism spectra demonstrated that peptides were partially (40-90%) random in aqueous buffer but were promoted to form 100% alpha-helical structures by anionic lipid micelles. In neutral lipid micelles, only the relatively hydrophobic peptides (X = L and I) spontaneously adopted the alpha-helical conformation, but when 25% of negatively charged lipids were mixed in to mimic the content of anionic lipids in biomembranes, the less hydrophobic (X = S and G) peptides then formed alpha-helical conformations. Consistent with these findings, fluorescence quenching by the aqueous-phase quencher iodide indicated that in anionic (dimyristoylphosphatidylglycerol) vesicles, the peptide Trp residue was buried in the lipid vesicle hydrophobic core, while in neutral (dimyristoylphosphatidylcholine) vesicles, only hydrophobic (X = L and I) peptides were shielded from the aqueous solution. Trp emission spectra of peptides in the presence of phospholipids doxyl-labeled at the 5-, 7-, 10-, 12-, and 16-fatty acid positions implied not only a transbilayer orientation for inserted peptides but also that mixed peptide populations (transbilayer + surface-associated) may arise. Overall results suggest that for hydrophobic peptides with segmental threshold hydrophobicity below that which

  6. Membrane phospholipid asymmetry in human thalassemia.

    PubMed

    Kuypers, F A; Yuan, J; Lewis, R A; Snyder, L M; Kiefer, C R; Bunyaratvej, A; Fucharoen, S; Ma, L; Styles, L; de Jong, K; Schrier, S L

    1998-04-15

    Phospholipid asymmetry in the red blood cell (RBC) lipid bilayer is well maintained during the life of the cell, with phosphatidylserine (PS) virtually exclusively located in the inner monolayer. Loss of phospholipid asymmetry, and consequently exposure of PS, is thought to play an important role in red cell pathology. The anemia in the human thalassemias is caused by a combination of ineffective erythropoiesis (intramedullary hemolysis) and a decreased survival of adult RBCs in the peripheral blood. This premature destruction of the thalassemic RBC could in part be due to a loss of phospholipid asymmetry, because cells that expose PS are recognized and removed by macrophages. In addition, PS exposure can play a role in the hypercoagulable state reported to exist in severe beta-thalassemia intermedia. We describe PS exposure in RBCs of 56 comparably anemic patients with different genetic backgrounds of the alpha- or beta-thalassemia phenotype. The use of fluorescently labeled annexin V allowed us to determine loss of phospholipid asymmetry in individual cells. Our data indicate that in a number of thalassemic patients, subpopulations of red cells circulate that expose PS on their outer surface. The number of such cells can vary dramatically from patient to patient, from as low as that found in normal controls (less than 0.2%) up to 20%. Analysis by fluorescent microscopy of beta-thalassemic RBCs indicates that PS on the outer leaflet is distributed either over the entire membrane or localized in areas possibly related to regions rich in membrane-bound alpha-globin chains. We hypothesize that these membrane sites in which iron carrying globin chains accumulate and cause oxidative damage, could be important in the loss of membrane lipid organization. In conclusion, we report the presence of PS-exposing subpopulations of thalassemic RBC that are most likely physiologically important, because they could provide a surface for enhancing hemostasis as recently reported

  7. Huntingtin associates with acidic phospholipids at the plasma membrane.

    PubMed

    Kegel, Kimberly B; Sapp, Ellen; Yoder, Jennifer; Cuiffo, Benjamin; Sobin, Lindsay; Kim, Yun J; Qin, Zheng-Hong; Hayden, Michael R; Aronin, Neil; Scott, David L; Isenberg, Gerhard; Goldmann, Wolfgang H; DiFiglia, Marian

    2005-10-28

    We have identified a domain in the N terminus of huntingtin that binds to membranes. A three-dimensional homology model of the structure of the binding domain predicts helical HEAT repeats, which emanate a positive electrostatic potential, consistent with a charge-based mechanism for membrane association. An amphipathic helix capable of inserting into pure lipid bilayers may serve to anchor huntingtin to the membrane. In cells, N-terminal huntingtin fragments targeted to regions of plasma membrane enriched in phosphatidylinositol 4,5-bisphosphate, receptor bound-transferrin, and endogenous huntingtin. N-terminal huntingtin fragments with an expanded polyglutamine tract aberrantly localized to intracellular regions instead of plasma membrane. Our data support a new model in which huntingtin directly binds membranes through electrostatic interactions with acidic phospholipids.

  8. Interaction of poly(N-isopropylacrylamide) (pNIPAM) based nanoparticles and their linear polymer precursor with phospholipid membrane models.

    PubMed

    Ormategui, Nerea; Zhang, Shengwen; Loinaz, Iraida; Brydson, Rik; Nelson, Andrew; Vakurov, Alexander

    2012-10-01

    Poly(N-isopropylacrylamide) (pNIPAM) is a thermoresponsive polymer which has promising applications in nanomedicine for drug delivery. The cross-linking of pNIPAM based copolymer using the chain collapse method leads to the synthesis of pNIPAM based polymer nanoparticles. This study looks at the interaction of pNIPAM polymers and pNIPAM nanoparticles with biomembrane models of, (i) a dioleoyl phosphatidylcholine (DOPC) monolayer on a mercury (Hg) electrode and (ii) DOPC and dimyristoyl phosphatidylcholine (DMPC) vesicles. The following techniques were used to follow the interactions: Dynamic light scattering (DLS), differential scanning calorimetry (DSC), rapid cyclic voltammetry (RCV) and electrochemical impedance spectroscopy (EIS). Results showed that the polymers interacted more extensively than the nanoparticles with the phospholipid. The interaction of the polymer was more rapid and led to a polymer-phospholipid conjugate whereas the nanoparticle adsorbed on the phospholipid monolayer surface and penetrated the monolayer at longer contact times. The association of the linear polymer with the phospholipid can be related to the larger molecular area available with the pendant -Cl groups and the inherent polymeric flexibility compared to the nanoparticle structure. The apparent dissociation constant for nanoparticles-DOPC complex was K(d,app)=1.67 × 10(-5)±1.2 × 10(-6) mol dm(-3). The apparent kinetic constant of nanoparticle penetration through the DOPC monolayer was k(2,app)=1.054 × 10(-2)±9.1 × 10(-4) s(-1). It can be concluded therefore that the pNIPAM nanoparticle because of its lower affinity for phospholipids is more appropriate for medical applications. Copyright © 2011 Elsevier B.V. All rights reserved.

  9. Water at the Surfaces of Aligned Phospholipid Multi-Bilayer Model Membranes Probed with Ultrafast Vibrational Spectroscopy

    PubMed Central

    Zhao, Wei; Moilanen, David E.; Fenn, Emily E.; Fayer, Michael D.

    2009-01-01

    The dynamics of water at the surface of artificial membranes composed of aligned multibilayers of the phospholipid dilauroyl phosphatidylcholine (DLPC) are probed with ultrafast polarization selective vibrational pump-probe spectroscopy. The experiments are performed at various hydration levels, x = 2 – 16 water molecules per lipid at 37 °C. The water molecules are ~1 nm above or below the membrane surface. The experiments are conducted on the OD stretching mode of dilute HOD in H2O to eliminate vibrational excitation transfer. The FT-IR absorption spectra of the OD stretch in the DLPC bilayer system at low hydration levels shows a red-shift in frequency relative to bulk water, which is in contrast to the blue shift often observed in systems such as water nanopools in reverse micelles. The spectra for x = 4 – 16 can be reproduced by a superposition of the spectra for x = 2 and bulk water. IR Pump-probe measurements reveal that the vibrational population decays (lifetimes) become longer as the hydration level is decreased. The population decays are fit well by biexponential functions. The population decays, measured as a function of the OD stretch frequency, suggest the existence of two major types of water molecules in the interfacial region of the lipid bilayers. One component may be a clathrate-like water cluster near the hydrophobic choline group and the other may be related to the hydration water molecules mainly associated with the phosphate group. As the hydration level increases, the vibrational lifetimes of these two components decrease, suggesting a continuous evolution of the hydration structures in the two components associated with the swelling of the bilayers. The agreement of the magnitudes of the two components obtained from IR spectra with those from vibrational lifetime measurements further supports the two component model. The vibrational population decay fitting also gives an estimation of the number of phosphate-associated water molecules

  10. Relative quantification of phospholipid accumulation in the PC12 cell plasma membrane following phospholipid incubation using TOF-SIMS imaging

    PubMed Central

    Lanekoff, Ingela; Sjövall, Peter; Ewing, Andrew G.

    2011-01-01

    Time of flight secondary ion mass spectrometry (TOF-SIMS) imaging has been used to investigate the incorporation of phospholipids into the plasma membrane of PC12 cells after incubation with phosphatidylcholine (PC) and phosphatidylethanolamine (PE). The incubations were done at concentrations previously shown to change the rate of exocytosis in model cell lines. The use of TOF-SIMS in combination with an in situ freeze fracture device enables the acquisition of ion images from the plasma membrane in single PC12 cells. By incubating cells with deuterated phospholipids and acquiring ion images at high mass resolution, specific deuterated fragment ions were used to monitor the incorporation of lipids into the plasma membrane. The concentration of incorporated phospholipids relative to the original concentration of PC was thus determined. The observed relative amounts of phospholipid accumulation in the membrane ranges from 0.5 to 2 percent following 19 hours of incubation with PC at 100 to 300 μM and from 1 to 9 percent following incubation with PE at the same concentrations. Phospholipid accumulation is therefore shown to be dependent on the concentration in the surrounding media. In combination with previous exocytosis results, the present data suggests that very small changes in the plasma membrane phospholipid concentration are sufficient to produce significant effects on important cellular processes, such as exocytosis in PC12 cells. PMID:21563801

  11. Electrochemical modelling of QD-phospholipid interactions.

    PubMed

    Zhang, Shengwen; Chen, Rongjun; Malhotra, Girish; Critchley, Kevin; Vakurov, Alexander; Nelson, Andrew

    2014-04-15

    The aggregation of quantum dots (QDs) and capping of individual QDs affects their activity towards biomembrane models. Electrochemical methods using a phospholipid layer on mercury (Hg) membrane model have been used to determine the phospholipid monolayer activity of thioglycollic acid (TGA) coated quantum dots (QDs) as an indicator of biomembrane activity. The particles were characterised for size and charge. The activity of the QDs towards dioleoyl phosphatidylcholine (DOPC) monolayers is pH dependent, and is most active at pH 8.2 within the pH range 8.2-6.5 examined in this work. This pH dependent activity is the result of increased particle aggregation coupled to decreasing surface charge emanating from the TGA carboxylic groups employed to stabilize the QD dispersion in aqueous media. Capping the QDs with CdS/ZnS lowers the particles' activity to phospholipid monolayers. Copyright © 2014 Elsevier Inc. All rights reserved.

  12. Looking beyond structure: membrane phospholipids of skeletal muscle mitochondria

    PubMed Central

    Heden, Timothy D.; Neufer, P. Darrell; Funai, Katsuhiko

    2016-01-01

    Skeletal muscle mitochondria are highly dynamic and capable of tremendous expansion to meet cellular energetic demands. Such proliferation in mitochondrial mass requires a synchronized supply of enzymes and structural phospholipids. While transcriptional regulation of mitochondrial enzymes has been extensively studied, there is limited information on how mitochondrial membrane lipids are generated in skeletal muscle. Herein we describe how each class of phospholipids that constitute mitochondrial membranes are synthesized and/or imported, and summarize genetic evidence indicating that membrane phospholipid composition represents a significant modulator of skeletal muscle mitochondrial respiratory function. We also discuss how skeletal muscle mitochondrial phospholipids may mediate the effect of diet and exercise on oxidative metabolism. PMID:27370525

  13. Effect of Modified Phospholipid Bilayers on the Electrochemical Activity of a Membrane-Spanning Conjugated Oligoelectrolyte.

    PubMed

    Jahnke, Justin P; Bazan, Guillermo C; Sumner, James J

    2015-10-27

    The incorporation and electrochemical activity of a conjugated oligoelectrolyte (COE) in model phospholipid bilayers have been characterized using cyclic voltammetry and UV-vis absorption measurements. Several other modifiers were also incorporated into the phospholipid membranes to alter properties such as charge and alkyl chain disorder. Using potassium ferricyanide to measure charge transport, it was observed that bilayers that contained cholic acid, a negatively charged additive that also promotes alkyl chain disorder, had higher COE uptake and charge permeability than unmodified bilayers. In contrast, when the positively charged choline was incorporated, charge permeability decreased and COE uptake was similar to that of unmodified bilayers. The incorporation of cholesterol at low concentrations within the phospholipid membranes was shown to enhance the COE's effectiveness at increasing membrane charge permeability without increasing the COE concentration in the bilayer. Higher concentrations of cholesterol reduce membrane fluidity and membrane charge permeability. Collectively, these results demonstrate that changes in phospholipid membrane charge permeability upon COE incorporation depend not only on the concentration in the membrane but also on interactions with the phospholipid bilayer and other additives present in the membranes. This approach of manipulating the properties of phospholipid membranes to understand COE interactions is applicable to understanding the behavior of a wide range of molecules that impart useful properties to phospholipid membranes.

  14. Influence of lipids with hydroxyl-containing head groups on Fe2+ (Cu2+)/H2O2-mediated transformation of phospholipids in model membranes.

    PubMed

    Olshyk, Viktoriya N; Melsitova, Inna V; Yurkova, Irina L

    2014-01-01

    Under condition of ROS formation in lipid membranes, free radical reactions can proceed in both hydrophobic (peroxidation of lipids, POL) and polar (free radical fragmentation) parts of the bilayer. Free-radical fragmentation is typical for the lipids containing a hydroxyl group in β-position with respect to an ester or amide bond. The present study has been undertaken to investigate free-radical transformations of phospholipids in model membranes containing lipids able to undergo fragmentation in their polar part. Liposomes from egg yolk lecithin containing saturated or monounsaturated glycero- and sphingolipids were subjected to the action of an HO* - generating system - Fe(2+)(Cu(2+))/H2O2/Asc, and the POL products were investigated. In parallel with this, the effects of monoacylglycerols and scavengers of reactive species on Fe(2+)(Cu(2+))/H2O2/Asc - mediated free-radical fragmentation of phosphatidylglycerols were studied. Hydroxyl-containing sphingolipids and glycerolipids, which undergo free-radical fragmentation under such conditions, manifested antioxidant properties in the model membranes. In the absence of HO groups in the lipid structure, the effect was either pro-oxidant or neutral. Monoacylglycerols slowed down the rate of both peroxidation in the hydrophobic part and free-radical fragmentation in the hydrophilic part of phospholipid membrane. Scavengers of reactive species inhibited the fragmentation of phosphatidylglycerol substantially. Thus, the ability of hydroxyl-containing lipids to undergo free-radical fragmentation in polar part apparently makes a substantial contribution to the mechanism of their protector action.

  15. Characterisation of the membrane affinity of an isoniazide peptide conjugate by tensiometry, atomic force microscopy and sum-frequency vibrational spectroscopy, using a phospholipid Langmuir monolayer model.

    PubMed

    Hill, Katalin; Pénzes, Csanád Botond; Schnöller, Donát; Horváti, Kata; Bosze, Szilvia; Hudecz, Ferenc; Keszthelyi, Tamás; Kiss, Eva

    2010-10-07

    Tensiometry, sum-frequency vibrational spectroscopy, and atomic force microscopy were employed to assess the cell penetration ability of a peptide conjugate of the antituberculotic agent isoniazide. Isoniazide was conjugated to peptide (91)SEFAYGSFVRTVSLPV(106), a functional T-cell epitope of the immunodominant 16 kDa protein of Mycobacterium tuberculosis. As a simple but versatile model of the cell membrane a phospholipid Langmuir monolayer at the liquid/air interface was used. Changes induced in the structure of the phospholipid monolayer by injection of the peptide conjugate into the subphase were followed by tensiometry and sum-frequency vibrational spectroscopy. The drug penetrated lipid films were transferred to a solid support by the Langmuir-Blodgett technique, and their structures were characterized by atomic force microscopy. Peptide conjugation was found to strongly enhance the cell penetration ability of isoniazide.

  16. Enhancement by cytidine of membrane phospholipid synthesis

    NASA Technical Reports Server (NTRS)

    G-Coviella, I. L.; Wurtman, R. J.

    1992-01-01

    Cytidine, as cytidine 5'-diphosphate choline, is a major precursor in the synthesis of phosphatidylcholine in cell membranes. In the present study, we examined the relationships between extracellular levels of cytidine, the conversion of [14C]choline to [14C]phosphatidylcholine, and the net syntheses of phosphatidylcholine and phosphatidylethanolamine by PC12 cells. The rate at which cytidine (as [3H]cytidine) was incorporated into the PC12 cells followed normal Michaelis-Menten kinetics (Km = 5 microM; Vmax = 12 x 10(-3) mmol/mg of protein/min) when the cytidine concentrations in the medium were below 50 microM; at higher concentrations, intracellular [3H]cytidine nucleotide levels increased linearly. Once inside the cell, cytidine was converted mainly into cytidine triphosphate. In pulse-chase experiments, addition of cytidine to the medium caused a time- and dose-dependent increase (by up to 30%) in the incorporation of [14C]choline into membrane [14C]-phosphatidylcholine. When the PC12 cells were supplemented with both cytidine and choline for 14 h, small but significant elevations (p less than 0.05) were observed in their absolute contents of membrane phosphatidylcholine, phosphatidylethanolamine, and phosphatidylserine, all increasing by 10-15% relative to their levels in cells incubated with choline alone. Exogenous cytidine, acting via cytidine triphosphate, can thus affect the synthesis and levels of cell membrane phospholipids.

  17. Enhancement by cytidine of membrane phospholipid synthesis

    NASA Technical Reports Server (NTRS)

    G-Coviella, I. L.; Wurtman, R. J.

    1992-01-01

    Cytidine, as cytidine 5'-diphosphate choline, is a major precursor in the synthesis of phosphatidylcholine in cell membranes. In the present study, we examined the relationships between extracellular levels of cytidine, the conversion of [14C]choline to [14C]phosphatidylcholine, and the net syntheses of phosphatidylcholine and phosphatidylethanolamine by PC12 cells. The rate at which cytidine (as [3H]cytidine) was incorporated into the PC12 cells followed normal Michaelis-Menten kinetics (Km = 5 microM; Vmax = 12 x 10(-3) mmol/mg of protein/min) when the cytidine concentrations in the medium were below 50 microM; at higher concentrations, intracellular [3H]cytidine nucleotide levels increased linearly. Once inside the cell, cytidine was converted mainly into cytidine triphosphate. In pulse-chase experiments, addition of cytidine to the medium caused a time- and dose-dependent increase (by up to 30%) in the incorporation of [14C]choline into membrane [14C]-phosphatidylcholine. When the PC12 cells were supplemented with both cytidine and choline for 14 h, small but significant elevations (p less than 0.05) were observed in their absolute contents of membrane phosphatidylcholine, phosphatidylethanolamine, and phosphatidylserine, all increasing by 10-15% relative to their levels in cells incubated with choline alone. Exogenous cytidine, acting via cytidine triphosphate, can thus affect the synthesis and levels of cell membrane phospholipids.

  18. The effect of variations in phospholipid and sterol structure on the nature of lipid-sterol interactions in lipid bilayer model membranes.

    PubMed

    Mannock, David A; Lewis, Ruthven N A H; McMullen, Todd P W; McElhaney, Ronald N

    2010-06-01

    This review deals with the effect of variations in phospholipid and sterol structure on the nature and magnitude of lipid-sterol interactions in lipid bilayer model membranes. The first portion of the review covers the effect of Chol itself on the thermotropic phase behavior and organization of a variety of different glycero- and sphingolipid membrane lipid classes, varying in the structure and charge of their polar headgroups and in the length and structure of their fatty acyl chains. The second part of this review deals with the effect of variations in sterol structure on the thermotropic phase behavior and organization primarily of the well studied DPPC model membrane system. In the third section, we focus on some of the contributions of sterol functional group chemistry, molecular conformation and dynamics, to sterol-lipid interactions. Using those studies, we re-examine the results of recently published experimental and computer-modeling studies to provide a new more dynamic molecular interpretation of sterol-lipid interactions. We suggest that the established view of the rigid sterol ring system and extended alkyl side-chain obtained from physical studies of cholesterol-phospholipid mixtures may not apply in lipid mixtures differing in their sterol chemical structure. Copyright 2010 Elsevier Ireland Ltd. All rights reserved.

  19. Membrane mechanical properties of synthetic asymmetric phospholipid vesicles.

    PubMed

    Lu, Li; Doak, William J; Schertzer, Jeffrey W; Chiarot, Paul R

    2016-09-13

    Synthetic lipid vesicles have served as important model systems to study cellular membrane biology. Research has shown that the mechanical properties of bilayer membranes significantly affects their biological behavior. The properties of a lipid bilayer are governed by lipid acyl chain length, headgroup type, and the presence of membrane proteins. However, few studies have explored how membrane architecture, in particular trans-bilayer lipid asymmetry, influences membrane mechanical properties. In this study, we investigated the effects of lipid bilayer architecture (i.e. asymmetry) on the mechanical properties of biological membranes. This was achieved using a customized micropipette aspiration system and a novel microfluidic technique previously developed by our team for building asymmetric phospholipid vesicles with tailored bilayer architecture. We found that the bending modulus and area expansion modulus of the synthetic asymmetric bilayers were up to 50% larger than the values acquired for symmetric bilayers. This was caused by the dissimilar lipid distribution in each leaflet of the bilayer for the asymmetric membrane. To the best of our knowledge, this is the first report on the impact of trans-bilayer asymmetry on the area expansion modulus of synthetic bilayer membranes. Since the mechanical properties of bilayer membranes play an important role in numerous cellular processes, these results have significant implications for membrane biology studies.

  20. Effect of Cholesterol on the Structure of a Five-Component Mitochondria-Like Phospholipid Membrane

    PubMed Central

    Cathcart, Kelly; Patel, Amit; Dies, Hannah; Rheinstädter, Maikel C.; Fradin, Cécile

    2015-01-01

    Cellular membranes have a complex phospholipid composition that varies greatly depending on the organism, cell type and function. In spite of this complexity, most structural data available for phospholipid bilayers concern model systems containing only one or two different phospholipids. Here, we examine the effect of cholesterol on the structure of a complex membrane reflecting the lipid composition of mitochondrial membranes, with five different types of headgroups (phosphatidylcholine (PC), phosphatidylethanolamine (PE), phosphatidylinositol (PI), phosphatidylserine (PS) and cardiolipin (CL)) and a variety of hydrocarbon tails. This particular system was chosen because elevated cholesterol contents in mitochondrial membranes have been linked to a breaking down of Bax-mediated membrane permeabilization and resistance to cancer treatments. High resolution electron density profiles were determined by X-ray reflectivity, while the area per phospholipid chain, Apc, and the chain order parameter, SX-ray, were determined by wide-angle X-ray scattering (WAXS). We show that chain order increases upon the addition of cholesterol, resulting in both a thickening of the lipid bilayer and a reduction in the average surface area per phospholipid chain. This effect, well known as cholesterol’s condensation effect, is similar, but not as pronounced as for single-component phospholipid membranes. We conclude by discussing the relevance of these findings for the insertion of the pro-apoptotic protein Bax in mitochondrial membranes with elevated cholesterol content. PMID:26529029

  1. Looking Beyond Structure: Membrane Phospholipids of Skeletal Muscle Mitochondria.

    PubMed

    Heden, Timothy D; Neufer, P Darrell; Funai, Katsuhiko

    2016-08-01

    Skeletal muscle mitochondria are highly dynamic and are capable of tremendous expansion to meet cellular energetic demands. Such proliferation in mitochondrial mass requires a synchronized supply of enzymes and structural phospholipids. While transcriptional regulation of mitochondrial enzymes has been extensively studied, there is limited information on how mitochondrial membrane lipids are generated in skeletal muscle. Herein we describe how each class of phospholipids that constitute mitochondrial membranes are synthesized and/or imported, and summarize genetic evidence indicating that membrane phospholipid composition represents a significant modulator of skeletal muscle mitochondrial respiratory function. We also discuss how skeletal muscle mitochondrial phospholipids may mediate the effect of diet and exercise on oxidative metabolism. Copyright © 2016 Elsevier Ltd. All rights reserved.

  2. Microtubes and nanotubes of a phospholipid bilayer membrane

    NASA Astrophysics Data System (ADS)

    Kralj-Iglic, Veronika; Iglic, Ales; Gomiscek, Gregor; Sevsek, France; Arrigler, Vesna; Hägerstrand, Henry

    2002-02-01

    We propose a theory describing the stable structure of a phospholipid bilayer in pure water involving a spherical mother vesicle with long thin tubular protrusion. It is considered that the phospholipid molecules are in general anisotropic with respect to the axis normal to the membrane and can orient in the plane of the membrane if the curvature field is strongly anisotropic. Taking this into account, the membrane free energy is derived starting from a single-molecule energy and using methods of statistical mechanics. By linking the description on the microscopic level with the continuum theory of elasticity we recover the expression for the membrane bending energy and obtain an additional (deviatoric) contribution due to the orientational ordering of the phospholipid molecules. It is shown that the deviatoric contribution may considerably decrease the phospholipid vesicle membrane free energy if the vesicle involves regions where the difference between the two principal curvatures is large (thin cylindrical protrusions and/or thin finite necks) and thereby yields a possible explanation for the stability of the long thin tubular protrusions of the phospholipid bilayer vesicles. We report on the experiment exhibiting a stable shape of the spherical phospholipid vesicle with a long thin tubular protrusion in pure water.

  3. Correlation of insulin-enhancing properties of vanadium-dipicolinate complexes in model membrane systems: phospholipid langmuir monolayers and AOT reverse micelles.

    PubMed

    Sostarecz, Audra G; Gaidamauskas, Ernestas; Distin, Steve; Bonetti, Sandra J; Levinger, Nancy E; Crans, Debbie C

    2014-04-22

    We explore the interactions of V(III) -, V(IV) -, and V(V) -2,6-pyridinedicarboxylic acid (dipic) complexes with model membrane systems and whether these interactions correlate with the blood-glucose-lowering effects of these compounds on STZ-induced diabetic rats. Two model systems, dipalmitoylphosphatidylcholine (DPPC) Langmuir monolayers and AOT (sodium bis(2-ethylhexyl)sulfosuccinate) reverse micelles present controlled environments for the systematic study of these vanadium complexes interacting with self-assembled lipids. Results from the Langmuir monolayer studies show that vanadium complexes in all three oxidation states interact with the DPPC monolayer; the V(III) -phospholipid interactions result in a slight decrease in DPPC molecular area, whereas V(IV) and V(V) -phospholipid interactions appear to increase the DPPC molecular area, an observation consistent with penetration into the interface of this complex. Investigations also examined the interactions of V(III) - and V(IV) -dipic complexes with polar interfaces in AOT reverse micelles. Electron paramagnetic resonance spectroscopic studies of V(IV) complexes in reverse micelles indicate that the neutral and smaller 1:1 V(IV) -dipic complex penetrates the interface, whereas the larger 1:2 V(IV) complex does not. UV/Vis spectroscopy studies of the anionic V(III) -dipic complex show only minor interactions. These results are in contrast to behavior of the V(V) -dipic complex, [VO2 (dipic)](-) , which penetrates the AOT/isooctane reverse micellar interface. These model membrane studies indicate that V(III) -, V(IV) -, and V(V) -dipic complexes interact with and penetrate the lipid interfaces differently, an effect that agrees with the compounds' efficacy at lowering elevated blood glucose levels in diabetic rats.

  4. Synthetic peptides corresponding to the four P regions of Electrophorus electricus Na+ channel: interaction with and organization in model phospholipid membranes.

    PubMed

    Pouny, Y; Shai, Y

    1995-06-13

    The hydropathy plot of the alpha subunit of the voltage-gated Na+ channel reveals four homologous repeats, each of which is homologous to Shaker type K+ channel monomer and contains six putative transmembrane segments and a hydrophobic segment within the loop connecting transmembrane segments S5 and S6. Current models predict that the four homologous segments [designated H5 or P regions (PR)] from the S5-S6 loop of each repeat lie in the aqueous pore. Peptides corresponding to the P regions of the four domains of the Electrophorus electricus (eel) Na+ channel (25-36 aa long, designated as PR-I, PR-II, PR-III, and PR-IV) and a 23-mer preceding PR-II (designated pre-PR-II) were synthesized and fluorescently labeled. The segments were then structurally and functionally characterized for their interaction with phospholipid membranes. Although the sequences of the four P regions are significantly different, they all bind to zwitterionic phospholipid membranes with similar partition coefficients (approximately 10(4) M-1). The pre-PR-II does not bind membranes at all. Resonance energy transfer measurements, between donor/acceptor-labeled pairs of peptides, revealed that besides the PR-I/PR-III pair, all other pairs form heteroaggregates but do not coassemble with unrelated membrane-bound peptide. Circular dichroism (CD) spectroscopy revealed that PR-I, PR-II, and PR-III adopt similar partial alpha-helical structures (approximately 30%) in 40% trifluoroethanol and in solutions of 1% sodium dodecylsulfate (SDS). The PR-IV (36 aa) adopts approximately 18% alpha-helical structure, and pre-PR-II gives a low CD signal. These findings are in line with proposed models in which the P regions are packed in close proximity in the lumen of the hydrophobic core of the channel. Furthermore, the finding that the PRs adopt similar partial alpha-helical structures in two different hydrophobic environments might suggest that partial alpha-helical structures also exist in the native channel

  5. Phospholipid flippases: building asymmetric membranes and transport vesicles.

    PubMed

    Sebastian, Tessy T; Baldridge, Ryan D; Xu, Peng; Graham, Todd R

    2012-08-01

    Phospholipid flippases in the type IV P-type ATPase family (P4-ATPases) are essential components of the Golgi, plasma membrane and endosomal system that play critical roles in membrane biogenesis. These pumps flip phospholipid across the bilayer to create an asymmetric membrane structure with substrate phospholipids, such as phosphatidylserine and phosphatidylethanolamine, enriched within the cytosolic leaflet. The P4-ATPases also help form transport vesicles that bud from Golgi and endosomal membranes, thereby impacting the sorting and localization of many different proteins in the secretory and endocytic pathways. At the organismal level, P4-ATPase deficiencies are linked to liver disease, obesity, diabetes, hearing loss, neurological deficits, immune deficiency and reduced fertility. Here, we review the biochemical, cellular and physiological functions of P4-ATPases, with an emphasis on their roles in vesicle-mediated protein transport. This article is part of a Special Issue entitled Lipids and Vesicular Transport. Copyright © 2011 Elsevier B.V. All rights reserved.

  6. Phospholipid flippases: building asymmetric membranes and transport vesicles

    PubMed Central

    Sebastian, Tessy T.; Baldridge, Ryan D.; Xu, Peng; Graham, Todd R.

    2012-01-01

    Phospholipid flippases in the type IV P-type ATPase family (P4-ATPases) are essential components of the Golgi, plasma membrane and endosomal system that play critical roles in membrane biogenesis. These pumps flip phospholipid across the bilayer to create an asymmetric membrane structure with substrate phospholipids, such as phosphatidylserine and phosphatidylethanolamine, enriched within the cytosolic leaflet. The P4-ATPases also help form transport vesicles that bud from Golgi and endosomal membranes, thereby impacting the sorting and localization of many different proteins in the secretory and endocytic pathways. At the organismal level, P4-ATPase deficiencies are linked to liver disease, obesity, diabetes, hearing loss, neurological deficits, immune deficiency and reduced fertility. Here, we review the biochemical, cellular and physiological functions of P4-ATPases, with an emphasis on their roles in vesicle-mediated protein transport. PMID:22234261

  7. Pore-forming peptides induce rapid phospholipid flip-flop in membranes.

    PubMed

    Fattal, E; Nir, S; Parente, R A; Szoka, F C

    1994-05-31

    A kinetic model for pore-mediated and perturbation-mediated flip-flop is presented and used to characterize the mechanism of peptide-induced phospholipid flip-flop in bilayers. The model assumes that certain peptides can bind to and aggregate within the membrane. When the aggregate attains a critical size (M peptides), a channel is created that results in a fast flip-flop of phospholipids. In addition, certain peptides induce flip-flop through perturbation of the membrane without forming a pore. Donor phospholipid vesicles with an asymmetrical distribution of the fluorescent phospholipid 1-oleoyl-2-[12-[(7-nitro-1,2,3-benzoxadiazol-4- yl)amino]dodecanoyl]phosphatidylcholine (NBD-PC) were used to measure the extent of flip-flop by quantitating the decrease in fluorescence as the NBD-PC exchanged from the donor vesicles to acceptor vesicles that contained a quencher of the NBD fluorescence. Flip-flop curves generated at lipid/peptide ratios ranging from 30/1 to 300000/1 could be well-simulated by the model. Pore-forming peptides, such as melittin or the synthetic peptide GALA (WEAALAEALAEALAEHLAEALAEALEALAA), induce rapid phospholipid flip-flop with half-times for flip-flop of seconds at low peptide/vesicle ratios. The deduced pore sizes are M = 10 +/- 2 for GALA and M = 2 - 4 for melittin. The synthetic peptide LAGA (WEAALAEAEALALAEHEALALAEAELALAA) can catalyze flip-flop via bilayer perturbation. In contrast, hydrophobic peptides such as gramicidin A and valinomycin intercalate into the membrane, but induce little flip-flop. Modeling of the kinetics of phospholipid translocation supports pore formation as the key factor in accelerating phospholipid flip-flop. Thus, amphipathic segments from membrane proteins may account for non-energy-dependent phospholipid flip-flop in biological membranes.

  8. Molecular-Scale Biophysical Modulation of an Endothelial Membrane by Oxidized Phospholipids.

    PubMed

    Ayee, Manuela A A; LeMaster, Elizabeth; Shentu, Tzu Pin; Singh, Dev K; Barbera, Nicolas; Soni, Dheeraj; Tiruppathi, Chinnaswamy; Subbaiah, Papasani V; Berdyshev, Evgeny; Bronova, Irina; Cho, Michael; Akpa, Belinda S; Levitan, Irena

    2017-01-24

    The influence of two bioactive oxidized phospholipids on model bilayer properties, membrane packing, and endothelial cell biomechanics was investigated computationally and experimentally. The truncated tail phospholipids, 1-palmitoyl-2-(5-oxovaleroyl)-sn-glycero-3-phosphocholine (POVPC) and 1-palmitoyl-2-glutaroyl-sn-glycero-3-phosphocholine (PGPC), are two major oxidation products of the unsaturated phospholipid 1-palmitoyl-2-arachidonoyl-sn-glycero-phosphocholine. A combination of coarse-grained molecular dynamics simulations, Laurdan multiphoton imaging, and atomic force microscopy microindentation experiments was used to determine the impact of POVPC and PGPC on the structure of a multicomponent phospholipid bilayer and to assess the consequences of their incorporation on membrane packing and endothelial cell stiffness. Molecular simulations predicted differential bilayer perturbation effects of the two oxidized phospholipids based on the chemical identities of their truncated tails, including decreased bilayer packing, decreased bilayer bending modulus, and increased water penetration. Disruption of lipid order was consistent with Laurdan imaging results indicating that POVPC and PGPC decrease the lipid packing of both ordered and disordered membrane domains. Computational predictions of a larger membrane perturbation effect by PGPC correspond to greater stiffness of PGPC-treated endothelial cells observed by measuring cellular elastic moduli using atomic force microscopy. Our results suggest that disruptions in membrane structure by oxidized phospholipids play a role in the regulation of overall endothelial cell stiffness. Copyright © 2017 Biophysical Society. Published by Elsevier Inc. All rights reserved.

  9. Hanatoxin inserts into phospholipid membranes without pore formation.

    PubMed

    Lou, Kuo-Long; Hsieh, Meng-Hsuan; Chen, Wei-Jung; Cheng, Yu-Che; Jian, Jia-Nan; Lee, Ming-Tao; Lin, Tsang-Lang; Shiau, Yu-Shuan; Liou, Horng-Huei

    2017-05-01

    Hanatoxin (HaTx), a 35-residue polypeptide from spider venom, functions as an inhibitor of Kv2.1 channels by interacting with phospholipids prior to affecting the voltage-sensor. However, how this water-soluble peptide modifies the gating remains poorly understood, as the voltage-sensor is deeply embedded within the bilayer. To determine how HaTx interacts with phospholipid bilayers, in this study, we examined the toxin-induced partitioning of liposomal membranes. HPLC-results from high-speed spin-down vesicles with HaTx demonstrated direct binding. Dynamic light scattering (DLS) and leakage assay results further indicated that neither membrane pores nor membrane fragmentations were observed in the presence of HaTx. To clarify the binding details, Langmuir trough experiments were performed with phospholipid monolayers by mimicking the external leaflet of membrane bilayers, indicating the involvement of acyl chains in such interactions between HaTx and phospholipids. Our current study thus describes the interaction pattern of HaTx with vesicle membranes, defining a membrane-partitioning mechanism for peptide insertion involving the membrane hydrocarbon core without pore formation. Copyright © 2017 Elsevier B.V. All rights reserved.

  10. Decrease in Membrane Phospholipid Unsaturation Induces Unfolded Protein Response*

    PubMed Central

    Ariyama, Hiroyuki; Kono, Nozomu; Matsuda, Shinji; Inoue, Takao; Arai, Hiroyuki

    2010-01-01

    Various kinds of fatty acids are distributed in membrane phospholipids in mammalian cells and tissues. The degree of fatty acid unsaturation in membrane phospholipids affects many membrane-associated functions and can be influenced by diet and by altered activities of lipid-metabolizing enzymes such as fatty acid desaturases. However, little is known about how mammalian cells respond to changes in phospholipid fatty acid composition. In this study we showed that stearoyl-CoA desaturase 1 (SCD1) knockdown increased the amount of saturated fatty acids and decreased that of monounsaturated fatty acids in phospholipids without affecting the amount or the composition of free fatty acid and induced unfolded protein response (UPR), evidenced by increased expression of C/EBP homologous protein (CHOP) and glucose-regulated protein 78 (GRP78) mRNAs and splicing of Xbox-binding protein 1 (XBP1) mRNA. SCD1 knockdown-induced UPR was rescued by various unsaturated fatty acids and was enhanced by saturated fatty acid. Lysophosphatidylcholine acyltransferase 3 (LPCAT3), which incorporates preferentially polyunsaturated fatty acids into phosphatidylcholine, was up-regulated in SCD1 knockdown cells. Knockdown of LPCAT3 synergistically enhanced UPR with SCD1 knockdown. Finally we showed that palmitic acid-induced UPR was significantly enhanced by LPCAT3 knockdown as well as SCD1 knockdown. These results suggest that a decrease in membrane phospholipid unsaturation induces UPR. PMID:20489212

  11. Stabilizing factors of phospholipid asymmetry in the erythrocyte membrane.

    PubMed

    Dressler, V; Haest, C W; Plasa, G; Deuticke, B; Erusalimsky, J D

    1984-08-22

    Transbilayer reorientation (flip) of exogenous lysophospholipids and changes of the transbilayer distribution of endogenous phospholipids were studied in human erythrocytes and membrane vesicles. (1) Exogenous lysophosphatidylserine irreversibly accumulates in the inner membrane layer of resealed ghosts of human erythrocytes. (2) This accumulation even occurs after complete loss of asymmetric distribution of endogenous phosphatidylethanolamine and partial loss of phosphatidylserine asymmetry in diamide-treated cells. (3) Formation of inside-out and right-side-out vesicles from erythrocyte membranes results in a loss of endogenous phospholipid asymmetry as well as of the ability to establish asymmetry of exogenous lysophosphatidylserine. Rates of transbilayer reorientation of lysophospholipids for the vesicles, however, are comparable to those for intact cells. (4) Loss of endogenous asymmetry of phosphatidylserine is also observed in vesicles isolated from erythrocytes after heat denaturation of spectrin. The asymmetry in the residual cells is maintained. (5) In contrast to the loss of asymmetry of phosphatidylethanolamine and of phosphatidylserine, the asymmetry of sphingomyelin is completely maintained in the vesicles. (6) The stability of phospholipid asymmetry in the native cell is discussed in terms of a limitation of access of phospholipids to hypothetical reorientation sites. Such a limitation may either be the result of interaction of phospholipids with the membrane skeleton as in case of phosphatidylserine and phosphatidylethanolamine, or the result of lipid-lipid interactions as in case of sphingomyelin.

  12. Adsorption of Synthetic Cationic Polymers on Model Phospholipid Membranes: Insight from Atomic-Scale Molecular Dynamics Simulations.

    PubMed

    Kostritskii, Andrei Yu; Kondinskaia, Diana A; Nesterenko, Alexey M; Gurtovenko, Andrey A

    2016-10-11

    Although synthetic cationic polymers represent a promising class of effective antibacterial agents, the molecular mechanisms behind their antimicrobial activity remain poorly understood. To this end, we employ atomic-scale molecular dynamics simulations to explore adsorption of several linear cationic polymers of different chemical structure and protonation (polyallylamine (PAA), polyethylenimine (PEI), polyvinylamine (PVA), and poly-l-lysine (PLL)) on model bacterial membranes (4:1 mixture of zwitterionic phosphatidylethanolamine (PE) and anionic phosphatidylglycerol (PG) lipids). Overall, our findings show that binding of polycations to the anionic membrane surface effectively neutralizes its charge, leading to the reorientation of water molecules close to the lipid/water interface and to the partial release of counterions to the water phase. In certain cases, one has even an overcharging of the membrane, which was shown to be a cooperative effect of polymer charges and lipid counterions. Protonated amine groups of polycations are found to interact preferably with head groups of anionic lipids, giving rise to formation of hydrogen bonds and to a noticeable lateral immobilization of the lipids. While all the above findings are mostly defined by the overall charge of a polymer, we found that the polymer architecture also matters. In particular, PVA and PEI are able to accumulate anionic PG lipids on the membrane surface, leading to lipid segregation. In turn, PLL whose charge twice exceeds charges of PVA/PEI does not induce such lipid segregation due to its considerably less compact architecture and relatively long side chains. We also show that partitioning of a polycation into the lipid/water interface is an interplay between its protonation level (the overall charge) and hydrophobicity of the backbone. Therefore, a possible strategy in creating highly efficient antimicrobial polymeric agents could be in tuning these polycation's properties through proper

  13. Cholesterol autoxidation in phospholipid membrane bilayers

    SciTech Connect

    Sevanian, A.; McLeod, L.L.

    1987-09-01

    Lipid peroxidation in unilamellar liposomes of known cholesterol-phospholipid composition was monitored under conditions of autoxidation or as induced by a superoxide radical generating system, gamma-irradiation or cumene hydroperoxide. Formation of cholesterol oxidation products was indexed to the level of lipid peroxidation. The major cholesterol oxidation products identified were 7-keto-cholesterol, isomeric cholesterol 5,6-epoxides, isomeric 7-hydroperoxides and isomeric 3,7-cholestane diols. Other commonly encountered products included 3,5-cholestadiene-7-one and cholestane-3 beta, 5 alpha, 6 beta-triol. Superoxide-dependent peroxidation required iron and produced a gradual increase in 7-keto-cholesterol and cholesterol epoxides. Cholesterol oxidation was greatest in liposomes containing high proportions of unsaturated phospholipid to cholesterol (4:1 molar ratio), intermediate with low phospholipid to cholesterol ratios (2:1) and least in liposomes prepared with dipalmitoylphosphatidylcholine and cholesterol. This relationship held regardless of the oxidizing conditions used. Cumene hydroperoxide-dependent lipid peroxidation and/or more prolonged oxidations with other oxidizing systems yielded a variety of products where cholesterol-5 beta,6 beta-epoxide, 7-ketocholesterol and the 7-hydroperoxides were most consistently elevated. Oxyradical initiation of lipid peroxidation produced a pattern of cholesterol oxidation products distinguishable from the pattern derived by cumene hydroperoxide-dependent peroxidation.

  14. Structural transition of actin filament in a cell-sized water droplet with a phospholipid membrane

    NASA Astrophysics Data System (ADS)

    Hase, M.; Yoshikawa, K.

    2006-03-01

    Actin filament, F-actin, is a semiflexible polymer with a negative charge, and is one of the main constituents of cell membranes. To clarify the effect of cross talk between a phospholipid membrane and actin filaments in cells, we conducted microscopic observations on the structural changes in actin filaments in a cell-sized (several tens of micrometers in diameter) water droplet coated with a phospholipid membrane such as phosphatidylserine (PS; negatively charged head group) or phosphatidylethanolamine (PE; neutral head group) as a simple model of a living cell membrane. With PS, actin filaments are distributed uniformly in the water phase without adsorption onto the membrane surface between 2 and 6mM Mg2+, while between 6 and 12mM Mg2+, actin filaments are adsorbed onto the inner membrane surface. With PE, the actin filaments are uniformly adsorbed onto the inner membrane surface between 2 and 12mM Mg2+. With both PS and PE membranes, at Mg2+ concentrations higher than 12mM, thick bundles are formed in the bulk water droplet accompanied by the dissolution of actin filaments from the membrane surface. The attraction between actin filaments and membrane is attributable to an increase in the translational entropy of counterions accompanied by the adsorption of actin filaments onto the membrane surface. These results suggest that a microscopic water droplet coated with phospholipid can serve as an easy-to-handle model of cell membranes.

  15. Flagellar membranes are rich in raft-forming phospholipids

    PubMed Central

    Serricchio, Mauro; Schmid, Adrien W.; Steinmann, Michael E.; Sigel, Erwin; Rauch, Monika; Julkowska, Daria; Bonnefoy, Serge; Fort, Cécile; Bastin, Philippe; Bütikofer, Peter

    2015-01-01

    ABSTRACT The observation that the membranes of flagella are enriched in sterols and sphingolipids has led to the hypothesis that flagella might be enriched in raft-forming lipids. However, a detailed lipidomic analysis of flagellar membranes is not available. Novel protocols to detach and isolate intact flagella from Trypanosoma brucei procyclic forms in combination with reverse-phase liquid chromatography high-resolution tandem mass spectrometry allowed us to determine the phospholipid composition of flagellar membranes relative to whole cells. Our analyses revealed that phosphatidylethanolamine, phosphatidylserine, ceramide and the sphingolipids inositol phosphorylceramide and sphingomyelin are enriched in flagella relative to whole cells. In contrast, phosphatidylcholine and phosphatidylinositol are strongly depleted in flagella. Within individual glycerophospholipid classes, we observed a preference for ether-type over diacyl-type molecular species in membranes of flagella. Our study provides direct evidence for a preferential presence of raft-forming phospholipids in flagellar membranes of T. brucei. PMID:26276100

  16. Phosphocreatine interacts with phospholipids, affects membrane properties and exerts membrane-protective effects.

    PubMed

    Tokarska-Schlattner, Malgorzata; Epand, Raquel F; Meiler, Flurina; Zandomeneghi, Giorgia; Neumann, Dietbert; Widmer, Hans R; Meier, Beat H; Epand, Richard M; Saks, Valdur; Wallimann, Theo; Schlattner, Uwe

    2012-01-01

    A broad spectrum of beneficial effects has been ascribed to creatine (Cr), phosphocreatine (PCr) and their cyclic analogues cyclo-(cCr) and phospho-cyclocreatine (PcCr). Cr is widely used as nutritional supplement in sports and increasingly also as adjuvant treatment for pathologies such as myopathies and a plethora of neurodegenerative diseases. Additionally, Cr and its cyclic analogues have been proposed for anti-cancer treatment. The mechanisms involved in these pleiotropic effects are still controversial and far from being understood. The reversible conversion of Cr and ATP into PCr and ADP by creatine kinase, generating highly diffusible PCr energy reserves, is certainly an important element. However, some protective effects of Cr and analogues cannot be satisfactorily explained solely by effects on the cellular energy state. Here we used mainly liposome model systems to provide evidence for interaction of PCr and PcCr with different zwitterionic phospholipids by applying four independent, complementary biochemical and biophysical assays: (i) chemical binding assay, (ii) surface plasmon resonance spectroscopy (SPR), (iii) solid-state (31)P-NMR, and (iv) differential scanning calorimetry (DSC). SPR revealed low affinity PCr/phospholipid interaction that additionally induced changes in liposome shape as indicated by NMR and SPR. Additionally, DSC revealed evidence for membrane packing effects by PCr, as seen by altered lipid phase transition. Finally, PCr efficiently protected against membrane permeabilization in two different model systems: liposome-permeabilization by the membrane-active peptide melittin, and erythrocyte hemolysis by the oxidative drug doxorubicin, hypoosmotic stress or the mild detergent saponin. These findings suggest a new molecular basis for non-energy related functions of PCr and its cyclic analogue. PCr/phospholipid interaction and alteration of membrane structure may not only protect cellular membranes against various insults, but could

  17. Coverage and disruption of phospholipid membranes by oxide nanoparticles.

    PubMed

    Pera, Harke; Nolte, Tom M; Leermakers, Frans A M; Kleijn, J Mieke

    2014-12-09

    We studied the interactions of silica and titanium dioxide nanoparticles with phospholipid membranes and show how electrostatics plays an important role. For this, we systematically varied the charge density of both the membranes by changing their lipid composition and the oxide particles by changing the pH. For the silica nanoparticles, results from our recently presented fluorescence vesicle leakage assay are combined with data on particle adsorption onto supported lipid bilayers obtained by optical reflectometry. Because of the strong tendency of the TiO2 nanoparticles to aggregate, the interaction of these particles with the bilayer was studied only in the leakage assay. Self-consistent field (SCF) modeling was applied to interpret the results on a molecular level. At low charge densities of either the silica nanoparticles or the lipid bilayers, no electrostatic barrier to adsorption exists. However, the adsorption rate and adsorbed amounts drop with increasing (negative) charge densities on particles and membranes because of electric double-layer repulsion, which is confirmed by the effect of the ionic strength. SCF calculations show that charged particles change the structure of lipid bilayers by a reorientation of a fraction of the zwitterionic phosphatidylcholine (PC) headgroups. This explains the affinity of the silica particles for pure PC lipid layers, even at relatively high particle charge densities. Particle adsorption does not always lead to the disruption of the membrane integrity, as is clear from a comparison of the leakage and adsorption data for the silica particles. The attraction should be strong enough, and in line with this, we found that for positively charged TiO2 particles vesicle disruption increases with increasing negative charge density on the membranes. Our results may be extrapolated to a broader range of oxide nanoparticles and ultimately may be used for establishing more accurate nanoparticle toxicity assessments and drug

  18. The effect of magnesium ions on vitamin D(2)-phospholipid model membrane interactions in the presence of different buffer media.

    PubMed

    Toyran, N; Severcan, F

    2000-10-02

    Vitamin D plays important roles in the bone formation, in calcium and phosphorus homeostasis and in the treatment and prevention of many diseases. Ions, especially divalent cations like Mg(2+), have indispensable roles in many vital biological events. Mg(2+) is involved in many fundamental processes such as stabilization of membranes and macromolecules, synthesis of nucleic acid and proteins and formation and use of high-energy phosphate bonds. Mg(2+) is also required for synthesis of more than 310 different enzymes of the body and is, therefore, involved in many important activities. The roles of vitamin D and major ions in the body are quite well known. While there are still many unresolved points about the exact molecular mechanism behind such diverse functions, in the present study, the interaction of Mg(2+) with dipalmitoyl phosphatidylcholine (DPPC) model membranes has been studied in the presence and absence of vitamin D(2) by using Fourier transform infrared (FTIR) spectroscopy and turbidity technique at 440 nm. The effect of different buffer media on the system has also been investigated. The temperature dependent investigation of the wavelength of the CH(2) antisymmetric stretching bands revealed that, in the presence of N-[2-hydroxyethyl] piperazine-N'-[2-ethanesulfonic acid] (Hepes) and phosphate buffer, addition of Mg(2+) and/or vitamin D(2) into pure DPPC liposomes does not change the shape of the phase transition profile. Turbidity studies support these results. In the presence of Hepes buffer, the inclusion of Mg(2+) and/or vitamin D(2) into pure DPPC liposomes orders the system. In the presence of phosphate buffer, FTIR study showed that, addition of Mg(2+) into pure DPPC liposomes disorders the system in the gel phase. The precipitation of Mg(2+) with phosphates, which is present in phosphate buffer, may be a reason for this difference in the effect. It is seen that, the binary mixture of Mg(2+)-DPPC and the ternary mixture of Mg(2+)-vitamin D(2

  19. Differential adsorption of a membrane skeletal protein, spectrin, in phospholipid membranes

    NASA Astrophysics Data System (ADS)

    Giri, Rajendra P.; Mukhopadhyay, Mrinmay K.; Mitra, Madhurima; Chakrabarti, Abhijit; Sanyal, Milan K.; Ghosh, Sajal K.; Bera, Sambhunath; Lurio, Laurence B.; Ma, Yicong; Sinha, Sunil K.

    2017-06-01

    The interaction of phospholipids with the peripheral membrane proteins like spectrin is important not only to understand the various physiological functions of cells, but also to gain insight into the mechanism involved in the self-assembly of polymer-like long chain molecules at the soft surfaces and interfaces. The lipid head-group specificity of adsorption of spectrin to supported phopsholipid bilayer model membranes has been investigated using the X-ray reflectivity (XRR) technique. Model lipid bilayers composed of phosphatidylcholine (PC) and phosphatidylethanolamine (PE) head groups have been prepared on a soft polymer cushion and the XRR measurements have been carried out from the bilayers immersed in a water bath using high-energy synchrotron X-rays. Our results suggest that in PC-based membranes the spectrin chains form a uniform layer on top of the bilayer with their chains lying on the membrane surface, while in PE-based membranes with relatively smaller head groups, the spectrin chains are attached only through a few possible binding sites with the rest of the part projected out of the membrane surface. In addition, the reflectivity profiles reveal the penetration of spectrin polypeptide chains through the PE bilayer in its fluid phase. Pressure-area isotherm measurements on Langmuir monolayers also support similar observations on the adsorption of spectrin molecules to the membranes composed of PC and PE. The observed results were explained using a qualitative model based on the ion-mediated protein interaction in the PC-based membrane.

  20. Influence of ibuprofen on phospholipid membranes

    NASA Astrophysics Data System (ADS)

    Jaksch, Sebastian; Lipfert, Frederik; Koutsioubas, Alexandros; Mattauch, Stefan; Holderer, Olaf; Ivanova, Oxana; Frielinghaus, Henrich; Hertrich, Samira; Fischer, Stefan F.; Nickel, Bert

    2015-02-01

    A basic understanding of biological membranes is of paramount importance as these membranes comprise the very building blocks of life itself. Cells depend in their function on a range of properties of the membrane, which are important for the stability and function of the cell, information and nutrient transport, waste disposal, and finally the admission of drugs into the cell and also the deflection of bacteria and viruses. We have investigated the influence of ibuprofen on the structure and dynamics of L-α -phosphatidylcholine (SoyPC) membranes by means of grazing incidence small-angle neutron scattering, neutron reflectometry, and grazing incidence neutron spin echo spectroscopy. From the results of these experiments, we were able to determine that ibuprofen induces a two-step structuring behavior in the SoyPC films, where the structure evolves from the purely lamellar phase for pure SoyPC over a superposition of two hexagonal phases to a purely hexagonal phase at high concentrations. A relaxation, which is visible when no ibuprofen is present in the membrane, vanishes upon addition of ibuprofen. This we attribute to a stiffening of the membrane. This behavior may be instrumental in explaining the toxic behavior of ibuprofen in long-term application.

  1. NMR Structures of Membrane Proteins in Phospholipid Bilayers

    PubMed Central

    Radoicic, Jasmina; Lu, George J.; Opella, Stanley J.

    2014-01-01

    Membrane proteins have always presented technical challenges for structural studies because of their requirement for a lipid environment. Multiple approaches exist including X-ray crystallography and electron microscopy that can give significant insights into their structure and function. However, nuclear magnetic resonance (NMR) is unique in that it offers the possibility of determining the structures of unmodified membrane proteins in their native environment of phospholipid bilayers under physiological conditions. Furthermore, NMR enables the characterization of the structure and dynamics of backbone and side chain sites of the proteins alone and in complexes with both small molecules and other biopolymers. The learning curve has been steep for the field as most initial studies were performed under non-native environments using modified proteins until ultimately progress in both techniques and instrumentation led to the possibility of examining unmodified membrane proteins in phospholipid bilayers under physiological conditions. This review aims to provide an overview of the development and application of NMR to membrane proteins. It highlights some of the most significant structural milestones that have been reached by NMR spectroscopy of membrane proteins; especially those accomplished with the proteins in phospholipid bilayer environments where they function. PMID:25032938

  2. Interaction of the herbicide atrazine with model membranes. II: Effect of atrazine on fusion of phospholipid vesicles.

    PubMed

    Zolese, G; Ambrosini, A; Bertoli, E; Curatola, G; Tanfani, F

    1990-12-01

    The effect of atrazine on Ca2+ induced fusion of cardiolipin(CL) and phosphatidylserine (PS) vesicles is studied by Tb3+/dipicolinic acid fluorescence and turbidity measurements. The interaction of herbicide with CL and PS membranes is studied by DPH fluorescence polarization. At low concentrations the pesticide partially inhibits fusion, especially in CL vesicles. Higher concentrations of atrazine decrease inhibition of fusion in CL, while fusion is slightly increased in PS. The Ca2(+)-induced increase of turbidity is not affected by atrazine in both PS and CL aggregation experiments. DPH polarization measurements show a perturbation only of the membrane hydrophobic core of PS, in presence of Ca2+. It is hypothesized that this biphasic effect shown by low and high atrazine concentrations on Ca2(+)-induced fusion of vesicles is due to a different localization of the pesticide in the membrane.

  3. Membrane-Derived Phospholipids Control Synaptic Neurotransmission and Plasticity

    PubMed Central

    García-Morales, Victoria; Montero, Fernando; González-Forero, David; Rodríguez-Bey, Guillermo; Gómez-Pérez, Laura; Medialdea-Wandossell, María Jesús; Domínguez-Vías, Germán; García-Verdugo, José Manuel; Moreno-López, Bernardo

    2015-01-01

    Synaptic communication is a dynamic process that is key to the regulation of neuronal excitability and information processing in the brain. To date, however, the molecular signals controlling synaptic dynamics have been poorly understood. Membrane-derived bioactive phospholipids are potential candidates to control short-term tuning of synaptic signaling, a plastic event essential for information processing at both the cellular and neuronal network levels in the brain. Here, we showed that phospholipids affect excitatory and inhibitory neurotransmission by different degrees, loci, and mechanisms of action. Signaling triggered by lysophosphatidic acid (LPA) evoked rapid and reversible depression of excitatory and inhibitory postsynaptic currents. At excitatory synapses, LPA-induced depression depended on LPA1/Gαi/o-protein/phospholipase C/myosin light chain kinase cascade at the presynaptic site. LPA increased myosin light chain phosphorylation, which is known to trigger actomyosin contraction, and reduced the number of synaptic vesicles docked to active zones in excitatory boutons. At inhibitory synapses, postsynaptic LPA signaling led to dephosphorylation, and internalization of the GABAAγ2 subunit through the LPA1/Gα12/13-protein/RhoA/Rho kinase/calcineurin pathway. However, LPA-induced depression of GABAergic transmission was correlated with an endocytosis-independent reduction of GABAA receptors, possibly by GABAAγ2 dephosphorylation and subsequent increased lateral diffusion. Furthermore, endogenous LPA signaling, mainly via LPA1, mediated activity-dependent inhibitory depression in a model of experimental synaptic plasticity. Finally, LPA signaling, most likely restraining the excitatory drive incoming to motoneurons, regulated performance of motor output commands, a basic brain processing task. We propose that lysophospholipids serve as potential local messengers that tune synaptic strength to precedent activity of the neuron. PMID:25996636

  4. Improved membrane fluidity of ionic polysaccharide bead-supported phospholipid bilayer membrane systems.

    PubMed

    Haratake, Mamoru; Takahira, Ekuko; Yoshida, Sakura; Osei-Asante, Samuel; Fuchigami, Takeshi; Nakayama, Morio

    2013-07-01

    Supported phospholipid bilayer membranes on polysaccharide-based cationic polymer beads (cationic group: -[OCH2CH(OH)CH2]2N(+)(CH3)3·X(-), 45-165 μm in diameter) were prepared using small unilamellar vesicles from mixtures of phosphatidylserine (PS) and phosphatidylcholine (PC). Confocal fluorescence microscopic observations with a fluorescent membrane probe (N-4-nitrobenzo-2-oxa-1,3-diazole-phosphatidylethanolamine) revealed that the phospholipid molecules in the phospholipid-bead complexes were along the outer surface of the beads. The fluidity of the phospholipid bilayer membranes in the PS/PC-bead complexes was investigated by the fluorescence recovery after photobleaching (FRAP) technique. The lateral diffusion coefficients (D) for the PS/PC-bead complexes were lower than that for the 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine giant unilamellar vesicles without solid supports. Such less fluid membranes in the complexes appeared to be due to the immobilization of the phospholipid bilayer membranes by electrostatic attractive forces between PS and the bead. The D values for the PS/PC-bead complexes were dependent on the phospholipid composition; the PS(100 mol%)/PC(0 mol%)-bead complex had the least fluid membranes among the PS/PC-bead complexes tested in this study. The phospholipid bilayer membranes formed on the polysaccharide-based cationic polymer beads were much more fluid than those on a polystyrene-based one. Furthermore, such fluid phospholipid bilayer membranes formed on the polysaccharide-based cationic polymer bead were maintained for 10 days, even though the complex sample was stood in plain buffer (pH 8.5) at ambient temperature. Copyright © 2013 Elsevier B.V. All rights reserved.

  5. α-Synuclein interactions with phospholipid model membranes: Key roles for electrostatic interactions and lipid-bilayer structure.

    PubMed

    Pirc, Katja; Ulrih, Nataša Poklar

    2015-10-01

    α-Synuclein is a small presynaptic protein that is critically implicated in the onset of Parkinson's disease and other neurodegenerative disorders. It has been assumed that the pathogenesis of α-synuclein is associated with its aggregation, while for its physiological function, binding of α-synuclein to the synaptic vesicle membrane appears to be most important. The present study investigated the mechanism of α-synuclein binding to the lipid membrane. Upon binding to negatively charged small unilamellar vesicles consisting of 1,2-dipalmitoyl-sn-glycero-3-phosphoglycerol or 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphoglycerol in the liquid-crystalline state, α-synuclein undergoes conformational transition from its native unfolded form to an α-helical structure. The positively charged N-terminal part of α-synuclein is likely to be involved in interactions with the negatively charged lipid surface. α-Synuclein did not associate with vesicles consisting of the zwitterionic (neutral) lipids 1,2-dipalmitoyl-sn-glycero-3-phosphocholine or 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine. The data obtained by circular dichroism spectroscopy, fluorescence anisotropy measurements, differential scanning calorimetry, and calcein efflux assays indicate that in addition to electrostatic interactions, hydrophobic interactions are important in the association of α-synuclein with membranes. The mechanism of α-synuclein binding to lipid membranes is primarily dependent on the surface charge density of the lipid bilayer and the phase state of the lipids. We propose that α-synuclein has a lipid ordering effect and thermally stabilises vesicles. Copyright © 2015. Published by Elsevier B.V.

  6. Structural relaxations of phospholipids and water in planar membranes.

    PubMed

    Svanberg, C; Berntsen, P; Johansson, A; Hedlund, T; Axén, E; Swenson, J

    2009-01-21

    We have used dielectric spectroscopy and temperature modulated differential scanning calorimetry (TMDSC) to investigate the structural relaxation processes and phase transitions of water and lipids in multilamellar, planar phospholipids. At low hydration levels we observe the main structural relaxation related to the glass transition of the phospholipids. With increasing water content a more pronounced pretransition, attributed to a gel to ripple phase transition, is observed in the TMDSC data. In the proximity of this pretransition, a distinct change in the temperature dependence or alternatively a bifurcation into two processes is observed in the dielectric data. Around this temperature a crossover in the long-range ionic conductivity across the membranes is also observed, which is one of the key parameters for biological membranes. Thus, the major dynamical changes do not occur at the main, i.e., the gel to liquid structural phase transition, but at a pretransition that occurs roughly 20 K below the main transition.

  7. Binding of β-Amyloid (1–42) Peptide to Negatively Charged Phospholipid Membranes in the Liquid-Ordered State: Modeling and Experimental Studies

    PubMed Central

    Ahyayauch, Hasna; Raab, Michal; Busto, Jon V.; Andraka, Nagore; Arrondo, José-Luis R.; Masserini, Massimo; Tvaroska, Igor; Goñi, Félix M.

    2012-01-01

    To explore the initial stages of amyloid β peptide (Aβ42) deposition on membranes, we have studied the interaction of Aβ42 in the monomeric form with lipid monolayers and with bilayers in either the liquid-disordered or the liquid-ordered (Lo) state, containing negatively charged phospholipids. Molecular dynamics (MD) simulations of the system have been performed, as well as experimental measurements. For bilayers in the Lo state, in the absence of the negatively charged lipids, interaction is weak and it cannot be detected by isothermal calorimetry. However, in the presence of phosphatidic acid, or of cardiolipin, interaction is detected by different methods and in all cases interaction is strongest with lower (2.5–5 mol %) than higher (10–20 mol %) proportions of negatively charged phospholipids. Liquid-disordered bilayers consistently allowed a higher Aβ42 binding than Lo ones. Thioflavin T assays and infrared spectroscopy confirmed a higher proportion of β-sheet formation under conditions when higher peptide binding was measured. The experimental results were supported by MD simulations. We used 100 ns MD to examine interactions between Aβ42 and three different 512 lipid bilayers consisting of palmitoylsphingomyelin, dimyristoyl phosphatidic acid, and cholesterol in three different proportions. MD pictures are different for the low- and high-charge bilayers, in the former case the peptide is bound through many contact points to the bilayer, whereas for the bilayer containing 20 mol % anionic phospholipid only a small fragment of the peptide appears to be bound. The MD results indicate that the binding and fibril formation on the membrane surface depends on the composition of the bilayer, and is the result of a subtle balance of many inter- and intramolecular interactions between the Aβ42 and membrane. PMID:22947861

  8. Cytoskeletal protein binding kinetics at planar phospholipid membranes.

    PubMed Central

    Mc Kiernan, A E; MacDonald, R I; MacDonald, R C; Axelrod, D

    1997-01-01

    It has been hypothesized that nonspecific reversible binding of cytoskeletal proteins to lipids in cells may guide their binding to integral membrane anchor proteins. In a model system, we measured desorption rates k(off) (off-rates) of the erythrocyte cytoskeletal proteins spectrin and protein 4.1 labeled with carboxyfluorescein (CF), at two different compositions of planar phospholipid membranes (supported on glass), using the total internal reflection/fluorescence recovery after photobleaching (TIR/FRAP) technique. The lipid membranes consisted of either pure phosphatidylcholine (PC) or a 3:1 mixture of PC with phosphatidylserine (PS). In general, the off-rates were not single exponentials and were fit to a combination of fast, slow, and irreversible fractions, reported both separately and as a weighted average. By a variation of TIR/FRAP, we also measured equilibrium affinities (the ratio of surface-bound to bulk protein concentration) and thereby calculated on-rates, k(on). The average off-rate of CF-4.1 from PC/PS (approximately 0.008/s) is much slower than that from pure PC (approximately 1.7/s). Despite the consequent increase in equilibrium affinity at PC/PS, the on-rate at PC/PS is also substantially decreased (by a factor of 40) relative to that at pure PC. The simultaneous presence of (unlabeled) spectrin tends to substantially decrease the on-rate (and the affinity) of CF-4.1 at both membrane types. Similar experiments for CF-spectrin alone showed much less sensitivity to membrane type and generally faster off-rates than those exhibited by CF-4.1. However, when mixed with (unlabeled) 4.1, both the on-rate and off-rate of CF-spectrin decreased drastically at PC/PS (but not PC), leading to a somewhat increased affinity. Clearly, changes in affinity often involve countervailing changes in both on-rates and off-rates. In many of these studies, the effect of varying ionic strength and bulk concentrations was examined; it appears that the binding is an

  9. Cholesterol Translocation in a Phospholipid Membrane

    NASA Astrophysics Data System (ADS)

    Choubey, Amit; Kalia, Rajiv; Malmstadt, Noah; Nakano, Aiichiro; Vashistha, Priya

    2013-03-01

    Cholesterol (CHOL) molecules play a key role in modulating the rigidity of cell membranes, and controlling intracellular transport and signal transduction. Using all-atom molecular dynamics and the parallel replica approach, we study the process of CHOL interleaflet transport (flip-flop) in a dipalmitoylphosphatidycholine (DPPC)-CHOL bilayer, the effect of this process on mechanical stress across the bilayer, and the role of CHOL in inducing molecular order in the respective bilayer leaflets. The simulations are carried out at physiologically relevant CHOL concentration (30%), temperature 323 K and pressure 1 bar. CHOL flip-flop events are observed with a rate constant of 3 ×104 s-1. Once a flip-flop event is triggered, a CHOL molecule takes an average of 73 nanoseconds to migrate from one bilayer leaflet to the other.

  10. Membrane phospholipid bilayer as a determinant of monoacylglycerol lipase kinetic profile and conformational repertoire

    PubMed Central

    Nasr, Mahmoud L; Shi, Xiaomeng; Bowman, Anna L; Johnson, Michael; Zvonok, Nikolai; Janero, David R; Vemuri, V Kiran; Wales, Thomas E; Engen, John R; Makriyannis, Alexandros

    2013-01-01

    The membrane-associated serine hydrolase, monoacylglycerol lipase (MGL), is a well-recognized therapeutic target that regulates endocannabinoid signaling. Crystallographic studies, while providing structural information about static MGL states, offer no direct experimental insight into the impact of MGL's membrane association upon its structure–function landscape. We report application of phospholipid bilayer nanodiscs as biomembrane models with which to evaluate the effect of a membrane system on the catalytic properties and conformational dynamics of human MGL (hMGL). Anionic and charge-neutral phospholipid bilayer nanodiscs enhanced hMGL's kinetic properties [apparent maximum velocity (Vmax) and substrate affinity (Km)]. Hydrogen exchange mass spectrometry (HX MS) was used as a conformational analysis method to profile experimentally the extent of hMGL–nanodisc interaction and its impact upon hMGL structure. We provide evidence that significant regions of hMGL lid-domain helix α4 and neighboring helix α6 interact with the nanodisc phospholipid bilayer, anchoring hMGL in a more open conformation to facilitate ligand access to the enzyme's substrate-binding channel. Covalent modification of membrane-associated hMGL by the irreversible carbamate inhibitor, AM6580, shielded the active site region, but did not increase solvent exposure of the lid domain, suggesting that the inactive, carbamylated enzyme remains intact and membrane associated. Molecular dynamics simulations generated conformational models congruent with the open, membrane-associated topology of active and inhibited, covalently-modified hMGL. Our data indicate that hMGL interaction with a phospholipid membrane bilayer induces regional changes in the enzyme's conformation that favor its recruiting lipophilic substrate/inhibitor from membrane stores to the active site via the lid, resulting in enhanced hMGL catalytic activity and substrate affinity. PMID:23553709

  11. Membrane phospholipid bilayer as a determinant of monoacylglycerol lipase kinetic profile and conformational repertoire.

    PubMed

    Nasr, Mahmoud L; Shi, Xiaomeng; Bowman, Anna L; Johnson, Michael; Zvonok, Nikolai; Janero, David R; Vemuri, V Kiran; Wales, Thomas E; Engen, John R; Makriyannis, Alexandros

    2013-06-01

    The membrane-associated serine hydrolase, monoacylglycerol lipase (MGL), is a well-recognized therapeutic target that regulates endocannabinoid signaling. Crystallographic studies, while providing structural information about static MGL states, offer no direct experimental insight into the impact of MGL's membrane association upon its structure-function landscape. We report application of phospholipid bilayer nanodiscs as biomembrane models with which to evaluate the effect of a membrane system on the catalytic properties and conformational dynamics of human MGL (hMGL). Anionic and charge-neutral phospholipid bilayer nanodiscs enhanced hMGL's kinetic properties [apparent maximum velocity (Vmax) and substrate affinity (Km)]. Hydrogen exchange mass spectrometry (HX MS) was used as a conformational analysis method to profile experimentally the extent of hMGL-nanodisc interaction and its impact upon hMGL structure. We provide evidence that significant regions of hMGL lid-domain helix α4 and neighboring helix α6 interact with the nanodisc phospholipid bilayer, anchoring hMGL in a more open conformation to facilitate ligand access to the enzyme's substrate-binding channel. Covalent modification of membrane-associated hMGL by the irreversible carbamate inhibitor, AM6580, shielded the active site region, but did not increase solvent exposure of the lid domain, suggesting that the inactive, carbamylated enzyme remains intact and membrane associated. Molecular dynamics simulations generated conformational models congruent with the open, membrane-associated topology of active and inhibited, covalently-modified hMGL. Our data indicate that hMGL interaction with a phospholipid membrane bilayer induces regional changes in the enzyme's conformation that favor its recruiting lipophilic substrate/inhibitor from membrane stores to the active site via the lid, resulting in enhanced hMGL catalytic activity and substrate affinity. © 2013 The Protein Society.

  12. Mammalian phospholipid homeostasis: evidence that membrane curvature elastic stress drives homeoviscous adaptation in vivo.

    PubMed

    Dymond, Marcus K

    2016-08-01

    Several theories of phospholipid homeostasis have postulated that cells regulate the molecular composition of their bilayer membranes, such that a common biophysical membrane parameter is under homeostatic control. Two commonly cited theories are the intrinsic curvature hypothesis, which states that cells control membrane curvature elastic stress, and the theory of homeoviscous adaptation, which postulates cells control acyl chain packing order (membrane order). In this paper, we present evidence from data-driven modelling studies that these two theories correlate in vivo. We estimate the curvature elastic stress of mammalian cells to be 4-7 × 10(-12) N, a value high enough to suggest that in mammalian cells the preservation of membrane order arises through a mechanism where membrane curvature elastic stress is controlled. These results emerge from analysing the molecular contribution of individual phospholipids to both membrane order and curvature elastic stress in nearly 500 cellular compositionally diverse lipidomes. Our model suggests that the de novo synthesis of lipids is the dominant mechanism by which cells control curvature elastic stress and hence membrane order in vivo These results also suggest that cells can increase membrane curvature elastic stress disproportionately to membrane order by incorporating polyunsaturated fatty acids into lipids. © 2016 The Author(s).

  13. Mammalian phospholipid homeostasis: evidence that membrane curvature elastic stress drives homeoviscous adaptation in vivo

    PubMed Central

    2016-01-01

    Several theories of phospholipid homeostasis have postulated that cells regulate the molecular composition of their bilayer membranes, such that a common biophysical membrane parameter is under homeostatic control. Two commonly cited theories are the intrinsic curvature hypothesis, which states that cells control membrane curvature elastic stress, and the theory of homeoviscous adaptation, which postulates cells control acyl chain packing order (membrane order). In this paper, we present evidence from data-driven modelling studies that these two theories correlate in vivo. We estimate the curvature elastic stress of mammalian cells to be 4–7 × 10−12 N, a value high enough to suggest that in mammalian cells the preservation of membrane order arises through a mechanism where membrane curvature elastic stress is controlled. These results emerge from analysing the molecular contribution of individual phospholipids to both membrane order and curvature elastic stress in nearly 500 cellular compositionally diverse lipidomes. Our model suggests that the de novo synthesis of lipids is the dominant mechanism by which cells control curvature elastic stress and hence membrane order in vivo. These results also suggest that cells can increase membrane curvature elastic stress disproportionately to membrane order by incorporating polyunsaturated fatty acids into lipids. PMID:27534697

  14. Extraction of Phospholipids from Human Erythrocyte Membranes by Hemoglobin Oxidation Products.

    PubMed

    Brunauer, Linda S; Chen, James Y; Koontz, M Zachary; Davis, Kathryn K; O'Brien, Laura E; Wright, Emily M; Huestis, Wray H

    2016-06-01

    This investigation examines oxidation conditions under which hemoglobin extracts membrane phospholipid from erythrocytes and model membranes. In erythrocytes made echinocytic with exogenous phospholipid, addition of hemoglobin oxidized with hydrogen peroxide (H2O2) or Vitamin C (conditions that result in the formation of significant quantities of choleglobin), but not ferricyanide (which produces predominantly methemoglobin), induced dose-dependent shape reversion to less echinocytic forms, consistent with extraction of phospholipids from the exofacial side of the membrane. Erythrocytes preloaded with radiolabeled phosphatidylcholine or NBD-labeled phosphatidylcholine, phosphatidylglycerol or phosphatidic acid, exhibited greatest extraction of radiolabel or fluorescence signal with exogenous hemoglobin oxidized via H2O2 or Vitamin C, but not ferricyanide. However, with NBD-phosphatidylserine (a preferential inner monolayer intercalator), significantly less extraction of labeled lipid occurred with oxidized hemoglobin prepared under all three oxidizing conditions. In dimyristoylphosphatidylcholine liposomes containing radiolabeled phosphatidylcholine, phosphatidylserine or phosphatidylethanolamine, subsequent addition of hemoglobin oxidized with H2O2 or Vitamin C extracted radiolabeled lipid with significantly greater efficiency than ferricyanide-treated hemoglobin, with enhanced extraction detectable at levels approaching physiological plasma oxidant concentrations. Radiolabeled lipid extraction was comparable for phospholipids containing saturated acyl chains between 12 and 18 carbons but diminished significantly for oleoyl-containing phospholipids. Hemoglobin dimerization occurred at very low levels with H2O2 treatment, and even lower levels with Vitamin C treatment, and thus did not correlate to the high efficiency and consistent levels of lipid extraction observed with these treatments. These findings indicate that choleglobin extracts lipids from cell

  15. Changes in plasma membrane phospholipids inhibit antibody-mediated lysis.

    PubMed

    Harris, David T

    2012-01-06

    A variety of mechanisms have been proposed to explain how tumors evade immune destruction. This work has identified one such mechanism that determines susceptibility to immune lysis; membrane phospholipid composition altered susceptibility to antibody plus complement (Ab+C)-mediated lysis. Effects on antibody plus complement-mediated lysis were correlated with levels of major histocompatibility complex (MHC) molecules but not inherent resistance to complement damage. This cellular mechanism could be a means by which tumor cells escape immune detection and destruction. Copyright © 2011 Elsevier Inc. All rights reserved.

  16. Membrane Remodeling by a Bacterial Phospholipid-Methylating Enzyme

    PubMed Central

    Danne, Linna; Aktas, Meriyem; Unger, Andreas; Linke, Wolfgang A.; Erdmann, Ralf

    2017-01-01

    ABSTRACT Membrane deformation by proteins is a universal phenomenon that has been studied extensively in eukaryotes but much less in prokaryotes. In this study, we discovered a membrane-deforming activity of the phospholipid N-methyltransferase PmtA from the plant-pathogenic bacterium Agrobacterium tumefaciens. PmtA catalyzes the successive three-step N-methylation of phosphatidylethanolamine to phosphatidylcholine. Here, we defined the lipid and protein requirements for the membrane-remodeling activity of PmtA by a combination of transmission electron microscopy and liposome interaction studies. Dependent on the lipid composition, PmtA changes the shape of spherical liposomes either into filaments or small vesicles. Upon overproduction of PmtA in A. tumefaciens, vesicle-like structures occur in the cytoplasm, dependent on the presence of the anionic lipid cardiolipin. The N-terminal lipid-binding α-helix (αA) is involved in membrane deformation by PmtA. Two functionally distinct and spatially separated regions in αA can be distinguished. Anionic interactions by positively charged amino acids on one face of the helix are responsible for membrane recruitment of the enzyme. The opposite hydrophobic face of the helix is required for membrane remodeling, presumably by shallow insertion into the lipid bilayer. PMID:28196959

  17. Chitosan cushioned phospholipid membrane and its application in imaging ellipsometry based-biosensor

    NASA Astrophysics Data System (ADS)

    Zhang, Yibang; Chen, Yanyan; Jin, Gang

    2011-09-01

    Chitosan cushion can support the air stability of phospholipid membrane, but the problem of serum solubility of phospholipid membrane prevents it from use in serum detection applications. Poly (ethylene glycol) (PEG) shielding promises both stability and non-specific adsorption resistance for phospholipid membrane. An air stable phospholipid membrane microarray has been successfully fabricated on chitosan modified silicon wafer. We have demonstrated the potential application of PEGylated phospholipid membrane in imaging ellipsometry-based protein biosensor. Because of the strong resistance against non-specific adsorption of serum, antigens are immobilized onto the membrane surface through chemical activation and further bind their antibodies without using blocking agent. Taking advantage of the multiple and parallel reaction capabilities of microfluidic reactor system, we have assayed the binding by varying both the density of antigen on the membrane surface and the concentration of antibody in solution.

  18. Characterization of phospholipid composition and its control in the plasma membrane of developing soybean root

    SciTech Connect

    Whitman, C.E.

    1985-01-01

    The phospholipid composition of plasma membrane enriched fractions from developing soybean root and several mechanisms which may regulate it have been examined. Plasma membrane vesicles were isolated from meristematic and mature sections of four-day-old dark grown soybean roots (Glycine max (L.) Merr. Cult. Wells II). Analysis of lipid extracts revealed two major phospholipid classes: phosphatidylcholine and phosphatidylethanolamine. Minor phospholipid classes were phosphatidylinositol, phosphatidylserine, phosphatidylgylcerol and diphosphatidylgylcerol. Phospholipid composition was similar at each developmental stage. Fatty acids of phosphatidylcholine and phosphatidylethanolamine were 16:0, 18:0, 18:2, and 18:3. Fatty acid composition varied with both phospholipid class and the developmental stage of the root. The degradation of phosphatidylcholine by endogenous phospholipase D during membrane isolation indicated that this enzyme might be involved in phospholipid turnover within the membrane. Phospholipase D activity was heat labile and increasing the pH of the enzyme assay from 5.3 to 7.8 resulted in 90% inhibition of activity. The turnover of fatty acids within the phospholipids of the plasma membrane was studied. Mature root sections were incubated with (1-/sup 14/C) acetate, 1 mM Na acetate and 50 ..mu..g/ml chloramphenicol. Membrane lipid extracts analyzed for phospholipid class and acyl chain composition revealed that the long incubation times did not alter the phospholipid composition of the plasma membrane enriched fraction.

  19. Modulation of Plasma Membrane Ca2+-ATPase by Neutral Phospholipids

    PubMed Central

    Pignataro, María Florencia; Dodes-Traian, Martín M.; González-Flecha, F. Luis; Sica, Mauricio; Mangialavori, Irene C.; Rossi, Juan Pablo F. C.

    2015-01-01

    The effects of lipids on membrane proteins are likely to be complex and unique for each membrane protein. Here we studied different detergent/phosphatidylcholine reconstitution media and tested their effects on plasma membrane Ca2+ pump (PMCA). We found that Ca2+-ATPase activity shows a biphasic behavior with respect to the detergent/phosphatidylcholine ratio. Moreover, the maximal Ca2+-ATPase activity largely depends on the length and the unsaturation degree of the hydrocarbon chain. Using static light scattering and fluorescence correlation spectroscopy, we monitored the changes in hydrodynamic radius of detergent/phosphatidylcholine particles during the micelle-vesicle transition. We found that, when PMCA is reconstituted in mixed micelles, neutral phospholipids increase the enzyme turnover. The biophysical changes associated with the transition from mixed micelles to bicelles increase the time of residence of the phosphorylated intermediate (EP), decreasing the enzyme turnover. Molecular dynamics simulations analysis of the interactions between PMCA and the phospholipid bilayer in which it is embedded show that in the 1,2-dioleoyl-sn-glycero-3-phosphocholine bilayer, charged residues of the protein are trapped in the hydrophobic core. Conversely, in the 1,2-dimyristoyl-sn-glycero-3-phosphocholine bilayer, the overall hydrophobic-hydrophilic requirements of the protein surface are fulfilled the best, reducing the thermodynamic cost of exposing charged residues to the hydrophobic core. The apparent mismatch produced by a 1,2-dioleoyl-sn-glycero-3-phosphocholine thicker bilayer could be a structural foundation to explain its functional effect on PMCA. PMID:25605721

  20. Probing Lipid Membrane Rafts (Microdomains) with Fluorescent Phospholipids

    NASA Astrophysics Data System (ADS)

    Gu, Yongwen; Mitchel, Drake

    2011-10-01

    Membrane rafts are enriched in sphingolipids and cholesterol, they exist in a more ordered state (the liquid-ordered phase; lo) than the bulk membrane (the liquid-disordered phase; ld). Ternary mixtures of palmitoyl-oleoyl-phosphocholine (POPC; 16:0,18:1 PC), sphingomyelin (SPM), and cholesterol (Chol) form membrane rafts over a wide range of molar ratios. We are examining the ability of two fluorescent probes, NBD linked to di-16:0 PE which partitions into the lo phase, and NBD linked to di-18:1 PE which partitions into the ld phase, to detect these two phases. We are also examining the effect of the highly polyunsaturated phospholipid stearoyl-docosahexanoyl-phosphocholine (SDPC; 18:0, 22:6 PC) on the size and stability of POPC/SPM/Chol membrane rafts. We report on the fluorescence lifetime and anisotropy decay dynamics of two fluorescent probes. Data were acquired via frequency-domain measurements from 5 to 250 MHz.

  1. Smoking and Red Blood Cell Phospholipid Membrane Fatty Acids

    PubMed Central

    Murff, H.J.; Tindle, H.A.; Shrubsole, M.J.; Cai, Q.; Smalley, W.; Milne, G.L.; Swift, L.L.; Ness, R. M.; Zheng, W.

    2016-01-01

    Smoking is associated with lower n-3 long chain polyunsaturated fatty acids (LCPUFA) concentrations; however, limited studies have accounted for dietary PUFA intake or whether tobacco dose or smoking duration influences this association. We measured red blood cell phospholipid (RBC) membrane concentrations of fatty acids in 126 current smokers, 311 former smokers, and 461 never smokers using gas liquid chromatography and tandem mass spectrometry. Smokers had lower RBC membrane percentages of total n-3 LCPUFAs compared to former smokers or never smokers (median percent: 5.46, [interquartile range (IQR) 4.52, 6.28] versus 6.39; [IQR: 5.18, 7.85] versus 6.59; [IQR 5.34, 8.01]) (p < 0.001) and this association remained after adjusting for dietary PUFA intake. Duration of smoking and cigarettes per day were not associated with RBC membrane n-3 LCPUFA differences. Smoking is associated with lower n-3 LCPUFA RBC membrane percentages and this association was not influenced by diet or smoking dose or duration. PMID:27637337

  2. Smoking and red blood cell phospholipid membrane fatty acids.

    PubMed

    Murff, H J; Tindle, H A; Shrubsole, M J; Cai, Q; Smalley, W; Milne, G L; Swift, L L; Ness, R M; Zheng, W

    2016-09-01

    Smoking is associated with lower n-3 long chain polyunsaturated fatty acids (LCPUFA) concentrations; however, limited studies have accounted for dietary PUFA intake or whether tobacco dose or smoking duration influences this association. We measured red blood cell phospholipid (RBC) membrane concentrations of fatty acids in 126 current smokers, 311 former smokers, and 461 never smokers using gas liquid chromatography and tandem mass spectrometry. Smokers had lower RBC membrane percentages of total n-3 LCPUFAs compared to former smokers or never smokers (median percent: 5.46, [interquartile range (IQR) 4.52, 6.28] versus 6.39; [IQR: 5.18, 7.85] versus 6.59; [IQR 5.34, 8.01]) (p<0.001) and this association remained after adjusting for dietary PUFA intake. Duration of smoking and cigarettes per day were not associated with RBC membrane n-3 LCPUFA differences. Smoking is associated with lower n-3 LCPUFA RBC membrane percentages and this association was not influenced by diet or smoking dose or duration. Published by Elsevier Ltd.

  3. Dynamic shaping of cellular membranes by phospholipids and membrane-deforming proteins.

    PubMed

    Suetsugu, Shiro; Kurisu, Shusaku; Takenawa, Tadaomi

    2014-10-01

    All cellular compartments are separated from the external environment by a membrane, which consists of a lipid bilayer. Subcellular structures, including clathrin-coated pits, caveolae, filopodia, lamellipodia, podosomes, and other intracellular membrane systems, are molded into their specific submicron-scale shapes through various mechanisms. Cells construct their micro-structures on plasma membrane and execute vital functions for life, such as cell migration, cell division, endocytosis, exocytosis, and cytoskeletal regulation. The plasma membrane, rich in anionic phospholipids, utilizes the electrostatic nature of the lipids, specifically the phosphoinositides, to form interactions with cytosolic proteins. These cytosolic proteins have three modes of interaction: 1) electrostatic interaction through unstructured polycationic regions, 2) through structured phosphoinositide-specific binding domains, and 3) through structured domains that bind the membrane without specificity for particular phospholipid. Among the structured domains, there are several that have membrane-deforming activity, which is essential for the formation of concave or convex membrane curvature. These domains include the amphipathic helix, which deforms the membrane by hemi-insertion of the helix with both hydrophobic and electrostatic interactions, and/or the BAR domain superfamily, known to use their positively charged, curved structural surface to deform membranes. Below the membrane, actin filaments support the micro-structures through interactions with several BAR proteins as well as other scaffold proteins, resulting in outward and inward membrane micro-structure formation. Here, we describe the characteristics of phospholipids, and the mechanisms utilized by phosphoinositides to regulate cellular events. We then summarize the precise mechanisms underlying the construction of membrane micro-structures and their involvements in physiological and pathological processes. Copyright © 2014 the

  4. Mammalian phospholipid homeostasis: homeoviscous adaptation deconstructed by lipidomic data driven modelling.

    PubMed

    Dymond, Marcus K

    2015-10-01

    One of the mostly widely cited theories of phospholipid homeostasis is the theory of homeoviscous adaptation (HVA). HVA states that cells maintain membrane order (frequently discussed in terms of membrane fluidity or viscosity) within tight conditions in response to environmental induced changes in membrane lipid composition. In this article we use data driven modelling to investigate membrane order, using methodology we previously developed to investigate another theory of phospholipid homeostasis, the intrinsic curvature hypothesis. A set of coarse-grain parameters emerge from our model which can be used to deconstruct the relative contribution of each component membrane phospholipid to net membrane order. Our results suggest, for the membranes in the mammalian cells we have studied, that a ratio control function can be used to model membrane order. Using asynchronous cell lines we quantify the relative contribution of around 130 lipid species to net membrane order, finding that around 16 of these phospholipid species have the greatest effect in vivo. Then using lipidomic data obtained from partially synchronised cultures of HeLa cells we are able to demonstrate that these same 16 lipid species drive the changes in membrane order observed around the cell cycle. Our findings in this study suggest, when compared with our previous work, that cells maintain both membrane order and membrane intrinsic curvature within tight conditions. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  5. Reconstitution of the membrane protein OmpF into biomimetic block copolymer–phospholipid hybrid membranes

    PubMed Central

    Bieligmeyer, Matthias; Artukovic, Franjo; Hirth, Thomas; Schiestel, Thomas

    2016-01-01

    Summary Structure and function of many transmembrane proteins are affected by their environment. In this respect, reconstitution of a membrane protein into a biomimetic polymer membrane can alter its function. To overcome this problem we used membranes formed by poly(1,4-isoprene-block-ethylene oxide) block copolymers blended with 1,2-diphytanoyl-sn-glycero-3-phosphocholine. By reconstituting the outer membrane protein OmpF from Escherichia coli into these membranes, we demonstrate functionality of this protein in biomimetic lipopolymer membranes, independent of the molecular weight of the block copolymers. At low voltages, the channel conductance of OmpF in 1 M KCl was around 2.3 nS. In line with these experiments, integration of OmpF was also revealed by impedance spectroscopy. Our results indicate that blending synthetic polymer membranes with phospholipids allows for the reconstitution of transmembrane proteins under preservation of protein function, independent of the membrane thickness. PMID:27547605

  6. Reconstitution of the membrane protein OmpF into biomimetic block copolymer-phospholipid hybrid membranes.

    PubMed

    Bieligmeyer, Matthias; Artukovic, Franjo; Nussberger, Stephan; Hirth, Thomas; Schiestel, Thomas; Müller, Michaela

    2016-01-01

    Structure and function of many transmembrane proteins are affected by their environment. In this respect, reconstitution of a membrane protein into a biomimetic polymer membrane can alter its function. To overcome this problem we used membranes formed by poly(1,4-isoprene-block-ethylene oxide) block copolymers blended with 1,2-diphytanoyl-sn-glycero-3-phosphocholine. By reconstituting the outer membrane protein OmpF from Escherichia coli into these membranes, we demonstrate functionality of this protein in biomimetic lipopolymer membranes, independent of the molecular weight of the block copolymers. At low voltages, the channel conductance of OmpF in 1 M KCl was around 2.3 nS. In line with these experiments, integration of OmpF was also revealed by impedance spectroscopy. Our results indicate that blending synthetic polymer membranes with phospholipids allows for the reconstitution of transmembrane proteins under preservation of protein function, independent of the membrane thickness.

  7. Membrane potential modulates plasma membrane phospholipid dynamics and K-Ras signaling

    PubMed Central

    Zhou, Yong; Wong, Ching-On; Cho, Kwang-jin; van der Hoeven, Dharini; Liang, Hong; Thakur, Dhananiay P.; Luo, Jialie; Babic, Milos; Zinsmaier, Konrad E.; Zhu, Michael X.; Hu, Hongzhen; Venkatachalam, Kartik; Hancock, John F.

    2015-01-01

    Plasma membrane depolarization can trigger cell proliferation, but how membrane potential influences mitogenic signaling is uncertain. Here, we show that plasma membrane depolarization induces nanoscale reorganization of phosphatidylserine and phosphatidylinositol 4,5-bisphosphate but not other anionic phospholipids. K-Ras, which is targeted to the plasma membrane by electrostatic interactions with phosphatidylserine, in turn undergoes enhanced nanoclustering. Depolarization-induced changes in phosphatidylserine and K-Ras plasma membrane organization occur in fibroblasts, excitable neuroblastoma cells, and Drosophila neurons in vivo and robustly amplify K-Ras–dependent mitogen-activated protein kinase (MAPK) signaling. Conversely, plasma membrane repolarization disrupts K-Ras nanoclustering and inhibits MAPK signaling. By responding to voltage-induced changes in phosphatidylserine spatiotemporal dynamics, K-Ras nanoclusters set up the plasma membrane as a biological field-effect transistor, allowing membrane potential to control the gain in mitogenic signaling circuits. PMID:26293964

  8. SIGNAL TRANSDUCTION. Membrane potential modulates plasma membrane phospholipid dynamics and K-Ras signaling.

    PubMed

    Zhou, Yong; Wong, Ching-On; Cho, Kwang-jin; van der Hoeven, Dharini; Liang, Hong; Thakur, Dhananiay P; Luo, Jialie; Babic, Milos; Zinsmaier, Konrad E; Zhu, Michael X; Hu, Hongzhen; Venkatachalam, Kartik; Hancock, John F

    2015-08-21

    Plasma membrane depolarization can trigger cell proliferation, but how membrane potential influences mitogenic signaling is uncertain. Here, we show that plasma membrane depolarization induces nanoscale reorganization of phosphatidylserine and phosphatidylinositol 4,5-bisphosphate but not other anionic phospholipids. K-Ras, which is targeted to the plasma membrane by electrostatic interactions with phosphatidylserine, in turn undergoes enhanced nanoclustering. Depolarization-induced changes in phosphatidylserine and K-Ras plasma membrane organization occur in fibroblasts, excitable neuroblastoma cells, and Drosophila neurons in vivo and robustly amplify K-Ras-dependent mitogen-activated protein kinase (MAPK) signaling. Conversely, plasma membrane repolarization disrupts K-Ras nanoclustering and inhibits MAPK signaling. By responding to voltage-induced changes in phosphatidylserine spatiotemporal dynamics, K-Ras nanoclusters set up the plasma membrane as a biological field-effect transistor, allowing membrane potential to control the gain in mitogenic signaling circuits.

  9. Fatty acid remodeling by LPCAT3 enriches arachidonate in phospholipid membranes and regulates triglyceride transport

    PubMed Central

    Hashidate-Yoshida, Tomomi; Harayama, Takeshi; Hishikawa, Daisuke; Morimoto, Ryo; Hamano, Fumie; Tokuoka, Suzumi M; Eto, Miki; Tamura-Nakano, Miwa; Yanobu-Takanashi, Rieko; Mukumoto, Yoshiko; Kiyonari, Hiroshi; Okamura, Tadashi; Kita, Yoshihiro; Shindou, Hideo; Shimizu, Takao

    2015-01-01

    Polyunsaturated fatty acids (PUFAs) in phospholipids affect the physical properties of membranes, but it is unclear which biological processes are influenced by their regulation. For example, the functions of membrane arachidonate that are independent of a precursor role for eicosanoid synthesis remain largely unknown. Here, we show that the lack of lysophosphatidylcholine acyltransferase 3 (LPCAT3) leads to drastic reductions in membrane arachidonate levels, and that LPCAT3-deficient mice are neonatally lethal due to an extensive triacylglycerol (TG) accumulation and dysfunction in enterocytes. We found that high levels of PUFAs in membranes enable TGs to locally cluster in high density, and that this clustering promotes efficient TG transfer. We propose a model of local arachidonate enrichment by LPCAT3 to generate a distinct pool of TG in membranes, which is required for normal directionality of TG transfer and lipoprotein assembly in the liver and enterocytes. DOI: http://dx.doi.org/10.7554/eLife.06328.001 PMID:25898003

  10. Probing of the combined effect of bisquaternary ammonium antimicrobial agents and acetylsalicylic acid on model phospholipid membranes: differential scanning calorimetry and mass spectrometry studies.

    PubMed

    Kasian, N A; Pashynska, V A; Vashchenko, O V; Krasnikova, A O; Gömöry, A; Kosevich, M V; Lisetski, L N

    2014-12-01

    A model molecular biosystem of hydrated dipalmitoylphosphatidylcholine (DPPC) bilayers that mimics cell biomembranes is used to probe combined membranotropic effects of drugs by instrumental techniques of molecular biophysics. Differential scanning calorimetry reveals that doping of the DPPC model membrane with individual bisquaternary ammonium compounds (BQAC) decamethoxinum, ethonium, thionium and acetylsalicylic acid (ASA) leads to lowering of the membrane melting temperature (Tm) pointing to membrane fluidization. Combined application of the basic BQAC and acidic ASA causes an opposite effect on Tm (increase), corresponding to the membrane densification. Thus, modulation of the membranotropic effects upon combined use of the drugs studied can be revealed at the level of model membranes. Formation of noncovalent supramolecular complexes of the individual BQACs and ASA with DPPC molecules, which may be involved in the mechanism of the drug-membrane interaction at the molecular level, is demonstrated by electrospray ionization (ESI) mass spectrometry. In the ternary (DPPC + ASA + BQAC) model systems, the stable complexes of the BQAC dication with the ASA anion, which may be responsible for modulation of the membranotropic effects of the drugs, were recorded by ESI mass spectrometry. The proposed approach can be further developed for preliminary evaluation of the combined effects of the drugs at the level of model lipid membranes prior to tests on living organisms.

  11. Condensation of silica nanoparticles on a phospholipid membrane

    NASA Astrophysics Data System (ADS)

    Asadchikov, V. E.; Volkov, V. V.; Volkov, Yu. O.; Dembo, K. A.; Kozhevnikov, I. V.; Roshchin, B. S.; Frolov, D. A.; Tikhonov, A. M.

    2011-12-01

    The structure of the transient layer at the interface between air and the aqueous solution of silica nanoparticles with the size distribution of particles that has been determined from small-angle scattering has been studied by the X-ray reflectometry method. The reconstructed depth profile of the polarizability of the substance indicates the presence of a structure consisting of several layers of nanoparticles with the thickness that is more than twice as large as the thickness of the previously described structure. The adsorption of 1,2-distearoyl-sn-glycero-3-phosphocholine molecules at the hydrosol/air interface is accompanied by the condensation of anion silica nanoparticles at the interface. This phenomenon can be qualitatively explained by the formation of the positive surface potential due to the penetration and accumulation of Na+ cations in the phospholipid membrane.

  12. A molecular dynamics model of rhodamine-labeled phospholipid incorporated into a lipid bilayer

    NASA Astrophysics Data System (ADS)

    Kyrychenko, Alexander

    2010-01-01

    Phospholipids, labeled covalently by a fluorescent dye, are commonly applied in membrane biophysics. In this work, a molecular dynamics model of sulforhodamine attached covalently to a headgroup of 1,2-dipalmitoyl- sn-glycero-3-phosphoethanolamine is developed. It is found that the incorporation of rhodamine-labeled phospholipids into a DPPC bilayer at the low concentration results in small perturbation of the bilayer. In the dye-labeled membrane, the sulforhodamine moiety binds favorably to a polar membrane interface, forming the tilt angle 44° ± 8° to the bilayer normal. The deep location and binding of a bulk sulforhodamine fluorophore lead, therefore, to some 'softening' of the membrane structure.

  13. Rhamnose Links Moonlighting Proteins to Membrane Phospholipid in Mycoplasmas

    PubMed Central

    Daubenspeck, James M.; Liu, Runhua; Dybvig, Kevin

    2016-01-01

    Many proteins that have a primary function as a cytoplasmic protein are known to have the ability to moonlight on the surface of nearly all organisms. An example is the glycolytic enzyme enolase, which can be found on the surface of many types of cells from bacteria to human. Surface enolase is not enzymatic because it is monomeric and oligomerization is required for glycolytic activity. It can bind various molecules and activate plasminogen. Enolase lacks a signal peptide and the mechanism by which it attaches to the surface is unknown. We found that treatment of whole cells of the murine pathogen Mycoplasma pulmonis with phospholipase D released enolase and other common moonlighting proteins. Glycostaining suggested that the released proteins were glycosylated. Cytoplasmic and membrane-bound enolase was isolated by immunoprecipitation. No post-translational modification was detected on cytoplasmic enolase, but membrane enolase was associated with lipid, phosphate and rhamnose. Treatment with phospholipase released the lipid and phosphate from enolase but not the rhamnose. The site of rhamnosylation was identified as a glutamine residue near the C-terminus of the protein. Rhamnose has been found in all species of mycoplasma examined but its function was previously unknown. Mycoplasmas are small bacteria with have no peptidoglycan, and rhamnose in these organisms is also not associated with polysaccharide. We suggest that rhamnose has a central role in anchoring proteins to the membrane by linkage to phospholipid, which may be a general mechanism for the membrane association of moonlighting proteins in mycoplasmas and perhaps other bacteria. PMID:27603308

  14. Glycosidated phospholipids: uncoupling of signalling pathways at the plasma membrane.

    PubMed

    Danker, Kerstin; Reutter, Werner; Semini, Geo

    2010-05-01

    Cell expansion and metastasis are considered hallmarks of tumour progression. Therefore, efforts have been made to develop novel anti-cancer drugs that inhibit both the proliferation and the motility of tumour cells. Synthetic alkylphospholipids, compounds with aliphatic side chains that are ether linked to a glycerol backbone, are structurally derived from platelet-activating factor and represent a new class of drugs with anti-proliferative properties in tumour cells. These compounds do not interfere with the DNA or mitotic spindle apparatus of the cell. Instead, they are incorporated into cell membranes, where they accumulate and interfere with lipid metabolism and lipid-dependent signalling pathways. Recently, it has been shown that the most commonly studied alkylphospholipids inhibit proliferation by inducing apoptosis in malignant cells while leaving normal cells unaffected. This review focuses on a novel group of synthetic alkylphospholipids, the glycosidated phospholipids, which contain carbohydrates or carbohydrate-related molecules at the sn-2 position of the glycerol backbone. Members of this subfamily also exhibit anti-proliferative capacity and modulate the cell adhesion, differentiation, and migration of tumour cells. Among this group, Ino-C2-PAF shows the highest efficacy and low cytotoxicity. Apart from its anti-proliferative effect, Ino-C2-PAF strongly reduces cell motility via its inhibitory effect on the phosphorylation of the cytosolic tyrosine kinases FAK and Src. Signalling pathways under the control of the FAK/Src complex are normally required for both migration and proliferation and play a prominent role in tumour progression. We intend to highlight the potential of glycosidated phospholipids, especially Ino-C2-PAF, as a promising new group of drugs for the treatment of hyperproliferative and migration-based skin diseases.

  15. Phospholipid Membrane Protection by Sugar Molecules during Dehydration-Insights into Molecular Mechanisms Using Scattering Techniques

    SciTech Connect

    Garvey, Christopher J.; Lenné, Thomas; Koster, Karen L.; Kent, Ben; Bryant, Gary

    2014-09-24

    Scattering techniques have played a key role in our understanding of the structure and function of phospholipid membranes. These techniques have been applied widely to study how different molecules (e.g., cholesterol) can affect phospholipid membrane structure. However, there has been much less attention paid to the effects of molecules that remain in the aqueous phase. One important example is the role played by small solutes, particularly sugars, in protecting phospholipid membranes during drying or slow freezing. In this paper, we present new results and a general methodology, which illustrate how contrast variation small angle neutron scattering (SANS) and synchrotron-based X-ray scattering (small angle (SAXS) and wide angle (WAXS)) can be used to quantitatively understand the interactions between solutes and phospholipids. Specifically, we show the assignment of lipid phases with synchrotron SAXS and explain how SANS reveals the exclusion of sugars from the aqueous region in the particular example of hexagonal II phases formed by phospholipids.

  16. Phospholipid Membrane Protection by Sugar Molecules during Dehydration—Insights into Molecular Mechanisms Using Scattering Techniques

    PubMed Central

    Garvey, Christopher J.; Lenné, Thomas; Koster, Karen L.; Kent, Ben; Bryant, Gary

    2013-01-01

    Scattering techniques have played a key role in our understanding of the structure and function of phospholipid membranes. These techniques have been applied widely to study how different molecules (e.g., cholesterol) can affect phospholipid membrane structure. However, there has been much less attention paid to the effects of molecules that remain in the aqueous phase. One important example is the role played by small solutes, particularly sugars, in protecting phospholipid membranes during drying or slow freezing. In this paper, we present new results and a general methodology, which illustrate how contrast variation small angle neutron scattering (SANS) and synchrotron-based X-ray scattering (small angle (SAXS) and wide angle (WAXS)) can be used to quantitatively understand the interactions between solutes and phospholipids. Specifically, we show the assignment of lipid phases with synchrotron SAXS and explain how SANS reveals the exclusion of sugars from the aqueous region in the particular example of hexagonal II phases formed by phospholipids. PMID:23584028

  17. Variation of the detergent-binding capacity and phospholipid content of membrane proteins when purified in different detergents.

    PubMed

    Ilgü, Hüseyin; Jeckelmann, Jean-Marc; Gachet, María Salomé; Boggavarapu, Rajendra; Ucurum, Zöhre; Gertsch, Jürg; Fotiadis, Dimitrios

    2014-04-15

    Purified membrane proteins are ternary complexes consisting of protein, lipid, and detergent. Information about the amounts of detergent and endogenous phospholipid molecules bound to purified membrane proteins is largely lacking. In this systematic study, three model membrane proteins of different oligomeric states were purified in nine different detergents at commonly used concentrations and characterized biochemically and biophysically. Detergent-binding capacities and phospholipid contents of the model proteins were determined and compared. The insights on ternary complexes obtained from the experimental results, when put into a general context, are summarized as follows. 1), The amount of detergent and 2) the amount of endogenous phospholipids bound to purified membrane proteins are dependent on the size of the hydrophobic lipid-accessible protein surface areas and the physicochemical properties of the detergents used. 3), The size of the detergent and lipid belt surrounding the hydrophobic lipid-accessible surface of purified membrane proteins can be tuned by the appropriate choice of detergent. 4), The detergents n-nonyl-β-D-glucopyranoside and Cymal-5 have exceptional delipidating effects on ternary complexes. 5), The types of endogenous phospholipids bound to membrane proteins can vary depending on the detergent used for solubilization and purification. 6), Furthermore, we demonstrate that size-exclusion chromatography can be a suitable method for estimating the molecular mass of ternary complexes. The findings presented suggest a strategy to control and tune the numbers of detergent and endogenous phospholipid molecules bound to membrane proteins. These two parameters are potentially important for the successul crystallization of membrane proteins for structure determination by crystallographic approaches. Copyright © 2014 Biophysical Society. Published by Elsevier Inc. All rights reserved.

  18. Variation of the Detergent-Binding Capacity and Phospholipid Content of Membrane Proteins When Purified in Different Detergents

    PubMed Central

    Ilgü, Hüseyin; Jeckelmann, Jean-Marc; Gachet, María Salomé; Boggavarapu, Rajendra; Ucurum, Zöhre; Gertsch, Jürg; Fotiadis, Dimitrios

    2014-01-01

    Purified membrane proteins are ternary complexes consisting of protein, lipid, and detergent. Information about the amounts of detergent and endogenous phospholipid molecules bound to purified membrane proteins is largely lacking. In this systematic study, three model membrane proteins of different oligomeric states were purified in nine different detergents at commonly used concentrations and characterized biochemically and biophysically. Detergent-binding capacities and phospholipid contents of the model proteins were determined and compared. The insights on ternary complexes obtained from the experimental results, when put into a general context, are summarized as follows. 1), The amount of detergent and 2) the amount of endogenous phospholipids bound to purified membrane proteins are dependent on the size of the hydrophobic lipid-accessible protein surface areas and the physicochemical properties of the detergents used. 3), The size of the detergent and lipid belt surrounding the hydrophobic lipid-accessible surface of purified membrane proteins can be tuned by the appropriate choice of detergent. 4), The detergents n-nonyl-β-D-glucopyranoside and Cymal-5 have exceptional delipidating effects on ternary complexes. 5), The types of endogenous phospholipids bound to membrane proteins can vary depending on the detergent used for solubilization and purification. 6), Furthermore, we demonstrate that size-exclusion chromatography can be a suitable method for estimating the molecular mass of ternary complexes. The findings presented suggest a strategy to control and tune the numbers of detergent and endogenous phospholipid molecules bound to membrane proteins. These two parameters are potentially important for the successul crystallization of membrane proteins for structure determination by crystallographic approaches. PMID:24739165

  19. Parallel artificial liquid membrane extraction as an efficient tool for removal of phospholipids from human plasma.

    PubMed

    Ask, Kristine Skoglund; Bardakci, Turgay; Parmer, Marthe Petrine; Halvorsen, Trine Grønhaug; Øiestad, Elisabeth Leere; Pedersen-Bjergaard, Stig; Gjelstad, Astrid

    2016-09-10

    Generic Parallel Artificial Liquid Membrane Extraction (PALME) methods for non-polar basic and non-polar acidic drugs from human plasma were investigated with respect to phospholipid removal. In both cases, extractions in 96-well format were performed from plasma (125μL), through 4μL organic solvent used as supported liquid membranes (SLMs), and into 50μL aqueous acceptor solutions. The acceptor solutions were subsequently analysed by liquid chromatography-tandem mass spectrometry (LC-MS/MS) using in-source fragmentation and monitoring the m/z 184→184 transition for investigation of phosphatidylcholines (PC), sphingomyelins (SM), and lysophosphatidylcholines (Lyso-PC). In both generic methods, no phospholipids were detected in the acceptor solutions. Thus, PALME appeared to be highly efficient for phospholipid removal. To further support this, qualitative (post-column infusion) and quantitative matrix effects were investigated with fluoxetine, fluvoxamine, and quetiapine as model analytes. No signs of matrix effects were observed. Finally, PALME was evaluated for the aforementioned drug substances, and data were in accordance with European Medicines Agency (EMA) guidelines. Copyright © 2016 Elsevier B.V. All rights reserved.

  20. On the formation of a macroscopically flat phospholipid membrane on a hydrosol substrate

    NASA Astrophysics Data System (ADS)

    Tikhonov, A. M.; Asadchikov, V. E.; Volkov, Yu. O.

    2015-10-01

    The dependence of the structure of a phospholipid layer (DSPC and SOPC) adsorbed on a hydrosol substrate on the concentration of NaOH in a solution of 5-nm silica particles has been studied by X-ray reflectrometry with the use of synchrotron radiation. Profiles of the electron density (polarizability) have been reconstructed from the experimental data within a model-independent approach. According to these profiles, the thickness of the lipid film can vary from a monolayer (~35 Å) to several bilayers (~450 Å). At the volume concentration of NaOH of ~0.5 mol/L, the film on the hydrosol surface is a macroscopically flat phospholipid membrane (bilayer) with a thickness of ~60 Å and with areas of (45 ± 2) and (49 ± 3) Å2 per DSPC and SOPC molecule, respectively.

  1. Alteration of membrane phospholipid methylation by adenosine analogs does not affect T lymphocyte activation

    SciTech Connect

    Gormand, F.; Pacheco, Y. ); Fonlupt, P. ); Revillard, J.P. )

    1990-01-01

    Membrane phospholipid methylation has been described during activation of various immune cells. Moreover recent data indicated modulation of immune cells functions by adenosine. As S-adenosyl-methionine and S-adenosyl-homocysteine are adenosine analogs and modulators of transmethylation reactions, the effects of SAH and SAM were investigated on membrane phospholipid methylation and lymphocyte activation. SAM was shown to induce the membrane phospholipid methylation as assessed by the {sup 3}Hmethyl-incorporation in membrane extract. This effect was inhibited by SAH. In contrast SAM and SAH did not affect the phytohemagglutinin-induced proliferative response of peripheral blood mononuclear cells. SAH neither modified the early internalization of membrane CD3 antigens nor did it prevent the late expression of HLA-DR antigens on lymphocytes activated by phytohemagglutinin. These results indicate that in vitro alteration of phospholipid methylation does not affect subsequent steps of human T lymphocyte activation and proliferation.

  2. Phospholipid Membrane-Mediated Hemozoin Formation: The Effects of Physical Properties and Evidence of Membrane Surrounding Hemozoin

    PubMed Central

    Men, Tran Thanh; Hirayama, Kenji; Hirase, Ai; Miyazawa, Atsuo; Kamei, Kaeko

    2013-01-01

    Phospholipid membranes are thought to be one of the main inducers of hemozoin formation in Plasmodia and other blood-feeding parasites. The “membrane surrounding hemozoin” has been observed in infected cells but has not been observed in in vitro experiments. This study focused on observing the association of phospholipid membranes and synthetic β-hematin, which is chemically identical to hemozoin, and on a further exploration into the mechanism of phospholipid membrane-induced β-hematin formation. Our results showed that β-hematin formation was induced by phospholipids in the fluid phase but not in the gel phase. The ability of phospholipids to induce β-hematin formation was inversely correlated with gel-to-liquid phase transition temperatures, suggesting an essential insertion of heme into the hydrocarbon chains of the phospholipid membrane to form β-hematin. For this study, a cryogenic transmission electron microscope was used to achieve the first direct observation of the formation of a monolayer of phospholipid membrane surrounding β-hematin. PMID:23894579

  3. Flip-Flop of Phospholipids in Proteoliposomes Reconstituted from Detergent Extract of Chloroplast Membranes: Kinetics and Phospholipid Specificity

    PubMed Central

    Rajasekharan, Archita; Gummadi, Sathyanarayana N.

    2011-01-01

    Eukaryotic cells are compartmentalized into distinct sub-cellular organelles by lipid bilayers, which are known to be involved in numerous cellular processes. The wide repertoire of lipids, synthesized in the biogenic membranes like the endoplasmic reticulum and bacterial cytoplasmic membranes are initially localized in the cytosolic leaflet and some of these lipids have to be translocated to the exoplasmic leaflet for membrane biogenesis and uniform growth. It is known that phospholipid (PL) translocation in biogenic membranes is mediated by specific membrane proteins which occur in a rapid, bi-directional fashion without metabolic energy requirement and with no specificity to PL head group. A recent study reported the existence of biogenic membrane flippases in plants and that the mechanism of plant membrane biogenesis was similar to that found in animals. In this study, we demonstrate for the first time ATP independent and ATP dependent flippase activity in chloroplast membranes of plants. For this, we generated proteoliposomes from Triton X-100 extract of intact chloroplast, envelope membrane and thylakoid isolated from spinach leaves and assayed for flippase activity using fluorescent labeled phospholipids. Half-life time of flipping was found to be 6±1 min. We also show that: (a) intact chloroplast and envelope membrane reconstituted proteoliposomes can flip fluorescent labeled analogs of phosphatidylcholine in ATP independent manner, (b) envelope membrane and thylakoid reconstituted proteoliposomes can flip phosphatidylglycerol in ATP dependent manner, (c) Biogenic membrane ATP independent PC flipping activity is protein mediated and (d) the kinetics of PC translocation gets affected differently upon treatment with protease and protein modifying reagents. PMID:22174798

  4. Self-assembly of single integral membrane proteins into soluble nanoscale phospholipid bilayers

    PubMed Central

    Bayburt, Timothy H.; Sligar, Stephen G.

    2003-01-01

    One of the biggest challenges in pharmaceutical research is obtaining integral membrane proteins in a functional, solubilized, and monodisperse state that provides a native-like environment that maintains the spectrum of in vivo activities. Many of these integral membrane proteins are receptors, enzymes, or other macromolecular assemblies that are important drug targets. An example is the general class of proteins composed of seven-transmembrane segments (7-TM) as exemplified by the G-protein–coupled receptors. In this article, we describe a simple system for self-assembling bacteriorhodopsin, as a model protein containing 7-TM helices, with phospholipids to form a nanometer-scale soluble bilayer structure encircled by a 200 amino acid scaffold protein. The result is the single molecule incorporation of an integral membrane protein target into a soluble and monodisperse structure that allows the structural and functional tools of solution biochemistry to be applied. PMID:14573860

  5. Transport of the anti-cancer drug doxorubicin across cytoplasmic membranes and membranes composed of phospholipids derived from Escherichia coli occurs via a similar mechanism.

    PubMed

    Speelmans, G; Staffhorst, R W; Steenbergen, H G; de Kruijff, B

    1996-10-23

    An assay was developed to measure and directly compare transport of doxorubicin across right-side-out cytoplasmic membrane vesicles (ROV) and across model membranes (LUVET) composed of pure phospholipids, isolated from the corresponding cells. Escherichia coli was used as a model organism, since mutants are available which differ in phospholipid composition. Both in LUVET and ROV only passive diffusion across the bilayer is involved, because effects of drug concentration, pH, divalent cations, the phospholipid composition, and the active transport inhibitor verapamil were comparable. Permeability coefficients were about 2-3-times higher in ROV compared to LUVET. Furthermore, in LUVET an average activation energy of 87 kJ/mol and in ROV of 50 kJ/mol was observed. These differences are suggested to result from differences in membrane order between LUVET and ROV and differences in the temperature dependence of membrane order in LUVET and ROV, respectively. Because no background carrier-facilitated doxorubicin transport seems to be present, ROV are an excellent model system to study the effect of phospholipid composition on drug transport after expression of a multidrug resistance-conferring protein. Furthermore, data of passive diffusion of doxorubicin obtained with LUVET are representative for more complex, biologically relevant membrane systems.

  6. Conformational transitions in the membrane scaffold protein of phospholipid bilayer nanodiscs.

    PubMed

    Morgan, Christopher R; Hebling, Christine M; Rand, Kasper D; Stafford, Darrel W; Jorgenson, James W; Engen, John R

    2011-09-01

    Phospholipid bilayer nanodiscs are model membrane systems that provide an environment where membrane proteins are highly stable and monodisperse without the use of detergents or liposomes. Nanodiscs consist of a discoidal phospholipid bilayer encircled by two copies of an amphipathic alpha helical membrane scaffold protein, which is modeled from apolipoprotein A-1. Hydrogen exchange mass spectrometry was used to probe the structure and dynamics of the scaffold protein in the presence and absence of lipid. On nanodisc self-assembly, the entire scaffold protein gained significant protection from exchange, consistent with a large, protein-wide, structural rearrangement. This protection was short-lived and the scaffold protein was highly deuterated within 2 h. Several regions of the scaffold protein, in both the lipid-free and lipid-associated states, displayed EX1 unfolding kinetics. The rapid deuteration of the scaffold protein and the presence of correlated unfolding events both indicate that nanodiscs are dynamic rather than rigid bodies in solution. This work provides a catalog of the expected scaffold protein peptic peptides in a nanodisc-hydrogen exchange mass spectrometry experiment and their deuterium uptake signatures, data that can be used as a benchmark to verify correct assembly and nanodisc structure. Such reference data will be useful control data for all hydrogen exchange mass spectrometry experiments involving nanodiscs in which transmembrane or lipid-associated proteins are the primary molecule(s) of interest.

  7. Close membrane-membrane proximity induced by Ca(2+)-dependent multivalent binding of synaptotagmin-1 to phospholipids.

    PubMed

    Araç, Demet; Chen, Xiaocheng; Khant, Htet A; Ubach, Josep; Ludtke, Steven J; Kikkawa, Masahide; Johnson, Arthur E; Chiu, Wah; Südhof, Thomas C; Rizo, Josep

    2006-03-01

    Synaptotagmin acts as a Ca(2+) sensor in neurotransmitter release through its two C(2) domains. Ca(2+)-dependent phospholipid binding is key for synaptotagmin function, but it is unclear how this activity cooperates with the SNARE complex involved in release or why Ca(2+) binding to the C(2)B domain is more crucial for release than Ca(2+) binding to the C(2)A domain. Here we show that Ca(2+) induces high-affinity simultaneous binding of synaptotagmin to two membranes, bringing them into close proximity. The synaptotagmin C(2)B domain is sufficient for this ability, which arises from the abundance of basic residues around its surface. We propose a model wherein synaptotagmin cooperates with the SNAREs in bringing the synaptic vesicle and plasma membranes together and accelerates membrane fusion through the highly positive electrostatic potential of its C(2)B domain.

  8. Rooster sperm plasma membrane protein and phospholipid organization and reorganization attributed to cooling and cryopreservation

    USDA-ARS?s Scientific Manuscript database

    Cholesterol to phospholipid ratio is used as a representation for membrane fluidity, and predictor of cryopreservation success but results are not consistent across species and ignore the impact of membrane proteins. Therefore, this research explored the modulation of membrane fluidity and protein ...

  9. Resonance energy transfer imaging of phospholipid vesicle interaction with a planar phospholipid membrane: undulations and attachment sites in the region of calcium-mediated membrane--membrane adhesion

    PubMed Central

    1996-01-01

    Membrane fusion of a phospholipid vesicle with a planar lipid bilayer is preceded by an initial prefusion stage in which a region of the vesicle membrane adheres to the planar membrane. A resonance energy transfer (RET) imaging microscope, with measured spectral transfer functions and a pair of radiometrically calibrated video cameras, was used to determine both the area of the contact region and the distances between the membranes within this zone. Large vesicles (5-20 microns diam) were labeled with the donor fluorophore coumarin- phosphatidylethanolamine (PE), while the planar membrane was labeled with the acceptor rhodamine-PE. The donor was excited with 390 nm light, and separate images of donor and acceptor emission were formed by the microscope. Distances between the membranes at each location in the image were determined from the RET rate constant (kt) computed from the acceptor:donor emission intensity ratio. In the absence of an osmotic gradient, the vesicles stably adhered to the planar membrane, and the dyes did not migrate between membranes. The region of contact was detected as an area of planar membrane, coincident with the vesicle image, over which rhodamine fluorescence was sensitized by RET. The total area of the contact region depended biphasically on the Ca2+ concentration, but the distance between the bilayers in this zone decreased with increasing [Ca2+]. The changes in area and separation were probably related to divalent cation effects on electrostatic screening and binding to charged membranes. At each [Ca2+], the intermembrane separation varied between 1 and 6 nm within each contact region, indicating membrane undulation prior to adhesion. Intermembrane separation distances < or = 2 nm were localized to discrete sites that formed in an ordered arrangement throughout the contact region. The area of the contact region occupied by these punctate attachment sites was increased at high [Ca2+]. Membrane fusion may be initiated at these sites of

  10. ER Membrane Phospholipids and Surface Tension Control Cellular Lipid Droplet Formation.

    PubMed

    Ben M'barek, Kalthoum; Ajjaji, Dalila; Chorlay, Aymeric; Vanni, Stefano; Forêt, Lionel; Thiam, Abdou Rachid

    2017-06-19

    Cells convert excess energy into neutral lipids that are made in the endoplasmic reticulum (ER) bilayer. The lipids are then packaged into spherical or budded lipid droplets (LDs) covered by a phospholipid monolayer containing proteins. LDs play a key role in cellular energy metabolism and homeostasis. A key unanswered question in the life of LDs is how they bud off from the ER. Here, we tackle this question by studying the budding of artificial LDs from model membranes. We find that the bilayer phospholipid composition and surface tension are key parameters of LD budding. Phospholipids have differential LD budding aptitudes, and those inducing budding decrease the bilayer tension. We observe that decreasing tension favors the egress of neutral lipids from the bilayer and LD budding. In cells, budding conditions favor the formation of small LDs. Our discovery reveals the importance of altering ER physical chemistry for controlled cellular LD formation. Copyright © 2017 Elsevier Inc. All rights reserved.

  11. Conformational analysis of membrane proteins in phospholipid bilayer nanodiscs by hydrogen exchange mass spectrometry

    PubMed Central

    Hebling, Christine M.; Morgan, Christopher R.; Stafford, Darrel W.; Jorgenson, James W.; Rand, Kasper D.; Engen, John R.

    2010-01-01

    The study of membrane protein structure and enzymology has traditionally been hampered by the inherent insolubility of membrane proteins in aqueous environments and experimental challenges in emulating an in vivo lipid environment. Phospholipid bilayer nanodiscs have recently been shown to be of great use for the study of membrane proteins since they offer a controllable, stable, and monodisperse model membrane with a native-like lipid bilayer. Here we report the integration of nanodiscs with hydrogen exchange (HX) mass spectrometry (MS) experiments, thereby allowing for analysis of the native conformation of membrane proteins. Gamma-glutamyl carboxylase (GGCX), an ~94 kDa transmembrane protein, was inserted into nanodiscs and labeled with deuterium oxide under native conditions. Analytical parameters including sample-handling and chromatographic separation were optimized to measure the incorporation of deuterium into GGCX. Coupling nanodisc technology with HX MS offers an effective approach for investigating the conformation and dynamics of membrane proteins in their native environment and is therefore capable of providing much needed insight into the function of membrane proteins. PMID:20518534

  12. Conformational analysis of membrane proteins in phospholipid bilayer nanodiscs by hydrogen exchange mass spectrometry.

    PubMed

    Hebling, Christine M; Morgan, Christopher R; Stafford, Darrel W; Jorgenson, James W; Rand, Kasper D; Engen, John R

    2010-07-01

    The study of membrane protein structure and enzymology has traditionally been hampered by the inherent insolubility of membrane proteins in aqueous environments and experimental challenges in emulating an in vivo lipid environment. Phospholipid bilayer nanodiscs have recently been shown to be of great use for the study of membrane proteins since they offer a controllable, stable, and monodisperse model membrane with a nativelike lipid bilayer. Here we report the integration of nanodiscs with hydrogen exchange (HX) mass spectrometry (MS) experiments, thereby allowing for analysis of the native conformation of membrane proteins. gamma-Glutamyl carboxylase (GGCX), an approximately 94 kDa transmembrane protein, was inserted into nanodiscs and labeled with deuterium oxide under native conditions. Analytical parameters including sample-handling and chromatographic separation were optimized to measure the incorporation of deuterium into GGCX. Coupling nanodisc technology with HX MS offers an effective approach for investigating the conformation and dynamics of membrane proteins in their native environment and is therefore capable of providing much needed insight into the function of membrane proteins.

  13. ATP-Dependent Interactions between Escherichia coli Min Proteins and the Phospholipid Membrane In Vitro

    PubMed Central

    Lackner, Laura L.; Raskin, David M.; de Boer, Piet A. J.

    2003-01-01

    Proper placement of the division apparatus in Escherichia coli requires pole-to-pole oscillation of the MinC division inhibitor. MinC dynamics involves a membrane association-dissociation cycle that is driven by the activities of the MinD ATPase and the MinE topological specificity factor, which themselves undergo coupled oscillatory localization cycles. To understand the biochemical mechanisms underlying Min protein dynamics, we studied the interactions of purified Min proteins with phospholipid vesicles and the role of ATP in these interactions. We show that (i) the ATP-bound form of MinD (MinD.ATP) readily associates with phospholipid vesicles in the presence of Mg2+, whereas the ADP-bound form (MinD.ADP) does not; (ii) MinD.ATP binds membrane in a self-enhancing fashion; (iii) both MinC and MinE can be recruited to MinD.ATP-decorated vesicles; (iv) MinE stimulates dissociation of MinD.ATP from the membrane in a process requiring hydrolysis of the nucleotide; and (v) MinE stimulates dissociation of MinC from MinD.ATP-membrane complexes, even when ATP hydrolysis is blocked. The results support and extend recent work by Z. Hu et al. (Z. Hu, E. P. Gogol, and J. Lutkenhaus, Proc. Natl. Acad. Sci. USA 99:6761-6766, 2002) and support models of protein oscillation wherein MinE induces Min protein dynamics by stimulating the conversion of the membrane-bound form of MinD (MinD.ATP) to the cytoplasmic form (MinD.ADP). The results also indicate that MinE-stimulated dissociation of MinC from the MinC-MinD.ATP-membrane complex can, and may, occur prior to hydrolysis of the nucleotide. PMID:12533449

  14. Forty five years with membrane phospholipids, phospholipases and lipid mediators: A historical perspective.

    PubMed

    Chap, Hugues

    2016-06-01

    Phospholipases play a key role in the metabolism of phospholipids and in cell signaling. They are also a very useful tool to explore phospholipid structure and metabolism as well as membrane organization. They are at the center of this review, covering a period starting in 1971 and focused on a number of subjects in which my colleagues and I have been involved. Those include determination of phospholipid asymmetry in the blood platelet membrane, biosynthesis of lysophosphatidic acid, biochemistry of platelet-activating factor, first attempts to define the role of phosphoinositides in cell signaling, and identification of novel digestive (phospho)lipases such as pancreatic lipase-related protein 2 (PLRP2) or phospholipase B. Besides recalling some of our contributions to those various fields, this review makes an appraisal of the impressive and often unexpected evolution of those various aspects of membrane phospholipids and lipid mediators. It is also the occasion to propose some new working hypotheses.

  15. Transbilayer Dynamics of Phospholipids in the Plasma Membrane of the Leishmania Genus

    PubMed Central

    dos Santos, Marcos Gonzaga; Muxel, Sandra Marcia; Zampieri, Ricardo Andrade; Pomorski, Thomas Günther; Floeter-Winter, Lucile Maria

    2013-01-01

    Protozoans of the Leishmania genus are the etiological agents of a wide spectrum of diseases commonly known as leishmaniases. Lipid organization of the plasma membrane of the parasite may mimic the lipid organization of mammalian apoptotic cells and play a role in phagocytosis and parasite survival in the mammal host. Here, we analyzed the phospholipid dynamics in the plasma membrane of both the L. (Leishmania) and the L. (Viannia) subgenera. We found that the activity and substrate specificity of the inward translocation machinery varied between Leishmania species. The differences in activity of inward phospholipid transport correlated with the different sensitivities of the various species towards the alkyl-phospholipid analogue miltefosine. Furthermore, all species exhibited a phospholipid scramblase activity in their plasma membranes upon stimulation with calcium ionophores. However, binding of annexin V to the parasite surface was only detected for a subpopulation of parasites during the stationary growth phase and only marginally enhanced by scramblase activation. PMID:23383240

  16. Transbilayer dynamics of phospholipids in the plasma membrane of the Leishmania genus.

    PubMed

    dos Santos, Marcos Gonzaga; Muxel, Sandra Marcia; Zampieri, Ricardo Andrade; Pomorski, Thomas Günther; Floeter-Winter, Lucile Maria

    2013-01-01

    Protozoans of the Leishmania genus are the etiological agents of a wide spectrum of diseases commonly known as leishmaniases. Lipid organization of the plasma membrane of the parasite may mimic the lipid organization of mammalian apoptotic cells and play a role in phagocytosis and parasite survival in the mammal host. Here, we analyzed the phospholipid dynamics in the plasma membrane of both the L. (Leishmania) and the L. (Viannia) subgenera. We found that the activity and substrate specificity of the inward translocation machinery varied between Leishmania species. The differences in activity of inward phospholipid transport correlated with the different sensitivities of the various species towards the alkyl-phospholipid analogue miltefosine. Furthermore, all species exhibited a phospholipid scramblase activity in their plasma membranes upon stimulation with calcium ionophores. However, binding of annexin V to the parasite surface was only detected for a subpopulation of parasites during the stationary growth phase and only marginally enhanced by scramblase activation.

  17. Spontaneous Reconstitution of Functional Transmembrane Proteins During Bioorthogonal Phospholipid Membrane Synthesis.

    PubMed

    Cole, Christian M; Brea, Roberto J; Kim, Young Hun; Hardy, Michael D; Yang, Jerry; Devaraj, Neal K

    2015-10-19

    Transmembrane proteins are critical for signaling, transport, and metabolism, yet their reconstitution in synthetic membranes is often challenging. Non-enzymatic and chemoselective methods to generate phospholipid membranes in situ would be powerful tools for the incorporation of membrane proteins. Herein, the spontaneous reconstitution of functional integral membrane proteins during the de novo synthesis of biomimetic phospholipid bilayers is described. The approach takes advantage of bioorthogonal coupling reactions to generate proteoliposomes from micelle-solubilized proteins. This method was successfully used to reconstitute three different transmembrane proteins into synthetic membranes. This is the first example of the use of non-enzymatic chemical synthesis of phospholipids to prepare proteoliposomes. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. Local anesthetics structure-dependently interact with anionic phospholipid membranes to modify the fluidity.

    PubMed

    Tsuchiya, Hironori; Ueno, Takahiro; Mizogami, Maki; Takakura, Ko

    2010-01-05

    While bupivacaine is more cardiotoxic than other local anesthetics, the mechanistic background for different toxic effects remains unclear. Several cardiotoxic compounds act on lipid bilayers to change the physicochemical properties of membranes. We comparatively studied the interaction of local anesthetics with lipid membranous systems which might be related to their structure-selective cardiotoxicity. Amide local anesthetics (10-300 microM) were reacted with unilamellar vesicles which were prepared with different phospholipids and cholesterol of varying lipid compositions. They were compared on the potencies to modify membrane fluidity by measuring fluorescence polarization. Local anesthetics interacted with liposomal membranes to increase the fluidity. Increasing anionic phospholipids in membranes enhanced the membrane-fluidizing effects of local anesthetics with the potency being cardiolipin>phosphatidic acid>phosphatidylglycerol>phosphatidylserine. Cardiolipin was most effective on bupivacaine, followed by ropivacaine. Local anesthetics interacted differently with biomimetic membranes consisting of 10mol% cardiolipin, 50mol% other phospholipids and 40mol% cholesterol with the potency being bupivacaine>ropivacaine>lidocaine>prilocaine, which agreed with the rank order of cardiotoxicity. Bupivacaine significantly fluidized 2.5-12.5mol% cardiolipin-containing membranes at cardiotoxicologically relevant concentrations. Bupivacaine is considered to affect lipid bilayers by interacting electrostatically with negatively charged cardiolipin head groups and hydrophobically with phospholipid acyl chains. The structure-dependent interaction with lipid membranes containing cardiolipin, which is preferentially localized in cardiomyocyte mitochondrial membranes, may be a mechanistic clue to explain the structure-selective cardiotoxicity of local anesthetics.

  19. A designed probe for acidic phospholipids reveals the unique enriched anionic character of the cytosolic face of the mammalian plasma membrane.

    PubMed

    Okeley, Nicole M; Gelb, Michael H

    2004-05-21

    It is generally accepted that the cytosolic face of the plasma membrane of mammalian cells is enriched in acidic phospholipids due to an asymmetric distribution of neutral and anionic phospholipids in the two bilayer leaflets. However, the phospholipid asymmetry across intracellular membranes is not known. Two models have been proposed for the selective targeting of K-Ras4B, which contains a C-terminal farnesyl cysteine methyl ester adjacent to a polybasic peptide segment, to the cytosolic face of the plasma membrane. One involves electrostatic interaction of the lipidated polybasic domain with anionic phospholipids in the plasma membrane, and the other involves binding of K-Ras4B to a specific protein receptor. To address this issue, we prepared by semi-synthesis a green fluorescent protein variant that is linked to a farnesylated, polybasic peptide corresponding to the K-Ras4B C terminus as well as a variant that contains an all-d amino acid version of the K-Ras4B peptide. As expected based on electrostatics, both constructs showed preferential in vitro binding to anionic phospholipid vesicles versus those composed only of zwitterionic phospholipid. Both constructs fully targeted to the plasma membrane when microinjected into live Chinese hamster ovary and Madin-Darby canine kidney cells. Because the all-d amino acid peptide should be devoid of binding affinity to a putative highly specific K-Ras membrane receptor, these results support an electrostatic basis for the targeting of K-Ras4B to the plasma membrane, and they support an intracellular landscape of phospholipids in which the cytosolic face of the plasma membrane is the most enriched in acidic phospholipids.

  20. Binding of lysozyme to phospholipid bilayers: evidence for protein aggregation upon membrane association.

    PubMed

    Gorbenko, Galyna P; Ioffe, Valeriya M; Kinnunen, Paavo K J

    2007-07-01

    Biological functions of lysozyme, including its antimicrobial, antitumor, and immune-modulatory activities have been suggested to be largely determined by the lipid binding properties of this protein. To gain further insight into these interactions on a molecular level the association of lysozyme to liposomes composed of either 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine or its mixtures with 1-palmitoyl-2-oleoyl-sn-glycero-3-phospho-rac-glycerol, 1-palmitoyl-2-oleoyl-sn-glycero-3-phospho-rac-phosphatidylserine, or bovine heart cardiolipin was studied by a combination of fluorescence techniques. The characteristics of the adsorption of lysozyme to lipid bilayers were investigated using fluorescein 5'-isothiocyanate labeled protein, responding to membrane association by a decrease in fluorescence. Upon increasing the content of anionic phospholipids in lipid vesicles, the binding isotherms changed from Langmuir-like to sigmoidal. Using adsorption models based on scaled particle and double-layer theories, this finding was rationalized in terms of self-association of the membrane-bound protein. The extent of quenching of lysozyme tryptophan fluorescence by acrylamide decreased upon membrane binding, revealing a conformational transition for the protein upon its surface association, resulting in a diminished access of the fluorophore to the aqueous phase. Steady-state fluorescence anisotropy of bilayer-incorporated probe 1,6-diphenyl-1,3,5-hexatriene was measured at varying lipid-to-protein molar ratios. Lysozyme was found to increase acyl-chain order for liposomes with the content of acidic phospholipid exceeding 10 mol %. Both electrostatic and hydrophobic protein-lipid interactions can be concluded to modulate the aggregation behavior of lysozyme when bound to lipid bilayers. Modulation of lysozyme aggregation propensity by membrane binding may have important implications for protein fibrillogenesis in vivo. Disruption of membrane integrity by the aggregated

  1. Binding of Lysozyme to Phospholipid Bilayers: Evidence for Protein Aggregation upon Membrane Association

    PubMed Central

    Gorbenko, Galyna P.; Ioffe, Valeriya M.; Kinnunen, Paavo K. J.

    2007-01-01

    Biological functions of lysozyme, including its antimicrobial, antitumor, and immune-modulatory activities have been suggested to be largely determined by the lipid binding properties of this protein. To gain further insight into these interactions on a molecular level the association of lysozyme to liposomes composed of either 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine or its mixtures with 1-palmitoyl-2-oleoyl-sn-glycero-3-phospho-rac-glycerol, 1-palmitoyl-2-oleoyl-sn-glycero-3-phospho-rac-phosphatidylserine, or bovine heart cardiolipin was studied by a combination of fluorescence techniques. The characteristics of the adsorption of lysozyme to lipid bilayers were investigated using fluorescein 5′-isothiocyanate labeled protein, responding to membrane association by a decrease in fluorescence. Upon increasing the content of anionic phospholipids in lipid vesicles, the binding isotherms changed from Langmuir-like to sigmoidal. Using adsorption models based on scaled particle and double-layer theories, this finding was rationalized in terms of self-association of the membrane-bound protein. The extent of quenching of lysozyme tryptophan fluorescence by acrylamide decreased upon membrane binding, revealing a conformational transition for the protein upon its surface association, resulting in a diminished access of the fluorophore to the aqueous phase. Steady-state fluorescence anisotropy of bilayer-incorporated probe 1,6-diphenyl-1,3,5-hexatriene was measured at varying lipid-to-protein molar ratios. Lysozyme was found to increase acyl-chain order for liposomes with the content of acidic phospholipid exceeding 10 mol %. Both electrostatic and hydrophobic protein-lipid interactions can be concluded to modulate the aggregation behavior of lysozyme when bound to lipid bilayers. Modulation of lysozyme aggregation propensity by membrane binding may have important implications for protein fibrillogenesis in vivo. Disruption of membrane integrity by the aggregated

  2. Substrate-supported phospholipid membranes studied by surface plasmon resonance and surface plasmon fluorescence spectroscopy.

    PubMed

    Tawa, Keiko; Morigaki, Kenichi

    2005-10-01

    Substrate-supported planar lipid bilayer membranes are attractive model cellular membranes for biotechnological applications such as biochips and sensors. However, reliable fabrication of the lipid membranes on solid surfaces still poses significant technological challenges. In this study, simultaneous surface plasmon resonance (SPR) and surface plasmon fluorescence spectroscopy (SPFS) measurements were applied to the monitoring of adsorption and subsequent reorganization of phospholipid vesicles on solid substrates. The fluorescence intensity of SPFS depends very sensitively on the distance between the gold substrate and the fluorophore because of the excitation energy transfer to gold. By utilizing this distance dependency, we could obtain information about the topography of the adsorbed membranes: Adsorbed vesicles could be clearly distinguished from planar bilayers due to the high fluorescence intensity. SPSF can also incorporate various analytical techniques to evaluate the physicochemical properties of the adsorbed membranes. As an example, we demonstrated that the lateral mobility of lipid molecules could be estimated by observing the recovery of fluorescence after photobleaching. Combined with the film thickness information obtained by SPR, SPR-SPFS proved to be a highly informative technique to monitor the lipid membrane assembly processes on solid substrates.

  3. Substrate-Supported Phospholipid Membranes Studied by Surface Plasmon Resonance and Surface Plasmon Fluorescence Spectroscopy

    PubMed Central

    Tawa, Keiko; Morigaki, Kenichi

    2005-01-01

    Substrate-supported planar lipid bilayer membranes are attractive model cellular membranes for biotechnological applications such as biochips and sensors. However, reliable fabrication of the lipid membranes on solid surfaces still poses significant technological challenges. In this study, simultaneous surface plasmon resonance (SPR) and surface plasmon fluorescence spectroscopy (SPFS) measurements were applied to the monitoring of adsorption and subsequent reorganization of phospholipid vesicles on solid substrates. The fluorescence intensity of SPFS depends very sensitively on the distance between the gold substrate and the fluorophore because of the excitation energy transfer to gold. By utilizing this distance dependency, we could obtain information about the topography of the adsorbed membranes: Adsorbed vesicles could be clearly distinguished from planar bilayers due to the high fluorescence intensity. SPSF can also incorporate various analytical techniques to evaluate the physicochemical properties of the adsorbed membranes. As an example, we demonstrated that the lateral mobility of lipid molecules could be estimated by observing the recovery of fluorescence after photobleaching. Combined with the film thickness information obtained by SPR, SPR-SPFS proved to be a highly informative technique to monitor the lipid membrane assembly processes on solid substrates. PMID:16040759

  4. Evidence of the Key Role of H3O(+) in Phospholipid Membrane Morphology.

    PubMed

    Cranfield, Charles G; Berry, Thomas; Holt, Stephen A; Hossain, Khondker R; Le Brun, Anton P; Carne, Sonia; Al Khamici, Heba; Coster, Hans; Valenzuela, Stella M; Cornell, Bruce

    2016-10-04

    This study explains the importance of the phosphate moiety and H3O(+) in controlling the ionic flux through phospholipid membranes. We show that despite an increase in the H3O(+) concentration when the pH is decreased, the level of ionic conduction through phospholipid bilayers is reduced. By modifying the lipid structure, we show the dominant determinant of membrane conduction is the hydrogen bonding between the phosphate oxygens on adjacent phospholipids. The modulation of conduction with pH is proposed to arise from the varying H3O(+) concentrations altering the molecular area per lipid and modifying the geometry of conductive defects already present in the membrane. Given the geometrical constraints that control the lipid phase structure of membranes, these area changes predict that organisms evolving in environments with different pHs will select for different phospholipid chain lengths, as is found for organisms near highly acidic volcanic vents (short chains) or in highly alkaline salt lakes (long chains). The stabilizing effect of the hydration shells around phosphate groups also accounts for the prevalence of phospholipids across biology. Measurement of ion permeation through lipid bilayers was made tractable using sparsely tethered bilayer lipid membranes with swept frequency electrical impedance spectroscopy and ramped dc amperometry. Additional evidence of the effect of a change in pH on lipid packing density is obtained from neutron reflectometry data of tethered membranes containing perdeuterated lipids.

  5. 31P NMR first spectral moment study of the partial magnetic orientation of phospholipid membranes.

    PubMed Central

    Picard, F; Paquet, M J; Levesque, J; Bélanger, A; Auger, M

    1999-01-01

    Structural data can be obtained on proteins inserted in magnetically oriented phospholipid membranes such as bicelles, which are most often made of a mixture of long and short chain phosphatidylcholine. Possible shapes for these magnetically oriented membranes have been postulated in the literature, such as discoidal structures with a thickness of one bilayer and with the short acyl chain phosphatidylcholine on the edges. In the present paper, a geometrical study of these oriented structures is done to determine the validity of this model. The method used is based on the determination of the first spectral moment of solid-state (31)P nuclear magnetic resonance spectra. From this first moment, an order parameter is defined that allows a quantitative analysis of partially oriented spectra. The validity of this method is demonstrated in the present study for oriented samples made of DMPC, DMPC:DHPC, DMPC:DHPC:gramicidin A and adriamycin:cardiolipin. PMID:10423434

  6. The immiscible cholesterol bilayer domain exists as an integral part of phospholipid bilayer membranes

    PubMed Central

    Raguz, Marija; Mainali, Laxman; Widomska, Justyna; Subczynski, Witold K.

    2011-01-01

    Electron paramagnetic resonance (EPR) spin-labeling methods were used to study the organization of cholesterol and phospholipids in membranes formed from Chol/POPS (cholesterol/1-palmitoyl-2-oleoyl-sn-glycero-3-phosphatidylserine) mixtures, with mixing ratios from 0 to 3. It was confirmed using the discrimination by oxygen transport and polar relaxation agent accessibility methods that the immiscible cholesterol bilayer domain (CBD) was present in all of the suspensions when the mixing ratio exceeded the cholesterol solubility threshold (CST) in the POPS membrane. The behavior of phospholipid molecules was monitored with phospholipid analogue spin labels (n-PCs), and the behavior of cholesterol was monitored with the cholesterol analogue spin labels CSL and ASL. Results indicated that phospholipid and cholesterol mixtures can form a membrane suspension up to a mixing ratio of ~2. Additionally, EPR spectra for n-PC, ASL, and CSL indicated that both phospholipids and cholesterol exist in these suspensions in the lipid-bilayer-like structures. EPR spectral characteristics of n-PCs (spin labels located in the phospholipid cholesterol bilayer, outside the CBD) change with increase in the cholesterol content up to and beyond the CST. These results present strong evidence that the CBD forms an integral part of the phospholipid bilayer when formed from a Chol/POPS mixture up to a mixing ratio of ~2. Interestingly, CSL in cholesterol alone (without phospholipids) when suspended in buffer does not detect formation of bilayer-like structures. A broad, single-line EPR signal is given, similar to that obtained for the dry film of cholesterol before addition of the buffer. This broad, single-line signal is also observed in suspensions formed for Chol/POPS mixtures (as a background signal) when the Chol/POPS ratio is much greater than 3. It is suggested that the EPR spin-labeling approach can discriminate and characterize the fraction of cholesterol that forms the CBD within the

  7. Alterations in target cell membrane phospholipids alter T cell but not NK cell killing.

    PubMed

    Harris, David T

    2013-01-01

    The ability of tumor cells to grow progressively in vivo despite the host immune response remains a major conundrum in tumor immunology. Various mechanisms have been proposed to explain how tumors evade immune destruction. The work presented herein shows that simple alterations in plasma membrane phospholipid composition can alter susceptibility to immune lysis. The phospholipid composition of target cells was specifically altered by growth in medium containing choline analogs. Manipulation of membrane phospholipids was observed to alter cell susceptibility to murine CTL but not NK cell lysis. The effects of such changes in phospholipid composition on CTL-mediated lysis appeared to occur during the recognition phase of lysis. This mechanism could be a means by which tumor cells, as well as other pathogenic organisms, escape immune detection and destruction. Copyright © 2012 Elsevier GmbH. All rights reserved.

  8. Chlamydia trachomatis Relies on Autonomous Phospholipid Synthesis for Membrane Biogenesis*♦

    PubMed Central

    Yao, Jiangwei; Cherian, Philip T.; Frank, Matthew W.; Rock, Charles O.

    2015-01-01

    The obligate intracellular parasite Chlamydia trachomatis has a reduced genome and is thought to rely on its mammalian host cell for nutrients. Although several lines of evidence suggest C. trachomatis utilizes host phospholipids, the bacterium encodes all the genes necessary for fatty acid and phospholipid synthesis found in free living Gram-negative bacteria. Bacterially derived phospholipids significantly increased in infected HeLa cell cultures. These new phospholipids had a distinct molecular species composition consisting of saturated and branched-chain fatty acids. Biochemical analysis established the role of C. trachomatis-encoded acyltransferases in producing the new disaturated molecular species. There was no evidence for the remodeling of host phospholipids and no change in the size or molecular species composition of the phosphatidylcholine pool in infected HeLa cells. Host sphingomyelin was associated with C. trachomatis isolated by detergent extraction, but it may represent contamination with detergent-insoluble host lipids rather than being an integral bacterial membrane component. C. trachomatis assembles its membrane systems from the unique phospholipid molecular species produced by its own fatty acid and phospholipid biosynthetic machinery utilizing glucose, isoleucine, and serine. PMID:25995447

  9. [The phospholipid spectrum of erythrocyte membranes in hemorrhagic fever with renal syndrome].

    PubMed

    Kuznetsov, V I; Iushchuk, N D; Morrison, V V

    2005-01-01

    The subjects of the study--patients with severe hemorrhagic fever with renal syndrome--were divided into two groups: those who were on hemodialysis, and those who were not. The study included evaluation of the phospholipid spectrum of erythrocyte membranes in the acute period and during recovery. The results revealed conformational shifts in the structure of the bilipid membrane layer, which were maximal during the acute phase of the disease, as well as less prominent and varied changes in the phospholipid spectrum during recovery. This allows determination of the terms of rehabilitation of the patients and substantiates administration of membrane stabilizers as a part of complex therapy of residual syndrome.

  10. Stabilized phospholipid membranes in chromatography: toward membrane protein-functionalized stationary phases.

    PubMed

    Gallagher, Elyssia S; Mansfield, Elisabeth; Aspinwall, Craig A

    2014-04-01

    Transmembrane protein (TMP)-functionalized materials have resulted in powerful new methods in chemical analysis. Of particular interest is the development of high-throughput, TMP-functionalized stationary phases for affinity chromatography of complex mixtures of analytes. Several natural and synthetic phospholipids and lipid mimics have been used for TMP reconstitution, although the resulting membranes often lack the requisite chemical and temporal stability for long-term use, a problem that is exacerbated in flowing separation systems. Polymerizable lipids with markedly increased membrane stability and TMP functionality have been developed over the past two decades. More recently, these lipids have been incorporated into a range of analytical methods, including separation techniques, and are now poised to have a significant impact on TMP-based separations. Here, we describe current methods for preparing TMP-containing stationary phases and examine the potential utility of polymerizable lipids in TMP affinity chromatography.

  11. Membrane-active metabolites produced by soil actinomycetes using chromatic phospholipid/polydiacetylene vesicles.

    PubMed

    Mehravar, Maryam; Sardari, Soroush; Owlia, Parviz

    2011-12-01

    Increased resistance of pathogens toward existing antibiotics has compelled the research efforts to introduce new antimicrobial substances. Drugs with new and less resistant-prone targets to antimicrobial activity have a high priority for drug development activities. Cell membrane seems to be a potential target for new antibiotic agent development to overcome resistance. In this study, A total number of 67 actinomycetes were isolated from the soil samples collected from desert, farming and mineral parts of Iran. We used a chromatic sensor as a membrane model that was set up for the target of antimicrobial metabolites of actinomycetes isolated from the soil. The sensors particles were composed of phospholipid and polymerized polydiacetylene (PDA) lipids. These polymers exhibited color change following interaction with membrane-active metabolites. The color change was due to structural disorder in the lipids following their interaction with membrane-active metabolites. The resultant color change was recorded by fluorescent microscope and easily recognizable by naked eye as well. Sixteen strains were isolated which produced antimicrobial metabolites and were effective against test microorganisms (Escherichia coli, Candida albicans and Saccharomyces cerevisiae ). A total number of 3 out of 16 strains produced membrane-active metabolites. These 3 strains were identified using 16s rRNA as Streptomyces sp and submitted to GenBank (accession no. JN180853; JN180854; JN180855).

  12. Increasing levels of cardiolipin differentially influence packing of phospholipids found in the mitochondrial inner membrane.

    PubMed

    Zeczycki, Tonya N; Whelan, Jarrett; Hayden, William Tyler; Brown, David A; Shaikh, Saame Raza

    2014-07-18

    It is essential to understand the role of cardiolipin (CL) in mitochondrial membrane organization given that changes in CL levels contribute to mitochondrial dysfunction in type II diabetes, ischemia-reperfusion injury, heart failure, breast cancer, and aging. Specifically, there are contradictory data on how CL influences the molecular packing of membrane phospholipids. Therefore, we determined how increasing levels of heart CL impacted molecular packing in large unilamellar vesicles, modeling heterogeneous lipid mixtures found within the mitochondrial inner membrane, using merocyanine (MC540) fluorescence. We broadly categorized lipid vesicles of equal mass as loosely packed, intermediate, and highly packed based on peak MC540 fluorescence intensity. CL had opposite effects on loosely versus highly packed vesicles. Exposure of loosely packed vesicles to increasing levels of CL dose-dependently increased membrane packing. In contrast, increasing amounts of CL in highly packed vesicles decreased the packing in a dose-dependent manner. In vesicles that were categorized as intermediate packing, CL had either no effect or decreased packing at select doses in a dose-independent manner. Altogether, the results aid in resolving some of the discrepant data by demonstrating that CL displays differential effects on membrane packing depending on the composition of the lipid environment. This has implications for mitochondrial protein activity in response to changing CL levels in microdomains of varying composition.

  13. A phospholipid uptake system in the model plant Arabidopsis thaliana.

    PubMed

    Poulsen, Lisbeth R; López-Marqués, Rosa L; Pedas, Pai R; McDowell, Stephen C; Brown, Elizabeth; Kunze, Reinhard; Harper, Jeffrey F; Pomorski, Thomas G; Palmgren, Michael

    2015-07-27

    Plants use solar energy to produce lipids directly from inorganic elements and are not thought to require molecular systems for lipid uptake from the environment. Here we show that Arabidopsis thaliana Aminophospholipid ATPase10 (ALA10) is a P4-type ATPase flippase that internalizes exogenous phospholipids across the plasma membrane, after which they are rapidly metabolized. ALA10 expression and phospholipid uptake are high in the epidermal cells of the root tip and in guard cells, the latter of which regulate the size of stomatal apertures to modulate gas exchange. ALA10-knockout mutants exhibit reduced phospholipid uptake at the root tips and guard cells and are affected in growth and transpiration. The presence of a phospholipid uptake system in plants is surprising. Our results suggest that one possible physiological role of this system is to internalize lysophosphatidylcholine, a signalling lipid involved in root development and stomatal control.

  14. Distribution of fluorescent probe molecules throughout the phospholipid membrane depth

    NASA Astrophysics Data System (ADS)

    Nemkovich, Nicolai A.; Rubinov, Anatoly N.; Savvidi, M. G.; Tomin, V. I.; Shcherbatska, Nina V.

    1991-05-01

    A method to determine the distribution function shape of the luminescent probe molecules over biological membrane depth is suggested. It is based on: - the unhomogeneous model of the probe ensemble which permits its selection alteration selectively of the position and distribution of excited probe molecules by the wavelength of the excitation light - the use of the nonradiative electronic energy transfer (NEET) mechanism from probe molecules in vesicules to the acceptor ones in a buffer solution. The distribution function of the donor-excited molecules for different wavelength of the excitation light was calculated. Using the spectra of probe molecules at different Ae and Lippert''s equation the values of the dielectric constant of the membrane e were obtained for different regions. 1.

  15. Dissipative Particle Dynamics Simulations for Phospholipid Membranes Based on a Four-To-One Coarse-Grained Mapping Scheme

    PubMed Central

    Li, Xiaoxu; Gao, Lianghui; Fang, Weihai

    2016-01-01

    In this article, a new set of parameters compatible with the dissipative particle dynamics (DPD) force field is developed for phospholipids. The coarse-grained (CG) models of these molecules are constructed by mapping four heavy atoms and their attached hydrogen atoms to one bead. The beads are divided into types distinguished by charge type, polarizability, and hydrogen-bonding capacity. First, we derive the relationship between the DPD repulsive force and Flory-Huggins χ-parameters based on this four-to-one CG mapping scheme. Then, we optimize the DPD force parameters for phospholipids. The feasibility of this model is demonstrated by simulating the structural and thermodynamic properties of lipid bilayer membranes, including the membrane thickness, the area per lipid, the lipid tail orientation, the bending rigidity, the rupture behavior, and the potential of mean force for lipid flip-flop. PMID:27137463

  16. Coverage-dependent changes of cytochrome c transverse location in phospholipid membranes revealed by FRET.

    PubMed

    Domanov, Yegor A; Molotkovsky, Julian G; Gorbenko, Galyna P

    2005-10-01

    The method of fluorescence resonance energy transfer (FRET) has been employed to monitor cytochrome c interaction with bilayer phospholipid membranes. Liposomes composed of phosphatidylcholine and varying amounts of anionic lipid cardiolipin (CL) were used as model membranes. Trace amount of fluorescent lipid derivative, anthrylvinyl-phosphatidylcholine was incorporated into the membranes to serve energy donor for heme moiety of cytochrome c. Energy transfer efficiency was measured at different lipid and protein concentrations to obtain extensive set of data, which were further analyzed globally in terms of adequate models of protein adsorption and energy transfer on the membrane surface. It has been found that the cytochrome c association with membranes containing 10 mol% CL can be described in terms of equilibrium binding model (yielding dissociation constant Kd = 0.2-0.4 microM and stoichiometry n = 11-13 lipid molecules per protein binding site) combined with FRET model assuming uniform acceptor distribution with the distance of 3.5-3.6 nm between the bilayer midplane and heme moiety of cytochrome c. However, increasing the CL content to 20 or 40 mol% (at low ionic strength) resulted in a different behavior of FRET profiles, inconsistent with the concepts of equilibrium adsorption of cytochrome c at the membrane surface and/or uniform acceptor distribution. To explain this fact, several possibilities are analyzed, including cytochrome c-induced formation of non-bilayer structures and clusters of charged lipids, or changes in the depth of cytochrome c penetration into the bilayer depending on the protein surface density. Additional control experiments have shown that only the latter process can explain the peculiar concentration dependences of FRET at high CL content.

  17. Fluorescence microscopic characterization of ionic polymer bead-supported phospholipid bilayer membrane systems.

    PubMed

    Haratake, Mamoru; Osei-Asante, Samuel; Fuchigami, Takeshi; Nakayama, Morio

    2012-12-01

    Supported phospholipid membrane structures on cationic organic polymer beads were prepared using mixtures of dioleoylphosphatidylserine (PS) and egg yolk phosphatidylcholine (PC). Confocal fluorescence microscopic observations using a fluorescent membrane probe (N-4-nitrobenzo-2-oxa-1,3-diazole-phosphatidylethanolamine) revealed that the phospholipid molecules in the PS/PC-bead complexes were along the outer surface of the beads, but not inside the beads. The anionic PS on the most outer surface of the PS/PC-bead complexes was responsible for the binding of a positively charged macromolecule, rhodamine isothiocyanate dextran (M(w) 70,000) by electrostatic attractive forces. The fluidity of the membranes in the PS/PC-bead complexes was investigated by the fluorescence recovery after a photobleaching technique. The lateral diffusion coefficients (D) for the PS/PC-bead complexes were one-half or less than that for 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine giant unilamellar vesicles without solid supporting materials. Such a constrain of the phospholipid bilayer membrane in the complexes appeared to be due to its immobilization on the cationic polymer bead by electrostatic attractive forces between the PS and ammonium group on the surface of the bead. The D values for the complexes were dependent on the phospholipid composition; the PS(25 mol%)/PC(75 mol%)-bead complex produced a more fluid membrane than the PS(50 mol%)/PC(50 mol%)-bead one. Thus, the fluidity of the phospholipid bilayer membranes formed on the cationic polymer beads was significantly affected by the anionic phospholipid fraction used for the preparation of the complexes. Copyright © 2012 Elsevier B.V. All rights reserved.

  18. The membrane interaction of amphiphilic model peptides affects phosphatidylserine headgroup and acyl chain order and dynamics. Application of the phospholipid headgroup electrometer concept to phosphatidylserine

    SciTech Connect

    de Kroon, A.I.P.M.; Killian, J.A.; de Gier, J.; de Kruijff, B. )

    1991-01-29

    Deuterium nuclear magnetic resonance ({sup 2}H NMR) was used to study the interaction of amphiphilic model peptides with model membranes consisting of 1,2-dioleoyl-sn-glycero-3-phospho-L-serine deuterated either at the {beta}-position of the serine moiety ((2-{sup 2}H)DOPS) or at the 11-position of the acyl chains ((11,11-{sup 2}H{sub 2})DOPS). The peptides are derived from the sequences H-Ala-Met-Leu-Trp-Ala-OH and H-Arg-Met-Leu-Trp-Ala-OH and contain a positive charge of +1 or +2 at the amino terminus or one positive charge at each end of the molecule. Upon titration of dispersions of DOPS with the peptides, the divalent peptides show a similar extent of binding to the DOPS bilyers, which is larger than that of the single charged peptide. Under these conditions the values of the quadrupolar splitting of both (2-{sup 2}H)DOPS and (11,11-{sup 2}H{sub 2})DOPS are decreased, indicating that the peptides reduce the order of both the DOPS headgroup and the acyl chains. The extent of the decrease depends on the amount of peptide bound and on the position of the charged moieties in the peptide molecule. Titrations of DOPS with poly(L-lysine){sub 100}, which were included for reasons of comparison, reveal increased {Delta}v{sub q} values. When the peptide-lipid titrations are carried out without applying a freeze-thaw procedure to achieve full equilibration, two-component {sup 2}H NMR spectra occur. The apparently limited accessibility of the lipid to the peptides under these circumstances is discussed in relation to the ability of the peptides to exhibit transbilayer movement. {sup 2}H spin-lattice relaxation time T1 measurements demonstrate a decrease of the rates of motion of both headgroup and acyl chains of DOPS in the presence of the peptides.

  19. Proportion of phospholipids in the plasma membrane is an important factor in Al tolerance.

    PubMed

    Maejima, Eriko; Watanabe, Toshihiro

    2014-05-20

    The negative charge on the plasma membrane (PM) is mainly derived from the phosphate group of phospholipids. One of the mechanisms of aluminum (Al) toxicity is to increase the PM permeability of root cells by binding to the negative sites on the PM. Thus, PM with a higher proportion of phospholipids could be more susceptible to Al toxicity. In our previous study, we showed that tolerance to Al and low-calcium in rice was enhanced by decreasing the proportion of phospholipids in root cells. Both Melastoma malabathricum L. and Melaleuca cajuputi Powell are dominant woody species that grow in tropical acid sulfate soils, and have been reported to be more tolerant to Al than rice. Surprisingly, the proportion of PM phospholipids in root cells of M. malabathricum and M. cajuputi was considerably low. Our present findings suggest that PM lipid composition plays an important role in Al tolerance mechanisms in various plant species.

  20. Proportion of phospholipids in the plasma membrane is an important factor in Al tolerance.

    PubMed

    Maejima, Eriko; Watanabe, Toshihiro

    2014-01-01

    The negative charge on the plasma membrane (PM) is mainly derived from the phosphate group of phospholipids. One of the mechanisms of aluminum (Al) toxicity is to increase the PM permeability of root cells by binding to the negative sites on the PM. Thus, PM with a higher proportion of phospholipids could be more susceptible to Al toxicity. In our previous study, we showed that tolerance to Al and low-calcium in rice was enhanced by decreasing the proportion of phospholipids in root cells. Both Melastoma malabathricum L. and Melaleuca cajuputi Powell are dominant woody species that grow in tropical acid sulfate soils, and have been reported to be more tolerant to Al than rice. Surprisingly, the proportion of PM phospholipids in root cells of M. malabathricum and M. cajuputi was considerably low. Our present findings suggest that PM lipid composition plays an important role in Al tolerance mechanisms in various plant species.

  1. The relationship between the binding to and permeabilization of phospholipid bilayer membranes by GS14dK4, a designed analog of the antimicrobial peptide gramicidin S.

    PubMed

    Abraham, Thomas; Marwaha, Seema; Kobewka, Daniel M; Lewis, Ruthven N A H; Prenner, Elmar J; Hodges, Robert S; McElhaney, Ronald N

    2007-09-01

    The cationic beta-sheet cyclic tetradecapeptide cyclo[VKLdKVdYPLKVKLdYP] (GS14dK(4)) is a diastereomeric lysine ring-size analog of the potent naturally occurring antimicrobial peptide gramicidin S (GS) which exhibits enhanced antimicrobial but markedly reduced hemolytic activity compared to GS itself. We have previously studied the binding of GS14dK(4) to various phospholipid bilayer model membranes using isothermal titration calorimetry [Abraham, T. et al. (2005) Biochemistry 44, 2103-2112]. In the present study, we compare the ability of GS14dK(4) to bind to and disrupt these same phospholipid model membranes by employing a fluorescent dye leakage assay to determine the ability of this peptide to permeabilize large unilamellar vesicles. We find that in general, the ability of GS14dK(4) to bind to and to permeabilize phospholipid bilayers of different compositions are not well correlated. In particular, the binding affinity of GS14dK(4) varies markedly with the charge and to some extent with the polar headgroup structure of the phospholipid and with the cholesterol content of the model membrane. Specifically, this peptide binds much more tightly to anionic than to zwitterionic phospholipids and much less tightly to cholesterol-containing than to cholesterol-free model membranes. In addition, the maximum extent of binding of GS14dK(4) can also vary considerably with phospholipid composition in a parallel fashion. In contrast, the ability of this peptide to permeabilize phospholipid vesicles is only weakly dependent on phospholipid charge, polar headgroup structure or cholesterol content. We provide tentative explanations for the observed lack of a correlation between the affinity and extent of GS14dK(4) binding to, and degree of disruption of the structure and integrity of, phospholipid bilayers membranes. We also present evidence that the lack of correlation between these two parameters may be a general phenomenon among antimicrobial peptides. Finally, we

  2. Heat-induced alterations in monkey erythrocyte membrane phospholipid organization and skeletal protein structure and interactions.

    PubMed

    Kumar, A; Gudi, S R; Gokhale, S M; Bhakuni, V; Gupta, C M

    1990-12-14

    Rhesus monkey erythrocytes were subjected to heating at 50 degrees C for 5-15 min, and the heat-induced effects on the membrane structure were ascertained by analysing the membrane phospholipid organization and membrane skeleton dynamics and interactions in the heated cells. Membrane skeleton dynamics and interactions were determined by measuring the Tris-induced dissociation of the Triton-insoluble membrane skeleton (Triton shells), the spectrin-actin extractability at low ionic strength, spectrin self-association and spectrin binding to normal monkey erythrocyte membrane inside-out vesicles (IOVs). The Tris-induced Triton shell dissociation and spectrin-actin extractability were markedly decreased by the erythrocyte heating. Also, the binding of the heated erythrocyte membrane spectrin-actin with the IOVs was much smaller than that observed with the normal erythrocyte spectrin-actin. Further, the spectrin structure was extensively modified in the heated cells, as compared to the normal erythrocytes. Transbilayer phospholipid organization was ascertained by employing bee venom and pancreatic phospholipases A2, fluorescamine, and Merocyanine 540 as the external membrane probes. The amounts of aminophospholipids hydrolysed by phospholipases A2 or labeled by fluorescamine in intact erythrocytes considerably increased after subjecting them to heating at 50 degrees C for 15 min. Also, the fluorescent dye Merocyanine 540 readily stained the 15-min-heated cells but not the fresh erythrocytes. Unlike these findings, the extent of aminophospholipid hydrolysis in 5-min-heated cells by phospholipases A2 depended on the incubation time. While no change in the membrane phospholipid organization could be detected in 10 min, prolonged incubations led to the increased aminophospholipid hydrolysis. Similarly, fluorescamine failed to detect any change in the transbilayer phospholipid distribution soon after the 5 min heating, but it labeled greater amounts of aminophospholipids in

  3. Slow Phospholipid Exchange between a Detergent-Solubilized Membrane Protein and Lipid-Detergent Mixed Micelles: Brominated Phospholipids as Tools to Follow Its Kinetics.

    PubMed

    Montigny, Cédric; Dieudonné, Thibaud; Orlowski, Stéphane; Vázquez-Ibar, José Luis; Gauron, Carole; Georgin, Dominique; Lund, Sten; le Maire, Marc; Møller, Jesper V; Champeil, Philippe; Lenoir, Guillaume

    2017-01-01

    Membrane proteins are largely dependent for their function on the phospholipids present in their immediate environment, and when they are solubilized by detergent for further study, residual phospholipids are critical, too. Here, brominated phosphatidylcholine, a phospholipid which behaves as an unsaturated phosphatidylcholine, was used to reveal the kinetics of phospholipid exchange or transfer from detergent mixed micelles to the environment of a detergent-solubilized membrane protein, the paradigmatic P-type ATPase SERCA1a, in which Trp residues can experience fluorescence quenching by bromine atoms present on phospholipid alkyl chains in their immediate environment. Using dodecylmaltoside as the detergent, exchange of (brominated) phospholipid was found to be much slower than exchange of detergent under the same conditions, and also much slower than membrane solubilization, the latter being evidenced by light scattering changes. The kinetics of this exchange was strongly dependent on temperature. It was also dependent on the total concentration of the mixed micelles, revealing the major role for such exchange of the collision of detergent micelles with the detergent-solubilized protein. Back-transfer of the brominated phospholipid from the solubilized protein to the detergent micelle was much faster if lipid-free DDM micelles instead of mixed micelles were added for triggering dissociation of brominated phosphatidylcholine from the solubilized protein, or in the additional presence of C12E8 detergent during exchange, also emphasizing the role of the chemical nature of the micelle/protein interface. This protocol using brominated lipids appears to be valuable for revealing the possibly slow kinetics of phospholipid transfer to or from detergent-solubilized membrane proteins. Independently, continuous recording of the activity of the protein can also be used in some cases to correlate changes in activity with the exchange of a specific phospholipid, as shown here

  4. Slow Phospholipid Exchange between a Detergent-Solubilized Membrane Protein and Lipid-Detergent Mixed Micelles: Brominated Phospholipids as Tools to Follow Its Kinetics

    PubMed Central

    Montigny, Cédric; Dieudonné, Thibaud; Orlowski, Stéphane; Vázquez-Ibar, José Luis; Gauron, Carole; Georgin, Dominique; Lund, Sten; le Maire, Marc; Møller, Jesper V.; Champeil, Philippe

    2017-01-01

    Membrane proteins are largely dependent for their function on the phospholipids present in their immediate environment, and when they are solubilized by detergent for further study, residual phospholipids are critical, too. Here, brominated phosphatidylcholine, a phospholipid which behaves as an unsaturated phosphatidylcholine, was used to reveal the kinetics of phospholipid exchange or transfer from detergent mixed micelles to the environment of a detergent-solubilized membrane protein, the paradigmatic P-type ATPase SERCA1a, in which Trp residues can experience fluorescence quenching by bromine atoms present on phospholipid alkyl chains in their immediate environment. Using dodecylmaltoside as the detergent, exchange of (brominated) phospholipid was found to be much slower than exchange of detergent under the same conditions, and also much slower than membrane solubilization, the latter being evidenced by light scattering changes. The kinetics of this exchange was strongly dependent on temperature. It was also dependent on the total concentration of the mixed micelles, revealing the major role for such exchange of the collision of detergent micelles with the detergent-solubilized protein. Back-transfer of the brominated phospholipid from the solubilized protein to the detergent micelle was much faster if lipid-free DDM micelles instead of mixed micelles were added for triggering dissociation of brominated phosphatidylcholine from the solubilized protein, or in the additional presence of C12E8 detergent during exchange, also emphasizing the role of the chemical nature of the micelle/protein interface. This protocol using brominated lipids appears to be valuable for revealing the possibly slow kinetics of phospholipid transfer to or from detergent-solubilized membrane proteins. Independently, continuous recording of the activity of the protein can also be used in some cases to correlate changes in activity with the exchange of a specific phospholipid, as shown here

  5. The Role of Platelet Membrane Phospholipids in the Platelet Release Reaction

    PubMed Central

    Schick, Paul K.; Yu, Byung P.

    1974-01-01

    The structure and function of the platelet surface was probed by phospholipase C (Clostridium perfringens) which hydrolyzes membrane phospholipids, particularly phosphatidylcholine. Platelet phospholipids were susceptible to phospholipase C, and extent of hydrolysis was dependent on concentration of phospholipase C and Ca++. Phospholipase C (0.15 U/ml) with Ca++ (0.55 mM) hydrolyzed 15.6% phospholipids during 5 min. Phospholipase C released platelet serotonin (5HT), ADP, and platelet factor 4. Hydrolysis of 5% phospholipids resulted in release of 70% 5HT. Platelet 5HT release was rapid, occurring within 2 min. Phospholipase C (0.2 U/ml) with Ca++ (0.55 mM) also released 10.35 nmol sotrage pool ADP/109 platelets and 63% platelet factor 4 during 3 min. Phospholipase C did not cause leakage of cytoplasmic metabolic pool ADP, since only 6.6% [3H]ADP was released. Ultrastructural analysis of phospholipase C-modified platelets showed that platelets were intact. After 2% phospholipid hydrolysis, centralization of granules and contraction of microtubules were evident. After 18% phospholipid hydrolysis, there were morphological indications of degranulation. Phospholipase C-induced phospholipid hydrolysis caused the release of ADP and 5HT since: (a) Phospholipase C purified by heating was shown to be free of protease and neuraminidase activity and capable of inducing the platelet release reaction. (b) Antitoxin (Cl. perfringens) neutralized phospholipase C-induced 5HT release which rules out a contaminant. (c) Phosphorylcholine, the hydrolysis product, did not induce platelet 5HT release. This study demonstrates that minimal hydrolysis of platelet phospholipids triggers the release reaction. Our hypothesis is that phospholipids, presumably phosphatidylcholine, are situated at or near active site or “receptor” on the platelet surface and function as the modulator for the release reaction. Images PMID:4371563

  6. Correlation between fluidising effects on phospholipid membranes and mitochondrial respiration of propofol and p-nitrosophenol homologues.

    PubMed

    Momo, Federico; Fabris, Sabrina; Wisniewska, Anna; Fiore, Cristina; Bindoli, Alberto; Scutari, Guido; Stevanato, Roberto

    2003-03-25

    Nitrosopropofol (2-6-diisopropyl-4-nitrosophenol) has dramatic consequences for respiration, ATP synthesis and the transmembrane potential of isolated rat liver mitochondria at concentrations at which propofol (2-6-diisopropylphenol) does not cause any apparent effects. These results correlate well with the observation that nitrosopropofol is also a stronger perturbing agent of phospholipid membranes. In this paper we verify the possible biological activity of different phenols and nitrosophenols on mitochondrial respiration. We then discuss their interactions with phospholipid liposomes, studied with differential scanning calorimetry, spin labelling techniques and UV-Vis spectrophotometry, in order to obtain information on drug distribution and the modifications they impose on lipid bilayer. The results of the experiments performed on mitochondria and model membranes prove an interesting correlation between the effects of the molecules on both systems.

  7. Influence of Alcohols on the Lateral Diffusion in Phospholipid Membranes.

    PubMed

    Rifici, Simona; D'Angelo, Giovanna; Crupi, Cristina; Branca, Caterina; Conti Nibali, Valeria; Corsaro, Carmelo; Wanderlingh, Ulderico

    2016-02-25

    The effects of hexanol and octanol on the lateral mobility of 1,2-dimyristoyl-sn-glycero-3-phosphatidylcholine (DMPC) bilayer are investigated by means of pulsed-gradient stimulated-echo NMR spectroscopy. Three distinct diffusions are identified for the DMPC/alcohol systems. They are ascribed to the water, the alcohol, and the lipid. We find that the presence of alcohols promotes the lipid diffusion process both in the liquid and in the interdigitated phases. Furthermore, using the Arrhenius approach, the activation energies are calculated. An explanation in terms of a free volume model, that takes into account also the observed increase of the activation energy in both phases, is proposed. The results obtained here are compared with those presented in our previous work on 1,2-palmitoyl-sn-glycero-3-phosphocholine (DPPC) in order to examine the dependence of the lipid translational diffusion process upon the membrane acyl chain length. A peculiar influence of alcohols on different membranes is found.

  8. Multilayer of phospholipid membranes on a hydrosol substrate

    NASA Astrophysics Data System (ADS)

    Tikhonov, A. M.

    2010-09-01

    The molecular structure of a multilayer of 1,2-distearoyl-sn-glycero-3-phosphocholine (DSPC) adsorbed on the surface of the hydrosol of silica nanoparticles has been studied by the synchrotron radiation scattering method. According to the reflectometry data, the multilayer is formed by planar phospholipid bilayers with a thickness of (69 ± 1) Å and its total thickness is about 400 Å. Grazing incidence diffraction indicates that the bilayers are in the crystal state with an area of (41.6 ± 0.7) Å2 per molecule.

  9. Multilayer of Phospholipid Membranes on a Hydrosol Substrate

    SciTech Connect

    A Tikhonov

    2011-12-31

    The molecular structure of a multilayer of 1,2-distearoyl-sn-glycero-3-phosphocholine (DSPC) adsorbed on the surface of the hydrosol of silica nanoparticles has been studied by the synchrotron radiation scattering method. According to the reflectometry data, the multilayer is formed by planar phospholipid bilayers with a thickness of (69 {+-} 1) {angstrom} and its total thickness is about 400 {angstrom}. Grazing incidence diffraction indicates that the bilayers are in the crystal state with an area of (41.6 {+-} 0.7) {angstrom}{sup 2} per molecule.

  10. Plasma membrane fluidity affects transient immobilization of oxidized phospholipids in endocytotic sites for subsequent uptake.

    PubMed

    Rhode, Sebastian; Grurl, Reinhard; Brameshuber, Mario; Hermetter, Albin; Schütz, Gerhard J

    2009-01-23

    Oxidized phospholipids in serum initiate severe pathophysiological responses during the process of atherogenesis. On the cellular level it is known that these lipids induce apoptosis; however, the uptake mechanism remains enigmatic. We investigated here the behavior of the fluorescent oxidized phospholipid 1-palmitoyl-2-glutaroyl-sn-glycero-3-phospho-N-Alexa647-ethanolamine (PGPE-Alexa647) in the plasma membrane of various cell lines. The probe was taken up by the cells unspecifically via caveolae or clathrin-coated pits. Interestingly, we found the uptake to be facilitated by the overexpression of the scavenger receptor class B type I. Ultra-sensitive microscopy allowed us to follow the uptake process at the single molecule level; we observed rapid diffusion of PGPE-Alexa647 in the plasma membrane, interrupted by transient halts with duration of approximately 0.9 s at endocytotic sites. Scavenger receptor class B type I overexpression yielded a pronounced increase in the single molecule mobility, and in consequence an increased frequency of immobilization. Alternatively, the plasma membrane fluidity could also be increased by treating cells with high levels of the unlabeled oxidized phospholipid 1-palmitoyl-2-glutaroyl-sn-glycero-3-phosphocholine; also in this case, the immobilization frequency of PGPE-Alexa647 was concomitantly increased. The data demonstrate the relevance of plasma membrane properties for uptake of oxidized phospholipids, and indicate a novel indirect mechanism for the control of endocytosis.

  11. Effects of PEO-PPO-PEO triblock copolymers on phospholipid membrane integrity under osmotic stress.

    PubMed

    Wang, Jia-Yu; Chin, Jaemin; Marks, Jeremy D; Lee, Ka Yee C

    2010-08-03

    The effects of PEO-PPO-PEO triblock copolymers, mainly Poloxamer 188, on phospholipid membrane integrity under osmotic gradients were explored using giant unilamellar vesicles (GUVs). Fluorescence leakage assays showed two opposing effects of P188 on the structural integrity of GUVs depending on the duration of their incubation time. A two-state transition mechanism of interaction between the triblock copolymers and the phospholipid membrane is proposed: an adsorption (I) and an insertion (II) state. While the triblock copolymer in state I acts to moderately retard the leakage, their insertion in state II perturbs the lipid packing, thus increasing the membrane permeability. Our results suggest that the biomedical application of PEO-PPO-PEO triblock copolymers, either as cell membrane resealing agents or as accelerators for drug delivery, is directed by the delicate balance between these two states.

  12. Dynamic membrane protein topological switching upon changes in phospholipid environment

    PubMed Central

    Vitrac, Heidi; MacLean, David M.; Jayaraman, Vasanthi; Bogdanov, Mikhail; Dowhan, William

    2015-01-01

    A fundamental objective in membrane biology is to understand and predict how a protein sequence folds and orients in a lipid bilayer. Establishing the principles governing membrane protein folding is central to understanding the molecular basis for membrane proteins that display multiple topologies, the intrinsic dynamic organization of membrane proteins, and membrane protein conformational disorders resulting in disease. We previously established that lactose permease of Escherichia coli displays a mixture of topological conformations and undergoes postassembly bidirectional changes in orientation within the lipid bilayer triggered by a change in membrane phosphatidylethanolamine content, both in vivo and in vitro. However, the physiological implications and mechanism of dynamic structural reorganization of membrane proteins due to changes in lipid environment are limited by the lack of approaches addressing the kinetic parameters of transmembrane protein flipping. In this study, real-time fluorescence spectroscopy was used to determine the rates of protein flipping in the lipid bilayer in both directions and transbilayer flipping of lipids triggered by a change in proteoliposome lipid composition. Our results provide, for the first time to our knowledge, a dynamic picture of these events and demonstrate that membrane protein topological rearrangements in response to lipid modulations occur rapidly following a threshold change in proteoliposome lipid composition. Protein flipping was not accompanied by extensive lipid-dependent unfolding of transmembrane domains. Establishment of lipid bilayer asymmetry was not required but may accelerate the rate of protein flipping. Membrane protein flipping was found to accelerate the rate of transbilayer flipping of lipids. PMID:26512118

  13. The immiscible cholesterol bilayer domain exists as an integral part of phospholipid bilayer membranes.

    PubMed

    Raguz, Marija; Mainali, Laxman; Widomska, Justyna; Subczynski, Witold K

    2011-04-01

    Electron paramagnetic resonance (EPR) spin-labeling methods were used to study the organization of cholesterol and phospholipids in membranes formed from Chol/POPS (cholesterol/1-palmitoyl-2-oleoyl-sn-glycero-3-phosphatidylserine) mixtures, with mixing ratios from 0 to 3. It was confirmed using the discrimination by oxygen transport and polar relaxation agent accessibility methods that the immiscible cholesterol bilayer domain (CBD) was present in all of the suspensions when the mixing ratio exceeded the cholesterol solubility threshold (CST) in the POPS membrane. The behavior of phospholipid molecules was monitored with phospholipid analogue spin labels (n-PCs), and the behavior of cholesterol was monitored with the cholesterol analogue spin labels CSL and ASL. Results indicated that phospholipid and cholesterol mixtures can form a membrane suspension up to a mixing ratio of ~2. Additionally, EPR spectra for n-PC, ASL, and CSL indicated that both phospholipids and cholesterol exist in these suspensions in the lipid-bilayer-like structures. EPR spectral characteristics of n-PCs (spin labels located in the phospholipid cholesterol bilayer, outside the CBD) change with increase in the cholesterol content up to and beyond the CST. These results present strong evidence that the CBD forms an integral part of the phospholipid bilayer when formed from a Chol/POPS mixture up to a mixing ratio of ~2. Interestingly, CSL in cholesterol alone (without phospholipids) when suspended in buffer does not detect formation of bilayer-like structures. A broad, single-line EPR signal is given, similar to that obtained for the dry film of cholesterol before addition of the buffer. This broad, single-line signal is also observed in suspensions formed for Chol/POPS mixtures (as a background signal) when the Chol/POPS ratio is much greater than 3. It is suggested that the EPR spin-labeling approach can discriminate and characterize the fraction of cholesterol that forms the CBD within the

  14. Phase separation between phospholipids and grafted polymer chains onto a fluctuating membrane

    NASA Astrophysics Data System (ADS)

    Benhamou, M.; Joudar, I.; Kaidi, H.

    2007-12-01

    We re-examine here the theoretical study of the phase separation between phospholipids and grafted long polymer chains onto a fluid membrane. The polymer chains are assumed to be anchored to the membrane by one extremity (anchor). The anchors are big amphiphile lipid molecules. The anchors and phospholipids forming the bilayer phase separate under the variation of a suitable parameter (temperature, pressure, membrane environment, ...). To investigate the demixtion transition, we elaborate a new approach that takes into account the membrane undulations. We show that these undulations have the tendency to induce additional attractive forces between anchors, and consequently, the separation transition is accentuated and occurs at high temperature. Quantitatively, we show that the membrane undulations contribute with an extra positive segregation parameter χm > 0 , which scales as χm thicksim κ-2 , where κ is the bending rigidity constant. Therefore, the attraction phenomenon between species of the same kind is significant only for those membranes of small bending rigidity constant. Finally, the study is extended to the case where the lengths of the anchored polymer chains are randomly distributed. To achieve calculations, we choose a length distribution of fractal form. The essential conclusion is that the polydispersity increases the size of domains alternatively rich in phospholipids and anchors.

  15. Rpe65 isomerase associates with membranes through an electrostatic interaction with acidic phospholipid headgroups.

    PubMed

    Yuan, Quan; Kaylor, Joanna J; Miu, Anh; Bassilian, Sara; Whitelegge, Julian P; Travis, Gabriel H

    2010-01-08

    Opsins are light-sensitive pigments in the vertebrate retina, comprising a G protein-coupled receptor and an 11-cis-retinaldehyde chromophore. Absorption of a photon by an opsin pigment induces isomerization of its chromophore to all-trans-retinaldehyde. After a brief period of activation, opsin releases all-trans-retinaldehyde and becomes insensitive to light. Restoration of light sensitivity to the apo-opsin involves the conversion of all-trans-retinaldehyde back to 11-cis-retinaldehyde via an enzyme pathway called the visual cycle. The critical isomerization step in this pathway is catalyzed by Rpe65. Rpe65 is strongly associated with membranes but contains no membrane-spanning segments. It was previously suggested that the affinity of Rpe65 for membranes is due to palmitoylation of one or more Cys residues. In this study, we re-examined this hypothesis. By two independent strategies involving mass spectrometry, we show that Rpe65 is not palmitoylated nor does it appear to undergo other post-translational modifications at significant stoichiometry. Instead, we show that Rpe65 binds the acidic phospholipids, phosphatidylserine, phosphatidylglycerol, and cardiolipin, but not phosphatidic acid. No binding of Rpe65 to basic phospholipids or neutral lipids was observed. The affinity of Rpe65 to acidic phospholipids was strongly pH-dependent, suggesting an electrostatic interaction of basic residues in Rpe65 with negatively charged phospholipid headgroups. Binding of Rpe65 to liposomes containing phosphatidylserine or phosphatidylglycerol, but not the basic or neutral phospholipids, allowed the enzyme to extract its insoluble substrate, all-trans-retinyl palmitate, from the lipid bilayer for synthesis of 11-cis-retinol. The interaction of Rpe65 with acidic phospholipids is therefore biologically relevant.

  16. Lipid asymmetry in plant plasma membranes: phosphate deficiency-induced phospholipid replacement is restricted to the cytosolic leaflet.

    PubMed

    Tjellström, Henrik; Hellgren, Lars I; Wieslander, Ake; Sandelius, Anna Stina

    2010-04-01

    As in other eukaryotes, plant plasma membranes contain sphingolipids, phospholipids, and free sterols. In addition, plant plasma membranes also contain sterol derivatives and usually <5 mol% of a galactolipid, digalactosyldiacylglycerol (DGDG). We earlier reported that compared to fully fertilized oats (Avena sativa), oats cultivated without phosphate replaced up to 70 mol% of the root plasma membrane phospholipids with DGDG. Here, we investigated the implications of a high DGDG content on membrane properties. The phospholipid-to-DGDG replacement almost exclusively occurred in the cytosolic leaflet, where DGDG constituted up to one-third of the lipids. In the apoplastic (exoplasmic) leaflet, as well as in rafts, phospholipids were not replaced by DGDG, but by acylated sterol glycosides. Liposome studies revealed that the chain ordering in free sterol/phospholipid mixtures clearly decreased when >5 mol% DGDG was included. As both the apoplastic plasma membrane leaflet (probably the major water permeability barrier) and rafts both contain only trace amounts of DGDG, we conclude that this lipid class is not compatible with membrane functions requiring a high degree of lipid order. By not replacing phospholipids site specifically with DGDG, negative functional effects of this lipid in the plasma membrane are avoided.-Tjellström, H., Hellgren, L. I., Wieslander, A., Sandelius, A. S. Lipid asymmetry in plant plasma membranes: phosphate deficiency-induced phospholipid replacement is restricted to the cytosolic leaflet.

  17. Phospholipid dynamics in graphene of different topologies: predictive modeling

    NASA Astrophysics Data System (ADS)

    Glukhova, O. E.; Slepchenkov, M. M.

    2017-02-01

    The subject of our scientific interest is the dynamics of the phospholipid molecules into a corrugated graphene sheet. According to our assumption by changing the topology of graphene properly it is possible to find the ways for management of the selective localization of phospholipid molecules to form the desired configuration of these structures. We considered DPPC (dipalmitoylphosphatidylcholine) phospholipids, which are the part of cell membranes and lipoproteins. We investigated the behavior of the phospholipids on the graphene sheet consisting of 1710 atoms with the size of 6.9 nm along the zigzag edge and 6.25 nm along the armchair edge. The numerical experiment was carried out using the original AMBER/AIREBO hybrid method with Lennard-Jones potential to describe the interaction between unbound atoms of different structures. The temperature was maintained at 300 K during the numerical experiment. All numerical experiments were performed using KVAZAR software system. We considered several cases of corrugated graphene with different width and dept of the corrugation. Special attention in our work was paid to the orientation of the phospholipids in the plane of graphene sheet.

  18. Dynamics of bio-membranes investigated by neutron spin echo: Effects of phospholipid conformations and presence of lidocaine

    NASA Astrophysics Data System (ADS)

    Yi, Zheng

    Bio-membranes of the natural living cells are made of bilayers of phospholipids molecules embedded with other constituents, such as cholesterol and membrane proteins, which help to accomplish a broad range of functions. Vesicles made of lipid bilayers can serve as good model systems for bio-membranes. Therefore these systems have been extensively characterized and much is known about their shape, size, porosity and functionality. In this dissertation we report the studies of the effects of the phosoholipid conformation, such as hydrocarbon number and presence of double bond in hydrophobic tails on dynamics of phospholipids bilayers studied by neutron spin echo (NSE) technique. We have investigated how lidocaine, the most medically used local anesthetics (LA), influence the structural and dynamical properties of model bio-membranes by small angle neutron scattering (SANS), NSE and differential scanning calorimetry (DSC). To investigate the influence of phospholipid conformation on bio-membranes, the bending elasticities kappac of seven saturated and monounsaturated phospholipid bilayers were investigated by NSE spectroscopy. kappa c of phosphatidylcholines (PCS) in liquid crystalline (L alpha) phase ranges from 0.38x10-19 J for 1,2-Dimyristoyl- sn-Glycero-3-Phosphocholine (14:0 PC) to 0.64x10-19 J for 1,2-Dieicosenoyl-sn-Glycero-3-Phosphocholine (20:1 PC). It was confirmed that when the area modulus KA varies little with chain unsaturation or length, the elastic ratios (kappac/ KA)1/2 of bilayers varies linearly with lipid hydrophobic thickness d. For the study of the influence of LA on bio-membranes, SANS measurements have been performed on 14:0 PC bilayers with different concentrations of lidocaine to determine the bilayer thickness dL as a function of the lidocaine concentration. NSE has been used to study the influence of lidocaine on the bending elasticity of 14:0 PC bilayers in Lalpha and ripple gel (Pbeta') phases. Our results confirmed that the molecules of

  19. Effects of phospholipid composition on MinD-membrane interactions in vitro and in vivo.

    PubMed

    Mileykovskaya, Eugenia; Fishov, Itzhak; Fu, Xueyao; Corbin, Brian D; Margolin, William; Dowhan, William

    2003-06-20

    The peripheral membrane ATPase MinD is a component of the Min system responsible for correct placement of the division site in Escherichia coli cells. By rapidly migrating from one cell pole to the other, MinD helps to block unwanted septation events at the poles. MinD is an amphitropic protein that is localized to the membrane in its ATP-bound form. A C-terminal domain essential for membrane localization is predicted to be an amphipathic alpha-helix with hydrophobic residues interacting with lipid acyl chains and cationic residues on the opposite face of the helix interacting with the head groups of anionic phospholipids (Szeto, T. H., Rowland, S. L., Rothfield, L. I., and King, G. F. (2002) Proc. Natl. Acad. Sci. U. S. A. 99, 15693-15698). To investigate whether E. coli MinD displays a preference for anionic phospholipids, we first examined the localization dynamics of a green fluorescent protein-tagged derivative of MinD expressed in a mutant of E. coli that lacks phosphatidylethanolamine. In these cells, which contain only anionic phospholipids (phosphatidylglycerol and cardiolipin), green fluorescent protein-MinD assembled into dynamic focal clusters instead of the broad zones typical of cells with normal phospholipid content. In experiments with liposomes composed of only zwitterionic, only anionic, or a mixture of anionic and zwitterionic phospholipids, purified MinD bound to these liposomes in the presence of ATP with positive cooperativity with respect to the protein concentration and exhibited Hill coefficients of about 2. Oligomerization of MinD on the liposome surface also was detected by fluorescence resonance energy transfer between MinD molecules labeled with different fluorescent probes. The affinity of MinD-ATP for anionic liposomes as well as liposomes composed of both anionic and zwitterionic phospholipids increased 9- and 2-fold, respectively, relative to zwitterionic liposomes. The degree of acyl chain unsaturation contributed positively to

  20. Polypeptide and phospholipid composition of the membrane of rat liver peroxisomes: comparison with endoplasmic reticulum and mitochondrial membranes

    PubMed Central

    1982-01-01

    Membranes were isolated from highly purified peroxisomes, mitochondria, and rough and smooth microsomes of rat liver by the one-step Na2CO3 procedure described in the accompanying paper (1982, J. Cell Biol. 93:97-102). The polypeptide compositions of these membranes were determined by SDS PAGE and found to be greatly dissimilar. The peroxisomal membrane contains 12% of the peroxisomal protein and consists of three major polypeptides (21,700, 67,700 and 69,700 daltons) as well as some minor polypeptides. The major peroxisomal membrane proteins as well as most of the minor ones are absent from the endoplasmic reticulum (ER). Conversely, most ER proteins are absent from peroxisomes. By electron microscopy, purified peroxisomal membranes are approximately 6.8 nm thick and have a typical trilaminar appearance. The phospholipid/protein ratio of peroxisomal membranes is approximately 200 nmol/mg; the principal phospholipids are phosphatidyl choline and phosphatidyl ethanolamine as in ER and mitochondrial membranes. In contrast to the mitochondria, peroxisomal membranes contain no cardiolipin. All the membranes investigated contain a polypeptide band with a molecular mass of approximately 15,000 daltons. Whether this represents an exceptional common membrane protein or a coincidence is unknown. The implications of these results for the biogenesis of peroxisomes are discussed. PMID:7068748

  1. Dual mechanism of activation of plant plasma membrane Ca2+-ATPase by acidic phospholipids: evidence for a phospholipid binding site which overlaps the calmodulin-binding site.

    PubMed

    Meneghelli, Silvia; Fusca, Tiziana; Luoni, Laura; De Michelis, Maria Ida

    2008-09-01

    The effect of phospholipids on the activity of isoform ACA8 of Arabidopsis thaliana plasma membrane (PM) Ca2+-ATPase was evaluated in membranes isolated from Saccharomyces cerevisiae strain K616 expressing wild type or mutated ACA8 cDNA. Acidic phospholipids stimulated the basal Ca2+-ATPase activity in the following order of efficiency: phosphatidylinositol 4-monophosphate > phosphatidylserine > phosphatidylcholine approximately = phosphatidylethanolamine approximately = 0. Acidic phospholipids increased V(max-Ca2+) and lowered the value of K(0.5-Ca2+) below the value measured in the presence of calmodulin (CaM). In the presence of CaM acidic phospholipids activated ACA8 by further decreasing its K(0.5-Ca2+) value. Phosphatidylinositol 4-monophosphate and, with lower efficiency, phosphatidylserine bound peptides reproducing ACA8 N-terminus (aa 1-116). Single point mutation of three residues (A56, R59 and Y62) within the sequence A56-T63 lowered the apparent affinity of ACA8 for phosphatidylinositol 4-monophosphate by two to three fold, indicating that this region contains a binding site for acidic phospholipids. However, the N-deleted mutant Delta74-ACA8 was also activated by acidic phospholipids, indicating that acidic phospholipids activate ACA8 through a complex mechanism, involving interaction with different sites. The striking similarity between the response to acidic phospholipids of ACA8 and animal plasma membrane Ca2+-ATPase provides new evidence that type 2B Ca2+-ATPases share common regulatory properties independently of structural differences such as the localization of the terminal regulatory region at the N- or C-terminal end of the protein.

  2. Phospholipid coatings for the prevention of membrane fouling.

    PubMed

    Reuben, B G; Perl, O; Morgan, N L; Stratford, P; Dudley, L Y; Hawes, C

    1995-05-01

    The aim of the present work was the development of phosphorylcholine-based treatments for biofiltration membranes and the demonstration that such treatments prevent or inhibit protein fouling. Microfiltration membranes of cellulose triacetate, polyether sulphone and polyvinylidene fluoride were etched with oxygen in a plasma chamber to generate surface hydroxyl groups and were then treated with the monomer 2-methacryloyloxyethyl phosphorylcholine. These membranes were evaluated with water, buffer, bovine serum albumin (BSA), yeast fermentation broth, beer and orange juice. The treatment of cellulose triacetate membranes reduced both the initial flux and the extent of water fouling. In terms of the integrated flux, these factors tended to cancel each other out. For protein, the membranes gave similar or higher fluxes but worse fouling. The cellular feed (yeast) reacted more favourably to the coating than the BSA. The polyether sulphone was scarcely affected by the coating; fouling remaining high with most 'real' feeds. There was lower initial flux but less flux decline with water and beer. Washing with water and cleaning with Tergazyme did not restore the initial flux. Polyvinylidene fluoride membranes gave the most positive results. In most cases, the coating both increased initial flux and decreased the rate of fouling. The coating was particularly effective for BSA and for beer and orange juice, where fouling is probably caused by a polysaccharide rather than by a protein. Electron microscopy showed, nonetheless, that fouling by proteins was accompanied by protein adsorption primarily on the upper surface of the membrane and that coated membranes showed less deposition and in different places than did untreated membranes.

  3. Isothermal Titration Calorimetric Studies on the Interaction of the Major Bovine Seminal Plasma Protein, PDC-109 with Phospholipid Membranes

    PubMed Central

    Anbazhagan, V.; Sankhala, Rajeshwer S.; Singh, Bhanu Pratap; Swamy, Musti J.

    2011-01-01

    The interaction of the major bovine seminal plasma protein, PDC-109 with lipid membranes was investigated by isothermal titration calorimetry. Binding of the protein to model membranes made up of diacyl phospholipids was found to be endothermic, with positive values of binding enthalpy and entropy, and could be analyzed in terms of a single type of binding sites on the protein. Enthalpies and entropies for binding to diacylphosphatidylcholine membranes increased with increase in temperature, although a clear-cut linear dependence was not observed. The entropically driven binding process indicates that hydrophobic interactions play a major role in the overall binding process. Binding of PDC-109 with dimyristoylphosphatidylcholine membranes containing 25 mol% cholesterol showed an initial increase in the association constant as well as enthalpy and entropy of binding with increase in temperature, whereas the values decreased with further increase in temperature. The affinity of PDC-109 for phosphatidylcholine increased at higher pH, which is physiologically relevant in view of the basic nature of the seminal plasma. Binding of PDC-109 to Lyso-PC could be best analysed in terms of two types of binding interactions, a high affinity interaction with Lyso-PC micelles and a low-affinity interaction with the monomeric lipid. Enthalpy-entropy compensation was observed for the interaction of PDC-109 with phospholipid membranes, suggesting that water structure plays an important role in the binding process. PMID:22022488

  4. Isothermal titration calorimetric studies on the interaction of the major bovine seminal plasma protein, PDC-109 with phospholipid membranes.

    PubMed

    Anbazhagan, V; Sankhala, Rajeshwer S; Singh, Bhanu Pratap; Swamy, Musti J

    2011-01-01

    The interaction of the major bovine seminal plasma protein, PDC-109 with lipid membranes was investigated by isothermal titration calorimetry. Binding of the protein to model membranes made up of diacyl phospholipids was found to be endothermic, with positive values of binding enthalpy and entropy, and could be analyzed in terms of a single type of binding sites on the protein. Enthalpies and entropies for binding to diacylphosphatidylcholine membranes increased with increase in temperature, although a clear-cut linear dependence was not observed. The entropically driven binding process indicates that hydrophobic interactions play a major role in the overall binding process. Binding of PDC-109 with dimyristoylphosphatidylcholine membranes containing 25 mol% cholesterol showed an initial increase in the association constant as well as enthalpy and entropy of binding with increase in temperature, whereas the values decreased with further increase in temperature. The affinity of PDC-109 for phosphatidylcholine increased at higher pH, which is physiologically relevant in view of the basic nature of the seminal plasma. Binding of PDC-109 to Lyso-PC could be best analysed in terms of two types of binding interactions, a high affinity interaction with Lyso-PC micelles and a low-affinity interaction with the monomeric lipid. Enthalpy-entropy compensation was observed for the interaction of PDC-109 with phospholipid membranes, suggesting that water structure plays an important role in the binding process.

  5. Solubility and diffusion of oxygen in phospholipid membranes.

    PubMed

    Möller, Matías N; Li, Qian; Chinnaraj, Mathivanan; Cheung, Herbert C; Lancaster, Jack R; Denicola, Ana

    2016-11-01

    The transport of oxygen and other nonelectrolytes across lipid membranes is known to depend on both diffusion and solubility in the bilayer, and to be affected by changes in the physical state and by the lipid composition, especially the content of cholesterol and unsaturated fatty acids. However, it is not known how these factors affect diffusion and solubility separately. Herein we measured the partition coefficient of oxygen in liposome membranes of dilauroyl-, dimiristoyl- and dipalmitoylphosphatidylcholine in buffer at different temperatures using the equilibrium-shift method with electrochemical detection. The apparent diffusion coefficient was measured following the fluorescence quenching of 1-pyrenedodecanoate inserted in the liposome bilayers under the same conditions. The partition coefficient varied with the temperature and the physical state of the membrane, from below 1 in the gel state to above 2.8 in the liquid-crystalline state in DMPC and DPPC membranes. The partition coefficient was directly proportional to the partial molar volume and was then associated to the increase in free-volume in the membrane as a function of temperature. The apparent diffusion coefficients were corrected by the partition coefficients and found to be nearly the same, with a null dependence on viscosity and physical state of the membrane, probably because the pyrene is disturbing the surrounding lipids and thus becoming insensitive to changes in membrane viscosity. Combining our results with those of others, it is apparent that both solubility and diffusion increase when increasing the temperature or when comparing a membrane in the gel to one in the fluid state.

  6. Characterization of Type Three Secretion System Translocator Interactions with Phospholipid Membranes.

    PubMed

    Adam, Philip R; Barta, Michael L; Dickenson, Nicholas E

    2017-01-01

    In vitro characterization of type III secretion system (T3SS) translocator proteins has proven challenging due to complex purification schemes and their hydrophobic nature that often requires detergents to provide protein solubility and stability. Here, we provide experimental details for several techniques that overcome these hurdles, allowing for the direct characterization of the Shigella translocator protein IpaB with respect to phospholipid membrane interaction. The techniques specifically discussed in this chapter include membrane interaction/liposome flotation, liposome sensitive fluorescence quenching, and protein-mediated liposome disruption assays. These assays have provided valuable insight into the role of IpaB in T3SS-mediated phospholipid membrane interactions by Shigella and should readily extend to other members of this important class of proteins.

  7. [Phospholipids and structural modification of tissues and cell membranes for adaptation in high altitude mountains].

    PubMed

    Iakovlev, V M; Vishnevskiĭ, A A; Shanazarov, A S

    2012-01-01

    The nature of the impact of physical factors of high altitudes (3200 m) on the lipids of tissues and membranes of animals was researched. It was established that the adaptation process in Wistar rats was followed by peroxide degradation and subsequent modification of the phospholipids' structure of tissues and microsomal membranes. Adaptive phospholipids reconstruction takes place in microsomal membranes in the tissues of the lungs, brain, liver and skeletal muscles. Together with this, the amount of phosphatidylinositol and phosphatidic acid accumulates, indicating that the hydrolysis of phosphatidylinositol-4, 5 biphosphate to diacylglycerol and secondary messenger--inositol triphosphate, occurs. A decrease in temperature adaptation (+10 degrees C) leads to a more noticeable shift in peroxide oxidation of lipids, phospholipid structure in the tissues and membranes rather than adaptation in thermoneutral conditions (+30 degrees C). Modification of lipid composition of tissues and cell membranes in the highlands obviously increases the adaptive capabilities of cells of the whole body: physical performance and resistance to hypoxia increases in animals.

  8. Stimulation of plant plasma membrane Ca2+-ATPase activity by acidic phospholipids.

    PubMed

    Bonza, Maria Cristina; Luoni, Laura; De Michelis, Maria Ida

    2001-07-01

    The effect of phospholipids on the activity of the plasma membrane (PM) Ca2+-ATPase was evaluated in PM isolated from germinating radish (Raphanus sativus L. cv. Tondo Rosso Quarantino) seeds after removal of endogenous calmodulin (CaM) by washing the PM vesicles with EDTA. Acidic phospholipids stimulated the basal Ca2+-ATPase activity in the following order of efficiency: phosphatidylinositol 4,5-diphosphate (PIP2) approximately phosphatidylinositol 4-monophosphate>phosphatidylinositol approximately phosphatidylserine approximately phosphatidic acid. Neutral phospholipids as phosphatidylcholine and phosphatidylethanolamine were essentially ineffective. When the assays were performed in the presence of optimal free Ca2+ concentrations (10 &mgr;M) acidic phospholipids did not affect the Ca2+-ATPase activated by CaM or by a controlled trypsin treatment of the PM, which cleaved the CaM-binding domain of the enzyme. Analysis of the dependence of Ca2+-ATPase activity on free Ca2+ concentration showed that acidic phospholipids increased Vmax and lowered the apparent Km for free Ca2+ below the value measured upon tryptic cleavage of the CaM-binding domain; in particular, PIP2 was shown to lower the apparent Km for free Ca2+ of the Ca2+-ATPase also in trypsin-treated PM. These results indicate that acidic phospholipids activate the plant PM Ca2+-ATPase through a mechanism only partially overlapping that of CaM, and thus involving a phospholipid-binding site in the Ca2+-ATPase distinct from the CaM-binding domain. The physiological implications of these results are discussed.

  9. Effects of three stabilizing agents--proline, betaine, and trehalose--on membrane phospholipids.

    PubMed

    Rudolph, A S; Crowe, J H; Crowe, L M

    1986-02-15

    We have studied the interaction between three compounds which accumulate in organisms under hydration stress--proline, betaine, and trehalose--and the membrane phospholipids dimyristoylphosphatidylcholine (DMPC), palmitoyloleoylphosphatidylcholine (POPC), and dimyristoylphosphatidylethanolamine in bulk solution. Film balance studies reveal that these compounds increase the area/molecule of these lipids. Differential scanning calorimetry has been employed to investigate the effect these agents have on the gel-to-liquid crystalline phase transition of multilamellar and small unilamellar vesicles of DMPC, dipalmitoylphosphatidylcholine, and POPC:phosphatidylserine (90:10 mole ratio) in bulk solution. In the presence of 1 M proline, trehalose, or betaine, the midtransition temperature in small unilamellar vesicles is reduced (up to 7 degrees C in 1 M trehalose), and the transition broadened. In contrast, multilamellar vesicles of similar lipid composition show an increased transition temperature in the presence of the same concentration of these compounds. This result suggests that the inner lamellae in multilamellar vesicles may be dehydrated with only a few outer lamellae exposed to the protective compound. Finally, we have used stereomodels of phosphatidylcholine to investigate the mechanism of action of these agents. Hydrogen bonding of trehalose to the head group region results in an increase in the distance between head groups of 6.9 A. This amount of spreading compares well with data from the monolayer experiments which indicate that maximal spreading of DMPC monolayers by trehalose is 6.5 A. Molecular models of proline and betaine have also been constructed, and these models suggest potential interactions between these compounds and phosphatidylcholines. For the amphipath proline, this interaction may involve intercalation between phospholipid head groups.

  10. Effect of different phospholipid-cholesterol membrane compositions on liposome-mediated formation of calcium phosphates.

    PubMed

    Skrtic, D; Eanes, E D

    1992-03-01

    The present report compares the effects of different membrane phospholipid (PL)-cholesterol compositions on the kinetics of liposome-mediated formation of calcium phosphates from metastable solutions (2.25 mM CaCl2; 1.5 mM KH2PO4) at 22 degrees C, pH 7.4 and 240 mOsm. In most experiments, the liposomes were composed of 7:2:X mixtures of phosphatidylcholine (PC), neutral or acidic phospholipids, and cholesterol (Chol, X = 0, 10, 35, or 50 mol%). The neutral phospholipids (NPL) examined, in addition to PC, were phosphatidylethanolamine (PE) and sphingomyelin (Sph), and the acidic phospholipids (APL) examined were dicetylphosphate (DCP), dioleolylphosphatidylglycerol (DOPG), dioleolylphosphatidic acid (DOPA), phosphatidylserine (PS) and phosphatidylinositol (PI). The 7:2:X liposomes did not initiate mineralization in metasable external solutions per se or, with the exception of DOPA, show extensive Ca-PL binding. However, solution Ca2+ losses due to precipitation occurred when the liposomes were encapsulated with 50 mM KH2PO4 and made permeable to external Ca2+ with X-537A. The extent of these Ca2+ losses was sensitive to both the phospholipid and Chol makeup of the membrane. Moderate-to-extensive intraliposomal precipitation occurred in all 7PC:2APL and 7PC:2NPL liposomes containing 0 or 10 mol% Chol. In contrast, at 50 mol% Chol, mineralization inside all liposomes was negligible. The only significant discriminating effect on internal mineralization among the different phospholipids was observed at 35 mol% Chol, where mineral accumulations ranged from negligible to moderate. At 0 or 10 mol% Chol, extraliposomal precipitation was extensive in all but DOPA- and PS-containing liposomes.(ABSTRACT TRUNCATED AT 250 WORDS)

  11. 25-Hydroxycholesterol Increases the Availability of Cholesterol in Phospholipid Membranes

    SciTech Connect

    Olsen, Brett N.; Schlesinger, Paul H.; Ory, Daniel S.; Baker, Nathan A.

    2011-02-01

    Side-chain oxysterols are enzymatically generated oxidation products of cholesterol that serve a central role in mediating cholesterol homeostasis. Recent work has shown that side-chain oxysterols, such as 25-hydroxycholesterol (25-HC), alter membrane structure in very different ways from cholesterol, suggesting a possible mechanism for how these oxysterols regulate cholesterol homeostasis. Here we extend our previous work, using molecular dynamics simulations of 25-HC and cholesterol mixtures in 1-palmitoyl-2-oleoyl-phosphatidylcholine (POPC) bilayers to examine interactions between 25-HC and cholesterol in the same bilayer. When added to cholesterol-containing membranes, 25-HC causes larger changes in membrane structure than when added to cholesterol-free membranes, demonstrating interactions between the two sterols. We also find that the presence of 25-HC changes the position, orientation, and solvent accessibility of cholesterol, shifting it into the water interface and therefore its availability to external acceptors. This is consistent with experimental results showing that oxysterols can trigger cholesterol trafficking from the plasma membrane to the endoplasmic reticulum. These interactions provide a potential mechanism for 25-HC-mediated regulation of cholesterol trafficking and homeostasis through direct modulation of cholesterol availability.

  12. Abnormal transbilayer distribution of phospholipids in red blood cell membranes in schizophrenia.

    PubMed

    Nuss, Philippe; Tessier, Cedric; Ferreri, Florian; De Hert, Marc; Peuskens, Joseph; Trugnan, Germain; Masliah, Joelle; Wolf, Claude

    2009-09-30

    Abnormalities in membrane lipids have been repeatedly reported in patients with schizophrenia. These abnormalities include decreased phosphatidylethanolamine (PE) and n-3 and n-6 polyunsaturated fatty acids in peripheral and brain cell membranes. The present study investigates the hypothesis of an overrepresentation of PE in the external leaflet of the red blood cell (RBC) membrane in patients with schizophrenia. The assumption was that this modification of PE asymmetrical distribution could explain the reported lipid membrane abnormalities. Phosphatidylethanolamine located in the external leaflet was specifically labeled in RBC membranes from 65 medicated patients with schizophrenia and 38 healthy controls. Labeled (external) and non-labeled (internal) PE and their respective fatty acid composition were analyzed by mass spectrometry. A significant increase in the percentage of external leaflet PE was found in RBC membranes in 63.1% of the patients. In this subgroup, a significant depletion of n-3 and n-6 polyunsaturated fatty acids from internally located PE was also observed. Age, sex and antipsychotic treatment were not associated with the transbilayer membrane distribution of PE. Potential mechanisms underlying these abnormalities may involve membrane phospholipid transporters or degradative enzymes involved in phospholipid metabolism. The anomaly described could characterize a subgroup among patients with schizophrenia.

  13. Bile salt-stimulated phospholipid efflux mediated by ABCB4 localized in nonraft membranes.

    PubMed

    Morita, Shin-ya; Tsuda, Tadanori; Horikami, Manami; Teraoka, Reiko; Kitagawa, Shuji; Terada, Tomohiro

    2013-05-01

    ABCB4 is necessary for the secretion of phospholipids from hepatocytes into bile and for the protection of cell membranes against bile salts. Lipid rafts are plasma membrane microdomains containing high contents of cholesterol and sphingolipids, which are separated by Triton X-100 extraction or OptiPrep gradient centrifugation. In this study, we investigated the relationship between the function of ABCB4 and lipid rafts using mouse canalicular membranes and HEK293 cells stably expressing ABCB4. ABCB4 and ABCB1 were mainly distributed in nonraft membranes. The expression of ABCB4, but not ABCB1, led to significant increases in the phosphatidylcholine (PC), phosphatidylethanolamine (PE), and sphingomyelin (SM) contents in nonraft membranes and further enrichment of SM and cholesterol in raft membranes. The ABCB4-mediated efflux of PC, PE, and SM was significantly stimulated by taurocholate, while the efflux of PE and SM was much less than that of PC. This ABCB4-mediated efflux was completely abolished by BODIPY-verapamil, which hardly partitioned into raft membranes. In addition, ABCB1 and ABCB4 mediated the efflux of rhodamine 123 and rhodamine 6G from nonraft membranes, which was not affected by taurocholate. We conclude that ABCB4 located in nonrafts, but not in rafts, is predominantly involved in the efflux of phospholipids and other substrates.

  14. Bile salt-stimulated phospholipid efflux mediated by ABCB4 localized in nonraft membranes

    PubMed Central

    Morita, Shin-ya; Tsuda, Tadanori; Horikami, Manami; Teraoka, Reiko; Kitagawa, Shuji; Terada, Tomohiro

    2013-01-01

    ABCB4 is necessary for the secretion of phospholipids from hepatocytes into bile and for the protection of cell membranes against bile salts. Lipid rafts are plasma membrane microdomains containing high contents of cholesterol and sphingolipids, which are separated by Triton X-100 extraction or OptiPrep gradient centrifugation. In this study, we investigated the relationship between the function of ABCB4 and lipid rafts using mouse canalicular membranes and HEK293 cells stably expressing ABCB4. ABCB4 and ABCB1 were mainly distributed in nonraft membranes. The expression of ABCB4, but not ABCB1, led to significant increases in the phosphatidylcholine (PC), phosphatidylethanolamine (PE), and sphingomyelin (SM) contents in nonraft membranes and further enrichment of SM and cholesterol in raft membranes. The ABCB4-mediated efflux of PC, PE, and SM was significantly stimulated by taurocholate, while the efflux of PE and SM was much less than that of PC. This ABCB4-mediated efflux was completely abolished by BODIPY-verapamil, which hardly partitioned into raft membranes. In addition, ABCB1 and ABCB4 mediated the efflux of rhodamine 123 and rhodamine 6G from nonraft membranes, which was not affected by taurocholate. We conclude that ABCB4 located in nonrafts, but not in rafts, is predominantly involved in the efflux of phospholipids and other substrates. PMID:23468132

  15. Substrate Selectivity of Lysophospholipid Transporter LplT Involved in Membrane Phospholipid Remodeling in Escherichia coli*

    PubMed Central

    Lin, Yibin; Bogdanov, Mikhail; Tong, Shuilong; Guan, Ziqiang; Zheng, Lei

    2016-01-01

    Lysophospholipid transporter (LplT) was previously found to be primarily involved in 2-acyl lysophosphatidylethanolamine (lyso-PE) recycling in Gram-negative bacteria. This work identifies the potent role of LplT in maintaining membrane stability and integrity in the Escherichia coli envelope. Here we demonstrate the involvement of LplT in the recycling of three major bacterial phospholipids using a combination of an in vitro lysophospholipid binding assay using purified protein and transport assays with E. coli spheroplasts. Our results show that lyso-PE and lysophosphatidylglycerol, but not lysophosphatidylcholine, are taken up by LplT for reacylation by acyltransferase/acyl-acyl carrier protein synthetase on the inner leaflet of the membrane. We also found a novel cardiolipin hydrolysis reaction by phospholipase A2 to form diacylated cardiolipin progressing to the completely deacylated headgroup. These two distinct cardiolipin derivatives were both translocated with comparable efficiency to generate triacylated cardiolipin by acyltransferase/acyl-acyl carrier protein synthetase, demonstrating the first evidence of cardiolipin remodeling in bacteria. These findings support that a fatty acid chain is not required for LplT transport. We found that LplT cannot transport lysophosphatidic acid, and its substrate binding was not inhibited by either orthophosphate or glycerol 3-phosphate, indicating that either a glycerol or ethanolamine headgroup is the chemical determinant for substrate recognition. Diacyl forms of PE, phosphatidylglycerol, or the tetra-acylated form of cardiolipin could not serve as a competitive inhibitor in vitro. Based on an evolutionary structural model, we propose a “sideways sliding” mechanism to explain how a conserved membrane-embedded α-helical interface excludes diacylphospholipids from the LplT binding site to facilitate efficient flipping of lysophospholipid across the cell membrane. PMID:26613781

  16. [Plasma and erythrocyte membrane phospholipids in children with Plasmodium falciparum malaria: relation to blood parasite counts and lactate levels].

    PubMed

    Abessolo, Félix Ovono; Nguélé, Jean Calvin; Legault, Estelle; Ngou-Milama, Edouard

    2009-01-01

    Plasmodium falciparum infection modifies the distribution of phospholipids on both sides of the erythrocyte-plasma membrane. We sought to understand the action of the parasite on both plasma and membrane phospholipids and their relation to parasite counts in the blood. We conducted this study from 1 February through 30 June 2007 in the Malaria Clinical Research Unit of the Libreville General Hospital Centre, measuring phospholipids in plasma and erythrocyte membranes of children affected by P. falciparum malaria and assessing their relation to blood parasites, lactates and hemoglobin. The study included 60 children. The mean blood parasite count was 1.07 x 105 per ml. Mean plasma phospholipids were 2.6+/-0.9 mmol/l and lactates 4.7+/-3.7 mmol/l. At the membrane level, we found 2.8+/-1.2 mmol/l of phospholipids per 106 red blood cells. Phospholipids in these two compartments were positively correlated with one another (r=0.392; p=0.023). Plasma phospholipids were also correlated positively with hemoglobin (r=0.36; p=0.032) and negatively with the number of parasites (r=0.442; p=0.002). The latter, in turn, was positively correlated with lactates (r=0.527; p=0.022) and negatively with membrane phospholipids (r=0.542; p=0.006). The mean hemoglobin level (8.9 g/dl) suggests permanent blood loss in these children, although they may be considered new malaria patients. The relations revealed here between membrane phospholipids, blood parasite counts, and lactate levels are due to the increased energy needs of erythrocytes, but also to the need to synthesize substances intended for cellular defense. P. falciparum thus leads to a decrease in plasma phospholipids, which could be estimated and correlated with blood parasites in a study with a wider range of parasite counts.

  17. Functional Compartmentalization of the Plasma Membrane of Neurons by a Unique Acyl Chain Composition of Phospholipids*

    PubMed Central

    Kuge, Hideaki; Akahori, Kana; Yagyu, Ken-ichi; Honke, Koichi

    2014-01-01

    In neurons, the plasma membrane is functionally separated into several distinct segments. Neurons form these domains by delivering selected components to and by confining them within each segment of the membrane. Although some mechanisms of the delivery are elucidated, that of the confinement is unclear. We show here that 1-oleoyl-2-palmitoyl-phosphatidylcholine (OPPC), a unique molecular species of phospholipids, is concentrated at the protrusion tips of several neuronal culture cells and the presynaptic area of neuronal synapses of the mouse brain. In PC12 cells, NGF-stimulated neuronal differentiation induces a phospholipase A1 activity at the protrusion tips, which co-localizes with the OPPC domain. Inhibition of the phospholipase A1 activity leads to suppression of phospholipid remodeling in the tip membrane and results in disappearance of the OPPC at the tips. In these cells, confinement of dopamine transporter and Gαo proteins to the tip was also disrupted. These findings link the lateral distribution of the molecular species of phospholipids to the formation of functional segments in the plasma membrane of neurons and to the mechanism of protein confinement at the synapse. PMID:25096572

  18. Functional compartmentalization of the plasma membrane of neurons by a unique acyl chain composition of phospholipids.

    PubMed

    Kuge, Hideaki; Akahori, Kana; Yagyu, Ken-ichi; Honke, Koichi

    2014-09-26

    In neurons, the plasma membrane is functionally separated into several distinct segments. Neurons form these domains by delivering selected components to and by confining them within each segment of the membrane. Although some mechanisms of the delivery are elucidated, that of the confinement is unclear. We show here that 1-oleoyl-2-palmitoyl-phosphatidylcholine (OPPC), a unique molecular species of phospholipids, is concentrated at the protrusion tips of several neuronal culture cells and the presynaptic area of neuronal synapses of the mouse brain. In PC12 cells, NGF-stimulated neuronal differentiation induces a phospholipase A1 activity at the protrusion tips, which co-localizes with the OPPC domain. Inhibition of the phospholipase A1 activity leads to suppression of phospholipid remodeling in the tip membrane and results in disappearance of the OPPC at the tips. In these cells, confinement of dopamine transporter and Gαo proteins to the tip was also disrupted. These findings link the lateral distribution of the molecular species of phospholipids to the formation of functional segments in the plasma membrane of neurons and to the mechanism of protein confinement at the synapse. © 2014 by The American Society for Biochemistry and Molecular Biology, Inc.

  19. Ginkgolide B Reduces the Degradation of Membrane Phospholipids to Prevent Ischemia/Reperfusion Myocardial Injury in Rats.

    PubMed

    Pei, Hong-Xia; Hua, Rong; Guan, Cha-Xiang; Fang, Xiang

    2015-01-01

    Platelet-activating factor (PAF), a bioactive phospholipid, plays an important role in the integrity of the cellular membrane structure, and is involved in the pathogenesis of myocardial ischemia/reperfusion (IR) injuries. In this study, we tested the hypothesis that blockage of PAF receptor by BN 52021 (Ginkgolide B) can prevent IR-induced degradation of the myocardial membrane phospholipid, and deterioration of the cardiac function. Rat hearts in situ were subjected to 5 min ischemia and followed by 10 min reperfusion. Cardiac performances during periods of ischemia and reperfusion were monitored, and the amount of membrane phospholipids was analyzed. Myocardial total phospholipids, phosphatidylcholine, and phosphatidylethanolamine were decreased significantly in ischemia-reperfusion rat hearts compared with those of sham-operated rat hearts. Degradation of the membrane phospholipid was accompanied by the deterioration of cardiac functions and increase in serum lactate dehydrogenase (LDH) activity. BN 52021 (15 mg/kg), given by intravenous infusion 10 min prior to the left anterior descending coronary artery occlusion, reduced IR-related degradation of the myocardial phospholipids, the activity of serum LDH, and was concomitant with improvement of cardiac function. Furthermore, we demonstrated that the production of PAF was increased and BN 52021 decreased cellular damage in cultured anoxic cardiomyocytes. These results indicated that PAF antagonist BN 52021 has a protective effect against IR-induced myocardial dysfunction and degradation of the membrane phospholipids. © 2015 S. Karger AG, Basel.

  20. Interaction of caldesmon with endoplasmic reticulum membrane: effects on the mobility of phospholipids in the membrane and on the phosphatidylserine base-exchange reaction.

    PubMed Central

    Makowski, P; Makuch, R; Sikorski, A F; Jezierski, A; Pikula, S; Dabrowska, R

    1997-01-01

    We have previously demonstrated by tryptophan fluorescence the interaction of caldesmon with anionic phospholipid vesicles [Czurylo, Zborowski and Dabrowska (1993) Biochem. J. 291, 403-408]. In the present work we investigated the interaction of caldesmon with natural-membrane (rat liver endoplasmic reticulum) phospholipids by co-sedimentation assay. The results indicate that 1 mol of caldesmon binds approx. 170 mol of membrane phospholipids with a binding affinity constant of 7.3 x 10(6) M-1. The caldesmon-membrane phospholipid complex dissociates with increasing salt concentration and in the presence of Ca2+/calmodulin. As indicated by EPR measurements of membrane lipids labelled with 5-doxyl stearate and TEMPO-phosphatidylethanolamine, binding of caldesmon results in an increase in mobility of the acyl chains (in the region of carbon 5) and a decrease in polar headgroup mobility of phospholipids. Interaction of caldesmon with phospholipids is accompanied by inhibition of phosphatidylethanolamine synthesis via a phospholipid base-exchange reaction, with phosphatidylserine as substrate. This shows that, of the endoplasmic reticulum membrane phospholipids, the main target of caldesmon is phosphatidylserine. PMID:9371708

  1. Interaction of poly(ethylene glycol)-conjugated phospholipids with supported lipid membranes and their influence on protein adsorption

    PubMed Central

    Yamamoto, Toshihiro; Teramura, Yuji; Itagaki, Toru; Arima, Yusuke; Iwata, Hiroo

    2016-01-01

    Abstract We studied real-time interaction between poly(ethylene glycol)-conjugated phospholipids (PEG-lipids) and a supported lipid membrane by surface plasmon resonance (SPR) spectroscopy to understand dynamic behaviors of PEG-lipids on living cell membranes. Supported lipid membranes formed on a hydrophobic surface were employed as a model of living cell membrane. We prepared three kinds of PEG-lipids that carried alkyl chains of different lengths for SPR measurements and also performed fluorescence recovery after photobleaching (FRAP) to study the influence of acyl chain length on dynamics on the supported membrane. PEG-lipids were uniformly anchored to lipid membranes with high fluidity without clustering. Incorporation and dissociation rates of PEG-lipids into supported membranes strongly depended on the length of acyl chains; longer acyl chains reduced the incorporation rate and the dissociation rate of PEG-lipid. Furthermore, protein adsorption experiment with bovine serum albumin indicated that PEG modification prevented the adsorption of bovine serum albumin on such supported membrane. PMID:27877914

  2. An Unrecognized Function of Cholesterol: Regulating the Mechanism Controlling Membrane Phospholipid Asymmetry

    PubMed Central

    Koshino, Ichiro; Kamata, Kotoe; Hale, John; Mohandas, Narla; Manno, Sumie; Takakuwa, Yuichi

    2017-01-01

    An asymmetric distribution of phospholipids in the membrane bilayer is inseparable from physiological functions, including shape preservation and survival of erythrocytes, and by implication other cells. Aminophospholipids, notably phosphatidylserine (PS), are confined to the inner leaflet of the erythrocyte membrane lipid bilayer by the ATP-dependent flippase enzyme, ATP11C, counteracting the activity of an ATP-independent scramblase. Phospholipid scramblase 1 (PLSCR1), a single-transmembrane protein, was previously reported to possess scrambling activity in erythrocytes. However, its function was cast in doubt by the retention of scramblase activity in erythrocytes of knockout mice lacking this protein. We show that in the human erythrocyte PLSCR1 is the predominant scramblase and by reconstitution into liposomes that its activity resides in the transmembrane domain. At or below physiological intracellular calcium concentrations, total suppression of flippase activity nevertheless leaves the membrane asymmetry undisturbed. When liposomes or erythrocytes are depleted of cholesterol (a reversible process in the case of erythrocytes), PS quickly appears at the outer surface, implying that cholesterol acts in the cell as a powerful scramblase inhibitor. Thus, our results bring to light a previously unsuspected function of cholesterol in regulating phospholipid scrambling. PMID:27267274

  3. Intracytoplasmic membrane, phospholipid, and sterol content of Methylobacterium organophilum cells grown under different conditions.

    PubMed Central

    Patt, T E; Hanson, R S

    1978-01-01

    Intracytoplasmic membranes were present in Methylobacterium organophilum when cells were grown with methane, but not methanol or glucose, as the sole carbon and energy source. Cells grown with methane as the carbon and energy source and low levels of dissolved oxygen had the greatest amount of intracytoplasmic membrane. Cells grown with increased levels of dissolved oxygen had less intracytoplasmic membrane. The amount of total lipid correlated with the amount of membrane material observed in thin sections. The individual phospholipids varied in amount, but the same four were present in M. organophilum grown with different substrates and oxygen levels. Phosphatidyl choline was present as a major component of the phospholipids. Sterols were present, and they differed from those in the type I methylotroph Methylococcus capsulatus. The relative amounts of different sterols and squalene changed with the substrate provided for growth. The greatest amounts of sterols were found in methane-grown cells grown at low levels of dissolved oxygen. None of the unusual or usual membrane components assayed was uniquely present in the intracytoplasmic membranes. Images PMID:96093

  4. Differential regulation of the lateral mobility of plasma membrane phospholipids by the extracellular matrix and cholesterol.

    PubMed

    Ramprasad, O G; Rangaraj, Nandini; Srinivas, G; Thiery, Jean Paul; Dufour, Sylvie; Pande, Gopal

    2008-05-01

    In this study, we compared qualitative and quantitative changes in the lateral mobility of phospholipid molecules in the plasma membrane of intact cells under various conditions of specific interaction of integrins in the cell membrane with two extracellular matrix (ECM) components viz. fibronectin (FN) and laminin (LN). We found a strong and specific correlation between the lower lateral mobility of phosphatidylcholine (PC) and higher lateral mobility of phosphatidylethanolamine (PE) when cells were expressing high levels of alpha5beta1 integrin and thus were adherent and motile on FN. The interaction between PC and FN in alpha5 integrin expressing cells was aided by the strong affinity of alpha5 integrin to the FN matrix. Cholesterol was involved in regulating the lateral mobility of PC to a great extent and of PE to a lesser extent without affecting the overall microviscosity of the plasma membrane or the distribution of caveolin-marked domains. The distribution and mobility of PC and PE molecules in the lamellipodial regions differed from that in the rest of the membrane and also in the more motile and in the less motile cells. We propose that these differences in distribution of PC and PE in different regions of cell membrane and their respective lateral mobility are observed due to the specific interaction of PC molecules with FN molecules in the ECM. Our results outline a new role of integrin-matrix interactions in the regulation of membrane phospholipid behavior. (c) 2007 Wiley-Liss, Inc.

  5. Heterogeneity of membrane phospholipid mobility in endothelial cells depends on cell substrate

    NASA Astrophysics Data System (ADS)

    Nakache, M.; Schreiber, A. B.; Gaub, H.; McConnell, H. M.

    1985-09-01

    Cellular growth control and differentiation have been shown to be dependent on both cell-cell and cell-substrate contacts1. Interactions of cells with extracellular material are critical events during embryonic development and maintenance of tissue function2. Plasma membrane receptors have been described for components of the extracellular matrix such as fibronectin, laminin and various collagen types3. Transmembrane signalling has been shown to be influenced by the lateral mobilities of the plasma membrane constituents4. The interaction of cells with their extracellular matrix could thus have a significant effect on the mobility properties of the plasma membrane components5. Here we have studied the dynamic properties of fluorescent membrane phospholipids in bovine endothelial cells using fluorescence recovery after photo bleaching measurements. At this molecular level we find that the phospholipid lateral diffusion coefficient is dependent on the substrate upon which cells are allowed to adhere (collagen, fibronectin or a natural basement membrane) and on the topography of the cell (basal versus apical plasma membrane).

  6. Membrane damage by bile salts: the protective function of phospholipids.

    PubMed

    Martin, G P; Marriott, C

    1981-12-01

    The direct toxicity of sodium deoxycholate (SDC) and lysophosphatidylcholine (LPC) to biological membranes was assessed by measurement of goldfish overturn time. When phosphatidylcholine (PC) was incorporated into the aqueous media, the toxicity of both SDC and LPC was reduced, as indicated by increased overturn time. Fish were also pretreated for various times in media containing (a) 1 mM SDC and (b) 1 mM SDC with 1 mM PC. Subsequent transfer to solution, 100 mg litre-1 quinalbarbitone sodium showed that reciprocal overturn times for fish treated using method (a) increased linearly with duration of pretreatment up to a limiting value, obtained after 20 min exposure; 40 min exposure to 1 mM SDC was directly toxic. Fish pretreated using regimen (b) survived longer when challenged with barbiturate, and the reciprocal overturn times were a linear function of time of pretreatment up to at least 40 min. PC also provided protection against membrane damage caused by the synthetic surfactant sodium dodecyl sulphate. Mixed micelle formation between PC and surfactant is thought to account for the protective effects. The results are of significance in the consideration of reflux hypothesis for the aetiology of gastric ulceration and also the possible formulation of drug delivery systems intended to enhance absorption whilst minimizing gastrointestinal damage.

  7. An intercalation mechanism as a mode of action exerted by psychotropic drugs: results of altered phospholipid substrate availabilities in membranes?

    PubMed Central

    Lund, Anders; Pryme, Ian F.; Holmsen, Holm

    2010-01-01

    Patients respond differently to psychotropic drugs, and this is currently a controversial theme among psychiatrists. The effects of 16 psychotropics on cell membrane parameters have been reported. These drugs belong to three major groups used in therapeutic psychiatry: antipsychotics, antidepressants, and anxiolytic/hypnotics. Human platelets, lacking dopamine (D2) receptors (proposed targets of most psychotropics), have been used as a cell model. Here we discuss the effects of these drugs on three metabolic phenomena and also results from Langmuir experiments. Diazepam, in contrast to the remaining drugs, had negligible effects on metabolic phenomena and had no effects in Langmuir experiments. Psychotropic drugs may work through intercalation in membrane phospholipids. It is possible that the fluidity of membranes, rich in essential fatty acids, the content being influenced by diet, could be a contributing factor to the action of psychotropics. This might in turn explain the observed major differences in therapeutic response among patients. PMID:21270935

  8. Tissue factor residues that putatively interact with membrane phospholipids.

    PubMed

    Ke, Ke; Yuan, Jian; Morrissey, James H

    2014-01-01

    Blood clotting is initiated by the two-subunit enzyme consisting of the plasma protease, factor VIIa (the catalytic subunit), bound to the integral membrane protein, tissue factor (the regulatory subunit). Molecular dynamics simulations have predicted that certain residues in the tissue factor ectodomain interact with phosphatidylserine headgroups to ensure optimal positioning of the tissue factor/factor VIIa complex relative to its membrane-bound protein substrates, factors IX and X. In this study, we individually mutated to alanine all the putative phosphatidylserine-interactive residues in the tissue factor ectodomain and measured their effects on tissue factor cofactor function (activation of factors IX and X by tissue factor/factor VIIa, and clotting of plasma). Some tissue factor mutants exhibited decreased activity in all three assays, with the most profound defects observed from mutations in or near the flexible loop from Lys159 to Gly164. The decreased activity of all of these tissue factor mutants could be partially or completely overcome by increasing the phosphatidylserine content of tissue factor-liposomes. Additionally, yeast surface display was used to screen a random library of tissue factor mutants for enhanced factor VIIa binding. Surprisingly, mutations at a single amino acid (Lys165) predominated, with the Lys165→Glu mutant exhibiting a 3-fold enhancement in factor VIIa binding affinity. Our studies reveal the functional contributions of residues in the C-terminal half of the tissue factor ectodomain that are implicated in interacting with phosphatidylserine headgroups to enhance tissue factor cofactor activity, possibly by allosterically modulating the conformation of the adjacent substrate-binding exosite region of tissue factor.

  9. Effects of phosphonium-based ionic liquids on phospholipid membranes studied by small-angle X-ray scattering.

    PubMed

    Kontro, Inkeri; Svedström, Kirsi; Duša, Filip; Ahvenainen, Patrik; Ruokonen, Suvi-Katriina; Witos, Joanna; Wiedmer, Susanne K

    2016-12-01

    The effects of ionic liquids on model phospholipid membranes were studied by small-angle X-ray scattering, dynamic light scattering (DLS) and zeta potential measurements. Multilamellar 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine liposomes and large unilamellar vesicles composed of l-α-phosphatidylcholine (eggPC) and l-α-phosphatidylglycerol (eggPG) (80:20mol%) or eggPC, eggPG, and cholesterol (60:20:20mol%) were used as biomimicking membrane models. The effects of the phosphonium-based ionic liquids: tributylmethylphosphonium acetate, trioctylmethylphosphonium acetate, tributyl(tetradecyl)-phosphonium acetate, and tributyl(tetradecyl)-phosphonium chloride, were compared to those of 1-ethyl-3-methyl-imidazolium acetate. With multilamellar vesicles, the ionic liquids that did not disrupt liposomes decreased the lamellar spacing as a function of concentration. The magnitude of the effect depended on concentration for all studied ionic liquids. Using large unilamellar vesicles, first a slight decrease in the vesicle size, then aggregation of vesicles was observed by DLS for increasing ionic liquid concentrations. At concentrations just below those that caused aggregation of liposomes, large unilamellar vesicles were coated by ionic liquid cations, evidenced by a change in their zeta potential. The ability of phosphonium-based ionic liquids to affect liposomes is related to the length of the hydrocarbon chains in the cation. Generally, the ability of ionic liquids to disrupt liposomes goes hand in hand with inducing disorder in the phospholipid membrane. However, trioctylmethylphosphonium acetate selectively extracted and induced a well-ordered lamellar structure in phospholipids from disrupted cholesterol-containing large unilamellar vesicles. This kind of effect was not seen with any other combination of ionic liquids and liposomes.

  10. The lamprey (Lampetra fluviatilis) erythrocyte; morphology, ultrastructure, major plasma membrane proteins and phospholipids, and cytoskeletal organization.

    PubMed

    Hägerstrand, H; Danieluk, M; Bobrowska-Hägerstrand, M; Holmström, T; Kralj-Iglic, V; Lindqvist, C; Nikinmaa, M

    1999-01-01

    The aim of this study was to characterize the erythrocyte of the lamprey (Lampetra fluviatilis), a primitive vertebrate. The lamprey erythrocyte predominantly has a non-axisymmetric stomatocytelike shape. It has a nucleus and a haemoglobin-filled cytosol with a few organelles and vesicular structures. Surprisingly, there is no marginal band of microtubules. Sodium dodecylsulphate polyacrylamide gel electrophoresis followed by Coomassie blue staining of isolated plasma membranes revealed a single band at the level of the human spectrin doublet. Major bands also occurred at approximately 175 kDa and comigrating with human erythrocyte actin (approximately 45 kDa). The presence of spectrin, actin and vimentin was shown by immunoblotting. Band 3 protein, the anion exchanger in higher vertebrates, seemed to be highly deficient or lacking, as was also the case with ankyrin. Confocal laser scanning microscopy combined with immunocytochemical methods showed spectrin, actin and vimentin mainly to be localized around the nucleus, from where actin- and vimentin-strands extended out into the cytoplasm. Actin also seemed to be present at the plasma membrane. Phospholipid analyses of plasma membrane preparations showed the presence of the same four major phospholipid groups as in the human erythrocyte, although with higher and lower amounts of phosphatidylcholine and sphingomyelin, respectively. The low fluorescein isothiocyanate conjugated annexin V binding, as monitored by flow cytometry, indicated that phosphatidylserine is mainly confined to the inner membrane leaflet in the lamprey erythrocyte plasma membrane.

  11. Analysis of the induction of the myelin basic protein binding to the plasma membrane phospholipid monolayer

    NASA Astrophysics Data System (ADS)

    Zhang, Lei; Hao, Changchun; Feng, Ying; Gao, Feng; Lu, Xiaolong; Li, Junhua; Sun, Runguang

    2016-09-01

    Myelin basic protein (MBP) is an essential structure involved in the generation of central nervous system (CNS) myelin. Myelin shape has been described as liquid crystal structure of biological membrane. The interactions of MBP with monolayers of different lipid compositions are responsible for the multi-lamellar structure and stability of myelin. In this paper, we have designed MBP-incorporated model lipid monolayers and studied the phase behavior of MBP adsorbed on the plasma membrane at the air/water interface by thermodynamic method and atomic force microscopy (AFM). By analyzing the pressure-area (π-A) and pressure-time (π-T) isotherms, univariate linear regression equation was obtained. In addition, the elastic modulus, surface pressure increase, maximal insertion pressure, and synergy factor of monolayers were detected. These parameters can be used to modulate the monolayers binding of protein, and the results show that MBP has the strongest affinity for 1,2-dipalmitoyl-sn-glycero-3- phosphoserine (DPPS) monolayer, followed by DPPC/DPPS mixed and 1,2-dipalmitoyl-sn-glycero-3-phospho-choline (DPPC) monolayers via electrostatic and hydrophobic interactions. AFM images of DPPS and DPPC/DPPS mixed monolayers in the presence of MBP (5 nM) show a phase separation texture at the surface pressure of 20 mN/m and the incorporation of MBP put into the DPPC monolayers has exerted a significant effect on the domain structure. MBP is not an integral membrane protein but, due to its positive charge, interacts with the lipid head groups and stabilizes the membranes. The interaction between MBP and phospholipid membrane to determine the nervous system of the disease has a good biophysical significance and medical value. Project supported by the National Natural Science Foundation of China (Grant Nos. 21402114 and 11544009), the Natural Science Basic Research Plan in Shaanxi Province of China (Grant No. 2016JM2010), the Fundamental Research Funds for the Central

  12. Phospholipid membrane tubulation using ceramide doping "Cerosomes": Characterization and clinical application in psoriasis treatment.

    PubMed

    Abdelgawad, Rana; Nasr, Maha; Moftah, Noha H; Hamza, Manal Yassin

    2017-04-01

    Nanotechnology and material surface modification have provided a functional platform for the advancement of several medical fields such as dermatology. Furthermore, the smart choice of preparation material was proven to confer unique properties to the developed nanosystems. In this context, we focused on the sphingolipid "ceramide", whose deficiency was found to negatively affect psoriasis. Ceramide was doped into surfactant based vesicular phospholipid systems to create tubulated vesicles "cerosomes" loaded with a model anti-psoriatic drug "tazarotene", and their properties were tested as compared to ceramide free vesicles. Cerosomes were characterized for their drug entrapment, viscosity, in vitro drug release, morphology, ex vivo drug skin deposition, thermal behavior, and were clinically tested on psoriatic patients. The factorial design study revealed that the surfactant type, the ceramide: surfactant ratio, and the presence of ethanol in the hydration buffer affected the entrapment efficiency and the viscosity of the vesicles. Ceramide increased the entrapment of tazarotene, decreased its release while enhancing its deposition within the skin, correlating with better clinical therapeutic outcome compared to the topical marketed product. Ceramide was also able to cause significant membrane tubulation in the vesicles, causing them to deviate from the conventional spherical morphology. As a conclusion, cerosomes present a new functional treatment modality for psoriasis which is worthy of future experimentation. Copyright © 2017 Elsevier B.V. All rights reserved.

  13. Fatty Acid Transfer from Yarrowia lipolytica Sterol Carrier Protein 2 to Phospholipid Membranes

    PubMed Central

    Falomir Lockhart, Lisandro J.; Burgardt, Noelia I.; Ferreyra, Raúl G.; Ceolin, Marcelo; Ermácora, Mario R.; Córsico, Betina

    2009-01-01

    Abstract Sterol carrier protein 2 (SCP2) is an intracellular protein domain found in all forms of life. It was originally identified as a sterol transfer protein, but was recently shown to also bind phospholipids, fatty acids, and fatty-acyl-CoA with high affinity. Based on studies carried out in higher eukaryotes, it is believed that SCP2 targets its ligands to compartmentalized intracellular pools and participates in lipid traffic, signaling, and metabolism. However, the biological functions of SCP2 are incompletely characterized and may be different in microorganisms. Herein, we demonstrate the preferential localization of SCP2 of Yarrowia lipolytica (YLSCP2) in peroxisome-enriched fractions and examine the rate and mechanism of transfer of anthroyloxy fatty acid from YLSCP2 to a variety of phospholipid membranes using a fluorescence resonance energy transfer assay. The results show that fatty acids are transferred by a collision-mediated mechanism, and that negative charges on the membrane surface are important for establishing a “collisional complex”. Phospholipids, which are major constituents of peroxisome and mitochondria, induce special effects on the rates of transfer. In conclusion, YLSCP2 may function as a fatty acid transporter with some degree of specificity, and probably diverts fatty acids to the peroxisomal metabolism. PMID:19580762

  14. The Antimicrobial Peptide Gramicidin S Permeabilizes Phospholipid Bilayer Membranes Without Forming Discrete Ion Channels

    PubMed Central

    Ashrafuzzaman, Md.; Andersen, O. S.; McElhaney, R. N.

    2008-01-01

    We examined the permeabilization of lipid bilayers by the β-sheet, cyclic antimicrobial decapeptide gramicidin S (GS) in phospholipid bilayers formed either by mixtures of zwitterionic diphytanoylphosphatidylcholine and anionic diphytanoylphosphatidylglycerol or by single zwitterionic unsaturated phosphatidylcholines having various hydrocarbon chain lengths, with and without cholesterol. In the zwitterionic bilayers formed by the phosphatidylcholines, without or with cholesterol, the peptide concentrations and membrane potentials required to initiate membrane permeabilization vary little as function of bilayer thickness and cholesterol content. In all the systems tested, the GS-induced transient ion conductance events exhibit a broad range of conductances, which are little affected by the bilayer composition or thickness. In the zwitterionic phosphatidylcholine bilayers, the effect of GS does not depend on the polarity of the transmembrane potential; however, in bilayers formed from mixtures of phosphatidylcholines and anionic phospholipids, the polarity of the transmembrane potential becomes important, with the GS-induced conductance events being much more frequent when the GS-containing solution is positive relative to the GS-free solution. Overall, these results suggest that GS does not form discrete, well-defined, channel-like structures in phospholipid bilayers, but rather induces a wide variety of transient, differently sized defects which serve to compromise the bilayer barrier properties for small electrolytes. PMID:18809374

  15. The antimicrobial peptide gramicidin S permeabilizes phospholipid bilayer membranes without forming discrete ion channels.

    PubMed

    Ashrafuzzaman, Md; Andersen, O S; McElhaney, R N

    2008-12-01

    We examined the permeabilization of lipid bilayers by the beta-sheet, cyclic antimicrobial decapeptide gramicidin S (GS) in phospholipid bilayers formed either by mixtures of zwitterionic diphytanoylphosphatidylcholine and anionic diphytanoylphosphatidylglycerol or by single zwitterionic unsaturated phosphatidylcholines having various hydrocarbon chain lengths, with and without cholesterol. In the zwitterionic bilayers formed by the phosphatidylcholines, without or with cholesterol, the peptide concentrations and membrane potentials required to initiate membrane permeabilization vary little as function of bilayer thickness and cholesterol content. In all the systems tested, the GS-induced transient ion conductance events exhibit a broad range of conductances, which are little affected by the bilayer composition or thickness. In the zwitterionic phosphatidylcholine bilayers, the effect of GS does not depend on the polarity of the transmembrane potential; however, in bilayers formed from mixtures of phosphatidylcholines and anionic phospholipids, the polarity of the transmembrane potential becomes important, with the GS-induced conductance events being much more frequent when the GS-containing solution is positive relative to the GS-free solution. Overall, these results suggest that GS does not form discrete, well-defined, channel-like structures in phospholipid bilayers, but rather induces a wide variety of transient, differently sized defects which serve to compromise the bilayer barrier properties for small electrolytes.

  16. Membrane properties induced by anionic phospholipids and phosphatidylethanolamine are critical for the membrane binding and catalytic activity of human cytochrome P450 3A4.

    PubMed

    Kim, Keon-Hee; Ahn, Taeho; Yun, Chul-Ho

    2003-12-30

    Human cytochrome P450 (CYP) 3A4, a membrane anchoring protein, is the major CYP enzyme present in both liver and small intestine. The enzyme plays a major role in the metabolism of many drugs and procarcinogens. The roles of individual phospholipids and membrane properties in the catalytic activity, membrane binding, and insertion into the membrane of CYP3A4 are poorly understood. Here we report that the catalytic activity of testosterone 6beta-hydroxylation, membrane binding, and membrane insertion of CYP3A4 increase as a function of anionic phospholipid concentration in the order phosphatidic acid (PA) > phosphatidylserine (PS) in a binary system of phosphatidylcholine (PC)/anionic phospholipid and as a function of phosphatidylethanolamine (PE) content in ternary systems of PC/PE/PA or PC/PE/PS having a fixed concentration of anionic phospholipids. These results suggest that PA and PE might help the binding of CYP3A4 to the membrane and the interaction with NPR. Cytochrome b(5) (b(5)) and apolipoprotein b(5) further enhanced the testosterone 6beta-hydroxylation activities of CYP3A4 in all tested phospholipids vesicles with various compositions. Phospholipid-dependent changes of the CYP3A4 conformation were also revealed by altered Trp fluorescence and CD spectra. We also found that PE induced the formation of anionic phospholipid-enriched domains in ternary systems using extrinsic fluorescent probes incorporated into lipid bilayers. Taken together, it can be suggested that the chemical and physical properties of membranes induced by anionic phospholipids and PE are critical for the membrane binding and catalytic activity of CYP3A4.

  17. Surface-dependent transitions during self-assembly of phospholipid membranes on mica, silica, and glass.

    PubMed

    Benes, Martin; Billy, Didier; Benda, Ales; Speijer, Han; Hof, Martin; Hermens, Wim Th

    2004-11-09

    Formation of supported membranes by exposure of solid surfaces to phospholipid vesicles is a much-used technique in membrane research. Freshly cleaved mica, because of its superior flatness, is a preferred support, and we used ellipsometry to study membrane formation kinetics on mica. Neutral dioleoyl-phosphatidylcholine (DOPC) and negatively charged dioleoyl-phosphatidylserine/dioleoyl-phosphatidylcholine (20% DOPS/80% DOPC) vesicles were prepared by sonication. Results were compared with membrane formation on silica and glass, and the influence of stirring, buffer, and calcium was assessed. Without calcium, DOPC vesicles had a low affinity (Kd approximately 30 microM) for mica, and DOPS/DOPC vesicles hardly adsorbed. Addition of calcium promptly caused condensation of the adhering vesicles, with either loss of excess lipid or rapid additional lipid adsorption up to full surface coverage. Vesicle-mica interactions dominate the adsorption process, but vesicle-vesicle interactions also seem to be required for the condensation process. Membranes on mica proved unstable in Tris-HCl buffer. For glass, transport-limited adsorption of DOPC and DOPS/DOPC vesicles with immediate condensation into bilayers was observed, with and without calcium. For silica, vesicle adsorption was also rapid, even in the absence of calcium, but the transition to condensed layers required a critical surface coverage of about 50% of bilayer mass, indicating vesicle-vesicle interaction. For all three surfaces, additional adsorption of DOPC (but not DOPS/DOPC) vesicles to condensed membranes was observed. DOPC membranes on mica were rapidly degraded by phospholipase A2 (PLA2), which pleads against the role of membrane defects as initial PLA2 targets. During degradation, layer thickness remained unchanged while layer density decreased, in accordance with recent atomic force microscopy measurements of gel-phase phospholipid degradation by PLA2.

  18. Exo70 interacts with phospholipids and mediates the targeting of the exocyst to the plasma membrane.

    PubMed

    He, Bing; Xi, Fengong; Zhang, Xiaoyu; Zhang, Jian; Guo, Wei

    2007-09-19

    The exocyst is an octameric protein complex implicated in the tethering of post-Golgi secretory vesicles to the plasma membrane before fusion. The function of individual exocyst components and the mechanism by which this tethering complex is targeted to sites of secretion are not clear. In this study, we report that the exocyst subunit Exo70 functions in concert with Sec3 to anchor the exocyst to the plasma membrane. We found that the C-terminal Domain D of Exo70 directly interacts with phosphatidylinositol 4,5-bisphosphate. In addition, we have identified key residues on Exo70 that are critical for its interaction with phospholipids and the small GTPase Rho3. Further genetic and cell biological analyses suggest that the interaction of Exo70 with phospholipids, but not Rho3, is essential for the membrane association of the exocyst complex. We propose that Exo70 mediates the assembly of the exocyst complex at the plasma membrane, which is a crucial step in the tethering of post-Golgi secretory vesicles for exocytosis.

  19. The insertion of human apolipoprotein H into phospholipid membranes: a monolayer study.

    PubMed

    Wang, S X; Cai, G P; Sui, S F

    1998-10-15

    Apolipoprotein H (ApoH) is a plasma glycoprotein isolated from human serum. The interactions of ApoH with lipid membrane were reported to be essential for its physiological and pathogenic roles. In this paper we studied the ability of ApoH to insert into phospholipid membranes using the monolayer approach. The results show that ApoH is surface active and can insert into the lipid monolayers. The insertion ability of ApoH is stronger when a higher content of negatively charged lipids is present in the membrane. The acidic-pH and low-ionic-strength conditions will also enhance ApoH insertion, but these factors may not have much influence on the final insertion ability of ApoH, suggesting that, in the mechanism of ApoH insertion, not only electrostatic forces, but also hydrophobic interactions, are evidently involved. Modification by heat inactivation and reduction/alkylation does not change the critical insertion pressure (pic) of ApoH, suggesting a stable domain, maybe a linear sequence motif, but not the native three-dimensional structure of ApoH, is responsible for its insertion. The extent to which insertion of ApoH into phospholipid membranes may facilitate the 'immune cleaning' of plasma liposomes is discussed.

  20. Membrane skeleton-bilayer interaction is not the major determinant of membrane phospholipid asymmetry in human erythrocytes.

    PubMed

    Gudi, S R; Kumar, A; Bhakuni, V; Gokhale, S M; Gupta, C M

    1990-03-30

    Transbilayer phospholipid distribution, membrane skeleton dissociation/association, and spectrin structure have been analysed in human erythrocytes after subjecting them to heating at 50 degrees C for 15 min. The membrane skeleton dissociation/association was determined by measuring the Tris-induced dissociation of Triton-insoluble membrane skeletons (Triton shells), the spectrin-actin extractability under low ionic conditions, and the binding of spectrin-actin with normal erythrocyte membrane inside-out vesicles (IOVs). The spectrin structure was ascertained by measuring the spectrin dimer-to-tetramer ratio as well as the spectrin tryptophan fluorescence. Both the Tris-induced Triton shell dissociation and the spectrin-actin extractability under low ionic conditions were considerably reduced by the heat treatment. Also, the binding of heated erythrocyte spectrin-actin to IOVs was significantly smaller than that observed with the normal cell spectrin-actin. Further, the quantity of spectrin dimers was appreciably increased in heat-treated erythrocytes as compared to the normal cells. This change in the spectrin dimer-to-tetramer ratio was accompanied by marked changes in the spectrin tryptophan fluorescence. In spite of these heat-induced alterations in structure and bilayer interactions of the membrane skeleton, the inside-outside glycerophospholipid distribution remained virtually unaffected in the heat-treated cells, as judged by employing bee venom and pancreatic phospholipase A2, fluorescamine and Merocyanine 540 as the external membrane probes. These results strongly indicate that membrane bilayer-skeleton interaction is not the major factor in determining the transbilayer phospholipid asymmetry in human erythrocyte membrane.

  1. On the effect of serum on the transport of reactive oxygen species across phospholipid membranes.

    PubMed

    Szili, Endre J; Hong, Sung-Ha; Short, Robert D

    2015-06-24

    The transport of plasma generated reactive oxygen species (ROS) across a simple phospholipid membrane mimic of a (real) cell was investigated. Experiments were performed in cell culture media (Dulbecco's modified Eagle's medium, DMEM), with and without 10% serum. A (broad spectrum) ROS reporter dye, 2,7-dichlorodihydrofluorescein (DCFH), was used to detect the generation of ROS by a helium (He) plasma jet in DMEM using free DCFH and with DCFH encapsulated inside phospholipid membrane vesicles dispersed in DMEM. The authors focus on the concentration and on the relative rates (arbitrary units) for oxidation of DCFH [or the appearance of the oxidized product 2,7-dichlorofluorescein (DCF)] both in solution and within vesicles. In the first 1 h following plasma exposure, the concentration of free DCF in DMEM was ~15× greater in the presence of serum (cf. to the serum-free DMEM control). The DCF in vesicles was ~2× greater in DMEM containing serum compared to the serum-free DMEM control. These data show that serum enhances plasma ROS generation in DMEM. As expected, the role of the phospholipid membrane was to reduce the rate of oxidation of the encapsulated DCFH (with and without serum). And the efficiency of ROS transport into vesicles was lower in DMEM containing serum (at 4% efficiency) when compared to serum-free DMEM (at 32% efficiency). After 1 h, the rate of DCFH oxidation was found to have significantly reduced. Based upon a synthesis of these data with results from the open literature, the authors speculate on how the components of biological fluid and cellular membranes might affect the kinetics of consumption of plasma generated ROS.

  2. Incorporation and clearance of omega-3 fatty acids in erythrocyte membranes and plasma phospholipids.

    PubMed

    Cao, Jing; Schwichtenberg, Kerry A; Hanson, Naomi Q; Tsai, Michael Y

    2006-12-01

    The sum of eicosapentaenoic acid (EPA, 20:5 omega3) and docosahexaenoic acid (DHA, 22:6 omega3) in erythrocyte membranes, termed the omega-3 index, can indicate suboptimal intake of omega-3 fatty acids, a risk factor for cardiovascular disease (CVD). To study the effects of fatty acid supplementation, we investigated the rate of incorporation and clearance of these fatty acids in erythrocyte membranes and plasma after intake of supplements. Twenty study participants received supplementation with either fish oil (1296 mg EPA + 864 mg DHA/day) or flaxseed oil (3510 mg alpha-linolenic acid + 900 mg linoleic acid/day) for 8 weeks. We obtained erythrocyte membrane and plasma samples at weeks 0, 4, 8, 10, 12, 14, 16, and 24 and extracted and analyzed fatty acids by gas chromatography. After 8 weeks of fish oil supplementation, erythrocyte membrane EPA and DHA increased 300% (P < 0.001) and 42% (P < 0.001), respectively. The mean erythrocyte omega-3 index reached a near optimal value of 7.8%, and remained relatively high until week 12. EPA and DHA showed greater increases and more rapid washout period decreases in plasma phospholipids than in erythrocyte membranes. Flaxseed oil supplementation increased erythrocyte membrane EPA to 133% (P < 0.05) and docosapentaenoic acid (DPA, 22:5 omega3) to 120% (P < 0.01) of baseline, but DHA was unchanged. In plasma phospholipids, EPA, DPA, and DHA showed a slight but statistically insignificant increase. Erythrocyte membrane EPA+DHA increases during relatively short intervals in response to supplementation at rates related to amount of supplementation. These results may be useful to establish appropriate dosage for omega-3 fatty acid supplementation.

  3. Quantum Dots Encapsulated within Phospholipid Membranes: Phase-Dependent Structure, Photostability, and Site-Selective Functionalization

    PubMed Central

    2015-01-01

    Lipid vesicle encapsulation is an efficient approach to transfer quantum dots (QDs) into aqueous solutions, which is important for renewable energy applications and biological imaging. However, little is known about the molecular organization at the interface between a QD and lipid membrane. To address this issue, we investigated the properties of 3.0 nm CdSe QDs encapsulated within phospholipid membranes displaying a range of phase transition temperatures (Tm). Theoretical and experimental results indicate that the QD locally alters membrane structure, and in turn, the physical state (phase) of the membrane controls the optical and chemical properties of the QDs. Using photoluminescence, ICP-MS, optical microscopy, and ligand exchange studies, we found that the Tm of the membrane controls optical and chemical properties of lipid vesicle-embedded QDs. Importantly, QDs encapsulated within gel-phase membranes were ultrastable, providing the most photostable non-core/shell QDs in aqueous solution reported to date. Atomistic molecular dynamics simulations support these observations and indicate that membranes are locally disordered displaying greater disordered organization near the particle–solution interface. Using this asymmetry in membrane organization near the particle, we identify a new approach for site-selective modification of QDs by specifically functionalizing the QD surface facing the outer lipid leaflet to generate gold nanoparticle–QD assemblies programmed by Watson–Crick base-pairing. PMID:24417287

  4. Isolation of sarcolemmal plasma membranes by mechanically skinning rat skeletal muscle fibers for phospholipid analysis.

    PubMed

    Fajardo, Val Andrew; McMeekin, Lauren; Basic, Admir; Lamb, Graham D; Murphy, Robyn M; LeBlanc, Paul J

    2013-04-01

    Membrane phospholipid (PL) composition has been shown to affect cellular function by altering membrane physical structure. The sarcolemma plasma membrane (SLpm) is integral to skeletal muscle function and health. Previous studies assessing SLpm PL composition have demonstrated contamination from transverse (t)-tubule, sarcoplasmic reticulum, and nuclear membranes. This study assessed the possibility of isolating SL by mechanically skinning skeletal muscle fiber segments for the analysis of SLpm PL composition. Mechanically skinned SLpm from rat extensor digitorum longus (EDL) muscle fibers underwent Western blot analysis to assess contamination from t-tubule, sarcoplasmic reticulum, nuclear and mitochondrial membranes. The results indicate that isolated SLpm had minimal nuclear and mitochondrial membrane contamination and was void of contamination from sarcoplasmic reticulum and t-tubule membranes. After performing both high-performance thin layer chromatography and gas chromatography, we found that the SLpm obtained by mechanical skinning had higher sphingomyelin and total fatty acid saturation and lower phosphatidylcholine when compared to previous literature. Thus, by avoiding the use of various chemical treatments and membrane fractionation, we present data that may truly represent the SLpm and future studies can use this technique to assess potential changes under various perturbations and disease conditions such as insulin resistance and muscular dystrophy.

  5. Dynamical and phase behavior of a phospholipid membrane altered by an antimicrobial peptide at low concentration

    SciTech Connect

    Mamontov, Eugene; Tyagi, M.; Qian, Shuo; Rai, Durgesh K.; Urban, Volker S.; Sharma, V. K.

    2016-05-27

    Here we discuss that the mechanism of action of antimicrobial peptides is traditionally attributed to the formation of pores in the lipid cell membranes of pathogens, which requires a substantial peptide to lipid ratio. However, using incoherent neutron scattering, we show that even at a concentration too low for pore formation, an archetypal antimicrobial peptide, melittin, disrupts the regular phase behavior of the microscopic dynamics in a phospholipid membrane, dimyristoylphosphatidylcholine (DMPC). At the same time, another antimicrobial peptide, alamethicin, does not exert a similar effect on the DMPC microscopic dynamics. The melittin-altered lateral motion of DMPC at physiological temperature no longer resembles the fluid-phase behavior characteristic of functional membranes of the living cells. The disruptive effect demonstrated by melittin even at low concentrations reveals a new mechanism of antimicrobial action relevant in more realistic scenarios, when peptide concentration is not as high as would be required for pore formation, which may facilitate treatment with antimicrobial peptides.

  6. Cell membrane-inspired phospholipid polymers for developing medical devices with excellent biointerfaces

    PubMed Central

    Iwasaki, Yasuhiko; Ishihara, Kazuhiko

    2012-01-01

    This review article describes fundamental aspects of cell membrane-inspired phospholipid polymers and their usefulness in the development of medical devices. Since the early 1990s, polymers composed of 2-methacryloyloxyethyl phosphorylcholine (MPC) units have been considered in the preparation of biomaterials. MPC polymers can provide an artificial cell membrane structure at the surface and serve as excellent biointerfaces between artificial and biological systems. They have also been applied in the surface modification of some medical devices including long-term implantable artificial organs. An MPC polymer biointerface can suppress unfavorable biological reactions such as protein adsorption and cell adhesion – in other words, specific biomolecules immobilized on an MPC polymer surface retain their original functions. MPC polymers are also being increasingly used for creating biointerfaces with artificial cell membrane structures. PMID:27877525

  7. Facile method of fabricating Sn nanoparticle monolayer using solid-supported liquid-crystalline phospholipid membrane

    NASA Astrophysics Data System (ADS)

    An, Hyeun Hwan; Kim, Jung Hoon; Lee, Seung Jae; Han, Won Bae; Lee, Jong Ho; Kim, Hee-Soo; Suh, Sang Hee; Yoon, Im Taek; Shon, Yoon; Yoon, Chong Seung

    2011-08-01

    1,2-dioleoyl-sn-glycero-3-phosphatidylcholine (DOPC) phospholipid membrane was used to fabricate a tightly packed 2-dimensional array of Sn nanoparticles through direct deposition of Sn on the DOPC membrane. Major advantage of the proposed method was that the vertical ordering of the nanoparticles extended to a centimeter (2 cm × 2 cm substrate) scale in the as-prepared state. It was also shown that the particle size and morphology were altered depending on processing conditions. Experimental evidences indicated that the Sn nanoparticle surface, which spontaneously oxidized during deposition, was encapsulated by the DOPC molecules. After removing the encapsulating lipid layer, the oxide-covered Sn nanoparticles exhibited strong photoluminescence. It was also demonstrated that the Sn particle morphology and ordering are related to the lipid membrane structure and chemistry. The proposed method can be easily extended to other metals that are susceptible to oxidation to produce various metal oxide nanoparticles.

  8. Dynamical and phase behavior of a phospholipid membrane altered by an antimicrobial peptide at low concentration

    SciTech Connect

    Mamontov, Eugene; Tyagi, M.; Qian, Shuo; Rai, Durgesh K.; Urban, Volker S.; Sharma, V. K.

    2016-05-27

    Here we discuss that the mechanism of action of antimicrobial peptides is traditionally attributed to the formation of pores in the lipid cell membranes of pathogens, which requires a substantial peptide to lipid ratio. However, using incoherent neutron scattering, we show that even at a concentration too low for pore formation, an archetypal antimicrobial peptide, melittin, disrupts the regular phase behavior of the microscopic dynamics in a phospholipid membrane, dimyristoylphosphatidylcholine (DMPC). At the same time, another antimicrobial peptide, alamethicin, does not exert a similar effect on the DMPC microscopic dynamics. The melittin-altered lateral motion of DMPC at physiological temperature no longer resembles the fluid-phase behavior characteristic of functional membranes of the living cells. The disruptive effect demonstrated by melittin even at low concentrations reveals a new mechanism of antimicrobial action relevant in more realistic scenarios, when peptide concentration is not as high as would be required for pore formation, which may facilitate treatment with antimicrobial peptides.

  9. The tegumental surface membranes of Schistosoma mansoni are enriched in parasite-specific phospholipid species.

    PubMed

    Retra, Kim; deWalick, Saskia; Schmitz, Marion; Yazdanbakhsh, Maria; Tielens, Aloysius G M; Brouwers, Jos F H M; van Hellemond, Jaap J

    2015-08-01

    The complex surface structure of adult Schistosoma mansoni, the tegument, is essential for survival of the parasite. This tegument is syncytial and is covered by two closely-apposed lipid bilayers that form the interactive surface with the host. In order to identify parasite-specific phospholipids present in the tegument, the species compositions of the major glycerophospholipid classes, phosphatidylcholine, phosphatidylserine, phosphatidylethanolamine and phosphatidylinositol, including lysophospholipid species, were analysed in adult S. mansoni worms, isolated tegumental membranes and hamster blood cells. It was shown that there are large differences in species composition in all four phospholipid classes between the membranes of S. mansoni and those of the host blood cells. The species compositions of phosphatidylserine and phosphatidylcholine were strikingly different in the tegument compared with the whole worm. The tegumental membranes are especially enriched in lysophospholipids, predominantly eicosenoic acid (20:1)-containing lyso-phosphatidylserine and lyso-phosphatidylethanolamine species. Furthermore, the tegument was strongly enriched in phosphatidylcholine that contained 5-octadecenoic acid, an unusual fatty acid that is not present in the host. As we have shown previously that lysophospholipids from schistosomes affect the parasite-host interaction, excretion of these tegument-specific phospholipid species was examined in vitro and in vivo. Our experiments demonstrated that these lysophospholipids are not significantly secreted during in vitro incubations and are not detectable in peripheral blood of infected hosts. However, these analyses demonstrated a substantial decrease in PI content of blood plasma from schistosome-infected hamsters, which might indicate that schistosomes influence exosome formation by the host. Copyright © 2015 Australian Society for Parasitology Inc. Published by Elsevier Ltd. All rights reserved.

  10. [Structural organization of membranes reconstituted from phospholipids and subchromatophore pigment-protein complexes].

    PubMed

    Kondrashin, A A; Samuilov, V D; Frolov, V N

    1980-08-01

    Pigment--protein complexes of the P870 reaction centers and complexes of the bacteriochlorophyll light-harvesting antenna were isolated from the chromatophores of the non-sulfur purple bacterium Rhodospirillum rubrum by solubilization with detergents. The proteoliposomes containing the reaction centers or reaction centers and the light-harvesting antenna as well as liposomes formed from phospholipids were obtained by a self-assembly procedure using seya bean phospholipids. The freeze-fracture study showed that the proteoliposomes contain a large amount of globular particles. The particles incorporated into the two types of the proteoliposomes were distinguished in size. The globules of the reaction center and antenna complexes were bigger in size than the reaction center globules. The globular structures were not found in the liposomal membranes. The liposomes formed in the absence of the pigment--protein complexes were predominantly the multilamellar vesicles. The proteoliposomes were mostly represented as monolamellar membrane vesicles. The spatial arrangement of the reaction center complexes in the membranes is discussed.

  11. A Conserved Endoplasmic Reticulum Membrane Protein Complex (EMC) Facilitates Phospholipid Transfer from the ER to Mitochondria

    PubMed Central

    Tavassoli, Shabnam; Wong, Andrew K. O.; Choudhary, Vineet; Young, Barry P.; Loewen, Christopher J. R.; Prinz, William A.

    2014-01-01

    Mitochondrial membrane biogenesis and lipid metabolism require phospholipid transfer from the endoplasmic reticulum (ER) to mitochondria. Transfer is thought to occur at regions of close contact of these organelles and to be nonvesicular, but the mechanism is not known. Here we used a novel genetic screen in S. cerevisiae to identify mutants with defects in lipid exchange between the ER and mitochondria. We show that a strain missing multiple components of the conserved ER membrane protein complex (EMC) has decreased phosphatidylserine (PS) transfer from the ER to mitochondria. Mitochondria from this strain have significantly reduced levels of PS and its derivative phosphatidylethanolamine (PE). Cells lacking EMC proteins and the ER–mitochondria tethering complex called ERMES (the ER–mitochondria encounter structure) are inviable, suggesting that the EMC also functions as a tether. These defects are corrected by expression of an engineered ER–mitochondrial tethering protein that artificially tethers the ER to mitochondria. EMC mutants have a significant reduction in the amount of ER tethered to mitochondria even though ERMES remained intact in these mutants, suggesting that the EMC performs an additional tethering function to ERMES. We find that all Emc proteins interact with the mitochondrial translocase of the outer membrane (TOM) complex protein Tom5 and this interaction is important for PS transfer and cell growth, suggesting that the EMC forms a tether by associating with the TOM complex. Together, our findings support that the EMC tethers ER to mitochondria, which is required for phospholipid synthesis and cell growth. PMID:25313861

  12. Curcumin liposomes prepared with milk fat globule membrane phospholipids and soybean lecithin.

    PubMed

    Jin, Hong-Hao; Lu, Qun; Jiang, Jian-Guo

    2016-03-01

    Using thin film ultrasonic dispersion method, the curcumin liposomes were prepared with milk fat globule membrane (MFGM) phospholipids and soybean lecithins, respectively, to compare the characteristics and stability of the 2 curcumin liposomes. The processing parameters of curcumin liposomes were investigated to evaluate their effects on the encapsulation efficiency. Curcumin liposomes were characterized in terms of size distribution, ζ-potential, and in vitro release behavior, and then their storage stability under various conditions was evaluated. The curcumin liposomes prepared with MFGM phospholipids had an encapsulation efficiency of about 74%, an average particle size of 212.3 nm, and a ζ-potential of -48.60 mV. The MFGM liposomes showed higher encapsulation efficiency, smaller particle size, higher absolute value of ζ-potential, and slower in vitro release than soybean liposomes. The retention rate of liposomal curcumin was significantly higher than that of free curcumin. The stability of the 2 liposomes under different pH was almost the same, but MFGM liposomes displayed a slightly higher stability than soybean liposomes under the conditions of Fe(3+), light, temperature, oxygen, and relative humidity. In conclusion, MFGM phospholipids have potential advantages in the manufacture of curcumin liposomes used in food systems.

  13. Ceramides in phospholipid membranes: effects on bilayer stability and transition to nonlamellar phases.

    PubMed Central

    Veiga, M P; Arrondo, J L; Goñi, F M; Alonso, A

    1999-01-01

    The effects of ceramides of natural origin on the gel-fluid and lamellar-inverted hexagonal phase transitions of phospholipids (mainly dielaidoylphosphatidylethanolamine) have been studied by differential scanning calorimetry, with additional support from infrared and 31P nuclear magnetic resonance (NMR) spectroscopy. In the lamellar phase, ceramides do not mix ideally with phospholipids, giving rise to the coexistence of domains that undergo the gel-fluid transition at different temperatures. The combination of differential scanning calorimetry and infrared spectroscopy, together with the use of deuterated lipids, allows the demonstration of independent melting temperatures for phospholipid and ceramide in the mixtures. In the lamellar-hexagonal phase transitions, ceramides (up to 15 mol %) decrease the transition temperature, without significantly modifying the transition enthalpy, thus facilitating the inverted hexagonal phase formation. 31P-NMR indicates the coexistence, within a certain range of temperatures, of lamellar and hexagonal phases, or hexagonal phase precursors. Ceramides from egg or from bovine brain are very similar in their effects on the lamellar-hexagonal transition. They are also comparable to diacylglycerides in this respect, although ceramides are less potent. These results are relevant in the interpretation of certain forms of interfacial enzyme activation and in the regulation and dynamics of the bilayer structure of cell membranes. PMID:9876146

  14. Drug-Membrane Interactions Studied in Phospholipid Monolayers Adsorbed on Non-porous Alkylated Microspheres

    PubMed Central

    LUKACOVA, VIERA; PENG, MING; FANUCCI, GAIL; TANDLICH, ROMAN; HINDERLITER, ANNE; MAITY, BIKASH; MANIVANNAN, ETHIRAJAN; COOK, GREGORY R.; BALAZ, STEFAN

    2008-01-01

    Characterization of interactions with phospholipids is an integral part of the in vitro profiling of drug candidates because of the roles the interactions play in tissue accumulation and passive diffusion. Currently used test systems may inadequately emulate the bilayer core solvation properties (immobilized artificial membranes - IAM), suffer from potentially slow transport of some chemicals (liposomes in free or immobilized forms), and require a tedious separation (if used for free liposomes). Here we introduce a well-defined system overcoming these drawbacks: nonporous octadecylsilica particles coated with a self-assembled phospholipid monolayer. The coating mimics the structure of the headgroup region, as well as the thickness and properties of the hydrocarbon core more closely than IAM. The monolayer has a similar transition temperature pattern as the corresponding bilayer. The particles can be separated by filtration or a mild centrifugation. The partitioning equilibria of 81 tested chemicals were dissected into the headgroup and core contributions, the latter using the alkane/water partition coefficients. The deconvolution allowed a successful prediction of the bilayer/water partition coefficients with the standard deviation of 0.26 log units. The plate-friendly assay is suitable for high-throughput profiling of drug candidates without sacrificing the quality of analysis or details of the drug-phospholipid interactions. PMID:17218665

  15. Mimicking and Understanding the Agglutination Effect of the Antimicrobial Peptide Thanatin Using Model Phospholipid Vesicles.

    PubMed

    Robert, Émile; Lefèvre, Thierry; Fillion, Matthieu; Martial, Benjamin; Dionne, Justine; Auger, Michèle

    2015-06-30

    Thanatin is a cationic 21-residue antimicrobial and antifongical peptide found in the spined soldier bug Podisus maculiventris. It is believed that it does not permeabilize membranes but rather induces the agglutination of bacteria and inhibits cellular respiration. To clarify its mode of action, lipid vesicle organization and aggregation propensity as well as peptide secondary structure have been studied using different membrane models. Dynamic light scattering and turbidimetry results show that specific mixtures of negatively charged and zwitterionic phospholipid vesicles are able to mimic the agglutination effect of thanatin observed on Gram-negative and Gram-positive bacterial cells, while monoconstituent ("conventional") models cannot reproduce this phenomenon. The model of eukaryotic cell reveals no particular interaction with thanatin, which is consistent with the literature. Infrared spectroscopy shows that under the conditions under which vesicle agglutination occurs, thanatin exhibits a particular spectral pattern in the amide I' region and in the region associated with Arg side chains. The data suggest that thanatin mainly retains its hairpin structure, Arg residues being involved in strong interactions with anionic groups of phospholipids. In the absence of vesicle agglutination, the peptide conformation and Arg side-chain environment are similar to those observed in solution. The data show that a negatively charged membrane is required for thanatin to be active, but this condition is insufficient. The activity of thanatin seems to be modulated by the charge surface density of membranes and thanatin concentration.

  16. Efficient replacement of plasma membrane outer leaflet phospholipids and sphingolipids in cells with exogenous lipids.

    PubMed

    Li, Guangtao; Kim, JiHyun; Huang, Zhen; St Clair, Johnna R; Brown, Deborah A; London, Erwin

    2016-12-06

    Our understanding of membranes and membrane lipid function has lagged far behind that of nucleic acids and proteins, largely because it is difficult to manipulate cellular membrane lipid composition. To help solve this problem, we show that methyl-α-cyclodextrin (MαCD)-catalyzed lipid exchange can be used to maximally replace the sphingolipids and phospholipids in the outer leaflet of the plasma membrane of living mammalian cells with exogenous lipids, including unnatural lipids. In addition, lipid exchange experiments revealed that 70-80% of cell sphingomyelin resided in the plasma membrane outer leaflet; the asymmetry of metabolically active cells was similar to that previously defined for erythrocytes, as judged by outer leaflet lipid composition; and plasma membrane outer leaflet phosphatidylcholine had a significantly lower level of unsaturation than phosphatidylcholine in the remainder of the cell. The data also provided a rough estimate for the total cellular lipids residing in the plasma membrane (about half). In addition to such lipidomics applications, the exchange method should have wide potential for investigations of lipid function and modification of cellular behavior by modification of lipids.

  17. Cross-linking of Phospholipid Membranes is a Conserved Property of Calcium-sensitive Synaptotagmins

    PubMed Central

    Connell, Emma; Giniatullina, Asiya; Lai-Kee-Him, Joséphine; Tavare, Richard; Ferrari, Enrico; Roseman, Alan; Cojoc, Dan; Brisson, Alain R.; Davletov, Bazbek

    2008-01-01

    Synaptotagmins are vesicular proteins implicated in many membrane trafficking events. They are highly conserved in evolution and the mammalian family contains 16 isoforms. We now show that the tandem C2 domains of several calcium-sensitive synaptotagmin isoforms tested, including Drosophila synaptotagmin, rapidly cross-link phospholipid membranes. In contrast to the tandem structure, individual C2 domains failed to trigger membrane cross-linking in several novel assays. Large-scale liposomal aggregation driven by tandem C2 domains in response to calcium was confirmed by the following techniques: turbidity assay, dynamic light-scattering and both confocal and negative stain electron microscopy. Firm cross-linking of membranes was evident from laser trap experiments. High-resolution cryo-electron microscopy revealed that membrane cross-linking by tandem C2 domains results in a constant distance of ∼9 nm between the apposed membranes. Our findings show the conserved nature of this important property of synaptotagmin, demonstrate the significance of the tandem C2 domain structure and provide a plausible explanation for the accelerating effect of synaptotagmins on membrane fusion. PMID:18508081

  18. Cross-linking of phospholipid membranes is a conserved property of calcium-sensitive synaptotagmins.

    PubMed

    Connell, Emma; Giniatullina, Asiya; Lai-Kee-Him, Joséphine; Tavare, Richard; Ferrari, Enrico; Roseman, Alan; Cojoc, Dan; Brisson, Alain R; Davletov, Bazbek

    2008-06-27

    Synaptotagmins are vesicular proteins implicated in many membrane trafficking events. They are highly conserved in evolution and the mammalian family contains 16 isoforms. We now show that the tandem C2 domains of several calcium-sensitive synaptotagmin isoforms tested, including Drosophila synaptotagmin, rapidly cross-link phospholipid membranes. In contrast to the tandem structure, individual C2 domains failed to trigger membrane cross-linking in several novel assays. Large-scale liposomal aggregation driven by tandem C2 domains in response to calcium was confirmed by the following techniques: turbidity assay, dynamic light-scattering and both confocal and negative stain electron microscopy. Firm cross-linking of membranes was evident from laser trap experiments. High-resolution cryo-electron microscopy revealed that membrane cross-linking by tandem C2 domains results in a constant distance of approximately 9 nm between the apposed membranes. Our findings show the conserved nature of this important property of synaptotagmin, demonstrate the significance of the tandem C2 domain structure and provide a plausible explanation for the accelerating effect of synaptotagmins on membrane fusion.

  19. Efficient replacement of plasma membrane outer leaflet phospholipids and sphingolipids in cells with exogenous lipids

    PubMed Central

    Kim, JiHyun; Huang, Zhen; St. Clair, Johnna R.; Brown, Deborah A.; London, Erwin

    2016-01-01

    Our understanding of membranes and membrane lipid function has lagged far behind that of nucleic acids and proteins, largely because it is difficult to manipulate cellular membrane lipid composition. To help solve this problem, we show that methyl-α-cyclodextrin (MαCD)-catalyzed lipid exchange can be used to maximally replace the sphingolipids and phospholipids in the outer leaflet of the plasma membrane of living mammalian cells with exogenous lipids, including unnatural lipids. In addition, lipid exchange experiments revealed that 70–80% of cell sphingomyelin resided in the plasma membrane outer leaflet; the asymmetry of metabolically active cells was similar to that previously defined for erythrocytes, as judged by outer leaflet lipid composition; and plasma membrane outer leaflet phosphatidylcholine had a significantly lower level of unsaturation than phosphatidylcholine in the remainder of the cell. The data also provided a rough estimate for the total cellular lipids residing in the plasma membrane (about half). In addition to such lipidomics applications, the exchange method should have wide potential for investigations of lipid function and modification of cellular behavior by modification of lipids. PMID:27872310

  20. Temperature Dependence of Triplet–Triplet Annihilation Upconversion in Phospholipid Membranes

    PubMed Central

    2017-01-01

    Understanding the temperature dependency of triplet–triplet annihilation upconversion (TTA-UC) is important for optimizing biological applications of upconversion. Here the temperature dependency of red-to-blue TTA-UC is reported in a variety of neutral PEGylated phospholipid liposomes. In these systems a delicate balance between lateral diffusion rate of the dyes, annihilator aggregation, and sensitizer self-quenching leads to a volcano plot, with the maximum upconversion intensity occurring near the main order–disorder transition temperature of the lipid membrane. PMID:28059523

  1. Electrostatic interactions in phospholipid membranes revealed by coherent 2D IR spectroscopy

    PubMed Central

    Volkov, V. V.; Chelli, R.; Zhuang, W.; Nuti, F.; Takaoka, Y.; Papini, A. M.; Mukamel, S.; Righini, R.

    2007-01-01

    The inter- and intramolecular interactions of the carbonyl moieties at the polar interface of a phospholipid membrane are probed by using nonlinear femtosecond infrared spectroscopy. Two-dimensional IR correlation spectra separate homogeneous and inhomogeneous broadenings and show a distinct cross-peak pattern controlled by electrostatic interactions. The inter- and intramolecular electrostatic interactions determine the inhomogeneous character of the optical response. Using molecular dynamics simulation and the nonlinear exciton equations approach, we extract from the spectra short-range structural correlations between carbonyls at the interface. PMID:17881567

  2. Regionalization and redistribution of membrane phospholipids and cholesterol in mouse spermatozoa during in vitro capacitation.

    PubMed

    Lin, Y; Kan, F W

    1996-11-01

    Fracture-label, surface-replica, and routine freeze-fracture techniques were used in combination with phospholipase A2-colloidal gold (PLA2-CG) and filipin as probes to study changes in the distribution of phospholipids and cholesterol, respectively, in morphologically defined plasma membrane domains of mouse spermatozoa during in vitro capacitation. In noncapacitated spermatozoa, quantitative analysis revealed that the fractured plasma membrane overlying the equatorial segment carried the highest PLA2-CG labeling density. The next highest labeling densities were found in the anterior acrosome region and the post-acrosomal region. On the external surface of the plasma membrane revealed by surface replicas, a uniform distribution of PLA2-CG was confined mainly to the acrosomal region of the head. The plasma membrane of the sperm tail had a relatively low labeling density for PLA2-CG. In freeze-fracture replicas of filipin-treated spermatozoa, the labeling density of filipin/sterol complexes (FSCs) was high in the plasma membrane over the acrosomal region where the FSCs were uniformly distributed. The postacrosomal region was weakly labeled. After in vitro capacitation, the densities of PLA2-CG and FSCs were significantly reduced in the fractured plasma membrane of the sperm head and the middle piece of the tail. However, surface replicas revealed an increased PLA2-CG labeling on the external surface of the plasma membrane covering the postacrosomal region, the middle piece, and the principal piece. Another major change detected in capacitated spermatozoa was the presence of small aggregates and patches of elevated, membrane-associated particles on the surface-replicated plasma membrane in the upper portion of the postacrosomal domain. Here the PLA2-CG labeling density was found to be higher than in noncapacitated spermatozoa. These results provide new information with respect to the reorganization and redistribution of phospholipids in specific regions of the plasma

  3. Reconstitution and Partial Characterization of Phospholipid Flippase Activity from Detergent Extracts of the Bacillus subtilis Cell Membrane

    PubMed Central

    Hrafnsdóttir, Sigrún; Menon, Anant K.

    2000-01-01

    In bacteria, phospholipids are synthesized on the inner leaflet of the cytoplasmic membrane and must translocate to the outer leaflet to propagate a bilayer. Transbilayer movement of phospholipids has been shown to be fast and independent of metabolic energy, and it is predicted to be facilitated by membrane proteins (flippases) since transport across protein-free membranes is negligible. However, it remains unclear as to whether proteins are required at all and, if so, whether specific proteins are needed. To determine whether bacteria contain specific proteins capable of translocating phospholipids across the cytoplasmic membrane, we reconstituted a detergent extract of Bacillus subtilis into proteoliposomes and measured import of a water-soluble phospholipid analog. We found that the proteoliposomes were capable of transporting the analog and that transport was inhibited by protease treatment. Active proteoliposome populations were also able to translocate a long-chain phospholipid, as judged by a phospholipase A2-based assay. Protein-free liposomes were inactive. We show that manipulation of the reconstitution mixture by prior chromatographic fractionation of the detergent extract, or by varying the protein/phospholipid ratio, results in populations of vesicles with different specific activities. Glycerol gradient analysis showed that the majority of the transport activity sedimented at ∼4S, correlating with the presence of specific proteins. Recovery of activity in other gradient fractions was low despite the presence of a complex mixture of proteins. We conclude that bacteria contain specific proteins capable of facilitating transbilayer translocation of phospholipids. The reconstitution methodology that we describe provides the basis for purifying a facilitator of transbilayer phospholipid translocation in bacteria. PMID:10894727

  4. Occurrence of a bacterial membrane microdomain at the cell division site enriched in phospholipids with polyunsaturated hydrocarbon chains.

    PubMed

    Sato, Sho; Kawamoto, Jun; Sato, Satoshi B; Watanabe, Bunta; Hiratake, Jun; Esaki, Nobuyoshi; Kurihara, Tatsuo

    2012-07-13

    In this study, we found that phospholipids containing an eicosapentaenyl group form a novel membrane microdomain at the cell division site of a Gram-negative bacterium, Shewanella livingstonensis Ac10, using chemically synthesized fluorescent probes. The occurrence of membrane microdomains in eukaryotes and prokaryotes has been demonstrated with various imaging tools for phospholipids with different polar headgroups. However, few studies have focused on the hydrocarbon chain-dependent localization of membrane-resident phospholipids in vivo. We previously found that lack of eicosapentaenoic acid (EPA), a polyunsaturated fatty acid found at the sn-2 position of glycerophospholipids, causes a defect in cell division after DNA replication of S. livingstonensis Ac10. Here, we synthesized phospholipid probes labeled with a fluorescent 7-nitro-2,1,3-benzoxadiazol-4-yl (NBD) group to study the localization of EPA-containing phospholipids by fluorescence microscopy. A fluorescent probe in which EPA was bound to the glycerol backbone via an ester bond was found to be unsuitable for imaging because EPA was released from the probe by in vivo hydrolysis. To overcome this problem, we synthesized hydrolysis-resistant ether-type phospholipid probes. Using these probes, we found that the fluorescence localized between two nucleoids at the cell center during cell division when the cells were grown in the presence of the eicosapentaenyl group-containing probe (N-NBD-1-oleoyl-2-eicosapentaenyl-sn-glycero-3-phosphoethanolamine), whereas this localization was not observed with the oleyl group-containing control probe (N-NBD-1-oleoyl-2-oleyl-sn-glycero-3-phosphoethanolamine). Thus, phospholipids containing an eicosapentaenyl group are specifically enriched at the cell division site. Formation of a membrane microdomain enriched in EPA-containing phospholipids at the nucleoid occlusion site probably facilitates cell division.

  5. [Peculiarities of the phospholipid and fatty acid composition of erythrocyte plasma membranes of the Black Sea fish].

    PubMed

    Silkin, Iu A; Silkina, E N; Zabelinskiĭ, S A

    2012-01-01

    The phospholipid and the fatty acid composition of the main phospholipids families of erythrocyte plasma membranes was studied in two species of cartilaginous fish: the common thrasher (Raja clavata L.) and the common stingray (Dasyatis pastinaca) and three bony fish species: the scorpion fish (Scorpaena porcus L.), the smarida (Spicara flexuosa Raf.), and the horse mackerel (Trachurus mediterraneus ponticus Aleev). It was shown that in the studied fish, 70.0-80.0 % of all membrane phospholipids were composed of phosphatidylcholine and phosphatidylethanolamine. Phosphatidylserine, monophosphoinositide, and sphingomyelin were minor components whose content in the erythrocyte membrane fluctuated from 3.0 % to 13.0 %. The fatty acid phospholipids composition was represented by a large specter of acids. From saturated acids, basic for plasma membranes are palmitic (C16: 0) and stearic (C18: 0) acids. From unsaturated acids, the larger part belong to mono-, tetra-, penta-, and hexaenoic acids in fish phospholipids. The calculation of the double bond index and of the unsaturation coefficient showed difference in the deformation ability of erythrocyte membranes of the studied fish.

  6. Myosin-I moves actin filaments on a phospholipid substrate: implications for membrane targeting

    PubMed Central

    1992-01-01

    Acanthamoeba myosin-I bound to substrates of nitrocellulose or planar lipid membranes on glass moved actin filaments at an average velocity of 0.2 micron/s. This movement required ATP and phosphorylation of the myosin-I heavy chain. We prepared planar lipid membranes on a glass support by passive fusion of lipid vesicles (Brian, A. A., and H. M. McConnell. 1984. Proc. Natl. Acad. Sci. USA. 81:6159-6163) composed of phosphatidylcholine and containing 0-40% phosphatidylserine. The mass of lipid that bound to the glass was the same for membranes of 2 and 20% phosphatidylserine in phosphatidylcholine and was sufficient to form a single bilayer. Myosin-I moved actin filaments on planar membranes of 5-40% but not 0-2% phosphatidylserine. At the low concentrations of phosphatidylserine, actin filaments tended to detach suggesting that less myosin-I was bound. We used the cooperative activation of Acanthamoeba myosin-I ATPase by low concentrations of actin to assess the association of phospholipids with myosin-I. Under conditions where activity depends on the binding of actin to the tail of myosin-I (Albanesi, J. P., H. Fujisaki, and E. D. Korn. 1985. J. Biol. Chem. 260:11174-11179), phospholipid vesicles with 5-40% phosphatidylserine inhibited ATPase activity. The motility and ATPase results demonstrate a specific interaction of the tail of myosin-I with physiological concentrations of phosphatidylserine. This interaction is sufficient to support motility and may provide a mechanism to target myosin-I to biological membranes. PMID:1530945

  7. The oxidized phospholipid PazePC promotes permeabilization of mitochondrial membranes by Bax.

    PubMed

    Lidman, Martin; Pokorná, Šárka; Dingeldein, Artur P G; Sparrman, Tobias; Wallgren, Marcus; Šachl, Radek; Hof, Martin; Gröbner, Gerhard

    2016-06-01

    Mitochondria play a crucial role in programmed cell death via the intrinsic apoptotic pathway, which is tightly regulated by the B-cell CLL/lymphoma-2 (Bcl-2) protein family. Intracellular oxidative stress causes the translocation of Bax, a pro-apoptotic family member, to the mitochondrial outer membrane (MOM) where it induces membrane permeabilization. Oxidized phospholipids (OxPls) generated in the MOM during oxidative stress directly affect the onset and progression of mitochondria-mediated apoptosis. Here we use MOM-mimicking lipid vesicles doped with varying concentrations of 1-palmitoyl-2-azelaoyl-sn-glycero-3-phosphocholine (PazePC), an OxPl species known to significantly enhance Bax-membrane association, to investigate three key aspects of Bax's action at the MOM: 1) induction of Bax pores in membranes without additional mediator proteins, 2) existence of a threshold OxPl concentration required for Bax-membrane action and 3) mechanism by which PazePC disturbs membrane organization to facilitate Bax penetration. Fluorescence leakage studies revealed that Bax-induced leakage, especially its rate, increased with the vesicles' PazePC content without any detectable threshold neither for OxPl nor Bax. Moreover, the leakage rate correlated with the Bax to lipid ratio and the PazePC content. Solid state NMR studies and calorimetric experiments on the lipid vesicles confirmed that OxPl incorporation disrupted the membrane's organization, enabling Bax to penetrate into the membrane. In addition, 15N cross polarization (CP) and insensitive nuclei enhanced by polarization transfer (INEPT) MAS NMR experiments using uniformly (15)N-labeled Bax revealed dynamically restricted helical segments of Bax embedded in the membrane, while highly flexible protein segments were located outside or at the membrane surface. Copyright © 2016 Elsevier B.V. All rights reserved.

  8. Supercritical CO2 induces marked changes in membrane phospholipids composition in Escherichia coli K12.

    PubMed

    Tamburini, Sabrina; Anesi, Andrea; Ferrentino, Giovanna; Spilimbergo, Sara; Guella, Graziano; Jousson, Olivier

    2014-06-01

    Supercritical carbon dioxide (SC-CO2) treatment is one of the most promising alternative techniques for pasteurization of both liquid and solid food products. The inhibitory effect of SC-CO2 on bacterial growth has been investigated in different species, but the precise mechanism of action remains unknown. Membrane permeabilization has been proposed to be the first event in SC-CO2-mediated inactivation. Flow cytometry, high performance liquid chromatography–electrospray ionization–mass spectrometry and NMR analyses were performed to investigate the effect of SC-CO2 treatment on membrane lipid profile and membrane permeability in Escherichia coli K12. After 15 min of SC-CO2 treatment at 120 bar and 35 °C, the majority of bacterial cells dissipated their membrane potential (95 %) and lost membrane integrity, as 81 % become partially permeabilized and 18 % fully permeabilized. Membrane permeabilization was associated with a 20 % decrease in bacterial biovolume and to a strong (>50 %) reduction in phosphatidylglycerol (PG) membrane lipids, without altering the fatty acid composition and the degree of unsaturation of acyl chains. PGs are thought to play an important role in membrane stability, by reducing motion of phosphatidylethanolamine (PE) along the membrane bilayer, therefore promoting the formation of inter-lipid hydrogen bonds. In addition, the decrease in intracellular pH induced by SC-CO2 likely alters the chemical properties of phospholipids and the PE/PG ratio. Biophysical effects of SC-CO2 thus cause a strong perturbation of membrane architecture in E. coli, and such alterations are likely associated with its strong inactivation effect.

  9. An Unconventional Diacylglycerol Kinase That Regulates Phospholipid Synthesis and Nuclear Membrane Growth*♦

    PubMed Central

    Han, Gil-Soo; O'Hara, Laura; Carman, George M.; Siniossoglou, Symeon

    2008-01-01

    Changes in nuclear size and shape during the cell cycle or during development require coordinated nuclear membrane remodeling, but the underlying molecular events are largely unknown. We have shown previously that the activity of the conserved phosphatidate phosphatase Pah1p/Smp2p regulates nuclear structure in yeast by controlling phospholipid synthesis and membrane biogenesis at the nuclear envelope. Two screens for novel regulators of phosphatidate led to the identification of DGK1. We show that Dgk1p is a unique diacylglycerol kinase that uses CTP, instead of ATP, to generate phosphatidate. DGK1 counteracts the activity of PAH1 at the nuclear envelope by controlling phosphatidate levels. Overexpression of DGK1 causes the appearance of phosphatidate-enriched membranes around the nucleus and leads to its expansion, without proliferating the cortical endoplasmic reticulum membrane. Mutations that decrease phosphatidate levels decrease nuclear membrane growth in pah1Δ cells. We propose that phosphatidate metabolism is a critical factor determining nuclear structure by regulating nuclear membrane biogenesis. PMID:18458075

  10. Tyrosine Hydroxylase Binding to Phospholipid Membranes Prompts Its Amyloid Aggregation and Compromises Bilayer Integrity

    PubMed Central

    Baumann, Anne; Jorge-Finnigan, Ana; Jung-KC, Kunwar; Sauter, Alexander; Horvath, Istvan; Morozova-Roche, Ludmilla A.; Martinez, Aurora

    2016-01-01

    Tyrosine hydroxylase (TH), a rate-limiting enzyme in the synthesis of catecholamine neurotransmitters and hormones, binds to negatively charged phospholipid membranes. Binding to both large and giant unilamellar vesicles causes membrane permeabilization, as observed by efflux and influx of fluorescence dyes. Whereas the initial protein-membrane interaction involves the N-terminal tail that constitutes an extension of the regulatory ACT-domain, prolonged membrane binding induces misfolding and self-oligomerization of TH over time as shown by circular dichroism and Thioflavin T fluorescence. The gradual amyloid-like aggregation likely occurs through cross-β interactions involving aggregation-prone motives in the catalytic domains, consistent with the formation of chain and ring-like protofilaments observed by atomic force microscopy in monolayer-bound TH. PC12 cells treated with the neurotoxin 6-hydroxydopamine displayed increased TH levels in the mitochondrial fraction, while incubation of isolated mitochondria with TH led to a decrease in the mitochondrial membrane potential. Furthermore, cell-substrate impedance and viability assays showed that supplementing the culture media with TH compromises cell viability over time. Our results revealed that the disruptive effect of TH on cell membranes may be a cytotoxic and pathogenic factor if the regulation and intracellular stability of TH is compromised. PMID:28004763

  11. PUFA levels in erythrocyte membrane phospholipids are differentially associated with colorectal adenoma risk.

    PubMed

    Rifkin, Samara B; Shrubsole, Martha J; Cai, Qiuyin; Smalley, Walter E; Ness, Reid M; Swift, Larry L; Zheng, Wei; Murff, Harvey J

    2017-06-01

    Dietary intake of PUFA has been associated with colorectal neoplasm risk; however, results from observational studies have been inconsistent. Most prior studies have utilised self-reported dietary measures to assess fatty acid exposure which might be more susceptible to measurement error and biases compared with biomarkers. The purpose of this study was to determine whether erythrocyte phospholipid membrane PUFA percentages are associated with colorectal adenoma risk. We included data from 904 adenoma cases and 835 polyp-free controls who participated in the Tennessee Colorectal Polyp Study, a large colonoscopy-based case-control study. Erythrocyte membrane PUFA percentages were measured using GC. Conditional logistic regression was used to calculate adjusted OR for risk of colorectal adenomas with erythrocyte membrane PUFA. Higher erythrocyte membrane percentages of arachidonic acid was associated with an increased risk of colorectal adenomas (adjusted OR 1·66; 95 % CI 1·05, 2·62, P trend=0·02) comparing the highest tertile to the lowest tertile. The effect size for arachidonic acid was more pronounced when restricting the analysis to advanced adenomas only. Higher erythrocyte membrane EPA percentages were associated with a trend towards a reduced risk of advanced colorectal adenomas (P trend=0·05). Erythrocyte membrane arachidonic acid percentages are associated with an increased risk of colorectal adenomas.

  12. Formation of substrate-supported membranes from mixtures of long- and short-chain phospholipids.

    PubMed

    Morigaki, Kenichi; Kimura, Shigeki; Okada, Keisuke; Kawasaki, Takashi; Kawasaki, Kazunori

    2012-06-26

    We studied the formation of substrate-supported planar phospholipid bilayers (SPBs) on glass and silica from mixtures of long- and short-chain phospholipids to assess the effects of detergent additives on SPB formation. 1,2-Hexyanoyl-sn-glycero-3-phosphocholine (DHPC-C6) and 1,2-heptanoyl-sn-glycero-3-phosphocholine (DHPC-C7) were chosen as short-chain phospholipids. 1-Palmitoyl-2-oleol-sn-glycero-3-phosphocholine (POPC) was used as a model long-chain phospholipid. Kinetic studies by quartz crystal microbalance with dissipation monitoring (QCM-D) showed that the presence of short-chain phospholipids significantly accelerated the formation of SPBs. Rapid rinsing with a buffer solution did not change the adsorbed mass on the surface if POPC/DHPC-C6 mixtures were used below the critical micelle concentration (cmc) of DHPC-C6, indicating that an SPB composed of POPC molecules remained on the surface. Fluorescence microscopy observation showed homogeneous SPBs, and the fluorescence recovery after photobleaching (FRAP) measurements gave a diffusion coefficient comparable to that for SPBs formed from POPC vesicles. However, mixtures of POPC/DHPC-C7 resulted in a smaller mass of lipid adsorption on the substrate. FRAP measurements also yielded significantly smaller diffusion coefficients, suggesting the presence of defects. The different behaviors for DHPC-C6 and DHPC-C7 point to the dual roles of detergents to enhance the formation of SPBs and to destabilize them, depending on their structures and aggregation properties.

  13. Probing the Huntingtin 1-17 membrane anchor on a phospholipid bilayer by using all-atom simulations.

    PubMed

    Côté, Sébastien; Binette, Vincent; Salnikov, Evgeniy S; Bechinger, Burkhard; Mousseau, Normand

    2015-03-10

    Mislocalization and aggregation of the huntingtin protein are related to Huntington's disease. Its first exon-more specifically the first 17 amino acids (Htt17)-is crucial for the physiological and pathological functions of huntingtin. It regulates huntingtin's activity through posttranslational modifications and serves as an anchor to membrane-containing organelles of the cell. Recently, structure and orientation of the Htt17 membrane anchor were determined using a combined solution and solid-state NMR approach. This prompted us to refine this model by investigating the dynamics and thermodynamics of this membrane anchor on a POPC bilayer using all-atom, explicit solvent molecular dynamics and Hamiltonian replica exchange. Our simulations are combined with various experimental measurements to generate a high-resolution atomistic model for the huntingtin Htt17 membrane anchor on a POPC bilayer. More precisely, we observe that the single α-helix structure is more stable in the phospholipid membrane than the NMR model obtained in the presence of dodecylphosphocholine detergent micelles. The resulting Htt17 monomer has its hydrophobic plane oriented parallel to the bilayer surface. Our results further unveil the key residues interacting with the membrane in terms of hydrogen bonds, salt-bridges, and nonpolar contributions. We also observe that Htt17 equilibrates at a well-defined insertion depth and that it perturbs the physical properties-order parameter, thickness, and area per lipid-of the bilayer in a manner that could favor its dimerization. Overall, our observations reinforce and refine the NMR measurements on the Htt17 membrane anchor segment of huntingtin that is of fundamental importance to its biological functions.

  14. Probing the Huntingtin 1-17 Membrane Anchor on a Phospholipid Bilayer by Using All-Atom Simulations

    PubMed Central

    Côté, Sébastien; Binette, Vincent; Salnikov, Evgeniy S.; Bechinger, Burkhard; Mousseau, Normand

    2015-01-01

    Mislocalization and aggregation of the huntingtin protein are related to Huntington’s disease. Its first exon—more specifically the first 17 amino acids (Htt17)—is crucial for the physiological and pathological functions of huntingtin. It regulates huntingtin’s activity through posttranslational modifications and serves as an anchor to membrane-containing organelles of the cell. Recently, structure and orientation of the Htt17 membrane anchor were determined using a combined solution and solid-state NMR approach. This prompted us to refine this model by investigating the dynamics and thermodynamics of this membrane anchor on a POPC bilayer using all-atom, explicit solvent molecular dynamics and Hamiltonian replica exchange. Our simulations are combined with various experimental measurements to generate a high-resolution atomistic model for the huntingtin Htt17 membrane anchor on a POPC bilayer. More precisely, we observe that the single α-helix structure is more stable in the phospholipid membrane than the NMR model obtained in the presence of dodecylphosphocholine detergent micelles. The resulting Htt17 monomer has its hydrophobic plane oriented parallel to the bilayer surface. Our results further unveil the key residues interacting with the membrane in terms of hydrogen bonds, salt-bridges, and nonpolar contributions. We also observe that Htt17 equilibrates at a well-defined insertion depth and that it perturbs the physical properties—order parameter, thickness, and area per lipid—of the bilayer in a manner that could favor its dimerization. Overall, our observations reinforce and refine the NMR measurements on the Htt17 membrane anchor segment of huntingtin that is of fundamental importance to its biological functions. PMID:25762330

  15. Hydrophobic Mismatch and Phase Transition in a Membrane Composed by a Mixture of Linear and Bola Phospholipids

    NASA Astrophysics Data System (ADS)

    Longo, Gabriel; Szleifer, Igal

    2006-03-01

    Archeobacteria are microorganisms that can survive and proliferate in extreme habitats, such as high salt concentration environments, anaerobic conditions, and high or low temperatures. A membrane composed of bolaform phospholipids is what gives these unique survival qualities to the bacteria. The nature and composition of this membrane has not yet been elucidated. In this work, a membrane composed by a mixture of linear and bola phospholipids is studied using a molecular theory. The effect of changing the fraction of bolaform phospholipids, as well as the length of the hydrocarbon chain of the linear lipid are studied. A phase separation in the mixture between a thin bola rich membrane and a thick linear rich membrane is found. The thin membrane is mainly composed by ``spanning'' bola molecules whose polar heads are in opposed hydrophilic regions of the membrane. The phase separation is only present when the hydrocarbon chains of both molecular species have comparable sizes. The driving force for the phase separation is the size matching between the hydrophobic chains of the linear phospholipid and the spanning bola lipid.

  16. Real-time Visualization of Phospholipid Degradation by Outer Membrane Phospholipase A using High-Speed Atomic Force Microscopy.

    PubMed

    Rangl, Martina; Rima, Luca; Klement, Jessica; Miyagi, Atsushi; Keller, Sandro; Scheuring, Simon

    2017-04-07

    Phospholipases are abundant in various types of cells and compartments, where they play key roles in physiological processes as diverse as digestion, cell proliferation, and neural activation. In Gram-negative bacteria, outer membrane phospholipase A (OmpLA) is involved in outer-membrane lipid homeostasis and bacterial virulence. Although the enzymatic activity of OmpLA can be probed with an assay relying on an artificial monoacyl thioester substrate, only little is known about its activity on diacyl phospholipids. Here, we used high-speed atomic force microscopy (HS-AFM) to directly image enzymatic phospholipid degradation by OmpLA in real time. In the absence of Ca(2+), reconstituted OmpLA diffused within a phospholipid bilayer without revealing any signs of phospholipase activity. Upon the addition of Ca(2+), OmpLA was activated and degraded the membrane with a turnover of ~2 phospholipid molecules per second and per OmpLA dimer until most of the membrane phospholipids were hydrolyzed and the protein became tightly packed. Copyright © 2017 Elsevier Ltd. All rights reserved.

  17. Crosstalk between DnaA Protein, the Initiator of Escherichia coli Chromosomal Replication, and Acidic Phospholipids Present in Bacterial Membranes

    PubMed Central

    Saxena, Rahul; Fingland, Nicholas; Patil, Digvijay; Sharma, Anjali K.; Crooke, Elliott

    2013-01-01

    Anionic (i.e., acidic) phospholipids such as phosphotidylglycerol (PG) and cardiolipin (CL), participate in several cellular functions. Here we review intriguing in vitro and in vivo evidence that suggest emergent roles for acidic phospholipids in regulating DnaA protein-mediated initiation of Escherichia coli chromosomal replication. In vitro acidic phospholipids in a fluid bilayer promote the conversion of inactive ADP-DnaA to replicatively proficient ATP-DnaA, yet both PG and CL also can inhibit the DNA-binding activity of DnaA protein. We discuss how cellular acidic phospholipids may positively and negatively influence the initiation activity of DnaA protein to help assure chromosomal replication occurs once, but only once, per cell-cycle. Fluorescence microscopy has revealed that PG and CL exist in domains located at the cell poles and mid-cell, and several studies link membrane curvature with sub-cellular localization of various integral and peripheral membrane proteins. E. coli DnaA itself is found at the cell membrane and forms helical structures along the longitudinal axis of the cell. We propose that there is cross-talk between acidic phospholipids in the bacterial membrane and DnaA protein as a means to help control the spatial and temporal regulation of chromosomal replication in bacteria. PMID:23595001

  18. Structural Thermodynamics of myr-Src(2-19) Binding to Phospholipid Membranes.

    PubMed

    Scheidt, Holger A; Klingler, Johannes; Huster, Daniel; Keller, Sandro

    2015-08-04

    Many proteins are anchored to lipid bilayer membranes through a combination of hydrophobic and electrostatic interactions. In the case of the membrane-bound nonreceptor tyrosine kinase Src from Rous sarcoma virus, these interactions are mediated by an N-terminal myristoyl chain and an adjacent cluster of six basic amino-acid residues, respectively. In contrast with the acyl modifications of other lipid-anchored proteins, the myristoyl chain of Src does not match the host lipid bilayer in terms of chain conformation and dynamics, which is attributed to a tradeoff between hydrophobic burial of the myristoyl chain and repulsion of the peptidic moiety from the phospholipid headgroup region. Here, we combine thermodynamic information obtained from isothermal titration calorimetry with structural data derived from (2)H, (13)C, and (31)P solid-state nuclear magnetic resonance spectroscopy to decipher the hydrophobic and electrostatic contributions governing the interactions of a myristoylated Src peptide with zwitterionic and anionic membranes made from lauroyl (C12:0) or myristoyl (C14:0) lipids. Although the latter are expected to enable better hydrophobic matching, the Src peptide partitions more avidly into the shorter-chain lipid analog because this does not require the myristoyl chain to stretch extensively to avoid unfavorable peptide/headgroup interactions. Moreover, we find that Coulombic and intrinsic contributions to membrane binding are not additive, because the presence of anionic lipids enhances membrane binding more strongly than would be expected on the basis of simple Coulombic attraction.

  19. Biomimetic Phospholipid Membrane Organization on Graphene and Graphene Oxide Surfaces: A Molecular Dynamics Simulation Study.

    PubMed

    Willems, Nathalie; Urtizberea, Ainhoa; Verre, Andrea F; Iliut, Maria; Lelimousin, Mickael; Hirtz, Michael; Vijayaraghavan, Aravind; Sansom, Mark S P

    2017-02-28

    Supported phospholipid membrane patches stabilized on graphene surfaces have shown potential in sensor device functionalization, including biosensors and biocatalysis. Lipid dip-pen nanolithography (L-DPN) is a method useful in generating supported membrane structures that maintain lipid functionality, such as exhibiting specific interactions with protein molecules. Here, we have integrated L-DPN, atomic force microscopy, and coarse-grained molecular dynamics simulation methods to characterize the molecular properties of supported lipid membranes (SLMs) on graphene and graphene oxide supports. We observed substantial differences in the topologies of the stabilized lipid structures depending on the nature of the surface (polar graphene oxide vs nonpolar graphene). Furthermore, the addition of water to SLM systems resulted in large-scale reorganization of the lipid structures, with measurable effects on lipid lateral mobility within the supported membranes. We also observed reduced lipid ordering within the supported structures relative to free-standing lipid bilayers, attributed to the strong hydrophobic interactions between the lipids and support. Together, our results provide insight into the molecular effects of graphene and graphene oxide surfaces on lipid bilayer membranes. This will be important in the design of these surfaces for applications such as biosensor devices.

  20. Conformational transition of giant DNA in a confined space surrounded by a phospholipid membrane.

    PubMed

    Kato, Ayako; Shindo, Eri; Sakaue, Takahiro; Tsuji, Akihiko; Yoshikawa, Kenichi

    2009-09-16

    It has been established that a long DNA molecule exhibits a large discrete conformational change from a coiled state to a highly folded state in aqueous solution, depending on the presence of various condensing agents such as polyamines. In this study, T4 DNA labeled with fluorescent dyes was encapsulated in a cell-sized microdroplet covered with a phospholipid membrane to investigate the conformational behavior of a DNA molecule in such a confined space. Fluorescence microscopy showed that the presence of Mg(2+) induced the adsorption of DNA onto the membrane inner-surface of a droplet composed of phosphatidylethanolamine, while no adsorption was observed onto a phosphatidylcholine membrane. Under the presence of spermine (tetravalent amine), DNA had a folded conformation in the bulk solution. However, when these molecules were encapsulated in the microdroplet, DNA adsorbed onto the membrane surface accompanied by unfolding of its structure into an extended coil conformation under high concentrations of Mg(2+). In addition, DNA molecules trapped in large droplets tended not to be adsorbed on the membrane, i.e., no conformational transition occurred. A thermodynamic analysis suggests that the translational entropy loss of a DNA molecule that is accompanied by adsorption is a key factor in these phenomena under micrometer-scale confinement.

  1. Optimized phospholipid bilayer nanodiscs facilitate high-resolution structure determination of membrane proteins.

    PubMed

    Hagn, Franz; Etzkorn, Manuel; Raschle, Thomas; Wagner, Gerhard

    2013-02-06

    Structural studies of membrane proteins are still hampered by difficulties of finding appropriate membrane-mimicking media that maintain protein structure and function. Phospholipid nanodiscs seem promising to overcome the intrinsic problems of detergent-containing environments. While nanodiscs can offer a near-native environment, the large particle size complicates their routine use in the structural analysis of membrane proteins by solution NMR. Here, we introduce nanodiscs assembled from shorter ApoA-I protein variants that are of markedly smaller diameter and show that the resulting discs provide critical improvements for the structure determination of membrane proteins by NMR. Using the bacterial outer-membrane protein OmpX as an example, we demonstrate that the combination of small nanodisc size, high deuteration levels of protein and lipids, and the use of advanced non-uniform NMR sampling methods enable the NMR resonance assignment as well as the high-resolution structure determination of polytopic membrane proteins in a detergent-free, near-native lipid bilayer setting. By applying this method to bacteriorhodopsin, we show that our smaller nanodiscs can also be beneficial for the structural characterization of the important class of seven-transmembrane helical proteins. Our set of engineered nanodiscs of subsequently smaller diameters can be used to screen for optimal NMR spectral quality for small to medium-sized membrane proteins while still providing a functional environment. In addition to their key improvements for de novo structure determination, due to their smaller size these nanodiscs enable the investigation of interactions between membrane proteins and their (soluble) partner proteins, unbiased by the presence of detergents that might disrupt biologically relevant interactions.

  2. Membrane adaptation in phospholipids and cholesterol in the widely distributed, freeze-tolerant wood frog, Rana sylvatica.

    PubMed

    Reynolds, Alice M; Lee, Richard E; Costanzo, Jon P

    2014-04-01

    Maintaining proper membrane phase and fluidity is important for preserving membrane structure and function, and by altering membrane lipid composition many organisms can adapt to changing environmental conditions. We compared the phospholipid and cholesterol composition of liver and brain plasma membranes in the freeze-tolerant wood frog, Rana sylvatica, from southern Ohio and Interior Alaska during summer, fall, and winter. We also compared membranes from winter-acclimatized frogs from Ohio that were either acclimated to 0, 4, or 10 °C, or frozen to -2.5 °C and sampled before or after thawing. Lipids were extracted from isolated membranes, separated by one-dimensional thin-layer chromatography, and analyzed via densitometry. Liver membranes underwent seasonal changes in phospholipid composition and lipid ratios, including a winter increase in phosphatidylethanolamine, which serves to increase fluidity. However, whereas Ohioan frogs decreased phosphatidylcholine and increased sphingomyelin, Alaskan frogs only decreased phosphatidylserine, indicating that these phenotypes use different adaptive strategies to meet the functional needs of their membranes. Liver membranes showed no seasonal variation in cholesterol abundance, though membranes from Alaskan frogs contained relatively less cholesterol, consistent with the need for greater fluidity in a colder environment. No lipid changed seasonally in brain membranes in either population. In the thermal acclimation experiment, cold exposure induced an increase in phosphatidylethanolamine in liver membranes and a decrease in cholesterol in brain membranes. No changes occurred during freezing and thawing in membranes from either organ. Wood frogs use tissue-specific membrane adaptation of phospholipids and cholesterol to respond to changing environmental factors, particularly temperature, though not with freezing.

  3. Phospholipid composition and a polybasic motif determine D6 PROTEIN KINASE polar association with the plasma membrane and tropic responses.

    PubMed

    Barbosa, Inês C R; Shikata, Hiromasa; Zourelidou, Melina; Heilmann, Mareike; Heilmann, Ingo; Schwechheimer, Claus

    2016-12-15

    Polar transport of the phytohormone auxin through PIN-FORMED (PIN) auxin efflux carriers is essential for the spatiotemporal control of plant development. The Arabidopsis thaliana serine/threonine kinase D6 PROTEIN KINASE (D6PK) is polarly localized at the plasma membrane of many cells where it colocalizes with PINs and activates PIN-mediated auxin efflux. Here, we show that the association of D6PK with the basal plasma membrane and PINs is dependent on the phospholipid composition of the plasma membrane as well as on the phosphatidylinositol phosphate 5-kinases PIP5K1 and PIP5K2 in epidermis cells of the primary root. We further show that D6PK directly binds polyacidic phospholipids through a polybasic lysine-rich motif in the middle domain of the kinase. The lysine-rich motif is required for proper PIN3 phosphorylation and for auxin transport-dependent tropic growth. Polybasic motifs are also present at a conserved position in other D6PK-related kinases and required for membrane and phospholipid binding. Thus, phospholipid-dependent recruitment to membranes through polybasic motifs might not only be required for D6PK-mediated auxin transport but also other processes regulated by these, as yet, functionally uncharacterized kinases. © 2016. Published by The Company of Biologists Ltd.

  4. ATP11C Facilitates Phospholipid Translocation across the Plasma Membrane of All Leukocytes.

    PubMed

    Yabas, Mehmet; Jing, Weidong; Shafik, Sarah; Bröer, Stefan; Enders, Anselm

    2016-01-01

    Organization of the plasma membrane into specialized substructures in different blood lineages facilitates important biological functions including proper localization of receptors at the plasma membrane as well as the initiation of crucial intracellular signaling cascades. The eukaryotic plasma membrane is a lipid bilayer that consists of asymmetrically distributed phospholipids. This asymmetry is actively maintained by membrane-embedded lipid transporters, but there is only limited data available about the molecular identity of the predominantly active transporters and their substrate specificity in different leukocyte subsets. We demonstrate here that the P4-type ATPase ATP11C mediates significant flippase activity in all murine leukocyte subsets. Loss of ATP11C resulted in a defective internalization of phosphatidylserine (PS) and phosphatidylethanolamine (PE) in comparison to control cells. The diminished flippase activity caused increased PS exposure on 7-aminoactinomycin D- (7-AAD-) viable pro-B cells freshly isolated from the bone marrow of ATP11C-deficient mice, which was corrected upon a 2-hour resting period in vitro. Despite the impaired flippase activity in all immune cell subsets, the only other blood cell type with an accumulation of PS on the surface were viable 7-AAD- developing T cells but this did not result in any discernable effect on their development in the thymus. These findings show that all leukocyte lineages exhibit flippase activity, and identify ATP11C as an aminophospholipid translocase in immune cells.

  5. ATP11C Facilitates Phospholipid Translocation across the Plasma Membrane of All Leukocytes

    PubMed Central

    Yabas, Mehmet; Jing, Weidong; Shafik, Sarah

    2016-01-01

    Organization of the plasma membrane into specialized substructures in different blood lineages facilitates important biological functions including proper localization of receptors at the plasma membrane as well as the initiation of crucial intracellular signaling cascades. The eukaryotic plasma membrane is a lipid bilayer that consists of asymmetrically distributed phospholipids. This asymmetry is actively maintained by membrane-embedded lipid transporters, but there is only limited data available about the molecular identity of the predominantly active transporters and their substrate specificity in different leukocyte subsets. We demonstrate here that the P4-type ATPase ATP11C mediates significant flippase activity in all murine leukocyte subsets. Loss of ATP11C resulted in a defective internalization of phosphatidylserine (PS) and phosphatidylethanolamine (PE) in comparison to control cells. The diminished flippase activity caused increased PS exposure on 7-aminoactinomycin D− (7-AAD−) viable pro-B cells freshly isolated from the bone marrow of ATP11C-deficient mice, which was corrected upon a 2-hour resting period in vitro. Despite the impaired flippase activity in all immune cell subsets, the only other blood cell type with an accumulation of PS on the surface were viable 7-AAD− developing T cells but this did not result in any discernable effect on their development in the thymus. These findings show that all leukocyte lineages exhibit flippase activity, and identify ATP11C as an aminophospholipid translocase in immune cells. PMID:26799398

  6. Abnormal octadeca-carbon fatty acids distribution in erythrocyte membrane phospholipids of patients with gastrointestinal tumor.

    PubMed

    Lin, Shaohui; Li, Tianyu; Liu, Xifang; Wei, Shihu; Liu, Zequn; Hu, Shimin; Liu, Yali; Tan, Hongzhuan

    2017-06-01

    Fatty acid (FA) composition is closely associated with tumorigenesis and neoplasm metastasis. This study was designed to investigate the differences of phospholipid FA (PLFA) composition in erythrocyte and platelet cell membranes in both gastrointestinal (GI) tumor patients and healthy controls.In this prospective study, 50 GI tumor patients and 33 healthy volunteers were recruited between the years 2013 and 2015. Blood samples were collected from healthy volunteers and patients, and FA composition was assessed using gas chromatography-mass spectrometer (GC-MS), and data were analyzed by multifactor regression analysis.Compared with healthy controls, the percentages of C18:0 (stearic acid, SA), C22:6 (docosahexaenoic acid, DHA), and n-3 polyunsaturated FAs (n-3 PUFA) were significantly increased, while C18:1 (oleic acid, OA), C18:2 (linoleic acid, LA), and monounsaturated FAs (MUFA) decreased in erythrocyte membranes of GI tumor patients. Also, patient's platelets revealed higher levels of C20:4 (arachidonic acid, AA) and DHA, and lower levels of OA and MUFA.Our study displayed a remarkable change in the FA composition of erythrocyte and platelet membranes in GI tumor patients as compared with healthy controls. The octadeca-carbon FAs (SA, OA, and LA) in erythrocyte membranes could serve as a potential indicator for GI tumor detection.

  7. Oxidized Phospholipids Inhibit the Formation of Cholesterol-Dependent Plasma Membrane Nanoplatforms

    PubMed Central

    Brameshuber, Mario; Sevcsik, Eva; Rossboth, Benedikt K.; Manner, Christina; Deigner, Hans-Peter; Peksel, Begüm; Péter, Mária; Török, Zsolt; Hermetter, Albin; Schütz, Gerhard J.

    2016-01-01

    We previously developed a single-molecule microscopy method termed TOCCSL (thinning out clusters while conserving stoichiometry of labeling), which allows for direct imaging of stable nanoscopic platforms with raft-like properties diffusing in the plasma membrane. As a consensus raft marker, we chose monomeric GFP linked via a glycosylphosphatidylinositol (GPI) anchor to the cell membrane (mGFP-GPI). With this probe, we previously observed cholesterol-dependent homo-association to nanoplatforms diffusing in the plasma membrane of live CHO cells. Here, we report the release of this homo-association upon addition of 1-palmitoyl-2-(5-oxovaleroyl)-sn-glycero-3-phosphocholine (POVPC) or 1-palmitoyl-2-glutaroyl-sn-glycero-3-phosphocholine, two oxidized phospholipids (oxPLs) that are typically present in oxidatively modified low-density lipoprotein. We found a dose-response relationship for mGFP-GPI nanoplatform disintegration upon addition of POVPC, correlating with the signal of the apoptosis marker Annexin V-Cy3. Similar concentrations of lysolipid showed no effect, indicating that the observed phenomena were not linked to properties of the lipid bilayer itself. Inhibition of acid sphingomyelinase by NB-19 before addition of POVPC completely abolished nanoplatform disintegration by oxPLs. In conclusion, we were able to determine how oxidized lipid species disrupt mGFP-GPI nanoplatforms in the plasma membrane. Our results favor an indirect mechanism involving acid sphingomyelinase activity rather than a direct interaction of oxPLs with nanoplatform constituents. PMID:26745423

  8. Concurrent changes in Dunaliella salina ultrastructure and membrane phospholipid metabolism after hyperosmotic shock

    PubMed Central

    1988-01-01

    Hyperosmotic shock, induced by raising the NaCl concentration of Dunaliella salina medium from 1.71 to 3.42 M, elicited a rapid decrease of nearly one-third in whole cell volume and in the volume of intracellular organelles. The decrease in cell volume was accompanied by plasmalemma infolding without overall loss of surface area. This contrasts with the dramatic increase in plasmalemma surface area after hypoosmotic shock (Maeda, M., and G. A. Thompson. 1986. J. Cell Biol. 102:289-297). Although plasmalemma surface area remained constant after hyperosmotic shock, the nucleus, chloroplast, and mitochondria lost membrane surface area, apparently through membrane fusion with the endoplasmic reticulum. Thus the endoplasmic reticulum serves as a reservoir for excess membrane during hyperosmotic stress, reversing its role as membrane donor to the same organelles during hypoosmotically induced cell expansion. Hyperosmotic shock also induced rapid changes in phospholipid metabolism. The mass of phosphatidic acid dropped to 56% of control and that of phosphatidylinositol 4,5-bisphosphate rose to 130% of control within 4 min. Further analysis demonstrated that within 10 min after hyperosmotic shock, there was 2.5-fold increase in phosphatidylcholine turnover, a twofold increase in lysophosphatidylcholine mass, a four-fold increase in lysophosphatidate mass, and an elevation in free fatty acids to 124% of control, all observations suggesting activation of phospholipase A. The observed biophysical and biochemical phenomena are likely to be causally interrelated in providing mechanisms for successful accommodation to such severe osmotic extremes. PMID:3417760

  9. Phospholipid composition of plasma and erythrocyte membranes in animal species by 31P NMR.

    PubMed

    Ferlazzo, Alida Maria; Bruschetta, Giuseppe; Di Pietro, Patrizia; Medica, Pietro; Notti, Anna; Rotondo, Enrico

    2011-12-01

    The aim of this study was to provide basal values of phospholipid (PL) composition in different animal species by 31P NMR analysis using detergents. This fast and accurate method allowed a quantitative analysis of PLs without any previous separation. Plasma and erythrocyte membrane PLs were investigated in mammals (pig, cow, horse). Moreover, for the first time, the composition of plasma PLs in avian (chicken and ostrich) was performed by 31P NMR. Significant qualitative and quantitative interspecies differences in plasma PL levels were found. Phosphatidilcholine (PC) and sphingomyelin (SPH) levels were significantly higher (P < 0.001) in chicken plasma than all the other species tested. In erythrocytes, cow PC and phosphatidylcholine diarachidoyl were significantly lower (P < 0.001) than for pigs and horses, whereas pig PC presented intermediate values among cows and horses. Inorganic phosphate and 2,3-diphosphoglycerate levels were also significantly different between the species under investigation. The [SPH/total PLs] molar ratios in erythrocytes confirmed interspecies differences in phospholipid composition while the PC/SPH molar ratios could be related to a distinct erythrocyte flexibility and aggregability. Diet and nutrition may contribute primarily to the interspecies differences in plasma PL amounts detected. Significant differences between chicken plasma PC and SPH levels and those of the other animal species could be ascribed to a fat metabolism specific to egg production.

  10. Membranes serve as allosteric activators of phospholipase A2, enabling it to extract, bind, and hydrolyze phospholipid substrates.

    PubMed

    Mouchlis, Varnavas D; Bucher, Denis; McCammon, J Andrew; Dennis, Edward A

    2015-02-10

    Defining the molecular details and consequences of the association of water-soluble proteins with membranes is fundamental to understanding protein-lipid interactions and membrane functioning. Phospholipase A2 (PLA2) enzymes, which catalyze the hydrolysis of phospholipid substrates that compose the membrane bilayers, provide the ideal system for studying protein-lipid interactions. Our study focuses on understanding the catalytic cycle of two different human PLA2s: the cytosolic Group IVA cPLA2 and calcium-independent Group VIA iPLA2. Computer-aided techniques guided by deuterium exchange mass spectrometry data, were used to create structural complexes of each enzyme with a single phospholipid substrate molecule, whereas the substrate extraction process was studied using steered molecular dynamics simulations. Molecular dynamic simulations of the enzyme-substrate-membrane systems revealed important information about the mechanisms by which these enzymes associate with the membrane and then extract and bind their phospholipid substrate. Our data support the hypothesis that the membrane acts as an allosteric ligand that binds at the allosteric site of the enzyme's interfacial surface, shifting its conformation from a closed (inactive) state in water to an open (active) state at the membrane interface.

  11. Membranes serve as allosteric activators of phospholipase A2, enabling it to extract, bind, and hydrolyze phospholipid substrates

    PubMed Central

    Mouchlis, Varnavas D.; Bucher, Denis; McCammon, J. Andrew; Dennis, Edward A.

    2015-01-01

    Defining the molecular details and consequences of the association of water-soluble proteins with membranes is fundamental to understanding protein–lipid interactions and membrane functioning. Phospholipase A2 (PLA2) enzymes, which catalyze the hydrolysis of phospholipid substrates that compose the membrane bilayers, provide the ideal system for studying protein–lipid interactions. Our study focuses on understanding the catalytic cycle of two different human PLA2s: the cytosolic Group IVA cPLA2 and calcium-independent Group VIA iPLA2. Computer-aided techniques guided by deuterium exchange mass spectrometry data, were used to create structural complexes of each enzyme with a single phospholipid substrate molecule, whereas the substrate extraction process was studied using steered molecular dynamics simulations. Molecular dynamic simulations of the enzyme–substrate–membrane systems revealed important information about the mechanisms by which these enzymes associate with the membrane and then extract and bind their phospholipid substrate. Our data support the hypothesis that the membrane acts as an allosteric ligand that binds at the allosteric site of the enzyme’s interfacial surface, shifting its conformation from a closed (inactive) state in water to an open (active) state at the membrane interface. PMID:25624474

  12. Dynamics of proton diffusion within the hydration layer of phospholipid membrane

    SciTech Connect

    Gutman, M.; Nachliel, E.; Moshiach, S.

    1989-04-04

    The diffusion of protons at the immediate vicinity of (less than 10 A from) a phospholipid membrane is studied by the application of the laser-induced proton pulse. A light-sensitive proton emitter (8-hydroxypyrene-1,3,6-trisulfonate) was trapped exclusively in the hydration layers of multilamellar vesicles made of egg phosphatidylcholine, and the protons were dissociated by a synchronizing laser pulse. The recombination of the proton with pyranin anion was monitored by time-resolved spectroscopy and analyzed by a diffusion-controlled formalism. The measured diffusion coefficient is only slightly smaller than the diffusion coefficient of proton in bulk water. Modulating the width of the hydration layer by external pressure had a direct effect on the diffusibility of the proton: the narrower the hydration layer, the slower is the diffusion of protons.

  13. Plasma and erythrocyte membrane phospholipids and fatty acids in Italian general population and hemodialysis patients.

    PubMed

    Dessì, Mariarita; Noce, Annalisa; Bertucci, Pierfrancesco; Noce, Gianluca; Rizza, Stefano; De Stefano, Alessandro; Manca di Villahermosa, Simone; Bernardini, Sergio; De Lorenzo, Antonino; Di Daniele, Nicola

    2014-03-21

    Dyslipidemia and abnormal phospholipid metabolism are frequent in uremic patients and increase their risk of cardiovascular disease (CVD): ω-3 polyunsaturated fatty acids (PUFAs) may reduce this risk in the general population. In this study we compared the plasma and erythrocyte cell membrane composition of PUFAs in a group of Caucasian hemodialysis (HD) patients and in a control group of healthy subjects and evaluated the erythrocyte/cell membrane fatty acid ratio as a marker of the dietary intake of phospholipids. The relationship between ω-3 and ω-6 fatty acids and the possible differences in PUFAs concentrations were also investigated. After obtaining a fully informed consent, a total of ninety-nine HD patients and 160 non uremic control subjects from "Tor Vergata" University Hospital were enrolled into the study. None of them took antioxidant drugs or dietary supplements for at least 90 days prior to the observation. Blood samples were analysed by gas-chromatographic coupled to a mass spectrometric detector.The daily intake of total calories, proteins, lipids and carbohydrates is significantly lower in HD patients than in controls (p < 0.001). Most plasma and erythrocyte PUFA were also reduced significantly in HD patients (p < 0.001). Our results suggest that many classes of PUFAs are lacking in HD patients, due to the removal of nutrients during the dialysis and to persistent malnutrition. A dietary treatment addressed to increase plasma ω-3 PUFAs and to optimize ω-6/ω-3 ratio may exert a protective action and reduce the risk of CVD in HD patient.

  14. Investigation of the interactions of lupane type pentacyclic triterpenes with outer leaflet membrane phospholipids--Langmuir monolayer and synchrotron X-ray scattering study.

    PubMed

    Broniatowski, Marcin; Flasiński, Michał; Wydro, Paweł

    2012-09-01

    Lupane type pentacyclic triterpenes (LTs) are pharmacologically active natural products isolated from different plants. They have broad spectrum of therapeutic action ranging from anticancer via anti-HIV, antibiotic to anti-inflammatory and anti-protozoal activity. Many scientific papers underline that the key stage in the LT mechanism of action is their incorporation into cellular membrane and the interaction with the structural lipids. In our research we apply Langmuir monolayers as a versatile platform for the investigation of these phenomena, since till now important aspects concerning this issue are incomprehensible. We focus our attention on the interactions of lupeol and betulinic acid with choline-headgroup structural lipids: a representative of saturated glycerophosphatidylcholines (DPPCs), and octadecyl-sphingomyelin--a representative of membrane sphingolipids. Application of complementary physicochemical techniques such as the Langmuir technique, Brewster angle microscopy, and grazing incidence X-ray diffraction supported by thermodynamic analysis enabled us to investigate the intermolecular interactions in such binary model systems. Our results corroborate that LT is miscible with the outer leaflet membrane phospholipids, both DPPC and SM in the whole range of mole ratios. Moreover, the introduction of LT into the phospholipid film, even in small proportion, leads to the loss of periodical ordering of the phospholipid molecules and the disappearance of the diffraction signal as observed by GIXD. Our results also proved that LT does not form any surface complexes of fixed stoichiometry resembling the well characterized lipid rafts.

  15. Adaptive modification of membrane phospholipid fatty acid composition and metabolic thermosuppression of brown adipose tissue in heat-acclimated rats

    NASA Astrophysics Data System (ADS)

    Saha, S. K.; Ohno, T.; Tsuchiya, K.; Kuroshima, A.

    Thermogenesis, especially facultative thermogenesis by brown adipose tissue (BAT), is less important in high ambient temperature and the heat-acclimated animals show a lower metabolic rate. Adaptive changes in the metabolic activity of BAT are generally found to be associated with a modification of membrane phospholipid fatty acid composition. However, the effect of heat acclimation on membrane phospholipid fatty acid composition is as yet unknown. In this study, we examined the thermogenic activity and phospholipid fatty acid composition of interscapular BAT from heat-acclimated rats (control: 25+/-1°C, 50% relative humidity and heat acclimation: 32+/-0.5°C, 50% relative humidity). Basal thermogenesis and the total thermogenic capacity after noradrenaline stimulation, as estimated by in vitro oxygen consumption of BAT (measured polarographically using about 1-mm3 tissue blocks), were smaller in the heat-acclimated group than in the control group. There was no difference in the tissue content of phospholipids between the groups when expressed per microgram of DNA. The phospholipid fatty acid composition was analyzed by a capillary gas chromatograph. The state of phospholipid unsaturation, as estimated by the number of double bonds per fatty acid molecule, was similar between the groups. The saturated fatty acid level was higher in the heat-acclimated group. Among the unsaturated fatty acids, heat acclimation decreased docosahexaenoic acid and oleic acid levels, and increased the arachidonic acid level. The tissue level of docosahexaenoic acid correlated with the basal oxygen consumption of BAT (r=0.6, P<0.01) and noradrenaline-stimulated maximum values of oxygen consumption (r=0.5, P<0.05). Our results show that heat acclimation modifies the BAT phospholipid fatty acids, especially the n-3 polyunsaturated fatty acid docosahexaenoic acid, which is possibly involved in the metabolic thermosuppression.

  16. A phospholipid-apolipoproteinA-I nanoparticle containing Amphotericin B as a drug delivery platform with cell membrane protective properties

    PubMed Central

    Burgess, Braydon L.; Cavigiolio, Giorgio; Fannucchi, Michelle V.; Illek, Beate; Forte, Trudy M.; Oda, Michael N.

    2010-01-01

    Amphotericin B (AMB), a potent antifungal agent, has been employed as an inhalable therapy for pulmonary fungal infections. We recently described a novel nano-sized delivery vehicle composed of phospholipid (PL) and apolipoprotein A-I, NanoDisk (ND), to which we added AMB as a payload (ND-AMB). The goal of the present study was to evaluate whether ND-AMB, compared to other formulations, preserves lung cell integrity in vitro, as AMB can be toxic to mammalian cells and reduce lung function when inhaled. Epithelial integrity was assessed by measuring K+ ion flux across a model airway epithelium, Calu-3 cells. In this assay ND-AMB was at least 8-fold less disruptive than AMB/deoxycholate (DOC). Cell viability studies confirmed this observation. Unexpectedly, the ND vehicle restored the integrity of a membrane compromised by prior exposure to AMB. An alternative formulation of ND-AMB containing a high load of AMB per ND was not protective, suggesting that ND with a low ratio of AMB to PL can sequester additional AMB from membranes. ND-AMB also protected HepG2 cells from the cytotoxicity of AMB, as determined by cellular viability and lactate dehydrogenase (LDH) levels. This study suggests that ND-AMB may be safe for administration via inhalation and reveals a unique activity whereby ND-AMB protects lung epithelial membranes from AMB toxicity. PMID:20696226

  17. Incorporation profiles of conjugated linoleic acid isomers in cell membranes and their positional distribution in phospholipids

    PubMed Central

    Subbaiah, Papasani V.; Gould, Ian G.; Lal, Samanta; Aizezi, Buzulagu

    2010-01-01

    Although the conjugated linoleic acids (CLA) have several isomer-specific biological effects including anti-carcinogenic and anti-adipogenic effects, their mechanisms of action remain unclear. To determine their potential effects on membrane structure and function, we studied the incorporation profiles of four CLA isomers (trans-10 cis-12 (A), trans-9 trans-11 (B), cis-9 trans-11 (C), and cis-9 cis-11 (D)) in CHO and HepG2 cells. All four isomers were incorporated into cellular lipids as efficiently as linoleic acid (LA), with the majority of the incorporated CLA present in membrane rafts. Of the four isomers, only CLA-A increased the cholesterol content of the raft fraction. Over 50% of the incorporated CLAs were recovered in phosphatidylcholine of CHO cells, but in HepG2 the neutral lipids contained the majority of CLA. The desaturation index (18:1/18:0 and 16:1/16:0) was reduced by CLA-A, but increased by CLA-B, the effects being apparent mostly in raft lipids. The Δ9 desaturase activity was inhibited by CLAs A and C. Unlike LA, which was mostly found in the sn-2 position of phospholipids, most CLAs were also incorporated significantly into the sn-1 position in both cell types. These studies show that the incorporation profiles of CLA isomers differ significantly from that of LA, and this could lead to alterations in membrane function, especially in the raft-associated proteins. PMID:20920595

  18. Co-existence of Gel and Fluid Lipid Domains in Single-component Phospholipid Membranes

    SciTech Connect

    Armstrong, Clare L; Barrett, M; Toppozini, L; Yamani, Zahra; Kucerka, Norbert; Katsaras, John; Fragneto, Giovanna; Rheinstadter, Maikel C

    2012-01-01

    Lateral nanostructures in membranes, so-called rafts, are believed to strongly influence membrane properties and functions. The experimental observation of rafts has proven difficult as they are thought to be dynamic structures that likely fluctuate on nano- to microsecond time scales. Using neutron diffraction we present direct experimental evidence for the co-existence of gel and fluid lipid domains in a single-component phospholipid membrane made of DPPC as it undergoes its main phase transition. The coherence length of the neutron beam sets a lower limit for the size of structures that can be observed. Neutron coherence lengths between 30 and 242A used in this study were obtained by varying the incident neutron energy and the resolution of the neutron spectrometer. We observe Bragg peaks corresponding to co-existing nanometer sized structures, both in out-of-plane and in-plane scans, by tuning the neutron coherence length. During the main phase transition, instead of a continuous transition that shows a pseudo-critical behavior, we observe the co-existence of gel and fluid domains.

  19. Dynamical and phase behavior of a phospholipid membrane altered by an antimicrobial peptide at low concentration

    DOE PAGES

    Mamontov, Eugene; Tyagi, M.; Qian, Shuo; ...

    2016-05-27

    Here we discuss that the mechanism of action of antimicrobial peptides is traditionally attributed to the formation of pores in the lipid cell membranes of pathogens, which requires a substantial peptide to lipid ratio. However, using incoherent neutron scattering, we show that even at a concentration too low for pore formation, an archetypal antimicrobial peptide, melittin, disrupts the regular phase behavior of the microscopic dynamics in a phospholipid membrane, dimyristoylphosphatidylcholine (DMPC). At the same time, another antimicrobial peptide, alamethicin, does not exert a similar effect on the DMPC microscopic dynamics. The melittin-altered lateral motion of DMPC at physiological temperature nomore » longer resembles the fluid-phase behavior characteristic of functional membranes of the living cells. The disruptive effect demonstrated by melittin even at low concentrations reveals a new mechanism of antimicrobial action relevant in more realistic scenarios, when peptide concentration is not as high as would be required for pore formation, which may facilitate treatment with antimicrobial peptides.« less

  20. Fluorescent probes sensitive to changes in the cholesterol-to-phospholipids molar ratio in human platelet membranes during atherosclerosis

    NASA Astrophysics Data System (ADS)

    Posokhov, Yevgen

    2016-09-01

    Environment-sensitive fluorescent probes were used for the spectroscopic visualization of pathological changes in human platelet membranes during cerebral atherosclerosis. It has been estimated that the ratiometric probes 2-(2‧-hydroxyphenyl)-5-phenyl-1,3,4-oxadiazole and 2-phenyl-phenanthr[9,10]oxazole can detect changes in the cholesterol-to-phospholipids molar ratio in human platelet membranes during the disease.

  1. Membrane Potential Greatly Enhances Superoxide Generation by the Cytochrome bc1 Complex Reconstituted into Phospholipid Vesicles*

    PubMed Central

    Rottenberg, Hagai; Covian, Raul; Trumpower, Bernard L.

    2009-01-01

    The mitochondrial cytochrome bc1 complex (ubiquinol/cytochrome c oxidoreductase) is generally thought to generate superoxide anion that participates in cell signaling and contributes to cellular damage in aging and degenerative disease. However, the isolated, detergent-solubilized bc1 complex does not generate measurable amounts of superoxide except when inhibited by antimycin. In addition, indirect measurements of superoxide production by cells and isolated mitochondria have not clearly resolved the contribution of the bc1 complex to the generation of superoxide by mitochondria in vivo, nor did they establish the effect, if any, of membrane potential on superoxide formation by this enzyme complex. In this study we show that the yeast cytochrome bc1 complex does generate significant amounts of superoxide when reconstituted into phospholipid vesicles. The rate of superoxide generation by the reconstituted bc1 complex increased exponentially with increased magnitude of the membrane potential, a finding that is compatible with the suggestion that membrane potential inhibits electron transfer from the cytochrome bL to bH hemes, thereby promoting the formation of a ubisemiquinone radical that interacts with oxygen to generate superoxide. When the membrane potential was further increased, by the addition of nigericin or by the imposition of a diffusion potential, the rate of generation of superoxide was further accelerated and approached the rate obtained with antimycin. These findings suggest that the bc1 complex may contribute significantly to superoxide generation by mitochondria in vivo, and that the rate of superoxide generation can be controlled by modulation of the mitochondrial membrane potential. PMID:19478336

  2. Membrane potential greatly enhances superoxide generation by the cytochrome bc1 complex reconstituted into phospholipid vesicles.

    PubMed

    Rottenberg, Hagai; Covian, Raul; Trumpower, Bernard L

    2009-07-17

    The mitochondrial cytochrome bc(1) complex (ubiquinol/cytochrome c oxidoreductase) is generally thought to generate superoxide anion that participates in cell signaling and contributes to cellular damage in aging and degenerative disease. However, the isolated, detergent-solubilized bc(1) complex does not generate measurable amounts of superoxide except when inhibited by antimycin. In addition, indirect measurements of superoxide production by cells and isolated mitochondria have not clearly resolved the contribution of the bc(1) complex to the generation of superoxide by mitochondria in vivo, nor did they establish the effect, if any, of membrane potential on superoxide formation by this enzyme complex. In this study we show that the yeast cytochrome bc(1) complex does generate significant amounts of superoxide when reconstituted into phospholipid vesicles. The rate of superoxide generation by the reconstituted bc(1) complex increased exponentially with increased magnitude of the membrane potential, a finding that is compatible with the suggestion that membrane potential inhibits electron transfer from the cytochrome b(L) to b(H) hemes, thereby promoting the formation of a ubisemiquinone radical that interacts with oxygen to generate superoxide. When the membrane potential was further increased, by the addition of nigericin or by the imposition of a diffusion potential, the rate of generation of superoxide was further accelerated and approached the rate obtained with antimycin. These findings suggest that the bc(1) complex may contribute significantly to superoxide generation by mitochondria in vivo, and that the rate of superoxide generation can be controlled by modulation of the mitochondrial membrane potential.

  3. Softening of phospholipid membranes by the adhesion of silica nanoparticles - as seen by neutron spin-echo (NSE)

    NASA Astrophysics Data System (ADS)

    Hoffmann, Ingo; Michel, Raphael; Sharp, Melissa; Holderer, Olaf; Appavou, Marie-Sousai; Polzer, Frank; Farago, Bela; Gradzielski, Michael

    2014-05-01

    The interactions between nanoparticles and vesicles are of significant interest both from a fundamental as well as from a practical point of view, as vesicles can serve as a model system for cell membranes. Accordingly the effect of nanoparticles that bind to the vesicle bilayer is very important with respect to understanding their biological impact and also may shed some light on the mechanisms behind the effect of nanotoxicity. In this study we have investigated the influence of small adsorbed silica nanoparticles (SiNPs) on the structure of zwitterionic DOPC vesicles. By a combination of SANS, cryo-TEM, and DLS, we observed that the SiNPs are bound to the outer vesicle surface without significantly affecting the vesicle structure. Most interestingly, by means of neutron spin-echo (NSE) local bilayer fluctuations were studied and one finds a small but marked decrease of the membrane rigidity upon binding of the nanoparticles. This surprising finding may be a relevant aspect for the further understanding of the effects that nanoparticles have on phospholipid bilayers.The interactions between nanoparticles and vesicles are of significant interest both from a fundamental as well as from a practical point of view, as vesicles can serve as a model system for cell membranes. Accordingly the effect of nanoparticles that bind to the vesicle bilayer is very important with respect to understanding their biological impact and also may shed some light on the mechanisms behind the effect of nanotoxicity. In this study we have investigated the influence of small adsorbed silica nanoparticles (SiNPs) on the structure of zwitterionic DOPC vesicles. By a combination of SANS, cryo-TEM, and DLS, we observed that the SiNPs are bound to the outer vesicle surface without significantly affecting the vesicle structure. Most interestingly, by means of neutron spin-echo (NSE) local bilayer fluctuations were studied and one finds a small but marked decrease of the membrane rigidity upon

  4. Improved Mitochondrial Function with Diet-Induced Increase in Either Docosahexaenoic Acid or Arachidonic Acid in Membrane Phospholipids

    PubMed Central

    Khairallah, Ramzi J.; Kim, Junhwan; O'Shea, Karen M.; O'Connell, Kelly A.; Brown, Bethany H.; Galvao, Tatiana; Daneault, Caroline; Rosiers, Christine Des; Polster, Brian M.; Hoppel, Charles L.; Stanley, William C.

    2012-01-01

    Mitochondria can depolarize and trigger cell death through the opening of the mitochondrial permeability transition pore (MPTP). We recently showed that an increase in the long chain n3 polyunsaturated fatty acids (PUFA) docosahexaenoic acid (DHA; 22:6n3) and depletion of the n6 PUFA arachidonic acid (ARA; 20:4n6) in mitochondrial membranes is associated with a greater Ca2+ load required to induce MPTP opening. Here we manipulated mitochondrial phospholipid composition by supplementing the diet with DHA, ARA or combined DHA+ARA in rats for 10 weeks. There were no effects on cardiac function, or respiration of isolated mitochondria. Analysis of mitochondrial phospholipids showed DHA supplementation increased DHA and displaced ARA in mitochondrial membranes, while supplementation with ARA or DHA+ARA increased ARA and depleted linoleic acid (18:2n6). Phospholipid analysis revealed a similar pattern, particularly in cardiolipin. Tetralinoleoyl cardiolipin was depleted by 80% with ARA or DHA+ARA supplementation, with linoleic acid side chains replaced by ARA. Both the DHA and ARA groups had delayed Ca2+-induced MPTP opening, but the DHA+ARA group was similar to the control diet. In conclusion, alterations in mitochondria membrane phospholipid fatty acid composition caused by dietary DHA or ARA was associated with a greater cumulative Ca2+ load required to induced MPTP opening. Further, high levels of tetralinoleoyl cardiolipin were not essential for normal mitochondrial function if replaced with very-long chain n3 or n6 PUFAs. PMID:22479624

  5. SNAP-Tag-Reactive Lipid Anchors Enable Targeted and Spatiotemporally Controlled Localization of Proteins to Phospholipid Membranes.

    PubMed

    Rudd, Andrew K; Valls Cuevas, Joan M; Devaraj, Neal K

    2015-04-22

    The natural mechanisms that direct proteins to membranes are typically complex, requiring multiple steps and accessory components. It would be advantageous to develop simplified methods to direct proteins of interest to phospholipid membranes in a single step. Here we report a modular method for membrane localization of proteins by using chemically modified phospholipid anchors capable of covalent attachment to O(6)-methylguanine DNA methyltransferase (SNAP-tag) fusion proteins. To our knowledge, this is the first use of SNAP-tag reactions to modify benzylguanine-functionalized lipid membranes. We demonstrate that photocaged lipid precursors enable light-triggered spatial and temporal control over protein localization. The anchoring system is compatible with cell-free expression, allowing for genetic targeting of proteins to lipid membranes of giant unilamellar vesicles. This technique can be used to control membrane curvature effects, similar to what has been previously observed with certain membrane-bound proteins. This work addresses a current need in synthetic biology for simplified and robust methods to control membrane localization of expressed proteins and shows promise as a general tool for protein targeting to lipid vesicles and cellular membranes.

  6. Effects of the cannabinoids on physical properties of brain membranes and phospholipid vesicles: fluorescence studies.

    PubMed

    Hillard, C J; Harris, R A; Bloom, A S

    1985-03-01

    The effects of four cannabinoids on the physical properties of brain synaptic plasma membranes (SPM), lipid extracts of SPM and phospholipid vesicles were evaluated using fluorescence probes. In vitro, the psychoactive cannabinoids, delta 9-tetrahydrocannabinol (delta 9-THC) and 11-hydroxyl-delta 9-tetrahydrocannabinol (11-OH-delta 9-THC) at concentrations of 1 and 3 microM decreased polarization of the fluorescence emission of 1,6-diphenyl-1,3,5-hexatriene (DPH) in SPM. At the same concentrations, cannabidiol (CBD) and cannabinol, cannabinoids devoid of marijuana-like psychoactivity, had no effect on DPH polarization. The effects of 11-OH-delta 9-THC and CBD on vesicles made from lipids extracted from SPM were identical to their effects on intact SPM. These changes in DPH polarization were not due to changes in fluorescence lifetime and indicate that, at low concentrations, the psychoactive cannabinoids increase the rotational mobility of DPH in the membrane core. In contrast, in SPM-extracted lipids, both 11-OH-delta 9-THC and CBD decreased the mobility of stearic acid with an anthroyloxy label at both the second (2-AS) and twelfth (12-AS) carbon atoms. Studies of DPH polarization in various phosphatidylcholines (PC) demonstrated that the actions of the cannabinoids were dependent on initial bilayer fluidity. 11-OH-delta 9-THC was less effective at decreasing polarization of trimethylammonium DPH (TMA-DPH), a probe of the bilayer surface, than of DPH whereas CBD affected mobility of the two probes equally. Neither CBD nor 11-OH-delta 9-THC altered DPH mobility in phosphatidylethanolamine, phosphatidylserine vesicles. These findings indicate that the psychoactive cannabinoids increase fluidity in the hydrophobic core of brain membranes and support a membrane perturbant hypothesis of the mechanism of delta 9-THC action.

  7. Oxidized Phospholipids Inhibit the Formation of Cholesterol-Dependent Plasma Membrane Nanoplatforms.

    PubMed

    Brameshuber, Mario; Sevcsik, Eva; Rossboth, Benedikt K; Manner, Christina; Deigner, Hans-Peter; Peksel, Begüm; Péter, Mária; Török, Zsolt; Hermetter, Albin; Schütz, Gerhard J

    2016-01-05

    We previously developed a single-molecule microscopy method termed TOCCSL (thinning out clusters while conserving stoichiometry of labeling), which allows for direct imaging of stable nanoscopic platforms with raft-like properties diffusing in the plasma membrane. As a consensus raft marker, we chose monomeric GFP linked via a glycosylphosphatidylinositol (GPI) anchor to the cell membrane (mGFP-GPI). With this probe, we previously observed cholesterol-dependent homo-association to nanoplatforms diffusing in the plasma membrane of live CHO cells. Here, we report the release of this homo-association upon addition of 1-palmitoyl-2-(5-oxovaleroyl)-sn-glycero-3-phosphocholine (POVPC) or 1-palmitoyl-2-glutaroyl-sn-glycero-3-phosphocholine, two oxidized phospholipids (oxPLs) that are typically present in oxidatively modified low-density lipoprotein. We found a dose-response relationship for mGFP-GPI nanoplatform disintegration upon addition of POVPC, correlating with the signal of the apoptosis marker Annexin V-Cy3. Similar concentrations of lysolipid showed no effect, indicating that the observed phenomena were not linked to properties of the lipid bilayer itself. Inhibition of acid sphingomyelinase by NB-19 before addition of POVPC completely abolished nanoplatform disintegration by oxPLs. In conclusion, we were able to determine how oxidized lipid species disrupt mGFP-GPI nanoplatforms in the plasma membrane. Our results favor an indirect mechanism involving acid sphingomyelinase activity rather than a direct interaction of oxPLs with nanoplatform constituents. Copyright © 2016 Biophysical Society. Published by Elsevier Inc. All rights reserved.

  8. Changes in Band 3 oligomeric state precede cell membrane phospholipid loss during blood bank storage of red blood cells

    PubMed Central

    Karon, Brad S.; Hoyer, James D.; Stubbs, James R.; Thomas, David D.

    2013-01-01

    BACKGROUND Lipid loss in the form of vesicles contributes to the red blood cell (RBC) storage lesion, and this loss of lipid is correlated with changes in membrane protein function. Sensitive spectroscopic techniques were used to measure changes in Band 3 oligomeric state during storage of RBCs, compared to metabolic changes and phospholipid loss. The aim of the study was to determine whether changes in the macromolecular organization of membrane proteins occur before, coincident with, or after lipid loss during RBC storage. STUDY DESIGN AND METHODS Five RBC units were collected from normal volunteers and stored under standard blood bank conditions, and both metabolic changes and lipid loss were measured by multiple assays. Band 3 oligomeric state was assessed by time-resolved phosphorescence anisotropy and fluorescence resonance energy transfer of eosin-5-maleimide–labeled RBC ghosts. RESULTS Extracellular pH decreased and extracellular potassium increased rapidly during cold storage of blood. Band 3 on the RBC membrane exhibited a shift from small to large oligomers early in the storage period and before detectable loss of phospholipid from the RBC membrane. The immobilized fraction of Band 3, that which is tethered to the cytoskeletal network via spectrin and ankyrin, did not change during cold storage. CONCLUSION Our results demonstrate that changes in the macromolecular organization of membrane proteins on the RBC occur early in storage, and these changes may induce phospholipid loss, irreversible morphologic changes, and loss of function during RBC storage. PMID:19389033

  9. The Galactolipid, Phospholipid, and Fatty Acid Composition of the Chloroplast Envelope Membranes of Vicia faba. L. 1

    PubMed Central

    Mackender, R. O.; Leech, Rachel M.

    1974-01-01

    The galactolipid, phospholipid, and fatty acid composition of chloroplast envelope membrane fractions isolated from leaves of Vicia faba L. has been determined. The major lipids in this fraction are: monogalactosyldiglyceride, 29%; digalactosyldiglyceride, 32%; phosphatidylcholine, 30%; and phosphatidylglycerol 9%. The lipid composition of the chloroplast envelope membranes is qualitatively similar to that of the lamellar membranes isolated from the same plastids, but the proportion of each lipid present is very different. The total galactolipid to total phospholipid ratio was 1.6: 1 in the envelope and 11.1: 1 in the lamellae. The monogalactosyldiglyceride-digalactosyl-diglyceride ratio was 0.9: 1 in the envelope and 2.4: 1 in the lamellae. Both membranes lack phosphatidylethanolamine. Linolenic acid is the major fatty acid in the envelope lipids representing 63% of the total fatty acid, whereas in the lamellae it represents 83%. The same fatty acids are present in both the envelope and lamellar lipids except the trans-Δ3-hexadecenoic acid, which is confined to the lamellar lipids, particularly the phospholipid fraction. A quantitative comparison of the lipid and fatty acid compositions of the envelope with those of mitochondrial and microsomal fractions indicates that the chloroplast envelope has a composition intermediate between that of the chloroplast lamellae and these extrachloroplastic membranes. Images PMID:16658731

  10. Improvement of pharmacokinetic and antitumor activity of layered double hydroxide nanoparticles by coating with PEGylated phospholipid membrane

    PubMed Central

    Yan, Mina; Zhang, Zhaoguo; Cui, Shengmiao; Lei, Ming; Zeng, Ke; Liao, Yunhui; Chu, Weijing; Deng, Yihui; Zhao, Chunshun

    2014-01-01

    Layered double hydroxide (LDH) has attracted considerable attention as a drug carrier. However, because of its poor in vivo behavior, polyethylene glycolylated (PEGylated) phospholipid must be used as a coformer to produce self-assembled core–shell nanoparticles. In the present study, we prepared a PEGylated phospholipid-coated LDH (PLDH) (PEG-PLDH) delivery system. The PEG-PLDH nanoparticles had an average size of 133.2 nm. Their core–shell structure was confirmed by transmission electron microscopy and X-ray photoelectron spectroscopy. In vitro liposome-cell-association and cytotoxicity experiments demonstrated its ability to be internalized by cells. In vivo studies showed that PEGylated phospholipid membranes greatly reduced the blood clearance rate of LDH nanoparticles. PEG-PLDH nanoparticles demonstrated a good control of tumor growth and increased the survival rate of mice. These results suggest that PEG-PLDH nanoparticles can be a useful drug delivery system for cancer therapy. PMID:25364245

  11. Generation, modulation and maintenance of the plasma membrane asymmetric phospholipid composition in yeast cells during growth: their relation to surface potential and membrane protein activity.

    PubMed

    Cerbón, J; Calderón, V

    1995-04-12

    During growth a cyclic exposure of anionic phospholipids to the external surface of the plasma membrane was found. The surface charge density (sigma) increased gradually reaching a maximum in the first 5 h of growth and returned gradually to their initial value at the end of the logarithmic phase of growth (10-12 h). Phosphatidylinositol, that determines to a large extent the magnitude of the sigma, increased 83% in the yeast cells during the first 4 h of growth and returned gradually to their initial level at 10-12 h. During the stationary phase (12-24 h), both sigma and the anionic/zwitterionic phospholipid ratio, remained without any significant variation. The high-affinity H-linked glutamate transport system that behaves as a sensor of the changes in the membrane surface potential (phi) increased its activity in the first 5 h and then decreased it, following with great accuracy the sigma variations and remained without changes during the stationary phase of growth. The phosphatidylserine (PS) relative concentration in the cells (9.0%) did not significantly change during the whole growth curve, but their asymmetric distribution varied, contributing to the changes in sigma. PS facing the outer membrane surface increased 2.45-times during the first 5 h of growth and then returned to their original value at the end of the log phase (12 h). Phosphatidylcholine (PC) remained constant during the whole growth curve (50%), while phosphatidylethanolamine (PE) decreased 3-fold in the first 4 h and then increased to its original value at 10 h. Interestingly, PE at the outer membrane surface remained constant (3% of the total phospholipids) during the whole growth curve. During growth yeast cells change their phospholipid composition originating altered patterns of the plasma membrane phospholipid composition and IN-OUT distribution. This dynamic asymmetry is involved in the regulation of the surface potential and membrane protein activity.

  12. Effect of myristoylated N-terminus of Arf1 on the bending rigidity of phospholipid membranes

    NASA Astrophysics Data System (ADS)

    Burrola Gabilondo, Beatriz; Zhou, Hernan; Randazzo, Paul A.; Losert, Wolfgang

    2010-03-01

    The protein Arf1 is part of the COPI vesicle transport process from the Golgi to the ER. It binds to membranes via a myristoylated N-terminus and it has been shown to tubulate Large Unilamellar Vesicles. The effect of the N-terminus of Arf1 on physical properties of membranes has not been studied, with the exception of curvature. We previously found that the myristoylated N-terminus increases the packing of the lipid molecules, but has no effect on the lateral mobility. We tested the hypothesis that myristoylated peptides affect the bending rigidity of phospholipid Giant Unilamellar Vesicles (GUV). We use optical tweezers to pull tethers from GUV and measure the force of pulling the tether, as well as the retraction speed of the tether once it is released. We also used flicker spectroscopy to estimate the values of the mechanical properties of GUV. We will present results of the force and tether retraction measurements, as well as mechanical properties estimates from flicker, for GUV in the presence of varying concentrations of myristoylated and non-myristoylated N-terminus of Arf1, and compare these with measurements for GUV in the absence of peptide.

  13. [Phospholipid content of plasma membranes and phospholipase C activity in epithelial cells of the large intestine in colitis-associated carcinogenesis in rats].

    PubMed

    Drobins'ka, O V; Kravchenko, O O; Koval'ova, V A; Artemenko, O Iu; Ostapchenko, L I

    2009-01-01

    The decrease of major cytoplasmic membrane phospholipids (phosphatidylcholine and phosphatidylethanolamine) content was established in mucosal epithelial cell under colon inflammation pathology--ulcerative colitis. It was shown that aforementioned changes were associated with the increase of phospholipids' hydrolyzing enzyme--phospholipase C activity and intracellular Ca2+ concentration enlargement. Carcinogenesis stimulation under inflammation was accompanied by phospholipase C activity increase when quantity of investigated phospholipids (phosphatidylcholine, phosphatidylinozytol, phosphatidylserine) separately decreased and cytoplasmic Ca2+ value normalization was established.

  14. Structure Determination of a Membrane Protein with Two Trans-membrane Helices in Aligned Phospholipid Bicelles by Solid-state NMR Spectroscopy

    PubMed Central

    De Angelis, Anna A.; Howell, Stanley C.; Nevzorov, Alexander A.; Opella, Stanley J.

    2011-01-01

    The structure of the membrane protein MerFt was determined in magnetically aligned phospholipid bicelles by solid-state NMR spectroscopy. With two trans-membrane helices and a 10-residue inter-helical loop, this truncated construct of the mercury transport membrane protein MerF has sufficient structural complexity to demonstrate the feasibility of determining the structures of polytopic membrane proteins in their native phospholipid bilayer environment under physiological conditions. PISEMA, SAMMY, and other double-resonance experiments were applied to uniformly and selectively 15N labeled samples to resolve and assign the backbone amide resonances, and to measure the associated 15N chemical shift and 1H-15N heteronuclear dipolar coupling frequencies as orientation constraints for structure calculations. 1H/13C/15N triple-resonance experiments were applied to selectively 13C′ and 15N labeled samples to complete the resonance assignments, especially for residues in the non-helical regions of the protein. A single resonance is observed for each labeled site in one- and two-dimensional spectra. Therefore, each residue has a unique conformation, and all protein molecules in the sample have the same three-dimensional structure and are oriented identically in planar phospholipid bilayers. Combined with the absence of significant intensity near the isotropic resonance frequency, this demonstrates that the entire protein, including the loop and terminal regions, has a well-defined, stable structure in phospholipid bilayers. PMID:16967977

  15. Poly-l-lysines and poly-l-arginines induce leakage of negatively charged phospholipid vesicles and translocate through the lipid bilayer upon electrostatic binding to the membrane.

    PubMed

    Reuter, Marcel; Schwieger, Christian; Meister, Annette; Karlsson, Göran; Blume, Alfred

    2009-09-01

    Poly-l-lysines (PLL) and poly-l-arginines (PLA) of different polymer chain lengths interact strongly with negatively charged phospholipid vesicles mainly due to their different electrical charges. 1-Palmitoyl-2-oleoyl-sn-glycero-3-phosphoglycerol (POPG), 1,2-dipalmitoyl-sn-glycero-3-phosphoglycerol (DPPG) and their mixtures (1/1 mol/mol) with the respective phosphatidylcholines of equivalent chain length were chosen as model membrane systems that form at room temperature either the fluid L(alpha) or the gel phase L(beta) lipid bilayer membranes, respectively. Leakage experiments revealed that the fluid POPG membranes are more perturbed compared to the gel phase DPPG membranes upon peptide binding. Furthermore, it was found that pure PG membranes are more prone to release the vesicle contents as a result of pore formation than the lipid mixtures POPG/POPC and DPPG/DPPC. For the longer polymers (>or=44 amino acids) maximal dye-release was observed when the molar ratio of the concentrations of amino acid residues to charged lipid molecules reached a value of R(P)=0.5, i.e. when the outer membrane layer was theoretically entirely covered by the polymer. At ratios lower or higher than 0.5 leakage dropped significantly. Furthermore, PLL and PLA insertions and/or translocations through lipid membranes were analyzed by using FITC-labeled polymers by monitoring their fluorescence intensity upon membrane binding. Short PLL molecules and PLA molecules of all lengths seemed to translocate through both fluid and gel phase lipid bilayers. Comparison of the PLL and PLA fluorescence assay results showed that PLA interacts stronger with phospholipid membranes compared to PLL. Isothermal titration calorimetry (ITC) measurements were performed to give further insight into these mechanisms and to support the findings obtained by fluorescence assays. Cryo-transmission electron microscopy (cryo-TEM) was used to visualize changes in the vesicles' morphology after addition of the

  16. Kinase Associated-1 Domains Drive MARK/PAR1 Kinases to Membrane Targets by Binding Acidic Phospholipids

    SciTech Connect

    Moravcevic, Katarina; Mendrola, Jeannine M.; Schmitz, Karl R.; Wang, Yu-Hsiu; Slochower, David; Janmey, Paul A.; Lemmon, Mark A.

    2011-09-28

    Phospholipid-binding modules such as PH, C1, and C2 domains play crucial roles in location-dependent regulation of many protein kinases. Here, we identify the KA1 domain (kinase associated-1 domain), found at the C terminus of yeast septin-associated kinases (Kcc4p, Gin4p, and Hsl1p) and human MARK/PAR1 kinases, as a membrane association domain that binds acidic phospholipids. Membrane localization of isolated KA1 domains depends on phosphatidylserine. Using X-ray crystallography, we identified a structurally conserved binding site for anionic phospholipids in KA1 domains from Kcc4p and MARK1. Mutating this site impairs membrane association of both KA1 domains and intact proteins and reveals the importance of phosphatidylserine for bud neck localization of yeast Kcc4p. Our data suggest that KA1 domains contribute to coincidence detection, allowing kinases to bind other regulators (such as septins) only at the membrane surface. These findings have important implications for understanding MARK/PAR1 kinases, which are implicated in Alzheimer's disease, cancer, and autism.

  17. Small-angle scattering from phospholipid nanodiscs: derivation and refinement of a molecular constrained analytical model form factor.

    PubMed

    Skar-Gislinge, Nicholas; Arleth, Lise

    2011-02-28

    Nanodiscs™ consist of small phospholipid bilayer discs surrounded and stabilized by amphiphilic protein belts. Nanodiscs and their confinement and stabilization of nanometer sized pieces of phospholipid bilayer are highly interesting from a membrane physics point of view. We demonstrate how the detailed structure of Di-Lauroyl-Phosphatidyl Choline (DLPC) nanodiscs may be determined by simultaneous fitting of a structural model to small-angle scattering data from the nanodiscs as investigated in three different contrast situations, respectively two SANS contrasts and one SAXS contrast. The article gives a detailed account of the underlying structural model for the nanodiscs and describe how additional chemical and biophysical information can be incorporated in the model in terms of molecular constraints. We discuss and quantify the contribution from the different elements of the structural model and provide very strong experimental support for the nanodiscs as having an elliptical cross-section and with poly-histidine tags protruding out from the rim of the protein belt. The analysis also provides unprecedented information about the structural conformation of the phospholipids when these are localized in the nanodiscs. The model paves the first part of the way in order to reach our long term goal of using the nanodiscs as a platform for small-angle scattering based structural investigations of membrane proteins in solution.

  18. Human cannabinoid 1 GPCR C-terminal domain interacts with bilayer phospholipids to modulate the structure of its membrane environment.

    PubMed

    Tiburu, Elvis K; Tyukhtenko, Sergiy; Zhou, Han; Janero, David R; Struppe, Jochem; Makriyannis, Alexandros

    2011-03-01

    G protein-coupled receptors (GPCRs) play critical physiological and therapeutic roles. The human cannabinoid 1 GPCR (hCB1) is a prime pharmacotherapeutic target for addiction and cardiometabolic disease. Our prior biophysical studies on the structural biology of a synthetic peptide representing the functionally significant hCB1 transmembrane helix 7 (TMH7) and its cytoplasmic extension, helix 8 (H8), [hCB1(TMH7/H8)] demonstrated that the helices are oriented virtually perpendicular to each other in membrane-mimetic environments. We identified several hCB1(TMH7/H8) structure-function determinants, including multiple electrostatic amino-acid interactions and a proline kink involving the highly conserved NPXXY motif. In phospholipid bicelles, TMH7 structure, orientation, and topology relative to H8 are dynamically modulated by the surrounding membrane phospholipid bilayer. These data provide a contextual basis for the present solid-state NMR study to investigate whether intermolecular interactions between hCB1(TMH7/H8) and its phospholipid environment may affect membrane-bilayer structure. For this purpose, we measured (1)H-(13)C heteronuclear dipolar couplings for the choline, glycerol, and acyl-chain regions of dimyristoylphosphocholine in a magnetically aligned hCB1(TMH7/H8) bicelle sample. The results identify discrete regional interactions between hCB1(TMH7/H8) and membrane lipid molecules that increase phospholipid motion and decrease phospholipid order, indicating that the peptide's partial traversal of the bilayer alters membrane structure. These data offer new insight into hCB1(TMH7/H8) properties and support the concept that the membrane bilayer itself may serve as a mechanochemical mediator of hCB1/GPCR signal transduction. Since interaction with its membrane environment has been implicated in hCB1 function and its modulation by small-molecule therapeutics, our work should help inform hCB1 pharmacology and the design of hCB1-targeted drugs.

  19. Effects of Chain Length and Saturability of Fatty Acids on Phospholipids and Proteins in Plasma Membranes of Bovine Mammary Gland.

    PubMed

    Yan, Qiongxian; Tang, Shaoxun; Han, Xuefeng; Bamikole, Musibau Adungbe; Zhou, Chuanshe; Kang, Jinhe; Wang, Min; Tan, Zhiliang

    2016-12-01

    Free fatty acids (FFAs) in plasma are essential substrates for de novo synthesis of milk fat, or directly import into mammary cells. The physico-chemical properties of mammary cells membrane composition affected by FFAs with different chain lengths and saturability are unclear yet. Employing GC, FTIR and fluorescence spectroscopy, the adsorption capacity, phospholipids content, membrane proteins conformation, lipid peroxidation product, and free sulfhydryl of plasma membranes (PMs) interacted with different FFAs were determined. The mammary cells PMs at 38 and 39.5 °C showed different adsorption capacities: acetic acid (Ac) > stearic acid (SA) > β-hydroxybutyric acid (BHBA) > trans10, cis12 CLA. In the FTIR spectrum, the major adsorption peaks appeared at 2920 and 2850 cm(-1) for phospholipids, and at 1628 and 1560 cm(-1) for membrane proteins. The intensities of PMs-FFAs complexes were varied with the FFAs species and their initial concentrations. The β-sheet and turn structures of membrane proteins were transferred into random coil and α-helix after BHBA, SA and trans10, cis12 CLA treatments compared with Ac treatment. The quenching effects on the fluorescence of endogenous membrane protein, 1, 8-ANS, NBD-PE, and DHPE entrapped in PMs by LCFA were different from those of short chain FFAs. These results indicate that the adsorption of FFAs could change membrane protein conformation and polarity of head group in phospholipids. This variation of the mammary cells PMs was regulated by carbon chain length and saturability of FFAs.

  20. Relationship between wettability and lubrication characteristics of the surfaces of contacting phospholipid-based membranes.

    PubMed

    Pawlak, Zenon; Petelska, Aneta D; Urbaniak, Wieslaw; Yusuf, Kehinde Q; Oloyede, Adekunle

    2013-04-01

    The wettability of the articular surface of cartilage depends on the condition of its surface active phospholipid overlay, which is structured as multi-bilayer. Based on a hypothesis that the surface of cartilage facilitates the almost frictionless lubrication of the joint, we examined the characteristics of this membrane surface entity in both its normal and degenerated conditions using a combination of atomic force microscopy, contact angle measurement, and friction test methods. The observations have led to the conclusions that (1) the acid-base equilibrium condition influences the lubrication effectiveness of the surface of cartilage and (2) the friction coefficient is significantly dependent on the hydrophobicity of the surface of the tissue, thereby confirming the hypothesis tested in this paper. Both wettability angle and interfacial energy were obtained for varying conditions of the cartilage surface both in its wet, dry and lipid-depleted conditions. The interfacial energy also increased with mole fraction of the lipid species reaching an asymptotic value after 0.6. Also, the friction coefficient was found to decrease to an asymptotic level as the wettability angle increased. The result reveal that the interfacial energy increased with pH till pH = 4.0, and then decreased from pH = 4.0 to reach equilibrium at pH = 7.0.

  1. Freezing point depression of water in phospholipid membranes: a solid-state NMR study.

    PubMed

    Lee, Dong-Kuk; Kwon, Byung Soo; Ramamoorthy, Ayyalusamy

    2008-12-02

    Lipid-water interaction plays an important role in the properties of lipid bilayers, cryoprotectants, and membrane-associated peptides and proteins. The temperature at which water bound to lipid bilayers freezes is lower than that of free water. Here, we report a solid-state NMR investigation on the freezing point depression of water in phospholipid bilayers in the presence and absence of cholesterol. Deuterium NMR spectra at different temperatures ranging from -75 to + 10 degrees C were obtained from fully (2)H2O-hydrated POPC (1-palmitoyl-2-oleoylphosphatidylcholine) multilamellar vesicles (MLVs), prepared with and without cholesterol, to determine the freezing temperature of water and the effect of cholesterol on the freezing temperature of water in POPC bilayers. Our 2H NMR experiments reveal the motional behavior of unfrozen water molecules in POPC bilayers even at temperatures significantly below 0 degrees C and show that the presence of cholesterol further lowered the freezing temperature of water in POPC bilayers. These results suggest that in the presence of cholesterol the fluidity and dynamics of lipid bilayers can be retained even at very low temperatures as exist in the liquid crystalline phase of the lipid. Therefore, bilayer samples prepared with a cryoprotectant like cholesterol should enable the performance of multidimensional solid-state NMR experiments to investigate the structure, dynamics, and topology of membrane proteins at a very low temperature with enhanced sample stability and possibly a better sensitivity. Phosphorus-31 NMR data suggest that lipid bilayers can be aligned at low temperatures, while 15N NMR experiments demonstrate that such aligned samples can be used to enhance the signal-to-noise ratio of is 15N chemical shift spectra of a 37-residue human antimicrobial peptide, LL-37.

  2. Stimulation of Phospholipid Scrambling of the Erythrocyte Membrane by 9-Cis-Retinoic Acid.

    PubMed

    Abed, Majed; Alzoubi, Kousi; Lang, Florian; Al Mamun Bhuayn, Abdulla

    2017-01-01

    The endogenous retinoid 9-cis-retinoic acid has previously been shown to trigger apoptosis in a wide variety of cells including several tumor cells and has thus been suggested for the treatment of malignancy. Similar to apoptosis of nucleated cells, erythrocytes may enter suicidal erythrocyte death or eryptosis, which is characterized by cell shrinkage and cell membrane scrambling with phosphatidylserine translocation to the erythrocyte surface. Cellular mechanisms participating in the accomplishment of eryptosis include increase of cytosolic Ca2+ activity ([Ca2+]i) and formation of ceramide. The present study explored, whether 9-cis-retinoic acid induces eryptosis and whether the effect involves Ca2+ and/or ceramide. Flow cytometry was employed to estimate erythrocyte volume from forward scatter, phosphatidylserine exposure at the cell surface from annexin-V-binding, [Ca2+]i from Fluo3-fluorescence, and ceramide abundance utilizing specific antibodies. Hemolysis was quantified from hemoglobin concentration in the supernatant. A 48 hours exposure of human erythrocytes to 9-cis-retinoic acid (≥ 0.5 µg/ml) significantly increased the percentage of annexin-V-binding cells and significantly decreased forward scatter. Exposure to 9-cis-retinoic acid (≥ 0.5 µg/ml) significantly increased Fluo3-fluorescence, and the effect of 9-cis-retinoic acid on annexin-V-binding was significantly blunted by removal of extracellular Ca2+. Exposure to 9-cis-retinoic acid (1 µg/ml) further significantly increased the ceramide abundance at the erythrocyte surface and significantly increased hemolysis. 9-cis-retinoic acid triggers phospholipid scrambling of the erythrocyte cell membrane, an effect at least in part downstream of Ca2+ and ceramide. © 2017 The Author(s)Published by S. Karger AG, Basel.

  3. Freezing Point Depression of Water in Phospholipid Membranes — A Solid-State NMR Study

    PubMed Central

    Lee, Dong-Kuk; Kwon, ByungSoo; Ramamoorthy, Ayyalusamy

    2009-01-01

    Lipid-water interaction plays an important role in the properties of lipid bilayers, cryoprotectants, and membrane-associated peptides and proteins. The temperature at which water bound to lipid bilayers freezes is lower than that of free water. Here, we report a solid-state NMR investigation on the freezing point depression of water in phospholipid bilayers in the presence and absence of cholesterol. Deuterium NMR spectra at different temperatures ranging from -75 to +10°C were obtained from fully 2H2O-hydrated POPC (1-palmitoyl-2-oleoyl-phosphatidylcholine) multilamellar vesicles (MLVs), prepared with and without cholesterol, to determine the freezing temperature of water and the effect of cholesterol on the freezing temperature of water in POPC bilayers. Our 2H NMR experiments reveal the motional behavior of unfrozen water molecules in POPC bilayers even at temperatures significantly below 0°C and show that the presence of cholesterol further lowered the freezing temperature of water in POPC bilayers. These results suggest that in the presence of cholesterol the fluidity and dynamics of lipid bilayers can be retained even at very low temperatures as exist in the liquid crystalline phase of the lipid. Therefore, bilayer samples prepared with a cryoprotectant like cholesterol should enable the performance of multidimensional solid-state NMR experiments to investigate the structure, dynamics, and topology of membrane proteins at a very low temperature with enhanced sample stability and possibly a better sensitivity. Phosphorus-31 NMR data suggest that lipid bilayers can be aligned at low temperatures, while 15N NMR experiments demonstrate that such aligned samples can be used to enhance the signal-to-noise ratio of 15N chemical shift spectra of a 37-residue human antimicrobial peptide, LL-37. PMID:18991419

  4. Segregation of negatively charged phospholipids by the polycationic and farnesylated membrane anchor of Kras.

    PubMed

    Janosi, Lorant; Gorfe, Alemayehu A

    2010-12-01

    The Kras protein, a member of the Ras family of bio-switches that are frequently mutated in cancer and developmental disorders, becomes functional when anchored to the inner surface of the plasma membrane. It is well known that membrane attachment involves the farnesylated and poylcationic C-terminus of the protein. However, little is known about the structure of the complex and the specific protein-lipid interactions that are responsible for the binding. On the basis of data from extensive (>0.55 μs) molecular dynamics simulations of multiple Kras anchors in bilayers of POPC/POPG lipids (4:1 ratio), we show that, as expected, Kras is tethered to the bilayer surface by specific lysine-POPG salt bridges and by nonspecific farnesyl-phospholipid van der Waals interactions. Unexpectedly, however, only the C-terminal five of the eight Kras Lys side chains were found to directly interact with the bilayer, with the N-terminal ones staying in water. Furthermore, the positively charged Kras anchors pull the negatively charged POPG lipids together, leading to the clustering of the POPG lipids around the proteins. This selective Kras-POPG interaction is directly related to the specific geometry of the backbone, which exists in two major conformational states: 1), a stable native-like ensemble of structures characterized by an extended geometry with a pseudohelical turn; and 2), less stable nonnative ensembles of conformers characterized by severely bent geometries. Finally, although the interface-bound anchor has little effect on the overall structure of the bilayer, it induces local thinning within a persistence length of ∼12 Å. Our results thus go beyond documenting how Kras attaches to a mixed bilayer of charged and neutral lipids; they highlight a fascinating process of protein-induced lipid sorting coupled with the (re)shaping of a surface-bound protein by the host lipids. Copyright © 2010 Biophysical Society. Published by Elsevier Inc. All rights reserved.

  5. The role of C/EBPβ phosphorylation in modulating membrane phospholipids repairing in LPS-induced human lung/bronchial epithelial cells.

    PubMed

    Shu, Shiyu; Xu, Yan; Xie, Ling; Ouyang, Yufang

    2017-09-20

    Acute lung injury/acute respiratory distress syndrome (ALI/ARDS) is a common critical emergency with high mortality in clinical practice. The key mechanism of ALI/ARDS is that the excessive inflammatory response damages the integrity of alveolar and bronchial cell membrane and thus affects their basic function. Phospholipids are the main component of cell membranes. Phospholipase A2 (PLA2), which catalyzes the cleavage of membrane phospholipids, is the most important inflammatory mediator of ALI. However, clara cell secretory protein 1 (CCSP1), an endogenous PLA2 inhibitor can increase the self-defense of membrane phospholipids. Thus, CCSP1 up-regulation and PLA2 inhibition constitutes an effective method for ensuring the stability of membrane phospholipids and for the treatment of ALI/ARDS. In the present study, we developed an in vitro model of ALI via lipopolysaccharide (LPS) stimulation of a human bronchial epithelial cell line, BEAS-2B, and assessed the mRNA and protein levels of CCSP1 and PLA2 in the model cells. The results demonstrated LPS induction inhibited the transcription and protein expression of CCSP1, but only the protein level of membrane associated PLA2 was increased, suggesting that in the in vitro ALI model, abnormally regulated CCSP1 transcription plays a crucial role in the damage of cell membrane. To find out the reason that CCSP1 expression was decreased in the ALI model, we predicted, by means of bioinformatics, putative transcription factors which would bind to CCSP1 promoter, examined their background and expression, and found that a transcription factor, CCAAT/enhancer binding protein β (C/EBP β), was correlated with the transcription of CCSP1 in the in vitro ALI model, and its phosphorylation in the model was decreased. CHIP-PCR and luciferase reporter assay revealed that C/EBP β bound to CCSP1 promoter and facilitated its transcription. Therefore, we conclude that there is a C/EBP β/CCSP1/PLA2 pathway in the in vitro ALI model. The

  6. Ca2+-activated transbilayer movement of plasma membrane phospholipids in Leishmania donovani during ionomycin or thapsigargin stimulation.

    PubMed

    Weingärtner, Adrien; dos Santos, Marcos Gonzaga; Drobot, Björn; Pomorski, Thomas Günther

    2011-10-01

    The protozoan parasite Leishmania causes serious infections in humans all over the world. After being inoculated into the skin through the bite of an infected sandfly, Leishmania promastigotes must gain entry into macrophages to initiate a successful infection. Specific, surface exposed phospholipids have been implicated in Leishmania-macrophage interaction but the mechanisms controlling and regulating the plasma membrane lipid distribution remains to be elucidated. Here, we provide evidence for Ca(2+)-induced phospholipid scrambling in the plasma membrane of Leishmania donovani. Stimulation of parasites with ionomycin increases intracellular Ca(2+) levels and triggers exposure of phosphatidylethanolamine at the cell surface. We found that increasing intracellular Ca(2+) levels with ionomycin or thapsigargin induces rapid transbilayer movement of NBD-labelled phospholipids in the parasite plasma membrane that is bidirectional, independent of cellular ATP and not specific to the polar lipid head group. The findings suggest the presence of a Ca(2+)-dependent lipid scramblase activity in Leishmania parasites. Our studies further show that lipid scrambling is not activated by rapid exposure of promastigotes to higher physiological temperature that increases intracellular Ca(2+) levels.

  7. Lipophilic organic pollutants induce changes in phospholipid and membrane protein composition leading to Vero cell morphological change.

    PubMed

    Liao, Ting T; Wang, Lei; Jia, Ru W; Fu, Xiao H; Chua, Hong

    2014-01-01

    Membrane damage related to morphological change in Vero cells is a sensitive index of the composite biotoxicity of trace lipophilic chemicals. However, judging whether the morphological change in Vero cells happens and its ratio are difficult because it is not a quantitative characteristic. To find biomarkers of cell morphological change for quantitatively representing the ratio of morphological changed cell, the mechanism of cell membrane damage driven by typical lipophilic chemicals, such as trichlorophenol (TCP) and perfluorooctanesulphonate (PFOS), was explored. The ratio of morphologically changed cells generally increased with increased TCP or PFOS concentrations, and the level of four major components of phospholipids varied with concentrations of TCP or PFOS, but only the ratio of phosphatidylcholine (PC)/phosphatidylethanolamine (PE) decreased regularly as TCP or PFOS concentrations increased. Analysis of membrane proteins showed that the level of vimentin in normal cell membranes is high, while it decreases or vanishes after TCP exposure. These variations in phospholipid and membrane protein components may result in membrane leakage and variation in rigid structure, which leads to changes in cell morphology. Therefore, the ratio of PC/PE and amount of vimentin may be potential biomarkers for representing the ratio of morphological changed Vero cell introduced by trace lipophilic compounds, thus their composite bio-toxicity.

  8. Stopped-flow study of anesthetic effect on water-transport kinetics through phospholipid membranes. Interfacial versus lipid core ligands.

    PubMed

    Inoue, T; Kamaya, H; Ueda, I

    1985-01-25

    We have compared ligand effects between polar and apolar anesthetic molecules upon water transport across phospholipid membranes by kinetic analysis of the osmotic swelling rate, using a stopped-flow technique. Chloroform and 1-hexanol were used as interfacial ligands, and carbon tetrachloride and n-hexane were used as their counterparts, representing lipid core action. Because anesthetics transform the solid-gel membrane into a liquid-crystalline state, and because phospholipid membranes display an anomaly in permeability at the phase transition, dimyristoylphosphatidylcholine vesicles were studied at temperatures above the main phase transition to avoid this anomaly. All these molecules increased the osmotic swelling rate. However, a significant difference was observed in the activation energy, delta Ep, between polar and apolar molecules; delta Ep was almost unaltered by the addition of polar molecules (chloroform and 1-hexanol), whereas it was decreased by apolar molecules (carbon tetrachloride and n-hexane). The obtained results were analyzed in terms of the dissolution-diffusion mechanism for water permeation across the lipid membrane. It is suggested that polar molecules affect water permeability by altering the partition of water between the membrane interior and water phase, and apolar molecules affect it by altering both the partition and the diffusion of water within the membrane interior.

  9. Membrane Tolerance to Ethanol is Rapidly Lost after Withdrawal: A Model for Studies of Membrane Adaptation

    NASA Astrophysics Data System (ADS)

    Taraschi, Theodore F.; Ellingson, John S.; Wu, Alice; Zimmerman, Robert; Rubin, Emanuel

    1986-06-01

    The structural properties of liver microsomes and erythrocytes obtained from rats that had been chronically administered ethanol were examined by electron spin resonance (ESR) following ethanol withdrawal for 1-10 days. Membranes obtained from control animals exhibited considerable molecular disordering upon the addition of ethanol in vitro (50-100 mM). Conversely, microsomal and erythrocyte membranes from alcoholic animals were resistant to this disordering by ethanol (membrane tolerance). These membrane properties were also apparent in lipid bilayers comprised of either total lipids or phospholipids isolated from the control and alcoholic animals. While several weeks of ethanol administration were required for both erythrocytes and microsomes to develop membrane tolerance, erythrocytes from alcoholic animals were disordered by ethanol in vitro after the animals had been withdrawn from ethanol for only 1 day. The same rapid loss of tolerance was observed in microsomes after 2 days of withdrawal. The same time course for the loss of tolerance was observed in lipid bilayers prepared from the total lipid and phospholipid extracts. No significant differences in the cholesterol/phospholipid ratio were observed between the microsomal or erythrocyte membranes isolated before and after withdrawal. Thus, alterations in the microsomal and erythrocyte phospholipids, and not cholesterol content, were responsible for conveying membrane tolerance. Membrane structural properties can be rapidly adjusted in a mammalian system in response to the withdrawal of the external membrane perturbant ethanol. The withdrawal model, which begins with established membrane tolerance and leads to rapid and complete loss of tolerance, provides a model to analyze the compositional changes responsible for this tolerance to disordering by ethanol.

  10. The participation of phospholipids in the interaction of leucocidin and the cell membrane of the polymorphonuclear leucocyte

    PubMed Central

    Woodin, A. M.; Wieneke, Antonnette A.

    1967-01-01

    1. The interaction of the two components of leucocidin with various lipids has been studied by sedimentation, flotation, light-scattering and changes in the biological activity of leucocidin. 2. Phosphatidylserine, phosphatidylcholine, diphosphoinositide, triphosphoinositide and phosphatidic acid, but not phosphatidylethanolamine, lysophosphatidylcholine, cerebrosides, gangliosides or tristearin, induce aggregation of the F component of leucocidin. 3. The S component of leucocidin does not interact directly with these phospholipids, but interacts with the F component of leucocidin after its modification by lipids. 4. The increased sedimentation or light-scattering induced by low phospholipid concentrations is reversed at higher phospholipid concentrations. 6. The aggregates formed by phospholipids and leucocidin are due, not to adsorption of leucocidin alone, but also to the formation of leucocidin polymers. 7. It is concluded that the aggregation is due to the interaction of the F component with the fatty acid side chains in the lipid micelle. 8. The S component of leucocidin is inactivated by triphosphoinositide at physiological ionic strength; the F component of leucocidin is inactivated at low ionic strength by triphosphoinositide and remains inactive when the ionic strength is increased. 9. It is suggested that in the leucocyte cell membrane the S component of leucocidin interacts with the polar hydrophilic groups of triphosphoinositide and that the F component of leucocidin interacts with the hydrophobic parts of triphosphoinositide. PMID:16742527

  11. Structure determination of membrane proteins in their native phospholipid bilayer environment by rotationally aligned solid-state NMR spectroscopy.

    PubMed

    Opella, Stanley J

    2013-09-17

    One of the most important topics in experimental structural biology is determining the structures of membrane proteins. These structures represent one-third of all of the information expressed from a genome, distinguished by their locations within the phospholipid bilayer of cells, organelles, or enveloped viruses. Their highly hydrophobic nature and insolubility in aqueous media means that they require an amphipathic environment. They have unique functions in transport, catalysis, channel formation, and signaling. Researchers are particularly interested in G-protein coupled receptors (GPCRs) because they modulate many biological processes, and about half of the approximately 800 of these proteins within the human genome are or can be turned into drug receptors that affect a wide range of diseases. Because of experimental difficulties, researchers have studied membrane proteins using a wide variety of artificial media that mimic membranes, such as mixed organic solvents or detergents. More sophisticated mimics include bilayer discs (bicelles) and the lipid cubic phase (LCP), but both of these contain a very large detergent component, which can disrupt the stability and function of membrane proteins. To have confidence in the resulting structures and their biological functions and to avoid disrupting these delicate proteins, the structures of membrane proteins should be determined in their native environment of liquid crystalline phospholipid bilayers under physiological conditions. This Account describes a recently developed general method for determining the structures of unmodified membrane proteins in phospholipid bilayers by solid-state NMR spectroscopy. Because it relies on the natural, rapid rotational diffusion of these proteins about the bilayer normal, this method is referred to as rotationally aligned (RA) solid-state NMR. This technique elaborates on oriented sample (OS) solid-state NMR, its complementary predecessor. These methods exploit the power of

  12. Dipolar Assisted Assignment Protocol (DAAP) for MAS solid-state NMR of rotationally aligned membrane proteins in phospholipid bilayers

    NASA Astrophysics Data System (ADS)

    Das, Bibhuti B.; Zhang, Hua; Opella, Stanley J.

    2014-05-01

    A method for making resonance assignments in magic angle spinning solid-state NMR spectra of membrane proteins that utilizes the range of heteronuclear dipolar coupling frequencies in combination with conventional chemical shift based assignment methods is demonstrated. The Dipolar Assisted Assignment Protocol (DAAP) takes advantage of the rotational alignment of the membrane proteins in liquid crystalline phospholipid bilayers. Improved resolution is obtained by combining the magnetically inequivalent heteronuclear dipolar frequencies with isotropic chemical shift frequencies. Spectra with both dipolar and chemical shift frequency axes assist with resonance assignments. DAAP can be readily extended to three- and four-dimensional experiments and to include both backbone and side chain sites in proteins.

  13. Functional and structural characterization of HIV-1 gp41 ectodomain regions in phospholipid membranes suggests that the fusion-active conformation is extended.

    PubMed

    Korazim, Ofir; Sackett, Kelly; Shai, Yechiel

    2006-12-15

    HIV-1 entry into its host cell involves a sequential interaction whereby gp41 is in direct contact with the plasma membrane. Understanding the effect of membrane composition on the fusion mechanism can shed light on the unsolved phases of this complex mechanism. Here, we studied N36, a peptide derived from the N-heptad-repeat (NHR) of the gp41 ectodomain, its six helix bundle (SHB) forming counterpart C34, together with the N-terminal 70-mer wild-type peptide (N70), and additional gp41 ectodomain-derived peptides in the presence of two membranes, modeling inner and outer leaflets of the plasma membrane. Information on the structure of these peptides, their affinity towards phospholipids and their ability to induce vesicle fusion was gathered by a variety of fluorescence, spectroscopic and microscopy methods. We found that N36, having strong affinity towards phospholipids, prominently shifts conformation from alpha-helix in an outer leaflet-like zwitterionic membrane to beta-sheet in a membrane mimicking the negatively charged inner leaflet environment, leading to pronounced fusion-activity. Real-time atomic force microscopy (AFM) was used to study the peptides' effect on the membrane morphology, revealing severe bilayer perturbation and extensive pore formation. We also found, that the N36/C34 core is destabilized by electronegative, but not zwitterionic phospholipids. Taken together, our data suggest that the fusion-active pore forming conformation of gp41 is extended, upstream of the SHB. In this manner, folding of the ectodomain into a SHB might also serve as a negative regulator of fusion by impeding gp41 fusion-active surfaces, thus preventing irreversible damage to the cell membrane. This assumption is supported by the finding that pre-incubation of large unilamellar vesicles (LUV) with C-heptad repeat (CHR)-derived fusion inhibitors reduces the fusogenic activity of N-terminal peptides in a dose-dependant manner, and suggests that CHR-derived fusion

  14. Yeast PAH1-encoded phosphatidate phosphatase controls the expression of CHO1-encoded phosphatidylserine synthase for membrane phospholipid synthesis.

    PubMed

    Han, Gil-Soo; Carman, George M

    2017-08-11

    The PAH1-encoded phosphatidate phosphatase (PAP), which catalyzes the committed step for the synthesis of triacylglycerol in Saccharomyces cerevisiae, exerts a negative regulatory effect on the level of phosphatidate used for the de novo synthesis of membrane phospholipids. This raises the question whether PAP thereby affects the expression and activity of enzymes involved in phospholipid synthesis. Here, we examined the PAP-mediated regulation of CHO1-encoded phosphatidylserine synthase (PSS), which catalyzes the committed step for the synthesis of major phospholipids via the CDP-diacylglycerol pathway. The lack of PAP in the pah1Δ mutant highly elevated PSS activity, exhibiting a growth-dependent up-regulation from the exponential to the stationary phase of growth. Immunoblot analysis showed that the elevation of PSS activity results from an increase in the level of the enzyme encoded by CHO1 Truncation analysis and site-directed mutagenesis of the CHO1 promoter indicated that Cho1 expression in the pah1Δ mutant is induced through the inositol-sensitive upstream activation sequence (UASINO), a cis-acting element for the phosphatidate-controlled Henry (Ino2-Ino4/Opi1) regulatory circuit. The abrogation of Cho1 induction and PSS activity by a CHO1 UASINO mutation suppressed pah1Δ effects on lipid synthesis, nuclear/endoplasmic reticulum membrane morphology, and lipid droplet formation, but not on growth at elevated temperature. Loss of the DGK1-encoded diacylglycerol kinase, which converts diacylglycerol to phosphatidate, partially suppressed the pah1Δ-mediated induction of Cho1 and PSS activity. Collectively, these data showed that PAP activity controls the expression of PSS for membrane phospholipid synthesis. © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.

  15. Pivotal Advance: Phospholipids determine net membrane surface charge resulting in differential localization of active Rac1 and Rac2.

    PubMed

    Magalhaes, Marco A O; Glogauer, Michael

    2010-04-01

    In this investigation, we used primary murine neutrophils to demonstrate that local changes in membrane phospholipid composition alter the net cytoplasmic membrane surface charge, which results in selective recruitment of Rac1 or Rac2 based on the net charge of their respective C-terminal domains. Murine neutrophils undergoing chemotaxis or carrying out phagocytosis were transfected with K-ras4B-derived membrane charge biosensors and lipid markers, which allowed us to simultaneously monitor the levels of PIP(2), PIP(3), and PS and net membrane charge of the newly developing phagosome membrane and plasma membrane. Our results indicate that the combination of PIP(2), PIP(3), and PS generates a high negative charge (-8) at the plasma membrane of actin-rich pseudopods, where active Rac1 preferentially localizes during phagosome formation. The lipid metabolism that occurs during phagosome maturation results in the localized depletion of PIP(2), PIP(3), and partial decrease in PS. This creates a moderately negative net charge that correlates with the localization of active Rac2. Conversely, the accumulation of PIP(3) at the leading-edge membrane during chemotaxis generates a polarized accumulation of negative charges that recruits Rac1. These results provide evidence that alterations in membrane lipid composition and inner-membrane surface charge are important elements for the recruitment of differentially charged proteins and localization of signaling pathways during phagocytosis and chemotaxis in neutrophils.

  16. Comparative characteristics of membrane-active single-chained ether phospholipids: PAF and lyso-PAF in Langmuir monolayers.

    PubMed

    Flasiński, Michał; Broniatowski, Marcin; Wydro, Paweł; Dynarowicz-Łątka, Patrycja

    2012-03-15

    1-O-Octadecyl-2-acetyl-sn-glycero-3-phosphocholine (PAF) and its deacetylated precursor (lyso-PAF) are membrane-active single-chained ether phospholipids, which play an important signaling role in different physiological processes. There is strong evidence that one of the possible mechanisms of PAF and lyso-PAF activity is connected with their direct influence on biomembranes. Although both lipids have very similar structure, their biological activity is very different and in some cases even antagonistic. Unfortunately, there is a lack of the studies correlating these observations with the molecular structure of both compounds. Therefore, we decided to apply model systems and advanced physicochemical methods to explore this subject and look for the reasons of the observed discrepancies. As a model system, we prepared Langmuir monolayers of PAF and lyso-PAF at the air/water interface. The physicochemical characteristic of the model membranes under different experimental conditions was performed with the application of the Langmuir monolayer technique, Brewster angle microscopy, and the methods based on synchrotron radiation scattering (XR and GIXD). Both compounds form stable Langmuir monolayers, in which the lipid molecules are strongly immersed into the water subphase. The monolayers have expanded character, meaning that the hydrophobic tails are considerably tilted and disordered. Similarly to biochemical studies, also in our model systems, profound differences in the properties of PAF and lyso-PAF were observed. Contrary to PAF, the lyso-PAF molecules express the propensity to form organized, periodical structures in the model membranes. It is manifested in the phase transition observed in the course of the lyso-PAF π-A isotherm which was correlated with the diffraction signal registered with the application of the GIXD method. The formation of 2D domains of hexagonal ordering of the film forming molecules was observed only for the lyso precursor. The observed

  17. Cell cycle progression is an essential regulatory component of phospholipid metabolism and membrane homeostasis

    PubMed Central

    Sanchez-Alvarez, Miguel; Zhang, Qifeng; Finger, Fabian; Wakelam, Michael J. O.; Bakal, Chris

    2015-01-01

    We show that phospholipid anabolism does not occur uniformly during the metazoan cell cycle. Transition to S-phase is required for optimal mobilization of lipid precursors, synthesis of specific phospholipid species and endoplasmic reticulum (ER) homeostasis. Average changes observed in whole-cell phospholipid composition, and total ER lipid content, upon stimulation of cell growth can be explained by the cell cycle distribution of the population. TORC1 promotes phospholipid anabolism by slowing S/G2 progression. The cell cycle stage-specific nature of lipid biogenesis is dependent on p53. We propose that coupling lipid metabolism to cell cycle progression is a means by which cells have evolved to coordinate proliferation with cell and organelle growth. PMID:26333836

  18. Interactions of amelogenin with phospholipids

    DOE PAGES

    Bekshe Lokappa, Sowmya; Chandrababu, Karthik Balakrishna; Dutta, Kaushik; ...

    2014-11-22

    Amelogenin protein has the potential to interact with other enamel matrix proteins, mineral, and cell surfaces. In this paper, we investigated the interactions of recombinant amelogenin rP172 with small unilamellar vesicles as model membranes, toward the goal of understanding the mechanisms of amelogenin–cell interactions during amelogenesis. Dynamic light scattering (DLS), fluorescence spectroscopy, circular dichroism (CD), and nuclear magnetic resonance (NMR) were used. In the presence of phospholipid vesicles, a blue shift in the Trp fluorescence emission maxima of rP172 was observed (~334 nm) and the Trp residues of rP172 were inaccessible to the aqueous quencher acrylamide. DLS studies indicated complexationmore » of rP172 and phospholipids, although the possibility of fusion of phospholipids following amelogenin addition cannot be ruled out. NMR and CD studies revealed a disorder–order transition of rP172 in a model membrane environment. Strong fluorescence resonance energy transfer from Trp in rP172 to DNS-bound-phospholipid was observed, and fluorescence polarization studies indicated that rP172 interacted with the hydrophobic core region of model membranes. Finally, our data suggest that amelogenin has ability to interact with phospholipids and that such interactions may play key roles in enamel biomineralization as well as reported amelogenin signaling activities.« less

  19. Interactions of amelogenin with phospholipids

    SciTech Connect

    Bekshe Lokappa, Sowmya; Chandrababu, Karthik Balakrishna; Dutta, Kaushik; Perovic, Iva; Evans, John Spencer; Moradian-Oldak, Janet

    2014-11-22

    Amelogenin protein has the potential to interact with other enamel matrix proteins, mineral, and cell surfaces. In this paper, we investigated the interactions of recombinant amelogenin rP172 with small unilamellar vesicles as model membranes, toward the goal of understanding the mechanisms of amelogenin–cell interactions during amelogenesis. Dynamic light scattering (DLS), fluorescence spectroscopy, circular dichroism (CD), and nuclear magnetic resonance (NMR) were used. In the presence of phospholipid vesicles, a blue shift in the Trp fluorescence emission maxima of rP172 was observed (~334 nm) and the Trp residues of rP172 were inaccessible to the aqueous quencher acrylamide. DLS studies indicated complexation of rP172 and phospholipids, although the possibility of fusion of phospholipids following amelogenin addition cannot be ruled out. NMR and CD studies revealed a disorder–order transition of rP172 in a model membrane environment. Strong fluorescence resonance energy transfer from Trp in rP172 to DNS-bound-phospholipid was observed, and fluorescence polarization studies indicated that rP172 interacted with the hydrophobic core region of model membranes. Finally, our data suggest that amelogenin has ability to interact with phospholipids and that such interactions may play key roles in enamel biomineralization as well as reported amelogenin signaling activities.

  20. The phospholipid flippase ATP9A is required for the recycling pathway from the endosomes to the plasma membrane

    PubMed Central

    Tanaka, Yoshiki; Ono, Natsuki; Shima, Takahiro; Tanaka, Gaku; Katoh, Yohei; Nakayama, Kazuhisa; Takatsu, Hiroyuki; Shin, Hye-Won

    2016-01-01

    Type IV P-type ATPases (P4-ATPases) are phospholipid flippases that translocate phospholipids from the exoplasmic (or luminal) to the cytoplasmic leaflet of lipid bilayers. In Saccharomyces cerevisiae, P4-ATPases are localized to specific subcellular compartments and play roles in compartment-mediated membrane trafficking; however, roles of mammalian P4-ATPases in membrane trafficking are poorly understood. We previously reported that ATP9A, one of 14 human P4-ATPases, is localized to endosomal compartments and the Golgi complex. In this study, we found that ATP9A is localized to phosphatidylserine (PS)-positive early and recycling endosomes, but not late endosomes, in HeLa cells. Depletion of ATP9A delayed the recycling of transferrin from endosomes to the plasma membrane, although it did not affect the morphology of endosomal structures. Moreover, depletion of ATP9A caused accumulation of glucose transporter 1 in endosomes, probably by inhibiting their recycling. By contrast, depletion of ATP9A affected neither the early/late endosomal transport and degradation of epidermal growth factor (EGF) nor the transport of Shiga toxin B fragment from early/recycling endosomes to the Golgi complex. Therefore ATP9A plays a crucial role in recycling from endosomes to the plasma membrane. PMID:27733620

  1. The role of human monoacylglycerol lipase (hMAGL) binding pocket in breakup of unsaturated phospholipid membranes.

    PubMed

    Karageorgos, Ioannis; Silin, Vitalii I; Zvonok, Nikolai; Marino, John; Janero, David R; Makriyannis, Alexandros

    2017-08-17

    Human monoacylglycerol lipase (hMAGL) plays a key role in homeostatic tuning of the endocannabinoid signaling system and supports aggressive tumorogenesis, making this enzyme a promising therapeutic target. hMAGL features a membrane-associated lid domain that regulates entry of endocannabinoid lipid substrates into the hydrophobic channel accessing the active site, likely from the membrane bilayer. The present work applied simultaneous surface plasmon resonance and electrochemical impedance spectroscopy measurements to show that, in absence of the substrate, hMAGL can remove phospholipid molecules from the membrane and, thereby, disintegrate pre-formed, intact, tethered phospholipid bilayer membrane mimetics (tBLMs) composed of unsaturated phosphatidylcholines. To probe the mechanism of hMAGL-induced on tBLMs compromise, we investigated the effect of wild type and mutant hMAGLs and hMAGL rendered catalytically inactive, as a function of concentration and in the presence of chemically distinct active-site inhibitors. Our data show that hMAGL's lid domain and hydrophobic substrate-binding pocket play important roles in hMAGL-induced bilayer lipid mobilization, whereas hydrolytic activity of the enzyme does not appear to be a factor. Published by Elsevier Inc.

  2. Cytochrome c oxidase is regulated by modulations in protein expression and mitochondrial membrane phospholipid composition in estivating African lungfish.

    PubMed

    Frick, N T; Bystriansky, J S; Ip, Y K; Chew, S F; Ballantyne, J S

    2010-03-01

    We examined some of the potential mechanisms lungfish (Protopterus dolloi) use to regulate cytochrome c oxidase (CCO), during metabolic depression. CCO activity was reduced by 67% in isolated liver mitochondria of estivating fish. This was likely accomplished, in part, by the 46% reduction in CCO subunit I protein expression in the liver. No change in the mRNA expression levels of CCO subunits I, II, III, and IV were found in the liver, suggesting CCO is under translational regulation; however, in the kidney, messenger limitation may be a factor as the expression of subunits I and II were depressed ( approximately 10-fold) during estivation, suggesting tissue-specific mechanisms of regulation. CCO is influenced by mitochondrial membrane phospholipids, particularly cardiolipin (CL). In P. dolloi, the phospholipid composition of the liver mitochondrial membrane changed during estivation, with a approximately 2.3-fold reduction in the amount of CL. Significant positive correlations were found between CCO activity and the amount of CL and phosphatidylethanolamine within the mitochondrial membrane. It appears CCO activity is regulated through multiple mechanisms in P. dolloi, and individual subunits of CCO are regulated independently, and in a tissue-specific manner. It is proposed that altering the amount of CL within the mitochondrial membrane may be a means of regulating CCO activity during metabolical depression in the African lungfish, P. dolloi.

  3. Computer modeling of the membrane interaction of FYVE domains.

    PubMed

    Diraviyam, Karthikeyan; Stahelin, Robert V; Cho, Wonhwa; Murray, Diana

    2003-05-02

    FYVE domains are membrane targeting domains that are found in proteins involved in endosomal trafficking and signal transduction pathways. Most FYVE domains bind specifically to phosphatidylinositol 3-phosphate (PI(3)P), a lipid that resides mainly in endosomal membranes. Though the specific interactions between FYVE domains and the headgroup of PI(3)P have been well characterized, principally through structural studies, the available experimental structures suggest several different models for FYVE/membrane association. Thus, the manner in which FYVE domains adsorb to the membrane surface remains to be elucidated. Towards this end, recent experiments have shown that FYVE domains bind PI(3)P in the context of phospholipid bilayers and that hydrophobic residues on a conserved loop are able to penetrate the membrane interface in a PI(3)P-dependent manner.Here, the finite difference Poisson-Boltzmann (FDPB) method has been used to calculate the energetic interactions of FYVE domains with phospholipid membranes. Based on the computational analysis, it is found that (1) recruitment to membranes is facilitated by non-specific electrostatic interactions that occur between basic residues on the domains and acidic phospholipids in the membrane, (2) the energetic analysis can quantitatively differentiate among the modes of membrane association proposed by the experimentally determined structures, (3) FDPB calculations predict energetically feasible models for the membrane-associated states of FYVE domains, (4) these models are consistent with the observation that conserved hydrophobic residues insert into the membrane interface, and (5) the calculations provide a molecular model for the hydrophobic partitioning: binding of PI(3)P significantly neutralizes positive potential in the region of the hydrophobic residues, which acts as an "electrostatic switch" by reducing the energetic barrier for membrane penetration. Finally, the computational results are extended to FYVE

  4. Investigating the protective properties of milk phospholipids against ultraviolet light exposure in a skin equivalent model

    NASA Astrophysics Data System (ADS)

    Russell, Ashley; Laubscher, Andrea; Jimenez-Flores, Rafael; Laiho, Lily H.

    2010-02-01

    Current research on bioactive molecules in milk has documented health advantages of bovine milk and its components. Milk Phospholipids, selected for this study, represent molecules with great potential benefit in human health and nutrition. In this study we used confocal reflectance and multiphoton microscopy to monitor changes in skin morphology upon skin exposure to ultraviolet light and evaluate the potential of milk phospholipids in preventing photodamage to skin equivalent models. The results suggest that milk phospholipids act upon skin cells in a protective manner against the effect of ultraviolet (UV) radiation. Similar results were obtained from MTT tissue viability assay and histology.

  5. Application of the fuzzy-oil-drop model to membrane protein simulation.

    PubMed

    Zobnina, Veronica; Roterman, Irena

    2009-11-01

    The analysis of structural properties and biological activity of membrane proteins requires long lasting simulation of molecular dynamics. The large number of atoms present in protein molecule, membrane (phospholipids), and water environment makes the simulation of large scale. The implementation of simplified model representing the natural environment for membrane proteins is presented and compared with the vacuum simulation and simulation in the presence of water molecules and membrane phospholipids presented explicite. The comparative structural analysis and computational times for these three models makes the simplified model promising.

  6. Interaction of the Belousov-Zhabotinsky Reaction with Phospholipid Engineered Membranes.

    PubMed

    Torbensen, Kristian; Rossi, Federico; Pantani, Ottorino L; Ristori, Sandra; Abou-Hassan, Ali

    2015-08-13

    Compartmentalized in liposome arrays, the Belousov-Zhabotinsky (BZ) oscillatory reaction might represent a good model for biochemical networks. In order to engineer such liposomes, we used small-angle X-ray scattering (SAXS) to study the effect of individual BZ reactant as well as of the entire BZ mixture on the structural properties of lipid layer(s) formed by 1,2-dimyristoyl-sn-glycero-3-phosphocholine (DMPC) phospholipids in aqueous media. These properties were compared with those of lipid layers doped with myristic acid (Myr-A), sodium tetradecyl sulfate (STS), and cholesterol (CHOL). In parallel, the effect on the BZ reaction exerted by doped DMPC liposomes was investigated by UV-vis spectroscopy, followed by image analysis of the recorded time series. SAXS experiments showed that chemical species involved in the BZ reaction bring small changes to the internal structure of DMPC bilayers. However, ferroin can reduce the liposome lamellarity by being adsorbed on the surface of lipid layers. Also, the presence of charged dopants such as STS and TA tends to reduce the lamellarity of liposomes, while CHOL brings marked changes in the BZ system due to chemical reaction with oxidant species. In particular, an increase of the oscillation frequency is observed when the BZ reaction is carried out in the presence of CHOL-DMPC liposomes. For this behavior, a possible explanation supported by numerical simulations is bromination of CHOL double bonds by BZ intermediates.

  7. Biophysical study of resin acid effects on phospholipid membrane structure and properties.

    PubMed

    Jagalski, Vivien; Barker, Robert; Topgaard, Daniel; Günther-Pomorski, Thomas; Hamberger, Björn; Cárdenas, Marité

    2016-11-01

    Hydrophobic resin acids (RAs) are synthesized by conifer trees as part of their defense mechanisms. One of the functions of RAs in plant defense is suggested to be the perturbation of the cellular membrane. However, there is a vast diversity of chemical structures within this class of molecules, and there are no clear correlations to the molecular mechanisms behind the RA's toxicity. In this study we unravel the molecular interactions of the three closely related RAs dehydroabietic acid, neoabietic acid, and the synthetic analogue dichlorodehydroabietic acid with dipalmitoylphosphatidylcholine (DPPC) model membranes and the polar lipid extract of soybeans. The complementarity of the biophysical techniques used (NMR, DLS, NR, DSC, Cryo-TEM) allowed correlating changes at the vesicle level with changes at the molecular level and the co-localization of RAs within DPPC monolayer. Effects on DPPC membranes are correlated with the physical chemical properties of the RA and their toxicity.

  8. HPLC-Based Mass Spectrometry Characterizes the Phospholipid Alterations in Ether-Linked Lipid Deficiency Models Following Oxidative Stress

    PubMed Central

    Drechsler, Robin; Chen, Shaw-Wen; Dancy, Blair C. R.; Mehrabkhani, Lena

    2016-01-01

    Despite the fact that the discovery of ether-linked phospholipids occurred nearly a century ago, many unanswered questions remain concerning these unique lipids. Here, we characterize the ether-linked lipids of the nematode with HPLC-MS/MS and find that more than half of the phosphoethanolamine-containing lipids are ether-linked, a distribution similar to that found in mammalian membranes. To explore the biological role of ether lipids in vivo, we target fatty acyl-CoA reductase (fard-1), an essential enzyme in ether lipid synthesis, with two distinct RNAi strategies. First, when fard-1 RNAi is initiated at the start of development, the treated animals have severely reduced ether lipid abundance, resulting in a shift in the phosphatidylethanolamine lipid population to include more saturated fatty acid chains. Thus, the absence of ether lipids during development drives a significant remodeling of the membrane landscape. A later initiation of fard-1 RNAi in adulthood results in a dramatic reduction of new ether lipid synthesis as quantified with 15N-tracers; however, there is only a slight decrease in total ether lipid abundance with this adult-only fard-1 RNAi. The two RNAi strategies permit the examination of synthesis and ether lipid abundance to reveal a relationship between the amount of ether lipids and stress survival. We tested whether these species function as sacrificial antioxidants by directly examining the phospholipid population with HPLC-MS/MS after oxidative stress treatment. While there are significant changes in other phospholipids, including polyunsaturated fatty acid-containing species, we did not find any change in ether-linked lipids, suggesting that the role of ether lipids in stress resistance is not through their general consumption as free radical sinks. Our work shows that the nematode will be a useful model for future interrogation of ether lipid biosynthesis and the characterization of phospholipid changes in various stress conditions

  9. HPLC-Based Mass Spectrometry Characterizes the Phospholipid Alterations in Ether-Linked Lipid Deficiency Models Following Oxidative Stress.

    PubMed

    Drechsler, Robin; Chen, Shaw-Wen; Dancy, Blair C R; Mehrabkhani, Lena; Olsen, Carissa Perez

    2016-01-01

    Despite the fact that the discovery of ether-linked phospholipids occurred nearly a century ago, many unanswered questions remain concerning these unique lipids. Here, we characterize the ether-linked lipids of the nematode with HPLC-MS/MS and find that more than half of the phosphoethanolamine-containing lipids are ether-linked, a distribution similar to that found in mammalian membranes. To explore the biological role of ether lipids in vivo, we target fatty acyl-CoA reductase (fard-1), an essential enzyme in ether lipid synthesis, with two distinct RNAi strategies. First, when fard-1 RNAi is initiated at the start of development, the treated animals have severely reduced ether lipid abundance, resulting in a shift in the phosphatidylethanolamine lipid population to include more saturated fatty acid chains. Thus, the absence of ether lipids during development drives a significant remodeling of the membrane landscape. A later initiation of fard-1 RNAi in adulthood results in a dramatic reduction of new ether lipid synthesis as quantified with 15N-tracers; however, there is only a slight decrease in total ether lipid abundance with this adult-only fard-1 RNAi. The two RNAi strategies permit the examination of synthesis and ether lipid abundance to reveal a relationship between the amount of ether lipids and stress survival. We tested whether these species function as sacrificial antioxidants by directly examining the phospholipid population with HPLC-MS/MS after oxidative stress treatment. While there are significant changes in other phospholipids, including polyunsaturated fatty acid-containing species, we did not find any change in ether-linked lipids, suggesting that the role of ether lipids in stress resistance is not through their general consumption as free radical sinks. Our work shows that the nematode will be a useful model for future interrogation of ether lipid biosynthesis and the characterization of phospholipid changes in various stress conditions.

  10. Effect of Selection for High Activity-Related Metabolism on Membrane Phospholipid Fatty Acid Composition in Bank Voles.

    PubMed

    Stawski, Clare; Valencak, Teresa G; Ruf, Thomas; Sadowska, Edyta T; Dheyongera, Geoffrey; Rudolf, Agata; Maiti, Uttaran; Koteja, Paweł

    2015-01-01

    Endothermy, high basal metabolic rates (BMRs), and high locomotor-related metabolism were important steps in the evolution of mammals. It has been proposed that the composition of membrane phospholipid fatty acids plays an important role in energy metabolism and exercise muscle physiology. In particular, the membrane pacemaker theory of metabolism suggests that an increase in cell membrane fatty acid unsaturation would result in an increase in BMR. We aimed to determine whether membrane phospholipid fatty acid composition of heart, liver, and gastrocnemius muscles differed between lines of bank voles selected for high swim-induced aerobic metabolism-which also evolved an increased BMR-and unselected control lines. Proportions of fatty acids significantly differed among the organs: liver was the least unsaturated, whereas the gastrocnemius muscles were most unsaturated. However, fatty acid proportions of the heart and liver did not differ significantly between selected and control lines. In gastrocnemius muscles, significant differences between selection directions were found: compared to control lines, membranes of selected voles were richer in saturated C18:0 and unsaturated C18:2n-6 and C18:3n-3, whereas the pattern was reversed for saturated C16:0 and unsaturated C20:4n-6. Neither unsaturation index nor other combined indexes of fatty acid proportions differed between lines. Thus, our results do not support the membrane pacemaker hypothesis. However, the differences between selected and control lines in gastrocnemius muscles reflect chain lengths rather than number of double bonds and are probably related to differences in locomotor activity per se rather than to differences in the basal or routine metabolic rate.

  11. Interaction of three-finger toxins with phospholipid membranes: comparison of S- and P-type cytotoxins

    PubMed Central

    2004-01-01

    The CTs (cytotoxins) I and II are positively charged three-finger folded proteins from venom of Naja oxiana (the Central Asian cobra). They belong to S- and P-type respectively based on Ser-28 and Pro-30 residues within a putative phospholipid bilayer binding site. Previously, we investigated the interaction of CTII with multilamellar liposomes of dipalmitoylphosphatidylglycerol by wide-line 31P-NMR spectroscopy. To compare interactions of these proteins with phospholipids, we investigated the interaction of CTI with the multilamellar liposomes of dipalmitoylphosphatidylglycerol analogously. The effect of CTI on the chemical shielding anisotropy and deformation of the liposomes in the magnetic field was determined at different temperatures and lipid/protein ratios. It was found that both the proteins do not affect lipid organization in the gel state. In the liquid crystalline state of the bilayer they disturb lipid packing. To get insight into the interactions of the toxins with membranes, Monte Carlo simulations of CTI and CTII in the presence of the bilayer membrane were performed. It was found that both the toxins penetrate into the bilayer with the tips of all the three loops. However, the free-energy gain on membrane insertion of CTI is smaller (by ≈7 kcal/mol; 1 kcal≡4.184 kJ) when compared with CTII, because of the lower hydrophobicity of the membrane-binding site of CTI. These results clearly demonstrate that the P-type cytotoxins interact with membranes stronger than those of the S-type, although the mode of the membrane insertion is similar for both the types. PMID:15584897

  12. Membrane Lipid Replacement for chronic illnesses, aging and cancer using oral glycerolphospholipid formulations with fructooligosaccharides to restore phospholipid function in cellular membranes, organelles, cells and tissues.

    PubMed

    Nicolson, Garth L; Ash, Michael E

    2017-09-01

    Membrane Lipid Replacement is the use of functional, oral supplements containing mixtures of cell membrane glycerolphospholipids, plus fructooligosaccharides (for protection against oxidative, bile acid and enzymatic damage) and antioxidants, in order to safely replace damaged, oxidized, membrane phospholipids and restore membrane, organelle, cellular and organ function. Defects in cellular and intracellular membranes are characteristic of all chronic medical conditions, including cancer, and normal processes, such as aging. Once the replacement glycerolphospholipids have been ingested, dispersed, complexed and transported, while being protected by fructooligosaccharides and several natural mechanisms, they can be inserted into cell membranes, lipoproteins, lipid globules, lipid droplets, liposomes and other carriers. They are conveyed by the lymphatics and blood circulation to cellular sites where they are endocytosed or incorporated into or transported by cell membranes. Inside cells the glycerolphospholipids can be transferred to various intracellular membranes by lipid globules, liposomes, membrane-membrane contact or by lipid carrier transfer. Eventually they arrive at their membrane destinations due to 'bulk flow' principles, and there they can stimulate the natural removal and replacement of damaged membrane lipids while undergoing further enzymatic alterations. Clinical trials have shown the benefits of Membrane Lipid Replacement in restoring mitochondrial function and reducing fatigue in aged subjects and chronically ill patients. Recently Membrane Lipid Replacement has been used to reduce pain and other symptoms as well as removing hydrophobic chemical contaminants, suggesting that there are additional new uses for this safe, natural medicine supplement. This article is part of a Special Issue entitled: Membrane Lipid Therapy: Drugs Targeting Biomembranes edited by Pablo V. Escribá. Copyright © 2017 The Author(s). Published by Elsevier B.V. All rights

  13. Sorption of Cationic Surfactants to Artificial Cell Membranes: Comparing Phospholipid Bilayers with Monolayer Coatings and Molecular Simulations

    PubMed Central

    2017-01-01

    This study reports the distribution coefficient between phospholipid bilayer membranes and phosphate buffered saline (PBS) medium (DMW,PBS) for 19 cationic surfactants. The method used a sorbent dilution series with solid supported lipid membranes (SSLMs). The existing SSLM protocol, applying a 96 well plate setup, was adapted to use 1.5 mL glass autosampler vials instead, which facilitated sampling and circumvented several confounding loss processes for some of the cationic surfactants. About 1% of the phospholipids were found to be detached from the SSLM beads, resulting in nonlinear sorption isotherms for compounds with log DMW values above 4. Renewal of the medium resulted in linear sorption isotherms. DMW values determined at pH 5.4 demonstrated that cationic surfactant species account for the observed DMW,PBS. Log DMW,PBS values above 5.5 are only experimentally feasible with lower LC-MS/MS detection limits and/or concentrated extracts of the aqueous samples. Based on the number of carbon atoms, dialkylamines showed a considerably lower sorption affinity than linear alkylamine analogues. These SSLM results closely overlapped with measurements on a chromatographic tool based on immobilized artificial membranes (IAM-HPLC) and with quantum-chemistry based calculations with COSMOmic. The SSLM data suggest that IAM-HPLC underestimates the DMW of ionized primary and secondary alkylamines by 0.8 and 0.5 log units, respectively. PMID:28187261

  14. Sorption of Cationic Surfactants to Artificial Cell Membranes: Comparing Phospholipid Bilayers with Monolayer Coatings and Molecular Simulations.

    PubMed

    Timmer, Niels; Droge, Steven T J

    2017-03-07

    This study reports the distribution coefficient between phospholipid bilayer membranes and phosphate buffered saline (PBS) medium (DMW,PBS) for 19 cationic surfactants. The method used a sorbent dilution series with solid supported lipid membranes (SSLMs). The existing SSLM protocol, applying a 96 well plate setup, was adapted to use 1.5 mL glass autosampler vials instead, which facilitated sampling and circumvented several confounding loss processes for some of the cationic surfactants. About 1% of the phospholipids were found to be detached from the SSLM beads, resulting in nonlinear sorption isotherms for compounds with log DMW values above 4. Renewal of the medium resulted in linear sorption isotherms. DMW values determined at pH 5.4 demonstrated that cationic surfactant species account for the observed DMW,PBS. Log DMW,PBS values above 5.5 are only experimentally feasible with lower LC-MS/MS detection limits and/or concentrated extracts of the aqueous samples. Based on the number of carbon atoms, dialkylamines showed a considerably lower sorption affinity than linear alkylamine analogues. These SSLM results closely overlapped with measurements on a chromatographic tool based on immobilized artificial membranes (IAM-HPLC) and with quantum-chemistry based calculations with COSMOmic. The SSLM data suggest that IAM-HPLC underestimates the DMW of ionized primary and secondary alkylamines by 0.8 and 0.5 log units, respectively.

  15. Fatty acid profile in erythrocyte membranes and plasma phospholipids affects significantly the extent of inflammatory response to coronary stent implantation.

    PubMed

    Čermák, T; MuŽáková, V; Matějka, J; Skalický, J; Laštovička, P; Líbalová, M; Kanďár, R; Novotný, V; Čegan, A

    2016-12-13

    In coronary heart disease, the treatment of significant stenosis by percutaneous coronary intervention (PCI) with stent implantation elicits local and systemic inflammatory responses. This study was aimed at evaluation of the dynamics of inflammatory response and elucidation of the relationship between the fatty acid profile of red blood cell (RBC) membranes or plasma phospholipids and inflammation after PCI. High-sensitivity C-reactive protein (hsCRP), interleukin-6 (IL-6), serum amyloid A (SAA), malondialdehyde (MDA) and the fatty acid profiles were determined in patients with advanced coronary artery disease undergoing PCI before, 24 h and 48 h after drug-eluting stent implantation (n=36). Patients after PCI exhibited a significant increase in studied markers (hsCRP, IL-6, SAA, MDA). Many significant associations were found between the increase of IL-6, resp. SAA and the amounts of n-6 polyunsaturated fatty acids (namely linoleic, dihomo-gamma-linolenic, docosatetraenoic and docosapentaenoic acid), resp. saturated fatty acids (pentadecanoic, stearic, nonadecanoic) in erythrocyte membranes. The magnitude of the inflammatory response to PCI is related to erythrocyte membrane fatty acid profile, which seems to be a better potential predictor of elevation of inflammatory markers after PCI than plasma phospholipids.

  16. Phospholipid: diacylglycerol acyltransferase contributes to the conversion of membrane lipids into triacylglycerol in Myrmecia incisa during the nitrogen starvation stress

    PubMed Central

    Liu, Xiao-Yu; Ouyang, Long-Ling; Zhou, Zhi-Gang

    2016-01-01

    In addition to the Kennedy pathway for de novo biosynthesis, triacylglycerol (TAG), the most important stock for microalgae-based biodiesel production, can be synthesized by phospholipid: diacylglycerol acyltransferase (PDAT) that transfers an acyl group from phospholipids (PLs) to diacylglycerol (DAG). This study presents a novel gene that encodes PDAT from the green microalga Myrmecia incisa Reisigl H4301 (designated MiPDAT ). MiPDAT is localized on the plasma membrane (PM) via the agroinfiltration of tobacco leaves with a green fluorescent protein-fused construct. MiPDAT synthesizes TAG based on functional complementary experiments in the mutant yeast strain H1246 and the membrane lipid phosphatidylcholine (PC) is preferentially used as substrates as revealed by in vitro enzyme activity assay. The gradually increased transcription levels of MiPDAT in M. incisa during the cultivation under nitrogen starvation conditions is proposed to be responsible for the decrease and increase of the PC and TAG levels, respectively, as detected by liquid chromatography-mass spectrometry after 4 d of nitrogen starvation. In addition, the mechanism by which MiPDAT in this microalga uses PC to yield TAG is discussed. Accordingly, it is concluded that this PM-located PDAT contributes to the conversion of membrane lipids into TAG in M. incisa during the nitrogen starvation stress. PMID:27216435

  17. Changes in phospholipid composition of synaptic membranes in medulla oblongata and frontal lobes of the cerebral hemispheres in cats with hemorrhagic shock.

    PubMed

    Leskova, G F; Lutsenko, V K

    2002-09-01

    We studied phospholipid composition of brain synaptic membranes isolated from cats with severe hemorrhagic shock. Changes in the medulla oblongata were most pronounced and manifested in decreased content of phosphatidylcholine. Changes in the phospholipid composition of synaptic membranes in the frontal lobes included an increase in phosphatidylinositol content and reduced content of phosphatidylserine. Accumulation of phosphatidylethanolamine in synaptic membranes was found in both the medulla oblongata and frontal lobes. These data help to understand the mechanisms underlying exhaustion of compensatory reserves in brain cells during severe hemorrhagic shock.

  18. Adsorption and activity of Candida rugosa lipase on polypropylene hollow fiber membrane modified with phospholipid analogous polymers.

    PubMed

    Deng, Hong-Tao; Xu, Zhi-Kang; Huang, Xiao-Jun; Wu, Jian; Seta, Patrick

    2004-11-09

    Efforts have recently been made toward the study of interactions of phospholipid with various enzymes. It seems that phospholipids may be directly involved in regulating the enzyme activity. In this work, three phospholipid analogous polymers (PAPs), containing hydrophobic octyloxy, dodecyloxy, and octadecyloxy groups (abbreviated as 8-PAP, 12-PAP, and 18-PAP, respectively), were tethered on polypropylene hollow fiber microfiltration membrane (PPHFMM) to create a biocompatible interface for lipase immobilization. Lipase from Candida rugosa was immobilized on these PPHFMMs by adsorption. The adsorption capacity, activity, and thermal stability of enzyme on the PAP-modified PPHFMMs were compared with those of enzyme on the nascent ones. It was found that, as for the PAP-modified PPHFMMs, the adsorption capacities of lipase are lower than that of the nascent ones, while the activity retention of immobilized lipase increases from 57.5% to 74.1%, 77.5%, and 83.2% respectively for the 8-PAP-, 12-PAP-, and 18-PAP-modified PPHFMMs. In addition, the experimental results of thermal stability show that the residual activity of the immobilized lipase at 50 degrees C for 2 h is 62% for the 8-PAP-modified PPHFMM, 59% for the 12-PAP-modified PPHFMM, and 66% for the 18-PAP-modified PPHFMM, which are also higher than that of the nascent ones.

  19. Coexisting phases in PEGylated phosphocholine membranes: a model study.

    PubMed

    Tanwir, Kanwal; Shahid, Muhammad Naeem; Thomas, Andre; Tsoukanova, Valeria

    2012-10-02

    Understanding the phase behavior of PEGylated phosphocholine membranes is becoming increasingly important in many biomedical applications. Here, we used binary mixtures of phosphocholines and PEG-phospholipids in monolayers on phosphate buffered saline as ideal models of PEGylated phosphocholine membranes. Several phase states and transitions between homogeneously mixed and completely immiscible phases have been visualized in these mixtures by epifluorescence microscopy, which is neither predicted nor easily explained by the existing interpretive schemes. The results of our study suggest that the phase state of PEGylated phosphocholine membranes may drastically vary depending on factors such as aliphatic chain length on phosphocholines and PEG-phospholipids, PEG content, and temperature. These findings are summarized in phase drawings and diagrams to demonstrate a striking variety of possible phases. The diagrams can also be instrumental in predicting the phase state of PEGylated phosphocholine membranes, in particular under physiological conditions.

  20. Membrane-surfactant interactions. The role of surfactant in mitochondrial complex III-phospholipid-Triton X-100 mixed micelles

    SciTech Connect

    Valpuesta, J.M.; Arrondo, J.L.; Barbero, M.C.; Pons, M.; Goni, F.M.

    1986-05-15

    Complex III (ubiquinol-cytochrome c reductase) was purified from beef heart mitochondria in the form of protein-phospholipid-Triton X-100 mixed micelles (about 1:80:100 molar ratio). Detergent may be totally removed by sucrose density gradient centrifugation, and the resulting lipoprotein complexes retain full enzyme activity. In order to understand the role of surfactant in the mixed micelles, and the interaction of Triton X-100 with integral membrane proteins and phospholipid bilayers, both the protein-lipid-surfactant mixed micelles and the detergent-free lipoprotein system were examined from the point of view of particle size and ultrastructure, enzyme activity, tryptophan fluorescence quenching, 31P NMR, and Fourier transform infrared spectroscopy. The NMR and IR spectroscopic studies show that surfactant withdrawal induces a profound change in phospholipid architecture, from a micellar to a lamellar-like phase. However, electron microscopic observations fail to reveal the existence of lipid bilayers in the absence of detergent. We suggest that, under these conditions, the lipid:protein molar ratio (80:1) is too low to permit the formation of lipid bilayer planes, but the relative orientation and mobility of phospholipids with respect to proteins is similar to that of the lamellar phase. Protein conformational changes are also detected as a consequence of surfactant removal. Fourier transform infrared spectroscopy indicates an increase of peptide beta-structure in the absence of Triton X-100; changes in the amide II/amide I intensity ratio are also detected, although the precise meaning of these observations is unclear.

  1. Effect of carbon black nanomaterial on biological membranes revealed by shape of human erythrocytes, platelets and phospholipid vesicles.

    PubMed

    Pajnič, Manca; Drašler, Barbara; Šuštar, Vid; Krek, Judita Lea; Štukelj, Roman; Šimundić, Metka; Kononenko, Veno; Makovec, Darko; Hägerstrand, Henry; Drobne, Damjana; Kralj-Iglič, Veronika

    2015-03-28

    We studied the effect of carbon black (CB) agglomerated nanomaterial on biological membranes as revealed by shapes of human erythrocytes, platelets and giant phospholipid vesicles. Diluted human blood was incubated with CB nanomaterial and observed by different microscopic techniques. Giant unilamellar phospholipid vesicles (GUVs) created by electroformation were incubated with CB nanomaterial and observed by optical microscopy. Populations of erythrocytes and GUVs were analyzed: the effect of CB nanomaterial was assessed by the average number and distribution of erythrocyte shape types (discocytes, echinocytes, stomatocytes) and of vesicles in test suspensions, with respect to control suspensions. Ensembles of representative images were created and analyzed using computer aided image processing and statistical methods. In a population study, blood of 14 healthy human donors was incubated with CB nanomaterial. Blood cell parameters (concentration of different cell types, their volumes and distributions) were assessed. We found that CB nanomaterial formed micrometer-sized agglomerates in citrated and phosphate buffered saline, in diluted blood and in blood plasma. These agglomerates interacted with erythrocyte membranes but did not affect erythrocyte shape locally or globally. CB nanomaterial agglomerates were found to mediate attractive interaction between blood cells and to present seeds for formation of agglomerate - blood cells complexes. Distortion of disc shape of resting platelets due to incubation with CB nanomaterial was not observed. CB nanomaterial induced bursting of GUVs while the shape of the remaining vesicles was on the average more elongated than in control suspension, indicating indirect osmotic effects of CB nanomaterial. CB nanomaterial interacts with membranes of blood cells but does not have a direct effect on local or global membrane shape in physiological in vitro conditions. Blood cells and GUVs are convenient and ethically acceptable

  2. Insertion of TAT peptide and perturbation of negatively charged model phospholipid bilayer revealed by neutron diffraction.

    PubMed

    Chen, Xiaochao; Sa'adedin, Farid; Deme, Bruno; Rao, Pingfan; Bradshaw, Jeremy

    2013-08-01

    TAT peptide is one of the best-characterized cell penetrating peptides derived from the transactivator of transcription protein from the human immunodeficiency virus 1. The aim of this study was to investigate the interaction between TAT peptide and partially negatively-charged phospholipid bilayer by using lamellar neutron diffraction. The main findings are the existence of a contiguous water channel across the bilayer in the presence of TAT peptide. Taken in combination with other observations, including thinning of the lipid bilayer, this unambiguously locates the peptide within the lipid bilayer. The interaction of TAT peptide with anionic lipid bilayer, composed of an 80:20 mixture of DOPC and DOPS, takes place at two locations. One is in the peripheral aqueous phase between adjacent bilayers and the second is below the glycerol backbone region of bilayer. A membrane thinning above a peptide concentration threshold (1mol%) was found, as was a contiguous transbilayer water channel at the highest peptide concentration (10mol%). This evidence leads to the suggestion that the toroidal pore model might be involved in the transmembrane of TAT peptide. We interpret the surface peptide distribution in the peripheral aqueous phase to be a massive exclusion of TAT peptide from its intrinsic location below the glycerol backbone region of the bilayer, due to the electrostatic attraction between the negatively-charged headgroups of phospholipids and the positively charged TAT peptides. Finally, we propose that the role that negatively-charged headgroups of DOPS lipids play in the transmembrane of TAT peptide is less important than previously thought. Copyright © 2013 Elsevier B.V. All rights reserved.

  3. Lipid based therapy for ulcerative colitis-modulation of intestinal mucus membrane phospholipids as a tool to influence inflammation.

    PubMed

    Schneider, Hannah; Braun, Annika; Füllekrug, Joachim; Stremmel, Wolfgang; Ehehalt, Robert

    2010-10-25

    Ulcerative colitis (UC) is the result of an inappropriate colonic inflammatory response triggered by environmental and genetic factors. We have recently shown that mucus from UC patients has a decreased phosphatidylcholine (PC) content, while clinical trials revealed that therapeutic addition of PC to the colonic mucus alleviated the inflammatory activity. The mechanisms behind this are still unclear. We hypothesized that PC has at least two possible functions in the intestine: First, it establishes the surface hydrophobicity of the mucus and therefore protects the underlying tissue against intraluminal aggressors; recent experiments on surgical specimens revealed reduced surface tension and hydrophobicity in UC patients. Second, mucus phospholipids might also be integrated into the plasma membranes of enterocytes and thereby influence the signaling state of the mucosa. PC has been shown to inhibit TNF-α induced pro-inflammatory responses including: (1) assembly of plasma membrane actin; (2) activation of MAP kinases ERK and p38; and (3) activation of NF-κB and synthesis of pro-inflammatory gene products. Other phospholipids like phosphatidylethanolamine or sphingomyelin had no effect. PC also inhibited latex bead phagosome actin assembly, killing of M. tuberculosis in macrophages, and sphingosine-1-phosphate induced actin assembly in macrophages. Collectively, these results provide a molecular foundation that shows PC, firstly, as an anti-inflammatory, and secondly, as a surface hydrophobicity increasing compound with promising therapeutic potential in the treatment of inflammatory bowel disease.

  4. A heteronuclear and homonuclear filtering strategy for studying the structure of membrane peptides in non-deuterated phospholipid vesicles

    NASA Astrophysics Data System (ADS)

    Doan, B. T.; Nezry, C.; Rene, L.; Badet, B.; Beloeil, J. C.

    1998-02-01

    NMR study of membrane biomolecules comes up against a poor solubility in classical solvents. A strategy was elaborated to obtain structural information of peptides in non deuterated phospholipids vesicles. It is based on isotopic (HSQC-NOESY) and homonuclear selective filters, both using a fine water suppression. The method is illustrated with the substance P, a 11-residue membrane neuropeptide. L'étude par RMN des biomolécules membranaires est délicate en raison de leur faible solubilité. Une stratégie d'étude a été élaborée pour obtenir des informations structurales de peptides dans un environnement de vésicules de phospholipides non deutérés. Elle repose sur des filtres isotopiques de type HSQC-NOESY et des filtres homonucléaires avec impulsion sélective, avec une suppression fine de l'eau. Un exemple est donné sur un neuropeptide membranaire de 11 résidus : la substance P.

  5. Qualitative and quantitative changes in phospholipids and proteins investigated by spectroscopic techniques in animal depression model

    NASA Astrophysics Data System (ADS)

    Depciuch, J.; Sowa-Kucma, M.; Nowak, G.; Papp, M.; Gruca, P.; Misztak, P.; Parlinska-Wojtan, M.

    2017-04-01

    Depression becomes nowadays a high mortality civilization disease with one of the major causes being chronic stress. Raman, Fourier Transform Infra Red (FTIR) and Ultraviolet-Visible (UV-vis) spectroscopies were used to determine the changes in the quantity and structure of phospholipids and proteins in the blood serum of rats subjected to chronic mild stress, which is a common animal depression model. Moreover, the efficiency of the imipramine treatment was evaluated. It was found that chronic mild stress not only damages the structure of the phospholipids and proteins, but also decreases their level in the blood serum. A 5 weeks imipramine treatment did increase slightly the quantity of proteins, leaving the damaged phospholipids unchanged. Structural information from phospholipids and proteins was obtained by UV-vis spectroscopy combined with the second derivative of the FTIR spectra. Indeed, the structure of proteins in blood serum of stressed rats was normalized after imipramine therapy, while the impaired structure of phospholipids remained unaffected. These findings strongly suggest that the depression factor, which is chronic mild stress, may induce permanent (irreversible) damages into the phospholipid structure identified as shortened carbon chains. This study shows a possible new application of spectroscopic techniques in the diagnosis and therapy monitoring of depression.

  6. Confocal microscopy of giant vesicles supports the absence of HIV-1 neutralizing 2F5 antibody reactivity to plasma membrane phospholipids.

    PubMed

    Apellaniz, Beatriz; García-Sáez, Ana J; Huarte, Nerea; Kunert, Renate; Vorauer-Uhl, Karola; Katinger, Hermann; Schwille, Petra; Nieva, José L

    2010-04-16

    The broadly neutralizing anti-HIV-1 2F5 monoclonal antibody recognizes a gp41 epitope proximal to the viral membrane. Potential phospholipid autoreactivity at cell surfaces has raised concerns about the use of this antibody for development of vaccines or immunotherapy. In this study, confocal microscopy of giant unilamellar vesicles (GUVs) was used to assess 2F5 reactivity with phospholipids assembled into bilayers with surface charge and curvature stress approximating those of the eukaryotic plasma membranes. Antibody partitioning into lipid bilayers required the specific recognition of membrane-inserted epitope, indicating that 2F5 was unable to directly react with GUV phospholipids, even under fluid phase segregation conditions. Our results thus support the feasibility of raising 2F5-like neutralizing responses through vaccination, and the medical safety of mAb infusions. Copyright 2010 Federation of European Biochemical Societies. Published by Elsevier B.V. All rights reserved.

  7. Isotropic solutions of phospholipid bicelles: a new membrane mimetic for high-resolution NMR studies of polypeptides.

    PubMed

    Vold, R R; Prosser, R S; Deese, A J

    1997-04-01

    In order to illustrate the utility of phospholipid bicelles [Sanders, C.R. and Schwonek, J.P. (1992) Biochemistry, 31, 8898-8905] as a membrane mimetic for high-resolution NMR studies, we have recorded two-dimensional 1H NMR spectra of the tetradecameric peptide mastoparan Vespula lewisii in an isotropic aqueous solution of dimyristoyl and dihexanoyl phosphatidylcholine. Mastoparan is largely unstructured in water, but assumes a well-defined helical conformation in association with the bilayers. A pronounced periodicity of the sequential NH chemical shifts provides strong evidence that the helix axis of this short peptide is parallel, rather than perpendicular, to the bilayer plane. The bicellar solutions still require in-depth morphological characterization, but they appear to be ideal media for NMR determination of the mode of binding and the structure of membrane-associated peptides and proteins.

  8. Effects of crude oil on phospholipid fatty acid compositions of marine hydrocarbon degraders: estimation of the bacterial membrane fluidity.

    PubMed

    Mazzella, N; Syakti, A D; Molinet, J; Gilewicz, M; Doumenq, P; Artaud, J; Bertrand, J-C

    2005-03-01

    In this study, we investigated, in vitro, the effects of petroleum hydrocarbons on the phospholipid ester-linked fatty acid composition of Corynebacterium sp. Strain 8. The usual ratio of monounsaturated fatty acids E/Z (or trans/cis) was calculated. This ratio led to unexpected results because we found similar values for growths on either a hydrophobic substrate (crude oil) or a soluble carbon source (rich medium). The use of such an indicator seemed limited for monitoring an environmental stress, so we proposed an index based on the homeoviscous adaptation theory. A membrane viscosity index was defined and applied to Corynebacterium sp. Strain 8 (in vitro growth) and to a sedimentary community (in situ experiment). The results allowed us to estimate the membrane fluidity of both an isolated strain and a bacterial community in accordance with the medium hydrophobicity.

  9. Impaired Lysosomal Integral Membrane Protein 2-dependent Peroxiredoxin 6 Delivery to Lamellar Bodies Accounts for Altered Alveolar Phospholipid Content in Adaptor Protein-3-deficient pearl Mice.

    PubMed

    Kook, Seunghyi; Wang, Ping; Young, Lisa R; Schwake, Michael; Saftig, Paul; Weng, Xialian; Meng, Ying; Neculai, Dante; Marks, Michael S; Gonzales, Linda; Beers, Michael F; Guttentag, Susan

    2016-04-15

    The Hermansky Pudlak syndromes (HPS) constitute a family of disorders characterized by oculocutaneous albinism and bleeding diathesis, often associated with lethal lung fibrosis. HPS results from mutations in genes of membrane trafficking complexes that facilitate delivery of cargo to lysosome-related organelles. Among the affected lysosome-related organelles are lamellar bodies (LB) within alveolar type 2 cells (AT2) in which surfactant components are assembled, modified, and stored. AT2 from HPS patients and mouse models of HPS exhibit enlarged LB with increased phospholipid content, but the mechanism underlying these defects is unknown. We now show that AT2 in the pearl mouse model of HPS type 2 lacking the adaptor protein 3 complex (AP-3) fails to accumulate the soluble enzyme peroxiredoxin 6 (PRDX6) in LB. This defect reflects impaired AP-3-dependent trafficking of PRDX6 to LB, because pearl mouse AT2 cells harbor a normal total PRDX6 content. AP-3-dependent targeting of PRDX6 to LB requires the transmembrane protein LIMP-2/SCARB2, a known AP-3-dependent cargo protein that functions as a carrier for lysosomal proteins in other cell types. Depletion of LB PRDX6 in AP-3- or LIMP-2/SCARB2-deficient mice correlates with phospholipid accumulation in lamellar bodies and with defective intraluminal degradation of LB disaturated phosphatidylcholine. Furthermore, AP-3-dependent LB targeting is facilitated by protein/protein interaction between LIMP-2/SCARB2 and PRDX6 in vitro and in vivo Our data provide the first evidence for an AP-3-dependent cargo protein required for the maturation of LB in AT2 and suggest that the loss of PRDX6 activity contributes to the pathogenic changes in LB phospholipid homeostasis found HPS2 patients.

  10. The phospholipid flippase ATP9A is required for the recycling pathway from the endosomes to the plasma membrane.

    PubMed

    Tanaka, Yoshiki; Ono, Natsuki; Shima, Takahiro; Tanaka, Gaku; Katoh, Yohei; Nakayama, Kazuhisa; Takatsu, Hiroyuki; Shin, Hye-Won

    2016-12-01

    Type IV P-type ATPases (P4-ATPases) are phospholipid flippases that translocate phospholipids from the exoplasmic (or luminal) to the cytoplasmic leaflet of lipid bilayers. In Saccharomyces cerevisiae, P4-ATPases are localized to specific subcellular compartments and play roles in compartment-mediated membrane trafficking; however, roles of mammalian P4-ATPases in membrane trafficking are poorly understood. We previously reported that ATP9A, one of 14 human P4-ATPases, is localized to endosomal compartments and the Golgi complex. In this study, we found that ATP9A is localized to phosphatidylserine (PS)-positive early and recycling endosomes, but not late endosomes, in HeLa cells. Depletion of ATP9A delayed the recycling of transferrin from endosomes to the plasma membrane, although it did not affect the morphology of endosomal structures. Moreover, depletion of ATP9A caused accumulation of glucose transporter 1 in endosomes, probably by inhibiting their recycling. By contrast, depletion of ATP9A affected neither the early/late endosomal transport and degradation of epidermal growth factor (EGF) nor the transport of Shiga toxin B fragment from early/recycling endosomes to the Golgi complex. Therefore ATP9A plays a crucial role in recycling from endosomes to the plasma membrane. © 2016 Tanaka, Ono, et al. This article is distributed by The American Society for Cell Biology under license from the author(s). Two months after publication it is available to the public under an Attribution–Noncommercial–Share Alike 3.0 Unported Creative Commons License (http://creativecommons.org/licenses/by-nc-sa/3.0).

  11. Interactions among triphenyltin degradation, phospholipid synthesis and membrane characteristics of Bacillus thuringiensis in the presence of d-malic acid.

    PubMed

    Wang, Linlin; Yi, Wenying; Ye, Jinshao; Qin, Huaming; Long, Yan; Yang, Meng; Li, Qusheng

    2017-02-01

    Degradation pathway and surface biosorption of triphenyltin (TPT) by effective microbes have been investigated in the past. However, unclear interactions among membrane components and TPT binding and transport are still obstacles to understanding TPT biotransformation. To reveal the mechanism involved, the phospholipid expression, membrane potential, cellular mechanism and molecular dynamics between TPT and fatty acids (FAs) during the TPT degradation process in the presence of d-malic acid (DMA) were studied. The results show that the degradation efficiency of 1 mg L(-1) TPT by Bacillus thuringiensis (1 g L(-1)) with 0.5 or 1 mg L(-1) DMA reached values up to approximately 90% due to the promotion of element metabolism and cellular activity, and the depression of FA synthesis induced by DMA. The addition of DMA caused conversion of more linoleic acid into 10-oxo-12(Z)-octadecenoic acid, increased the membrane permeability, and alleviated the decrease in membrane potential, resulting in TPT transport and degradation. Fluorescence analysis reveals that the endospore of B. thuringiensis could act as an indicator for membrane potential and cellular activities. The current findings are advantageous for acceleration of biosorption, transport and removal of pollutants from natural environments. Copyright © 2016 Elsevier Ltd. All rights reserved.

  12. Escherichia coli phage-shock protein A (PspA) binds to membrane phospholipids and repairs proton leakage of the damaged membranes.

    PubMed

    Kobayashi, Ryuji; Suzuki, Toshiharu; Yoshida, Masasuke

    2007-10-01

    Escherichia coli phage-shock protein A (PspA), a 25.3 kDa peripheral membrane protein, is induced under the membrane stress conditions and is assumed to help maintain membrane potential. Here, we report that purified PspA, existing as a large oligomer, is really able to suppress proton leakage of the membranes. This was demonstrated for membrane vesicles prepared from the PspA-lacking E. coli mutants, and for membrane vesicles damaged by ethanol and Triton X-100 prepared from the mutant and the wild-type cells. PspA also suppressed proton leakage of damaged liposomes made from E. coli total lipids. Furthermore, we found that PspA bound preferentially to liposomes containing phosphatidylserine and phosphatidylglycerol. All these effects were not observed for monomer PspA that was prepared by refolding of urea-denatured PspA. These results indicate that oligomers of PspA bind to membrane phospholipids and suppress proton leakage.

  13. Conformation of the tridimensional structure of 1,2,3,4,6-pentagalloyl-β-D-glucopyranose (PGG) by (1)H NMR, NOESY and theoretical study and membrane interaction in a simulated phospholipid bilayer: a first insight.

    PubMed

    Beretta, Giangiacomo; Artali, Roberto; Caneva, Enrico; Maffei Facino, Roberto

    2011-03-01

    1,2,3,4,6-Penta-O-galloyl-β-D-glucopyranose (PGG) is a polyphenolic compound found in substantial amounts in a number of medicinal herbs. We report (i) its conformational analysis by solution NMR and molecular dynamics calculation and (ii) theoretical study of its interaction with a model membrane bilayer. The galloyl groups B and E appear to play important roles in the interaction with the phospholipid bilayer. Copyright © 2011 John Wiley & Sons, Ltd.

  14. Change in the fatty acid pattern of erythrocyte membrane phospholipids after oral supplementation of specific fatty acids in patients with gastrointestinal diseases.

    PubMed

    Siener, R; Alteheld, B; Terjung, B; Junghans, B; Bitterlich, N; Stehle, P; Metzner, C

    2010-04-01

    The fatty acid pattern of membrane phospholipids is suggested to affect membrane fluidity and epithelial barrier function as a result of membrane fatty acid unsaturation. The incorporation of n-3 polyunsaturated fatty acids (PUFAs) into membrane phospholipids may diminish inflammatory potential in patients with gastrointestinal diseases. The aim of this study was to improve the fatty acid profile of erythrocyte membrane phospholipids after oral supplementation of specific fatty acids in patients with maldigestion and/or malabsorption. We conducted a randomized, double-blind, controlled trial. A total of 48 patients with gastrointestinal diseases received either fat-soluble vitamins A,D,E,K (ADEK) or ADEK plus fatty acids alpha-linolenic acid (ALA), docosahexaenoic acid (DHA) and medium-chain triglycerides (FA-ADEK) for 12 weeks. The fatty acid profile of erythrocyte membrane phospholipids, dietary intake, plasma antioxidant vitamins and serum gamma-glutamyl transferase (GGT) were evaluated at baseline, 8 and 12 weeks after supplementation. Supplementation with FA-ADEK increased ALA, DHA and eicosapentaenoic acid (EPA) concentrations of erythrocyte membrane phospholipids by 0.040, 1.419 and 0.159%, respectively, compared with ADEK supplementation (-0.007, 0.151 and 0.002%, respectively) after 12 weeks (all Pmembrane fatty acid pattern demonstrates the incorporation of orally administered n-3 PUFA in patients with maldigestion and malabsorption. The increase in ALA and DHA, as well as the conversion of ALA to EPA is attributed to the supplementation of sufficient amounts of ALA and DHA, respectively. Serum GGT activity decreased in response to decreased oxidative stress.

  15. Cyclic and Linear Monoterpenes in Phospholipid Membranes: Phase Behavior, Bilayer Structure, and Molecular Dynamics.

    PubMed

    Pham, Quoc Dat; Topgaard, Daniel; Sparr, Emma

    2015-10-13

    Monoterpenes are abundant in essential oils extracted from plants. These relatively small and hydrophobic molecules have shown important biological functions, including antimicrobial activity and membrane penetration enhancement. The interaction between the monoterpenes and lipid bilayers is considered important to the understanding of the biological functions of monoterpenes. In this study, we investigated the effect of cyclic and linear monoterpenes on the structure and dynamics of lipids in model membranes. We have studied the ternary system 1,2-dimyristoyl-sn-glycero-3-phosphocholine-monoterpene-water as a model with a focus on dehydrated conditions. By combining complementary techniques, including differential scanning calorimetry, solid-state nuclear magnetic resonance, and small- and wide-angle X-ray scattering, bilayer structure, phase transitions, and lipid molecular dynamics were investigated at different water contents. Monoterpenes cause pronounced melting point depression and phase segregation in lipid bilayers, and the extent of these effects depends on the hydration conditions. The addition of a small amount of thymol to the fluid bilayer (volume fraction of 0.03 in the bilayer) leads to an increased order in the acyl chain close to the bilayer interface. The findings are discussed in relation to biological systems and lipid formulations.

  16. A Two-Stage Model for Lipid Modulation of the Activity of Integral Membrane Proteins

    PubMed Central

    Dodes Traian, Martín M.; Cattoni, Diego I.; Levi, Valeria; González Flecha, F. Luis

    2012-01-01

    Lipid-protein interactions play an essential role in the regulation of biological function of integral membrane proteins; however, the underlying molecular mechanisms are not fully understood. Here we explore the modulation by phospholipids of the enzymatic activity of the plasma membrane calcium pump reconstituted in detergent-phospholipid mixed micelles of variable composition. The presence of increasing quantities of phospholipids in the micelles produced a cooperative increase in the ATPase activity of the enzyme. This activation effect was reversible and depended on the phospholipid/detergent ratio and not on the total lipid concentration. Enzyme activation was accompanied by a small structural change at the transmembrane domain reported by 1-aniline-8-naphtalenesulfonate fluorescence. In addition, the composition of the amphipilic environment sensed by the protein was evaluated by measuring the relative affinity of the assayed phospholipid for the transmembrane surface of the protein. The obtained results allow us to postulate a two-stage mechanistic model explaining the modulation of protein activity based on the exchange among non-structural amphiphiles at the hydrophobic transmembrane surface, and a lipid-induced conformational change. The model allowed to obtain a cooperativity coefficient reporting on the efficiency of the transduction step between lipid adsorption and catalytic site activation. This model can be easily applied to other phospholipid/detergent mixtures as well to other membrane proteins. The systematic quantitative evaluation of these systems could contribute to gain insight into the structure-activity relationships between proteins and lipids in biological membranes. PMID:22723977

  17. Fatty acids and plasmalogens of the phospholipids of the sperm membranes and their relation with the post-thaw quality of stallion spermatozoa.

    PubMed

    Macías García, B; González Fernández, L; Ortega Ferrusola, C; Morillo Rodríguez, A; Gallardo Bolaños, J M; Rodríguez Martinez, H; Tapia, J A; Morcuende, D; Peña, F J

    2011-03-15

    Fatty acids and plasmalogens were extracted from the phospholipids of the plasma membrane of stallion spermatozoa, to determine their relation with sperm quality after freezing and thawing. Sperm quality was rated using a quality index that combined the results of the analysis of sperm motility and velocity (CASA analysis), membrane status and mitochondrial membrane potential (flow cytometry) post thaw. Receiving operating system (ROC) curves were used to evaluate the value of specific lipid components of the sperm membrane herein studied as forecast of potential freezeability. From all parameters studied the ratio of percentage of C16 plasmalogens related to total phospholipids was the one with the better diagnostic value. For potentially bad freezers, the significant area under the ROC-curve was 0.74, with 75% sensitivity and 79.9% specificity for a cut off value of 26.9. Also the percentage of plasmalogens respect to total phospholipids gave good diagnostic value for bad freezers. On the other hand, the percentage of C18 fatty aldehydes related to total phospholipids of the sperm membrane properly forecasted freezeability with an area under the ROC curve of 0.70 with 70% sensitivity and 62.5% specificity for a cut off value of 0.32. Copyright © 2011 Elsevier Inc. All rights reserved.

  18. Membrane phospholipid composition may contribute to exceptional longevity of the naked mole-rat (Heterocephalus glaber): a comparative study using shotgun lipidomics.

    PubMed

    Mitchell, Todd W; Buffenstein, Rochelle; Hulbert, A J

    2007-11-01

    Phospholipids containing highly polyunsaturated fatty acids are particularly prone to peroxidation and membrane composition may therefore influence longevity. Phospholipid molecules, in particular those containing docosahexaenoic acid (DHA), from the skeletal muscle, heart, liver and liver mitochondria were identified and quantified using mass-spectrometry shotgun lipidomics in two similar-sized rodents that show an approximately 9-fold difference in maximum lifespan. The naked mole rat is the longest-living rodent known with a maximum lifespan of >28 years. Total phospholipid distribution is similar in tissues of both species; DHA is only found in phosphatidylcholines (PC), phosphatidylethanolamines (PE) and phosphatidylserines (PS), and DHA is relatively more concentrated in PE than PC. Naked mole-rats have fewer molecular species of both PC and PE than do mice. DHA-containing phospholipids represent 27-57% of all phospholipids in mice but only 2-6% in naked mole-rats. Furthermore, while mice have small amounts of di-polyunsaturated PC and PE, these are lacking in naked mole-rats. Vinyl ether-linked phospholipids (plasmalogens) are higher in naked mole-rat tissues than in mice. The lower level of DHA-containing phospholipids suggests a lower susceptibility to peroxidative damage in membranes of naked mole-rats compared to mice. Whereas the high level of plasmalogens might enhance membrane antioxidant protection in naked mole-rats compared to mice. Both characteristics possibly contribute to the exceptional longevity of naked mole-rats and may indicate a special role for peroxisomes in this extended longevity.

  19. Functional redundancy of CDP-ethanolamine and CDP-choline pathway enzymes in phospholipid biosynthesis: ethanolamine-dependent effects on steady-state membrane phospholipid composition in Saccharomyces cerevisiae.

    PubMed Central

    McGee, T P; Skinner, H B; Bankaitis, V A

    1994-01-01

    It has been established that yeast membrane phospholipid content is responsive to the inositol and choline content of the growth medium. Alterations in the levels of transcription of phospholipid biosynthetic enzymes contribute significantly to this response. We now describe conditions under which ethanolamine can exert significant influence on yeast membrane phospholipid composition. We demonstrate that mutations which block a defined subset of the reactions required for the biosynthesis of phosphatidylcholine (PC) via the CDP-choline pathway cause ethanolamine-dependent effects on the steady-state levels of bulk PC in yeast membranes. Such an ethanolamine-dependent reduction in bulk membrane PC content was observed for both choline kinase (cki) and choline phosphotransferase (cpt1) mutants, but it was not observed for mutants defective in cholinephosphate cytidylyltransferase, the enzyme that catalyzes the penultimate reaction of the CDP-choline pathway for PC biosynthesis. Moreover, the ethanolamine effect observed for cki and cpt1 mutants was independent of the choline content of the growth medium. Finally, we found that haploid yeast strains defective in the activity of both the choline and ethanolamine phosphotransferases experienced an ethanolamine-insensitive reduction in steady-state PC content, an effect which was not observed in strains defective in either one of these activities alone. The collective data indicate that specific enzymes of the CDP-ethanolamine pathway for phosphatidylethanolamine biosynthesis, while able to contribute to PC synthesis when yeast cells are grown under conditions of ethanolamine deprivation, do not do so when yeast cells are presented with this phospholipid headgroup precursor. Images PMID:7961445

  20. Hysteresis-like binding of coagulation factors X/Xa to procoagulant activated platelets and phospholipids results from multistep association and membrane-dependent multimerization.

    PubMed

    Podoplelova, Nadezhda A; Sveshnikova, Anastasia N; Kurasawa, James H; Sarafanov, Andrey G; Chambost, Herve; Vasil'ev, Sergey A; Demina, Irina A; Ataullakhanov, Fazly I; Alessi, Marie-Christine; Panteleev, Mikhail A

    2016-06-01

    Binding of coagulation factors X (fX) and Xa (fXa) to activated platelets is required for the formation of membrane-dependent enzymatic complexes of intrinsic tenase and prothrombinase. We carried out an in-depth characterization of fX/fXa binding to phospholipids and gel-filtered, thrombin-activated platelets. Flow cytometry, surface plasmon resonance, and computational modeling were used to investigate interactions of fX/fXa with the membranes. Confocal microscopy was employed to study fXa binding to platelet thrombi formed in flowing whole blood under arterial conditions. Binding of fX/fXa to either vesicles or procoagulant platelets did not follow a traditional one-step reversible binding model. Their dissociation was a two-step process resulting in a plateau that was up to 10-fold greater than the saturation value observed in the association experiments. Computational modeling and experimental evidence suggested that this was caused by a combination of two-step association (mainly for fX) and multimerization on the membrane (mainly for fXa). Importantly, fX formed multimers with fXa, thereby improving its retention. The same binding/dissociation hysteresis was observed for annexin V known to form trimers on the membranes. Experiments with platelets from gray syndrome patients showed that alpha-granular factor Va provided an additional high-affinity binding site for fXa that did not affect the hysteresis. Confocal microscopy observation of fXa binding to platelet thrombi in a flow chamber and its wash-out confirmed that this phenomenon persisted under physiologically relevant conditions. This suggests its possible role of "locking" coagulation factors on the membrane and preventing their inhibition in plasma and removal from thrombi by flow.

  1. Molecular dynamics simulation of short-wavelength collective dynamics of phospholipid membranes

    NASA Astrophysics Data System (ADS)

    Conti Nibali, Valeria; D'Angelo, Giovanna; Tarek, Mounir

    2014-05-01

    We investigated the short-wavelength longitudinal and transverse collective dynamics of the fluid and gel phases of phospholipid bilayers by means of molecular dynamics simulation. Similarly to a crystal, the spectrum of collective excitations in a bilayer consists of longitudinal and transverse acoustic modes, though modified by disorder. Beside acoustic modes, a series of broad dispersionless excitations are revealed. The dispersion curves of the observed excitations may be represented in a pseudo-Brillouin zone scheme centered around the spatial correlation peak of the acyl chains. The study provides evidence for a resonant interaction between the lowest frequency optical phonon and the longitudinal acoustic mode.

  2. Probing the Local Order of Single Phospholipid Membranes Using Grazing Incidence X-Ray Diffraction

    NASA Astrophysics Data System (ADS)

    Miller, C. E.; Majewski, J.; Watkins, E. B.; Mulder, D. J.; Gog, T.; Kuhl, T. L.

    2008-02-01

    We report the first grazing incidence x-ray diffraction measurements of a single phospholipid bilayer at the solid-liquid interface. Our grazing incidence x-ray diffraction and reflectivity measurements reveal that the lateral ordering in a supported DPPE (1, 2-Dipalmitoyl-sn-Glycero-3-Phosphoethanolamine) bilayer is significantly less than that of an equivalent monolayer at the air-liquid interface. Our findings also indicate that the leaflets of the bilayer are uncoupled in contrast to the scattering from free standing phosphatidylcholine bilayers. The methodology presented can be readily implemented to study more complicated biomembranes and their interaction with proteins.

  3. Hydration strongly affects the molecular and electronic structure of membrane phospholipids

    NASA Astrophysics Data System (ADS)

    Mashaghi, Alireza; Partovi-Azar, P.; Jadidi, Tayebeh; Nafari, Nasser; Maass, Philipp; Tabar, M. Reza Rahimi; Bonn, Mischa; Bakker, Huib J.

    2012-03-01

    We investigate the structure and electronic properties of phosphatidylcholine (PC) under different degrees of hydration at the single-molecule and monolayer type level by linear scaling ab initio calculations. Upon hydration, the phospholipid undergoes drastic long-range conformational rearrangements which lead to a sickle-like ground-state shape. The structural unit of the tilted gel-phase PC appears to be a water-bridged PC dimer. We find that hydration dramatically alters the surface potential, dipole and quadrupole moments of the lipids and consequently guides the interactions of the lipids with other molecules and the communication between cells.

  4. Modeling multicomponent reactive membranes

    NASA Astrophysics Data System (ADS)

    Kuksenok, Olga; Balazs, Anna C.

    2007-05-01

    Using analytical calculations and computer simulations, we study binary AB and ternary ABC membranes that respond to an external stimulus by interconverting A and B components. The C component is assumed to be nonreactive and is incompatible with both A and B . We also assume that A and B have different spontaneous curvatures. The dynamics of the ternary system is described in terms of three order parameters: two specify the local composition and a third characterizes the local height of the membrane. Our description of the two-component membrane is based on a recent model proposed by Reigada [Phys. Rev. E. 72, 051921 (2005)]; we extend the latter approach by explicitly including the effects of the membrane’s surface tension on the phase behavior of the system. By performing a linear stability analysis, we determine the behavior of the reactive AB membrane for a given bending elasticity and surface tension at different values of the reaction rate coefficients. We also numerically integrate the governing dynamic equations, and the results of these simulations are in agreement with the analytical predictions. For the two-component membranes, we calculate two critical values of the reaction rate coefficients, which define the behavior of the system, and plot the phase diagrams in terms of different parameters. We illustrate that the surface tension of the membrane strongly affects these critical values of the reaction rate coefficients and therefore the location of the phase boundaries. We also pinpoint the regions on the phase diagram where the late-time behavior is affected by the initial fluctuations, i.e., where such a reactive system has some “memory” of its prior state. In the case of the three-component system, we show that the presence of the nonreactive C component strongly affects the composition and topology of the membrane, as well as critically altering the propagation of the traveling waves within the system.

  5. Mechanical Properties of Membranes Composed of Gel-Phase or Fluid-Phase Phospholipids Probed on Liposomes by Atomic Force Spectroscopy.

    PubMed

    Et-Thakafy, Oumaima; Delorme, Nicolas; Gaillard, Cédric; Mériadec, Cristelle; Artzner, Franck; Lopez, Christelle; Guyomarc'h, Fanny

    2017-05-30

    In many liposome applications, the nanomechanical properties of the membrane envelope are essential to ensure, e.g., physical stability, protection, or penetration into tissues. Of all factors, the lipid composition and its phase behavior are susceptible to tune the mechanical properties of membranes. To investigate this, small unilamellar vesicles (SUV; diameter < 200 nm), referred to as liposomes, were produced using either unsaturated 1,2-dioleoyl-sn-glycero-3-phosphocholine (DOPC) or saturated 1,2-dipalmitoyl-sn-glycero-3-phosphocholine (DPPC) in aqueous buffer at pH 6.7. The respective melting temperatures of these phospholipids were -20 and 41 °C. X-ray diffraction analysis confirmed that at 20 °C DOPC was in the fluid phase and DPPC was in the gel phase. After adsorption of the liposomes onto flat silicon substrates, atomic force microscopy (AFM) was used to image and probe the mechanical properties of the liposome membrane. The resulting force-distance curves were treated using an analytical model based on the shell theory to yield the Young's modulus (E) and the bending rigidity (kC) of the curved membranes. The mechanical investigation showed that DPPC membranes were much stiffer (E = 116 ± 45 MPa) than those of DOPC (E = 13 ± 9 MPa) at 20 °C. The study demonstrates that the employed methodology allows discrimination of the respective properties of gel- or fluid-phase membranes when in the shape of liposomes. It opens perspectives to map the mechanical properties of liposomes containing both fluid and gel phases or of biological systems.

  6. Phospholipids Induce Conformational Changes of SecA to Form Membrane-Specific Domains: AFM Structures and Implication on Protein-Conducting Channels

    PubMed Central

    You, Zhipeng; Liao, Meijiang; Zhang, Hao; Yang, Hsiuchin; Pan, Xijian; Houghton, John E.; Sui, Sen-fang; Tai, Phang C.

    2013-01-01

    SecA, an essential component of the Sec machinery, exists in a soluble and a membrane form in Escherichia coli. Previous studies have shown that the soluble SecA transforms into pore structures when it interacts with liposomes, and integrates into membranes containing SecYEG in two forms: SecAS and SecAM; the latter exemplified by two tryptic membrane-specific domains, an N-terminal domain (N39) and a middle M48 domain (M48). The formation of these lipid-specific domains was further investigated. The N39 and M48 domains are induced only when SecA interacts with anionic liposomes. Additionally, the N-terminus, not the C-terminus of SecA is required for inducing such conformational changes. Proteolytic treatment and sequence analyses showed that liposome-embedded SecA yields the same M48 and N39 domains as does the membrane-embedded SecA. Studies with chemical extraction and resistance to trypsin have also shown that these proteoliposome-embedded SecA fragments exhibit the same stability and characteristics as their membrane-embedded SecA equivalents. Furthermore, the cloned lipid-specific domains N39 and M48, but not N68 or C34, are able to form partial, but imperfect ring-like structures when they interact with phospholipids. These ring-like structures are characteristic of a SecA pore-structure, suggesting that these domains contribute part of the SecA-dependent protein-conducting channel. We, therefore, propose a model in which SecA alone is capable of forming a lipid-specific, asymmetric dimer that is able to function as a viable protein-conducting channel in the membrane, without any requirement for SecYEG. PMID:23977317

  7. To what end does nature produce superoxide? NADPH oxidase as an autocrine modifier of membrane phospholipids generating paracrine lipid messengers.

    PubMed

    Saran, Manfred

    2003-10-01

    Production of superoxide anion O2*- by the membrane-bound enzyme NADPH oxidase of phagocytes is a long-known phenomenon; it is generally assumed that O2*-helps phagocytes kill bacterial intruders. The details and the chemistry of the killing process have, however, remained a mystery. Isoforms of NADPH oxidase exist in membranes of nearly every cell, suggesting that reactive oxygen species (ROS) participate in intra- and intercellular signaling processes. What the nature of the signal is exactly, how it is transmitted, and what structural characteristics a receptor of a "radical message" must have, have not been addressed convincingly. This review discusses how the action of messengers is in agreement with radical-specific behavior. In search for the smallest common denominator of cellular free radical activity we hypothesize that O2*- and its conjugate acid, HO2*, may have evolved under primordial conditions as regulators of membrane mechanics and that isoprostanes, widely used markers of "oxidative stress", may be an adventitious correlate of this biologic activity of O2*-/HO2*. An overall picture is presented that suggests that O2*-/HO2* radicals, by modifying cell membranes, help other agents gain access to the hydrophobic region of phospholipid bilayers and hence contribute to lipid-dependent signaling cascades. With this, O2*-/HO2* are proposed as indispensable adjuvants for the generation of cellular signals, for membrane transport, channel gating and hence, in a global sense, for cell viability and growth. We also suggest that many of the allegedly O2*- dependent bacterial pathologies and carcinogenic derailments are due to membrane-modifying activity rather than other chemical reactions of O2*-/HO2*. A consequence of this picture is the potential evolution of the "radical theory of ageing" to a "lipid theory of aging".

  8. Neutron Scattering Studies of the Effects of Formulating Amphotericin B with Cholesteryl Sulfate on the Drug's Interactions with Phospholipid and Phospholipid-Sterol Membranes.

    PubMed

    Foglia, F; Rogers, S E; Webster, J R P; Akeroyd, F A; Gascoyne, K F; Lawrence, M J; Barlow, D J

    2015-07-28

    Langmuir surface pressure, small-angle neutron scattering (SANS), and neutron reflectivity (NR) studies have been performed to determine how formulation of the antifungal drug amphotericin B (AmB), with sodium cholesteryl sulfate (SCS)-as in Amphotec-affects its interactions with ergosterol-containing (model fungal cell) and cholesterol-containing (model mammalian cell) membranes. The effects of mixing AmB in 1:1 molar ratio with cholesteryl sulfate (yielding AmB-SCS micelles) are compared against those of free AmB, using monolayers and bilayers formed from palmitoyloleoylphosphatidylcholine (POPC) in the absence and presence of 30 mol % ergosterol or cholesterol, in all cases employing a 1:0.05 molar ratio of lipid:AmB. Analyses of the (bilayer) SANS and (monolayer) NR data indicate that the equilibrium changes in membrane structure induced in sterol-free and sterol-containing membranes are the same for free AmB and AmB-SCS. Stopped-flow SANS experiments, however, reveal that the structural changes to vesicle membranes occur far more rapidly following exposure to AmB-SCS vs free drug, with the kinetics of these changes varying with membrane composition. With POPC vesicles, the structural changes induced by AmB-SCS become apparent only after several minutes, and equilibrium is reached after ∼30 min. The corresponding onset of changes in POPC-ergosterol and POPC-cholesterol vesicles, however, occurs within ∼5 s, with equilibrium reached after 10 and 120 s, respectively. The rate of insertion of AmB into POPC-sterol membranes is thus increased through formulation as AmB-SCS. Moreover, the differences in monolayer surface pressure and SANS structure-change equilibration times suggest significant rearrangement of AmB within these membranes following insertion. The reduced times to equilibrium for the POPC-ergosterol vs POPC-cholesterol systems are consistent with the known differences in affinity of AmB for these two sterols, and the reduced time to equilibrium for

  9. Phospholipids of Azotobacter vinelandii

    PubMed Central

    Jurtshuk, Peter; Schlech, Barry A.

    1969-01-01

    Analyses of resting cells of Azotobacter vinelandii revealed that numerous phospholipids were present that did not concentrate in the membranous R3 fraction which carried out electron transport function. PMID:5776538

  10. Etoposide incorporated into camel milk phospholipids liposomes shows increased activity against fibrosarcoma in a mouse model.

    PubMed

    Maswadeh, Hamzah M; Aljarbou, Ahmad N; Alorainy, Mohammed S; Alsharidah, Mansour S; Khan, Masood A

    2015-01-01

    Phospholipids were isolated from camel milk and identified by using high performance liquid chromatography and gas chromatography-mass spectrometry (GC/MS). Anticancer drug etoposide (ETP) was entrapped in liposomes, prepared from camel milk phospholipids, to determine its activity against fibrosarcoma in a murine model. Fibrosarcoma was induced in mice by injecting benzopyrene (BAP) and tumor-bearing mice were treated with various formulations of etoposide, including etoposide entrapped camel milk phospholipids liposomes (ETP-Cam-liposomes) and etoposide-loaded DPPC-liposomes (ETP-DPPC-liposomes). The tumor-bearing mice treated with ETP-Cam-liposomes showed slow progression of tumors and increased survival compared to free ETP or ETP-DPPC-liposomes. These results suggest that ETP-Cam-liposomes may prove to be a better drug delivery system for anticancer drugs.

  11. The membrane-activity of Ibuprofen, Diclofenac, and Naproxen: a physico-chemical study with lecithin phospholipids.

    PubMed

    Manrique-Moreno, Marcela; Moreno, Marcela Manrique; Garidel, Patrick; Suwalsky, Mario; Howe, Jörg; Brandenburg, Klaus

    2009-06-01

    Nonsteroidal anti-inflammatory drugs (NSAIDs) represent non-specific inhibitors of the cycloxygenase pathway of inflammation, and therefore an understanding of the interaction process of the drugs with membrane phospholipids is of high relevance. We have studied the interaction of the NSAIDs with phospholipid membranes made from dimyristoylphosphatidylcholine (DMPC) by applying Fourier-transform infrared spectroscopy (FTIR), Förster resonance energy transfer spectroscopy (FRET), differential scanning calorimetry (DSC) and isothermal titration calorimetry (ITC). FTIR data obtained via attenuated total reflectance (ATR) show that the interaction between DMPC and NSAIDs is limited to a strong interaction of the drugs with the phosphate region of the lipid head group. The FTIR transmission data furthermore are indicative of a strong effect of the drugs on the hydrocarbon chains inducing a reduction of the chain-chain interactions, i.e., a fluidization effect. Parallel to this, from the DSC data beside the decrease of T(m) a reduction of the peak height of the melting endotherm connected with its broadening is observed, but leaving the overall phase transition enthalpy constant. Additionally, phase separation is observed, inducing the formation of a NSAID-rich and a NSAID-poor phase. This is especially pronounced for Diclofenac. Despite the strong influence of the drugs on the acyl chain moiety, FRET data do not reveal any evidence for drug incorporation into the lipid matrix, and ITC measurements performed do not exhibit any heat production due to drug binding. This implies that the interaction process is governed by only entropic reactions at the lipid/water interface.

  12. Blood clotting reactions on nanoscale phospholipid bilayers.

    PubMed

    Morrissey, James H; Pureza, Vincent; Davis-Harrison, Rebecca L; Sligar, Stephen G; Ohkubo, Y Zenmei; Tajkhorshid, Emad

    2008-01-01

    Blood clotting reactions, such as those catalyzed by the tissue factor:factor VIIa complex (TF:FVIIa), assemble on membrane surfaces containing anionic phospholipids such as phosphatidylserine (PS). In fact, membrane binding is critical for the function of most of the steps in the blood clotting cascade. In spite of this, our understanding of how the membrane contributes to catalysis, or even how these proteins interact with phospholipids, is incomplete. Making matters more complicated, membranes containing mixtures of PS and neutral phospholipids are known to spontaneously form PS-rich membrane microdomains in the presence of plasma concentrations of calcium ions, and it is likely that blood-clotting proteases such as TF:FVIIa partition into these PS-rich microdomains. Unfortunately, little is known about how membrane microdomain composition influences the activity of blood-clotting proteases, which is typically not under experimental control even in "simple" model membranes. Our laboratories have developed and applied new technologies for studying membrane proteins to gain insights into how blood-clotting protease-cofactor pairs assemble and function on membrane surfaces. This includes using a novel, nanoscale bilayer system (Nanodiscs) that permits assembling blood-clotting protease-cofactor pairs on stable bilayers containing from 65 to 250 phospholipid molecules per leaflet. We have used this system to investigate how local (nanometer-scale) changes in phospholipid bilayer composition modulate TF:FVIIa activity. We have also used detailed molecular-dynamics simulations of nanoscale bilayers to provide atomic-scale predictions of how the membrane-binding domain of factor VIIa interacts with PS in membranes.

  13. Blood clotting reactions on nanoscale phospholipid bilayers

    PubMed Central

    Morrissey, James H.; Pureza, Vincent; Davis-Harrison, Rebecca L.; Sligar, Stephen G.; Ohkubo, Y. Zenmei; Tajkhorshid, Emad

    2010-01-01

    Blood clotting reactions, such as those catalyzed by the tissue factor/factor VIIa complex (TF:VIIa), assemble on membrane surfaces containing anionic phospholipids such as phosphatidylserine (PS). In fact, membrane binding is critical for the function of most of the steps in the blood clotting cascade. In spite of this, our understanding of how the membrane contributes to catalysis, or even how these proteins interact with phospholipids, is incomplete. Making matters more complicated, membranes containing mixtures of PS and neutral phospholipids are known to spontaneously form PS-rich membrane microdomains in the presence of plasma concentrations of calcium ions, and it is likely that blood clotting proteases such as TF:VIIa partition into these PS-rich microdomains. Unfortunately, little is known about how membrane microdomain composition influences the activity of blood clotting proteases, which is typically not under experimental control even in “simple” model membranes. Our laboratories have developed and applied new technologies for studying membrane proteins to gain insights into how blood clotting protease-cofactor pairs assemble and function on membrane surfaces. This includes using a novel, nanoscale bilayer system (Nanodiscs) that permits assembling blood clotting protease-cofactor pairs on stable bilayers containing from 65 to 250 phospholipid molecules per leaflet. We have used this system to investigate how local (nanometer-scale) changes in phospholipid bilayer composition modulate TF:VIIa activity. We have also used detailed molecular dynamics simulations of nanoscale bilayers to provide atomic-scale predictions of how the membrane-binding domain of factor VIIa interacts with PS in membranes. PMID:18691494

  14. Cfs1p, a Novel Membrane Protein in the PQ-Loop Family, Is Involved in Phospholipid Flippase Functions in Yeast

    PubMed Central

    Yamamoto, Takaharu; Fujimura-Kamada, Konomi; Shioji, Eno; Suzuki, Risa; Tanaka, Kazuma

    2016-01-01

    Type 4 P-type ATPases (P4-ATPases) function as phospholipid flippases, which translocate phospholipids from the exoplasmic leaflet to the cytoplasmic leaflet of the lipid bilayer, to generate and maintain asymmetric distribution of phospholipids at the plasma membrane and endosomal/Golgi membranes. The budding yeast Saccharomyces cerevisiae has four heteromeric flippases (Drs2p, Dnf1p, Dnf2p, and Dnf3p), associated with the Cdc50p family noncatalytic subunit, and one monomeric flippase, Neo1p. They have been suggested to function in vesicle formation in membrane trafficking pathways, but details of their mechanisms remain to be clarified. Here, to search for novel factors that functionally interact with flippases, we screened transposon insertional mutants for strains that suppressed the cold-sensitive growth defect in the cdc50Δ mutant. We identified a mutation of YMR010W encoding a novel conserved membrane protein that belongs to the PQ-loop family including the cystine transporter cystinosin and the SWEET sugar transporters. We named this gene CFS1 (cdc fifty suppressor 1). GFP-tagged Cfs1p was partially colocalized with Drs2p and Neo1p to endosomal/late Golgi membranes. Interestingly, the cfs1Δ mutation suppressed growth defects in all flippase mutants. Accordingly, defects in membrane trafficking in the flippase mutants were also suppressed. These results suggest that Cfs1p and flippases function antagonistically in membrane trafficking pathways. A growth assay to assess sensitivity to duramycin, a phosphatidylethanolamine (PE)-binding peptide, suggested that the cfs1Δ mutation changed PE asymmetry in the plasma membrane. Cfs1p may thus be a novel regulator of phospholipid asymmetry. PMID:28057802

  15. Cfs1p, a Novel Membrane Protein in the PQ-Loop Family, Is Involved in Phospholipid Flippase Functions in Yeast.

    PubMed

    Yamamoto, Takaharu; Fujimura-Kamada, Konomi; Shioji, Eno; Suzuki, Risa; Tanaka, Kazuma

    2017-01-05

    Type 4 P-type ATPases (P4-ATPases) function as phospholipid flippases, which translocate phospholipids from the exoplasmic leaflet to the cytoplasmic leaflet of the lipid bilayer, to generate and maintain asymmetric distribution of phospholipids at the plasma membrane and endosomal/Golgi membranes. The budding yeast Saccharomyces cerevisiae has four heteromeric flippases (Drs2p, Dnf1p, Dnf2p, and Dnf3p), associated with the Cdc50p family noncatalytic subunit, and one monomeric flippase, Neo1p They have been suggested to function in vesicle formation in membrane trafficking pathways, but details of their mechanisms remain to be clarified. Here, to search for novel factors that functionally interact with flippases, we screened transposon insertional mutants for strains that suppressed the cold-sensitive growth defect in the cdc50Δ mutant. We identified a mutation of YMR010W encoding a novel conserved membrane protein that belongs to the PQ-loop family including the cystine transporter cystinosin and the SWEET sugar transporters. We named this gene CFS1 (cdc fifty suppressor 1). GFP-tagged Cfs1p was partially colocalized with Drs2p and Neo1p to endosomal/late Golgi membranes. Interestingly, the cfs1Δ mutation suppressed growth defects in all flippase mutants. Accordingly, defects in membrane trafficking in the flippase mutants were also suppressed. These results suggest that Cfs1p and flippases function antagonistically in membrane trafficking pathways. A growth assay to assess sensitivity to duramycin, a phosphatidylethanolamine (PE)-binding peptide, suggested that the cfs1Δ mutation changed PE asymmetry in the plasma membrane. Cfs1p may thus be a novel regulator of phospholipid asymmetry.

  16. Phospholipid packing and hydration in pulmonary surfactant membranes and films as sensed by LAURDAN.

    PubMed

    Picardi, M Victoria; Cruz, Antonio; Orellana, Guillermo; Pérez-Gil, Jesús

    2011-03-01

    The efficiency of pulmonary surfactant to stabilize the respiratory surface depends critically on the ability of surfactant to form highly packed films at the air-liquid interface. In the present study we have compared the packing and hydration properties of lipids in native pulmonary surfactant and in several surfactant models by analyzing the pressure and temperature dependence of the fluorescence emission of the LAURDAN (1-[6-(dimethylamino)-2-naphthyl]dodecan-1-one) probe incorporated into surfactant interfacial films or free-standing membranes. In interfacial films, compression-driven changes in the fluorescence of LAURDAN, evaluated from the generalized polarization function (GPF), correlated with changes in packing monitored by surface pressure. Compression isotherms and GPF profiles of films formed by native surfactant or its organic extract were compared at 25 or 37 °C to those of films made of dipalmitoylphosphatidylcholine (DPPC), palmitoyloleoylphosphatidylcholine (POPC), DPPC/phosphatidylglycerol (PG) (7:3, w/w), or the mixture DPPC/POPC/palmitoyloleoylphosphatidylglycerol (POPG)/cholesterol (Chol) (50:25:15.10), which simulates the lipid composition of surfactant. In general terms, compression of surfactant films at 25 °C leads to LAURDAN GPF values close to those obtained from pure DPPC monolayers, suggesting that compressed surfactant films reach a dehydrated state of the lipid surface, which is similar to that achieved in DPPC monolayers. However, at 37 °C, the highest GPF values were achieved in films made of full surfactant organic extract or the mixture DPPC/POPC/POPG/Chol, suggesting a potentially important role of cholesterol to ensure maximal packing/dehydration under physiological constraints. Native surfactant films reached high pressures at 37 °C while maintaining relatively low GPF, suggesting that the complex three-dimensional structures formed by whole surfactant might withstand the highest pressures without necessarily achieving

  17. Common links in the structure and cellular localization of Rhizobium chitolipooligosaccharides and general Rhizobium membrane phospholipid and glycolipid components.

    PubMed

    Cedergren, R A; Lee, J; Ross, K L; Hollingsworth, R I

    1995-04-04

    Several common links between the structural chemistry of the chitolipooligosaccharides of Rhizobium and the general rhizobial membrane lipid and lipopolysaccharide chemistry of these bacteria have been uncovered. Aspects of common chemistry include sulfation, methylation, and the position and extent of fatty acyl chain unsaturation. We find that bacteria which are known to synthesize sulfated chitolipooligosaccharides (such as Rhizobium meliloti strains and the broad-host-range Rhizobium species strain NGR234) also have sulfated lipopolysaccharides. Their common origins of sulfation have been demonstrated by using mutants which are known to be impaired in sulfating their chitolipooligosaccharides. In such cases, there is a corresponding diminution or complete lack of sulfation of the lipopolysaccharides. The structural diversity of the fatty acids observed in the chitolipooligosaccharides is also observed in the other membrane lipids. For instance, the doubly unsaturated fatty acids which are known to be predominant components of R. meliloti chitolipooligosaccharides were also found in the usual phospholipids and glycolipids. Also, the known functionalization of the chitolipooligosaccharides of R. sp. NGR234 by O- and N-methylation was also reflected in the lipopolysaccharide of this organism. The common structural features of chitolipooligosaccharides and membrane components are consistent with a substantial degree of biosynthetic overlap and a large degree of cellular, spatial overlap between these molecules. The latter aspect is clearly demonstrated here since we show that the chitolipooligosaccharides are, in fact, normal membrane components of Rhizobium. This increases the importance of understanding the role of the bacterial cell surface chemistry in the Rhizobium/legume symbiosis and developing a comprehensive understanding of the highly integrated membrane lipid and glycolipid chemistry of Rhizobium.

  18. Phospholipid flippase activities and substrate specificities of human type IV P-type ATPases localized to the plasma membrane.

    PubMed

    Takatsu, Hiroyuki; Tanaka, Gaku; Segawa, Katsumori; Suzuki, Jun; Nagata, Shigekazu; Nakayama, Kazuhisa; Shin, Hye-Won

    2014-11-28

    Type IV P-type ATPases (P4-ATPases) are believed to translocate aminophospholipids from the exoplasmic to the cytoplasmic leaflets of cellular membranes. The yeast P4-ATPases, Drs2p and Dnf1p/Dnf2p, flip nitrobenzoxadiazole-labeled phosphatidylserine at the Golgi complex and nitrobenzoxadiazole-labeled phosphatidylcholine (PC) at the plasma membrane, respectively. However, the flippase activities and substrate specificities of mammalian P4-ATPases remain incompletely characterized. In this study, we established an assay for phospholipid flippase activities of plasma membrane-localized P4-ATPases using human cell lines stably expressing ATP8B1, ATP8B2, ATP11A, and ATP11C. We found that ATP11A and ATP11C have flippase activities toward phosphatidylserine and phosphatidylethanolamine but not PC or sphingomyelin. By contrast, ATPase-deficient mutants of ATP11A and ATP11C did not exhibit any flippase activity, indicating that these enzymes catalyze flipping in an ATPase-dependent manner. Furthermore, ATP8B1 and ATP8B2 exhibited preferential flippase activities toward PC. Some ATP8B1 mutants found in patients of progressive familial intrahepatic cholestasis type 1 (PFIC1), a severe liver disease caused by impaired bile flow, failed to translocate PC despite their delivery to the plasma membrane. Moreover, incorporation of PC mediated by ATP8B1 can be reversed by simultaneous expression of ABCB4, a PC floppase mutated in PFIC3 patients. Our findings elucidate the flippase activities and substrate specificities of plasma membrane-localized human P4-ATPases and suggest that phenotypes of some PFIC1 patients result from impairment of the PC flippase activity of ATP8B1. © 2014 by The American Society for Biochemistry and Molecular Biology, Inc.

  19. Hybrid copolymer-phospholipid vesicles: phase separation resembling mixed phospholipid lamellae, but with mechanical stability and control.

    PubMed

    Chen, Dong; Santore, Maria M

    2015-04-07

    Vesicles whose bilayer membranes contain phospholipids mixed with co-polymers or surfactants comprise new hybrid materials having potential applications in drug delivery, sensors, and biomaterials. Here we describe a model polymer-phospholipid hybrid membrane system exhibiting strong similarities to binary phospholipid mixtures, but with more robust membrane mechanics. A lamella-forming graft copolymer, PDMS-co-PEO (polydimethylsiloxane-co-polyethylene oxide) was blended with a high melting temperature phospholipid, DPPC (1,2-dipalmitoyl-sn-glycero-3-phosphocholine), over a broad compositional range. The resulting giant hybrid unilamellar vesicles were compared qualitatively and quantitatively to analogous mixed phospholipid membranes in which a low melting temperature phospholipid, DOPC (1,2-dioleoyl-sn-glycero-3-phosphocholine), was blended with DPPC. The mechanical properties of the hybrid vesicles, even when phase separated, were robust with high lysis stresses and strains approaching those of the pure copolymer vesicles. The temperature-composition phase diagram of the hybrid vesicles closely resembled that of the mixed phospholipids; with only slightly greater nonidealities in the hybrid compared with DOPC/DPPC mixed membranes. In both systems, it was demonstrated that tension could be used to manipulate DPPC solidification into domains of patchy or striped morphologies that exhibited different tracer incorporation. The patch and stripe-shaped domains are thought to be different solid DPPC polymorphys: ripple and tilt (or gel). This work demonstrates that in mixed-phospholipid bilayers where a high-melting phospholipid solidifies on cooling, the lower-melting phospholipid may be substituted by an appropriate copolymer to improve mechanical properties while retaining the underlying membrane physics.

  20. Omega-3 DHA and EPA for cognition, behavior, and mood: clinical findings and structural-functional synergies with cell membrane phospholipids.

    PubMed

    Kidd, Parris M

    2007-09-01

    The omega-3 fatty acids docosahexaenoic acid (DHA) and eicosapentaenoic acid (EPA) are orthomolecular, conditionally essential nutrients that enhance quality of life and lower the risk of premature death. They function exclusively via cell membranes, in which they are anchored by phospholipid molecules. DHA is proven essential to pre- and postnatal brain development, whereas EPA seems more influential on behavior and mood. Both DHA and EPA generate neuroprotective metabolites. In double-blind, randomized, controlled trials, DHA and EPA combinations have been shown to benefit attention deficit/hyperactivity disorder (AD/HD), autism, dyspraxia, dyslexia, and aggression. For the affective disorders, meta-analyses confirm benefits in major depressive disorder (MDD) and bipolar disorder, with promising results in schizophrenia and initial benefit for borderline personality disorder. Accelerated cognitive decline and mild cognitive impairment (MCI) correlate with lowered tissue levels of DHA/EPA, and supplementation has improved cognitive function. Huntington disease has responded to EPA. Omega-3 phospholipid supplements that combine DHA/EPA and phospholipids into the same molecule have shown marked promise in early clinical trials. Phosphatidylserine with DHA/EPA attached (Omega-3 PS) has been shown to alleviate AD/HD symptoms. Krill omega-3 phospholipids, containing mostly phosphatidylcholine (PC) with DHA/EPA attached, markedly outperformed conventional fish oil DHA/EPA triglycerides in double-blind trials for premenstrual syndrome/dysmenorrhea and for normalizing blood lipid profiles. Krill omega-3 phospholipids demonstrated anti-inflammatory activity, lowering C-reactive protein (CRP) levels in a double-blind trial. Utilizing DHA and EPA together with phospholipids and membrane antioxidants to achieve a triple cell membrane synergy may further diversify their currently wide range of clinical applications.

  1. Amounts of phospholipids and cholesterol in lipid domains formed in intact lens membranes: Methodology development and its application to studies of porcine lens membranes.

    PubMed

    Raguz, Marija; Mainali, Laxman; O'Brien, William J; Subczynski, Witold K

    2015-11-01

    An electron paramagnetic resonance spin-labeling method has been developed that allows quantitative evaluation of the amounts of phospholipids and cholesterol in lipid domains of intact fiber-cell plasma membranes isolated from cortical and nuclear regions of eye lenses. The long term goal of this research is the assessment of organizational changes in human lens fiber cell membranes that occur with age and during cataract development. The measurements needed to be performed on lens membranes prepared from eyes of single donors and from single eyes. For these types of studies it is necessary to separate the age/cataract related changes from preparation/technique related changes. Human lenses differ not only because of age, but also because of the varying health histories of the donors. To solve these problems the sample-to-sample preparation/technique related changes were evaluated for cortical and nuclear lens membranes prepared from single porcine eyes. It was assumed that the differences due to the age (animals were two year old) and environmental conditions for raising these animals were minimal. Mean values and standard deviations from preparation/technique changes for measured amounts of lipids in membrane domains were calculated. Statistical analysis (Student's t-test) of the data also allowed determining the differences of mean values which were statistically significant with P ≤ 0.05. These differences defined for porcine lenses will be used for comparison of amounts of lipids in domains in human lens membranes prepared from eyes of single donors and from single eyes. Greater separations will indicate that differences were statistically significant with (P ≤ 0.05) and that they came from different than preparation/technique sources. Results confirmed that in nuclear porcine membranes the amounts of lipids in domains created due to the presence of membrane proteins were greater than those in cortical membranes and the differences were larger than

  2. Amounts of phospholipids and cholesterol in lipid domains formed in intact lens membranes: methodology development and its application to studies of porcine lens membranes

    PubMed Central

    Raguz, Marija; Mainali, Laxman; O'Brien, William J.; Subczynski, Witold K.

    2015-01-01

    An electron paramagnetic resonance spin-labeling method has been developed that allows quantitative evaluation of the amounts of phospholipids and cholesterol in lipid domains of intact fiber-cell plasma membranes isolated from cortical and nuclear regions of eye lenses. The long term goal of this research is the assessment of organizational changes in human lens fiber cell membranes that occur with age and during cataract development. The measurements needed to be performed on lens membranes prepared from eyes of single donors and from single eyes. For these types of studies it is necessary to separate the age/cataract related changes from preparation/technique related changes. Human lenses differ not only because of age, but also because of the varying health histories of the donors. To solve these problems the sample-to-sample preparation/technique related changes were evaluated for cortical and nuclear lens membranes prepared from single porcine eyes. It was assumed that the differences due to the age (animals were two year old) and environmental conditions for raising these animals were minimal. Mean values and standard deviations from preparation/technique changes for measured amounts of lipids in membrane domains were calculated. Statistical analysis (Student's t test) of the data also allowed determining the differences of mean values which were statistically significant with P ≤ 0.05. These differences defined for porcine lenses will be used for comparison of amounts of lipids in domains in human lens membranes prepared from eyes of single donors and from single eyes. Greater separations will indicate that differences were statistically significant with (P ≤ 0.05) and that they came from different than preparation/technique sources. Results confirmed that in nuclear porcine membranes the amounts of lipids in domains created due to the presence of membrane proteins were greater than those in cortical membranes and the differences were larger than the

  3. Artificial plasma membrane models based on lipidomic profiling.

    PubMed

    Essaid, Donia; Rosilio, Véronique; Daghildjian, Katia; Solgadi, Audrey; Vergnaud, Juliette; Kasselouri, Athena; Chaminade, Pierre

    2016-11-01

    Phospholipid monolayers are often described as membrane models for analyzing drug-lipid interactions. In many works, a single phosphatidylcholine is chosen, sometimes with one or two additional components. Drug penetration is studied at 30mN/m, a surface pressure considered as corresponding to the pressure in bilayers, independently of the density of lipid molecular packing. In this work, we have extracted, identified, and quantified the major lipids constituting the lipidome of plasma and mitochondrial membranes of retinoblastoma (Y79) and retinal pigment epithelium cells (ARPE-19), using liquid chromatography coupled to high-resolution mass spectrometry (LC-MS/MS). The results obtained from this lipidomic analysis were used in an attempt to build an artificial lipid monolayer with a composition mimicking that of the plasma membrane of Y79 cells, better than a single phospholipid. The variety and number of lipid classes and species in cell extracts monolayers exceeding by far those of the phospholipids chosen to mimic them, the π-A isotherms of model monolayers differed from those of lipid extracts in shape and apparent packing density. We propose a model monolayer based on the most abundant species identified in the extracts, with a surface compressional modulus at 30mN/m close to the one of the lipid extracts. Copyright © 2016 Elsevier B.V. All rights reserved.

  4. Alcohols produce reversible and irreversible acceleration of phospholipid flip-flop in the human erythrocyte membrane.

    PubMed

    Schwichtenhövel, C; Deuticke, B; Haest, C W

    1992-10-19

    The slow, non-mediated transmembrane movement of the lipid probes lysophosphatidylcholine, NBD-phosphatidylcholine and NBD-phosphatidylserine in human erythrocytes becomes highly enhanced in the presence of 1-alkanols (C2-C8) and 1,2-alkane diols (C4-C8). Above a threshold concentration characteristic for each alcohol, flip rates increase exponentially with the alcohol concentration. The equieffective concentrations of the alcohols decrease about 3-fold per methylene added. All 1-alkanols studied are equieffective at comparable calculated membrane concentrations. This is also observed or the 1,2-alkane diols, albeit at a 5-fold lower membrane concentration. At low alcohol concentrations, flip enhancement is reversible to a major extent upon removal of the alcohol. In contrast, a residual irreversible flip acceleration is observed following removal of the alcohol after a treatment at higher concentrations. The threshold concentrations to produce irreversible flip acceleration by 1-alkanols and 1,2-alkane diols are 1.5- and 3-fold higher than those for flip acceleration in the presence of the corresponding alcohols. A causal role in reversible flip-acceleration of a global increase of membrane fluidity or membrane polarity seems to be unlikely. Alcohols may act by increasing the probability of formation of transient structural defects in the hydrophobic barrier that already occur in the native membrane. Membrane defects responsible for irreversible flip-acceleration may result from alterations of membrane skeletal proteins by alcohols.

  5. Transbilayer movement of phospholipids at the main phase transition of lipid membranes: implications for rapid flip-flop in biological membranes.

    PubMed Central

    John, Karin; Schreiber, Susanne; Kubelt, Janek; Herrmann, Andreas; Müller, Peter

    2002-01-01

    The transbilayer movement of fluorescent phospholipid analogs in liposomes was studied at the lipid phase transition of phospholipid membranes. Two NBD-labeled analogs were used, one bearing the fluorescent moiety at a short fatty acid chain in the sn-2 position (C(6)-NBD-PC) and one headgroup-labeled analog having two long fatty acyl chains (N-NBD-PE). The transbilayer redistribution of the analogs was assessed by a dithionite-based assay. We observed a drastic increase of the transbilayer movement of both analogs at the lipid phase transition of DPPC (T(c) = 41 degrees C) and DMPC (T(c) = 23 degrees C). The flip-flop of analogs was fast at the T(c) of DPPC with a half-time (t(1/2)) of ~6-10 min and even faster at the T(c) of DMPC with t(1/2) on the order of <2 min, as shown for C(6)-NBD-PC. Suppressing the phase transition by the addition of cholesterol, the rapid transbilayer movement was abolished. Molecular packing defects at the phase transition are assumed to be responsible for the rapid transbilayer movement. The relevance of those defects for understanding of the activity of flippases is discussed. PMID:12496099

  6. Glutathione peroxidase 4-catalyzed reduction of lipid hydroperoxides in membranes: The polar head of membrane phospholipids binds the enzyme and addresses the fatty acid hydroperoxide group toward the redox center.

    PubMed

    Cozza, Giorgio; Rossetto, Monica; Bosello-Travain, Valentina; Maiorino, Matilde; Roveri, Antonella; Toppo, Stefano; Zaccarin, Mattia; Zennaro, Lucio; Ursini, Fulvio

    2017-07-12

    GPx4 is a monomeric glutathione peroxidase, unique in reducing the hydroperoxide group (-OOH) of fatty acids esterified in membrane phospholipids. This reaction inhibits lipid peroxidation and accounts for enzyme's vital role. Here we investigated the interaction of GPx4 with membrane phospholipids. A cationic surface near the GPx4 catalytic center interacts with phospholipid polar heads. Accordingly, SPR analysis indicates cardiolipin as the phospholipid with maximal affinity to GPx4. Consistent with the electrostatic nature of the interaction, KCl increases the KD. Molecular dynamic (MD) simulation shows that a -OOH posed in the core of the membrane as 13 - or 9 -OOH of tetra-linoleoyl cardiolipin or 15 -OOH stearoyl-arachidonoyl-phosphaphatidylcholine moves to the lipid-water interface. Thereby, the -OOH groups are addressed toward the GPx4 redox center. In this pose, however, the catalytic site facing the membrane would be inaccessible to GSH, but the consecutive redox processes facilitate access of GSH, which further primes undocking of the enzyme, because GSH competes for the binding residues implicated in docking. During the final phase of the catalytic cycle, while GSSG is produced, GPx4 is disconnected from the membrane. The observation that GSH depletion in cells induces GPx4 translocation to the membrane, is in agreement with this concept. Copyright © 2017. Published by Elsevier Inc.

  7. Influence of ester and ether linkage in phospholipids on the environment and dynamics of the membrane interface: a wavelength-selective fluorescence approach.

    PubMed

    Mukherjee, Soumi; Chattopadhyay, Amitabha

    2005-01-04

    We have monitored the environment and dynamics of the membrane interface formed by the ester-linked phospholipid 1,2-dipalmitoyl-sn-glycero-3-phosphocholine (DPPC) and the ether-linked phospholipid 1,2-dihexadecyl-sn-glycero-3-phosphocholine (DHPC) utilizing the wavelength-selective fluorescence approach and using the fluorescent membrane probe 2-(9-anthroyloxy)stearic acid (2-AS). This interfacially localized probe offers a number of advantages over those which lack a fixed location in the membrane. When incorporated in membranes formed by DPPC and DHPC, 2-AS exhibits red edge excitation shift (REES) of 14 and 8 nm, respectively. This implies that the rate of solvent reorientation, as sensed by the interfacial anthroyloxy probe, in ester-linked DPPC membranes is slow compared to the rate of solvent reorientation in ether-linked DHPC membranes. In addition, the fluorescence polarization values of 2-AS are found to be higher in DHPC membranes than in DPPC membranes. This is further supported by wavelength-dependent changes in fluorescence polarization and lifetime. Taken together, these results are useful in understanding the role of interfacial chemistry on membrane physical properties.

  8. Membrane phospholipid fatty acid composition regulates cardiac SERCA activity in a hibernator, the Syrian hamster (Mesocricetus auratus).

    PubMed

    Giroud, Sylvain; Frare, Carla; Strijkstra, Arjen; Boerema, Ate; Arnold, Walter; Ruf, Thomas

    2013-01-01

    Polyunsaturated fatty acids (PUFA) have strong effects on hibernation and daily torpor. Increased dietary uptake of PUFA of the n-6 class, particularly of Linoleic acid (LA, C18:2 n-6) lengthens torpor bout duration and enables animals to reach lower body temperatures (T(b)) and metabolic rates. As previously hypothesized, this well-known influence of PUFA may be mediated via effects of the membrane fatty acid composition on sarcoplasmic reticulum (SR) Ca(2+-)ATPase 2a (SERCA) in the heart of hibernators. We tested the hypotheses that high proportions of n-6 PUFA in general, or specifically high proportions of LA (C18:2 n-6) in SR phospholipids (PL) should be associated with increased cardiac SERCA activity, and should allow animals to reach lower minimum T(b) in torpor. We measured activity of SERCA from hearts of hibernating and non-hibernating Syrian hamsters (Mesocricetus auratus) in vitro at 35 °C. Further, we determined the PL fatty acid composition of the SR membrane of these hearts. We found that SERCA activity strongly increased as the proportion of LA in SR PL increased but was negatively affected by the content of Docosahexaenoic acid (DHA; C22:6 n-3). SR PL from hibernating hamsters were characterized by high proportions of LA and low proportions of DHA. As a result, SERCA activity was significantly higher during entrance into torpor and in torpor compared to inter-bout arousal. Also, animals with increased SERCA activity reached lower T(b) during torpor. Interestingly, a subgroup of hamsters which never entered torpor but remained euthermic throughout winter displayed a phenotype similar to animals in summer. This was characterized by lower proportions of LA and increased proportions of DHA in SR membranes, which is apparently incompatible with torpor. We conclude that the PUFA composition of SR membranes affects cardiac function via modulating SERCA activity, and hence determines the minimum T(b) tolerated by hibernators.

  9. A photoactivable phospholipid analogue that specifically labels membrane cytoskeletal proteins of intact erythrocytes

    SciTech Connect

    Pradhan, D.; Williamson, P.; Schlegel, R.A. )

    1989-08-22

    A radioactive photoactivable analogue of phosphatidylethanolamine, 2-(2-azido-4-nitrobenzoyl)-1-acyl-sn-glycero-3-phospho({sup 14}C)ethanolamine(({sup 14}C)AzPE), was synthesized. Upon incubation with erythrocytes in the dark, about 90% of ({sup 14}C)AzPE spontaneously incorporated into the cells; of this fraction, about 90% associated with the membrane, all of it noncovalently. Upon photoactivation, 3-4% of the membrane-associated probe was incorporated into protein. Analysis of this fraction by sodium dodecyl sulfate-polyacrylamide gel electrophoresis, as well as extraction of labeled membranes with alkali or detergent, showed that the probe preferentially labeled cytoskeletal proteins. ({sup 14}C)AzPE appears to be a useful tool for the study of lipid-protein interactions at the cytoplasmic face of the plasma membrane of intact cells.

  10. Transverse and lateral distribution of phospholipids and glycolipids in the membrane of the bacterium Micrococcus luteus

    SciTech Connect

    de Bony, J.; Lopez, A.; Gilleron, M.; Welby, M.; Laneelle, G.; Rousseau, B.; Beaucourt, J.P.; Tocanne, J.F. )

    1989-05-02

    The photodimerization of anthracene was used to investigate the transverse and lateral distribution of lipids in the membrane of the Gram-positive bacterium Micrococcus luteus. 9-(2-Anthryl)nonanoic acid (9-AN) is incorporated at a high rate into various membrane lipids of M. luteus. On irradiation of intact bacteria at 360 nm, anthracene-labeled lipids form stable photodimers which can be extracted and separated by thin-layer chromatography. We present here the results of a study on the distribution of two major lipids, phosphatidylglycerol (PG) and dimannosyldiacylglycerol (DMDG), within each leaflet of the membrane lipid bilayer. After metabolic incorporation of a tritiated derivative of 9-AN in M. luteus, the radioactivity associated with the photodimers issued from PG and DMDG was counted. In the bacterial membrane, the ratio of PG-DMDG heterodimer with respect to PG-PG and DMDG-DMDG homodimers is around half of what should be obtained for a homogeneous mixture of the two lipids. In order to find out whether this was due to an asymmetric distribution of the two lipids between the two membrane leaflets or a heterogeneous distribution of the two lipids within the same membrane leaflet, the transverse distribution of PG and DMDG was also investigated. This was carried out by following the kinetics of oxidation of the two lipids by periodic acid in the membrane of M. luteus protoplasts. PG predominated slightly in the outer layer (60%), while DMDG was found to be symmetrically distributed between the two leaflets. By itself, this lipid asymmetry cannot account for the lipid distribution determined from the photodimerization experiments. This indicates that PG and DMDG are not homogeneously distributed in the plane of the bacterial membrane.

  11. Express incorporation of membrane proteins from various human cell types into phospholipid bilayer nanodiscs.

    PubMed

    Mak, Stefanie; Sun, Ruoyu; Schmalenberg, Michael; Peters, Carsten; Luppa, Peter B

    2017-04-04

    Analysis of membrane proteins is still inadequately represented in diagnostics despite their importance as drug targets and biomarkers. One main reason is the difficult handling caused by their insolubility in aqueous buffer solutions. The nanodisc technology was developed to circumvent this challenge and enables analysis of membrane proteins with standard research methods. However, existing nanodisc generation protocols rely on time-consuming membrane isolation and protein purification from overexpression systems. In the present study, we present a novel, simplified procedure for the rapid generation of nanodiscs directly from intact cells. Workflow and duration of the nanodisc preparation were shortened without reducing the reconstitution efficiency, and all the steps were modified for the use of only standard laboratory equipment. This protocol was successfully applied to various human cell types, such as cultivated human embryonic kidney 293 (HEK-293) cells, as well as freshly isolated human red blood cells and platelets. In addition, the reconstitution of membrane proteins from cell organelles was achieved. The use of endogenous lipids ensures a native-like environment, which promotes native protein (re)folding. Nanodisc generation was verified by size exclusion chromatography and EM, whereas incorporation of different membrane proteins was demonstrated by Western blot analysis. Our protocol enabled the rapid incorporation of endogenous membrane proteins from human cells into nanodiscs, which can be applied to analytical approaches. © 2017 The Author(s); published by Portland Press Limited on behalf of the Biochemical Society.

  12. Effects of Different Maturation Systems on Bovine Oocyte Quality, Plasma Membrane Phospholipid Composition and Resistance to Vitrification and Warming.

    PubMed

    Sprícigo, José F W; Diógenes, Mateus N; Leme, Ligiane O; Guimarães, Ana L; Muterlle, Carolle V; Silva, Bianca Damiani Marques; Solà-Oriol, David; Pivato, Ivo; Silva, Luciano Paulino; Dode, Margot A N

    2015-01-01

    The objective of this study was to evaluate the effects of different maturation systems on oocyte resistance after vitrification and on the phospholipid profile of the oocyte plasma membrane (PM). Four different maturation systems were tested: 1) in vitro maturation using immature oocytes aspirated from slaughterhouse ovaries (CONT; n = 136); 2) in vitro maturation using immature oocytes obtained by ovum pick-up (OPU) from unstimulated heifers (IMA; n = 433); 3) in vitro maturation using immature oocytes obtained by OPU from stimulated heifers (FSH; n = 444); and 4) in vivo maturation using oocytes obtained from heifers stimulated 24 hours prior by an injection of GnRH (MII; n = 658). A sample of matured oocytes from each fresh group was analyzed by matrix associated laser desorption-ionization (MALDI-TOF) to determine their PM composition. Then, half of the matured oocytes from each group were vitrified/warmed (CONT VIT, IMA VIT, FSH VIT and MII VIT), while the other half were used as fresh controls. Afterwards, the eight groups underwent IVF and IVC, and blastocyst development was assessed at D2, D7 and D8. A chi-square test was used to compare embryo development between the groups. Corresponding phospholipid ion intensity was expressed in arbitrary units, and following principal components analyses (PCA) the data were distributed on a 3D graph. Oocytes obtained from superstimulated animals showed a greater rate of developmental (P<0.05) at D7 (MII = 62.4±17.5% and FSH = 58.8±16.1%) compared to those obtained from unstimulated animals (CONT = 37.9±8.5% and IMA = 50.6±14.4%). However, the maturation system did not affect the resistance of oocytes to vitrification because the blastocyst rate at D7 was similar (P>0.05) for all groups (CONT VIT = 2.8±3.5%, IMA VIT = 2.9±4.0%, FSH VIT = 4.3±7.2% and MII VIT = 3.6±7.2%). MALDI-TOF revealed that oocytes from all maturation groups had similar phospholipid contents, except for 760.6 ([PC (34:1) + H]+), which was

  13. Effects of Different Maturation Systems on Bovine Oocyte Quality, Plasma Membrane Phospholipid Composition and Resistance to Vitrification and Warming

    PubMed Central

    Sprícigo, José F. W.; Diógenes, Mateus N.; Leme, Ligiane O.; Guimarães, Ana L.; Muterlle, Carolle V.; Silva, Bianca Damiani Marques; Solà-Oriol, David; Pivato, Ivo; Silva, Luciano Paulino; Dode, Margot A. N.

    2015-01-01

    The objective of this study was to evaluate the effects of different maturation systems on oocyte resistance after vitrification and on the phospholipid profile of the oocyte plasma membrane (PM). Four different maturation systems were tested: 1) in vitro maturation using immature oocytes aspirated from slaughterhouse ovaries (CONT; n = 136); 2) in vitro maturation using immature oocytes obtained by ovum pick-up (OPU) from unstimulated heifers (IMA; n = 433); 3) in vitro maturation using immature oocytes obtained by OPU from stimulated heifers (FSH; n = 444); and 4) in vivo maturation using oocytes obtained from heifers stimulated 24 hours prior by an injection of GnRH (MII; n = 658). A sample of matured oocytes from each fresh group was analyzed by matrix associated laser desorption-ionization (MALDI-TOF) to determine their PM composition. Then, half of the matured oocytes from each group were vitrified/warmed (CONT VIT, IMA VIT, FSH VIT and MII VIT), while the other half were used as fresh controls. Afterwards, the eight groups underwent IVF and IVC, and blastocyst development was assessed at D2, D7 and D8. A chi-square test was used to compare embryo development between the groups. Corresponding phospholipid ion intensity was expressed in arbitrary units, and following principal components analyses (PCA) the data were distributed on a 3D graph. Oocytes obtained from superstimulated animals showed a greater rate of developmental (P<0.05) at D7 (MII = 62.4±17.5% and FSH = 58.8±16.1%) compared to those obtained from unstimulated animals (CONT = 37.9±8.5% and IMA = 50.6±14.4%). However, the maturation system did not affect the resistance of oocytes to vitrification because the blastocyst rate at D7 was similar (P>0.05) for all groups (CONT VIT = 2.8±3.5%, IMA VIT = 2.9±4.0%, FSH VIT = 4.3±7.2% and MII VIT = 3.6±7.2%). MALDI-TOF revealed that oocytes from all maturation groups had similar phospholipid contents, except for 760.6 ([PC (34:1) + H]+), which was

  14. Rapid flip-flop of phospholipids in endoplasmic reticulum membranes studied by a stopped-flow approach.

    PubMed Central

    Marx, U; Lassmann, G; Holzhütter, H G; Wüstner, D; Müller, P; Höhlig, A; Kubelt, J; Herrmann, A

    2000-01-01

    The transbilayer movement of short-chain spin-labeled and fluorescent 7-nitrobenz-2-oxa-1,3-diazol-4-yl (NBD) phospholipid analogs in rat liver microsomes is measured by stopped-flow mixing of labeled microsomes with bovine serum albumin (BSA) solution. Extraction of analogs from the outer leaflet of microsomes to BSA can be directly monitored in conjunction with electron paramagnetic resonance or fluorescence spectroscopy by taking advantage of the fact that the signal of spin-labeled or fluorescent analogs bound to BSA is different from that of the analogs inserted into membranes. From the signal kinetics, the transbilayer movement and the distribution of analogs in microsomal membranes can be derived provided the extraction of analogs by BSA is much faster in comparison to the transbilayer movement of analogs. Half-times of the back-exchange for spin-labeled and fluorescent analogs were <3.5 and <9.5 s, respectively. The unprecedented time resolution of the assay revealed that the transbilayer movement of spin-labeled analogs is much faster than previously reported. The half-time of the movement was about 16 s or even less at room temperature. Transmembrane movement of NBD-labeled analogs was six- to eightfold slower than that of spin-labeled analogs. PMID:10777759

  15. Phospholipid and cholesterol alterations accompany structural disarray in myelin membrane of rats with hepatic encephalopathy induced by thioacetamide.

    PubMed

    Swapna, I; Kumar, K V Sathya Sai; Reddy, P Vijaya Bhaskar; Murthy, Ch R K; Reddanna, P; Senthilkumaran, B

    2006-08-01

    Fulminant hepatic failure is often associated with a wide range of neurological symptoms which are collectively referred to as hepatic encephalopathy. Fulminant hepatic failure with associated hepatic encephalopathy has a poor prognosis with the currently available sure treatment being only liver transplantation. This is largely owing to the lack of understanding of critical factors involved in the etiology of the condition. Lipid changes have been implicated in cerebral derangements characteristic of hepatic encephalopathy. About 79% of the brain lipid is concentrated in the myelin fraction where they play an important role in ion balance and conduction of nerve impulses. Hence, in the present study we aimed to investigate changes in myelin lipid composition and structure. Myelin was isolated by sucrose density gradient centrifugation from cerebral cortex of male Wistar rats (250-300 g body weight) treated with 300 mg/kg body weight thioacetamide administered twice at 24h interval to induce hepatic encephalopathy. Significant decrease was observed in the cholesterol and phospholipids content of myelin from treated rats. Sphingomyelin, phosphatidylserine and phosphatidylethanolamine content also decreased significantly following 18 h of thioacetamide administration. However, phosphatidylcholine levels remained unaltered. Transmission electron microscopic observation of myelin membrane from cerebral cortex sections showed considerable disorganization in myelin structure. Increase in malondialdehyde levels precede lipid changes leading to the speculation that oxidative damage may be the critical factor leading to decrease in the anionic phospholipids. Changes in myelin were evident only in later stages of hepatic encephalopathy indicating that myelin alteration may not play a role in early stages of hepatic encephalopathy. Nevertheless, myelin alteration may have a crucial role to play in various psycho-motor alterations during later stages of hepatic encephalopathy.

  16. Kinetic modelling of phospholipid synthesis in Plasmodium knowlesi unravels crucial steps and relative importance of multiple pathways.

    PubMed

    Sen, Partho; Vial, Henri J; Radulescu, Ovidiu

    2013-11-09

    Plasmodium is the causal parasite of malaria, infectious disease responsible for the death of up to one million people each year. Glycerophospholipid and consequently membrane biosynthesis are essential for the survival of the parasite and are targeted by a new class of antimalarial drugs developed in our lab. In order to understand the highly redundant phospholipid synthethic pathways and eventual mechanism of resistance to various drugs, an organism specific kinetic model of these metabolic pathways need to be developed in Plasmodium species. Fluxomic data were used to build a quantitative kinetic model of glycerophospholipid pathways in Plasmodium knowlesi. In vitro incorporation dynamics of phospholipids unravels multiple synthetic pathways. A detailed metabolic network with values of the kinetic parameters (maximum rates and Michaelis constants) has been built. In order to obtain a global search in the parameter space, we have designed a hybrid, discrete and continuous, optimization method. Discrete parameters were used to sample the cone of admissible fluxes, whereas the continuous Michaelis and maximum rates constants were obtained by local minimization of an objective function.The model was used to predict the distribution of fluxes within the network of various metabolic precursors.The quantitative analysis was used to understand eventual links between different pathways. The major source of phosphatidylcholine (PC) is the CDP-choline Kennedy pathway.In silico knock-out experiments showed comparable importance of phosphoethanolamine-N-methyltransferase (PMT) and phosphatidylethanolamine-N-methyltransferase (PEMT) for PC synthesis.The flux values indicate that, major part of serine derived phosphatidylethanolamine (PE) is formed via serine decarboxylation, whereas major part of phosphatidylserine (PS) is formed by base-exchange reactions.Sensitivity analysis of CDP-choline pathway shows that the carrier-mediated choline entry into the parasite and the

  17. The influence of lysolipids on the spontaneous curvature and bending elasticity of phospholipid membranes.

    PubMed

    Fuller, N; Rand, R P

    2001-07-01

    The effects of lysolipids on phospholipid layer curvature and bending elasticity were examined using x-ray diffraction and the osmotic stress method. Lysolipids with two different head groups, phosphatidylcholine (PC) and phosphatidylethanolamine (PE), and differing hydrocarbon chains were mixed with the hexagonal-forming lipid, dioleoylphosphatidylethanolamine (DOPE). With up to 30 mole% lysolipid in DOPE, the mixture maintains the inverted hexagonal (H(II)) phase in excess water, where increasing levels of lysolipid result in a systematic increase in the H(II) lattice dimension. Analysis of the structural changes imposed by lysolipids show that, opposite to DOPE itself, which has an spontaneous radius of curvature (R(0)) of -30 A, PC lysolipids add high positive curvature, with R(0) = +38 to +60 A, depending on chain length. LysoPEs, in contrast, add very small curvatures. When both polar group and hydrocarbon chains of the added lysolipid mismatch those of DOPE, the structural effects are qualitatively different from otherwise. Such mismatched lysolipids "reshape" the effective combination molecule into a longer and more cylindrical configuration compared to those lysolipids with either matching polar group or hydrocarbon chain.

  18. On the application of the MARTINI coarse-grained model to immersion of a protein in a phospholipid bilayer

    NASA Astrophysics Data System (ADS)

    Mustafa, Ghulam; Nandekar, Prajwal P.; Yu, Xiaofeng; Wade, Rebecca C.

    2015-12-01

    An important step in the simulation of a membrane protein in a phospholipid bilayer is the correct immersion of the protein in the bilayer. Crystal structures are determined without the bilayer. Particularly for proteins with monotopic domains, it can be unclear how deeply and in which orientation the protein is being inserted in the membrane. We have previously developed a procedure combining coarse-grain (CG) with all-atom (AA) molecular dynamics (MD) simulations to insert and simulate a cytochrome P450 (CYP) possessing an N-terminal transmembrane helix connected by a flexible linker region to a globular domain that dips into the membrane. The CG simulations provide a computationally efficient means to explore different orientations and conformations of the CYP in the membrane. Converged configurations obtained in the CG simulations are then refined in AA simulations. Here, we tested different variants of the MARTINI CG model, differing in the water model, the treatment of long-range non-bonded interactions, and the implementation (GROMACS 4.5.5 vs 5.0.4), for this purpose. We examined the behavior of the models for simulating a 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine (POPC) bilayer in water and for the immersion of CYP3A4 in a POPC bilayer, and compared the CG-MD results with the previously reported experimental and simulation results. We also tested the methodology on a set of four other CYPs. Finally, we propose an optimized protocol for modeling such protein-membrane systems that provides the most plausible configurations and is computationally efficient; this incorporates the standard non-polar water model and the GROMACS 5.0.4 implementation with a reaction field treatment of long-range interactions.

  19. On the application of the MARTINI coarse-grained model to immersion of a protein in a phospholipid bilayer.

    PubMed

    Mustafa, Ghulam; Nandekar, Prajwal P; Yu, Xiaofeng; Wade, Rebecca C

    2015-12-28

    An important step in the simulation of a membrane protein in a phospholipid bilayer is the correct immersion of the protein in the bilayer. Crystal structures are determined without the bilayer. Particularly for proteins with monotopic domains, it can be unclear how deeply and in which orientation the protein is being inserted in the membrane. We have previously developed a procedure combining coarse-grain (CG) with all-atom (AA) molecular dynamics (MD) simulations to insert and simulate a cytochrome P450 (CYP) possessing an N-terminal transmembrane helix connected by a flexible linker region to a globular domain that dips into the membrane. The CG simulations provide a computationally efficient means to explore different orientations and conformations of the CYP in the membrane. Converged configurations obtained in the CG simulations are then refined in AA simulations. Here, we tested different variants of the MARTINI CG model, differing in the water model, the treatment of long-range non-bonded interactions, and the implementation (GROMACS 4.5.5 vs 5.0.4), for this purpose. We examined the behavior of the models for simulating a 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine (POPC) bilayer in water and for the immersion of CYP3A4 in a POPC bilayer, and compared the CG-MD results with the previously reported experimental and simulation results. We also tested the methodology on a set of four other CYPs. Finally, we propose an optimized protocol for modeling such protein-membrane systems that provides the most plausible configurations and is computationally efficient; this incorporates the standard non-polar water model and the GROMACS 5.0.4 implementation with a reaction field treatment of long-range interactions.

  20. On the application of the MARTINI coarse-grained model to immersion of a protein in a phospholipid bilayer

    SciTech Connect

    Mustafa, Ghulam E-mail: rebecca.wade@h-its.org; Nandekar, Prajwal P.; Yu, Xiaofeng; Wade, Rebecca C. E-mail: rebecca.wade@h-its.org

    2015-12-28

    An important step in the simulation of a membrane protein in a phospholipid bilayer is the correct immersion of the protein in the bilayer. Crystal structures are determined without the bilayer. Particularly for proteins with monotopic domains, it can be unclear how deeply and in which orientation the protein is being inserted in the membrane. We have previously developed a procedure combining coarse-grain (CG) with all-atom (AA) molecular dynamics (MD) simulations to insert and simulate a cytochrome P450 (CYP) possessing an N-terminal transmembrane helix connected by a flexible linker region to a globular domain that dips into the membrane. The CG simulations provide a computationally efficient means to explore different orientations and conformations of the CYP in the membrane. Converged configurations obtained in the CG simulations are then refined in AA simulations. Here, we tested different variants of the MARTINI CG model, differing in the water model, the treatment of long-range non-bonded interactions, and the implementation (GROMACS 4.5.5 vs 5.0.4), for this purpose. We examined the behavior of the models for simulating a 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine (POPC) bilayer in water and for the immersion of CYP3A4 in a POPC bilayer, and compared the CG-MD results with the previously reported experimental and simulation results. We also tested the methodology on a set of four other CYPs. Finally, we propose an optimized protocol for modeling such protein-membrane systems that provides the most plausible configurations and is computationally efficient; this incorporates the standard non-polar water model and the GROMACS 5.0.4 implementation with a reaction field treatment of long-range interactions.

  1. Ubiquinol and plastoquinol triphenylphosphonium conjugates can carry electrons through phospholipid membranes.

    PubMed

    Rokitskaya, Tatyana I; Murphy, Michael P; Skulachev, Vladimir P; Antonenko, Yuri N

    2016-10-01

    Many mitochondria-targeted antioxidants (MTAs) that comprise a quinol moiety covalently attached through an aliphatic carbon chain to the lipophilic triphenylphosphonium cation are widely used for evaluating the role of mitochondria in pathological processes involving oxidative stress. The potency of MTAs to carry electrons across biological membranes and thereby mediate transmembrane redox processes was unknown. To assess this, we measured the rate of ferricyanide reduction inside liposomes by external ascorbate. Here, we show that MTAs containing ubiquinone (MitoQ series) or plastoquinone (SkQ series) can carry electrons through lipid membranes, with the rate being inversely proportional to the length of the hydrocarbon linker group. Furthermore, this process was stimulated by the hydrophobic anion tetraphenylborate suggesting that permeation of the cationic MTA through the membrane was the rate-limiting step of the process. This conclusion was supported by the observation that the rate of MTA-induced electron transfer was insensitive to nigericin, in contrast to electron transfer mediated by neutral quinone derivatives. These findings indicate that MTAs can be utilized to transfer electrons across lipid membranes and this may be applicable to the study of the electron-transport chain in mitochondria and other natural membranes exhibiting redox processes. Copyright © 2016 Elsevier B.V. All rights reserved.

  2. Phospholipids and glycolipids mediate proton containment and circulation along the surface of energy-transducing membranes.

    PubMed

    Yoshinaga, Marcos Y; Kellermann, Matthias Y; Valentine, David L; Valentine, Raymond C

    2016-10-01

    Proton bioenergetics provides the energy for growth and survival of most organisms in the biosphere ranging from unicellular marine phytoplankton to humans. Chloroplasts harvest light and generate a proton electrochemical gradient (proton motive force) that drives the production of ATP needed for carbon dioxide fixation and plant growth. Mitochondria, bacteria and archaea generate proton motive force to energize growth and other physiologies. Energy transducing membranes are at the heart of proton bioenergetics and are responsible for catalyzing the conversion of energy held in high-energy electrons→electron transport chain→proton motive force→ATP. Whereas the electron transport chain is understood in great detail there are major gaps in understanding mechanisms of proton transfer or circulation during proton bioenergetics. This paper is built on the proposition that phospho- and glyco-glycerolipids form proton transport circuitry at the membrane's surface. By this proposition, an emergent membrane property, termed the hyducton, confines active/unbound protons or hydronium ions to a region of low volume close to the membrane surface. In turn, a von Grotthuß mechanism rapidly moves proton substrate in accordance with nano-electrochemical poles on the membrane surface created by powerful proton pumps such as ATP synthase.

  3. Interactions of Amelogenin with Phospholipids

    PubMed Central

    Lokappa, Sowmya Bekshe; Chandrababu, Karthik Balakrishna; Dutta, Kaushik; Perovic, Iva; Evans, John Spencer; Moradian-Oldak, Janet

    2015-01-01

    Amelogenin protein has the potential to interact with other enamel matrix proteins, mineral and cell surfaces. We investigated the interactions of recombinant amelogenin rP172 with small unilamellar vesicles as model membranes, towards the goal of understanding the mechanisms of amelogenin-cell interactions during amelogenesis. Dynamic light scattering (DLS), fluorescence spectroscopy, circular dichroism (CD) and nuclear magnetic resonance (NMR) were used. In the presence of phospholipid vesicles, a blue shift in the Trp fluorescence emission maxima of rP172 was observed (~334 nm) and the Trp residues of rP172 were inaccessible to the aqueous quencher acrylamide. Though in DLS studies we cannot exclude the possibility of fusion of liposomes as the result of amelogenin addition, NMR and CD studies revealed a disorder-order transition of rP172 in a model membrane environment. Strong FRET from Trp in rP172 to DNS–bound-phospholipid was observed, and fluorescence polarization studies indicated that rP172 interacted with the hydrophobic core region of model membranes. Our data suggest that amelogenin has ability to interact with phospholipids and that such interactions may play key roles in enamel biomineralization as well as reported amelogenin signaling activities. PMID:25298002

  4. Tunable cell membrane mimetic surfaces prepared with a novel phospholipid polymer

    NASA Astrophysics Data System (ADS)

    Gong, Ming; Yang, Shan; Ma, Jia-ni; Zhang, Shi-ping; Winnik, Françoise M.; Gong, Yong-kuan

    2008-11-01

    A novel method to fabricate and tune cell membrane mimetic surfaces was developed based on the use of an amphiphilic random copolymer bearing phosphorylcholine (PC), stearyl and crosslinkable trimethoxysilylpropyl groups synthesized by free radical copolymerization. The polymer was coated on glass coverslips by dip-coating. The coated films were treated in water allowing reorganization of the surface groups to mimic the structure of cell outer membranes. This structure was fixed by crosslinking of the trimethoxysilylpropyl groups linked to the copolymer chains, as ascertained by dynamic contact angle (DCA) and attenuated total reflectance infrared spectroscopy (ATR-FTIR) measurements. Our results indicate that the surface structure can be tuned to a great extent to obtain a stable outer membrane mimetic surface/interface.

  5. Inhibition of Sendai virus fusion with phospholipid vesicles and human erythrocyte membranes by hydrophobic peptides

    SciTech Connect

    Kelsey, D.R.; Flanagan, T.D.; Young, J.E.; Yeagle, P.L. )

    1991-06-01

    Hydrophobic di- and tripeptides which are capable of inhibiting enveloped virus infection of cells are also capable of inhibiting at least three different types of membrane fusion events. Large unilamellar vesicles (LUV) of N-methyl dioleoylphosphatidylethanolamine (N-methyl DOPE), containing encapsulated 1-aminonaphthalene-3,6,8-trisulfonic acid (ANTS) and/or p-xylene bis(pyridinium bromide) (DPX), were formed by extrusion. Vesicle fusion and leakage were then monitored with the ANTS/DPX fluorescence assay. Sendai virus fusion with lipid vesicles and Sendai virus fusion with human erythrocyte membranes were measured by following the relief of fluorescence quenching of virus labeled with octadecylrhodamine B chloride (R18). This study found that the effectiveness of the peptides carbobenzoxy-L-Phe-L-Phe (Z-L-Phe-L-Phe), Z-L-Phe, Z-D-Phe, and Z-Gly-L-Phe-L-Phe in inhibiting N-methyl DOPE LUV fusion or fusion of virus with N-methyl DOPE LUV also paralleled their reported ability to block viral infectivity. Furthermore, Z-D-Phe-L-PheGly and Z-Gly-L-Phe inhibited Sendai virus fusion with human erythrocyte membranes with the same relative potency with which they inhibited vesicle-vesicle and virus-vesicle fusion. The evidence suggests a mechanism by which these peptides exert their inhibition of plaque formation by enveloped viruses. This class of inhibitors apparently acts by inhibiting fusion of the viral envelope with the target cell membrane, thereby preventing viral infection. The physical pathway by which these peptides inhibit membrane fusion was investigated. {sup 31}P nuclear magnetic resonance (NMR) of proposed intermediates in the pathway for membrane fusion in LUV revealed that the potent fusion inhibitor Z-D-Phe-L-PheGly selectively altered the structure (or dynamics) of the hypothesized fusion intermediates and that the poor inhibitor Z-Gly-L-Phe did not.

  6. Cell signalling and phospholipid metabolism

    SciTech Connect

    Boss, W.F.

    1989-01-01

    Our research for the past two years has involved the study of phosphoinositides and their potential role in regulating plant growth and development. Our initial goal was to document the sequence of events involved in inositol phospholipid metabolism in response to external stimuli. Our working hypothesis was that phosphatidylinositol bisphosphate (PIP/sub 2/) was in the plasma membrane of plants cells and would be hydrolyzed by phospholipase C to yield the second messengers inositol triphosphate (IP/sub 3/) and diacyglycerol (DAG) and that IP/sub 3/ would mobilize intracellular calcium as has been shown for animal cells. Our results with both carrot suspension culture cells and sunflower hypocotyl indicate that this paradigm is not the primary mechanism of signal transduction in these systems. We have observed very rapid, within 5 sec, stimulation of phosphatidylinositol monophosphate (PIP) kinase which resulted in an increase in PIP/sub 2/. However, there was no evidence for activation of phospholipase C. In addition, we have shown that PIP and PIP/sub 2/ can activate the plasma membrane ATPase. The results of these studies are described briefly in the paragraphs below. Inositol phospholipids are localized in distinct membrane fractions. If PIP and PIP/sub 2/ play a role in the transduction of external signals, they should be present in the plasma membrane. We used the fusogenic carrot suspension culture cells as a model system to study the distribution of inositol phospholipids in various membrane fractions and organelles. Cells were labeled 12 to 18 h with myo(2-/sup 3/H) inositol and the membranes were isolated by aqueous two-phase partitioning. The plasma membrane was enriched in PIP and PIP/sub 2/ compared to the intracellular membranes.

  7. Phospholipid bilayer nanodiscs: a powerful tool to study the structural organization and biochemical reactivity of proteins in membrane-like environments.

    PubMed

    Hernández-Rocamora, Víctor M; García-Montañés, Concepción; Rivas, Germán

    2014-01-01

    Nanodiscs are disc-like structures formed by two copies of a membrane scaffold protein, engineered from apolipoprotein A-I, surrounding a phospholipid mixture that can incorporate membrane proteins preserving their natural properties. They behave as soluble entities allowing the use of high-resolution structural techniques to determine the structural organization of the embedded membrane protein, and the use of solution biochemical-biophysical tools to measure its activity, assembly and interactions with other proteins in membranelike environments. In addition, nanodiscs are biocompatible which makes them an attractive technology to be used in therapy, drug discovery, and other biotechnological applications.

  8. Fusion of phospholipid vesicles with a planar membrane depends on the membrane permeability of the solute used to create the osmotic pressure

    PubMed Central

    1989-01-01

    Phospholipid vesicles fuse with a planar membrane when they are osmotically swollen. Channels in the vesicle membrane are required for swelling to occur when the vesicle-containing compartment is made hyperosmotic by adding a solute (termed an osmoticant). We have studied fusion using two different channels, porin, a highly permeable channel, and nystatin, a much less permeable channel. We report that an osmoticant's ability to support fusion (defined as the magnitude of osmotic gradient necessary to obtain sustained fusion) depends on both its permeability through lipid bilayer as well as its permeability through the channel by which it enters the vesicle interior. With porin as the channel, formamide requires an osmotic gradient about ten times that required with urea, which is approximately 1/40th as permeant as formamide through bare lipid membrane. When nystatin is the channel, however, fusion rates sustained by osmotic gradients of formamide are within a factor of two of those obtained with urea. Vesicles containing a porin-impermeant solute can be induced to swell and fuse with a planar membrane when the impermeant bathing the vesicles is replaced by an isosmotic quantity of a porin-permeant solute. With this method of swelling, formamide is as effective as urea in obtaining fusion. In addition, we report that binding of vesicles to the planar membrane does not make the contact region more permeable to the osmoticant than is bare lipid bilayer. In the companion paper, we quantitatively account for the observation that the ability of a solute to promote fusion depends on its permeability properties and the method of swelling. We show that the intravesicular pressure developed drives fusion. PMID:2539429

  9. Myristoylation-facilitated binding of the G protein ARF1GDP to membrane phospholipids is required for its activation by a soluble nucleotide exchange factor.

    PubMed

    Franco, M; Chardin, P; Chabre, M; Paris, S

    1996-01-19

    We have investigated the role of N-myristoylation in the activation of bovine ADP-ribosylation factor 1 (ARF1). We previously showed that myristoylation allows some spontaneous GDP-to-GTP exchange to occur on ARF1 at physiological Mg2+ levels in the presence of phospholipid vesicles (Franco, M., Chardin, P., Chabre, M., and Paris, S. (1995) J. Biol. Chem. 270, 1337-1341). Here, we report that this basal nucleotide exchange can be accelerated (by up to 5-fold) by addition of a soluble fraction obtained from bovine retinas. This acceleration is totally abolished by brefeldin A (IC50 = 2 microM) and by trypsin treatment of the retinal extract, as expected for an ARF-specific guanine nucleotide exchange factor. To accelerate GDP release from ARF1, this soluble exchange factor absolutely requires myristoylation of ARF1 and the presence of phospholipid vesicles. The retinal extract also stimulates guanosine 5'-3-O-(thio)-triphosphate (GTP gamma S) release from ARF1 in the presence of phospholipids, but in this case myristoylation of ARF is not required. These observations, together with our previous findings that both myristoylated and non-myristoylated forms of ARF GTP-gamma S but only the myristoylated form of ARFGDP bind to membrane phospholipids, suggest that (i) the retinal exchange factor acts only on membrane-bound ARF, (ii) the myristate is not involved in the protein-protein interaction between ARF1 and the exchange factor, and (iii) N-myristoylation facilitates both spontaneous and catalyzed GDP-to-GTP exchange on ARF1 simply by facilitating the binding of ARFGDP to membrane phospholipids.

  10. Thermodynamic analysis of chain-melting transition temperatures for monounsaturated phospholipid membranes: dependence on cis-monoenoic double bond position.

    PubMed Central

    Marsh, D

    1999-01-01

    Unsaturated phospholipid is the membrane component that is essential to the dynamic environment needed for biomembrane function. The dependence of the chain-melting transition temperature, T(t), of phospholipid bilayer membranes on the position, n(u), of the cis double bond in the glycerophospholipid sn-2 chain can be described by an expression of the form T(t) = T(t)(c)(1 + h'(c)|n(u) - n(c)|)/(1 + s'(c)|n(u) - n(c)|), where n(c) is the chain position of the double bond corresponding to the minimum transition temperature, T(t)(c), for constant diacyl lipid chain lengths. This implies that the incremental transition enthalpy (and entropy) contributed by the sn-2 chain is greater for whichever of the chain segments, above or below the double-bond position, is the longer. The critical position, n(c), of the double bond is offset from the center of the sn-2 chain by an approximately constant amount, deltan(c) approximately 1. 5 C-atom units. The dependence of the parameters T(t)(c), h'(c), and s'(c) on sn-1 and sn-2 chain lengths can be interpreted consistently when allowance is made for the chain packing mismatch between the sn-1 and sn-2 chains. The length of the sn-2 chain is reduced by approximately 0.8 C-atom units by the cis double bond, in addition to a shortening by approximately 1.3 C-atom units by the bent configuration at the C-2 position. Based on this analysis, a general thermodynamic expression is proposed for the dependence of the chain-melting transition temperature on the position of the cis double bond and on the sn-1 and sn-2 chain lengths. The above treatment is restricted mostly to double-bond positions close to the center of the sn-2 chain. For double bonds positioned closer to the carboxyl or terminal methyl ends of the sn-2 chain, the effects on transition enthalpy can be considerably larger. They may be interpreted by the same formalism, but with different characteristic parameters, h'(c) and s'(c), such that the shorter of the chain segments

  11. Interaction of melittin with mixed phospholipid membranes composed of dimyristoylphosphatidylcholine and dimyristoylphosphatidylserine studied by deuterium NMR

    SciTech Connect

    Dempsey, C.; Bitbol, M.; Watts, A. )

    1989-08-08

    The interaction of bee venom melittin with mixed phospholipid bilayers composed of dimyristoylphosphatidylcholine deuterated in the {alpha}- and {beta}-methylenes of the choline head group (DMPC-d{sub 4}) and dimyristoylphosphatidylserine deuterated in the {alpha}-methylene and {beta}-CH positions of the serine head group (DMPS-d{sub 3}) was studied in ternary mixtures by using deuterium NMR spectroscopy. The changes in the deuterium quadrupole splittings of the head-group deuteriomethylenes of DMPC-d{sub 4} induced by DMPS in binary mixtures were systematically reversed by increasing concentrations of melittin, so that at a melittin concentration of 4 mol % relative to total lipid the deuterium NMR spectrum from DMPC-d{sub 4} in the ternary mixture was similar to the spectrum from pure DMPC-d{sub 4} bilayers. The absence of deuterium NMR signals arising from melittin-bound DMPS in ternary mixtures containing DMPS-d{sub 3} indicates that the reversal by melittin of the effects of DMPS on the quadrupole splittings of DMPC-d{sub 4} results from the response of the choline head group to the net surface charge rather than from phase separation of melittin-DMPS complexes. The similarity in the effects of the two cationic but otherwise dissimilar peptides indicates that the DMPS head group responds to the surface charge resulting from the presence in the bilayer of charged amphiphiles, in a manner analogous to the response of the choline head group of phosphatidylcholine to the bilayer surface charge. The presence of DMPS greatly stabilized DMPC bilayers with respect to melittin-induced micellization, indicating that the latter effect of melittin may not be important for the hemolytic activity of the peptide.

  12. Is the omega-3 index a valid marker of intestinal membrane phospholipid EPA+DHA content?

    PubMed

    Gurzell, Eric A; Wiesinger, Jason A; Morkam, Christina; Hemmrich, Sophia; Harris, William S; Fenton, Jenifer I

    2014-09-01

    Despite numerous studies investigating n-3 long chain polyunsaturated fatty acid (LCPUFA) supplementation and inflammatory bowel diseases (IBD), the extent to which dietary n-3 LCPUFAs incorporate in gastrointestinal (GI) tissues and correlate with red blood cell (RBC) n-3 LCPUFA content is unknown. In this study, mice were fed three diets with increasing percent of energy (%en) derived from eicosapentaenoic acid (EPA)+docosahexaenoic acid (DHA). Dietary levels reflected recommended intakes of fish/fish oil by the American Heart Association. We analyzed the FA composition of phospholipids extracted from RBCs, plasma, and GI tissues. We observed that the 0.1%en EPA+DHA diet was sufficient to significantly increase the omega-3 index (RBC EPA+DHA) after 5 week feeding. The baseline EPA levels were 0.2-0.6% across all tissues increasing to 1.6-4.3% in the highest EPA+DHA diet; these changes resulted in absolute increases of 1.4-3.9% EPA across tissues. The baseline DHA levels were 2.2-5.9% across all tissues increasing to 5.8-10.5% in the highest EPA+DHA diet; these changes resulted in absolute increases of 3.2-5.7% DHA across tissues. These increases in EPA and DHA across all tissues resulted in strong (r>0.91) and significant (P<0.001) linear correlations between the omega-3 index and plasma/GI tissue EPA+DHA content, suggesting that the omega-3 index reflects the relative amounts of EPA+DHA in GI tissues. These data demonstrate that the GI tissues are highly responsive to dietary LCPUFA supplementation and that the omega-3 index can serve as a valid biomarker for assessing dietary EPA+DHA incorporation into GI tissues.

  13. Identification of a secretory phospholipase A2 from Papaver somniferum L. that transforms membrane phospholipids.

    PubMed

    Jablonická, Veronika; Mansfeld, Johanna; Heilmann, Ingo; Obložinský, Marek; Heilmann, Mareike

    2016-09-01

    The full-length sequence of a new secretory phospholipase A2 was identified in opium poppy seedlings (Papaver somniferum L.). The cDNA of poppy phospholipase A2, denoted as pspla2, encodes a protein of 159 amino acids with a 31 amino acid long signal peptide at the N-terminus. PsPLA2 contains a PLA2 signature domain (PA2c), including the Ca(2+)-binding loop (YGKYCGxxxxGC) and the catalytic site motif (DACCxxHDxC) with the conserved catalytic histidine and the calcium-coordinating aspartate residues. The aspartate of the His/Asp dyad playing an important role in animal sPLA2 catalysis is substituted by a serine residue. Furthermore, the PsPLA2 sequence contains 12 conserved cysteine residues to form 6 structural disulfide bonds. The calculated molecular weight of the mature PsPLA2 is 14.0 kDa. Based on the primary structure PsPLA2 belongs to the XIB group of PLA2s. Untagged recombinant PsPLA2 obtained by expression in Escherichia coli, renaturation from inclusion bodies and purification by cation-exchange chromatography was characterized in vitro. The pH optimum for activity of PsPLA2 was found to be pH 7, when using mixed micelles of 1,2-dioleoyl-sn-glycero-3-phosphocholine (DOPC) and Triton X-100. PsPLA2 specifically cleaves fatty acids from the sn-2 position of 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine and shows a pronounced preference for PC over phosphatidyl ethanolamine, -glycerol and -inositol. The active recombinant enzyme was tested in vitro against natural phospholipids isolated from poppy plants and preferably released the unsaturated fatty acids, linoleic acid and linolenic acid, from the naturally occurring mixture of substrate lipids.

  14. Overcoming hysteresis to attain reversible equilibrium folding for outer membrane phospholipase A in phospholipid bilayers

    PubMed Central

    Moon, C. Preston; Kwon, Sarah; Fleming, Karen G.

    2011-01-01

    The free energy of unfolding of a membrane protein from lipids into water (ΔGw,lo) describes its equilibrium thermodynamic stability. Knowing this parameter gives insight into a membrane protein’s sequence-structure-energy relationships. However, there are few measures of membrane protein stability because of the technical difficulties associated with unfolded and partially folded states. Here, we describe experimental process that allowed us to measure the ΔGw,lo of the outer membrane phospholipase A (OmpLA) into large unilamellar vesicles (LUVs) of 1,2-dilauroyl-sn-glycero-3-phosphocholine (DLPC). To arrive at this reversible folding condition, we screened a large number of experimental variables: temperature, incubation time, salt concentration, pH, lipid composition as well as liposome morphology. The principal challenge we encountered under most conditions was hysteresis between folding and unfolding titrations. A second factor that compromised reversible folding was the observation that a fraction of the protein population tended to aggregate. We found that hysteresis could be completely eliminated on a feasible timescale by conducting experiments at acidic pH, by the slow dilution of the protein in the initial titration setup and by utilizing a low concentration of a detergent as a temporary “holdase” to solubilize the protein upon its initial dilution into folding conditions. We confirmed that the detergent did not disrupt the LUVs using fluorescence emission of lipid-sensitive dyes and light scattering. The results of our parameter search should be generally useful for efforts to measure of ΔGw,lo for other membrane proteins. PMID:21888919

  15. Phospholipid Flippase ATP10A Translocates Phosphatidylcholine and Is Involved in Plasma Membrane Dynamics*

    PubMed Central

    Naito, Tomoki; Takatsu, Hiroyuki; Miyano, Rie; Takada, Naoto; Nakayama, Kazuhisa; Shin, Hye-Won

    2015-01-01

    We showed previously that ATP11A and ATP11C have flippase activity toward aminophospholipids (phosphatidylserine (PS) and phosphatidylethanolamine (PE)) and ATP8B1 and that ATP8B2 have flippase activity toward phosphatidylcholine (PC) (Takatsu, H., Tanaka, G., Segawa, K., Suzuki, J., Nagata, S., Nakayama, K., and Shin, H. W. (2014) J. Biol. Chem. 289, 33543–33556). Here, we show that the localization of class 5 P4-ATPases to the plasma membrane (ATP10A and ATP10D) and late endosomes (ATP10B) requires an interaction with CDC50A. Moreover, exogenous expression of ATP10A, but not its ATPase-deficient mutant ATP10A(E203Q), dramatically increased PC flipping but not flipping of PS or PE. Depletion of CDC50A caused ATP10A to be retained at the endoplasmic reticulum instead of being delivered to the plasma membrane and abrogated the increased PC flipping activity observed by expression of ATP10A. These results demonstrate that ATP10A is delivered to the plasma membrane via its interaction with CDC50A and, specifically, flips PC at the plasma membrane. Importantly, expression of ATP10A, but not ATP10A(E203Q), dramatically altered the cell shape and decreased cell size. In addition, expression of ATP10A, but not ATP10A(E203Q), delayed cell adhesion and cell spreading onto the extracellular matrix. These results suggest that enhanced PC flipping activity due to exogenous ATP10A expression alters the lipid composition at the plasma membrane, which may in turn cause a delay in cell spreading and a change in cell morphology. PMID:25947375

  16. Butter making from caprine creams: effect of washing treatment on phospholipids and milk fat globule membrane proteins distribution.

    PubMed

    Lamothe, Sophie; Robitaille, Gilles; St-Gelais, Daniel; Britten, Michel

    2008-11-01

    A washing treatment was applied to caprine cream before churning in order to improve phospholipids and MFGM protein purification from buttermilk and butter serum. Cream obtained from a first separation was diluted with water and separated a second time using pilot plant equipment. Regular and washed creams were churned to produce buttermilk and butter, from which butter serum was extracted. The washing treatment allowed a significant decrease of the casein content. As a result, the phospholipids-to-protein ratios in washed buttermilk and butter serum were markedly increased by 2.1 and 1.7-folds respectively, which represents an advantage for the production of phospholipids concentrates. However, when compared with bovine cream, lower phospholipids-to-protein ratios were observed when the washing treatment was applied to caprine cream. A higher concentration of MFGM protein and a lower retention of phospholipids during washing treatment are responsible for the lower phospholipids-to-protein ratios in buttermilk and butter serum obtained from caprine cream. The phospholipids distribution in the butter making process was similar to the one obtained from bovine regular and washed cream. Phospholipids were preferentially concentrated in the butter serum rather than the buttermilk fraction. This simple approach permitted the production of caprine and bovine butter sera extracts containing up to 180 and 240 g phospholipids/kg sera, respectively, on a dry basis.

  17. Structural Interpretation of the Large Slowdown of Water Dynamics at Stacked Phospholipid Membranes for Decreasing Hydration Level: All-Atom Molecular Dynamics

    SciTech Connect

    Calero, Carles; Stanley, H.; Franzese, Giancarlo

    2016-04-27

    Hydration water determines the stability and function of phospholipid membranes as well as the interaction of membranes with other molecules. Experiments and simulations have shown that water dynamics slows down dramatically as the hydration decreases, suggesting that the interfacial water that dominates the average dynamics at low hydration is slower than water away from the membrane. Here, based on all-atom molecular dynamics simulations, we provide an interpretation of the slowdown of interfacial water in terms of the structure and dynamics of water–water and water–lipid hydrogen bonds (HBs). We calculate the rotational and translational slowdown of the dynamics of water confined in stacked phospholipid membranes at different levels of hydration, from completely hydrated to poorly hydrated membranes. For all hydrations, we analyze the distribution of HBs and find that water–lipids HBs last longer than water–water HBs and that at low hydration most of the water is in the interior of the membrane. We also show that water–water HBs become more persistent as the hydration is lowered. We attribute this effect (i) to HBs between water molecules that form, in turn, persistent HBs with lipids; (ii) to the hindering of the H-bonding switching between water molecules due to the lower water density at the interface; and (iii) to the higher probability of water–lipid HBs as the hydration decreases. Lastly, our interpretation of the large dynamic slowdown in water under dehydration is potentially relevant in understanding membrane biophysics at different hydration levels.

  18. Structural Interpretation of the Large Slowdown of Water Dynamics at Stacked Phospholipid Membranes for Decreasing Hydration Level: All-Atom Molecular Dynamics.

    PubMed

    Calero, Carles; Stanley, H Eugene; Franzese, Giancarlo

    2016-04-27

    Hydration water determines the stability and function of phospholipid membranes as well as the interaction of membranes with other molecules. Experiments and simulations have shown that water dynamics slows down dramatically as the hydration decreases, suggesting that the interfacial water that dominates the average dynamics at low hydration is slower than water away from the membrane. Here, based on all-atom molecular dynamics simulations, we provide an interpretation of the slowdown of interfacial water in terms of the structure and dynamics of water-water and water-lipid hydrogen bonds (HBs). We calculate the rotational and translational slowdown of the dynamics of water confined in stacked phospholipid membranes at different levels of hydration, from completely hydrated to poorly hydrated membranes. For all hydrations, we analyze the distribution of HBs and find that water-lipids HBs last longer than water-water HBs and that at low hydration most of the water is in the interior of the membrane. We also show that water-water HBs become more persistent as the hydration is lowered. We attribute this effect (i) to HBs between water molecules that form, in turn, persistent HBs with lipids; (ii) to the hindering of the H-bonding switching between water molecules due to the lower water density at the interface; and (iii) to the higher probability of water-lipid HBs as the hydration decreases. Our interpretation of the large dynamic slowdown in water under dehydration is potentially relevant in understanding membrane biophysics at different hydration levels.

  19. Structural Interpretation of the Large Slowdown of Water Dynamics at Stacked Phospholipid Membranes for Decreasing Hydration Level: All-Atom Molecular Dynamics

    PubMed Central

    Calero, Carles; Stanley, H. Eugene; Franzese, Giancarlo

    2016-01-01

    Hydration water determines the stability and function of phospholipid membranes as well as the interaction of membranes with other molecules. Experiments and simulations have shown that water dynamics slows down dramatically as the hydration decreases, suggesting that the interfacial water that dominates the average dynamics at low hydration is slower than water away from the membrane. Here, based on all-atom molecular dynamics simulations, we provide an interpretation of the slowdown of interfacial water in terms of the structure and dynamics of water–water and water–lipid hydrogen bonds (HBs). We calculate the rotational and translational slowdown of the dynamics of water confined in stacked phospholipid membranes at different levels of hydration, from completely hydrated to poorly hydrated membranes. For all hydrations, we analyze the distribution of HBs and find that water–lipids HBs last longer than water–water HBs and that at low hydration most of the water is in the interior of the membrane. We also show that water–water HBs become more persistent as the hydration is lowered. We attribute this effect (i) to HBs between water molecules that form, in turn, persistent HBs with lipids; (ii) to the hindering of the H-bonding switching between water molecules due to the lower water density at the interface; and (iii) to the higher probability of water–lipid HBs as the hydration decreases. Our interpretation of the large dynamic slowdown in water under dehydration is potentially relevant in understanding membrane biophysics at different hydration levels. PMID:28773441

  20. A model for modulation of neuronal synchronization by D4 dopamine receptor-mediated phospholipid methylation.

    PubMed

    Kuznetsova, Anna Y; Deth, Richard C

    2008-06-01

    We describe a new molecular mechanism of dopamine-induced membrane protein modulation that can tune neuronal oscillation frequency to attention-related gamma rhythm. This mechanism is based on the unique ability of D4 dopamine receptors (D4R) to carry out phospholipid methylation (PLM) that may affect the kinetics of ion channels. We show that by deceasing the inertia of the delayed rectifier potassium channel, a transition to 40 Hz oscillations can be achieved. Decreased potassium channel inertia shortens spike duration and decreases the interspike interval via its influence on the calcium-dependent potassium current. This mechanism leads to a transition to attention-related gamma oscillations in a pyramidal cell-interneuron network. The higher frequency and better synchronization is observed with PLM affecting pyramidal neurons only, and recurrent excitation between pyramidal neurons is important for synchronization. Thus dopamine-stimulated methylation of membrane phospholipids may be an important mechanism for modulating firing activity, while impaired methylation can contribute to disorders of attention.

  1. Feruloyl Dioleoyglycerol Antioxidant Capacity in Phospholipid Vesicles

    USDA-ARS?s Scientific Manuscript database

    Ferulic acid and its esters are known to be effective antioxidants. Feruloyl dioleoylglycerol was assessed for its ability to serve as an antioxidant in model membrane phospholipid vesicles. The molecule was incorporated into single-lamellar vesicles of 1,2-dioleoyl-sn-glycero-3-phosphocholine at ...

  2. Simulations of simple linoleic acid-containing lipid membranes and models for the soybean plasma membranes

    NASA Astrophysics Data System (ADS)

    Zhuang, Xiaohong; Ou, Anna; Klauda, Jeffery B.

    2017-06-01

    The all-atom CHARMM36 lipid force field (C36FF) has been tested with saturated, monounsaturated, and polyunsaturated lipids; however, it has not been validated against the 18:2 linoleoyl lipids with an unsaturated sn-1 chain. The linoleoyl lipids are common in plants and the main component of the soybean membrane. The lipid composition of soybean plasma membranes has been thoroughly characterized with experimental studies. However, there is comparatively less work done with computational modeling. Our molecular dynamics (MD) simulation results show that the pure linoleoyl lipids, 1-stearoyl-2-linoleoyl-sn-glycero-3-phosphocholine (18:0/18:2) and 1,2-dilinoleoyl-sn-glycero-3-phosphocholine (di-18:2), agree very well with the experiments, which demonstrates the accuracy of the C36FF for the computational study of soybean membranes. Based on the experimental composition, the soybean hypocotyl and root plasma membrane models are developed with each containing seven or eight types of linoleoyl phospholipids and two types of sterols (sitosterol and stigmasterol). MD simulations are performed to characterize soybean membranes, and the hydrogen bonds and clustering results demonstrate that the lipids prefer to interact with the lipids of the same/similar tail unsaturation. All the results suggest that these two soybean membrane models can be used as a basis for further research in soybean and higher plant membranes involving membrane-associated proteins.

  3. Simulations of simple linoleic acid-containing lipid membranes and models for the soybean plasma membranes.

    PubMed

    Zhuang, Xiaohong; Ou, Anna; Klauda, Jeffery B

    2017-06-07

    The all-atom CHARMM36 lipid force field (C36FF) has been tested with saturated, monounsaturated, and polyunsaturated lipids; however, it has not been validated against the 18:2 linoleoyl lipids with an unsaturated sn-1 chain. The linoleoyl lipids are common in plants and the main component of the soybean membrane. The lipid composition of soybean plasma membranes has been thoroughly characterized with experimental studies. However, there is comparatively less work done with computational modeling. Our molecular dynamics (MD) simulation results show that the pure linoleoyl lipids, 1-stearoyl-2-linoleoyl-sn-glycero-3-phosphocholine (18:0/18:2) and 1,2-dilinoleoyl-sn-glycero-3-phosphocholine (di-18:2), agree very well with the experiments, which demonstrates the accuracy of the C36FF for the computational study of soybean membranes. Based on the experimental composition, the soybean hypocotyl and root plasma membrane models are developed with each containing seven or eight types of linoleoyl phospholipids and two types of sterols (sitosterol and stigmasterol). MD simulations are performed to characterize soybean membranes, and the hydrogen bonds and clustering results demonstrate that the lipids prefer to interact with the lipids of the same/similar tail unsaturation. All the results suggest that these two soybean membrane models can be used as a basis for further research in soybean and higher plant membranes involving membrane-associated proteins.

  4. Reminiscence of our research on membrane phospholipids in mammalian cells by using the novel technology.

    PubMed

    Akamatsu, Yuzuru

    2012-01-01

    By using "our devised up-to-the-second technique" over 30 years ago, we succeeded in the first isolation in the world of the three different kinds of mammalian cell mutants defective in the biosynthesis on each of phosphatidylserine (PS), cardiolipin (CL) and sphingomyelin (SM) from the parental CHO cells. As the results, we found that during the biosyntheses of PS and SM, the biosynthetic precursor or the final lipids are transported from their synthesized intracellular organelles to the plasma membranes via the other intracellular organelles. We further clarified the presence of the reversed routes for PS and SM from the plasma membranes to their synthesized organelles too. Our first epoch-making finding is not only the cycling inter-conversion reactions between PS and PE catalyzed by PSS-II and PSD but also their simultaneous transferring between MAM and Mit (found by O. Kuge). Our second finding is "the ceramide-trafficking protein (CERT)" working as the specific transfer protein of ceramide from the ER to the Golgi apparatus, during the SM biosynthesis (by K. Hanada). As for their new biological roles, we clarified possible contribution of PS and/or PE to the fusion process between viral envelope and endosomal membrane, releasing the genetic information of the virus to the host cytoplasm. CL is contributing to the functional NADH-ubiquinone reductase activity by keeping the right structure of Coenzyme Q9 for its functioning. SM and cholesterol form the microdomain within the plasma membrane, so-called "the raft structure" where the GPI-anchored proteins are specifically located for their functioning.

  5. General model of phospholipid bilayers in fluid phase within the single chain mean field theory

    NASA Astrophysics Data System (ADS)

    Guo, Yachong; Pogodin, Sergey; Baulin, Vladimir A.

    2014-05-01

    Coarse-grained model for saturated phospholipids: 1,2-didecanoyl-sn-glycero-3-phosphocholine (DCPC), 1,2-dilauroyl-sn-glycero-3-phosphocholine (DLPC), 1,2-dimyristoyl-sn-glycero-3-phosphocholine (DMPC), 1,2-dipalmitoyl-sn-glycero-3-phosphocholine (DPPC), 1,2-distearoyl-sn-glycero-3-phosphocholine (DSPC) and unsaturated phospholipids: 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine (POPC), 1,2- dioleoyl-sn-glycero-3-phosphocholine (DOPC) is introduced within the single chain mean field theory. A single set of parameters adjusted for DMPC bilayers gives an adequate description of equilibrium and mechanical properties of a range of saturated lipid molecules that differ only in length of their hydrophobic tails and unsaturated (POPC, DOPC) phospholipids which have double bonds in the tails. A double bond is modeled with a fixed angle of 120°, while the rest of the parameters are kept the same as saturated lipids. The thickness of the bilayer and its hydrophobic core, the compressibility, and the equilibrium area per lipid correspond to experimentally measured values for each lipid, changing linearly with the length of the tail. The model for unsaturated phospholipids also fetches main thermodynamical properties of the bilayers. This model is used for an accurate estimation of the free energies of the compressed or stretched bilayers in stacks or multilayers and gives reasonable estimates for free energies. The proposed model may further be used for studies of mixtures of lipids, small molecule inclusions, interactions of bilayers with embedded proteins.

  6. General model of phospholipid bilayers in fluid phase within the single chain mean field theory

    SciTech Connect

    Guo, Yachong; Baulin, Vladimir A.; Pogodin, Sergey

    2014-05-07

    Coarse-grained model for saturated phospholipids: 1,2-didecanoyl-sn-glycero-3-phosphocholine (DCPC), 1,2-dilauroyl-sn-glycero-3-phosphocholine (DLPC), 1,2-dimyristoyl-sn-glycero-3-phosphocholine (DMPC), 1,2-dipalmitoyl-sn-glycero-3-phosphocholine (DPPC), 1,2-distearoyl-sn-glycero-3-phosphocholine (DSPC) and unsaturated phospholipids: 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine (POPC), 1,2- dioleoyl-sn-glycero-3-phosphocholine (DOPC) is introduced within the single chain mean field theory. A single set of parameters adjusted for DMPC bilayers gives an adequate description of equilibrium and mechanical properties of a range of saturated lipid molecules that differ only in length of their hydrophobic tails and unsaturated (POPC, DOPC) phospholipids which have double bonds in the tails. A double bond is modeled with a fixed angle of 120°, while the rest of the parameters are kept the same as saturated lipids. The thickness of the bilayer and its hydrophobic core, the compressibility, and the equilibrium area per lipid correspond to experimentally measured values for each lipid, changing linearly with the length of the tail. The model for unsaturated phospholipids also fetches main thermodynamical properties of the bilayers. This model is used for an accurate estimation of the free energies of the compressed or stretched bilayers in stacks or multilayers and gives reasonable estimates for free energies. The proposed model may further be used for studies of mixtures of lipids, small molecule inclusions, interactions of bilayers with embedded proteins.

  7. General model of phospholipid bilayers in fluid phase within the single chain mean field theory.

    PubMed

    Guo, Yachong; Pogodin, Sergey; Baulin, Vladimir A

    2014-05-07

    Coarse-grained model for saturated phospholipids: 1,2-didecanoyl-sn-glycero-3-phosphocholine (DCPC), 1,2-dilauroyl-sn-glycero-3-phosphocholine (DLPC), 1,2-dimyristoyl-sn-glycero-3-phosphocholine (DMPC), 1,2-dipalmitoyl-sn-glycero-3-phosphocholine (DPPC), 1,2-distearoyl-sn-glycero-3-phosphocholine (DSPC) and unsaturated phospholipids: 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine (POPC), 1,2- dioleoyl-sn-glycero-3-phosphocholine (DOPC) is introduced within the single chain mean field theory. A single set of parameters adjusted for DMPC bilayers gives an adequate description of equilibrium and mechanical properties of a range of saturated lipid molecules that differ only in length of their hydrophobic tails and unsaturated (POPC, DOPC) phospholipids which have double bonds in the tails. A double bond is modeled with a fixed angle of 120°, while the rest of the parameters are kept the same as saturated lipids. The thickness of the bilayer and its hydrophobic core, the compressibility, and the equilibrium area per lipid correspond to experimentally measured values for each lipid, changing linearly with the length of the tail. The model for unsaturated phospholipids also fetches main thermodynamical properties of the bilayers. This model is used for an accurate estimation of the free energies of the compressed or stretched bilayers in stacks or multilayers and gives reasonable estimates for free energies. The proposed model may further be used for studies of mixtures of lipids, small molecule inclusions, interactions of bilayers with embedded proteins.

  8. Effects of terpenes on fluidity and lipid extraction in phospholipid membranes.

    PubMed

    Mendanha, Sebastião Antonio; Alonso, Antonio

    2015-03-01

    Electron paramagnetic resonance (EPR) spectroscopy was used in a detailed study of the interactions of several terpenes with DPPC membranes. EPR spectra of a spin-label lipid allowed the identification of two well-resolved spectral components at temperatures below and above the main phase transition of the lipid bilayer. Terpenes caused only slight mobility increases in each of these spectral components; however, they substantially increased the population of the more mobile component. In addition, the terpenes reduced the temperature of the main phase transition by more than 8 °C and caused the extraction of the spin-labeled lipid. Nerolidol, which had the highest octanol-water partition coefficient, generated the highest amount of spin label extraction. Acting as spacers, terpenes should cause major reorganization in cell membranes, leading to an increase in the overall molecular dynamics of the membrane. At higher concentrations, terpenes may cause lipid extraction and thus leakage of the cytoplasmic content. Copyright © 2015 Elsevier B.V. All rights reserved.

  9. Interactions of borneol with DPPC phospholipid membranes: a molecular dynamics simulation study.

    PubMed

    Yin, Qianqian; Shi, Xinyuan; Ding, Haiou; Dai, Xingxing; Wan, Guang; Qiao, Yanjiang

    2014-11-06

    Borneol, known as a "guide" drug in traditional Chinese medicine, is widely used as a natural penetration enhancer in modern clinical applications. Despite a large number of experimental studies on borneol's penetration enhancing effect, the molecular basis of its action on bio-membranes is still unclear. We carried out a series of coarse-grained molecular dynamics simulations with the borneol concentration ranging from 3.31% to 54.59% (v/v, lipid-free basis) to study the interactions of borneol with aDPPC(1,2-dipalmitoylsn-glycero-3-phosphatidylcholine) bilayer membrane, and the temperature effects were also considered. At concentrations below 21.89%, borneol's presence only caused DPPC bilayer thinning and an increase in fluidity; A rise in temperature could promote the diffusing progress of borneol. When the concentration was 21.89% or above, inverted micelle-like structures were formed within the bilayer interior, which led to increased bilayer thickness, and an optimum temperature was found for the interaction of borneol with the DPPC bilayer membrane. These findings revealed that the choice of optimal concentration and temperature is critical for a given application in which borneol is used as a penetration enhancer. Our results not only clarify some molecular basis for borneol's penetration enhancing effects, but also provide some guidance for the development and applications of new preparations containing borneol.

  10. Interactions of Borneol with DPPC Phospholipid Membranes: A Molecular Dynamics Simulation Study

    PubMed Central

    Yin, Qianqian; Shi, Xinyuan; Ding, Haiou; Dai, Xingxing; Wan, Guang; Qiao, Yanjiang

    2014-01-01

    Borneol, known as a “guide” drug in traditional Chinese medicine, is widely used as a natural penetration enhancer in modern clinical applications. Despite a large number of experimental studies on borneol’s penetration enhancing effect, the molecular basis of its action on bio-membranes is still unclear. We carried out a series of coarse-grained molecular dynamics simulations with the borneol concentration ranging from 3.31% to 54.59% (v/v, lipid-free basis) to study the interactions of borneol with aDPPC(1,2-dipalmitoylsn-glycero-3-phosphatidylcholine) bilayer membrane, and the temperature effects were also considered. At concentrations below 21.89%, borneol’s presence only caused DPPC bilayer thinning and an increase in fluidity; A rise in temperature could promote the diffusing progress of borneol. When the concentration was 21.89% or above, inverted micelle-like structures were formed within the bilayer interior, which led to increased bilayer thickness, and an optimum temperature was found for the interaction of borneol with the DPPC bilayer membrane. These findings revealed that the choice of optimal concentration and temperature is critical for a given application in which borneol is used as a penetration enhancer. Our results not only clarify some molecular basis for borneol’s penetration enhancing effects, but also provide some guidance for the development and applications of new preparations containing borneol. PMID:25383679

  11. Interaction between active ruthenium complex [RuCl3(dppb)(VPy)] and phospholipid Langmuir monolayers: Effects on membrane electrical properties

    NASA Astrophysics Data System (ADS)

    Sandrino, B.; Wrobel, E. C.; Nobre, T. M.; Caseli, L.; Lazaro, S. R.; Júnior, A. C.; Garcia, J. R.; Oliveira, O. N.; Wohnrath, K.

    2016-04-01

    We report on the interaction between mer-[RuCl3(dppb)(VPy)] (dppb = 1,4-bis(diphenylphosphine)butane and VPy = 4-vinylpyridine) (RuVPy) and dipalmitoyl phosphatidyl serine (DPPS), in Langmuir and Langmuir⿿Blodgett (LB) films. Interaction of RuVPy with DPPS, which predominates in cancer cell membranes, should be weaker than for other phospholipids since RuVPy is less toxic to cancer cells than to healthy cells. Incorporation of RuVPy induced smaller changes in electrochemical properties of LB films of DPPS than for other phospholipids, but the same did not apply to surface pressure isotherms. This calls for caution in establishing correlations between effects from a single property and phenomena on cell membranes.

  12. Polyhydroxyalkanoate (PHA) Granules Have no Phospholipids

    PubMed Central

    Bresan, Stephanie; Sznajder, Anna; Hauf, Waldemar; Forchhammer, Karl; Pfeiffer, Daniel; Jendrossek, Dieter

    2016-01-01

    Polyhydroxybutyrate (PHB) granules, also designated as carbonosomes, are supra-molecular complexes in prokaryotes consisting of a PHB polymer core and a surface layer of structural and functional proteins. The presence of suspected phospholipids in the surface layer is based on in vitro data of isolated PHB granules and is often shown in cartoons of the PHB granule structure in reviews on PHB metabolism. However, the in vivo presence of a phospholipid layer has never been demonstrated. We addressed this topic by the expression of fusion proteins of DsRed2EC and other fluorescent proteins with the phospholipid-binding domain (LactC2) of lactadherin in three model organisms. The fusion proteins specifically localized at the cell membrane of Ralstonia eutropha but did not co-localize with PHB granules. The same result was obtained for Pseudomonas putida, a species that accumulates another type of polyhydroxyalkanoate (PHA) granules related to PHB. Notably, DsRed2EC-LactC2 expressed in Magnetospirillum gryphiswaldense was detected at the position of membrane-enclosed magnetosome chains and at the cytoplasmic membrane but not at PHB granules. In conclusion, the carbonosomes of representatives of α-proteobacteria, β-proteobacteria and γ-proteobacteria have no phospholipids in vivo and we postulate that the PHB/PHA granule surface layers in natural producers generally are free of phospholipids and consist of proteins only. PMID:27222167

  13. Effect of protection and repair of injury of mitochondrial membrane-phospholipid on prognosis in patients with dilated cardiomyopathy.

    PubMed

    Ma, A; Zhang, W; Liu, Z

    1996-01-01

    We have already proved that the mitochondrial membrane-phospholipid (MMP) injury changes of peripheral lymphocytes in patients with heart failure can be used as an injury indicator of myocardia, and are related to the long-term prognosis. In the present study, MMP localization of the peripheral lymphocytes was performed by modified Demer's tricomplex flocculation method, and we compared the changes, after classification, between the pre-treatment and the 12-week post-treatment, of coenzyme Q10 (Co.Q10) and captopril in 61 hospitalized patients with dilated cardiomyopathy (DCM). They were followed up for 16.1 +/- 7.8 months (mean). The results showed that compared with the placebo, Co.Q10 and captopril could significantly protect against and repair MMP injury and improve the heart function of patients with DCM after 12 weeks, and the 2-year survival rate rose significantly by 72.7% for Co.Q10, and 64.0% for captopril, vs 24.7% for placebo. As for Longrank test, X2 equals 4.660 and 6.318, respectively, with both p < 0.05. The aforementioned results indicate that MMP injury of peripheral lymphocytes can predict the prognosis of the patients with DCM, thus the protection and repairment of MMP injury can improve the life-quality and prolong the life-span of the patients.

  14. A phospholipid substrate molecule residing in the membrane surface mediates opening of the lid region in group IVA cytosolic phospholipase A2.

    PubMed

    Burke, John E; Hsu, Yuan-Hao; Deems, Raymond A; Li, Sheng; Woods, Virgil L; Dennis, Edward A

    2008-11-07

    The Group IVA (GIVA) phospholipase A(2) associates with natural membranes in response to an increase in intracellular Ca(2+) along with increases in certain lipid mediators. This enzyme associates with the membrane surface as well as binding a single phospholipid molecule in the active site for catalysis. Employing deuterium exchange mass spectrometry, we have identified the regions of the protein binding the lipid surface and conformational changes upon a single phospholipid binding in the absence of a lipid surface. Experiments were carried out using natural palmitoyl arachidonyl phosphatidylcholine vesicles with the intact GIVA enzyme as well as the isolated C2 and catalytic domains. Lipid binding produced changes in deuterium exchange in eight different regions of the protein. The regions with decreased exchange included Ca(2+) binding loop one, which has been proposed to penetrate the membrane surface, and a charged patch of residues, which may be important in interacting with the polar head groups of phospholipids. The regions with an increase in exchange are all located either in the hydrophobic core underneath the lid region or near the lid and hinge regions from 403 to 457. Using the GIVA phospholipase A(2) irreversible inhibitor methyl-arachidonyl fluorophosphonate, we were able to isolate structural changes caused only by pseudo-substrate binding. This produced results that were very similar to natural lipid binding in the presence of a lipid interface with the exception of the C2 domain and region 466-470. This implies that most of the changes seen in the catalytic domain are due to a substrate-mediated, not interface-mediated, lid opening, which exposes the active site to water. Finally experiments carried out with inhibitor plus phospholipid vesicles showed decreases at the C2 domain as well as charged residues on the putative membrane binding surface of the catalytic domain revealing the binding sites of the enzyme to the lipid surface.

  15. Antioxidant effect of 4-nerolidylcatechol and α-tocopherol in erythrocyte ghost membranes and phospholipid bilayers

    PubMed Central

    Fernandes, K.S.; Silva, A.H.M.; Mendanha, S.A.; Rezende, K.R.; Alonso, A.

    2013-01-01

    4-Nerolidylcatechol (4-NC) is found in Pothomorphe umbellata root extracts and is reported to have a topical protective effect against UVB radiation-induced skin damage, toxicity in melanoma cell lines, and antimalarial activity. We report a comparative study of the antioxidant activity of 4-NC and α-tocopherol against lipid peroxidation initiated by two free radical-generating systems: 2,2′-azobis(2-aminopropane) hydrochloride (AAPH) and FeSO4/H2O2, in red blood cell ghost membranes and in egg phosphatidylcholine (PC) vesicles. Lipid peroxidation was monitored by membrane fluidity changes assessed by electron paramagnetic resonance spectroscopy of a spin-labeled lipid and by the formation of thiobarbituric acid-reactive substances. When lipoperoxidation was initiated by the hydroxyl radical in erythrocyte ghost membranes, both 4-NC and α-tocopherol acted in a very efficient manner. However, lower activities were observed when lipoperoxidation was initiated by the peroxyl radical; and, in this case, the protective effect of α-tocopherol was lower than that of 4-NC. In egg PC vesicles, malondialdehyde formation indicated that 4-NC was effective against lipoperoxidation initiated by both AAPH and FeSO4/H2O2, whereas α-tocopherol was less efficient in protecting against lipoperoxidation by AAPH, and behaved as a pro-oxidant for FeSO4/H2O2. The DPPH (2,2-diphenyl-1-picrylhydrazyl) free-radical assay indicated that two free radicals were scavenged per 4-NC molecule, and one free radical was scavenged per α-tocopherol molecule. These data provide new insights into the antioxidant capacity of 4-NC, which may have therapeutic applications for formulations designed to protect the skin from sunlight irradiation. PMID:24068194

  16. Emerging Roles for Anionic Non-Bilayer Phospholipids in Fortifying the Outer Membrane Permeability Barrier

    PubMed Central

    2014-01-01

    Lately, researchers have been actively investigating Escherichia coli lptD mutants, which exhibit reduced transport of lipopolysaccharide to the cell surface. In this issue of the Journal of Bacteriology, Sutterlin et al. (H. A. Sutterlin, S. Zhang, and T. J. Silhavy, J. Bacteriol. 196:3214–3220, 2014) now reveal an important functional role for phosphatidic acid in fortifying the outer membrane permeability barrier in certain lptD mutant backgrounds. These findings come on the heels of the first reports of two LptD crystal structures, which now provide a structural framework for interpreting lptD genetics. PMID:25022852

  17. Storage stability and physical characteristics of tea-polyphenol-bearing nanoliposomes prepared with milk fat globule membrane phospholipids.

    PubMed

    Gülseren, Ibrahim; Corredig, Milena

    2013-04-03

    The objective of this work was to better understand the functional properties of milk phospholipids when used as ingredients to prepare liposomes. Liposomal dispersions (10%) were prepared using high-pressure homogenization, and their physical properties as well as their ability to encapsulate tea polyphenols were investigated. The extent of encapsulation, measured by HPLC, increased with tea polyphenol concentration up to about 4 mg·mL(-1). At polyphenol concentrations ≥ 6 mg·mL(-1), the liposome dispersions were no longer stable. The influence of pH (3-7), storage temperature (room temperature or refrigeration), and addition of sugars (0-15%) were studied for liposomes containing 4 mg·mL(-1) polyphenols. The liposomal dispersions were also stable in the presence of peptides. The storage stability of the systems prepared with milk phospholipids was compared to that of liposomes made with soy phospholipids. Soy liposomes were smaller in size than milk phospholipid liposomes, the encapsulation efficiency was higher, and the extent of release of tea polyphenols during storage was lower for milk phospholipid liposomes compared to soy liposomes. The results suggest that milk phospholipids could be employed to prepare tea-polyphenol-bearing liposomes and that the tea catechins may be incorporated in the milk phospholipid bilayer more efficiently than in the case of a soy phospholipid bilayer.

  18. Phospholipid:Diacylglycerol Acyltransferase Is a Multifunctional Enzyme Involved in Membrane Lipid Turnover and Degradation While Synthesizing Triacylglycerol in the Unicellular Green Microalga Chlamydomonas reinhardtii[C][W

    PubMed Central

    Yoon, Kangsup; Han, Danxiang; Li, Yantao; Sommerfeld, Milton; Hu, Qiang

    2012-01-01

    Many unicellular microalgae produce large amounts (∼20 to 50% of cell dry weight) of triacylglycerols (TAGs) under stress (e.g., nutrient starvation and high light), but the synthesis and physiological role of TAG are poorly understood. We present detailed genetic, biochemical, functional, and physiological analyses of phospholipid:diacylglycerol acyltransferase (PDAT) in the green microalga Chlamydomonas reinhardtii, which catalyzes TAG synthesis via two pathways: transacylation of diacylglycerol (DAG) with acyl groups from phospholipids and galactolipids and DAG:DAG transacylation. We demonstrate that PDAT also possesses acyl hydrolase activities using TAG, phospholipids, galactolipids, and cholesteryl esters as substrates. Artificial microRNA silencing of PDAT in C. reinhardtii alters the membrane lipid composition, reducing the maximum specific growth rate. The data suggest that PDAT-mediated membrane lipid turnover and TAG synthesis is essential for vigorous growth under favorable culture conditions and for membrane lipid degradation with concomitant production of TAG for survival under stress. The strong lipase activity of PDAT with broad substrate specificity suggests that this enzyme could be a potential biocatalyst for industrial lipid hydrolysis and conversion, particularly for biofuel production. PMID:23012436

  19. Phospholipid:diacylglycerol acyltransferase is a multifunctional enzyme involved in membrane lipid turnover and degradation while synthesizing triacylglycerol in the unicellular green microalga Chlamydomonas reinhardtii.

    PubMed

    Yoon, Kangsup; Han, Danxiang; Li, Yantao; Sommerfeld, Milton; Hu, Qiang

    2012-09-01

    Many unicellular microalgae produce large amounts (∼20 to 50% of cell dry weight) of triacylglycerols (TAGs) under stress (e.g., nutrient starvation and high light), but the synthesis and physiological role of TAG are poorly understood. We present detailed genetic, biochemical, functional, and physiological analyses of phospholipid:diacylglycerol acyltransferase (PDAT) in the green microalga Chlamydomonas reinhardtii, which catalyzes TAG synthesis via two pathways: transacylation of diacylglycerol (DAG) with acyl groups from phospholipids and galactolipids and DAG:DAG transacylation. We demonstrate that PDAT also possesses acyl hydrolase activities using TAG, phospholipids, galactolipids, and cholesteryl esters as substrates. Artificial microRNA silencing of PDAT in C. reinhardtii alters the membrane lipid composition, reducing the maximum specific growth rate. The data suggest that PDAT-mediated membrane lipid turnover and TAG synthesis is essential for vigorous growth under favorable culture conditions and for membrane lipid degradation with concomitant production of TAG for survival under stress. The strong lipase activity of PDAT with broad substrate specificity suggests that this enzyme could be a potentia