Science.gov

Sample records for phospholipid turnover relevant

  1. Differential turnover of phospholipid acyl groups in mouse peritoneal macrophages

    SciTech Connect

    Kuwae, T.; Schmid, P.C.; Johnson, S.B.; Schmid, H.H. )

    1990-03-25

    Phospholipid acyl turnover was assessed in mouse peritoneal exudate cells which consisted primarily of macrophages. The cells were incubated for up to 5 h in media containing 40% H218O, and uptake of 18O into ester carbonyls of phospholipids was determined by gas chromatography-mass spectrometry of hydrogenated methyl esters. The uptake was highest in choline phospholipids and phosphatidylinositol, less in ethanolamine phospholipids, and much less in phosphatidylserine. Acyl groups at the sn-1 and sn-2 positions of diacyl glycerophospholipids, including arachidonic and other long-chain polyunsaturated fatty acids, acquired 18O at about the same rate. Acyl groups of alkylacyl glycerophosphocholine exhibited lower rates of 18O uptake, and acyl groups of ethanolamine plasmalogens (alkenylacyl glycerophosphoethanolamines) acquired only minimal amounts of 18O within 5 h, indicating a low average acyl turnover via free fatty acids. Pulse experiments with exogenous 3H-labeled arachidonic acid supported the concept that acylation of alkenyl glycerophosphoethanolamine occurs by acyl transfer from other phospholipids rather than via free fatty acids and acyl-CoA. The 18O content of intracellular free fatty acids increased gradually over a 5-h period, whereas in extracellular free fatty acids it reached maximal 18O levels within the first hour. Arachidonate and other long-chain polyunsaturated fatty acids were found to participate readily in deacylation-reacylation reactions but were present only in trace amounts in the free fatty acid pools inside and outside the cells. We conclude that acyl turnover of macrophage phospholipids through hydrolysis and reacylation is rapid but tightly controlled so that appreciable concentrations of free arachidonic acid do not occur.

  2. Hyperbaric hyperoxia reversibly inhibits erythrocyte phospholipid fatty acid turnover

    NASA Technical Reports Server (NTRS)

    Dise, Craig A.; Clark, James M.; Lambersten, Christian J.; Goodman, David B. P.

    1987-01-01

    The effect of hyperbaric hyperoxia on the acylation of membrane phospholipid was studied by measuring the rates of activation of exogenous tritiated oleic acid to acyl thioester and of transesterification of the thioester into membrane phospholipids in intact human erythrocytes obtained 1 h after an exposure of the subjects to a hyperbaric oxygen atmosphere (3.5 h, 100 pct O2, 3 ATA). Exposure to pure oxygen was found to inhibit both the acylation and transesterification reactions by more than 30 percent, with partial recovery detected 24 h later. On the other hand, no rate changes were observed when isolated membranes from the same batches of cells were used in similar experiments. It is suggested that the decrease in the incorporation of tritiated oleic acid after hyperbaric hyperoxia may reflect an early event in the pathogenesis of oxygen-induced cellular injury and that it may be a useful index for the assessment of the tolerance of tissues to hyperoxia.

  3. Cyclic AMP restores a normal phenotype to sis oncogene transformed cells and inhibits inositol phospholipid turnover

    SciTech Connect

    Murphy, S.K.; Lazarus, A.; Pendergas, M.; Lockwood, A.H.

    1987-05-01

    The sis oncogene encodes the A chain of platelet-derived growth factor (PDGF). NIH3T3 fibroblasts transfected with the cloned sis oncogene display a malignant phenotype and have enhanced turnover of the regulatory phospholipid phosphatidylinositol 4,5 biphosphate (PIP2). They have found that elevation of intracellular cyclic AMP can restore many aspects of normal growth and morphology to sis-transformed cells. Cells rapidly become less refractile, flatten on the substratum, develop actomyosin bundles, and acquire a more tranquil membrane. Growth rate and saturation density are reduced. Cultures become contact-inhibited and, at confluence, assume a normal fibrobastic morphology. The ability to grow in low serum or suspension is lost. Following addition of 8-Br-cAMP, cellular levels of PIP and PIP2 increase to those in untransformed cells. Concurrently, the steady-state levels of inositol phosphates are reduced to normal values. They have found a similar effect of cAMP on inositol phospholipid metabolism in cells transformed by the human H-ras oncogene. These results suggest that cAMP, acting through the cAMP-dependent protein kinase, antagonizes ras and sis oncogene expression by inhibiting polyphosphoinositide turnover. Such action might occur by phosphorylation of the PDGF (sis) receptor or of a ras-stimulated phospholipase C.

  4. Ethanol stimulates phospholipid turnover and inositol 1,4,5-trisphosphate production in Chlamydomonas eugametos gametes.

    PubMed

    Musgrave, A; Kuin, H; Jongen, M; de Wildt, P; Schuring, F; Klerk, H; van den Ende, H

    1992-02-01

    Alcohols induce mating-structure activation in Chlamydomonas eugametos gametes. From the effect of ethanol on the (32)P-labelling of polyphosphoinositides, we conclude that the synthesis of these lipids is stimulated. Biologically inactive concentrations of ethanol (<6%) had no effect on synthesis, but 6-8% ethanol stimulated synthesis for upto 60 min. The (32)P incorporated into polyphosphoinositides and phosphatidic acid during ethanol treatment was readily chased out when 1 mM unlabelled Na3PO4 was added. Using a binding assay for inositol 1,4,5-trisphosphate, we show that the production of this phospholipid constituent is dramatically increased after ethanol treatment. This effect, coupled to a rise in intracellular calcium concentration, could explain gamete activation. The significance of these results in explaining other ethanol-induced phenomena in algae is discussed.

  5. Phospholipid turnover and ultrastructural correlates during spontaneous germinal vesicle breakdown of the bovine oocyte: Effects of a cyclic AMP phosphodiesterase inhibitor

    SciTech Connect

    Homa, S.T.; Webster, S.D.; Russell, R.K. )

    1991-08-01

    The turnover of (32P)orthophosphate in bovine oocyte phospholipids was studied during the early stages of spontaneous meiotic maturation, and during inhibition of this process by the cAMP phosphodiesterase inhibitor 3-isobutyl-1-methyl-xanthine (IBMX). Radioactive lipids were separated by TLC and the meiotic stage was determined cytogenetically. Ultrastructure of the nuclear membrane was examined using transmission EM. During the commitment period to meiotic resumption, which precedes germinal vesicle breakdown (GVBD), small localized convolutions appeared in the intact nuclear membrane. This was accompanied by a decrease in (32P)phosphatidic acid (PA) and an increase in (32P)-phosphatidylcholine (PC). This was followed by extensive convolutions, and subsequent dissociation, of the nuclear membrane, concomitant with a tremendous surge in (32P)PC and (32P)phosphatidylethanolamine (PE). The cAMP-mediated maintenance of meiotic arrest involved retention of entire nuclear envelope integrity and total inhibition of the surge in (32P)PC and (32P)PE which accompanied GVBD. The increase in (32P)phosphatidylinositol (PI) associated with all stages of early meiotic resumption was unaffected by IBMX. Microinjection of heparin inhibited GVBD, and injection of inositol 1,4,5-trisphosphate (IP3) overrode IBMX-maintained meiotic arrest in almost 40% of the oocytes. The results suggest that there may be several functions for phospholipid turnover in the regulation of spontaneous meiotic resumption in the bovine oocyte. The first precedes the commitment period, and involves IP3 generation to serve as the primary signal for meiotic resumption. The second occurs concomitant with the commitment period, is unaffected by the level of intracellular cAMP, and is associated with the general turnover of phospholipid.

  6. Phospholipid:Diacylglycerol Acyltransferase Is a Multifunctional Enzyme Involved in Membrane Lipid Turnover and Degradation While Synthesizing Triacylglycerol in the Unicellular Green Microalga Chlamydomonas reinhardtii[C][W

    PubMed Central

    Yoon, Kangsup; Han, Danxiang; Li, Yantao; Sommerfeld, Milton; Hu, Qiang

    2012-01-01

    Many unicellular microalgae produce large amounts (∼20 to 50% of cell dry weight) of triacylglycerols (TAGs) under stress (e.g., nutrient starvation and high light), but the synthesis and physiological role of TAG are poorly understood. We present detailed genetic, biochemical, functional, and physiological analyses of phospholipid:diacylglycerol acyltransferase (PDAT) in the green microalga Chlamydomonas reinhardtii, which catalyzes TAG synthesis via two pathways: transacylation of diacylglycerol (DAG) with acyl groups from phospholipids and galactolipids and DAG:DAG transacylation. We demonstrate that PDAT also possesses acyl hydrolase activities using TAG, phospholipids, galactolipids, and cholesteryl esters as substrates. Artificial microRNA silencing of PDAT in C. reinhardtii alters the membrane lipid composition, reducing the maximum specific growth rate. The data suggest that PDAT-mediated membrane lipid turnover and TAG synthesis is essential for vigorous growth under favorable culture conditions and for membrane lipid degradation with concomitant production of TAG for survival under stress. The strong lipase activity of PDAT with broad substrate specificity suggests that this enzyme could be a potential biocatalyst for industrial lipid hydrolysis and conversion, particularly for biofuel production. PMID:23012436

  7. Phospholipid:diacylglycerol acyltransferase is a multifunctional enzyme involved in membrane lipid turnover and degradation while synthesizing triacylglycerol in the unicellular green microalga Chlamydomonas reinhardtii.

    PubMed

    Yoon, Kangsup; Han, Danxiang; Li, Yantao; Sommerfeld, Milton; Hu, Qiang

    2012-09-01

    Many unicellular microalgae produce large amounts (∼20 to 50% of cell dry weight) of triacylglycerols (TAGs) under stress (e.g., nutrient starvation and high light), but the synthesis and physiological role of TAG are poorly understood. We present detailed genetic, biochemical, functional, and physiological analyses of phospholipid:diacylglycerol acyltransferase (PDAT) in the green microalga Chlamydomonas reinhardtii, which catalyzes TAG synthesis via two pathways: transacylation of diacylglycerol (DAG) with acyl groups from phospholipids and galactolipids and DAG:DAG transacylation. We demonstrate that PDAT also possesses acyl hydrolase activities using TAG, phospholipids, galactolipids, and cholesteryl esters as substrates. Artificial microRNA silencing of PDAT in C. reinhardtii alters the membrane lipid composition, reducing the maximum specific growth rate. The data suggest that PDAT-mediated membrane lipid turnover and TAG synthesis is essential for vigorous growth under favorable culture conditions and for membrane lipid degradation with concomitant production of TAG for survival under stress. The strong lipase activity of PDAT with broad substrate specificity suggests that this enzyme could be a potential biocatalyst for industrial lipid hydrolysis and conversion, particularly for biofuel production.

  8. Fifteen weeks of dietary n-3 polyunsaturated fatty acid deprivation increases turnover of n-6 docosapentaenoic acid in rat-brain phospholipids

    PubMed Central

    Igarashi, Miki; Kim, Hyung-Wook; Gao, Fei; Chang, Lisa; Ma, Kaizong; Rapoport, Stanley I.

    2012-01-01

    Docosapentaenoic acid (DPAn-6, 22:5n-6) is an n-6 polyunsaturated fatty acid (PUFA) whose brain concentration can be increased in rodents by dietary n-3 PUFA deficiency, which may contribute to their behavioral dysfunction. We used our in vivo intravenous infusion method to see if brain DPAn-6 turnover and metabolism also were altered with deprivation. We studied male rats that had been fed for 15 weeks post-weaning an n-3 PUFA adequate diet containing 4.6% alpha-linolenic acid (α-LNA, 18:3n-3) or a deficient diet (0.2% α-LNA), each lacking docosahexaenoic acid (22:6n-3) and arachidonic acid (AA, 20:4n-6). [1-14C]DPAn-6 was infused intravenously for 5 min in unanesthetized rats, after which the brain underwent high-energy microwaving, and then was analyzed. The n-3 PUFA deficient compared with adequate diet increased DPAn-6 and decreased DHA concentrations in plasma and brain, while minimally changing brain AA concentration. Incorporation rates of unesterified DPAn-6 from plasma into individual brain phospholipids were increased 5.2–7.7 fold, while turnover rates were increased 2.1–4.7 fold. The observations suggest that increased metabolism and brain concentrations of DPAn-6 and its metabolites, together with a reduced brain DHA concentration, contribute to behavioral and functional abnormalities reported with dietary n-3 PUFA deprivation in rodents. PMID:22142872

  9. Is the ecological belt zonation of the Swiss Alps relevant for moth diversity and turnover?

    NASA Astrophysics Data System (ADS)

    Beck, Jan; Rüdlinger, Cecil M.; McCain, Christy M.

    2017-04-01

    Mountain ecosystems are traditionally envisioned as elevational belts of homogenous vegetation, separated by intervening ecotones. Recent research has cast doubt on such predictable layering at least in animal communities. We test the link of two a priori defined ecological belt zonations to noctuid moth distributions in the Swiss Alps. Predictions, in particular, were a coincidence of proposed ecotones with increased range endpoint frequencies and with increased species turnover or species richness between equidistant elevational bands. Using >320,000 distributional records for >500 noctuid species, we found no support for these three predictions despite several contrasting analytical approaches. Concurrent with recently published vertebrate data, we conclude that simple ecological belt zonations are unrelated to the moth communities found along mountain slopes. Rather, species are distributed idiosyncratically following their specific niche requirements. Additional rigorous evidence, particularly comparing insect clades spanning a spectrum of host-plant relationships, may be required to support the relevance of the ecological belt concept in structuring mountain ecosystems beyond tree and plant communities.

  10. Chlorinated Phospholipids and Fatty Acids: (Patho)physiological Relevance, Potential Toxicity, and Analysis of Lipid Chlorohydrins

    PubMed Central

    2016-01-01

    Chlorinated phospholipids are formed by the reaction of hypochlorous acid (HOCl), generated by the enzyme myeloperoxidase under inflammatory conditions, and the unsaturated fatty acyl residues or the head group. In the first case the generated chlorohydrins are both proinflammatory and cytotoxic, thus having a significant impact on the structures of biomembranes. The latter case leads to chloramines, the properties of which are by far less well understood. Since HOCl is also widely used as a disinfecting and antibacterial agent in medicinal, industrial, and domestic applications, it may represent an additional source of danger in the case of abuse or mishandling. This review discusses the reaction behavior of in vivo generated HOCl and biomolecules like DNA, proteins, and carbohydrates but will focus on phospholipids. Not only the beneficial and pathological (toxic) effects of chlorinated lipids but also the importance of these chlorinated species is discussed. Some selected cleavage products of (chlorinated) phospholipids and plasmalogens such as lysophospholipids, (chlorinated) free fatty acids and α-chloro fatty aldehydes, which are all well known to massively contribute to inflammatory diseases associated with oxidative stress, will be also discussed. Finally, common analytical methods to study these compounds will be reviewed with focus on mass spectrometric techniques. PMID:28090245

  11. Sheep model for osteoporosis: sustainability and biomechanical relevance of low turnover osteoporosis induced by hypothalamic-pituitary disconnection.

    PubMed

    Oheim, Ralf; Beil, Frank Timo; Köhne, Till; Wehner, Tim; Barvencik, Florian; Ignatius, Anita; Amling, Michael; Clarke, Iain J; Pogoda, Pia

    2013-07-01

    Hypothalamo-pituitary disconnection (HPD) leads to low bone turnover and osteoporosis in sheep. To determine the sustainability of bone loss and its biomechanical relevance, we studied HPD-sheep 24 months after surgery (HPD + OVX-24) in comparison to untreated control (Control), ovariectomized sheep (OVX), and sheep 12 months after HPD (HPD + OVX-12). We performed histomorphometric, HR-pQCT, and qBEI analyses, as well as biomechanical testing of all ewes studied. Twenty-four months after HPD, histomorphometric analyses of the iliac crest showed a significant reduction of BV/TV by 60% in comparison to Control. Cortical thickness of the femora measured by HR-pQCT did not change between 12 and 24 months after HPD but remained decreased by 30%. These structural changes were caused by a persisting depression of osteoblast and osteoclast cellular activity. Biomechanical testing of the femora showed a significant reduction of bending strength, whereas calcium content and distribution was found to be unchanged. In conclusion, HPD surgery leads to a persisting low turnover status with negative turnover balance in sheep followed by dramatic cortical and trabecular bone loss with consequent biomechanical impairment.

  12. Metabolic turnover of myelin glycerophospholipids.

    PubMed

    Morell, P; Ousley, A H

    1994-08-01

    The apparent half life for metabolic turnover of glycerophospholipids in the myelin sheath, as determined by measuring the rate of loss of label in a myelin glycerophospholipid following radioactive precursor injection, varies with the radioactive precursor used, age of animal, and time after injection during which metabolic turnover is studied. Experimental strategies for resolving apparent inconsistencies consequent to these variables are discussed. Illustrative data concerning turnover of phosphatidylcholine (PC) in myelin of rat brain are presented. PC of the myelin membrane exhibits heterogeneity with respect to metabolic turnover rates. There are at least two metabolic pools of PC in myelin, one with a half life of the order of days, and another with a half life of the order of weeks. To a significant extent biphasic turnover is due to differential turnover of individual molecular species (which differ in acyl chain composition). The two predominant molecular species of myelin PC turnover at very different rates (16:0, 18:1 PC turning over several times more rapidly than 18:0, 18:1 PC). Therefore, within the same membrane, individual molecular species of a phospholipid class are metabolized at different rates. Possible mechanisms for differential turnover of molecular species are discussed, as are other factors that may contribute to a multiphasic turnover of glycerophospholipids.

  13. Phospholipid biosynthesis and solvent tolerance in Pseudomonas putida strains.

    PubMed Central

    Pinkart, H C; White, D C

    1997-01-01

    The role of the cell envelope in the solvent tolerance mechanisms of Pseudomonas putida was investigated. The responses of a solvent-tolerant strain, P. putida Idaho, and a solvent-sensitive strain, P. putida MW1200, were examined in terms of phospholipid content and composition and of phospholipid biosynthetic rate following exposure to a nonmetabolizable solvent, o-xylene. Following o-xylene exposure, P. putida MW1200 exhibited a decrease in total phospholipid content. In contrast, P. putida Idaho demonstrated an increase in phospholipid content 1 to 6 h after exposure. Analysis of phospholipid biosynthesis showed P. putida Idaho to have a higher basal rate of phospholipid synthesis than MW1200. This rate increased significantly following exposure to xylene. Both strains showed little significant turnover of phospholipid in the absence of xylene. In the presence of xylene, both strains showed increased phospholipid turnover. The rate of turnover was significantly greater in P. putida Idaho than in P. putida MW1200. These results suggest that P. putida Idaho has a greater ability than the solvent-sensitive strain MW1200 to repair damaged membranes through efficient turnover and increased phospholipid biosynthesis. PMID:9209036

  14. The use of natural and synthetic phospholipids as pharmaceutical excipients.

    PubMed

    van Hoogevest, Peter; Wendel, Armin

    2014-09-01

    In pharmaceutical formulations, phospholipids obtained from plant or animal sources and synthetic phospholipids are used. Natural phospholipids are purified from, e.g., soybeans or egg yolk using non-toxic solvent extraction and chromatographic procedures with low consumption of energy and minimum possible waste. Because of the use of validated purification procedures and sourcing of raw materials with consistent quality, the resulting products differing in phosphatidylcholine content possess an excellent batch to batch reproducibility with respect to phospholipid and fatty acid composition. The natural phospholipids are described in pharmacopeias and relevant regulatory guidance documentation of the Food and Drug Administration (FDA) and European Medicines Agency (EMA). Synthetic phospholipids with specific polar head group, fatty acid composition can be manufactured using various synthesis routes. Synthetic phospholipids with the natural stereochemical configuration are preferably synthesized from glycerophosphocholine (GPC), which is obtained from natural phospholipids, using acylation and enzyme catalyzed reactions. Synthetic phospholipids play compared to natural phospholipid (including hydrogenated phospholipids), as derived from the number of drug products containing synthetic phospholipids, a minor role. Only in a few pharmaceutical products synthetic phospholipids are used. Natural phospholipids are used in oral, dermal, and parenteral products including liposomes. Natural phospholipids instead of synthetic phospholipids should be selected as phospholipid excipients for formulation development, whenever possible, because natural phospholipids are derived from renewable sources and produced with more ecologically friendly processes and are available in larger scale at relatively low costs compared to synthetic phospholipids. Practical applications: For selection of phospholipid excipients for pharmaceutical formulations, natural phospholipids are preferred

  15. Surfactant phospholipid metabolism

    PubMed Central

    Agassandian, Marianna; Mallampalli, Rama K.

    2012-01-01

    Pulmonary surfactant is essential for life and is comprised of a complex lipoprotein-like mixture that lines the inner surface of the lung to prevent alveolar collapse at the end of expiration. The molecular composition of surfactant depends on highly integrated and regulated processes involving its biosynthesis, remodeling, degradation, and intracellular trafficking. Despite its multicomponent composition, the study of surfactant phospholipid metabolism has focused on two predominant components, disaturated phosphatidylcholine that confers surface-tension lowering activities, and phosphatidylglycerol, recently implicated in innate immune defense. Future studies providing a better understanding of the molecular control and physiological relevance of minor surfactant lipid components are needed. PMID:23026158

  16. Turnover Time

    EPA Science Inventory

    Ecosystems contain energy and materials such as carbon, nitrogen, phosphorus, and water, and are open to their flow-through. Turnover time refers to the amount of time required for replacement by flow-through of the energy or substance of interest contained in the system, and is ...

  17. Phospholipids and Glycolipids of Sterol-requiring Mycoplasma

    PubMed Central

    Smith, Paul F.; Koostra, Walter L.

    1967-01-01

    The phospholipids of Mycoplasma hominis type 2 strain 07 are composed almost entirely of phosphatidyl glycerol. Traces of other glycerophospholipids may exist. No glycolipids are found. The phospholipids of Mycoplasma sp. avian strain J are composed of diphosphatidyl glycerol, which predominates in older cultures, a monoacyl glycerophosphoryl glycerophosphate, which may serve as a precursor of diphosphatidyl glycerol, and phosphatidyl glycerophosphate. This organism also contains cholesteryl glucoside and an unidentified glycolipid which appears to be similar to a monoglucosyl diglyceride. No turnover or radioisotope labeling of the phospholipids occurs during metabolism. This lack of turnover during growth is indicative of a structural role for these glycerophospholipids. A concomitant decrease of monoacyl glycerophosphoryl glycerophosphate and increase of diphosphatidyl glycerol occurs during growth. PMID:6025304

  18. CYTOTOXIC PHOSPHOLIPID OXIDATION PRODUCTS

    PubMed Central

    Chen, Rui; Yang, Lili; McIntyre, Thomas M.

    2008-01-01

    Phospholipid oxidation products accumulate in the necrotic core of atherosclerotic lesions, in apoptotic cells, and circulate in oxidized LDL. Phospholipid oxidation generates toxic products, but little is known about which specific products are cytotoxic, their receptors, or the mechanism(s) that induces cell death. We find the most common phospholipid oxidation product of oxidized LDL, phosphatidylcholine with esterified sn-2 azelaic acid, induced apoptosis at low micromolar concentrations. The synthetic ether phospholipid hexadecyl azelaoyl phosphatidylcholine (HAzPC) was rapidly internalized, and over-expression of PLA2g7 (PAF acetylhydrolase) that specifically hydrolyzes such oxidized phospholipids suppressed apoptosis. Internalized HAzPC associated with mitochondria, and cytochrome C and apoptosis-inducing factor escaped from mitochondria to the cytoplasm and nucleus, respectively, in cells exposed to HAzPC. Isolated mitochondria exposed to HAzPC rapidly swelled, and released cytochrome C and apoptosis-inducing factor. Other phospholipid oxidation products induced swelling, but HAzPC was the most effective and was twice as effective as its diacyl homolog. Cytoplasmic cytochrome C completes the apoptosome, and activated caspase 9 and 3 were present in cells exposed to HAzPC. Irreversible inhibition of caspase 9 blocked downstream caspase 3 activation, and prevented apoptosis. Mitochondrial damage initiated this apoptotic cascade because over-expression of Bcl-XL, an anti-apoptotic protein localized to mitochondria, blocked cytochrome C escape, and apoptosis. Thus, exogenous phospholipid oxidation products target intracellular mitochondria to activate the intrinsic apoptotic cascade. PMID:17597068

  19. Characterization of phospholipid composition and its control in the plasma membrane of developing soybean root

    SciTech Connect

    Whitman, C.E.

    1985-01-01

    The phospholipid composition of plasma membrane enriched fractions from developing soybean root and several mechanisms which may regulate it have been examined. Plasma membrane vesicles were isolated from meristematic and mature sections of four-day-old dark grown soybean roots (Glycine max (L.) Merr. Cult. Wells II). Analysis of lipid extracts revealed two major phospholipid classes: phosphatidylcholine and phosphatidylethanolamine. Minor phospholipid classes were phosphatidylinositol, phosphatidylserine, phosphatidylgylcerol and diphosphatidylgylcerol. Phospholipid composition was similar at each developmental stage. Fatty acids of phosphatidylcholine and phosphatidylethanolamine were 16:0, 18:0, 18:2, and 18:3. Fatty acid composition varied with both phospholipid class and the developmental stage of the root. The degradation of phosphatidylcholine by endogenous phospholipase D during membrane isolation indicated that this enzyme might be involved in phospholipid turnover within the membrane. Phospholipase D activity was heat labile and increasing the pH of the enzyme assay from 5.3 to 7.8 resulted in 90% inhibition of activity. The turnover of fatty acids within the phospholipids of the plasma membrane was studied. Mature root sections were incubated with (1-/sup 14/C) acetate, 1 mM Na acetate and 50 ..mu..g/ml chloramphenicol. Membrane lipid extracts analyzed for phospholipid class and acyl chain composition revealed that the long incubation times did not alter the phospholipid composition of the plasma membrane enriched fraction.

  20. Abscisic acid-lipid interactions: a phospholipid monolayer study.

    PubMed

    Bürner, H; Benz, R; Gimmler, H; Hartung, W; Stillwell, W

    1993-08-15

    Lipid monolayer studies were performed on a Langmuir trough in the absence and in the presence of the plant hormone abscisic acid (ABA). The ABA-induced effects on the lipid monolayers can be summarized as follows: (i) ABA as the free acid (pH below 5.3) increased the molecular area and slightly decreased the surface pressure in the collapse points of monolayers made of saturated, unsaturated and of mixed lipids; ABA as the anion showed only minor effects. (ii) The ABA-induced area increase of the lipid monolayers decreased when the surface pressure increased, but some ABA remained in the monolayers made of unsaturated phospholipids even at collapse pressure. (iii) The incorporation of ABA into the monolayers could be inhibited by adding the plant sterol beta-sitosterol to the monolayer forming phospholipids. (iv) There was no substantial difference of ABA action on plant phospholipids as compared with other phospholipids. (v) ABA had a much stronger influence on unsaturated phospholipids than on saturated ones. (vi) ABA decreased the phase-transition temperature of saturated phospholipids. These results, which agree with those obtained from phospholipid vesicle studies, indicate that the physical state of the lipid is important for the ability of ABA penetrating into the lipid monolayer. Finally, a possible relevance of these results is discussed in terms of the action of ABA on guard cell membranes of plants.

  1. Soman-induced seizures impair norepinephrine-stimulated phosphoinositide turnover

    SciTech Connect

    Filbert, M.G.; Phann, S.; Forster, J.; Ballough, G.P.; Cann, F.J.

    1993-05-13

    Seizure activity increases turnover of phosphoinositide bisphosphate (PIP2). Turnover of PIP2 is thought to be modulated by neurotransmitter interactions. The effect of soman-induced seizures on neurotransmitter-stimulated PIP 2 turnover was examined in rats. Thirty minutes after induction of seizure activity, rats were euthanized and slices prepared from the hippocampus or cerebral cortex were incubated with myo-(2-3H) inositol for incorporation into phospholipids. Hydrolysis of phosphoinositides was determined by measuring the accumulation of (3H) inositol-l-phosphate (IP1) in the presence of LiCl. Carbachol, norepinephrine (NE) and high K+ increased accumulation of IP1 in slices from control rats. GABA was without effect on IP1 accumulation but potentiated the stimulation of PIP, hydrolysis by NE. NE-stimulated IP1 accumulation in slices from rats undergoing seizures was significantly reduced. GABA potentiation of the NE-stimulated hydrolysis was also reduced.

  2. Tissue phospholipids (TPL) in avian tuberculosis (AT)

    SciTech Connect

    Nandedkar, A.K.N.; Malhotra, H.C.

    1986-05-01

    AT constitutes one of the major problems in animal husbandry. Chickens (white, leg horn, male, 400-600 g) were infected with Mycobacterium avium maintained on I.U.T. medium to induce clinical AT which was confirmed by histopathological examinations of the affected tissues. Fatty infiltration and tissue enlargement was visible in infected birds. After 4 wks, incorporation of i.v. /sup 32/P (50 uCi/100 g body wt.) in affected tissues was followed for 3,7,9,12 hr intervals. Lipids were extracted and fractionated by silicic acid (SA) column and SA impregnated paper chromatography. When compared with pair-fed controls, in AT slower turnover of TPL in liver, slightly higher in heart and significantly increased turnover of TPL in serum were observed. No appreciable change in total TPL content was noticed in brain, spleen and kidney. Further fractionation of TPL provided better understanding of the metabolism. Increase in lysophosphatidyl-choline (LPC) and -ethanolamine (LPE) content, powerful hemolytic agents, in liver may explain frequent occurrence of anemia in tuberculosis. Also, a concomitant marked increase in the ratio of total saturated/unsaturated fatty acids is observed in serum phosphatidyl choline fraction. This confirms the observation that the membrane phospholipid metabolism is significantly affected in tuberculosis infection.

  3. Phosphatidylinositol turnover is associated with human natural killer cell activation by tumor target cells

    SciTech Connect

    Steele, T.A.; Brahmi, Z.

    1986-03-01

    Natural Killer (NK) cell activity has been shown to be a binding-dependent event leading to the destruction of various targets. This suggests a possible role for plasma membrane phospholipid turnover in coupling a receptor-mediated binding event with transduction of a intracellular signal to result in the activation of the effector cell. Currently, phosphatidylinositol (PI) turnover is implicated in several immune cell systems. Therefore, in this study, the authors examined phospholipid turnover in human NK cells upon exposure to a sensitive (K562) and a resistant (YAC-1) target cell (TC). NK cell membrane phospholipids were labelled with Phosphorus-32 (/sup 32/P) and, following stimulation, were extracted and run on silica gel thin-layer chromatography. Labelled phospholipids were visualized by autoradiography then scraped and counted in a liquid scintillation counter. A 2.5 fold increase in label incorporation into PI relative to controls was shown to occur when NK cells were stimulated by K562 for 2 hours. In contrast, no increased labelling of PI relative to controls was noted when NK cells were stimulated by YAC-1 for the same period of time. No change in incorporation of /sup 32/P into phosphatidylcholine or phosphatidylethanolamine occurred in either set of conditions. These results suggest that PI turnover may be an early activation event in NK cells following binding of K562.

  4. Turnover of synaptic membranes: age-related changes and modulation by dietary restriction.

    PubMed

    Ando, Susumu; Tanaka, Yasukazu; Toyoda nee Ono, Yuriko; Kon, Kazuo; Kawashima, Sei-Ichi

    2002-11-01

    We examined age-related changes in the turnover rates of synaptic membrane components that might underlie the decrease in synaptic functions in senescence. Synaptic membrane constituents were labeled in vivo with deuterium and the disappearance of the deuterated molecules from synaptic membranes was measured by mass spectrometry. The turnover rates of phosphatidylcholine, phosphatidylethanolamine, cholesterol, and synaptophysin were all shown to slow down with aging. Dietary restriction, which is known to retard various aging processes, was found to decrease the turnover rates of membrane lipid species. Consequently, the fatty acid composition in phospholipids remained unchanged in the synaptic plasma membranes of food restricted mice. In contrast, the turnover rate of synaptophysin was accelerated under dietary restriction. This may mean that increased turnover enhances the removal of damaged proteins from membranes.

  5. Avifauna: Turnover on Islands.

    PubMed

    Mayr, E

    1965-12-17

    The percentage of endemic species of birds on islands increases with island area at a double logarithmic rate. This relation is apparently due to extinction, which is more rapid the smaller the island. The turnover resulting from extinction and replacement appears to be far more rapid than hitherto suspected.

  6. Cell signalling and phospholipid metabolism

    SciTech Connect

    Boss, W.F.

    1990-01-01

    These studies explored whether phosphoinositide (PI) has a role in plants analogous to its role in animal cells. Although no parallel activity of PI in signal transduction was found in plant cells, activity of inositol phospholipid kinase was found to be modulated by light and by cell wall degrading enzymes. These studies indicate a major role for inositol phospholipids in plant growth and development as membrane effectors but not as a source of second messengers.

  7. The effects of sexual harassment on turnover in the military: time-dependent modeling.

    PubMed

    Sims, Carra S; Drasgow, Fritz; Fitzgerald, Louise F

    2005-11-01

    Sexual harassment has consistently negative consequences for working women, including changes in job attitudes (e.g., lower satisfaction) and behaviors (e.g., increased work withdrawal). Cross-sectional evidence suggests that harassment influences turnover intentions. However, few studies have used actual turnover; rather, they rely on proxies. With a sample of 11,521 military servicewomen with turnover data spanning approximately 4 years, the authors used the appropriate method for longitudinal turnover data--Cox's regression--to investigate the impact of harassment on actual turnover. Experiences of harassment led to increased turnover, even after controlling for job satisfaction, organizational commitment, and marital status. Among officers, harassment also affected turnover over and above rank. Given turnover's relevance to organizational bottom lines, these findings have important implications not only for individual women but also for organizations.

  8. Interactions of amelogenin with phospholipids

    SciTech Connect

    Bekshe Lokappa, Sowmya; Chandrababu, Karthik Balakrishna; Dutta, Kaushik; Perovic, Iva; Evans, John Spencer; Moradian-Oldak, Janet

    2014-11-22

    Amelogenin protein has the potential to interact with other enamel matrix proteins, mineral, and cell surfaces. In this paper, we investigated the interactions of recombinant amelogenin rP172 with small unilamellar vesicles as model membranes, toward the goal of understanding the mechanisms of amelogenin–cell interactions during amelogenesis. Dynamic light scattering (DLS), fluorescence spectroscopy, circular dichroism (CD), and nuclear magnetic resonance (NMR) were used. In the presence of phospholipid vesicles, a blue shift in the Trp fluorescence emission maxima of rP172 was observed (~334 nm) and the Trp residues of rP172 were inaccessible to the aqueous quencher acrylamide. DLS studies indicated complexation of rP172 and phospholipids, although the possibility of fusion of phospholipids following amelogenin addition cannot be ruled out. NMR and CD studies revealed a disorder–order transition of rP172 in a model membrane environment. Strong fluorescence resonance energy transfer from Trp in rP172 to DNS-bound-phospholipid was observed, and fluorescence polarization studies indicated that rP172 interacted with the hydrophobic core region of model membranes. Finally, our data suggest that amelogenin has ability to interact with phospholipids and that such interactions may play key roles in enamel biomineralization as well as reported amelogenin signaling activities.

  9. Interactions of amelogenin with phospholipids

    DOE PAGES

    Bekshe Lokappa, Sowmya; Chandrababu, Karthik Balakrishna; Dutta, Kaushik; ...

    2014-11-22

    Amelogenin protein has the potential to interact with other enamel matrix proteins, mineral, and cell surfaces. In this paper, we investigated the interactions of recombinant amelogenin rP172 with small unilamellar vesicles as model membranes, toward the goal of understanding the mechanisms of amelogenin–cell interactions during amelogenesis. Dynamic light scattering (DLS), fluorescence spectroscopy, circular dichroism (CD), and nuclear magnetic resonance (NMR) were used. In the presence of phospholipid vesicles, a blue shift in the Trp fluorescence emission maxima of rP172 was observed (~334 nm) and the Trp residues of rP172 were inaccessible to the aqueous quencher acrylamide. DLS studies indicated complexationmore » of rP172 and phospholipids, although the possibility of fusion of phospholipids following amelogenin addition cannot be ruled out. NMR and CD studies revealed a disorder–order transition of rP172 in a model membrane environment. Strong fluorescence resonance energy transfer from Trp in rP172 to DNS-bound-phospholipid was observed, and fluorescence polarization studies indicated that rP172 interacted with the hydrophobic core region of model membranes. Finally, our data suggest that amelogenin has ability to interact with phospholipids and that such interactions may play key roles in enamel biomineralization as well as reported amelogenin signaling activities.« less

  10. Long noncoding RNA turnover

    PubMed Central

    Yoon, Je-Hyun; Kim, Jiyoung; Gorospe, Myriam

    2015-01-01

    Most RNAs transcribed in mammalian cells lack protein-coding sequences. Among them is a vast family of long (>200 nt) noncoding (lnc)RNAs. LncRNAs can modulate cellular protein expression patterns by influencing the transcription of many genes, the post-transcriptional fate of mRNAs and ncRNAs, and the turnover and localization of proteins. Given the broad impact of lncRNAs on gene regulation, there is escalating interest in elucidating the mechanisms that govern the steady-state levels of lncRNAs. In this review, we summarize our current knowledge of the factors and mechanisms that modulate mammalian lncRNA stability. PMID:25769416

  11. [Phospholipids: properties and health effects].

    PubMed

    Torres García, Jairo; Durán Agüero, Samuel

    2014-09-12

    Phospholipids are amphipathic lipids, which are found in all the cell membranes, organized as a lipid bilayer. They belong to the glycerol-derived lipids, showing a similar structure as triglycerides. The current interest of them comes from its effectiveness to incorporate different fatty acids in the cell membrane, as they exhibit better absorption and utilization than triglycerides. In this paper, the bibliographical data published about the benefits of the phospholipids in inflammatory processes, cancer, cardiovascular diseases, neurological disorders, liver disease and as an antioxidants transporter is reviewed.

  12. Effect of gentamicin on phospholipid metabolism in cultured rabbit proximal tubular cells

    SciTech Connect

    Ramsammy, L.S.; Josepovitz, C.; Lane, B.; Kaloyanides, G.J.

    1989-01-01

    We examined the hypothesis that the accumulation of phospholipid in cells exposed to gentamicin is due to impaired degradation. Experiments were performed in rabbit proximal tubular cells grown in primary culture. Cells exposed to 10(-3) M gentamicin manifested myeloid body formation and a progressive increase in total phospholipid that by day 6 was 44% higher than that of control cells and reflected increases of phosphatidylinositol of 235%, phosphatidylcholine of 60%, phosphatidylethanolamine of 90%, and phosphatidylserine of 55% above control values. Gentamicin impaired the degradation of these phospholipids. The t1/2 of the phospholipid pool labeled with (3H)myoinositol increased 146% from 1.17 (control) to 2.88 days (gentamicin); the t1/2 of the (3H)choline pool increased 34% from 1.77 to 2.38 days; the t1/2 of the (3H)ethanolamine pool increased 57% from 3.14 to 4.93 days; the t1/2 of the (3H) serine pool increased 37% from 6.30 to 8.63 days. Exposure of cells to gentamicin for 2 days also stimulated increased incorporation of (3H)myoinositol (68%) and (3H)ethanolamine (59%) into phospholipid. The data are consistent with the hypothesis that gentamicin inhibits the activity of lysosomal phospholipases that results in the accumulation of phospholipid within the lysosome in the form of myeloid bodies. Increased phospholipid synthesis may represent a compensatory response to the impaired lysosomal degradation of phospholipid. We postulate that the preferential increase of phosphatidylinositol reflects the capacity of the polycationic gentamicin to interact electrostatically with the anionic phosphoinositides and inhibit their turnover.

  13. Integrating Turnover Reasons and Shocks with Turnover Decision Processes

    ERIC Educational Resources Information Center

    Maertz, Carl P., Jr.; Kmitta, Kayla R.

    2012-01-01

    We interviewed and classified 186 quitters from many jobs and organizations via a theoretically-based protocol into five decision process types. We then tested exploratory hypotheses comparing users of these types on their propensity to report certain turnover reasons and turnover shocks. "Impulsive-type quitters," with neither a job offer in hand…

  14. Work and Career considerations in Understanding Employee Turnover Intentions and Turnover: Development of the Turnover Diagnostic.

    DTIC Science & Technology

    1984-08-01

    reviews of the psychology of turnover (Brayfleld & Crockett, 1955; Herzberg, Mausner, Peterson, & Capwell, 1957; Mobley, 1982; Mobley, Hand, Meglino...Hand, H. H., Meglino, B. M., & Griffeth, R. W. (1979). Review and conceptual analysis of the employee turnover proess. Psychological Bulletin 86 49-522...Applied Psychology 6 318-328. Schuh, A. J. (1967). The predictability of employee turnover: A review of the literature. Personnel Psychology 20 133-152

  15. Mitochondrial biogenesis and turnover.

    PubMed

    Diaz, Francisca; Moraes, Carlos T

    2008-07-01

    Mitochondrial biogenesis is a complex process involving the coordinated expression of mitochondrial and nuclear genes, the import of the products of the latter into the organelle and turnover. The mechanisms associated with these events have been intensively studied in the last 20 years and our understanding of their details is much improved. Mitochondrial biogenesis requires the participation of calcium signaling that activates a series of calcium-dependent protein kinases that in turn activate transcription factors and coactivators such as PGC-1alpha that regulates the expression of genes coding for mitochondrial components. In addition, mitochondrial biogenesis involves the balance of mitochondrial fission-fusion. Mitochondrial malfunction or defects in any of the many pathways involved in mitochondrial biogenesis can lead to degenerative diseases and possibly play an important part in aging.

  16. Targeting Phospholipid Metabolism in Cancer

    PubMed Central

    Cheng, Menglin; Bhujwalla, Zaver M.; Glunde, Kristine

    2016-01-01

    All cancers tested so far display abnormal choline and ethanolamine phospholipid metabolism, which has been detected with numerous magnetic resonance spectroscopy (MRS) approaches in cells, animal models of cancer, as well as the tumors of cancer patients. Since the discovery of this metabolic hallmark of cancer, many studies have been performed to elucidate the molecular origins of deregulated choline metabolism, to identify targets for cancer treatment, and to develop MRS approaches that detect choline and ethanolamine compounds for clinical use in diagnosis and treatment monitoring. Several enzymes in choline, and recently also ethanolamine, phospholipid metabolism have been identified, and their evaluation has shown that they are involved in carcinogenesis and tumor progression. Several already established enzymes as well as a number of emerging enzymes in phospholipid metabolism can be used as treatment targets for anticancer therapy, either alone or in combination with other chemotherapeutic approaches. This review summarizes the current knowledge of established and relatively novel targets in phospholipid metabolism of cancer, covering choline kinase α, phosphatidylcholine-specific phospholipase D1, phosphatidylcholine-specific phospholipase C, sphingomyelinases, choline transporters, glycerophosphodiesterases, phosphatidylethanolamine N-methyltransferase, and ethanolamine kinase. These enzymes are discussed in terms of their roles in oncogenic transformation, tumor progression, and crucial cancer cell properties such as fast proliferation, migration, and invasion. Their potential as treatment targets are evaluated based on the current literature. PMID:28083512

  17. Salary, Performance, and Superintendent Turnover

    ERIC Educational Resources Information Center

    Grissom, Jason A.; Mitani, Hajime

    2016-01-01

    Purpose: Superintendent retention is an important goal for many school districts, yet the factors contributing to superintendent turnover are poorly understood. Most prior quantitative studies of superintendent turnover have relied on small, cross-sectional samples, limiting the evidence base. Utilizing longitudinal administrative records from…

  18. Commitment Profiles and Employee Turnover

    ERIC Educational Resources Information Center

    Stanley, Laura; Vandenberghe, Christian; Vandenberg, Robert; Bentein, Kathleen

    2013-01-01

    We examined how affective (AC), normative (NC), perceived sacrifice (PS), and few alternatives (FA) commitments combine to form profiles and determine turnover intention and turnover. We theorized that three mechanisms account for how profiles operate, i.e., the degree to which membership is internally regulated, the perceived desirability and…

  19. Teacher Turnover: A Conceptual Analysis

    ERIC Educational Resources Information Center

    Martinez-Garcia, Cynthia; Slate, John R.

    2009-01-01

    In this article we reviewed the available literature concerning teacher turnover. The seriousness of this issue was addressed as cause for concern is clearly present. Issues we examined in this conceptual analysis were the federal government's role in public education, the No Child Left Behind Act, teacher turnover, teacher retention, teacher…

  20. Langmuir films containing ibuprofen and phospholipids

    NASA Astrophysics Data System (ADS)

    Geraldo, Vananélia P. N.; Pavinatto, Felippe J.; Nobre, Thatyane M.; Caseli, Luciano; Oliveira, Osvaldo N.

    2013-02-01

    This study shows the incorporation of ibuprofen, an anti-inflammatory drug, in Langmuir monolayers as cell membrane models. Significant effects were observed for dipalmitoyl phosphatidyl choline (DPPC) monolayers with relevant changes in the elasticity of the monolayer. Dipalmitoyl phosphatidyl glycerol (DPPG) monolayers were affected by small concentrations of ibuprofen, from 1 to 5 mol%. For both types of monolayer, ibuprofen could penetrate into the hydrophobic part of the monolayer, which was confirmed with polarization-modulated infrared reflection-absorption spectroscopy (PM-IRRAS). Brewster angle microscopy (BAM) images showed that ibuprofen prevents the formation of large domains of DPPC. The pharmacological action should occur primarily with penetration of ibuprofen via electrically neutral phospholipid headgroups of the membrane.

  1. Metabolism of the phospholipid precursor inositol and its relationship to growth and viability in the natural auxotroph Schizosaccharomyces pombe.

    PubMed Central

    Fernandez, S; Homann, M J; Henry, S A; Carman, G M

    1986-01-01

    Phospholipid metabolism in the fission yeast Schizosaccharomyces pombe was examined. Three enzymes of phospholipid biosynthesis, cytidine diphosphate diacylglycerol synthase (CDP-DG), phosphatidylinositol (PI) synthase, and phosphatidylserine (PS) synthase, were characterized in extracts of S. pombe cells. Contrary to an earlier report, we were able to demonstrate that CDP-DG served as a precursor for PI and PS biosynthesis in S. pombe. S. pombe is naturally auxotrophic for the phospholipid precursor inositol. We found that S. pombe was much more resistant to loss of viability during inositol starvation than artificially generated inositol auxotrophs of Saccharomyces cerevisiae. The phospholipid composition of S. pombe cells grown in inositol-rich medium (50 microM) was similar to that of S. cerevisiae cells grown under similar conditions. However, growth of S. pombe at low inositol concentrations (below 30 microM) affected the ratio of the anionic phospholipids PI and PS, while the relative proportions of other glycerophospholipids remained unchanged. During inositol starvation, the rate of PI synthesis decreased rapidly, and there was a concomitant increase in the rate of PS synthesis. Phosphatidic acid and CDP-DG, which are precursors to these phospholipids, also increased when PI synthesis was blocked by lack of exogenous inositol. The major product of turnover of inositol-containing phospholipids in S. pombe was found to be free inositol, which accumulated in the medium and could be reused by the cell. Images PMID:3011744

  2. 13C- and 15N-Labeling Strategies Combined with Mass Spectrometry Comprehensively Quantify Phospholipid Dynamics in C. elegans

    PubMed Central

    Drechsler, Robin; Gafken, Philip R.; Olsen, Carissa Perez

    2015-01-01

    Membranes define cellular and organelle boundaries, a function that is critical to all living systems. Like other biomolecules, membrane lipids are dynamically maintained, but current methods are extremely limited for monitoring lipid dynamics in living animals. We developed novel strategies in C. elegans combining 13C and 15N stable isotopes with mass spectrometry to directly quantify the replenishment rates of the individual fatty acids and intact phospholipids of the membrane. Using multiple measurements of phospholipid dynamics, we found that the phospholipid pools are replaced rapidly and at rates nearly double the turnover measured for neutral lipid populations. In fact, our analysis shows that the majority of membrane lipids are replaced each day. Furthermore, we found that stearoyl-CoA desaturases (SCDs), critical enzymes in polyunsaturated fatty acid production, play an unexpected role in influencing the overall rates of membrane maintenance as SCD depletion affected the turnover of nearly all membrane lipids. Additionally, the compromised membrane maintenance as defined by LC-MS/MS with SCD RNAi resulted in active phospholipid remodeling that we predict is critical to alleviate the impact of reduced membrane maintenance in these animals. Not only have these combined methodologies identified new facets of the impact of SCDs on the membrane, but they also have great potential to reveal many undiscovered regulators of phospholipid metabolism. PMID:26528916

  3. Nanomechanics of electrospun phospholipid fiber

    NASA Astrophysics Data System (ADS)

    Mendes, Ana C.; Nikogeorgos, Nikolaos; Lee, Seunghwan; Chronakis, Ioannis S.

    2015-06-01

    Electrospun asolectin phospholipid fibers were prepared using isooctane as a solvent and had an average diameter of 6.1 ± 2.7 μm. Their mechanical properties were evaluated by nanoindentation using Atomic Force Microscopy, and their elastic modulus was found to be approximately 17.2 ± 1 MPa. At a cycle of piezo expansion-retraction (loading-unloading) of a silicon tip on a fiber, relatively high adhesion was observed during unloading. It is proposed that this was primarily due to molecular rearrangements at the utmost layers of the fiber caused by the indentation of the hydrophilic tip. The phospholipid fibers were shown to be stable in ambient conditions, preserving the modulus of elasticity up to 24 h.

  4. Interactions of Amelogenin with Phospholipids

    PubMed Central

    Lokappa, Sowmya Bekshe; Chandrababu, Karthik Balakrishna; Dutta, Kaushik; Perovic, Iva; Evans, John Spencer; Moradian-Oldak, Janet

    2015-01-01

    Amelogenin protein has the potential to interact with other enamel matrix proteins, mineral and cell surfaces. We investigated the interactions of recombinant amelogenin rP172 with small unilamellar vesicles as model membranes, towards the goal of understanding the mechanisms of amelogenin-cell interactions during amelogenesis. Dynamic light scattering (DLS), fluorescence spectroscopy, circular dichroism (CD) and nuclear magnetic resonance (NMR) were used. In the presence of phospholipid vesicles, a blue shift in the Trp fluorescence emission maxima of rP172 was observed (~334 nm) and the Trp residues of rP172 were inaccessible to the aqueous quencher acrylamide. Though in DLS studies we cannot exclude the possibility of fusion of liposomes as the result of amelogenin addition, NMR and CD studies revealed a disorder-order transition of rP172 in a model membrane environment. Strong FRET from Trp in rP172 to DNS–bound-phospholipid was observed, and fluorescence polarization studies indicated that rP172 interacted with the hydrophobic core region of model membranes. Our data suggest that amelogenin has ability to interact with phospholipids and that such interactions may play key roles in enamel biomineralization as well as reported amelogenin signaling activities. PMID:25298002

  5. Electrical Properties of Phospholipid Vesicles

    PubMed Central

    Schwan, H. P.; Takashima, S.; Miyamoto, V. K.; Stoeckenius, W.

    1970-01-01

    The capacitance of the membrane of phospholipid vesicles and the electrical properties of the vesicle interior have been determined. To this end the electrical properties of phospholipid vesicles have been investigated over a frequency range extending from 1 kHz to 100 MHz. The dielectric behavior is characterized by two dispersions, one placed between 1 kHz and 1 MHz and the other between 1 and 100 MHz. The relaxational behavior at low frequencies is explained by counterion movement tangential to the vesicle surface and a reasonable value for the fixed charge of the vesicles is calculated from the dispersion magnitude. The relaxation at high frequencies is of the Maxwell-Wagner type and appears caused by the phospholipid bilayer bounding the interior phase of the vesicles. It is consistent with the existence of a closed bilayer with a capacitance of about 2 μF/cm2 and an internal phase similar to the vesicle suspending medium. There is no indication of other than normally structured water inside the small vesicles. PMID:5471701

  6. Nutritional Deficiencies and Phospholipid Metabolism

    PubMed Central

    Gimenez, María S.; Oliveros, Liliana B.; Gomez, Nidia N.

    2011-01-01

    Phospholipids are important components of the cell membranes of all living species. They contribute to the physicochemical properties of the membrane and thus influence the conformation and function of membrane-bound proteins, such as receptors, ion channels, and transporters and also influence cell function by serving as precursors for prostaglandins and other signaling molecules and modulating gene expression through the transcription activation. The components of the diet are determinant for cell functionality. In this review, the effects of macro and micronutrients deficiency on the quality, quantity and metabolism of different phospholipids and their distribution in cells of different organs is presented. Alterations in the amount of both saturated and polyunsaturated fatty acids, vitamins A, E and folate, and other micronutrients, such as zinc and magnesium, are discussed. In all cases we observe alterations in the pattern of phospholipids, the more affected ones being phosphatidylcholine, phosphatidylethanolamine and sphingomyelin. The deficiency of certain nutrients, such as essential fatty acids, fat-soluble vitamins and some metals may contribute to a variety of diseases that can be irreversible even after replacement with normal amount of the nutrients. Usually, the sequelae are more important when the deficiency is present at an early age. PMID:21731449

  7. Modulation of Plasma Membrane Ca2+-ATPase by Neutral Phospholipids

    PubMed Central

    Pignataro, María Florencia; Dodes-Traian, Martín M.; González-Flecha, F. Luis; Sica, Mauricio; Mangialavori, Irene C.; Rossi, Juan Pablo F. C.

    2015-01-01

    The effects of lipids on membrane proteins are likely to be complex and unique for each membrane protein. Here we studied different detergent/phosphatidylcholine reconstitution media and tested their effects on plasma membrane Ca2+ pump (PMCA). We found that Ca2+-ATPase activity shows a biphasic behavior with respect to the detergent/phosphatidylcholine ratio. Moreover, the maximal Ca2+-ATPase activity largely depends on the length and the unsaturation degree of the hydrocarbon chain. Using static light scattering and fluorescence correlation spectroscopy, we monitored the changes in hydrodynamic radius of detergent/phosphatidylcholine particles during the micelle-vesicle transition. We found that, when PMCA is reconstituted in mixed micelles, neutral phospholipids increase the enzyme turnover. The biophysical changes associated with the transition from mixed micelles to bicelles increase the time of residence of the phosphorylated intermediate (EP), decreasing the enzyme turnover. Molecular dynamics simulations analysis of the interactions between PMCA and the phospholipid bilayer in which it is embedded show that in the 1,2-dioleoyl-sn-glycero-3-phosphocholine bilayer, charged residues of the protein are trapped in the hydrophobic core. Conversely, in the 1,2-dimyristoyl-sn-glycero-3-phosphocholine bilayer, the overall hydrophobic-hydrophilic requirements of the protein surface are fulfilled the best, reducing the thermodynamic cost of exposing charged residues to the hydrophobic core. The apparent mismatch produced by a 1,2-dioleoyl-sn-glycero-3-phosphocholine thicker bilayer could be a structural foundation to explain its functional effect on PMCA. PMID:25605721

  8. The Physical Chemistry of the Enigmatic Phospholipid Diacylglycerol Pyrophosphate

    PubMed Central

    Strawn, Liza; Babb, Amy; Testerink, Christa; Kooijman, Edgar Eduard

    2012-01-01

    Phosphatidic acid (PA) is a lipid second messenger that is formed transiently in plants in response to different stress conditions, and plays a role in recruiting protein targets, ultimately enabling an adequate response. Intriguingly, this increase in PA concentration in plants is generally followed by an increase in the phospholipid diacylglycerolpyrophosphate (DGPP), via turnover of PA. Although DGPP has been shown to induce stress-related responses in plants, it is unclear to date what its molecular function is and how it exerts its effect. Here, we describe the physicochemical properties, i.e., effective molecular shape and charge, of DGPP. We find that unlike PA, which imparts a negative curvature stress to a (phospho)lipid bilayer, DGPP stabilizes the bilayer phase of phosphatidylethanolamine (PE), similar to the effect of phosphatidylcholine (PC). DGPP thus has zero curvature. The pKa2 of the phosphomonoester of DGPP is 7.44 ± 0.02 in a PC bilayer, compared to a pKa2 of 7.9 for PA. Replacement of half of the PC with PE decreases the pKa2 of DGPP to 6.71 ± 0.02, similar to the behavior previously described for PA and summarized in the electrostatic–hydrogen bond switch model. Implications for the potential function of DGPP in biomembranes are discussed. PMID:22645584

  9. Phospholipids as Biomarkers for Excessive Alcohol Use

    DTIC Science & Technology

    2013-10-01

    S. et al. (2002). Decreased activity of brain phospholipid metabolic enzymes in human users of cocaine and methamphetamine. Drug & Alcohol ...AWARD NUMBER: W81XWH-12-1-0497 TITLE: Phospholipids as Biomarkers for Excessive Alcohol Use...NUMBER Phospholipids as Biomarkers for Excessive Alcohol Use 5b. GRANT NUMBER W81XWH-12-1-0497 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR(S

  10. Shapes of Mixed Phospholipid Vesicles

    PubMed Central

    Aranda-Espinoza, Helim; Maldonado, Amir

    2006-01-01

    We studied the shape of phospholipid vesicles prepared by hydration of a mixture of phosphatidylcholine (SOPC) and phosphatidylserine (SOPS) in different proportions. The aim of the work is to obtain some insight into the influence of the chemical composition of a biomembrane on its shape. The optical microscopy results show that the shape of the vesicles depend on the SOPC:SOPS composition. For low SOPS contents, coiled cylindrical vesicles are observed. The results suggest that specific compositions of the SOPC:SOPS vesicles produce some spontaneous curvature on the membrane and then a coiling instability. PMID:19669461

  11. Interaction of caldesmon with phospholipids.

    PubMed Central

    Czuryło, E A; Zborowski, J; Dabrowska, R

    1993-01-01

    The interaction of caldesmon with liposomes composed of various phospholipids has been examined by tryptophan fluorescence spectroscopy. The results indicate that caldesmon makes its strongest complex with phosphatidylserine (PS) vesicles (Kass. = 1.45 x 10(5) M-1). Both electrostatic and hydrophobic interactions contribute to the stability of this complex. The site for strong binding of PS seems to be located in the N-terminal part of the 34 kDa C-terminal fragment of caldesmon. Binding of PS at this site results in displacement of calmodulin from its complex with caldesmon. Images Figure 4 PMID:8484721

  12. Microbial carbon turnover in the plant-rhizosphere-soil continuum

    NASA Astrophysics Data System (ADS)

    Malik, Ashish; Dannert, Helena; Griffiths, Robert; Thomson, Bruce; Gleixner, Gerd

    2014-05-01

    Soil microbial biomass contributes significantly to maintenance of soil organic matter (SOM). It is well known that biochemical fractions of soil microorganisms have varying turnover and therefore contribute differentially to soil C storage. Here we compare the turnover rates of different microbial biochemical fractions using a pulse chase 13CO2 plant labelling experiment. The isotope signal was temporally traced into rhizosphere soil microorganisms using the following biomarkers: DNA, RNA, fatty acids and chloroform fumigation extraction derived microbial biomass size classes. C flow into soil microbial functional groups was assessed through phospholipid and neutral lipid fatty acid (PLFA/NLFA) analyses. Highest 13C enrichment was seen in the low molecular weight (LMW) size class of microbial biomass (Δδ13C =151) and in nucleic acids (DNA: 38o RNA: 66) immediately after the pulse followed by a sharp drop. The amount of 13C in the high molecular weight (HMW) microbial biomass (17-81) and total fatty acids (32-54) was lower initially and stayed relatively steady over the 4 weeks experimental period. We found significant differences in turnover rates of different microbial biochemical and size fractions. We infer that LMW cytosolic soluble compounds are rapidly metabolized and linked to respiratory C fluxes, whereas mid-sized products of microbial degradation and HMW polymeric compounds have lower renewal rate in that order. The turnover of cell wall fatty acids was also very slow. DNA and RNA showed faster turnover rate; and as expected RNA renewal was the fastest due to its rapid production by active microorganisms independent of cell replication. 13C incorporation into different functional groups confirmed that mutualistic arbuscular mycorrhizal fungi rely on root C and are important in the initial plant C flux. We substantiated through measurements of isotope incorporation into bacterial RNA that rhizosphere bacteria are also important in the initial C conduit

  13. Phospholipid liposomes functionalized by protein

    NASA Astrophysics Data System (ADS)

    Glukhova, O. E.; Savostyanov, G. V.; Grishina, O. A.

    2015-03-01

    Finding new ways to deliver neurotrophic drugs to the brain in newborns is one of the contemporary problems of medicine and pharmaceutical industry. Modern researches in this field indicate the promising prospects of supramolecular transport systems for targeted drug delivery to the brain which can overcome the blood-brain barrier (BBB). Thus, the solution of this problem is actual not only for medicine, but also for society as a whole because it determines the health of future generations. Phospholipid liposomes due to combination of lipo- and hydrophilic properties are considered as the main future objects in medicine for drug delivery through the BBB as well as increasing their bioavailability and toxicity. Liposomes functionalized by various proteins were used as transport systems for ease of liposomes use. Designing of modification oligosaccharide of liposomes surface is promising in the last decade because it enables the delivery of liposomes to specific receptor of human cells by selecting ligand and it is widely used in pharmacology for the treatment of several diseases. The purpose of this work is creation of a coarse-grained model of bilayer of phospholipid liposomes, functionalized by specific to the structural elements of the BBB proteins, as well as prediction of the most favorable orientation and position of the molecules in the generated complex by methods of molecular docking for the formation of the structure. Investigation of activity of the ligand molecule to protein receptor of human cells by the methods of molecular dynamics was carried out.

  14. Role of phospholipids in the actions of prolactin in the mammary gland

    SciTech Connect

    Etindi, R.O.N.

    1987-01-01

    These studies were designed to determine the role of phospholipid turnover in the mechanism of action of prolactin in mammary gland explants derived from 12-14 day pregnant mice. Prolactin stimulates phospholipid biosynthesis 12-16h after cultured mouse mammary tissues are exposed to it. Prolactin stimulates phospholipid biosynthesis at physiological concentrations and the response is maximal at all PRL concentrations above 25 ng/ml. p-Bromphenacyl bromide (BPB) at concentrations of 50 ..mu..M and above and quinacrine (50 ..mu..M) abolish the actions of prolactin on casein and lipid biosynthesis in cultured mouse mammary gland explants. In mouse mammary gland explants, binding of prolactin to its receptor leads to a phospholipase C type hydrolysis of inositol phospholipids, but this effect is transient and does not occur immediately after hormone exposure. Prolactin significantly stimulated the accumulation of (/sup 3/H)label in inositol monophosphate (IP/sub 1/), inositol bisphosphate (IP/sub 2/) and inositol trisphosphate (IP/sub 3/) 1-3 hours after addition of prolactin. Gossypol, a drug which has been shown to be an inhibitor of kinase C activity in mouse mammary tissues, is shown to abolish several of the actions of prolactin in cultured mouse mammary gland expalants.

  15. Autistic disorder and phospholipids: A review.

    PubMed

    Brown, Christine M; Austin, David W

    2011-01-01

    Dysregulated phospholipid metabolism has been proposed as an underlying biological component of neurodevelopmental disorders such as autistic disorder (AD) and attention-deficit/hyperactivity disorder (ADHD). This review provides an overview of fatty acid and phospholipid metabolism and evidence for phospholipid dysregulation with reference to the membrane hypothesis of schizophrenia. While there is evidence that phospholipid metabolism is at least impaired in individuals with AD, it has not been established whether phospholipid metabolism is implicated in causal, mechanistic or epiphenomenological models. More research is needed to ascertain whether breastfeeding, and specifically, the administration of colostrum or an adequate substitute can play a preventative role by supplying the neonate with essential fatty acids (EFAs) at a critical juncture in their development. Regarding treatment, further clinical trials of EFA supplementation are essential to determine the efficacy of EFAs in reducing AD symptomatology and whether supplementation can serve as a cost-effective and readily available intervention.

  16. Vinculin acts as a sensor in lipid regulation of adhesion-site turnover.

    PubMed

    Chandrasekar, Indra; Stradal, Theresia E B; Holt, Mark R; Entschladen, Frank; Jockusch, Brigitte M; Ziegler, Wolfgang H

    2005-04-01

    The dynamics of cell adhesion sites control cell morphology and motility. Adhesion-site turnover is thought to depend on the local availability of the acidic phospholipid phosphatidylinositol-4,5-bisphosphate (PIP(2)). PIP(2) can bind to many cell adhesion proteins such as vinculin and talin, but the consequences of this interaction are poorly understood. To study the significance of phospholipid binding to vinculin for adhesion-site turnover and cell motility, we constructed a mutant, vinculin-LD, deficient in acidic phospholipid binding yet with functional actin-binding sites. When expressed in cells, vinculin-LD was readily recruited to adhesion sites, as judged by fluorescence recovery after photobleaching (FRAP) analysis, but cell spreading and migration were strongly impaired, and PIP(2)-dependent disassembly of adhesions was suppressed. Thus, PIP(2) binding is not essential for vinculin activation and recruitment, as previously suggested. Instead, we propose that PIP(2) levels can regulate the uncoupling of adhesion sites from the actin cytoskeleton, with vinculin functioning as a sensor.

  17. Effect of Cholesterol on the Structure of a Five-Component Mitochondria-Like Phospholipid Membrane

    PubMed Central

    Cathcart, Kelly; Patel, Amit; Dies, Hannah; Rheinstädter, Maikel C.; Fradin, Cécile

    2015-01-01

    Cellular membranes have a complex phospholipid composition that varies greatly depending on the organism, cell type and function. In spite of this complexity, most structural data available for phospholipid bilayers concern model systems containing only one or two different phospholipids. Here, we examine the effect of cholesterol on the structure of a complex membrane reflecting the lipid composition of mitochondrial membranes, with five different types of headgroups (phosphatidylcholine (PC), phosphatidylethanolamine (PE), phosphatidylinositol (PI), phosphatidylserine (PS) and cardiolipin (CL)) and a variety of hydrocarbon tails. This particular system was chosen because elevated cholesterol contents in mitochondrial membranes have been linked to a breaking down of Bax-mediated membrane permeabilization and resistance to cancer treatments. High resolution electron density profiles were determined by X-ray reflectivity, while the area per phospholipid chain, Apc, and the chain order parameter, SX-ray, were determined by wide-angle X-ray scattering (WAXS). We show that chain order increases upon the addition of cholesterol, resulting in both a thickening of the lipid bilayer and a reduction in the average surface area per phospholipid chain. This effect, well known as cholesterol’s condensation effect, is similar, but not as pronounced as for single-component phospholipid membranes. We conclude by discussing the relevance of these findings for the insertion of the pro-apoptotic protein Bax in mitochondrial membranes with elevated cholesterol content. PMID:26529029

  18. Phospholipid Vesicles in Materials Science

    SciTech Connect

    Granick, Steve

    2016-05-11

    The objective of this research was to develop the science basis needed to deploy phospholipid vesicles as functional materials in energy contexts. Specifically, we sought to: (1) Develop an integrated molecular-level understanding of what determines their dynamical shape, spatial organization, and responsiveness to complex, time-varying environments; and (2) Develop understanding of their active transportation in crowded environments, which our preliminary measurements in cells suggest may hold design principles for targeting improved energy efficiency in new materials systems. The methods to do this largely involved fluorescence imaging and other spectroscopy involving single particles, vesicles, particles, DNA, and endosomes. An unexpected importance outcome was a new method to image light-emitting diodes during actual operation using super-resolution spectroscopy.

  19. Egg Phospholipids and Cardiovascular Health

    PubMed Central

    Blesso, Christopher N.

    2015-01-01

    Eggs are a major source of phospholipids (PL) in the Western diet. Dietary PL have emerged as a potential source of bioactive lipids that may have widespread effects on pathways related to inflammation, cholesterol metabolism, and high-density lipoprotein (HDL) function. Based on pre-clinical studies, egg phosphatidylcholine (PC) and sphingomyelin appear to regulate cholesterol absorption and inflammation. In clinical studies, egg PL intake is associated with beneficial changes in biomarkers related to HDL reverse cholesterol transport. Recently, egg PC was shown to be a substrate for the generation of trimethylamine N-oxide (TMAO), a gut microbe-dependent metabolite associated with increased cardiovascular disease (CVD) risk. More research is warranted to examine potential serum TMAO responses with chronic egg ingestion and in different populations, such as diabetics. In this review, the recent basic science, clinical, and epidemiological findings examining egg PL intake and risk of CVD are summarized. PMID:25871489

  20. Localization of anionic phospholipids in Escherichia coli cells.

    PubMed

    Oliver, Piercen M; Crooks, John A; Leidl, Mathias; Yoon, Earl J; Saghatelian, Alan; Weibel, Douglas B

    2014-10-01

    Cardiolipin (CL) is an anionic phospholipid with a characteristically large curvature and is of growing interest for two primary reasons: (i) it binds to and regulates many peripheral membrane proteins in bacteria and mitochondria, and (ii) it is distributed asymmetrically in rod-shaped cells and is concentrated at the poles and division septum. Despite the growing number of studies of CL, its function in bacteria remains unknown. 10-N-Nonyl acridine orange (NAO) is widely used to image CL in bacteria and mitochondria, as its interaction with CL is reported to produce a characteristic red-shifted fluorescence emission. Using a suite of biophysical techniques, we quantitatively studied the interaction of NAO with anionic phospholipids under physiologically relevant conditions. We found that NAO is promiscuous in its binding and has photophysical properties that are largely insensitive to the structure of diverse anionic phospholipids to which it binds. Being unable to rely solely on NAO to characterize the localization of CL in Escherichia coli cells, we instead used quantitative fluorescence microscopy, mass spectrometry, and mutants deficient in specific classes of anionic phospholipids. We found CL and phosphatidylglycerol (PG) concentrated in the polar regions of E. coli cell membranes; depletion of CL by genetic approaches increased the concentration of PG at the poles. Previous studies suggested that some CL-binding proteins also have a high affinity for PG and display a pattern of cellular localization that is not influenced by depletion of CL. Framed within the context of these previous experiments, our results suggest that PG may play an essential role in bacterial physiology by maintaining the anionic character of polar membranes.

  1. Using Turnover as a Recruitment Strategy

    ERIC Educational Resources Information Center

    Duncan, Sandra

    2009-01-01

    Teacher turnover is notoriously high in the field of early childhood education with an estimated 33% of staff exiting the workplace each year. Turnover is costly. Not only do high levels of turnover negatively impact children's growth and development, it also erodes the program's economic stability and wherewithal to provide effective operations…

  2. Measuring Staff Turnover in Nursing Homes

    ERIC Educational Resources Information Center

    Castle, Nicholas G.

    2006-01-01

    Purpose: In this study the levels of staff turnover reported in the nursing home literature (1990-2003) are reviewed, as well as the definitions of turnover used in these prior studies. With the use of primary data collected from 354 facilities, the study addresses the various degrees of bias that result, depending on how staff turnover is defined…

  3. Estimating Teacher Turnover Costs: A Case Study

    ERIC Educational Resources Information Center

    Levy, Abigail Jurist; Joy, Lois; Ellis, Pamela; Jablonski, Erica; Karelitz, Tzur M.

    2012-01-01

    High teacher turnover in large U.S. cities is a critical issue for schools and districts, and the students they serve; but surprisingly little work has been done to develop methodologies and standards that districts and schools can use to make reliable estimates of turnover costs. Even less is known about how to detect variations in turnover costs…

  4. L-triiodothyronine (T/sub 3/) enhances lung surfactant phospholipid flux in rabbit fetus

    SciTech Connect

    Ghosh, B.; Datta, S.; Bandyopadhyay, S.; Steinberg, H.; Das, D.K.

    1986-05-01

    The effect of thyroid hormone on surfactant phospholipid production in fetal lung was studied by simultaneously measuring the surfactant phosphatidylcholine (PC) content and its turnover in lamellar body and alveolar lavage fractions. Pregnant New Zealand white rabbits of 27 days' gestation were properly anesthetized and the uterus opened by a midline incision. Each fetus in each litter was injected with T/sub 3/ along with (/sup 14/C)-palmitate and (/sup 3/H)-choline. Control fetuses were injected with saline instead of T/sub 3/. PC was isolated from lamellar body and lung lavage from each fetus. Zilversmit equations for a two-compartment precursor-product model was used to analyze specific activity versus time curves and the turnover times for surfactant PC. Fluxes of surfactant PC were then calculated from its turnover times and pool sizes. The biological half-life for (/sup 14/C)-palmitate and (/sup 3/H)-choline labeled PC did not change by T/sub 3/ treatment. Turnover times for labeled palmitate and choline were 9.2 hr and 10.0 hr, respectively, for normal fetus and 6.0 hr and 5.8 hr, respectively, for T/sub 3/-treated fetus. While the pool size of PC recovered by the alveolar wash did not change significantly, T/sub 3/ enhanced the flux of this phospholipid from the lamellar bodies into alveolar space by 1.7 times within 4 hr. These results suggest that thyroid hormone may promote fetal lung development by enhancing the release of surfactant into the alveolar space.

  5. Intermolecular forces in spread phospholipid monolayers at oil/water interfaces.

    PubMed

    Mingins, James; Pethica, Brian A

    2004-08-31

    The lateral intermolecular forces between phospholipids are of particular relevance to the behavior of biomembranes, and have been approached via studies of monolayer isotherms at aqueous interfaces, mostly restricted to air/water (A/W) systems. For thermodynamic properties, the oil/water (O/W) interface has major advantages but is experimentally more difficult and less studied. A comprehensive reanalysis of the available thermodynamic data on spread monolayers of phosphatidyl cholines (PC) and phosphatidyl ethanolamines (PE) at O/W interfaces is conducted to identify the secure key features that will underpin further development of molecular models. Relevant recourse is made to isotherms of single-chain molecules and of mixed monolayers to identify the contributions of chain-chain interactions and interionic forces. The emphasis is on the properties of the phase transitions for a range of oil phases. Apparent published discrepancies in thermodynamic properties are resolved and substantial agreement emerges on the main features of these phospholipid monolayer systems. In compression to low areas, the forces between the zwitterions of like phospholipids are repulsive. The molecular model for phospholipid headgroup interactions developed by Stigter et al. accounts well for the virial coefficients in expanded phospholipid O/W monolayers. Inclusion of the changes in configuration and orientation of the zwitterion headgroups on compression, which are indicated by the surface potentials in the phase transition region, and inclusion of the energy of chain demixing from the oil phase will be required for molecular modeling of the phase transitions.

  6. LIPID PEROXIDATION GENERATES BIOLOGICALLY ACTIVE PHOSPHOLIPIDS INCLUDING OXIDATIVELY N-MODIFIED PHOSPHOLIPIDS

    PubMed Central

    Davies, Sean S.; Guo, Lilu

    2014-01-01

    Peroxidation of membranes and lipoproteins converts “inert” phospholipids into a plethora of oxidatively modified phospholipids (oxPL) that can act as signaling molecules. In this review, we will discuss four major classes of oxPL: mildly oxygenated phospholipids, phospholipids with oxidatively truncated acyl chains, phospholipids with cyclized acyl chains, and phospholipids that have been oxidatively N-modified on their headgroups by reactive lipid species. For each class of oxPL we will review the chemical mechanisms of their formation, the evidence for their formation in biological samples, the biological activities and signaling pathways associated with them, and the catabolic pathways for their elimination. We will end by briefly highlighting some of the critical questions that remain about the role of oxPL in physiology and disease. PMID:24704586

  7. Real-time Visualization of Phospholipid Degradation by Outer Membrane Phospholipase A using High-Speed Atomic Force Microscopy.

    PubMed

    Rangl, Martina; Rima, Luca; Klement, Jessica; Miyagi, Atsushi; Keller, Sandro; Scheuring, Simon

    2017-03-07

    Phospholipases are abundant in various types of cells and compartments, where they play key roles in physiological processes as diverse as digestion, cell proliferation, and neural activation. In Gram-negative bacteria, outer membrane phospholipase A (OmpLA) is involved in outer-membrane lipid homeostasis and bacterial virulence. Although the enzymatic activity of OmpLA can be probed with an assay relying on an artificial monoacyl thioester substrate, only little is known about its activity on diacyl phospholipids. Here, we used high-speed atomic force microscopy (HS-AFM) to directly image enzymatic phospholipid degradation by OmpLA in real time. In the absence of Ca(2+), reconstituted OmpLA diffused within a phospholipid bilayer without revealing any signs of phospholipase activity. Upon addition of Ca(2+), OmpLA was activated and degraded the membrane with a turnover of ~2 phospholipid molecules per second, per OmpLA dimer until most of the membrane phospholipids were hydrolyzed and the protein became tightly packed.

  8. Altered bone turnover during spaceflight

    NASA Technical Reports Server (NTRS)

    Turner, R. T.; Morey, E. R.; Liu, C.; Baylink, D. J.

    1982-01-01

    Modifications in calcium metabolism during spaceflight were studied, using parameters that reflect bone turnover. Bone formation rate, medullary area, bone length, bone density, pore size distribution, and differential bone cell number were evaluated in growing rate both immediately after and 25 days after orbital spaceflights aboard the Soviet biological satellites Cosmos 782 and 936. The primary effect of space flight on bone turnover was a reversible inhibition of bone formation at the periosteal surface. A simultaneous increase in the length of the periosteal arrest line suggests that bone formation ceased along corresponding portions of that surface. Possible reasons include increased secretion of glucocorticoids and mechanical unloading of the skeleton due to near-weightlessness, while starvation and immobilization are excluded as causes.

  9. Turnover: strategies for staff retention.

    PubMed

    SnowAntle, S

    1990-01-01

    This discussion has focused on a number of areas where organizations may find opportunities for more effectively managing employee retention. Given the multitude of causes and consequences, there is no one quick fix. Effective management of employee retention requires assessment of the entire human resources process, that is, recruitment, selection, job design, compensation, supervision, work conditions, etc. Regular and systematic diagnosis of turnover and implementation of multiple strategies and evaluation are needed (Mobley, 1982).

  10. Phospholipids as Biomarkers for Excessive Alcohol Use

    DTIC Science & Technology

    2014-10-01

    AWARD NUMBER: W81XWH-12-1-0497 TITLE: Phospholipids as Biomarkers for Excessive Alcohol Use...SUBTITLE Phospholipids as Biomarkers for Excessive Alcohol Use 5a. CONTRACT NUMBER 5b. GRANT NUMBER W81XWH-12-1-0497 5c. PROGRAM ELEMENT NUMBER 6...ability to measure alcohol quantity consumed and associated damage better than can be done with ethyl alcohol level measures and other existing

  11. Cell signalling and phospholipid metabolism. Final report

    SciTech Connect

    Boss, W.F.

    1990-12-31

    These studies explored whether phosphoinositide (PI) has a role in plants analogous to its role in animal cells. Although no parallel activity of PI in signal transduction was found in plant cells, activity of inositol phospholipid kinase was found to be modulated by light and by cell wall degrading enzymes. These studies indicate a major role for inositol phospholipids in plant growth and development as membrane effectors but not as a source of second messengers.

  12. Dielectrophoresis of Functional Phospholipid Vesicles

    NASA Astrophysics Data System (ADS)

    Froude, Victoria; Zhu, Yingxi Elaine

    2008-03-01

    Recently, there has been an emerging interest in using AC-dielectrophoresis (DEP) to transport and assemble phospholipid vesicles (liposomes) and nanoparticles to form functional bio-assemblies where the underlying charge polarization mechanism of colloids in AC fields strongly depends on nano-scaled surface charge. In this work, we study liposomes segregation and aggregation in the presence of nanocolloids and salts in which the biological functionality of liposomes is augmented by the physical functionality of inorganic coating and particles. Liposomes, synthesized by sonication with 1,2-Dioleoyl-sn-Glycero-3-Phosphate (DOPA), are manipulated at varied AC-field frequencies across fabricated micro-electrodes in a quadrapole configuration on glass. We observe the co-assembly of liposome and opposite-charged nanocolloids by confocal microscopy and SEM, where the smaller nanocolloids are captured in between liposome junctions to form stabilized composite vesicles at several distinct frequencies. We observe a strong dependence of the liposome DEP mobility on the number of nanoparticles present in suspension and propose a new mechanism based on charge segregation and charged nanocolloid entrainment in the double layer.

  13. Protein turnover, nitrogen balance and rehabilitation.

    PubMed

    Fern, E B; Waterlow, J C

    1983-01-01

    Not many studies have been done on protein turnover during recovery from malnutrition. Some relevant information can, however, be obtained from measurements on normal growing animals, since rehabilitation and normal growth have in common a rapid rate of net protein synthesis. The key question is the extent to which net gain in protein results from an increase in synthesis or a decrease in breakdown or both. Different studies have used different methods, and all methods for measuring protein turnover have some disadvantages and sources of error. It is important to bear this in mind in evaluating the results. Consequently, part of this paper will be devoted to questions of methodology. Whole body protein turnover has been measured in children recovering from severe malnutrition. During the phase of rapid catch-up growth the rate of protein synthesis is increased. As might be expected, it increases linearly with the rate of weight gain. At the same time there is a smaller increase in the rate of protein breakdown. The resultant of these two processes is that, over and above the basal rate of protein synthesis, 1.4 grams of protein have to be synthesized for 1 gram to be laid down. Very similar results have been obtained in rapidly growing young pigs. Experimental studies on muscle growth in general confirm the conclusion that, at least in muscle, rapid growth is associated with rapid rates of protein breakdown as well as of synthesis. This has been shown in muscles of young growing rats, as well as in muscles in which hypertrophy has been induced by stretch or other stimuli. In contrast, the evidence suggests that rapid growth involves a fall in the rate of protein degradation. The magnitude of the nitrogen balance under any conditions is determined by the difference between synthesis and breakdown. In the absence of any storage of amino acids, this must be the same as the difference between intake and excretion (S - B = I - E). A question of great interest is whether

  14. Health effects of dietary phospholipids.

    PubMed

    Küllenberg, Daniela; Taylor, Lenka A; Schneider, Michael; Massing, Ulrich

    2012-01-05

    Beneficial effects of dietary phospholipids (PLs) have been mentioned since the early 1900's in relation to different illnesses and symptoms, e.g. coronary heart disease, inflammation or cancer. This article gives a summary of the most common therapeutic uses of dietary PLs to provide an overview of their approved and proposed benefits; and to identify further investigational needs.From the majority of the studies it became evident that dietary PLs have a positive impact in several diseases, apparently without severe side effects. Furthermore, they were shown to reduce side effects of some drugs. Both effects can partially be explained by the fact that PL are highly effective in delivering their fatty acid (FA) residues for incorporation into the membranes of cells involved in different diseases, e.g. immune or cancer cells. The altered membrane composition is assumed to have effects on the activity of membrane proteins (e.g. receptors) by affecting the microstructure of membranes and, therefore, the characteristics of the cellular membrane, e.g. of lipid rafts, or by influencing the biosynthesis of FA derived lipid second messengers. However, since the FAs originally bound to the applied PLs are increased in the cellular membrane after their consumption or supplementation, the FA composition of the PL and thus the type of PL is crucial for its effect. Here, we have reviewed the effects of PL from soy, egg yolk, milk and marine sources. Most studies have been performed in vitro or in animals and only limited evidence is available for the benefit of PL supplementation in humans. More research is needed to understand the impact of PL supplementation and confirm its health benefits.

  15. Nonenzymatic Reactions above Phospholipid Surfaces of Biological Membranes: Reactivity of Phospholipids and Their Oxidation Derivatives

    PubMed Central

    Solís-Calero, Christian; Ortega-Castro, Joaquín; Frau, Juan; Muñoz, Francisco

    2015-01-01

    Phospholipids play multiple and essential roles in cells, as components of biological membranes. Although phospholipid bilayers provide the supporting matrix and surface for many enzymatic reactions, their inherent reactivity and possible catalytic role have not been highlighted. As other biomolecules, phospholipids are frequent targets of nonenzymatic modifications by reactive substances including oxidants and glycating agents which conduct to the formation of advanced lipoxidation end products (ALEs) and advanced glycation end products (AGEs). There are some theoretical studies about the mechanisms of reactions related to these processes on phosphatidylethanolamine surfaces, which hypothesize that cell membrane phospholipids surface environment could enhance some reactions through a catalyst effect. On the other hand, the phospholipid bilayers are susceptible to oxidative damage by oxidant agents as reactive oxygen species (ROS). Molecular dynamics simulations performed on phospholipid bilayers models, which include modified phospholipids by these reactions and subsequent reactions that conduct to formation of ALEs and AGEs, have revealed changes in the molecular interactions and biophysical properties of these bilayers as consequence of these reactions. Then, more studies are desirable which could correlate the biophysics of modified phospholipids with metabolism in processes such as aging and diseases such as diabetes, atherosclerosis, and Alzheimer's disease. PMID:25977746

  16. Quantification of phospholipids classes in human milk.

    PubMed

    Giuffrida, Francesca; Cruz-Hernandez, Cristina; Flück, Brigitte; Tavazzi, Isabelle; Thakkar, Sagar K; Destaillats, Frédéric; Braun, Marcel

    2013-10-01

    Phospholipids are integral constituents of the milk fat globule membranes and they play a central role in infants' immune and inflammatory responses. A methodology employing liquid chromatography coupled with evaporative light scattering detector has been optimized and validated to quantify the major phospholipids classes in human milk. Phospholipids were extracted using chloroform and methanol and separated on C18 column. Repeatability, intermediate reproducibility, and recovery values were calculated and a large sample set of human milk analyzed. In human milk, phospholipid classes were quantified at concentrations of 0.6 mg/100 g for phosphatidylinositol; 4.2 mg/100 g for phosphatidylethanolamine, 0.4 mg/100 g for phosphatidylserine, 2.8 mg/100 g for phosphatidylcholine, and 4.6 mg/100 g for sphingomyelin. Their relative standard deviation of repeatability and intermediate reproducibility values ranging between 0.8 and 13.4 % and between 2.4 and 25.7 %, respectively. The recovery values ranged between 67 and 112 %. Finally, the validated method was used to quantify phospholipid classes in human milk collected from 50 volunteers 4 weeks postpartum providing absolute content of these lipids in a relatively large cohort. The average content of total phospholipids was 23.8 mg/100 g that corresponds to an estimated mean intake of 140 mg phospholipids/day in a 4-week old infant when exclusively breast-fed.

  17. Bone turnover in malnourished children.

    PubMed

    Branca, F; Robins, S P; Ferro-Luzzi, A; Golden, M H

    Pyridinoline (PYD) and deoxypyridinoline (DPD) are cross-linking aminoacids of collagen that are located mainly in bone and cartilage. When bone matrix is resorbed these cross-links are quantitatively excreted in the urine and therefore represent specific markers. We have measured the urinary excretion rate of PYD and DPD in 46 severely malnourished boys to assess their skeletal turnover and to relate this to their subsequent rate of growth. The children were aged 13 months (SD 6), and height-for-age was -3.6 (1.6) Z-score, and weight-for-height was -2.4 (0.8) Z-score. PYD excretion when malnourished and after "recovery" was 11.2 (4.6) nmol h-1m-2 and 32.2 (10.8) nmol h-1m-2 and DPD excretion was 2.6 (1.3) nmol h-1m-2 and 7.5 (3.0) nmol h-1m-2, respectively. The ratio of the two cross-links did not change with recovery. These data show that cartilage and bone turnover is much lower in the malnourished than in the recovered child. There was no difference in the degree of depression of turnover between the children with marasmus, marasmic-kwashiorkor, or kwashiorkor. The rate of height gain during recovery was significantly related to cross-link excretion, age, and weight-for-height on admission. These three factors accounted for 44% of the variance in the height velocity of the children. PYD and DPD excretion rate could be used to assess therapeutic interventions designed to alleviate stunting.

  18. Filamentous Fungi with High Cytosolic Phospholipid Transfer Activity in the Presence of Exogenous Phospholipid

    PubMed Central

    Record, Eric; Lesage, Laurence; Cahagnier, Bernard; Marion, Didier; Asther, Marcel

    1994-01-01

    The phospholipid transfer activity of cell extracts from 15 filamentous fungus strains grown on a medium containing phospholipids as the carbon source was measured by a fluorescence assay. This assay was based on the transfer of pyrene-labeled phosphatidylcholines forming the donor vesicles to acceptor vesicles composed of egg phosphatidylcholines. The highest phosphatidylcholine transfer activity was obtained with cell extracts from Aspergillus oryzae. The presence of exogenous phospholipids in the culture medium of A. oryzae was shown to increase markedly the activity of phospholipid transfer as well as the pool of exocellular proteins during the primary phase of growth. Modifications in the biochemical marker activities of cellular organelles were observed: succinate dehydrogenase, a mitochondrial marker; inosine diphosphatase, a Golgi system marker; and cytochrome c oxidoreductase, an endoplasmic reticulum marker, were increased 7.3-, 2-, and 22-fold, respectively, when A. oryzae was grown in the presence of phospholipids. PMID:16349388

  19. Distinctive interactions of oleic acid covered magnetic nanoparticles with saturated and unsaturated phospholipids in Langmuir monolayers.

    PubMed

    Matshaya, Thabo J; Lanterna, Anabel E; Granados, Alejandro M; Krause, Rui W M; Maggio, Bruno; Vico, Raquel V

    2014-05-27

    The growing number of innovations in nanomedicine and nanobiotechnology are posing new challenges in understanding the full spectrum of interactions between nanomateriales and biomolecules at nano-biointerfaces. Although considerable achievements have been accomplished by in vivo applications, many issues regarding the molecular nature of these interactions are far from being well-understood. In this work, we evaluate the interaction of hydrophobic magnetic nanoparticles (MNP) covered with a single layer of oleic acid with saturated and unsaturated phospholipids found in biomembranes through the use of Langmuir monolayers. We find distinctive interactions among the MNP with saturated and unsaturated phospholipids that are reflected by both, the compression isotherms and the surface topography of the films. The interaction between MNP and saturated lipids causes a noticeable reduction of the mean molecular area in the interfacial plane, while the interaction with unsaturated lipids promotes area expansion compared to the ideally mixed films. Moreover, when liquid expanded and liquid condensed phases of the phospholipid(s) coexist, the MNP preferably partition to the liquid-expanded phase, thus hindering the coalescence of the condensed domains with increasing surface pressure. In consequence organizational information on long-range order is attained. These results evidence the existence of a sensitive composition-dependent surface regulation given by phospholipid-nanoparticle interactions which enhance the biophysical relevance of understanding nanoparticle surface functionalization in relation to its interactions in biointerfaces constituted by defined types of biomolecules.

  20. Mammalian Glucose Transporter Activity Is Dependent upon Anionic and Conical Phospholipids*

    PubMed Central

    Hresko, Richard C.; Kraft, Thomas E.; Quigley, Andrew; Carpenter, Elisabeth P.; Hruz, Paul W.

    2016-01-01

    The regulated movement of glucose across mammalian cell membranes is mediated by facilitative glucose transporters (GLUTs) embedded in lipid bilayers. Despite the known importance of phospholipids in regulating protein structure and activity, the lipid-induced effects on the GLUTs remain poorly understood. We systematically examined the effects of physiologically relevant phospholipids on glucose transport in liposomes containing purified GLUT4 and GLUT3. The anionic phospholipids, phosphatidic acid, phosphatidylserine, phosphatidylglycerol, and phosphatidylinositol, were found to be essential for transporter function by activating it and stabilizing its structure. Conical lipids, phosphatidylethanolamine and diacylglycerol, enhanced transporter activity up to 3-fold in the presence of anionic phospholipids but did not stabilize protein structure. Kinetic analyses revealed that both lipids increase the kcat of transport without changing the Km values. These results allowed us to elucidate the activation of GLUT by plasma membrane phospholipids and to extend the field of membrane protein-lipid interactions to the family of structurally and functionally related human solute carriers. PMID:27302065

  1. Hybrid Mathematical Model of Cardiomyocyte Turnover in the Adult Human Heart

    PubMed Central

    Elser, Jeremy A.; Margulies, Kenneth B.

    2012-01-01

    Rationale The capacity for cardiomyocyte regeneration in the healthy adult human heart is fundamentally relevant for both myocardial homeostasis and cardiomyopathy therapeutics. However, estimates of cardiomyocyte turnover rates conflict greatly, with a study employing C14 pulse-chase methodology concluding 1% annual turnover in youth declining to 0.5% with aging and another using cell population dynamics indicating substantial, age-increasing turnover (4% increasing to 20%). Objective Create a hybrid mathematical model to critically examine rates of cardiomyocyte turnover derived from alternative methodologies. Methods and Results Examined in isolation, the cell population analysis exhibited severe sensitivity to a stem cell expansion exponent (20% variation causing 2-fold turnover change) and apoptosis rate. Similarly, the pulse-chase model was acutely sensitive to assumptions of instantaneous incorporation of atmospheric C14 into the body (4-fold impact on turnover in young subjects) while numerical restrictions precluded otherwise viable solutions. Incorporating considerations of primary variable sensitivity and controversial model assumptions, an unbiased numerical solver identified a scenario of significant, age-increasing turnover (4–6% increasing to 15–22% with age) that was compatible with data from both studies, provided that successive generations of cardiomyocytes experienced higher attrition rates than predecessors. Conclusions Assignment of histologically-observed stem/progenitor cells into discrete regenerative phenotypes in the cell population model strongly influenced turnover dynamics without being directly testable. Alternatively, C14 trafficking assumptions and restrictive models in the pulse-chase model artificially eliminated high-turnover solutions. Nevertheless, discrepancies among recent cell turnover estimates can be explained and reconciled. The hybrid mathematical model provided herein permits further examination of these and

  2. Alcohol, signaling, and ECM turnover.

    PubMed

    Seth, Devanshi; D'Souza El-Guindy, Nympha B; Apte, Minoti; Mari, Montserrat; Dooley, Steven; Neuman, Manuela; Haber, Paul S; Kundu, Gopal C; Darwanto, Agus; de Villiers, Willem J; Vonlaufen, A; Xu, Z; Phillips, P; Yang, S; Goldstein, D; Pirola, R M; Wilson, J S; Moles, Anna; Fernández, Anna; Colell, Anna; García-Ruiz, Carmen; Fernández-Checa, José C; Meyer, Christoph; Meindl-Beinker, Nadja M

    2010-01-01

    Alcohol is recognized as a direct hepatotoxin, but the precise molecular pathways that are important for the initiation and progression of alcohol-induced tissue injury are not completely understood. The current understanding of alcohol toxicity to organs suggests that alcohol initiates injury by generation of oxidative and nonoxidative ethanol metabolites and via translocation of gut-derived endotoxin. These processes lead to cellular injury and stimulation of the inflammatory responses mediated through a variety of molecules. With continuing alcohol abuse, the injury progresses through impairment of tissue regeneration and extracellular matrix (ECM) turnover, leading to fibrogenesis and cirrhosis. Several cell types are involved in this process, the predominant being stellate cells, macrophages, and parenchymal cells. In response to alcohol, growth factors and cytokines activate many signaling cascades that regulate fibrogenesis. This mini-review brings together research focusing on the underlying mechanisms of alcohol-mediated injury in a number of organs. It highlights the various processes and molecules that are likely involved in inflammation, immune modulation, susceptibility to infection, ECM turnover and fibrogenesis in the liver, pancreas, and lung triggered by alcohol abuse.

  3. Guide to good practices for operations turnover

    SciTech Connect

    1998-12-01

    This Guide to Good Practices is written to enhance understanding of, and provide direction for, Operations Turnover, Chapter XII of Department of Energy (DOE) Order 5480.19, Conduct of Operations Requirements for DOE Facilities. The practices in this guide should be considered when planning or reviewing operations turnover programs. Contractors are advised to adopt procedures that meet the intent of DOE Order 5480.19. Operations Turnover is an element of an effective Conduct of Operations program. The complexity and array of activities performed in DOE facilities dictate the necessity for a formal operations turnover program to promote safe and efficient operations.

  4. Dynamic Aspects of Voluntary Turnover: An Integrated Approach to Curvilinearity in the Performance-Turnover Relationship

    ERIC Educational Resources Information Center

    Becker, William J.; Cropanzano, Russell

    2011-01-01

    Previous research pertaining to job performance and voluntary turnover has been guided by 2 distinct theoretical perspectives. First, the push-pull model proposes that there is a quadratic or curvilinear relationship existing between these 2 variables. Second, the unfolding model of turnover posits that turnover is a dynamic process and that a…

  5. [Plasma lipoproteins as drug carriers. Effect of phospholipid formulations].

    PubMed

    Torkhovskaia, T I; Ipatova, O M; Medvedeva, N V; Ivanov, V S; Ivanova, L I

    2010-01-01

    The extensive development of nanotechnologies in the last two decades has brought about new understanding of plasma lipoproteins (LP) as natural drug nanocarriers that escape interaction with immune and reticuloendothelial systems. Drugs bound to LP (especially LDL) can more actively penetrate into cells of many cancer and inflammation tissues with enhanced expression or/and dysregulation of B,E receptors or possibly scavenger SR-BI receptors. Relevant studies are focused on the development of new dosage forms by conjugating lipophilic drugs either with isolated plasma LP or with their model formulations, such as nanoemulsions, mimetics, lipid nanospheres, etc. Some authors include in these particles serum or recombinant apoproteins, peptides, and modified polymer products. As shown recently, protein-free lipid nanoemulsions in plasma take up free apoA and apoE. Complexes with various LP also form after direct administration of lypophilic drugs into blood especially those enclosed in phospholipid formulations, e.g. liposomes. Results of evaluation of some lipophilic dugs (mainly cytostatics, amphotericin B, cyclosporine A, etc.) are discussed. Original data are presented on the influence of phospholipid formulations on the distribution of doxorubicin and indomethacin between LP classes after in vitro incubation in plasma. On the whole, the review illustrates the importance of research on LP and phospholi pid forms as drug nanocarriers to be used to enhance effect of therapy.

  6. Tracking synthesis and turnover of triacylglycerol in leaves.

    PubMed

    Tjellström, Henrik; Strawsine, Merissa; Ohlrogge, John B

    2015-03-01

    Triacylglycerol (TAG), typically represents <1% of leaf glycerolipids but can accumulate under stress and other conditions or if leaves are supplied with fatty acids, or in plants transformed with regulators or enzymes of lipid metabolism. To better understand the metabolism of TAG in leaves, pulse-chase radiolabelling experiments were designed to probe its synthesis and turnover. When Arabidopsis leaves were incubated with [(14)C]lauric acid (12:0), a major initial product was [(14)C]TAG. Thus, despite low steady-state levels, leaves possess substantial TAG biosynthetic capacity. The contributions of diacylglycerol acyltransferase1 and phospholipid:diacylglycerol acyltransferase1 to leaf TAG synthesis were examined by labelling of dgat1 and pdat1 mutants. The dgat1 mutant displayed a major (76%) reduction in [(14)C]TAG accumulation whereas pdat1 TAG labelling was only slightly reduced. Thus, DGAT1 has a principal role in TAG biosynthesis in young leaves. During a 4h chase period, radioactivity in TAG declined 70%, whereas the turnover of [(14)C]acyl chains of phosphatidylcholine (PC) and other polar lipids was much lower. Sixty percent of [(14)C]12:0 was directly incorporated into glycerolipids without modification, whereas 40% was elongated and desaturated to 16:0 and 18:1 by plastids. The unmodified [(14)C]12:0 and the plastid products of [(14)C]12:0 metabolism entered different pathways. Although plastid-modified (14)C-labelled products accumulated in monogalactosyldiacylglycerol, PC, phosphatidylethanolamine, and diacylglcerol (DAG), there was almost no accumulation of [(14)C]16:0 and [(14)C]18:1 in TAG. Because DAG and acyl-CoA are direct precursors of TAG, the differential labelling of polar glycerolipids and TAG by [(14)C]12:0 and its plastid-modified products provides evidence for multiple subcellular pools of both acyl-CoA and DAG.

  7. Tracking synthesis and turnover of triacylglycerol in leaves

    DOE PAGES

    Tjellstrom, Henrik; Strawsine, Merissa; Ohlrogge, John B.

    2015-01-21

    Triacylglycerol (TAG), typically represents <1% of leaf glycerolipids but can accumulate under stress and other conditions or if leaves are supplied with fatty acids, or in plants transformed with regulators or enzymes of lipid metabolism. To better understand the metabolism of TAG in leaves, pulse-chase radiolabelling experiments were designed to probe its synthesis and turnover. When Arabidopsis leaves were incubated with [14C]lauric acid (12:0), a major initial product was [14C]TAG. Thus, despite low steady-state levels, leaves possess substantial TAG biosynthetic capacity. The contributions of diacylglycerol acyltransferase1 and phospholipid:diacylglycerol acyltransferase1 to leaf TAG synthesis were examined by labelling of dgat1 andmore » pdat1 mutants. The dgat1 mutant displayed a major (76%) reduction in [14C]TAG accumulation whereas pdat1 TAG labelling was only slightly reduced. Thus, DGAT1 has a principal role in TAG biosynthesis in young leaves. During a 4h chase period, radioactivity in TAG declined 70%, whereas the turnover of [14C]acyl chains of phosphatidylcholine (PC) and other polar lipids was much lower. Sixty percent of [14C]12:0 was directly incorporated into glycerolipids without modification, whereas 40% was elongated and desaturated to 16:0 and 18:1 by plastids. The unmodified [14C]12:0 and the plastid products of [14C]12:0 metabolism entered different pathways. Although plastid-modified 14C-labelled products accumulated in monogalactosyldiacylglycerol, PC, phosphatidylethanolamine, and diacylglcerol (DAG), there was almost no accumulation of [14C]16:0 and [14C]18:1 in TAG. Lastly, because DAG and acyl-CoA are direct precursors of TAG, the differential labelling of polar glycerolipids and TAG by [14C]12:0 and its plastid-modified products provides evidence for multiple subcellular pools of both acyl-CoA and DAG.« less

  8. Carbamoylcholine and gastrin induce inositol lipid turnover in canine gastric parietal cells

    SciTech Connect

    Chiba, T.; Fisher, S.K.; Park, J.; Seguin, E.B.; Agranoff, B.W.; Yamada, Tadataka )

    1988-07-01

    The potential role of inositol phospholipid turnover in mediating acid secretion was examined in a preparation enriched for isolated canine gastric parietal cells. The stimulatory effects of carbamoylcholine (carbachol) and gastrin on parietal cell uptake of ({sup 14}C)aminopyrine were linked to dose- and time-dependent selective reduction in cellular phosphatidylinositol content, although the specific fatty acid composition of the phosphoinositides was not altered. Analysis of ({sup 3}H)inositol phosphates accumulated in cells prelabeled with ({sup 3}H)inositol revealed an increase in labeled inositol trisphosphate by 5 min of incubation with either carbachol or gastrin. Furthermore, after preincubation of parietal cells in medium containing ({sup 32}P)orthophosphate, the two secretagogues elicited a time-dependent decrease in {sup 32}P labeling of phosphatidylinositol 4,5-bisphosphate and concomitant increase in labeling of phosphatidic acid. These data demonstrate that the acid secretagogue actions of carbachol and gastrin are correlated with turnover of cellular inositol phospholipids in a preparation consisting predominantly of parietal cells.

  9. Social Disadvantage and Network Turnover

    PubMed Central

    2015-01-01

    Objectives. Research shows that socially disadvantaged groups—especially African Americans and people of low socioeconomic status (SES)—experience more unstable social environments. I argue that this causes higher rates of turnover within their personal social networks. This is a particularly important issue among disadvantaged older adults, who may benefit from stable networks. This article, therefore, examines whether social disadvantage is related to various aspects of personal network change. Method. Social network change was assessed using longitudinal egocentric network data from the National Social Life, Health, and Aging Project, a study of older adults conducted between 2005 and 2011. Data collection in Wave 2 included a technique for comparing respondents’ confidant network rosters between waves. Rates of network losses, deaths, and additions were modeled using multivariate Poisson regression. Results. African Americans and low-SES individuals lost more confidants—especially due to death—than did whites and college-educated respondents. African Americans also added more confidants than whites. However, neither African Americans nor low-SES individuals were able to match confidant losses with new additions to the extent that others did, resulting in higher levels of confidant network shrinkage. These trends are partly, but not entirely, explained by disadvantaged individuals’ poorer health and their greater risk of widowhood or marital dissolution. Discussion. Additional work is needed to shed light on the role played by race- and class-based segregation on group differences in social network turnover. Social gerontologists should examine the role these differences play in explaining the link between social disadvantage and important outcomes in later life, such as health decline. PMID:24997286

  10. Cholesterol and phospholipids in frontal cortex and synaptosomes of suicide completers: relationship with endosomal lipid trafficking genes.

    PubMed

    Freemantle, Erika; Mechawar, Naguib; Turecki, Gustavo

    2013-02-01

    Cholesterol (CHL) and phospholipid (PL) levels in synaptosomal membranes in particular can have an impact on cell signalling. Alterations in peripheral CHL measures have been consistently reported in suicidal behaviour. As CHL and PL turnover in the brain are important in synapse maintenance and function, the objective of this study was to determine if differences exist in synaptosomal cholesterol and phospholipid levels between suicide completers and controls. Expression measures of genes involved in lipid trafficking suggest an association between Lysosomal acid lipase A, cholesteryl ester hydrolase (LIPA) and brain PL levels, with LIPA being significantly increased in violent suicides and associated with alterations in brain PL. The results of this study suggest an altered PL content mediated by LIPA expression in violent suicides in the prefrontal cortex, which would have important consequences for inhibitory neurotransmission.

  11. Employee Turnover: Evidence from a Case Study.

    ERIC Educational Resources Information Center

    Borland, Jeff

    1997-01-01

    Patterns of employee turnover from a medium-sized law firm in Australia were examined in regard to theories of worker mobility (matching, sectoral shift, and incentive). Results support a role for matching effects, but personnel practices affect the timing of turnover. Matching and incentive-based theories do not explain the high rates of turnover…

  12. Principal Turnover. Information Capsule. Volume 0914

    ERIC Educational Resources Information Center

    Blazer, Christie

    2010-01-01

    Recent studies indicate that school districts are facing increasing rates of principal turnover. Frequent principal changes deprive schools of the leadership stability they need to succeed, disrupt long-term school reform efforts, and may even be linked to increased teacher turnover and lower levels of student achievement. This Information Capsule…

  13. An evaluation of serum high density lipoproteins-phospholipids.

    PubMed

    Ide, H; Tsuji, M; Shimada, M; Kondo, T; Fujiya, S; Asanuma, Y; Agishi, Y

    1988-07-01

    Phospholipids in high density lipoproteins (HDL) is being used as a negative risk indicator of atherosclerosis. Phospholipids in HDL may not demonstrate the actual level of HDL-phospholipids when determined by the precipitation or ultracentrifugal methods, because HDL fractions contain very high density lipoproteins (VHDL) and albumin. In the present study, the true level of phospholipids in HDL was estimated using high performance liquid chromatography (HPLC), and it was compared with the level of phospholipids in HDL determined by the precipitation method. Sera from 18 healthy subjects were used as materials. In the HPLC method, the HDL fraction was extracted making sure that it contained no free albumin, which is albumin not bound to phospholipids. The HDL fraction was separated into subfractions. It was found that phospholipids in the VHDL fraction make a 20.2 +/- 7.3% (mean +/- S.D.) part of the total HDL-phospholipids. A large part of the VHDL fraction was constituted of albumin-bound phospholipids. A significant correlation was observed between HDL-phospholipids determined by the precipitation method, which contain albumin, and the actual HDL fraction phospholipids determined by HPLC, which do not contain VHDL (r = 0.903, p less than 0.01). These results suggest that HDL-phospholipids values determined by the precipitation method give useful clinical data.

  14. PLA2-responsive and SPIO-loaded phospholipid micelles

    PubMed Central

    Gao, Qiang; Yan, Lesan; Chiorazzo, Michael; Delikatny, E. James; Tsourkas, Andrew; Cheng, Zhiliang

    2015-01-01

    A PLA2-responsive and superparamagnetic iron oxide (SPIO) nanoparticle-loaded phospholipid micelle was developed. The release of phospholipid-conjugated dye from these micelles was triggered due to phospholipid degradation by phospholipase A2. High relaxivity of the encapsulated SPIO could enable non-invasive magnetic resonance imaging. PMID:26139589

  15. Organization and function of anionic phospholipids in bacteria.

    PubMed

    Lin, Ti-Yu; Weibel, Douglas B

    2016-05-01

    In addition to playing a central role as a permeability barrier for controlling the diffusion of molecules and ions in and out of bacterial cells, phospholipid (PL) membranes regulate the spatial and temporal position and function of membrane proteins that play an essential role in a variety of cellular functions. Based on the very large number of membrane-associated proteins encoded in genomes, an understanding of the role of PLs may be central to understanding bacterial cell biology. This area of microbiology has received considerable attention over the past two decades, and the local enrichment of anionic PLs has emerged as a candidate mechanism for biomolecular organization in bacterial cells. In this review, we summarize the current understanding of anionic PLs in bacteria, including their biosynthesis, subcellular localization, and physiological relevance, discuss evidence and mechanisms for enriching anionic PLs in membranes, and conclude with an assessment of future directions for this area of bacterial biochemistry, biophysics, and cell biology.

  16. Ultrasensitive ROS-Responsive Coassemblies of Tellurium-Containing Molecules and Phospholipids.

    PubMed

    Wang, Lu; Fan, Fuqiang; Cao, Wei; Xu, Huaping

    2015-07-29

    Reactive oxygen species (ROS) play crucial roles in cell signaling and redox homeostasis and are strongly related to metabolic activities. The increase of the ROS concentration in organisms can result in several diseases, such as cardiovascular diseases and cancer. The concentration of ROS in biologically relevant conditions is typically as low as around tens of micromolars to 100 μM H2O2, which makes it necessary to develop ultrasensitive ROS-responsive systems. A general approach is reported here to fabricate an ultrasensitive ROS-responsive system via coassembly between tellurium-containing molecules and phospholipids, combining the ROS-responsiveness of tellurium and the biocompatibility of phospholipids. By using dynamic light scattering, transmission electron microscopy, scanning electron microscopy, and NMR spectra, coassembly behaviors and the responsiveness of the coassemblies have been investigated. These coassemblies can respond to 100 μM H2O2, which is a biologically relevant ROS concentration, and demonstrate reversible redox properties.

  17. RNA turnover in Trypanosoma brucei.

    PubMed Central

    Ehlers, B; Czichos, J; Overath, P

    1987-01-01

    Regulation of variant surface glycoprotein (VSG) mRNA turnover in Trypanosoma brucei was studied in bloodstream forms, in procyclic cells, and during in vitro transformation of bloodstream forms to procyclic cells by approach-to-equilibrium labeling and pulse-chase experiments. Upon initiation of transformation at 27 degrees C in the presence of citrate-cis-aconitate, the half-life of VSG mRNA was reduced from 4.5 h in bloodstream forms to 1.2 h in transforming cells. Concomitantly, an approximately 25-fold decrease in the rate of transcription was observed, resulting in a 100-fold reduction in the steady-state level of de novo-synthesized VSG mRNA. This low level of expression was maintained for at least 7 h, finally decreasing to an undetectable level after 24 h. Transcription of the VSG gene in established procyclic cells was undetectable. For comparison, the turnover of polyadenylated and nonpolyadenylated RNA, beta-tubulin mRNA, and mini-exon-derived RNA (medRNA) was studied. For medRNA, no significant changes in the rate of transcription or stability were observed during differentiation. In contrast, while the rate of transcription of beta-tubulin mRNA in in vitro-cultured bloodstream forms, transforming cells, and established procyclic cells was similar, the half life was four to five times longer in procyclic cells (t1/2, 7 h) than in cultured bloodstream forms (t1/2, 1.4 h) or transforming cells (t1/2, 1.7 h). Inhibition of protein synthesis in bloodstream forms at 37 degrees Celsius caused a dramatic 20-fold decrease in the rate of VSG mRNA synthesis and a 6-fold decrease in half-life to 45 min, while beta-tubulin mRNA was stabilized 2- to 3-fold and mRNA stability remained unaffected. It is postulated that triggering transformation or inhibiting protein synthesis induces changes in the abundance of the same regulatory molecules which effect the shutoff of VSG gene transcription in addition to shortening the half-life of VSG mRNA. Images PMID:2436040

  18. The island-mainland species turnover relationship.

    PubMed

    Stuart, Yoel E; Losos, Jonathan B; Algar, Adam C

    2012-10-07

    Many oceanic islands are notable for their high endemism, suggesting that islands may promote unique assembly processes. However, mainland assemblages sometimes harbour comparable levels of endemism, suggesting that island biotas may not be as unique as is often assumed. Here, we test the uniqueness of island biotic assembly by comparing the rate of species turnover among islands and the mainland, after accounting for distance decay and environmental gradients. We modelled species turnover as a function of geographical and environmental distance for mainland (M-M) communities of Anolis lizards and Terrarana frogs, two clades that have diversified extensively on Caribbean islands and the mainland Neotropics. We compared mainland-island (M-I) and island-island (I-I) species turnover with predictions of the M-M model. If island assembly is not unique, then the M-M model should successfully predict M-I and I-I turnover, given geographical and environmental distance. We found that M-I turnover and, to a lesser extent, I-I turnover were significantly higher than predicted for both clades. Thus, in the first quantitative comparison of mainland-island species turnover, we confirm the long-held but untested assumption that island assemblages accumulate biodiversity differently than their mainland counterparts.

  19. Relevancy 101

    NASA Technical Reports Server (NTRS)

    Lynnes, Chris; Newman, Doug

    2016-01-01

    Where we present an overview on why relevancy is a problem, how important it is and how we can improve it. The topic of relevancy is becoming increasingly important in earth data discovery as our audience is tuned to the accuracy of standard search engines like Google.

  20. Polyunsaturated Fatty Acid Composition of Maternal Diet and Erythrocyte Phospholipid Status in Chilean Pregnant Women

    PubMed Central

    Bascuñán, Karla A.; Valenzuela, Rodrigo; Chamorro, Rodrigo; Valencia, Alejandra; Barrera, Cynthia; Puigrredon, Claudia; Sandoval, Jorge; Valenzuela, Alfonso

    2014-01-01

    Chilean diets are characterized by a low supply of n-3 polyunsaturated fatty acids (n-3 PUFA), which are critical nutrients during pregnancy and lactation, because of their role in brain and visual development. DHA is the most relevant n-3 PUFA in this period. We evaluated the dietary n-3 PUFA intake and erythrocyte phospholipids n-3 PUFA in Chilean pregnant women. Eighty healthy pregnant women (20–36 years old) in the 3rd–6th month of pregnancy were included in the study. Dietary assessment was done applying a food frequency questionnaire, and data were analyzed through the Food Processor SQL® software. Fatty acids of erythrocyte phospholipids were assessed by gas-liquid chromatography. Diet composition was high in saturated fat, low in mono- and PUFA, high in n-6 PUFA (linoleic acid) and low in n-3 PUFA (alpha-linolenic acid and DHA), with imbalance in the n-6/n-3 PUFA ratio. Similar results were observed for fatty acids from erythrocyte phospholipids. The sample of Chilean pregnant women showed high consumption of saturated fat and low consumption of n-3 PUFA, which is reflected in the low DHA content of erythrocyte phospholipids. Imbalance between n-6/n-3 PUFA could negatively affect fetal development. New strategies are necessary to improve n-3 PUFA intake throughout pregnancy and breast feeding periods. Furthermore, it is necessary to develop dietary interventions to improve the quality of consumed foods with particular emphasis on n-3 PUFA. PMID:25386693

  1. Local anesthetics structure-dependently interact with anionic phospholipid membranes to modify the fluidity.

    PubMed

    Tsuchiya, Hironori; Ueno, Takahiro; Mizogami, Maki; Takakura, Ko

    2010-01-05

    While bupivacaine is more cardiotoxic than other local anesthetics, the mechanistic background for different toxic effects remains unclear. Several cardiotoxic compounds act on lipid bilayers to change the physicochemical properties of membranes. We comparatively studied the interaction of local anesthetics with lipid membranous systems which might be related to their structure-selective cardiotoxicity. Amide local anesthetics (10-300 microM) were reacted with unilamellar vesicles which were prepared with different phospholipids and cholesterol of varying lipid compositions. They were compared on the potencies to modify membrane fluidity by measuring fluorescence polarization. Local anesthetics interacted with liposomal membranes to increase the fluidity. Increasing anionic phospholipids in membranes enhanced the membrane-fluidizing effects of local anesthetics with the potency being cardiolipin>phosphatidic acid>phosphatidylglycerol>phosphatidylserine. Cardiolipin was most effective on bupivacaine, followed by ropivacaine. Local anesthetics interacted differently with biomimetic membranes consisting of 10mol% cardiolipin, 50mol% other phospholipids and 40mol% cholesterol with the potency being bupivacaine>ropivacaine>lidocaine>prilocaine, which agreed with the rank order of cardiotoxicity. Bupivacaine significantly fluidized 2.5-12.5mol% cardiolipin-containing membranes at cardiotoxicologically relevant concentrations. Bupivacaine is considered to affect lipid bilayers by interacting electrostatically with negatively charged cardiolipin head groups and hydrophobically with phospholipid acyl chains. The structure-dependent interaction with lipid membranes containing cardiolipin, which is preferentially localized in cardiomyocyte mitochondrial membranes, may be a mechanistic clue to explain the structure-selective cardiotoxicity of local anesthetics.

  2. The longitudinal study of turnover and the cost of turnover in EMS

    PubMed Central

    Patterson, P. Daniel; Jones, Cheryl B.; Hubble, Michael W.; Carr, Matthew; Weaver, Matthew D.; Engberg, John; Castle, Nicholas

    2010-01-01

    Purpose Few studies have examined employee turnover and associated costs in emergency medical services (EMS). The purpose of this study was to quantify the mean annual rate of turnover, total median cost of turnover, and median cost per termination in a diverse sample of EMS agencies. Methods A convenience sample of 40 EMS agencies was followed over a 6 month period. Internet, telephone, and on-site data collection methods were used to document terminations, new hires, open positions, and costs associated with turnover. The cost associated with turnover was calculated based on a modified version of the Nursing Turnover Cost Calculation Methodology (NTCCM). The NTCCM identified direct and indirect costs through a series of questions that agency administrators answered monthly during the study period. A previously tested measure of turnover to calculate the mean annual rate of turnover was used. All calculations were weighted by the size of the EMS agency roster. The mean annual rate of turnover, total median cost of turnover, and median cost per termination were determined for 3 categories of agency staff mix: all paid staff, mix of paid and volunteer (mixed), and all-volunteer. Results The overall weighted mean annual rate of turnover was 10.7%. This rate varied slightly across agency staffing mix: (all-paid=10.2%, mixed=12.3%, all-volunteer=12.4%). Among agencies that experienced turnover (n=25), the weighted median cost of turnover was $71,613.75, which varied across agency staffing mix: (all-paid=$86,452.05, mixed=$9,766.65, and all-volunteer=$0). The weighted median cost per termination was $6,871.51 and varied across agency staffing mix: (all-paid=$7,161.38, mixed=$1,409.64, and all-volunteer=$0). Conclusions Annual rates of turnover and costs associated with turnover vary widely across types of EMS agencies. The study’s mean annual rate of turnover was lower than expected based on information appearing in the news media and EMS trade magazines. Findings

  3. Interaction of isopropylthioxanthone with phospholipid liposomes.

    PubMed

    Momo, Federico; Fabris, Sabrina; Stevanato, Roberto

    2007-04-01

    Isopropylthioxanthone (ITX) is a highly lipophilic molecule which can be released in foods and beverages from the packages, where it is present as photoinitiator of inks in printing processes. Recently it was found in babies milk, and its toxicity cannot be excluded. The structure of the molecule suggests a possible strong interaction with the lipid moiety of biological membranes, and this is the first study of its effects on phospholipid organization, using differential scanning calorimetry (DSC) and spin labelling techniques. The data obtained with multilamellar liposomes of saturated phospholipids of different length, with and without cholesterol, point out that the molecule changes the lipid structure; in particular, in the gel state, behaving like a disordering agent it increases the mobility of the bilayer, while, in the fluid state, tends to rigidify the membrane, in a cholesterol like way. This behavior supports the hypothesis that ITX experiences a relocation process when the lipid matrix passes from the gel to the fluid state.

  4. [Energy turnover of water bugs].

    PubMed

    Waitzbauer, Wolfgang

    1976-06-01

    1. This study concerns the energy turnover of the water bug species Naucoris cimicoides (Naucoridae), Notonecta glauca (Notonectidae) and Ranatra linearis (Nepidae). The results refer to the conditions in the reed belt of the lake "Neusiedler See" in eastern Austria. 2. Population density was, using various methods, quantitatively determined for each test species. In summer the values were as follows: Naucoris 8, Notonecta 2 and Ranatra 0.5 individuals per m(2) in the closed reed belt. Abundance in the next spring was a halving of the initial values due to an increase in the death rate of males in winter. Generally, mortality was very high; the highest death rate for all species occurred in the first two larval stages. The total mortality, beginning at emergence and continuing until immediately after oviposition, was determined to be 91% for Naucoris, 97% for Notonecta and 99% for Ranatra. 3. Production of an average male was 211.45 cal (Naucoris), 243.24 cal (Notonecta) and 256.26 cal (Ranatra) for the entire life span. The production values determined for average females until oviposition are 316.87 cal (Naucoris), 300.79 cal (Notonecta) and 559.51 cal (Ranatra). 53.89 cal (Naucoris), 73.35 cal (Notonecta) and 264.66 cal (Ranatra) are needed for egg production. 4. Respiration was determined by volumetric measurement for all developmental stages and the imago at different times of the year. From emergence until death the following spring the O2-consumption of an average individual was determined as 129.27 cal (♂), 156.45 cal (♀) for Naucoris, 690.66 cal (♂), 882.04 cal (♀) for Notonecta and 548.30 cal (♂), 589.16 cal (♀) for Ranatra. 5. Assimilation was calculated from production and respiration (A=P+R) for all larval and mature stages. Assimilation was determined as 340.72 cal (♂), 419.43 cal (♀) for Naucoris, 933.90 cal (♂), 1109.48 cal (♀) for Notonecta and 804.56 cal (♂), 884.01 cal (♀) for Ranatra, (cumulative values). 6. Since the

  5. Colorimetric estimation of phospholipids in aqueous dispersions.

    PubMed

    Hallen, R M

    1980-05-01

    A method for the estimation of phospholipids in aqueous dispersions is described. The method is based on the formation of a lipid-molybdenum blue complex, which is extracted into chloroform from the aqueous phase. Phosphate ions, detergents, proteins, neutral lipids and various other ions do not interfere in the lipid estimation. The method is sensitive down to a lipid concentration of 0.1 mumol/ml, with an accuracy better than +/- 3%.

  6. Cholesterol autoxidation in phospholipid membrane bilayers

    SciTech Connect

    Sevanian, A.; McLeod, L.L.

    1987-09-01

    Lipid peroxidation in unilamellar liposomes of known cholesterol-phospholipid composition was monitored under conditions of autoxidation or as induced by a superoxide radical generating system, gamma-irradiation or cumene hydroperoxide. Formation of cholesterol oxidation products was indexed to the level of lipid peroxidation. The major cholesterol oxidation products identified were 7-keto-cholesterol, isomeric cholesterol 5,6-epoxides, isomeric 7-hydroperoxides and isomeric 3,7-cholestane diols. Other commonly encountered products included 3,5-cholestadiene-7-one and cholestane-3 beta, 5 alpha, 6 beta-triol. Superoxide-dependent peroxidation required iron and produced a gradual increase in 7-keto-cholesterol and cholesterol epoxides. Cholesterol oxidation was greatest in liposomes containing high proportions of unsaturated phospholipid to cholesterol (4:1 molar ratio), intermediate with low phospholipid to cholesterol ratios (2:1) and least in liposomes prepared with dipalmitoylphosphatidylcholine and cholesterol. This relationship held regardless of the oxidizing conditions used. Cumene hydroperoxide-dependent lipid peroxidation and/or more prolonged oxidations with other oxidizing systems yielded a variety of products where cholesterol-5 beta,6 beta-epoxide, 7-ketocholesterol and the 7-hydroperoxides were most consistently elevated. Oxyradical initiation of lipid peroxidation produced a pattern of cholesterol oxidation products distinguishable from the pattern derived by cumene hydroperoxide-dependent peroxidation.

  7. Phospholipid nanodisc engineering for drug delivery systems.

    PubMed

    Murakami, Tatsuya

    2012-06-01

    Biocompatible mesoscale nanoparticles (5-100 nm in diameter) are attractive tools for drug delivery. Among them are several types of liposomes and polymer micelles already in clinical trial or use. Generally, biocompatibility of such particles is achieved by coating them with polyethylene glycol (PEG). Without PEG coating, particles are quickly trapped in the reticuloendothelial system when intravenously administered. However, recent studies have revealed several potential problems with PEG coating, including antigenicity and restriction of cellular uptake. This has motivated the development of alternative drug and gene delivery vehicles, including chemically and genetically engineered high-density lipoprotein (HDL)-like nanodiscs or "bicelles". HDL is a naturally occurring mesoscale nanoparticle that normally ferries cholesterol around in the body. Its initial "nascent" form is thought to be a simple 10 nm disc of phospholipids in a bilayer, and can be easily synthesized in vitro by mixing recombinant apoA-I proteins with various phospholipids. In this review, the use of synthetic HDL-like phospholipid nanodiscs as biocompatible drug carriers is summarized, focussing on manufacturing, size-control, drug loading and cell targeting.

  8. Phylogenomic investigation of phospholipid synthesis in archaea.

    PubMed

    Lombard, Jonathan; López-García, Purificación; Moreira, David

    2012-01-01

    Archaea have idiosyncratic cell membranes usually based on phospholipids containing glycerol-1-phosphate linked by ether bonds to isoprenoid lateral chains. Since these phospholipids strongly differ from those of bacteria and eukaryotes, the origin of the archaeal membranes (and by extension, of all cellular membranes) was enigmatic and called for accurate evolutionary studies. In this paper we review some recent phylogenomic studies that have revealed a modified mevalonate pathway for the synthesis of isoprenoid precursors in archaea and suggested that this domain uses an atypical pathway of synthesis of fatty acids devoid of any acyl carrier protein, which is essential for this activity in bacteria and eukaryotes. In addition, we show new or updated phylogenetic analyses of enzymes likely responsible for the isoprenoid chain synthesis from their precursors and the phospholipid synthesis from glycerol phosphate, isoprenoids, and polar head groups. These results support that most of these enzymes can be traced back to the last archaeal common ancestor and, in many cases, even to the last common ancestor of all living organisms.

  9. Spatial turnover in the global avifauna.

    PubMed

    Gaston, Kevin J; Davies, Richard G; Orme, C David L; Olson, Valerie A; Thomas, Gavin H; Ding, Tzung-Su; Rasmussen, Pamela C; Lennon, Jack J; Bennett, Peter M; Owens, Ian P F; Blackburn, Tim M

    2007-07-07

    Despite its wide implications for many ecological issues, the global pattern of spatial turnover in the occurrence of species has been little studied, unlike the global pattern of species richness. Here, using a database on the breeding distributions of birds, we present the first global maps of variation in spatial turnover for an entire taxonomic class, a pattern that has to date remained largely a matter of conjecture, based on theoretical expectations and extrapolation of inconsistent patterns from different biogeographic realms. We use these maps to test four predictions from niche theory as to the form that this variation should take, namely that turnover should increase with species richness, towards lower latitudes, and with the steepness of environmental gradients and that variation in turnover is determined principally by rare (restricted) species. Contrary to prediction, we show that turnover is high both in areas of extremely low and high species richness, does not increase strongly towards the tropics, and is related both to average environmental conditions and spatial variation in those conditions. These results are closely associated with a further important and novel finding, namely that global patterns of spatial turnover are driven principally by widespread species rather than the restricted ones. This complements recent demonstrations that spatial patterns of species richness are also driven principally by widespread species, and thus provides an important contribution towards a unified model of how terrestrial biodiversity varies both within and between the Earth's major land masses.

  10. The costs of nurse turnover, part 2: application of the Nursing Turnover Cost Calculation Methodology.

    PubMed

    Jones, Cheryl Bland

    2005-01-01

    This is the second article in a 2-part series focusing on nurse turnover and its costs. Part 1 (December 2004) described nurse turnover costs within the context of human capital theory, and using human resource accounting methods, presented the updated Nursing Turnover Cost Calculation Methodology. Part 2 presents an application of this method in an acute care setting and the estimated costs of nurse turnover that were derived. Administrators and researchers can use these methods and cost information to build a business case for nurse retention.

  11. Keratins Stabilize Hemidesmosomes through Regulation of β4-Integrin Turnover.

    PubMed

    Seltmann, Kristin; Cheng, Fang; Wiche, Gerhard; Eriksson, John E; Magin, Thomas M

    2015-06-01

    Epidermal integrity and wound healing depend on remodeling of cell-matrix contacts including hemidesmosomes. Mutations in β4-integrin and plectin lead to severe epidermolysis bullosa (EB). Whether mutations in keratins K5 or K14, which cause EB simplex, also compromise cell-matrix adhesion through altering hemidesmosomal components is not well investigated. In particular, the dependence of β4-integrin endocytosis and turnover on keratins remains incompletely understood. Here, we show that the absence of keratins causes loss of plectin-β4-integrin interaction and elevated β4-integrin phosphorylation at Ser1354 and Ser1362. This triggered a caveolin-dependent endocytosis of β4-integrin but not of other integrins through Rab5 and Rab11 compartments in keratinocytes. Expressing a phospho-deficient β4-integrin mutant reduces β4-integrin endocytosis and rescues plectin localization in keratin-free cells. β4-integrin phosphorylation in the absence of keratins resulted from elevated Erk1/2 activity downstream of increased EGFR and PKCα signaling. Further, increased Erk1/2 phosphorylation and altered plectin localization occur in keratin-deficient mouse epidermis in vivo. Strikingly, expression of the K14-R125P EBS mutant also resulted in plectin mislocalization and elevated β4-integrin turnover, suggesting disease relevance. Our data underscore a major role of keratins in controlling β4-integrin endocytosis involving a plectin-Erk1/2-dependent mechanism relevant for epidermal differentiation and pathogenesis.

  12. Antidiabetic phospholipid-nuclear receptor complex reveals the mechanism for phospholipid-driven gene regulation

    SciTech Connect

    Musille, Paul M; Pathak, Manish C; Lauer, Janelle L; Hudson, William H; Griffin, Patrick R; Ortlund, Eric A

    2013-01-31

    The human nuclear receptor liver receptor homolog-1 (LRH-1) has an important role in controlling lipid and cholesterol homeostasis and is a potential target for the treatment of diabetes and hepatic diseases. LRH-1 is known to bind phospholipids, but the role of phospholipids in controlling LRH-1 activation remains highly debated. Here we describe the structure of both apo LRH-1 and LRH-1 in complex with the antidiabetic phospholipid dilauroylphosphatidylcholine (DLPC). Together with hydrogen-deuterium exchange MS and functional data, our studies show that DLPC binding is a dynamic process that alters co-regulator selectivity. We show that the lipid-free receptor undergoes previously unrecognized structural fluctuations, allowing it to interact with widely expressed co-repressors. These observations enhance our understanding of LRH-1 regulation and highlight its importance as a new therapeutic target for controlling diabetes.

  13. Modulation of phospholipid metabolism in murine keratinocytes by tumor promoter, 12-O-tetradecanoylphorbol-13-acetate

    SciTech Connect

    Galey, C.I.; Ziboh, V.A.; Marcelo, C.L.; Voorhees, J.J.

    1985-10-01

    The possibility that phospholipid deacylation may be a critical event in the 12-O-tetradecanoylphorbol-13-acetate (TPA)-associated effects on mouse skin prompted us to examine in vitro the effects of TPA on arachidonic acid metabolism in neonatal mouse keratinocytes. Three-day old neonatal keratinocytes were prelabeled with ( UC)arachidonic acid (( UC)AA) and ( UC) stearic acid (( UC)ST) and used to characterize the lipases that were activated when these cells were treated with TPA in culture. Data from these studies demonstrate that phosphatidylcholine (PC) and phosphatidylinositol (PI) are the major phospholipids that undergo early hydrolysis to release arachidonic acid when challenged by TPA. Of particular interest was the novel observation of the hydrolysis of UC-labeled PI in these keratinocytes, the accumulation of ( UC)1,2-diacylglyceride and the lack of the ( UC)diacylglyceride phosphorylation to form ( UC)phosphatidic acid. This lack of ( UC) phosphatidic accumulation implied that although TPA enhanced the hydrolysis of ( UC)PI resulting in increased ( UC)diacylglyceride it did not enhance the resynthesis of the ( UC)PI via the phosphorylation of the ( UC)diacylglyceride. Therefore, TPA probably is not involved in the turnover of PI in these cells but is involved in the activation of PC hydrolyzing phospholipase A2 and PI hydrolyzing phospholipase C in these keratinocytes releasing arachidonic acid which then undergoes oxygenation reactions to provide biologically active eicosanoids.

  14. The herpes simplex virus 1 U{sub S}3 regulates phospholipid synthesis

    SciTech Connect

    Wild, Peter; Oliveira, Anna Paula de; Sonda, Sabrina; Schraner, Elisabeth M.; Ackermann, Mathias; Tobler, Kurt

    2012-10-25

    Herpes simplex virus type 1 capsids bud at nuclear and Golgi membranes for envelopment by phospholipid bilayers. In the absence of U{sub S}3, nuclear membranes form multiple folds harboring virions that suggests disturbance in membrane turnover. Therefore, we investigated phospholipid metabolism in cells infected with the U{sub S}3 deletion mutant R7041({Delta}U{sub S}3), and quantified membranes involved in viral envelopment. We report that (i) [{sup 3}H]-choline incorporation into nuclear membranes and cytoplasmic membranes was enhanced peaking at 12 or 20 h post inoculation with wild type HSV-1 and R7041({Delta}U{sub S}3), respectively, (ii) the surface area of nuclear membranes increased until 24 h of R7041({Delta}U{sub S}3) infection forming folds that equaled {approx}45% of the nuclear surface, (iii) the surface area of viral envelopes between nuclear membranes equaled {approx}2400 R7041({Delta}U{sub S}3) virions per cell, and (iv) during R7041({Delta}U{sub S}3) infection, the Golgi complex expanded dramatically. The data indicate that U{sub S}3 plays a significant role in regulation of membrane biosynthesis.

  15. The costs of nurse turnover: part 1: an economic perspective.

    PubMed

    Jones, Cheryl Bland

    2004-12-01

    Nurse turnover is costly for healthcare organizations. Administrators and nurse executives need a reliable estimate of nurse turnover costs and the origins of those costs if they are to develop effective measures of reducing nurse turnover and its costs. However, determining how to best capture and quantify nurse turnover costs can be challenging. Part 1 of this series conceptualizes nurse turnover via human capital theory and presents an update of a previously developed method for determining the costs of nurse turnover, the Nursing Turnover Cost Calculation Method. Part 2 (January 2005) presents a recent application of the methodology in an acute care hospital.

  16. Effect of acute thioacetamide administration on rat brain phospholipid metabolism

    SciTech Connect

    Osada, J.; Aylagas, H.; Miro-Obradors, M.J.; Arce, C.; Palacios-Alaiz, E.; Cascales, M. )

    1990-09-01

    Brain phospholipid composition and the ({sup 32}P)orthophosphate incorporation into brain phospholipids of control and rats treated for 3 days with thioacetamide were studied. Brain phospholipid content, phosphatidylcholine, phosphatidylethanolamine, lysolecithin and phosphatidic acid did not show any significant change by the effect of thioacetamide. In contrast, thioacetamide induced a significant decrease in the levels of phosphatidylserine, sphingomyelin, phosphatidylinositol and diphosphatidylglycerol. After 75 minutes of intraperitoneal label injection, specific radioactivity of all the above phospholipids with the exception of phosphatidylethanolamine and phosphatidylcholine significantly increased. After 13 hours of isotope administration the specific radioactivity of almost all studied phospholipid classes was elevated, except for phosphatidic acid, the specific radioactivity of which did not change and for diphosphatidylglycerol which showed a decrease in specific radioactivity. These results suggest that under thioacetamide treatment brain phospholipids undergo metabolic transformations that may contribute to the hepatic encephalopathy induced by thioacetamide.

  17. Regulation of Phospholipid Synthesis in the Yeast Saccharomyces cerevisiae

    PubMed Central

    Carman, George M.; Han, Gil-Soo

    2013-01-01

    The yeast Saccharomyces cerevisiae, with its full complement of organelles, synthesizes membrane phospholipids by pathways that are generally common to those found in higher eukaryotes. Phospholipid synthesis in yeast is regulated in response to a variety of growth conditions (e.g., inositol supplementation, zinc depletion, and growth stage) by a coordination of genetic (e.g., transcriptional activation and repression) and biochemical (e.g., activity modulation and localization) mechanisms. Phosphatidate (PA), whose cellular levels are controlled by the activities of key phospholipid synthesis enzymes, plays a central role in the transcriptional regulation of phospholipid synthesis genes. In addition to the regulation of gene expression, phosphorylation of key phospholipid synthesis catalytic and regulatory proteins controls the metabolism of phospholipid precursors and products. PMID:21275641

  18. Phospholipid methylation in starfish spermatozoa is linked to sperm chemoattraction.

    PubMed Central

    Tezon, J; Miller, R L; Bardin, C W

    1986-01-01

    The mechanism whereby ovarian peptides cause sperm attraction was studied in the starfish. Phospholipid methylation and protein-O-carboxyl methylation, reactions linked to chemotactic responses in a variety of systems, were studied in starfish sperm. When sperm were preincubated with [methyl-3H]methionine and then exposed to the attractant, a rapid drop in radioactivity occurred in the phospholipid fraction. Methylated phospholipids decreased by 90% in the first 2 sec; however, no change was observed in endogenous methylation of protein carboxyl groups. The effect on phospholipid methylation was dose dependent, with a 40% reduction in radioactive phospholipids in sperm occurring with the minimal amount of attractant necessary to obtain a positive response in a sperm attraction bioassay. Attractants from species of starfish with little or no cross-reactivity in the bioassay had a limited effect on phospholipid methylation. The transmethylase inhibitor, homocysteine, caused a marked decrease in the accumulation of methylated phospholipids under basal conditions, which was correlated with as much as a 50-fold increase in sperm sensitivity to the attractant. The addition of chemoattractant resulted in a reduction in the amount of all individual methylated phospholipids, but the amount of phosphatidylmono[3H]methylethanolamine relative to the other methylated phospholipid decreased by a factor of 4 after stimulation. Homocysteine had the same effect. The reduction in methylated phospholipids by attractants suggests that phospholipid methylation is linked to the mechanism of action of these peptides. Methylation of phospholipids may play a role in the rapid desensitization of sperm cells to the attractant, which would be required for the orientation of the spermatozoa in the gradient of ovarian peptide. PMID:3459145

  19. Predictors of Staff Turnover and Turnover Intentions within Addiction Treatment Settings: Change Over Time Matters.

    PubMed

    Garner, Bryan R; Hunter, Brooke D

    2014-01-01

    This study examined the extent to which changes over time in clinicians' responses to measures of work attitude (eg, job satisfaction) and psychological climate (eg, supervisor support) could predict actual turnover and turnover intentions above and beyond absolute levels of these respective measures. Longitudinal data for this study were collected from a sample of clinicians (N = 96) being trained to implement an evidence-based treatment for adolescent substance use disorders. Supporting findings from a recent staff turnover study, we found job satisfaction change was able to predict actual turnover above and beyond average levels of job satisfaction. Representing new contributions to the staff turnover literature, we also found that change over time in several other key measures (eg, job satisfaction, role manageability, role clarity) explained a significant amount of variance in turnover intentions above and beyond the absolute level of each respective measure. A key implication of the current study is that organizations seeking to improve their ability to assess risk for staff turnover may want to consider assessing staff at multiple points in time in order to identify systematic changes in key employee attitudes like turnover intentions and job satisfaction.

  20. Use of thiol-disulfide equilibria to measure the energetics of assembly of transmembrane helices in phospholipid bilayers

    NASA Astrophysics Data System (ADS)

    Cristian, Lidia; Lear, James D.; Degrado, William F.

    2003-12-01

    Despite significant efforts and promising progress, the understanding of membrane protein folding lags behind that of soluble proteins. Insights into the energetics of membrane protein folding have been gained from biophysical studies in membrane-mimicking environments (primarily detergent micelles). However, the development of techniques for studying the thermodynamics of folding in phospholipid bilayers remains a considerable challenge. We had previously used thiol-disulfide exchange to study the thermodynamics of association of transmembrane -helices in detergent micelles; here, we extend this methodology to phospholipid bilayers. The system for this study is the homotetrameric M2 proton channel protein from the influenza A virus. Transmembrane peptides from this protein specifically self-assemble into tetramers that retain the ability to bind to the drug amantadine. Thiol-disulfide exchange under equilibrium conditions was used to quantitatively measure the thermodynamics of this folding interaction in phospholipid bilayers. The effects of phospholipid acyl chain length and cholesterol on the peptide association were investigated. The association of the helices strongly depends on the thickness of the bilayer and cholesterol levels present in the phospholipid bilayer. The most favorable folding occurred when there was a good match between the width of the apolar region of the bilayer and the hydrophobic length of the transmembrane helix. Physiologically relevant variations in the cholesterol level are sufficient to strongly influence the association. Evaluation of the energetics of peptide association in the presence and absence of cholesterol showed a significantly tighter association upon inclusion of cholesterol in the lipid bilayers.

  1. Tracking synthesis and turnover of triacylglycerol in leaves

    SciTech Connect

    Tjellstrom, Henrik; Strawsine, Merissa; Ohlrogge, John B.

    2015-01-21

    Triacylglycerol (TAG), typically represents <1% of leaf glycerolipids but can accumulate under stress and other conditions or if leaves are supplied with fatty acids, or in plants transformed with regulators or enzymes of lipid metabolism. To better understand the metabolism of TAG in leaves, pulse-chase radiolabelling experiments were designed to probe its synthesis and turnover. When Arabidopsis leaves were incubated with [14C]lauric acid (12:0), a major initial product was [14C]TAG. Thus, despite low steady-state levels, leaves possess substantial TAG biosynthetic capacity. The contributions of diacylglycerol acyltransferase1 and phospholipid:diacylglycerol acyltransferase1 to leaf TAG synthesis were examined by labelling of dgat1 and pdat1 mutants. The dgat1 mutant displayed a major (76%) reduction in [14C]TAG accumulation whereas pdat1 TAG labelling was only slightly reduced. Thus, DGAT1 has a principal role in TAG biosynthesis in young leaves. During a 4h chase period, radioactivity in TAG declined 70%, whereas the turnover of [14C]acyl chains of phosphatidylcholine (PC) and other polar lipids was much lower. Sixty percent of [14C]12:0 was directly incorporated into glycerolipids without modification, whereas 40% was elongated and desaturated to 16:0 and 18:1 by plastids. The unmodified [14C]12:0 and the plastid products of [14C]12:0 metabolism entered different pathways. Although plastid-modified 14C-labelled products accumulated in monogalactosyldiacylglycerol, PC, phosphatidylethanolamine, and diacylglcerol (DAG), there was almost no accumulation of [14C]16:0 and [14C]18:1 in TAG. Lastly, because DAG and acyl-CoA are direct precursors of TAG, the differential labelling of polar glycerolipids and TAG by [14C]12:0 and its plastid-modified products provides evidence for multiple subcellular pools of both acyl-CoA and DAG.

  2. Platelet activating factor activity in the phospholipids of bovine spermatozoa

    SciTech Connect

    Parks, J.E.; Hough, S.; Elrod, C. )

    1990-11-01

    Platelet activating factor (PAF) has been detected in sperm from several mammalian species and can affect sperm motility and fertilization. Because bovine sperm contain a high percentage of ether-linked phospholipid precursors required for PAF synthesis, a study was undertaken to determine the PAF activity of bovine sperm phospholipids. Total lipids of washed, ejaculated bull sperm were extracted, and phospholipids were fractionated by thin-layer chromatography. Individual phospholipid fractions were assayed for PAF activity on the basis of (3H)serotonin release from equine platelets. PAF activity was detected in the PAF fraction (1.84 pmol/mumol total phospholipid) and in serine/inositol (PS/PI), choline (CP), and ethanolamine phosphoglyceride (EP) and cardiolipin (CA) fractions. Activity was highest in the CP fraction (8.05 pmol/mumol total phospholipid). Incomplete resolution of PAF and neutral lipids may have contributed to the activity in the PS/PI and CA fractions, respectively. Phospholipids from nonsperm sources did not stimulate serotonin release. Platelet activation by purified PAF and by sperm phospholipid fractions was inhibited by the receptor antagonist SRI 63-675. These results indicate that bovine sperm contain PAF and that other sperm phospholipids, especially CP and EP, which are high in glycerylether components, are capable of receptor-mediated platelet activation.

  3. Partitioning of propranolol in the phospholipid bilayer coat of anionic magnetoliposomes

    NASA Astrophysics Data System (ADS)

    Cocquyt, J.; Soenen, S. J. H.; Saveyn, P.; Van der Meeren, P.; DeCuyper, M.

    2008-05-01

    This work deals with the partitioning of the cationic amphiphilic drug, propranolol, in the coating of so-called magnetoliposomes (MLs), which consist of nanometre-sized, magnetizable iron oxide cores covered with a phospholipid bilayer. MLs of two types were used: either the ML coat consisted entirely of anionic dimyristoylphosphatidylglycerol, or it was mixed with zwitterionic dimyristoylphosphatidylcholine in a 5/95 molar ratio. To separate sorbed from non-sorbed propranolol, high-gradient magnetophoresis was used. The sorption profiles clearly show that electrostatic interactions play a key role in the sorption process as drug incorporation in the ML coat was favoured by increasing the anionic character of the ML envelope and by reducing the salt concentration of the medium. Also, upon drug binding some phospholipid molecules were expelled from the ML coat. The observations may be of relevance in the biomedical field, i.e. in the development of ML-based, intracellular theranostics.

  4. Phospholipid biosynthetic enzymes in human brain.

    PubMed

    Ross, B M; Moszczynska, A; Blusztajn, J K; Sherwin, A; Lozano, A; Kish, S J

    1997-04-01

    Growing evidence suggests an involvement of brain membrane phospholipid metabolism in a variety of neurodegenerative and psychiatric conditions. This has prompted the use of drugs (e.g., CDPcholine) aimed at elevating the rate of neural membrane synthesis. However, no information is available regarding the human brain enzymes of phospholipid synthesis which these drugs affect. Thus, the objective of our study was to characterize the enzymes involved, in particular, whether differences existed in the relative affinity of substrates for the enzymes of phosphatidylethanolamine (PE) compared to those of phosphatidylcholine (PC) synthesis. The concentration of choline in rapidly frozen human brain biopsies ranged from 32-186 nmol/g tissue, a concentration similar to that determined previously for ethanolamine. Since human brain ethanolamine kinase possessed a much lower affinity for ethanolamine (Km = 460 microM) than choline kinase did for choline (Km = 17 microM), the activity of ethanolamine kinase in vivo may be more dependent on substrate availability than that of choline kinase. In addition, whereas ethanolamine kinase was inhibited by choline, and to a lesser extent by phosphocholine, choline kinase activity was unaffected by the presence of ethanolamine, or phosphoethanolamine, and only weakly inhibited by phosphocholine. Phosphoethanolamine cytidylyltransferase (PECT) and phosphocholine cytidylyltransferase (PCCT) also displayed dissimilar characteristics, with PECT and PCCT being located predominantly in the cytosolic and particulate fractions, respectively. Both PECT and PCCT exhibited a low affinity for CTP (Km approximately 1.2 mM), suggesting that the activities of these enzymes, and by implication, the rate of phospholipid synthesis, are highly dependent upon the cellular concentration of CTP. In conclusion our data indicate different regulatory properties of PE and PC synthesis in human brain, and suggest that the rate of PE synthesis may be more

  5. Phospholipid and sphingolipid metabolism in Leishmania

    PubMed Central

    Zhang, Kai; Beverley, Stephen M.

    2009-01-01

    In many eukaryotes, phospholipids (PLs) and sphingolipids (SLs) are abundant membrane components and reservoirs for important signaling molecules. In Leishmania, the composition, metabolism, and function of PLs and SLs differ significantly from those in mammalian cells. Although only a handful of enzymes have been experimentally characterized, available data suggest many steps of PL/SL metabolism are critical for Leishmania viability and/or virulence, and could be a source for new drug targets. Further studies of genes involved in the synthesis (de novo and salvage) and degradation of PLs and SLs will reveal their diverse effects on Leishmania pathogenesis. PMID:20026359

  6. Dietary Phospholipids and Intestinal Cholesterol Absorption

    PubMed Central

    Cohn, Jeffrey S.; Kamili, Alvin; Wat, Elaine; Chung, Rosanna W. S.; Tandy, Sally

    2010-01-01

    Experiments carried out with cultured cells and in experimental animals have consistently shown that phospholipids (PLs) can inhibit intestinal cholesterol absorption. Limited evidence from clinical studies suggests that dietary PL supplementation has a similar effect in man. A number of biological mechanisms have been proposed in order to explain how PL in the gut lumen is able to affect cholesterol uptake by the gut mucosa. Further research is however required to establish whether the ability of PLs to inhibit cholesterol absorption is of therapeutic benefit. PMID:22254012

  7. Membrane phospholipid asymmetry in human thalassemia.

    PubMed

    Kuypers, F A; Yuan, J; Lewis, R A; Snyder, L M; Kiefer, C R; Bunyaratvej, A; Fucharoen, S; Ma, L; Styles, L; de Jong, K; Schrier, S L

    1998-04-15

    Phospholipid asymmetry in the red blood cell (RBC) lipid bilayer is well maintained during the life of the cell, with phosphatidylserine (PS) virtually exclusively located in the inner monolayer. Loss of phospholipid asymmetry, and consequently exposure of PS, is thought to play an important role in red cell pathology. The anemia in the human thalassemias is caused by a combination of ineffective erythropoiesis (intramedullary hemolysis) and a decreased survival of adult RBCs in the peripheral blood. This premature destruction of the thalassemic RBC could in part be due to a loss of phospholipid asymmetry, because cells that expose PS are recognized and removed by macrophages. In addition, PS exposure can play a role in the hypercoagulable state reported to exist in severe beta-thalassemia intermedia. We describe PS exposure in RBCs of 56 comparably anemic patients with different genetic backgrounds of the alpha- or beta-thalassemia phenotype. The use of fluorescently labeled annexin V allowed us to determine loss of phospholipid asymmetry in individual cells. Our data indicate that in a number of thalassemic patients, subpopulations of red cells circulate that expose PS on their outer surface. The number of such cells can vary dramatically from patient to patient, from as low as that found in normal controls (less than 0.2%) up to 20%. Analysis by fluorescent microscopy of beta-thalassemic RBCs indicates that PS on the outer leaflet is distributed either over the entire membrane or localized in areas possibly related to regions rich in membrane-bound alpha-globin chains. We hypothesize that these membrane sites in which iron carrying globin chains accumulate and cause oxidative damage, could be important in the loss of membrane lipid organization. In conclusion, we report the presence of PS-exposing subpopulations of thalassemic RBC that are most likely physiologically important, because they could provide a surface for enhancing hemostasis as recently reported

  8. Turnover of microbial groups and cell components in soil: 13C analysis of cellular biomarkers

    NASA Astrophysics Data System (ADS)

    Gunina, Anna; Dippold, Michaela; Glaser, Bruno; Kuzyakov, Yakov

    2017-01-01

    Microorganisms regulate the carbon (C) cycle in soil, controlling the utilization and recycling of organic substances. To reveal the contribution of particular microbial groups to C utilization and turnover within the microbial cells, the fate of 13C-labelled glucose was studied under field conditions. Glucose-derived 13C was traced in cytosol, amino sugars and phospholipid fatty acid (PLFA) pools at intervals of 3, 10 and 50 days after glucose addition into the soil. 13C enrichment in PLFAs ( ˜ 1.5 % of PLFA C at day 3) was an order of magnitude greater than in cytosol, showing the importance of cell membranes for initial C utilization. The 13C enrichment in amino sugars of living microorganisms at day 3 accounted for 0.57 % of total C pool; as a result, we infer that the replacement of C in cell wall components is 3 times slower than that of cell membranes. The C turnover time in the cytosol (150 days) was 3 times longer than in PLFAs (47 days). Consequently, even though the cytosol pool has the fastest processing rates compared to other cellular compartments, intensive recycling of components here leads to a long C turnover time. Both PLFA and amino-sugar profiles indicated that bacteria dominated in glucose utilization. 13C enrichment decreased with time for bacterial cell membrane components, but it remained constant or even increased for filamentous microorganisms. 13C enrichment of muramic acid was the 3.5 times greater than for galactosamine, showing a more rapid turnover of bacterial cell wall components compared to fungal. Thus, bacteria utilize a greater proportion of low-molecular-weight organic substances, whereas filamentous microorganisms are responsible for further C transformations. Thus, tracing 13C in cellular compounds with contrasting turnover rates elucidated the role of microbial groups and their cellular compartments in C utilization and recycling in soil. The results also reflect that microbial C turnover is not restricted to the death or

  9. Retaining your high performers: moderators of the performance-job satisfaction-voluntary turnover relationship.

    PubMed

    Nyberg, Anthony

    2010-05-01

    Two divergent ideas explain the relationship between performance and voluntary turnover. One suggests that higher performing employees, who are rewarded for their superior work product, will desire to remain with an organization that values their performance and will, consequently, be less likely than lower performing employees to voluntarily leave. An alternative idea suggests that higher performing employees, who are more desirable to external companies as a result of their superior work product, will have more external job opportunities and will, consequently, be more likely than their lower performing colleagues to voluntarily leave. The current study evaluated the behaviors and attitudes of 12,545 insurance employees over a 3-year period to examine how these 2 divergent expectations influence the performance-voluntary turnover relationship. Results show that both pay growth and the relevant unemployment rate interact with performance to influence the performance-voluntary turnover relationship and that they work independently of employee job satisfaction influences.

  10. Quantifying phylogenetic beta diversity: distinguishing between 'true' turnover of lineages and phylogenetic diversity gradients.

    PubMed

    Leprieur, Fabien; Albouy, Camille; De Bortoli, Julien; Cowman, Peter F; Bellwood, David R; Mouillot, David

    2012-01-01

    The evolutionary dissimilarity between communities (phylogenetic beta diversity PBD) has been increasingly explored by ecologists and biogeographers to assess the relative roles of ecological and evolutionary processes in structuring natural communities. Among PBD measures, the PhyloSor and UniFrac indices have been widely used to assess the level of turnover of lineages over geographical and environmental gradients. However, these indices can be considered as 'broad-sense' measures of phylogenetic turnover as they incorporate different aspects of differences in evolutionary history between communities that may be attributable to phylogenetic diversity gradients. In the present study, we extend an additive partitioning framework proposed for compositional beta diversity to PBD. Specifically, we decomposed the PhyloSor and UniFrac indices into two separate components accounting for 'true' phylogenetic turnover and phylogenetic diversity gradients, respectively. We illustrated the relevance of this framework using simple theoretical and archetypal examples, as well as an empirical study based on coral reef fish communities. Overall, our results suggest that using PhyloSor and UniFrac may greatly over-estimate the level of spatial turnover of lineages if the two compared communities show contrasting levels of phylogenetic diversity. We therefore recommend that future studies use the 'true' phylogenetic turnover component of these indices when the studied communities encompass a large phylogenetic diversity gradient.

  11. Phospholipid imprinted polymers as selective endotoxin scavengers

    NASA Astrophysics Data System (ADS)

    Sulc, Robert; Szekely, Gyorgy; Shinde, Sudhirkumar; Wierzbicka, Celina; Vilela, Filipe; Bauer, David; Sellergren, Börje

    2017-03-01

    Herein we explore phospholipid imprinting as a means to design receptors for complex glycolipids comprising the toxic lipopolysaccharide endotoxin. A series of polymerizable bis-imidazolium and urea hosts were evaluated as cationic and neutral hosts for phosphates and phosphonates, the latter used as mimics of the phospholipid head groups. The bis-imidazolium hosts interacted with the guests in a cooperative manner leading to the presence of tight and well defined 1:2 ternary complexes. Optimized monomer combinations were subsequently used for imprinting of phosphatidic acid as an endotoxin dummy template. Presence of the aforementioned ternary complexes during polymerization resulted in imprinting of lipid dimers – the latter believed to crudely mimic the endotoxin Lipid A motif. The polymers were characterized with respect to template rebinding, binding affinity, capacity and common structural properties, leading to the identification of polymers which were thereafter subjected to an industrially validated endotoxin removal test. Two of the polymers were capable of removing endotoxin down to levels well below the accepted threshold (0.005 EU/mg API) in pharmaceutical production.

  12. Phospholipid imprinted polymers as selective endotoxin scavengers

    PubMed Central

    Sulc, Robert; Szekely, Gyorgy; Shinde, Sudhirkumar; Wierzbicka, Celina; Vilela, Filipe; Bauer, David; Sellergren, Börje

    2017-01-01

    Herein we explore phospholipid imprinting as a means to design receptors for complex glycolipids comprising the toxic lipopolysaccharide endotoxin. A series of polymerizable bis-imidazolium and urea hosts were evaluated as cationic and neutral hosts for phosphates and phosphonates, the latter used as mimics of the phospholipid head groups. The bis-imidazolium hosts interacted with the guests in a cooperative manner leading to the presence of tight and well defined 1:2 ternary complexes. Optimized monomer combinations were subsequently used for imprinting of phosphatidic acid as an endotoxin dummy template. Presence of the aforementioned ternary complexes during polymerization resulted in imprinting of lipid dimers – the latter believed to crudely mimic the endotoxin Lipid A motif. The polymers were characterized with respect to template rebinding, binding affinity, capacity and common structural properties, leading to the identification of polymers which were thereafter subjected to an industrially validated endotoxin removal test. Two of the polymers were capable of removing endotoxin down to levels well below the accepted threshold (0.005 EU/mg API) in pharmaceutical production. PMID:28303896

  13. Dihydrolipoyl dioleoylglycerol antioxidant capacity in phospholipid vesicles.

    PubMed

    Laszlo, Joseph A; Evans, Kervin O; Compton, David L; Appell, Michael

    2012-02-01

    Antioxidants have critical roles in maintaining cellular homeostasis and disease-state prevention. The multi-functional agent α-lipoic acid offers numerous beneficial effects to oxidatively stressed tissues. α-Lipoic acid was enzymatically incorporated into a triglyceride in conjunction with oleic acid, creating lipoyl dioleoylglycerol, and chemically reduced to form dihydrolipoyl dioleoylglycerol. The triglyceride forms of lipoic acid stabilized dioleoylphosphatidylcholine unilamellar liposomal vesicles, as judged by calcein-cobalt leakage. Stabilization resulted from increased packing density of phospholipid acyl chains. Scavenging activity against the 2,2'-azobis(2-amidinopropane) dihydrochloride (AAPH) radical was monitored by oxidation of 4,4-difluoro-5-(4-phenyl-1,3-butadienyl)-4-bora-3a,4a-diaza-s-indacene-3-undecanoic acid (C(11)-Bodipy). Dihydrolipoyl dioleoylglycerol in vesicles demonstrated strong antioxidant capacity in comparison to the conventional Trolox standard. Fluorescence quenching measurements indicated the lipoyl moiety of dihydrolipoyl dioleoylglycerol is positioned near the vesicle aqueous/lipid boundary. Treatment of intact vesicles with a nonpenetrating sulfhydryl reagent indicated that 80% of the dihydrolipoyl dioleoylglycerol was available for reaction. Molecular modeling of lipoyl dioleoylglycerol and dihydrolipoyl dioleoylglycerol in a phospholipid layer confirmed the existence of an extended configuration for the molecules that accounts for the interfacial location of the lipoyl moiety, which may allow the antioxidant to readily react with radical species approaching membranes from the aqueous phase.

  14. Quantification of isotopic turnover in agricultural systems

    NASA Astrophysics Data System (ADS)

    Braun, A.; Auerswald, K.; Schnyder, H.

    2012-04-01

    The isotopic turnover, which is a proxy for the metabolic rate, is gaining scientific importance. It is quantified for an increasing range of organisms, from microorganisms over plants to animals including agricultural livestock. Additionally, the isotopic turnover is analyzed on different scales, from organs to organisms to ecosystems and even to the biosphere. In particular, the quantification of the isotopic turnover of specific tissues within the same organism, e.g. organs like liver and muscle and products like milk and faeces, has brought new insights to improve understanding of nutrient cycles and fluxes, respectively. Thus, the knowledge of isotopic turnover is important in many areas, including physiology, e.g. milk synthesis, ecology, e.g. soil retention time of water, and medical science, e.g. cancer diagnosis. So far, the isotopic turnover is quantified by applying time, cost and expertise intensive tracer experiments. Usually, this comprises two isotopic equilibration periods. A first equilibration period with a constant isotopic input signal is followed by a second equilibration period with a distinct constant isotopic input signal. This yields a smooth signal change from the first to the second signal in the object under consideration. This approach reveals at least three major problems. (i) The input signals must be controlled isotopically, which is almost impossible in many realistic cases like free ranging animals. (ii) Both equilibration periods may be very long, especially when the turnover rate of the object under consideration is very slow, which aggravates the first problem. (iii) The detection of small or slow pools is improved by large isotopic signal changes, but large isotopic changes also involve a considerable change in the input material; e.g. animal studies are usually carried out as diet-switch experiments, where the diet is switched between C3 and C4 plants, since C3 and C4 plants differ strongly in their isotopic signal. The

  15. Phospholipid synthesis rates in the eastern subtropical South Pacific Ocean

    NASA Astrophysics Data System (ADS)

    van Mooy, B. A. S.; Moutin, T.; Duhamel, S.; Rimmelin, P.; van Wambeke, F.

    2008-02-01

    Membrane lipid molecules are a major component of planktonic organisms and this is particularly true of the microbial picoplankton that dominate the open ocean; with their high surface-area to volume ratios, the synthesis of membrane lipids places a major demand on their overall cell metabolism. Specifically, the synthesis of cell membrane phospholipids creates a demand for the nutrient phosphorus, and we sought to refine our understanding of the role of phospholipids in the upper ocean phosphorus cycle. We measured the rates of phospholipid synthesis in a transect of the eastern subtropical South Pacific from Easter Island to Concepcion, Chile as part of the BIOSOPE program. Our approach combined standard phosphorus radiotracer incubations and lipid extraction methods. We found that phospholipid synthesis rates varied from less than 1 to greater than 200 pmol P L-1 h-1, and that phospholipid synthesis contributed between less than 5% to greater than 22% of the total PO43- incorporation rate. Changes in the percentage that phospholipid synthesis contributed to total PO43- uptake were strongly correlated with the ratio of primary production to bacterial production, which supported our hypothesis that heterotrophic bacteria were the primary agents of phospholipid synthesis. The spatial variation in phospholipid synthesis rates underscored the importance of heterotrophic bacteria in the phosphorus cycle of the eastern subtropical South Pacific, particularly the hyperoligotrophic South Pacific subtropical gyre.

  16. Phospholipid synthesis rates in the eastern subtropical South Pacific Ocean

    NASA Astrophysics Data System (ADS)

    van Mooy, B. A. S.; Moutin, T.; Duhamel, S.; Rimmelin, P.; van Wambeke, F.

    2007-08-01

    Membrane lipid molecules are a major component of planktonic organisms and this is particularly true of the microbial picoplankton that dominate the open ocean; with their high surface-area to volume ratios, the synthesis of membrane lipids places a major demand on their overall cell metabolism. The synthesis of one class of membrane lipids, the phospholipids, also creates a demand for the nutrient phosphorus, and we sought to refine our understanding of the role of phospholipids in the upper ocean phosphorus cycle. We measured the rates of phospholipid synthesis in a transect of the eastern subtropical South Pacific from Easter Island to Concepcion, Chile as part of the BIOSOPE program. Our approach combined standard phosphorus radiotracer incubations and lipid extraction methods. We found that phospholipid synthesis rates varied from less than 1 to greater than 200 pmol P L-1 h-1, and that phospholipid synthesis contributed between less than 5% to greater than 22% of the total PO43- incorporation rate. Changes in the percentage that phospholipid synthesis contributed to total PO43- incorporation were strongly correlated with the ratio of primary production to bacterial production, which supported our hypothesis that heterotrophic bacteria were the primary agents of phospholipid synthesis. The spatial variation in phospholipid synthesis rates underscored the importance of heterotrophic bacteria in the phosphorus cycle of the eastern subtropical South Pacific, particularly the hyperoligotrophic South Pacific subtropical gyre.

  17. Aldose Reductase-catalyzed Reduction of Aldehyde Phospholipids

    PubMed Central

    Srivastava, Sanjay; Spite, Matthew; Trent, John O.; West, Matthew B.; Ahmed, Yonis; Bhatnagar, Aruni

    2012-01-01

    SUMMARY Oxidation of unsaturated phospholipids results in the generation of aldehyde side chains that remain esterified to the phospholipid backbone. Such “core” aldehydes elicit immune responses and promote inflammation. However, the biochemical mechanisms by which phospholipid aldehydes are metabolized or detoxified are not well understood. In the studies reported here, we examined whether aldose reductase (AR), which reduces hydrophobic aldehydes, metabolizes phospholipid aldehydes. Incubation with AR led to the reduction of 5-oxovaleroyl, 7-oxo-5-heptenoyl, 5-hydroxy-6-oxo-caproyl, and 5-hydroxy-8-oxo-6-octenoyl phospholipids generated upon oxidation of 1-palmitoyl-2-arachidonoyl-sn-glycero-3-phosphocholine (PAPC). The enzyme also catalyzed the reduction of phospholipid aldehydes generated from the oxidation of 1-alkyl, and 1-alkenyl analogs of PAPC, and 1-palmitoyl-2-arachidonoyl phosphatidic acid or phosphoglycerol. Aldose reductase catalyzed the reduction of chemically synthesized 1-palmitoyl-2-(5-oxovaleroyl)-sn-glycero-3-phosphatidylcholine (POVPC) with a Km of 10 μM. Addition of POVPC to the culture medium led to incorporation and reduction of the aldehyde in COS-7 and THP-1 cells. Reduction of POVPC in these cells was prevented by the AR inhibitors sorbinil and tolrestat and was increased in COS-7 cells overexpressing AR. Together, these observations suggest that AR may be a significant participant in the metabolism of several structurally diverse phospholipid aldehydes. This metabolism may be a critical regulator of the pro-inflammatory and immunogenic effects of oxidized phospholipids. PMID:15465833

  18. Role of phospholipids of subunit III in the regulation of structural rearrangements in cytochrome c oxidase of Rhodobacter sphaeroides.

    PubMed

    Alnajjar, Khadijeh S; Cvetkov, Teresa; Prochaska, Lawrence

    2015-02-03

    Subunit III of cytochrome c oxidase possesses structural domains that contain conserved phospholipid binding sites. Mutations within these domains induce a loss of phospholipid binding, coinciding with decreased electron transfer activity. Functional and structural roles for phospholipids in the enzyme from Rhodobacter sphaeroides have been investigated. Upon the removal of intrinsic lipids using phospholipase A2, electron transfer activity was decreased 30-50%. Moreover, the delipidated enzyme exhibited turnover-induced, suicide inactivation, which was reversed by the addition of exogenous lipids, most specifically by cardiolipin. Cardiolipin exhibited two sites of interaction with the delipidated enzyme, a high-affinity site (Km = 0.14 μM) and a low-affinity site (Km = 26 μM). Subunit I of the delipidated enzyme exhibited a faster digestion rate when it was treated with α-chymotrypsin compared to that of the wild-type enzyme, suggesting that lipid removal induces a conformational change to expose the digestion sites further. Upon reaction of subunit III of the enzyme with a fluorophore (AEDANS), fluorescence anisotropy showed an increased rotational rate of the fluorophore in the absence of lipids, indicating increased flexibility of subunit III within the enzyme's tertiary structure. Additionally, Förster resonance energy transfer between AEDANS and a fluorescently labeled cardiolipin revealed that cardiolipin binds in the v-shaped cleft of subunit III in the delipidated enzyme and that it moves closer to the active site in subunit I upon a change in the redox state of the enzyme. In conclusion, these results show that the phospholipids regulate events occurring during electron transfer activity by maintaining the structural integrity of the enzyme at the active site.

  19. Comparative Proteome Analysis of hAT-MSCs Isolated from Chronic Renal Failure Patients with Differences in Their Bone Turnover Status

    PubMed Central

    Akpinar, Gurler; Tuncay, Mehmet; Aksoy, Ayça; Karaoz, Erdal

    2015-01-01

    The relationship between the stem cells and the bone turnover in uremic bone disease due to chronic renal failure (CRF) is not described. The aim of this study was to investigate the effect of bone turnover status on stem cell properties. To search for the presence of such link and shed some light on stem-cell relevant mechanisms of bone turnover, we carried out a study with mesenchymal stem cells. Tissue biopsies were taken from the abdominal subcutaneous adipose tissue of a CRF patient with secondary hyperparathyroidism with the high turnover bone disease. This patient underwent parathyroidectomy operation (PTX) and another sample was taken from this patient after PTX. A CRF patient with adynamic bone disease with low turnover and a healthy control were also included. Mesenchymal stem cells isolated from the subjects were analyzed using proteomic and molecular approaches. Except ALP activity, the bone turnover status did not affect common stem cell properties. However, detailed proteome analysis revealed the presence of regulated protein spots. A total of 32 protein spots were identified following 2D gel electrophoresis and MALDI-TOF/TOF analyzes. The identified proteins were classified into seven distinct groups and their potential relationship to bone turnover were discussed. Distinct protein expression patterns emerged in relation to the bone turnover status indicate a possible link between the stem cells and bone turnover in uremic bone disease due to CRF. PMID:26575497

  20. Antecedents of Norwegian Beginning Teachers' Turnover Intentions

    ERIC Educational Resources Information Center

    Tiplic, Dijana; Brandmo, Christian; Elstad, Eyvind

    2015-01-01

    This study aims at exploring several individual, organizational, and contextual factors that may affect beginning teachers' turnover intentions during their first years of practice. The sample consists of 227 beginning teachers (69% female and 31% male) from 133 schools in Norway. The results show four important antecedents of beginning teachers'…

  1. Minor psychiatric morbidity and labour turnover.

    PubMed Central

    Jenkins, R

    1985-01-01

    The relation of minor psychiatric morbidity with labour turnover is examined, using data from a study of young, predominantly middle class, white collar men and women. The results suggest that the presence of psychiatric symptomatology is at least as important as occupational attitudes in identifying individuals who would subsequently leave the organisation. PMID:4016004

  2. Home Visitor Job Satisfaction and Turnover.

    ERIC Educational Resources Information Center

    Buchbinder, Sharon B.; Duggan, Anne K.; Young, Elizabeth; Fuddy, Loretta; Sia, Cal

    This paper summarizes findings of a 3-year study of the job satisfaction and turnover of home visitors, both professional and paraprofessional, in programs which link families-at-risk for impaired functioning to medical home care and other resources. Specifically, the study examined: (1) home visitor personal characteristics that influence…

  3. Employee Development and Turnover Intention: Theory Validation

    ERIC Educational Resources Information Center

    Rahman, Wali; Nas, Zekeriya

    2013-01-01

    Purpose: This study aims to examine the pattern of behavior of turnover intentions in developing countries "vis-a-vis" the one in advanced countries through the empirical data from public universities in Khyber Pakhtunkhwa, Pakistan. The study provides empirical evidence from academia in Pakistan, thereby enriching the understanding of…

  4. Director Turnover: An Australian Academic Development Study

    ERIC Educational Resources Information Center

    Fraser, Kym; Ryan, Yoni

    2012-01-01

    Although it can be argued that directors of central academic development units (ADUs) are critical to the implementation of university teaching and learning strategies, it would appear there is a high director turnover rate. While research in the USA, the UK, and Australia illustrates that ADUs are frequently closed or restructured, that research…

  5. Dynamics of telomeric DNA turnover in yeast.

    PubMed Central

    McEachern, Michael J; Underwood, Dana Hager; Blackburn, Elizabeth H

    2002-01-01

    Telomerase adds telomeric DNA repeats to telomeric termini using a sequence within its RNA subunit as a template. We characterized two mutations in the Kluyveromyces lactis telomerase RNA gene (TER1) template. Each initially produced normally regulated telomeres. One mutation, ter1-AA, had a cryptic defect in length regulation that was apparent only if the mutant gene was transformed into a TER1 deletion strain to permit extensive replacement of basal wild-type repeats with mutant repeats. This mutant differs from previously studied delayed elongation mutants in a number of properties. The second mutation, TER1-Bcl, which generates a BclI restriction site in newly synthesized telomeric repeats, was indistinguishable from wild type in all phenotypes assayed: cell growth, telomere length, and in vivo telomerase fidelity. TER1-Bcl cells demonstrated that the outer halves of the telomeric repeat tracts turn over within a few hundred cell divisions, while the innermost few repeats typically resisted turnover for at least 3000 cell divisions. Similarly deep but incomplete turnover was also observed in two other TER1 template mutants with highly elongated telomeres. These results indicate that most DNA turnover in functionally normal telomeres is due to gradual replicative sequence loss and additions by telomerase but that there are other processes that also contribute to turnover. PMID:11805045

  6. Docosahexaenoate-containing molecular species of glycerophospholipids from frog retinal rod outer segments show different rates of biosynthesis and turnover

    SciTech Connect

    Louie, K.; Wiegand, R.D.; Anderson, R.E.

    1988-12-13

    The authors have studied the de novo synthesis and subsequent turnover of major docosahexaenoate-containing molecular species in frog rod outer segment (ROS) phospholipids following intravitreal injection of (2-/sup 3/H)glycerol. On selected days after injection, ROS were prepared and phospholipids extracted. Phosphatidylcholine (PC), phosphatidylethanolamine (PE), and phosphatidylserine (PS) were isolated and converted to diradylglycerols with phospholipase C. Diradylglycerols were derivatized with benzoic anhydride and resolve into diacylglycerobenzoates and ether-linked glycerobenzoates. The diacylglycerobenzoates were fractionated into molecular species by HPLC, quantitated, and counted for radioactivity. Label was incorporated into ROS phospholipids by day 1 and was followed up through the eighth day. The dipolyenoic species 22:6-22:6 from PC showed 1 3-5 times higher radiospecific activity than the same species from either PE or PS. The rate of decline was determined by calculating the half-life of each molecular species, which was used as a measure of the turnover of the species. The percent distribution of radioactivity in the molecular species of PC and PE was quite different from the relative mass distribution at day 1. However, percent dpm approached the mole percent by 31 days. In PS, percent dpm and mole percent were the same at all time points. These results indicate that the molecular species composition of PC and PE in frog retinal ROS is determined by a combination of factors, which include rate of synthesis, rate of degradation, and selective interconversions. In contrast, PS composition appears to be determined at the time of synthesis.

  7. Phospholipid Species in Newborn and 4 Month Old Infants after Consumption of Different Formulas or Breast Milk

    PubMed Central

    Uhl, Olaf; Fleddermann, Manja; Hellmuth, Christian; Demmelmair, Hans; Koletzko, Berthold

    2016-01-01

    Introduction Arachidonic acid (AA) and docosahexaenoic acid (DHA) are important long-chain polyunsaturated fatty acids for neuronal and cognitive development and are ingredients of infant formulae that are recommended but there is no evidence based minimal supplementation level available. The aim of this analysis was to investigate the effect of supplemented AA and DHA on phospholipid metabolism. Methods Plasma samples of a randomized, double-blind infant feeding trial were used for the analyses of phospholipid species by flow-injection mass spectrometry. Healthy term infants consumed isoenergetic formulae (intervention formula with equal amounts of AA and DHA—IF, control formula without additional AA and DHA—CF) from the first month of life until the age of 120 days. A group of breast milk (BM) -fed infants was followed as a reference. Results The plasma profile detected in newborns was different from 4 month old infants, irrespective of study group. Most relevant changes were seen in higher level of LPC16:1, LPC20:4, PC32:1, PC34:1 and PC36:4 and lower level of LPC18:0, LPC18:2, PC32:2, PC36:2 and several ether-linked phosphatidylcholines in newborns. The sum of all AA and DHA species at 4 month old infants in the CF group showed level of 40% (AA) and 51% (DHA) of newborns. The supplemented amount of DHA resulted in phospholipid level comparable to BM infants, but AA phospholipids were lower than in BM infants. Interestingly, relative contribution of DHA was higher in ether-linked phosphatidylcholines in CF fed infants, but IF and BM fed infants showed higher overall ether-linked phosphatidylcholines levels. Conclusion In conclusion, we have shown that infant plasma phospholipid profile changes remarkably from newborn over time and is dependent on the dietary fatty acid composition. A supplementation of an infant formula with AA and DHA resulted in increased related phospholipid species. PMID:27571269

  8. Studies of phospholipid oxidation by electrospray mass spectrometry: from analysis in cells to biological effects.

    PubMed

    Spickett, Corinne M; Dever, Gary

    2005-01-01

    The oxidation of lipids is important in many pathological conditions and lipid peroxidation products such as 4-hydroxynonenal (HNE) and other aldehydes are commonly measured as biomarkers of oxidative stress. However, it is often useful to complement this with analysis of the original oxidized phospholipid. Electrospray mass spectrometry (ESMS) provides an informative method for detecting oxidative alterations to phospholipids, and has been used to investigate oxidative damage to cells, and low-density lipoprotein, as well as for the analysis of oxidized phosphatidylcholines present in atherosclerotic plaque material. There is increasing evidence that intact oxidized phospholipids have biological effects; in particular, oxidation products of 1-palmitoyl-2-arachidonoyl-sn-glycerophosphocholine (PAPC) have been found to cause inflammatory responses, which could be potentially important in the progression of atherosclerosis. The effects of chlorohydrin derivatives of lipids have been much less studied, but it is clear that free fatty acid chlorohydrins and phosphatidylcholine chlorohydrins are toxic to cells at concentrations above 10 micromolar, a range comparable to that of HNE and oxidized PAPC. There is some evidence that chlorohydrins have biological effects that may be relevant to atherosclerosis, but further work is needed to elucidate their pro-inflammatory properties, and to understand the mechanisms and balance of biological effects that could result from oxidation of complex mixtures of lipids in a pathophysiological situation.

  9. Work-Related Variables and Turnover Intention among Registered Nurses.

    ERIC Educational Resources Information Center

    Pooyan, Abdullah; And Others

    1990-01-01

    Health institutions have become more interested in the causes of job turnover among registered nurses. Proper management of job turnover can improve the financial health and long-term survival of health care institutions. (Author)

  10. Belowground carbon turnover in a temperate ombrotrophic bog

    NASA Astrophysics Data System (ADS)

    Blodau, Christian; Roulet, Nigel T.; Heitmann, Tobias; Stewart, Heather; Beer, Julia; Lafleur, Peter; Moore, Tim R.

    2007-03-01

    To examine belowground carbon (C) turnover in peatlands, we measured fluxes of carbon dioxide (CO2) and methane (CH4) by chamber measurements, estimated respiration by in situ incubations of peat, and in situ production of dissolved carbon (CO2; CH4; and dissolved organic carbon, DOC) by pore water modeling at an ombrotrophic temperate bog. Ecosystem respiration (ER) averaged 205 mmol m-2 d-1 in summer and was related to temperature, but not water table position, and in situ rates of heterotrophic respiration in the unsaturated zone were also temperature-dependent, with Q10 = 5.0 - 6.4. In the saturated zone, concentrations of 0.1 - 2.5 mmol L-1 (CO2), 0 to 0.6 mmol L-1 (CH4), and <10 - 120 mg L-1 (DOC) were recorded. Turnover was dominated by DOC unrelated to respiration, which ranged from <0.5 to 7 mmol m-2 d-1 and amounted on average to < 1% of ER. Peat decomposition constants kd were 0.060 yr-1 to 0.034 yr-1 in the unsaturated and <0.002 yr-1 in the saturated zone. Monthly averages of CH4 fluxes ranged from 0 to 1.6 mmol m-2 d-1 and were higher than modeled diffusive fluxes when threshold concentrations for CH4 ebullition were recorded closer to the peatland surface. Our results suggest that the saturated zone is of little relevance to ER in this dry temperate bog and that mobilization of DOC is a potentially more relevant process. Temperature is a more important control on ER than water table position because most of the ER is generated close to the peatland surface. Concurrent, moderate increases in temperature and soil moisture are thus likely to increase losses of CO2 from ER and of CH4 from this type of peatland.

  11. Cyclic phosphatidic acid - a unique bioactive phospholipid.

    PubMed

    Fujiwara, Yuko

    2008-09-01

    Cyclic phosphatidic acid (CPA) is a naturally occurring analog of the growth factor-like phospholipid mediator, lysophosphatidic acid (LPA). The sn-2 hydroxy group of CPA forms a 5-membered ring with the sn-3 phosphate. CPA affects numerous cellular functions, including anti-mitogenic regulation of the cell cycle, induction of stress fiber formation, inhibition of tumor cell invasion and metastasis, and regulation of differentiation and survival of neuronal cells. Interestingly, many of these cellular responses caused by CPA oppose those of LPA despite the activation of apparently overlapping receptor populations. Since the early 1990s, studies on CPA actions gradually developed, and we are now beginning to understand the importance of this lipid. In this review, we focus on the current knowledge about CPA, including enzymatic formation of CPA, unique biological activities and biological targets of CPA, and we also explore metabolically stabilized CPA analogs.

  12. Phospholipid monolayers between fluid and solid states.

    PubMed Central

    Helm, C A; Möhwald, H; Kjaer, K; Als-Nielsen, J

    1987-01-01

    Monolayers of the phospholipid dimyristoyl phosphatidic acid on the surface of water have been studied by a combination of the new techniques of synchrotron x-ray diffraction and fluorescence microscopy with classical surface pressure data. The pressure vs. area isotherm changes slope at the surface pressures pi c and pi s. The optical technique demonstrates that between pi c and pi s the fluid phase coexists with a denser "gel" phase. Electron diffraction data have shown that the gel phase has bond orientational order over tens of micrometers. However, the x-ray data demonstrate that positional correlations extend only over tens of angstroms. Thus, the gel phase is not crystalline. Above pi s a solid phase is formed with a positional correlation range that is eight times longer for the chemically purest films. Images FIGURE 1 FIGURE 2 PMID:3651557

  13. Phospholipids in mitochondrial dysfunction during hemorrhagic shock.

    PubMed

    Leskova, Galina F

    2016-12-20

    Energy deficiency plays a key role in the development of irreversible shock conditions. Therefore, identifying mitochondrial functional disturbances during hemorrhagic shock should be considered a prospective direction for studying its pathogenesis. Phospholipid (PL)-dependent mechanisms of mitochondrial dysfunction in the brain (i.e., in the frontal lobes of the cerebral hemispheres and medulla oblongata) and liver, which, when damaged, leads to an encephalopathy, are examined in this review. These mechanisms show strong regional specificity. Analyzing the data presented in this review suggests that the basis for mitochondrial functional disturbances is cholinergic hyperactivation, accompanied by a choline deficiency and membrane phosphatidylcholine (PC) depletion. Stabilization of the PL composition in mitochondrial membranes using "empty" PC liposomes could be one of the most important methods for eliminating energy deficiency during massive blood loss.

  14. Phospholipid composition modulates carbon nanodiamond-induced alterations in phospholipid domain formation.

    PubMed

    Chakraborty, Aishik; Mucci, Nicolas J; Tan, Ming Li; Steckley, Ashleigh; Zhang, Ti; Forrest, M Laird; Dhar, Prajnaparamita

    2015-05-12

    The focus of this work is to elucidate how phospholipid composition can modulate lipid nanoparticle interactions in phospholipid monolayer systems. We report on alterations in lipid domain formation induced by anionically engineered carbon nanodiamonds (ECNs) as a function of lipid headgroup charge and alkyl chain saturation. Using surface pressure vs area isotherms, monolayer compressibility, and fluorescence microscopy, we found that anionic ECNs induced domain shape alterations in zwitterionic phosphatidylcholine lipids, irrespective of the lipid alkyl chain saturation, even when the surface pressure vs area isotherms did not show any significant changes. Bean-shaped structures characteristic of dipalmitoylphosphatidylcholine (DPPC) were converted to multilobed, fractal, or spiral domains as a result of exposure to ECNs, indicating that ECNs lower the line tension between domains in the case of zwitterionic lipids. For membrane systems containing anionic phospholipids, ECN-induced changes in domain packing were related to the electrostatic interactions between the anionic ECNs and the anionic lipid headgroups, even when zwitterionic lipids are present in excess. By comparing the measured size distributions with our recently developed theory derived by minimizing the free energy associated with the domain energy and mixing entropy, we found that the change in line tension induced by anionic ECNs is dominated by the charge in the condensed lipid domains. Atomic force microscopy images of the transferred anionic films confirm that the location of the anionic ECNs in the lipid monolayers is also modulated by the charge on the condensed lipid domains. Because biological membranes such as lung surfactants contain both saturated and unsaturated phospholipids with different lipid headgroup charges, our results suggest that when studying potential adverse effects of nanoparticles on biological systems the role of lipid compositions cannot be neglected.

  15. Anionic phospholipids modulate peptide insertion into membranes.

    PubMed

    Liu, L P; Deber, C M

    1997-05-06

    While the insertion of a hydrophobic peptide or membrane protein segment into the bilayer can be spontaneous and driven mainly by the hydrophobic effect, anionic lipids, which comprise ca. 20% of biological membranes, provide a source of electrostatic attractions for binding of proteins/peptides into membranes. To unravel the interplay of hydrophobicity and electrostatics in the binding of peptides into membranes, we designed peptides de novo which possess the typical sequence Lys-Lys-Ala-Ala-Ala-X-Ala-Ala-Ala-Ala-Ala-X-Ala-Ala-Trp-Ala-Ala-X-Ala-Al a-Ala-Lys-Lys-Lys-Lys-amide, where X residues correspond to "guest" residues which encompass a range of hydrophobicity (Leu, Ile, Gly, and Ser). Circular dichroism spectra demonstrated that peptides were partially (40-90%) random in aqueous buffer but were promoted to form 100% alpha-helical structures by anionic lipid micelles. In neutral lipid micelles, only the relatively hydrophobic peptides (X = L and I) spontaneously adopted the alpha-helical conformation, but when 25% of negatively charged lipids were mixed in to mimic the content of anionic lipids in biomembranes, the less hydrophobic (X = S and G) peptides then formed alpha-helical conformations. Consistent with these findings, fluorescence quenching by the aqueous-phase quencher iodide indicated that in anionic (dimyristoylphosphatidylglycerol) vesicles, the peptide Trp residue was buried in the lipid vesicle hydrophobic core, while in neutral (dimyristoylphosphatidylcholine) vesicles, only hydrophobic (X = L and I) peptides were shielded from the aqueous solution. Trp emission spectra of peptides in the presence of phospholipids doxyl-labeled at the 5-, 7-, 10-, 12-, and 16-fatty acid positions implied not only a transbilayer orientation for inserted peptides but also that mixed peptide populations (transbilayer + surface-associated) may arise. Overall results suggest that for hydrophobic peptides with segmental threshold hydrophobicity below that which

  16. Influence of pH and phospholipid species on release of acetaminophen from tablets containing phospholipids.

    PubMed

    Fujii, M; Moriyama, J; Hamazumi, N; Matsumoto, M

    1998-02-01

    The release of acetaminophen (AAP) from tablets containing phospholipids was examined using hydrogenated soybean phospholipid (HSL) and its main components, phosphatidylcholine (PC), phosphatidylethanolamine (PE) and phosphatidylinositol (PI), although the PI was not well purified (PI rich). Tablets compressed with 400 kgf had about 9% porosity and 2-4 kgf hardness. The release patterns of AAP from the tablets were fitted to Higuchi's square root of time law. The release rate was influenced by the pH of the medium, though solubility of AAP did not change with pH. PC tablets showed faster release at pH of less than 3 than that at pH of above 3, whereas PI rich and HSL tablets showed faster release at pH of above 3 than that at pH of less than 3. The release rate from PE tablets was little affected by pH. A linear relationship exists between the release rate of AAP and the rate of water absorption by the tablet. The ionization state of the phospholipids changes with the pH of the medium, and affects the hydration characteristics. The fully ionized state, at pH of less than 3 in the case of PC and above 3 in the case of PI is most effective on hydration. PE does not fully ionize because of intermolecular hydrogen bonding.

  17. Phospholipid monolayers probed by vibrational sum frequency spectroscopy: instability of unsaturated phospholipids.

    PubMed

    Liljeblad, Jonathan F D; Bulone, Vincent; Tyrode, Eric; Rutland, Mark W; Johnson, C Magnus

    2010-05-19

    The surface specific technique vibrational sum frequency spectroscopy has been applied to in situ studies of the degradation of Langmuir monolayers of 1,2-diacyl-phosphocholines with various degrees of unsaturation in the aliphatic chains. To monitor the degradation of the phospholipids, the time-dependent change of the monolayer area at constant surface pressure and the sum frequency intensity of the vinyl CH stretch at the carbon-carbon double bonds were measured. The data show a rapid degradation of monolayers of phospholipids carrying unsaturated aliphatic chains compared to the stable lipids carrying fully saturated chains when exposed to the ambient laboratory air. In addition, the degradation of the phospholipids can be inhibited by purging the ambient air with nitrogen. This instability may be attributed to spontaneous degradation by oxidation mediated by various reactive species in the air. To further elucidate the process of lipid oxidation in biological membranes artificial Langmuir monolayers probed by a surface specific spectroscopic technique as in this study can serve as a model system for studying the degradation/oxidation of cell membrane constituents.

  18. Salary and Ranking and Teacher Turnover: A Statewide Study

    ERIC Educational Resources Information Center

    Garcia, Cynthia Martinez; Slate, John R.; Delgado, Carmen Tejeda

    2009-01-01

    This study examined three years of data obtained from the Academic Excellence Indicator System of the State of Texas regarding teacher turnover rate and teacher salary. Across all public school districts, teacher salary was consistently negatively related to teacher turnover; that is, where salary was lower, turnover rate was higher When data were…

  19. The shocking cost of turnover in health care.

    PubMed

    Waldman, J Deane; Kelly, Frank; Arora, Sanjeev; Smith, Howard L

    2004-01-01

    Review of turnover costs at a major medical center helps health care managers gain insights about the magnitude and determinants of this managerial challenge and assess the implications for organizational effectiveness. Here, turnover includes hiring, training, and productivity loss costs. Minimum cost of turnover represented a loss of >5 percent of the total annual operating budget.

  20. Superintendent Turnover in Kentucky. Issues & Answers. REL 2011-No. 113

    ERIC Educational Resources Information Center

    Johnson, Jerry; Huffman, Tyler; Madden, Karen; Shope, Shane

    2011-01-01

    This study examines superintendent turnover in Kentucky public school districts for 1998/99-2007/08, looking at how turnover varies by rural status, Appalachian and non-Appalachian region, and 2007/08 school district characteristics. Key findings include: (1) Kentucky school districts averaged one superintendent turnover during 1998/99-2007/08;…

  1. 41 CFR 109-27.5002 - Stores inventory turnover ratio.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... turnover ratio. 109-27.5002 Section 109-27.5002 Public Contracts and Property Management Federal Property....5002 Stores inventory turnover ratio. Comparison of investment in stores inventories to annual issues... comparison may be expressed either as a turnover ratio (dollar value of issues divided by dollar value...

  2. 41 CFR 109-27.5002 - Stores inventory turnover ratio.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... turnover ratio. 109-27.5002 Section 109-27.5002 Public Contracts and Property Management Federal Property....5002 Stores inventory turnover ratio. Comparison of investment in stores inventories to annual issues... comparison may be expressed either as a turnover ratio (dollar value of issues divided by dollar value...

  3. 41 CFR 109-27.5002 - Stores inventory turnover ratio.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... turnover ratio. 109-27.5002 Section 109-27.5002 Public Contracts and Property Management Federal Property....5002 Stores inventory turnover ratio. Comparison of investment in stores inventories to annual issues... comparison may be expressed either as a turnover ratio (dollar value of issues divided by dollar value...

  4. 41 CFR 109-27.5002 - Stores inventory turnover ratio.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... turnover ratio. 109-27.5002 Section 109-27.5002 Public Contracts and Property Management Federal Property....5002 Stores inventory turnover ratio. Comparison of investment in stores inventories to annual issues... comparison may be expressed either as a turnover ratio (dollar value of issues divided by dollar value...

  5. 41 CFR 109-27.5002 - Stores inventory turnover ratio.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... turnover ratio. 109-27.5002 Section 109-27.5002 Public Contracts and Property Management Federal Property....5002 Stores inventory turnover ratio. Comparison of investment in stores inventories to annual issues... comparison may be expressed either as a turnover ratio (dollar value of issues divided by dollar value...

  6. Phospholipids at the Interface: Current Trends and Challenges

    PubMed Central

    Pichot, Roman; Watson, Richard L.; Norton, Ian T.

    2013-01-01

    Phospholipids are one of the major structural elements of biological membranes. Due to their amphiphilic character, they can adopt various molecular assemblies when dispersed in water, such as bilayer vesicles or micelles, which give them unique interfacial properties and render them very attractive in terms of foam or emulsion stabilization. This article aims at reviewing the properties of phospholipids at the air/water and oil/water interfaces, as well as the recent advances in using these natural components as stabilizers, alone or in combination with other compounds such as proteins. A discussion regarding the challenges and opportunities offered by phospholipids-stabilized structure concludes the review. PMID:23736688

  7. Occupational turnover intentions among substance abuse counselors

    PubMed Central

    Rothrauff, Tanja C.; Abraham, Amanda J.; Bride, Brian E.; Roman, Paul M.

    2010-01-01

    This study examined predictor, moderator, and mediator variables of occupational turnover intention (OcTI) among substance abuse counselors. Data were obtained via questionnaires from 929 counselors working in 225 private substance abuse treatment (SAT) programs across the U.S. Hierarchical multiple regression models were conducted to assess predictor, moderator, and mediator variables of OcTI. OcTI scores were relatively low on a 7-point scale, indicating that very few counselors definitely intended to leave the SAT field. Age, certification, positive perceptions of procedural and distributive justice, and hospital-based status negatively predicted OcTI. Counselors’ substance use disorder impacted history moderated the association between organizational commitment and OcTI. Organizational turnover intention partially mediated the link between organizational commitment and OcTI. Workforce stability might be achieved by promoting perceptions of advantages to working in a particular treatment program, organizational commitment, showing appreciation for counselors’ work, and valuing employees from diverse backgrounds. PMID:20947285

  8. Replicator dynamics with turnover of players

    NASA Astrophysics Data System (ADS)

    Juul, Jeppe; Kianercy, Ardeshir; Bernhardsson, Sebastian; Pigolotti, Simone

    2013-08-01

    We study adaptive dynamics in games where players abandon the population at a given rate and are replaced by naive players characterized by a prior distribution over the admitted strategies. We demonstrate how such a process leads macroscopically to a variant of the replicator equation, with an additional term accounting for player turnover. We study how Nash equilibria and the dynamics of the system are modified by this additional term for prototypical examples such as the rock-paper-scissors game and different classes of two-action games played between two distinct populations. We conclude by showing how player turnover can account for nontrivial departures from Nash equilibria observed in data from lowest unique bid auctions.

  9. Orthophosphate turnover in East African lakes.

    PubMed

    Peters, Robert Henry; MacIntyre, Sally

    1976-12-01

    Turnover rates of (32)P-PO4 and concentrations of orthophosphate as soluble reactive phosphorus (SRP) were measured in five East African waters. Rapid incorporation of (32)P-PO4 by the seston and orthophosphate concentrations below the limit of detectibility were found in Lakes Elmenteita, Naivasha, and Naivasha Crater Lake. Turnover was slow and orthophosphate concentration high in both Lake Nakuru and the Crescent Island Crater basin of Lake Naivasha. Further experiments in Lake Nakuru indicated that colloidal binding of orthophosphate was limited and that particles retained by an 8.0 μ filter incorporated 66% as much tracer as particles retained by a 0.1 μ filter. These experiments strengthen our conclusion that a large quantity of orthophosphate is available for algal use in Lake Nakuru.

  10. Rhizosphere bacterial carbon turnover is higher in nucleic acids than membrane lipids: implications for understanding soil carbon cycling

    PubMed Central

    Malik, Ashish A.; Dannert, Helena; Griffiths, Robert I.; Thomson, Bruce C.; Gleixner, Gerd

    2015-01-01

    Using a pulse chase 13CO2 plant labeling experiment we compared the flow of plant carbon into macromolecular fractions of rhizosphere soil microorganisms. Time dependent 13C dilution patterns in microbial cellular fractions were used to calculate their turnover time. The turnover times of microbial biomolecules were found to vary: microbial RNA (19 h) and DNA (30 h) turned over fastest followed by chloroform fumigation extraction-derived soluble cell lysis products (14 days), while phospholipid fatty acids (PLFAs) had the slowest turnover (42 days). PLFA/NLFA 13C analyses suggest that both mutualistic arbuscular mycorrhizal and saprophytic fungi are dominant in initial plant carbon uptake. In contrast, high initial 13C enrichment in RNA hints at bacterial importance in initial C uptake due to the dominance of bacterial derived RNA in total extracts of soil RNA. To explain this discrepancy, we observed low renewal rate of bacterial lipids, which may therefore bias lipid fatty acid based interpretations of the role of bacteria in soil microbial food webs. Based on our findings, we question current assumptions regarding plant-microbe carbon flux and suggest that the rhizosphere bacterial contribution to plant assimilate uptake could be higher. This highlights the need for more detailed quantitative investigations with nucleic acid biomarkers to further validate these findings. PMID:25914679

  11. Turnover of soil monosaccharides: Recycling versus Stabilization

    NASA Astrophysics Data System (ADS)

    Basler, Anna; Dyckmans, Jens

    2014-05-01

    Soil organic matter (SOM) represents a mixture of differently degradable compounds. Each of these compounds are characterised by different dynamics due to different chemical recalcitrance, transformation or stabilisation processes in soil. Carbohydrates represent one of these compounds and contribute up to 25 % to the soil organic matter. Vascular plants are the main source of pentose sugars (Arabinose and Xylose), whereas hexoses (Galactose and Mannose) are primarily produced by microorganisms. Several studies suggest that the mean turnover times of the carbon in soil sugars are similar to the turnover dynamics of the bulk carbon in soil. The aim of the study is to characterise the influence of stabilisation and turnover of soil carbohydrates. Soil samples are collected from (i) a continuous maize cropping experiment ('Höhere Landbauschule' Rotthalmünster, Bavaria) established 1979 on a Stagnic Luvisol and (ii) from a continuous wheat cropping, established 1969, as reference site. The effect of stabilisation is estimated by the comparison of turnover times of microbial and plant derived soil carbohydrates. As the dynamics of plant derived carbohydrate are solely influenced by stabilisation processes, whereas the dynamics of microbial derived carbohydrates are affected by recycling of organic carbon compounds derived by C3 plant substrate as well as stabilisation processes. The compound specific isotopic analysis (CSIA) of soil carbohydrates was performed using a HPLC/o/IRMS system. The chromatographic and mass spectrometric subunits were coupled with a LC-Isolink interface. Soil sugars were extracted after mild hydrolysis using 4 M trifluoroacetic acid (TFA). Chromatographic separation of the sugars was achieved using a low strength 0.25 mM NaOH solution as mobile phase at a ?ow rate of 250 μL min-1 at 10 ° C.

  12. Employee Turnover and Post Decision Accommodation Processes.

    DTIC Science & Technology

    1979-11-01

    1977; Dansereau et al., 1974; Koch and Steers, 1978, Waters et al., 1976; Krackhardt, McKenna , Porter and Steers, 1978). Variables such as these, when...worker. New York: Wiley, 1965. Krackhardt, D., McKenna , J., Porter, L. 14., and Steers, R. M. Coal- setting, supervisory behavior, and employee...consequences of turnover and to Larry Cummings, Daniel Ilgen, Terence R. Mitchell, Charles O’Reilly, and Barry Staw for their insightful and useful comments on

  13. Glucose turnover and recycling in colorectal carcinoma.

    PubMed

    Kokal, W A; McCulloch, A; Wright, P D; Johnston, I D

    1983-11-01

    Glucose metabolism is affected by various pathologic states including tumors. In this project, glucose turnover and recycling rates in 11 patients with colorectal carcinoma were measured using a double-labelled 3-3H and 1-14C glucose injection technique. Fasting blood glucose, lactate, pyruvate, alanine, glycerol, 3-hydroxybutyrate, acetoacetate, plasma cortisol, and plasma insulin concentrations were also measured. No patient in the study had a history of diabetes mellitus or endocrine disorders, nor any abnormal liver function tests. The findings demonstrated a significantly elevated glucose turnover rate in patients with Dukes C and D lesions in comparison to patients with Dukes B lesions. Cori recycling rates were not significantly different between Dukes B vs. Dukes C and D patients. There were no differences between Dukes B and Dukes C and D patients in any of the metabolites measured. Furthermore, there were no significant differences in glucose turnover or recycling rates as a function of pre-illness weight loss. These data suggest that, when colorectal carcinoma extends beyond the limits of the bowel wall, glucose metabolism is significantly altered.

  14. Quantitative analysis of protein turnover in plants.

    PubMed

    Nelson, Clark J; Li, Lei; Millar, A Harvey

    2014-03-01

    Proteins are constantly being synthesised and degraded as plant cells age and as plants grow, develop and adapt the proteome. Given that plants develop through a series of events from germination to fruiting and even undertake whole organ senescence, an understanding of protein turnover as a fundamental part of this process in plants is essential. Both synthesis and degradation processes are spatially separated in a cell across its compartmented structure. The majority of protein synthesis occurs in the cytosol, while synthesis of specific components occurs inside plastids and mitochondria. Degradation of proteins occurs in both the cytosol, through the action of the plant proteasome, and in organelles and lytic structures through different protease classes. Tracking the specific synthesis and degradation rate of individual proteins can be undertaken using stable isotope feeding and the ability of peptide MS to track labelled peptide fractions over time. Mathematical modelling can be used to follow the isotope signature of newly synthesised protein as it accumulates and natural abundance proteins as they are lost through degradation. Different technical and biological constraints govern the potential for the use of (13)C, (15)N, (2)H and (18)O for these experiments in complete labelling and partial labelling strategies. Future development of quantitative protein turnover analysis will involve analysis of protein populations in complexes and subcellular compartments, assessing the effect of PTMs and integrating turnover studies into wider system biology study of plants.

  15. Reduction-sensitive liposomes from a multifunctional lipid conjugate and natural phospholipids: reduction and release kinetics and cellular uptake.

    PubMed

    Goldenbogen, Björn; Brodersen, Nicolai; Gramatica, Andrea; Loew, Martin; Liebscher, Jürgen; Herrmann, Andreas; Egger, Holger; Budde, Bastian; Arbuzova, Anna

    2011-09-06

    The development of targeted and triggerable delivery systems is of high relevance for anticancer therapies. We report here on reduction-sensitive liposomes composed of a novel multifunctional lipidlike conjugate, containing a disulfide bond and a biotin moiety, and natural phospholipids. The incorporation of the disulfide conjugate into vesicles and the kinetics of their reduction were studied using dansyl-labeled conjugate 1 in using the dansyl fluorescence environmental sensitivity and the Förster resonance energy transfer from dansyl to rhodamine-labeled phospholipids. Cleavage of the disulfide bridge (e.g., by tris(2-carboxyethyl)phosphine (TCEP), dithiothreitol (DTT), l-cysteine, or glutathione (GSH)) removed the hydrophilic headgroup of the conjugate and thus changed the membrane organization leading to the release of entrapped molecules. Upon nonspecific uptake of vesicles by macrophages, calcein release from reduction-sensitive liposomes consisting of the disulfide conjugate and phospholipids was more efficient than from reduction-insensitive liposomes composed only of phospholipids. The binding of streptavidin to the conjugates did not interfere with either the subsequent reduction of the disulfide bond of the conjugate or the release of entrapped molecules. Breast cancer cell line BT-474, overexpressing the HER2 receptor, showed a high uptake of the reduction-sensitive doxorubicin-loaded liposomes functionalized with the biotin-tagged anti-HER2 antibody. The release of the entrapped cargo inside the cells was observed, implying the potential of using our system for active targeting and delivery.

  16. Forest turnover rates follow global and regional patterns of productivity

    USGS Publications Warehouse

    Stephenson, N.L.; van Mantgem, P.J.

    2005-01-01

    Using a global database, we found that forest turnover rates (the average of tree mortality and recruitment rates) parallel broad-scale patterns of net primary productivity. First, forest turnover was higher in tropical than in temperate forests. Second, as recently demonstrated by others, Amazonian forest turnover was higher on fertile than infertile soils. Third, within temperate latitudes, turnover was highest in angiosperm forests, intermediate in mixed forests, and lowest in gymnosperm forests. Finally, within a single forest physiognomic type, turnover declined sharply with elevation (hence with temperature). These patterns of turnover in populations of trees are broadly similar to the patterns of turnover in populations of plant organs (leaves and roots) found in other studies. Our findings suggest a link between forest mass balance and the population dynamics of trees, and have implications for understanding and predicting the effects of environmental changes on forest structure and terrestrial carbon dynamics. ??2005 Blackwell Publishing Ltd/CNRS.

  17. Interactions between phospholipids and titanium dioxide particles.

    PubMed

    Le, Quoc-Chon; Ropers, Marie-Hélène; Terrisse, Hélène; Humbert, Bernard

    2014-11-01

    A systematic study was carried out on monolayer films and lipid vesicles to elucidate the interactions between membrane lipids and commercial particles of titanium dioxide TiO2 (TiO2-P25). Pressure-area isotherms of lipids at various pH values were recorded on a Langmuir trough with or without TiO2-P25 and NaCl in the subphase. Electrophoretic mobilities of lipid vesicles and TiO2-P25 particles were measured to identify the pH range where attractive electrostatic interactions between lipids and TiO2-P25 could take place. The results show that (i) the surface of TiO2-P25 particles interacts only with some phospholipids, (ii) the driving forces are electrostatic and (iii) non-electrostatic interactions were also observed, depending on the molecular structure. More precisely, the phospholipids 1,2-dimyristoyl-sn-glycero-3-phosphate monosodium salt (DMPA), 1,2-dimyristoyl-sn-glycero-3-phospho-rac-1-glycerol (DMPG) and 1',3'-bis[1,2-dimyristoyl-sn-glycero-3-phospho]-sn-glycerol (TMCL) interacted strongly with the TiO2-P25 surface through electrostatic interactions, providing they were oppositely charged, i.e. for pH between 2 and 6.6. For TMCL and DMPG, interactions with the surface of TiO2-P25 in non-favourable electrostatic conditions, suggested another kind of binding, probably through the hydroxyl groups of the terminal glycerol. Weaker attractive interactions were demonstrated for 1,2-dimyristoyl-sn-glycero-3-phospho-l-serine (DMPS) and the synthetic lipid dihexadecyl phosphate (DHP). For DMPS, the carboxylate group is involved in the adsorption onto TiO2. The other membrane lipids such as 1,2-dimyristoyl-sn-glycero-3-phosphocholine (DMPC), 1,2-dimyristoyl-sn-glycero-3-phosphoethanolamine (DMPE) and sphingomyelin (SM) did not interact with TiO2-P25 regardless of pH.

  18. Supported phospholipid/alkanethiol biomimetic membranes: insulating properties.

    PubMed Central

    Plant, A L; Gueguetchkeri, M; Yap, W

    1994-01-01

    A novel model lipid bilayer membrane is prepared by the addition of phospholipid vesicles to alkanethiol monolayers on gold. This supported hybrid bilayer membrane is rugged, easily and reproducibly prepared in the absence of organic solvent, and is stable for very long periods of time. We have characterized the insulating characteristics of this membrane by examining the rate of electron transfer and by impedance spectroscopy. Supported hybrid bilayers formed from phospholipids and alkanethiols are pinhole-free and demonstrate measured values of conductivity and resistivity which are within an order of magnitude of that reported for black lipid membranes. Capacitance values suggest a dielectric constant of 2.7 for phospholipid membranes in the absence of organic solvent. The protein toxin, melittin, destroys the insulating capability of the phospholipid layer without significantly altering the bilayer structure. This model membrane will allow the assessment of the effect of lipid membrane perturbants on the insulating properties of natural lipid membranes. PMID:7811924

  19. Biomolecular interactions at phospholipid-decorated surfaces of liquid crystals.

    PubMed

    Brake, Jeffrey M; Daschner, Maren K; Luk, Yan-Yeung; Abbott, Nicholas L

    2003-12-19

    The spontaneous assembly of phospholipids at planar interfaces between thermotropic liquid crystals and aqueous phases gives rise to patterned orientations of the liquid crystals that reflect the spatial and temporal organization of the phospholipids. Strong and weak specific-binding events involving proteins at these interfaces drive the reorganization of the phospholipids and trigger orientational transitions in the liquid crystals. Because these interfaces are fluid, processes involving the lateral organization of proteins (such as the formation of protein- and phospholipid-rich domains) are also readily imaged by the orientational response of the liquid crystal, as are stereospecific enzymatic events. These results provide principles for label-free monitoring of aqueous streams for molecular and biomolecular species without the need for complex instrumentation.

  20. Phospholipids of the lung in normal, toxic, and diseased states

    SciTech Connect

    Akino, T.; Ohno, K.

    1981-01-01

    The highly pulmonary concentration of 1,2-dipalmitoyl-sn-glycerol-3-phosphorylcholine (dipalmitoyllecithin) and its implication as an important component of lung surfactant have promoted investigation of phospholipid metabolism in the lung. This review will set the contents including recent informations for better understanding of phospholipid metabolism of the lung in normal state (physiological significances of lung phospholipids, characteristics of phospholipids in lung tissue and alveolar washing, biosynthetic pathways of dipalmitoyllecithin, etc.) as well as in toxic states (pulmonary oxygen toxicity, etc.) and in diseased states (idiopathic respiratory distress syndrome, pulmonary alveolar proteinosis, etc.) Since our main concern has been to clarify the most important route for supplying dipalmitoyllecithin, this review will be focused upon the various biosynthetic pathways leading to the formation of different molecular species of lecithin and their potential significance in the normal, toxic, and diseased lungs.

  1. Herpes simplex virus 1 induces de novo phospholipid synthesis

    SciTech Connect

    Sutter, Esther; Oliveira, Anna Paula de; Tobler, Kurt; Schraner, Elisabeth M.; Sonda, Sabrina; Kaech, Andres; Lucas, Miriam S.; Ackermann, Mathias; Wild, Peter

    2012-08-01

    Herpes simplex virus type 1 capsids bud at nuclear membranes and Golgi membranes acquiring an envelope composed of phospholipids. Hence, we measured incorporation of phospholipid precursors into these membranes, and quantified changes in size of cellular compartments by morphometric analysis. Incorporation of [{sup 3}H]-choline into both nuclear and cytoplasmic membranes was significantly enhanced upon infection. [{sup 3}H]-choline was also part of isolated virions even grown in the presence of brefeldin A. Nuclei expanded early in infection. The Golgi complex and vacuoles increased substantially whereas the endoplasmic reticulum enlarged only temporarily. The data suggest that HSV-1 stimulates phospholipid synthesis, and that de novo synthesized phospholipids are inserted into nuclear and cytoplasmic membranes to i) maintain membrane integrity in the course of nuclear and cellular expansion, ii) to supply membrane constituents for envelopment of capsids by budding at nuclear membranes and Golgi membranes, and iii) to provide membranes for formation of transport vacuoles.

  2. A phospholipid uptake system in the model plant Arabidopsis thaliana.

    PubMed

    Poulsen, Lisbeth R; López-Marqués, Rosa L; Pedas, Pai R; McDowell, Stephen C; Brown, Elizabeth; Kunze, Reinhard; Harper, Jeffrey F; Pomorski, Thomas G; Palmgren, Michael

    2015-07-27

    Plants use solar energy to produce lipids directly from inorganic elements and are not thought to require molecular systems for lipid uptake from the environment. Here we show that Arabidopsis thaliana Aminophospholipid ATPase10 (ALA10) is a P4-type ATPase flippase that internalizes exogenous phospholipids across the plasma membrane, after which they are rapidly metabolized. ALA10 expression and phospholipid uptake are high in the epidermal cells of the root tip and in guard cells, the latter of which regulate the size of stomatal apertures to modulate gas exchange. ALA10-knockout mutants exhibit reduced phospholipid uptake at the root tips and guard cells and are affected in growth and transpiration. The presence of a phospholipid uptake system in plants is surprising. Our results suggest that one possible physiological role of this system is to internalize lysophosphatidylcholine, a signalling lipid involved in root development and stomatal control.

  3. Novel Phospholipid-Protein Conjugates Allow Improved Detection of Antibodies in Patients with Autoimmune Diseases

    PubMed Central

    Nybo, Mads; Macaubas, Claudia; Lønstrup, Lars; Balboni, Imelda M.; Mellins, Elizabeth D.; Astakhova, Kira

    2016-01-01

    Reliable measurement of clinically relevant autoimmune antibodies toward phospholipid-protein conjugates is highly desirable in research and clinical assays. To date, the development in this field has been limited to the use of natural heterogeneous antigens. However, this approach does not take structural features of biologically active antigens into account and leads to low reliability and poor scientific test value. Here we describe novel phospholipid-protein conjugates for specific detection of human autoimmune antibodies. Our synthetic approach includes mild oxidation of synthetic phospholipid cardiolipin, and as the last step, coupling of the product with azide-containing linker and copper-catalyzed click chemistry with β2-glycoprotein I and prothrombin. To prove utility of the product antigens, we used enzyme-linked immunosorbent assay and three cohorts of samples obtained from patients in Denmark (n = 34) and the USA (n = 27 and n = 14). Afterwards we analyzed correlation of the obtained autoantibody titers with clinical parameters for each patient. Our results prove that using novel antigens clinically relevant autoantibodies can be detected with high repeatability, sensitivity and specificity. Unlike previously used antigens the obtained autoantibody titers strongly correlate with high disease activity and in particular, with arthritis, renal involvement, anti-Smith antibodies and high lymphocyte count. Importantly, chemical composition of antigens has a strong influence on the correlation of detected autoantibodies with disease activity and manifestations. This confirms the crucial importance of antigens’ composition on research and diagnostic assays, and opens up exciting perspectives for synthetic antigens in future studies of autoimmunity. PMID:27257889

  4. THE RELATIONSHIP BETWEEN ORGANIZATIONAL JUSTICE AND TURNOVER INTENTION OF HOSPITAL NURSES IN IRAN

    PubMed Central

    Tourani, Sogand; Khosravizadeh, Omid; Omrani, Amir; Sokhanvar, Mobin; Kakemam, Edris; Najafi, Behnam

    2016-01-01

    Background: Despite advances in science and technology, human resources are of the major capital for organizations. Workforce retention is required to improve organizational efficiencies. Objective: Therefore, in this study, the relationship between organizational justice (as one of the most influential factors) and turnover intention was investigated. Methods: This descriptive-analytic study was done in the Comprehensive Jame Women’s Hospital of Tehran in 2015. The statistical sample consisted of 135 nursing staff members. The data were collected using a questionnaire of Beugre’s organizational justice and analyzed by the use of Spearman’s and Anova statistical tests. Results: Averages of organizational justice was obtained to be 68.85 ± 7.67 . Among different sorts of organizational justice, the highest average score of 75.24 ± 16.68 was achieved relevant to interactional justice. A significant relationship was observed between organizational justice (r = -0.36), interactional justice (r = -0.38), and procedural justice (r = -0.36) and turnover intention, but no relation was found between turnover intention and systemic and distributive justice. Furthermore, there was no relationship between demographic variables, organizational justice, and turnover intention. Conclusion: Considering the prominent role of organizational justice in the personnel’s intention to stay or leave and due to the high costs of recruiting and training new staff, managers should pay especial attention to justice and provide their employees’ satisfaction and stability in their organizations by creating a positive mindset in them. PMID:27482163

  5. Historical legacies in world amphibian diversity revealed by the turnover and nestedness components of Beta diversity.

    PubMed

    Baselga, Andrés; Gómez-Rodríguez, Carola; Lobo, Jorge M

    2012-01-01

    Historic processes are expected to influence present diversity patterns in combination with contemporary environmental factors. We hypothesise that the joint use of beta diversity partitioning methods and a threshold-based approach may help reveal the effect of large-scale historic processes on present biodiversity. We partitioned intra-regional beta diversity into its turnover (differences in composition caused by species replacements) and nestedness-resultant (differences in species composition caused by species losses) components. We used piecewise regressions to show that, for amphibian beta diversity, two different world regions can be distinguished. Below parallel 37, beta diversity is dominated by turnover, while above parallel 37, beta diversity is dominated by nestedness. Notably, these regions are revealed when the piecewise regression method is applied to the relationship between latitude and the difference between the Last Glacial Maximum (LGM) and the present temperature but not when present energy-water factors are analysed. When this threshold effect of historic climatic change is partialled out, current energy-water variables become more relevant to the nestedness-resultant dissimilarity patterns, while mountainous areas are associated with higher spatial turnover. This result suggests that nested patterns are caused by species losses that are determined by physiological constraints, whereas turnover is associated with speciation and/or Pleistocene refugia. Thus, the new threshold-based view may help reveal the role of historic factors in shaping present amphibian beta diversity patterns.

  6. Molecular Insights into Phospholipid -- NSAID Interactions

    NASA Astrophysics Data System (ADS)

    Babu Boggara, Mohan; Krishnamoorti, Ramanan

    2007-03-01

    Non steroidal anti inflammatory drugs (NSAIDs) e.g. Aspirin and Ibuprofen, with chronic usage cause gastro intestinal (GI) toxicity. It has been shown experimentally that NSAIDs pre-associated with phospholipids reduce the GI toxicity and also increase the therapeutic activity of these drugs compared to the unmodified ones. Using all atomistic simulations and two different methodologies, we studied the partitioning behavior of two model NSAIDs (Aspirin and Ibuprofen) as a function of pH and drug loading. The results from two methodologies are consistent in describing the equilibrium drug distribution in the bilayers. Additionally, the heterogeneity in density and polarity of the bilayer in the normal direction along with the fact that NSAIDs are amphiphilic (all of them have a carboxylic acid group and a non-polar part consisting of aromatic moieties), indicate that the diffusion mechanism in the bilayer is far different compared to the same in a bulk medium. This study summarizes the various effects of NSAIDs and their behavior inside the lipid bilayer both as a function of pH and drug concentration.

  7. Enhancement by cytidine of membrane phospholipid synthesis

    NASA Technical Reports Server (NTRS)

    G-Coviella, I. L.; Wurtman, R. J.

    1992-01-01

    Cytidine, as cytidine 5'-diphosphate choline, is a major precursor in the synthesis of phosphatidylcholine in cell membranes. In the present study, we examined the relationships between extracellular levels of cytidine, the conversion of [14C]choline to [14C]phosphatidylcholine, and the net syntheses of phosphatidylcholine and phosphatidylethanolamine by PC12 cells. The rate at which cytidine (as [3H]cytidine) was incorporated into the PC12 cells followed normal Michaelis-Menten kinetics (Km = 5 microM; Vmax = 12 x 10(-3) mmol/mg of protein/min) when the cytidine concentrations in the medium were below 50 microM; at higher concentrations, intracellular [3H]cytidine nucleotide levels increased linearly. Once inside the cell, cytidine was converted mainly into cytidine triphosphate. In pulse-chase experiments, addition of cytidine to the medium caused a time- and dose-dependent increase (by up to 30%) in the incorporation of [14C]choline into membrane [14C]-phosphatidylcholine. When the PC12 cells were supplemented with both cytidine and choline for 14 h, small but significant elevations (p less than 0.05) were observed in their absolute contents of membrane phosphatidylcholine, phosphatidylethanolamine, and phosphatidylserine, all increasing by 10-15% relative to their levels in cells incubated with choline alone. Exogenous cytidine, acting via cytidine triphosphate, can thus affect the synthesis and levels of cell membrane phospholipids.

  8. Dynamic aspects of voluntary turnover: an integrated approach to curvilinearity in the performance-turnover relationship.

    PubMed

    Becker, William J; Cropanzano, Russell

    2011-03-01

    Previous research pertaining to job performance and voluntary turnover has been guided by 2 distinct theoretical perspectives. First, the push-pull model proposes that there is a quadratic or curvilinear relationship existing between these 2 variables. Second, the unfolding model of turnover posits that turnover is a dynamic process and that a downward performance change may increase the likelihood of organizational separation. Drawing on decision theory, we propose and test an integrative framework. This approach incorporates both of these earlier models. Specifically, we argue that individuals are most likely to voluntarily exit when they are below-average performers who are also experiencing a downward performance change. Furthermore, the interaction between this downward change and performance partially accounts for the curvilinear relationship proposed by the push-pull model. Findings from a longitudinal field study supported this integrative theory.

  9. Polyglutamine expansion in huntingtin alters its interaction with phospholipids.

    PubMed

    Kegel, Kimberly B; Sapp, Ellen; Alexander, Jonathan; Valencia, Antonio; Reeves, Patrick; Li, Xueyi; Masso, Nicholas; Sobin, Lindsay; Aronin, Neil; DiFiglia, Marian

    2009-09-01

    Huntingtin has an expanded polyglutamine tract in patients with Huntington's disease. Huntingtin localizes to intracellular and plasma membranes but the function of huntingtin at membranes is unknown. Previously we reported that exogenously expressed huntingtin bound pure phospholipids using protein-lipid overlays. Here we show that endogenous huntingtin from normal (Hdh(7Q/7Q)) mouse brain and mutant huntingtin from Huntington's disease (Hdh(140Q/140Q)) mouse brain bound to large unilamellar vesicles containing phosphoinositol (PI) PI 3,4-bisphosphate, PI 3,5-bisphosphate, and PI 3,4,5-triphosphate [PI(3,4,5)P3]. Huntingtin interactions with multivalent phospholipids were similar to those of dynamin. Mutant huntingtin associated more with phosphatidylethanolamine and PI(3,4,5)P3 than did wild-type huntingtin, and associated with other phospholipids not recognized by wild-type huntingtin. Wild-type and mutant huntingtin also bound to large unilamellar vesicles containing cardiolipin, a phospholipid specific to mitochondrial membranes. Maximal huntingtin-phospholipid association required inclusion of huntingtin amino acids 171-287. Endogenous huntingtin recruited to the plasma membrane in cells that incorporated exogenous PI 3,4-bisphosphate and PI(3,4,5)P3 or were stimulated by platelet-derived growth factor or insulin growth factor 1, which both activate PI 3-kinase. These data suggest that huntingtin interacts with membranes through specific phospholipid associations and that mutant huntingtin may disrupt membrane trafficking and signaling at membranes.

  10. Biomimetic surface modification of polyurethane with phospholipids grafted carbon nanotubes.

    PubMed

    Tan, Dongsheng; Liu, Liuxu; Li, Zhen; Fu, Qiang

    2015-08-01

    To improve blood compatibility of polyurethane (PU), phospholipids grafted carbon nanotubes (CNTs) were prepared through zwitterion-mediated cycloaddition reaction and amide condensation, and then were added to the PU as fillers via solution mixing to form biomimetic surface. The properties of phospholipids grafted CNTs (CNT-PC) were investigated by thermal gravimetric analysis (TGA), X-ray photoelectron spectroscopy (XPS) and proton nuclear magnetic resonance ((1) H NMR). The results indicated that the phospholipids were grafted onto CNTs in high efficiency, and the hydrophilicity and dispersibility of the modified CNTs were improved effectively. The structures and properties of composites containing CNT-PC were investigated by optical microscope, XPS, and water contact angles. The results indicated that phospholipids were enriched on the surface with addition of 0.1 wt % of CNT-PC, which significantly reduced protein adsorption and platelet adhesion. The method of carrying phospholipids on the nanofiller to modify polymers has provided a promising way of constructing biomimetic phospholipid membrane on the surface to improve blood compatibility.

  11. Relative quantification of phospholipid accumulation in the PC12 cell plasma membrane following phospholipid incubation using TOF-SIMS imaging

    PubMed Central

    Lanekoff, Ingela; Sjövall, Peter; Ewing, Andrew G.

    2011-01-01

    Time of flight secondary ion mass spectrometry (TOF-SIMS) imaging has been used to investigate the incorporation of phospholipids into the plasma membrane of PC12 cells after incubation with phosphatidylcholine (PC) and phosphatidylethanolamine (PE). The incubations were done at concentrations previously shown to change the rate of exocytosis in model cell lines. The use of TOF-SIMS in combination with an in situ freeze fracture device enables the acquisition of ion images from the plasma membrane in single PC12 cells. By incubating cells with deuterated phospholipids and acquiring ion images at high mass resolution, specific deuterated fragment ions were used to monitor the incorporation of lipids into the plasma membrane. The concentration of incorporated phospholipids relative to the original concentration of PC was thus determined. The observed relative amounts of phospholipid accumulation in the membrane ranges from 0.5 to 2 percent following 19 hours of incubation with PC at 100 to 300 μM and from 1 to 9 percent following incubation with PE at the same concentrations. Phospholipid accumulation is therefore shown to be dependent on the concentration in the surrounding media. In combination with previous exocytosis results, the present data suggests that very small changes in the plasma membrane phospholipid concentration are sufficient to produce significant effects on important cellular processes, such as exocytosis in PC12 cells. PMID:21563801

  12. Modulation of plasma membrane Ca2+-ATPase by neutral phospholipids: effect of the micelle-vesicle transition and the bilayer thickness.

    PubMed

    Pignataro, María Florencia; Dodes-Traian, Martín M; González-Flecha, F Luis; Sica, Mauricio; Mangialavori, Irene C; Rossi, Juan Pablo F C

    2015-03-06

    The effects of lipids on membrane proteins are likely to be complex and unique for each membrane protein. Here we studied different detergent/phosphatidylcholine reconstitution media and tested their effects on plasma membrane Ca(2+) pump (PMCA). We found that Ca(2+)-ATPase activity shows a biphasic behavior with respect to the detergent/phosphatidylcholine ratio. Moreover, the maximal Ca(2+)-ATPase activity largely depends on the length and the unsaturation degree of the hydrocarbon chain. Using static light scattering and fluorescence correlation spectroscopy, we monitored the changes in hydrodynamic radius of detergent/phosphatidylcholine particles during the micelle-vesicle transition. We found that, when PMCA is reconstituted in mixed micelles, neutral phospholipids increase the enzyme turnover. The biophysical changes associated with the transition from mixed micelles to bicelles increase the time of residence of the phosphorylated intermediate (EP), decreasing the enzyme turnover. Molecular dynamics simulations analysis of the interactions between PMCA and the phospholipid bilayer in which it is embedded show that in the 1,2-dioleoyl-sn-glycero-3-phosphocholine bilayer, charged residues of the protein are trapped in the hydrophobic core. Conversely, in the 1,2-dimyristoyl-sn-glycero-3-phosphocholine bilayer, the overall hydrophobic-hydrophilic requirements of the protein surface are fulfilled the best, reducing the thermodynamic cost of exposing charged residues to the hydrophobic core. The apparent mismatch produced by a 1,2-dioleoyl-sn-glycero-3-phosphocholine thicker bilayer could be a structural foundation to explain its functional effect on PMCA.

  13. Dietary safflower phospholipid reduces liver lipids in laying hens.

    PubMed

    An, B K; Nishiyama, H; Tanaka, K; Ohtani, S; Iwata, T; Tsutsumi, K; Kasai, M

    1997-05-01

    This experiment was conducted to determine the effects of dietary safflower phospholipids (crude safflower phospholipid and purified safflower phospholipid) on performance and lipid metabolism of laying hens. Sixty-week-old Single Comb White Leghorn laying hens were divided into four groups of seven birds each, and were given one of four experimental diets containing 5% beef tallow (served as a control, tallow), a mixture of safflower oil and palm oil (SP-oil), crude safflower phospholipid (Saf-PLcrude), or purified safflower phospholipid (Saf-PL) for 7 wk. Egg production ratio and daily egg mass were significantly higher in hens fed Saf-PLcrude diets than in hens of the other diet groups. There were no significant differences in egg weight among groups. Liver cholesterol and triglyceride contents were significantly decreased in all treated groups as compared with the control. The activity of hepatic 3-hydroxy-3 methylglutaryl coenzyme A reductase was the highest in hens fed the Saf-PLcrude diet. Serum esterified cholesterol concentration was decreased by feeding of SP-oil, Saf-PLcrude, or Saf-PL diets. Serum lecithin-cholesterol acyltransferase activity was highest in hens fed the tallow diet. Excreta neutral steroid excretion was significantly increased in the Saf-PLcrude or Saf-PL diet groups, although acidic steroid excretion was not affected by dietary treatments. Total cholesterol, triglyceride, and phospholipid contents in egg yolks were not different for any dietary treatments. The fatty acid compositions of egg yolks from hens fed Saf-PLcrude diets were not different with those fed the SP-oil diet, although eggs of hens fed the Saf-PL diet showed lower total polyunsaturated fatty acids. These results suggest that dietary safflower phospholipids may be a valuable ingredient to layers for reducing liver triglycerides and serum cholesterol without any adverse effects.

  14. Nitrogen turnover in soil and global change.

    PubMed

    Ollivier, Julien; Töwe, Stefanie; Bannert, Andrea; Hai, Brigitte; Kastl, Eva-Maria; Meyer, Annabel; Su, Ming Xia; Kleineidam, Kristina; Schloter, Michael

    2011-10-01

    Nitrogen management in soils has been considered as key to the sustainable use of terrestrial ecosystems and a protection of major ecosystem services. However, the microorganisms driving processes like nitrification, denitrification, N-fixation and mineralization are highly influenced by changing climatic conditions, intensification of agriculture and the application of new chemicals to a so far unknown extent. In this review, the current knowledge concerning the influence of selected scenarios of global change on the abundance, diversity and activity of microorganisms involved in nitrogen turnover, notably in agricultural and grassland soils, is summarized and linked to the corresponding processes. In this context, data are presented on nitrogen-cycling processes and the corresponding microbial key players during ecosystem development and changes in functional diversity patterns during shifts in land use. Furthermore, the impact of increased temperature, carbon dioxide and changes in precipitation regimes on microbial nitrogen turnover is discussed. Finally, some examples of the effects of pesticides and antibiotics after application to soil for selected processes of nitrogen transformation are also shown.

  15. Cytoplasmic mRNA turnover and ageing

    PubMed Central

    Borbolis, Fivos; Syntichaki, Popi

    2015-01-01

    Messenger RNA (mRNA) turnover that determines the lifetime of cytoplasmic mRNAs is a means to control gene expression under both normal and stress conditions, whereas its impact on ageing and age-related disorders has just become evident. Gene expression control is achieved at the level of the mRNA clearance as well as mRNA stability and accessibility to other molecules. All these processes are regulated by cis-acting motifs and trans-acting factors that determine the rates of translation and degradation of transcripts. Specific messenger RNA granules that harbor the mRNA decay machinery or various factors, involved in translational repression and transient storage of mRNAs, are also part of the mRNA fate regulation. Their assembly and function can be modulated to promote stress resistance to adverse conditions and over time affect the ageing process and the lifespan of the organism. Here, we provide insights into the complex relationships of ageing modulators and mRNA turnover mechanisms. PMID:26432921

  16. Dynamics of Adipocyte Turnover in Humans

    SciTech Connect

    Spalding, K; Arner, E; Westermark, P; Bernard, S; Buchholz, B; Bergmann, O; Blomqvist, L; Hoffstedt, J; Naslund, E; Britton, T; Concha, H; Hassan, M; Ryden, M; Frisen, J; Arner, P

    2007-07-16

    Obesity is increasing in an epidemic fashion in most countries and constitutes a public health problem by enhancing the risk for cardiovascular disease and metabolic disorders such as type 2 diabetes. Owing to the increase in obesity, life expectancy may start to decrease in developed countries for the first time in recent history. The factors determining fat mass in adult humans are not fully understood, but increased lipid storage in already developed fat cells is thought to be most important. We show that adipocyte number is a major determinant for the fat mass in adults. However, the number of fat cells stays constant in adulthood in lean and obese and even under extreme conditions, indicating that the number of adipocytes is set during childhood and adolescence. To establish the dynamics within the stable population of adipocytes in adults, we have measured adipocyte turnover by analyzing the integration of {sup 14}C derived from nuclear bomb tests in genomic DNA. Approximately 10% of fat cells are renewed annually at all adult ages and levels of body mass index. Neither adipocyte death nor generation rate is altered in obesity, suggesting a tight regulation of fat cell number that is independent of metabolic profile in adulthood. The high turnover of adipocytes establishes a new therapeutic target for pharmacological intervention in obesity.

  17. Concurrent changes in Dunaliella salina ultrastructure and membrane phospholipid metabolism after hyperosmotic shock

    PubMed Central

    1988-01-01

    Hyperosmotic shock, induced by raising the NaCl concentration of Dunaliella salina medium from 1.71 to 3.42 M, elicited a rapid decrease of nearly one-third in whole cell volume and in the volume of intracellular organelles. The decrease in cell volume was accompanied by plasmalemma infolding without overall loss of surface area. This contrasts with the dramatic increase in plasmalemma surface area after hypoosmotic shock (Maeda, M., and G. A. Thompson. 1986. J. Cell Biol. 102:289-297). Although plasmalemma surface area remained constant after hyperosmotic shock, the nucleus, chloroplast, and mitochondria lost membrane surface area, apparently through membrane fusion with the endoplasmic reticulum. Thus the endoplasmic reticulum serves as a reservoir for excess membrane during hyperosmotic stress, reversing its role as membrane donor to the same organelles during hypoosmotically induced cell expansion. Hyperosmotic shock also induced rapid changes in phospholipid metabolism. The mass of phosphatidic acid dropped to 56% of control and that of phosphatidylinositol 4,5-bisphosphate rose to 130% of control within 4 min. Further analysis demonstrated that within 10 min after hyperosmotic shock, there was 2.5-fold increase in phosphatidylcholine turnover, a twofold increase in lysophosphatidylcholine mass, a four-fold increase in lysophosphatidate mass, and an elevation in free fatty acids to 124% of control, all observations suggesting activation of phospholipase A. The observed biophysical and biochemical phenomena are likely to be causally interrelated in providing mechanisms for successful accommodation to such severe osmotic extremes. PMID:3417760

  18. Chicory increases acetate turnover, but not propionate and butyrate peripheral turnovers in rats.

    PubMed

    Pouteau, Etienne; Rochat, Florence; Jann, Alfred; Meirim, Isabelle; Sanchez-Garcia, Jose-Luis; Ornstein, Kurt; German, Bruce; Ballèvre, Olivier

    2008-02-01

    Chicory roots are rich in inulin that is degraded into SCFA in the caecum and colon. Whole-body SCFA metabolism was investigated in rats during food deprivation and postprandial states. After 22 h of food deprivation, sixteen rats received an IV injection of radioactive 14C-labelled SCFA. The volume of distribution and the fractional clearance rate of SCFA were 0.25-0.27 litres/kg and 5.4-5.9 %/min, respectively. The half-life in the first extracellular rapidly decaying compartment was between 0.9 and 1.4 min. After 22 h of food deprivation, another seventeen rats received a primed continuous IV infusion of 13C-labelled SCFA for 2 h. Isotope enrichment (13C) of SCFA was determined in peripheral arterial blood by MS. Peripheral acetate, propionate and butyrate turnover rates were 29, 4 and 0.3 micromol/kg per min respectively. Following 4 weeks of treatment with chicory root or control diets, eighteen fed rats received a primed continuous IV infusion of 13C-labelled SCFA for 2 h. Intestinal degradation of dietary chicory lowered caecal pH, enhanced caecal and colonic weights, caecal SCFA concentrations and breath H2. The diet with chicory supplementation enhanced peripheral acetate turnover by 25 % (P = 0.017) concomitant with an increase in plasma acetate concentration. There were no changes in propionate or butyrate turnovers. In conclusion, by setting up a multi-tracer approach to simultaneously assess the turnovers of acetate, propionate and butyrate it was demonstrated that a chronic chicory-rich diet significantly increases peripheral acetate turnover but not that of propionate or butyrate in rats.

  19. Strategies for adapting to high rates of employee turnover.

    PubMed

    Mowday, R T

    1984-01-01

    For many organizations facing high rates of employee turnover, strategies for increasing employee retention may not be practical because employees leave for reasons beyond the control of management or the costs of reducing turnover exceed the benefits to be derived. In this situation managers need to consider strategies that can minimize or buffer the organization from the negative consequences that often follow from turnover. Strategies organizations can use to adapt to uncontrollably high employee turnover rates are presented in this article. In addition, suggestions are made for how managers should make choices among the alternative strategies.

  20. Work–family climate, organizational commitment, and turnover: Multilevel contagion effects of leaders ⋆

    PubMed Central

    O’Neill, John W.; Harrison, Michelle M.; Cleveland, Jeannette; Almeida, David; Stawski, Robert; Crouter, Anne C.

    2009-01-01

    This paper presents empirical research analyzing the relationship between work–family climate (operationalized in terms of three work–family climate sub-scales), organizational leadership (i.e., senior manager) characteristics, organizational commitment and turnover intent among 526 employees from 37 different hotels across the US. Using multilevel modeling, we found significant associations between work–family climate, and both organizational commitment and turnover intent, both within and between hotels. Findings underscored the importance of managerial support for employee work–family balance, the relevance of senior managers’ own work–family circumstances in relation to employees’ work outcomes, and the existence of possible contagion effects of leaders in relation to work–family climate. PMID:19412351

  1. Ibuprofen-phospholipid solid dispersions: improved dissolution and gastric tolerance.

    PubMed

    Hussain, M Delwar; Saxena, Vipin; Brausch, James F; Talukder, Rahmat M

    2012-01-17

    Solid dispersions of ibuprofen with various phospholipids were prepared, and the effect of phospholipids on the in vitro dissolution and in vivo gastrointestinal toxicity of ibuprofen was evaluated. Most phospholipids improved the dissolution of ibuprofen; dimyristoylphosphatidyl-glycerol (DMPG) had the greatest effect. At 45 min, the extent of dissolution of ibuprofen from the ibuprofen-DMPG system (weight ratio 9:1) increased about 69% compared to ibuprofen alone; the initial rate of dissolution increased sevenfold. Increasing the DMPG content from 9:1 to 4:1 in this system did not significantly increase the rate and the extent of dissolution. X-ray diffraction and scanning electron micrograph indicated a smaller crystallite size of ibuprofen with fairly uniform distribution in the ibuprofen-DMPG solid dispersion. A small amount of carrier phospholipid significantly increases the rate and the extent of dissolution, which may increase the bioavailability of ibuprofen. The number of ulcers >0.5mm in size formed in the gastric mucosa of rats following ibuprofen, DMPG, DMPC and DPPC solid dispersions (ibuprofen and phospholipid weight ratio 4:1) were 8.6 ± 6.2, 3.9 ± 5.3, 5.3 ± 4.9 and 9.1 ± 7.4, respectively. Solid dispersion of ibuprofen with DMPG was significantly less irritating to the gastric mucosa than ibuprofen itself (one-way ANOVA, p<0.05). Solid dispersion of ibuprofen and DMPG decreases the gastric side effects of ibuprofen.

  2. Stabilizing factors of phospholipid asymmetry in the erythrocyte membrane.

    PubMed

    Dressler, V; Haest, C W; Plasa, G; Deuticke, B; Erusalimsky, J D

    1984-08-22

    Transbilayer reorientation (flip) of exogenous lysophospholipids and changes of the transbilayer distribution of endogenous phospholipids were studied in human erythrocytes and membrane vesicles. (1) Exogenous lysophosphatidylserine irreversibly accumulates in the inner membrane layer of resealed ghosts of human erythrocytes. (2) This accumulation even occurs after complete loss of asymmetric distribution of endogenous phosphatidylethanolamine and partial loss of phosphatidylserine asymmetry in diamide-treated cells. (3) Formation of inside-out and right-side-out vesicles from erythrocyte membranes results in a loss of endogenous phospholipid asymmetry as well as of the ability to establish asymmetry of exogenous lysophosphatidylserine. Rates of transbilayer reorientation of lysophospholipids for the vesicles, however, are comparable to those for intact cells. (4) Loss of endogenous asymmetry of phosphatidylserine is also observed in vesicles isolated from erythrocytes after heat denaturation of spectrin. The asymmetry in the residual cells is maintained. (5) In contrast to the loss of asymmetry of phosphatidylethanolamine and of phosphatidylserine, the asymmetry of sphingomyelin is completely maintained in the vesicles. (6) The stability of phospholipid asymmetry in the native cell is discussed in terms of a limitation of access of phospholipids to hypothetical reorientation sites. Such a limitation may either be the result of interaction of phospholipids with the membrane skeleton as in case of phosphatidylserine and phosphatidylethanolamine, or the result of lipid-lipid interactions as in case of sphingomyelin.

  3. Modulation of monoaminergic transporters by choline-containing phospholipids in rat brain.

    PubMed

    Tayebati, Seyed Khosrow; Tomassoni, Daniele; Nwankwo, Innocent Ejike; Di Stefano, Antonio; Sozio, Piera; Cerasa, Laura Serafina; Amenta, Francesco

    2013-02-01

    Choline-containing phospholipids were proposed as cognition enhancing agents, but evidence on their activity is controversial. CDP-choline (cytidine-5´-diphosphocholine, CDP) and choline alphoscerate (L-alpha-glycerylphosphorylcholine, GPC) represent the choline-containing phospholipids with larger clinical evidence in the treatment of sequelae of cerebrovascular accidents and of cognitive disorders. These compounds which display mainly a cholinergic profile interfere with phospholipids biosynthesis, brain metabolism and neurotransmitter systems. Dated preclinical studies and clinical evidence suggested that CDP-choline may have also a monoaminergic profile. The present study was designed to assess the influence of treatment for 7 days with choline-equivalent doses (CDP-choline: 325 mg/Kg/day; GPC: 150 mg/Kg/day) of these compounds on brain dopamine (DA), and serotonin (5-HT) levels and on DA plasma membrane transporter (DAT), vesicular monoamine transporters (VMAT1 and VMAT2), serotonin transporter (SERT), and norepinephrine transporter (NET) in the rat. Frontal cortex, striatum and cerebellum were investigated by HPLC with electrochemical detection, immunohistochemistry, Western blot analysis and ELISA techniques. CDP-choline did not affect DA levels, which increased after GPC administration in frontal cortex and cerebellum. GPC increased also 5-HT levels in frontal cortex and striatum. DAT was stimulated in frontal cortex and cerebellum by both CDP and GPC, whereas VMAT2, SERT, NET were unaffected. VMAT1 was not detectable. The above data indicate that CDP-choline and GPC possess a monoaminergic profile and interfere to some extent with brain monoamine transporters. This activity on a relevant drug target, good tolerability and safety of CDP-choline and GPC suggests that these compounds may merit further investigations in appropriate clinical settings.

  4. Phosphocreatine interacts with phospholipids, affects membrane properties and exerts membrane-protective effects.

    PubMed

    Tokarska-Schlattner, Malgorzata; Epand, Raquel F; Meiler, Flurina; Zandomeneghi, Giorgia; Neumann, Dietbert; Widmer, Hans R; Meier, Beat H; Epand, Richard M; Saks, Valdur; Wallimann, Theo; Schlattner, Uwe

    2012-01-01

    A broad spectrum of beneficial effects has been ascribed to creatine (Cr), phosphocreatine (PCr) and their cyclic analogues cyclo-(cCr) and phospho-cyclocreatine (PcCr). Cr is widely used as nutritional supplement in sports and increasingly also as adjuvant treatment for pathologies such as myopathies and a plethora of neurodegenerative diseases. Additionally, Cr and its cyclic analogues have been proposed for anti-cancer treatment. The mechanisms involved in these pleiotropic effects are still controversial and far from being understood. The reversible conversion of Cr and ATP into PCr and ADP by creatine kinase, generating highly diffusible PCr energy reserves, is certainly an important element. However, some protective effects of Cr and analogues cannot be satisfactorily explained solely by effects on the cellular energy state. Here we used mainly liposome model systems to provide evidence for interaction of PCr and PcCr with different zwitterionic phospholipids by applying four independent, complementary biochemical and biophysical assays: (i) chemical binding assay, (ii) surface plasmon resonance spectroscopy (SPR), (iii) solid-state (31)P-NMR, and (iv) differential scanning calorimetry (DSC). SPR revealed low affinity PCr/phospholipid interaction that additionally induced changes in liposome shape as indicated by NMR and SPR. Additionally, DSC revealed evidence for membrane packing effects by PCr, as seen by altered lipid phase transition. Finally, PCr efficiently protected against membrane permeabilization in two different model systems: liposome-permeabilization by the membrane-active peptide melittin, and erythrocyte hemolysis by the oxidative drug doxorubicin, hypoosmotic stress or the mild detergent saponin. These findings suggest a new molecular basis for non-energy related functions of PCr and its cyclic analogue. PCr/phospholipid interaction and alteration of membrane structure may not only protect cellular membranes against various insults, but could

  5. CD36 Protein Influences Myocardial Ca2+ Homeostasis and Phospholipid Metabolism

    PubMed Central

    Pietka, Terri A.; Sulkin, Matthew S.; Kuda, Ondrej; Wang, Wei; Zhou, Dequan; Yamada, Kathryn A.; Yang, Kui; Su, Xiong; Gross, Richard W.; Nerbonne, Jeanne M.; Efimov, Igor R.; Abumrad, Nada A.

    2012-01-01

    Sarcolemmal CD36 facilitates myocardial fatty acid (FA) uptake, which is markedly reduced in CD36-deficient rodents and humans. CD36 also mediates signal transduction events involving a number of cellular pathways. In taste cells and macrophages, CD36 signaling was recently shown to regulate store-responsive Ca2+ flux and activation of Ca2+-dependent phospholipases A2 that cycle polyunsaturated FA into phospholipids. It is unknown whether CD36 deficiency influences myocardial Ca2+ handling and phospholipid metabolism, which could compromise the heart, typically during stresses. Myocardial function was examined in fed or fasted (18–22 h) CD36−/− and WT mice. Echocardiography and telemetry identified conduction anomalies that were associated with the incidence of sudden death in fasted CD36−/− mice. No anomalies or death occurred in WT mice during fasting. Optical imaging of perfused hearts from fasted CD36−/− mice documented prolongation of Ca2+ transients. Consistent with this, knockdown of CD36 in cardiomyocytes delayed clearance of cytosolic Ca2+. Hearts of CD36−/− mice (fed or fasted) had 3-fold higher SERCA2a and 40% lower phospholamban levels. Phospholamban phosphorylation by protein kinase A (PKA) was enhanced after fasting reflecting increased PKA activity and cAMP levels in CD36−/− hearts. Abnormal Ca2+ homeostasis in the CD36−/− myocardium associated with increased lysophospholipid content and a higher proportion of 22:6 FA in phospholipids suggests altered phospholipase A2 activity and changes in membrane dynamics. The data support the role of CD36 in coordinating Ca2+ homeostasis and lipid metabolism and the importance of this role during myocardial adaptation to fasting. Potential relevance of the findings to CD36-deficient humans would need to be determined. PMID:23019328

  6. Sterol-Modified Phospholipids: Cholesterol and Phospholipid Chimeras with Improved Biomembrane Properties

    PubMed Central

    Huang, Zhaohua; Szoka, Francis C.

    2009-01-01

    We synthesized a family of sterol-modified glycerophospholipids (SML) in which the sn-1 or sn-2 position is covalently attached to cholesterol and the alternative position contains an aliphatic chain. The SML were used to explore how anchoring cholesterol to a phospholipid affects cholesterol behavior in a bilayer. Notably, cholesterol in the SML retains the membrane condensing properties of free cholesterol regardless of the chemistry or position of its attachment to the glycerol moiety of the phospholipid. SMLs by themselves formed liposomes upon hydration and in mixtures between an SML and diacylglycerophospholipids (C14 to C18 chain length) the thermotropic phase transition is eliminated at the SML equivalent of about 30 mole percent free cholesterol. Osmotic-induced contents leakage from SML (C14–C18) liposomes depends upon the linkage and position of cholesterol but in general is similar to that observed in diacylphosphatidylcholine/ cholesterol: 3/2 (mole ratio) liposomes. SML liposomes are exceptionally resistant to contents release in the presence of serum at 37 °C. This is probably due to fact that SML exchange between bilayers is more than 100 fold less than the exchange rate of free cholesterol in the same conditions. Importantly SML liposomes containing doxorubicin are as effective in treating the murine C26 colon carcinoma, as Doxil™ a commercial liposome doxorubicin formulation. SMLs stabilize bilayers but do not exchange hence provide a new tool for biophysical studies on membranes and they may improve liposomal drug delivery in organs predisposed to the extraction of free cholesterol from bilayers, such as; the skin, lung or blood. PMID:18950160

  7. Plasma phospholipid mass transfer rate: relationship to plasma phospholipid and cholesteryl ester transfer activities and lipid parameters.

    PubMed

    Cheung, M C; Wolfbauer, G; Albers, J J

    1996-09-27

    Human plasma phospholipid transfer protein (PLTP) has been shown to facilitate the transfer of phospholipid from liposomes or isolated very low and low density lipoproteins to high density lipoproteins. Its activity in plasma and its physiological function are presently unknown. To elucidate the role of PLTP in lipoprotein metabolism and to delineate factors that may affect the rate of phospholipid transfer between lipoproteins, we determined the plasma phospholipid mass transfer rate (PLTR) in 16 healthy adult volunteers and assessed its relationship to plasma lipid levels, and to phospholipid transfer activity (PLTA) and cholesteryl ester transfer activity (CETA) measured by radioassays. The plasma PLTR in these subjects was 27.2 +/- 11.8 nmol/ml per h at 37 degrees C (mean +/- S.D.), and their PLTA and CETA were 13.0 +/- 1.7 mumol/ml per h and 72.8 +/- 15.7 nmol/ml per h, respectively. Plasma PLTR was correlated directly with total, non-HDL, and HDL triglyceride (rs = 0.76, P < 0.001), total and non-HDL phospholipid (rs > 0.53, P < 0.05), and inversely with HDL free cholesterol (rs = -0.54, P < 0.05), but not with plasma PLTA and CETA. When 85% to 96% of the PLTA in plasma was removed by polyclonal antibodies against recombinant human PLTP, phospholipid mass transfer from VLDL and LDL to HDL was reduced by 50% to 72%, but 80% to 100% of CETA could still be detected. These studies demonstrate that PLTP plays a major role in facilitating the transfer of phospholipid between lipoproteins, and suggest that triglyceride is a significant modulator of intravascular phospholipid transport. Furthermore, most of the PLTP and CETP in human plasma is associated with different particles. Plasma PLTA and CETA were also measured in mouse, rat, hamster, guinea pig, rabbit, dog, pig, and monkey. Compared to human, PLTA in rat and mouse was significantly higher and in rabbit and guinea pig was significantly lower while the remaining animal species had PLTA similar to humans. No

  8. Anti-phospholipid antibodies (aPL) and apoptosis: prothrombin-dependent aPL as a paradigm for phospholipid-dependent interactions with apoptotic cells☆

    PubMed Central

    Rauch, Joyce; D’Agnillo, Paolo; Subang, Rebecca; Levine, Jerrold S.

    2012-01-01

    The natural targets of anti-phospholipid antibodies (aPL) and the stimuli that induce them remain unknown. Apoptotic cells have been proposed as both potential targets and immunogens for anti-phospholipid antibodies. Demonstration of selective recognition by anti-phospholipid antibodies provides support for apoptotic cells as antigenic targets. Here, we summarize data showing that prothrombin (PT) binds to apoptotic, but not viable, cells, and that apoptotic-cell bound prothrombin provides a target for human polyclonal and murine monoclonal lupus anticoagulant (LA) antibodies. We discuss findings for two monoclonal lupus anticoagulant antibodies that have high (antibody 29J3-62) or low (antibody 29I4-24) affinity, respectively, for soluble prothrombin. Despite their very different affinities for soluble prothrombin, both monoclonal antibodies reacted similarly with prothrombin bound to phospholipid or apoptotic cells. Furthermore, both antibodies enhanced the binding of prothrombin to apoptotic cells. We propose that the recognition of apoptotic cells by these prothrombin-dependent monoclonal antibodies provides a paradigm for other anti-phospholipid autoantibodies. 29I4-24 is prototypical of phospholipid-dependent anti-phospholipid antibodies, while 29J3-62 represents a prototype for phospholipid-independent anti-phospholipid antibodies. Proteins such as prothrombin and β2-glycoprotein I (β2GPI) bind to apoptotic cells, thereby enhancing the recognition of apoptotic cells by anti-phospholipid antibodies. Furthermore, anti-phospholipid antibodies potentiate the interaction of these proteins with apoptotic cells. While it is unclear whether apoptotic cells are the inducing stimuli in patients with anti-phospholipid antibodies or even whether anti-phospholipid antibodies interact with apoptotic cells in vivo, it is nonetheless clear that anti-phospholipid antibodies have the potential to affect both the procoagulant activity and the uptake and clearance of

  9. Possible mechanism of adhesion in a mica supported phospholipid bilayer

    SciTech Connect

    Pertsin, Alexander; Grunze, Michael

    2014-05-14

    Phospholipid bilayers supported on hydrophilic solids like silica and mica play a substantial role in fundamental studies and technological applications of phospholipid membranes. In both cases the molecular mechanism of adhesion between the bilayer and the support is of primary interest. Since the possibilities of experimental methods in this specific area are rather limited, the methods of computer simulation acquire great importance. In this paper we use the grand canonical Monte Carlo technique and an atomistic force field to simulate the behavior of a mica supported phospholipid bilayer in pure water as a function of the distance between the bilayer and the support. The simulation reveals a possible adhesion mechanism, where the adhesion is due to individual lipid molecules that protrude from the bilayer and form widely spaced links with the support. Simultaneously, the bilayer remains separated from the bilayer by a thin water interlayer which maintains the bilayer fluidity.

  10. Phospholipid flippases: building asymmetric membranes and transport vesicles

    PubMed Central

    Sebastian, Tessy T.; Baldridge, Ryan D.; Xu, Peng; Graham, Todd R.

    2012-01-01

    Phospholipid flippases in the type IV P-type ATPase family (P4-ATPases) are essential components of the Golgi, plasma membrane and endosomal system that play critical roles in membrane biogenesis. These pumps flip phospholipid across the bilayer to create an asymmetric membrane structure with substrate phospholipids, such as phosphatidylserine and phosphatidylethanolamine, enriched within the cytosolic leaflet. The P4-ATPases also help form transport vesicles that bud from Golgi and endosomal membranes, thereby impacting the sorting and localization of many different proteins in the secretory and endocytic pathways. At the organismal level, P4-ATPase deficiencies are linked to liver disease, obesity, diabetes, hearing loss, neurological deficits, immune deficiency and reduced fertility. Here, we review the biochemical, cellular and physiological functions of P4-ATPases, with an emphasis on their roles in vesicle-mediated protein transport. PMID:22234261

  11. Neutron diffraction studies of amphipathic helices in phospholipid bilayers

    SciTech Connect

    Bradshaw, J.P.; Gilchrist, P.J.; Duff, K.C.; Saxena, A.M.

    1994-12-31

    The structural feature which is thought to facilitate the interaction of many peptides with phospholipid bilayers is the ability to fold into an amphipathic helix. In most cases the exact location and orientation of this helix with respect to the membrane is not known, and may vary with factors such as pH and phospholipid content of the bilayer. The growing interest in this area is stimulated by indications that similar interactions can contribute to the binding of certain hormones to their cell-surface receptors. We have been using the techniques of neutron diffraction from stacked phospholipid bilayers in an attempt to investigate this phenomenon with a number of membrane-active peptides. Here we report some of our findings with three of these: the bee venom melittin; the hormone calcitonin; and a synthetic peptide representing the ion channel fragment of influenza A M2 protein.

  12. NMR analyses of deuterated phospholipids isolated from Pichia angusta

    NASA Astrophysics Data System (ADS)

    Massou, S.; Augé, S.; Tropis, M.; Lindley, N. D.; Milon, A.

    1998-02-01

    The phospholipid composition of methylotrophic yeasts grown on deuterated and hydrogenated media has been determined by proton and phosphorus NMR. By using a line narrowing solvent, we could obtain linewidth lower than 2 Hz, and all the resonances could be resolved. Phospholipids were identified on the basis of their chemical shift and by 31P - H correlations (HMQC - HOHAHA gradient enhanced experiments). We have thus analysed qualitatively and quantitatively lipids mixtures directly after chloroform-methanol extraction. The lipid composition is deeply modified after growth in deuterated medium were phosphatidyl Inositol (PI) becomes the major lipid, instead of a PC, PS, PI mixture in hydrogenated conditions. La composition en phospholipides de levures méthylotrophes ayant poussé sur des milieux de cultures hydrogénés et deutériés a été déterminée par RMN du proton et du phosphore31. L'utilisation d'un solvant d'affinement a permis d'obtenir des largeurs de raies inférieures à 2Hz et de résoudre toutes les classes de phospholipides. Ils sont ensuite identifiés par leur déplacement chimique et par des corrélations phosphore - proton spécifiques (expériences HMQC-HOHAHA gradients). Cette approche a permis une analyse qualitative et quantitative de mélanges de phospholipides directement après extraction au chloroforme-méthanol. La composition en phospholipides est profondément modifiée lors de la croissance en milieu perdeutérié où l'on observe un lipide majoritaire, le phosphatidyl Inositol (PI), au lieu d'un mélange PC, PS PI en milieu hydrogéné.

  13. Autoimmunity, phospholipid-reacting antibodies and malaria immunity.

    PubMed

    Gomes, L R; Martins, Y C; Ferreira-da-Cruz, M F; Daniel-Ribeiro, C T

    2014-10-01

    Several questions regarding the production and functioning of autoantibodies (AAb) during malaria infection remain open. Here we provide an overview of studies conducted in our laboratory that shed some light on the questions of whether antiphospholipid antibodies (aPL) and other AAb associated with autoimmune diseases (AID) can recognize Plasmodia antigens and exert anti-parasite activity; and whether anti-parasite phospholipid antibodies, produced in response to malaria, can inhibit phospholipid-induced inflammatory responses and protect against the pathogenesis of severe malaria. Our work showed that sera from patients with AID containing AAb against dsDNA, ssDNA, nuclear antigens (ANA), actin, cardiolipin (aCL) and erythrocyte membrane antigens recognize plasmodial antigens and can, similarly to monoclonal AAb of several specificities including phospholipid, inhibit the growth of P. falciparum in vitro. However, we did not detect a relationship between the presence of anti-glycosylphosphatidylinositol (GPI) antibodies in the serum and asymptomatic malaria infection, although we did register a relationship between these antibodies and parasitemia levels in infected individuals. Taken together, these results indicate that autoimmune responses mediated by AAb of different specificities, including phospholipid, may have anti-plasmodial activity and protect against malaria, although it is not clear whether anti-parasite phospholipid antibodies can mediate the same effect. The potential effect of anti-parasite phospholipid antibodies in malarious patients that are prone to the development of systemic lupus erythematosus or antiphospholipid syndrome, as well as the (possibly protective?) role of the (pathogenic) aPL on the malaria symptomatology and severity in these individuals, remain open questions.

  14. Protein Turnover during in vitro Tissue Engineering

    PubMed Central

    Li, Qiyao; Chang, Zhen; Oliveira, Gisele; Xiong, Maiyer; Smith, Lloyd M.; Frey, Brian L.; Welham, Nathan V.

    2015-01-01

    Repopulating acellular biological scaffolds with phenotypically appropriate cells is a promising approach for regenerating functional tissues and organs. Under this tissue engineering paradigm, reseeded cells are expected to remodel the scaffold by active protein synthesis and degradation; however, the rate and extent of this remodeling remain largely unknown. Here, we present a technique to measure dynamic proteome changes during in vitro remodeling of decellularized tissue by reseeded cells, using vocal fold mucosa as the model system. Decellularization and recellularization were optimized, and a stable isotope labeling strategy was developed to differentiate remnant proteins constituting the original scaffold from proteins newly synthesized by reseeded cells. Turnover of matrix and cellular proteins and the effects of cell-scaffold interaction were elucidated. This technique sheds new light on in vitro tissue remodeling and the process of tissue regeneration, and is readily applicable to other tissue and organ systems. PMID:26724458

  15. Microbial Turnover of Fixed Nitrogen Compounds in Oceanic Crustal Fluids

    NASA Astrophysics Data System (ADS)

    Kraft, B.; Wankel, S. D.; Glazer, B. T.; Huber, J. A.; Girguis, P. R.

    2014-12-01

    Oceanic crust is the largest aquifer on Earth, with a massive volume of seawater advecting through the basaltic crust. The microbiome of this deep marine subsurface biosphere has been estimated to be substantial, and consequently their metabolic activity may have major influences on global biogeochemical cycles. While earlier and recent studies provide insight into the microbial community composition of oceanic crustal fluids, information on the microbial ecophysiology is broadly missing. Therefore, to investigate the microbial transformation of fixed nitrogen compounds in crustal aquifer fluids, fluids were sampled from different horizons of two neighbouring CORK (Circulation Obviation Retrofit Kit) observatories at the North Pond sediment pond. This site is located on the western flank of the Mid Atlantic Ridge and is characterized by relatively young oceanic crust and cold fluids. The crustal fluids contain oxygen and nitrate, which potentially both may serve as electron acceptor for respiration. In a multidisciplinary approach we combined stable isotope incubations, determination of the natural isotopic compositions and plan to analyse relevant functional genes from a metagenomic dataset to investigate the nitrogen cycling at North Pond. The turnover of fixed nitrogen in oceanic crustal fluids may have important implications for the understanding of the global nitrogen cycle.

  16. New prodrugs based on phospholipid-nucleoside conjugates

    SciTech Connect

    MacCoss, M.

    1982-02-03

    A method is described for the preparation of defined, isomerically pure phospholipid-nucleoside conjugates as a prodrug in which the drug (araC) is attached to the phospholipid by a monophosphate linkage. Key intermediates in the process involve selective blocking and deblocking of the nucleoside derivative. These particular monophosphate-linked derivatives represent a new class of prodrug, which are useful by themselves or in combination with diphosphate linked derivatives. Several new compositions involving diphosphate linked derivatives are described in which the products are isomerically pure and having defined fatty acid chain lengths.

  17. Light and phospholipid driven structural transitions in nematic microdroplets

    NASA Astrophysics Data System (ADS)

    Dubtsov, A. V.; Pasechnik, S. V.; Shmeliova, D. V.; Kralj, Samo

    2014-10-01

    We studied the UV-irradiation and phospholipid driven bipolar-radial structural transitions within azoxybenzene nematic liquid crystal (LC) droplets dispersed in water. It was found that the UV-irradiation induced trans-cis isomerisation of LC molecules could enable structural transitions into radial-type configurations at a critical UV-irradiation time tc. In particular, we show that under appropriate conditions, a value of tc could sensitively fingerprint the concentration of phospholipid molecules present in LC-water dispersions. This demonstrated proof-of-principle mechanism could be exploited for development of sensitive detectors for specific nanoparticles (NPs), where value of tc reveals concentration of NPs.

  18. The Link between Training Satisfaction, Work Engagement and Turnover Intention

    ERIC Educational Resources Information Center

    Memon, Mumtaz Ali; Salleh, Rohani; Baharom, Mohamed Noor Rosli

    2016-01-01

    Purpose: The purpose of this paper is to examine the casual relationship between training satisfaction, work engagement (WE) and turnover intention and the mediating role of WE between training satisfaction and turnover intention. Design/methodology/approach: Data were collected from 409 oil and gas professionals using an email survey…

  19. Turnover rates and organizational performance: a meta-analysis.

    PubMed

    Park, Tae-Youn; Shaw, Jason D

    2013-03-01

    The authors conducted a meta-analysis of the relationship between turnover rates and organizational performance to (a) determine the magnitude of the relationship; (b) test organization-, context-, and methods-related moderators of the relationship; and (c) suggest future directions for the turnover literature on the basis of the findings. The results from 300 total correlations (N = 309,245) and 110 independent correlations (N = 120,066) show that the relationship between total turnover rates and organizational performance is significant and negative (ρ = -.15). In addition, the relationship is more negative for voluntary (ρ = -.15) and reduction-in-force turnover (ρ = -.17) than for involuntary turnover (ρ = -.01). Moreover, the meta-analytic correlation differs significantly across several organization- and context-related factors (e.g., types of employment system, dimensions of organizational performance, region, and entity size). Finally, in sample-level regressions, the strength of the turnover rates-organizational performance relationship significantly varies across different average levels of total and voluntary turnover rates, which suggests a potential curvilinear relationship. The authors outline the practical magnitude of the findings and discuss implications for future organizational-level turnover research.

  20. Teacher Turnover, Teacher Quality, and Student Achievement in DCPS

    ERIC Educational Resources Information Center

    Adnot, Melinda; Dee, Thomas; Katz, Veronica; Wyckoff, James

    2017-01-01

    In practice, teacher turnover appears to have negative effects on school quality as measured by student performance. However, some simulations suggest that turnover can instead have large positive effects under a policy regime in which low-performing teachers can be accurately identified and replaced with more effective teachers. This study…

  1. Analysis of the Educational Personnel System: IV. Teacher Turnover.

    ERIC Educational Resources Information Center

    Keeler, Emmett B.

    This report attempts to predict the rates of teacher turnover in the 1970s, which teachers will leave the profession, and what the effects of turnover will be on the educational personnel system. The overall termination rate has varied from six to 11 percent over the last 15 years. An analysis of recent changes in the teaching profession is used…

  2. How Multiple Interventions Influenced Employee Turnover: A Case Study.

    ERIC Educational Resources Information Center

    Hatcher, Timothy

    1999-01-01

    A 3-year study of 46 textile industry workers identified causes of employee turnover (supervision, training, organizational communication) using performance analysis. A study of multiple interventions based on the analysis resulted in changes in orientation procedures, organizational leadership, and climate, reducing turnover by 24%. (SK)

  3. Re-Examining the Relationship between Age and Voluntary Turnover

    ERIC Educational Resources Information Center

    Ng, Thomas W. H.; Feldman, Daniel C.

    2009-01-01

    In their quantitative review of the literature, Healy, Lehman, and McDaniel [Healy, M. C., Lehman, M., & McDaniel, M. A. (1995). Age and voluntary turnover: A quantitative review. "Personnel Psychology, 48", 335-345] concluded that age is only weakly related to voluntary turnover (average r = -0.08). However, with the significant changes in…

  4. Predicting Turnover: Validating the Intent to Leave Child Welfare Scale

    ERIC Educational Resources Information Center

    Auerbach, Charles; Schudrich, Wendy Zeitlin; Lawrence, Catherine K.; Claiborne, Nancy; McGowan, Brenda G.

    2014-01-01

    A number of proxies have been used in child welfare workforce research to represent actual turnover; however, there have been no psychometric studies to validate a scale specifically designed for this purpose. The Intent to Leave Child Welfare Scale is a proxy for actual turnover that measures workers' intention to leave. This scale was validated…

  5. Organizational Characteristics Associated with Staff Turnover in Nursing Homes

    ERIC Educational Resources Information Center

    Castle, Nicholas G.; Engberg, John

    2006-01-01

    Purpose: The association between certified nurse aide, licensed practical nurse, and registered nurse turnover and the organizational characteristics of nursing homes are examined. Design and Methods: Hypotheses for eight organizational characteristics are examined (staffing levels, top management turnover, resident case mix, facility quality,…

  6. Fish Oil Supplementation in Humans: Effects on Platelet Responses, Phospholipid Composition and Metabolism.

    NASA Astrophysics Data System (ADS)

    Skeaff, Clark Murray

    Platelets are believed to play a significant role in the development of occlusive vascular diseases. Epidemiological reports have correlated the high intake of marine foods, rich in omega3 fatty acids, with diminished platelet responses and a low incidence of arterial thrombosis and myocardial infarction. The activation of platelet responses is mediated by the accelerated metabolism of membrane phospholipid; therefore, it was of interest to examine, in human volunteers, the effect of a dietary fish oil concentrate (MaxEPA), enriched in omega 3 polyunsaturated fatty acids, on platelet aggregation and phospholipid composition/metabolism. For the complete separation of cellular phospholipids, a one-dimensional thin-layer chromatography system using silica-gel pre-coated glass plates was developed. The solvent system consisted of CHCl_3/CH_3OH/CH _3COOH/H_2O (50/37.5/3.5/2.0, by vol), required approximately 90-120 minutes for full phospholipid separation, and was highly reproducible even under conditions of variable humidity and temperature. The consumption of a fish oil concentrate (MaxEPA) for 6 weeks (3.6 g of 20:5omega 3 and 2.4 g of 22:6omega3 per day) diminished both the collagen- and platelet activating factor-induced maximum aggregation responses in washed human platelet suspensions by 50.1% and 27.2%, respectively, as compared to initial unsupplemented baseline responses. Thrombin -induced aggregation remained unchanged. Thrombin stimulation of intact human platelets produced a significant decrease in the mass of phosphatidylinositol in plasma membrane. In platelets pre-labelled with (2-^3H) glycerol and stimulated with either thrombin or low-dose collagen, the loss of (^3H) phosphatidylinositol did not differ between those subjects consuming olive oil or fish oil. Likewise, the thrombin-stimulated accumulation of diacylglycerol, an activator of protein kinase C, was unaffected by fish oil consumption. The ratio of collagen -induced increase in radioactivity

  7. Relationship between analgesia and turnover of brain biogenic amines.

    PubMed

    Bensemana, D; Gascon, A L

    1978-10-01

    The analgesic activity of morphine, delta9THC, and sodium salicylate was studied concomitantly with changes in brainstem and cortex turnover of dopamine (DA), noradrenaline (NA), and serotonin (5HT). The results show that a correlation exists between the presence of analgesia and the increased turnover rates of the three biogenic amines. Morphine and sodium salicylate induced analgesia is accompanied by an increased turnover rate of all three biogenic amines; delta9THC-induced analgesia is accompanied by an increased turnover rate of DA and 5HT only. There is, however, no consistent relationship between the degree of analgesia and the degree of change in the turnover rates. The existence of the endogenous morphine-like substances, endorphines, may explain why morphine analgesia is distinct from that of delta9THC and sodium salicylate. The possible relationship between this morphine-like substance and biogenic amines is discussed.

  8. One hundred years of employee turnover theory and research.

    PubMed

    Hom, Peter W; Lee, Thomas W; Shaw, Jason D; Hausknecht, John P

    2017-03-01

    We review seminal publications on employee turnover during the 100-year existence of the Journal of Applied Psychology. Along with classic articles from this journal, we expand our review to include other publications that yielded key theoretical and methodological contributions to the turnover literature. We first describe how the earliest papers examined practical methods for turnover reduction or control and then explain how theory development and testing began in the mid-20th century and dominated the academic literature until the turn of the century. We then track 21st century interest in the psychology of staying (rather than leaving) and attitudinal trajectories in predicting turnover. Finally, we discuss the rising scholarship on collective turnover given the centrality of human capital flight to practitioners and to the field of human resource management strategy. (PsycINFO Database Record

  9. Microbial communities mediating algal detritus turnover under anaerobic conditions

    PubMed Central

    Morrison, Jessica M.; Murphy, Chelsea L.; Baker, Kristina; Zamor, Richard M.; Nikolai, Steve J.; Wilder, Shawn; Elshahed, Mostafa S.

    2017-01-01

    Background Algae encompass a wide array of photosynthetic organisms that are ubiquitously distributed in aquatic and terrestrial habitats. Algal species often bloom in aquatic ecosystems, providing a significant autochthonous carbon input to the deeper anoxic layers in stratified water bodies. In addition, various algal species have been touted as promising candidates for anaerobic biogas production from biomass. Surprisingly, in spite of its ecological and economic relevance, the microbial community involved in algal detritus turnover under anaerobic conditions remains largely unexplored. Results Here, we characterized the microbial communities mediating the degradation of Chlorella vulgaris (Chlorophyta), Chara sp. strain IWP1 (Charophyceae), and kelp Ascophyllum nodosum (phylum Phaeophyceae), using sediments from an anaerobic spring (Zodlteone spring, OK; ZDT), sludge from a secondary digester in a local wastewater treatment plant (Stillwater, OK; WWT), and deeper anoxic layers from a seasonally stratified lake (Grand Lake O’ the Cherokees, OK; GL) as inoculum sources. Within all enrichments, the majority of algal biomass was metabolized within 13–16 weeks, and the process was accompanied by an increase in cell numbers and a decrease in community diversity. Community surveys based on the V4 region of the 16S rRNA gene identified different lineages belonging to the phyla Bacteroidetes, Proteobacteria (alpha, delta, gamma, and epsilon classes), Spirochaetes, and Firmicutes that were selectively abundant under various substrate and inoculum conditions. Within all kelp enrichments, the microbial communities structures at the conclusion of the experiment were highly similar regardless of the enrichment source, and were dominated by the genus Clostridium, or family Veillonellaceae within the Firmicutes. In all other enrichments the final microbial community was dependent on the inoculum source, rather than the type of algae utilized as substrate. Lineages enriched

  10. Fungal–bacterial dynamics and their contribution to terrigenous carbon turnover in relation to organic matter quality

    PubMed Central

    Fabian, Jenny; Zlatanovic, Sanja; Mutz, Michael; Premke, Katrin

    2017-01-01

    Ecological functions of fungal and bacterial decomposers vary with environmental conditions. However, the response of these decomposers to particulate organic matter (POM) quality, which varies widely in aquatic ecosystems, remains poorly understood. Here we investigated how POM pools of substrates of different qualities determine the relative contributions of aquatic fungi and bacteria to terrigenous carbon (C) turnover. To this end, surface sediments were incubated with different POM pools of algae and/or leaf litter. 13C stable-isotope measurements of C mineralization were combined with phospholipid analysis to link the metabolic activities and substrate preferences of fungal and bacterial heterotrophs to dynamics in their abundance. We found that the presence of labile POM greatly affected the dominance of bacteria over fungi within the degrader communities and stimulated the decomposition of beech litter primarily through an increase in metabolic activity. Our data indicated that fungi primarily contribute to terrigenous C turnover by providing litter C for the microbial loop, whereas bacteria determine whether the supplied C substrate is assimilated into biomass or recycled back into the atmosphere in relation to phosphate availability. Thus, this study provides a better understanding of the role of fungi and bacteria in terrestrial–aquatic C cycling in relation to environmental conditions. PMID:27983721

  11. Regulation and Essentiality of the StAR-related Lipid Transfer (START) Domain-containing Phospholipid Transfer Protein PFA0210c in Malaria Parasites*

    PubMed Central

    Hill, Ross J.; Ringel, Alessa; Knuepfer, Ellen; Moon, Robert W.; Blackman, Michael J.; van Ooij, Christiaan

    2016-01-01

    StAR-related lipid transfer (START) domains are phospholipid- or sterol-binding modules that are present in many proteins. START domain-containing proteins (START proteins) play important functions in eukaryotic cells, including the redistribution of phospholipids to subcellular compartments and delivering sterols to the mitochondrion for steroid synthesis. How the activity of the START domain is regulated remains unknown for most of these proteins. The Plasmodium falciparum START protein PFA0210c (PF3D7_0104200) is a broad-spectrum phospholipid transfer protein that is conserved in all sequenced Plasmodium species and is most closely related to the mammalian START proteins STARD2 and STARD7. PFA0210c is unusual in that it contains a signal sequence and a PEXEL export motif that together mediate transfer of the protein from the parasite to the host erythrocyte. The protein also contains a C-terminal extension, which is very uncommon among mammalian START proteins. Whereas the biochemical properties of PFA0210c have been characterized, the function of the protein remains unknown. Here, we provide evidence that the unusual C-terminal extension negatively regulates phospholipid transfer activity. Furthermore, we use the genetically tractable Plasmodium knowlesi model and recently developed genetic technology in P. falciparum to show that the protein is essential for growth of the parasite during the clinically relevant asexual blood stage life cycle. Finally, we show that the regulation of phospholipid transfer by PFA0210c is required in vivo, and we identify a potential second regulatory domain. These findings provide insight into a novel mechanism of regulation of phospholipid transfer in vivo and may have important implications for the interaction of the malaria parasite with its host cell. PMID:27694132

  12. Dietary DHA supplementation causes selective changes in phospholipids from different brain regions in both wild type mice and the Tg2576 mouse model of Alzheimer's disease

    PubMed Central

    Bascoul-Colombo, Cécile; Guschina, Irina A.; Maskrey, Benjamin H.; Good, Mark; O'Donnell, Valerie B.; Harwood, John L.

    2016-01-01

    Alzheimer's disease (AD) is of major concern in ageing populations and we have used the Tg2576 mouse model to understand connections between brain lipids and amyloid pathology. Because dietary docosahexaenoic acid (DHA) has been identified as beneficial, we compared mice fed with a DHA-supplemented diet to those on a nutritionally-sufficient diet. Major phospholipids from cortex, hippocampus and cerebellum were separated and analysed. Each phosphoglyceride had a characteristic fatty acid composition which was similar in cortex and hippocampus but different in the cerebellum. The biggest changes on DHA-supplementation were within ethanolamine phospholipids which, together with phosphatidylserine, had the highest proportions of DHA. Reciprocal alterations in DHA and arachidonate were found. The main diet-induced alterations were found in ethanolamine phospholipids, (and included their ether derivatives), as were the changes observed due to genotype. Tg mice appeared more sensitive to diet with generally lower DHA percentages when on the standard diet and higher relative proportions of DHA when the diet was supplemented. All four major phosphoglycerides analysed showed age-dependent decreases in polyunsaturated fatty acid contents. These data provide, for the first time, a detailed evaluation of phospholipids in different brain areas previously shown to be relevant to behaviour in the Tg2576 mouse model for AD. The lipid changes observed with genotype are consistent with the subtle alterations found in AD patients, especially for the ethanolamine phospholipid molecular species. They also emphasise the contrasting changes in fatty acid content induced by DHA supplementation within individual phospholipid classes. PMID:26968097

  13. Large-scale variation in boreal and temperate forest carbon turnover rate related to climate

    NASA Astrophysics Data System (ADS)

    Thurner, Martin; Beer, Christian; Carvalhais, Nuno; Forkel, Matthias; Santoro, Maurizio; Tum, Markus; Schmullius, Christiane

    2016-05-01

    Vegetation carbon turnover processes in forest ecosystems and their dominant drivers are far from being understood at a broader scale. Many of these turnover processes act on long timescales and include a lateral dimension and thus can hardly be investigated by plot-level studies alone. Making use of remote sensing-based products of net primary production (NPP) and biomass, here we show that spatial gradients of carbon turnover rate (k) in Northern Hemisphere boreal and temperate forests are explained by different climate-related processes depending on the ecosystem. k is related to frost damage effects and the trade-off between growth and frost adaptation in boreal forests, while drought stress and climate effects on insects and pathogens can explain an elevated k in temperate forests. By identifying relevant processes underlying broadscale patterns in k, we provide the basis for a detailed exploration of these mechanisms in field studies, and ultimately the improvement of their representations in global vegetation models (GVMs).

  14. Changes in bone Pb accumulation: cause and effect of altered bone turnover.

    PubMed

    Brito, José A A; Costa, Isabel M; E Silva, Alexandra Maia; Marques, José M S; Zagalo, Carlos M; Cavaleiro, Inês I B; Fernandes, Tânia A P; Gonçalves, Luísa L

    2014-07-01

    This paper assesses the magnitude of Pb uptake in cortical and trabecular bones in healthy animals and animals with altered balance in bone turnover, and the impact of exposure to Pb on serum markers of bone formation and resorption. The results reported herein provide physiological evidence that Pb distributes differently in central compartments in Pb metabolism, such as cortical and trabecular bones, in healthy animals and animals with altered balance in bone turnover, and that exposure to Pb does have an impact on bone resorption resulting in OC-dependent osteopenia. These findings show that Pb may play a role in the etiology of osteoporosis and that its concentration in bones varies as a result of altered bone turnover characteristic of this disease, a long standing question in the field. In addition, data collected in this study are consistent with previous observations of increased half-life of Pb in bone at higher exposures. This evidence is relevant for the necessary revision of current physiologically based kinetic models for Pb in humans.

  15. Greater soil carbon stocks and faster turnover rates with increasing agricultural productivity

    NASA Astrophysics Data System (ADS)

    Sanderman, Jonathan; Creamer, Courtney; Baisden, W. Troy; Farrell, Mark; Fallon, Stewart

    2017-01-01

    Devising agricultural management schemes that enhance food security and soil carbon levels is a high priority for many nations. However, the coupling between agricultural productivity, soil carbon stocks and organic matter turnover rates is still unclear. Archived soil samples from four decades of a long-term crop rotation trial were analyzed for soil organic matter (SOM) cycling-relevant properties: C and N content, bulk composition by nuclear magnetic resonance (NMR) spectroscopy, amino sugar content, short-term C bioavailability assays, and long-term C turnover rates by modeling the incorporation of the bomb spike in atmospheric 14C into the soil. After > 40 years under consistent management, topsoil carbon stocks ranged from 14 to 33 Mg C ha-1 and were linearly related to the mean productivity of each treatment. Measurements of SOM composition demonstrated increasing amounts of plant- and microbially derived SOM along the productivity gradient. Under two modeling scenarios, radiocarbon data indicated overall SOM turnover time decreased from 40 to 13 years with increasing productivity - twice the rate of decline predicted from simple steady-state models or static three-pool decay rates of measured C pool distributions. Similarly, the half-life of synthetic root exudates decreased from 30.4 to 21.5 h with increasing productivity, indicating accelerated microbial activity. These findings suggest that there is a direct feedback between accelerated biological activity, carbon cycling rates and rates of carbon stabilization with important implications for how SOM dynamics are represented in models.

  16. Water level changes affect carbon turnover and microbial community composition in lake sediments.

    PubMed

    Weise, Lukas; Ulrich, Andreas; Moreano, Matilde; Gessler, Arthur; Kayler, Zachary E; Steger, Kristin; Zeller, Bernd; Rudolph, Kristin; Knezevic-Jaric, Jelena; Premke, Katrin

    2016-05-01

    Due to climate change, many lakes in Europe will be subject to higher variability of hydrological characteristics in their littoral zones. These different hydrological regimes might affect the use of allochthonous and autochthonous carbon sources. We used sandy sediment microcosms to examine the effects of different hydrological regimes (wet, desiccating, and wet-desiccation cycles) on carbon turnover. (13)C-labelled particulate organic carbon was used to trace and estimate carbon uptake into bacterial biomass (via phospholipid fatty acids) and respiration. Microbial community changes were monitored by combining DNA- and RNA-based real-time PCR quantification and terminal restriction fragment length polymorphism (T-RFLP) analysis of 16S rRNA. The shifting hydrological regimes in the sediment primarily caused two linked microbial effects: changes in the use of available organic carbon and community composition changes. Drying sediments yielded the highest CO2 emission rates, whereas hydrological shifts increased the uptake of allochthonous organic carbon for respiration. T-RFLP patterns demonstrated that only the most extreme hydrological changes induced a significant shift in the active and total bacterial communities. As current scenarios of climate change predict an increase of drought events, frequent variations of the hydrological regimes of many lake littoral zones in central Europe are anticipated. Based on the results of our study, this phenomenon may increase the intensity and amplitude in rates of allochthonous organic carbon uptake and CO2 emissions.

  17. Water level changes affect carbon turnover and microbial community composition in lake sediments

    PubMed Central

    Weise, Lukas; Ulrich, Andreas; Moreano, Matilde; Gessler, Arthur; E. Kayler, Zachary; Steger, Kristin; Zeller, Bernd; Rudolph, Kristin; Knezevic-Jaric, Jelena; Premke, Katrin

    2016-01-01

    Due to climate change, many lakes in Europe will be subject to higher variability of hydrological characteristics in their littoral zones. These different hydrological regimes might affect the use of allochthonous and autochthonous carbon sources. We used sandy sediment microcosms to examine the effects of different hydrological regimes (wet, desiccating, and wet-desiccation cycles) on carbon turnover. 13C-labelled particulate organic carbon was used to trace and estimate carbon uptake into bacterial biomass (via phospholipid fatty acids) and respiration. Microbial community changes were monitored by combining DNA- and RNA-based real-time PCR quantification and terminal restriction fragment length polymorphism (T-RFLP) analysis of 16S rRNA. The shifting hydrological regimes in the sediment primarily caused two linked microbial effects: changes in the use of available organic carbon and community composition changes. Drying sediments yielded the highest CO2 emission rates, whereas hydrological shifts increased the uptake of allochthonous organic carbon for respiration. T-RFLP patterns demonstrated that only the most extreme hydrological changes induced a significant shift in the active and total bacterial communities. As current scenarios of climate change predict an increase of drought events, frequent variations of the hydrological regimes of many lake littoral zones in central Europe are anticipated. Based on the results of our study, this phenomenon may increase the intensity and amplitude in rates of allochthonous organic carbon uptake and CO2 emissions. PMID:26902802

  18. Interaction of mitochondrial malate dehydrogenase monomer with phospholipid vesicles.

    PubMed Central

    Webster, K A; Patel, H V; Freeman, K B; Papahadjopoulos, D

    1979-01-01

    The association between bovine and porcine mitochondrial malate dehydrogenase (EC 1.1.1.37) and phospholipid vesicles was investigated. At concentrations at which malate dehydrogenase exists as a dimer, entrapment within the aqueous compartment but not binding of the 14C-labelled enzyme was observed. The dissociated enzyme was labile to moderate heat and to p-chloromercuribenzoate, but in both cases inactivation was decreased by incubation with suspensions of charged phospholipid vesicles. This suggested an interaction between enzyme subunits and phospholipid, and this was confirmed by direct binding measurements and by studies that followed changes in the fluorescein-labelled enzyme. The circular-dichroism spectra of the enzyme indicated a high alpha-helix content, and suggested that a small conformational change occurred when the enzyme dissociated. Fluorescence data also suggested less-rigid molecules after dissociation. A possible mechanism, based on the flexibility of enzyme monomer and its interaction with phospholipids, by which mitochondrial matrix enzymes are specifically localized in cells, is discussed. PMID:435273

  19. Dictyostelium uses ether-linked inositol phospholipids for intracellular signalling.

    PubMed

    Clark, Jonathan; Kay, Robert R; Kielkowska, Anna; Niewczas, Izabella; Fets, Louise; Oxley, David; Stephens, Len R; Hawkins, Phillip T

    2014-10-01

    Inositol phospholipids are critical regulators of membrane biology throughout eukaryotes. The general principle by which they perform these roles is conserved across species and involves binding of differentially phosphorylated inositol head groups to specific protein domains. This interaction serves to both recruit and regulate the activity of several different classes of protein which act on membrane surfaces. In mammalian cells, these phosphorylated inositol head groups are predominantly borne by a C38:4 diacylglycerol backbone. We show here that the inositol phospholipids of Dictyostelium are different, being highly enriched in an unusual C34:1e lipid backbone, 1-hexadecyl-2-(11Z-octadecenoyl)-sn-glycero-3-phospho-(1'-myo-inositol), in which the sn-1 position contains an ether-linked C16:0 chain; they are thus plasmanylinositols. These plasmanylinositols respond acutely to stimulation of cells with chemoattractants, and their levels are regulated by PIPKs, PI3Ks and PTEN. In mammals and now in Dictyostelium, the hydrocarbon chains of inositol phospholipids are a highly selected subset of those available to other phospholipids, suggesting that different molecular selectors are at play in these organisms but serve a common, evolutionarily conserved purpose.

  20. Hexamodal imaging with porphyrin-phospholipid-coated upconversion nanoparticles.

    PubMed

    Rieffel, James; Chen, Feng; Kim, Jeesu; Chen, Guanying; Shao, Wei; Shao, Shuai; Chitgupi, Upendra; Hernandez, Reinier; Graves, Stephen A; Nickles, Robert J; Prasad, Paras N; Kim, Chulhong; Cai, Weibo; Lovell, Jonathan F

    2015-03-11

    Hexamodal imaging using simple nanoparticles is demonstrated. Porphyrin-phospholipids are used to coat upconversion nanoparticles in order to generate a new biocompatible material. The nanoparticles are characterized in vitro and in vivo for imaging via fluorescence, upconversion, positron emission tomography, computed tomography, Cerenkov luminescence, and photoacoustic tomography.

  1. 21 CFR 862.1575 - Phospholipid test system.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Phospholipid test system. 862.1575 Section 862.1575 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED... treatment of disorders involving lipid (fat) metabolism. (b) Classification. Class I (general controls)....

  2. Comparative Phospholipid Profiles of Control and Glaucomatous Human Trabecular Meshwork

    PubMed Central

    Aribindi, Katyayini; Guerra, Yenifer; Lee, Richard K.; Bhattacharya, Sanjoy K.

    2013-01-01

    Purpose. We compared phospholipid (phosphatidylcholine, phosphatidylserine, phosphatidylethanolamine, and phosphatidylinositol) profiles of control and glaucomatous trabecular meshwork (TM) derived from human donors. Methods. Control TM and most primary open angle glaucoma (POAG) TM were collected from cadaver donors. A select subset of POAG surgical TM samples also were collected for analyses. Lipid extraction was performed using a modification of the Bligh and Dyer method, protein concentrations were determined using the Bradford method, and for select samples confirmed with densitometry of PHAST gels. Lipids were identified and subjected to ratiometric quantification using a TSQ quantum Access Max triple quadrupole mass spectrometer with precursor ion scan (PIS) or neutral ion loss scan (NLS), using appropriate class specific lipid standards. Results. The comparative profiles of phosphatidylcholine, phosphatidylserine, phosphoethanolamine, and phosphatidylinositol between control and glaucomatous TM showed several species common between them. A number of unique lipids in all four phospholipid classes also were identified in control TM that were absent in glaucoma TM and vice versa. Conclusions. A number of phospholipids were found to be uniquely present in control but absent in glaucomatous TM and vice versa. Compared to a previous study of control and POAG blood, a number of these phospholipids are absent locally (TM), as well as systemically (in blood). PMID:23557733

  3. Four Acyltransferases Uniquely Contribute to Phospholipid Heterogeneity in Saccharomyces cerevisiae

    PubMed Central

    Oelkers, Peter; Pokhrel, Keshav

    2016-01-01

    Diverse acyl-CoA species and acyltransferase isoenzymes are components of a complex system that synthesizes glycerophospholipids and triacylglycerols. Saccharomyces cerevisiae has four main acyl-CoA species, two main glycerol-3-phosphate 1-O-acyltransferases (Gat1p, Gat2p), and two main 1-acylglycerol-3-phosphate O-acyltransferases (Lpt1p, Slc1p). The in vivo contribution of these isoenzymes to phospholipid heterogeneity was determined using haploids with compound mutations: gat1Δlpt1Δ, gat2Δlpt1Δ, gat1Δslc1Δ, and gat2Δslc1Δ. All mutations mildly reduced [3H]palmitic acid incorporation into phospholipids relative to triacylglycerol. Electrospray ionization tandem mass spectrometry identified few differences from wild type in gat1Δlpt1Δ, dramatic differences in gat2Δslc1Δ, and intermediate changes in gat2Δlpt1Δ and gat1Δslc1Δ. Yeast expressing Gat1p and Lpt1p had phospholipids enriched with acyl chains that were unsaturated, 18 carbons long, and paired for length. These alterations prevented growth at 18.5°C and in 10% ethanol. Therefore, Gat2p and Slc1p dictate phospholipid acyl chain composition in rich media at 30°C. Slc1p selectively pairs acyl chains of different lengths. PMID:27920551

  4. The Schizosaccharomyces pombe cho1+ gene encodes a phospholipid methyltransferase.

    PubMed Central

    Kanipes, M I; Hill, J E; Henry, S A

    1998-01-01

    The isolation of mutants of Schizosaccharomyces pombe defective in the synthesis of phosphatidylcholine via the methylation of phosphatidylethanolamine is reported. These mutants are choline auxotrophs and fall into two unlinked complementation groups, cho1 and cho2. We also report the analysis of the cho1+ gene, the first structural gene encoding a phospholipid biosynthetic enzyme from S. pombe to be cloned and characterized. The cho1+ gene disruption mutant (cho1Delta) is viable if choline is supplied and resembles the cho1 mutants isolated after mutagenesis. Sequence analysis of the cho1+ gene indicates that it encodes a protein closely related to phospholipid methyltransferases from Saccharomyces cerevisiae and rat. Phospholipid methyltransferases encoded by a rat liver cDNA and the S. cerevisiae OPI3 gene are both able to complement the choline auxotrophy of the S. pombe cho1 mutants. These results suggest that both the structure and function of the phospholipid N-methyltransferases are broadly conserved among eukaryotic organisms. PMID:9755189

  5. PHOSPHOLIPIDS OF FIVE PSEUDOMONAD ARCHETYPES FOR DIFFERENT TOLUENE DEGRADATION PATHWAYS

    EPA Science Inventory

    Liquid chromatography/electrospray ionization/mass spectrometry (LC/ESI/MS) was used to determine phospholipid profiles for five reference pseudomonad strains harboring distinct toluene catabolic pathways: Pseudomonas putida mt-2, Pseudomonas putida F1, Burkholderia cepacia G4, B...

  6. Characterization of associated proteins and phospholipids in natural rubber latex.

    PubMed

    Sansatsadeekul, Jitlada; Sakdapipanich, Jitladda; Rojruthai, Porntip

    2011-06-01

    Non-rubber components present in natural rubber (NR) latex, such as proteins and phospholipids, are presumed to be distributed in the serum fraction as well as surrounding the rubber particle surface. The phospholipid-protein layers covering the rubber particle surface are especially interesting due to their ability to enhance the colloidal stability of NR latex. In this study, we have characterized the components surrounding the NR particle surface and investigated their role in the colloidal stability of NR particles. Proteins from the cream fraction were proteolytically removed from the NR latex and compare to those from the serum fractions using SDS-polyacrylamide gel electrophoresis revealing that both fractions contained similar proteins in certain molecular weights such as 14.5, 25 and 27 kDa. Phospholipids removed from latex by treatment with NaOH were analyzed using (1)H-NMR spectroscopy and several major signals were assignable to -(CH(2))(n)-, -CH(2)OP, -CH(2)OC═O and -OCH(2)CH(2)NH-. These signals are important evidence that indicates phospholipids associate with the rubber chain. The colloidal behavior of rubber lattices before and after removal of protein-lipid membrane was evaluated by zeta potential analysis and scanning electron microscope (SEM). The lowest zeta potential value of NR particles was observed at pH 10, consequently leading to the highest stability of rubber particles. Additionally, SEM micrographs clearly displayed a gray ring near the particle surface corresponding to the protein-lipid membrane layer.

  7. Soft contact lens biomaterials from bioinspired phospholipid polymers.

    PubMed

    Goda, Tatsuro; Ishihara, Kazuhiko

    2006-03-01

    Soft contact lens (SCL) biomaterials originated from the discovery of a poly(2-hydroxyethyl methacrylate) (poly[HEMA])-based hydrogel in 1960. Incorporation of hydrophilic polymers into poly(HEMA) hydrogels was performed in the 1970-1980s, which brought an increase in the equilibrium water content, leading to an enhancement of the oxygen permeability. Nowadays, the poly(HEMA)-based hydrogels have been applied in disposable SCL. At the same time, high oxygen-permeable silicone hydrogels were produced, which made it possible to continually wear SCL. Recently, numerous trials for improving the water wettability of silicone hydrogels have been performed. However, little attention has been paid to improving their anti-biofouling properties and biocompatibility. Since biomimetic phospholipid polymers possess excellent anti-biofouling properties and biocompatibility they have the potential to play a valuable role in the surface modification of the silicone hydrogel. The representative phospholipid polymers containing a 2-methacryloyloxyethyl phosphorylcholine (MPC) unit suppressed nonspecific protein adsorption, increased cell compatibility and contributed to blood compatible biomaterials. The MPC polymer coating on the silicone hydrogel improved its water wettability and biocompatibility, while maintaining high oxygen permeability compared with the original silicone hydrogel. Furthermore, the newly prepared phospholipid-type intermolecular crosslinker made it possible to synthesize a 100% phospholipid polymer hydrogel that can enhance the anti-biofouling properties and biocompatibility. In this review, the authors discuss how polymer hydrogels should be designed in order to obtain a biocompatible SCL and future perspectives.

  8. Calcium-phospholipid enhanced protein phosphorylation in human placenta

    SciTech Connect

    Moore, J.J.; Moore, R.; Cardaman, R.C.

    1986-07-01

    Calcium-activated, phospholipid-dependent protein phosphorylation has not been studied in placenta. Human placental cytosol was subjected to an endogenous protein phosphorylation assay using (..gamma..-/sup 32/P)ATP in the presence of calcium and phosphatidylserine. Protein phosphorylation was assessed by sodium dodecyl sulfate-polyacrylamide gel electrophoresis and autoradiography. When compared to basal levels, calcium (10/sup -6/ M) in combination with phosphatidylserine (50 ..mu..g/ml) significantly enhanced (P < 100) /sup 32/P incorporation into phosphoproteins having mol wt 47,000, 43,000, and 37,000. Half-maximal /sup 22/P incorporation was observed with 3.5 x 10/sup -7/ M Ca/sup 2 +/ in the presence of phosphatidylserine (50 ..mu..g/ml). The effect of phosphatidylserine was biphasic. In the presence of Ca 10/sup -6/ M, /sup 32/P incorporation increased to a maximum at 70 /sup +/g/ml of phosphatidylserine. The increase was suppressed at 150 ..mu..g/ml. Tetracaine caused a dose-dependent inhibition of calcium-activated, phospholipid-dependent enhancement of the three phosphoproteins. Calcium in the absence of phospholipid enhanced the phosphorylation of a protein of 98,000 mol wt. Phosphatidylserine suppressed this enhancement. Calmodulin (10/sup -6/ M) had no detectable effect upon phosphorylation beyond that of calcium alone, but the calmodulin inhibitor R-24571 specifically inhibited the calcium-stimulated 98,000 mol wt phosphoprotein. Calcium-activated, phospholipid-dependent phospholipid-dependent phosphoproteins are present in human placental cytosol; whether calcium-activated, calmodulin-dependent phosphoproteins also are present remains a question.

  9. Sponge mesoporous silica formation using disordered phospholipid bilayers as template.

    PubMed

    Galarneau, Anne; Sartori, Federica; Cangiotti, Michela; Mineva, Tzonka; Di Renzo, Francesco; Ottaviani, M Francesca

    2010-02-18

    Lecithin/dodecylamine/lactose mixtures in ethanol/aqueous media led to the formation of sponge mesoporous silica (SMS) materials by means of tetraethoxysilane (TEOS) as silica source. SMS materials show a "sponge-mesoporous" porosity with a pore diameter of about 5-6 nm, in accordance to the length of a lecithin bilayer. SMS synthesis was developed to create a new class of powerful biocatalysts able to efficiently encapsulate enzymes by adding a porosity control to the classical sol-gel synthesis and by using phospholipids and lactose as protecting agents for the enzymes. In the present study, the formation of SMS was investigated by using electron paramagnetic resonance (EPR) probes inserted inside phospholipid bilayers. The influence of progressive addition of each component (ethanol, dodecylamine, lactose, TEOS) on phospholipid bilayers was first examined; then, the time evolution of EPR spectra during SMS synthesis was studied. Parameters informative of mobility, structure, order, and polarity around the probes were extracted by computer analysis of the EPR line shape. The results were discussed on the basis of solids characterization by X-ray diffraction, nitrogen isotherm, transmission electron microscopy, and scanning electron microscopy. The results, together with the well-known ability of ethanol to promote membrane hemifusion, suggested that the templating structure is a bicontinuous phospholipid bilayer phase, shaped as a gyroid, resulting of multiple membrane hemifusions induced by the high alcohol content used in SMS synthesis. SMS synthesis was compared to hexagonal mesoporous silica (HMS) synthesis accomplished by adding TEOS to a dodecylamine/EtOH/water mixture. EPR evidenced the difference between HMS and SMS synthesis; the latter uses an already organized but slowly growing mesophase of phospholipids, never observed before, whereas the former shows a progressive elongation of micelles into wormlike structures. SMS-type materials represent a new

  10. Understanding the factors that determine registered nurses' turnover intentions.

    PubMed

    Osuji, Joseph; Uzoka, Faith-Michael; Aladi, Flora; El-Hussein, Mohammed

    2014-01-01

    Turnover among registered nurses (RNs) produces a negative impact on the health outcomes of any health care organization. It is also recognized universally as a problem in the nursing profession. Little is known about the turnover intentions and career orientations of RNs working in Calgary, Alberta, Canada. The aim of this study is to contribute to the knowledge of and to advance the discussion on the turnover of nursing professionals. The study population consisted of RNs employed in the five major hospitals in Calgary. There were 193 surveys returned, representing a response rate of 77.2%. The results show that age and education have a negative effect on turnover intention. Education was found to have a significant negative effect on career satisfaction but not on job satisfaction and organizational commitment. Length of service has a significant negative effect on turnover intention. Role ambiguity has significant highly negative effect on career satisfaction. Growth opportunity and supervisor support have a very significant positive effect on job satisfaction, career satisfaction, and organizational commitment. External career opportunities and organizational commitment do not seem to have a significant effect on turnover intention. Career satisfaction, on the other hand, had negative significant effects on turnover intention.

  11. Biomass turnover time in terrestrial ecosystems halved by land use

    NASA Astrophysics Data System (ADS)

    Erb, Karl-Heinz; Fetzel, Tamara; Plutzar, Christoph; Kastner, Thomas; Lauk, Christian; Mayer, Andreas; Niedertscheider, Maria; Körner, Christian; Haberl, Helmut

    2016-09-01

    The terrestrial carbon cycle is not well quantified. Biomass turnover time is a crucial parameter in the global carbon cycle, and contributes to the feedback between the terrestrial carbon cycle and climate. Biomass turnover time varies substantially in time and space, but its determinants are not well known, making predictions of future global carbon cycle dynamics uncertain. Land use--the sum of activities that aim at enhancing terrestrial ecosystem services--alters plant growth and reduces biomass stocks, and is hence expected to affect biomass turnover. Here we explore land-use-induced alterations of biomass turnover at the global scale by comparing the biomass turnover of the actual vegetation with that of a hypothetical vegetation state with no land use under current climate conditions. We find that, in the global average, biomass turnover is 1.9 times faster with land use. This acceleration affects all biomes roughly equally, but with large differences between land-use types. Land conversion, for example from forests to agricultural fields, is responsible for 59% of the acceleration; the use of forests and natural grazing land accounts for 26% and 15% respectively. Reductions in biomass stocks are partly compensated by reductions in net primary productivity. We conclude that land use significantly and systematically affects the fundamental trade-off between carbon turnover and carbon stocks.

  12. Dynamical and phase behavior of a phospholipid membrane altered by an antimicrobial peptide at low concentration

    SciTech Connect

    Mamontov, Eugene; Tyagi, M.; Qian, Shuo; Rai, Durgesh K.; Urban, Volker S.; Sharma, V. K.

    2016-05-27

    Here we discuss that the mechanism of action of antimicrobial peptides is traditionally attributed to the formation of pores in the lipid cell membranes of pathogens, which requires a substantial peptide to lipid ratio. However, using incoherent neutron scattering, we show that even at a concentration too low for pore formation, an archetypal antimicrobial peptide, melittin, disrupts the regular phase behavior of the microscopic dynamics in a phospholipid membrane, dimyristoylphosphatidylcholine (DMPC). At the same time, another antimicrobial peptide, alamethicin, does not exert a similar effect on the DMPC microscopic dynamics. The melittin-altered lateral motion of DMPC at physiological temperature no longer resembles the fluid-phase behavior characteristic of functional membranes of the living cells. The disruptive effect demonstrated by melittin even at low concentrations reveals a new mechanism of antimicrobial action relevant in more realistic scenarios, when peptide concentration is not as high as would be required for pore formation, which may facilitate treatment with antimicrobial peptides.

  13. Tetanus toxin is labeled with photoactivatable phospholipids at low pH

    SciTech Connect

    Montecucco, C.; Schiavo, G.; Brunner, J.; Duflot, E.; Boquet, P.; Roa, M.

    1986-02-25

    The mechanism of cell penetration by tetanus toxin is unknown; it has been suggested that the toxin may penetrate into the lipid bilayer from a low-pH vesicular compartment. In this work, the interaction of tetanus toxin with liposomal model membranes has been studied by following its photoinduced cross-linking with either a nitrene or a carbene photolytically generated from corresponding light-sensitive phosphatidylcholine analogues. The toxin was labeled only at pHs lower than 5.5. The low pH acquired hydrophobicity of tetanus toxin appears to be confined to its light chain and to the 45-kDa NH2-terminal fragment of the heavy chain. Negatively charged lipids promote the interaction of this toxin with the hydrocarbon chain of phospholipids. The relevance of the present findings to the possible mechanism of nerve cell penetration by tetanus toxin is discussed.

  14. Nurse accountability program improves satisfaction, turnover.

    PubMed

    Ethridge, P

    1987-05-01

    St. Mary's Hospital and Health Center, Tucson, AZ, responding to changes in health care reimbursement and the need to maintain quality, developed a comprehensive program to improve nurses' professional accountability. The project was based on the assumption that increased job satisfaction and decreased job stress for nurses in an acute care facility would improve retention and recruitment and facilitate decentralization of care delivery. The plan included the following components: Identify and enhance qualifications of nurses through a credentialing mechanism. Restructure nurses' employment terms to professional salaried status. Implement a spiritual, holistic framework for nursing. Identify programs to extend nursing's sphere of influence to activities that promote a continuum of care. Use the patient classification staffing tool as an acuity billing system. Decentralize the nursing organization and move it into the community. Promote an environment conducive to two levels of nursing practice--professional nurse case managers and associate registered nurses. The program's effectiveness was evaluated by measuring nurses' job stress and job satisfaction in 1983 (before the program's implementation), 1985, and January 1987. In 1985, compared with 1983, job stress was significantly lower in several areas measured, while job satisfaction was higher in four of six areas measured. Turnover rate of nurses decreased from 15.2 percent in 1983 to 5.4 percent in 1986. Financial savings from the program also hve been substantial: more than $500,000 for the last two fiscal years.

  15. Cholesterol Translocation in a Phospholipid Membrane

    NASA Astrophysics Data System (ADS)

    Choubey, Amit; Kalia, Rajiv; Malmstadt, Noah; Nakano, Aiichiro; Vashistha, Priya

    2013-03-01

    Cholesterol (CHOL) molecules play a key role in modulating the rigidity of cell membranes, and controlling intracellular transport and signal transduction. Using all-atom molecular dynamics and the parallel replica approach, we study the process of CHOL interleaflet transport (flip-flop) in a dipalmitoylphosphatidycholine (DPPC)-CHOL bilayer, the effect of this process on mechanical stress across the bilayer, and the role of CHOL in inducing molecular order in the respective bilayer leaflets. The simulations are carried out at physiologically relevant CHOL concentration (30%), temperature 323 K and pressure 1 bar. CHOL flip-flop events are observed with a rate constant of 3 ×104 s-1. Once a flip-flop event is triggered, a CHOL molecule takes an average of 73 nanoseconds to migrate from one bilayer leaflet to the other.

  16. Quantification of fatty acids as methyl esters and phospholipids in cheese samples after separation of triacylglycerides and phospholipids.

    PubMed

    Hauff, Simone; Vetter, Walter

    2009-03-23

    Determination of the individual fatty acid composition of neutral- and phospholipids as well as the phospholipid content of dairy food and other foodstuffs are important tasks in life sciences. For these purposes, a method was developed for the separation of lipids (standards of triolein and diacylphosphatidylcholines as well as three cheese samples) by solid-phase extraction using a self-packed column filled with partly deactivated silica. Non-halogenated solvents were used for the elution of the lipid classes. Cyclohexane/ethyl acetate (1:1, v/v) served for the elution of neutral lipids, while polar lipids were eluted with three solvents (ethyl acetate/methanol, methanol, and methanol/water) into one fraction. The separated lipid fractions were transesterified and the individual fatty acids were quantified by using gas chromatography coupled to electron ionization mass spectrometry (GC/EI-MS) in the selected ion monitoring (SIM) mode. The recovery rate for standard phosphatidylcholines was approximately 90% and cross-contamination from neutral lipids was negligible. The method was applied to cheese samples. Quantitative amounts of individual fatty acids in the phospholipid fraction were <0.002-0.29% of total lipids from camembert, <0.002-0.12% of total lipids from mozzarella, and <0.002-0.18% of total lipids in a goat cream cheese. Differences in the fatty acid pattern of neutral and polar lipids were detected. The quantity of the fatty acids determined in the phospholipid fraction was divided by the factor 0.7 in order to convert the fatty acid content into the phospholipid content of the cheese samples. This factor is based on the contribution of 16:0 to dipalmitoylphosphatidylcholine (DPPC). The resulting DPPC equivalents (DPPC(eq)) were found to be representative for the average contribution of fatty acids to all classes of phospholipids in dairy products. Using this approach, the phospholipid content of lipids from mozzarella, camembert, and goat cream

  17. Clinical characteristics and laboratory findings of 252 Chinese patients with anti-phospholipid syndrome: comparison with Euro-Phospholipid cohort.

    PubMed

    Shi, Hui; Teng, Jia-Lin; Sun, Yue; Wu, Xin-Yao; Hu, Qiong-Yi; Liu, Hong-Lei; Cheng, Xiao-Bing; Yin, Yu-Feng; Ye, Jun-Na; Chen, Pojen P; Yang, Cheng-de

    2017-03-01

    This study aims to characterize the Chinese Han patients with anti-phospholipid syndrome (APS) and compare the data with those of the Euro-Phospholipid cohort. We conducted a single center study consisting of 252 patients with definite APS from 2000 to 2015. We analyzed the clinical and laboratory characteristics of our cohort and compared the data with those of the Euro-Phospholipid cohort. Our cohort consisted of 216 females and 36 males, with a mean age at entry into this study of 41 years (range 11-74 years). Of these patients, 69 (27.4%) patients had primary APS, and 183 (72.6%) had secondary APS (SAPS), including 163 (64.7%) patients had systemic lupus erythematosus (SLE). Thrombotic events occurred in 190 (75.4%) patients, and the most common ones were deep vein thrombosis (40.1%) and stroke (23.8%), which were similar to the reports of the Euro-Phospholipid cohort. In contrast, our cohort had less pulmonary embolism (6.7%). Among 93 females with 299 pregnancy episodes, the rates of early (<10 weeks) and late fetal loss (≥10 weeks) were, respectively, 37.8% and 24.4%. The latter was significantly higher than that of the Euro-Phospholipid cohort. Moreover, 7 APS nephropathy patients (characterized histopathologically by thrombotic microangiopathy) and 8 catastrophic APS patients were found in our cohort. Anti-cardiolipin antibodies (aCL) were detected in 169 (67.1%) patients, lupus anti-coagulant (LA) was detected in 83 (32.9%), and anti-β2 glycoprotein I antibodies (anti-β2GPI) in 148 (58.7%) patients. These results show that some clinical manifestations of APS may vary among different racial groups.

  18. Earthdata Search: The Relevance of Relevance

    NASA Technical Reports Server (NTRS)

    Quinn, Patrick

    2016-01-01

    Through recent usability studies, the issue of relevance became increasingly clear in the Earthdata Search Client. After all, if a user can't find the data they are looking for, nothing else we do matters. This presentation walks through usability testing findings and recent relevance improvements made to the Earthdata Search Client.

  19. Report: Remedial Project Manager Turnover at Superfund Sites

    EPA Pesticide Factsheets

    Report #2001-M-000015, June 15, 2001. We determined that EPA Region III did not have formal procedures in place to mitigate continuity problems caused by turnover of EPA personnel in the Superfund program.

  20. Organisational Commitment and Committee Turnover of Volunteers in Sport.

    ERIC Educational Resources Information Center

    Cuskelly, Graham

    1998-01-01

    A survey of 328 volunteers serving on sports committees in Australia found that organizational commitment was higher in organizations with open decision making, conflict resolution, and attention to group process. Positive, effective committee functioning led to lower turnover. (SK)

  1. Evaluation of platelet turnover by flow cytometry.

    PubMed

    Salvagno, G L; Montagnana, M; Degan, M; Marradi, P L; Ricetti, M M; Riolfi, P; Poli, G; Minuz, P; Santonastaso, C L; Guidi, G C

    2006-05-01

    The number of circulating newly produced platelets depends on the thrombopoietic capacity of bone marrow as well as platelet removal from the bloodstream. Flow cytometric analysis with thiazole orange (TO), a fluorescent dye that crosses platelet membranes and binds intracellular RNA, has been used to measure circulating reticulated platelets (RPs) with high RNA content as an index of platelet turnover. We first assessed the specificity of TO flow cytometry and then applied this method in the diagnosis of thrombocytopenia caused by impaired platelet production or increased destruction. We also explored the utility of TO flow cytometry to predict thrombocytopoiesis after chemotherapy-induced bone marrow aplasia. Venous blood, anticoagulated with K(2)EDTA, was incubated with 0.6 microg/ml TO plus an anti-GPIIIa monoclonal antibody. The mean percentage of RPs in control subjects (n = 23) was 6.13 +/- 3.09%. RPs were 10.41 +/- 9.02% in patients (n = 10) with hematological malignancies during aplasia induced by chemotherapy and a significant increase in RPs (35.45 +/- 6.11%) was seen in the recovery phase. In 10 patients with idiopathic thrombocytopenic purpura, the percentage of TO positive platelets was 67.81 +/- 18.79 (P < 0.001 vs. controls). In patients with thrombocytopenia associated with hepatic cirrhosis (n = 21; 21.04 +/- 16.21%, P < 0.001 vs. controls) or systemic lupus erythematosus (n = 6, 29.08 +/- 15.57%; P < 0.001 vs. controls) increases in TO-stained platelets were also observed. Measurement of TO positive platelets may be a reliable tool for the laboratory identification of platelet disorders, with a higher sensitivity than measurement of platelet volume. Measurement of RPs may also prove useful to recognize the underlying pathogenetic mechanisms in thrombocytopenia.

  2. Turnover intention among new nurses: a generational perspective.

    PubMed

    Lavoie-Tremblay, Melanie; Paquet, Maxime; Marchionni, Caroline; Drevniok, Ulrika

    2011-01-01

    With the current nursing shortage, it is crucial to understand the aspects of the nursing work environment that are related to turnover in new generation nurses. The Practice Environment Scale of the Nursing Work Index was administered to new nurses in Quebec from different generations to determine what domains of the work environment were related to turnover intention. Results can help nurses in leadership and development positions target interventions to retain new graduates.

  3. Long-period astronomical forcing of mammal turnover.

    PubMed

    van Dam, Jan A; Abdul Aziz, Hayfaa; Alvarez Sierra, M Angeles; Hilgen, Frederik J; van den Hoek Ostende, Lars W; Lourens, Lucas J; Mein, Pierre; van der Meulen, Albert J; Pelaez-Campomanes, Pablo

    2006-10-12

    Mammals are among the fastest-radiating groups, being characterized by a mean species lifespan of the order of 2.5 million years (Myr). The basis for this characteristic timescale of origination, extinction and turnover is not well understood. Various studies have invoked climate change to explain mammalian species turnover, but other studies have either challenged or only partly confirmed the climate-turnover hypothesis. Here we use an exceptionally long (24.5-2.5 Myr ago), dense, and well-dated terrestrial record of rodent lineages from central Spain, and show the existence of turnover cycles with periods of 2.4-2.5 and 1.0 Myr. We link these cycles to low-frequency modulations of Milankovitch oscillations, and show that pulses of turnover occur at minima of the 2.37-Myr eccentricity cycle and nodes of the 1.2-Myr obliquity cycle. Because obliquity nodes and eccentricity minima are associated with ice sheet expansion and cooling and affect regional precipitation, we infer that long-period astronomical climate forcing is a major determinant of species turnover in small mammals and probably other groups as well.

  4. Warming Effects Enzyme Turnover During Decomposition of Subtropical Peat

    NASA Astrophysics Data System (ADS)

    Sihi, D.; Inglett, P.; Inglett, K. S.

    2015-12-01

    Extracellular enzymes are the proximate agents for organic matter degradation, but the turnover rate of enzymes is often assumed in most decomposition models without direct observations. Here, we assess turnover rates of C (ß-D-glucosidase), N (Leucine aminopeptidase), and P (Phosphomonoesterase) degrading enzymes by spiking commercially available enzymes to the dissolved organic matter of two subtropical peats incubated at 15°C and 25°C and monitoring of net activity of spiked enzymes (i.e. the difference between the spiked and the non-spiked samples) over time. Turnover rates of all three enzymes were greater in the samples incubated at 25°C (ranged between 0.006 hr-1 to 0.014 hr-1) as compared to those incubated at 15°C (ranged between 0.002 hr-1 to 0.009 hr-1). Concentrations of dissolved organic matter were positively correlated with the turnover rates (R2 ranged between 0.71-0.77) of all enzyme groups. To our knowledge, this is the first attempt to evaluate the turnover rates of enzymes in wetland soils as a function of warming and dissolved organic matter concentration. The findings suggest that warming-induced changes in the size of soil enzyme pool due to direct (by increasing protease activity) and indirect (by increasing concentrations of dissolved organic matter) effects on their turnover rates has potential to alter soil C stocks in a warmer world.

  5. Environmental and historical imprints on beta diversity: insights from variation in rates of species turnover along gradients

    PubMed Central

    Fitzpatrick, Matthew C.; Sanders, Nathan J.; Normand, Signe; Svenning, Jens-Christian; Ferrier, Simon; Gove, Aaron D.; Dunn, Robert R.

    2013-01-01

    A common approach for analysing geographical variation in biodiversity involves using linear models to determine the rate at which species similarity declines with geographical or environmental distance and comparing this rate among regions, taxa or communities. Implicit in this approach are weakly justified assumptions that the rate of species turnover remains constant along gradients and that this rate can therefore serve as a means to compare ecological systems. We use generalized dissimilarity modelling, a novel method that accommodates variation in rates of species turnover along gradients and between different gradients, to compare environmental and spatial controls on the floras of two regions with contrasting evolutionary and climatic histories: southwest Australia and northern Europe. We find stronger signals of climate history in the northern European flora and demonstrate that variation in rates of species turnover is persistent across regions, taxa and different gradients. Such variation may represent an important but often overlooked component of biodiversity that complicates comparisons of distance–decay relationships and underscores the importance of using methods that accommodate the curvilinear relationships expected when modelling beta diversity. Determining how rates of species turnover vary along and between gradients is relevant to understanding the sensitivity of ecological systems to environmental change. PMID:23926147

  6. Environmental and historical imprints on beta diversity: insights from variation in rates of species turnover along gradients.

    PubMed

    Fitzpatrick, Matthew C; Sanders, Nathan J; Normand, Signe; Svenning, Jens-Christian; Ferrier, Simon; Gove, Aaron D; Dunn, Robert R

    2013-10-07

    A common approach for analysing geographical variation in biodiversity involves using linear models to determine the rate at which species similarity declines with geographical or environmental distance and comparing this rate among regions, taxa or communities. Implicit in this approach are weakly justified assumptions that the rate of species turnover remains constant along gradients and that this rate can therefore serve as a means to compare ecological systems. We use generalized dissimilarity modelling, a novel method that accommodates variation in rates of species turnover along gradients and between different gradients, to compare environmental and spatial controls on the floras of two regions with contrasting evolutionary and climatic histories: southwest Australia and northern Europe. We find stronger signals of climate history in the northern European flora and demonstrate that variation in rates of species turnover is persistent across regions, taxa and different gradients. Such variation may represent an important but often overlooked component of biodiversity that complicates comparisons of distance-decay relationships and underscores the importance of using methods that accommodate the curvilinear relationships expected when modelling beta diversity. Determining how rates of species turnover vary along and between gradients is relevant to understanding the sensitivity of ecological systems to environmental change.

  7. Effect of protic ionic liquid nanostructure on phospholipid vesicle formation.

    PubMed

    Bryant, Saffron J; Wood, Kathleen; Atkin, Rob; Warr, Gregory G

    2017-02-15

    The formation of bilayer-based lyotropic liquid crystals and vesicle dispersions by phospholipids in a range of protic ionic liquids has been investigated by polarizing optical microscopy using isothermal penetration scans, differential scanning calorimetry, and small angle X-ray and neutron scattering. The stability and structure of both lamellar phases and vesicle dispersions is found to depend primarily on the underlying amphiphilic nanostructure of the ionic liquid itself. This finding has significant implications for the use of ionic liquids in soft and biological materials and for biopreservation, and demonstrates how vesicle structure and properties can be controlled through selection of cation and anion. For a given ionic liquid, systematic trends in bilayer thickness, chain-melting temperature and enthalpy increase with phospholipid acyl chain length, paralleling behaviour in aqueous systems.

  8. Supported phospholipid bilayers for two-dimensional protein crystallization.

    PubMed

    Uzgiris, E E

    1986-01-29

    Phospholipid bilayers, supported on UV irradiated carbon shadowed nitrocellulose electron microscope grids, have been used to induce two-dimensional crystal growth of IgE and IgG anti-DNP monoclonal antibodies. The UV irradiation renders the grids hydrophilic in a very uniform fashion and allows for the transfer of phospholipid monolayers from an air/water interface in a sequential dipping procedure. The surface coverage achieved was nearly 100% as measured by antibody binding and by the formation of protein arrays on the bilayer covered grids. The supported bilayers appear to be stably held and are appropriate for slow binding conditions and long incubation times with low concentrations of binding protein.

  9. Occurrence of diacylglyceryltrimethylhomoserines and major phospholipids in some plants.

    PubMed

    Rozentsvet, O A; Dembitsky, V M; Saksonov, S V

    2000-06-01

    Over 40 higher plant species were examined for the contents of total lipids, phospholipids, diacylglyceryl-N,N,N-trimethylhomoserine (DGTS), phosphatidylcholine (PC), phosphatidylethanolamine (PE), and phosphatidylglycerol (PG) by using micro-HPTLC. The results showed a wider range of plants containing betaine lipids. So, DGTS was found in some higher plant species, not studied earlier, belonging to Equisetophyta, Polypodiophyta; the lipid composition of many other species from Spermatophyta was also studied. It was demonstrated that more primitive plant species contained, as a rule, the betaine lipid DGTS. The quantitative data for the distribution of the main phospholipid classes PC, PE, and PG in various plant species and their tissues are given in this paper.

  10. Light and phospholipid driven structural transitions in nematic microdroplets

    SciTech Connect

    Dubtsov, A. V. Pasechnik, S. V.; Shmeliova, D. V.; Kralj, Samo

    2014-10-13

    We studied the UV-irradiation and phospholipid driven bipolar-radial structural transitions within azoxybenzene nematic liquid crystal (LC) droplets dispersed in water. It was found that the UV-irradiation induced trans-cis isomerisation of LC molecules could enable structural transitions into radial-type configurations at a critical UV-irradiation time t{sub c}. In particular, we show that under appropriate conditions, a value of t{sub c} could sensitively fingerprint the concentration of phospholipid molecules present in LC-water dispersions. This demonstrated proof-of-principle mechanism could be exploited for development of sensitive detectors for specific nanoparticles (NPs), where value of t{sub c} reveals concentration of NPs.

  11. Flagellar membranes are rich in raft-forming phospholipids

    PubMed Central

    Serricchio, Mauro; Schmid, Adrien W.; Steinmann, Michael E.; Sigel, Erwin; Rauch, Monika; Julkowska, Daria; Bonnefoy, Serge; Fort, Cécile; Bastin, Philippe; Bütikofer, Peter

    2015-01-01

    ABSTRACT The observation that the membranes of flagella are enriched in sterols and sphingolipids has led to the hypothesis that flagella might be enriched in raft-forming lipids. However, a detailed lipidomic analysis of flagellar membranes is not available. Novel protocols to detach and isolate intact flagella from Trypanosoma brucei procyclic forms in combination with reverse-phase liquid chromatography high-resolution tandem mass spectrometry allowed us to determine the phospholipid composition of flagellar membranes relative to whole cells. Our analyses revealed that phosphatidylethanolamine, phosphatidylserine, ceramide and the sphingolipids inositol phosphorylceramide and sphingomyelin are enriched in flagella relative to whole cells. In contrast, phosphatidylcholine and phosphatidylinositol are strongly depleted in flagella. Within individual glycerophospholipid classes, we observed a preference for ether-type over diacyl-type molecular species in membranes of flagella. Our study provides direct evidence for a preferential presence of raft-forming phospholipids in flagellar membranes of T. brucei. PMID:26276100

  12. Regulation of the Golgi Complex by Phospholipid Remodeling Enzymes

    PubMed Central

    Ha, Kevin D.; Clarke, Benjamin A.; Brown, William J.

    2012-01-01

    The mammalian Golgi complex is a highly dynamic organelle consisting of stacks of flattened cisternae with associated coated vesicles and membrane tubules that contribute to cargo import and export, intra-cisternal trafficking, and overall Golgi architecture. At the morphological level, all of these structures are continuously remodeled to carry out these trafficking functions. Recent advances have shown that continual phospholipid remodeling by phospholipase A (PLA) and lysophospholipid acyltransferase (LPAT) enzymes, which deacylate and reacylate Golgi phospholipids, respectively, contributes to this morphological remodeling. Here we review the identification and characterization of four cytoplasmic PLA enzymes and one integral membrane LPAT that participate in the dynamic functional organization of the Golgi complex, and how some of these enzymes are integrated to determine the relative abundance of COPI vesicle and membrane tubule formation. PMID:22562055

  13. Differential Intrahepatic Phospholipid Zonation in Simple Steatosis and Nonalcoholic Steatohepatitis

    PubMed Central

    Wattacheril, Julia; Seeley, Erin H.; Angel, Peggi; Chen, Heidi; Bowen, Benjamin P.; Lanciault, Christian; M.Caprioli, Richard; Abumrad, Naji; Flynn, Charles Robb

    2013-01-01

    Nonalcoholic fatty liver disease (NAFLD) occurs frequently in a setting of obesity, dyslipidemia and insulin resistance, but the etiology of the disease, particularly the events favoring progression to nonalcoholic steatohepatitis (NASH) as opposed to simple steatosis (SS), are not fully understood. Based on known zonation patterns in protein, glucose and lipid metabolism, coupled with evidence that phosphatidylcholine may play a role in NASH pathogenesis, we hypothesized that phospholipid zonation exists in liver and that specific phospholipid abundance and distribution may be associated with histologic disease. A survey of normal hepatic protein expression profiles in the Human Protein Atlas revealed pronounced zonation of enzymes involved in lipid utilization and storage, particularly those facilitating phosphatidylcholine (PC) metabolism. Immunohistochemistry of obese normal, SS and NASH liver specimens with anti-phosphatidylethanomine N-methyltransferase (PEMT) antibodies showed a progressive decrease in the zonal distribution of this PC biosynthetic enzyme. Phospholipid quantitation by liquid chromatography mass spectrometry (LC-MS) in hepatic extracts of Class III obese patients with increasing NAFLD severity revealed that most PC species with 32, 34 and 36 carbons as well as total PC abundance was decreased with SS and NASH. Matrix assisted laser desorption ionization - imaging mass spectrometry (MALDI-IMS) imaging revealed strong zonal distributions for 32, 34 and 36 carbon PCs in controls (minimal histologic findings) and SS that was lost in NASH specimens. Specific lipid species such as PC 34∶1 and PC 36∶2 best illustrated this phenomenon. These findings suggest that phospholipid zonation may be associated with the presence of an intrahepatic proinflammatory phenotype and thus have broad implications in the etiopathogenesis of NASH. PMID:23451176

  14. Explaining the Gap in Charter and Traditional Public School Teacher Turnover Rates

    ERIC Educational Resources Information Center

    Stuit, David A.; Smith, Thomas M.

    2012-01-01

    This study uses national survey data to examine why charter school teachers are more likely to turnover than their traditional public school counterparts. We test whether the turnover gap is explained by different distributions of factors that are empirically and theoretically linked to turnover risk. We find that the turnover rate of charter…

  15. Reviewing Employee Turnover: Focusing on Proximal Withdrawal States and an Expanded Criterion

    ERIC Educational Resources Information Center

    Hom, Peter W.; Mitchell, Terence R.; Lee, Thomas W.; Griffeth, Rodger W.

    2012-01-01

    We reconceptualize employee turnover to promote researchers' understanding and prediction of why employees quit or stay in employing institutions. A literature review identifies shortcomings with prevailing turnover dimensions. In response, we expand the conceptual domain of the turnover criterion to include multiple types of turnover (notably,…

  16. Spectroscopic Study on the Interaction of 4-dimethylaminochalcones with Phospholipids

    NASA Astrophysics Data System (ADS)

    Tomečková, V.; Revická, M.; Sassen, A.; Veliká, B.; Stupák, M.; Perjési, P.

    2014-11-01

    The ultraviolet-visible and fluorescence spectroscopic properties of 4'-dimethylaminochalcone ( 1a) and its cyclic analogs 2a-4a have been studied in the presence of phospholipid vesicles (i.e., egg yolk lecithin and dipalmitoylpho sphatidylcholine), bovine serum albumin (BSA), and lipoprotein particles (i.e., bovine serum albumin plus egg yolk lecithin). The spectral results showed that compounds 1a-4a formed hydrophobic interactions with the phospholipids, lipoproteins, and BSA at the polar/nonpolar interface. Compounds 3a and 4a exhibited the strongest hydrophobic interactions of all of the compounds tested towards the phospholipids. Compound 2a gave the best fluorescent fluorophore indicating interactions with the lipids, lipoproteins, and proteins. Fluorescent microscopic imaging of breast cancer cells treated with compounds 1a-4a revealed that they could be used to stain all of the cellular components and destroy the nuclear structure. Compounds 1a-4a were found to be concentrated predominantly on the surfaces of the liposomes and lipoproteins.

  17. Phospholipid Synthesis in Aging Potato Tuber Tissue 1

    PubMed Central

    Tang, Wen-Jing; Castelfranco, Paul A.

    1968-01-01

    The effect of activation (“aging”) of potato tuber slices on their phospholipid metabolism was investigated. Aged slices were incubated with 14C labeled choline, ethanolamine, methionine, serine, and acetate. In all cases, the incorporation of radioactivity into the lipid fraction increased with the length of time the slices were aged. This incorporation was shown to be true synthesis and not exchange between precursors and existing phospholipids. The increased incorporation of labeled choline into lipids was mainly due to an increase in its uptake by the tissue, the presence of actidione during aging prevented this increased uptake. The increase in the incorporation of labeled acetate into lipids resulted from the development of a fatty acid synthetase during aging. In the case of ethanolamine, both its uptake into the tissue and its incorporation into the lipid fraction increased. The phospholipids formed from these precursors were identified by paper and thin-layer chromatography. The major compound formed from choline was lecithin, while phosphatidylethanolamine and a small amount of lecithin were formed from ethanolamine. Images PMID:16656906

  18. Antioxidant effect of lutein towards phospholipid hydroperoxidation in human erythrocytes.

    PubMed

    Nakagawa, Kiyotaka; Kiko, Takehiro; Hatade, Keijiro; Sookwong, Phumon; Arai, Hiroyuki; Miyazawa, Teruo

    2009-11-01

    Peroxidised phospholipid-mediated cytotoxity is involved in the pathophysiology of many diseases; for example, phospholipid hydroperoxides (PLOOH) are abnormally increased in erythrocytes of dementia patients. Dietary carotenoids (especially xanthophylls, polar carotenoids such as lutein) have gained attention as potent inhibitors against erythrocyte phospholipid hydroperoxidation, thereby making them plausible candidates for preventing diseases (i.e. dementia). To evaluate these points, we investigated whether orally administered lutein is distributed to human erythrocytes, and inhibits erythrocyte PLOOH formation. Six healthy subjects took one capsule of food-grade lutein (9.67 mg lutein per capsule) once per d for 4 weeks. Before and during the supplementation period, carotenoids and PLOOH in erythrocytes and plasma were determined by our developed HPLC technique. The administered lutein was incorporated into human erythrocytes, and erythrocyte PLOOH level decreased after the ingestion for 2 and 4 weeks. The antioxidative effect of lutein was confirmed on erythrocyte membranes, but not in plasma. These results suggest that lutein has the potential to act as an important antioxidant molecule in erythrocytes, and it thereby may contribute to the prevention of dementia. Therefore future biological and clinical studies will be required to evaluate the efficacy as well as safety of lutein in models of dementia with a realistic prospect of its use in human therapy.

  19. New HPLC method for separation of blood plasma phospholipids.

    PubMed

    Suchocka, Zofia; Gronostajska, Dorota; Suchocki, Piotr; Pachecka, Jan

    2003-08-08

    The aim of the present work was to develop a new HPLC method for separation of phosphatidylcholine (PC), phosphatidylethanolamine (PE), phosphatidylinositol (PI) and lysophosphatidylcholine (LPC) from small-volume samples of blood plasma. Human plasma glycerophospholipids were separated by liquid-liquid extraction method followed by solid phase extraction (SPE) on aminopropyl columns. Reversed-phase Sephasil C8 column (10 cm x 2.1 mm, I.D. 5 microm) and micropreparative chromatograph "SMART" were used for separation of PC, PE, LPC and PI from SPE phospholipids extract. Binary-step gradient of eluent A: acetonitrile-methanol (130:5, v/v) and B (0.01% trifluoroacetic acid) provided good, fast and reproducible resolution of investigated phospholipids classes in 12 min at 30 degrees C. Eluted phospholipids were detected at wavelengths lambda=235 and 254 nm. This method made it possible to determine quantitatively: 5 microg ml(-1) PC, 1 microg ml(-1) LPC, 4 microg ml(-1) PE and 3 microg ml(-1) PI in blood plasma samples.

  20. Nonenzymatic biomimetic remodeling of phospholipids in synthetic liposomes.

    PubMed

    Brea, Roberto J; Rudd, Andrew K; Devaraj, Neal K

    2016-08-02

    Cell membranes have a vast repertoire of phospholipid species whose structures can be dynamically modified by enzymatic remodeling of acyl chains and polar head groups. Lipid remodeling plays important roles in membrane biology and dysregulation can lead to disease. Although there have been tremendous advances in creating artificial membranes to model the properties of native membranes, a major obstacle has been developing straightforward methods to mimic lipid membrane remodeling. Stable liposomes are typically kinetically trapped and are not prone to exchanging diacylphospholipids. Here, we show that reversible chemoselective reactions can be harnessed to achieve nonenzymatic spontaneous remodeling of phospholipids in synthetic membranes. Our approach relies on transthioesterification/acyl shift reactions that occur spontaneously and reversibly between tertiary amides and thioesters. We demonstrate exchange and remodeling of both lipid acyl chains and head groups. Using our synthetic model system we demonstrate the ability of spontaneous phospholipid remodeling to trigger changes in vesicle spatial organization, composition, and morphology as well as recruit proteins that can affect vesicle curvature. Membranes capable of chemically exchanging lipid fragments could be used to help further understand the specific roles of lipid structure remodeling in biological membranes.

  1. Enteropathogenic Escherichia coli Infection Triggers Host Phospholipid Metabolism Perturbations

    PubMed Central

    Wu, Y.; Lau, B.; Smith, S.; Troyan, K.; Barnett Foster, D. E.

    2004-01-01

    Enteropathogenic Escherichia coli (EPEC) specifically recognizes phosphatidylethanolamine (PE) on the outer leaflet of host epithelial cells. EPEC also induces apoptosis in epithelial cells, which results in increased levels of outer leaflet PE and increased bacterial binding. Consequently, it is of interest to investigate whether EPEC infection perturbs host cell phospholipid metabolism and whether the changes play a role in the apoptotic signaling. Our findings indicate that EPEC infection results in a significant increase in the epithelial cell PE level and a corresponding decrease in the phosphatidylcholine (PC) level. PE synthesis via both the de novo pathway and the serine decarboxylation pathway was enhanced, and de novo synthesis of phosphatidylcholine via CDP-choline was reduced. The changes were transitory, and the maximum change was noted after 4 to 5 h of infection. Addition of exogenous PC or CDP-choline to epithelial cells prior to infection abrogated EPEC-induced apoptosis, suggesting that EPEC infection inhibits the CTP-phosphocholine cytidylyltransferase step in PC synthesis, which is reportedly inhibited during nonmicrobially induced apoptosis. On the other hand, incorporation of exogenous PE by the host cells enhanced EPEC-induced apoptosis and necrosis without increasing bacterial adhesion. This is the first report that pathogen-induced apoptosis is associated with significant changes in PE and PC metabolism, and the results suggest that EPEC adhesion to a host membrane phospholipid plays a role in disruption of host phospholipid metabolism. PMID:15557596

  2. Enteropathogenic Escherichia coli infection triggers host phospholipid metabolism perturbations.

    PubMed

    Wu, Y; Lau, B; Smith, S; Troyan, K; Barnett Foster, D E

    2004-12-01

    Enteropathogenic Escherichia coli (EPEC) specifically recognizes phosphatidylethanolamine (PE) on the outer leaflet of host epithelial cells. EPEC also induces apoptosis in epithelial cells, which results in increased levels of outer leaflet PE and increased bacterial binding. Consequently, it is of interest to investigate whether EPEC infection perturbs host cell phospholipid metabolism and whether the changes play a role in the apoptotic signaling. Our findings indicate that EPEC infection results in a significant increase in the epithelial cell PE level and a corresponding decrease in the phosphatidylcholine (PC) level. PE synthesis via both the de novo pathway and the serine decarboxylation pathway was enhanced, and de novo synthesis of phosphatidylcholine via CDP-choline was reduced. The changes were transitory, and the maximum change was noted after 4 to 5 h of infection. Addition of exogenous PC or CDP-choline to epithelial cells prior to infection abrogated EPEC-induced apoptosis, suggesting that EPEC infection inhibits the CTP-phosphocholine cytidylyltransferase step in PC synthesis, which is reportedly inhibited during nonmicrobially induced apoptosis. On the other hand, incorporation of exogenous PE by the host cells enhanced EPEC-induced apoptosis and necrosis without increasing bacterial adhesion. This is the first report that pathogen-induced apoptosis is associated with significant changes in PE and PC metabolism, and the results suggest that EPEC adhesion to a host membrane phospholipid plays a role in disruption of host phospholipid metabolism.

  3. NMR Structures of Membrane Proteins in Phospholipid Bilayers

    PubMed Central

    Radoicic, Jasmina; Lu, George J.; Opella, Stanley J.

    2014-01-01

    Membrane proteins have always presented technical challenges for structural studies because of their requirement for a lipid environment. Multiple approaches exist including X-ray crystallography and electron microscopy that can give significant insights into their structure and function. However, nuclear magnetic resonance (NMR) is unique in that it offers the possibility of determining the structures of unmodified membrane proteins in their native environment of phospholipid bilayers under physiological conditions. Furthermore, NMR enables the characterization of the structure and dynamics of backbone and side chain sites of the proteins alone and in complexes with both small molecules and other biopolymers. The learning curve has been steep for the field as most initial studies were performed under non-native environments using modified proteins until ultimately progress in both techniques and instrumentation led to the possibility of examining unmodified membrane proteins in phospholipid bilayers under physiological conditions. This review aims to provide an overview of the development and application of NMR to membrane proteins. It highlights some of the most significant structural milestones that have been reached by NMR spectroscopy of membrane proteins; especially those accomplished with the proteins in phospholipid bilayer environments where they function. PMID:25032938

  4. Extraction and Analysis of Microbial Phospholipid Fatty Acids in Soils

    PubMed Central

    Quideau, Sylvie A.; McIntosh, Anne C.S.; Norris, Charlotte E.; Lloret, Emily; Swallow, Mathew J.B.; Hannam, Kirsten

    2016-01-01

    Phospholipid fatty acids (PLFAs) are key components of microbial cell membranes. The analysis of PLFAs extracted from soils can provide information about the overall structure of terrestrial microbial communities. PLFA profiling has been extensively used in a range of ecosystems as a biological index of overall soil quality, and as a quantitative indicator of soil response to land management and other environmental stressors. The standard method presented here outlines four key steps: 1. lipid extraction from soil samples with a single-phase chloroform mixture, 2. fractionation using solid phase extraction columns to isolate phospholipids from other extracted lipids, 3. methanolysis of phospholipids to produce fatty acid methyl esters (FAMEs), and 4. FAME analysis by capillary gas chromatography using a flame ionization detector (GC-FID). Two standards are used, including 1,2-dinonadecanoyl-sn-glycero-3-phosphocholine (PC(19:0/19:0)) to assess the overall recovery of the extraction method, and methyl decanoate (MeC10:0) as an internal standard (ISTD) for the GC analysis. PMID:27685177

  5. Bile salt-phospholipid aggregation at submicellar concentrations.

    PubMed

    Baskin, Rebekah; Frost, Laura D

    2008-04-01

    The aggregation behavior of the bile salts taurodeoxycholate (NaTDC) and sodium cholate (NaC), are followed at concentrations below critical micelle concentrations (CMCs) using the environment sensitive, fluorescent-labeled phospholipid, 2-(6-(7-nitrobenz-2-oxa-1,3-diazol-4-yl)amino)hexanoyl-1-hexadecanoyl-sn-glycero-3-phosphocholine (NBD-C(6)-HPC). A buffer solution containing NBD-C(6)-HPC is titrated with increasing NaC or NaTDC and the fluorescence changes followed. Both bile salts induced fluorescence changes below their critical micelle concentration indicating the presence of a bile salt-phospholipid aggregate. A critical control experiment using 6-(N-(7-nitrobenz-2-oxa-1,3-diazol-4-yl)amino) hexanoic acid (NBD-X) shows that the bile salts are interacting with the longer, C16 hydrocarbon tail, not the NBD probe. The fluorescence curves were fitted to the Hill equation as a model for cooperative aggregation. The cooperativity model provides a minimum estimate for the number of bile salts to give maximal fluorescence. This number was calculated for NaC and NaTDC to have a minimum value of approximately 2. A small aggregation number supports the existence of primary micellar aggregates at submicellar concentrations for bile salt-phospholipid aqueous solutions.

  6. Changes in phospholipid metabolism during B lymphocyte activation

    SciTech Connect

    Kriz, M.K.; Vitetta, E.S.; Sullivan, T.J.

    1986-07-15

    Phospholipid metabolism in murine B lymphocytes stimulated with anti-Ig bound to Sepharose has been examined. T cell-depleted splenic B lymphocytes cultured with Sepharose-coupled, affinity-purified goat anti-mouse Ig (GAMIg) increased the incorporation of /sup 32/PO/sub 4/ into phosphatidic acid and phosphatidylinositol within 3 hr and increased (/sup 3/H)-thymidine uptake at 48 hr. No increase in labeling was observed in phosphatidylethanolamine, phosphatidylcholine, or phosphatidylserine. Based on both negative and positive selection procedures, it was demonstrated that these responses occurred in B lymphocytes. In contrast to the thymidine uptake response did not require the presence of accessory cells or exogenous cytokines. The same selective changes in phospholipid metabolism were observed in neoplastic B lymphocytes (BCL/sub 1/) after treatment with Sepharose anti-..mu.., but not with Sepharose anti-Ia or Sepharose normal Ig. The dose-response relationships of /sup 32/PO/sub 4/ incorporation into phosphatidic acid and phosphatidylinositol and (/sup 3/H) thymidine uptake were nearly identical in BCL/sub 1/ cells. The results of these experiments indicate that interaction B lymphocytes with insolubilized anti-Ig results in prompt and selective changes in phospholipid metabolism that appear to be correlated with B lymphocyte proliferation.

  7. Label free detection of phospholipids by infrared absorption spectroscopy

    NASA Astrophysics Data System (ADS)

    Ahmed, Tahsin; Foster, Erick; Vigil, Genevieve; Khan, Aamir A.; Bohn, Paul; Howard, Scott S.

    2014-08-01

    We present our study on compact, label-free dissolved lipid sensing by combining capillary electrophoresis separation in a PDMS microfluidic chip online with mid-infrared (MIR) absorption spectroscopy for biomarker detection. On-chip capillary electrophoresis is used to separate the biomarkers without introducing any extrinsic contrast agent, which reduces both cost and complexity. The label free biomarker detection could be done by interrogating separated biomarkers in the channel by MIR absorption spectroscopy. Phospholipids biomarkers of degenerative neurological, kidney, and bone diseases are detectable using this label free technique. These phospholipids exhibit strong absorption resonances in the MIR and are present in biofluids including urine, blood plasma, and cerebrospinal fluid. MIR spectroscopy of a 12-carbon chain phosphatidic acid (PA) (1,2-dilauroyl-snglycero- 3-phosphate (sodium salt)) dissolved in N-methylformamide, exhibits a strong amide peak near wavenumber 1660 cm-1 (wavelength 6 μm), arising from the phosphate headgroup vibrations within a low-loss window of the solvent. PA has a similar structure to many important phospholipids molecules like phosphatidylcholine (PC), phosphatidylinositol (PI), phosphatidylethanolamine (PE), phosphatidylglycerol (PG), and phosphatidylserine (PS), making it an ideal molecule for initial proof-of-concept studies. This newly proposed detection technique can lead us to minimal sample preparation and is capable of identifying several biomarkers from the same sample simultaneously.

  8. Molecular determinants of phospholipid synergy in blood clotting.

    PubMed

    Tavoosi, Narjes; Davis-Harrison, Rebecca L; Pogorelov, Taras V; Ohkubo, Y Zenmei; Arcario, Mark J; Clay, Mary C; Rienstra, Chad M; Tajkhorshid, Emad; Morrissey, James H

    2011-07-01

    Many regulatory processes in biology involve reversible association of proteins with membranes. Clotting proteins bind to phosphatidylserine (PS) on cell surfaces, but a clear picture of this interaction has yet to emerge. We present a novel explanation for membrane binding by GLA domains of clotting proteins, supported by biochemical studies, solid-state NMR analyses, and molecular dynamics simulations. The model invokes a single "phospho-L-serine-specific" interaction and multiple "phosphate-specific" interactions. In the latter, the phosphates in phospholipids interact with tightly bound Ca(2+) in GLA domains. We show that phospholipids with any headgroup other than choline strongly synergize with PS to enhance factor X activation. We propose that phosphatidylcholine and sphingomyelin (the major external phospholipids of healthy cells) are anticoagulant primarily because their bulky choline headgroups sterically hinder access to their phosphates. Following cell damage or activation, exposed PS and phosphatidylethanolamine collaborate to bind GLA domains by providing phospho-L-serine-specific and phosphate-specific interactions, respectively.

  9. Regulation of phosphatidylserine synthase from Saccharomyces cerevisiae by phospholipid precursors.

    PubMed Central

    Poole, M A; Homann, M J; Bae-Lee, M S; Carman, G M

    1986-01-01

    The addition of ethanolamine or choline to inositol-containing growth medium of Saccharomyces cerevisiae wild-type cells resulted in a reduction of membrane-associated phosphatidylserine synthase (CDPdiacylglycerol:L-serine O-phosphatidyltransferase, EC 2.7.8.8) activity in cell extracts. The reduction of activity did not occur when inositol was absent from the growth medium. Under the growth conditions where a reduction of enzyme activity occurred, there was a corresponding qualitative reduction of enzyme subunit as determined by immunoblotting with antiserum raised against purified phosphatidylserine synthase. Water-soluble phospholipid precursors did not effect purified phosphatidylserine synthase activity. Phosphatidylserine synthase (activity and enzyme subunit) was not regulated by the availability of water-soluble phospholipid precursors in S. cerevisiae VAL2C(YEp CHO1) and the opi1 mutant. VAL2C(YEp CHO1) is a plasmid-bearing strain that over produces phosphatidylserine synthase activity, and the opi1 mutant is an inositol biosynthesis regulatory mutant. The results of this study suggest that the regulation of phosphatidylserine synthase by the availability of phospholipid precursors occurs at the level of enzyme formation and not at the enzyme activity level. Furthermore, the regulation of phosphatidylserine synthase is coupled to inositol synthesis. Images PMID:3023284

  10. A new liquid chromatography method with charge aerosol detector (CAD) for the determination of phospholipid classes. Application to milk phospholipids.

    PubMed

    Kiełbowicz, Grzegorz; Micek, Piotr; Wawrzeńczyk, Czesław

    2013-02-15

    A new rapid method for the quantitative analysis of five classes of phospholipids (PLs) (phosphatidylcholine--PC, lysophosphatidylcholine--LPC, phosphatidylethanolamine--PE and phosphatidylserine--PS and phosphatidylinositol--PI) using liquid chromatography with charge aerosol detector (CAD) is described. The separation of the compounds of interest was achieved on a diol stationary phase with a mobile phase consisting of 13% HCOOH, hexane and 2-propanol in 19 min elution program, including 10 min equilibration of the column. The method was applied to characterize the phospholipid fractions of cow milk. PLs present in cow milk were separated by solid-phase extraction (SPE) procedure with Si cartridges before LC analysis with recovery ranging from 95.3% to 104.4%. The use of CAD detection of the eluted compounds was precise, linear and sensitive.

  11. Aqueous solutions at the interface with phospholipid bilayers.

    PubMed

    Berkowitz, Max L; Vácha, Robert

    2012-01-17

    In a sense, life is defined by membranes, because they delineate the barrier between the living cell and its surroundings. Membranes are also essential for regulating the machinery of life throughout many interfaces within the cell's interior. A large number of experimental, computational, and theoretical studies have demonstrated how the properties of water and ionic aqueous solutions change due to the vicinity of membranes and, in turn, how the properties of membranes depend on the presence of aqueous solutions. Consequently, understanding the character of aqueous solutions at their interface with biological membranes is critical to research progress on many fronts. The importance of incorporating a molecular-level description of water into the study of biomembrane surfaces was demonstrated by an examination of the interaction between phospholipid bilayers that can serve as model biological membranes. The results showed that, in addition to well-known forces, such as van der Waals and screened Coulomb, one has to consider a repulsion force due to the removal of water between surfaces. It was also known that physicochemical properties of biological membranes are strongly influenced by the specific character of the ions in the surrounding aqueous solutions because of the observation that different anions produce different effects on muscle twitch tension. In this Account, we describe the interaction of pure water, and also of aqueous ionic solutions, with model membranes. We show that a symbiosis of experimental and computational work over the past few years has resulted in substantial progress in the field. We now better understand the origin of the hydration force, the structural properties of water at the interface with phospholipid bilayers, and the influence of phospholipid headgroups on the dynamics of water. We also improved our knowledge of the ion-specific effect, which is observed at the interface of the phospholipid bilayer and aqueous solution, and its

  12. Diabetes, biochemical markers of bone turnover, diabetes control, and bone.

    PubMed

    Starup-Linde, Jakob

    2013-01-01

    Diabetes mellitus is known to have late complications including micro vascular and macro vascular disease. This review focuses on another possible area of complication regarding diabetes; bone. Diabetes may affect bone via bone structure, bone density, and biochemical markers of bone turnover. The aim of the present review is to examine in vivo from humans on biochemical markers of bone turnover in diabetics compared to non-diabetics. Furthermore, the effect of glycemic control on bone markers and the similarities and differences of type 1- and type 2-diabetics regarding bone markers will be evaluated. A systematic literature search was conducted using PubMed, Embase, Cinahl, and SveMed+ with the search terms: "Diabetes mellitus," "Diabetes mellitus type 1," "Insulin dependent diabetes mellitus," "Diabetes mellitus type 2," "Non-insulin dependent diabetes mellitus," "Bone," "Bone and Bones," "Bone diseases," "Bone turnover," "Hemoglobin A Glycosylated," and "HbA1C." After removing duplicates from this search 1,188 records were screened by title and abstract and 75 records were assessed by full text for inclusion in the review. In the end 43 records were chosen. Bone formation and resorption markers are investigated as well as bone regulating systems. T1D is found to have lower osteocalcin and CTX, while osteocalcin and tartrate-resistant acid are found to be lower in T2D, and sclerostin is increased and collagen turnover markers altered. Other bone turnover markers do not seem to be altered in T1D or T2D. A major problem is the lack of histomorphometric studies in humans linking changes in turnover markers to actual changes in bone turnover and further research is needed to strengthen this link.

  13. Relevance Is the Issue.

    ERIC Educational Resources Information Center

    Smeltzer, Larry

    1993-01-01

    Points out that good research must be applied, theoretical, rigorous, and relevant all at the same time. Argues for relevant research that develops and tests theoretical constructs that provide useful business knowledge. (SR)

  14. Similar Processes but Different Environmental Filters for Soil Bacterial and Fungal Community Composition Turnover on a Broad Spatial Scale

    PubMed Central

    Chemidlin Prévost-Bouré, Nicolas; Dequiedt, Samuel; Thioulouse, Jean; Lelièvre, Mélanie; Saby, Nicolas P. A.; Jolivet, Claudy; Arrouays, Dominique; Plassart, Pierre; Lemanceau, Philippe; Ranjard, Lionel

    2014-01-01

    Spatial scaling of microorganisms has been demonstrated over the last decade. However, the processes and environmental filters shaping soil microbial community structure on a broad spatial scale still need to be refined and ranked. Here, we compared bacterial and fungal community composition turnovers through a biogeographical approach on the same soil sampling design at a broad spatial scale (area range: 13300 to 31000 km2): i) to examine their spatial structuring; ii) to investigate the relative importance of environmental selection and spatial autocorrelation in determining their community composition turnover; and iii) to identify and rank the relevant environmental filters and scales involved in their spatial variations. Molecular fingerprinting of soil bacterial and fungal communities was performed on 413 soils from four French regions of contrasting environmental heterogeneity (Landesturnovers. The relative importance of processes and filters was assessed by distance-based redundancy analysis. This study demonstrates significant community composition turnover rates for soil bacteria and fungi, which were dependent on the region. Bacterial and fungal community composition turnovers were mainly driven by environmental selection explaining from 10% to 20% of community composition variations, but spatial variables also explained 3% to 9% of total variance. These variables highlighted significant spatial autocorrelation of both communities unexplained by the environmental variables measured and could partly be explained by dispersal limitations. Although the identified filters and their hierarchy were dependent on the region and organism, selection was systematically based on a common group of environmental variables: pH, trophic resources, texture and land use. Spatial autocorrelation was also important at coarse (80 to

  15. Similar processes but different environmental filters for soil bacterial and fungal community composition turnover on a broad spatial scale.

    PubMed

    Chemidlin Prévost-Bouré, Nicolas; Dequiedt, Samuel; Thioulouse, Jean; Lelièvre, Mélanie; Saby, Nicolas P A; Jolivet, Claudy; Arrouays, Dominique; Plassart, Pierre; Lemanceau, Philippe; Ranjard, Lionel

    2014-01-01

    Spatial scaling of microorganisms has been demonstrated over the last decade. However, the processes and environmental filters shaping soil microbial community structure on a broad spatial scale still need to be refined and ranked. Here, we compared bacterial and fungal community composition turnovers through a biogeographical approach on the same soil sampling design at a broad spatial scale (area range: 13300 to 31000 km2): i) to examine their spatial structuring; ii) to investigate the relative importance of environmental selection and spatial autocorrelation in determining their community composition turnover; and iii) to identify and rank the relevant environmental filters and scales involved in their spatial variations. Molecular fingerprinting of soil bacterial and fungal communities was performed on 413 soils from four French regions of contrasting environmental heterogeneity (Landesturnovers. The relative importance of processes and filters was assessed by distance-based redundancy analysis. This study demonstrates significant community composition turnover rates for soil bacteria and fungi, which were dependent on the region. Bacterial and fungal community composition turnovers were mainly driven by environmental selection explaining from 10% to 20% of community composition variations, but spatial variables also explained 3% to 9% of total variance. These variables highlighted significant spatial autocorrelation of both communities unexplained by the environmental variables measured and could partly be explained by dispersal limitations. Although the identified filters and their hierarchy were dependent on the region and organism, selection was systematically based on a common group of environmental variables: pH, trophic resources, texture and land use. Spatial autocorrelation was also important at coarse (80 to

  16. Spatial and temporal alterations of phospholipids determined by mass spectrometry during mouse embryo implantation[S

    PubMed Central

    Burnum, Kristin E.; Cornett, Dale S.; Puolitaival, Satu M.; Milne, Stephen B.; Myers, David S.; Tranguch, Susanne; Brown, H. Alex; Dey, Sudhansu K.; Caprioli, Richard M.

    2009-01-01

    Molecular events involved in successful embryo implantation are not well understood. In this study, we used MALDI imaging mass spectrometry (IMS) technologies to characterize the spatial and temporal distribution of phospholipid species associated with mouse embryo implantation. Molecular images showing phospholipid distribution within implantation sites changed markedly between distinct cellular areas during days 4–8 of pregnancy. For example, by day 8, linoleate- and docosahexaenoate-containing phospholipids localized to regions destined to undergo cell death, whereas oleate-containing phospholipids localized to angiogenic regions. Arachidonate-containing phospholipids showed different segregation patterns depending on the lipid class, revealing a strong correlation of phosphatidylethanolamines and phosphatidylinositols with cytosolic phospholipase A2α and cyclooxygenase-2 during embryo implantation. LC-ESI-MS/MS was used to validate MALDI IMS phospholipid distribution patterns. Overall, molecular images revealed the dynamic complexity of lipid distributions in early pregnancy, signifying the importance of complex interplay of lipid molecules in uterine biology and implantation. PMID:19429885

  17. Composition and fatty acid distribution of bovine milk phospholipids from processed milk products.

    PubMed

    Gallier, Sophie; Gragson, Derek; Cabral, Charles; Jiménez-Flores, Rafael; Everett, David W

    2010-10-13

    The aim of this work was to assess the accuracy of different extraction methods of phospholipids and to measure the effect that processing has on phospholipid composition. Four methods of extracting phospholipids from buttermilk powder were compared to optimize recovery of sphingomyelin. Using the optimal method, the phospholipid profile of four dairy products (raw milk, raw cream, homogenized and pasteurized milk, and buttermilk powder) was determined. A total lipid extraction by the Folch method followed by a solid-phase extraction using the Bitman method was the most efficient technique to recover milk sphingomyelin. Milk processing (churning, centrifuging, homogenization, spray-drying) affected the profile of milk phospholipids, leading to a loss of sphingomyelin and phosphatidylcholine after centrifugation for cream separation. A corresponding decrease in the saturation content of the raw cream phospholipids and a loss of phosphatidylethanolamine after spray-drying to produce buttermilk powder were also observed.

  18. Turnover of recently assimilated carbon in arctic bryophytes.

    PubMed

    Street, L E; Subke, J A; Sommerkorn, M; Heinemeyer, A; Williams, M

    2011-10-01

    Carbon (C) allocation and turnover in arctic bryophytes is largely unknown, but their response to climatic change has potentially significant impacts on arctic ecosystem C budgets. Using a combination of pulse-chase experiments and a newly developed model of C turnover in bryophytes, we show significant differences in C turnover between two contrasting arctic moss species (Polytrichum piliferum and Sphagnum fuscum). (13)C abundance in moss tissues (measured up to 1 year) and respired CO(2) (traced over 5 days) were used to parameterise the bryophyte C model with four pools representing labile and structural C in photosynthetic and stem tissue. The model was optimised using an Ensemble Kalman Filter to ensure a focus on estimating the confidence intervals (CI) on model parameters and outputs. The ratio of aboveground NPP:GPP in Polytrichum piliferum was 23% (CI 9-35%), with an average turnover time of 1.7 days (CI 1.1-2.5 days). The aboveground NPP:GPP ratio in Sphagnum fuscum was 43% (CI 19-65%) with an average turnover time of 3.1 days (CI 1.6-6.1 days). These results are the first to show differences in C partitioning between arctic bryophyte species in situ and highlight the importance of modelling C dynamics of this group separately from vascular plants for a realistic representation of vegetation in arctic C models.

  19. Climate change creates rapid species turnover in montane communities.

    PubMed

    Gibson-Reinemer, Daniel K; Sheldon, Kimberly S; Rahel, Frank J

    2015-06-01

    Recent decades have seen substantial changes in patterns of biodiversity worldwide. Simultaneously, climate change is producing a widespread pattern of species' range shifts to higher latitudes and higher elevations, potentially creating novel assemblages as species shift at different rates. However, the direct link between species' turnover as a result of climate-induced range shifts has not yet been empirically evaluated. We measured rates of species turnover associated with species' range shifts in relatively undisturbed montane areas in Asia, Europe, North America, South America, and the Indo-Pacific. We show that species turnover is rapidly creating novel assemblages, and this can be explained by variable changes in species' range limits following warming. Across all the areas we analyzed, mean species' turnover was 12% per decade, which was nearly balanced between the loss of existing co-occurrences and the gain of novel co-occurrences. Turnover appears to be more rapid among ectothermic assemblages, and some evidence suggests tropical assemblages may be responding at more rapid rates than temperate assemblages.

  20. Construction of phospholipid anti-biofouling multilayer on biomedical PET surfaces

    NASA Astrophysics Data System (ADS)

    Xu, Jian-Ping; Wang, Xiao-Li; Fan, De-Zeng; Ji, Jian; Shen, Jia-Cong

    2008-11-01

    The biomimetic phospholipid anti-biofouling multilayers were constructed on the biomedical poly(ethylene terephthalate) (PET) through the combination of layer-by-layer assembly and Michael addition reaction. Two biomacromolecules with opposite charges, alginate and chitosan, were sequentially adsorbed onto PET samples. The assembled multilayer was subsequently crosslinked with glutaraldehyde and biomimetic phospholipids was introduced into the assembled multilayer through the Michael addition of 2-methacryloyloxyethyl phosphorylcholine (MPC). The multilayer and phospholipid-modified PETs showed excellent hemocompatibility.

  1. Overexpression of OSBP-related protein 2 (ORP2) in CHO cells induces alterations of phospholipid species composition.

    PubMed

    Käkelä, Reijo; Tanhuanpää, Kimmo; Laitinen, Saara; Somerharju, Pentti; Olkkonen, Vesa M

    2005-10-01

    We have previously shown that overexpression of human OSBP-related protein 2 (ORP2) in Chinese hamster ovary (CHO) cells results in increased efflux and reduced esterification of cholesterol. The ORP2-expressing cells also have a reduced level of triacylglycerols. We investigated the effects of ORP2 expression on the phospholipid (PL) molecular species and the neutral lipid (NL) fatty acid composition of CHO cells cultured in the presence or absence of serum lipoproteins. In the presence of lipoproteins, ORP2/CHO cells display an increase in polyunsaturated PL species, and polyunsaturated fatty acids (PUFA) in the diminished NL pool are reduced. The increase of polyunsaturated PL may represent a compensatory response to alterations in cholesterol metabolism. Upon lipoprotein deprivation, the ORP2/CHO cells display a drop in polyunsaturated and an increase in mono and diunsaturated PL species. Our results suggest that this is due to defective recycling of PUFA from the diminished NL pool to PL. Furthermore, the PL PUFA, which are elevated in ORP2/CHO cells, are most likely subject to more rapid turnover than the NL-associated pool. The results provide evidence for a delicate integration of cholesterol, PL, and NL metabolism and a role of ORP2 as a regulator of the cellular lipidome.

  2. Biliary Phospholipids Sustain Enterocyte Proliferation and Intestinal Tumor Progression via Nuclear Receptor Lrh1 in mice

    PubMed Central

    Petruzzelli, Michele; Piccinin, Elena; Pinto, Claudio; Peres, Claudia; Bellafante, Elena; Moschetta, Antonio

    2016-01-01

    The proliferative-crypt compartment of the intestinal epithelium is enriched in phospholipids and accumulation of phospholipids has been described in colorectal tumors. Here we hypothesize that biliary phospholipid flow could directly contribute to the proliferative power of normal and dysplastic enterocytes. We used Abcb4−/− mice which lack biliary phospholipid secretion. We first show that Abcb4−/− mice are protected against intestinal tumorigenesis. At the molecular level, the transcriptional activity of the nuclear receptor Liver Receptor Homolog-1 (Lrh1) is reduced in Abcb4−/− mice and its re-activation re-establishes a tumor burden comparable to control mice. Feeding Abcb4−/− mice a diet supplemented with phospholipids completely overcomes the intestinal tumor protective phenotype, thus corroborating the hypothesis that the absence of biliary phospholipids and not lack of Abcb4 gene per se is responsible for the protection. In turn, phospholipids cannot re-establish intestinal tumorigenesis in Abcb4−/− mice crossed with mice with intestinal specific ablation of Lrh1, a nuclear hormone receptor that is activates by phospholipids. Our data identify the key role of biliary phospholipids in sustaining intestinal mucosa proliferation and tumor progression through the activation of nuclear receptor Lrh1. PMID:27995969

  3. Rapid Degradation and Limited Synthesis of Phospholipids in the Cotyledons of Mung Bean Seedlings 1

    PubMed Central

    Gilkes, Neil R.; Herman, Eliot M.; Chrispeels, Maarten J.

    1979-01-01

    Seedling growth of mung bean is accompanied by the rapid catabolism of the three major phospholipids in the cotyledons (phosphatidylcholine, phosphatidylethanolamine, and phosphatidylinositol). The decline starts 24 hours after the beginning of imbibition and by the 4th day of growth more than 50% of the phospholipids have been catabolized. Extracts of cotyledons of 24-hour-imbibed beans contain enzymes capable of degrading membrane-associated phospholipids in vitro. This degradation involves phospholipase D and phosphatase activity. Studies with radioactive acetate, glycerol, and orthophosphate indicate that the three major phospholipids are also synthesized in the cotyledons. Incorporation of glycerol and acetate into phospholipids of cotyledons is relatively constant throughout seedling growth, while the incorporation of [32P]orthophosphate steadily declines from a high value 24 hours after the start of imbibition. The newly synthesized phospholipids become associated with membranous organelles, especially the endoplasmic reticulum, and have an in situ half-life of 2 to 2.5 days. Determination of the activities of two enzymes involved in phospholipid biosynthesis (phosphorylcholine-glyceride transferase and CDP-diglyceride-inositol transferase) shows that the enzymes have their highest activities 12 hours after the start of imbibition. High activities for both enzymes were found in cotyledons of beans incubated at 1 C, indicating that the enzymes may preexist in the dry seeds. The experiments demonstrate that cotyledons start synthesizing new phospholipids immediately after imbibition, but that the rate of phospholipid catabolism far exceeds the rate of synthesis long before the cotyledons start to senesce. PMID:16660911

  4. Properties of a Hydrated Excess Proton Near the Cholesterol-Containing Phospholipid Bilayer

    NASA Astrophysics Data System (ADS)

    Yamashita, Takefumi

    In order to study effects of cholesterol (Chol) on the interaction between the excess proton and the phospholipid bilayer, reactive molecular dynamics simulations are performed with the multistate empirical valence bond model. Although Chol significantly affects the bilayer structure, the proton affinity of the Chol-containing phospholipid bilayer is as high as that of the pure phospholipid bilayer. It is found that the excess proton is strongly trapped by the carbonyl groups and the phosphate groups of the phospholipids. This structure is quite similar to the structure observed in the pure lipid bilayer systems.

  5. The Effects of Conditions of Cerebral Anoxia, on Phospholipids, Metabolism, and Circulation of the Brain.

    DTIC Science & Technology

    Anoxia, *Phospholipids, Blood circulation, Pathology, Blood plasma , Erythrocytes, Patients, Metabolism, Blood chemistry, Brain, Experimental data, Dogs, Laboratory animals, Tables(Data), Blood diseases

  6. A retrospective: Use of Escherichia coli as a vehicle to study phospholipid synthesis and function

    PubMed Central

    Dowhan, William

    2012-01-01

    Although the study of individual phospholipids and their synthesis began in the 1920’s first in plants and then mammals, it was not until the early 1960’s that Eugene Kennedy using Escherichia coli initiated studies of bacterial phospholipid metabolism. With the base of information already available from studies of mammalian tissue, the basic blueprint of phospholipid biosynthesis in E. coli was worked out by the late 1960’s. In 1970’s and 1980’s most of the enzymes responsible for phospholipid biosynthesis were purified and many of the genes encoding these enzymes were identified. By the late 1990’s conditional and null mutants were available along with clones of the genes for every step of phospholipid biosynthesis. Most of these genes had been sequenced before the complete E. coli genome sequence was available. Strains of E. coli were developed in which phospholipid composition could be changed in a systematic manner while maintaining cell viability. Null mutants, strains in which phospholipid metabolism was artificially regulated, and strains synthesizing foreign lipids not found in E. coli have been used to this day to define specific roles for individual phospholipid. This review will trace the findings that have led to the development of E. coli as an excellent model system to study mechanisms underlying the synthesis and function of phospholipids that are widely applicable to other prokaryotic and eukaryotic systems. PMID:22925633

  7. Coordinate regulation of phospholipid biosynthesis in Saccharomyces cerevisiae: pleiotropically constitutive opi1 mutant.

    PubMed Central

    Klig, L S; Homann, M J; Carman, G M; Henry, S A

    1985-01-01

    Phospholipid metabolism in the Saccharomyces cerevisiae opi1 mutant, which excretes inositol and is constitutive for the biosynthetic enzyme inositol-1-phosphate synthase (M. Greenberg, P. Goldwasser, and S. Henry, Mol. Gen. Genet. 186:157-163, 1982), was examined and compared to that of a wild-type strain. In wild-type S. cerevisiae, the phospholipid composition and the relative rates of synthesis of individual phospholipids change in response to the availability of exogenous supplies of soluble phospholipid precursors, particularly inositol. The opi1 mutant, in contrast, displays a relatively invariant phospholipid composition, and its pattern of phospholipid synthesis does not change in response to exogenous phospholipid precursors. Phosphatidylinositol synthase was not found to be regulated in either wild-type or opi1 cells. In wild-type cells, phosphatidylserine synthase and the phospholipid N-methyltransferases are coordinately repressed in response to a combination of inositol and choline. However, in opi1 cells these activities are expressed constitutively. These results suggest that the gene product of the OPI1 locus participates in the coordinate regulation of phospholipid synthesis. Images PMID:3888957

  8. Flow of glucose carbon into cholesterol and phospholipids in various regions of the adult rat brain: enhanced incorporation into hypothalamic phospholipids

    SciTech Connect

    Barkai, A.I.

    1981-01-01

    The contribution of glucose carbon to the biosynthesis of cholesterol and phospholipids in distinct brain regions was studied quantitatively in the adult male rat. Rates of flow of glucose carbon into the lipids in vivo were calculated from two measurements: the curve representing the decrease in plasma /sup 14/C-glucose with time and the specific activity of the cerebral lipid 180 minutes after a rapid intravenous injection of a tracer dose of D-U /sup 14/C-glucose. The following brain regions were studied: cerebral cortex, hypothalamus, medulla, and corpus callosum and cerebellum. The values for carbon flow into phospholipids were significantly higher in the hypothalamus than in the whole brain, whereas small, but insignificant, regional differences were found for carbon flow into cholesterol. The conversion of U-/sup 14/C-glucose to individual phospholipids of both hypothalamus and cerebral cortex was further investigated in vitro in order to establish whether the higher rate of carbon flow into hypothalamic phospholipids resulted from enhanced synthesis of a particular phospholipid. In agreement with the results obtained in vivo, the rate of incorporation of /sup 14/C into total phospholipids was 60% higher in hypothalamic tissue. The results indicate that the higher rate of carbon flow into hypothalamic phospholipids might be attributed to enhanced incorporation of glucose carbon to phosphatidyl-choline and phosphatidyl-ethanolamine following a faster conversion of glucose to glycerol in this brain region.

  9. No turnover in lens lipids for the entire human lifespan.

    PubMed

    Hughes, Jessica R; Levchenko, Vladimir A; Blanksby, Stephen J; Mitchell, Todd W; Williams, Alan; Truscott, Roger J W

    2015-03-11

    Lipids are critical to cellular function and it is generally accepted that lipid turnover is rapid and dysregulation in turnover results in disease (Dawidowicz 1987; Phillips et al., 2009; Liu et al., 2013). In this study, we present an intriguing counter-example by demonstrating that in the center of the human ocular lens, there is no lipid turnover in fiber cells during the entire human lifespan. This discovery, combined with prior demonstration of pronounced changes in the lens lipid composition over a lifetime (Hughes et al., 2012), suggests that some lipid classes break down in the body over several decades, whereas others are stable. Such substantial changes in lens cell membranes may play a role in the genesis of age-related eye disorders. Whether long-lived lipids are present in other tissues is not yet known, but this may prove to be important in understanding the development of age-related diseases.

  10. Light-stimulated inositolphospholipid turnover in Samanea saman leaf pulvini

    SciTech Connect

    Morse, M.J.; Crain, R.C.; Satter, R.L.

    1987-10-01

    Leaflets of Samanea saman open and close rhythmically, driven by an endogenous circadian clock. Light has a rapid, direct effect on the movements and also rephases the rhythm. The authors investigated whether light signals might be mediated by increased inositolphospholipid turnover, a mechanism for signal transduction that is widely utilized in animal systems. Samanea motor organs (pulvini) labeled with (/sup 3/H)inositol were irradiated briefly (5-30 sec) with white light, and membrane-localized phosphatidylinositol phosphates and their aqueous breakdown products, the inositol phosphates, were examined. After a 15-sec or longer light pulse, labeled phosphatidylinositol 4-phosphate and phosphatidylinositol 4,5-bisphosphate decreased and their labeled metabolic products inositol 1,4-biphosphate and inositol 1,4,5-trisphosphate increased changes characteristic of inositolphospholipid turnover. The authors conclude that inositolphospholipid turnover may act as a phototransduction mechanism in Samanea pulvini in a manner that is similar to that reported in animal systems.

  11. Dynamics of Cell Generation and Turnover in the Human Heart.

    PubMed

    Bergmann, Olaf; Zdunek, Sofia; Felker, Anastasia; Salehpour, Mehran; Alkass, Kanar; Bernard, Samuel; Sjostrom, Staffan L; Szewczykowska, Mirosława; Jackowska, Teresa; Dos Remedios, Cris; Malm, Torsten; Andrä, Michaela; Jashari, Ramadan; Nyengaard, Jens R; Possnert, Göran; Jovinge, Stefan; Druid, Henrik; Frisén, Jonas

    2015-06-18

    The contribution of cell generation to physiological heart growth and maintenance in humans has been difficult to establish and has remained controversial. We report that the full complement of cardiomyocytes is established perinataly and remains stable over the human lifespan, whereas the numbers of both endothelial and mesenchymal cells increase substantially from birth to early adulthood. Analysis of the integration of nuclear bomb test-derived (14)C revealed a high turnover rate of endothelial cells throughout life (>15% per year) and more limited renewal of mesenchymal cells (<4% per year in adulthood). Cardiomyocyte exchange is highest in early childhood and decreases gradually throughout life to <1% per year in adulthood, with similar turnover rates in the major subdivisions of the myocardium. We provide an integrated model of cell generation and turnover in the human heart.

  12. Quality of Working Life: An Antecedent to Employee Turnover Intention

    PubMed Central

    Mosadeghrad, Ali Mohammad

    2013-01-01

    Background: The purpose of this study was to measure the level of quality of work life (QWL) among hospital employees in Iran. Additionally, it aimed to identify the factors that are critical to employees’ QWL. It also aimed to test a theoretical model of the relationship between employees’ QWL and their intention to leave the organization. Methods: A survey study was conducted based on a sample of 608 hospital employees using a validated questionnaire. Face, content and construct validity were conducted on the survey instrument. Results: Hospital employees reported low QWL. Employees were least satisfied with pay, benefits, job promotion, and management support. The most important predictor of QWL was management support, followed by job proud, job security and job stress. An inverse relationship was found between employees QWL and their turnover intention. Conclusion: This study empirically examined the relationships between employees’ QWL and their turnover intention. Managers can take appropriate actions to improve employees’ QWL and subsequently reduce employees’ turnover. PMID:24596835

  13. Accelerated bone turnover identifies hemiplegic patients at higher risk of demineralization.

    PubMed

    Del Puente, A; Pappone, N; Servodio Iammarrone, C; Esposito, A; Scarpa, R; Costa, L; Caso, F; Bardoscia, A; Del Puente, A

    2016-01-01

    Immobilization osteoporosis represents a severe complication in hemiplegic patients (HPs), causing fragility fractures, which may occur during rehabilitation reducing functional recovery and survival. The aim of the study was to investigate determinants of bone loss, independent from length of immobilization, which may be useful in early identification of HPs at higher risk of demineralization. Forty-eight HPs of both sexes underwent anthropometric measurements, evaluation of scores of spasticity and of lower limb motory capacity. Laboratory tests were performed. On serum: calcium; phosphorus; creatinine; ALP; iPTH; 25(OH) vitamin-D; sex hormones; Δ4-androstenedione; DHEA-S; insulin; IGF-1; FT3; FT4; TSH; c-AMP. On urine: c-AMP and calcium/creatinine ratio. Two bone turnover markers were measured: serum osteocalcin (BGP) and urinary deoxypyridinoline (DPD). Bone mineral density was determined at both femoral necks, defining a percentage difference in bone loss between paretic and non-paretic limb, thus controlling for the complex cofactors involved. Only bone turnover markers significantly and directly correlated with the entity of demineralization, controlling for age, sex and length of immobilization in the multivariate analysis (BGP coefficient estimate=0.008; SE=0.003; p=0.020; DPD coefficient estimate=0.005; SE=0.002; p=0.036). BGP and DPD are not dependent on anthropometric and endocrine-metabolic parameters, disability patterns and duration of immobilization, thus represent independent determinants of the degree of demineralization. A cutoff was defined for BGP and DPD above which subjects show significantly greater risk of demineralization. The immobilization event generates more severe bone loss when it occurs in subjects with higher bone turnover. BGP and DPD measurements may be of primary importance for early identification of HPs at risk, with relevant preventive implications.

  14. Heterogenous turnover of sperm and seminal vesicle proteins in the mouse revealed by dynamic metabolic labeling.

    PubMed

    Claydon, Amy J; Ramm, Steven A; Pennington, Andrea; Hurst, Jane L; Stockley, Paula; Beynon, Robert

    2012-06-01

    Plasticity in ejaculate composition is predicted as an adaptive response to the evolutionary selective pressure of sperm competition. However, to respond rapidly to local competitive conditions requires dynamic modulation in the production of functionally relevant ejaculate proteins. Here we combine metabolic labeling of proteins with proteomics to explore the opportunity for such modulation within mammalian ejaculates. We assessed the rate at which proteins are synthesized and incorporated in the seminal vesicles of male house mice (Mus musculus domesticus), where major seminal fluid proteins with potential roles in sperm competition are produced. We compared rates of protein turnover in the seminal vesicle with those during spermatogenesis, the timing of which is well known in mice. The subjects were fed a diet containing deuterated valine ([(2)H(8)]valine) for up to 35 days, and the incorporation of dietary-labeled amino acid into seminal vesicle- or sperm-specific proteins was assessed by liquid chromatography-mass spectrometry of samples recovered from the seminal vesicle lumen and cauda epididymis, respectively. Analyses of epididymal contents were consistent with the known duration of spermatogenesis and sperm maturation in this species and in addition revealed evidence for a subset of epididymal proteins subject to rapid turnover. For seminal vesicle proteins, incorporation of the stable isotope was evident from day 2 of labeling, reaching a plateau of labeling by day 24. Hence, even in the absence of copulation, the seminal vesicle proteins and certain epididymal proteins demonstrate considerable turnover, a response that is consonant with the capacity to rapidly modulate protein production. These techniques can now be used to assess the extent of phenotypic plasticity in mammalian ejaculate production and allocation according to social and environmental cues of sperm competition.

  15. Human turnover dynamics during sleep: statistical behavior and its modeling.

    PubMed

    Yoneyama, Mitsuru; Okuma, Yasuyuki; Utsumi, Hiroya; Terashi, Hiroo; Mitoma, Hiroshi

    2014-03-01

    Turnover is a typical intermittent body movement while asleep. Exploring its behavior may provide insights into the mechanisms and management of sleep. However, little is understood about the dynamic nature of turnover in healthy humans and how it can be modified in disease. Here we present a detailed analysis of turnover signals that are collected by accelerometry from healthy elderly subjects and age-matched patients with neurodegenerative disorders such as Parkinson's disease. In healthy subjects, the time intervals between consecutive turnover events exhibit a well-separated bimodal distribution with one mode at ⩽10 s and the other at ⩾100 s, whereas such bimodality tends to disappear in neurodegenerative patients. The discovery of bimodality and fine temporal structures (⩽10 s) is a contribution that is not revealed by conventional sleep recordings with less time resolution (≈30 s). Moreover, we estimate the scaling exponent of the interval fluctuations, which also shows a clear difference between healthy subjects and patients. We incorporate these experimental results into a computational model of human decision making. A decision is to be made at each simulation step between two choices: to keep on sleeping or to make a turnover, the selection of which is determined dynamically by comparing a pair of random numbers assigned to each choice. This decision is weighted by a single parameter that reflects the depth of sleep. The resulting simulated behavior accurately replicates many aspects of observed turnover patterns, including the appearance or disappearance of bimodality and leads to several predictions, suggesting that the depth parameter may be useful as a quantitative measure for differentiating between normal and pathological sleep. These findings have significant clinical implications and may pave the way for the development of practical sleep assessment technologies.

  16. Human turnover dynamics during sleep: Statistical behavior and its modeling

    NASA Astrophysics Data System (ADS)

    Yoneyama, Mitsuru; Okuma, Yasuyuki; Utsumi, Hiroya; Terashi, Hiroo; Mitoma, Hiroshi

    2014-03-01

    Turnover is a typical intermittent body movement while asleep. Exploring its behavior may provide insights into the mechanisms and management of sleep. However, little is understood about the dynamic nature of turnover in healthy humans and how it can be modified in disease. Here we present a detailed analysis of turnover signals that are collected by accelerometry from healthy elderly subjects and age-matched patients with neurodegenerative disorders such as Parkinson's disease. In healthy subjects, the time intervals between consecutive turnover events exhibit a well-separated bimodal distribution with one mode at ⩽10 s and the other at ⩾100 s, whereas such bimodality tends to disappear in neurodegenerative patients. The discovery of bimodality and fine temporal structures (⩽10 s) is a contribution that is not revealed by conventional sleep recordings with less time resolution (≈30 s). Moreover, we estimate the scaling exponent of the interval fluctuations, which also shows a clear difference between healthy subjects and patients. We incorporate these experimental results into a computational model of human decision making. A decision is to be made at each simulation step between two choices: to keep on sleeping or to make a turnover, the selection of which is determined dynamically by comparing a pair of random numbers assigned to each choice. This decision is weighted by a single parameter that reflects the depth of sleep. The resulting simulated behavior accurately replicates many aspects of observed turnover patterns, including the appearance or disappearance of bimodality and leads to several predictions, suggesting that the depth parameter may be useful as a quantitative measure for differentiating between normal and pathological sleep. These findings have significant clinical implications and may pave the way for the development of practical sleep assessment technologies.

  17. Copper-deficient mice have higher cardiac norepinephrine turnover

    SciTech Connect

    Gross, A.M.; Prohaska, J.R. )

    1989-02-01

    Male Swiss albino mice were studied at 6 weeks of age. Their dams were fed a copper-deficient diet (modified AIN-76A) starting 4 days after birth and given deionized water (-Cu) or water with CuSO{sub 4} added (+Cu) (20 {mu}g Cu/ml). When 3 weeks of age mice were weaned and housed in stainless steel cages on the respective treatment of their dams. Turnover of norepinephrine (NE) was studied in 8 experiments using 2 separate techniques. The first procedure used {alpha}-methyl-p-tyrosine methyl ester (300 mg/kg i.p.) to inhibit tyrosine hydroxlase activity. The loss of residual NE was determined by HPLC with electrochemical detection. Regression lines were constructed and fractional turnover (%/h) and calculated turnover (ng/g/h) were determined for heart, cerebellum and adrenal gland. In 4 experiments loss of NE in cerebellum of -Cu ad +Cu mice was equivalent. Loss of NE from adrenal gland could not be detected in the 8 h time course. Loss of NE, both fractional turnover and calculated turnover, from heart of -Cu mice was 4-5 fold higher compared to +Cu controls. A second method using m- hydroxybenzylhydrazine (NSD-1015) (100 mg/kg i.p.), which inhibits aromatic amino acid decarboxylase, confirmed the results. For all 4 experiments the cardiac accumulation of L-DOPA (measured by HPLC) was faster in -Cu mice compared to controls. The higher turnover rate of NE in heart and perhaps other sympathetic nerves may contribute to the higher urinary NE output observed previously.

  18. Slow Phospholipid Exchange between a Detergent-Solubilized Membrane Protein and Lipid-Detergent Mixed Micelles: Brominated Phospholipids as Tools to Follow Its Kinetics

    PubMed Central

    Montigny, Cédric; Dieudonné, Thibaud; Orlowski, Stéphane; Vázquez-Ibar, José Luis; Gauron, Carole; Georgin, Dominique; Lund, Sten; le Maire, Marc; Møller, Jesper V.; Champeil, Philippe

    2017-01-01

    Membrane proteins are largely dependent for their function on the phospholipids present in their immediate environment, and when they are solubilized by detergent for further study, residual phospholipids are critical, too. Here, brominated phosphatidylcholine, a phospholipid which behaves as an unsaturated phosphatidylcholine, was used to reveal the kinetics of phospholipid exchange or transfer from detergent mixed micelles to the environment of a detergent-solubilized membrane protein, the paradigmatic P-type ATPase SERCA1a, in which Trp residues can experience fluorescence quenching by bromine atoms present on phospholipid alkyl chains in their immediate environment. Using dodecylmaltoside as the detergent, exchange of (brominated) phospholipid was found to be much slower than exchange of detergent under the same conditions, and also much slower than membrane solubilization, the latter being evidenced by light scattering changes. The kinetics of this exchange was strongly dependent on temperature. It was also dependent on the total concentration of the mixed micelles, revealing the major role for such exchange of the collision of detergent micelles with the detergent-solubilized protein. Back-transfer of the brominated phospholipid from the solubilized protein to the detergent micelle was much faster if lipid-free DDM micelles instead of mixed micelles were added for triggering dissociation of brominated phosphatidylcholine from the solubilized protein, or in the additional presence of C12E8 detergent during exchange, also emphasizing the role of the chemical nature of the micelle/protein interface. This protocol using brominated lipids appears to be valuable for revealing the possibly slow kinetics of phospholipid transfer to or from detergent-solubilized membrane proteins. Independently, continuous recording of the activity of the protein can also be used in some cases to correlate changes in activity with the exchange of a specific phospholipid, as shown here

  19. Phospholipid and Hydrocarbon Interactions with a Charged Electrode Interface.

    PubMed

    Levine, Zachary A; DeNardis, Nadica Ivošević; Vernier, P Thomas

    2016-03-22

    Using a combination of molecular dynamics simulations and experiments we examined the interactions of alkanes and phospholipids at charged interfaces in order to understand how interfacial charge densities affect the association of these two representative molecules with electrodes. Consistent with theory and experiment, these model systems reveal interfacial associations mediated through a combination of Coulombic and van der Waals forces. van der Waals forces, in particular, mediate rapid binding of decane to neutral electrodes. No decane binding was observed at high surface charge densities because of interfacial water polarization, which screens hydrophobic attractions. The positively charged choline moiety of the phospholipid palmitoyloleoylphosphatidylcholine (POPC) is primarily responsible for POPC attraction by a moderately negatively charged electrode. The hydrocarbon tails of POPC interact with the hydrophobic electrode interface similarly to decane. Previously reported electrochemical results confirm these findings by demonstrating bipolar displacement currents from PC vesicles adhering to moderately negatively charged interfaces, originating from the choline interactions observed in simulations. At more negatively charged interfaces, choline-to-surface binding was stronger. In both simulations and experiments the maximal interaction of anionic PS occurs with a positively charged interface, provided that the electrostatic forces outweigh local Lennard-Jones interactions. Direct comparisons between the binding affinities measured in experiments and those obtained in simulations reveal previously unobserved atomic interactions that facilitate lipid vesicle adhesion to charged interfaces. Moreover, the implementation of a charged interface in molecular dynamics simulations provides an alternative method for the generation of large electric fields across phospholipid bilayers, especially for systems with periodic boundary conditions, and may be useful for

  20. Structural identification and cardiovascular activities of oxidized phospholipids.

    PubMed

    Salomon, Robert G

    2012-09-14

    Free radical-induced oxidation of membrane phospholipids generates complex mixtures of oxidized phospholipids (oxPLs). The combinatorial operation of a few dozen reaction types on a few dozen phospholipid structures results in the production of a dauntingly vast diversity of oxPL molecular species. Structural identification of the individual oxPL in these mixtures is a redoubtable challenge that is absolutely essential to allow determination of the biological activities of individual species. With an emphasis on cardiovascular consequences, this Review focuses on biological activities of oxPLs whose molecular structures are known and highlights 2 diametrically opposite approaches that were used to determine those structures, that is, (1) the classic approach from bioactivity of a complex mixture to isolation and structural characterization of the active molecule followed by confirmation of the structure by unambiguous chemical synthesis and (2) hypothesis of products that are likely to be generated by lipid oxidation, followed by synthesis, and then detection in vivo guided by the availability of authentic standards, and last, characterization of biological activities. Especially important for the application of the second paradigm is the capability of LC-MS/MS and derivatizations to selectively detect and quantify specific oxPL in complex mixtures, without the need for their isolation or complete separation. This technology can provide strong evidence for identity by comparisons with pure, well-characterized samples available by chemical syntheses. Those pure samples are critical for determining the biological activities attributable to specific molecular species of oxPLs in the complex mixtures generated in vivo as a consequence of oxidative stress.

  1. Transfer of oleic acid between albumin and phospholipid vesicles

    SciTech Connect

    Hamilton, J.A.; Cistola, D.P.

    1986-01-01

    The net transfer of oleic acid between egg phosphatidylcholine unilamellar vesicles and bovine serum albumin has been monitored by TC NMR spectroscopy and 90% isotopically substituted (1- TC)oleic acid. The carboxyl chemical shifts of oleic acid bound to albumin were different from those for oleic acid in phospholipid vesicles. Therefore, in mixtures of donor particles, the equilibrium distribution of oleic acid was determined from chemical shift and peak intensity data without separation of donor and acceptor particles. In a system containing equal masses of albumin and phospholipid and a stoichiometry of 4-5 mol of oleic acid per mol of albumin, the oleic acid distribution was pH dependent, with greater than or equal to80% of the oleic acid associated with albumin at pH 7.4; association was greater than or equal to90% at pH 8.0. Decreasing the pH below 7.4 markedly decreased the proportion of fatty acid bound to albumin. The distribution was reversible with pH and was independent of whether vesicles or albumin acted as a donor. These data suggest that pH may strongly influence the partitioning of fatty acid between cellular membranes and albumin. The TC NMR method is also advantageous because it provides information about the structural environments of oleic acid bound to albumin or phospholipid, the ionization state of oleic acid in each environment, and the structural integrity of the vesicles. In addition, minimum and maximum limits for the exchange rates of oleic acid among different environments were obtained from the NMR data.

  2. [Pharmaceutical logistic in turnover of pharmaceutical products of Azerbaijan].

    PubMed

    Dzhalilova, K I

    2009-11-01

    Development of pharmaceutical logistic system model promotes optimal strategy for pharmaceutical functioning. The goal of such systems is organization of pharmaceutical product's turnover in required quantity and assortment, at preset time and place, at a highest possible degree of consumption readiness with minimal expenses and qualitative service. Organization of the optimal turnover chain in the region is offered to start from approximate classification of medicaments by logistic characteristics. Supplier selection was performed by evaluation of timeliness of delivery, quality of delivered products (according to the minimum acceptable level of quality) and time-keeping of time spending for orders delivery.

  3. Accidents, turnover, and use of a preemployment screening inventory.

    PubMed

    Borofsky, G L; Bielema, M; Hoffman, J

    1993-12-01

    This study examined the rates of work-related accidents and turnover among two contrasted groups of employees in a resort hotel/conference center environment. For each variable, measures were obtained for the year prior to the inclusion of a preemployment inventory in the organization's selection process and for each of two years subsequent to the start of inventory use. Analysis indicated the rates of work-related accidents and turnover were significantly lower in the years subsequent to the start of inventory use. Some possible design artifacts and cost/benefit implications are discussed.

  4. Influence of bioregulators on the phospholipid Langmuir monolayers.

    PubMed

    Mogilevich, A S; Mogilevich, S E; Luik, A L

    1997-01-01

    Influence of bioregulators on the phospholipid Langmuir monolayers made of distearoylphosphatidylcholine and its equimolar mixture with dimitrystoylphosphatidylcholine was investigated. The results obtained allow concluding that the presence of physiologically active compounds in the subphase weakens the lipid-lipid interaction and increases the free energy change of air-liquid interface in the case of pure distearoylphosphatidylcholine monolayers, but in the case of mixed monolayers it leads both to the increase and decrease of these parameters. Presence of the dimirystoylphosphatidylcholine molecules with the short fatty acyl chains in the monolayer destabilizes it. This effect is partially compensated by the interaction between lipid and subphase molecules.

  5. Antibodies to Phospholipids and Liposomes: Binding of Antibodies to Cells

    DTIC Science & Technology

    1987-01-01

    LIPOSOMES: BINDING OF ANTIBODIES TO CELLS 12. PERSONAL AUTHOR(S) W.E. FOGLER , G. M. SWARTZ, AND C.R. ALVING 13a TYPE OF REPORT 13b. TIME COVERED 14. DATE...Elsevier BBA 73693 Antibodies to phospholipids and liposomes: binding of antibodies to cells William E. Fogler *, Glenn M. Swartz, Jr. and Carl R. Alving...Immunol. 21. Research Associateship from the U.S. National 12863-86812Hall. T. and Esser, K. (1984) 3. Immunol. 132. 2059-2063 Research Council. 13 Fogler

  6. The phospholipid code: a key component of dying cell recognition, tumor progression and host–microbe interactions

    PubMed Central

    Baxter, A A; Hulett, M D; Poon, I KH

    2015-01-01

    A significant effort is made by the cell to maintain certain phospholipids at specific sites. It is well described that proteins involved in intracellular signaling can be targeted to the plasma membrane and organelles through phospholipid-binding domains. Thus, the accumulation of a specific combination of phospholipids, denoted here as the ‘phospholipid code', is key in initiating cellular processes. Interestingly, a variety of extracellular proteins and pathogen-derived proteins can also recognize or modify phospholipids to facilitate the recognition of dying cells, tumorigenesis and host–microbe interactions. In this article, we discuss the importance of the phospholipid code in a range of physiological and pathological processes. PMID:26450453

  7. Perceptions of document relevance

    PubMed Central

    Bruza, Peter; Chang, Vivien

    2014-01-01

    This article presents a study of how humans perceive and judge the relevance of documents. Humans are adept at making reasonably robust and quick decisions about what information is relevant to them, despite the ever increasing complexity and volume of their surrounding information environment. The literature on document relevance has identified various dimensions of relevance (e.g., topicality, novelty, etc.), however little is understood about how these dimensions may interact. We performed a crowdsourced study of how human subjects judge two relevance dimensions in relation to document snippets retrieved from an internet search engine. The order of the judgment was controlled. For those judgments exhibiting an order effect, a q–test was performed to determine whether the order effects can be explained by a quantum decision model based on incompatible decision perspectives. Some evidence of incompatibility was found which suggests incompatible decision perspectives is appropriate for explaining interacting dimensions of relevance in such instances. PMID:25071622

  8. Protein turnover and cellular autophagy in growing and growth-inhibited 3T3 cells

    SciTech Connect

    Papadopoulos, T.; Pfeifer, U. )

    1987-07-01

    The relationship between growth, protein degradation, and cellular autophagy was tested in growing and in growth-inhibited 3T3 cell monolayers. For the biochemical evaluation of DNA and protein metabolism, growth-inhibited 3T3 cell monolayers with high cell density and growing 3T3 cell monolayers with low cell density were labeled simultaneously with ({sup 14}C)thymidine and ({sup 3}H)leucine. The evaluation of the DNA turnover and additional ({sup 3}H)thymidine autoradiography showed that 24 to 5% of 3T3 cells continue to replicate even in the growth-inhibited state, where no accumulation of protein and DNA can be observed. Cell loss, therefore, has to be assumed to compensate for the ongoing cell proliferation. When the data of protein turnover were corrected for cell loss, it was found that the rate constant of protein synthesis in nongrowing monolayers was reduced to half the value found in growing monolayers. Simultaneously, the rate constant of protein degradation in nongrowing monolayers was increased to about 1.5-fold the value of growing monolayers. These data are in agreement with the assumption that cellular autophagy represents a major pathway of regulating protein degradation in 3T3 cells and that the regulation of autophagic protein degradation is of relevance for the transition from a growing to a nongrowing state.

  9. Identification of Two Legionella pneumophila Effectors that Manipulate Host Phospholipids Biosynthesis

    PubMed Central

    Viner, Ram; Chetrit, David; Ehrlich, Marcelo; Segal, Gil

    2012-01-01

    The intracellular pathogen Legionella pneumophila translocates a large number of effector proteins into host cells via the Icm/Dot type-IVB secretion system. Some of these effectors were shown to cause lethal effect on yeast growth. Here we characterized one such effector (LecE) and identified yeast suppressors that reduced its lethal effect. The LecE lethal effect was found to be suppressed by the over expression of the yeast protein Dgk1 a diacylglycerol (DAG) kinase enzyme and by a deletion of the gene encoding for Pah1 a phosphatidic acid (PA) phosphatase that counteracts the activity of Dgk1. Genetic analysis using yeast deletion mutants, strains expressing relevant yeast genes and point mutations constructed in the Dgk1 and Pah1 conserved domains indicated that LecE functions similarly to the Nem1-Spo7 phosphatase complex that activates Pah1 in yeast. In addition, by using relevant yeast genetic backgrounds we examined several L. pneumophila effectors expected to be involved in phospholipids biosynthesis and identified an effector (LpdA) that contains a phospholipase-D (PLD) domain which caused lethal effect only in a dgk1 deletion mutant of yeast. Additionally, LpdA was found to enhance the lethal effect of LecE in yeast cells, a phenomenon which was found to be dependent on its PLD activity. Furthermore, to determine whether LecE and LpdA affect the levels or distribution of DAG and PA in-vivo in mammalian cells, we utilized fluorescent DAG and PA biosensors and validated the notion that LecE and LpdA affect the in-vivo levels and distribution of DAG and PA, respectively. Finally, we examined the intracellular localization of both LecE and LpdA in human macrophages during L. pneumophila infection and found that both effectors are localized to the bacterial phagosome. Our results suggest that L. pneumophila utilize at least two effectors to manipulate important steps in phospholipids biosynthesis. PMID:23133385

  10. Chemical modification of proteins during peroxidation of phospholipids.

    PubMed

    Januszewski, Andrzej S; Alderson, Nathan L; Jenkins, Alicia J; Thorpe, Suzanne R; Baynes, John W

    2005-07-01

    Chemical modification of proteins by advanced glycation and lipoxidation end products is implicated in the pathogenesis of macrovascular disease in aging and diabetes. To identify biomarkers of the lipoxidative modification of protein, we studied the oxidation of phospholipids in the presence of the model protein RNase A and compared protein-bound products formed in these reactions with those formed during oxidation of plasma proteins. Metal-catalyzed oxidation of 1-palmitoyl-2-arachidonoyl-phosphatidylcholine or 1-palmitoyl-2-linoleoyl-phosphatidylcholine in the presence of RNase led to the loss of amino groups in RNase and the incorporation of phosphate, hexanoate, pentanedioate, nonanedioate, and palmitate into protein. Protein-bound palmitate and phosphate correlated strongly with one another, and protein-bound pentanedioate and nonanedioate, derived from arachidonate and linoleate, respectively, accounted for approximately 20% of the cross-linking of lipid phosphorus to protein. Similar results were obtained on oxidation of total plasma or isolated LDL. We conclude that alkanedioic acids are quantitatively important linkers of oxidized phospholipids to proteins and that measurement of protein-bound phosphate and long-chain fatty acids may be useful for assessing long-term lipid peroxidative damage to proteins in vivo. Analyses of plasma proteins from control and diabetic patients indicated significant increases in lipoxidative modification of protein in diabetic compared with control subjects.

  11. Structure and organization of phospholipid/polysaccharide nanoparticles

    NASA Astrophysics Data System (ADS)

    Gerelli, Y.; Di Bari, M. T.; Deriu, A.; Cantù, L.; Colombo, P.; Como, C.; Motta, S.; Sonvico, F.; May, R.

    2008-03-01

    In recent years nanoparticles and microparticles composed of polymeric or lipid material have been proposed as drug carriers for improving the efficacy of encapsulated drugs. For the production of these systems different materials have been proposed, among them phospholipids and polysaccharides due to their biocompatibility, biodegradability, low cost and safety. We report here a morphological and structural investigation, performed using cryo-TEM, static light scattering and small angle neutron and x-ray scattering, on phospholipid/saccharide nanoparticles loaded with a lipophilic positively charged drug (tamoxifen citrate) used in breast cancer therapy. The lipid component was soybean lecithin; the saccharide one was chitosan that usually acts as an outer coating increasing vesicle stability. The microscopy and scattering data indicate the presence of two distinct nanoparticle families: uni-lamellar vesicles with average radius 90 Å and multi-lamellar vesicles with average radius 440 Å. In both families the inner core is occupied by the solvent. The presence of tamoxifen gives rise to a multi-lamellar structure of the lipid outer shell. It also induces a positive surface charge into the vesicles, repelling the positively charged chitosan molecules which therefore do not take part in nanoparticle formation.

  12. Xkr8 phospholipid scrambling complex in apoptotic phosphatidylserine exposure

    PubMed Central

    Suzuki, Jun; Imanishi, Eiichi; Nagata, Shigekazu

    2016-01-01

    Xk-related protein (Xkr) 8, a protein carrying 10 transmembrane regions, is essential for scrambling phospholipids during apoptosis. Here, we found Xkr8 as a complex with basigin (BSG) or neuroplastin (NPTN), type I membrane proteins in the Ig superfamily. In BSG−/−NPTN−/− cells, Xkr8 localized intracellularly, and the apoptosis stimuli failed to expose phosphatidylserine, indicating that BSG and NPTN chaperone Xkr8 to the plasma membrane to execute its scrambling activity. Mutational analyses of BSG showed that the atypical glutamic acid in the transmembrane region is required for BSG’s association with Xkr8. In cells exposed to apoptotic signals, Xkr8 was cleaved at the C terminus and the Xkr8/BSG complex formed a higher-order complex, likely to be a heterotetramer consisting of two molecules of Xkr8 and two molecules of BSG or NPTN, suggesting that this cleavage causes the formation of a larger complex of Xkr8-BSG/NPTN for phospholipid scrambling. PMID:27503893

  13. Phospholipid and glycolipid composition of acidocalcisomes of Trypanosoma cruzi.

    PubMed

    Salto, María Laura; Kuhlenschmidt, Theresa; Kuhlenschmidt, Mark; de Lederkremer, Rosa M; Docampo, Roberto

    2008-04-01

    Highly purified acidocalcisomes from Trypanosoma cruzi epimastigotes were obtained by differential centrifugation and iodixanol gradient ultracentrifugation. Lipid analysis of acidocalcisomes revealed the presence of low amounts of 3beta-hydroxysterols and predominance of phospholipids. Alkylacyl phosphatidylinositol (16:0/18:2), diacyl phosphatidylinositol (18:0/18:2), diacyl phosphatidylcholine (16:0/18:2; 16:1/18:2; 16:2/18:2; 18:1/18:2 and 18:2/18:2), and diacyl phosphatidylethanolamine (16:0/18:2 and 16:1/18:2) were the only phospholipids characterized by electrospray ionization-mass spectrometry (ESI-MS). Incubation of epimastigotes with [(3)H]-mannose and isolation of acidocalcisomes allowed the detection of a glycoinositolphospholipid (GIPL) in these organelles. The sugar content of the acidocalcisomal GIPL was similar to that of the GIPL present in a microsomal fraction but the amount of galactofuranose and inositol with respect to the other monosaccharides was lower, suggesting a different chemical structure. Taken together, these results indicate that acidocalcisomes of T. cruzi have a distinct lipid and carbohydrate composition.

  14. Spontaneous structural transition in phospholipid-inspired aromatic phosphopeptide nanostructures.

    PubMed

    Pellach, Michal; Atsmon-Raz, Yoav; Simonovsky, Eyal; Gottlieb, Hugo; Jacoby, Guy; Beck, Roy; Adler-Abramovich, Lihi; Miller, Yifat; Gazit, Ehud

    2015-01-01

    Phospholipid membranes could be considered a prime example of the ability of nature to produce complex yet ordered structures, by spontaneous and efficient self-assembly. Inspired by the unique properties and architecture of phospholipids, we designed simple amphiphilic decapeptides, intended to fold in the center of the peptide sequence, with a phosphorylated serine "head" located within a central turn segment, and two hydrophobic "tails". The molecular design also included the integration of the diphenylalanine motif, previously shown to facilitate self-assembly and increase nanostructure stability. Secondary structure analysis of the peptides indeed indicated the presence of stabilized conformations in solution, with a central turn connecting two hydrophobic "tails", and interactions between the hydrophobic strands. The mechanisms of assembly into supramolecular structures involved structural transitions between different morphologies, which occurred over several hours, leading to the formation of distinctive nanostructures, including half-elliptical nanosheets and curved tapes. The phosphopeptide building blocks appear to self-assemble via a particular combination of aromatic, hydrophobic and ionic interactions, as well as hydrogen bonding, as demonstrated by proposed constructed simulated models of the peptides and self-assembled nanostructures. Molecular dynamics simulations also gave insight into mechanisms of structural transitions of the nanostructures at a molecular level. Because of the biocompatibility of peptides, the phosphopeptide assemblies allow for expansion of the library of biomolecular nanostructures available for future design and application of biomedical devices.

  15. Structural analysis of inositol phospholipids from Trypanosoma cruzi epimastigote forms.

    PubMed Central

    Bertello, L E; Gonçalvez, M F; Colli, W; de Lederkremer, R M

    1995-01-01

    Inositol phospholipids (IPL) from epimastigote forms of Trypanosoma cruzi have been investigated by metabolic labelling with [3H]palmitic acid and by GLC-MS analysis of the lipids obtained from non-labelled parasites. The IPL fraction was separated into phosphatidylinositol (PI) and inositol-phosphoceramide subfractions, the latter accounting for 80-85% of the total IPL. The neutral lipids released from the IPLs by PI-specific phospholipase C (PI-PLC) from Bacillus thuringiensis were analysed by silica-gel and reverse-phase TLC for the radioactive lipids and by GLC-MS for the non-radioactive samples. Ceramides containing dihydrosphingosine and sphingosine with C16:0 and C18:0 fatty acids were identified. The main component in the [3H]palmitic acid-labelled ceramides was palmitoyldihydrospingosine, while in the non-labelled sample the ceramides contained mainly sphingosine. This could reflect partial uptake of phospholipid from the medium. The PI contain both alkylacyl- and diacyl-glycerol lipids, with the ether lipid being more abundant. The latter was identified as 1-O-hexadecylglycerol esterified by C18:2 and C18:1 fatty acids. Interestingly, the same lipid had been identified in the anchor of the 1G7 glycoprotein of T. cruzi metacyclic forms. Images Figure 1 Figure 2 Figure 3 Figure 4 Figure 5 Figure 7 PMID:7646454

  16. Phospholipid homeostasis and lipotoxic cardiomyopathy: a matter of balance.

    PubMed

    Lim, Hui-Ying; Bodmer, Rolf

    2011-01-01

    Obesity has reached pandemic proportions globally and is often associated with lipotoxic heart diseases. In the obese state, caloric surplus is accommodated in the adipocytes as triglycerides. As the storage capacity of adipocytes is exceeded or malfunctioning, lipids begin to infiltrate and accumulate in non-adipose tissues, including the myocardium of the heart, leading to organ dysfunction. While the disruption of caloric homeostasis has been widely viewed as a principal mechanism in contributing to peripheral tissue steatosis and lipotoxicity, our recent studies in Drosophila have led to the novel finding that deregulation of phospholipid homeostasis may also significantly contribute to the pathogenesis of lipotoxic cardiomyopathy. Fly mutants that bear perturbations in phosphatidylethanolamine (PE) biosynthesis, such as the easily-shocked (eas) mutants defective in ethanolamine kinase, incurred aberrant activation of the sterol regulatory element binding protein (SREBP) pathway, thereby causing chronic lipogenesis and cardiac steatosis that culminates in the development of lipotoxic cardiomyopathy. Here, we describe the potential relationship between SREBP and other eas-associated phenotypes, such as neuronal excitability defects. We will further discuss the additional implications presented by our work toward the effects of altered lipid metabolism on cellular growth and/or proliferation in response to defective phospholipid homeostasis.

  17. Metformin Decouples Phospholipid Metabolism in Breast Cancer Cells

    PubMed Central

    Smith, Tim A. D.; Phyu, Su M.

    2016-01-01

    Introduction The antidiabetic drug metformin, currently undergoing trials for cancer treatment, modulates lipid and glucose metabolism both crucial in phospholipid synthesis. Here the effect of treatment of breast tumour cells with metformin on phosphatidylcholine (PtdCho) metabolism which plays a key role in membrane synthesis and intracellular signalling has been examined. Methods MDA-MB-468, BT474 and SKBr3 breast cancer cell lines were treated with metformin and [3H-methyl]choline and [14C(U)]glucose incorporation and lipid accumulation determined in the presence and absence of lipase inhibitors. Activities of choline kinase (CK), CTP:phosphocholine cytidylyl transferase (CCT) and PtdCho-phospholipase C (PLC) were also measured. [3H] Radiolabelled metabolites were determined using thin layer chromatography. Results Metformin-treated cells exhibited decreased formation of [3H]phosphocholine but increased accumulation of [3H]choline by PtdCho. CK and PLC activities were decreased and CCT activity increased by metformin-treatment. [14C] incorporation into fatty acids was decreased and into glycerol was increased in breast cancer cells treated with metformin incubated with [14C(U)]glucose. Conclusion This is the first study to show that treatment of breast cancer cells with metformin induces profound changes in phospholipid metabolism. PMID:26959405

  18. Proton and hydroxide ion permeability of phospholipid vesicles.

    PubMed Central

    Nozaki, Y; Tanford, C

    1981-01-01

    The apparent permeability of H+ through phospholipid bilayers was determined by measuring H+ efflux from large unilamellar phospholipid vesicles with internal space buffered at pH 4. The value obtained is about 10(-9) cm/sec at room temperature, five orders of magnitude lower than was recently reported for the combined permeability for H+ and OH- [Nichols, J. W. & Deamer, D. W. (1980) Proc. Natl. Acad. Sci. USA, 77, 2038-2042]. The apparent permeability measured in this way is the sum of contributions from the movement of H+ and of uncharged species (HCl or HNO3) in equilibrium with anions in the solution. There is evidence that the uncharged species make the dominant contribution and that the permeability coefficient for H+ per se is no larger than 5 X 10(-12) cm/sec. An attempt to measure OH- permeability by use of vesicles buffered at pH 10 did not give a conclusive result because the vesicle walls appeared to be damaged by exposure to this pH. An apparent permeability coefficient of about 10(-7) cm/sec was estimated for undamaged membranes. PMID:6270672

  19. Stool Phospholipid Signature is Altered by Diet and Tumors

    PubMed Central

    Martinez, Mitchell; Bhattacharya, Sanjoy K.; Abreu, Maria T.

    2014-01-01

    Intake of saturated fat is a risk factor for ulcerative colitis (UC) and colon cancer. Changes in the microbiota have been implicated in the development of UC and colon cancer. The host and the microbiota generate metabolites that may contribute to or reflect disease pathogenesis. We used lipid class specific quantitative mass spectrometry to assess the phospholipid (PL) profile (phosphatidylcholine [PC], phosphatidylethanolamine [PE], phosphatidylinositol [PI], phosphatidylserine [PS]) of stool from mice fed a high fat (HFD) or control diet with or without induction of colitis-associated tumors using azoxymethane and dextran sodium sulfate. The microbiota was assessed using qPCR for several bacterial groups. Colitis-associated tumors were associated with reduced bulk PI and PE levels in control diet fed mice compared to untreated mice. Significant decreases in the relative quantities of several PC species were found in colitis-associated tumor bearing mice fed either diet. Statistical analysis of the PL profile revealed distinct clustering by treatment group. Partial least squares regression analysis found that the relative quantities of the PS class profile best predicted bacterial abundance of Clostridium leptum and Prevotella groups. Abundance of selected PL species correlated with bacterial group quantities. Thus, we have described that a HFD and colitis-associated tumors are associated with changes in phospholipids and may reflect host-microbial interactions and disease states. PMID:25469718

  20. Extended elution of phospholipid from silicone hydrogel contact lenses.

    PubMed

    Pitt, William G; Zhao, Yibei; Jack, Daniel R; Perez, Krystian X; Jones, Peter W; Marelli, Ryan; Nelson, Jared L; Pruitt, John D

    2015-01-01

    Characterization of phospholipid release from an experimental reusable wear silicone hydrogel contact lens was performed to assess the possible use of these lenses for phospholipid delivery to increase eye comfort to patients who prefer reusable wear lenses. Contact lenses were loaded with 200 μg of radio-labeled 1,2-dimyristoyl-sn-glycero-3-phosphocholine (DMPC) from a solution of n-propanol. To simulate 30 days of diurnal use with overnight cleaning, these lenses were eluted for 16 h at 35 °C into artificial tear fluid (ATF), and then eluted at room temperature (~22 °C) for 8 h in one of three commercial contact lens cleaning systems. This was repeated for 30 days. The elution of DMPC into ATF was greater on the first day, followed by a fairly constant amount of elution each day thereafter. The type of cleaning system had a statistically significant effect on the elution rate during daily exposure to ATF. The rate of elution into cleaning solutions did not show any enhanced elution on the first day; there was a fairly constant elution rate. Again, the type of cleaning system significantly influenced the elution rate into the nightly cleaner.

  1. Phospholipid conjugate for intracellular delivery of peptide nucleic acids

    PubMed Central

    Shen, Gang; Fang, Huafeng; Song, Yinyin; Bielska, Agata A.; Wang, Zhenghui; Taylor, John-Stephen A.

    2009-01-01

    Peptide nucleic acids (PNAs) have a number of attractive features that have made them an ideal choice for antisense and antigene-based tools, probes and drugs, but their poor membrane permeability has limited their application as therapeutic or diagnostic agents. Herein we report a general method for the synthesis of phospholipid-PNAs (LP-PNAs), and compare the effect of non-cleavable lipids and bioreductively cleavable lipids (L and LSS) and phospholipid (LP) on the splice-correcting bioactivity of a PNA bearing the cell penetrating Arg9 group (PNA-R9). While the three constructs show similar and increasing bioactivity at 1–3 μM, the activity of LP-PNA-R9 continues to increase from 4–6 μM while the activity of L-PNA-R9 remains constant and LSS-PNA-R9 decreases rapidly in parallel with their relative cytotoxicity. The activity of both LP-PNA-R9 and L-PNA-R9 were found to dramatically increase with chloroquine, as expected for an endocytotic entry mechanism. Both constructs were also found to have CMC values of 1.0 and 4.5 μM in 150 mM NaCl, pH 7 water, suggesting that micelle formation may play a hitherto unrecognized role in modulating toxicity and/or facilitating endocytosis. PMID:19678628

  2. Mutagenicity of diesel exhaust soot dispersed in phospholipid surfactants

    SciTech Connect

    Wallace, W.; Keane, M.; Xing, S.; Harrison, J.; Gautam, M.; Ong, T.

    1994-06-01

    Organics extractable from respirable diesel exhaust soot particles by organic solvents have been known for some time to be direct acting frameshift mutagens in the Ames Salmonella typhimurium histidine reversion assay. Upon deposition in a pulmonary alveolus or respiratory bronchiole, respirable diesel soot particles will contact first the hypophase which is coated by and laden with surfactants. To model interactions of soot and pulmonary surfactant, the authors dispersed soots in vitro in the primary phospholipid pulmonary surfactant dipalmitoyl glycerophosphorylcholine (lecithin) (DPL) in physiological saline. They have shown that diesel soots dispersed in lecithin surfactant can express mutagenic activity, in the Ames assay system using S. typhimurium TA98, comparable to that expressed by equal amounts of soot extracted by dichloromethane/dimethylsulfoxide (DCM/DMSO). Here the authors report additional data on the same system using additional exhaust soots and also using two other phospholipids, dipalmitoyl glycerophosphoryl ethanolamine (DPPE), and dipalmitoyl phosphatidic acid (DPPA), with different ionic character hydrophilic moieties. A preliminary study of the surfactant dispersed soot in an eucaryotic cell test system also is reported.

  3. Rabbit synoviocyte inositol phospholipid metabolism is stimulated by hydroxyapatite crystals

    SciTech Connect

    Rothenberg, R.J.; Cheung, H.

    1988-04-01

    Inhibition of prostaglandin E2 synthesis partially ameliorates some aspects of synovitis, but joint destruction still progresses. Other aspects of phospholipid metabolism may play a role in synovial tissue pathophysiology. Products of phosphatidylinositol metabolism can activate intracellular processes in response to extracellular stimuli. We asked whether this pathway is activated in synoviocytes in monolayer tissue culture by the addition of hydroxyapatite (HA) crystals in medium. These crystals are found in pathological human synovial fluid. These crystals are associated with the secretion of degradative enzymes and with a destructive arthritis in humans. Rabbit synoviocyte cultures, previously incubated with (3H)inositol to label inositol phospholipids, were stimulated with the addition of hydroxyapatite (180 micrograms/ml) to the cultures. There was enhanced intracellular accumulation of (3H)inositol monophosphate (30-100%) after 4 h. This indicated an increased phospholipase C activity. The radioactivity in (3H)inositol bis- and trisphosphates was too low to reliably measure. The use of (32P)Pi allowed detection of these compounds. In the presence of HA, incorporation of (32P)Pi into phosphatidylinositol, phosphatidylinositol monophosphate, and phosphatidylinositol bisphosphate was increased. In addition, cultures exposed to (32P)Pi during stimulation with HA had an increased content of (32P)inositol monophosphate, bisphosphate, and trisphosphate.

  4. Growth of calcium oxalate monohydrate at phospholipid Langmuir monolayers

    NASA Astrophysics Data System (ADS)

    Whipps, Scott; Khan, Saeed R.; Jeffrey O'Palko, F.; Backov, Rénal; Talham, Daniel R.

    1998-08-01

    Calcium oxalate monohydrate crystals have been nucleated from metastable solutions at Langmuir monolayers of the phospholipids dipalmitoylphosphatidylglycerol (DPPG), dipalmitoylphosphatidylserine and dipalmitoylphosphatidylcholine and the fatty acid arachidic acid. The phospholipid monolayers were used as model systems for domains of pure lipid in cellular media as part of investigations of their potential role in the nucleation of calcium oxalate in the urinary tract. Crystal formation was monitored at the air/water interface using Brewster angle microscopy and in transferred films using SEM and TEM. For each Langmuir monolayer, it was observed that nucleation is heterogeneous and is selective with respect to the orientation and morphology of the precipitated crystals with up to 90% of crystals growing with the ( 1 0 1¯) face oriented towards the monolayer interface. The selectivity is attributed to calcium binding at the lipid monolayer favoring formation of the calcium-rich ( 1 0 1¯) face. The behavior at each monolayer was similar, although a higher rate of crystal formation was observed at the anionic DPPG interface.

  5. Differences in Bone Quality between High versus Low Turnover Renal Osteodystrophy

    SciTech Connect

    Porter, Daniel S.; Pienkowski, David; Faugere, Marie-Claude; Malluche, Hartmut H.

    2012-01-01

    Abnormal bone turnover is common in chronic kidney disease (CKD), but its effects on bone quality remain unclear. This study sought to quantify the relationship between abnormal bone turnover and bone quality. Iliac crest bone biopsies were obtained from CKD-5 patients on dialysis with low (n=18) or high (n=17) turnover, and from volunteers (n=12) with normal turnover and normal kidney function. Histomorphometric methods were used to quantify the microstructural parameters; Fourier transform infrared spectroscopy and nanoindentation were used to quantify the material and mechanical properties in bone. Reduced mineral-to-matrix ratio, mineral crystal size, stiffness and hardness were observed in bone with high turnover compared to bone with normal or low turnover. Decreased cancellous bone volume and trabecular thickness were seen in bone with low turnover compared to bone with normal or high turnover. Bone quality, as defined by its microstructural, material, and mechanical properties, is related to bone turnover. These data suggest that turnover related alterations in bone quality may contribute to the known diminished mechanical competence of bone in CKD patients, albeit from different mechanisms for bone with high (material abnormality) vs. low (microstructural alteration) turnover. The present findings suggest that improved treatments for renal osteodystrophy should seek to avoid low or high bone turnover and aim for turnover rates as close to normal as possible.

  6. An Investigation into Teacher Turnover in International Schools

    ERIC Educational Resources Information Center

    Odland, Glenn; Ruzicka, Mary

    2009-01-01

    This study explored expatriate teacher turnover in international schools. Two hundred and eighty-one international teachers completed a questionnaire identifying which variables influenced their decision to leave at the end of their first contract. Using both quantitative and qualitative data, this study revealed that three causal factors were…

  7. Bibliography of Military and Non-Military Personnel Turnover Literature.

    DTIC Science & Technology

    1982-11-01

    satisfaction and productivity. The authors wish to express their appreciation to SRA Gerald P. Yates and Ms. Kathleen Donahue for their assistance in...Chicago, IL: St. Clair Press, 1974. Karp , H. B., & Nickson, J. W., Jr. Motivator-hygiene deprivation as a predictor of job turnover. Personnel

  8. Chinese Teachers' Work Stress and Their Turnover Intention

    ERIC Educational Resources Information Center

    Liu, Shujie; Onwuegbuzie, Anthony J.

    2012-01-01

    This survey study employed qualitative dominant mixed research to explore the sources of teacher stress in China and the possible reasons for Chinese teachers' turnover intention. The data were collected in Jilin Province of China, and 510 teachers participated in the survey. Quantitatively, 40.4% of the surveyed teachers reported that they…

  9. Principal Turnover: Upheaval and Uncertainty in Charter Schools?

    ERIC Educational Resources Information Center

    Ni, Yongmei; Sun, Min; Rorrer, Andrea

    2015-01-01

    Purpose: Informed by literature on labor market and school choice, this study aims to examine the dynamics of principal career movements in charter schools by comparing principal turnover rates and patterns between charter schools and traditional public schools. Research Methods/Approach: This study uses longitudinal data on Utah principals and…

  10. Employees as Customers: Exploring Service Climate, Employee Patronage, and Turnover

    ERIC Educational Resources Information Center

    Abston, Kristie A.; Kupritz, Virginia W.

    2011-01-01

    The role of retail employees as customers was explored by quantitatively examining the influence of service climate and employee patronage on employee turnover intentions. Employees representing all shifts in two stores of a national retailer participated. Results indicated that employee patronage partially mediates the effects of service climate…

  11. The Prediction of Teacher Turnover Employing Time Series Analysis.

    ERIC Educational Resources Information Center

    Costa, Crist H.

    The purpose of this study was to combine knowledge of teacher demographic data with time-series forecasting methods to predict teacher turnover. Moving averages and exponential smoothing were used to forecast discrete time series. The study used data collected from the 22 largest school districts in Iowa, designated as FACT schools. Predictions…

  12. Relationships between Emotional Labor, Job Performance, and Turnover

    ERIC Educational Resources Information Center

    Goodwin, Robyn E.; Groth, Markus; Frenkel, Stephen J.

    2011-01-01

    The present study investigates the relationship between the emotional labor strategies surface acting and deep acting and organizational outcomes, specifically, employees' overall job performance and turnover. Call center employees from two large financial service organizations completed an online survey about their use of surface and deep acting.…

  13. Consistent assignment of nurse aides: association with turnover and absenteeism.

    PubMed

    Castle, Nicholas G

    2013-01-01

    Consistent assignment refers to the same caregivers consistently caring for the same residents almost every time caregivers are on duty. This article examines the association of consistent assignment of nurse aides with turnover and absenteeism. Data came from a survey of nursing home administrators, the Online Survey Certification and Reporting data, and the Area Resource File. The measures were from 2007 and came from 3,941 nursing homes. Multivariate logistic regression models were used to examine turnover and absenteeism. An average of 68% of nursing homes reported using consistent assignment, with 28% of nursing homes using nurse aides consistent assignment at the often recommended level of 85% (or more). Nursing homes using recommended levels of consistent assignment had significantly lower rates of turnover and of absenteeism. In the multivariate analyses, consistent assignment was significantly associated with both lower turnover and lower absenteeism (p < .01). Consistent assignment is a practice recommended by many policy makers, government agencies, and industry advocates. The findings presented here provide some evidence that the use of this staffing practice can be beneficial.

  14. Faculty Turnover: Discipline-Specific Attention Is Warranted

    ERIC Educational Resources Information Center

    Xu, Yonghong Jade

    2008-01-01

    This study investigated the importance of discipline variations in understanding faculty turnover behaviors. A representative sample of university faculty in Research and Doctoral universities was obtained from a national database. Faculty members, self-identified into a primary academic area, were grouped into eight discipline clusters according…

  15. Sustaining Effective Practices in the Face of Principal Turnover

    ERIC Educational Resources Information Center

    Strickland-Cohen, M. Kathleen; McIntosh, Kent; Horner, Robert H.

    2014-01-01

    In the face of principal turnover, a common approach taken by staff is to simply wait until the new school year begins and hope that the new administrator will continue to support current programs. It is our experience that this passive strategy is not as helpful, because there are proactive approaches that are more likely to be successful. The…

  16. Ectomycorrhizal fungal mycelia turnover in a longleaf pine forest.

    PubMed

    Hendricks, Joseph J; Mitchell, Robert J; Kuehn, Kevin A; Pecot, Stephen D

    2016-03-01

    Elucidation of the patterns and controls of carbon (C) flow and nitrogen (N) cycling in forests has been hindered by a poor understanding of ectomycorrhizal fungal mycelia (EFM) dynamics. In this study, EFM standing biomass (based on soil ergosterol concentrations), production (based on ergosterol accrual in ingrowth cores), and turnover rate (the quotient of annual production and average standing biomass estimates) were assessed in a 25-yr-old longleaf pine (Pinus palustris) plantation where C flow was manipulated by foliar scorching and N fertilization for 5 yr before study initiation. In the controls, EFM standing biomass was 30 ± 7 g m(-2) , production was 279 ± 63 g m(-2)  yr(-1) , and turnover rate was 10 ± 3 times yr(-1) . The scorched × fertilized treatment had significantly higher EFM standing biomass (38 ± 8 g m(-2) ), significantly lower production (205 ± 28 g m(-2)  yr(-1) ), and a trend of decreased turnover rate (6 ± 1 times yr(-1) ). The EFM turnover estimates, which are among the first reported for natural systems, indicate that EFM are a dynamic component of ecosystems, and that conventional assessments have probably underestimated the role of EFM in C flow and nutrient cycling.

  17. Organizational Career Growth, Affective Occupational Commitment and Turnover Intentions

    ERIC Educational Resources Information Center

    Weng, Qingxiong; McElroy, James C.

    2012-01-01

    Survey data, collected from the People's Republic of China, were used to test Weng's (2010) four facet model of career growth and to examine its effect on occupational commitment and turnover intentions. Weng conceptualized career growth as consisting of four factors: career goal progress, professional ability development, promotion speed, and…

  18. Quantifying assemblage turnover and species contributions at ecologic boundaries.

    PubMed

    Hayek, Lee-Ann C; Wilson, Brent

    2013-01-01

    Not all boundaries, whether stratigraphical or geographical, are marked by species-level changes in community composition. For example, paleodata for some sites do not show readily discernible glacial-interglacial contrasts. Rather, the proportional abundances of species can vary subtly between glacials and interglacials. This paper presents a simple quantitative measure of assemblage turnover (assemblage turnover index, ATI) that uses changes in species' proportional abundances to identify intervals of community change. A second, functionally-related index (conditioned-on-boundary index, CoBI) identifies species contributions to the total assemblage turnover. With these measures we examine benthonic foraminiferal assemblages to assess glacial/interglacial contrasts at abyssal depths. Our results indicate that these measures, ATI and CoBI, have potential as sequence stratigraphic tools in abyssal depth deposits. Many peaks in the set of values of ATI coincide with terminations at the end of glaciations and delineate peak-bounded ATI intervals (PATIs) separated by boundaries that approximate to glacial terminations and to transgressions at neritic depths. These measures, however, can be used to evaluate the assemblage turnover and composition at any defined ecological or paleoecological boundary. The section used is from Ocean Drilling Program (OPD) Hole 994C, drilled on the Blake Ridge, offshore SE USA.

  19. An intrinsic mechanism of secreted protein aging and turnover.

    PubMed

    Yang, Won Ho; Aziz, Peter V; Heithoff, Douglas M; Mahan, Michael J; Smith, Jeffrey W; Marth, Jamey D

    2015-11-03

    The composition and functions of the secreted proteome are controlled by the life spans of different proteins. However, unlike intracellular protein fate, intrinsic factors determining secreted protein aging and turnover have not been identified and characterized. Almost all secreted proteins are posttranslationally modified with the covalent attachment of N-glycans. We have discovered an intrinsic mechanism of secreted protein aging and turnover linked to the stepwise elimination of saccharides attached to the termini of N-glycans. Endogenous glycosidases, including neuraminidase 1 (Neu1), neuraminidase 3 (Neu3), beta-galactosidase 1 (Glb1), and hexosaminidase B (HexB), possess hydrolytic activities that temporally remodel N-glycan structures, progressively exposing different saccharides with increased protein age. Subsequently, endocytic lectins with distinct binding specificities, including the Ashwell-Morell receptor, integrin αM, and macrophage mannose receptor, are engaged in N-glycan ligand recognition and the turnover of secreted proteins. Glycosidase inhibition and lectin deficiencies increased protein life spans and abundance, and the basal rate of N-glycan remodeling varied among distinct proteins, accounting for differences in their life spans. This intrinsic multifactorial mechanism of secreted protein aging and turnover contributes to health and the outcomes of disease.

  20. An intrinsic mechanism of secreted protein aging and turnover

    PubMed Central

    Yang, Won Ho; Aziz, Peter V.; Heithoff, Douglas M.; Mahan, Michael J.; Smith, Jeffrey W.; Marth, Jamey D.

    2015-01-01

    The composition and functions of the secreted proteome are controlled by the life spans of different proteins. However, unlike intracellular protein fate, intrinsic factors determining secreted protein aging and turnover have not been identified and characterized. Almost all secreted proteins are posttranslationally modified with the covalent attachment of N-glycans. We have discovered an intrinsic mechanism of secreted protein aging and turnover linked to the stepwise elimination of saccharides attached to the termini of N-glycans. Endogenous glycosidases, including neuraminidase 1 (Neu1), neuraminidase 3 (Neu3), beta-galactosidase 1 (Glb1), and hexosaminidase B (HexB), possess hydrolytic activities that temporally remodel N-glycan structures, progressively exposing different saccharides with increased protein age. Subsequently, endocytic lectins with distinct binding specificities, including the Ashwell–Morell receptor, integrin αM, and macrophage mannose receptor, are engaged in N-glycan ligand recognition and the turnover of secreted proteins. Glycosidase inhibition and lectin deficiencies increased protein life spans and abundance, and the basal rate of N-glycan remodeling varied among distinct proteins, accounting for differences in their life spans. This intrinsic multifactorial mechanism of secreted protein aging and turnover contributes to health and the outcomes of disease. PMID:26489654

  1. An Investigation of Chief Administrator Turnover in International Schools

    ERIC Educational Resources Information Center

    Benson, John

    2011-01-01

    This article explores chief administrator turnover in international schools. Quantitative and qualitative data from the 83 chief administrators who participated in the study suggests that the average tenure of an international school chief administrator is 3.7 years and that the main reason chief administrators leave international schools is…

  2. Quantifying Assemblage Turnover and Species Contributions at Ecologic Boundaries

    PubMed Central

    Hayek, Lee-Ann C.; Wilson, Brent

    2013-01-01

    Not all boundaries, whether stratigraphical or geographical, are marked by species-level changes in community composition. For example, paleodata for some sites do not show readily discernible glacial-interglacial contrasts. Rather, the proportional abundances of species can vary subtly between glacials and interglacials. This paper presents a simple quantitative measure of assemblage turnover (assemblage turnover index, ATI) that uses changes in species' proportional abundances to identify intervals of community change. A second, functionally-related index (conditioned-on-boundary index, CoBI) identifies species contributions to the total assemblage turnover. With these measures we examine benthonic foraminiferal assemblages to assess glacial/interglacial contrasts at abyssal depths. Our results indicate that these measures, ATI and CoBI, have potential as sequence stratigraphic tools in abyssal depth deposits. Many peaks in the set of values of ATI coincide with terminations at the end of glaciations and delineate peak-bounded ATI intervals (PATIs) separated by boundaries that approximate to glacial terminations and to transgressions at neritic depths. These measures, however, can be used to evaluate the assemblage turnover and composition at any defined ecological or paleoecological boundary. The section used is from Ocean Drilling Program (OPD) Hole 994C, drilled on the Blake Ridge, offshore SE USA. PMID:24130679

  3. The High Cost of Teacher Turnover. Policy Brief

    ERIC Educational Resources Information Center

    National Commission on Teaching and America's Future, 2007

    2007-01-01

    In 2007, the National Commission on Teaching and America's Future (NCTAF) completed an 18-month study of the costs of teacher turnover in five school districts. The selected districts varied in size, location, and demographics enabling exploration of how these variations affected costs. Costs of recruiting, hiring, processing, and training…

  4. Teachers' Perceptions of Administrative Support and Antecedents of Turnover

    ERIC Educational Resources Information Center

    Russell, Elizabeth Morgan; Williams, Sue W.; Gleason-Gomez, Cheryl

    2010-01-01

    The purpose of this pilot study was to determine the degree to which teachers' age, perceptions of fair pay, receipt of employer-sponsored health insurance, and administrative support, as operationalized by the Competing Values Framework, predicted antecedents of turnover. Teachers' thoughts of leaving their current job and commitment to a center…

  5. Making Science Relevant

    ERIC Educational Resources Information Center

    Eick, Charles; Deutsch, Bill; Fuller, Jennifer; Scott, Fletcher

    2008-01-01

    Science teachers are always looking for ways to demonstrate the relevance of science to students. By connecting science learning to important societal issues, teachers can motivate students to both enjoy and engage in relevant science (Bennet, Lubben, and Hogarth 2007). To develop that connection, teachers can help students take an active role in…

  6. Interactions stabilizing the C-terminal helix of human phospholipid scramblase 1 in lipid bilayers: A computational study.

    PubMed

    Venken, Tom; Schillinger, Anne-Sophie; Fuglebakk, Edvin; Reuter, Nathalie

    2017-03-31

    The human phospholipid scramblase 1 (SCR) distributes lipids non-selectively between the cellular membrane leaflets. SCR has long been thought to be mostly localized in the cytoplasm (amino acids 1-287) and anchored to the membrane via the insertion of a 19 amino acid long transmembrane C-terminal helix (CTH, 288-306), which further extends to the exoplasmic side with a 12 amino acid long tail (307-318). Little is known about the structure of this protein, but recent experimental data on two CTH peptides (288-306 and 288-318) show that they insert through phospholipid bilayers and that the presence of cholesterol improves their affinity for lipid vesicles. Yet the sequence of the CTH ((288)KMKAVMIGACFLIDFMFFE(306)) contains an aspartic acid (D301), which is not exactly a prototypical amino acid for single-pass transmembrane helices. In this study, we investigate how the polar aspartate residue is accommodated in lipid bilayers containing POPC with and without cholesterol, using all-atom molecular dynamics simulations. We identify two cholesterol-binding sites: (i) A291, F298 and L299 and (ii) L299, F302 and E306 and suggest that cholesterol plays a role in stabilizing the helix in a transmembrane position. We suggest that the presence of the aspartate could be functionally relevant for the scramblase protein activity.

  7. Dual mechanism of activation of plant plasma membrane Ca2+-ATPase by acidic phospholipids: evidence for a phospholipid binding site which overlaps the calmodulin-binding site.

    PubMed

    Meneghelli, Silvia; Fusca, Tiziana; Luoni, Laura; De Michelis, Maria Ida

    2008-09-01

    The effect of phospholipids on the activity of isoform ACA8 of Arabidopsis thaliana plasma membrane (PM) Ca2+-ATPase was evaluated in membranes isolated from Saccharomyces cerevisiae strain K616 expressing wild type or mutated ACA8 cDNA. Acidic phospholipids stimulated the basal Ca2+-ATPase activity in the following order of efficiency: phosphatidylinositol 4-monophosphate > phosphatidylserine > phosphatidylcholine approximately = phosphatidylethanolamine approximately = 0. Acidic phospholipids increased V(max-Ca2+) and lowered the value of K(0.5-Ca2+) below the value measured in the presence of calmodulin (CaM). In the presence of CaM acidic phospholipids activated ACA8 by further decreasing its K(0.5-Ca2+) value. Phosphatidylinositol 4-monophosphate and, with lower efficiency, phosphatidylserine bound peptides reproducing ACA8 N-terminus (aa 1-116). Single point mutation of three residues (A56, R59 and Y62) within the sequence A56-T63 lowered the apparent affinity of ACA8 for phosphatidylinositol 4-monophosphate by two to three fold, indicating that this region contains a binding site for acidic phospholipids. However, the N-deleted mutant Delta74-ACA8 was also activated by acidic phospholipids, indicating that acidic phospholipids activate ACA8 through a complex mechanism, involving interaction with different sites. The striking similarity between the response to acidic phospholipids of ACA8 and animal plasma membrane Ca2+-ATPase provides new evidence that type 2B Ca2+-ATPases share common regulatory properties independently of structural differences such as the localization of the terminal regulatory region at the N- or C-terminal end of the protein.

  8. Combined effect of sesamin and soybean phospholipid on hepatic fatty acid metabolism in rats.

    PubMed

    Ide, Takashi

    2014-05-01

    We studied the combined effect of sesamin (1:1 mixture of sesamin and episesamine) and soybean phospholipid on lipid metabolism in rats. Male rats were fed diets supplemented with 0 or 2 g/kg sesamin, and containing 0 or 50 g/kg soybean phospholipid, for 19 days. Sesamin and soybean phospholipid decreased serum triacylglycerol concentrations and the combination of these compounds further decreased the parameter in an additive fashion. Soybean phospholipid but not sesamin reduced the hepatic concentration of triacylglycerol. The combination failed to cause a strong decrease in hepatic triacylglycerol concentration, presumably due to the up-regulation of Cd36 by sesamin. Combination of sesamin and soybean phospholipid decreased the activity and mRNA levels of hepatic lipogenic enzymes in an additive fashion. Sesamin strongly increased the parameters of hepatic fatty acid oxidation enzymes. Soybean phospholipid increased hepatic activity of 3-hydroxyacyl-CoA dehydrogenase although it failed to affect the activity of other enzymes involved in fatty acid oxidation. Sesamin strongly increased hepatic concentration of carnitine. Sesamin and soybean phospholipid combination further increased this parameter, accompanying a parallel increase in mRNA expression of carnitine transporter. These changes can account for the strong decrease in serum triacylglycerol in rats fed a diet containing both sesamin and soybean phospholipid.

  9. Regulation of phospholipid synthesis in phosphatidylserine synthase-deficient (chol) mutants of Saccharomyces cerevisiae.

    PubMed Central

    Letts, V A; Henry, S A

    1985-01-01

    chol mutants of Saccharomyces cerevisiae are deficient in the synthesis of the phospholipid phosphatidylserine owing to lowered activity of the membrane-associated enzyme phosphatidylserine synthase. chol mutants are auxotrophic for ethanolamine or choline and, in the absence of these supplements, cannot synthesize phosphatidylethanolamine or phosphatidylcholine (PC). We exploited these characteristics of the chol mutants to examine the regulation of phospholipid metabolism in S. cerevisiae. Macromolecular synthesis and phospholipid metabolism were examined in chol cells starved for ethanolamine. As expected, when chol mutants were starved for ethanolamine, the rates of synthesis of the phospholipids phosphatidylethanolamine and PC declined rapidly. Surprisingly, however, coupled to the decline in PC biosynthesis was a simultaneous decrease in the overall rate of phospholipid synthesis. In particular, the rate of synthesis of phosphatidylinositol decreased in parallel with the decline in PC biosynthesis. The results obtained suggest that the slowing of PC biosynthesis in ethanolamine-starved chol cells leads to a coordinated decrease in the synthesis of all phospholipids. However, under conditions of ethanolamine deprivation in chol cells, the cytoplasmic enzyme inositol-1-phosphate synthase could not be repressed by exogenous inositol, and the endogenous synthesis of the phospholipid precursor inositol appeared to be elevated. The implications of these findings with respect to the coordinated regulation of phospholipid synthesis are discussed. Images PMID:2991194

  10. Whole body and tissue cholesterol turnover in the baboon

    SciTech Connect

    Dell, R.B.; Mott, G.E.; Jackson, E.M.; Ramakrishnan, R.; Carey, K.D.; McGill, H.C. Jr.; Goodman, D.S.

    1985-03-01

    Cholesterol turnover was studied in four baboons by injecting (/sup 14/C)cholesterol 186 days and (/sup 3/H)cholesterol 4 days before necropsy, and fitting a two- or three-pool model to the resulting specific activity-time data. At necropsy, cholesterol mass and specific activity were determined for the total body and for many tissues. The principal aim of this study was to estimate the extent of cholesterol synthesis in the side pools of the model, by computing the amount of side pool synthesis needed to equal the measured total body cholesterol. Central pool synthesis varied from 61 to 89% of the total cholesterol production rate. Moreover, the finding that the measured total body cholesterol fell within the range obtained from the kinetic analysis by using reasonable assumptions, provides evidence for the physiological validity of the model. A second aim of this study was to explore cholesterol turnover in various tissues. A pool model predicts that rapidly turning over tissues will have higher specific activities at early times and lower specific activities at later times after injection of tracer relative to slowly turning over tissues, except where significant synthesis occurs. Results in all four baboons were similar. Turnover rates for the different tissues loosely fell into three groups which were turning over at fast, intermediate, and slow rates. Finally, the magnitude of variation of cholesterol specific activity was moderate for several distributed tissues (fat, muscle, arteries, and the alimentary tract), but was small for liver. Cholesterol turnover in serial biopsies of skin, muscle, and fat could, however, be fitted with a single pool to estimate tissue turnover rates.

  11. Biotic turnover rates during the Pleistocene-Holocene transition

    NASA Astrophysics Data System (ADS)

    Stivrins, Normunds; Soininen, Janne; Amon, Leeli; Fontana, Sonia L.; Gryguc, Gražyna; Heikkilä, Maija; Heiri, Oliver; Kisielienė, Dalia; Reitalu, Triin; Stančikaitė, Miglė; Veski, Siim; Seppä, Heikki

    2016-11-01

    The Northern Hemisphere is currently warming at the rate which is unprecedented during the Holocene. Quantitative palaeoclimatic records show that the most recent time in the geological history with comparable warming rates was during the Pleistocene-Holocene transition (PHT) about 14,000 to 11,000 years ago. To better understand the biotic response to rapid temperature change, we explore the community turnover rates during the PHT by focusing on the Baltic region in the southeastern sector of the Scandinavian Ice Sheet, where an exceptionally dense network on microfossil and macrofossil data that reflect the biotic community history are available. We further use a composite chironomid-based summer temperature reconstruction compiled specifically for our study region to calculate the rate of temperature change during the PHT. The fastest biotic turnover in the terrestrial and aquatic communities occurred during the Younger Dryas-Holocene shift at 11,700 years ago. This general shift in species composition was accompanied by regional extinctions, including disappearance of mammoth (Mammuthus primigenius) and reindeer (Rangifer tarandus) and many arctic-alpine plant taxa, such as Dryas octopetala, Salix polaris and Saxifraga aizoides, from the region. This rapid biotic turnover rate occurred when the rate of warming was 0.17 °C/decade, thus slightly lower than the current Northern Hemisphere warming of 0.2 °C/decade. We therefore conclude that the Younger Dryas-Holocene shift with its rapid turnover rates and associated regional extinctions represents an important palaeoanalogue to the current high latitude warming and gives insights about the probable future turnover rates and patterns of the terrestrial and aquatic ecosystem change.

  12. Taking the chance: Core self-evaluations predict relative gain in job resources following turnover.

    PubMed

    Elfering, Achim; Keller, Anita C; Berset, Martial; Meier, Laurenz L; Grebner, Simone; Kälin, Wolfgang; Monnerat, Françoise; Tschan, Franziska; Semmer, Norbert K

    2016-01-01

    Core self-evaluations (CSE) might account for relative gains in job resources across time, especially in situations when these individual differences affect behavior that is relevant for development of job resources. This longitudinal study tests CSE as an individual resource that predicts relative gain in job resources and job satisfaction among job beginners who change or stay with their employer. A questionnaire was filled in by 513 adolescents shortly before the end of vocational training and one year later. Our results replicate previous findings suggesting that job satisfaction is affected by CSE directly and indirectly through the perception of job resources. Multi-group structural equation analysis showed that only leavers had a longitudinal indirect effect of CSE on job satisfaction at the end of vocational training via job resources during their first year of employment. Our findings imply that turnover includes opportunities to optimize one's circumstances and that CSE helps to attain resourceful jobs.

  13. STRUCTURAL DETERMINATION AND QUANTITATIVE ANALYSIS OF BACTERIAL PHOSPHOLIPIDS USING LIQUID CHROMATOGRAPHY/ELECTROSPRAY IONIZATION/MASS SPECTROMETRY

    EPA Science Inventory

    This report presents a comprehensive spectral analysis of common bacterial phospholipids using electrospray/mass spectrometry (ESI/MS) under both negative and positive ionization conditions. Phospholipids under positive ionization yield sodium-adduct molecular ions which are mos...

  14. Enhancing Phospholipid Fatty Acid Profiling of Soil Bacterial Communities via Substrate- Specific 13C-labelling

    NASA Astrophysics Data System (ADS)

    Evershed, R. P.; Maxfield, P. J.; Bingham, E. M.; Dildar, N.; Brennand, E. L.; Hornibrook, E.

    2008-12-01

    A range of culture-independent methods, has recently emerged to study environmental microorganisms in situ[1]. One such method is phospholipid fatty acid (PLFA) analysis, wherein these ubiquitous membrane lipids provide a powerful tool for the study of unculturable soil microorganisms. PLFA analyses have been used to investigate the impacts of a wide range of environmental factors on the soil microbial community. An acknowledged shortcoming of the PLFAs approach is the lack the chemotaxonoic specificity, which restricts the ability of the method to probe the activities of specific functional groups of the microbial community selectively. However, the selectivity of PLFAs analyses can be enhanced by incubating soils with 13C- labelled substrates followed by gas chromatography-combustion-isotope ratio mass spectrometry to reveal the specific PLFAs incorporating the 13C-label. The application of this approach will be demonstrated through our recent work on methanotrophic bacteria in soils. We applied this approach initially to mineral soils[2] and then extended chemotaxonomic assessments by using a combination of 13C-labelled PLFAs and hopanoids [3]. We have used this approach to explore the properties of high affinity methanotrophs in a range of environments, investigating the relationship between methane oxidation rates and the nature and magnitude of the methanotrophic community for the first time[4,5] More recently we extended the technique using a novel time series 13C-labelling of PLFAs[6] to estimate the rate and progression of 13C- label incorporation and turnover of methanotrophic populations. This modified approach has been used to investigate the impacts of various environmental variables, e.g. soil type, vegetation cover and land use, on the methanotrophic biomass[7.8]. The unique nature of the 13CH4 as a gaseous substate/carbon source means that can be readily introduced into soils via a specific subset of the soil microbial biomass, thereby offering many

  15. Recent Advances in Phospholipids from Colostrum, Milk and Dairy By-Products

    PubMed Central

    Verardo, Vito; Gómez-Caravaca, Ana Maria; Arráez-Román, David; Hettinga, Kasper

    2017-01-01

    Milk is one of the most important foods for mammals, because it is the first form of feed providing energy, nutrients and immunological factors. In the last few years, milk lipids have attracted the attention of researchers due to the presence of several bioactive components in the lipid fraction. The lipid fraction of milk and dairy products contains several components of nutritional significance, such as ω-3 and ω-6 polyunsaturated fatty acids, CLA, short chain fatty acids, gangliosides and phospholipids. Prospective cohort evidence has shown that phospholipids play an important role in the human diet and reinforce the possible relationship between their consumption and prevention of several chronic diseases. Because of these potential benefits of phospholipids in the human diet, this review is focused on the recent advances in phospholipids from colostrum, milk and dairy by-products. Phospholipid composition, its main determination methods and the health activities of these compounds will be addressed. PMID:28106745

  16. Phospholipid Membrane Protection by Sugar Molecules during Dehydration—Insights into Molecular Mechanisms Using Scattering Techniques

    PubMed Central

    Garvey, Christopher J.; Lenné, Thomas; Koster, Karen L.; Kent, Ben; Bryant, Gary

    2013-01-01

    Scattering techniques have played a key role in our understanding of the structure and function of phospholipid membranes. These techniques have been applied widely to study how different molecules (e.g., cholesterol) can affect phospholipid membrane structure. However, there has been much less attention paid to the effects of molecules that remain in the aqueous phase. One important example is the role played by small solutes, particularly sugars, in protecting phospholipid membranes during drying or slow freezing. In this paper, we present new results and a general methodology, which illustrate how contrast variation small angle neutron scattering (SANS) and synchrotron-based X-ray scattering (small angle (SAXS) and wide angle (WAXS)) can be used to quantitatively understand the interactions between solutes and phospholipids. Specifically, we show the assignment of lipid phases with synchrotron SAXS and explain how SANS reveals the exclusion of sugars from the aqueous region in the particular example of hexagonal II phases formed by phospholipids. PMID:23584028

  17. MALDI imaging MS of phospholipids in the mouse lung[S

    PubMed Central

    Berry, Karin A. Zemski; Li, Bilan; Reynolds, Susan D.; Barkley, Robert M.; Gijón, Miguel A.; Hankin, Joseph A.; Henson, Peter M.; Murphy, Robert C.

    2011-01-01

    Lipid mediators are important in lung biochemistry and are derived from the enzymatic oxidation of arachidonic and docosahexaenoic acids, which are PUFAs that are present in phospholipids in cell membranes. In this study, MALDI imaging MS was used to determine the localization of arachidonate- and docosahexaenoate-containing phospholipids in mouse lung. These PUFA-containing phospholipids were determined to be uniquely abundant at the lining of small and large airways, which were unequivocally identified by immunohistochemistry. In addition, it was found that the blood vessels present in the lung were characterized by sphingomyelin molecular species, and lung surfactant phospholipids appeared evenly distributed throughout the lung parenchyma, indicating alveolar localization. This technique revealed unexpected high concentrations of arachidonate- and docosahexaenoate-containing phospholipids lining the airways in pulmonary tissue, which could serve as precursors of lipid mediators affecting airways biology. PMID:21508254

  18. Phospholipid Membrane Protection by Sugar Molecules during Dehydration-Insights into Molecular Mechanisms Using Scattering Techniques

    SciTech Connect

    Garvey, Christopher J.; Lenné, Thomas; Koster, Karen L.; Kent, Ben; Bryant, Gary

    2014-09-24

    Scattering techniques have played a key role in our understanding of the structure and function of phospholipid membranes. These techniques have been applied widely to study how different molecules (e.g., cholesterol) can affect phospholipid membrane structure. However, there has been much less attention paid to the effects of molecules that remain in the aqueous phase. One important example is the role played by small solutes, particularly sugars, in protecting phospholipid membranes during drying or slow freezing. In this paper, we present new results and a general methodology, which illustrate how contrast variation small angle neutron scattering (SANS) and synchrotron-based X-ray scattering (small angle (SAXS) and wide angle (WAXS)) can be used to quantitatively understand the interactions between solutes and phospholipids. Specifically, we show the assignment of lipid phases with synchrotron SAXS and explain how SANS reveals the exclusion of sugars from the aqueous region in the particular example of hexagonal II phases formed by phospholipids.

  19. Self-reproducing catalyst drives repeated phospholipid synthesis and membrane growth

    PubMed Central

    Hardy, Michael D.; Yang, Jun; Selimkhanov, Jangir; Cole, Christian M.; Tsimring, Lev S.; Devaraj, Neal K.

    2015-01-01

    Cell membranes are dynamic structures found in all living organisms. There have been numerous constructs that model phospholipid membranes. However, unlike natural membranes, these biomimetic systems cannot sustain growth owing to an inability to replenish phospholipid-synthesizing catalysts. Here we report on the design and synthesis of artificial membranes embedded with synthetic, self-reproducing catalysts capable of perpetuating phospholipid bilayer formation. Replacing the complex biochemical pathways used in nature with an autocatalyst that also drives lipid synthesis leads to the continual formation of triazole phospholipids and membrane-bound oligotriazole catalysts from simpler starting materials. In addition to continual phospholipid synthesis and vesicle growth, the synthetic membranes are capable of remodeling their physical composition in response to changes in the environment by preferentially incorporating specific precursors. These results demonstrate that complex membranes capable of indefinite self-synthesis can emerge when supplied with simpler chemical building blocks. PMID:26100914

  20. OPTIMIZING MINIRHIZOTRON SAMPLE FREQUENCY FOR ESTIMATING FINE ROOT PRODUCTION AND TURNOVER

    EPA Science Inventory

    The most frequent reason for using minirhizotrons in natural ecosystems is the determination of fine root production and turnover. Our objective is to determine the optimum sampling frequency for estimating fine root production and turnover using data from evergreen (Pseudotsuga ...

  1. RNAi targeting putative genes in phosphatidylcholine turnover results in significant change in fatty acid composition in Crambe abyssinica seed oil.

    PubMed

    Guan, Rui; Li, Xueyuan; Hofvander, Per; Zhou, Xue-Rong; Wang, Danni; Stymne, Sten; Zhu, Li-Hua

    2015-04-01

    The aim of this study was to evaluate the importance of three enzymes, LPCAT, PDCT and PDAT, involved in acyl turnover in phosphatidylcholine in order to explore the possibility of further increasing erucic acid (22:1) content in Crambe seed oil. The complete coding sequences of LPCAT1-1 and LPCAT1-2 encoding lysophosphatidylcholine acyltransferase (LPCAT), PDCT1 and PDCT2 encoding phosphatidylcholine:diacylglycerol cholinephosphotransferase (PDCT), and PDAT encoding phospholipid:diacylglycerol acyltransferase (PDAT) were cloned from developing Crambe seeds. The alignment of deduced amino acid sequences displayed a high similarity to the Arabidopsis homologs. Transgenic lines expressing RNA interference (RNAi) targeting either single or double genes showed significant changes in the fatty acid composition of seed oil. An increase in oleic acid (18:1) was observed, to varying degrees, in all of the transgenic lines, and a cumulative effect of increased 18:1 was shown in the LPCAT-PDCT double-gene RNAi. However, LPCAT single-gene RNAi led to a decrease in 22:1 accumulation, while PDCT or PDAT single-gene RNAi had no obvious effect on the level of 22:1. In agreement with the abovementioned oil phenotypes, the transcript levels of the target genes in these transgenic lines were generally reduced compared to wild-type levels. In this paper, we discuss the potential to further increase the 22:1 content in Crambe seed oil through downregulation of these genes in combination with fatty acid elongase and desaturases.

  2. Changes during hibernation in different phospholipid and free and esterified cholesterol serum levels in black bears

    USGS Publications Warehouse

    Chauhan, V.; Sheikh, A.; Chauhan, A.; Tsiouris, J.; Malik, M.; Vaughan, M.

    2002-01-01

    During hibernation, fat is known to be the preferred source of energy. A detailed analysis of different phospholipids, as well as free and esterified cholesterol, was conducted to investigate lipid abnormalities during hibernation. The levels of total phospholipids and total cholesterol in the serum of black bears were found to increase significantly in hibernation as compared with the active state. Both free and esterified cholesterol were increased in the hibernating state in comparison with the active state (P < 0.05). The percentage increase during hibernation was more in free cholesterol (57%) than in esterified cholesterol (27%). Analysis of subclasses of serum phospholipids showed that choline containing phospholipids, i.e., sphingomyelin (SPG) (14%) and phosphatidylcholine (PC) (76%), are the major phospholipids in the serum of bear. The minor phospholipids included 8% of phosphatidylserine (PS) + phosphatidylinositol (PI), while phosphatidylethanolamine (PE) was only 2% of the total phospholipids. A comparison of phospholipid subclasses showed that PC, PS + PI and SPG were significantly increased, while PE was significantly decreased (P < 0.05) in the hibernating state as compared with the active state in black bears. These results suggest that the catabolism of phospholipids and cholesterol is decreased during hibernation in black bears, leading to their increased levels in the hibernating state as compared with the active state. In summary, our results indicate that serum cholesterol and phospholipid fractions (except PE) are increased during hibernation in bears. It is proposed that the increase of these lipids may be due to the altered metabolism of lipoproteins that are responsible for the clearance of the lipids. ?? 2002 E??ditions scientifiques et me??dicales Elsevier SAS and Socie??te?? franc??aise de biochimie et biologie mole??culaire. All rights reserved.

  3. Evolution of phospholipid contents during the production of quark cheese from buttermilk.

    PubMed

    Ferreiro, T; Martínez, S; Gayoso, L; Rodríguez-Otero, J L

    2016-06-01

    We report the evolution of phosphatidylethanolamine (PE), phosphatidylinositol (PI), phosphatidylcholine (PC), phosphatidylserine (PS), and sphingomyelin (SM) contents during the production of quark cheese from buttermilk by successive ultrafiltration concentration, enrichment with cream, concurrent homogenization and pasteurization, fermentative coagulation, and separation of quark from whey by further ultrafiltration. Buttermilk is richer than milk itself in phospholipids that afford desirable functional and technological properties, and is widely used in dairy products. To investigate how phospholipid content is affected by end-product production processes such as ultrafiltration, homogenization, pasteurization or coagulation, we measured the phospholipids at several stages of each of 5 industrial-scale quark cheese production runs. In each run, 10,000L of buttermilk was concentrated to half volume by ultrafiltration, enriched with cream, homogenized, pasteurized, inoculated with lactic acid bacteria, incubated to coagulation, and once more concentrated to half volume by ultrafiltration. Phospholipid contents were determined by HPLC with evaporative light scattering detection in the starting buttermilk, concentrated buttermilk, ultrafiltrate, cream-enriched concentrated buttermilk (both before and after concurrent homogenization and pasteurization), coagulate, and quark, and also in the rinsings obtained when the ultrafiltration equipment was washed following initial concentration. The average phospholipid content of buttermilk was approximately 5 times that of milk, and the phospholipid content of buttermilk fat 26 to 29 times that of milk fat. Although phospholipids did not cross ultrafiltration membranes, significant losses occurred during ultrafiltration (due to retention on the membranes) and during the homogenization and pasteurization process. During coagulation, however, phospholipid content rose, presumably as a consequence of the proliferation of the

  4. Diagnosing turnover times of carbon in terrestrial ecosystems to address global climate co-variability and for model evaluation

    NASA Astrophysics Data System (ADS)

    Carvalhais, Nuno; Thurner, Martin; Forkel, Matthias; Beer, Christian; Reichstein, Markus

    2016-04-01

    formulations. Despite the challenges in underpinning the exact dynamics behind the observed relationships these findings highlight the relevance of the hydrological cycle in controlling the mean turnover times of carbon in terrestrial ecosystems. Overall we acknowledge that carbon turnover times are an emergent property that translates different aspects of ecosystem dynamics, which enable diagnosing ecosystem functioning as well as evaluating model behavior.

  5. The role of leadership in overcoming staff turnover in critical care.

    PubMed

    Roy, Kelly; Brunet, Fabrice

    2005-10-05

    This commentary discusses Laporta and coworkers analysis of a case study on the causes of and solutions for staff turnover in an intensive care setting. Staff turnover is a significant issue for health care leaders due to the shrinking workforce in Western countries and an increased demand for intensive care services as the population ages. The commentary considers reasons for turnover such as burnout and generational diversity, and highlights the importance of a team work approach to address the issue of turnover.

  6. When the Going Gets Tough: Direct, Buffering and Indirect Effects of Social Support on Turnover Intention

    ERIC Educational Resources Information Center

    Pomaki, Georgia; DeLongis, Anita; Frey, Daniela; Short, Kathy; Woehrle, Trish

    2010-01-01

    We examined the role of social support in turnover intention among new teachers. First, we tested and found evidence for a direct negative relationship between social support and turnover intention. Second, we tested the social support buffer hypothesis, and found that teachers with higher social support had lower turnover intention in the face of…

  7. Turnover Intent in an Urban Community College: Strategies for Faculty Retention.

    ERIC Educational Resources Information Center

    Dee, Jay R.

    This study examines faculty turnover intent in an urban community college, with a specific focus on the relationship between turnover intent and three structural variables: level of faculty autonomy, amount of support for faculty innovation, and degree of communication openness in the college. Turnover intent is defined as the degree of likelihood…

  8. A Review of the Literature on Administrator Turnover: Why They Move on or Are Displaced.

    ERIC Educational Resources Information Center

    Shields, Bruce A.

    Employee turnover contributes to lost production, disrupts normal business practices, and is expensive. This literature review examines turnover of three administrator positions: the school superintendent, the executive director of nonprofit agencies, and the chief executive officer of for-profit corporations. The most cited reason for turnover of…

  9. Measuring Worker Turnover in Long-Term Care: Lessons from the Better Jobs Better Care Demonstration

    ERIC Educational Resources Information Center

    Piercy, Kathleen Walsh, Ed.; Barry, Theresa; Kemper, Peter; Brannon, S. Diane

    2008-01-01

    Purpose: Turnover among direct-care workers (DCWs) continues to be a challenge in long-term care. Both policy makers and provider organizations recognize this issue as a major concern and are designing efforts to reduce turnover among these workers. However, there is currently no standardized method of measuring turnover to define the scope of the…

  10. Blind Spots: Small Rural Communities and High Turnover in the Superintendency

    ERIC Educational Resources Information Center

    Kamrath, Barry; Brunner, C. Cryss

    2014-01-01

    This article examines high superintendency turnover through rural community members' perceptions of such attrition in their districts. Findings indicate that community members perceived high turnover as negative and believed that turnover was created by financial pressures, rural community resistance to educational trends, and bias against…

  11. Superintendent Turnover in Kentucky. Summary. Issues & Answers. REL 2011-No. 113

    ERIC Educational Resources Information Center

    Johnson, Jerry; Huffman, Tyler; Madden, Karen; Shope, Shane

    2011-01-01

    This study examines superintendent turnover in Kentucky public school districts for 1998/99-2007/08, looking at how turnover varies by rural status, Appalachian and non-Appalachian region, and 2007/08 school district characteristics. Key findings include: (1) Kentucky school districts averaged one superintendent turnover during 1998/99-2007/08;…

  12. Anatomical Location of LPA1 Activation and LPA Phospholipid Precursors in Rodent and Human Brain

    PubMed Central

    González de San Román, E; Manuel, I; Giralt, MT; Chun, J; Estivill-Torrús, G; Rodriguez de Fonseca, F; Santín, LJ; Ferrer, I; Rodriguez-Puertas, R

    2016-01-01

    Lysophosphatidic acid (LPA) is a signaling molecule that binds to six known G protein-coupled receptors (GPCRs): LPA1–LPA6. LPA evokes several responses in the CNS including cortical development and folding, growth of the axonal cone and its retraction process. Those cell processes involve survival, migration, adhesion proliferation, differentiation and myelination. The anatomical localization of LPA1 is incompletely understood, particularly with regard to LPA binding. Therefore, we have used functional [35S]GTPγS autoradiography to verify the anatomical distribution of LPA1 binding sites in adult rodent and human brain. The greatest activity was observed in myelinated areas of the white matter such as corpus callosum, internal capsule and cerebellum. MaLPA1-null mice (a variant of LPA1-null) lack [35S]GTPγS basal binding in white matter areas, where the LPA1 receptor is expressed at high levels, suggesting a relevant role of the activity of this receptor in the most myelinated brain areas. In addition, phospholipid precursors of LPA were localized by MALDI-IMS in both rodent and human brain slices identifying numerous species of phosphatides (PA) and phosphatidylcholines (PC). Both PA and PC species represent potential LPA precursors. The anatomical distribution of these precursors in rodent and human brain may indicate a metabolic relationship between LPA and LPA1 receptors. PMID:25857358

  13. Phospholipids and insulin resistance in psychosis: a lipidomics study of twin pairs discordant for schizophrenia

    PubMed Central

    2012-01-01

    Background Several theories have been proposed to conceptualize the pathological processes inherent to schizophrenia. The 'prostaglandin deficiency' hypothesis postulates that defective enzyme systems converting essential fatty acids to prostaglandins lead to diminished levels of prostaglandins, which in turn affect synaptic transmission. Methods Here we sought to determine the lipidomic profiles associated with schizophrenia in twin pairs discordant for schizophrenia as well as unaffected twin pairs. The study included serum samples from 19 twin pairs discordant for schizophrenia (mean age 51 ± 10 years; 7 monozygotic pairs; 13 female pairs) and 34 age and gender matched healthy twins as controls. Neurocognitive assessment data and gray matter density measurements taken from high-resolution magnetic resonance images were also obtained. A lipidomics platform using ultra performance liquid chromatography coupled to time-of-flight mass spectrometry was applied for the analysis of serum samples. Results In comparison to their healthy co-twins, the patients had elevated triglycerides and were more insulin resistant. They had diminished lysophosphatidylcholine levels, which associated with decreased cognitive speed. Conclusions Our findings may be of pathophysiological relevance since lysophosphatidylcholines, byproducts of phospholipase A2-catalyzed phospholipid hydrolysis, are preferred carriers of polyunsaturated fatty acids across the blood-brain barrier. Furthermore, diminishment of lysophosphatidylcholines suggests that subjects at risk of schizophrenia may be more susceptible to infections. Their association with cognitive speed supports the view that altered neurotransmission in schizophrenia may be in part mediated by reactive lipids such as prostaglandins. PMID:22257447

  14. Dynamical and phase behavior of a phospholipid membrane altered by an antimicrobial peptide at low concentration

    DOE PAGES

    Mamontov, Eugene; Tyagi, M.; Qian, Shuo; ...

    2016-05-27

    Here we discuss that the mechanism of action of antimicrobial peptides is traditionally attributed to the formation of pores in the lipid cell membranes of pathogens, which requires a substantial peptide to lipid ratio. However, using incoherent neutron scattering, we show that even at a concentration too low for pore formation, an archetypal antimicrobial peptide, melittin, disrupts the regular phase behavior of the microscopic dynamics in a phospholipid membrane, dimyristoylphosphatidylcholine (DMPC). At the same time, another antimicrobial peptide, alamethicin, does not exert a similar effect on the DMPC microscopic dynamics. The melittin-altered lateral motion of DMPC at physiological temperature nomore » longer resembles the fluid-phase behavior characteristic of functional membranes of the living cells. The disruptive effect demonstrated by melittin even at low concentrations reveals a new mechanism of antimicrobial action relevant in more realistic scenarios, when peptide concentration is not as high as would be required for pore formation, which may facilitate treatment with antimicrobial peptides.« less

  15. Interactions of Aqueous Imidazolium-Based Ionic Liquid Mixtures with Solid-Supported Phospholipid Vesicles

    PubMed Central

    Losada-Pérez, Patricia; Khorshid, Mehran; Renner, Frank Uwe

    2016-01-01

    Despite the environmentally friendly reputation of ionic liquids (ILs), their safety has been recently questioned given their potential as cytotoxic agents. The fundamental mechanisms underlying the interactions between ILs and cells are less studied and by far not completely understood. Biomimetic films are here important biophysical model systems to elucidate fundamental aspects and mechanisms relevant for a large range of biological interaction ranging from signaling to drug reception or toxicity. Here we use dissipative quartz crystal microbalance QCM-D to examine the effect of aqueous imidazolium-based ionic liquid mixtures on solid-supported biomimetic membranes. Specifically, we assess in real time the effect of the cation chain length and the anion nature on a supported vesicle layer of the model phospholipid DMPC. Results indicate that interactions are mainly driven by the hydrophobic components of the IL, which significantly distort the layer and promote vesicle rupture. Our analyses evidence the gradual decrease of the main phase transition temperature upon increasing IL concentration, reflecting increased disorder by weakening of lipid chain interactions. The degree of rupture is significant for ILs with long hydrophobic cation chains and large hydrophobic anions whose behavior is reminiscent of that of antimicrobial peptides. PMID:27684947

  16. Ionization Properties of Phospholipids Determined by Zeta Potential Measurements

    PubMed Central

    Sathappa, Murugappan; Alder, Nathan N.

    2016-01-01

    Biological membranes are vital for diverse cellular functions such as maintaining cell and organelle structure, selective permeability, active transport, and signaling. The surface charge of the membrane bilayer plays a critical role in these myriad processes. For most biomembranes, the surface charge of anionic phospholipids contributes to the negative surface charge density within the interfacial region of the bilayer. To quantify surface charge, it is essential to understand the proton dissociation behavior of the titratable headgroups within such lipids. We describe a protocol that uses model membranes for electrokinetic zeta potential measurements coupled with data analysis using Gouy-Chapman-Stern formalism to determine the pKa value of the component lipids. A detailed example is provided for homogeneous bilayers composed of the monoanionic lipid phosphatidylglycerol. This approach can be adapted for the measurement of bilayers with a heterogeneous lipid combination, as well as for lipids with multiple titratable sites in the headgroup (e.g., cardiolipin). PMID:27928550

  17. Antioxidant effect of astaxanthin on phospholipid peroxidation in human erythrocytes.

    PubMed

    Nakagawa, Kiyotaka; Kiko, Takehiro; Miyazawa, Taiki; Carpentero Burdeos, Gregor; Kimura, Fumiko; Satoh, Akira; Miyazawa, Teruo

    2011-06-01

    Phospholipid hydroperoxides (PLOOH) accumulate abnormally in the erythrocytes of dementia patients, and dietary xanthophylls (polar carotenoids such as astaxanthin) are hypothesised to prevent the accumulation. In the present study, we conducted a randomised, double-blind, placebo-controlled human trial to assess the efficacy of 12-week astaxanthin supplementation (6 or 12 mg/d) on both astaxanthin and PLOOH levels in the erythrocytes of thirty middle-aged and senior subjects. After 12 weeks of treatment, erythrocyte astaxanthin concentrations were higher in both the 6 and 12 mg astaxanthin groups than in the placebo group. In contrast, erythrocyte PLOOH concentrations were lower in the astaxanthin groups than in the placebo group. In the plasma, somewhat lower PLOOH levels were found after astaxanthin treatment. These results suggest that astaxanthin supplementation results in improved erythrocyte antioxidant status and decreased PLOOH levels, which may contribute to the prevention of dementia.

  18. Cyclic Phosphatidic Acid – A Unique Bioactive Phospholipid

    PubMed Central

    Fujiwara, Yuko

    2008-01-01

    Cyclic phosphatidic acid (CPA) is a naturally occurring analog of the growth factor-like phospholipid mediator, lysophosphatidic acid (LPA). The sn-2 hydroxy group of CPA forms a 5-membered ring with the sn-3 phosphate. CPA affects numerous cellular functions, including antimitogenic regulation of the cell cycle, induction of stress fiber formation, inhibition of tumor cell invasion and metastasis, and regulation of differentiation and survival of neuronal cells. Interestingly, many of these cellular responses caused by CPA oppose those of LPA despite the activation of apparently overlapping receptor populations. Since the early 1990s, studies on CPA actions gradually developed, and we are now beginning to understand the importance of this lipid. In this review, we focus on the current knowledge about CPA, including enzymatic formation of CPA, unique biological activities and biological targets of CPA, and we also explore metabolically stabilized CPA analogs. PMID:18554524

  19. Equation of State for Phospholipid Self-Assembly

    PubMed Central

    Marsh, Derek

    2016-01-01

    Phospholipid self-assembly is the basis of biomembrane stability. The entropy of transfer from water to self-assembled micelles of lysophosphatidylcholines and diacyl phosphatidylcholines with different chain lengths converges to a common value at a temperature of 44°C. The corresponding enthalpies of transfer converge at ∼−18°C. An equation of state for the free energy of self-assembly formulated from this thermodynamic data depends on the heat capacity of transfer as the sole parameter needed to specify a particular lipid. For lipids lacking calorimetric data, measurement of the critical micelle concentration at a single temperature suffices to define an effective heat capacity according to the model. Agreement with the experimental temperature dependence of the critical micelle concentration is then good. The predictive powers should extend also to amphiphile partitioning and the kinetics of lipid-monomer transfer. PMID:26745421

  20. Substrate trajectory through phospholipid-transporting P4-ATPases.

    PubMed

    Williamson, Patrick

    2014-10-01

    A difference in the lipid composition between the two leaflets of the same membrane is a relatively simple instance of lipid compositional heterogeneity. The large activation energy barrier for transbilayer movement for some (but not all) membrane lipids creates a regime governed by active transport processes. An early step in eukaryote evolution was the development of a capacity for generating transbilayer compositional heterogeneity far from equilibrium by directly tapping energy from the ATP pool. The mechanism of the P-type ATPases that create lipid asymmetry is well understood in terms of ATP hydrolysis, but the trajectory taken by the phospholipid substrate through the enzyme is a matter of current active research. There are currently three different models for this trajectory, all with support by mutation/activity measurements and analogies with known atomic structures.

  1. Equation of State for Phospholipid Self-Assembly.

    PubMed

    Marsh, Derek

    2016-01-05

    Phospholipid self-assembly is the basis of biomembrane stability. The entropy of transfer from water to self-assembled micelles of lysophosphatidylcholines and diacyl phosphatidylcholines with different chain lengths converges to a common value at a temperature of 44°C. The corresponding enthalpies of transfer converge at ∼-18°C. An equation of state for the free energy of self-assembly formulated from this thermodynamic data depends on the heat capacity of transfer as the sole parameter needed to specify a particular lipid. For lipids lacking calorimetric data, measurement of the critical micelle concentration at a single temperature suffices to define an effective heat capacity according to the model. Agreement with the experimental temperature dependence of the critical micelle concentration is then good. The predictive powers should extend also to amphiphile partitioning and the kinetics of lipid-monomer transfer.

  2. Huntingtin associates with acidic phospholipids at the plasma membrane.

    PubMed

    Kegel, Kimberly B; Sapp, Ellen; Yoder, Jennifer; Cuiffo, Benjamin; Sobin, Lindsay; Kim, Yun J; Qin, Zheng-Hong; Hayden, Michael R; Aronin, Neil; Scott, David L; Isenberg, Gerhard; Goldmann, Wolfgang H; DiFiglia, Marian

    2005-10-28

    We have identified a domain in the N terminus of huntingtin that binds to membranes. A three-dimensional homology model of the structure of the binding domain predicts helical HEAT repeats, which emanate a positive electrostatic potential, consistent with a charge-based mechanism for membrane association. An amphipathic helix capable of inserting into pure lipid bilayers may serve to anchor huntingtin to the membrane. In cells, N-terminal huntingtin fragments targeted to regions of plasma membrane enriched in phosphatidylinositol 4,5-bisphosphate, receptor bound-transferrin, and endogenous huntingtin. N-terminal huntingtin fragments with an expanded polyglutamine tract aberrantly localized to intracellular regions instead of plasma membrane. Our data support a new model in which huntingtin directly binds membranes through electrostatic interactions with acidic phospholipids.

  3. An averaged polarizable potential for multiscale modeling in phospholipid membranes.

    PubMed

    Witzke, Sarah; List, Nanna Holmgaard; Olsen, Jógvan Magnus Haugaard; Steinmann, Casper; Petersen, Michael; Beerepoot, Maarten T P; Kongsted, Jacob

    2017-04-05

    A set of average atom-centered charges and polarizabilities has been developed for three types of phospholipids for use in polarizable embedding calculations. The lipids investigated are 1,2-dimyristoyl-sn-glycero-3-phosphocholine, 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine, and 1-palmitoyl-2-oleoyl-sn-glycerol-3-phospho-L-serine given their common use both in experimental and computational studies. The charges, and to a lesser extent the polarizabilities, are found to depend strongly on the molecular conformation of the lipids. Furthermore, the importance of explicit polarization is underlined for the description of larger assemblies of lipids, that is, membranes. In conclusion, we find that specially developed polarizable parameters are needed for embedding calculations in membranes, while common non-polarizable point-charge force fields usually perform well enough for structural and dynamical studies. © 2017 Wiley Periodicals, Inc.

  4. Identification of Unusual Phospholipid Fatty Acyl Compositions of Acanthamoeba castellanii

    PubMed Central

    Palusinska-Szysz, Marta; Kania, Magdalena; Turska-Szewczuk, Anna; Danikiewicz, Witold; Russa, Ryszard; Fuchs, Beate

    2014-01-01

    Acanthamoeba are opportunistic protozoan pathogens that may lead to sight-threatening keratitis and fatal granulomatous encephalitis. The successful prognosis requires early diagnosis and differentiation of pathogenic Acanthamoeba followed by aggressive treatment regimen. The plasma membrane of Acanthamoeba consists of 25% phospholipids (PL). The presence of C20 and, recently reported, 28- and 30-carbon fatty acyl residues is characteristic of amoeba PL. A detailed knowledge about this unusual PL composition could help to differentiate Acanthamoeba from other parasites, e.g. bacteria and develop more efficient treatment strategies. Therefore, the detailed PL composition of Acanthamoeba castellanii was investigated by 31P nuclear magnetic resonance spectroscopy, thin-layer chromatography, gas chromatography, high performance liquid chromatography and liquid chromatography-mass spectrometry. Normal and reversed phase liquid chromatography coupled with mass spectrometric detection was used for detailed characterization of the fatty acyl composition of each detected PL. The most abundant fatty acyl residues in each PL class were octadecanoyl (18∶0), octadecenoyl (18∶1 Δ9) and hexadecanoyl (16∶0). However, some selected PLs contained also very long fatty acyl chains: the presence of 28- and 30-carbon fatty acyl residues was confirmed in phosphatidylethanolamine (PE), phosphatidylserine, phosphatidic acid and cardiolipin. The majority of these fatty acyl residues were also identified in PE that resulted in the following composition: 28∶1/20∶2, 30∶2/18∶1, 28∶0/20∶2, 30∶2/20∶4 and 30∶3/20∶3. The PL of amoebae are significantly different in comparison to other cells: we describe here for the first time unusual, very long chain fatty acids with Δ5-unsaturation (30∶35,21,24) and 30∶221,24 localized exclusively in specific phospholipid classes of A. castellanii protozoa that could serve as specific biomarkers for the presence of these

  5. Phospholipid interactions in model membrane systems. II. Theory.

    PubMed Central

    Stigter, D; Mingins, J; Dill, K A

    1992-01-01

    We describe statistical thermodynamic theory for the lateral interactions among phospholipid head groups in monolayers and bilayers. Extensive monolayer experiments show that at low surface densities, PC head groups have strong lateral repulsions which increase considerably with temperature, whereas PE interactions are much weaker and have no significant temperature dependence (see the preceding paper). In previous work, we showed that the second virial coefficients for these interactions can be explained by: (a) steric repulsions among the head groups, and (b) a tilting of the P-N+ dipole of PC so that the N+ end enters the oil phase, to an extent that increases with temperature. It was also predicted that PE interactions should be weaker and less temperature dependent because the N+ terminal of the PE head-group is hydrophilic, hence, it is tilted into the water phase, so dipolar contributions among PE's are negligible due to the high dielectric constant of water. In the present work, we broaden the theory to treat phospholipid interactions up to higher lateral surface densities. We generalize the Hill interfacial virial expansion to account for dipoles and to include the third virial term. We show that to account for the large third virial coefficients for both PC and PE requires that the short range lateral attractions among the head groups also be taken into account. In addition, the third virial coefficient includes fluctuating head group dipoles, computed by Monte Carlo integration assuming pairwise additivity of the instantaneous pair potentials. We find that because the dipole fluctuations are correlated, the average triplet interactions do not equal the sum of the average dipole pair potentials. This is important for predicting, the magnitude and the independence of temperature of the third virial coefficients for PC. The consistency of the theory with data of both the second and the third virial coefficients extends the applicability of the head

  6. Membrane-Derived Phospholipids Control Synaptic Neurotransmission and Plasticity

    PubMed Central

    García-Morales, Victoria; Montero, Fernando; González-Forero, David; Rodríguez-Bey, Guillermo; Gómez-Pérez, Laura; Medialdea-Wandossell, María Jesús; Domínguez-Vías, Germán; García-Verdugo, José Manuel; Moreno-López, Bernardo

    2015-01-01

    Synaptic communication is a dynamic process that is key to the regulation of neuronal excitability and information processing in the brain. To date, however, the molecular signals controlling synaptic dynamics have been poorly understood. Membrane-derived bioactive phospholipids are potential candidates to control short-term tuning of synaptic signaling, a plastic event essential for information processing at both the cellular and neuronal network levels in the brain. Here, we showed that phospholipids affect excitatory and inhibitory neurotransmission by different degrees, loci, and mechanisms of action. Signaling triggered by lysophosphatidic acid (LPA) evoked rapid and reversible depression of excitatory and inhibitory postsynaptic currents. At excitatory synapses, LPA-induced depression depended on LPA1/Gαi/o-protein/phospholipase C/myosin light chain kinase cascade at the presynaptic site. LPA increased myosin light chain phosphorylation, which is known to trigger actomyosin contraction, and reduced the number of synaptic vesicles docked to active zones in excitatory boutons. At inhibitory synapses, postsynaptic LPA signaling led to dephosphorylation, and internalization of the GABAAγ2 subunit through the LPA1/Gα12/13-protein/RhoA/Rho kinase/calcineurin pathway. However, LPA-induced depression of GABAergic transmission was correlated with an endocytosis-independent reduction of GABAA receptors, possibly by GABAAγ2 dephosphorylation and subsequent increased lateral diffusion. Furthermore, endogenous LPA signaling, mainly via LPA1, mediated activity-dependent inhibitory depression in a model of experimental synaptic plasticity. Finally, LPA signaling, most likely restraining the excitatory drive incoming to motoneurons, regulated performance of motor output commands, a basic brain processing task. We propose that lysophospholipids serve as potential local messengers that tune synaptic strength to precedent activity of the neuron. PMID:25996636

  7. Anatomical location of LPA1 activation and LPA phospholipid precursors in rodent and human brain.

    PubMed

    González de San Román, Estibaliz; Manuel, Iván; Giralt, María Teresa; Chun, Jerold; Estivill-Torrús, Guillermo; Rodríguez de Fonseca, Fernando; Santín, Luis Javier; Ferrer, Isidro; Rodríguez-Puertas, Rafael

    2015-08-01

    Lysophosphatidic acid (LPA) is a signaling molecule that binds to six known G protein-coupled receptors: LPA1 -LPA6 . LPA evokes several responses in the CNS, including cortical development and folding, growth of the axonal cone and its retraction process. Those cell processes involve survival, migration, adhesion proliferation, differentiation, and myelination. The anatomical localization of LPA1 is incompletely understood, particularly with regard to LPA binding. Therefore, we have used functional [(35) S]GTPγS autoradiography to verify the anatomical distribution of LPA1 binding sites in adult rodent and human brain. The greatest activity was observed in myelinated areas of the white matter such as corpus callosum, internal capsule and cerebellum. MaLPA1 -null mice (a variant of LPA1 -null) lack [(35) S]GTPγS basal binding in white matter areas, where the LPA1 receptor is expressed at high levels, suggesting a relevant role of the activity of this receptor in the most myelinated brain areas. In addition, phospholipid precursors of LPA were localized by MALDI-IMS in both rodent and human brain slices identifying numerous species of phosphatides and phosphatidylcholines. Both phosphatides and phosphatidylcholines species represent potential LPA precursors. The anatomical distribution of these precursors in rodent and human brain may indicate a metabolic relationship between LPA and LPA1 receptors. Lysophosphatidic acid (LPA) is a signaling molecule that binds to six known G protein-coupled receptors (GPCR), LPA1 to LPA6 . LPA evokes several responses in the central nervous system (CNS), including cortical development and folding, growth of the axonal cone and its retraction process. We used functional [(35) S]GTPγS autoradiography to verify the anatomical distribution of LPA1 -binding sites in adult rodent and human brain. The distribution of LPA1 receptors in rat, mouse and human brains show the highest activity in white matter myelinated areas. The basal and

  8. Changes in the Total Lipid, Neutral Lipid, Phospholipid and Fatty Acid Composition of Phospholipid Fractions during Pastırma Processing, a Dry-Cured Meat Product

    PubMed Central

    Aksu, Muhammet Irfan; Dogan, Mehmet

    2017-01-01

    Pastırma is a dry-cured meat product, produced from whole beef or water buffalo muscles. This study was carried out to investigate the effect of production stages (raw meat, after curing, after 2nd drying and pastırma) on the total lipid, neutral lipid, phospholipid and fatty acid composition of phospholipid fraction of pastırma produced from beef M. Longissimus dorsi muscles. The pH and colour (L*, a* and b*) analyses were also performed in raw meat and pastırma. It was found that pastırma production stages had significant effects (p<0.01) on the total amounts of lipid, neutral lipid and phospholipid, and the highest amounts of lipid, neutral lipid and phospholipid were detected in pastırma. In pastırma, neutral lipid ratio was determined as 79.33±2.06% and phospholipid ratio as 20.67±2.06%. Phospholipids was proportionately lower in pastırma than raw meat. Pastırma production stages affected pentadecanoic acid (15:1) (p<0.01), linoleic acid (18:2n-6) (p<0.05), γ-linoleic acid (18:3n-6) (p<0.05), erucic acid (22:1n-9) (p<0.05), docosapentaenoic acid (22:5n-6) (p<0.05), total unsaturated fatty acid (ΣUSFA) (p<0.05) and total saturated fatty acid (ΣSFA) (p<0.05) ratios of phospholipid fraction and also the moisture content (p<0.01). Pastırma process also affected pH and colour (L*, a* and b*) values (p<0.01), and these values were higher in pastırma than raw meat. PMID:28316467

  9. Nursing assistant turnover in nursing homes and need satisfaction.

    PubMed

    Caudill, M; Patrick, M

    1989-06-01

    1. Level of Maslow's Hierarchy of Needs is basic physiological needs measured by salary, adequate housing, and food. Attainment of these needs increased the length of stay of nursing assistants in nursing homes. 2. Safety and security (level 2) influenced length of stay of nursing assistants. Those with benefits of retirement, vacation, and holiday pay tended to have less turnover. 3. Praise by the patient and family was most important to nursing assistants. Belonging to a peer group and praise by charge nurse also decreased turnover of nursing assistants (level 3). 4. Level 4, self-esteem measured by input into decisions and being able to criticize, increased length of stay of nursing assistants.

  10. Assembly and Turnover of Caveolae: What Do We Really Know?

    PubMed Central

    Han, Bing; Copeland, Courtney A.; Tiwari, Ajit; Kenworthy, Anne K.

    2016-01-01

    In addition to containing highly dynamic nanoscale domains, the plasma membranes of many cell types are decorated with caveolae, flask-shaped domains enriched in the structural protein caveolin-1 (Cav1). The importance of caveolae in numerous cellular functions and processes has become well-recognized, and recent years have seen dramatic advances in our understanding of how caveolae assemble and the mechanisms control the turnover of Cav1. At the same time, work from our lab and others have revealed that commonly utilized strategies such as overexpression and tagging of Cav1 have unexpectedly complex consequences on the trafficking and fate of Cav1. Here, we discuss the implications of these findings for current models of caveolae biogenesis and Cav1 turnover. In addition, we discuss how disease-associated mutants of Cav1 impact caveolae assembly and outline open questions in this still-emerging area. PMID:27446919

  11. Regulation of protein turnover by heat shock proteins.

    PubMed

    Bozaykut, Perinur; Ozer, Nesrin Kartal; Karademir, Betul

    2014-12-01

    Protein turnover reflects the balance between synthesis and degradation of proteins, and it is a crucial process for the maintenance of the cellular protein pool. The folding of proteins, refolding of misfolded proteins, and also degradation of misfolded and damaged proteins are involved in the protein quality control (PQC) system. Correct protein folding and degradation are controlled by many different factors, one of the most important of which is the heat shock protein family. Heat shock proteins (HSPs) are in the class of molecular chaperones, which may prevent the inappropriate interaction of proteins and induce correct folding. On the other hand, these proteins play significant roles in the degradation pathways, including endoplasmic reticulum-associated degradation (ERAD), the ubiquitin-proteasome system, and autophagy. This review focuses on the emerging role of HSPs in the regulation of protein turnover; the effects of HSPs on the degradation machineries ERAD, autophagy, and proteasome; as well as the role of posttranslational modifications in the PQC system.

  12. Signaling Pathways That Control mRNA Turnover

    PubMed Central

    Thapar, Roopa; Denmon, Andria P.

    2013-01-01

    Cells regulate their genomes mainly at the level of transcription and at the level of mRNA decay. While regulation at the level of transcription is clearly important, the regulation of mRNA turnover by signaling networks is essential for a rapid response to external stimuli. Signaling pathways result in posttranslational modification of RNA binding proteins by phosphorylation, ubiquitination, methylation, acetylation etc. These modifications are important for rapid remodeling of dynamic ribonucleoprotein complexes and triggering mRNA decay. Understanding how these posttranslational modifications alter gene expression is therefore a fundamental question in biology. In this review we highlight recent findings on how signaling pathways and cell cycle checkpoints involving phosphorylation, ubiquitination, and arginine methylation affect mRNA turnover. PMID:23602935

  13. Keratin Dynamics: Modeling the Interplay between Turnover and Transport

    PubMed Central

    Portet, Stéphanie; Madzvamuse, Anotida; Chung, Andy; Leube, Rudolf E.; Windoffer, Reinhard

    2015-01-01

    Keratin are among the most abundant proteins in epithelial cells. Functions of the keratin network in cells are shaped by their dynamical organization. Using a collection of experimentally-driven mathematical models, different hypotheses for the turnover and transport of the keratin material in epithelial cells are tested. The interplay between turnover and transport and their effects on the keratin organization in cells are hence investigated by combining mathematical modeling and experimental data. Amongst the collection of mathematical models considered, a best model strongly supported by experimental data is identified. Fundamental to this approach is the fact that optimal parameter values associated with the best fit for each model are established. The best candidate among the best fits is characterized by the disassembly of the assembled keratin material in the perinuclear region and an active transport of the assembled keratin. Our study shows that an active transport of the assembled keratin is required to explain the experimentally observed keratin organization. PMID:25822661

  14. Biosynthesis, Turnover, and Functions of Chitin in Insects.

    PubMed

    Zhu, Kun Yan; Merzendorfer, Hans; Zhang, Wenqing; Zhang, Jianzhen; Muthukrishnan, Subbaratnam

    2016-01-01

    Chitin is a major component of the exoskeleton and the peritrophic matrix of insects. It forms complex structures in association with different assortments of cuticle and peritrophic matrix proteins to yield biocomposites with a wide range of physicochemical and mechanical properties. The growth and development of insects are intimately coupled with the biosynthesis, turnover, and modification of chitin. The genes encoding numerous enzymes of chitin metabolism and proteins that associate with and organize chitin have been uncovered by bioinformatics analyses. Many of these proteins are encoded by sets of large gene families. There is specialization among members within each family, which function in particular tissues or developmental stages. Chitin-containing matrices are dynamically modified at every developmental stage and are under developmental and/or physiological control. A thorough understanding of the diverse processes associated with the assembly and turnover of these chitinous matrices offers many strategies to achieve selective pest control.

  15. Carbon turnover in pore spaces - CIPS model approach

    NASA Astrophysics Data System (ADS)

    Kuka, Katrin

    2010-05-01

    The CIPS (Carbon turnover In Pore Spaces) model has been developed to overcome the constraints of conceptual pools and to get a better insight into the nature of carbon stabilization in soil (KUKA, 2007). This pure carbon turnover model was implemented in CANDY (CArbon and Nitrogen Dynamics) model system (Franko, 1995). The CIPS model did overcome the empirical pools taking into account soil structure effects. It is based on quality driven primary stabilisation mechanism (recalcitrance of SOM) and process driven secondary stabilisation mechanism (place of turnover) of SOM in soil. In addition to the division of SOM in the qualitative pools on the basis of chemical measurability, a dependence of the turnover conditions from the location of SOM in pore space is implemented taking into account different turnover conditions in the particular pore space and the accessibility for microbial biomass. The main assumption of the CIPS model is that the biological activity is not evenly distributed through the whole pore space. The pore space classes - micro, meso and macro pores - used in the model are marked by wilting point, field capacity and pore volume as a first approach. Because of the poor aeration in the micro pores they show very low biological activity leading to a strong protection of the carbon localized in this pore space. The biological active time (BAT) concept of the CANDY model was adapted to the CIPS model in order to calculate the distribution of biological activity for each pore space class. The reduction functions of the turnover active time concept of CANDY model, related to soil temperature, soil moisture, soil texture, relative air volume and distance to the soil surface are multiplied by the step width of calendar time producing the transformed time step as total BAT (BATtot). The calculated BATtot corresponds to the time that would be required under optimal conditions in the laboratory to perform the same turnover result as under the given

  16. A phospholipid transfer function of ER-mitochondria encounter structure revealed in vitro

    PubMed Central

    Kojima, Rieko; Endo, Toshiya; Tamura, Yasushi

    2016-01-01

    As phospholipids are synthesized mainly in the endoplasmic reticulum (ER) and mitochondrial inner membranes, how cells properly distribute specific phospholipids to diverse cellular membranes is a crucial problem for maintenance of organelle-specific phospholipid compositions. Although the ER-mitochondria encounter structure (ERMES) was proposed to facilitate phospholipid transfer between the ER and mitochondria, such a role of ERMES is still controversial and awaits experimental demonstration. Here we developed a novel in vitro assay system with isolated yeast membrane fractions to monitor phospholipid exchange between the ER and mitochondria. With this system, we found that phospholipid transport between the ER and mitochondria relies on membrane intactness, but not energy sources such as ATP, GTP or the membrane potential across the mitochondrial inner membrane. We further found that lack of the ERMES component impairs the phosphatidylserine transport from the ER to mitochondria, but not the phosphatidylethanolamine transport from mitochondria to the ER. This in vitro assay system thus offers a powerful tool to analyze the non-vesicular phospholipid transport between the ER and mitochondria. PMID:27469264

  17. Bone turnover markers: Emerging tool in the management of osteoporosis

    PubMed Central

    Shetty, Sahana; Kapoor, Nitin; Bondu, Joseph Dian; Thomas, Nihal; Paul, Thomas Vizhalil

    2016-01-01

    Bone is a dynamic tissue which undergoes constant remodeling throughout the life span. Bone turnover is balanced with coupling of bone formation and resorption at various rates leading to continuous remodeling of bone. A study of bone turnover markers (BTMs) provides an insight of the dynamics of bone turnover in many metabolic bone disorders. An increase in bone turnover seen with aging and pathological states such as osteoporosis leads to deterioration of bone microarchitecture and thus contributes to an increase in the risk of fracture independent of low bone mineral density (BMD). These microarchitectural alterations affecting the bone quality can be assessed by BTMs and thus may serve as a complementary tool to BMD in the assessment of fracture risk. A systematic search of literature regarding BTMs was carried out using the PubMed database for the purpose of this review. Various reliable, rapid, and cost-effective automated assays of BTMs with good sensitivity are available for the management of osteoporosis. However, BTMs are subjected to various preanalytical and analytical variations necessitating strict sample collection and assays methods along with utilizing ethnicity-based reference standards for different populations. Estimation of fracture risk and monitoring the adherence and response to therapy, which is a challenge in a chronic, asymptomatic disease such as osteoporosis, are the most important applications of measuring BTMs. This review describes the physiology of bone remodeling, various conventional and novel BTMs, and BTM assays and their role in the assessment of fracture risk and monitoring response to treatment with antiresorptive or anabolic agents. PMID:27867890

  18. Organizational Strategies for Adapting to High Rates of Employee Turnover.

    DTIC Science & Technology

    1983-07-01

    disrupt work. In addition, social involvement in the workplace has been identified as an important factor contributing to employee commitment (Mowday...scope of this paper to discuss how employee commitment to organizations can be increased (see Mowday et al., 1982). Where organizations are...successful in building and sustaining high levels of employee commitment , the probability of turnover itself, as well as the chance that work will be

  19. Pattern and process in Amazon tree turnover, 1976-2001.

    PubMed

    Phillips, O L; Baker, T R; Arroyo, L; Higuchi, N; Killeen, T J; Laurance, W F; Lewis, S L; Lloyd, J; Malhi, Y; Monteagudo, A; Neill, D A; Vargas, P Núñez; Silva, J N M; Terborgh, J; Martínez, R Vásquez; Alexiades, M; Almeida, S; Brown, S; Chave, J; Comiskey, J A; Czimczik, C I; Di Fiore, A; Erwin, T; Kuebler, C; Laurance, S G; Nascimento, H E M; Olivier, J; Palacios, W; Patiño, S; Pitman, N C A; Quesada, C A; Saldias, M; Lezama, A Torres; Vinceti, B

    2004-03-29

    Previous work has shown that tree turnover, tree biomass and large liana densities have increased in mature tropical forest plots in the late twentieth century. These results point to a concerted shift in forest ecological processes that may already be having significant impacts on terrestrial carbon stocks, fluxes and biodiversity. However, the findings have proved controversial, partly because a rather limited number of permanent plots have been monitored for rather short periods. The aim of this paper is to characterize regional-scale patterns of 'tree turnover' (the rate with which trees die and recruit into a population) by using improved datasets now available for Amazonia that span the past 25 years. Specifically, we assess whether concerted changes in turnover are occurring, and if so whether they are general throughout the Amazon or restricted to one region or environmental zone. In addition, we ask whether they are driven by changes in recruitment, mortality or both. We find that: (i) trees 10 cm or more in diameter recruit and die twice as fast on the richer soils of southern and western Amazonia than on the poorer soils of eastern and central Amazonia; (ii) turnover rates have increased throughout Amazonia over the past two decades; (iii) mortality and recruitment rates have both increased significantly in every region and environmental zone, with the exception of mortality in eastern Amazonia; (iv) recruitment rates have consistently exceeded mortality rates; (v) absolute increases in recruitment and mortality rates are greatest in western Amazonian sites; and (vi) mortality appears to be lagging recruitment at regional scales. These spatial patterns and temporal trends are not caused by obvious artefacts in the data or the analyses. The trends cannot be directly driven by a mortality driver (such as increased drought or fragmentation-related death) because the biomass in these forests has simultaneously increased. Our findings therefore indicate that

  20. Broadcast News Staff Sources and Turnover: Implications for Educators.

    ERIC Educational Resources Information Center

    Stone, Vernon A.

    To evaluate the job market for college graduates in the field of broadcast news, a study was designed to provide an up-to-date assessment of turnover and staff sources and to ascertain the number of job openings over a one-year period, as well as the sources of people hired for those positions in various types of broadcast news operations.…

  1. Pattern and process in Amazon tree turnover, 1976-2001.

    PubMed Central

    Phillips, O L; Baker, T R; Arroyo, L; Higuchi, N; Killeen, T J; Laurance, W F; Lewis, S L; Lloyd, J; Malhi, Y; Monteagudo, A; Neill, D A; Vargas, P Núñez; Silva, J N M; Terborgh, J; Martínez, R Vásquez; Alexiades, M; Almeida, S; Brown, S; Chave, J; Comiskey, J A; Czimczik, C I; Di Fiore, A; Erwin, T; Kuebler, C; Laurance, S G; Nascimento, H E M; Olivier, J; Palacios, W; Patiño, S; Pitman, N C A; Quesada, C A; Saldias, M; Lezama, A Torres; Vinceti, B

    2004-01-01

    Previous work has shown that tree turnover, tree biomass and large liana densities have increased in mature tropical forest plots in the late twentieth century. These results point to a concerted shift in forest ecological processes that may already be having significant impacts on terrestrial carbon stocks, fluxes and biodiversity. However, the findings have proved controversial, partly because a rather limited number of permanent plots have been monitored for rather short periods. The aim of this paper is to characterize regional-scale patterns of 'tree turnover' (the rate with which trees die and recruit into a population) by using improved datasets now available for Amazonia that span the past 25 years. Specifically, we assess whether concerted changes in turnover are occurring, and if so whether they are general throughout the Amazon or restricted to one region or environmental zone. In addition, we ask whether they are driven by changes in recruitment, mortality or both. We find that: (i) trees 10 cm or more in diameter recruit and die twice as fast on the richer soils of southern and western Amazonia than on the poorer soils of eastern and central Amazonia; (ii) turnover rates have increased throughout Amazonia over the past two decades; (iii) mortality and recruitment rates have both increased significantly in every region and environmental zone, with the exception of mortality in eastern Amazonia; (iv) recruitment rates have consistently exceeded mortality rates; (v) absolute increases in recruitment and mortality rates are greatest in western Amazonian sites; and (vi) mortality appears to be lagging recruitment at regional scales. These spatial patterns and temporal trends are not caused by obvious artefacts in the data or the analyses. The trends cannot be directly driven by a mortality driver (such as increased drought or fragmentation-related death) because the biomass in these forests has simultaneously increased. Our findings therefore indicate that

  2. The effects of autonomy and empowerment on employee turnover: test of a multilevel model in teams.

    PubMed

    Liu, Dong; Zhang, Shu; Wang, Lei; Lee, Thomas W

    2011-11-01

    Extending research on voluntary turnover in the team setting, this study adopts a multilevel self-determination theoretical approach to examine the unique roles of individual and social-contextual motivational precursors, autonomy orientation and autonomy support, in reducing team member voluntary turnover. Analysis of multilevel time-lagged data collected from 817 employees on 115 teams indicates that psychological empowerment mediates the main effect of autonomy orientation and the interactive effect of autonomy support and its differentiation on a team member's voluntary turnover. The findings have meaningful implications for the turnover and self-determination literatures as well as for managers who endeavor to prevent voluntary turnover in teams.

  3. Staff Turnover in Assertive Community Treatment (Act) Teams: The Role of Team Climate.

    PubMed

    Zhu, Xi; Wholey, Douglas R; Cain, Cindy; Natafgi, Nabil

    2017-03-01

    Staff turnover in Assertive Community Treatment (ACT) teams can result in interrupted services and diminished support for clients. This paper examines the effect of team climate, defined as team members' shared perceptions of their work environment, on turnover and individual outcomes that mediate the climate-turnover relationship. We focus on two climate dimensions: safety and quality climate and constructive conflict climate. Using survey data collected from 26 ACT teams, our analyses highlight the importance of safety and quality climate in reducing turnover, and job satisfaction as the main mediator linking team climate to turnover. The findings offer practical implications for team management.

  4. Revealing Beta-Diversity Patterns of Breeding Bird and Lizard Communities on Inundated Land-Bridge Islands by Separating the Turnover and Nestedness Components

    PubMed Central

    Si, Xingfeng; Baselga, Andrés; Ding, Ping

    2015-01-01

    Beta diversity describes changes in species composition among sites in a region and has particular relevance for explaining ecological patterns in fragmented habitats. However, it is difficult to reveal the mechanisms if broad sense beta-diversity indices (i.e. yielding identical values under nestedness and species replacement) are used. Partitioning beta diversity into turnover (caused by species replacement from site to site) and nestedness-resultant components (caused by nested species losses) could provide a unique way to understand the variation of species composition in fragmented habitats. Here, we collected occupancy data of breeding birds and lizards on land-bridge islands in an inundated lake in eastern China. We decomposed beta diversity of breeding bird and lizard communities into spatial turnover and nestedness-resultant components to assess their relative contributions and respective relationships to differences in island area, isolation, and habitat richness. Our results showed that spatial turnover contributed more to beta diversity than the nestedness-resultant component. The degree of isolation had no significant effect on overall beta diversity or its components, neither for breeding birds nor for lizards. In turn, in both groups the nestedness-resultant component increased with larger differences in island area and habitat richness, respectively, while turnover component decreased with them. The major difference among birds and lizards was a higher relevance of nestedness-resultant dissimilarity in lizards, suggesting that they are more prone to local extinctions derived from habitat fragmentation. The dominance of the spatial turnover component of beta diversity suggests that all islands have potential conservation value for breeding bird and lizard communities. PMID:25992559

  5. Revealing Beta-diversity patterns of breeding bird and lizard communities on inundated land-bridge islands by separating the turnover and nestedness components.

    PubMed

    Si, Xingfeng; Baselga, Andrés; Ding, Ping

    2015-01-01

    Beta diversity describes changes in species composition among sites in a region and has particular relevance for explaining ecological patterns in fragmented habitats. However, it is difficult to reveal the mechanisms if broad sense beta-diversity indices (i.e. yielding identical values under nestedness and species replacement) are used. Partitioning beta diversity into turnover (caused by species replacement from site to site) and nestedness-resultant components (caused by nested species losses) could provide a unique way to understand the variation of species composition in fragmented habitats. Here, we collected occupancy data of breeding birds and lizards on land-bridge islands in an inundated lake in eastern China. We decomposed beta diversity of breeding bird and lizard communities into spatial turnover and nestedness-resultant components to assess their relative contributions and respective relationships to differences in island area, isolation, and habitat richness. Our results showed that spatial turnover contributed more to beta diversity than the nestedness-resultant component. The degree of isolation had no significant effect on overall beta diversity or its components, neither for breeding birds nor for lizards. In turn, in both groups the nestedness-resultant component increased with larger differences in island area and habitat richness, respectively, while turnover component decreased with them. The major difference among birds and lizards was a higher relevance of nestedness-resultant dissimilarity in lizards, suggesting that they are more prone to local extinctions derived from habitat fragmentation. The dominance of the spatial turnover component of beta diversity suggests that all islands have potential conservation value for breeding bird and lizard communities.

  6. The immiscible cholesterol bilayer domain exists as an integral part of phospholipid bilayer membranes.

    PubMed

    Raguz, Marija; Mainali, Laxman; Widomska, Justyna; Subczynski, Witold K

    2011-04-01

    Electron paramagnetic resonance (EPR) spin-labeling methods were used to study the organization of cholesterol and phospholipids in membranes formed from Chol/POPS (cholesterol/1-palmitoyl-2-oleoyl-sn-glycero-3-phosphatidylserine) mixtures, with mixing ratios from 0 to 3. It was confirmed using the discrimination by oxygen transport and polar relaxation agent accessibility methods that the immiscible cholesterol bilayer domain (CBD) was present in all of the suspensions when the mixing ratio exceeded the cholesterol solubility threshold (CST) in the POPS membrane. The behavior of phospholipid molecules was monitored with phospholipid analogue spin labels (n-PCs), and the behavior of cholesterol was monitored with the cholesterol analogue spin labels CSL and ASL. Results indicated that phospholipid and cholesterol mixtures can form a membrane suspension up to a mixing ratio of ~2. Additionally, EPR spectra for n-PC, ASL, and CSL indicated that both phospholipids and cholesterol exist in these suspensions in the lipid-bilayer-like structures. EPR spectral characteristics of n-PCs (spin labels located in the phospholipid cholesterol bilayer, outside the CBD) change with increase in the cholesterol content up to and beyond the CST. These results present strong evidence that the CBD forms an integral part of the phospholipid bilayer when formed from a Chol/POPS mixture up to a mixing ratio of ~2. Interestingly, CSL in cholesterol alone (without phospholipids) when suspended in buffer does not detect formation of bilayer-like structures. A broad, single-line EPR signal is given, similar to that obtained for the dry film of cholesterol before addition of the buffer. This broad, single-line signal is also observed in suspensions formed for Chol/POPS mixtures (as a background signal) when the Chol/POPS ratio is much greater than 3. It is suggested that the EPR spin-labeling approach can discriminate and characterize the fraction of cholesterol that forms the CBD within the

  7. Analysis of the Phospholipid Profile of Metaphase II Mouse Oocytes Undergoing Vitrification

    PubMed Central

    Bang, Soyoung; Mok, Hyuck Jun; Suh, Chang Suk; Kim, Kwang Pyo; Lim, Hyunjung Jade

    2014-01-01

    Oocyte freezing confers thermal and chemical stress upon the oolemma and various other intracellular structures due to the formation of ice crystals. The lipid profiles of oocytes and embryos are closely associated with both, the degrees of their membrane fluidity, as well as the degree of chilling and freezing injuries that may occur during cryopreservation. In spite of the importance of lipids in the process of cryopreservation, the phospholipid status in oocytes and embryos before and after freezing has not been investigated. In this study, we employed mass spectrometric analysis to examine if vitrification has an effect on the phospholipid profiles of mouse oocytes. Freshly prepared metaphase II mouse oocytes were vitrified using copper grids and stored in liquid nitrogen for 2 weeks. Fresh and vitrified-warmed oocytes were subjected to phospholipid extraction procedure. Mass spectrometric analyses revealed that multiple species of phospholipids are reduced in vitrified-warmed oocytes. LIFT analyses identified 31 underexpressed and 5 overexpressed phospholipids in vitrified mouse oocytes. The intensities of phosphatidylinositol (PI) {18∶2/16∶0} [M−H]− and phosphatidylglycerol (PG) {14∶0/18∶2} [M−H]− were decreased the most with fold changes of 30.5 and 19.1 in negative ion mode, respectively. Several sphingomyelins (SM) including SM {d38∶3} [M+H]+ and SM {d34∶0} [M+K]+ were decreased significantly in positive ion mode. Overall, the declining trend of multiple phospholipids demonstrates that vitrification has a marked effect on phospholipid profiles of oocytes. These results show that the identified phospholipids can be used as potential biomarkers of oocyte undergoing vitrification and will allow for the development of strategies to preserve phospholipids during oocyte cryopreservation. PMID:25033391

  8. Serum Phospholipid Docosahexaenoic Acid Is Inversely Associated with Arterial Stiffness in Metabolically Healthy Men

    PubMed Central

    Lee, Mi-Hyang; Kwon, Nayeon; Yoon, So Ra

    2016-01-01

    We hypothesized that lower proportion of serum phospholipid docosahexaenoic acid (DHA) is inversely associated with increased cardiovascular risk and vascular function in metabolically healthy men. To elucidate it, we first compared serum phospholipid free fatty acid (FA) compositions and cardiovascular risk parameters between healthy men (n = 499) and male patients with coronary artery disease (CAD, n = 111) (30-69 years) without metabolic syndrome, and then further-analyzed the association of serum phospholipid DHA composition with arterial stiffness expressed by brachial-ankle pulse wave velocity (ba-PWV) in metabolically healthy men. Basic parameters, lipid profiles, fasting glycemic status, adiponectin, high sensitivity C-reactive protein (hs-CRP) and LDL particle size, and serum phospholipid FA compositions were significantly different between the two subject groups. Serum phospholipid DHA was highly correlated with most of long-chain FAs. Metabolically healthy men were subdivided into tertile groups according to serum phospholipid DHA proportion: lower (< 2.061%), middle (2.061%-3.235%) and higher (> 3.235%). Fasting glucose, insulin resistance, hs-CRP and ba-PWVs were significantly higher and adiponectin and LDL particle size were significantly lower in the lower-DHA group than the higher-DHA group after adjusted for confounding factors. In metabolically healthy men, multiple stepwise regression analysis revealed that serum phospholipid DHA mainly contributed to arterial stiffness (β′-coefficients = -0.127, p = 0.006) together with age, systolic blood pressure, triglyceride (r = 0.548, p = 0.023). Lower proportion of serum phospholipid DHA was associated with increased cardiovascular risk and arterial stiffness in metabolically healthy men. It suggests that maintaining higher proportion of serum phospholipid DHA may be beneficial for reducing cardiovascular risk including arterial stiffness in metabolically healthy men. PMID:27482523

  9. Cholesterol turnover and metabolism in two patients with abetalipoproteinemia

    SciTech Connect

    Goodman, D.S.; Deckelbaum, R.J.; Palmer, R.H.; Dell, R.B.; Ramakrishnan, R.; Delpre, G.; Beigel, Y.; Cooper, M.

    1983-12-01

    Total body turnover of cholesterol was studied in two patients with abetalipoproteinemia, a 32-year-old man and a 31-year-old woman. The patients received (14C)cholesterol intravenously, and the resulting specific activity-time curves (for 40 and 30 weeks, respectively) were fitted with a three-pool model. Parameters were compared with those from studies of cholesterol turnover in 82 normal and hyperlipidemic subjects. A three-pool model gave the best fit for the abetalipoproteinemic patients, as well as for the 82 previously studied subjects, suggesting general applicability of this model. Cholesterol production rates in the two abetalipoproteinemic subjects (0.82 and 0.89 g/day) were close to values predicted for persons of their body weight. Thus, total body turnover rate of cholesterol was quite normal in abetalipoproteinemia, confirming previous reports. Very low values (9.2 and 8.4 g) were found for M1, the size of the rapidly exchanging compartment pool 1, in the two abetalipoproteinemic subjects. These values were well below the values predicted (from the comparison study population) for normal persons of this size with low plasma cholesterol levels. For one patient, total body exchangeable cholesterol was very low, although not significantly below the predicted values for a person of his size. In the second patient, the observed estimate for total body exchangeable cholesterol was well within the range of values predicted for persons of her size with low to extremely low cholesterol levels.

  10. Computational model of collagen turnover in carotid arteries during hypertension.

    PubMed

    Sáez, P; Peña, E; Tarbell, J M; Martínez, M A

    2015-02-01

    It is well known that biological tissues adapt their properties because of different mechanical and chemical stimuli. The goal of this work is to study the collagen turnover in the arterial tissue of hypertensive patients through a coupled computational mechano-chemical model. Although it has been widely studied experimentally, computational models dealing with the mechano-chemical approach are not. The present approach can be extended easily to study other aspects of bone remodeling or collagen degradation in heart diseases. The model can be divided into three different stages. First, we study the smooth muscle cell synthesis of different biological substances due to over-stretching during hypertension. Next, we study the mass-transport of these substances along the arterial wall. The last step is to compute the turnover of collagen based on the amount of these substances in the arterial wall which interact with each other to modify the turnover rate of collagen. We simulate this process in a finite element model of a real human carotid artery. The final results show the well-known stiffening of the arterial wall due to the increase in the collagen content.

  11. Long-term sensitivity of soil carbon turnover to warming.

    PubMed

    Knorr, W; Prentice, I C; House, J I; Holland, E A

    2005-01-20

    The sensitivity of soil carbon to warming is a major uncertainty in projections of carbon dioxide concentration and climate. Experimental studies overwhelmingly indicate increased soil organic carbon (SOC) decomposition at higher temperatures, resulting in increased carbon dioxide emissions from soils. However, recent findings have been cited as evidence against increased soil carbon emissions in a warmer world. In soil warming experiments, the initially increased carbon dioxide efflux returns to pre-warming rates within one to three years, and apparent carbon pool turnover times are insensitive to temperature. It has already been suggested that the apparent lack of temperature dependence could be an artefact due to neglecting the extreme heterogeneity of soil carbon, but no explicit model has yet been presented that can reconcile all the above findings. Here we present a simple three-pool model that partitions SOC into components with different intrinsic turnover rates. Using this model, we show that the results of all the soil-warming experiments are compatible with long-term temperature sensitivity of SOC turnover: they can be explained by rapid depletion of labile SOC combined with the negligible response of non-labile SOC on experimental timescales. Furthermore, we present evidence that non-labile SOC is more sensitive to temperature than labile SOC, implying that the long-term positive feedback of soil decomposition in a warming world may be even stronger than predicted by global models.

  12. Turnover of human and monkey plasma kininogens in rhesus monkeys.

    PubMed Central

    Yamada, T; Wing, D A; Pierce, J V; Pettit, G W

    1979-01-01

    The normal metabolic turnover of plasma kininogens was studied by measuring the disappearance of intravenously administered radiolabeled human and monkey plasma kininogens from the circulation of healthy adult rhesus monkeys. Curves obtained by plotting log radioactivity against time could be expressed as double exponential equations, with the first term representing diffusion, and the second, catabolism. No significant difference between the turnovers of human and monkey kininogens was observed. The difference between the t1/2 of high molecular weight kininogen (25.95 +/- 1.60 h) (mean +/- SEM) and that of low molecular weight kininogen (18.94 +/- 1.93 h) was only marginally significant (P less than 0.05). In contrast, a highly significant (P less than 0.001) difference in their mean catabolic rates (1.12 +/- 0.08 d-1 for high molecular weight kininogen vs. 2.07 +/- 0.09 d-1 for low molecular weight kininogen) was observed. These differences between the two kininogens were attributed to differences in their distribution between the intra- and extravascular pools. Studies of kininogen turnover will be useful in elucidating the in vivo functions of the various kininogens in health as well as during clinical illness. PMID:105015

  13. No turnover in lens lipids for the entire human lifespan

    PubMed Central

    Hughes, Jessica R; Levchenko, Vladimir A; Blanksby, Stephen J; Mitchell, Todd W; Williams, Alan; Truscott, Roger JW

    2015-01-01

    Lipids are critical to cellular function and it is generally accepted that lipid turnover is rapid and dysregulation in turnover results in disease (Dawidowicz 1987; Phillips et al., 2009; Liu et al., 2013). In this study, we present an intriguing counter-example by demonstrating that in the center of the human ocular lens, there is no lipid turnover in fiber cells during the entire human lifespan. This discovery, combined with prior demonstration of pronounced changes in the lens lipid composition over a lifetime (Hughes et al., 2012), suggests that some lipid classes break down in the body over several decades, whereas others are stable. Such substantial changes in lens cell membranes may play a role in the genesis of age-related eye disorders. Whether long-lived lipids are present in other tissues is not yet known, but this may prove to be important in understanding the development of age-related diseases. DOI: http://dx.doi.org/10.7554/eLife.06003.001 PMID:25760082

  14. Norepinephrine turnover in heart of the copper deficient rat

    SciTech Connect

    Seidel, K.E.; Failla, M.L.; Rosebrough, R. )

    1989-02-01

    Weaned male SD rats were fed a modified AIN-76A diet containing 62% sucrose and either 7 ppm (+Cu) or 0.5 ppm (-Cu) copper for 5 weeks. Dietary copper deprivation resulted in lower concentrations of copper in liver and serum and enlarged hearts. Tissue levels of norepinephrine (NE) and dopamine (DPA) were quantified by HPLC using electrochemical detection. Cardiac concentration of NE and DPA and 26% lower and 63% higher, respectively, in -Cu rats than in +Cu controls. Altered cardiac levels of NE and DPA in -Cu rats were also evident after overnight fasting, a stress that depresses SNS activity. NE turnover was investigated after inhibition of tyrosine hydroxylase by injection of {alpha}-methyl-p-tyrosine methyl ester (250 mg/kg). The fractional rate of NE turnover in the heart was 4.6%/hour for rats fed -Cu and +Cu diets. Calculated NE turnover was greater in heart of +Cu rats than -Cu rats (26 vs. 19 ng/g/hr). NE and DPA concentration in brain, pancreas, and spleen were not affected by dietary copper. These data suggest that synthesis of NE in cardiac nerve endings of the weaned rats sensitive to dietary copper deficiency.

  15. Turnover and dispersal of prairie falcons in southwestern Idaho

    USGS Publications Warehouse

    Lehman, Robert N.; Steenhof, Karen; Carpenter, L.B.; Kochert, Michael N.

    2000-01-01

    We studied Prairie Falcon (Falco mexicanus) breeding dispersal, natal dispersal, and turnover at nesting areas in the Snake River Birds of Prey National Conservation Area (NCA) from 1971- 95. Of 61 nesting areas where falcons identified one year were known to be present or absent the following year, 57% had a different falcon. This turnover rate was 2-3 times higher than that reported elsewhere for large falcons, and may have been related to high nesting densities in the NCA. Turnover at nesting areas was independent of nesting success in the previous year, but was significantly higher for females nesting on large cliffs. Mean distance between natal and breeding locations for 26 falcons banded as nestlings and later encountered as nesting adults was 8.9 km. Natal dispersal distances were similar for males and females, but more than twice as many males marked as nestlings were later encountered nesting in the NCA. Fourteen adult falcons found on different nesting areas in successive years moved an average of 1.5 km between nesting areas; males dispersed significantly farther than females. Natal and breeding dispersal distances in the NCA were lower than those reported for Prairie Falcons in other study areas. Only four falcons banded as nestlings were found outside NCA boundaries during the breeding period, and only one of these birds was known to be occupying a nesting area. We encountered no falcons banded outside the NCA occupying nesting areas in the NCA during this study.

  16. Neuronal glucoprivation enhances hypothalamic histamine turnover in rats.

    PubMed

    Oohara, A; Yoshimatsu, H; Kurokawa, M; Oishi, R; Saeki, K; Sakata, T

    1994-08-01

    Histamine (HA) turnover in the rat hypothalamus following insufficient energy supply due to glucoprivation was examined after administration of insulin or 2-deoxy-D-glucose (2-DG). HA turnover was assessed by accumulation of tele-methylhistamine (t-MH), a major metabolite of brain HA, following administration of pargyline. Intraperitoneal injection of 1, 2, and 4 U/kg of insulin, which had no influence on steady-state levels of HA and t-MH, increased pargyline-induced accumulation of t-MH. Accumulation of t-MH due to pargyline was inversely related to the concomitant plasma glucose concentration after different doses of insulin. The level of t-MH accumulated by pargyline did not change compared with that of controls, when a euglycemic condition was maintained or insulin at a dose of 6 mU per rat was infused into the third cerebroventricle. Intracerebroventricular infusion of 24 mumol per rat of 2-DG, which had no influence on steady-state levels of HA and t-MH, increased the level of t-MH enhanced by pargyline. The results indicate that an increase in hypothalamic HA turnover in response to glucoprivation may be involved in homeostatic regulation of energy metabolism in the brain.

  17. Rapid Skeletal Turnover In A Radiographic Mimic Of Osteopetrosis

    PubMed Central

    Whyte, Michael P.; Madson, Katherine L.; Mumm, Steven; McAlister, William H.; Novack, Deborah V.; Blair, Jo C.; Helliwell, Timothy R.; Stolina, Marina; Abernethy, Laurence J.; Shaw, Nicholas J.

    2015-01-01

    Among the high bone mass disorders, the osteopetroses reflect osteoclast failure that prevents skeletal resorption and turnover leading to reduced bone growth and modeling and characteristic histopathological and radiographic findings. We report an 11-year-old boy with a new syndrome that radiographically mimics osteopetrosis but features rapid skeletal turnover. He presented at age 21 months with a parasellar, osteoclast-rich giant cell granuloma. Radiographs showed a dense skull, generalized osteosclerosis, and cortical thickening, medullary cavity narrowing, and diminished modeling of tubular bones. His serum alkaline phosphatase was > 5,000 IU/L (normal < 850). After partial resection, the granuloma re-grew but then regressed and stabilized during three years of uncomplicated pamidronate treatment. His hyperphosphatasemia transiently diminished but all bone turnover markers, especially those of apposition, remained elevated. Two years after pamidronate therapy stopped, BMD z-scores reached + 9.1 and + 5.8 in the lumbar spine and hip, respectively, and iliac crest histopathology confirmed rapid bone remodeling. Serum multiplex biomarker profiling was striking for low sclerostin. Mutation analysis was negative for activation of LRP4, LRP5, or TGFβ1 and for defective SOST, OPG, RANKL, RANK, SQSTM1, or sFRP1. Microarray showed no notable copy number variation. Studies of his non-consanguineous parents were unremarkable. The etiology and pathogenesis of this unique syndrome are unknown. PMID:24919763

  18. Regulation of endoplasmic reticulum turnover by selective autophagy.

    PubMed

    Khaminets, Aliaksandr; Heinrich, Theresa; Mari, Muriel; Grumati, Paolo; Huebner, Antje K; Akutsu, Masato; Liebmann, Lutz; Stolz, Alexandra; Nietzsche, Sandor; Koch, Nicole; Mauthe, Mario; Katona, Istvan; Qualmann, Britta; Weis, Joachim; Reggiori, Fulvio; Kurth, Ingo; Hübner, Christian A; Dikic, Ivan

    2015-06-18

    The endoplasmic reticulum (ER) is the largest intracellular endomembrane system, enabling protein and lipid synthesis, ion homeostasis, quality control of newly synthesized proteins and organelle communication. Constant ER turnover and modulation is needed to meet different cellular requirements and autophagy has an important role in this process. However, its underlying regulatory mechanisms remain unexplained. Here we show that members of the FAM134 reticulon protein family are ER-resident receptors that bind to autophagy modifiers LC3 and GABARAP, and facilitate ER degradation by autophagy ('ER-phagy'). Downregulation of FAM134B protein in human cells causes an expansion of the ER, while FAM134B overexpression results in ER fragmentation and lysosomal degradation. Mutant FAM134B proteins that cause sensory neuropathy in humans are unable to act as ER-phagy receptors. Consistently, disruption of Fam134b in mice causes expansion of the ER, inhibits ER turnover, sensitizes cells to stress-induced apoptotic cell death and leads to degeneration of sensory neurons. Therefore, selective ER-phagy via FAM134 proteins is indispensable for mammalian cell homeostasis and controls ER morphology and turnover in mice and humans.

  19. New Insights into the Protein Turnover Regulation in Ethylene Biosynthesis.

    PubMed

    Yoon, Gyeong Mee

    2015-07-01

    Biosynthesis of the phytohormone ethylene is under tight regulation to satisfy the need for appropriate levels of ethylene in plants in response to exogenous and endogenous stimuli. The enzyme 1-aminocyclopropane-1-carboxylic acid synthase (ACS), which catalyzes the rate-limiting step of ethylene biosynthesis, plays a central role to regulate ethylene production through changes in ACS gene expression levels and the activity of the enzyme. Together with molecular genetic studies suggesting the roles of post-translational modification of the ACS, newly emerging evidence strongly suggests that the regulation of ACS protein stability is an alternative mechanism that controls ethylene production, in addition to the transcriptional regulation of ACS genes. In this review, recent new insight into the regulation of ACS protein turnover is highlighted, with a special focus on the roles of phosphorylation, ubiquitination, and novel components that regulate the turnover of ACS proteins. The prospect of cross-talk between ethylene biosynthesis and other signaling pathways to control turnover of the ACS protein is also considered.

  20. Investigating the protective properties of milk phospholipids against ultraviolet light exposure in a skin equivalent model

    NASA Astrophysics Data System (ADS)

    Russell, Ashley; Laubscher, Andrea; Jimenez-Flores, Rafael; Laiho, Lily H.

    2010-02-01

    Current research on bioactive molecules in milk has documented health advantages of bovine milk and its components. Milk Phospholipids, selected for this study, represent molecules with great potential benefit in human health and nutrition. In this study we used confocal reflectance and multiphoton microscopy to monitor changes in skin morphology upon skin exposure to ultraviolet light and evaluate the potential of milk phospholipids in preventing photodamage to skin equivalent models. The results suggest that milk phospholipids act upon skin cells in a protective manner against the effect of ultraviolet (UV) radiation. Similar results were obtained from MTT tissue viability assay and histology.

  1. Effect of the nature of phospholipids on the degree of their interaction with isobornylphenol antioxidants

    NASA Astrophysics Data System (ADS)

    Marakulina, K. M.; Kramor, R. V.; Lukanina, Yu. K.; Plashchina, I. G.; Polyakov, A. V.; Fedorova, I. V.; Chukicheva, I. Yu.; Kutchin, A. V.; Shishkina, L. N.

    2016-02-01

    The parameters of complexation between natural phospholipids (lecithin, sphingomyelin, and cephalin) with antioxidants of a new class, isobornylphenols (IBPs), were determined by UV and IR spectroscopy. The self-organization of phospholipids (PLs) was studied depending on the structure of IBPs by dynamic light scattering. The nature of phospholipids and the structure of IBPs was found to produce a substantial effect both on the degree of complexation and on the size of PL aggregates in a nonpolar solvent. Based on the obtained data it was concluded that the structure of biological membranes mainly depends on the complexation of IBP with sphingomyelin.

  2. Relevance, Derogation and Permission

    NASA Astrophysics Data System (ADS)

    Stolpe, Audun

    We show that a recently developed theory of positive permission based on the notion of derogation is hampered by a triviality result that indicates a problem with the underlying full-meet contraction operation. We suggest a solution that presupposes a particular normal form for codes of norms, adapted from the theory of relevance through propositional letter sharing. We then establish a correspondence between contractions on sets of norms in input/output logic (derogations), and AGM-style contractions on sets of formulae, and use it as a bridge to migrate results on propositional relevance from the latter to the former idiom. Changing the concept accordingly we show that positive permission now incorporates a relevance requirement that wards off triviality.

  3. The Limits to Relevance

    NASA Astrophysics Data System (ADS)

    Averill, M.; Briggle, A.

    2006-12-01

    Science policy and knowledge production lately have taken a pragmatic turn. Funding agencies increasingly are requiring scientists to explain the relevance of their work to society. This stems in part from mounting critiques of the "linear model" of knowledge production in which scientists operating according to their own interests or disciplinary standards are presumed to automatically produce knowledge that is of relevance outside of their narrow communities. Many contend that funded scientific research should be linked more directly to societal goals, which implies a shift in the kind of research that will be funded. While both authors support the concept of useful science, we question the exact meaning of "relevance" and the wisdom of allowing it to control research agendas. We hope to contribute to the conversation by thinking more critically about the meaning and limits of the term "relevance" and the trade-offs implicit in a narrow utilitarian approach. The paper will consider which interests tend to be privileged by an emphasis on relevance and address issues such as whose goals ought to be pursued and why, and who gets to decide. We will consider how relevance, narrowly construed, may actually limit the ultimate utility of scientific research. The paper also will reflect on the worthiness of research goals themselves and their relationship to a broader view of what it means to be human and to live in society. Just as there is more to being human than the pragmatic demands of daily life, there is more at issue with knowledge production than finding the most efficient ways to satisfy consumer preferences or fix near-term policy problems. We will conclude by calling for a balanced approach to funding research that addresses society's most pressing needs but also supports innovative research with less immediately apparent application.

  4. Biophysical studies of cholesterol in unsaturated phospholipid model membranes

    NASA Astrophysics Data System (ADS)

    Williams, Justin Adam

    Cellular membranes contain a staggering diversity of lipids. The lipids are heterogeneously distributed to create regions, or domains, whose physical properties differ from the bulk membrane and play an essential role in modulating the function of resident proteins. Many basic questions pertaining to the formation of these lateral assemblies remain. This research employs model membranes of well-defined composition to focus on the potential role of polyunsaturated fatty acids (PUFAs) and their interaction with cholesterol (chol) in restructuring the membrane environment. Omega-3 (n-3) PUFAs are the main bioactive components of fish oil, whose consumption alleviates a variety of health problems by a molecular mechanism that is unclear. We hypothesize that the incorporation of PUFAs into membrane lipids and the effect they have on molecular organization may be, in part, responsible. Chol is a major constituent in the plasma membrane of mammals. It determines the arrangement and collective properties of neighboring lipids, driving the formation of domains via differential affinity for different lipids. The molecular organization of 1-[2H31]palmitoyl-2-eicosapentaenoylphosphatidylcholine (PEPC-d31) and 1-[2H31]palmitoyl-2-docosahexaenoylphosphatidylcholine (PDPC-d31) in membranes with sphingomyelin (SM) and chol (1:1:1 mol) was compared by solid-state 2H NMR spectroscopy. Eicosapentaenoic (EPA) and docosahexaenoic (DHA) acids are the two major n-3 PUFAs found in fish oil, while PEPC-d31 and PDPC-d31 are phospholipids containing the respective PUFAs at the sn-2 position and a perdeuterated palmitic acid at the sn-1 position. Analysis of spectra recorded as a function of temperature indicates that in both cases, formation of PUFA-rich (less ordered) and SM-rich (more ordered) domains occurred. A surprisingly substantial proportion of PUFA was found to infiltrate the more ordered domain. There was almost twice as much DHA (65%) as EPA (30%). The implication is that n-3

  5. 2D dynamical arrest transition in a mixed nanoparticle-phospholipid layer studied in real and momentum spaces

    NASA Astrophysics Data System (ADS)

    Orsi, Davide; Guzmán, Eduardo; Liggieri, Libero; Ravera, Francesca; Ruta, Beatrice; Chushkin, Yuriy; Rimoldi, Tiziano; Cristofolini, Luigi

    2015-12-01

    We investigate the interfacial dynamics of a 2D self-organized mixed layer made of silica nanoparticles interacting with phospholipid (DPPC) monolayers at the air/water interface. This system has biological relevance, allowing investigation of toxicological effects of nanoparticles on model membranes and lung surfactants. It might also provide bio-inspired technological solutions, exploiting the self-organization of DPPC to produce a non-trivial 2D structuration of nanoparticles. The characterization of interfacial dynamics yields information on the effects of NPs on the mechanical properties, important to improve performances of systems such as colloidosomes, foams, creams. For this, we combine micro-tracking in real-space with measurement in momentum-space via x-ray photon-correlation spectroscopy and Digital Fourier Microscopy. Using these complementary techniques, we extend the spatial range of investigation beyond the limits of each one. We find a dynamical transition from Brownian diffusion to an arrested state driven by compression, characterized by intermittent rearrangements, compatible with a repulsive glass phase. The rearrangement and relaxation of the monolayer structure results dramatically hindered by the presence of NPs, which is relevant to explain some the mechanical features observed for the dynamic surface pressure response of these systems and which can be relevant for the respiratory physiology and for future drug-delivery composite systems.

  6. 2D dynamical arrest transition in a mixed nanoparticle-phospholipid layer studied in real and momentum spaces

    PubMed Central

    Orsi, Davide; Guzmán, Eduardo; Liggieri, Libero; Ravera, Francesca; Ruta, Beatrice; Chushkin, Yuriy; Rimoldi, Tiziano; Cristofolini, Luigi

    2015-01-01

    We investigate the interfacial dynamics of a 2D self-organized mixed layer made of silica nanoparticles interacting with phospholipid (DPPC) monolayers at the air/water interface. This system has biological relevance, allowing investigation of toxicological effects of nanoparticles on model membranes and lung surfactants. It might also provide bio-inspired technological solutions, exploiting the self-organization of DPPC to produce a non-trivial 2D structuration of nanoparticles. The characterization of interfacial dynamics yields information on the effects of NPs on the mechanical properties, important to improve performances of systems such as colloidosomes, foams, creams. For this, we combine micro-tracking in real-space with measurement in momentum-space via x-ray photon-correlation spectroscopy and Digital Fourier Microscopy. Using these complementary techniques, we extend the spatial range of investigation beyond the limits of each one. We find a dynamical transition from Brownian diffusion to an arrested state driven by compression, characterized by intermittent rearrangements, compatible with a repulsive glass phase. The rearrangement and relaxation of the monolayer structure results dramatically hindered by the presence of NPs, which is relevant to explain some the mechanical features observed for the dynamic surface pressure response of these systems and which can be relevant for the respiratory physiology and for future drug-delivery composite systems. PMID:26658474

  7. The Relevance of Literature.

    ERIC Educational Resources Information Center

    Dunham, L. L.

    1971-01-01

    The "legacy" of the humanities is discussed in terms of relevance, involvement, and other philosophical considerations. Reasons for studying foreign literature in language classes are developed in the article. Comment is also made on attitudes and ideas culled from the writings of Clifton Fadiman, Jean Paul Sartre, and James Baldwin. (RL)

  8. Is Information Still Relevant?

    ERIC Educational Resources Information Center

    Ma, Lia

    2013-01-01

    Introduction: The term "information" in information science does not share the characteristics of those of a nomenclature: it does not bear a generally accepted definition and it does not serve as the bases and assumptions for research studies. As the data deluge has arrived, is the concept of information still relevant for information…

  9. Reading, Writing and Relevance.

    ERIC Educational Resources Information Center

    Hoffman, Mary

    This monograph presents classroom activities that were designed to encourage children to read and write in a self-reliant and responsible manner. The activities were chosen for their relevance to the children involved and because the vocabulary involved was interesting, familiar, and worth remembering and using again. The topics are arranged in…

  10. Muscle Protein Turnover and the Molecular Regulation of Muscle Mass during Hypoxia.

    PubMed

    Pasiakos, Stefan M; Berryman, Claire E; Carrigan, Christopher T; Young, Andrew J; Carbone, John W

    2017-02-04

    Effects of environmental hypoxia on fat-free mass are well studied. Negative energy balance, increased nitrogen excretion and fat-free mass loss are commonly observed in lowlanders sojourning at high altitude. Reductions in fat-free mass can be minimized if energy consumption matches energy expenditure. However, in non-research settings, achieving energy balance during high altitude sojourns is unlikely and myofibrillar protein mass is usually lost, but the mechanisms accounting for the loss of muscle mass are not clear. At sea level, negative energy balance reduces basal and blunts postprandial muscle protein synthesis, with no relevant change in muscle protein breakdown. Downregulations in muscle protein synthesis and loss of fat-free mass during energy deficit at sea level are largely overcome by consuming at least twice the recommended dietary allowance for protein. Hypoxia may increase or not affect resting muscle protein synthesis, blunt post-exercise muscle protein synthesis, and markedly increase proteolysis independent of energy status. Hypoxia-induced mTORC1 dysregulation and an upregulation in calpains- and ubiquitin proteasome-mediated proteolysis may drive catabolism in lowlanders sojourning at high altitude. However, the combined effects of energy deficit, exercise and dietary protein manipulations on the regulation of muscle protein turnover have never been studied at high altitude. This article reviews the available literature related to the effects of high altitude on fat-free mass, highlighting contemporary studies that assessed the influence of altitude exposure (or hypoxia) on muscle protein turnover and intramuscular regulation of muscle mass. Knowledge gaps are addressed and studies to identify effective and feasible countermeasures to hypoxia-induced muscle loss are discussed.

  11. Alteration of membrane phospholipid methylation by adenosine analogs does not affect T lymphocyte activation

    SciTech Connect

    Gormand, F.; Pacheco, Y. ); Fonlupt, P. ); Revillard, J.P. )

    1990-01-01

    Membrane phospholipid methylation has been described during activation of various immune cells. Moreover recent data indicated modulation of immune cells functions by adenosine. As S-adenosyl-methionine and S-adenosyl-homocysteine are adenosine analogs and modulators of transmethylation reactions, the effects of SAH and SAM were investigated on membrane phospholipid methylation and lymphocyte activation. SAM was shown to induce the membrane phospholipid methylation as assessed by the {sup 3}Hmethyl-incorporation in membrane extract. This effect was inhibited by SAH. In contrast SAM and SAH did not affect the phytohemagglutinin-induced proliferative response of peripheral blood mononuclear cells. SAH neither modified the early internalization of membrane CD3 antigens nor did it prevent the late expression of HLA-DR antigens on lymphocytes activated by phytohemagglutinin. These results indicate that in vitro alteration of phospholipid methylation does not affect subsequent steps of human T lymphocyte activation and proliferation.

  12. Forty five years with membrane phospholipids, phospholipases and lipid mediators: A historical perspective.

    PubMed

    Chap, Hugues

    2016-06-01

    Phospholipases play a key role in the metabolism of phospholipids and in cell signaling. They are also a very useful tool to explore phospholipid structure and metabolism as well as membrane organization. They are at the center of this review, covering a period starting in 1971 and focused on a number of subjects in which my colleagues and I have been involved. Those include determination of phospholipid asymmetry in the blood platelet membrane, biosynthesis of lysophosphatidic acid, biochemistry of platelet-activating factor, first attempts to define the role of phosphoinositides in cell signaling, and identification of novel digestive (phospho)lipases such as pancreatic lipase-related protein 2 (PLRP2) or phospholipase B. Besides recalling some of our contributions to those various fields, this review makes an appraisal of the impressive and often unexpected evolution of those various aspects of membrane phospholipids and lipid mediators. It is also the occasion to propose some new working hypotheses.

  13. Effect of chlorphentermine on incorporation of (/sup 14/C)choline in the rat lung phospholipids

    SciTech Connect

    Gonmori, K.; Morita, T.; Mehendale, H.M.

    1986-03-01

    The effect of chlorphentermine (CP) treatment (50 mg/kg/day, per os (po)) on the incorporation of (/sup 14/C)choline into rat lung phospholipid was studied. Total phospholipid content was increased 2.0-fold and 1.7-fold after seven and /sup 14/ days, respectively, compared with the pair-fed rats. The incorporation of (14C)choline into phosphatidylcholine (PC) was significantly inhibited by either seven or 14 days of CP treatment. Nevertheless, the PC content was significantly increased by day 7 and stayed elevated at day 14 of CP treatment. Choline and phosphorylcholine contents were significantly decreased by the CP treatment. These results suggest that the higher accumulation of PC is due to inhibition of enzymes involved in the hydrolysis of phospholipids rather than to a stimulation of the phospholipid synthesis.

  14. INHIBITION BY PHOSPHOLIPIDS OF THE ACTION OF SYNTHETIC DETERGENTS ON BACTERIA.

    PubMed

    Baker, Z; Harrison, R W; Miller, B F

    1941-11-30

    1. Lecithin, cephalin, and sphingomyelin prevent the inhibition of bacterial metabolism which is caused by synthetic anionic and cationic detergents. The phospholipids must be added either before or simultaneously with the detergent. Addition after the detergent is without effect. Bacteria still exhibit this phenomenon after they have been exposed to the phospholipid and thoroughly washed. 2. A similar action of the phospholipids has been demonstrated towards the bactericidal compounds isolated by Dubos and Hoogerheide from soil bacteria. There is very little effect with bactericidal mercury compounds. 3. The effect of lecithin against the bactericidal action of synthetic detergents was also determined. It was found that germicidal quantities of the detergents were not effective in the presence of the phospholipids.

  15. Spatial and environmental correlates of species richness and turnover patterns in European cryptocephaline and chrysomeline beetles

    PubMed Central

    Freijeiro, Andrea; Baselga, Andrés

    2016-01-01

    Abstract Despite some general concordant patterns (i.e. the latitudinal richness gradient), species richness and composition of different European beetle taxa varies in different ways according to their dispersal and ecological traits. Here, the patterns of variation in species richness, composition and spatial turnover are analysed in European cryptocephaline and chrysomeline leaf beetles, assessing their environmental and spatial correlates. The underlying rationale to use environmental and spatial variables of diversity patterns is to assess the relative support for niche- and dispersal-driven hypotheses. Our results show that despite a broad congruence in the factors correlated with cryptocephaline and chrysomeline richness, environmental variables (particularly temperature) were more relevant in cryptocephalines, whereas spatial variables were more relevant in chrysomelines (that showed a significant longitudinal gradient besides the latitudinal one), in line with the higher proportion of flightless species within chrysomelines. The variation in species composition was also related to environmental and spatial factors, but this pattern was better predicted by spatial variables in both groups, suggesting that species composition is more linked to dispersal and historical contingencies than species richness, which would be more controlled by environmental limitations. Among historical factors, Pleistocene glaciations appear as the most plausible explanation for the steeper decay in assemblage similarity with spatial distance, both in cryptocephalines and chrysomelines. PMID:27408587

  16. Spatial and environmental correlates of species richness and turnover patterns in European cryptocephaline and chrysomeline beetles.

    PubMed

    Freijeiro, Andrea; Baselga, Andrés

    2016-01-01

    Despite some general concordant patterns (i.e. the latitudinal richness gradient), species richness and composition of different European beetle taxa varies in different ways according to their dispersal and ecological traits. Here, the patterns of variation in species richness, composition and spatial turnover are analysed in European cryptocephaline and chrysomeline leaf beetles, assessing their environmental and spatial correlates. The underlying rationale to use environmental and spatial variables of diversity patterns is to assess the relative support for niche- and dispersal-driven hypotheses. Our results show that despite a broad congruence in the factors correlated with cryptocephaline and chrysomeline richness, environmental variables (particularly temperature) were more relevant in cryptocephalines, whereas spatial variables were more relevant in chrysomelines (that showed a significant longitudinal gradient besides the latitudinal one), in line with the higher proportion of flightless species within chrysomelines. The variation in species composition was also related to environmental and spatial factors, but this pattern was better predicted by spatial variables in both groups, suggesting that species composition is more linked to dispersal and historical contingencies than species richness, which would be more controlled by environmental limitations. Among historical factors, Pleistocene glaciations appear as the most plausible explanation for the steeper decay in assemblage similarity with spatial distance, both in cryptocephalines and chrysomelines.

  17. Standardization of immunoassays for antiphospholipid antibodies with beta 2GPI and role of other phospholipid cofactors.

    PubMed

    Amiral, J; Larrivaz, I; Cluzeau, D; Adam, M

    1994-01-01

    Presence of beta 2 Glycoprotein I (beta 2GPI), in addition to phospholipids, is an absolute requirement for binding APA. This binding is frequently observed with beta 2GPI coated alone, however many APA react only with beta 2GPI complexed to phospholipids, but not with phospholipids alone. We demonstrate that a subgroup of rabbit polyclonal antibodies to human beta 2GPI binds to this protein only when it is coated on a solid surface, but not if it is in solution. In addition, beta 2GPI present in goat serum is strongly fixed by the coated phospholipids and the complexes formed bind as well APA as the rabbit antibodies to beta 2GPI. The diluent used for testing APA, has a strong incidence on APA's reactivity as it can be a source of beta 2GPI. Antibody binding to beta 2GPI, Prothrombin, Protein S, and Annexin V, coated in the presence or in the absence of phospholipids, was tested in 55 patients with the antiphospholipid syndrome. The strongest binding of antibodies was observed in 39 plasma to a mixture of phospholipids and purified human beta 2GPI, however 17 samples also presented a significant reactivity to beta 2GPI alone. Nine plasmas contained antibodies to Prothrombin, 4 to Protein S, 3 to Annexin V, and 1 to Protein C. We conclude that most of the APA are directed to a complex of beta 2GPI and phospholipids although in some patients antibodies to beta 2GPI alone or to other phospholipid binding proteins are present.

  18. Toxin-Induced Activation of Rat Hepatocyte Prostaglandin Synthesis and Phospholipid Metabolism

    DTIC Science & Technology

    1989-12-22

    SUBJECT TERMS (Continue on reverse if necesay and identify by block number) FIELD GROUP SUB-GROUP - microcystin -LR, arachidonic acid, phospholipid...pool was reduced to 47% (p ɘ.025) by l’ 3’ microcystin -LR. Changes in phospholipid classes indicated that prostaglandin formation induced by microcystin ... microcystin -LR has important effects on the regulation of inflammatory mediator synthesis in hepatocytes. 7.,1 ,- TOXIN-INDUCED ACTIVATION OF RAT HEPATOCYTE

  19. Further studies on the reconstitution of glucosylceramidase activity by Sap C and anionic phospholipids.

    PubMed

    Salvioli, R; Tatti, M; Ciaffoni, F; Vaccaro, A M

    2000-04-21

    The reconstitution of the activity of the lysosomal enzyme glucosylceramidase requires anionic phospholipids and, at least, a protein factor, saposin C (Sap C). We have previously proposed a mechanism for the glucosylceramidase activation [Vaccaro et al. (1993) FEBS Lett. 336, 159-162] which implies that Sap C promotes the association of the enzyme with anionic phospholipid-containing membranes, thus favoring the contact between the enzyme and its lipid substrate, glucosylceramide. We have further investigated the properties of Sap C using a fluorescent hydrophobic probe such as 4, 4'-dianilino-1,1'-binaphthyl-5,5'-disulfonic acid (bis-ANS). The binding between bis-ANS and Sap C was pH-dependent, indicating that protonation leads to increased exposure of hydrophobic surfaces of Sap C. The interaction of Sap C with membranes, triggered by the development of hydrophobic properties at low pH values, was affected by the content of anionic phospholipids, such as phosphatidylserine or phosphatidylinositol, suggesting that anionic phospholipids have the potential to modulate the insertion of Sap C in the hydrophobic environment of lysosomal membranes. We previously showed that Sap C and anionic phospholipids are both required for the binding of glucosylceramidase to large vesicles. We have presently observed that Sap C is able to promote the association of glucosylceramidase with the lipid surface only when anionic phospholipids exceed a concentration of 5-10%. This level can be reached by summing lower amounts of individual anionic phospholipids, since they have additive effects. The present data extend and refine our model of the mechanism of glucosylceramidase activation and stress the key role of pH, Sap C and anionic phospholipids in promoting the interaction of the enzyme with membranes.

  20. [Comparative analysis of phospholipid composition in erythrocytes of mouse-like rodents of different species].

    PubMed

    Shevchenko, O G; Shishkina, L N

    2011-01-01

    Comparative analysis of phospholipid quantitative composition of blood erythrocytes has been performed in white (laboratory mice and rats) and wild (tundra voles) mouse-like rodents. A non-characteristic of mammals low relative content of sphingomyelin is revealed in erythrocyte phospholipids in tundra voles. A hypothesis is put forward that the unique composition of erythrocyte lipids is a peculiar evolutionary developed strategy of adaptation aimed at survival under condition of constant circulation of agents of leptospirosis in populations of this species.

  1. Collision-induced dissociation of glycero phospholipids using electrospray ion-trap mass spectrometry.

    PubMed

    Larsen, A; Uran, S; Jacobsen, P B; Skotland, T

    2001-01-01

    Characterisation of phospholipids was achieved using collision-induced dissociation (CID) with an ion-trap mass spectrometer. The product ions were compared with those obtained with a triple quadrupole mass spectrometer. In the negative ion mode the product ions were mainly sn-1 and sn-2 lyso-phospholipids with neutral loss of ketene in combination with neutral loss of the polar head group. Less abundant product ions were sn-1 and sn-2 carboxylate anions. CID using a triple quadrupole mass spectrometer, however, gave primarily the sn-1 and sn-2 carboxylate anions together with lyso-phosphatidic acid with neutral loss of water. For the ion trap a charge-remote-type mechanism is proposed for formation of the lyso-phospholipid product ions by loss of alpha-hydrogen on the fatty acid moiety, electron rearrangement and neutral loss of ketene. A second mechanism involves nucleophilic attack of the phosphate oxygen on the sn-1 and sn-2 glycerol backbone to form carboxylate anions with neutral loss of cyclo lyso-phospholipids. CID (MS(3) and MS(4)) of the lyso-phospholipids using the ion-trap gave the same carboxylate anions as those obtained with a triple quadrupole instrument where multiple collisions in the collision cell are expected to occur. The data demonstrate that phospholipid species determination can be performed by using LC/MS(n) with an ion-trap mass spectrometer with detection of the lyso-phospholipid anions. The ion-trap showed no loss in sensitivity in full scan MS(n) compared to multiple reaction monitoring data acquisition. In combination with on-line liquid chromatography this feature makes the ion-trap useful in the scanning modes for rapid screening of low concentrations of phospholipid species in biological samples as recently described (Uran S, Larsen A, Jacobsen PB, Skotland T. J. Chromatogr. B 2001; 758: 265).

  2. Visualization and analysis of lipopolysaccharide distribution in binary phospholipid bilayers

    SciTech Connect

    Henning, Maria Florencia; Sanchez, Susana; Bakas, Laura

    2009-05-22

    Lipopolysaccharide (LPS) is an endotoxin released from the outer membrane of Gram-negative bacteria during infections. It have been reported that LPS may play a role in the outer membrane of bacteria similar to that of cholesterol in eukaryotic plasma membranes. In this article we compare the effect of introducing LPS or cholesterol in liposomes made of dipalmitoylphosphatidylcholine/dioleoylphosphatidylcholine on the solubilization process by Triton X-100. The results show that liposomes containing LPS or cholesterol are more resistant to solubilization by Triton X-100 than the binary phospholipid mixtures at 4 {sup o}C. The LPS distribution was analyzed on GUVs of DPPC:DOPC using FITC-LPS. Solid and liquid-crystalline domains were visualized labeling the GUVs with LAURDAN and GP images were acquired using a two-photon microscope. The images show a selective distribution of LPS in gel domains. Our results support the hypothesis that LPS could aggregate and concentrate selectively in biological membranes providing a mechanism to bring together several components of the LPS-sensing machinery.

  3. Lysophosphatidic acid synthesis and phospholipid metabolism in rat mast cells

    SciTech Connect

    Fagan, D.L.

    1986-01-01

    The role of lysophosphatidic acid in mast cell response to antigen was investigated using an isolated rat serosal mast cell model. The cells were incubated with monoclonal murine immunoglobulin E to the dinitrophenyl hapten and prelabeled with /sup 32/P-orthophosphate or /sup 3/H-fatty acids. Lysophosphatidic acid was isolated form cell extracts by 2-dimensional thin-layer chromatography, and the incorporated radioactivity was assessed by liquid scintillation counting. Lysophosphatidic acid labeling with /sup 32/P was increased 2-4 fold within 5 minutes after the addition of antigen or three other mast cell agonists. Functional group analyses unequivocally showed that the labeled compound was lysophosphatidic acid. Lysophosphatidic acid synthesis was dependent on the activity of diacylglycerol lipase, suggesting formation from monoacylglycerol. In addition, the studies of lysophosphatidic acid synthesis suggest that the addition of antigen to mast cells may initiate more than one route of phospholipid degradation and resynthesis. Whatever the origin of lysophosphatidic acid, the results of this study demonstrated that lysophosphatidic acid synthesis is stimulated by a variety of mast cell agonists. Dose-response, kinetic, and pharmacologic studies showed close concordance between histamine release and lysophosphatidic acid labeling responses. These observations provide strong evidence that lysophosphatidic acid plays an important role in mast cell activation.

  4. Phospholipid scramblase 1 amplifies anaphylactic reactions in vivo.

    PubMed

    Kassas-Guediri, Asma; Coudrat, Julie; Pacreau, Emeline; Launay, Pierre; Monteiro, Renato C; Blank, Ulrich; Charles, Nicolas; Benhamou, Marc

    2017-01-01

    Mast cells are critical actors of hypersensitivity type I (allergic) reactions by the release of vasoactive and proinflammatory mediators following their activation by aggregation of the high-affinity receptor for immunoglobulin E (FcεRI). We have previously identified Phospholipid Scramblase 1 (PLSCR1) as a new molecular intermediate of FcεRI signaling that amplifies degranulation of the rat mast cell line RBL-2H3. Here we characterized primary mast cells from Plscr1-/- mice. The absence of PLSCR1 expression did not impact mast cell differentiation as evidenced by unaltered FcεRI expression, general morphology, amount of histamine stored and expression of FcεRI signal effector molecules. No detectable mast cell deficiency was observed in Plscr1-/- adult mice. In dose-response and time-course experiments, primary cultures of mast cells (bone marrow-derived mast cells and peritoneal cell-derived mast cells) generated from Plscr1-/- mice exhibited a reduced release of β-hexosaminidase upon FcεRI engagement as compared to their wild-type counterparts. In vivo, Plscr1-/- mice were protected in a model of passive systemic anaphylaxis when compared to wild-type mice, which was consistent with an observed decrease in the amounts of histamine released in the serum of Plscr1-/- mice during the reaction. Therefore, PLSCR1 aggravates anaphylactic reactions by increasing FcεRI-dependent mast cell degranulation. PLSCR1 could be a new therapeutic target in allergy.

  5. Fluorescently labeled pulmonary surfactant protein C in spread phospholipid monolayers.

    PubMed Central

    Nag, K; Perez-Gil, J; Cruz, A; Keough, K M

    1996-01-01

    Pulmonary surfactant, a lipid-protein complex, secreted into the fluid lining of lungs prevents alveolar collapse at low lung volumes. Pulmonary surfactant protein C (SP-C), an acylated, hydrophobic, alpha-helical peptide, enhances the surface activity of pulmonary surfactant lipids. Fluorescein-labeled SP-C (F-SP-C) (3, 6, 12 wt%) in dipalmitoylphosphatidylcholine (DPPC), and DPPC:dipalmitoylphosphatidylglycerol (DPPG) [DPPC:DPPG 7:3 mol/mol] in spread monolayers was studied by epifluorescence microscopy. Mass spectometry of F-SP-C indicated that the protein is partially deacylated and labeled with 1 mol fluorescein/1 mol protein. The protein partitioned into the fluid, or liquid expanded, phase. Increasing amounts of F-SP-C in DPPC or DPPC:DPPG monolayers decreased the size and total amounts of the condensed phase at all surface pressures. Calcium (1.6 mM) increased the amount of the condensed phase in monolayers of DPPC:DPPG but not of DPPC alone, and such monolayers were also perturbed by F-SP-C. The study indicates that SP-C perturbs the packing of neutral and anionic phospholipid monolayers even when the latter systems are condensed by calcium, indicating that interactions between SP-C and the lipids are predominantly hydrophobic in nature. Images FIGURE 2 FIGURE 4 FIGURE 7 PMID:8804608

  6. In vivo phospholipid biosynthesis in cotton cotyledons during glyoxysome enlargement

    SciTech Connect

    Chapman, K.D.; Trelease, R.N. )

    1990-05-01

    The surface are of cottonseed glyoxysomes increases about 4 fold within 36 h after imbibition. Membrane phospholipid must become available to glyoxysomes to accommodate expansion. Incubation of cotyledons (18-h-old) in 14C-choline (1 h) resulted in at least 85% recovery of 14C-phosphatidylcholine (PC) in membranes comigrating on sucrose gradients (20-59% w/w) with antimycin A-insensitive cytochrome c reductase (CCR) activity and choline- and ethanolaminephosphotransferase (CPT and EPT) activities (ER at about 24% w/w sucrose). Chase experiments with 3.4 M choline chloride for 2, 12, or 24 h led to increasing proportions of 14C-PC (36% after 24 h) recovery in mitochondria. No transfer of 14C-PC to enlarging glyoxysomes was detected. Incubations in 14C-ethanolamine yielded ER labeling after only 30 min. 14C-PE chased into mitochondria membranes more rapidly than PC (45% after 12 h), and no 14C-PE chased into glyoxysome membranes. Evidence for synthesis of 14C-PC from 14C-PE was found after 12 h chase with 1 M ethanolamine hydrochloride. Our results indicate that ER is the primary site of PC and PE synthesis in vivo and that ER contributes newly synthesized PC and PE to mitochondrial membranes but not to expanding glyoxysomal membranes. This is different from membrane biogenesis of glyoxysomes proliferating in castor bean endosperm.

  7. X-ray insight into cholesterol-phospholipid interactions

    NASA Astrophysics Data System (ADS)

    Gidalevitz, David

    2009-03-01

    The mechanism of nonideal cholesterol-lipids mixing yet remains controversial. We report on a systematic study of cholesterol-phospholipid interactions in lipid monolayers using Langmuir isotherms, synchrotron X-ray reflectivity (XR), and grazing-incidence X-ray diffraction (GIXD) techniques. Lipid monolayers consisted of cholesterol-DPPC mixtures with cholesterol mole fractions χCHOL varying from 0 to 1. GIXD reveals that at both χCHOL and χDPPC above .85 mixed films exhibit packing order of a prevalent lipid. In between, cholesterol seizes places in DPPC crystalline lattice at the stoichiometry similar as that of the mixture inducing short-range regular-hexagonal packing order with increasing spacing between molecules as a function of cholesterol content. XR shows that cholesterol tends to stay in DPPC acyl chains at low χCHOL while gradually descending to a subphase at higher χCHOL accompanied by rearrangement of DPPC headgroups. Thus, a desire of highly nonpolar cholesterol to avoid contacts with polar water molecules and/or DPPC headgroups defines a mode of cholesterol-lipid interactions.

  8. Probing Lipid Membrane Rafts (Microdomains) with Fluorescent Phospholipids

    NASA Astrophysics Data System (ADS)

    Gu, Yongwen; Mitchel, Drake

    2011-10-01

    Membrane rafts are enriched in sphingolipids and cholesterol, they exist in a more ordered state (the liquid-ordered phase; lo) than the bulk membrane (the liquid-disordered phase; ld). Ternary mixtures of palmitoyl-oleoyl-phosphocholine (POPC; 16:0,18:1 PC), sphingomyelin (SPM), and cholesterol (Chol) form membrane rafts over a wide range of molar ratios. We are examining the ability of two fluorescent probes, NBD linked to di-16:0 PE which partitions into the lo phase, and NBD linked to di-18:1 PE which partitions into the ld phase, to detect these two phases. We are also examining the effect of the highly polyunsaturated phospholipid stearoyl-docosahexanoyl-phosphocholine (SDPC; 18:0, 22:6 PC) on the size and stability of POPC/SPM/Chol membrane rafts. We report on the fluorescence lifetime and anisotropy decay dynamics of two fluorescent probes. Data were acquired via frequency-domain measurements from 5 to 250 MHz.

  9. Isolation and Analysis of Phospholipids in Dairy Foods.

    PubMed

    Pimentel, Lígia; Gomes, Ana; Pintado, Manuela; Rodríguez-Alcalá, Luis Miguel

    2016-01-01

    The lipid fraction of milk is one of the most complex matrixes in foodstuffs due to the presence of a high number of moieties with different physical and chemical properties. Glycerolipids include glycerol and two fatty acids esterified in positions sn-1 and sn-2 with higher concentration of unsaturated fatty acids than in the triglyceride fraction of milk. Sphingolipids consist of a sphingoid base linked to a fatty acid across an amide bond. Their amphiphilic nature makes them suitable to be added into a variety of foods and recent investigations show that phospholipids, mainly phosphatidylserine and sphingomyelin, can exert antimicrobial, antiviral, and anticancer activities as well as positive effects in Alzheimer's disease, stress, and memory decline. Polar lipids can be found as natural constituents in the membranes of all living organisms with soybean and eggs as the principal industrial sources, yet they have low contents in phosphatidylserine and sphingomyelin. Animal products are rich sources of these compounds but since there are legal restrictions to avoid transmission of prions, milk and dairy products are gaining interest as alternative sources. This review summarizes the analysis of polar lipids in dairy products including sample preparation (extraction and fractionation/isolation) and analysis by GC or HPLC and the latest research works using ELSD, CAD, and MS detectors.

  10. Entrapment in phospholipid vesicles quenches photoactivity of quantum dots

    PubMed Central

    Generalov, Roman; Kavaliauskiene, Simona; Westrøm, Sara; Chen, Wei; Kristensen, Solveig; Juzenas, Petras

    2011-01-01

    Quantum dots have emerged with great promise for biological applications as fluorescent markers for immunostaining, labels for intracellular trafficking, and photosensitizers for photodynamic therapy. However, upon entry into a cell, quantum dots are trapped and their fluorescence is quenched in endocytic vesicles such as endosomes and lysosomes. In this study, the photophysical properties of quantum dots were investigated in liposomes as an in vitro vesicle model. Entrapment of quantum dots in liposomes decreases their fluorescence lifetime and intensity. Generation of free radicals by liposomal quantum dots is inhibited compared to that of free quantum dots. Nevertheless, quantum dot fluorescence lifetime and intensity increases due to photolysis of liposomes during irradiation. In addition, protein adsorption on the quantum dot surface and the acidic environment of vesicles also lead to quenching of quantum dot fluorescence, which reappears during irradiation. In conclusion, the in vitro model of phospholipid vesicles has demonstrated that those quantum dots that are fated to be entrapped in endocytic vesicles lose their fluorescence and ability to act as photosensitizers. PMID:21931483

  11. Entrapment in phospholipid vesicles quenches photoactivity of quantum dots.

    PubMed

    Generalov, Roman; Kavaliauskiene, Simona; Westrøm, Sara; Chen, Wei; Kristensen, Solveig; Juzenas, Petras

    2011-01-01

    Quantum dots have emerged with great promise for biological applications as fluorescent markers for immunostaining, labels for intracellular trafficking, and photosensitizers for photodynamic therapy. However, upon entry into a cell, quantum dots are trapped and their fluorescence is quenched in endocytic vesicles such as endosomes and lysosomes. In this study, the photophysical properties of quantum dots were investigated in liposomes as an in vitro vesicle model. Entrapment of quantum dots in liposomes decreases their fluorescence lifetime and intensity. Generation of free radicals by liposomal quantum dots is inhibited compared to that of free quantum dots. Nevertheless, quantum dot fluorescence lifetime and intensity increases due to photolysis of liposomes during irradiation. In addition, protein adsorption on the quantum dot surface and the acidic environment of vesicles also lead to quenching of quantum dot fluorescence, which reappears during irradiation. In conclusion, the in vitro model of phospholipid vesicles has demonstrated that those quantum dots that are fated to be entrapped in endocytic vesicles lose their fluorescence and ability to act as photosensitizers.

  12. Phospholipid scramblase 1 amplifies anaphylactic reactions in vivo

    PubMed Central

    Kassas-Guediri, Asma; Coudrat, Julie; Pacreau, Emeline; Launay, Pierre; Monteiro, Renato C.; Blank, Ulrich; Charles, Nicolas; Benhamou, Marc

    2017-01-01

    Mast cells are critical actors of hypersensitivity type I (allergic) reactions by the release of vasoactive and proinflammatory mediators following their activation by aggregation of the high-affinity receptor for immunoglobulin E (FcεRI). We have previously identified Phospholipid Scramblase 1 (PLSCR1) as a new molecular intermediate of FcεRI signaling that amplifies degranulation of the rat mast cell line RBL-2H3. Here we characterized primary mast cells from Plscr1-/- mice. The absence of PLSCR1 expression did not impact mast cell differentiation as evidenced by unaltered FcεRI expression, general morphology, amount of histamine stored and expression of FcεRI signal effector molecules. No detectable mast cell deficiency was observed in Plscr1-/- adult mice. In dose-response and time-course experiments, primary cultures of mast cells (bone marrow-derived mast cells and peritoneal cell-derived mast cells) generated from Plscr1-/- mice exhibited a reduced release of β-hexosaminidase upon FcεRI engagement as compared to their wild-type counterparts. In vivo, Plscr1-/- mice were protected in a model of passive systemic anaphylaxis when compared to wild-type mice, which was consistent with an observed decrease in the amounts of histamine released in the serum of Plscr1-/- mice during the reaction. Therefore, PLSCR1 aggravates anaphylactic reactions by increasing FcεRI-dependent mast cell degranulation. PLSCR1 could be a new therapeutic target in allergy. PMID:28282470

  13. Agonist-stimulated alveolar macrophages: apoptosis and phospholipid signaling.

    PubMed

    Lütjohann, J; Spiess, A N; Gercken, G

    1998-08-01

    Bovine alveolar macrophages (BAM) were labeled with [3H]-choline or [3H]-ethanolamine and exposed to quartz dust, metal oxide-coated silica particles, Escherichia coli-derived lipopolysaccharide (LPS) or tumor promotor 12-O-tetradecanoyl phorbol 13-acetate (PMA). The activation of phospholipases A2, C and D (PLA2, PLC and PLD) acting on phosphatidylcholine and phosphatidylethanolamine was determined by high performance liquid chromatography (HPLC) separation and liquid scintillation counting of water- and lipid-soluble phospholipid metabolites. Exposure of BAM to quartz dust, metal oxide-coated silica particles, and LPS led to a transient PLD activation while treatment with PMA caused a prolonged rise in PLD activity. LPS and quartz dust induced a short-term increase of PLC cleavage products. All agonists caused a transient activation of PLA2. To induce apoptosis, BAM were stimulated with C8-ceramide, calcium-ionophore 23187, or gliotoxin. Apoptosis was investigated by qualitative and quantitative methods like flow cytometry, propidium iodide/Hoechst 33258 double staining, Cell Death Detection ELISA, and electrophoretical detection of DNA fragmentation. All three agonists led to apoptosis of BAM in a time- and concentration-dependent manner. After stimulation with gliotoxin an increase in ceramide and a drastic decrease in sphingosine-1-phosphate levels were observed, suggesting an involvement of these sphingolipids in gliotoxin-mediated apoptosis.

  14. Isolation and Analysis of Phospholipids in Dairy Foods

    PubMed Central

    Pimentel, Lígia; Gomes, Ana; Pintado, Manuela

    2016-01-01

    The lipid fraction of milk is one of the most complex matrixes in foodstuffs due to the presence of a high number of moieties with different physical and chemical properties. Glycerolipids include glycerol and two fatty acids esterified in positions sn-1 and sn-2 with higher concentration of unsaturated fatty acids than in the triglyceride fraction of milk. Sphingolipids consist of a sphingoid base linked to a fatty acid across an amide bond. Their amphiphilic nature makes them suitable to be added into a variety of foods and recent investigations show that phospholipids, mainly phosphatidylserine and sphingomyelin, can exert antimicrobial, antiviral, and anticancer activities as well as positive effects in Alzheimer's disease, stress, and memory decline. Polar lipids can be found as natural constituents in the membranes of all living organisms with soybean and eggs as the principal industrial sources, yet they have low contents in phosphatidylserine and sphingomyelin. Animal products are rich sources of these compounds but since there are legal restrictions to avoid transmission of prions, milk and dairy products are gaining interest as alternative sources. This review summarizes the analysis of polar lipids in dairy products including sample preparation (extraction and fractionation/isolation) and analysis by GC or HPLC and the latest research works using ELSD, CAD, and MS detectors. PMID:27610267

  15. Sphingomyelin Liposomes Containing Porphyrin-phospholipid for Irinotecan Chemophototherapy

    PubMed Central

    Carter, Kevin A; Luo, Dandan; Razi, Aida; Geng, Jumin; Shao, Shuai; Ortega, Joaquin; Lovell, Jonathan F

    2016-01-01

    Porphyrin-phospholipid (PoP) liposomes can entrap anti-cancer agents and release them in response to near infrared (NIR) light. Doxorubicin, when remotely loaded via an ammonium sulfate gradient at a high drug-to-lipid ratio, formed elongated crystals that altered liposome morphology and could not be loaded into liposomes with higher PoP content. On the other hand, irinotecan could also be remotely loaded but did not form large crystals and did not induce liposome elongation. The loading, stability, and NIR light-triggered release of irinotecan in PoP liposomes was altered by the types of lipids used and the presence of PEGylation. Sphingomyelin, which has been explored previously for liposomal irinotecan, was found to produce liposomes with relatively improved serum stability and rapid NIR light-triggered drug release. PoP liposomes composed from sphingomyelin, cholesterol and 2 molar percent PoP rapidly released irinotecan in vivo in response to NIR irradiation as monitored by intravital microscopy and also induced effective tumor eradication in mice bearing MIA Paca-2 subcutaneous tumor xenografts. PMID:27877238

  16. Physiological regulation of phospholipid methylation alters plasma homocysteine in mice.

    PubMed

    Jacobs, René L; Stead, Lori M; Devlin, Cecilia; Tabas, Ira; Brosnan, Margaret E; Brosnan, John T; Vance, Dennis E

    2005-08-05

    Biological methylation reactions and homocysteine (Hcy) metabolism are intimately linked. In previous work, we have shown that phosphatidylethanolamine N-methyltransferase, an enzyme that methylates phosphatidylethanolamine to form phosphatidylcholine, plays a significant role in the regulation of plasma Hcy levels through an effect on methylation demand (Noga, A. A., Stead, L. M., Zhao, Y., Brosnan, M. E., Brosnan, J. T., and Vance, D. E. (2003) J. Biol. Chem. 278, 5952-5955). We have further investigated methylation demand and Hcy metabolism in liver-specific CTP:phosphocholine cytidylyltransferase-alpha (CTalpha) knockout mice, since flux through the phosphatidylethanolamine N-methyltransferase pathway is increased 2-fold to meet hepatic demand for phosphatidylcholine. Our data show that plasma Hcy is elevated by 20-40% in mice lacking hepatic CTalpha. CTalpha-deficient hepatocytes secrete 40% more Hcy into the medium than do control hepatocytes. Liver activity of betaine:homocysteine methyltransferase and methionine adenosyltransferase are elevated in the knockout mice as a mechanism for maintaining normal hepatic S-adenosylmethionine and S-adenosylhomocysteine levels. These data suggest that phospholipid methylation in the liver is a major consumer of AdoMet and a significant source of plasma Hcy.

  17. Anisotropic metal growth on phospholipid nanodiscs via lipid bilayer expansion

    PubMed Central

    Oertel, Jana; Keller, Adrian; Prinz, Julia; Schreiber, Benjamin; Hübner, René; Kerbusch, Jochen; Bald, Ilko; Fahmy, Karim

    2016-01-01

    Self-assembling biomolecules provide attractive templates for the preparation of metallic nanostructures. However, the intuitive transfer of the “outer shape” of the assembled macromolecules to the final metallic particle depends on the intermolecular forces among the biomolecules which compete with interactions between template molecules and the metal during metallization. The shape of the bio-template may thus be more dynamic than generally assumed. Here, we have studied the metallization of phospholipid nanodiscs which are discoidal particles of ~10 nm diameter containing a lipid bilayer ~5 nm thick. Using negatively charged lipids, electrostatic adsorption of amine-coated Au nanoparticles was achieved and followed by electroless gold deposition. Whereas Au nanoparticle adsorption preserves the shape of the bio-template, metallization proceeds via invasion of Au into the hydrophobic core of the nanodisc. Thereby, the lipidic phase induces a lateral growth that increases the diameter but not the original thickness of the template. Infrared spectroscopy reveals lipid expansion and suggests the existence of internal gaps in the metallized nanodiscs, which is confirmed by surface-enhanced Raman scattering from the encapsulated lipids. Interference of metallic growth with non-covalent interactions can thus become itself a shape-determining factor in the metallization of particularly soft and structurally anisotropic biomaterials. PMID:27216789

  18. Anisotropic metal growth on phospholipid nanodiscs via lipid bilayer expansion

    NASA Astrophysics Data System (ADS)

    Oertel, Jana; Keller, Adrian; Prinz, Julia; Schreiber, Benjamin; Hübner, René; Kerbusch, Jochen; Bald, Ilko; Fahmy, Karim

    2016-05-01

    Self-assembling biomolecules provide attractive templates for the preparation of metallic nanostructures. However, the intuitive transfer of the “outer shape” of the assembled macromolecules to the final metallic particle depends on the intermolecular forces among the biomolecules which compete with interactions between template molecules and the metal during metallization. The shape of the bio-template may thus be more dynamic than generally assumed. Here, we have studied the metallization of phospholipid nanodiscs which are discoidal particles of ~10 nm diameter containing a lipid bilayer ~5 nm thick. Using negatively charged lipids, electrostatic adsorption of amine-coated Au nanoparticles was achieved and followed by electroless gold deposition. Whereas Au nanoparticle adsorption preserves the shape of the bio-template, metallization proceeds via invasion of Au into the hydrophobic core of the nanodisc. Thereby, the lipidic phase induces a lateral growth that increases the diameter but not the original thickness of the template. Infrared spectroscopy reveals lipid expansion and suggests the existence of internal gaps in the metallized nanodiscs, which is confirmed by surface-enhanced Raman scattering from the encapsulated lipids. Interference of metallic growth with non-covalent interactions can thus become itself a shape-determining factor in the metallization of particularly soft and structurally anisotropic biomaterials.

  19. Membrane Remodeling by a Bacterial Phospholipid-Methylating Enzyme

    PubMed Central

    Danne, Linna; Aktas, Meriyem; Unger, Andreas; Linke, Wolfgang A.; Erdmann, Ralf

    2017-01-01

    ABSTRACT Membrane deformation by proteins is a universal phenomenon that has been studied extensively in eukaryotes but much less in prokaryotes. In this study, we discovered a membrane-deforming activity of the phospholipid N-methyltransferase PmtA from the plant-pathogenic bacterium Agrobacterium tumefaciens. PmtA catalyzes the successive three-step N-methylation of phosphatidylethanolamine to phosphatidylcholine. Here, we defined the lipid and protein requirements for the membrane-remodeling activity of PmtA by a combination of transmission electron microscopy and liposome interaction studies. Dependent on the lipid composition, PmtA changes the shape of spherical liposomes either into filaments or small vesicles. Upon overproduction of PmtA in A. tumefaciens, vesicle-like structures occur in the cytoplasm, dependent on the presence of the anionic lipid cardiolipin. The N-terminal lipid-binding α-helix (αA) is involved in membrane deformation by PmtA. Two functionally distinct and spatially separated regions in αA can be distinguished. Anionic interactions by positively charged amino acids on one face of the helix are responsible for membrane recruitment of the enzyme. The opposite hydrophobic face of the helix is required for membrane remodeling, presumably by shallow insertion into the lipid bilayer. PMID:28196959

  20. Analytical Characterization of the Role of Phospholipids in Platelet Adhesion and Secretion

    PubMed Central

    2015-01-01

    The cellular phospholipid membrane plays an important role in cell function and cell–cell communication, but its biocomplexity and dynamic nature presents a challenge for examining cellular uptake of phospholipids and the resultant effects on cell function. Platelets, small anuclear circulating cell bodies that influence a wide variety of physiological functions through their dynamic secretory and adhesion behavior, present an ideal platform for exploring the effects of exogenous phospholipids on membrane phospholipid content and cell function. In this work, a broad range of platelet functions are quantitatively assessed by leveraging a variety of analytical chemistry techniques, including ultraperformance liquid chromatography–tandem electrospray ionization mass spectrometry (UPLC–MS/MS), vasculature-mimicking microfluidic analysis, and single cell carbon-fiber microelectrode amperometry (CFMA). The relative enrichments of phosphatidylserine (PS) and phosphatidylethanolamine (PE) were characterized with UPLC–MS/MS, and the effects of the enrichment of these two phospholipids on both platelet secretory behavior and adhesion were examined. Results show that, in fact, both PS and PE influence platelet adhesion and secretion. PS was enriched dramatically and decreased platelet adhesion as well as secretion from δ-, α-, and lysosomal granules. PE enrichment was moderate and increased secretion from platelet lysosomes. These insights illuminate the critical connection between membrane phospholipid character and platelet behavior, and both the methods and results presented herein are likely translatable to other mammalian cell systems. PMID:25439269

  1. Analysis of phospholipids in microalga Nitzschia closterium by UPLC-Q-TOF-MS

    NASA Astrophysics Data System (ADS)

    Yan, Xiaojun; Li, Haiying; Xu, Jilin; Zhou, Chengxu

    2010-01-01

    Precise structural identification of phospholipids in the microalga Nitzschia closterium has been established using ultra performance liquid chromatography-electrospray ionization-quadrupole-time of flight-mass spectrometry (UPLC-ESI-Q-TOF-MS) for direct analysis of total lipid extracts. Mass spectrometry was performed in reflective time-of-flight using electron spraying ionization in negative mode. Phospholipid molecular species identification was based on the characteristic product ions and neutral loss yielded by different phospholipids under ESI-MS/MS mode. The molecular species were confirmed by the carboxylate anions produced by phospholipids in negative mode; the regiospecificity of the two acyl chains was determined from the ratio of sn-1 to sn-2 carboxylate anion abundances. As a result, 18 lipid molecular species were identified for the first time in this microalga, comprising seven phosphatidylcholines (PC), two phosphatidylethanolamines (PE), two phosphatidylinositols (PI), and seven phosphatidylglycerols (PG). Lipid standards of PC, PE, PI, and PG were added to the total lipids as internal standards for semiquantitative analysis, revealing concentrations of phospholipids in this species between 0.09 and 3.37 nmol/mg. This method can produce a full structural profile of intact phospholipid molecular species and can be used for study of the physiological and ecological functions of lipids by monitoring their individual changes over time.

  2. Reassessment of the role of phospholipids in sexual reproduction by sterol-auxotrophic fungi.

    PubMed Central

    Kerwin, J L; Duddles, N D

    1989-01-01

    Several genera of oomycete fungi which are incapable of de novo sterol synthesis do not require these compounds for vegetative growth. The requirement for an exogenous source of sterols for sexual reproduction by several members of the Pythiaceae has been questioned by reports of apparent induction and maturation of oospores on defined media supplemented with phospholipids in the absence of sterols. A more detailed examination of this phenomenon suggested that trace levels of sterols in the inoculum of some pythiaceous fungi act synergistically with phospholipid medium supplements containing unsaturated fatty acid moieties to induce oosporogenesis. Phospholipid analysis of one species, Pythium ultimum, suggested that only the fatty acid portion of the exogenous phospholipid is taken up by the fungus. Enrichment of the phospholipid fraction of total cell lipid of P. ultimum with unsaturated fatty acids promoted oospore induction, and enhanced levels of unsaturated fatty acids in the neutral lipid fraction increased oospore viability. For some pythiaceous fungi, the levels of sterols required for the maturation of oospores with appropriate phospholipid medium supplementation suggest that these compounds are necessary only for the sparking and critical domain roles previously described in other fungi. PMID:2738023

  3. Regulation of phospholipid synthesis in phosphatidylserine synthase-deficient (chol) mutants of Saccharomyces cerevisiae

    SciTech Connect

    Letts, V.A.; Henry, S.A.

    1985-08-01

    Saccharomyces cerevisiae mutants, chol, are deficient in the synthesis of the phospholipid phosphatidylserine owing to lowered activity of the membrane-associated enzyme phosphatidylserine synthase. These mutants are auxotrophic for ethanolamine or choline and, in the absence of these supplements, cannot synthesize phosphatidylethanolamine or phosphatidylcholine (PC). The authors exploited these characteristics of the chol mutants to examine the regulation of phospholipid metabolism in S. cerevisiae. Macromolecular synthesis and phospholipid metabolism were examined in chol cells starved for ethanolamine. Coupled to the decline in PC biosynthesis was a simultaneous decrease in the overall rate of phospholipid synthesis. In particular, the rate of synthesis of phosphatidylinositol decreased in parallel with the decline in PC biosynthesis. However, under conditions of ethanolamine deprivation in chol cells, the cytoplasmic enzyme inositol-1-phosphate synthase could not be repressed by exogenous inositol, and the endogenous synthesis of the phospholipid precursor inositol appeared to be elevated. The implications of these findings with respect to the coordinated regulation of phospholipid synthesis are discussed.

  4. Specific pools of phospholipids are used for lipoprotein secretion by cultured rat hepatocytes

    SciTech Connect

    Vance, J.E.; Vance, D.E.

    1986-05-01

    The role of phospholipid biosynthesis in lipoprotein secretion from cultured rat hepatocytes has been investigated. In liver, phosphatidylcholine (PC) is made both by the CDP-choline pathway and by the methylation of phosphatidyl-ethanolamine (PE), which in turn is derived from both serine (via phosphatidylserine) and ethanolamine (via CDP-ethanol-amine). Monolayer cultures of rat hepatocytes were incubated in the presence of (methyl-/sup 3/H)choline, (2-/sup 3/H)ethanolamine or (3-/sup 3/H)serine. The specific radioactivity of the phospholipids derived from each of these precursors was measured in the cells and in the secreted lipoproteins of the culture medium. The specific radioactivities of PC and PE derived from (1-/sup 3/H)ethanolamine were markedly lower (approximately 1/2 and less than 1/10, respectively) in the secreted phospholipids than in the cellular phospholipids. Thus, ethanolamine was not an effective precursor of the phospholipids in lipoproteins. On the contrary, the specific radioactivity of PC made from (methyl-/sup 3/H)choline was approximately equal in cells and lipoproteins. In addition, over the first 4 h of incubation with (3-/sup 3/H)serine, the specific radioactivities of PC and PE were significantly higher in the lipoproteins than in the cells. These data indicate that specific pools of phospholipids are selected on the basis of their routes of biosynthesis, for secretion into lipoproteins.

  5. Double-chain phospholipid end-capped polyurethanes: Synthesis, characterization and platelet adhesion study

    NASA Astrophysics Data System (ADS)

    Tan, Dongsheng; Zhang, Xiaoqing; Li, Jiehua; Tan, Hong; Fu, Qiang

    2012-01-01

    A novel phospholipid containing double chains and phosphotidylcholine polar head groups, 2-(10-(2-aminoethylamino)-10-oxodecanamido)-3-(decyloxy)-3-oxopropyl phosphorylcholine (ADDPC), was synthesized and characterized. Two kinds of double-chain phospholipid end-capped polyurethanes with different soft segments were prepared. The structure of prepared polyurethanes was characterized by X-ray photoelectron spectroscopic (XPS), attenuated total reflection Fourier transform infrared (ATR-FTIR) spectrometry and atomic force microscope (AFM), which indicated that the double-chain phospholipids enriched onto the top surface of the prepared polyurethane films. The preliminary evaluation of blood compatibility showed that these novel phospholipid end-capped polyurethanes could suppress platelet adhesion and activation effectively. This property did not depend on the chemical structure of polyurethanes. In addition, according to tensile test results, the phospholipid polyurethanes kept good mechanical properties in comparison with original polyurethanes. It is suggested that double-chain phospholipid end-caption has good potential for achieving both hemocompatibility and good mechanical properties simultaneously for polyurethanes.

  6. Phospholipids and products of their hydrolysis as dietary preventive factors for civilization diseases.

    PubMed

    Parchem, Karol; Bartoszek, Agnieszka

    2016-12-31

    The results of numerous epidemiological studies indicate that phospholipids play an important role in the prevention of chronic diseases faced by contemporary society. Firstly, these compounds are responsible for the proper functioning of cell membranes, by ensuring liquidity and permeability, which is pivotal for normal activity of membrane proteins, including receptors. These mechanisms are at the core of prevention of cancer, autoimmune or neurological disorders. Secondly, structure and properties of phospholipids cause that they are highly available source of biologically active fatty acids. Thirdly, also products of endogenous hydrolysis of phospholipids exhibit biological activity. These include lysophospholipids formed as a result of disconnecting free fatty acid from glycerophospholipids in the reaction catalyzed by phospholipase A, phosphatidic acid and hydrophilic subunits released by the activity of phospholipase D. The bioactive products of hydrolysis also include ceramides liberated from phosphosphingolipids after removal of a hydrophilic unit catalyzed by sphingomyelinase. Phospholipids are supplied to the human body with food. A high content of phospholipids is characteristic for egg yolk, liver, pork and poultry, as well as some soy products. Particularly beneficial are phospholipids derived from seafood because they are a rich source of essential fatty acids of the n-3 family.

  7. Qualitative and quantitative changes in phospholipids and proteins investigated by spectroscopic techniques in animal depression model

    NASA Astrophysics Data System (ADS)

    Depciuch, J.; Sowa-Kucma, M.; Nowak, G.; Papp, M.; Gruca, P.; Misztak, P.; Parlinska-Wojtan, M.

    2017-04-01

    Depression becomes nowadays a high mortality civilization disease with one of the major causes being chronic stress. Raman, Fourier Transform Infra Red (FTIR) and Ultraviolet-Visible (UV-vis) spectroscopies were used to determine the changes in the quantity and structure of phospholipids and proteins in the blood serum of rats subjected to chronic mild stress, which is a common animal depression model. Moreover, the efficiency of the imipramine treatment was evaluated. It was found that chronic mild stress not only damages the structure of the phospholipids and proteins, but also decreases their level in the blood serum. A 5 weeks imipramine treatment did increase slightly the quantity of proteins, leaving the damaged phospholipids unchanged. Structural information from phospholipids and proteins was obtained by UV-vis spectroscopy combined with the second derivative of the FTIR spectra. Indeed, the structure of proteins in blood serum of stressed rats was normalized after imipramine therapy, while the impaired structure of phospholipids remained unaffected. These findings strongly suggest that the depression factor, which is chronic mild stress, may induce permanent (irreversible) damages into the phospholipid structure identified as shortened carbon chains. This study shows a possible new application of spectroscopic techniques in the diagnosis and therapy monitoring of depression.

  8. Dietary Polyunsaturated Fatty Acids and Inflammation: The Role of Phospholipid Biosynthesis

    PubMed Central

    Raphael, William; Sordillo, Lorraine M.

    2013-01-01

    The composition of fatty acids in the diets of both human and domestic animal species can regulate inflammation through the biosynthesis of potent lipid mediators. The substrates for lipid mediator biosynthesis are derived primarily from membrane phospholipids and reflect dietary fatty acid intake. Inflammation can be exacerbated with intake of certain dietary fatty acids, such as some ω-6 polyunsaturated fatty acids (PUFA), and subsequent incorporation into membrane phospholipids. Inflammation, however, can be resolved with ingestion of other fatty acids, such as ω-3 PUFA. The influence of dietary PUFA on phospholipid composition is influenced by factors that control phospholipid biosynthesis within cellular membranes, such as preferential incorporation of some fatty acids, competition between newly ingested PUFA and fatty acids released from stores such as adipose, and the impacts of carbohydrate metabolism and physiological state. The objective of this review is to explain these factors as potential obstacles to manipulating PUFA composition of tissue phospholipids by specific dietary fatty acids. A better understanding of the factors that influence how dietary fatty acids can be incorporated into phospholipids may lead to nutritional intervention strategies that optimize health. PMID:24152446

  9. Global distribution of carbon turnover times in terrestrial ecosystems

    NASA Astrophysics Data System (ADS)

    Carvalhais, Nuno; Forkel, Matthias; Khomik, Myroslava; Bellarby, Jessica; Jung, Martin; Migliavacca, Mirco; Mu, Mingquan; Saatchi, Sassan; Santoro, Maurizio; Thurner, Martin; Weber, Ulrich; Ahrens, Bernhard; Beer, Christian; Cescatti, Alessandro; Randerson, James T.; Reichstein, Markus

    2015-04-01

    The response of the carbon cycle in terrestrial ecosystems to climate variability remains one of the largest uncertainties affecting future projections of climate change. This feedback between the terrestrial carbon cycle and climate is partly determined by the response of carbon uptake and by changes in the residence time of carbon in land ecosystems, which depend on climate, soil, and vegetation type. Thus, it is of foremost importance to quantify the turnover times of carbon in terrestrial ecosystems and its spatial co-variability with climate. Here, we develop a global, spatially explicit and observation-based assessment of whole-ecosystem carbon turnover times (τ) to investigate its co-variation with climate at global scale. Assuming a balance between uptake (gross primary production, GPP) and emission fluxes, τ can be defined as the ratio between the total stock (C_total) and the output or input fluxes (GPP). The estimation of vegetation (C_veg) stocks relies on new remote sensing-based estimates from Saatchi et al (2011) and Thurner et al (2014), while soil carbon stocks (C_soil) are estimated based on state of the art global (Harmonized World Soil Database) and regional (Northern Circumpolar Soil Carbon Database) datasets. The uptake flux estimates are based on global observation-based fields of GPP (Jung et al., 2011). Globally, we find an overall mean global carbon turnover time of 23-4+7 years (95% confidence interval). A strong spatial variability globally is also observed, from shorter residence times in equatorial regions to longer periods at latitudes north of 75°N (mean τ of 15 and 255 years, respectively). The observed latitudinal pattern reflect the clear dependencies on temperature, showing increases from the equator to the poles, which is consistent with our current understanding of temperature controls on ecosystem dynamics. However, long turnover times are also observed in semi-arid and forest-herbaceous transition regions. Furthermore

  10. Environmentally relevant microorganisms.

    PubMed

    Watanabe, K; Baker, P W

    2000-01-01

    The development of molecular microbial ecology in the 1990s has allowed scientists to realize that microbial populations in the natural environment are much more diverse than microorganisms so far isolated in the laboratory. This finding has exerted a significant impact on environmental biotechnology, since knowledge in this field has been largely dependent on studies with pollutant-degrading bacteria isolated by conventional culture methods. Researchers have thus started to use molecular ecological methods to analyze microbial populations relevant to pollutant degradation in the environment (called environmentally relevant microorganisms, ERMs), although further effort is needed to gain practical benefits from these studies. This review highlights the utility and limitations of molecular ecological methods for understanding and advancing environmental biotechnology processes. The importance of the combined use of molecular ecological and physiological methods for identifying ERMs is stressed.

  11. Anterior cingulate dopamine turnover and behavior change in Parkinson's disease.

    PubMed

    Gallagher, Catherine L; Bell, Brian; Palotti, Matthew; Oh, Jen; Christian, Bradley T; Okonkwo, Ozioma; Sojkova, Jitka; Buyan-Dent, Laura; Nickles, Robert J; Harding, Sandra J; Stone, Charles K; Johnson, Sterling C; Holden, James E

    2015-12-01

    Subtle cognitive and behavioral changes are common in early Parkinson's disease. The cause of these symptoms is probably multifactorial but may in part be related to extra-striatal dopamine levels. 6-[(18) F]-Fluoro-L-dopa (FDOPA) positron emission tomography has been widely used to quantify dopamine metabolism in the brain; the most frequently measured kinetic parameter is the tissue uptake rate constant, Ki. However, estimates of dopamine turnover, which also account for the small rate of FDOPA loss from areas of specific trapping, may be more sensitive than Ki for early disease-related changes in dopamine biosynthesis. The purpose of the present study was to compare effective distribution volume ratio (eDVR), a metric for dopamine turnover, to cognitive and behavioral measures in Parkinson's patients. We chose to focus the investigation on anterior cingulate cortex, which shows highest FDOPA uptake within frontal regions and has known roles in executive function. Fifteen non-demented early-stage PD patients were pretreated with carbidopa and tolcapone, a central catechol-O-methyl transferase (COMT) inhibitor, and then underwent extended imaging with FDOPA PET. Anterior cingulate eDVR was compared with composite scores for language, memory, and executive function measured by neuropsychological testing, and behavior change measured using two informant-based questionnaires, the Cambridge Behavioral Inventory and the Behavior Rating Inventory of Executive Function-Adult Version. Lower mean eDVR (thus higher dopamine turnover) in anterior cingulate cortex was related to lower (more impaired) behavior scores. We conclude that subtle changes in anterior cingulate dopamine metabolism may contribute to dysexecutive behaviors in Parkinson's disease.

  12. Index Fund Selections with GAs and Classifications Based on Turnover

    NASA Astrophysics Data System (ADS)

    Orito, Yukiko; Motoyama, Takaaki; Yamazaki, Genji

    It is well known that index fund selections are important for the risk hedge of investment in a stock market. The`selection’means that for`stock index futures’, n companies of all ones in the market are selected. For index fund selections, Orito et al.(6) proposed a method consisting of the following two steps : Step 1 is to select N companies in the market with a heuristic rule based on the coefficient of determination between the return rate of each company in the market and the increasing rate of the stock price index. Step 2 is to construct a group of n companies by applying genetic algorithms to the set of N companies. We note that the rule of Step 1 is not unique. The accuracy of the results using their method depends on the length of time data (price data) in the experiments. The main purpose of this paper is to introduce a more`effective rule’for Step 1. The rule is based on turnover. The method consisting of Step 1 based on turnover and Step 2 is examined with numerical experiments for the 1st Section of Tokyo Stock Exchange. The results show that with our method, it is possible to construct the more effective index fund than the results of Orito et al.(6). The accuracy of the results using our method depends little on the length of time data (turnover data). The method especially works well when the increasing rate of the stock price index over a period can be viewed as a linear time series data.

  13. Centennial black carbon turnover observed in a Russia steppe soil

    SciTech Connect

    Hammes, K.; Torn, M.S.; Lapenas, A.G.; Schmidt, M.W.I.

    2008-09-15

    Black carbon (BC), from incomplete combustion of fuels and biomass, has been considered highly recalcitrant and a substantial sink for carbon dioxide. Recent studies have shown that BC can be degraded in soils. We use two soils with very low spatial variability sampled 100 years apart in a Russian steppe preserve to generate the first whole-profile estimate of BC stocks and turnover in the field. Quantities of fire residues in soil changed significantly over a century. Black carbon stock was 2.5 kg m{sup -2}, or about 7-10% of total organic C in 1900. With cessation of biomass burning, BC stocks decreased 25% over a century, which translates into a centennial soil BC turnover (293 years best estimate; range 182-541 years), much faster than so-called inert or passive carbon in ecosystem models. The turnover time presented here is for loss by all processes, namely decomposition, leaching, and erosion, although the latter two were probably insignificant in this case. Notably, at both time points, the peak BC stock was below 30 cm, a depth interval, which is not typically accounted for. Also, the quality of the fire residues changed with time, as indicated by the use benzene poly carboxylic acids (BPCA) as molecular markers. The proportions of less-condensed (and thus more easily degradable) BC structures decreased, whereas the highly condensed (and more recalcitrant) BC structures survived unchanged over the 100-year period. Our results show that BC cannot be assumed chemically recalcitrant in all soils, and other explanations for very old soil carbon are needed.

  14. Building Muscles, Keeping Muscles: Protein Turnover During Space Flight

    NASA Technical Reports Server (NTRS)

    Ferrando, Arny; Bloomberg, Jacob; Lee, Angie (Technical Monitor)

    2002-01-01

    As we age we lose muscle mass and strength. The problem is a matter of use it or lose it and more - a fact to which any active senior can attest. An imbalance in the natural cycle of protein turnover may be a contributing factor to decreased muscle mass. But the answer is not so simple, since aging is associated with changes in hormones, activity levels, nutrition, and often, disease. The human body constantly uses amino acids to build muscle protein, which then breaks down and must be replaced. When protein turnover gets out of balance, so that more protein breaks down than the body can replace, the result is muscle loss. This is not just the bane of aging, however. Severely burned people may have difficulty building new muscle long after the burned skin has been repaired. Answers to why we lose muscle mass and strength - and how doctors can fix it - may come from space. Astronauts usually eat a well-balanced diet and maintain an exercise routine to stay in top health. During long-duration flight, they exercise regularly to reduce the muscle loss that results from being in a near-weightless environment. Despite these precautions, astronauts lose muscle mass and strength during most missions. They quickly recover after returning to Earth - this is a temporary condition in an otherwise healthy population. Members of the STS-107 crew are participating in a study of the effects of space flight, hormone levels, and stress on protein turnover. When we are under stress, the body responds with a change in hormone levels. Researchers hypothesize that this stress-induced change in hormones along with the near-weightlessness might result in the body synthesizing less muscle protein, causing muscles to lose their strength and size. Astronauts, who must perform numerous duties in a confined and unusual environment, experience some stress during their flight, making them excellent candidates for testing the researchers' hypothesis.

  15. Grassland Degradation Alters Soil Carbon Turnover through Depth

    NASA Astrophysics Data System (ADS)

    Creamer, C.; Prober, S. M.; Chappell, A.; Farrell, M.; Baldock, J.

    2015-12-01

    Ecosystem degradation is widespread and changes in aboveground plant communities alter belowground soil processes. In Australia, grassy eucalyptus woodlands dominated by kangaroo grasses (Themeda trianda) were widely cleared during European settlement for agriculture, with only fragments remaining of this now threatened ecosystem. As remnant grassland fragments are used for livestock grazing, Themeda transitions through states of degradation, starting with red grasses (Bothriochloa spp) and then proceeding to less productive, increasingly degraded states dominated by either annual exotic weeds or native wallaby grasses (Rytidosperma spp) and spear grasses (Austrastipa spp). The aim of our experiment was to determine how soil organic matter dynamics (including erosion, root biomass, C storage and turnover) have been altered by the transition from deeply-rooted Themeda grass systems to more shallowly-rooted annual exotic weeds and wallaby/spear grass states. We sampled soils in five depth-based increments (0-5, 5-15, 15-30, 30-60, 60-100 cm) across this ecosystem transition at five sites across New South Wales, Australia. Caseium-137 analysis indicated erosion rates were similar among all ecosystems and were consistent with levels for grasslands in the region. Compared to the remnant Themeda grass systems, the degraded states had lower root biomass, lower carbon stocks and C:N ratios in the coarse fraction (> 50 μm), lower fungal : bacterial ratios, higher available phosphate, higher alkyl : O-alkyl C ratios, and faster mineralization of synthetic root-exudate carbon. All these metrics indicate the surprising finding of more microbially processed OM and faster turnover of newly added C in the degraded sites. Compared to one another, the two degraded sites differed in both C and N turnover, with the exotic weeds having higher dissolved organic N, inorganic N, and coarse fraction N, higher fine fraction C stocks, and greater microbial biomass. These differences likely

  16. [Protein turnover during and after extended space flight

    NASA Technical Reports Server (NTRS)

    Stein, T. P.; Larina, I. M.; Leskiv, M. J.; Schluter, M. D.

    2000-01-01

    A 15N-glycine tracer technique was used to study protein turnover in four Russian cosmonauts and two U.S. astronauts who had spent long time aboard the Russian orbital station MIR. As was shown, in space flight protein synthesis falls by 46% on the average, which substantially exceeds estimations made on the basis of data about bed-rested human subjects. Reduction in protein synthesis during space flight is connected with the negative energy balance; therefore, it appears imperative to keep balance between energy intake (foodstuffs) and expenditure by cosmonauts on long-term mission.

  17. Evolutionary Turnover of Kinetochore Proteins: A Ship of Theseus?

    PubMed

    Drinnenberg, Ines A; Henikoff, Steven; Malik, Harmit S

    2016-07-01

    The kinetochore is a multiprotein complex that mediates the attachment of a eukaryotic chromosome to the mitotic spindle. The protein composition of kinetochores is similar across species as divergent as yeast and human. However, recent findings have revealed an unexpected degree of compositional diversity in kinetochores. For example, kinetochore proteins that are essential in some species have been lost in others, whereas new kinetochore proteins have emerged in other lineages. Even in lineages with similar kinetochore composition, individual kinetochore proteins have functionally diverged to acquire either essential or redundant roles. Thus, despite functional conservation, the repertoire of kinetochore proteins has undergone recurrent evolutionary turnover.

  18. Stimulus-specific induction of phospholipid and arachidonic acid metabolism in human neutrophils

    SciTech Connect

    Godfrey, R.W.; Manzi, R.M.; Clark, M.A.; Hoffstein, S.T.

    1987-04-01

    Phospholipid remodeling resulting in arachidonic acid (AA) release and metabolism in human neutrophils stimulated by calcium ionophore A23187 has been extensively studied, while data obtained using physiologically relevant stimuli is limited. Opsonized zymosan and immune complexes induced stimulus-specific alterations in lipid metabolism that were different from those induced by A23187. (/sup 3/H)AA release correlated with activation of phospholipase A2 (PLA2) but not with cellular activation as indicated by superoxide generation. The latter correlated more with calcium-dependent phospholipase C (PLC) activation and elevation of cellular diacylglycerol (DAG) levels. When cells that had been allowed to incorporate (/sup 3/H)AA were stimulated with A23187, large amounts of labeled AA was released, most of which was metabolized to 5-HETE and leukotriene B4. Stimulation with immune complexes also resulted in the release of (/sup 3/H)AA but this released radiolabeled AA was not metabolized. In contrast, stimulation with opsonized zymosan induced no detectable release of (/sup 3/H)AA. Analysis of (/sup 3/H)AA-labeled lipids in resting cells indicated that the greatest amount of label was incorporated into the phosphatidylinositol (PI) pool, followed closely by phosphatidylcholine and phosphatidylserine, while little (/sup 3/H)AA was detected in the phosphatidylethanolamine pool. During stimulation with A23187, a significant decrease in labeled PI occurred and labeled free fatty acid in the pellet increased. With immune complexes, only a small decrease was seen in labeled PI while the free fatty acid in the pellets was unchanged. In contrast, opsonized zymosan decreased labeled PI, and increased labeled DAG. Phospholipase activity in homogenates from human neutrophils was also assayed. A23187 and immune complexes, but not zymosan, significantly enhanced PLA2 activity in the cell homogenates. On the other hand, PLC activity was enhanced by zymosan and immune complexes

  19. Induction of CCR2-Dependent Macrophage Accumulation by Oxidized Phospholipids in the Air-Pouch Model of Inflammation

    PubMed Central

    Kadl, Alexandra; Galkina, Elena; Leitinger, Norbert

    2009-01-01

    Objective Macrophages are key players in the pathogenesis of rheumatoid synovitis as well as in atherosclerosis. To determine whether atherogenic oxidized phospholipids potentially contribute to synovial inflammation and subsequent monocyte/macrophage recruitment, we examined the effects of oxidized 1-palmitoyl-2-arachidonoyl-sn-3-glycero-phosphorylcholine (OxPAPC) on chemokine expression and leukocyte recruitment in a facsimile synovium in vivo using the murine air-pouch model. Methods Air pouches were raised by 2 injections of sterile air, and inflammation was induced by injecting either lipopolysaccharide (LPS) or OxPAPC into the pouch lumen. Inflammation was assessed by analysis of inflammatory gene expression using reverse transcription–polymerase chain reaction or immunohistochemical analysis, and leukocytes were quantified in the lavage fluid and in the pouch wall after staining with Giemsa or after enzymatic digestion followed by fluorescence-activated cell sorter analysis. Results Application of OxPAPC resulted in selective recruitment of monocyte/macrophages into the air-pouch wall, but not in the lumen. In contrast, LPS induced both monocyte and neutrophil accumulation in the pouch lumen as well as in the wall. LPS, but not OxPAPC, induced the expression of adhesion molecules E-selectin, P-selectin, intercellular adhesion molecule 1, and vascular cell adhesion molecule 1. OxPAPC increased the expression of the CCR2 ligands monocyte chemotactic protein 1 (MCP-1), MCP-3, and MCP-5, as well as RANTES and growth-related oncogene α (GROα), while it down-regulated the expression of CCR2 on macrophages. Moreover, oxidized phospholipid–induced macrophage accumulation was abrogated in CCR2−/− mice. Conclusion These data demonstrate that oxidized phospholipids trigger a type of inflammatory response that leads to selective macrophage accumulation in vivo, a process relevant for the pathogenesis of chronic inflammatory rheumatic diseases. PMID:19404946

  20. Transformational leadership moderates the relationship between emotional exhaustion and turnover intention among community mental health providers.

    PubMed

    Green, Amy E; Miller, Elizabeth A; Aarons, Gregory A

    2013-08-01

    Public sector mental health care providers are at high risk for burnout and emotional exhaustion which negatively affect job performance and client satisfaction with services. Few studies have examined ways to reduce these associations, but transformational leadership may have a positive effect. We examine the relationships between transformational leadership, emotional exhaustion, and turnover intention in a sample of 388 community mental health providers. Emotional exhaustion was positively related to turnover intention, and transformational leadership was negatively related to both emotional exhaustion and turnover intention. Transformational leadership moderated the relationship between emotional exhaustion and turnover intention, indicating that having a transformational leader may buffer the effects of providers' emotional exhaustion on turnover intention. Investing in transformational leadership development for supervisors could reduce emotional exhaustion and turnover among public sector mental health providers.