Science.gov

Sample records for phosphoric acid potassium

  1. 40 CFR 721.6110 - Alkyldi(alkyloxyhydroxypropyl) derivative, phosphoric acid esters, potassium salts.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ...) derivative, phosphoric acid esters, potassium salts. 721.6110 Section 721.6110 Protection of Environment...) derivative, phosphoric acid esters, potassium salts. (a) Chemical substance and significant new uses subject...) derivative, phosphoric acid esters, potassium salts (PMN P-91-818) is subject to reporting under this...

  2. 40 CFR 721.6110 - Alkyldi(alkyloxyhydroxypropyl) derivative, phosphoric acid esters, potassium salts.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ...) derivative, phosphoric acid esters, potassium salts. 721.6110 Section 721.6110 Protection of Environment...) derivative, phosphoric acid esters, potassium salts. (a) Chemical substance and significant new uses subject...) derivative, phosphoric acid esters, potassium salts (PMN P-91-818) is subject to reporting under this...

  3. 40 CFR 721.6110 - Alkyldi(alkyloxyhydroxypropyl) derivative, phosphoric acid esters, potassium salts.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ...) derivative, phosphoric acid esters, potassium salts. (a) Chemical substance and significant new uses subject...) derivative, phosphoric acid esters, potassium salts. 721.6110 Section 721.6110 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) TOXIC SUBSTANCES CONTROL ACT SIGNIFICANT NEW USES OF...

  4. 40 CFR 721.6110 - Alkyldi(alkyloxyhydroxypropyl) derivative, phosphoric acid esters, potassium salts.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ...) derivative, phosphoric acid esters, potassium salts. (a) Chemical substance and significant new uses subject...) derivative, phosphoric acid esters, potassium salts. 721.6110 Section 721.6110 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) TOXIC SUBSTANCES CONTROL ACT SIGNIFICANT NEW USES OF...

  5. 40 CFR 721.6110 - Alkyldi(alkyloxyhydroxypropyl) derivative, phosphoric acid esters, potassium salts.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ...) derivative, phosphoric acid esters, potassium salts. (a) Chemical substance and significant new uses subject...) derivative, phosphoric acid esters, potassium salts. 721.6110 Section 721.6110 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) TOXIC SUBSTANCES CONTROL ACT SIGNIFICANT NEW USES OF...

  6. Phosphoric acid

    Integrated Risk Information System (IRIS)

    Phosphoric acid ; CASRN 7664 - 38 - 2 Human health assessment information on a chemical substance is included in the IRIS database only after a comprehensive review of toxicity data , as outlined in the IRIS assessment development process . Sections I ( Health Hazard Assessments for Noncarcinogenic

  7. A new oxidimetric reagent: potassium dichromate in a strong phosphoric acid medium-VI Potentiometric titration of vanadium(III) alone and in mixture with vanadium(IV).

    PubMed

    Rao, G G; Rao, P K

    1966-09-01

    Vanadium(III) can be titrated at room temperature with potassium dichromate in an 8-12M phosphoric acid medium. Two potential breaks are observed in 12M phosphoric add with 0.2N potassium dichromate, the first corresponding to the oxidation of vanadium(III) to vanadium(IV) and the second to the oxidation of vanadium(IV) to vanadium(V). In titrations with 0.05N dichromate only the first break in potential is clearly observed. The method has been extended to the titration of mixtures of vanadium(III) and vanadium(IV). Conditions have also been found for the visual titration of vanadium(III) using ferroln or barium diphenylamine sulphonate as indicator.

  8. Analytical applications of condensed phosphoric acid-III Iodometric determination of sulphur after reduction of sulphate with sodium hypophosphite and either tin metal or potassium iodide in condensed phosphoric acid.

    PubMed

    Mizoguchi, T; Iwahori, H; Ishii, H

    1980-06-01

    Novel methods for the reduction of sulphate to hydrogen sulphide with hypophosphite-tin metal or hypophosphite-iodide in condensed phosphoric acid (CPA) are proposed. The reduction of sulphate with hypophosphite alone does not proceed quantitatively. Sulphate, however, is quantitatively decomposed with hypophosphite when tin metal or potassium iodide is used together with it. The determination of sulphur by the hypophosphite-tin metal-CPA and tin(II)-CPA methods is interfered with by copper on account of the stabilization of copper(I) sulphide, but this interference can be eliminated by adding iodide, e.g. potassium and lead salts. Alum and barytes are quantitatively decomposed within 15 min at 140 and 280 degrees , respectively. The hydrogen sulphide evolved is absorbed in zinc acetate solution at pH 4.5 and then determined by iodometry.

  9. Micro-electro-mechanical systems phosphoric acid fuel cell

    DOEpatents

    Sopchak, David A.; Morse, Jeffrey D.; Upadhye, Ravindra S.; Kotovsky, Jack; Graff, Robert T.

    2010-08-17

    A phosphoric acid fuel cell system comprising a porous electrolyte support, a phosphoric acid electrolyte in the porous electrolyte support, a cathode electrode contacting the phosphoric acid electrolyte, and an anode electrode contacting the phosphoric acid electrolyte.

  10. Micro-electro-mechanical systems phosphoric acid fuel cell

    DOEpatents

    Sopchak, David A.; Morse, Jeffrey D.; Upadhye, Ravindra S.; Kotovsky, Jack; Graff, Robert T.

    2010-12-21

    A phosphoric acid fuel cell system comprising a porous electrolyte support, a phosphoric acid electrolyte in the porous electrolyte support, a cathode electrode contacting the phosphoric acid electrolyte, and an anode electrode contacting the phosphoric acid electrolyte.

  11. 21 CFR 182.1073 - Phosphoric acid.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Phosphoric acid. 182.1073 Section 182.1073 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) FOOD FOR HUMAN....1073 Phosphoric acid. (a) Product. Phosphoric acid. (b) Conditions of use. This substance is...

  12. 21 CFR 582.1073 - Phosphoric acid.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 6 2013-04-01 2013-04-01 false Phosphoric acid. 582.1073 Section 582.1073 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL... Additives § 582.1073 Phosphoric acid. (a) Product. Phosphoric acid. (b) Conditions of use. This substance...

  13. 21 CFR 582.1073 - Phosphoric acid.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 6 2012-04-01 2012-04-01 false Phosphoric acid. 582.1073 Section 582.1073 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL... Additives § 582.1073 Phosphoric acid. (a) Product. Phosphoric acid. (b) Conditions of use. This substance...

  14. 21 CFR 582.1073 - Phosphoric acid.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 6 2011-04-01 2011-04-01 false Phosphoric acid. 582.1073 Section 582.1073 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL... Additives § 582.1073 Phosphoric acid. (a) Product. Phosphoric acid. (b) Conditions of use. This substance...

  15. 21 CFR 582.1073 - Phosphoric acid.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 6 2014-04-01 2014-04-01 false Phosphoric acid. 582.1073 Section 582.1073 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL... Additives § 582.1073 Phosphoric acid. (a) Product. Phosphoric acid. (b) Conditions of use. This substance...

  16. 21 CFR 182.1073 - Phosphoric acid.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 3 2013-04-01 2013-04-01 false Phosphoric acid. 182.1073 Section 182.1073 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) FOOD FOR... Substances § 182.1073 Phosphoric acid. (a) Product. Phosphoric acid. (b) Conditions of use. This substance...

  17. 21 CFR 182.1073 - Phosphoric acid.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 3 2014-04-01 2014-04-01 false Phosphoric acid. 182.1073 Section 182.1073 Food... GENERALLY RECOGNIZED AS SAFE Multiple Purpose GRAS Food Substances § 182.1073 Phosphoric acid. (a) Product. Phosphoric acid. (b) Conditions of use. This substance is generally recognized as safe when used...

  18. 21 CFR 582.1073 - Phosphoric acid.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 6 2010-04-01 2010-04-01 false Phosphoric acid. 582.1073 Section 582.1073 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL... Additives § 582.1073 Phosphoric acid. (a) Product. Phosphoric acid. (b) Conditions of use. This substance...

  19. 21 CFR 182.1073 - Phosphoric acid.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 3 2011-04-01 2011-04-01 false Phosphoric acid. 182.1073 Section 182.1073 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) FOOD FOR... Substances § 182.1073 Phosphoric acid. (a) Product. Phosphoric acid. (b) Conditions of use. This substance...

  20. 21 CFR 182.1073 - Phosphoric acid.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 3 2012-04-01 2012-04-01 false Phosphoric acid. 182.1073 Section 182.1073 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) FOOD FOR... Substances § 182.1073 Phosphoric acid. (a) Product. Phosphoric acid. (b) Conditions of use. This substance...

  1. Acid-permanganate oxidation of potassium tetraphenylboron

    SciTech Connect

    Smith, J.R.

    1993-02-01

    Scoping experiments have been performed which show that potassium tetraphenylboron (KTPB) is rapidly oxidized by permanganate in acidic solutions at room temperature. The main Products are CO{sub 2}, highly oxidized organic compounds related to tartaric and tartronic acids, boric acid, and potassium phosphate (when phosphoric acid is used as the source of acid). One liter of 0.6M NaMnO{sub 4}/2.5M H{sub 3}PO{sub 4} solution will destroy up to 8 grams of KTPB. The residual benzene concentration has been measured to be less than the RCRA limit of 0.5 ppm. Approximately 30% of the organic material is released as CO{sub 2} (trace CO) and 0.16% as benzene vapor. The reaction is well behaved, no foaming or spattering. Tests were performed from .15M to near 1M permanganate. The phosphoric acid concentration was maintained at a concentration at least three times that of the permanganate since an excess of acid was desired and this is the ratio that these two reagents are consumed in the oxidation.

  2. Acid-permanganate oxidation of potassium tetraphenylboron

    SciTech Connect

    Smith, J.R.

    1993-02-01

    Scoping experiments have been performed which show that potassium tetraphenylboron (KTPB) is rapidly oxidized by permanganate in acidic solutions at room temperature. The main Products are CO[sub 2], highly oxidized organic compounds related to tartaric and tartronic acids, boric acid, and potassium phosphate (when phosphoric acid is used as the source of acid). One liter of 0.6M NaMnO[sub 4]/2.5M H[sub 3]PO[sub 4] solution will destroy up to 8 grams of KTPB. The residual benzene concentration has been measured to be less than the RCRA limit of 0.5 ppm. Approximately 30% of the organic material is released as CO[sub 2] (trace CO) and 0.16% as benzene vapor. The reaction is well behaved, no foaming or spattering. Tests were performed from .15M to near 1M permanganate. The phosphoric acid concentration was maintained at a concentration at least three times that of the permanganate since an excess of acid was desired and this is the ratio that these two reagents are consumed in the oxidation.

  3. Colorimetric determination of phosphoric acid leakage for phosphoric acid-doped polybenzimidazole membrane fuel cell applications

    NASA Astrophysics Data System (ADS)

    Jeong, Yeon Hun; Jung, Ju Hae; Choi, Euiji; Han, Seungyoon; Begley, Alina Irene; Yoo, Sung Jong; Jang, Jong Hyun; Kim, Hyoung-Juhn; Nam, Suk Woo; Lee, Kwan-Young; Kim, Jin Young

    2015-12-01

    A simple and precise colorimetric method for analyzing phosphoric acid leakage in phosphoric acid-doped polybenzimidazole membrane fuel cells is described. The developed method is based on the colorimetric determination from a rapid formation of molybdenum blue color by the reduction reaction of molybdate ions in the presence of phosphoric acid in the acidic medium. The color is stable up to a few months and can be used for the sensitive and accurate detection of phosphoric acid electrolyte which is discharged from the fuel cell during operation. Tests with a wide concentration range of phosphate compounds showed that it permits determination of phosphoric acid up to nanogram quantities. The developed detection method assists monitoring the phosphoric acid contents and developing stable operation strategies of fuel cells.

  4. 46 CFR 153.558 - Special requirements for phosphoric acid.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 46 Shipping 5 2013-10-01 2013-10-01 false Special requirements for phosphoric acid. 153.558... Equipment Special Requirements § 153.558 Special requirements for phosphoric acid. A phosphoric acid... phosphoric acid tanks by the Commandant (CG-ENG); or (c) Made of a stainless steel that resists corrosion...

  5. 46 CFR 153.558 - Special requirements for phosphoric acid.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 5 2012-10-01 2012-10-01 false Special requirements for phosphoric acid. 153.558... Equipment Special Requirements § 153.558 Special requirements for phosphoric acid. A phosphoric acid... phosphoric acid tanks by the Commandant (CG-ENG); or (c) Made of a stainless steel that resists corrosion...

  6. 46 CFR 153.558 - Special requirements for phosphoric acid.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 46 Shipping 5 2014-10-01 2014-10-01 false Special requirements for phosphoric acid. 153.558... Equipment Special Requirements § 153.558 Special requirements for phosphoric acid. A phosphoric acid... phosphoric acid tanks by the Commandant (CG-ENG); or (c) Made of a stainless steel that resists corrosion...

  7. 46 CFR 153.558 - Special requirements for phosphoric acid.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 5 2010-10-01 2010-10-01 false Special requirements for phosphoric acid. 153.558... Equipment Special Requirements § 153.558 Special requirements for phosphoric acid. A phosphoric acid... phosphoric acid tanks by the Commandant (CG-522); or (c) Made of a stainless steel that resists corrosion...

  8. 46 CFR 153.558 - Special requirements for phosphoric acid.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 5 2011-10-01 2011-10-01 false Special requirements for phosphoric acid. 153.558... Equipment Special Requirements § 153.558 Special requirements for phosphoric acid. A phosphoric acid... phosphoric acid tanks by the Commandant (CG-522); or (c) Made of a stainless steel that resists corrosion...

  9. Stabilizing platinum in phosphoric acid fuel cells

    NASA Technical Reports Server (NTRS)

    Remick, R. J.

    1982-01-01

    Platinum sintering on phosphoric acid fuel cell cathodes is discussed. The cathode of the phosphoric acid fuel cell uses a high surface area platinum catalyst dispersed on a conductive carbon support to minimize both cathode polarization and fabrication costs. During operation, however, the active surface area of these electrodes decreases, which in turn leads to decreased cell performance. This loss of active surface area is a major factor in the degradation of fuel cell performance over time.

  10. Corrosion free phosphoric acid fuel cell

    DOEpatents

    Wright, Maynard K.

    1990-01-01

    A phosphoric acid fuel cell with an electrolyte fuel system which supplies electrolyte via a wick disposed adjacent a cathode to an absorbent matrix which transports the electrolyte to portions of the cathode and an anode which overlaps the cathode on all sides to prevent corrosion within the cell.

  11. 40 CFR 721.6097 - Phosphoric acid derivative (generic name).

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 31 2014-07-01 2014-07-01 false Phosphoric acid derivative (generic... Specific Chemical Substances § 721.6097 Phosphoric acid derivative (generic name). (a) Chemical substance... phosphoric acid derivative (PMN P-95-284) is subject to reporting under this section for the significant...

  12. 40 CFR 721.6097 - Phosphoric acid derivative (generic name).

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 32 2012-07-01 2012-07-01 false Phosphoric acid derivative (generic... Specific Chemical Substances § 721.6097 Phosphoric acid derivative (generic name). (a) Chemical substance... phosphoric acid derivative (PMN P-95-284) is subject to reporting under this section for the significant...

  13. 40 CFR 721.6097 - Phosphoric acid derivative (generic name).

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 32 2013-07-01 2013-07-01 false Phosphoric acid derivative (generic... Specific Chemical Substances § 721.6097 Phosphoric acid derivative (generic name). (a) Chemical substance... phosphoric acid derivative (PMN P-95-284) is subject to reporting under this section for the significant...

  14. 40 CFR 721.10431 - Phosphoric acid esters (generic).

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 32 2013-07-01 2013-07-01 false Phosphoric acid esters (generic). 721... Substances § 721.10431 Phosphoric acid esters (generic). (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substances identified generically as phosphoric acid esters (PMNs...

  15. 40 CFR 721.10431 - Phosphoric acid esters (generic).

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 31 2014-07-01 2014-07-01 false Phosphoric acid esters (generic). 721... Substances § 721.10431 Phosphoric acid esters (generic). (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substances identified generically as phosphoric acid esters (PMNs...

  16. 40 CFR 721.10685 - Phosphoric acid, mixed esters (generic).

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 31 2014-07-01 2014-07-01 false Phosphoric acid, mixed esters (generic... Specific Chemical Substances § 721.10685 Phosphoric acid, mixed esters (generic). (a) Chemical substance... phosphoric acid, mixed esters (PMN P-13-170) is subject to reporting under this section for the...

  17. 40 CFR 721.6097 - Phosphoric acid derivative (generic name).

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 31 2011-07-01 2011-07-01 false Phosphoric acid derivative (generic... Specific Chemical Substances § 721.6097 Phosphoric acid derivative (generic name). (a) Chemical substance... phosphoric acid derivative (PMN P-95-284) is subject to reporting under this section for the significant...

  18. 40 CFR 721.6097 - Phosphoric acid derivative (generic name).

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 30 2010-07-01 2010-07-01 false Phosphoric acid derivative (generic... Specific Chemical Substances § 721.6097 Phosphoric acid derivative (generic name). (a) Chemical substance... phosphoric acid derivative (PMN P-95-284) is subject to reporting under this section for the significant...

  19. Phosphoric Acid Fuel Cell Technology Status

    NASA Technical Reports Server (NTRS)

    Simons, S. N.; King, R. B.; Prokopius, P. R.

    1981-01-01

    A review of the current phosphoric acid fuel cell system technology development efforts is presented both for multimegawatt systems for electric utility applications and for multikilowatt systems for on-site integrated energy system applications. Improving fuel cell performance, reducing cost, and increasing durability are the technology drivers at this time. Electrodes, matrices, intercell cooling, bipolar/separator plates, electrolyte management, and fuel selection are discussed.

  20. 40 CFR 422.50 - Applicability; description of the defluorinated phosphoric acid subcategory.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... defluorinated phosphoric acid subcategory. 422.50 Section 422.50 Protection of Environment ENVIRONMENTAL... Defluorinated Phosphoric Acid Subcategory § 422.50 Applicability; description of the defluorinated phosphoric... defluorination of phosphoric acid. Wet process phosphoric acid is dehydrated by application of heat and...

  1. 40 CFR 422.50 - Applicability; description of the defluorinated phosphoric acid subcategory.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... defluorinated phosphoric acid subcategory. 422.50 Section 422.50 Protection of Environment ENVIRONMENTAL... Defluorinated Phosphoric Acid Subcategory § 422.50 Applicability; description of the defluorinated phosphoric... defluorination of phosphoric acid. Wet process phosphoric acid is dehydrated by application of heat and...

  2. 40 CFR 422.50 - Applicability; description of the defluorinated phosphoric acid subcategory.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... defluorinated phosphoric acid subcategory. 422.50 Section 422.50 Protection of Environment ENVIRONMENTAL... Defluorinated Phosphoric Acid Subcategory § 422.50 Applicability; description of the defluorinated phosphoric... defluorination of phosphoric acid. Wet process phosphoric acid is dehydrated by application of heat and...

  3. 40 CFR 422.50 - Applicability; description of the defluorinated phosphoric acid subcategory.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... defluorinated phosphoric acid subcategory. 422.50 Section 422.50 Protection of Environment ENVIRONMENTAL... Defluorinated Phosphoric Acid Subcategory § 422.50 Applicability; description of the defluorinated phosphoric... defluorination of phosphoric acid. Wet process phosphoric acid is dehydrated by application of heat and...

  4. 40 CFR 422.50 - Applicability; description of the defluorinated phosphoric acid subcategory.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... defluorinated phosphoric acid subcategory. 422.50 Section 422.50 Protection of Environment ENVIRONMENTAL... Defluorinated Phosphoric Acid Subcategory § 422.50 Applicability; description of the defluorinated phosphoric... defluorination of phosphoric acid. Wet process phosphoric acid is dehydrated by application of heat and...

  5. Acid distribution in phosphoric acid fuel cells

    SciTech Connect

    Okae, I.; Seya, A.; Umemoto, M.

    1996-12-31

    Electrolyte acid distribution among each component of a cell is determined by capillary force when the cell is not in operation, but the distribution under the current load conditions had not been clear so far. Since the loss of electrolyte acid during operation is inevitable, it is necessary to store enough amount of acid in every cell. But it must be under the level of which the acid disturbs the diffusion of reactive gases. Accordingly to know the actual acid distribution during operation in a cell is very important. In this report, we carried out experiments to clarify the distribution using small single cells.

  6. Stabilizing platinum in phosphoric acid fuel cells

    NASA Technical Reports Server (NTRS)

    Remick, R. J.

    1981-01-01

    The cathode of the phosphoric acid fuel cell uses a high surface area platinum catalyst supported on a carbon substrate. During operation, the small platinum crystallites sinter, causing loss in cell performance. A support was developed that stabilizes platinum in the high surface area condition by retarding or preventing the sintering process. The approach is to form etch pits in the carbon by oxidizing the carbon in the presence of a metal oxide catalyst, remove the metal oxide by an acid wash, and then deposit platinum in these pits. Results confirm the formation of etch pits in each of the three supports chosen for investigation: Vulcan XC-72R, Vulcan XC-72 that was graphized at 2500 C, and Shawinigan Acetylene Black.

  7. World wide IFC phosphoric acid fuel cell implementation

    SciTech Connect

    King, J.M. Jr

    1996-04-01

    International Fuel Cells, a subsidary of United technologies Corporation, is engaged in research and development of all types of fuel cell technologies and currently manufactures alkaline fuel cell power plants for the U.S. manned space flight program and natural gas fueled stationary power plants using phosphoric acid fuel cells. This paper describes the phosphoric acid fuel cell power plants.

  8. Method for incorporating radioactive phosphoric acid solutions in concrete

    DOEpatents

    Wolf, Gary A [Kennewick, WA; Smith, Jeffrey W [Lancaster, OH; Ihle, Nathan C [Walla Walla, WA

    1984-01-01

    A method for incorporating radioactive phosphoric acid solutions in concrete is described wherein the phosphoric acid is reacted with Ca(OH).sub.2 to form a precipitate of hydroxyapatite and the hydroxyapatite is mixed with portland cement to form concrete.

  9. Method for incorporating radioactive phosphoric acid solutions in concrete

    DOEpatents

    Wolf, G.A.; Smith, J.W.; Ihle, N.C.

    1982-07-08

    A method for incorporating radioactive phosphoric acid solutions in concrete is described wherein the phosphoric acid is reacted with Ca(OH)/sub 2/ to form a precipitate of hydroxyapatite and the hydroxyapatite is mixed with Portland cement to form concrete.

  10. Proton Conductivity in Phosphoric Acid: The Role of Quantum Effects

    NASA Astrophysics Data System (ADS)

    Heres, M.; Wang, Y.; Griffin, P. J.; Gainaru, C.; Sokolov, A. P.

    2016-10-01

    Phosphoric acid has one of the highest intrinsic proton conductivities of any known liquids, and the mechanism of this exceptional conductivity remains a puzzle. Our detailed experimental studies discovered a strong isotope effect in the conductivity of phosphoric acids caused by (i) a strong isotope shift of the glass transition temperature and (ii) a significant reduction of the energy barrier by zero-point quantum fluctuations. These results suggest that the high conductivity in phosphoric acids is caused by a very efficient proton transfer mechanism, which is strongly assisted by quantum effects.

  11. 21 CFR 184.1077 - Potassium acid tartrate.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 3 2014-04-01 2014-04-01 false Potassium acid tartrate. 184.1077 Section 184.1077... GRAS § 184.1077 Potassium acid tartrate. (a) Potassium acid tartrate (C4H5KO6, CAS Reg. No. 868-14-4) is the potassium acid salt of l−(+)−tartaric acid and is also called potassium bitartrate or cream...

  12. Ionic conductivity and glass transition of phosphoric acids

    SciTech Connect

    Wang, Yangyang; Lane, Nathan A; Sun, Che-Nan; Fan, Fei; Zawodzinski, Thomas; Sokolov, Alexei P

    2013-01-01

    Here we report the low-temperature dielectric and viscoelastic properties of phosphoric acids in the range of H2O:P2O5 1.5 5. Both dielectric and viscosity measurements allow us to determine the glass-transition temperatures of phosphoric acids. The obtained glass-transition temperatures are in good agreement with previous differential scanning calorimetric measurements. Moreover, our analysis reveals moderate decoupling of ionic conductivity from structural relaxation in the vicinity of the glass transition.

  13. Materials characterization of phosphoric acid fuel cell system

    NASA Technical Reports Server (NTRS)

    Venkatesh, Srinivasan

    1986-01-01

    The component materials used in the fabrication of phosphoric acid fuel cells (PAFC) must have mechanical, chemical, and electrochemical stability to withstand the moderately high temperature (200 C) and pressure (500 kPa) and highly oxidizing nature of phosphoric acid. This study discusses the chemical and structural stability, performance and corrosion data on certain catalysts, catalyst supports, and electrode support materials used in PAFC applications.

  14. Ionic Ckonductivity and Glass Transition of Phosphoric Acids

    SciTech Connect

    Wang, Yangyang; Lane, Nathan A; Sun, Che-Nan; Fan, Fei; Zawodzinski, Thomas; Sokolov, Alexei P

    2013-01-01

    Here we report the low-temperature dielectric and viscoelastic properties of phosphoric acids in the range of H2O:P2O5 1.5 5. Both dielectric and viscosity measurements allow us to determine the glass-transition temperatures of phosphoric acids. The obtained glass-transition temperatures are in good agreement with previous differential scanning calorimetric measurements. Moreover, our analysis reveals moderate decoupling of ionic conductivity from structural relaxation in the vicinity of the glass transition.

  15. Phosphoric acid fuel cell platinum use study

    NASA Technical Reports Server (NTRS)

    Lundblad, H. L.

    1983-01-01

    The U.S. Department of Energy is promoting the private development of phosphoric acid fuel cell (PAFC) power plants for terrestrial applications. Current PAFC technology utilizes platinum as catalysts in the power electrodes. The possible repercussions that the platinum demand of PAFC power plant commercialization will have on the worldwide supply and price of platinum from the outset of commercialization to the year 2000 are investigated. The platinum demand of PAFC commercialization is estimated by developing forecasts of platinum use per unit of generating capacity and penetration of PAFC power plants into the electric generation market. The ability of the platinum supply market to meet future demands is gauged by assessing the size of platinum reserves and the capability of platinum producers to extract, refine and market sufficient quantities of these reserves. The size and timing of platinum price shifts induced by the added demand of PAFC commercialization are investigated by several analytical methods. Estimates of these price shifts are then used to calculate the subsequent effects on PAFC power plant capital costs.

  16. New applications for phosphoric acid fuel cells

    NASA Technical Reports Server (NTRS)

    Stickles, R. P.; Breuer, C. T.

    1983-01-01

    New applications for phosphoric acid fuel cells were identified and evaluated. Candidates considered included all possibilities except grid connected electric utility applications, on site total energy systems, industrial cogeneration, opportunistic use of waste hydrogen, space and military applications, and applications smaller than 10 kW. Applications identified were screened, with the most promising subjected to technical and economic evaluation using a fuel cell and conventional power system data base developed in the study. The most promising applications appear to be the underground mine locomotive and the railroad locomotive. Also interesting are power for robotic submersibles and Arctic villages. The mine locomotive is particularly attractive since it is expected that the fuel cell could command a very high price and still be competitive with the conventionally used battery system. The railroad locomotive's attractiveness results from the (smaller) premium price which the fuel cell could command over the conventional diesel electric system based on its superior fuel efficiency, and on the large size of this market and the accompanying opportunities for manufacturing economy.

  17. New applications for phosphoric acid fuel cells

    SciTech Connect

    Stickles, R.P.; Breuer, C.T.

    1983-11-01

    New applications for phosphoric acid fuel cells were identified and evaluated. Candidates considered included all possibilities except grid connected electric utility applications, on-site total energy systems, industrial co-generation, opportunistic use of waste hydrogen, space and military applications, and applications smaller than 10 kW. Applications identified were screened, with the most promising subjected to technical and economic evaluation using a fuel cell and conventional power system data base developed in the study. The most promising applications appear to be the underground mine locomotive and the railroad locomotive. Also interesting is power for robotic submersibles and Arctic villages. The mine locomotive is particularly attractive since it is expected that the fuel cell could command a very high price and still be competitive with the conventionally used battery system. The railroad locomotive's attractiveness results from the (smaller) premium price which the fuel cell could command over the conventional diesel electric system based on its superior fuel efficiency, and on the large size of this market and the accompanying opportunities for manufacturing economy.

  18. Phosphoric acid fuel cell platinum use study

    NASA Astrophysics Data System (ADS)

    Lundblad, H. L.

    1983-05-01

    The U.S. Department of Energy is promoting the private development of phosphoric acid fuel cell (PAFC) power plants for terrestrial applications. Current PAFC technology utilizes platinum as catalysts in the power electrodes. The possible repercussions that the platinum demand of PAFC power plant commercialization will have on the worldwide supply and price of platinum from the outset of commercialization to the year 2000 are investigated. The platinum demand of PAFC commercialization is estimated by developing forecasts of platinum use per unit of generating capacity and penetration of PAFC power plants into the electric generation market. The ability of the platinum supply market to meet future demands is gauged by assessing the size of platinum reserves and the capability of platinum producers to extract, refine and market sufficient quantities of these reserves. The size and timing of platinum price shifts induced by the added demand of PAFC commercialization are investigated by several analytical methods. Estimates of these price shifts are then used to calculate the subsequent effects on PAFC power plant capital costs.

  19. 21 CFR 184.1077 - Potassium acid tartrate.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Potassium acid tartrate. 184.1077 Section 184.1077... Listing of Specific Substances Affirmed as GRAS § 184.1077 Potassium acid tartrate. (a) Potassium acid tartrate (C4H5KO6, CAS Reg. No. 868-14-4) is the potassium acid salt of l−(+)−tartaric acid and is...

  20. 21 CFR 184.1077 - Potassium acid tartrate.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 3 2011-04-01 2011-04-01 false Potassium acid tartrate. 184.1077 Section 184.1077... Listing of Specific Substances Affirmed as GRAS § 184.1077 Potassium acid tartrate. (a) Potassium acid tartrate (C4H5KO6, CAS Reg. No. 868-14-4) is the potassium acid salt of l−(+)−tartaric acid and is...

  1. 21 CFR 184.1077 - Potassium acid tartrate.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 3 2012-04-01 2012-04-01 false Potassium acid tartrate. 184.1077 Section 184.1077... Listing of Specific Substances Affirmed as GRAS § 184.1077 Potassium acid tartrate. (a) Potassium acid tartrate (C4H5KO6, CAS Reg. No. 868-14-4) is the potassium acid salt of l−(+)−tartaric acid and is...

  2. Changes of carbon, nitrogen, phosphorous, and potassium content during storage of vermicomposts prepared from different substrates.

    PubMed

    Das, D; Powell, Michael; Bhattacharyya, P; Banik, P

    2014-12-01

    The study was conducted to determine the optimum storage time for vermicompost without significant loss of nutrients; nitrogen (N), phosphorous (P), and potassium (K). Cattle manure, paddy straw, municipal solid wastes, and fly ash were used for vermicompost preparations. The dynamics of N, P, and K in the vermicomposts were studied during 180 days of incubation at 28-32 °C. In general, N concentration increased in the first 90-105 days of incubation and then gradually decreased until the 180th day while P and K concentrations steadily decreased over the length of the study, with the rate of loss leveling off after 150 days. The rate of nutrient loss was directly related to the initial level, decreasing the fastest for the nutrients with the highest initial concentrations. Optimum storage times were substrate and N dependent. PMID:25208521

  3. Changes of carbon, nitrogen, phosphorous, and potassium content during storage of vermicomposts prepared from different substrates.

    PubMed

    Das, D; Powell, Michael; Bhattacharyya, P; Banik, P

    2014-12-01

    The study was conducted to determine the optimum storage time for vermicompost without significant loss of nutrients; nitrogen (N), phosphorous (P), and potassium (K). Cattle manure, paddy straw, municipal solid wastes, and fly ash were used for vermicompost preparations. The dynamics of N, P, and K in the vermicomposts were studied during 180 days of incubation at 28-32 °C. In general, N concentration increased in the first 90-105 days of incubation and then gradually decreased until the 180th day while P and K concentrations steadily decreased over the length of the study, with the rate of loss leveling off after 150 days. The rate of nutrient loss was directly related to the initial level, decreasing the fastest for the nutrients with the highest initial concentrations. Optimum storage times were substrate and N dependent.

  4. 21 CFR 582.1077 - Potassium acid tartrate.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 6 2013-04-01 2013-04-01 false Potassium acid tartrate. 582.1077 Section 582.1077 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL... Additives § 582.1077 Potassium acid tartrate. (a) Product. Potassium acid tartrate. (b) Conditions of...

  5. 21 CFR 582.1077 - Potassium acid tartrate.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 6 2014-04-01 2014-04-01 false Potassium acid tartrate. 582.1077 Section 582.1077 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL... Additives § 582.1077 Potassium acid tartrate. (a) Product. Potassium acid tartrate. (b) Conditions of...

  6. 21 CFR 582.1077 - Potassium acid tartrate.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 6 2010-04-01 2010-04-01 false Potassium acid tartrate. 582.1077 Section 582.1077 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL... Additives § 582.1077 Potassium acid tartrate. (a) Product. Potassium acid tartrate. (b) Conditions of...

  7. 21 CFR 582.1077 - Potassium acid tartrate.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 6 2011-04-01 2011-04-01 false Potassium acid tartrate. 582.1077 Section 582.1077 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL... Additives § 582.1077 Potassium acid tartrate. (a) Product. Potassium acid tartrate. (b) Conditions of...

  8. 21 CFR 582.1077 - Potassium acid tartrate.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 6 2012-04-01 2012-04-01 false Potassium acid tartrate. 582.1077 Section 582.1077 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL... Additives § 582.1077 Potassium acid tartrate. (a) Product. Potassium acid tartrate. (b) Conditions of...

  9. 40 CFR 721.6200 - Fatty acid polyamine condensate, phosphoric acid ester salts.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 30 2010-07-01 2010-07-01 false Fatty acid polyamine condensate, phosphoric acid ester salts. 721.6200 Section 721.6200 Protection of Environment ENVIRONMENTAL PROTECTION... New Uses for Specific Chemical Substances § 721.6200 Fatty acid polyamine condensate, phosphoric...

  10. Technology development for phosphoric acid fuel cell powerplant (phase 2)

    NASA Technical Reports Server (NTRS)

    Christner, L.

    1979-01-01

    The status of technology for the manufacturing and testing of 1200 sq. cm cell materials, components, and stacks for on-site integrated energy systems is assessed. Topics covered include: (1) preparation of thin layers of silicon carbide; (2) definition and control schemes for volume changes in phosphoric acid fuel cells; (3) preparation of low resin content graphite phenolic resin composites; (4) chemical corrosion of graphite-phenolic resin composites in hot phosphoric acid; (5) analysis of electrical resistance of composite materials for fuel cells; and (6) fuel cell performance and testing.

  11. 40 CFR 721.7375 - Potassium salt of polyolefin acid.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 30 2010-07-01 2010-07-01 false Potassium salt of polyolefin acid. 721... Substances § 721.7375 Potassium salt of polyolefin acid. (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified generically as a potassium salt of...

  12. 40 CFR 721.7375 - Potassium salt of polyolefin acid.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 31 2014-07-01 2014-07-01 false Potassium salt of polyolefin acid. 721... Substances § 721.7375 Potassium salt of polyolefin acid. (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified generically as a potassium salt of...

  13. 40 CFR 721.7375 - Potassium salt of polyolefin acid.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 31 2011-07-01 2011-07-01 false Potassium salt of polyolefin acid. 721... Substances § 721.7375 Potassium salt of polyolefin acid. (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified generically as a potassium salt of...

  14. 40 CFR 721.7375 - Potassium salt of polyolefin acid.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 32 2012-07-01 2012-07-01 false Potassium salt of polyolefin acid. 721... Substances § 721.7375 Potassium salt of polyolefin acid. (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified generically as a potassium salt of...

  15. 40 CFR 721.7375 - Potassium salt of polyolefin acid.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 32 2013-07-01 2013-07-01 false Potassium salt of polyolefin acid. 721... Substances § 721.7375 Potassium salt of polyolefin acid. (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified generically as a potassium salt of...

  16. Radiation hardness of the storage phosphor europium doped potassium chloride for radiation therapy dosimetry

    SciTech Connect

    Driewer, Joseph P.; Chen, Haijian; Osvet, Andres; Low, Daniel A.; Li, H. Harold

    2011-08-15

    Purpose: An important property of a reusable dosimeter is its radiation hardness, that is, its ability to retain its dosimetric merits after irradiation. The radiation hardness of europium doped potassium chloride (KCl:Eu{sup 2+}), a storage phosphor material recently proposed for radiation therapy dosimetry, is examined in this study. Methods: Pellet-style KCl:Eu{sup 2+} dosimeters, 6 mm in diameter, and 1 mm thick, were fabricated in-house for this study. The pellets were exposed by a 6 MV photon beam or in a high dose rate {sup 137}Cs irradiator. Macroscopic properties, such as radiation sensitivity, dose response linearity, and signal stability, were studied with a laboratory photostimulated luminescence (PSL) readout system. Since phosphor performance is related to the state of the storage centers and the activator, Eu{sup 2+}, in the host lattice, spectroscopic and temporal measurements were carried out in order to explore radiation-induced changes at the microscopic level. Results: KCl:Eu{sup 2+} dosimeters retained approximately 90% of their initial signal strength after a 5000 Gy dose history. Dose response was initially supralinear over the dose range of 100-700 cGy but became linear after 60 Gy. Linearity did not change significantly in the 0-5000 Gy dose history spanned in this study. Annealing high dose history chips resulted in a return of supralinearity and a recovery of sensitivity. There were no significant changes in the PSL stimulation spectra, PSL emission spectra, photoluminescence spectra, or luminescence lifetime, indicating that the PSL signal process remains intact after irradiation but at a reduced efficiency due to reparable radiation-induced perturbations in the crystal lattice. Conclusions: Systematic studies of KCl:Eu{sup 2+} material are important for understanding how the material can be optimized for radiation therapy dosimetry purposes. The data presented here indicate that KCl:Eu{sup 2+} exhibits strong radiation hardness and

  17. The first catalytic asymmetric thioacetalization by chiral phosphoric acid catalysis.

    PubMed

    Yu, Jin-Sheng; Wu, Wen-Biao; Zhou, Feng

    2016-02-21

    We report here the first catalytic asymmetric thioacetalization of salicylaldehyde and dithiol. Chiral phosphoric acid STRIP C5 is identified as a powerful catalyst for this reaction to afford various chiral dithioacetals in high to excellent yields and enantioselectivities under mild conditions. PMID:26810819

  18. Corrosion of graphite composites in phosphoric acid fuel cells

    NASA Technical Reports Server (NTRS)

    Christner, L. G.; Dhar, H. P.; Farooque, M.; Kush, A. K.

    1986-01-01

    Polymers, polymer-graphite composites and different carbon materials are being considered for many of the fuel cell stack components. Exposure to concentrated phosphoric acid in the fuel cell environment and to high anodic potential results in corrosion. Relative corrosion rates of these materials, failure modes, plausible mechanisms of corrosion and methods for improvement of these materials are investigated.

  19. 46 CFR 151.50-23 - Phosphoric acid.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) CERTAIN BULK DANGEROUS CARGOES BARGES CARRYING BULK LIQUID HAZARDOUS MATERIAL CARGOES Special Requirements § 151.50-23 Phosphoric acid. (a) The term... transported in bulk cargo tanks except upon authorization by the Commandant (CG-522). (f) The requirements...

  20. 46 CFR 151.50-23 - Phosphoric acid.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) CERTAIN BULK DANGEROUS CARGOES BARGES CARRYING BULK LIQUID HAZARDOUS MATERIAL CARGOES Special Requirements § 151.50-23 Phosphoric acid. (a) The term... transported in bulk cargo tanks except upon authorization by the Commandant (CG-ENG). (f) The requirements...

  1. 46 CFR 151.50-23 - Phosphoric acid.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) CERTAIN BULK DANGEROUS CARGOES BARGES CARRYING BULK LIQUID HAZARDOUS MATERIAL CARGOES Special Requirements § 151.50-23 Phosphoric acid. (a) The term... transported in bulk cargo tanks except upon authorization by the Commandant (CG-ENG). (f) The requirements...

  2. 46 CFR 151.50-23 - Phosphoric acid.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) CERTAIN BULK DANGEROUS CARGOES BARGES CARRYING BULK LIQUID HAZARDOUS MATERIAL CARGOES Special Requirements § 151.50-23 Phosphoric acid. (a) The term... transported in bulk cargo tanks except upon authorization by the Commandant (CG-ENG). (f) The requirements...

  3. 46 CFR 151.50-23 - Phosphoric acid.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) CERTAIN BULK DANGEROUS CARGOES BARGES CARRYING BULK LIQUID HAZARDOUS MATERIAL CARGOES Special Requirements § 151.50-23 Phosphoric acid. (a) The term... transported in bulk cargo tanks except upon authorization by the Commandant (CG-522). (f) The requirements...

  4. 40 CFR 721.10220 - Phosphoric acid, polymer with cycloaliphatic diglycidyl ether, alkylethers (generic).

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 31 2014-07-01 2014-07-01 false Phosphoric acid, polymer with... SUBSTANCES Significant New Uses for Specific Chemical Substances § 721.10220 Phosphoric acid, polymer with... to reporting. (1) The chemical substance identified generically as phosphoric acid, polymer...

  5. 40 CFR 721.10220 - Phosphoric acid, polymer with cycloaliphatic diglycidyl ether, alkylethers (generic).

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 32 2012-07-01 2012-07-01 false Phosphoric acid, polymer with... SUBSTANCES Significant New Uses for Specific Chemical Substances § 721.10220 Phosphoric acid, polymer with... to reporting. (1) The chemical substance identified generically as phosphoric acid, polymer...

  6. 40 CFR 721.10220 - Phosphoric acid, polymer with cycloaliphatic diglycidyl ether, alkylethers (generic).

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 32 2013-07-01 2013-07-01 false Phosphoric acid, polymer with... SUBSTANCES Significant New Uses for Specific Chemical Substances § 721.10220 Phosphoric acid, polymer with... to reporting. (1) The chemical substance identified generically as phosphoric acid, polymer...

  7. 40 CFR 721.10220 - Phosphoric acid, polymer with cycloaliphatic diglycidyl ether, alkylethers (generic).

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 31 2011-07-01 2011-07-01 false Phosphoric acid, polymer with... SUBSTANCES Significant New Uses for Specific Chemical Substances § 721.10220 Phosphoric acid, polymer with... to reporting. (1) The chemical substance identified generically as phosphoric acid, polymer...

  8. 40 CFR 180.1210 - Phosphorous acid; exemption from the requirement of a tolerance.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 23 2010-07-01 2010-07-01 false Phosphorous acid; exemption from the... Exemptions From Tolerances § 180.1210 Phosphorous acid; exemption from the requirement of a tolerance. An exemption from the requirement of a tolerance is established for residues of phosphorous acid and...

  9. 40 CFR 180.1210 - Phosphorous acid; exemption from the requirement of a tolerance.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 24 2014-07-01 2014-07-01 false Phosphorous acid; exemption from the... Exemptions From Tolerances § 180.1210 Phosphorous acid; exemption from the requirement of a tolerance. An exemption from the requirement of a tolerance is established for residues of phosphorous acid and...

  10. 40 CFR 180.1210 - Phosphorous acid; exemption from the requirement of a tolerance.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 25 2013-07-01 2013-07-01 false Phosphorous acid; exemption from the... Exemptions From Tolerances § 180.1210 Phosphorous acid; exemption from the requirement of a tolerance. An exemption from the requirement of a tolerance is established for residues of phosphorous acid and...

  11. 40 CFR 180.1210 - Phosphorous acid; exemption from the requirement of a tolerance.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 24 2011-07-01 2011-07-01 false Phosphorous acid; exemption from the... Exemptions From Tolerances § 180.1210 Phosphorous acid; exemption from the requirement of a tolerance. An exemption from the requirement of a tolerance is established for residues of phosphorous acid and...

  12. 40 CFR 180.1210 - Phosphorous acid; exemption from the requirement of a tolerance.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 25 2012-07-01 2012-07-01 false Phosphorous acid; exemption from the... Exemptions From Tolerances § 180.1210 Phosphorous acid; exemption from the requirement of a tolerance. An exemption from the requirement of a tolerance is established for residues of phosphorous acid and...

  13. Synthesis of novel acid electrolytes for phosphoric acid fuel cells

    NASA Astrophysics Data System (ADS)

    Adcock, James L.

    1988-11-01

    A 40 millimole per hour scale aerosol direct fluorination reactor was constructed. F-Methyl F-4-methoxybutanoate and F-4-methoxybutanoyl fluoride were synthesized by aerosol direct fluorination of methyl 4-methoxybutanoate. Basic hydrolysis of the perfluorinated derivatives produce sodium F-4 methoxybutanoate which was pyrolyzed to F-3-methoxy-1-propene. Purification and shipment of 33 grams of F-3-methoxy-1-propene followed. Syntheses by analogous methods allowed production and shipment of 5 grams of F-3-ethoxy 1-propene, 18 grams of F-3-(2-methoxy.ethoxy) 1-propene, and 37 grams of F-3,3-dimethyl 1-butene. Eighteen grams of F-2,2-dimethyl 1-chloropropane was produced directly and shipped. As suggested by other contractors, 5 grams of F-3-methoxy 1-iodopropane, and 5 grams of F-3-(2-methoxy.ethoxy) 1-iodopropane were produced by converting the respective precursor acid sodium salts produced for olefin synthesis to the silver salts and pyrolyzing them with iodine. Each of these compounds was prepared for the first time by the aerosol fluorination process during the course of the contract. These samples were provided to other Gas Research Institute (GRI) contractors for synthesis of perfluorinated sulfur (VI) and phosphorous (V) acids.

  14. PROCESS FOR RECOVERING URANIUM FROM AQUEOUS PHOSPHORIC ACID LIQUORS

    DOEpatents

    Schmitt, J.M.

    1962-09-01

    A liquid-liquid extraction method is given for recovering uranium values from aqueous solutions. An acidic aqueous solution containing uranium values is contacted with an organic phase comprising an organic diluent and the reaction product of phosphorous pentoxide and a substantially pure dialkylphosphoric acid. The uranium values are transferred to the organic phase even from aqueous solutions containing a high concentration of strong uranium complexing agents such as phosphate ions. (AEC)

  15. Sodium and Potassium Interactions with Nucleic Acids.

    PubMed

    Auffinger, Pascal; D'Ascenzo, Luigi; Ennifar, Eric

    2016-01-01

    Metal ions are essential cofactors for the structure and functions of nucleic acids. Yet, the early discovery in the 70s of the crucial role of Mg(2+) in stabilizing tRNA structures has occulted for a long time the importance of monovalent cations. Renewed interest in these ions was brought in the late 90s by the discovery of specific potassium metal ions in the core of a group I intron. Their importance in nucleic acid folding and catalytic activity is now well established. However, detection of K(+) and Na(+) ions is notoriously problematic and the question about their specificity is recurrent. Here we review the different methods that can be used to detect K(+) and Na(+) ions in nucleic acid structures such as X-ray crystallography, nuclear magnetic resonance or molecular dynamics simulations. We also discuss specific versus non-specific binding to different structures through various examples. PMID:26860302

  16. Solid-state actinide acid phosphites from phosphorous acid melts

    SciTech Connect

    Oh, George N.; Burns, Peter C.

    2014-07-01

    The reaction of UO{sub 3} and H{sub 3}PO{sub 3} at 100 °C and subsequent reaction with dimethylformamide (DMF) produces crystals of the compound (NH{sub 2}(CH{sub 3}){sub 2})[UO{sub 2}(HPO{sub 2}OH)(HPO{sub 3})]. This compound crystallizes in space group P2{sub 1}/n and consists of layers of uranyl pentagonal bipyramids that share equatorial vertices with phosphite units, separated by dimethylammonium. In contrast, the reaction of phosphorous acid and actinide oxides at 210 °C produces a viscous syrup. Subsequent dilution in solvents and use of standard solution-state methods results in the crystallization of two polymorphs of the actinide acid phosphites An(HPO{sub 2}OH){sub 4} (An=U, Th) and of the mixed acid phosphite–phosphite U(HPO{sub 3})(HPO{sub 2}OH){sub 2}(H{sub 2}O)·2(H{sub 2}O). α- and β-An(HPO{sub 2}OH){sub 4} crystallize in space groups C2/c and P2{sub 1}/n, respectively, and comprise a three-dimensional network of An{sup 4+} cations in square antiprismatic coordination corner-sharing with protonated phosphite units, whereas U(HPO{sub 3})(HPO{sub 2}OH){sub 2}(H{sub 2}O){sub 2}·(H{sub 2}O) crystallizes in a layered structure in space group Pbca that is composed of An{sup 4+} cations in square antiprismatic coordination corner-sharing with protonated phosphites and water ligands. We discuss our findings in using solid inorganic reagents to produce a solution-workable precursor from which solid-state compounds can be crystallized. - Graphical abstract: Reaction of UO{sub 3} and H{sub 3}PO{sub 3} at 100 °C and subsequent reaction with DMF produces crystals of (NH{sub 2}(CH{sub 3}){sub 2})[UO{sub 2}(HPO{sub 2}OH)(HPO{sub 3})] with a layered structure. Reaction of phosphorous acid and actinide oxides at 210 °C produces a viscous syrup and further solution-state reactions result in the crystallization of the actinide acid phosphites An(HPO{sub 2}OH){sub 4} (An=U, Th), with a three-dimensional network structure, and the mixed acid phosphite

  17. Solid-state actinide acid phosphites from phosphorous acid melts

    NASA Astrophysics Data System (ADS)

    Oh, George N.; Burns, Peter C.

    2014-07-01

    The reaction of UO3 and H3PO3 at 100 °C and subsequent reaction with dimethylformamide (DMF) produces crystals of the compound (NH2(CH3)2)[UO2(HPO2OH)(HPO3)]. This compound crystallizes in space group P21/n and consists of layers of uranyl pentagonal bipyramids that share equatorial vertices with phosphite units, separated by dimethylammonium. In contrast, the reaction of phosphorous acid and actinide oxides at 210 °C produces a viscous syrup. Subsequent dilution in solvents and use of standard solution-state methods results in the crystallization of two polymorphs of the actinide acid phosphites An(HPO2OH)4 (An=U, Th) and of the mixed acid phosphite-phosphite U(HPO3)(HPO2OH)2(H2O)·2(H2O). α- and β-An(HPO2OH)4 crystallize in space groups C2/c and P21/n, respectively, and comprise a three-dimensional network of An4+ cations in square antiprismatic coordination corner-sharing with protonated phosphite units, whereas U(HPO3)(HPO2OH)2(H2O)2·(H2O) crystallizes in a layered structure in space group Pbca that is composed of An4+ cations in square antiprismatic coordination corner-sharing with protonated phosphites and water ligands. We discuss our findings in using solid inorganic reagents to produce a solution-workable precursor from which solid-state compounds can be crystallized.

  18. Enzymatic saccharification coupling with polyester recovery from cotton-based waste textiles by phosphoric acid pretreatment.

    PubMed

    Shen, Fei; Xiao, Wenxiong; Lin, Lili; Yang, Gang; Zhang, Yanzong; Deng, Shihuai

    2013-02-01

    In order to recycle the cotton-based waste textiles, a novel process was designed for pretreating waste textiles with phosphoric acid to recover polyester and fermentable sugar. The effects of pretreatment conditions including, phosphoric acid concentration, pretreatment temperature, time, and ratio of textiles and phosphoric acid were thoroughly investigated. Results indicated the mentioned four factors had significant influences on sugar and polyester recovery. Almost complete polyester recovery was achieved by enhancing phosphoric acid concentration, temperature and pretreatment time or reducing the ratio of textiles and phosphoric acid. However, these behaviors decreased the sugar recovery seriously. 100% polyester recovery with a maximum sugar recovery of 79.2% was achieved at the optimized conditions (85% phosphoric acid, 50°C, 7h, and the ratio of 1:15). According to the technical and cost-benefit analysis, it was technically feasible and potentially profitable to recover polyester and sugar from waste textiles by phosphoric acid pretreatment.

  19. Methodology for detecting residual phosphoric acid in polybenzoxazole fibers.

    PubMed

    Park, Eun Su; Sieber, John; Guttman, Charles; Rice, Kirk; Flynn, Kathleen; Watson, Stephanie; Holmes, Gale

    2009-12-01

    Because of the premature failure of in-service soft-body armor containing the ballistic fiber poly[(benzo-[1,2-d:5,4-d']-benzoxazole-2,6-diyl)-1,4-phenylene] (PBO), the Office of Law Enforcement Standards (OLES) at the National Institute of Standards and Technology (NIST) initiated a research program to investigate the reasons for this failure and to develop testing methodologies and protocols to ensure that these types of failures do not reoccur. In a report that focused on the stability of the benzoxazole ring that is characteristic of PBO fibers, Holmes, G. A.; Rice, K.; Snyder, C. R. J. Mater. Sci. 2006, 41, 4105-4116, showed that the benzoxazole ring was susceptible to hydrolytic degradation under acid conditions. Because of the processing conditions for the fibers, it is suspected by many researchers that residual phosphoric acid may cause degradation of the benzoxazole ring resulting in a reduction of ballistic performance. Prior to this work, no definitive data have indicated the presence of phosphoric acid since the residual phosphorus is not easily extracted and the processed fibers are known to incorporate phosphorus containing processing aids. Methods to efficiently extract phosphorus from PBO are described in this article. Further, characterization determined that the majority of the extractable phosphorus in PBO was attributed to the octyldecyl phosphate processing aid with some phosphoric acid being detected. Analysis by matrix assisted laser desorption ionization of model PBO oligomers indicates that the nonextractable phosphorus is attached to the PBO polymer chain as a monoaryl phosphate ester. The response of model aryl phosphates to NaOH exposure indicates that monoaryl phosphate ester is stable to NaOH washes used in the manufacturing process to neutralize the phosphoric acid reaction medium and to extract residual phosphorus impurities. PMID:19899783

  20. Methodology for detecting residual phosphoric acid in polybenzoxazole fibers.

    PubMed

    Park, Eun Su; Sieber, John; Guttman, Charles; Rice, Kirk; Flynn, Kathleen; Watson, Stephanie; Holmes, Gale

    2009-12-01

    Because of the premature failure of in-service soft-body armor containing the ballistic fiber poly[(benzo-[1,2-d:5,4-d']-benzoxazole-2,6-diyl)-1,4-phenylene] (PBO), the Office of Law Enforcement Standards (OLES) at the National Institute of Standards and Technology (NIST) initiated a research program to investigate the reasons for this failure and to develop testing methodologies and protocols to ensure that these types of failures do not reoccur. In a report that focused on the stability of the benzoxazole ring that is characteristic of PBO fibers, Holmes, G. A.; Rice, K.; Snyder, C. R. J. Mater. Sci. 2006, 41, 4105-4116, showed that the benzoxazole ring was susceptible to hydrolytic degradation under acid conditions. Because of the processing conditions for the fibers, it is suspected by many researchers that residual phosphoric acid may cause degradation of the benzoxazole ring resulting in a reduction of ballistic performance. Prior to this work, no definitive data have indicated the presence of phosphoric acid since the residual phosphorus is not easily extracted and the processed fibers are known to incorporate phosphorus containing processing aids. Methods to efficiently extract phosphorus from PBO are described in this article. Further, characterization determined that the majority of the extractable phosphorus in PBO was attributed to the octyldecyl phosphate processing aid with some phosphoric acid being detected. Analysis by matrix assisted laser desorption ionization of model PBO oligomers indicates that the nonextractable phosphorus is attached to the PBO polymer chain as a monoaryl phosphate ester. The response of model aryl phosphates to NaOH exposure indicates that monoaryl phosphate ester is stable to NaOH washes used in the manufacturing process to neutralize the phosphoric acid reaction medium and to extract residual phosphorus impurities.

  1. Integral edge seals for phosphoric acid fuel cells

    DOEpatents

    Granata, Jr., Samuel J.; Woodle, Boyd M.; Dunyak, Thomas J.

    1992-01-01

    A phosphoric acid fuel cell having integral edge seals formed by an elastomer permeating an outer peripheral band contiguous with the outer peripheral edges of the cathode and anode assemblies and the matrix to form an integral edge seal which is reliable, easy to manufacture and has creep characteristics similar to the anode, cathode and matrix assemblies inboard of the seals to assure good electrical contact throughout the life of the fuel cell.

  2. Status of commercial phosphoric acid fuel cell system development

    NASA Technical Reports Server (NTRS)

    Warshay, M.; Prokopius, P. R.; Simons, S. N.; King, R. B.

    1981-01-01

    A review of the current commercial phosphoric acid fuel cell system development efforts is presented. In both the electric utility and on-site integrated energy system applications, reducing cost and increasing reliability are important. The barrier to the attainment of these goals has been materials. The differences in approach among the three major participants are their technological features, including electrodes, matrices, intercell cooling, bipolar/separator plates, electrolyte management, fuel selection and system design philosophy.

  3. Cathode catalysts for primary phosphoric acid fuel cells

    NASA Technical Reports Server (NTRS)

    1981-01-01

    Alkylation or carbon Vulcan XC-72, the support carbon, was shown to provide the most stable bond type for linking cobalt dehydrodibenzo tetraazannulene (CoTAA) to the surface of the carbon; this result is based on data obtained by cyclic voltammetry, pulse voltammetry and by release of 14C from bonded CoTAA. Half-cell tests at 100 C in 85% phosphoric acid showed that CoTAA bonded to the surface of carbon (Vulcan XC-72) via an alkylation procedure is a more active catalyst than is platinum based on a factor of two improvement in Tafel slope; dimeric CoTAA had catalytic activity equal to platinum. Half-cell tests also showed that bonded CoTAA catalysts do not suffer a loss in potential when air is used as a fuel rather than oxygen. Commercially available polytetrafluroethylene (PTFE) was shown to be unstable in the fuel cell environment with degradation occurring in 2000 hours or less. The PTFE was stressed at 200 C in concentrated phosphoric acid as well as electrochemically stressed in 150 C concentrated phosphoric acid; the surface chemistry of PTFE was observed to change significantly. Radiolabeled PTFE was prepared and used to verify that such chemical changes also occur in the primary fuel cell environment.

  4. 40 CFR 721.6200 - Fatty acid polyamine condensate, phosphoric acid ester salts.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 32 2013-07-01 2013-07-01 false Fatty acid polyamine condensate... New Uses for Specific Chemical Substances § 721.6200 Fatty acid polyamine condensate, phosphoric acid... substances identified as fatty acid polyamine condensate, phosphate ester salts (PMNs P-90-1984 and...

  5. Full scale phosphoric acid fuel cell stack technology development

    NASA Technical Reports Server (NTRS)

    Christner, L.; Faroque, M.

    1984-01-01

    The technology development for phosphoric acid fuel cells is summarized. The preparation, heat treatment, and characterization of carbon composites used as bipolar separator plates are described. Characterization included resistivity, porosity, and electrochemical corrosion. High density glassy carbon/graphite composites performed well in long-term fuel cell endurance tests. Platinum alloy cathode catalysts and low-loaded platinum electrodes were evaluated in 25 sq cm cells. Although the alloys displayed an initial improvement, some of this improvement diminished after a few thousand hours of testing. Low platinum loading (0.12 mg/sq cm anodes and 0.3 mg/sq cm cathodes) performed nearly as well as twice this loading. A selectively wetproofed anode backing paper was tested in a 5 by 15 inch three-cell stack. This material may provide for acid volume expansion, acid storage, and acid lateral distribution.

  6. 40 CFR 721.10177 - Phosphoric acid, yttrium(3+) salt (1:1).

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 31 2014-07-01 2014-07-01 false Phosphoric acid, yttrium(3+) salt (1:1... Specific Chemical Substances § 721.10177 Phosphoric acid, yttrium(3+) salt (1:1). (a) Chemical substance... acid, yttrium(3+) salt (1:1) (PMN P-04-153; CAS No. 13990-54-0) is subject to reporting under...

  7. 40 CFR 721.10177 - Phosphoric acid, yttrium(3+) salt (1:1).

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 32 2013-07-01 2013-07-01 false Phosphoric acid, yttrium(3+) salt (1:1... Specific Chemical Substances § 721.10177 Phosphoric acid, yttrium(3+) salt (1:1). (a) Chemical substance... acid, yttrium(3+) salt (1:1) (PMN P-04-153; CAS No. 13990-54-0) is subject to reporting under...

  8. 40 CFR 721.10177 - Phosphoric acid, yttrium(3+) salt (1:1).

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 32 2012-07-01 2012-07-01 false Phosphoric acid, yttrium(3+) salt (1:1... Specific Chemical Substances § 721.10177 Phosphoric acid, yttrium(3+) salt (1:1). (a) Chemical substance... acid, yttrium(3+) salt (1:1) (PMN P-04-153; CAS No. 13990-54-0) is subject to reporting under...

  9. 40 CFR 721.10177 - Phosphoric acid, yttrium(3+) salt (1:1).

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 30 2010-07-01 2010-07-01 false Phosphoric acid, yttrium(3+) salt (1:1... Specific Chemical Substances § 721.10177 Phosphoric acid, yttrium(3+) salt (1:1). (a) Chemical substance... acid, yttrium(3+) salt (1:1) (PMN P-04-153; CAS No. 13990-54-0) is subject to reporting under...

  10. 40 CFR 721.10177 - Phosphoric acid, yttrium(3+) salt (1:1).

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 31 2011-07-01 2011-07-01 false Phosphoric acid, yttrium(3+) salt (1:1... Specific Chemical Substances § 721.10177 Phosphoric acid, yttrium(3+) salt (1:1). (a) Chemical substance... acid, yttrium(3+) salt (1:1) (PMN P-04-153; CAS No. 13990-54-0) is subject to reporting under...

  11. Nitrogen, Phosphor, and Potassium Level in Soil and Oil Palm Tree at various Composition of plant species mixtures grown

    NASA Astrophysics Data System (ADS)

    Hanum, C.; Rauf, A.; Fazrin, D. A.; Habibi, A. R.

    2016-08-01

    In productive oil palm plantation areas, poor vegetation is generally caused by low light intensity. This condition causes excessive erosion and decreases soil fertility. One of the efforts for soil and water conservation at oil palm plantations is through increased vegetation diversity. The changes of soil and plant nitrogen, phosporus, and potassium content, observed by planting two types of herbs under oil palm tree, with different compositions. Vegetation composition was set as: Arachis glabrata 100%; Stenotaprum secundatum 100%; Arachis glabrata 50% + Stenotaprum secundatum 50%; Arachis glabrata 75% + Stenotaprum secundatum 25%; Arachis glabrata 25% + Stenotaprum secundatum 75%. The shoot and root fresh/dry weight, nutrient content (nitrogen, phosphor, and potassium) of each cutting were measured at the end of the experiment. Ten of treatment plant were harvested and divided shoots and roots after washing out of soil. Biomass samples were dried at 70 °C for 48 h and weighed. The total N and its proportional concentration (N%) were analyzed with the micro- Kjeldahl method. Potasium analyzing with flamephotometry, and phosphor and from samples was determined by analyzing with spectrophotometry method. The results showed the highest shoot growth of A.glabarata if planting was mixed with S. secundatum, but the result was different with S.secundatum being superior if planted with monoculture system. Combination of interrow cultivation is more recommended for soil conservation and nutrient maintenance in palm oil trees were A. Glabarata 75% + S.secundatum 25%.

  12. Technology Development for Phosphoric Acid Fuel Cell Powerplant, Phase 2

    NASA Technical Reports Server (NTRS)

    Christner, L.

    1980-01-01

    The technology development for materials, cells, and reformers for on site integrated energy systems is described. The carbonization of 25 cu cm, 350 cu cm, and 1200 cu cm cell test hardware was accomplished and the performance of 25 cu cm fuel cells was improved. Electrochemical corrosion rates of graphite/phenolic resin composites in phosphoric acid were determined. Three cells (5 in by 15 in stacks) were operated for longer than 7000 hours. Specified endurance stacks completed a total of 4000 hours. An electrically heated reformer was tested and is to provide hydrogen for 23 cell fuel cell stack.

  13. Catalyst and electrode research for phosphoric acid fuel cells

    NASA Technical Reports Server (NTRS)

    Antoine, A. C.; King, R. B.

    1987-01-01

    An account is given of the development status of phosphoric acid fuel cells' high performance catalyst and electrode materials. Binary alloys have been identified which outperform the baseline platinum catalyst; it has also become apparent that pressurized operation is required to reach the desired efficiencies, calling in turn for the use of graphitized carbon blacks in the role of catalyst supports. Efforts to improve cell performance and reduce catalyst costs have led to the investigation of a class of organometallic cathode catalysts represented by the tetraazaannulenes, and a mixed catalyst which is a mixture of carbons catalyzed with an organometallic and a noble metal.

  14. Commercial phosphoric acid fuel cell system technology development

    NASA Technical Reports Server (NTRS)

    Prokopius, P. R.; Warshay, M.; Simons, S. N.; King, R. B.

    1979-01-01

    A review of the current commercial phosphoric acid fuel cell system technology development efforts is presented. In both the electric utility and on-site integrated energy system applications, reducing cost and increasing reliability are the technology drivers at this time. The longstanding barrier to the attainment of these goals, which manifests itself in a number of ways, has been materials. The differences in approach among the three major participants (United Technologies Corporation (UTC), Westinghouse Electric Corporation/Energy Research Corporation (ERC), and Engelhard Industries) and their unique technological features, including electrodes, matrices, intercell cooling, bipolar/separator plates, electrolyte management, fuel selection and system design philosophy are discussed.

  15. Technology development for phosphoric acid fuel cell powerplant, phase 2

    NASA Technical Reports Server (NTRS)

    Christner, L.

    1979-01-01

    Component development has resulted in routine molding of 12 in. by 17 in. bipolar plates with 80 percent acceptance. A 5 C per hour post-cure heating cycle for these plates was found to give blister free materials. Lowering the resin in a bipolar plate content from 32 percent to 22 percent decreases the resistivity more than 50 percent. Evaluation of the corrosion resistance of Novolak and Resol resins at 185 C in phosphoric acid indicates a slow etch. aerosol modified phenolics, however, decompose rapidly. Estimates of acid loss by the use of analytical expressions known as Margule, van Laar, and Wilson equations were not satisfactory. Experimental evaluation of the P4O10 vapor concentration of 103 wt percent acid at 191 C provided a value of 2 ppm. This value is based on a single experiment.

  16. 40 CFR 721.6200 - Fatty acid polyamine condensate, phosphoric acid ester salts.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ..., phosphoric acid ester salts. 721.6200 Section 721.6200 Protection of Environment ENVIRONMENTAL PROTECTION... ester salts. (a) Chemical substances and significant new uses subject to reporting. (1) The chemical substances identified as fatty acid polyamine condensate, phosphate ester salts (PMNs P-90-1984 and...

  17. Nitric-phosphoric acid treatment of TRU wastes

    SciTech Connect

    Smith, J.R.; Pierce, R.A.; Sturcken, E.F.

    1993-09-30

    A general process is being developed for the treatment of solid TRU and hazardous organic waste. Experimental data indicates that 100 lb/hr of aliphatic organic (plastics) and 1,000 lb/hr of non-aliphatic organic compounds can be quantitatively oxidized in a 1,000 gallon reaction vessel. The process uses dilute nitric acid in a concentrated phosphoric acid media as the main oxidant for the organic compounds. Phosphoric acid allows oxidation at temperatures up to 200{degrees}C and is relatively non-corrosive on 304-L stainless steel, especially at room temperature. Many organic materials have been completely oxidized to CO{sub 2}, CO, and inorganic acids in a 0.1M HNO{sub 3}/14.8M H{sub 3}PO{sub 4} solution. Addition of 0.001M Pd{sup 2+} reduces the CO to near 1% of the released carbon gases. To accomplish complete oxidation the solution temperature must be maintained above 130--150{degrees}C. Organic materials quantitatively destroyed include neoprene, cellulose, EDTA, TBP, tartaric acid, and nitromethane. The oxidation is usually complete in a few hours for soluble organic materials. The oxidation rate for non-aliphatic organic solids is moderately fast and surface area dependent. Polyethylene is quantitatively oxidized in 1.0M HNO{sub 3}/13.8M H{sub 3}PO{sub 4} solution while contained in pressure vessels heated with microwave energy. This is probably due to the high concentrations of NO{sub 2}{center_dot} obtained in the reaction environment.

  18. Effects of ultrasonic fields in the phosphoric acid process

    NASA Technical Reports Server (NTRS)

    Kowalska, E.; Mizera, J.; Jakobiec, H.

    1974-01-01

    A process of apatite decomposition with sulfuric acid was studied under the influence of ultrasound in the phosphoric acid production process. The studies were carried out with and without ultrasonic fields in the reaction mixture, which resembled the mixing ratio used in technical production processes. Ultrasound with a frequency of 20 kHz and an intensity of 1 W/sq cm was used in the studies. A very favorable ultrasonic effect upon the degree of apatite decomposition was observed. The ultrasonic field affects the shape of byproduct gypsum crystals. In the H3PO4 production process without ultrasound, the byproduct gypsum crystallizes as long, thin needles which cause problems in filtration. In the trials involving the application of wound, gypsum crystallized in the form of small platelets possessing a favorable ratio of length to width.

  19. 21 CFR 175.260 - Partial phosphoric acid esters of polyester resins.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 3 2011-04-01 2011-04-01 false Partial phosphoric acid esters of polyester resins... of polyester resins. Partial phosphoric acid esters of polyester resins identified in this section... resins are prepared by the reaction of trimellitic anhydride with 2,2-dimethyl-1,3-propanediol...

  20. Structural changes of oil palm empty fruit bunch (OPEFB) after fungal and phosphoric acid pretreatment.

    PubMed

    Isroi; Ishola, Mofoluwake M; Millati, Ria; Syamsiah, Siti; Cahyanto, Muhammad N; Niklasson, Claes; Taherzadeh, Mohammad J

    2012-01-01

    Oil palm empty fruit bunch (OPEFB) was pretreated using white-rot fungus Pleurotus floridanus, phosphoric acid or their combination, and the results were evaluated based on the biomass components, and its structural and morphological changes. The carbohydrate losses after fungal, phosphoric acid, and fungal followed by phosphoric acid pretreatments were 7.89%, 35.65%, and 33.77%, respectively. The pretreatments changed the hydrogen bonds of cellulose and linkages between lignin and carbohydrate, which is associated with crystallinity of cellulose of OPEFB. Lateral Order Index (LOI) of OPEFB with no pretreatment, with fungal, phosphoric acid, and fungal followed by phosphoric acid pretreatments were 2.77, 1.42, 0.67, and 0.60, respectively. Phosphoric acid pretreatment showed morphological changes of OPEFB, indicated by the damage of fibre structure into smaller particle size. The fungal-, phosphoric acid-, and fungal followed by phosphoric acid pretreatments have improved the digestibility of OPEFB's cellulose by 4, 6.3, and 7.4 folds, respectively. PMID:23247371

  1. 40 CFR 721.10140 - Phosphoric acid, tin (2+) salt (2:3).

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 32 2012-07-01 2012-07-01 false Phosphoric acid, tin (2+) salt (2:3... Specific Chemical Substances § 721.10140 Phosphoric acid, tin (2+) salt (2:3). (a) Chemical substance and...+) salt (2:3) (PMN P-06-33, CAS No. 15578-32-2) is subject to reporting under this section for...

  2. 40 CFR 721.10140 - Phosphoric acid, tin (2+) salt (2:3).

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 32 2013-07-01 2013-07-01 false Phosphoric acid, tin (2+) salt (2:3... Specific Chemical Substances § 721.10140 Phosphoric acid, tin (2+) salt (2:3). (a) Chemical substance and...+) salt (2:3) (PMN P-06-33, CAS No. 15578-32-2) is subject to reporting under this section for...

  3. 40 CFR 721.10140 - Phosphoric acid, tin (2+) salt (2:3).

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 30 2010-07-01 2010-07-01 false Phosphoric acid, tin (2+) salt (2:3... Specific Chemical Substances § 721.10140 Phosphoric acid, tin (2+) salt (2:3). (a) Chemical substance and...+) salt (2:3) (PMN P-06-33, CAS No. 15578-32-2) is subject to reporting under this section for...

  4. 40 CFR 721.10140 - Phosphoric acid, tin (2+) salt (2:3).

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 31 2011-07-01 2011-07-01 false Phosphoric acid, tin (2+) salt (2:3... Specific Chemical Substances § 721.10140 Phosphoric acid, tin (2+) salt (2:3). (a) Chemical substance and...+) salt (2:3) (PMN P-06-33, CAS No. 15578-32-2) is subject to reporting under this section for...

  5. 40 CFR 721.10140 - Phosphoric acid, tin (2+) salt (2:3).

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 31 2014-07-01 2014-07-01 false Phosphoric acid, tin (2+) salt (2:3... Specific Chemical Substances § 721.10140 Phosphoric acid, tin (2+) salt (2:3). (a) Chemical substance and...+) salt (2:3) (PMN P-06-33, CAS No. 15578-32-2) is subject to reporting under this section for...

  6. 40 CFR 721.6100 - Phosphoric acid, C6-12-alkyl esters, compounds with 2-(dibutylamino) ethanol.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 31 2011-07-01 2011-07-01 false Phosphoric acid, C6-12-alkyl esters... Significant New Uses for Specific Chemical Substances § 721.6100 Phosphoric acid, C6-12-alkyl esters... reporting. (1) The chemical substances identified as phosphoric acid, C6-12-alkyl esters, compounds with...

  7. 40 CFR 721.6100 - Phosphoric acid, C6-12-alkyl esters, compounds with 2-(dibutylamino) ethanol.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 32 2012-07-01 2012-07-01 false Phosphoric acid, C6-12-alkyl esters... Significant New Uses for Specific Chemical Substances § 721.6100 Phosphoric acid, C6-12-alkyl esters... reporting. (1) The chemical substances identified as phosphoric acid, C6-12-alkyl esters, compounds with...

  8. 40 CFR 721.6100 - Phosphoric acid, C6-12-alkyl esters, compounds with 2-(dibutylamino) ethanol.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 30 2010-07-01 2010-07-01 false Phosphoric acid, C6-12-alkyl esters... Significant New Uses for Specific Chemical Substances § 721.6100 Phosphoric acid, C6-12-alkyl esters... reporting. (1) The chemical substances identified as phosphoric acid, C6-12-alkyl esters, compounds with...

  9. 40 CFR 721.6100 - Phosphoric acid, C6-12-alkyl esters, compounds with 2-(dibutylamino) ethanol.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 31 2014-07-01 2014-07-01 false Phosphoric acid, C6-12-alkyl esters... Significant New Uses for Specific Chemical Substances § 721.6100 Phosphoric acid, C6-12-alkyl esters... reporting. (1) The chemical substances identified as phosphoric acid, C6-12-alkyl esters, compounds with...

  10. 40 CFR 721.6100 - Phosphoric acid, C6-12-alkyl esters, compounds with 2-(dibutylamino) ethanol.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 32 2013-07-01 2013-07-01 false Phosphoric acid, C6-12-alkyl esters... Significant New Uses for Specific Chemical Substances § 721.6100 Phosphoric acid, C6-12-alkyl esters... reporting. (1) The chemical substances identified as phosphoric acid, C6-12-alkyl esters, compounds with...

  11. Technology development for phosphoric acid fuel cell powerplant, phase 2

    NASA Technical Reports Server (NTRS)

    Christner, L.

    1981-01-01

    The development of materials, cell components, and reformers for on site integrated energy systems is described. Progress includes: (1) heat-treatment of 25 sq cm, 350 sq cm and 1200 sq cm cell test hardware was accomplished. Performance of fuel cells is improved by using this material; (2) electrochemical and chemical corrosion rates of heat-treated and as-molded graphite/phenolic resin composites in phosphoric acid were determined; (3) three cell, 5 in. x 15 in. stacks operated for up to 10,000 hours and 12 in. x 17 in. five cell stacks were tested for 5,000 hours; (4) a three cell 5 in. x 15 in. stack with 0.12 mg Pt/sq cm anodes and 0.25 mg Pt/sq cm cathodes was operated for 4,500 hours; and (5) an ERC proprietary high bubble pressure matrix, MAT-1, was tested for up to 10,000 hours.

  12. Transmission electron microscopic examination of phosphoric acid fuel cell components

    NASA Technical Reports Server (NTRS)

    Pebler, A.

    1986-01-01

    Transmission electron microscopy (TEM) was used to physically characterize tested and untested phosphoric acid fuel cell (PAFC) components. Those examined included carbon-supported platinum catalysts, carbon backing paper, and Teflon-bonded catalyst layers at various stages of fabrication and after testing in pressurized PAFC's. Applicability of electron diffraction and electron energy loss spectroscopy for identifying the various phases was explored. The discussion focuses on the morphology and size distribution of platinum, the morphology and structural aspects of Teflon in catalyst layers, and the structural evidence of carbon corrosion. Reference is made to other physical characterization techniques where appropriate. A qualitative model of the catalyst layer that emerged from the TEM studies is presented.

  13. Corrosion-resistant catalyst supports for phosphoric acid fuel cells

    SciTech Connect

    Kosek, J.A.; Cropley, C.C.; LaConti, A.B.

    1990-01-01

    High-surface-area carbon blacks such as Vulcan XC-72 (Cabot Corp.) and graphitized carbon blacks such as 2700{degree}C heat-treated Black Pearls 2000 (HTBP) (Cabot Corp.) have found widespread applications as catalyst supports in phosphoric acid fuel cells (PAFCs). However, due to the operating temperatures and pressures being utilized in PAFCs currently under development, the carbon-based cathode catalyst supports suffer from corrosion, which decreases the performance and life span of a PAFC stack. The feasibility of using alternative, low-cost, corrosion-resistant catalyst support (CRCS) materials as replacements for the cathode carbon support materials was investigated. The objectives of the program were to prepare high-surface-area alternative supports and to evaluate the physical characteristics and the electrochemical stability of these materials. The O{sub 2} reduction activity of the platinized CRCS materials was also evaluated. 2 refs., 3 figs.

  14. Organometallic catalysts for primary phosphoric acid fuel cells

    NASA Technical Reports Server (NTRS)

    Walsh, Fraser

    1987-01-01

    A continuing effort by the U.S. Department of Energy to improve the competitiveness of the phosphoric acid fuel cell by improving cell performance and/or reducing cell cost is discussed. Cathode improvement, both in performance and cost, available through the use of a class of organometallic cathode catalysts, the tetraazaannulenes (TAAs), was investigated. A new mixed catalyst was identified which provides improved cathode performance without the need for the use of a noble metal. This mixed catalyst was tested under load for 1000 hr. in full cell at 160 to 200 C in phosphoric acid H3PO4, and was shown to provide stable performance. The mixed catalyst contains an organometallic to catalyze electroreduction of oxygen to hydrogen peroxide and a metal to catalyze further electroreduction of the hydrogen peroxide to water. Cathodes containing an exemplar mixed catalyst (e.g., Co bisphenyl TAA/Mn) operate at approximately 650 mV vs DHE in 160 C, 85% H3PO4 with oxygen as reactant. In developing this mixed catalyst, a broad spectrum of TAAs were prepared, tested in half-cell and in a rotating ring-disk electrode system. TAAs found to facilitate the production of hydrogen peroxide in electroreduction were shown to be preferred TAAs for use in the mixed catalyst. Manganese (Mn) was identified as a preferred metal because it is capable of catalyzing hydrogen peroxide electroreduction, is lower in cost and is of less strategic importance than platinum, the cathode catalyst normally used in the fuel cell.

  15. 40 CFR 721.6200 - Fatty acid polyamine condensate, phosphoric acid ester salts.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... ester salts. (a) Chemical substances and significant new uses subject to reporting. (1) The chemical..., phosphoric acid ester salts. 721.6200 Section 721.6200 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) TOXIC SUBSTANCES CONTROL ACT SIGNIFICANT NEW USES OF CHEMICAL SUBSTANCES...

  16. 40 CFR 721.6200 - Fatty acid polyamine condensate, phosphoric acid ester salts.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... ester salts. (a) Chemical substances and significant new uses subject to reporting. (1) The chemical..., phosphoric acid ester salts. 721.6200 Section 721.6200 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) TOXIC SUBSTANCES CONTROL ACT SIGNIFICANT NEW USES OF CHEMICAL SUBSTANCES...

  17. Addition of Grape Seed Extract Renders Phosphoric Acid a Collagen-stabilizing Etchant.

    PubMed

    Liu, Y; Dusevich, V; Wang, Y

    2014-08-01

    Previous studies found that grape seed extract (GSE), which is rich in proanthocyanidins, could protect demineralized dentin collagen from collagenolytic activities following clinically relevant treatment. Because of proanthocyanidin's adverse interference to resin polymerization, it was believed that GSE should be applied and then rinsed off in a separate step, which in effect increases the complexity of the bonding procedure. The present study aimed to investigate the feasibility of combining GSE treatment with phosphoric acid etching to address the issue. It is also the first attempt to formulate collagen-cross-linking dental etchants. Based on Fourier-transformed infrared spectroscopy and digestion assay, it was established that in the presence of 20% to 5% phosphoric acid, 30 sec of GSE treatment rendered demineralized dentin collagen inert to bacterial collagenase digestion. Based on this positive result, the simultaneous dentin etching and collagen protecting of GSE-containing phosphoric acid was evaluated on the premise of a 30-second etching time. According to micro-Raman spectroscopy, the formulation containing 20% phosphoric acid was found to lead to overetching. Based on scanning and transmission electronic microscopy, this same formulation exhibited unsynchronized phosphoric acid and GSE penetration. Therefore, addition of GSE did render phosphoric acid a collagen-stabilizing etchant, but the preferable phosphoric acid concentration should be <20%. PMID:24935065

  18. Effects of phosphoric acid on the lead-acid battery reactions

    NASA Astrophysics Data System (ADS)

    Ikeda, Osamu; Iwakura, Chiaki; Yoneyama, Hiroshi; Tamura, Hideo

    1986-10-01

    The addition of a small amount of phosphoric acid to 5 M H2SO4 (commercial electrolyte of lead-acid batteries) results in various positive effects on the lead-acid battery reactions: (1) depression of the corrosion rate of the lead substrate through a preferential formation of alpha-PbO2 on the substrate surface; (2) retardation of hard sulfate formation or of deactivation of active materials; and (3) change in the crystal morphology of PbSO2 formed on the discharge of PbO2. Most of these effects results from chemisorption of phosphoric acid on PbSO4 crystals produced in the discharge process of PbO2.

  19. Radionuclide concentrations in raw and purified phosphoric acids from Brazil and their processing wastes: implications for radiation exposures.

    PubMed

    da Conceição, Fabiano Tomazini; Antunes, Maria Lúcia Pereira; Durrant, Steven F

    2012-02-01

    Radionuclides from the U and Th natural series are present in alkaline rocks, which are used as feedstock in Brazil for the production of raw phosphoric acid, which can be considered as a NORM (naturally occurring radioactive material). As a result of the purification of raw phosphoric acid to food-grade phosphoric acid, two by-products are generated, i.e., solid and liquid wastes. Taking this into account, the main aim of this study was to evaluate the fluxes of natural radionuclide in the production of food-grade phosphoric acids in Brazil, to determine the radiological impact caused by ingestion of food-grade phosphoric acid, and to evaluate the solid waste environmental hazards caused by its application in crop soils. Radiological characterization of raw phosphoric acid, food-grade phosphoric acid, solid waste, and liquid waste was performed by alpha and gamma spectrometry. The (238)U, (234)U, (226)Ra, and (232)Th activity concentrations varied depending on the source of raw phosphoric acid. Decreasing radionuclides activity concentrations in raw phosphoric acids used by the producer of the purified phosphoric acid were observed as follows: Tapira (raw phosphoric acid D) > Catalão (raw phosphoric acids B and C) > Cajati (raw phosphoric acid A). The industrial purification process produces a reduction in radionuclide activity concentrations in food-grade phosphoric acid in relation to raw phosphoric acid produced in plant D and single raw phosphoric acid used in recent years. The most common use of food-grade phosphoric acid is in cola soft drinks, with an average consumption in Brazil of 72 l per person per year. Each liter of cola soft drink contains 0.5 ml of food-grade phosphoric acid, which gives an annual average intake of 36 ml of food-grade phosphoric acid per person. Under these conditions, radionuclide intake through consumption of food-grade phosphoric acid per year per person via cola soft drinks is not hazardous to human health in Brazil

  20. Method for separating mono- and di-octylphenyl phosphoric acid esters

    DOEpatents

    Arnold, Jr., Wesley D.

    1977-01-01

    A method for separating mono-octylphenyl phosphoric acid ester and di-octylphenyl phosphoric acid ester from a mixture thereof comprises reacting the ester mixture with a source of lithium or sodium ions to form a mixture of the phosphate salts; contacting the salt mixture with an organic solvent which causes the dioctylphenyl phosphate salt to be dissolved in the organic solvent phase and the mono-octylphenyl phosphate salt to exist in a solid phase; separating the phases; recovering the phosphate salts from their respective phases; and acidifying the recovered salts to form the original phosphoric acid esters.

  1. Potassium

    MedlinePlus

    Potassium is essential for the proper functioning of the heart, kidneys, muscles, nerves, and digestive system. Usually the food you eat supplies all of the potassium you need. However, certain diseases (e.g., kidney ...

  2. 21 CFR 175.260 - Partial phosphoric acid esters of polyester resins.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... resins are prepared by the reaction of trimellitic anhydride with 2,2-dimethyl-1,3-propanediol followed by reaction of the resin thus produced with phosphoric acid anhydride to produce a resin having...

  3. Molten Carbonate and Phosphoric Acid Stationary Fuel Cells: Overview and Gap Analysis

    SciTech Connect

    Remick, R.; Wheeler, D.

    2010-09-01

    This report describes the technical and cost gap analysis performed to identify pathways for reducing the costs of molten carbonate fuel cell (MCFC) and phosphoric acid fuel cell (PAFC) stationary fuel cell power plants.

  4. Enantioselective synthesis of benzazepinoindoles bearing trifluoromethylated quaternary stereocenters catalyzed by chiral spirocyclic phosphoric acids.

    PubMed

    Li, Xuejian; Chen, Di; Gu, Haorui; Lin, Xufeng

    2014-07-18

    The first highly enantioselective iso-Pictet-Spengler reaction of C-2-linked o-aminobenzylindoles with trifluoromethyl ketones was developed using chiral spirocyclic phosphoric acids as organocatalysts, which afforded optically active benzazepinoindoles bearing trifluoromethylated quaternary stereocenters. PMID:24890313

  5. Dry compliant seal for phosphoric acid fuel cell

    DOEpatents

    Granata, Jr., Samuel J.; Woodle, Boyd M.

    1990-01-01

    A dry compliant overlapping seal for a phosphoric acid fuel cell preformed f non-compliant Teflon to make an anode seal frame that encircles an anode assembly, a cathode seal frame that encircles a cathode assembly and a compliant seal frame made of expanded Teflon, generally encircling a matrix assembly. Each frame has a thickness selected to accommodate various tolerances of the fuel cell elements and are either bonded to one of the other frames or to a bipolar or end plate. One of the non-compliant frames is wider than the other frames forming an overlap of the matrix over the wider seal frame, which cooperates with electrolyte permeating the matrix to form a wet seal within the fuel cell that prevents process gases from intermixing at the periphery of the fuel cell and a dry seal surrounding the cell to keep electrolyte from the periphery thereof. The frames may be made in one piece, in L-shaped portions or in strips and have an outer perimeter which registers with the outer perimeter of bipolar or end plates to form surfaces upon which flanges of pan shaped, gas manifolds can be sealed.

  6. Combined cycle phosphoric acid fuel cell electric power system

    SciTech Connect

    Mollot, D.J.; Micheli, P.L.

    1995-12-31

    By arranging two or more electric power generation cycles in series, combined cycle systems are able to produce electric power more efficiently than conventional single cycle plants. The high fuel to electricity conversion efficiency results in lower plant operating costs, better environmental performance, and in some cases even lower capital costs. Despite these advantages, combined cycle systems for the 1 - 10 megawatt (MW) industrial market are rare. This paper presents a low noise, low (oxides of nitrogen) NOx, combined cycle alternative for the small industrial user. By combining a commercially available phosphoric acid fuel cell (PAFC) with a low-temperature Rankine cycle (similar to those used in geothermal applications), electric conversion efficiencies between 45 and 47 percent are predicted. While the simple cycle PAFC is competitive on a cost of energy basis with gas turbines and diesel generators in the 1 to 2 MW market, the combined cycle PAFC is competitive, on a cost of energy basis, with simple cycle diesel generators in the 4 to 25 MW market. In addition, the efficiency and low-temperature operation of the combined cycle PAFC results in a significant reduction in carbon dioxide emissions with NO{sub x} concentration on the order of 1 parts per million (per weight) (ppmw).

  7. Advanced water-cooled phosphoric acid fuel cell development

    SciTech Connect

    Not Available

    1992-09-01

    This program was conducted to improve the performance and minimize the cost of existing water-cooled phosphoric acid fuel cell stacks for electric utility and on-site applications. The goals for the electric utility stack technology were a power density of at least 175 watts per square foot over a 40,000-hour useful life and a projected one-of-a-kind, full-scale manufactured cost of less than $400 per kilowatt. The program adapted the existing on-site Configuration-B cell design to electric utility operating conditions and introduced additional new design features. Task 1 consisted of the conceptual design of a full-scale electric utility cell stack that meets program objectives. The conceptual design was updated to incorporate the results of material and process developments in Tasks 2 and 3, as well as results of stack tests conducted in Task 6. Tasks 2 and 3 developed the materials and processes required to fabricate the components that meet the program objectives. The design of the small area and 10-ft{sup 2} stacks was conducted in Task 4. Fabrication and assembly of the short stacks were conducted in Task 5 and subsequent tests were conducted in Task 6. The management and reporting functions of Task 7 provided DOE/METC with program visibility through required documentation and program reviews. This report describes the cell design and development effort that was conducted to demonstrate, by subscale stack test, the technical achievements made toward the above program objectives.

  8. 21 CFR 172.725 - Gibberellic acid and its potassium salt.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 3 2014-04-01 2014-04-01 false Gibberellic acid and its potassium salt. 172.725... Additives § 172.725 Gibberellic acid and its potassium salt. The food additives gibberellic acid and its potassium salt may be used in the malting of barley in accordance with the following prescribed...

  9. 21 CFR 172.725 - Gibberellic acid and its potassium salt.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 3 2011-04-01 2011-04-01 false Gibberellic acid and its potassium salt. 172.725... HUMAN CONSUMPTION Other Specific Usage Additives § 172.725 Gibberellic acid and its potassium salt. The food additives gibberellic acid and its potassium salt may be used in the malting of barley...

  10. 21 CFR 172.725 - Gibberellic acid and its potassium salt.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 3 2013-04-01 2013-04-01 false Gibberellic acid and its potassium salt. 172.725... HUMAN CONSUMPTION Other Specific Usage Additives § 172.725 Gibberellic acid and its potassium salt. The food additives gibberellic acid and its potassium salt may be used in the malting of barley...

  11. 21 CFR 172.725 - Gibberellic acid and its potassium salt.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 3 2012-04-01 2012-04-01 false Gibberellic acid and its potassium salt. 172.725... HUMAN CONSUMPTION Other Specific Usage Additives § 172.725 Gibberellic acid and its potassium salt. The food additives gibberellic acid and its potassium salt may be used in the malting of barley...

  12. 21 CFR 172.725 - Gibberellic acid and its potassium salt.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Gibberellic acid and its potassium salt. 172.725... HUMAN CONSUMPTION Other Specific Usage Additives § 172.725 Gibberellic acid and its potassium salt. The food additives gibberellic acid and its potassium salt may be used in the malting of barley...

  13. Nitrosyl induces phosphorous-acid dissociation in ruthenium(II).

    PubMed

    Truzzi, Daniela Ramos; Ferreira, Antonio Gilberto; da Silva, Sebastião Claudino; Castellano, Eduardo Ernesto; Lima, Francisco das Chagas Alves; Franco, Douglas Wagner

    2011-12-28

    The trans-[Ru(NO)(NH(3))(4)(P(OH)(3))]Cl(3) complex was synthesized by reacting [Ru(H(2)O)(NH(3))(5)](2+) with H(3)PO(3) and characterized by spectroscopic ((31)P-NMR, δ = 68 ppm) and spectrophotometric techniques (λ = 525 nm, ε = 20 L mol(-1) cm(-1); λ = 319 nm, ε = 773 L mol(-1) cm(-1); λ = 241 nm, ε = 1385 L mol(-1) cm(-1); ν(NO(+)) = 1879 cm(-1)). A pK(a) of 0.74 was determined from infrared measurements as a function of pH for the reaction: trans-[Ru(NO)(NH(3))(4)(P(OH)(3))](3+) + H(2)O ⇌ trans-[Ru(NO)(NH(3))(4)(P(O(-))(OH)(2))](2+) + H(3)O(+). According to (31)P-NMR, IR, UV-vis, cyclic voltammetry and ab initio calculation data, upon deprotonation, trans-[Ru(NO)(NH(3))(4)(P(OH)(3))](3+) yields the O-bonded linkage isomer trans- [Ru(NO)(NH(3))(4)(OP(OH)(2))](2+), then the trans-[Ru(NO)(NH(3))(4)(OP(H)(OH)(2))](3+) decays to give the final products H(3)PO(3) and trans-[Ru(NO)(NH(3))(4)(H(2)O)](3+). The dissociation of phosphorous acid from the [Ru(NO)(NH(3))(4)](3+) moiety is pH dependent (k(obs) = 2.1 × 10(-4) s(-1) at pH 3.0, 25 °C). PMID:22027926

  14. Antimicrobial and cytotoxic effects of phosphoric acid solution compared to other root canal irrigants

    PubMed Central

    PRADO, Maíra; da SILVA, Emmanuel João Nogueira Leal; DUQUE, Thais Mageste; ZAIA, Alexandre Augusto; FERRAZ, Caio Cezar Randi; de ALMEIDA, José Flávio Affonso; GOMES, Brenda Paula Figueiredo de Almeida

    2015-01-01

    Phosphoric acid has been suggested as an irrigant due to its effectiveness in removing the smear layer. Objectives : The purpose of this study was to compare the antimicrobial and cytotoxic effects of a 37% phosphoric acid solution to other irrigants commonly used in endodontics. Material and Methods : The substances 37% phosphoric acid, 17% EDTA, 10% citric acid, 2% chlorhexidine (solution and gel), and 5.25% NaOCl were evaluated. The antimicrobial activity was tested against Candida albicans, Staphylococcus aureus, Enterococcus faecalis, Escherichia coli, Actinomyces meyeri, Parvimonas micra, Porphyromonas gingivalis, and Prevotella nigrescens according to the agar diffusion method. The cytotoxicity of the irrigants was determined by using the MTT assay. Results : Phosphoric acid presented higher antimicrobial activity compared to the other tested irrigants. With regard to the cell viability, this solution showed results similar to those with 5.25% NaOCl and 2% chlorhexidine (gel and solution), whereas 17% EDTA and 10% citric acid showed higher cell viability compared to other irrigants. Conclusion : Phosphoric acid demonstrated higher antimicrobial activity and cytotoxicity similar to that of 5.25% NaOCl and 2% chlorhexidine (gel and solution). PMID:26018307

  15. Potassium

    MedlinePlus

    ... blackberries Root vegetables, such as carrots and potatoes Citrus fruits, such as oranges and grapefruit Your kidneys help to keep the right amount of potassium in your body. If you have chronic kidney disease, your kidneys may not remove extra potassium from ...

  16. Production of monosaccharides from napier grass by hydrothermal process with phosphoric acid.

    PubMed

    Takata, Eri; Tsutsumi, Ken; Tsutsumi, Yuji; Tabata, Kenji

    2013-09-01

    The production of monosaccharides from napier grass was investigated in the presence of acid catalysts using the hydrothermal process. When the napier grass was treated with 3 wt.% phosphoric acid at 160°C for 15min, the xylose yield reached 10.3 wt.%, corresponding to 72.0% of the xylan in it, whereas glucose was hardly obtained. A combined process was then conducted using an 85 wt.% phosphoric acid treatment at 60 °C for 1h followed by a hydrothermal treatment with 3 wt.% phosphoric acid. In the initial treatment with concentrated phosphoric acid the most of xylan was hydrolyzed to xylose, and the crystalline cellulose was converted to its amorphous form. The hydrolysis of cellulose to glucose was significantly enhanced during the following hydrothermal process with 3 wt.% phosphoric acid at 200 °C for 8 min. Consequently, 77.2% yield of xylose and 50.0% yield of glucose were obtained from the combined process.

  17. Rare earth elements recycling from waste phosphor by dual hydrochloric acid dissolution.

    PubMed

    Liu, Hu; Zhang, Shengen; Pan, Dean; Tian, Jianjun; Yang, Min; Wu, Maolin; Volinsky, Alex A

    2014-05-15

    This paper is a comparative study of recycling rare earth elements from waste phosphor, which focuses on the leaching rate and the technical principle. The traditional and dual dissolution by hydrochloric acid (DHA) methods were compared. The method of dual dissolution by hydrochloric acid has been developed. The Red rare earth phosphor (Y0.95Eu0.05)2O3 in waste phosphor is dissolved during the first step of acid leaching, while the Green phosphor (Ce0.67Tb0.33MgAl11O19) and the Blue phosphor (Ba0.9Eu0.1MgAl10O17) mixed with caustic soda are obtained by alkali sintering. The excess caustic soda and NaAlO2 are removed by washing. The insoluble matter is leached by the hydrochloric acid, followed by solvent extraction and precipitation (the DHA method). In comparison, the total leaching rate of the rare earth elements was 94.6% by DHA, which is much higher than 42.08% achieved by the traditional method. The leaching rate of Y, Eu, Ce and Tb reached 94.6%, 99.05%, 71.45%, and 76.22%, respectively. DHA can decrease the consumption of chemicals and energy. The suggested DHA method is feasible for industrial applications.

  18. Synthesis of potassium hexatitanate whiskers starting from metatitanic acid and potassium carbonate and sulfate by calcination method

    SciTech Connect

    Liu Chunyan; Yin Hengbo Liu Yumin; Ren Min; Wang Aili; Ge Chen; Yao Hengping; Feng Hui; Chen Jun; Jiang Tingshun

    2009-05-06

    Potassium hexatitanate whiskers were synthesized starting from metatitanic acid (H{sub 2}TiO{sub 3}), potassium carbonate and sulfate by calcination method. The effects of mole ratios of K{sub 2}CO{sub 3} to metatitanic acid (H{sub 2}TiO{sub 3}), content of potassium sulfate, and calcination temperature on the crystallinity and morphology of the resultant potassium titanate whiskers were investigated by X-ray diffraction and scanning electron microscopy. Well crystallized potassium hexatitanate whiskers with an average length of 7.3 {mu}m and an average diameter of 0.62 {mu}m were synthesized when the molar ratio of K{sub 2}CO{sub 3} to metatitanic acid was kept at 1:3.5 and the calcination temperature was up to 1150 deg. C. The presence of K{sub 2}SO{sub 4} favored the formation of thin potassium hexatitanate whiskers as compared to the absence of K{sub 2}SO{sub 4}. The whiteness and brightness of the synthesized potassium hexatitanate whiskers were comparable to that of rutile TiO{sub 2} pigment.

  19. Optimizing ethanol and methane production from steam-pretreated, phosphoric acid-impregnated corn stover.

    PubMed

    Bondesson, Pia-Maria; Dupuy, Aurélie; Galbe, Mats; Zacchi, Guido

    2015-02-01

    Pretreatment is of vital importance in the production of ethanol and methane from agricultural residues. In this study, the effects of steam pretreatment with phosphoric acid on enzymatic hydrolysis (EH), simultaneous saccharification and fermentation (SSF), anaerobic digestion (AD) and the total energy output at three different temperatures were investigated. The effect of separating the solids for SSF and the liquid for AD was also studied and compared with using the whole slurry first in SSF and then in AD. Furthermore, the phosphoric acid was compared to previous studies using sulphuric acid or no catalyst. Using phosphoric acid resulted in higher yields than when no catalyst was used. However, compared with sulphuric acid, an improved yield was only seen with phosphoric acid in the case of EH. The higher pretreatment temperatures (200 and 210 °C) resulted in the highest yields after EH and SSF, while the highest methane yield was obtained with the lower pretreatment temperature (190 °C). The highest yield in terms of total energy recovery (78 %) was obtained after pretreatment at 190 °C, but a pretreatment temperature of 200 °C is, however, the best alternative since fewer steps are required (whole slurry in SSF and then in AD) and high product yields were obtained (76 %).

  20. Preliminary study on preparation of BCNO phosphor particles using citric acid as carbon source

    SciTech Connect

    Nuryadin, Bebeh W.; Pratiwi, Tripuspita; Faryuni, Irfana D.; Iskandar, Ferry Abdullah, Mikrajuddin; Khairurrijal; Ogi, Takashi; Okuyama, Kikuo

    2015-04-16

    A citric acid was used as a carbon source in the preparation of boron carbon oxy-nitride (BCNO) phosphor particles by a facile process. The preparation process was conducted at relatively low temperature 750 °C and at ambient pressure. The prepared BCNO phosphors showed a high photoluminescence (PL) performance at peak emission wavelength of 470 nm under excitation by a UV light 365 nm. The effects of carbon/boron and nitrogen/boron molar ratios on the PL properties were also investigated. The result showed that the emission spectra with a wavelength peak ranging from 444 nm to 496 nm can be obtained by varying carbon/boron ratios from 0.1 to 0.9. In addition, the observations showed that the BCNO phosphor material has two excitation peaks located at the 365 nm (UV) and 420 nm (blue). Based on these observations, we believe that the citric acid derived BCNO phosphor particles can be a promising inexpensive material for phosphor conversion-based white LED.

  1. Conversion of waste cellulose to ethanol. Phase 2: Reaction kinetics with phosphoric acid

    NASA Astrophysics Data System (ADS)

    Moeller, M. B.; Isbell, R. E.

    1982-05-01

    Waste cellulosic material can be hydrolyzed in dilute acid solution to produce fermentable sugars which can then be converted into ethanol. A laboratory investigation was made of the feasibility of using phosphoric acid as the hydrolysis catalyst. The hydrolysis reaction with phosphoric acid solutions was compared with the reaction employing the more conventional dilute sulfuric acid catalyst. The purpose of this research was to examine the hydrolysis step in a proposed process for the conversion of cellulose (from wood, newspapers, municipal solid waste, or other sources) into ethanol - by which a potentially valuable co-product, DICAL (dicalcium phosphate), might be made and sold with or without the lignin content as a fertilizer. The pertinent reaction kinetics for the acid catalyzed production of glucose from cellulose consists of consecutive, pseudo-first order reactions.

  2. 21 CFR 175.260 - Partial phosphoric acid esters of polyester resins.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 3 2013-04-01 2013-04-01 false Partial phosphoric acid esters of polyester resins. 175.260 Section 175.260 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) FOOD FOR HUMAN CONSUMPTION (CONTINUED) INDIRECT FOOD ADDITIVES: ADHESIVES...

  3. 21 CFR 175.260 - Partial phosphoric acid esters of polyester resins.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 3 2014-04-01 2014-04-01 false Partial phosphoric acid esters of polyester resins. 175.260 Section 175.260 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) INDIRECT FOOD ADDITIVES: ADHESIVES AND COMPONENTS OF COATINGS Substances for Use...

  4. 21 CFR 175.260 - Partial phosphoric acid esters of polyester resins.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 3 2012-04-01 2012-04-01 false Partial phosphoric acid esters of polyester resins. 175.260 Section 175.260 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) FOOD FOR HUMAN CONSUMPTION (CONTINUED) INDIRECT FOOD ADDITIVES: ADHESIVES...

  5. A chiral phosphoric acid catalyst for asymmetric construction of 1,3-dioxanes.

    PubMed

    Matsumoto, Akira; Asano, Keisuke; Matsubara, Seijiro

    2015-07-25

    A novel method of enantioselective 1,3-dioxane construction via a hemiacetalization/intramolecular oxy-Michael addition cascade by a chiral phosphoric acid catalyst was developed. The product was successfully transformed into an optically active 1,3-polyol motif, indicating that the proposed reaction can provide useful chiral building blocks for the de novo synthesis of polyketides. PMID:26103581

  6. Survey on aging on electrodes and electrocatalysts in phosphoric acid fuel cells

    NASA Technical Reports Server (NTRS)

    Stonehart, P.; Hochmuth, J.

    1981-01-01

    The processes which contribute to the decay in performance of electrodes used in phosphoric acid fuel cell systems are discussed. Loss of catalytic surface area, corrosion of the carbon support, electrode structure degradation, electrolyte degradation, and impurities in the reactant streams are identified as the major areas for concern.

  7. Tuning transport selectivity of ionic species by phosphoric acid gradient in positively charged nanochannel membranes.

    PubMed

    Yang, Meng; Yang, Xiaohai; Wang, Kemin; Wang, Qing; Fan, Xin; Liu, Wei; Liu, Xizhen; Liu, Jianbo; Huang, Jin

    2015-02-01

    The transport of ionic species through a nanochannel plays important roles in fundamental research and practical applications of the nanofluidic device. Here, we demonstrated that ionic transport selectivity of a positively charged nanochannel membrane can be tuned under a phosphoric acid gradient. When phosphoric acid solution and analyte solution were connected by the positively charged nanochannel membrane, the faster-moving analyte through the positively charged nanochannel membrane was the positively charged dye (methylviologen, MV(2+)) instead of the negatively charged dye (1,5-naphthalene disulfonate, NDS(2-)). In other words, a reversed ion selectivity of the nanochannel membranes can be found. It can be explained as a result of the combination of diffusion, induced electroosmosis, and induced electrophoresis. In addition, the influencing factors of transport selectivity, including concentration of phosphoric acid, penetration time, and volume of feed solution, were also investigated. The results showed that the transport selectivity can further be tuned by adjusting these factors. As a method of tuning ionic transport selectivity by establishing phosphoric acid gradient, it will be conducive to improving the separation of ionic species. PMID:25557761

  8. Modification of vital wheat gluten with phosphoric acid to produce high free-solution capacity

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Wheat gluten reacts with phosphoric acid to produce natural superabsorbent gels. The gel properties are defined by Fourier Transform Infra-red (FTIR) spectroscopy, 2-dimensional gel electrophoresis (2DE), and uptake of water, salt solutions, and aqueous ethanol. Temperatures above 120'C and dry cond...

  9. Current legal and institutional issues in the commercialization of phosphoric acid fuel cells

    NASA Technical Reports Server (NTRS)

    Nimmons, J. T.; Sheehy, K. D.; Singer, J. R.; Gardner, T. C.

    1982-01-01

    Legal and institutional factors affecting the development and commercial diffusion of phosphoric acid fuel cells are assessed. Issues for future research and action are suggested. Perceived barriers and potential opportunities for fuel cells in central and dispersed utility operations and on-site applications are reviewed, as well as the general concept of commercialization as applied to emerging energy technologies.

  10. Manual of phosphoric acid fuel cell power plant cost model and computer program

    NASA Technical Reports Server (NTRS)

    Lu, C. Y.; Alkasab, K. A.

    1984-01-01

    Cost analysis of phosphoric acid fuel cell power plant includes two parts: a method for estimation of system capital costs, and an economic analysis which determines the levelized annual cost of operating the system used in the capital cost estimation. A FORTRAN computer has been developed for this cost analysis.

  11. Modification of vital wheat gluten with phosphoric acid to produce high free solution capacity

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Wheat gluten reacts with phosphoric acid in the presence of urea to produce natural superabsorbent gels. Fourier Transform Infra-red (FT-IR) spectroscopy and two-dimensional gel electrophoresis (2DE) reveal chemical changes from the reaction. Temperatures above 120°C and dry conditions create the op...

  12. Phosphoric acid fuel cell power plant system performance model and computer program

    NASA Technical Reports Server (NTRS)

    Alkasab, K. A.; Lu, C. Y.

    1984-01-01

    A FORTRAN computer program was developed for analyzing the performance of phosphoric acid fuel cell power plant systems. Energy mass and electrochemical analysis in the reformer, the shaft converters, the heat exchangers, and the fuel cell stack were combined to develop a mathematical model for the power plant for both atmospheric and pressurized conditions, and for several commercial fuels.

  13. 40 CFR 721.10505 - Phosphoric acid, mixed mono- and diesters with 2-ethyl-1-hexanol and polyethylene glycol mono-C12...

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 32 2013-07-01 2013-07-01 false Phosphoric acid, mixed mono- and... Phosphoric acid, mixed mono- and diesters with 2-ethyl-1-hexanol and polyethylene glycol mono-C12-16-alkyl... identified as phosphoric acid, mixed mono- and diesters with 2-ethyl-1-hexanol and polyethylene glycol...

  14. 40 CFR 721.10505 - Phosphoric acid, mixed mono- and diesters with 2-ethyl-1-hexanol and polyethylene glycol mono-C12...

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 31 2014-07-01 2014-07-01 false Phosphoric acid, mixed mono- and... Phosphoric acid, mixed mono- and diesters with 2-ethyl-1-hexanol and polyethylene glycol mono-C12-16-alkyl... identified as phosphoric acid, mixed mono- and diesters with 2-ethyl-1-hexanol and polyethylene glycol...

  15. 40 CFR 721.6120 - Phosphoric acid, 1,2-eth-a-ne-diyl tet-ra-kis(2-chloro-1-meth-yl-ethyl) ester.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 32 2013-07-01 2013-07-01 false Phosphoric acid, 1,2-eth-a-ne-diyl tet... SUBSTANCES Significant New Uses for Specific Chemical Substances § 721.6120 Phosphoric acid, 1,2-eth-a-ne... subject to reporting. (1) The chemical substance identified as phosphoric acid, 1,2-ethanediyl...

  16. 40 CFR 721.6120 - Phosphoric acid, 1,2-eth-a-ne-diyl tet-ra-kis(2-chloro-1-meth-yl-ethyl) ester.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 31 2011-07-01 2011-07-01 false Phosphoric acid, 1,2-eth-a-ne-diyl tet... SUBSTANCES Significant New Uses for Specific Chemical Substances § 721.6120 Phosphoric acid, 1,2-eth-a-ne... subject to reporting. (1) The chemical substance identified as phosphoric acid, 1,2-ethanediyl...

  17. 40 CFR 721.6120 - Phosphoric acid, 1,2-eth-a-ne-diyl tet-ra-kis(2-chloro-1-meth-yl-ethyl) ester.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 30 2010-07-01 2010-07-01 false Phosphoric acid, 1,2-eth-a-ne-diyl tet... SUBSTANCES Significant New Uses for Specific Chemical Substances § 721.6120 Phosphoric acid, 1,2-eth-a-ne... subject to reporting. (1) The chemical substance identified as phosphoric acid, 1,2-ethanediyl...

  18. Phosphoric acid distribution and its impact on the performance of polybenzimidazole membranes

    NASA Astrophysics Data System (ADS)

    Mack, Florian; Heissler, Stefan; Laukenmann, Ruben; Zeis, Roswitha

    2014-12-01

    Phosphoric acid doped polybenzimidazole (PBI) is the most common membrane material for high-temperature polymer electrolyte membrane fuel cells (HT-PEMFC). The PBI membrane is usually doped by immersion in hot phosphoric acid. Immersion time and acid temperature affect the doping level of the membrane. In this work we studied the influence of doping time and temperature on the ex-situ and in-situ proton conductivities of poly (2, 5-benzimidazole) (AB-PBI) membranes as well as the fuel cell performance. Confocal Raman microscopy was employed to spatially resolve the acid distribution within the AB-PBI membranes. Therefore the interactions between the basic nitrogen-sides of the AB-PBI polymer and the phosphoric acid protons were investigated. We found that membranes with a 6 h doping time had significantly higher proton conductivity than those doped for only 3 h. In terms of absolute acid up-take, however, the difference was rather small. This result shows that the doping level alone does not define the conductivity of the membrane. The conductivity is also influenced by the micro acid distribution within the membrane. Highest membrane conductivity and fuel cell performance with fumapem AM cross-linked membranes were achieved with a doping time of 6 h and a doping temperature of 120 °C.

  19. Acid properties of solid acid catalysts characterized by solid-state 31P NMR of adsorbed phosphorous probe molecules.

    PubMed

    Zheng, Anmin; Huang, Shing-Jong; Liu, Shang-Bin; Deng, Feng

    2011-09-01

    A brief review is presented on acidity characterization of solid acid catalysts by means of solid-state phosphor-31 magic-angle-spinning nuclear magnetic resonance ((31)P MAS NMR) spectroscopy using phosphor-containing molecules as probes. It is emphasized that such a simple approach using (31)P MAS NMR of adsorbed phosphorous probe molecules, namely trimethylphosphine (TMP) and trialkylphosphine oxides (R(3)PO), represents a unique technique in providing detailed qualitative and quantitative features, viz. type, strength, distribution, and concentration of acid sites in solid acid catalysts. In particular, it will be shown that when applied with a proper choice of probe molecules with varied sizes and results obtained from elemental analysis, the amounts and locations (intracrystalline vs. extracrystalline) of different types (Brønsted vs. Lewis) of acid sites may be determined. In addition, by incorporating the NMR results with that obtained from theoretical density functional theory (DFT) calculations, correlations between the (31)P chemical shifts (δ(31)P) and acidic strengths of Brønsted and Lewis acid sites may also be derived, facilitating a suitable acidity scale for solid acid catalysts.

  20. Determination of polyfluoroalkyl phosphoric acid diesters, perfluoroalkyl phosphonic acids, perfluoroalkyl phosphinic acids, perfluoroalkyl carboxylic acids, and perfluoroalkane sulfonic acids in lake trout from the Great Lakes region.

    PubMed

    Guo, Rui; Reiner, Eric J; Bhavsar, Satyendra P; Helm, Paul A; Mabury, Scott A; Braekevelt, Eric; Tittlemier, Sheryl A

    2012-11-01

    A comprehensive method to extract perfluoroalkyl carboxylic acids, perfluoroalkane sulfonic acids, perfluoroalkyl phosphonic acids, perfluoroalkyl phosphinic acids, and polyfluoroalkyl phosphoric acid diesters simultaneously from fish samples has been developed. The recoveries of target compounds ranged from 78 % to 121 %. The new method was used to analyze lake trout (Salvelinus namaycush) from the Great Lakes region. The results showed that the total perfluoroalkane sulfonate concentrations ranged from 0.1 to 145 ng/g (wet weight) with perfluorooctane sulfonate (PFOS) as the dominant contaminant. Concentrations in fish between lakes were in the order of Lakes Ontario ≈ Erie > Huron > Superior ≈ Nipigon. The total perfluoroalkyl carboxylic acid concentrations ranged from 0.2 to 18.2 ng/g wet weight. The aggregate mean perfluorooctanoic acid (PFOA) concentration in fish across all lakes was 0.045 ± 0.023 ng/g. Mean concentrations of PFOA were not significantly different (p > 0.1) among the five lakes. Perfluoroalkyl phosphinic acids were detected in lake trout from Lake Ontario, Lake Erie, and Lake Huron with concentration ranging from non-detect (ND) to 0.032 ng/g. Polyfluoroalkyl phosphoric acid diesters were detected only in lake trout from Lake Huron, at levels similar to perfluorooctanoic acid.

  1. Lignin hydrolysis and phosphorylation mechanism during phosphoric acid-acetone pretreatment: a DFT study.

    PubMed

    Qin, Wu; Wu, Lingnan; Zheng, Zongming; Dong, Changqing; Yang, Yongping

    2014-12-18

    The study focused on the structural sensitivity of lignin during the phosphoric acid-acetone pretreatment process and the resulting hydrolysis and phosphorylation reaction mechanisms using density functional theory calculations. The chemical stabilities of the seven most common linkages (β-O-4, β-β, 4-O-5, β-1, 5-5, α-O-4, and β-5) of lignin in H3PO4, CH3COCH3, and H2O solutions were detected, which shows that α-O-4 linkage and β-O-4 linkage tend to break during the phosphoric acid-acetone pretreatment process. Then α-O-4 phosphorylation and β-O-4 phosphorylation follow a two-step reaction mechanism in the acid treatment step, respectively. However, since phosphorylation of α-O-4 is more energetically accessible than phosphorylation of β-O-4 in phosphoric acid, the phosphorylation of α-O-4 could be controllably realized under certain operational conditions, which could tune the electron and hole transfer on the right side of β-O-4 in the H2PO4- functionalized lignin. The results provide a fundamental understanding for process-controlled modification of lignin and the potential novel applications in lignin-based imprinted polymers, sensors, and molecular devices.

  2. Analytical applications of condensed phosphoric acid-I Determination of ferrous and total iron in iron ores after decomposition with condensed phosphoric acid.

    PubMed

    Mizoguchi, T; Ishii, H

    1978-06-01

    A simple method is described for the determination of ferrous and total iron in iron ores. Iron ores are dissolved by condensed phosphoric acid (CPA) very rapidly without any tedious and time-consuming manipulations such as elimination of silica and filtration. Under the proposed conditions (amount of sample 100 mg, amount of CPA added 10 g, heating temperature 290 degrees , heating time 30 min), magnetite, limonite and hematite are completely dissolved. The iron content can be determined in the presence of condensed phosphoric acid by titration with dichromate solution, if a slight modification is made. The total iron in iron ores, determined by the present method, is in agreement with that found by the JIS method. The ferrous iron in iron ores can be determined by dissolving the samples with CPA in a nitrogen atmosphere and titrating with dichromate solution. Chelatometric titration of iron after solvent extraction with MIBK from solutions prepared by use of CPA is found to be accurate for samples such as pyrite cinder. The ability of CPA to dissolve various materials has been investigated.

  3. Preparation and evaluation of advanced catalysts for phosphoric acid fuel cells

    NASA Technical Reports Server (NTRS)

    Stonehart, P.; Baris, J.; Hockmuth, J.; Pagliaro, P.

    1984-01-01

    The platinum electrocatalysts were characterized for their crystallite sizes and the degree of dispersion on the carbon supports. One application of these electrocatalysts was for anodic oxidation of hydrogen in hot phosphoric acid fuel cells, coupled with the influence of low concentrations of carbon monoxide in the fuel gas stream. In a similar way, these platinum on carbon electrocatalysts were evaluated for oxygen reduction in hot phosphoric acid. Binary noble metal alloys were prepared for anodic oxidation of hydrogen and noble metal-refractory metal mixtures were prepared for oxygen reduction. An exemplar alloy of platinum and palladium (50/50 atom %) was discovered for anodic oxidation of hydrogen in the presence of carbon monoxide, and patent disclosures were submitted. For the cathode, platinum-vanadium alloys were prepared showing improved performance over pure platinum. Preliminary experiments on electrocatalyst utilization in electrode structures showed low utilization of the noble metal when the electrocatalyst loading exceeded one weight percent on the carbon.

  4. Recovery of Uranium from Wet Phosphoric Acid by Solvent Extraction Processes

    SciTech Connect

    Beltrami, Denis; Cote, Gérard; Mokhtari, Hamid; Courtaud, Bruno; Moyer, Bruce A.; Chagnes, Alexandre

    2014-11-17

    Between 1951 and 1991, we developed about 17 processes to recover uranium from wet phosphoric acid (WPA), but the viability of these processes was subject to the variation of the uranium price market. Nowadays, uranium from WPA appears to be attractive due to the increase of the global uranium demand resulting from the emergence of developing countries. Moreover, the increasing demand provides impetus for a new look at the applicable technology with a view to improvements as well as altogether new approaches. This paper gives an overview on extraction processes developed in the past to recover uranium from wet phosphoric acid (WPA) as well as the physicochemistry involved in these processes. Recent advances concerning the development of new extraction systems are also reported and discussed.

  5. Potential of phosphoric acid-catalyzed pretreatment and subsequent enzymatic hydrolysis for biosugar production from Gracilaria verrucosa.

    PubMed

    Kwon, Oh-Min; Kim, Sung-Koo; Jeong, Gwi-Taek

    2016-07-01

    This study combined phosphoric acid-catalyzed pretreatment and enzymatic hydrolysis to produce biosugars from Gracilaria verrucosa as a potential renewable resource for bioenergy applications. We optimized phosphoric acid-catalyzed pretreatment conditions to 1:10 solid-to-liquid ratio, 1.5 % phosphoric acid, 140 °C, and 60 min reaction time, producing a 32.52 ± 0.06 % total reducing sugar (TRS) yield. By subsequent enzymatic hydrolysis, a 68.61 ± 0.90 % TRS yield was achieved. These results demonstrate the potential of phosphoric acid to produce biosugars for biofuel and biochemical production applications. PMID:27003825

  6. Potential of phosphoric acid-catalyzed pretreatment and subsequent enzymatic hydrolysis for biosugar production from Gracilaria verrucosa.

    PubMed

    Kwon, Oh-Min; Kim, Sung-Koo; Jeong, Gwi-Taek

    2016-07-01

    This study combined phosphoric acid-catalyzed pretreatment and enzymatic hydrolysis to produce biosugars from Gracilaria verrucosa as a potential renewable resource for bioenergy applications. We optimized phosphoric acid-catalyzed pretreatment conditions to 1:10 solid-to-liquid ratio, 1.5 % phosphoric acid, 140 °C, and 60 min reaction time, producing a 32.52 ± 0.06 % total reducing sugar (TRS) yield. By subsequent enzymatic hydrolysis, a 68.61 ± 0.90 % TRS yield was achieved. These results demonstrate the potential of phosphoric acid to produce biosugars for biofuel and biochemical production applications.

  7. Assessment of the environmental aspects of the DOE phosphoric acid fuel cell program

    NASA Technical Reports Server (NTRS)

    Lundblad, H. L.; Cavagrotti, R. R.

    1983-01-01

    The likely facets of a nationwide phosphoric acid fuel cell (PAFC) power plant commercial system are described. The beneficial and adverse environmental impacts produced by the system are assessed. Eleven specific system activities are characterized and evaluated. Also included is a review of fuel cell technology and a description of DOE's National Fuel Cell Program. Based on current and reasonably foreseeable PAFC characteristics, no environmental or energy impact factor was identified that would significantly inhibit the commercialization of PAFC power plant technology.

  8. Manual of phosphoric acid fuel cell stack three-dimensional model and computer program

    NASA Technical Reports Server (NTRS)

    Lu, C. Y.; Alkasab, K. A.

    1984-01-01

    A detailed distributed mathematical model of phosphoric acid fuel cell stack have been developed, with the FORTRAN computer program, for analyzing the temperature distribution in the stack and the associated current density distribution on the cell plates. Energy, mass, and electrochemical analyses in the stack were combined to develop the model. Several reasonable assumptions were made to solve this mathematical model by means of the finite differences numerical method.

  9. Origins of Selectivity and General Model for Chiral Phosphoric Acid-Catalyzed Oxetane Desymmetrizations.

    PubMed

    Champagne, Pier Alexandre; Houk, K N

    2016-09-28

    The origins of the high enantioselectivity of chiral phosphoric acid-catalyzed oxetane desymmetrizations were investigated by density functional theory (DFT) calculations. Distortion of the catalyst structure, caused by steric crowding in the catalyst pocket of one enantiomeric transition state, is the main cause for stereochemical preference. A general model was developed to assist in the rational design of new catalysts for related transformations. PMID:27629045

  10. Nitric-phosphoric acid oxidation of solid and liquid organic materials

    SciTech Connect

    Pierce, R.A.; Smith, J.R.; Poprik, D.C.

    1995-02-01

    Nitric-phosphoric acid oxidation has been developed specifically to address issues that face the Savannah River Site, other defense-related facilities, private industry, and small-volume generators such as university and medical laboratories. Initially tested to destroy and decontaminate SRS solid, Pu-contaminated job-control waste, the technology has also exhibited potential for remediating hazardous and mixed-hazardous waste forms. The process is unique to Savannah River and offers a valuable alternative to other oxidation processes that require extreme temperatures and/or elevated pressures. To address the broad categories of waste, many different organic compounds which represent a cross-section of the waste that must be treated have been successfully oxidized. Materials that have been quantitatively oxidized at atmospheric pressure below 180{degrees}C include neoprene, cellulose, EDTA, tributylphosphate, and nitromethane. More stable compounds such as benzoic acid, polyethylene, oils, and resins have been completely decomposed below 200{degrees}C and 10 psig. The process uses dilute nitric acid in a concentrated phosphoric acid media as the main oxidant for the organic compounds. Phosphoric acid allow nitric acid to be retained in solution well above its normal boiling point. The reaction forms NOx vapors which can be reoxidized and recycled using air and water. The addition of 0.001M Pd(II) reduces CO generation to near 1% of the released carbon gases. The advantages of this process are that it is straightforward, uses relatively inexpensive reagents, operates at relatively low temperature and pressure, and produces final solutions which are compatible with stainless steel equipment. For organic wastes, all carbon, hydrogen, and nitrogen are converted to gaseous products. If interfaced with an acid recovery system which converts NOx back to nitric acid, the net oxidizer would be oxygen from air.

  11. Estimates of the occupational exposure to tenorm in the phosphoric acid production plant in Iran.

    PubMed

    Fathabadi, N; Vasheghani Farahani, M; Moradi, M; Hadadi, B

    2012-09-01

    Phosphate rock is used world wide for manufacturing phosphoric acid and several chemical fertilisers. It is known that the phosphate rock contains various concentrations of uranium, thorium, radium and their daughters. The subject of this study is the evaluation of the radiation exposure to workers in the phosphoric acid production plant due to technologically enhanced naturally occurring radioactive materials that can result from the presence of naturally occurring radioactive materials in phosphate ores used in the manufacturing of phosphoric acid. Radiation exposure due to direct gamma radiation, dust inhalation and radon gas has been investigated and external and internal doses of exposed workers have been calculated. Natural radioactivity due to (40)K, (226)Ra and (232)Th have been measured in phosphate rock, phosphogypsum, chemical fertilisers and other samples by gamma spectrometry system with a high-purity germanium. The average concentrations of (226)Ra and (40)K observed in the phosphate rock are 760 and 80 Bq kg(-1), respectively. Annual effective dose from external radiation had a mean value of ∼0.673 mSv y(-1). Dust sampling revealed greatest values in the storage area. The annual average effective dose from inhalation of long-lived airborne was 0.113 mSv y(-1). Radon gas concentrations in the processing plant and storage area were found to be of the same value as the background. In this study the estimated annual effective doses to workers were below 1 mSv y(-1). PMID:22361352

  12. Technology development for phosphoric acid fuel cell powerplant, phase 2

    NASA Technical Reports Server (NTRS)

    Christner, L.

    1979-01-01

    A technique for producing an acid inventory control member by spraying FEP onto a partially screened carbon paper backing is discussed. Theoretical analysis of the acid management indicates that the vapor composition of 103% H3PO4 is approximately 1.0 ppm P4O10. An SEM evaluation of corrosion resistance of phenolic resins and graphite/phenolic resin composites in H3PO4 at 185 C shows specific surface etching. Carbonization of graphite/phenolic bipolar plates is achieved without blistering.

  13. 40 CFR 180.1068 - C12-C18 fatty acid potassium salts; exemption from the requirement of a tolerance.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 25 2013-07-01 2013-07-01 false C12-C18 fatty acid potassium salts... RESIDUES IN FOOD Exemptions From Tolerances § 180.1068 C12-C18 fatty acid potassium salts; exemption from the requirement of a tolerance. C12-C18 fatty acids (saturated and unsaturated) potassium salts...

  14. 40 CFR 180.1068 - C12-C18 fatty acid potassium salts; exemption from the requirement of a tolerance.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 25 2012-07-01 2012-07-01 false C12-C18 fatty acid potassium salts... RESIDUES IN FOOD Exemptions From Tolerances § 180.1068 C12-C18 fatty acid potassium salts; exemption from the requirement of a tolerance. C12-C18 fatty acids (saturated and unsaturated) potassium salts...

  15. 40 CFR 180.1068 - C12-C18 fatty acid potassium salts; exemption from the requirement of a tolerance.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 24 2014-07-01 2014-07-01 false C12-C18 fatty acid potassium salts... RESIDUES IN FOOD Exemptions From Tolerances § 180.1068 C12-C18 fatty acid potassium salts; exemption from the requirement of a tolerance. C12-C18 fatty acids (saturated and unsaturated) potassium salts...

  16. 40 CFR 180.1068 - C12-C18 fatty acid potassium salts; exemption from the requirement of a tolerance.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 24 2011-07-01 2011-07-01 false C12-C18 fatty acid potassium salts... RESIDUES IN FOOD Exemptions From Tolerances § 180.1068 C12-C18 fatty acid potassium salts; exemption from the requirement of a tolerance. C12-C18 fatty acids (saturated and unsaturated) potassium salts...

  17. 40 CFR 180.1068 - C12-C18 fatty acid potassium salts; exemption from the requirement of a tolerance.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 23 2010-07-01 2010-07-01 false C12-C18 fatty acid potassium salts... RESIDUES IN FOOD Exemptions From Tolerances § 180.1068 C12-C18 fatty acid potassium salts; exemption from the requirement of a tolerance. C12-C18 fatty acids (saturated and unsaturated) potassium salts...

  18. Growth, structural, spectral, mechanical, thermal and dielectric characterization of phosphoric acid admixtured L-alanine (PLA) single crystals

    NASA Astrophysics Data System (ADS)

    Rose, A. S. J. Lucia; Selvarajan, P.; Perumal, S.

    2011-10-01

    Phosphoric acid admixtured L-alanine (PLA) single crystals were grown successfully by solution method with slow evaporation technique at room temperature. Crystals of size 18 mm × 12 mm × 8 mm have been obtained in 28 days. The grown crystals were colorless and transparent. The solubility of the grown samples has been found out at various temperatures. The lattice parameters of the grown crystals were determined by X-ray diffraction technique. The reflection planes of the sample were confirmed by the powder X-ray diffraction study and diffraction peaks were indexed. Fourier transform infrared (FTIR) studies were used to confirm the presence of various functional groups in the crystals. UV-visible transmittance spectrum was recorded to study the optical transparency of grown crystal. The nonlinear optical (NLO) property of the grown crystal was confirmed by Kurtz-Perry powder technique and a study of its second harmonic generation efficiency in comparison with potassium dihydrogen phosphate (KDP) has been made. The mechanical strength of the crystal was estimated by Vickers hardness test. The grown crystals were subjected to thermo gravimetric and differential thermal analysis (TG/DTA). The dielectric behavior of the sample was also studied.

  19. Traveling Wave Ion Mobility Mass Spectrometry and Ab Initio Calculations of Phosphoric Acid Clusters

    NASA Astrophysics Data System (ADS)

    Lavanant, Hélène; Tognetti, Vincent; Afonso, Carlos

    2014-04-01

    Positive and negative ion electrospray mass spectra obtained from 50 mM phosphoric acid solutions presented a large number of phosphoric acid clusters: [(H3PO4)n + zH] z+ or [(H3PO4)n - zH] z- , with n up to 200 and z up to 4 for positively charged clusters, and n up to 270 and z up to 7 for negatively charged cluster ions. Ion mobility experiments allowed very explicit separation of the different charge states. Because of the increased pressures involved in ion mobility experiments, dissociation to smaller clusters was observed both in the trap and transfer areas. Voltages along the ion path could be optimized so as to minimize this effect, which can be directly associated with the cleavage of hydrogen bonds. Having excluded the ion mobility times that resulted from dissociated ions, each cluster ion appeared at a single drift time. These drift times showed a linear progression with the number of phosphoric atoms for cluster ions of the same charge state. Cross section calculations were carried out with MOBCAL on DFT optimized geometries with different hydrogen locations and with three types of atomic charges. DFT geometry optimizations yielded roughly spherical structures. Our results for nitrogen gas interaction cross sections showed that values were dependent on the atomic charges definition used in the MOBCAL calculation. This pinpointed the necessity to define a clear theoretical framework before any comparative interpretations can be attempted with uncharacterized compounds.

  20. Traveling wave ion mobility mass spectrometry and ab initio calculations of phosphoric acid clusters.

    PubMed

    Lavanant, Hélène; Tognetti, Vincent; Afonso, Carlos

    2014-04-01

    Positive and negative ion electrospray mass spectra obtained from 50 mM phosphoric acid solutions presented a large number of phosphoric acid clusters: [(H3PO4)n + zH](z+) or [(H3PO4)n - zH](z-), with n up to 200 and z up to 4 for positively charged clusters, and n up to 270 and z up to 7 for negatively charged cluster ions. Ion mobility experiments allowed very explicit separation of the different charge states. Because of the increased pressures involved in ion mobility experiments, dissociation to smaller clusters was observed both in the trap and transfer areas. Voltages along the ion path could be optimized so as to minimize this effect, which can be directly associated with the cleavage of hydrogen bonds. Having excluded the ion mobility times that resulted from dissociated ions, each cluster ion appeared at a single drift time. These drift times showed a linear progression with the number of phosphoric atoms for cluster ions of the same charge state. Cross section calculations were carried out with MOBCAL on DFT optimized geometries with different hydrogen locations and with three types of atomic charges. DFT geometry optimizations yielded roughly spherical structures. Our results for nitrogen gas interaction cross sections showed that values were dependent on the atomic charges definition used in the MOBCAL calculation. This pinpointed the necessity to define a clear theoretical framework before any comparative interpretations can be attempted with uncharacterized compounds.

  1. Porous structure and surface chemistry of phosphoric acid activated carbon from corncob

    NASA Astrophysics Data System (ADS)

    Sych, N. V.; Trofymenko, S. I.; Poddubnaya, O. I.; Tsyba, M. M.; Sapsay, V. I.; Klymchuk, D. O.; Puziy, A. M.

    2012-11-01

    Active carbons have been prepared from corncob using chemical activation with phosphoric acid at 400 °C using varied ratio of impregnation (RI). Porous structure of carbons was characterized by nitrogen adsorption and scanning electron microscopy. Surface chemistry was studied by IR and potentiometric titration method. It has been shown that porosity development was peaked at RI = 1.0 (SBET = 2081 m2/g, Vtot = 1.1 cm3/g), while maximum amount of acid surface groups was observed at RI = 1.25. Acid surface groups of phosphoric acid activated carbons from corncob includes phosphate and strongly acidic carboxylic (pK = 2.0-2.6), weakly acidic carboxylic (pK = 4.7-5.0), enol/lactone (pK = 6.7-7.4; 8.8-9.4) and phenol (pK = 10.1-10.7). Corncob derived carbons showed high adsorption capacity to copper, especially at low pH. Maximum adsorption of methylene blue and iodine was observed for carbon with most developed porosity (RI = 1.0).

  2. Removal of heavy metals and lanthanides from industrial phosphoric acid process liquors

    SciTech Connect

    Koopman, C.; Witkamp, G.J.; Van Rosmalen, G.M.

    1999-11-01

    To diminish the discharge of heavy metals and lanthanides by the phosphoric acid industry, these impurities have to be removed from the mother liquor before their incorporation in the gypsum crystals. This can best be achieved by means of solvent extraction or ion exchange during the recrystallization of hemihydrate to dihydrate gypsum. Various commercial carriers and two ion-exchange resins were screened for their efficiency and selectivity. Light and heavy lanthanide ions are extracted from the recrystallization acid by didodecylnaphthalenesulfonic acid (Nacure 1052) and di(2-ethylhexyl)phosphoric acid (D2EHPA), and the heavy-metal ions by bis(2,4,4-trimethylpentyl)dithiophosphinic acid (Cyanex 301) and by bis(2,4,4-trimethylpentyl)monothiophosphinic acid (Cyanex 302). Mercury is also extracted by the anion carriers tri(C{sub 8}-C{sub 10})amine (Alamine 336) and tri(C{sub 8}-C{sub 10}) monomethyl ammonium chloride (Aliquat 336). Both Dowex C-500 and Amberlite IR-120 extract lanthanide and heavy-metal ions. Unfortunately, D2EHPA, Nacure 1052, and the two ion-exchange resins also show affinity for ions present in much higher concentrations, like calcium or iron ions.

  3. Lyoluminescence, thermoluminescence and mechanoluminescence studies in γ-ray irradiated Dy3+ activated potassium chloride phosphor for accidental radiation dosimetry.

    PubMed

    Bhujbal, P M; Dhoble, S J

    2012-01-01

    The lyoluminescence (LL), thermoluminescence (TL) and mechanoluminescence (ML) of γ-ray-irradiated coloured powder of KCl:Dy (0.05-0.5 mol%) phosphors are reported in this paper. To understand the mechanism of LL and ML, the LL and ML spectra are compared with TL studies. The variation of intensity of respective luminescence with different γ-ray doses and with different concentrations of Dy3+ ion doped in KCl is found to be similar in nature. The intensities differ from each other, but their nature is found to be similar with γ-ray exposures. The ML glow peak intensity is linear up to high 1 kGy exposure as compared to LL (up to 0.5 kGy) and TL (up to 0.75 kGy) techniques. Therefore, according to our results, the recommendation is that KCl:Dy (0.1 mol%) phosphor prepared by wet chemical technique is useful for high-dose measurements using the ML technique for accidental radiation dosimetry.

  4. Wet Chemical Oxidation of Organic Waste Using Nitric-Phosphoric Acid Technology

    SciTech Connect

    Pierce, R.A.

    1998-10-06

    Experimental progress has been made in a wide range of areas which support the continued development of the nitric-phosphoric acid oxidation process for combustible, solid organic wastes. An improved understanding of the overall process operation has been obtained, acid recovery and recycle systems have been studied, safety issues have been addressed, two potential final waste forms have been tested, preliminary mass flow diagrams have been prepared, and process flowsheets have been developed. The flowsheet developed is essentially a closed-loop system which addresses all of the internally generated waste streams. The combined activities aim to provide the basis for building and testing a 250-400 liter pilot-scale unit. Variations of the process now must be evaluated in order to address the needs of the primary customer, SRS Solid Waste Management. The customer is interested in treating job control waste contaminated with Pu-238 for shipment to WIPP. As a result, variations for feed preparation, acid recycle, and final form manufacturing must be considered to provide for simpler processing to accommodate operations in high radiation and contamination environments. The purpose of this program is to demonstrate a nitric-phosphoric acid destruction technology which can treat a heterogeneous waste by oxidizing the solid and liquid organic compounds while decontaminating noncombustible items.

  5. Design of a Brønsted acid with two different acidic sites: synthesis and application of aryl phosphinic acid-phosphoric acid as a Brønsted acid catalyst.

    PubMed

    Momiyama, N; Narumi, T; Terada, M

    2015-12-11

    A Brønsted acid with two different acidic sites, aryl phosphinic acid-phosphoric acid, has been synthesized. Its catalytic performance was assessed in the hetero-Diels-Alder reaction of aldehyde hydrates with Danishefsky's diene, achieving high reaction efficiency. PMID:26445921

  6. Production of technical grade phosphoric acid from incinerator sewage sludge ash (ISSA).

    PubMed

    Donatello, S; Tong, D; Cheeseman, C R

    2010-01-01

    The recovery of phosphorus from sewage sludge ash samples obtained from 7 operating sludge incinerators in the UK using a sulfuric acid washing procedure to produce a technical grade phosphoric acid product has been investigated. The influences of reaction time, sulfuric acid concentration, liquid to solid ratio and source of ISSA on P recovery have been examined. The optimised conditions were the minimum stoichiometric acid requirement, a reaction time of 120 min and a liquid to solid ratio of 20. Under these conditions, average recoveries of between 72% and 91% of total phosphorus were obtained. Product filtrate was purified by passing through a cation exchange column, concentrated to 80% H(3)PO(4) and compared with technical grade H(3)PO(4) specifications. The economics of phosphate recovery by this method are briefly discussed.

  7. Influence of pH-control in phosphoric acid treatment of titanium oxide and their powder properties

    SciTech Connect

    Onoda, Hiroaki Matsukura, Aki

    2015-06-15

    Highlights: • The photocatalytic activity was suppressed by phosphoric acid treatment. • The obtained pigment had small particles with sub-micrometer size. • By phosphoric acid treatment, the smoothness of samples improved. - Abstract: Titanium oxide that has the photocatalytic activity is used as a white pigment for cosmetics. A certain degree of sebum on the skin is decomposed by the ultraviolet radiation in sunlight. In this work, titanium oxide was shaken with phosphoric acid at various pH to synthesize a novel white pigment for cosmetics. Their chemical composition, powder properties, photocatalytic activity, color phase, and smoothness were studied. The obtained materials indicated XRD peaks of titanium oxide, however, these peak intensity became weak by phosphoric acid treatment. These samples without heating and heated at 100 °C included the small particles with sub-micrometer size. The photocatalytic activity of the obtained powders became weak by phosphoric acid treatment at pH 4 and 5 to protect the sebum on the skin.

  8. Effect of fungal and phosphoric acid pretreatment on ethanol production from oil palm empty fruit bunches (OPEFB).

    PubMed

    Ishola, Mofoluwake M; Isroi; Taherzadeh, Mohammad J

    2014-08-01

    Oil palm empty fruit bunches (OPEFB), a lignocellulosic residue of palm oil industries was examined for ethanol production. Milled OPEFB exposed to simultaneous saccharification and fermentation (SSF) with enzymes and Saccharomyces cerevisiae resulted just in 14.5% ethanol yield compared to the theoretical yield. Therefore, chemical pretreatment with phosphoric acid, a biological pretreatment with white-rot fungus Pleurotus floridanus, and their combination were carried out on OPEFB prior to the SSF. Pretreatment with phosphoric acid, combination of both methods and just fungal pretreatment improved the digestibility of OPEFB by 24.0, 16.5 and 4.5 times, respectively. During the SSF, phosphoric acid pretreatment, combination of fungal and phosphoric acid pretreatment and just fungal pretreatment resulted in the highest 89.4%, 62.8% and 27.9% of the theoretical ethanol yield, respectively. However, the recovery of the OPEFB after the fungal pretreatment was 98.7%, which was higher than after phosphoric acid pretreatment (36.5%) and combined pretreatment (45.2%).

  9. Manual of phosphoric acid fuel cell power plant optimization model and computer program

    NASA Technical Reports Server (NTRS)

    Lu, C. Y.; Alkasab, K. A.

    1984-01-01

    An optimized cost and performance model for a phosphoric acid fuel cell power plant system was derived and developed into a modular FORTRAN computer code. Cost, energy, mass, and electrochemical analyses were combined to develop a mathematical model for optimizing the steam to methane ratio in the reformer, hydrogen utilization in the PAFC plates per stack. The nonlinear programming code, COMPUTE, was used to solve this model, in which the method of mixed penalty function combined with Hooke and Jeeves pattern search was chosen to evaluate this specific optimization problem.

  10. Quantum-chemical studies of dimethylformamide 1 : 1 complexes with phosphoric acid

    NASA Astrophysics Data System (ADS)

    Krest'yaninov, M. A.; Kiselev, M. G.; Safonova, L. P.

    2012-12-01

    The structures of two phosphoric acid conformations, dimethylformamide (DMFA), four protonated DMFA forms, and nine DMFA-H3PO4 complexes in which the proton acceptor is a oxygen or nitrogen atom of the DMFA molecule are optimized by DFT/B3LYP using the 6-31++G( d, p) basis set. The structural changes in DMFA that occur upon its protonation are discussed. The stabilization energy and transferred charge values upon the formation of a hydrogen bond are calculated for all of the studied complexes by means of NBO analysis. The potential energy surface is scanned to study the possibility of proton transfer.

  11. SOLVENT EXTRACTION PROCESS FOR THE RECOVERY OF METALS FROM PHOSPHORIC ACID

    DOEpatents

    Bailes, R.H.; Long, R.S.

    1958-11-01

    > A solvent extraction process is presented for recovering metal values including uranium, thorium, and other lanthanide and actinide elements from crude industrial phosphoric acid solutions. The process conslsts of contacting said solution with an immisclble organic solvent extractant containing a diluent and a material selected from the group consisting of mono and di alkyl phosphates, alkyl phosphonates and alkyl phosphites. The uranlum enters the extractant phase and is subsequently recovered by any of the methods known to the art. Recovery is improved if the phosphate solution is treated with a reducing agent such as iron or aluminum powder prior to the extraction step.

  12. Non-noble catalysts and catalyst supports for phosphoric acid fuel cells

    NASA Technical Reports Server (NTRS)

    Mcalister, A. J.

    1981-01-01

    Tungsten carbide, which is active for hydrogen oxidation, is CO tolerant and has a hexagonal structure is discussed. Titanium carbide is inactive and has a cubic structure. Four different samples of the cubic alloys W sub x-1Ti sub XC sub 1-y were found to be active and CO tolerant. When the activities of these cubic alloys are weighted by the reciprocal of the square to those of highly forms of WC. They offer important insight into the nature of the active sites on W-C anode catalysts for use in phosphoric acid fuel cells.

  13. Computer-based phosphoric acid fuel cell analytical tools Descriptions and usages

    NASA Technical Reports Server (NTRS)

    Lu, C.; Presler, A. F.

    1987-01-01

    Simulation models have been developed for the prediction of phosphoric acid fuel cell (PAFC) powerplant system performance under both transient and steady operation conditions, as well as for the design of component configurations and for optimal systems synthesis. These models, which are presently computer-implemented, are an engineering and a system model; the former being solved by the finite difference method to determine the balances and properties of different sections, and the latter using thermodynamic balances to set up algebraic equations that yield physical and chemical properties of the stream for one operating condition.

  14. Non-noble catalysts and catalyst supports for phosphoric acid fuel cells

    NASA Technical Reports Server (NTRS)

    Mcalister, A. J.

    1981-01-01

    Four different samples of the cubic alloys W sub x-1 Ti sub x C sub 1-y were prepared and found to be active and CO tolerant. When the activities of these cubic alloys were weighted by the reciprocal of the square of the W exchange, they displayed magnitudes and dependence on bulk C deficiency comparable to those of highly active forms of WC. It is concluded that they may offer important insight into the nature of the active sites on, and means for improving the performance of, W-C anode catalysts for use in phosphoric acid fuel cells.

  15. Status of commercial phosphoric acid fuel cell power plant system development

    NASA Technical Reports Server (NTRS)

    Warshay, M.

    1987-01-01

    A technology development and commercial feasibility evaluation is presented for phosphoric acid fuel cells (PAFCs) applicable to electric utility operations. The correction of identified design deficiencies in the control card and water treatment subsystems is projected to be able to substantially increase average powerplant availability from the 63 percent achieved in recent field tests of a PAFC system. Current development work is proceeding under NASA research contracts at the output levels of a multimegawatt facility for electric utility use, a multikilowatt on-site integrated energy generation facility, and advanced electrocatalysts applicable to PAFCs.

  16. Reductive stripping process for the recovery of uranium from wet-process phosphoric acid

    DOEpatents

    Hurst, Fred J.; Crouse, David J.

    1984-01-01

    A reductive stripping flow sheet for recovery of uranium from wet-process phosphoric acid is described. Uranium is stripped from a uranium-loaded organic phase by a redox reaction converting the uranyl to uranous ion. The uranous ion is reoxidized to the uranyl oxidation state to form an aqueous feed solution highly concentrated in uranium. Processing of this feed through a second solvent extraction cycle requires far less stripping reagent as compared to a flow sheet which does not include the reductive stripping reaction.

  17. Non-noble catalysts and catalyst supports for phosphoric acid fuel cells

    NASA Technical Reports Server (NTRS)

    Mcalister, A. J.

    1980-01-01

    Tungsten carbide, which is known to be active for hydrogen oxidation and CO tolerant has a hexagonal structure. Titanium carbide is inactive and has a cubic structure. Four different samples of the cubic alloys Wx-1TixC were prepared and found to be active and CO tolerant. These alloys are of interest as possible phosphoric acid fuel cell catalysts. They also are of interest as opportunities to study the activity of W in a different crystalline environment and to correlate the activities of the surface sites with surface composition.

  18. Origin of Kinetic Resolution of Hydroxy Esters through Catalytic Enantioselective Lactonization by Chiral Phosphoric Acids.

    PubMed

    Changotra, Avtar; Sunoj, Raghavan B

    2016-08-01

    Kinetic resolution is a widely used strategy for separation and enrichment of enantiomers. Using density functional theory computations, the origin of how a chiral BINOL-phosphoric acid catalyzes the selective lactonization of one of the enantiomers of α-methyl γ-hydroxy ester is identified. In a stepwise mechanism, the stereocontrolling transition state for the addition of the hydroxyl group to the si face of the ester carbonyl in the case of the S isomer exhibits a network of more effective noncovalent interactions between the substrate and the chiral catalyst. PMID:27463593

  19. Extraction equilibrium of indium(III) from nitric acid solutions by di(2-ethylhexyl)phosphoric acid dissolved in kerosene.

    PubMed

    Tsai, Hung-Sheng; Tsai, Teh-Hua

    2012-01-04

    The extraction equilibrium of indium(III) from a nitric acid solution using di(2-ethylhexyl) phosphoric acid (D2EHPA) as an acidic extractant of organophosphorus compounds dissolved in kerosene was studied. By graphical and numerical analysis, the compositions of indium-D2EHPA complexes in organic phase and stoichiometry of the extraction reaction were examined. Nitric acid solutions with various indium concentrations at 25 °C were used to obtain the equilibrium constant of InR₃ in the organic phase. The experimental results showed that the extraction distribution ratios of indium(III) between the organic phase and the aqueous solution increased when either the pH value of the aqueous solution and/or the concentration of the organic phase extractant increased. Finally, the recovery efficiency of indium(III) in nitric acid was measured.

  20. The Partitioning of Acetic, Formic, and Phosphoric Acids Between Liquid Water and Steam

    SciTech Connect

    Gruszkiewicz, M.S.; Marshall, S.L.; Palmer, D.A.; Simonson, J.M.

    1999-06-22

    The chemical carryover of impurities and treatment chemicals from the boiler to the steam phase, and ultimately to the low-pressure turbine and condenser, can be quantified based on laboratory experiments preformed over ranges of temperature, pH, and composition. The two major assumptions are that thermodynamic equilibrium is maintained and no deposition, adsorption or decomposition occurs. The most recent results on acetic, formic and phosphoric acids are presented with consideration of the effects of hydrolysis and dimerization reactions. Complications arising from thermal decomposition of the organic acids are discussed. The partitioning constants for these acids and other solutes measured in this program have been incorporated into a simple thermodynamic computer code that calculates the effect of chemical and mechanical carryover on the composition of the condensate formed to varying extents in the water/steam cycle.

  1. Recovery of organic extractant from secondary emulsions formed in the extraction of uranium from wet-process phosphoric acid

    SciTech Connect

    Korchnak, J.D.; Fett, R.H.G.

    1984-01-03

    Uranium in wet-process phosphoric acid is extracted with an organic extractant. The pregnant extractant is then centrifuged to separate contaminants from the extractant. Secondary emulsions obtained by separating the contaminants following centrifugation are mixed with water or an acid leaching solution. After mixing, the mixture is centrifuged to separate and recover extractant which is recycled for stripping.

  2. Optimizing the saccharification of sugar cane bagasse using dilute phosphoric acid followed by fungal cellulases.

    PubMed

    Geddes, C C; Peterson, J J; Roslander, C; Zacchi, G; Mullinnix, M T; Shanmugam, K T; Ingram, L O

    2010-03-01

    A low level of phosphoric acid (1% w/w on dry bagasse basis, 160 degrees C and above, 10 min) was shown to effectively hydrolyze the hemicellulose in sugar cane bagasse into monomers with minimal side reactions and to serve as an effective pre-treatment for the enzymatic hydrolysis of cellulose. Up to 45% of the remaining water-insoluble solids (WIS) was digested to sugar monomers by a low concentration of Biocellulase W (0.5 filter paper unit/gWIS) supplemented with beta-glucosidase, although much higher levels of cellulase (100-fold) were required for complete hydrolysis. After neutralization and nutrient addition, phosphoric acid syrups of hemicellulose sugars were fermented by ethanologenic Escherichia coli LY160 without further purification. Fermentation of these syrups was preceded by a lag that increased with increased pre-treatment temperature. Further improvements in organisms and optimization of steam treatments may allow the co-fermentation of sugars derived from hemicellulose and cellulose, eliminating need for liquid-solid separation, sugar purification, and separate fermentations.

  3. Development of mesoporosity during phosphoric acid activation of wood in steam atmosphere.

    PubMed

    Klijanienko, Aleksandra; Lorenc-Grabowska, Ewa; Gryglewicz, Grazyna

    2008-10-01

    Oak and birch were used as precursors to produce the activated carbons (ACs) with well-developed mesoporosity by phosphoric acid-promoted activation in a steam atmosphere. The effect of experimental variables such as the amount of activating agent, the soaking time and the type of wood on the development of porous structure upon heating at 480 degrees C was investigated. The materials were characterized by N2 adsorption at 77K, mercury porosimetry and elemental analysis. It was demonstrated that increasing impregnation ratio favors the development of micropores and small mesopores of 2-5nm, whereas the soaking time promotes the creation of large mesopores, between 10 and 50nm. Compared to birch, the oak activation using phosphoric acid in the same conditions gives ACs with lower mesopore volume and higher contribution of small mesopores that reflects the differences between both precursors in their biopolymer composition. The presence of steam in the H3PO4 activation process compared to nitrogen facilitates the development of mesoporosity to much higher extent for the birch than that of oak. The ACs prepared in this work show the BET surface area ranging from 800 to 2250m2g(-1), the total pore volume of 0.35-2.04cm3g(-1) with mesopore fraction between 0.06 and 0.68. PMID:18255286

  4. Behaviour and fluxes of natural radionuclides in the production process of a phosphoric acid plant.

    PubMed

    Bolívar, J P; Martín, J E; García-Tenorio, R; Pérez-Moreno, J P; Mas, J L

    2009-02-01

    In recent years there has been an increasing awareness of the occupational and public hazards of the radiological impact of non-nuclear industries which process materials containing naturally occurring radionuclides. These include the industries devoted to the production of phosphoric acid by treating sedimentary phosphate rocks enriched in radionuclides from the uranium series. With the aim of evaluating the radiological impact of a phosphoric acid factory located in the south-western Spain, the distribution and levels of radionuclides in the materials involved in its production process have been analysed. In this way, it is possible to asses the flows of radionuclides at each step and to locate those points where a possible radionuclide accumulation could be produced. A set of samples collected along the whole production process were analysed to determine their radionuclide content by both alpha-particle and gamma spectrometry techniques. The radionuclide fractionation steps and enrichment sources have been located, allowing the establishment of their mass (activity) balances per year.

  5. Recovery of Uranium from Wet Phosphoric Acid by Solvent Extraction Processes

    DOE PAGES

    Beltrami, Denis; Cote, Gérard; Mokhtari, Hamid; Courtaud, Bruno; Moyer, Bruce A.; Chagnes, Alexandre

    2014-11-17

    Between 1951 and 1991, we developed about 17 processes to recover uranium from wet phosphoric acid (WPA), but the viability of these processes was subject to the variation of the uranium price market. Nowadays, uranium from WPA appears to be attractive due to the increase of the global uranium demand resulting from the emergence of developing countries. Moreover, the increasing demand provides impetus for a new look at the applicable technology with a view to improvements as well as altogether new approaches. This paper gives an overview on extraction processes developed in the past to recover uranium from wet phosphoricmore » acid (WPA) as well as the physicochemistry involved in these processes. Recent advances concerning the development of new extraction systems are also reported and discussed.« less

  6. Recovery of uranium from phosphoric acid medium by polymeric composite beads encapsulating organophosphorus extractants

    SciTech Connect

    Singh, D.K.; Yadav, K.K.; Varshney, L.; Singh, H.

    2013-07-01

    The present study deals with the preparation and evaluation of the poly-ethersulfone (PES) based composite beads encapsulating synergistic mixture of D2EHPA and Cyanex 923 (at 4:1 mole ratio) for the separation of uranium from phosphoric acid medium. SEM was used for the characterization of the composite materials. Addition of 1% PVA (polyvinyl alcohol) improved the internal morphology and porosity of the beads. Additionally, microscopic examination of the composite bead confirmed central coconut type cavity surrounded by porous polymer layer of the beads through which exchange of metal ions take place. Effect of various experimental variables including aqueous acidity, metal ion concentration in aqueous feed, concentration of organic extractant inside the beads, extractant to polymer ratio, liquid to solid (L/S) ratio and temperature on the extraction of uranium was studied. Increase in acidity (1-6 M), L/S ratio (1- 10), metal ion concentration (0.2-3 g/L U{sub 3}O{sub 8}) and polymer to extractant ratio (1:4 -1:10) led to decrease in extraction of uranium. At 5.5 M (comparable to wet process phosphoric acid concentration) the extraction of uranium was about 85% at L/S ratio 5. Increase in extractant concentration inside the bead resulted in enhanced extraction of metal ion. Increase in temperature in the range of 30 to 50 Celsius degrees increased the extraction, whereas further increase to 70 C degrees led to the decrease in extraction of uranium. Amongst various reagents tested, stripping of uranium was quantitative by 12% Na{sub 2}CO{sub 3} solution. Polymeric beads were found to be stable and reusable up-to 10 cycles of extraction/stripping. (authors)

  7. Cassava starch maltodextrinization/monomerization through thermopressurized aqueous phosphoric acid hydrolysis.

    PubMed

    Fontana, J D; Passos, M; Baron, M; Mendes, S V; Ramos, L P

    2001-01-01

    Kinetic conditions were established for the depolymerization of cassava starch for the production of maltodextrins and glucose syrups. Thin-layer chromatography and high-performance liquid chromatography analyses corroborated that the proper H3PO4 strength and thermopressurization range (e.g., 142-170 degrees C; 2.8-6.8 atm) can be successfully explored for such hydrolytic purposes of native starch granules. Because phosphoric acid can be advantageously maintained in the hydrolysate and generates, after controlled neutralization with ammonia, the strategic nutrient triplet for industrial fermentations (C, P, N), this pretreatment strategy can be easily recognized as a recommended technology for hydrolysis and upgrading of starch and other plant polysaccharides. Compared to the classic catalysts, the mandatory desalting step (chloride removal by expensive anion-exchange resin or sulfate precipitation as the calcium-insoluble salt) can be avoided. Furthermore, properly diluted phosphoric acid is well known as an allowable additive in several popular soft drinks such as colas since its acidic feeling in the mouth is compatible and synergistic with both natural and artificial sweeteners. Glycosyrups from phosphorolyzed cassava starch have also been upgraded to high-value single-cell protein such as the pigmented yeast biomass of Xanthophyllomyces dendrorhous (Phaffia rhodozyma), whose astaxanthin (diketo-dihydroxy-beta-carotene) content may reach 0.5-1.0 mg/g of dry yeast cell. This can be used as an ideal complement for animal feeding as well as a natural staining for both fish farming (meat) and poultry (eggs). PMID:11963875

  8. Formation of titanium phosphate composites during phosphoric acid decomposition of natural sphene

    SciTech Connect

    Maslova, Marina V.; Rusanova, Daniela Naydenov, Valeri; Antzutkin, Oleg N.; Gerasimova, Lidia G.

    2008-12-15

    Decomposition of mineral sphene, CaTiOSiO{sub 4}, by H{sub 3}PO{sub 4} is investigated in detail. During the dissolution process, simultaneous calcium leaching and formation of titanium phosphate (TiP) take place. The main product of decomposition is a solid titanium phosphate-silica composite. The XRD, solid-sate NMR, IR, TGA, SEM and BET data were used to identify and characterize the composite as a mixture of crystalline Ti(HPO{sub 4}){sub 2}.H{sub 2}O and silica. When 80% phosphoric acid is used the decomposition degree is higher than 98% and calcium is completely transferred into the liquid phase. Formation of Ti(HPO{sub 4}){sub 2}.H{sub 2}O proceeds via formation of meta-stable titanium phosphate phases, Ti(H{sub 2}PO{sub 4})(PO{sub 4}).2H{sub 2}O and Ti(H{sub 2}PO{sub 4})(PO{sub 4}). The sorption affinities of TiP composites were examined in relation to caesium and strontium ions. A decrease of H{sub 3}PO{sub 4} concentration leads to formation of composites with greater sorption properties. The maximum sorption capacity of TiP is observed when 60% H{sub 3}PO{sub 4} is used in sphene decomposition. The work demonstrates a valuable option within the Ti(HPO{sub 4}){sub 2}.H{sub 2}O-SiO{sub 2} composite synthesis scheme, to use phosphoric acid flows for isolation of CaHPO{sub 4}.2H{sub 2}O fertilizer. - Graphical abstract: A new synthesis scheme for preparation of composite titanium phosphate (TiP) ion-exchangers upon one-stage decomposition process of natural sphene with phosphoric acid is presented. Syntheses of {alpha}-TiP-silica composites proceed via formation of meta-stable titanium phosphate phases. The concentration of H{sub 3}PO{sub 4} determines the porosity of final products and their sorption affinities.

  9. Efficacy of sodium hypochlorite, ethylenediaminetetraacetic acid, citric acid and phosphoric acid in calcium hydroxide removal from the root canal: a microscopic cleanliness evaluation.

    PubMed

    da Silva, Juliana Melo; Silveira, Amanda; Santos, Elizandra; Prado, Laiìs; Pessoa, Oscar F

    2011-12-01

    Rooted molars were subjected to standardized canal instrumentation to a master apical file (MAF). The samples were dressed with Ca(OH)(2), and after 7 days, teeth were reopened and Ca(OH)(2) medication was removed by 1 of 4 different experimental procedures: 2.5% sodium hypochlorite (NaOCl) (n = 10); 17% EDTA-T (n = 10); 10% citric acid (n = 10); or 37% phosphoric acid (n = 10). This was followed by reinstrumentation with MAF plus 15 mL saline solution. The roots were prepared for scanning electron microscopic analysis of the cervical, middle, and apical thirds. Statistical analysis was performed with the Kruskal-Wallis test. EDTA-T and phosphoric acid gave the best results in the apical third, with significant statistical differences compared with other groups. NaOCl gave the worst results. Irrigation with 17% EDTA-T and 37% phosphoric acid is more effective than sodium hypochlorite and citric acid in the removal of calcium hydroxide from the apical third.

  10. Evaluating EDTA as a substitute for phosphoric acid-etching of enamel and dentin.

    PubMed

    Imbery, Terence A; Kennedy, Matthew; Janus, Charles; Moon, Peter C

    2012-01-01

    Matrix metalloproteinases (MMPs) are proteolytic enzymes released when dentin is acid-etched. The enzymes are capable of destroying unprotected collagen fibrils that are not encapsulated by the dentin adhesive. Chlorhexidine applied after etching inhibits the activation of released MMPs, whereas neutral ethylenediamine tetra-acetic acid (EDTA) prevents the release of MMPs. The purpose of this study was to determine if conditioning enamel and dentin with EDTA can be a substitute for treating acid-etching enamel and dentin with chlorhexidine. A column of composite resin was bonded to enamel and dentin after conditioning. Shear bond strengths were evaluated after 48 hours and after accelerated aging for three hours in 12% sodium hypochlorite. Shear bond strengths ranged from 15.6 MP a for accelerated aged EDTA enamel specimens to 26.8 MPa for dentin conditioned with EDTA and tested after 48 hours. A three-way ANOVA and a Tukey HSD test found statistically significant differences among the eight groups and the three independent variables (P < 0.05). EDTA was successfully substituted for phosphoric acid-etched enamel and dentin treated with chlorhexidine. Interactions of conditioning agent and aging were significant for dentin but not for enamel. In an effort to reduce the detrimental effects of MMPs, conditioning enamel and dentin with EDTA is an alternative to treating acid-etched dentin and enamel with chlorhexidine.

  11. Process for the removal of acid forming gases from exhaust gases and production of phosphoric acid

    DOEpatents

    Chang, Shih-Ger; Liu, David K.

    1992-01-01

    Exhaust gases are treated to remove NO or NO.sub.x and SO.sub.2 by contacting the gases with an aqueous emulsion or suspension of yellow phosphorous preferably in a wet scrubber. The addition of yellow phosphorous in the system induces the production of O.sub.3 which subsequently oxidizes NO to NO.sub.2. The resulting NO.sub.2 dissolves readily and can be reduced to form ammonium ions by dissolved SO.sub.2 under appropriate conditions. In a 20 acfm system, yellow phosphorous is oxidized to yield P.sub.2 O.sub.5 which picks up water to form H.sub.3 PO.sub.4 mists and can be collected as a valuable product. The pressure is not critical, and ambient pressures are used. Hot water temperatures are best, but economics suggest about 50.degree. C. The amount of yellow phosphorus used will vary with the composition of the exhaust gas, less than 3% for small concentrations of NO, and 10% or higher for concentrations above say 1000 ppm. Similarly, the pH will vary with the composition being treated, and it is adjusted with a suitable alkali. For mixtures of NO.sub.x and SO.sub.2, alkalis that are used for flue gas desulfurization are preferred. With this process, better than 90% of SO.sub.2 and NO in simulated flue gas can be removed. Stoichiometric ratios (P/NO) ranging between 0.6 and 1.5 were obtained.

  12. Quantifying phosphoric acid in high-temperature polymer electrolyte fuel cell components by X-ray tomographic microscopy.

    PubMed

    Eberhardt, S H; Marone, F; Stampanoni, M; Büchi, F N; Schmidt, T J

    2014-11-01

    Synchrotron-based X-ray tomographic microscopy is investigated for imaging the local distribution and concentration of phosphoric acid in high-temperature polymer electrolyte fuel cells. Phosphoric acid fills the pores of the macro- and microporous fuel cell components. Its concentration in the fuel cell varies over a wide range (40-100 wt% H3PO4). This renders the quantification and concentration determination challenging. The problem is solved by using propagation-based phase contrast imaging and a referencing method. Fuel cell components with known acid concentrations were used to correlate greyscale values and acid concentrations. Thus calibration curves were established for the gas diffusion layer, catalyst layer and membrane in a non-operating fuel cell. The non-destructive imaging methodology was verified by comparing image-based values for acid content and concentration in the gas diffusion layer with those from chemical analysis.

  13. IN-VITRO FORMATION OF PYROMORPHITE VIA REACTION OF PB SOURCES WITH SOFT-DRINK PHOSPHORIC ACID

    EPA Science Inventory

    The risk of Pb adsorption into the body may be greatly diminished when accompanied by a phosphate sink. One of the most labile, albeit not healthiest, forms of phosphate consumed in the human diet is derived from cola soft drinks that use phosphoric acid as a preservative and als...

  14. Efficacy of fungicide combinations, phosphoric acid, and plant extract from stinging nettle on potato late blight management and tuber yield

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Late blight, caused by Phytophthora infestans is a major constraint to potato production. Inadequate management of the disease has often resulted in heavy losses in various production regions. We assessed the efficacy of fungicides, phosphoric acid, and stinging nettle plant extract combinations for...

  15. Effect of EDTA and Phosphoric Acid Pretreatment on the Bonding Effectiveness of Self-Etch Adhesives to Ground Enamel

    PubMed Central

    Ibrahim, Ihab M.; Elkassas, Dina W.; Yousry, Mai M.

    2010-01-01

    Objectives: This in vitro study determined the effect of enamel pretreatment with phosphoric acid and ethylenediaminetetraacetic acid (EDTA) on the bond strength of strong, intermediary strong, and mild self-etching adhesive systems. Methods: Ninety sound human premolars were used. Resin composite cylinders were bonded to flat ground enamel surfaces using three self-etching adhesive systems: strong Adper Prompt L-Pop (pH=0.9–1.0), intermediary strong AdheSE (pH=1.6–1.7), and mild Frog (pH=2). Adhesive systems were applied either according to manufacturer instructions (control) or after pretreatment with either phosphoric acid or EDTA (n=10). After 24 hours, shear bond strength was tested using a universal testing machine at a cross-head speed of 0.5 mm/minute. Ultra-morphological characterization of the surface topography and resin/enamel interfaces as well as representative fractured enamel specimens were examined using scanning electron microscopy (SEM). Results: Neither surface pretreatment statistically increased the mean shear bond strength values of either the strong or the intermediary strong self-etching adhesive systems. However, phosphoric acid pretreatment significantly increased the mean shear bond strength values of the mild self-etching adhesive system. SEM examination of enamel surface topography showed that phosphoric acid pretreatment deepened the same etching pattern of the strong and intermediary strong adhesive systems but converted the irregular etching pattern of the mild self-etching adhesive system to a regular etching pattern. SEM examination of the resin/enamel interface revealed that deepening of the etching pattern was consistent with increase in the length of resin tags. EDTA pretreatment had a negligible effect on ultra-morphological features. Conclusions: Use of phosphoric acid pretreatment can be beneficial with mild self-etching adhesive systems for bonding to enamel. PMID:20922162

  16. Spatial variability of soil carbon, pH, available phosphorous and potassium in organic farm located in Mediterranean Croatia

    NASA Astrophysics Data System (ADS)

    Bogunović, Igor; Pereira, Paulo; Šeput, Miranda

    2016-04-01

    Soil organic carbon (SOC), pH, available phosphorus (P), and potassium (K) are some of the most important factors to soil fertility. These soil parameters are highly variable in space and time, with implications to crop production. The aim of this work is study the spatial variability of SOC, pH, P and K in an organic farm located in river Rasa valley (Croatia). A regular grid (100 x 100 m) was designed and 182 samples were collected on Silty Clay Loam soil. P, K and SOC showed moderate heterogeneity with coefficient of variation (CV) of 21.6%, 32.8% and 51.9%, respectively. Soil pH record low spatial variability with CV of 1.5%. Soil pH, P and SOC did not follow normal distribution. Only after a Box-Cox transformation, data respected the normality requirements. Directional exponential models were the best fitted and used to describe spatial autocorrelation. Soil pH, P and SOC showed strong spatial dependence with nugget to sill ratio with 13.78%, 0.00% and 20.29%, respectively. Only K recorded moderate spatial dependence. Semivariogram ranges indicate that future sampling interval could be 150 - 200 m in order to reduce sampling costs. Fourteen different interpolation models for mapping soil properties were tested. The method with lowest Root Mean Square Error was the most appropriated to map the variable. The results showed that radial basis function models (Spline with Tension and Completely Regularized Spline) for P and K were the best predictors, while Thin Plate Spline and inverse distance weighting models were the least accurate. The best interpolator for pH and SOC was the local polynomial with the power of 1, while the least accurate were Thin Plate Spline. According to soil nutrient maps investigated area record very rich supply with K while P supply was insufficient on largest part of area. Soil pH maps showed mostly neutral reaction while individual parts of alkaline soil indicate the possibility of penetration of seawater and salt accumulation in the

  17. Gas diffusion electrode setup for catalyst testing in concentrated phosphoric acid at elevated temperatures

    SciTech Connect

    Wiberg, Gustav K. H. E-mail: m.arenz@chem.ku.dk; Fleige, Michael; Arenz, Matthias E-mail: m.arenz@chem.ku.dk

    2015-02-15

    We present a detailed description of the construction and testing of an electrochemical cell setup allowing the investigation of a gas diffusion electrode containing carbon supported high surface area catalysts. The setup is designed for measurements in concentrated phosphoric acid at elevated temperature, i.e., very close to the actual conditions in high temperature proton exchange membrane fuel cells (HT-PEMFCs). The cell consists of a stainless steel flow field and a PEEK plastic cell body comprising the electrochemical cell, which exhibits a three electrode configuration. The cell body and flow field are braced using a KF-25 vacuum flange clamp, which allows an easy assembly of the setup. As demonstrated, the setup can be used to investigate temperature dependent electrochemical processes on high surface area type electrocatalysts, but it also enables quick screening tests of HT-PEMFC catalysts under realistic conditions.

  18. Trial operation of a phosphoric acid fuel cell (PC25) for CHP applications in Europe

    SciTech Connect

    Uhrig, M.; Droste, W.; Wolf, D.

    1996-12-31

    In Europe, ten 200 kW phosphoric acid fuel cells (PAFCs) produced by ONSI (PC25) are currently in operation. Their operators collaborate closely in the European Fuel Cell Users Group (EFCUG). The experience gained from trial operation by the four German operators - HEAG, HGW/HEW, Thyssengas and Ruhrgas - coincides with that of the other European operators. This experience can generally be regarded as favourable. With a view to using fuel cells in combined heat and power generation (CHP), the project described in this report, which was carried out in cooperation with the municipal utility of Bochum and Gasunie of the Netherlands, aimed at gaining experience with the PC 25 in field operation under the specific operating conditions prevailing in Europe. The work packages included heat-controlled operation, examination of plant behavior with varying gas properties and measurement of emissions under dynamic load conditions. The project received EU funding under the JOULE programme.

  19. Evaluation of gas cooling for pressurized phosphoric acid fuel cell stacks

    NASA Technical Reports Server (NTRS)

    Farooque, M.; Skok, A. J.; Maru, H. C.; Kothmann, R. E.; Harry, R. W.

    1983-01-01

    Gas cooling is a more reliable, less expensive and a more simple alternative to conventional liquid cooling for heat removal from the phosphoric acid fuel cell (PAFC). The feasibility of gas cooling has already been demonstrated in atmospheric pressure stacks. This paper presents theoretical and experimental investigation of gas cooling for pressurized PAFC. Two approaches to gas cooling, Distributed Gas Cooling (DIGAS) and Separated Gas Cooling (SGC) were considered, and a theoretical comparison on the basis of cell performance indicated SGC to be superior to DIGAS. The feasibility of SGC was experimentally demonstrated by operating a 45-cell stack for 700 hours at pressure, and determining thermal response and the effect of other related parameters.

  20. Preparation and evaluation of advanced electrocatalysts for phosphoric acid fuel cells

    NASA Technical Reports Server (NTRS)

    Stonehart, P.; Baris, J.; Pagliaro, P.

    1980-01-01

    Results are presented for hydrogen oxidation and hydrogen oxidation poisoned by carbon monoxide at levels between 0 and 30%. Due to the high activities that are now being observed for our platinum based electrocatalysts, the hydrogen concentrations were reduced to 10% levels in the gas supplies. Perturbation techniques were used to determine that a mechanism for the efficient operation of our porous gas diffusion electrodes is diffusion of the carbon monoxide out of the electrode structure through the electrolyte film on the electro-catalyst. A survey of the literature on platinum group materials (PGM) was carried out so that an identification of successful electrocatalysts could be made. Two PGM electrocatalysts were prepared and performance data for hydrogen oxidation in hot phosphoric acid in the presence of high carbon monoxide concentrations showed that they matched the best platinum on carbon electrocatalysts but with an electrocatalyst cost that was half of the platinum catalyst cost.

  1. Evaluation of Gas-Cooled Pressurized Phosphoric Acid Fuel Cells for Electric Utility Power Generation

    NASA Technical Reports Server (NTRS)

    Faroque, M.

    1983-01-01

    Gas cooling is a more reliable, less expensive and a more simple alternative to conventional liquid cooling for heat removal from the phosphoric acid fuel cell (PAFC). The feasibility of gas-cooling was already demonstrated in atmospheric pressure stacks. Theoretical and experimental investigations of gas-cooling for pressurized PAFC are presented. Two approaches to gas cooling, Distributed Gas-Cooling (DIGAS) and Separated Gas-Cooling (SGC) were considered, and a theoretical comparison on the basis of cell performance indicated SGC to be superior to DIGAS. The feasibility of SGC was experimentally demonstrated by operating a 45-cell stack for 700 hours at pressure, and determining thermal response and the effect of other related parameters.

  2. Analysis and evaluation of the possibility of introducing phosphoric acid fuel cells

    NASA Astrophysics Data System (ADS)

    1991-03-01

    Each step in the manufacture of fuel cells is reviewed. The possibility of cost reduction in the process is investigated. Additionally, the feasibility of providing financial assistance for fuel cell buyers is investigated. Also, the present status and the future outlook of fuel cell development are discussed. In Japan, phosphoric acid fuel cells are beginning demonstration testing. A 200 kW test plant, for commercial and remote island use, has finished its demonstration test favorably. The test run of an 11 mW plant, for the production of electric power, is being conducted by a private company. The manufacture of each of the fuel cell's subsystems is semi-automated at this time. The costs are estimated to be reduced to 60 - 80 percent of the present costs in a 10 mW/year plant and TO 50 - 60 percent of the present costs in a 100 mW/year plant.

  3. Assessment and comparison of 100-MW coal gasification phosphoric acid fuel cell power plants

    NASA Technical Reports Server (NTRS)

    Lu, Cheng-Yi

    1988-01-01

    One of the advantages of fuel cell (FC) power plants is fuel versatility. With changes only in the fuel processor, the power plant will be able to accept a variety of fuels. This study was performed to design process diagrams, evaluate performance, and to estimate cost of 100 MW coal gasifier (CG)/phosphoric acid fuel cell (PAFC) power plant systems utilizing coal, which is the largest single potential source of alternate hydrocarbon liquids and gases in the United States, as the fuel. Results of this study will identify the most promising integrated CG/PAFC design and its near-optimal operating conditions. The comparison is based on the performance and cost of electricity which is calculated under consistent financial assumptions.

  4. Flexible and Conducting Carbon Nanofibers Obtained from Electrospun Polyacrylonitrile/Phosphoric Acid Nanofibers.

    PubMed

    Lim, Baek Ho; Nirmala, R; Navamathavan, R; Kim, Hak Yong

    2016-01-01

    We report on the feasible synthesis of flexible and conductive carbon nanofibers by electrospinning process using polyacrylonitrile (PAN) and phosphoric acid (PA) as precursors. The carbon nanofibers were subsequently obtained by stabilization and carbonization of the electrospun PAN nanofibers. From SEM data, it was found that the electrospun PAN nanofibers showed a smooth surface and had an average diameter of approximately 200 nm. Afterwards, the electrospun PAN nanofibers were stabilized at 250 °C and heated at 900 °C for the carbonization process to obtain the carbon nanofibers. The carbonized PAN nanofibers exhibited a drastic improvement of electrical conduction. From Raman spectroscopy data, it was found that the carbonization at 900 °C gave a decrease of the intensity ratio of D and G peaks, indicating higher graphitic structure. PMID:27398565

  5. Porous texture of activated carbons prepared by phosphoric acid activation of woods

    NASA Astrophysics Data System (ADS)

    Díaz-Díez, M. A.; Gómez-Serrano, V.; Fernández González, C.; Cuerda-Correa, E. M.; Macías-García, A.

    2004-11-01

    Activated carbons (ACs) have been prepared using chestnut, cedar and walnut wood shavings from furniture industries located in the Comunidad Autónoma de Extremadura (SW Spain). Phosphoric acid (H3PO4) at different concentrations (i.e. 36 and 85 wt.%) has been used as activating agent. ACs have been characterized from the results obtained by N2 adsorption at 77 K. Moreover, the fractal dimension (D) has been calculated in order to determine the AC surface roughness degree. Optimal textural properties of ACs have been obtained by chemical activation with H3PO4 36 wt.%. This is corroborated by the slightly lower values of D for samples treated with H3PO4 85 wt.%.

  6. Method for the purification of bis (2-ethyl-hexyl)phosphoric acid

    DOEpatents

    Schulz, W.W.

    1974-02-19

    Foreign products including the neutral organophosphorous compounds and the iron salts normally present in commercial bis(2ethyl-hexyl) phosphoric acid(HDEHP), and the radiolytic degradation products of HDEHP on exposure of HDEHP to beta and gamma irradiation are removed from HDEHP containing one or more of such products by contacting the said foreign product containing HDEHP with a macroreticular anion exchange resin in base form whereby the DEHP- ion of HDEHP exchanges with the anion of the resin and is thus adsorbed on the resin and the said foreign products are not adsorbed and will pass through a bed of particles of the resin. The adsorbed DEHP- ion is then eluted from the resin and acidified to form and recover the purified HDEHP. (auth)

  7. Phosphoric acid pretreatment of Achyranthes aspera and Sida acuta weed biomass to improve enzymatic hydrolysis.

    PubMed

    Siripong, Premjet; Duangporn, Premjet; Takata, Eri; Tsutsumi, Yuji

    2016-03-01

    Achyranthes aspera and Sida acuta, two types of weed biomass are abundant and waste in Thailand. We focus on them as novel feedstock for bio-ethanol production because they contain high-cellulose content (45.9% and 46.9%, respectively) and unutilized material. Phosphoric acid (70%, 75%, and 80%) was employed for the pretreatment to improve by enzymatic hydrolysis. The pretreatment process removed most of the xylan and a part of the lignin from the weeds, while most of the glucan remained. The cellulose conversion to glucose was greater for pretreated A. aspera (86.2 ± 0.3%) than that of the pretreated S. acuta (82.2 ± 1.1%). Thus, the removal of hemicellulose significantly affected the efficiency of the enzymatic hydrolysis. The scanning electron microscopy images showed the exposed fibrous cellulose on the cell wall surface, and this substantial change of the surface structure contributed to improving the enzyme accessibility.

  8. Effect of impurities in wet-process phosphoric acids on DAP grades. [Diammonium phosphate

    SciTech Connect

    Achorn, F.P.; Dillard, E.F.; Frazier, A.W.; Salladay, D.G.

    1980-11-01

    Results of this study identify the main problems in meeting diammonium phosphate (DAP) grade specifications and suggest some possible solutions to these problems as follows: 1. The major source of grade deficiency in the commercial samples which were investigated was calcium. Some solutions to this problem are to maintain filter cloths in the phosphoric acid unit in good condition, operate the phosphoric acid unit at as low an acid temperature as consistent with good operation of this unit, and partially clarify the acid before it is used. 2. In the DAP unit the amount of Fe/sub 2/O/sub 3/ and F in the acid affects the content of C.I. P/sub 2/O/sub 5/ in the product. If the F:Fe/sub 2/O/sub 3/ wt ratio in the product can be kept above 2.3:1, probably the C.I.-P/sub 2/O/sub 5/ content of the product will be less than 0.1 percent. At lower F:Fe/sub 2/O/sub 3/ wt ratios, it is advantageous to have low retention times in the preneutralizer and ammoniator-granulator when the N:P mole ratio is 1.4:1 or higher. 3. Other data show that the N:P mole ratio in the slurry from the preneutralizer to the granulator must be above 1.4:1 to avoid nitrogen deficiencies. At lower ratios the product will contain some MAP; this causes nitrogen deficiency in the products. 4. The Mg and Al contents of the acids have less effect on grade deficiency than Ca and Fe. 5. To avoid highly viscous preneutralizer slurries when low preneutralizer retention times are used, ensure that there is sufficient F available (F:Fe/sub 2/O/sub 3/ wt ratio > 2.0:1) to combine with the Fe/sub 2/O/sub 3/ to form coarse crystals. An alternative to this latter suggestion is to replace the preneutralizer with a TVA pipe reactor which is partially installed in the granulator and discharges viscous slurry directly onto the bed of material in the granulator.

  9. Utilization of date stones for production of activated carbon using phosphoric acid

    SciTech Connect

    Haimour, N.M. . E-mail: nomanhaimour@hotmail.com; Emeish, S. . E-mail: s_emiesh@yahoo.com

    2006-07-01

    Date stone wastes have been utilized for production of activated carbon by chemical activation with phosphoric acid using a fluidized-bed reactor. The effects of the activation time, activation temperature, impregnation ratio, and particle size on the yield and the adsorptive capacity towards iodine were studied. The yield and the quality of the activated carbon prepared by using H{sub 3}PO{sub 4} were compared with that prepared from date stones using the same equipment, and under similar conditions by using ZnCl{sub 2} as an oxidizing agent. The maximum value of the iodine number of the activated carbon produced using H{sub 3}PO{sub 4} in this work was about 495 under the following conditions: impregnation ratio 0.4, activation time 60 min, activation temperature 800 deg. C, particle size 0.60 mm. The iodine number for the produced activated carbon was higher when phosphoric acid was used, compared to that when zinc chloride was used as impregnation reagent; however, the yield obtained when H{sub 3}PO{sub 4} was used was lower than the yield when ZnCl{sub 2} was used. The iodine number increases significantly with increasing the activation temperature. By increasing the impregnation ratio at the same temperature, the iodine number decreased sharply and an oscillation is noticed for all the cases but it was clearer at 800 deg. C. The average variation of the iodine number for the whole range of particle size used in this work is {+-}10%.

  10. Fructo-oligosaccharide production from inulin through partial citric or phosphoric acid hydrolyses.

    PubMed

    Fontana, José Domingos; Grzybowski, Adelia; Tiboni, Marcela; Passos, Maurício

    2011-11-01

    Purified inulin from Dahlia tubers was partially hydrolyzed to form fructo-oligosaccharides by using citric or phosphoric acids (pH, 2.0-2.5) as mild acid catalysts. The ideal kinetic conditions to ensure a high yield of fructo-oligosaccharides relative to free fructose were a temperature range of 85°C-95°C, a hydrolysis time of 15-25 minutes, and a catalyst pH of 2.5. At the higher temperature and the longest hydrolysis time, an inversion of the product ratio occurred. Under these conditions, co-generation of hydroxymethylfurfural occurred, and it was eliminated by activated charcoal. Unlike in classic hydrolysis with hydrochloric or sulfuric acid, deionization of the actual hydrolysates was not necessary because the catalyst neutralization with common bases results in the formation of co-nutrients with alternative uses as foods or fermentation substrates. These whole hydrolysates can be advantageously added as nutraceuticals to carbonated beverages and acidic foods, such as soft drinks and yogurts. PMID:21663491

  11. One-Step Hydrothermal Synthesis of Butanetetracarboxylic Acid-Coated NaYF₄:Yb³⁺, Er³⁺ Upconversion Phosphors with Enhancement Upconversion Luminescence.

    PubMed

    Zhang, Liming; Mao, Lanlan; Lu, Zhuoxuan; Deng, Yan; He, Nongyue

    2016-01-01

    Butanetetracarboxylic acid (BTCA)/NaYF₄:Yb³⁺, Er³⁺ upconversion phosphors have been successfully synthesized by a one-step hydrothermal method. The SEM and XRD results show the as-prepared phosphors exhibit main hexagonal lattice structures and uniform morphologies. FT-IR spectra confirm that the surface of as-prepared phosphors is inherently modified with the carboxyl groups. Under the excitation of 980 nm, it has been observed that BTCA/NaYF₄:Yb³⁺, Er³⁺ upconversion phosphors have a higher upconversion luminescence efficiency than that coated with citrate, ethylenediamine tetraacetic acid (EDTA), or polyacrylic acid (PAA). These results indicate that the BTCA/NaYF₄:Yb³⁺, Er³⁺ phosphors may have superior optical properties, and thus have great potential for biological applications. PMID:27398591

  12. Oxidation kinetics of crystal violet by potassium permanganate in acidic medium

    NASA Astrophysics Data System (ADS)

    Khan, Sameera Razi; Ashfaq, Maria; Mubashir; Masood, Summyia

    2016-05-01

    The oxidation kinetics of crystal violet (a triphenylmethane dye) by potassium permanganate was focused in an acidic medium by the spectrophotometric method at 584 nm. The oxidation reaction of crystal violet by potassium permanganate is carried out in an acidic medium at different temperatures ranging within 298-318 K. The kinetic study was carried out to investigate the effect of the concentration, ionic strength and temperature. The reaction followed first order kinetics with respect to potassium permanganate and crystal violet and the overall rate of the reaction was found to be second order. Thermodynamic activation parameters like the activation energy ( E a), enthalpy change (Δ H*), free energy change (Δ G*), and entropy change (Δ S*) have also been evaluated.

  13. A Comparative Study of Phosphoric Acid-doped m-PBI Membranes

    SciTech Connect

    Perry, Kelly A; More, Karren Leslie; Payzant, E Andrew; Meisner, Roberta A; Sumpter, Bobby G; Benicewicz, Brian

    2014-01-01

    Phosphoric acid (PA)-doped m-polybenzimidazole (PBI) membranes used in high temperature fuel cells and hydrogen pumps were prepared by a conventional imbibing process and a sol-gel fabrication process. A comparative study was conducted to investigate the critical properties of PA doping levels, ionic conductivities, mechanical properties, and molecular ordering. This systematic study found that sol-gel PA-doped m-PBI membranes were able to absorb higher acid doping levels and to achieve higher ionic conductivities than conventionally imbibed membranes when treated in an equivalent manner. Even at similar acid loadings, the sol-gel membranes exhibited higher ionic conductivities. Heat treatment of conventionally imbibed membranes with 29wt% solids caused a significant reduction in mechanical properties; conversely, sol-gel membranes exhibited an enhancement in mechanical properties. From X-ray structural studies and atomistic simulations, both conventionally imbibed and sol-gel membranes exhibited d-spacings of 3.5 and 4.6 , which were tentatively attributed to parallel ring stacking and staggered side-to-side packing, respectively, of the imidazole rings in these aromatic hetercyclic polymers. An anisotropic staggered side-to-side chain packing present in the conventional membranes may be root to the reduction in mechanical properties.

  14. The effect of copper sulfate, potassium permanganate, and peracetic acid on Ichthyobodo necator in channel catfish

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Ichthyobodo necator is a single celled biflagellate that can cause significant mortalities in fish, particularly young, tank-reared fish. Copper sulfate (CuSO4), potassium permanganate (KMnO4) and peracetic acid (PAA) were evaluated for effectiveness against Ichthybodosis in juvenile channel catfis...

  15. Role of lauric acid-potassium hydroxide concentration on bacterial contamination of spray washed broiler carcasses

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A series of experiments were conducted to examine reductions in bacterial contamination of broiler carcasses washed in a spray cabinet with various concentrations of lauric acid (LA)-potassium hydroxide (KOH) solutions. Fifty eviscerated carcasses and 5 ceca were obtained from the processing line of...

  16. Influence of washing time on residual contamination of carcasses sprayed with lauric acid-potassium hydroxide.

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A series of experiments were conducted to examine reductions in bacterial contamination of broiler carcasses washed for various times in a spray cabinet with a 2% lauric acid (LA)-1% potassium hydroxide (KOH) (w/v) solution. Forty eviscerated carcasses and 5 ceca were obtained from the processing l...

  17. Influence of washing time on residual contamination of carcasses sprayed with lauric acid-potassium hydroxide

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A series of experiments were conducted to examine reductions in bacterial contamination of broiler carcasses washed for various times in a spray cabinet with a 2% lauric acid (LA)-1% potassium hydroxide (KOH) solution (w/v). Forty eviscerated carcasses and 5 ceca were obtained from the processing li...

  18. Naturally occurring radioactive material (NORM) from a former phosphoric acid processing plant.

    PubMed

    Beddow, H; Black, S; Read, D

    2006-01-01

    In recent years there has been an increasing awareness of the radiological impact of non-nuclear industries that extract and/or process ores and minerals containing naturally occurring radioactive material (NORM). These industrial activities may result in significant radioactive contamination of (by-) products, wastes and plant installations. In this study, scale samples were collected from a decommissioned phosphoric acid processing plant. To determine the nature and concentration of NORM retained in pipe-work and associated process plant, four main areas of the site were investigated: (1) the 'Green Acid Plant', where crude acid was concentrated; (2) the green acid storage tanks; (3) the Purified White Acid (PWA) plant, where inorganic impurities were removed; and (4) the solid waste, disposed of on-site as landfill. The scale samples predominantly comprise the following: fluorides (e.g. ralstonite); calcium sulphate (e.g. gypsum); and an assemblage of mixed fluorides and phosphates (e.g. iron fluoride hydrate, calcium phosphate), respectively. The radioactive inventory is dominated by 238U and its decay chain products, and significant fractionation along the series occurs. Compared to the feedstock ore, elevated concentrations (< or =8.8 Bq/g) of 238U were found to be retained in installations where the process stream was rich in fluorides and phosphates. In addition, enriched levels (< or =11 Bq/g) of 226Ra were found in association with precipitates of calcium sulphate. Water extraction tests indicate that many of the scales and waste contain significantly soluble materials and readily release radioactivity into solution.

  19. Naturally occurring radioactive material (NORM) from a former phosphoric acid processing plant.

    PubMed

    Beddow, H; Black, S; Read, D

    2006-01-01

    In recent years there has been an increasing awareness of the radiological impact of non-nuclear industries that extract and/or process ores and minerals containing naturally occurring radioactive material (NORM). These industrial activities may result in significant radioactive contamination of (by-) products, wastes and plant installations. In this study, scale samples were collected from a decommissioned phosphoric acid processing plant. To determine the nature and concentration of NORM retained in pipe-work and associated process plant, four main areas of the site were investigated: (1) the 'Green Acid Plant', where crude acid was concentrated; (2) the green acid storage tanks; (3) the Purified White Acid (PWA) plant, where inorganic impurities were removed; and (4) the solid waste, disposed of on-site as landfill. The scale samples predominantly comprise the following: fluorides (e.g. ralstonite); calcium sulphate (e.g. gypsum); and an assemblage of mixed fluorides and phosphates (e.g. iron fluoride hydrate, calcium phosphate), respectively. The radioactive inventory is dominated by 238U and its decay chain products, and significant fractionation along the series occurs. Compared to the feedstock ore, elevated concentrations (< or =8.8 Bq/g) of 238U were found to be retained in installations where the process stream was rich in fluorides and phosphates. In addition, enriched levels (< or =11 Bq/g) of 226Ra were found in association with precipitates of calcium sulphate. Water extraction tests indicate that many of the scales and waste contain significantly soluble materials and readily release radioactivity into solution. PMID:16303218

  20. Active and Passive Application of the Phosphoric Acid on the Bond Strength of Lithium Disilicate.

    PubMed

    Giraldo, Tatiana Cardona; Villada, Vanessa Roldan; Castillo, Mauricio Peña; Gomes, Osnara Maria Mongruel; Bittencourt, Bruna Fortes; Dominguez, John Alexis

    2016-01-01

    The objective of this study was to evaluate the effect of passive or active phosphoric acid (PA) application after hydrofluoric acid (HA) treatment on the microshear bond strength of lithium disilicate. Thirty ceramic discs were made with IPS Emax 2 (10 mm thick and 10 mm diameter). The specimens were divided into 3 groups, A: 9.6% HA application; AF: 9.6% HA application + cleaning with 37% PA in passive mode and AFF: 9.6% HA application + cleaning with 37% PA in active mode. For the microshear test, four tygons (0.9 mm diameter and 0.2 mm high) were filled with resin cement (RelyX Ultimate) and placed on the ceramic disks. After testing, the fracture modes were examined under scanning electron microscopy. Data were analyzed by one-way ANOVA and Tukey's post test (α=0.05). The bond strength values were significantly higher in Group AFF (11.0±2.5 MPa) compared with group A (8.1±2.6 MPa) (p<0.002). AF group was not statistically different (9.4±2.5 MPa) from Group A. It was concluded that the active application of 37% PA after 9.6% HA increases the microshear bond strength values between the resin cement and lithium disilicate ceramic.

  1. Mechanistic insights into a BINOL-derived phosphoric acid-catalyzed asymmetric Pictet-Spengler reaction.

    PubMed

    Overvoorde, Lois M; Grayson, Matthew N; Luo, Yi; Goodman, Jonathan M

    2015-03-01

    The reaction of tryptamine and (2-oxocyclohexyl)acetic acid can be catalyzed by 3,3'-bis(triphenylsilyl)-1,1'-bi-2-naphthol phosphoric acid to give an asymmetric β-carboline. This reaction was first studied by Holloway et al. ( Org. Lett. 2010 , 12 , 4720 - 4723 ), but their mechanistic work did not explain the high stereoselectivity achieved. This study uses density functional theory and hybrid quantum mechanics/molecular mechanics calculations to investigate this reaction and provide a model to explain its outcome. The step leading to diastereo- and enantioselectivity is an asymmetric Pictet-Spengler reaction involving an N-acyliminium ion bound to the catalyst in a bidentate fashion. This interaction occurs via hydrogen bonds between the two terminal oxygen atoms of the catalyst phosphate group and the hydrogen atoms at N and C2 of the substrate indole group. These bonds hold the transition structure rigidly and thus allow the catalyst triphenylsilyl groups to influence the enantioselectivity. PMID:25654215

  2. Enhanced copper surface protection in aqueous solutions containing short-chain alkanoic acid potassium salts.

    PubMed

    Abelev, Esta; Starosvetsky, David; Ein-Eli, Yair

    2007-10-23

    The ability of dissolved potassium monocarboxylate salts to produce surface passivation and to inhibit aqueous corrosion of copper was studied. The electrochemical measurements indicate that the inhibiting efficiency of these compounds, with a general formula Cn-1H2n-1COOK or CnK (n=3...12), is dependent on the hydrocarbon chain length. The inhibiting efficiency was higher for a longer hydrocarbon chain of n-alkanoic acid. The degree of copper protection was found to increase with an increase in n-alkanoic acid potassium salt concentration; the optimum concentration of potassium dodecanoate (C12K) in sulfate solutions was found to be 0.07 M. The protective layers formed at the copper surface subsequent to exposure in various n-alkanoic acid potassium salt solutions were characterized by contact angle measurements, electrochemical impedance spectroscopy, X-ray photoelectron spectroscopy, and Fourier transform infrared reflection spectroscopy. Pronounced copper protection was attributed to the growth of a protective film on the copper surface, containing both copper oxides and copper carboxylate compounds. It is suggested that the organic molecules enhance copper protection by covering copper oxides with a thin and dense organic layer, which prevents water molecules or aggressive anions from interacting with the copper surface.

  3. Organic-inorganic interaction between hydroxyapatite and gelatin with the aging of gelatin in aqueous phosphoric acid solution.

    PubMed

    Chang, Myung Chul

    2008-11-01

    Hydroxyapatite (HAp)/gelatin (GEL) nanocomposite was prepared by the solution-precipitation process using Ca(OH)(2) in water and aqueous solution of H(3)PO(4) in GEL. Before the co precipitation process the GEL powders were dissolved in the aqueous phosphoric acid solution for the phosphorylation of GEL molecules. The chemical variation of the phosphorylated GEL macromolecules was investigated by using attenuated total reflection (ATR) measurement. The crystal growth of HAp became bigger with the long-time aging of the GEL molecules in the phosphoric acid solution, and it resulted from the reduction of length scale of the GEL molecules. The degree of the organic-inorganic interaction was decreased because of the degradation of the GEL macromolecules.

  4. Non-aqueous gel polymer electrolyte with phosphoric acid ester and its application for quasi solid-state supercapacitors

    NASA Astrophysics Data System (ADS)

    Łatoszyńska, Anna A.; Żukowska, Grażyna Zofia; Rutkowska, Iwona A.; Taberna, Pierre-Louis; Simon, Patrice; Kulesza, Pawel J.; Wieczorek, Władysław

    2015-01-01

    A mechanically-stable non-aqueous proton-conducting gel polymer electrolyte that is based on methacrylate monomers, is considered here for application in solid-state type supercapacitors. An electrochemical cell using activated carbon as active materials and the new gel polymer electrolyte has been characterized at room temperature using cyclic voltammetry, galvanostatic charge-discharge cycle tests as well as impedance spectroscopy. The use of phosphoric acid ester (instead of phosphoric acid) as a proton donor has led to an increase of both the operation voltage window (up to 1.3 V) and the electrolyte ionic conductivity (on the level of an order of magnitude). The resulting double layer capacitance of the microporous activated carbon was found to be as high as 120 F g-1; even more important, the supercapacitor utilizing non-aqueous proton-conducting gel polymer electrolyte is well-behaved in the wide temperature range (namely, from -40 to 80 °C).

  5. Enantiodivergent Atroposelective Synthesis of Chiral Biaryls by Asymmetric Transfer Hydrogenation: Chiral Phosphoric Acid Catalyzed Dynamic Kinetic Resolution.

    PubMed

    Mori, Keiji; Itakura, Tsubasa; Akiyama, Takahiko

    2016-09-12

    Reported herein is an enantiodivergent synthesis of chiral biaryls by a chiral phosphoric acid catalyzed asymmetric transfer hydrogenation reaction. Upon treatment of biaryl lactols with aromatic amines and a Hantzsch ester in the presence of chiral phosphoric acid, dynamic kinetic resolution (DKR) involving a reductive amination reaction proceeded smoothly to furnish both R and S isomers of chiral biaryls with excellent enantioselectivities by proper choice of hydroxyaniline derivative. This trend was observed in wide variety of substrates, and various chiral biphenyl and phenyl naphthyl adducts were synthesized with satisfactory enantioselectivities in enantiodivergent fashion. The enantiodivergent synthesis of synthetically challenging, chiral o-tetrasubstituted biaryls were also accomplished, and suggests high synthetic potential of the present method. PMID:27491630

  6. Purification of industrial phosphoric acid (54 %) using Fe-pillared bentonite.

    PubMed

    Hamza, Wiem; Chtara, Chaker; Benzina, Mourad

    2016-08-01

    The current problem of excess impurities in industrial phosphoric acid (IPA) 54 % P2O5 makes phosphates industries look toward low-cost but efficient adsorbents. In the present study, iron-oxide-modified bentonite (Fe-PILB) was prepared and investigated as a possible adsorbent for the removal of organic matter (OM) like humic acid (HA), chromium (Cr(III)), and zinc (Zn(II)) from IPA aqueous solutions. These adsorbents were characterized using XRD, TEM, and BET. The adsorption of impurities is well described by the pseudo-second-order model. The results indicate that Fe-PILB has a good ability to resist co-existing anions and the low-pH condition of IPA and owns a relatively high-removal capacity of 80.42 and 25 % for OM, Cr(III), and Zn(II). The mechanism of adsorption may be described by the ligand and ion exchange that happened on the active sites. The selected order of adsorption OM > Cr(3+) > Zn(2+) showed the importance of the competitive phenomenon onto bentonite materials' pore adsorption. For the adsorption of OM at the low pH of IPA, H-bond complexation was the dominant mechanism. From the adsorption of heavy metals and OM complex compounds contained in IPA 54 % on Fe-PILB, the bridging of humic acid between bentonite and heavy metals (Zn(II) or Cr(III)) is proposed as the dominant adsorption mechanism (bentonite-HA-Me). Overall, the results obtained in this study indicate Fe-pillared bentonite possesses a potential for the practical application of impurity (OM, Zn(II), and Cr(III)) removal from IPA aqueous solutions. PMID:26514573

  7. Removal of chromium(VI) from wastewater using phosphoric acid treated activated carbon

    NASA Astrophysics Data System (ADS)

    Suganthi, N.

    2013-06-01

    Activated carbon prepared by phosphoric acid treatment of tamarind nuts (seeds) was investigated for the removal of Cr(VI) from aqueous solutions. The characteristics of phosphorylated tamarind nut carbon (PTNC) were evaluated for porosity and surface area. The effect of contact time, pH, adsorbent dose and particle size variation were studied to evaluate the potential applicability of carbon for treating Cr(VI) containing wastewater. The adsorbent data were modeled by Langmiur and Freundlich classical adsorption isotherms. The kinetic studies showed that Cr(VI) adsorption on PTNC was in compliance with the pseudo-second-order kinetic model. Desorption studies indicated that ion-exchange mechanism was operating. The continuous adsorption was studied in glass columns of 2.5 cm diameter using electroplating wastewater to ascertain the practical applicability of PTNC in large scale. The mechanism of adsorption was found to be ion-exchange process and was supported by FTIR spectroscopy. The surface modification after adsorption was confirmed by SEM studies.

  8. Uranium control in phosphogypsum. [In wet-process phosphoric acid production

    SciTech Connect

    Hurst, F.J.; Arnold, W.D.

    1980-01-01

    In wet-process phosphoric acid plants, both previous and recent test results show that uranium dissolution from phosphate rock is significantly higher when the rock is acidulated under oxidizing conditions than under reducing conditions. Excess sulfate and excess fluoride further enhance the distribution of uranium to the cake. Apparently the U(IV) present in the crystal lattice of the apatite plus that formed by reduction of U(IV) by FE(II) during acidulation is trapped or carried into the crystal lattice of the calcium sulfate crystals as they form and grow. The amount of uranium that distributes to hemihydrate filter cake is up to seven times higher than the amount that distributes to the dihydrate cake. About 60% of the uranium in hemihydrate cakes can be readily leached after hydration of the cake, but the residual uranium (20 to 30%) is very difficult to remove economically. Much additional research is needed to develop methods for minimizing uranium losses to calcium filter cakes.

  9. Absorption of sulfur dioxide from simulated flue gas by polyethyleneimine-phosphoric acid solution.

    PubMed

    Bo, Wen; Li, Hongxia; Zhang, Junjie; Song, Xiangjia; Hu, Jinshan; Liu, Ce

    2016-12-01

    Clean fuel technologies have been widely developed in current society because fuel combustion can directly bring about the emission of hazardous gasses such as SO2. Flue gas desulfurization by polyethyleneimine (PEI)-phosphoric acid solution is an efficient desulfurization method. In this research, the PEI and the additive H3PO4 were used as absorption solution. SO2 was absorbed by the system and desorbed from the loaded solution. The cycle operation was also analyzed. Some technology conditions such as the concentration of PEI, the temperature, the gas flow rate, the concentration of SO2 and the pH value were experimentally researched. With the optimized process, the absorption efficiency of this system could reach 98% and the desorption efficiency was over 60%, showing good absorption/desorption capability. With this efficient approach, the present study may open a new window for developing high-performance absorbents which can make SO2 be well desorbed from the loaded solution and better reused in the flue gas desulfurization. PMID:27082307

  10. Conversion of spent solid phosphoric Acid catalyst to environmentally friendly fertilizer.

    PubMed

    Merwe, Werner van der

    2010-03-01

    Solid phosphoric acid (SPA) catalysts are widely used in the petroleum industry. Despite a high phosphorus content the spent catalyst is generally not reused. Moreover, due to the limited life spans that are achieved industrially, large quantities of spent catalyst requires disposal, often by landfill. SPA can be readily converted to fertilizer, but the presence of carbonaceous deposits on the catalyst presents a potential environmental hazard. This work demonstrates that these deposits are mostly polyaromatic (amorphous carbon) with smaller amounts of oxygenates and aliphatics. Neither the chemical makeup nor the physical structure of the catalyst or the presence of coke precludes it from use as fertilizer. Subsequently, the spent catalyst was milled, neutralized with lime and ammonium hydroxide, and then calcined to yield a phosphate-rich fertilizer. Toxicity characteristic leaching tests of the spent catalyst fertilizer showed low levels of metals and organics, establishing that no harmful compounds are likely to be absorbed into plant life or groundwater. A plant growth study of the spent catalyst fertilizer indicated that it is approximately as effective as superphosphate fertilizer when used in alkaline soil. The spent catalyst fertilizer is environmentally benign and economically efficient.

  11. Electrochemical behavior of lead alloys in sulfuric and phosphoric acid solutions

    NASA Astrophysics Data System (ADS)

    Paleska, I.; Pruszkowska-Drachal, R.; Kotowski, J.; Dziudzi, A.; Milewski, J. D.; Kopczyk, M.; Czerwiński, A.

    The electrochemical behavior of lead, lead-antimony, and lead-calcium-aluminium-tin alloys has been studied in solutions containing various concentrations of sulfuric and phosphoric acids. The dependence of these electrode processes on some experimental conditions (mainly sweep rate and potential range) has been studied. The measurements were performed using a cyclic voltammetry technique. The study and the analysis of the morphology of alloys have been performed using a scanning electron microscope (SEM). Cyclic voltammograms of the lead-antimony alloy electrodes, similarly to pure lead electrode, also show the "anodic excursion" peak under some experimental conditions. Well defined current waves, corresponding to the oxidation and reduction processes of Sb, are observed, if the alloy surface is freshly abraded. The oxidation of antimony starts at potentials at which the formation of PbO takes place. The peak current of Sb oxidation reaction decreases during successive cycles, suggesting that Sb dissolves from the alloy surface during the first CV sweeps. Another explanation for this effect might be the formation of a PbSO 4 selective membrane.

  12. Conversion of spent solid phosphoric Acid catalyst to environmentally friendly fertilizer.

    PubMed

    Merwe, Werner van der

    2010-03-01

    Solid phosphoric acid (SPA) catalysts are widely used in the petroleum industry. Despite a high phosphorus content the spent catalyst is generally not reused. Moreover, due to the limited life spans that are achieved industrially, large quantities of spent catalyst requires disposal, often by landfill. SPA can be readily converted to fertilizer, but the presence of carbonaceous deposits on the catalyst presents a potential environmental hazard. This work demonstrates that these deposits are mostly polyaromatic (amorphous carbon) with smaller amounts of oxygenates and aliphatics. Neither the chemical makeup nor the physical structure of the catalyst or the presence of coke precludes it from use as fertilizer. Subsequently, the spent catalyst was milled, neutralized with lime and ammonium hydroxide, and then calcined to yield a phosphate-rich fertilizer. Toxicity characteristic leaching tests of the spent catalyst fertilizer showed low levels of metals and organics, establishing that no harmful compounds are likely to be absorbed into plant life or groundwater. A plant growth study of the spent catalyst fertilizer indicated that it is approximately as effective as superphosphate fertilizer when used in alkaline soil. The spent catalyst fertilizer is environmentally benign and economically efficient. PMID:20146419

  13. Fluoride removal from groundwater by limestone treatment in presence of phosphoric acid.

    PubMed

    Gogoi, Sweety; Nath, Suresh K; Bordoloi, Shreemoyee; Dutta, Robin K

    2015-04-01

    Fluoride removal from groundwater has been studied by addition of dilute phosphoric acid (PA) to the influent water before limestone treatment through laboratory plug-flow column experiments and bench-scale plug-flow pilot tests. In this PA-enhanced limestone defluoridation (PAELD) technique, fluoride is removed from 0.526 mM to 0.50-52.60 μM in 3 h with near neutral final pH. The presence of PA increases the fluoride removal capacity of limestone to 1.10 mg/g compared to 0.39 mg/g reported in its absence. The changes in fluoride removal with variation in initial PA concentration, initial fluoride concentration and the final pH have been found to be statistically significant with p < 0.05. The estimated recurring cost is US$ ≈0.58/m(3) water. Simple scrubbing and rinsing is a preferable method for regeneration of limestone as it is almost equally effective with lime or NaOH. Sorption of fluoride by calcium phosphates produced in situ in the reactor is the dominant mechanism of fluoride removal in the PAELD. Precipitation of CaF2 and sorption of fluoride by the limestone also contribute to the fluoride removal. High efficiency, capacity, safety, environment-friendliness, low cost and simplicity of operation make the PAELD a potential technique for rural application. PMID:25621387

  14. Advanced water-cooled phosphoric acid fuel cell development. Final report

    SciTech Connect

    Not Available

    1992-09-01

    This program was conducted to improve the performance and minimize the cost of existing water-cooled phosphoric acid fuel cell stacks for electric utility and on-site applications. The goals for the electric utility stack technology were a power density of at least 175 watts per square foot over a 40,000-hour useful life and a projected one-of-a-kind, full-scale manufactured cost of less than $400 per kilowatt. The program adapted the existing on-site Configuration-B cell design to electric utility operating conditions and introduced additional new design features. Task 1 consisted of the conceptual design of a full-scale electric utility cell stack that meets program objectives. The conceptual design was updated to incorporate the results of material and process developments in Tasks 2 and 3, as well as results of stack tests conducted in Task 6. Tasks 2 and 3 developed the materials and processes required to fabricate the components that meet the program objectives. The design of the small area and 10-ft{sup 2} stacks was conducted in Task 4. Fabrication and assembly of the short stacks were conducted in Task 5 and subsequent tests were conducted in Task 6. The management and reporting functions of Task 7 provided DOE/METC with program visibility through required documentation and program reviews. This report describes the cell design and development effort that was conducted to demonstrate, by subscale stack test, the technical achievements made toward the above program objectives.

  15. Development of ternary alloy cathode catalysts for phosphoric acid fuel cells: Final report

    SciTech Connect

    Jalan, V.; Kosek, J.; Giner, J.; Taylor, E. J.; Anderson, E.; Bianchi, V.; Brooks, C.; Cahill, K.; Cropley, C.; Desai, M.; Frost, D.; Morriseau, B.; Paul, B.; Poirier, J.; Rousseau, M.; Swette, L.; Waterhouse, R.

    1988-11-01

    The overall objective of the program was the identification development and incorporation of high activity platinum ternary alloys on corrosion resistant supports, for use in advanced phosphoric acid fuel cells. Two high activity ternary alloys, Pr-Cr-Ce and Pt-Ni-Co, both supported on Vulcan XC-72, were identified during the course of the program. The Pr-Ni-Co system was selected for optimization, including preparation and evaluation on corrosion resistant supports such as 2700/degree/C heat-treated Vulcan XC-72 and 2700/degree/ heat-treated Black Pearls 2000. A series of tests identified optimum metal ratios, heat-treatment temperatures and heat-treatment atmospheres for the Pr-Ni-Co system. During characterization testing, it was discovered that approximately 50% of the nickel and cobalt present in the starting material could be removed, subsequent to alloy formation, without degrading performance. Extremely stable full cell performance was observed for the Pt-Ni-Co system during a 10,000 hour atmosphere pressure life test. Several theories are proposed to explain the enhancement in activity due to alloy formation. Recommendations are made for future research in this area. 62 refs., 23 figs., 27 tabs.

  16. Experimental oxygen isotope fractionation between siderite-water and phosphoric acid liberated CO2-siderite

    USGS Publications Warehouse

    Carothers, W.W.; Adami, L.H.; Rosenbauer, R.J.

    1988-01-01

    The equilibrium fractionation of O isotopes between synthetic siderite and water has been measured at temperatures ranging from 33?? to 197??C. The fractionation between siderite and water over this temperature range can be represented by the equation: 103 ln ?? = 3.13 ?? 106T-2 - 3.50. Comparison between the experimental and theoretical fractionations is favorable only at approximately 200??C; at lower temperatures, they generally differ by up to 2 permil. Siderite was prepared by the slow addition of ferrous chloride solutions to sodium bicarbonate solutions at the experimental temperatures. It was also used to determine the O isotope fractionation factors between phosphoric acid liberated CO2 and siderite. The fractionation factors for this pair at 25?? and 50??C are 1.01175 and 1.01075, respectively. Preliminary results of the measured C isotope fractionation between siderite and Co2 also indicate C isotopic equilibrium during precipitation of siderite. The measured distribution of 13C between siderite and CO2 coincides with the theoretical values only at about 120??C. Experimental and theoretical C fractionations differ up to 3 permil at higher and lower temperatures. ?? 1988.

  17. Immunohistochemical and ultrastructural evaluation of the effects of phosphoric acid etching on dentin proteoglycans.

    PubMed

    Oyarzún, A; Rathkamp, H; Dreyer, E

    2000-12-01

    It has been reported that phosphoric acid (PA) produces structural and molecular alterations in dentin collagen fibrils; however, no relevant information exists on the influence of etching with PA on dentin non-collagenous macromolecules. The present study investigated, by immunohistochemistry and ultrastructural histochemistry, the behavior of dentin proteoglycans (PG) after etching human dentin samples with 35% PA gel (thickened with colloidal silica) or with a 35% PA liquid for 15, 30 and 120 s. Immunolabeling with a mouse monoclonal anti-chondroitin sulfate antibody demonstrated that glycosaminoglycans (GAG) were preserved within dentinal tubules opened to the surface after etching with PA gel. In addition, the cationic tracer polyethyleneimine, used for the ultramicroscopic localization of PG anionic sites, revealed that treatment of dentin samples with PA gel preserved the polyanionic peritubular PG in the etched area. On the other hand, etching with the PA liquid produced loss of peritubular GAG and PG anionic sites in the etched dentin surface. The results obtained indicated that similar concentrations of PA in gel or liquid formulations differently affect the organization of dentin PG. The clinical significance of these in vitro findings and the structural and molecular interactions of dentin PG with adhesive systems are still unknown.

  18. Fluoride removal from groundwater by limestone treatment in presence of phosphoric acid.

    PubMed

    Gogoi, Sweety; Nath, Suresh K; Bordoloi, Shreemoyee; Dutta, Robin K

    2015-04-01

    Fluoride removal from groundwater has been studied by addition of dilute phosphoric acid (PA) to the influent water before limestone treatment through laboratory plug-flow column experiments and bench-scale plug-flow pilot tests. In this PA-enhanced limestone defluoridation (PAELD) technique, fluoride is removed from 0.526 mM to 0.50-52.60 μM in 3 h with near neutral final pH. The presence of PA increases the fluoride removal capacity of limestone to 1.10 mg/g compared to 0.39 mg/g reported in its absence. The changes in fluoride removal with variation in initial PA concentration, initial fluoride concentration and the final pH have been found to be statistically significant with p < 0.05. The estimated recurring cost is US$ ≈0.58/m(3) water. Simple scrubbing and rinsing is a preferable method for regeneration of limestone as it is almost equally effective with lime or NaOH. Sorption of fluoride by calcium phosphates produced in situ in the reactor is the dominant mechanism of fluoride removal in the PAELD. Precipitation of CaF2 and sorption of fluoride by the limestone also contribute to the fluoride removal. High efficiency, capacity, safety, environment-friendliness, low cost and simplicity of operation make the PAELD a potential technique for rural application.

  19. Surface properties and early murine pre-osteoblastic cell responses of phosphoric acid modified titanium surface

    PubMed Central

    Osathanon, Thanaphum; Sawangmake, Chenphop; Ruangchainicom, Nanticha; Wutikornwipak, Pavitra; Kantukiti, Panisa; Nowwarote, Nunthawan; Pavasant, Prasit

    2015-01-01

    Aims The present study investigated the surface properties and murine pre-osteoblast cell (MC3T3-E1) responses of phosphoric acid (H3PO4) treated commercially pure titanium. Methods Titanium discs were treated with various concentration of H3PO4 (5%, 10%, and 20%; v/v) at 90 °C for 30 min. Surface properties were evaluated by profilometer, contact angle meter, and scanning electron microscopy (SEM) with energy dispersive X-rays. MC3T3-E1 attachment and spreading were evaluated by SEM and phalloidin immunohistochemistry staining. Results Surface roughness and wettability were not statistically difference among all experimental and control groups. Phosphate and oxygen were detected on H3PO4 treated surfaces. At 20 min, cell attachment was significantly higher in 10% and 20% H3PO4 treated groups compared to the control. Cells exhibited orientated-cytoskeleton fibers on 20% H3PO4 modified titanium surface. Though, there was no difference in cell spreading stage among all treatment groups. Conclusion H3PO4 treatment on titanium may influence early cell response, particularly on attachment and spreading. PMID:26937362

  20. Extraction of cellulose nano-crystals from old corrugated container fiber using phosphoric acid and enzymatic hydrolysis followed by sonication.

    PubMed

    Tang, Yanjun; Shen, Xiaochuang; Zhang, Junhua; Guo, Daliang; Kong, Fangong; Zhang, Nan

    2015-07-10

    Due to its amazing physicochemical properties and high environmental compatibility, cellulose nano-crystals (CNC) hold great promise for serving as a strategic platform for sustainable development. Now, there has been growing interest in the development of processes using waste or residual biomass as CNC source for addressing economic and environmental concerns. In the present work, a combined process involving phosphoric acid hydrolysis, enzymatic hydrolysis and sonication was proposed aiming to efficiently exact CNC from low-cost old corrugated container (OCC) pulp fiber. The effect of enzymatic hydrolysis on the yield and microstructure of resulting CNC was highlighted. Results showed that the enzymatic hydrolysis was effective in enhancing CNC yield after phosphoric acid hydrolysis. CNC was obtained with a yield of 23.98 wt% via the combined process with phosphoric acid concentration of 60 wt%, cellulase dosage of 2 mL (84 EGU) per 2g fiber and sonication intensity of 200 W. Moreover, the presence of enzymatic hydrolysis imparted the obtained CNC with improved dispersion, increased crystallinity and thermal stability.

  1. Simultaneous determination of tartaric acid and potassium in wines using a multicommuted flow system with dialysis.

    PubMed

    Oliveira, Sara M; Lopes, Teresa I M S; Tóth, Ildikó V; Rangel, António O S S

    2010-06-15

    A multicommuted flow system with the propulsion device placed before detection is proposed for the determination of tartaric acid and free potassium in table and Port wines. A dialysis unit was introduced to increase sample dilution and minimize matrix interferences. The determination of tartaric acid was based on the spectrophotometric monitorization of the complex formed by the dialyzed analyte with vanadate. Potentiometric measurement of potassium was carried out through an ion selective tubular electrode. Dynamic linear ranges of 0.500-5.00gL(-1) and 390-2000mgL(-1) were achieved for tartaric acid and potassium determinations, respectively. Detection and quantification limits of 0.1 and 0.4gL(-1) of tartaric acid were obtained, respectively. For the potentiometric determination, a detection limit of 1x10(-4)molL(-1) was achieved. The accuracy of the method was assessed by analysis of 30 wine samples by the proposed methodology and manual procedures. There were no statistical differences between the 2 sets of results, in both determinations. Relative standard deviations lower than 2.1 and 2.4% were attained by the spectrophotometric and potentiometric measurements, respectively. A determination rate of 52h(-1) was achieved.

  2. Degradation of ascorbic acid and potassium sorbate by different Lactobacillus species isolated from packed green olives.

    PubMed

    Montaño, Alfredo; Sánchez, Antonio Higinio; Casado, Francisco Javier; Beato, Víctor Manuel; de Castro, Antonio

    2013-05-01

    The aim of this research was to ascertain the lactic acid bacteria responsible for the degradation of ascorbic acid and/or potassium sorbate, isolated from packed green olives where these additives had diminished. A total of 14 isolates were recovered from samples of different green olive containers. According to partial sequencing of the 16S rRNA coding gene, Lactobacillus parafarraginis, Lactobacillus rapi, Lactobacillus pentosus, Lactobacillus paracollinoides, and Pediococcus ethanolidurans were identified. With the exception of L. pentosus and L. paracollinoides, the other species had not been mentioned in table olives before this study. Only three of the 14 isolates metabolized ascorbic acid in MRS broth, and the products from ascorbic acid in modified MRS broth without carbon sources were acetic and lactic acids. Except for the two L. rapi and the two P. ethanolidurans strains, the remaining 10 isolates depleted potassium sorbate added into MRS broth to some extent. The product generated by three of these strains was confirmed to be trans-4-hexenoic acid. The degradation of ascorbate or sorbate by lactic acid bacteria should be taken into account when these additives are used in food products where this group of bacteria may be present. PMID:23498172

  3. Effect of deep-fat frying on ascorbic acid, carotenoids and potassium contents of plantain cylinders.

    PubMed

    Rojas-Gonzalez, Juan A; Avallone, Sylvie; Brat, Pierre; Trystram, Gilles; Bohuon, Philippe

    2006-01-01

    The influence of thermal treatment (frying of plantain) on the micronutrients ascorbic acid, potassium and carotenoids is evaluated. Cylinders (diameter 30 mm, thickness 10 mm) of plantain (Musa AAB 'barraganete') were fried at four thermal treatments (120-180 degrees C and from 24 to 4 min) to obtain products with approximately the same water content (approximately 0.8+/-0.02 kg/kg1) and fat content (approximately 0.15+/-0.06 kg/kg). The thermal study used the cook value and the mean cook value as indicators of the effect of several different treatment temperatures and times on quality. Deep-fat frying had no significant effect on carotenoid contents at any frying conditions, and on potassium content, except at 120 degrees C and 24 min (loss acid. The process with the greatest effect was low temperature and long time (120 degrees C/24 min), as observed for potassium and ascorbic acid. These results are in agreement with other studies that demonstrated short thermal treatments at high temperatures protect food nutritional quality, as shown by the cook value and the mean cook value. In our work, deep-fat frying of plantain preserved most of the micronutrient contents that were evaluated.

  4. Hierarchically organized architecture of potassium hydrogen phthalate and poly(acrylic acid): toward a general strategy for biomimetic crystal design.

    PubMed

    Oaki, Yuya; Imai, Hiroaki

    2005-12-28

    A hierarchically organized architecture in multiple scales was generated from potassium hydrogen phthalate crystals and poly(acrylic acid) based on our novel biomimetic approach with an exquisite association of polymers on crystallization. PMID:16333511

  5. A practical synthesis of 3,4-diethoxybenzthioamide based on Friedel-Crafts reaction with potassium thiocyanate in methanesulfonic acid.

    PubMed

    Aki, Shinji; Fujioka, Takafumi; Ishigami, Masashi; Minamikawa, Jun-ichi

    2002-09-01

    The synthesis of 3,4-diethoxybenzthioamide, the key intermediate for OPC-6535, is achieved by employing Friedel-Crafts reaction of 1,2-diethoxybenzene with potassium thiocyanate in methanesulfonic acid at ambient temperature.

  6. Lead immobilization using phosphoric acid in a smelter-contaminated urban soil.

    PubMed

    Yang, J; Mosby, D E; Casteel, S W; Blanchar, R W

    2001-09-01

    Transformation of soil lead (Pb) to pyromorphite, a lead phosphate, may be a cost-effective remedial strategy for immobilizing soil Pb and reducing Pb bioavailability. Soil treatment using phosphoric acid (H3PO4) was assessed for its efficacy to reduce Pb solubility and bioaccessibility. Soil containing 4,360 mg of Pb kg(-1), collected from a smelter-contaminated site in Joplin, MO, was reacted with 1,250, 2,500, 5,000, and 10,000 mg of P kg(-1) as H3PO4. The reaction was followed by measurements of Pb bioaccessibility, solubility products, and microprobe analyses. Soluble Pb concentration in the soil decreased with increasing H3PO4 addition. Adding 10,000 mg of P kg(-1) reduced bioaccessible Pb by 60%. The logarithm of bioaccessible Pb decreased as a linear function of increasing H3PO4 addition with an R2 of 0.989. A higher soil/solution ratio was required to extract bioaccessible Pb after the treatment. Microprobe analyses showed that the Pb particles contained P and Cl after the reaction, and the spectra generated by the wavelength-dispersive spectrometer were similar to those of synthetic chloropyromorphite. Lead solubility in the P-treated soil was less than predicted for hydroxypyromorphite [Pbs(PO4)3-OH] and greater than predicted for chloropyromorphite [Pbs(PO4)3Cl]. The P treatment caused approximately 23% redistribution of soil Pb from the clay and silt size fractions to the sand fraction. Soil treatment with H3PO4 resulted in the formation of a compound similar to chloropyromorphite and reduced bioaccessibility of soil Pb, which may have a potential as an in situ technique for Pb-contaminated soil remediation.

  7. Highly efficient heat recovery system for phosphoric acid fuel cells used for cooling telecommunication equipment

    NASA Astrophysics Data System (ADS)

    Ishizawa, Maki; Okada, Shigeru; Yamashita, Takashi

    To protect the global environment by using energy more efficiently, NTT is developing a phosphoric acid fuel cell (PAFC) energy system for telecommunication cogeneration systems. Fuel cells are used to provide electrical power to telecommunication equipment and the heat energy is used by absorption refrigerators to cool the telecommunication rooms throughout the year. We have recently developed a highly efficient system for recovering heat and water from the exhaust gases of a 200-kW (rated power) fuel cell. It is composed of a shell-and-tube type heat exchanger to recover high-temperature heat and a direct-contact cooler to recover the water efficiently and simply. The reformer and cathode exhaust gases from the fuel cell are first supplied to the heat exchanger and then to the cooler. The high-temperature (85-60°C) heat can be recovered, and the total efficiency including the heat recovered from the fuel-cell stack coolant can be improved by supplying the recovered heat to the dual-heat-input absorption refrigerator. The water needed for operating the fuel cell is also recovered from the exhaust gases. We are currently applying this heat and water recovery system to the PC25C-type fuel cell. Maximum total efficiency including electrical power efficiency is estimated to be 78% at the rated power of 200 kW: composed of 17% heat recovery for the fuel-cell stack coolant, 21% from the exhaust gas by improving the heat exchanger, and 40% from electrical conversion. Next, we plan to evaluate the usefulness of this heat recovery system for cooling telecommunication equipment.

  8. Effect of Phosphoric Acid Concentration on the Characteristics of Sugarcane Bagasse Activated Carbon

    NASA Astrophysics Data System (ADS)

    Adib, M. R. M.; Suraya, W. M. S. W.; Rafidah, H.; Amirza, A. R. M.; Attahirah, M. H. M. N.; Hani, M. S. N. Q.; Adnan, M. S.

    2016-07-01

    Impregnation method is one of the crucial steps involved in producing activated carbon using chemical activation process. Chemicals employed in this step is effective at decomposing the structure of material and forming micropores that helps in adsorption of contaminants. This paper explains thorough procedures that have been involved in producing sugarcane bagasse activated carbon (SBAC) by using 5%, 10%, 20%, 30% phosphoric acid (H3PO4) during the impregnation step. Concentration of H3PO4 used in the process of producing SBAC was optimized through several tests including bulk density, ash content, iodine adsorption and pore size diameter and the charactesristic of optimum SBAC produced has been compared with commercial activated carbon (CAC). Batch study has been carried out by using the SBAC produced from optimum condition to investigate the performance of SBAC in removal of turbidity and chemical oxygen demand (COD) from textile wastewater. From characteristic study, SBAC with 30% H3PO4 has shown the optimum value of bulk density, ash content, iodine adsorption and pore size diameter of 0.3023 g cm-3, 4.35%, 974.96 mg/g and 0.21-0.41 µm, respectively. These values are comparable to the characteristics of CAC. Experimental result from the batch study has been concluded that the SBAC has a promising potential in removing turbidity and COD of 75.5% and 66.3%, respectively which was a slightly lower than CAC which were able to remove 82.8% of turbidity and 70% of COD. As a conclusion, the SBAC is comparable with CAC in terms of their characteristics and the capability of removing contaminants from textile wastewater. Therefore, it has a commercial value to be used as an alternative of low-cost material in producing CAC.

  9. Transient responses of phosphoric acid fuel cell power plant system. Ph.D. Thesis

    NASA Technical Reports Server (NTRS)

    Lu, Cheng-Yi

    1983-01-01

    An analytical and computerized study of the steady state and transient response of a phosphoric acid fuel cell (PAFC) system was completed. Parametric studies and sensitivity analyses of the PAFC system's operation were accomplished. Four non-linear dynamic models of the fuel cell stack, reformer, shift converters, and heat exchangers were developed based on nonhomogeneous non-linear partial differential equations, which include the material, component, energy balance, and electrochemical kinetic features. Due to a lack of experimental data for the dynamic response of the components only the steady state results were compared with data from other sources, indicating reasonably good agreement. A steady state simulation of the entire system was developed using, nonlinear ordinary differential equations. The finite difference method and trial-and-error procedures were used to obtain a solution. Using the model, a PAFC system, that was developed under NASA Grant, NCC3-17, was improved through the optimization of the heat exchanger network. Three types of cooling configurations for cell plates were evaluated to obtain the best current density and temperature distributions. The steady state solutions were used as the initial conditions in the dynamic model. The transient response of a simplified PAFC system, which included all of the major components, subjected to a load change was obtained. Due to the length of the computation time for the transient response calculations, analysis on a real-time computer was not possible. A simulation of the real-time calculations was developed on a batch type computer. The transient response characteristics are needed for the optimization of the design and control of the whole PAFC system. All of the models, procedures and simulations were programmed in Fortran and run on IBM 370 computers at Cleveland State University and the NASA Lewis Research Center.

  10. Inhibition of Aeromonas caviae and A. sobria by sodium choloride, citric acid, ascorbic acid, potassium sorbate and extracts of Thymus vulgaris.

    PubMed

    Abu-Ghazaleh, B M

    2000-06-01

    The respective and combined effects of sodium chloride, ascorbic acid, citric acid, potassium sorbate, and Thymus vulgaris extract on the growth of Aeromonas caviae and Aeromonas sobria were investigated. Sodium chloride (3%) significantly reduced the growth and 4% NaCl inhibited growth of the tested strains. Ascorbic acid (0. 1%), potassium sorbate (0.05%), and citric acid (0.03%) slightly inhibited growth. T. vulgaris extract (0.3%) greatly reduced the growth. Various combinations of these compounds prevented growth of the tested strains. A combination of NaCl (3%) and ascorbic acid (0. 1%), citric acid (0.03%) and potassium sorbate (0.05%), or citric acid (0.03%) and ascorbic acid (0.1%) inhibited growth of A. caviae and A. sobria. In fish homogenates, the addition of ascorbic acid (0. 1%) and citric acid (0.03%) was the most effective combination tested.

  11. Phosphoric acid-etching promotes bond strength and formation of acid-base resistant zone on enamel.

    PubMed

    Li, N; Nikaido, T; Alireza, S; Takagaki, T; Chen, J-H; Tagami, J

    2013-01-01

    This study examined the effect of phosphoric acid (PA) etching on the bond strength and acid-base resistant zone (ABRZ) formation of a two-step self-etching adhesive (SEA) system to enamel. An etch-and-rinse adhesive (EAR) system Single Bond (SB) and a two-step SEA system Clearfil SE Bond (SE) were used. Human teeth were randomly divided into four groups according to different adhesive treatments: 1) SB; 2) SE; 3) 35% PA etching→SE primer→SE adhesive (PA/SEp+a); (4) 35% PA etching→SE adhesive (PA/SEa). Microshear bond strength to enamel was measured and then statistically analyzed using one-way analysis of variance and the Tukey honestly significant difference test. The failure mode was recorded and analyzed by χ( 2 ) test. The etching pattern of the enamel surface was observed with scanning electron microscope (SEM). The bonded interface was exposed to a demineralizing solution (pH=4.5) for 4.5 hours and then 5% sodium hypochlorite with ultrasonication for 30 minutes. After argon-ion etching, the interfacial ultrastructure was observed using SEM. The microshear bond strength to enamel of the SE group was significantly lower (p<0.05) than that of the three PA-etched groups, although the latter three were not significantly different from one another. The ABRZ was detected in all the groups. In morphological observation, the ABRZ in the three PA-etched groups were obviously thicker compared with the SE group with an irregular wave-shaped edge.

  12. Usnic Acid Potassium Salt: An Alternative for the Control of Biomphalaria glabrata (Say, 1818)

    PubMed Central

    Lima, Vera L. M.; Pereira, Eugênia C.; Falcão, Emerson P. S.; Melo, Ana M. M. A.; da Silva, Nicácio Henrique

    2014-01-01

    In Brazil, the snail Biomphalaria glabrata is the most important vector of schistosomiasis due to its wide geographical distribution, high infection rate and efficient disease transmission. Among the methods of schistosomiasis control, the World Health Organization recommends the use of synthetic molluscicides, such as niclosamide. However, different substances of natural origin have been tested as alternatives for the control or eradication of mollusks. The literature describes the antitumor, antimicrobial and antiviral properties of usnic acid as well as other important activities of common interest between medicine and the environment. However, usnic acid has a low degree of water solubility, which can be a limiting factor for its use, especially in aquatic environments, since the organic solvents commonly used to solubilize this substance can have toxic effects on aquatic biota. Thus, the aim of the present study was to test the potassium salt of usnic acid (potassium usnate) with regard to molluscicidal activity and toxicity to brine shrimp (Artemia salina). To obtain potassium usnate, usnic acid was extracted with diethyl ether isolated and purified from the lichen Cladonia substellata. Biological assays were performed with embryos and adult snails of B. glabrata exposed for 24 h to the usnate solution solubilized in dechlorinated water at 2.5; 5 and 10 µg/ml for embryos, 0.5; 0.9; 1;5 and 10 µg/ml for mollusks and 0.5; 1; 5; 10 µg/ml for A. salina. The lowest lethal concentration for the embryos and adult snails was 10 and 1 µg/ml, respectively. No toxicity to A. salina was found. The results show that modified usnic acid has increased solubility (100%) without losing its biological activity and may be a viable alternative for the control of B. glabrata. PMID:25375098

  13. Usnic acid potassium salt: an alternative for the control of Biomphalaria glabrata (Say, 1818).

    PubMed

    Martins, Mônica C B; Silva, Monique C; Silva, Luanna R S; Lima, Vera L M; Pereira, Eugênia C; Falcão, Emerson P S; Melo, Ana M M A; da Silva, Nicácio Henrique

    2014-01-01

    In Brazil, the snail Biomphalaria glabrata is the most important vector of schistosomiasis due to its wide geographical distribution, high infection rate and efficient disease transmission. Among the methods of schistosomiasis control, the World Health Organization recommends the use of synthetic molluscicides, such as niclosamide. However, different substances of natural origin have been tested as alternatives for the control or eradication of mollusks. The literature describes the antitumor, antimicrobial and antiviral properties of usnic acid as well as other important activities of common interest between medicine and the environment. However, usnic acid has a low degree of water solubility, which can be a limiting factor for its use, especially in aquatic environments, since the organic solvents commonly used to solubilize this substance can have toxic effects on aquatic biota. Thus, the aim of the present study was to test the potassium salt of usnic acid (potassium usnate) with regard to molluscicidal activity and toxicity to brine shrimp (Artemia salina). To obtain potassium usnate, usnic acid was extracted with diethyl ether isolated and purified from the lichen Cladonia substellata. Biological assays were performed with embryos and adult snails of B. glabrata exposed for 24 h to the usnate solution solubilized in dechlorinated water at 2.5; 5 and 10 µg/ml for embryos, 0.5; 0.9; 1;5 and 10 µg/ml for mollusks and 0.5; 1; 5; 10 µg/ml for A. salina. The lowest lethal concentration for the embryos and adult snails was 10 and 1 µg/ml, respectively. No toxicity to A. salina was found. The results show that modified usnic acid has increased solubility (100%) without losing its biological activity and may be a viable alternative for the control of B. glabrata.

  14. Activity inhibition and its mitigation in high temperature proton exchange membrane fuel cells: The role of phosphoric acid, ammonium trifluoromethanesulfonate, and polyvinylidene difluoride

    NASA Astrophysics Data System (ADS)

    Holst-Olesen, Kaspar; Nesselberger, Markus; Perchthaler, Markus; Hacker, Viktor; Arenz, Matthias

    2014-12-01

    In the presented work we systematically study the influence of phosphoric acid, ammonium trifluoromethanesulfonate (ATFMS), and polyvinylidene difluoride (PVDF) on the oxygen reduction reaction (ORR) activity of carbon supported, Pt based catalysts. The influence of phosphoric acid is investigated in a mixed solution of perchloric acid with small amounts of phosphoric acid added. Thin-film rotating disk electrode (TF-RDE) measurements show that such a mixed electrolyte is advantageous as the oxygen reduction reaction (ORR) is inhibited without influencing the oxygen solubility in the electrolyte. In contrast to previous reports it is seen when investigating additives that ATFMS acts as a catalyst poison; whereas the results provide evidence of a better performance in case of the PVDF incorporated catalysts as compared to reference samples without PVDF. The technological relevance of the PVDF improvements and its stability over prolonged time was validated by membrane electrode assembly (MEA) tests.

  15. Phosphorus-31 nuclear magnetic resonance chemical shifts of phosphoric acid derivatives.

    PubMed

    Wittmann, Z; Kovács, Z

    1985-07-01

    (31)P nuclear magnetic resonance chemical shifts of alkyi and alkylaryl phosphates, condensed phosphates, phosphoric arids and their salts, are reported. These are listed by classes of compounds so that relationships between chemical shifts and the substituent groups on phosphorus atoms can be recognized. These relationships are useful for qualitative identification of the specific compounds listed and of related compounds by extrapolation.

  16. Protecting-Group-Free Total Synthesis of (-)-Lycopodine via Phosphoric Acid Promoted Alkyne Aza-Prins Cyclization.

    PubMed

    Ma, Donghui; Zhong, Zhuliang; Liu, Zaimin; Zhang, Mingjie; Xu, Shiyan; Xu, Dengyu; Song, Dengpeng; Xie, Xingang; She, Xuegong

    2016-09-01

    A protecting-group-free route for the total synthesis of (-)-lycopodine was demonstrated in only 8 steps from Wade's fawcettimine enone (12 steps from commercial availiable (R)-(+)-pulegone). The key core of this alkaloid was constructed through a phosphoric acid promoted and highly stereocontrolled alkyne aza-Prins cyclization reaction, synchronously establishing the bridged B-ring and the C13 quaternary stereocenter. Importantly, the synthesis further features a new efficient approach for the preparation of other lycopodine-type alkaloids. PMID:27529730

  17. Modeling of facilitated transport of phenylalanine by emulsion liquid membranes with di(2-ethylhexyl)phosphoric acid as a carrier

    SciTech Connect

    Liu, X.; Liu, D.

    1998-12-01

    A mathematical model is developed in this paper to simulate the facilitated transport of phenylalanine (Phe) in emulsion liquid membrane (ELM) systems with di(2-ethylhexyl)phosphoric acid as a carrier. The model takes into account the mass transfer in both the external aqueous phase and the organic membrane phase interfacial reaction as well as membrane breakage during agitation. The model is tested by comparing theoretical predications with experimental results using Phe extraction by ELM processes. It is found that the model is valid for simulating the facilitated transport of Phe with ELM under various experimental conditions.

  18. Advanced phosphors

    DOEpatents

    Xiang, Xiao-Dong; Sun, Xiaodong; Schultz, Peter G.

    2000-01-01

    This invention relates to new phosphor materials and to combinatorial methods of synthesizing and detecting the same. In addition, methods of using phosphors to generate luminescence are also disclosed.

  19. Characterization of phosphogypsum wastes associated with phosphoric acid and fertilizers production.

    PubMed

    El Afifi, E M; Hilal, M A; Attallah, M F; El-Reefy, S A

    2009-05-01

    The present work is directed to characterize the phosphogypsum (PG) wastes associated with phosphoric acid produced by the wet process in industrial facility for the production of fertilizers and chemicals in Egypt. The PG waste samples were characterized in terms of spectroscopic analysis (X-ray diffraction, X-ray fluorescence, IR spectra) and radiometric analysis (gamma- and alpha-measurements). The gamma-ray measurements showed that the average activity concentrations are 140+/-12.6, 459+/-36.7, 323+/-28.4, 8.3+/-0.76 and 64.3+/-4.1 Bq/kg for U-238, Ra-226, Pb-210, Th-232 and K-40, respectively. The alpha-particle measurements of uranium isotopes showed that the average activity concentrations of U-238, U-235 and U-234 were 153+/-9.8, 7+/-0.38, 152+/-10.4 Bq/kg, respectively. The average radiochemical recovery (%) of the destructive alpha-particle measurements is approximately 70% with a resolution (FWHM) of approximately 30 keV. Activity ratios of U-238/Ra-226 and U-238/Pb-210 were less than unity (i.e., <1) and equal to 0.31+/-0.02 and 0.47+/-0.16, respectively. The isotopic ratios of U-238/U-235 and U-238/U-234 (in PG and PR samples) were close to the normal values of approximately 21.7 and approximately 1, respectively and are not affected by the wet processing of phosphate rock (PR). The obtained results of PG waste samples were compared with phosphate rock (PR) samples. The radiation hazard indices are namely, radium activity index (Ra-Eq>370 Bq/kg), total absorbed gamma dose rate (D(gamma r)>5 nGy/h) and radon emanation fraction (Rn-EF>20%). Uncertainty of the sample counting was 95% confidence level of sigma. The results indicated the necessity to find suitable routes to decrease and/or redistribute the radionuclide of environmental interest (i.e., Ra-226) in PG wastes, consequently to reduce its radiation impacts in the surrounding environment.

  20. Characterization of phosphogypsum wastes associated with phosphoric acid and fertilizers production.

    PubMed

    El Afifi, E M; Hilal, M A; Attallah, M F; El-Reefy, S A

    2009-05-01

    The present work is directed to characterize the phosphogypsum (PG) wastes associated with phosphoric acid produced by the wet process in industrial facility for the production of fertilizers and chemicals in Egypt. The PG waste samples were characterized in terms of spectroscopic analysis (X-ray diffraction, X-ray fluorescence, IR spectra) and radiometric analysis (gamma- and alpha-measurements). The gamma-ray measurements showed that the average activity concentrations are 140+/-12.6, 459+/-36.7, 323+/-28.4, 8.3+/-0.76 and 64.3+/-4.1 Bq/kg for U-238, Ra-226, Pb-210, Th-232 and K-40, respectively. The alpha-particle measurements of uranium isotopes showed that the average activity concentrations of U-238, U-235 and U-234 were 153+/-9.8, 7+/-0.38, 152+/-10.4 Bq/kg, respectively. The average radiochemical recovery (%) of the destructive alpha-particle measurements is approximately 70% with a resolution (FWHM) of approximately 30 keV. Activity ratios of U-238/Ra-226 and U-238/Pb-210 were less than unity (i.e., <1) and equal to 0.31+/-0.02 and 0.47+/-0.16, respectively. The isotopic ratios of U-238/U-235 and U-238/U-234 (in PG and PR samples) were close to the normal values of approximately 21.7 and approximately 1, respectively and are not affected by the wet processing of phosphate rock (PR). The obtained results of PG waste samples were compared with phosphate rock (PR) samples. The radiation hazard indices are namely, radium activity index (Ra-Eq>370 Bq/kg), total absorbed gamma dose rate (D(gamma r)>5 nGy/h) and radon emanation fraction (Rn-EF>20%). Uncertainty of the sample counting was 95% confidence level of sigma. The results indicated the necessity to find suitable routes to decrease and/or redistribute the radionuclide of environmental interest (i.e., Ra-226) in PG wastes, consequently to reduce its radiation impacts in the surrounding environment. PMID:19272681

  1. Fine-sized Tb3Al5O12:Ce phosphor powders prepared by spray pyrolysis from spray solution with ethylenediaminetetraacetic acid

    NASA Astrophysics Data System (ADS)

    Kim, Hyung Tae; Kim, Jung Hyun; Hong, Young Jun; Lee, Jung-Kul; Kang, Yun Chan

    2012-06-01

    Fine Tb2.91Al5O12:Ce0.09 (TAG:Ce) phosphor powders are prepared by spray pyrolysis from a spray solution with ethylenediaminetetraacetic acid (EDTA). EDTA is used as an organic additive to form hollow precursor powders as well as a chelating agent. The powders prepared from the spray solution with EDTA have mean sizes of 350, 400 and 604 nm at post-treatment temperatures of 1400°C, 1450°C and 1500°C, respectively. The phosphor powders prepared from the spray solution with EDTA have similar photoluminescence intensities at post-treatment temperatures of 1450°C and 1500°C. The photoluminescence intensity of the phosphor powders prepared from the spray solution with EDTA is 116% of that of the phosphor powders prepared from the spray solution without EDTA at a post-treatment temperature of 1450°C.

  2. Carbonylation of nitrobenzene in methanol on the sulfur-containing catalyst potassium ethylxanthate-rubeanic acid

    SciTech Connect

    Bordzilovskii, V.Ya.; Gerega, V.F.; Redoshkin, B.A.; Dergunov, Yu.I.

    1988-05-10

    The kinetics of nitrobenzene carbonylation with carbon monoxide in methanol over the two-component catalyst potassium ethylxanthate-rubeanic acid was studied from 383-423/sup 0/K and pressures of 11-32 MPa. It was established that at low (< 15%) conversion of nitrobenzene the investigated process is second order in sulfur-containing catalyst and first order in nitrobenzene. The apparent activation energy was (113 +/- 6) 10/sup 3/ J/mole. A scheme of carbonylation of nitrobenzene in methanol in the presence of sulfur-containing catalyst was proposed which includes formation of complexes of nitrobenzene and CO with catalyst.

  3. Measurements of the effects of thermal contact resistance on steady state heat transfer in phosphoric-acid fuel cell stack

    NASA Technical Reports Server (NTRS)

    Abdul-Aziz, Ali; Alkasab, Kalil A.

    1991-01-01

    The influence of the thermal contact resistance on the heat transfer between the electrode plates, and the cooling system plate in a phosphoric-acid fuel-cell stack was experimentally investigated. The investigation was conducted using a set-up that simulates the operating conditions prevailing in a phosphoric acid fuel-cell stack. The fuel-cell cooling system utilized three types of coolants, water, engine oil, and air, to remove excess heat generated in the cell electrode and to maintain a reasonably uniform temperature distribution in the electrode plate. The thermal contact resistance was measured as a function of pressure at the interface between the electrode plate and the cooling system plate. The interface pressure range was from 0 kPa to 3448 kPa, while the Reynolds number for the cooling limits varied from 15 to 79 for oil, 1165 to 6165 for water, and 700 to 6864 for air. Results showed that increasing the interface pressure resulted in a higher heat transfer coefficient.

  4. Improved detection of multi-phosphorylated peptides in the presence of phosphoric acid in liquid chromatography/mass spectrometry

    SciTech Connect

    Kim, Jeongkwon; Camp, David G.; Smith, Richard D.

    2004-02-18

    In contrast to lower phosphorylation states (e.g., the tryptic monophosphopeptide FQpSEEQQQTEDELQDK from bovine -casein), the specific detection of multi-phosphorylated peptides (e.g. the tetraphosphopeptide RELEELNVPGEIVEpSLpSpSpSEESITR from tryptic digestion of bovine -casein) has often been problematic for liquid chromatography-mass spectrometry analysis due to their high affinity for adsorption to exposed surfaces. We observed an enhancement in the overall detection of phosphopeptides upon addition of phosphoric acid (0.1% to 1.0%) to the sample solution; a 10-fold increase in sensitivity was measured for the detection of two tryptic phosphopeptides as well as a significant improvement in the detection of the tetraphosphopeptide. Using capillary LC with an ion trap tandem mass spectrometer for detection and identification, the achievable detection limits were 50 fmol and 50 pmol for the monophosphopeptide and the tetraphosphopeptide, respectively. Phosphoric acid is believed to act as a blocking agent to available silanol groups on both the silica capillary surface and the C-18-bonded silica surface.

  5. Inorganic polymers from laterite using activation with phosphoric acid and alkaline sodium silicate solution: Mechanical and microstructural properties

    SciTech Connect

    Lassinantti Gualtieri, Magdalena

    2015-01-15

    Geopolymers from laterite, an iron-rich soil available in developing countries, have great potential as building materials. In this work, laterite from Togo (Africa) was used to prepare geopolymers using both phosphoric acid and alkaline sodium silicate solution. Microstructural properties were investigated by scanning electron microscopy, X-ray powder diffraction and mercury porosimetry, whereas thermal properties were evaluated by thermal analyses. The local environment of iron was studied by X-ray Absorption Spectroscopy (XANES region). The mechanical properties were determined. Modulus of Rupture and Young's modulus fell in the ranges 3.3–4.5 MPa and 12–33 GPa, respectively, rendering the materials good candidates for construction purposes. Heating above 900 °C results in weight-gain, presumably due to iron redox reactions. X-ray Absorption Spectroscopy data evidence changes in the chemical and structural environments of iron following thermal treatment of geopolymers. These changes indicate interaction between the geopolymer structure and iron during heating, possibly leading to redox properties. -- Highlights: •Geopolymerization of laterite is promising for fabrication of building materials. •Both phosphoric acid and alkaline sodium silicate solution can be used for activation. •Thermally activated redox properties of the inorganic polymers were observed.

  6. Development and validation of a novel stability-indicating HPLC method for the simultaneous assay of betamethasone-17-valerate, fusidic acid, potassium sorbate, methylparaben and propylparaben in a topical cream preparation.

    PubMed

    Byrne, Jonathan; Velasco-Torrijos, Trinidad; Reinhardt, Robert

    2014-08-01

    A novel stability-indicating reversed phase high performance liquid chromatographic (RP-HPLC) method for the simultaneous assay of betamethasone-17-valerate, fusidic acid and potassium sorbate as well as methyl- and propylparaben in a topical cream preparation has been developed. A 100mm×3.0mm ID. Ascentis Express C18 column maintained at 30°C and UV detection at 240nm were used. A gradient programme was employed at a flow-rate of 0.75ml/min. Mobile phase A comprised of an 83:17 (v/v) mixture of acetonitrile and methanol and mobile phase B of a 10g/l solution of 85% phosphoric acid in purified water. The method has been validated according to current International Conference on Harmonisation (ICH) guidelines and applied during formulation development and stability studies. The procedure has been shown to be stability-indicating for the topical cream. PMID:24731970

  7. Thermoluminescent phosphor

    DOEpatents

    Lasky, Jerome B.; Moran, Paul R.

    1978-01-01

    A thermoluminescent phosphor comprising LiF doped with boron and magnesium is produced by diffusion of boron into a conventional LiF phosphor doped with magnesium. Where the boron dopant is made to penetrate only the outer layer of the phosphor, it can be used to detect shallowly penetrating radiation such as tritium beta rays in the presence of a background of more penetrating radiation.

  8. Dissipative crystallization of aqueous mixtures of potassium salts of poly(riboadenylic acid) and poly(ribouridylic acid).

    PubMed

    Okubo, Tsuneo

    2011-10-15

    Dissipative drying patterns of aqueous mixtures of potassium salts of poly(riboadenylic acid) (KPolyA) and poly(ribouridylic acid) (KPolyU) were studied on a cover glass, a watch glass and a glass dish at room temperature. Accumulation of the polymers forming the broad rings near the outside edge and the inner area of the dried film was observed. The fine multiple ring structures formed when the affinity of the polymer with the substrate is strong. Microscopic drying patterns changed drastically depending on the location in the dried film. Microscopic drying patterns were mainly dendritic long rods and sword (halberd)-like rods. They are assigned to the crystals of double-stranded and triple-stranded helices of the A:U and A:2U complexes, respectively. Cross-like drying patterns are also observed originated from the salt-polymer interaction.

  9. Potassium fulvate as co-interpenetrating agent during graft polymerization of acrylic acid from cellulose.

    PubMed

    Ghazy, Mohamed B M; El-Hai, Farag Abd; Mohamed, Magdy F; Essawy, Hisham A

    2016-10-01

    Grafting polymerization of acrylic acid onto cellulose in presence of potassium fulvate (KF) as a co-interpenetrating agent results enhanced water sorption compared to materials prepared similarly in its absence. The insertion of potassium fulvate (KF) did not affect the grafting process and is thought to proceed in parallel to the graft polymerization via intensive polycondensation reactions of its function groups (-COOH and OH) with COOH of the monomer and OH groups of cellulose. The combination of graft copolymerization and polycondensation reactions is assumed to produce interpenetrating network structure. Fourier transform infrared (FTIR) confirmed successful incorporation within the network structure which is an evidence for formation of interpenetrating network. The obtained structures showed homogeneous uniform surface as revealed by scanning electron microscopy (SEM). The obtained superabsorbent possessed high water absorbency 422 and 48.8g/g in distilled water and saline (0.9wt.% NaCl solution), respectively, and enhanced water retention even at elevated temperatures as revealed by thermogravimetric analysis (TGA). This could be explained by the high content of hydrophilic groups. The new superabsorbents proved to be efficient devices for controlled release of fertilizers which expands their use in agricultural applications. PMID:27370745

  10. Acidic Potassium Permanganate Chemiluminescence for the Determination of Antioxidant Potential in Three Cultivars of Ocimum basilicum.

    PubMed

    Srivastava, Shivani; Adholeya, Alok; Conlan, Xavier A; Cahill, David M

    2016-03-01

    Ocimum basilicum, a member of the family Lamiaceae, is a rich source of polyphenolics that have antioxidant properties. The present study describes the development and application of an online HPLC-coupled acidic potassium permanganate chemiluminescence assay for the qualitative and quantitative assessment of antioxidants in three cultivars of O. basilicum grown under greenhouse conditions. The chemiluminescence based assay was found to be a sensitive and efficient method for assessment of total and individual compound antioxidant potential. Leaves, flowers and roots were found to be rich reserves of the antioxidant compounds which showed intense chemiluminescence signals. The polyphenolics such as rosmarinic, chicoric, caffeic, p-coumaric, m-coumaric and ferulic acids showed antioxidant activity. Further, rosmarinic acid was found to be the major antioxidant component in water-ethanol extracts. The highest levels of rosmarinic acid was found in the leaves and roots of cultivars "holy green" (14.37; 11.52 mM/100 g DW respectively) followed by "red rubin" (10.02; 10.75 mM/100 g DW respectively) and "subja" (6.59; 4.97 mM/100 g DW respectively). The sensitivity, efficiency and ease of use of the chemiluminescence based assay should now be considered for its use as a primary method for the identification and quantification of antioxidants in plant extracts. PMID:26803763

  11. Acidic Potassium Permanganate Chemiluminescence for the Determination of Antioxidant Potential in Three Cultivars of Ocimum basilicum.

    PubMed

    Srivastava, Shivani; Adholeya, Alok; Conlan, Xavier A; Cahill, David M

    2016-03-01

    Ocimum basilicum, a member of the family Lamiaceae, is a rich source of polyphenolics that have antioxidant properties. The present study describes the development and application of an online HPLC-coupled acidic potassium permanganate chemiluminescence assay for the qualitative and quantitative assessment of antioxidants in three cultivars of O. basilicum grown under greenhouse conditions. The chemiluminescence based assay was found to be a sensitive and efficient method for assessment of total and individual compound antioxidant potential. Leaves, flowers and roots were found to be rich reserves of the antioxidant compounds which showed intense chemiluminescence signals. The polyphenolics such as rosmarinic, chicoric, caffeic, p-coumaric, m-coumaric and ferulic acids showed antioxidant activity. Further, rosmarinic acid was found to be the major antioxidant component in water-ethanol extracts. The highest levels of rosmarinic acid was found in the leaves and roots of cultivars "holy green" (14.37; 11.52 mM/100 g DW respectively) followed by "red rubin" (10.02; 10.75 mM/100 g DW respectively) and "subja" (6.59; 4.97 mM/100 g DW respectively). The sensitivity, efficiency and ease of use of the chemiluminescence based assay should now be considered for its use as a primary method for the identification and quantification of antioxidants in plant extracts.

  12. Laser Fired Local Back Contact C-Si Solar Cells Using Phosphoric Acid for Back Surface Field

    NASA Astrophysics Data System (ADS)

    Balaji, Nagarajan; Park, Cheolmin; Ju, Minkyu; Lee, Seunghwan; Kim, Jungmo; Chung, Sungyoun; Raja, Jayapal; Yi, Junsin

    2015-04-01

    We report on a laser doping process for the formation of a local back surface field (BSF) using phosphoric acid (H3PO4) for n-type passivated emitter rear totally diffused silicon solar cells. The sheet resistance of the BSF layer was varied by changing the H3PO4 concentration. The BSF layer was passivated using SiN x . With the passivated BSF, the LBC solar cell shows an improved open circuit voltage. A laser power of 44 mW with 10 kHz resulted in a 45-Ω/sq BSF layer with effective lifetime of 290 μs and a higher V oc of 623 mV. With the optimized laser parameters, devices with the best electrical results yielded a short circuit current density of 36 mA/cm2 and an efficiency of 18.26%.

  13. Nitric-phosphoric acid etching effects on the surface chemical composition of CdTe thin film.

    NASA Astrophysics Data System (ADS)

    Irfan, Irfan; Ding, Huanjun; Xia, Wei; Lin, Hao; Tang, Ching W.; Gao, Yongli

    2009-03-01

    Nitric-phosphoric (NP) acid etching has been regarded as one of the most successful methods for the formation of low resistance back contact with the metal electrode in CdTe based solar cells. We report back surface chemical composition for eight different durations of NP etching of CdTe polycrystalline thin film. We studied the surfaces with x-ray photoemission spectroscopy (XPS), ultraviolet photoemission spectroscopy (UPS), inverse photoemission spectroscopy (IEPS) and atomic force microscopy (AFM). Etching dependence on the back surface composition and electronic structure was observed. Valence and conduction band shifts relative to the Fermi level of the system with different etching duration were analyzed. The sample was left in open ambient condition for three weeks and XPS data were obtained again in order to study the difference in surface chemical composition with the pristine CdTe film. Unetched and highly etched part of the sample were sputtered and the depth profile analyzed.

  14. Luminescence properties of compounds of europium(III) with quinaldic acid and phosphor-containing neutral ligands

    NASA Astrophysics Data System (ADS)

    Kalinovskaya, I. V.

    2016-06-01

    Luminescent complex mixed-ligand compounds of europium(III) with quinaldic acid and phosphor- containing neutral ligands have been obtained. Their composition and structure have been determined. The thermal and spectral-luminescent properties of the obtained complex mixed-ligand compounds of europium( III) have been studied. It is shown that, during thermolysis, a water molecule and neutral ligand are detached in two stages with endothermic effects. It is established that quinaldinate ion is coordinated to europium(III) ion in a bidentate fashion. The Stark structure of the 5 D 0-7 F j ( j = 0, 1, 2) transitions in low-temperature luminescence spectra of complex compounds of europium(III) has been analyzed.

  15. Adsorption properties of biomass-based activated carbon prepared with spent coffee grounds and pomelo skin by phosphoric acid activation

    NASA Astrophysics Data System (ADS)

    Ma, Xiaodong; Ouyang, Feng

    2013-03-01

    Activated carbon prepared from spent coffee grounds and pomelo skin by phosphoric acid activation had been employed as the adsorbent for ethylene and n-butane at room temperature. Prepared activated carbon was characterized by means of nitrogen adsorption-desorption, X-ray powder diffraction, scanning electron microscope and Fourier transform infrared spectroscope. It was confirmed that pore structure played an important role during the adsorption testes. Adsorption isotherms of ethylene and n-butane fitted well with Langmuir equation. The prepared samples owned better adsorption capacity for n-butane than commercial activated carbon. Isosteric heats of adsorptions at different coverage were calculated through Clausius-Clapeyron equation. Micropore filling effect was explained in a thermodynamic way.

  16. Drastic Enhancement of Photocatalytic Activities over Phosphoric Acid Protonated Porous g-C3 N4 Nanosheets under Visible Light.

    PubMed

    Shi, Li; Chang, Kun; Zhang, Huabin; Hai, Xiao; Yang, Liuqing; Wang, Tao; Ye, Jinhua

    2016-08-01

    A simple method is developed to fabricate protonated porous graphitic carbon nitride nanosheets (P-PCNNS) by protonation-exfoliation of bulk graphitic carbon nitride (BCN) with phosphoric acid (H3 PO4 ). The H3 PO4 treatment not only helps to exfoliate the BCN into 2D ultrathin nanosheets with abundant micro- and mesopores, endowing P-PCNNS with more exposed active catalytic sites and cross-plane diffusion channels to facilitate the mass and charge transport, but also induces the protonation of carbon nitride polymer, leading to the moderate removal of the impurities of carbon species in BCN for the optimization of the aromatic π-conjugated system for better charge separation without changing its chemical structure. As a result, the P-PCNNS show much higher photocatalytic performance for hydrogen evolution and CO2 conversion than bare BCN and graphitic carbon nitride nanosheets. PMID:27410192

  17. Morphology of the diastereomeric salt of the alkaloid ephedrine and a chlorine substituted cyclic phosphoric acid (CLINAM)

    NASA Astrophysics Data System (ADS)

    Strom, C. S.; Leusen, F. J. J.; Geertman, R. M.; Ariaans, G. J. A.

    1997-01-01

    The morphology of the diastereomeric salt of the alkaloid ephedrine and a chlorine substituted cyclic phosphoric acid is studied theoretically by means of a first-principles application of Hartman's PBC theory. A rigorous graph-theoretic derivation of the F slices of CLINAM and 2,4-DICLINAM has yielded all possible growth layers and their orientations. The Coulomb and Van der Waals contributions to the energy quantities characterizing CLINAM are calculated, using the Ewald formulation adjusted to lamina shapes, exactly and free from adjustable parameters. Several schemes of computing partial charges, in combination with energy minimization techniques are used for computing the atomic point charges. The structural morphology follows from the total attachment energies. The theoretical growth habit depends sensitively on the choice of the employed atomic charge scheme. The theoretical morphology of CLINAM crystals is discussed in the light of experimental results.

  18. Determination of Activity Coefficients of di-(2-ethylhexyl) Phosphoric Acid Dimer in Select Organic Solvents Using Vapor Phase Osmometry

    SciTech Connect

    Michael F. Gray; Peter Zalupski; Mikael Nilsson

    2013-08-01

    Effective models for solvent extraction require accurate characterization of the nonideality effects for each component, including the extractants. In this study, the nonideal behavior of the industrial extractant di(2-ethylhexyl) phosphoric acid has been investigated using vapor pressure osmometry (VPO). From the osmometry data, activity coefficients for the HDEHP dimer were obtained based on a formulation of the regular solution theory of Scatchard and Hildebrand, and the Margules two- and three-suffix equations. The results show similarity with a slope-analysis based relation from previous literature, although important differences are highlighted. The work points towards VPO as a useful technique for this type of study, but care must be taken with the choice of standard and method of analysis.

  19. In the Bottlebrush Garden: The Structural Aspects of Coordination Polymer Phases formed in Lanthanide Extraction with Alkyl Phosphoric Acids.

    PubMed

    Ellis, Ross J; Demars, Thomas; Liu, Guokui; Niklas, Jens; Poluektov, Oleg G; Shkrob, Ilya A

    2015-09-01

    Coordination polymers (CPs) of metal ions are central to a large variety of applications, such as catalysis and separations. These polymers frequently occur as amorphous solids that segregate from solution. The structural aspects of this segregation remain elusive due to the dearth of the spectroscopic techniques and computational approaches suitable for probing such systems. Therefore, there is a lacking of understanding of how the molecular building blocks give rise to the mesoscale architectures that characterize CP materials. In this study we revisit a CP phase formed in the extraction of trivalent lanthanide ions by diesters of the phosphoric acid, such as the bis(2-ethylhexyl)phosphoric acid (HDEHP). This is a well-known system with practical importance in strategic metals refining and nuclear fuel reprocessing. A CP phase, referred to as a "third phase", has been known to form in these systems for half a century, yet the structure of the amorphous solid is still a point of contention, illustrating the difficulties faced in characterizing such materials. In this study, we follow a deductive approach to solving the molecular structure of amorphous CP phases, using semiempirical calculations to set up an array of physically plausible models and then deploying a suite of experimental techniques, including optical, magnetic resonance, and X-ray spectroscopies, to consecutively eliminate all but one model. We demonstrate that the "third phase" consists of hexagonally packed linear chains in which the lanthanide ions are connected by three O-P-O bridges, with the modifying groups protruding outward, as in a bottlebrush. The tendency to yield linear polynuclear oligomers that is apparent in this system may also be present in other systems yielding the "third phase", demonstrating how molecular geometry directs polymeric assembly in hybrid materials. We show that the packing of bridging molecules is central to directing the structure of CP phases and that by

  20. Polaron conductivity mechanism in potassium acid phthalate crystal: AC-conductivity investigation

    NASA Astrophysics Data System (ADS)

    Filipič, Cene; Levstik, Iva; Levstik, Adrijan; Hadži, Dušan

    2016-08-01

    The complex dielectric constant, \\varepsilon *(ν ,T), of potassium acid phthalate monocrystal (KAP) was investigated over the broad frequency and temperature range. While the imaginary part of dielectric constant ε‧‧(ν) increases rapidly with increasing temperature in the studied temperature range, the real part of dielectric constant ε‧(ν) increases only at high temperatures; there is almost no change of ε‧(ν) below 200 K. Both values of ε‧ and ε‧‧ are frequency dependent; the values increase with decreasing frequencies. At temperatures below 450 K the ac electrical conductivity and dielectric constant follow simultaneously the universal dielectric response (UDR). The analysis of the temperature dependence of the UDR parameter s in terms of the theoretical model for small polarons revealed that this mechanism governs the charge transport in KAP crystal in the studied temperature range.

  1. A Neat Trick Using Oxalic Acid Dihydrate and Potassium Permanganate and Other Experiments with Small Organic Amine or Oxygenated Compounds

    ERIC Educational Resources Information Center

    Kelland, Malcolm A.

    2011-01-01

    Solid potassium permanganate (KMnO[subscript 4]) is shown to react in a variety of ways with small organic amines or oxygenated compounds depending on whether they are liquids or solids and whether water is present. In particular, its reaction with solid oxalic acid dihydrate can be initiated by the moisture in one's breath, making an intriguing…

  2. Bacterial flora of skin of processed broiler chickens after successive washings in mixtures of potassium hydroxide and lauric acid

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Changes in the size of the populations of different groups of bacteria in the normal flora of the skin of processed broilers were examined after each of five consecutive washings with mixtures of potassium hydroxide (KOH) and lauric acid (LA). Skin from commercially processed broiler carcasses was ...

  3. Antimicrobial activity of potassium hydroxide and lauric acid against microorganisms associated with poultry processing.

    PubMed

    Hinton, Arthur; Ingram, Kimberly D

    2006-07-01

    The antimicrobial activity of solutions of potassium hydroxide (KOH) and mixtures of KOH and lauric acid against microorganisms associated with poultry processing was determined. In vitro tests were performed by enumerating viable microorganisms recovered from bacterial cultures suspended in peptone water (control) and in solutions of 0.1% KOH or mixtures of 0.1% KOH and 0.25 or 0.50% lauric acid. Additional studies were conducted to identify changes in the native microbial flora of poultry skin washed in distilled water, KOH, or KOH-lauric acid. Although results of in vitro studies indicated that significantly fewer bacteria (P < or = 0.05) were recovered from cultures suspended in KOH than from cultures suspended in peptone water, there were also significantly fewer bacteria recovered from cultures suspended in KOH-lauric acid than from cultures suspended in KOH. Results of experiments with broiler skin indicated that although rinsates of skin washed in 1.0% KOH solutions contained significantly fewer total aerobic bacteria and enterococci than did skin washed in water, significantly fewer of these microorganisms were generally recovered from rinsates of skin washed in mixtures of 1.0% KOH and 0.5, 1.0, 1.5, or 2.0% lauric acid than from skin washed in KOH alone. Washing of broiler skin in solutions of 0.25 to 1.00% KOH or mixtures containing these concentrations of KOH and two parts lauric acid (wt/vol) also significantly reduced the populations of bacteria and yeasts in the native flora of broiler skin. Enterococci, lactic acid bacteria, and staphylococci in the native flora of the skin had the highest level of resistance to the bactericidal activity of KOH-lauric acid. These findings indicate that the antimicrobial activity of KOH-lauric acid is significantly greater than that of KOH alone in vitro and on poultry skin. Thus, KOH-lauric acid may be useful for reducing the level of microbial contamination associated with poultry processing.

  4. Crystal Chemistry of the Potassium and Rubidium Uranyl Borate Families Derived from Boric Acid Fluxes

    SciTech Connect

    Wang, Shuao; Alekseev, Evgeny V.; Stritzinger, Jared T.; Depmeier, Wulf; Albrecht-Schmitt, Thomas E.

    2010-07-19

    The reaction of uranyl nitrate with a large excess of molten boric acid in the presence of potassium or rubidium nitrate results in the formation of three new potassium uranyl borates, K{sub 2}[(UO{sub 2}){sub 2}B{sub 12}O{sub 19}(OH){sub 4}]·0.3H{sub 2}O (KUBO-1), K[(UO{sub 2}){sub 2}B{sub 10}O{sub 15}(OH){sub 5}] (KUBO-2), and K[(UO{sub 2}){sub 2}B{sub 10}O{sub 16}(OH){sub 3}]·0.7H{sub 2}O (KUBO-3) and two new rubidium uranyl borates Rb{sub 2}[(UO{sub 2}){sub 2}B{sub 13}O{sub 20}(OH){sub 5}] (RbUBO-1) and Rb[(UO{sub 2}){sub 2}B{sub 10}O{sub 16}(OH){sub 3}]·0.7H{sub 2}O (RbUBO-2). The latter is isotypic with KUBO-3. These compounds share a common structural motif consisting of a linear uranyl, UO{sub 2}{sup 2+}, cation surrounded by BO{sub 3} triangles and BO{sub 4} tetrahedra to create an UO{sub 8} hexagonal bipyramidal environment around uranium. The borate anions bridge between uranyl units to create sheets. Additional BO{sub 3} triangles extend from the polyborate layers and are directed approximately perpendicular to the sheets. All of these compounds adopt layered structures. With the exception of KUBO-1, the structures are all centrosymmetric. All of these compounds fluoresce when irradiated with long-wavelength UV light. The fluorescence spectrum yields well-defined vibronically coupled charge-transfer features.

  5. Kinetics of CO2 Absorption into Aqueous Basic Amino Acid Salt: Potassium Salt of Lysine Solution.

    PubMed

    Shen, Shufeng; Yang, Ya-nan; Bian, Yangyang; Zhao, Yue

    2016-02-16

    Aqueous amino acid salts are considered as an attractive alternative to alkanolamine solvents (e.g., MEA) for carbon dioxide (CO2) absorption. The kinetics of CO2 into unloaded aqueous solutions of potassium lysinate (LysK) was studied using a wetted wall column at concentrations ranging from 0.25 to 2.0 M and temperatures from 298 to 333 K. Physicochemical properties of aqueous LysK solutions such as density, viscosity, and physical solubility of CO2 were measured to evaluate the reaction rate constants. The reaction pathway is described using zwitterion mechanism taking into account the effect of ionic strength on the reaction rate. Under the fast pseudo-first-order regime, the reaction rate parameters were obtained and correlated in a power-law reaction rate expression. LysK shows higher chemical reactivity toward CO2 than the industrial standard MEA and most of amino acid salts. Its reaction rate constants increase considerably with concentration and temperature. The reaction order is found to be an average value of 1.58 with respect to LysK. The forward second-order kinetic rate constant, k2 0 , are obtained as 31615 and 84822 m3 kmol−1 s−1 at 298 and 313 K, respectively with activation energy of 51.0 kJ mol−1. The contribution of water to the zwitterion deprotonation seems to be more significant than that of LysK for the above-mentioned kinetic conditions PMID:26751093

  6. The Molecular Basis of Polyunsaturated Fatty Acid Interactions with the Shaker Voltage-Gated Potassium Channel

    PubMed Central

    Yazdi, Samira; Stein, Matthias; Elinder, Fredrik; Andersson, Magnus; Lindahl, Erik

    2016-01-01

    Voltage-gated potassium (KV) channels are membrane proteins that respond to changes in membrane potential by enabling K+ ion flux across the membrane. Polyunsaturated fatty acids (PUFAs) induce channel opening by modulating the voltage-sensitivity, which can provide effective treatment against refractory epilepsy by means of a ketogenic diet. While PUFAs have been reported to influence the gating mechanism by electrostatic interactions to the voltage-sensor domain (VSD), the exact PUFA-protein interactions are still elusive. In this study, we report on the interactions between the Shaker KV channel in open and closed states and a PUFA-enriched lipid bilayer using microsecond molecular dynamics simulations. We determined a putative PUFA binding site in the open state of the channel located at the protein-lipid interface in the vicinity of the extracellular halves of the S3 and S4 helices of the VSD. In particular, the lipophilic PUFA tail covered a wide range of non-specific hydrophobic interactions in the hydrophobic central core of the protein-lipid interface, while the carboxylic head group displayed more specific interactions to polar/charged residues at the extracellular regions of the S3 and S4 helices, encompassing the S3-S4 linker. Moreover, by studying the interactions between saturated fatty acids (SFA) and the Shaker KV channel, our study confirmed an increased conformational flexibility in the polyunsaturated carbon tails compared to saturated carbon chains, which may explain the specificity of PUFA action on channel proteins. PMID:26751683

  7. Nanoporous anodic aluminum oxide with a long-range order and tunable cell sizes by phosphoric acid anodization on pre-patterned substrates

    PubMed Central

    Surawathanawises, Krissada; Cheng, Xuanhong

    2014-01-01

    Nanoporous anodic aluminum oxide (AAO) has been explored for various applications due to its regular cell arrangement and relatively easy fabrication processes. However, conventional two-step anodization based on self-organization only allows the fabrication of a few discrete cell sizes and formation of small domains of hexagonally packed pores. Recent efforts to pre-pattern aluminum followed with anodization significantly improve the regularity and available pore geometries in AAO, while systematic study of the anodization condition, especially the impact of acid composition on pore formation guided by nanoindentation is still lacking. In this work, we pre-patterned aluminium thin films using ordered monolayers of silica beads and formed porous AAO in a single-step anodization in phosphoric acid. Controllable cell sizes ranging from 280 nm to 760 nm were obtained, matching the diameters of the silica nanobead molds used. This range of cell size is significantly greater than what has been reported for AAO formed in phosphoric acid in the literature. In addition, the relationships between the acid concentration, cell size, pore size, anodization voltage and film growth rate were studied quantitatively. The results are consistent with the theory of oxide formation through an electrochemical reaction. Not only does this study provide useful operational conditions of nanoindentation induced anodization in phosphoric acid, it also generates significant information for fundamental understanding of AAO formation. PMID:24535886

  8. Nanoporous anodic aluminum oxide with a long-range order and tunable cell sizes by phosphoric acid anodization on pre-patterned substrates.

    PubMed

    Surawathanawises, Krissada; Cheng, Xuanhong

    2014-01-20

    Nanoporous anodic aluminum oxide (AAO) has been explored for various applications due to its regular cell arrangement and relatively easy fabrication processes. However, conventional two-step anodization based on self-organization only allows the fabrication of a few discrete cell sizes and formation of small domains of hexagonally packed pores. Recent efforts to pre-pattern aluminum followed with anodization significantly improve the regularity and available pore geometries in AAO, while systematic study of the anodization condition, especially the impact of acid composition on pore formation guided by nanoindentation is still lacking. In this work, we pre-patterned aluminium thin films using ordered monolayers of silica beads and formed porous AAO in a single-step anodization in phosphoric acid. Controllable cell sizes ranging from 280 nm to 760 nm were obtained, matching the diameters of the silica nanobead molds used. This range of cell size is significantly greater than what has been reported for AAO formed in phosphoric acid in the literature. In addition, the relationships between the acid concentration, cell size, pore size, anodization voltage and film growth rate were studied quantitatively. The results are consistent with the theory of oxide formation through an electrochemical reaction. Not only does this study provide useful operational conditions of nanoindentation induced anodization in phosphoric acid, it also generates significant information for fundamental understanding of AAO formation.

  9. Optimizing available phosphorus in calcareous soils fertilized with diammonium phosphate and phosphoric acid using Freundlich adsorption isotherm.

    PubMed

    Naeem, Asif; Akhtar, Muhammad; Ahmad, Waqar

    2013-01-01

    In calcareous soils, phosphorus (P) retention and immobilization take place due to precipitation and adsorption. Since soil pH is considered a major soil variable affecting the P sorption, an acidic P fertilizer could result in low P adsorption compared to alkaline one. Therefore, P adsorption from DAP and phosphoric acid (PA) required to produce desired soil solution P concentration was estimated using Freundlich sorption isotherms. Two soils from Faisalabad and T. T. Singh districts were spiked with 0, 10, and 20 % CaCO3 for 15 days. Freundlich adsorption isotherms (P = aC(b/a)) were constructed, and theoretical doses of PA and DAP to develop a desired soil solution P level (i.e., 0.20 mg L(-1)) were calculated. It was observed that P adsorption in soil increased with CaCO3. Moreover, at all the levels of CaCO3, P adsorption from PA was lower compared to that from DAP in both the soils. Consequently, lesser quantity of PA was required to produce desired solution P, 0.2 mg L(-1), compared to DAP. However, extrapolating the developed relationship between soil CaCO3 contents and quantity of fertilizer to other similar textured soils needs confirmation. PMID:24307878

  10. Radiological, chemical and morphological characterizations of phosphate rock and phosphogypsum from phosphoric acid factories in SW Spain.

    PubMed

    Rentería-Villalobos, Marusia; Vioque, Ignacio; Mantero, Juan; Manjón, Guillermo

    2010-09-15

    In this work, radiological, chemical, and also morphological characterization was performed in phosphate rock and phosphogypsum samples, in order to understand the behavior of toxic elements. Characterization was carried out using X-ray diffraction (XRD), X-ray fluorescence (XRF), gamma spectrometry and scanning electron microscopy with energy-dispersive X-ray analysis (SEM-EDX). Our results show that the phosphate rock was mainly composed of fluorapatite, calcite, perovskite, quartz, magnetite, pyrite and kaolinite, whereas phosphogypsum only exhibited dihydrated calcium sulfate. The activity concentration of U-series radioisotopes in phosphate rock was around 1640 Bq/kg. (226)Ra and (210)Pb tend to be distributed into phosphogypsum by up to 80%, whereas the fraction of U-isotopes is 10%. The most abundant trace elements in phosphate rock were Sr, Cr, V, Zn, Y, Ni and Ba. Some elements, such as Ba, Cd, Cu, La, Pb, Se, Sr, Th and Y, were enriched in the phosphogypsum. This enrichment may be attributed to an additional input associated to the sulfuric acid used for the phosphoric acid production. Furthermore, results from SEM-EDX demonstrated that toxic elements are not distributed homogeneously into phosphogypsum. Most of these elements are concentrated in particles <20 microm of high porosity, and could be easily mobilized by leaching and/or erosion.

  11. Surface layer erosion of natural caries lesions with phosphoric and hydrochloric acid gels in preparation for resin infiltration.

    PubMed

    Meyer-Lueckel, H; Paris, S; Kielbassa, A M

    2007-01-01

    The infiltration of proximal enamel lesions with low-viscosity light curing resins could be a viable approach to stop lesion progression. However, penetration of sealant might be hampered by the comparatively highly mineralized surface layers of natural lesions. Therefore, the aim of this study was to compare the efficacy of three different etching gels in removing the surface layer in various etching times. Extracted human molars and premolars showing proximal white spot lesions were cut across the demineralized areas. Ninety-six lesions expected from visual examination to be confined to the outer enamel (C1) were selected. The cut surface and half of each lesion were varnished, thus serving as control. Subsequently, the lesions were etched with either phosphoric (37%) or hydrochloric (5 or 15%) acid gel for 30-120 s (n = 8/group). Specimens were examined using confocal microscopy and transversal microradiography. Surface layer reduction was significantly increased in lesions etched with 15% HCl gel for 90 and 120 s compared to those etched with H(3)PO(4) gel for 30-120 s (p < 0.05). No significant differences regarding the depths of erosion in the lesions compared to sound enamel could be observed (p > 0.05). An effective reduction in the surface layer of natural enamel caries can be achieved by etching with 15% hydrochloric acid gel for 90-120 s.

  12. Radiological, chemical and morphological characterizations of phosphate rock and phosphogypsum from phosphoric acid factories in SW Spain.

    PubMed

    Rentería-Villalobos, Marusia; Vioque, Ignacio; Mantero, Juan; Manjón, Guillermo

    2010-09-15

    In this work, radiological, chemical, and also morphological characterization was performed in phosphate rock and phosphogypsum samples, in order to understand the behavior of toxic elements. Characterization was carried out using X-ray diffraction (XRD), X-ray fluorescence (XRF), gamma spectrometry and scanning electron microscopy with energy-dispersive X-ray analysis (SEM-EDX). Our results show that the phosphate rock was mainly composed of fluorapatite, calcite, perovskite, quartz, magnetite, pyrite and kaolinite, whereas phosphogypsum only exhibited dihydrated calcium sulfate. The activity concentration of U-series radioisotopes in phosphate rock was around 1640 Bq/kg. (226)Ra and (210)Pb tend to be distributed into phosphogypsum by up to 80%, whereas the fraction of U-isotopes is 10%. The most abundant trace elements in phosphate rock were Sr, Cr, V, Zn, Y, Ni and Ba. Some elements, such as Ba, Cd, Cu, La, Pb, Se, Sr, Th and Y, were enriched in the phosphogypsum. This enrichment may be attributed to an additional input associated to the sulfuric acid used for the phosphoric acid production. Furthermore, results from SEM-EDX demonstrated that toxic elements are not distributed homogeneously into phosphogypsum. Most of these elements are concentrated in particles <20 microm of high porosity, and could be easily mobilized by leaching and/or erosion. PMID:20537794

  13. The First-in-Class Potassium-Competitive Acid Blocker, Vonoprazan Fumarate: Pharmacokinetic and Pharmacodynamic Considerations.

    PubMed

    Echizen, Hirotoshi

    2016-04-01

    Vonoprazan fumarate (Takecab) is a first-in-class potassium-competitive acid blocker that has been available in the market in Japan since February 2015. Vonoprazan is administered orally at 20 mg once daily for the treatment of gastroduodenal ulcer, at 20 and 10 mg once daily for the treatment and secondary prevention of reflux esophagitis, respectively, at 10 mg once daily for the secondary prevention of low-dose aspirin- or non-steroidal anti-inflammatory drug-induced peptic ulcer, and at 20 mg twice daily in combination with clarithromycin and amoxicillin for the eradication of Helicobacter pylori. It inhibits H(+),K(+)-ATPase activities in a reversible and potassium-competitive manner with a potency of inhibition approximately 350 times higher than the proton pump inhibitor, lansoprazole. Vonoprazan is absorbed rapidly and reaches maximum plasma concentration at 1.5-2.0 h after oral administration. Food has minimal effect on its intestinal absorption. Oral bioavailability in humans remains unknown. The plasma protein binding of vonoprazan is 80% in healthy subjects. It distributes extensively into tissues with a mean apparent volume of distribution of 1050 L. Being a base with pKa of 9.6 and with acid-resistant properties, vonoprazan is highly concentrated in the acidic canaliculi of the gastric parietal cells and elicited an acid suppression effect for longer than 24 h after the administration of 20 mg. The mean apparent terminal half-life of the drug is approximately 7.7 h in healthy adults. Vonoprazan is metabolized to inactive metabolites mainly by cytochrome P450 (CYP)3A4 and to some extent by CYP2B6, CYP2C19, CYP2D6, and SULT2A1. A mass balance study showed that 59 and 8% of the orally administered radioactivity was recovered in urine as metabolites and in an unchanged form, respectively, indicating extensive metabolism. Genetic polymorphism of CYP2C19 may influence drug exposure but only to a clinically insignificant extent (15-29%), according to the

  14. Different responses of two Mosla species to potassium limitation in relation to acid rain deposition.

    PubMed

    Wang, Meng; Gu, Bao-jing; Ge, Ying; Liu, Zhen; Jiang, De-an; Chang, Scott X; Chang, Jie

    2009-08-01

    The increasingly serious problem of acid rain is leading to increased potassium (K) loss from soils, and in our field investigation, we found that even congenerically relative Mosla species show different tolerance to K-deficiency. A hydroponic study was conducted on the growth of two Mosla species and their morphological, physiological and stoichiometric traits in response to limited (0.35 mmol K/L), normal (3.25 mmol K/L) and excessive (6.50 mmol K/L) K concentrations. Mosla hangchowensis is an endangered plant, whereas Mosla dianthera a widespread weed. In the case of M. hangchowensis, in comparison with normal K concentration, K-limitation induced a significant reduction in net photosynthetic rate (P(n)), soluble protein content, and superoxide dismutase (SOD) activity, but an increase in malondialdehyde (MDA) concentration. However, leaf mass ratio (LMR) and root mass ratio (RMR) were changed little by K-limitation. In contrast, for M. dianthera, K-limitation had little effect on P(n), soluble protein content, SOD activity, and MDA concentration, but increased LMR and RMR. Critical values of N (nitrogen):K and K:P (phosphorus) ratios in the shoots indicated that limitation in acquiring K occurred under K-limited conditions for M. hangchowensis but not for M. dianthera. We found that low K content in natural habitats was a restrictive factor in the growth and distribution of M. hangchowensis, and soil K-deficiency caused by acid rain worsened the situation of M. hangchowensis, while M. dianthera could well acclimate to the increasing K-deficiency. We suggest that controlling the acid rain and applying K fertilizers may be an effective way to rescue the endangered M. hangchowensis.

  15. Extraction and isolation of TPE from other elements on ion exchangers in aqueous and aqueous-organic solutions of phosphoric acid

    SciTech Connect

    Guseva, L.I.; Tikhomirova, G.S.; Stepushkina, V.V.

    1988-07-01

    The behavior of Am-Es and other actinides on anion and cation exchange resins in aqueous and aqueous-organic solutions of phosphoric acid has been studied in a wide range of concentration of various components of the solution. The sorptivity of transplutonium elements (TPE) on anion exchangers from dilute H/sub 3/PO/sub 4/ with a concentration less than or equal to 1 M in presence of organic solvents (alcohols, ketones, etc.) and on cation exchangers from concentrated H/sub 3/PO/sub 4/ has been found to be significant. The possibility of use of phosphoric acid solutions for isolation of TPE from Th, Pa, U, Np, Pu, and Zr and separation of TPE in different oxidation states in presence of a high-purity oxidant has been shown.

  16. Research and development of a phosphoric acid fuel cell/battery power source integrated in a test-bed bus. Final report

    SciTech Connect

    1996-05-30

    This project, the research and development of a phosphoric acid fuel cell/battery power source integrated into test-bed buses, began as a multi-phase U.S. Department of Energy (DOE) project in 1989. Phase I had a goal of developing two competing half-scale (25 kW) brassboard phosphoric acid fuel cell systems. An air-cooled and a liquid-cooled fuel cell system were developed and tested to verify the concept of using a fuel cell and a battery in a hybrid configuration wherein the fuel cell supplies the average power required for operating the vehicle and a battery supplies the `surge` or excess power required for acceleration and hill-climbing. Work done in Phase I determined that the liquid-cooled system offered higher efficiency.

  17. Effect of sodium sulfite, carboxylic monomer, and phosphoric acid etching on bonding of tri-n-butylborane initiated resin to human enamel.

    PubMed

    Nogawa, Hiroshi; Koizumi, Hiroyasu; Akazawa, Nobutaka; Hiraba, Haruto; Nakamura, Mitsuo; Matsumura, Hideo

    2015-03-01

    The purpose of the present study is evaluation of bonding durability of tri-n-butylborane (TBB) initiated resin without 4-methacryloyloxyethyl trimellitate anhydride (4-META) joined to human enamel. Ground human enamel was bonded with TBB resin under six surface conditions: 1) as ground, 2) primed with Teeth Primer, 3) sodium sulfite solution, 4) 4-META solution, 5) acetone-water, and 6) phosphoric acid etching. Pre- and post-thermocycling bond strengths and change in strength after thermocycling were compared. Etching enamel with 35-45% phosphoric acid enhanced bonding durability between enamel and TBB-initiated resin. Priming with Teeth Primer or 4-META solution improved bond strength between enamel and TBB-initiated resin. Sodium sulfite had little effect on enamel bonding in the present bonding systems. PMID:25807904

  18. Measuring the x-ray resolving power of bent potassium acid phthalate diffraction crystalsa)

    NASA Astrophysics Data System (ADS)

    Haugh, M. J.; Wu, M.; Jacoby, K. D.; Loisel, G. P.

    2014-11-01

    This report presents the results from measuring the X-ray resolving power of a curved potassium acid phthalate (KAP(001)) spectrometer crystal using two independent methods. It is part of a continuing effort to measure the fundamental diffraction properties of bent crystals that are used to study various characteristics of high temperature plasmas. Bent crystals like KAP(001) do not usually have the same diffraction properties as corresponding flat crystals. Models that do exist to calculate the effect of bending the crystal on the diffraction properties have simplifying assumptions and their accuracy limits have not been adequately determined. The type of crystals that we measured is being used in a spectrometer on the Z machine at Sandia National Laboratories in Albuquerque, New Mexico. The first technique for measuring the crystal resolving power measures the X-ray spectral line width of the characteristic lines from several metal anodes. The second method uses a diode X-ray source and a double crystal diffractometer arrangement to measure the reflectivity curve of the KAP(001) crystal. The width of that curve is inversely proportional to the crystal resolving power. The measurement results are analyzed and discussed.

  19. Treatment of Internal Hemorrhoids by Endoscopic Sclerotherapy with Aluminum Potassium Sulfate and Tannic Acid

    PubMed Central

    Tomiki, Yuichi; Ono, Seigo; Aoki, Jun; Takahashi, Rina; Ishiyama, Shun; Sugimoto, Kiichi; Yaginuma, Yukihiro; Kojima, Yutaka; Goto, Michitoshi; Okuzawa, Atsushi; Sakamoto, Kazuhiro

    2015-01-01

    Objective. A new sclerosing agent for hemorrhoids, aluminum potassium sulfate and tannic acid (ALTA), is attracting attention as a curative treatment for internal hemorrhoids without resection. The outcome and safety of ALTA sclerotherapy using an endoscope were investigated in the present study. Materials and Methods. Subjects comprised 83 internal hemorrhoid patients (61 males and 22 females). An endoscope was inserted and retroflexed in the rectum, and a 1st-step injection was applied to the upper parts of the hemorrhoids. The retroflexed scope was returned to the normal position, and 2nd–4th-step injections were applied to the middle and lower parts of the hemorrhoids under direct vision. The effects of endoscopic ALTA sclerotherapy were determined by evaluating the condition of the hemorrhoids using an anoscope and interviewing the patient 28 days after the treatment. Results. A cure, improvement, and failure were observed in 54 (65.1%), 27 (32.5%), and 2 (2.4%) patients, respectively, treated with ALTA. Complications developed in 4 patients (mild fever in 3 and hematuria in 1). Recurrence occurred in 9.6%. Conclusions. The results of the present study suggest that endoscopic ALTA has the potential to become a useful and minimally invasive approach for ALTA sclerotherapy. PMID:26246785

  20. Measuring the X-ray Resolving Power of Bent Potassium Acid Phthalate Diffraction Crystals

    SciTech Connect

    Haugh, M. J.; Wu, M.; Jacoby, K. D.; Loisel, G. P.

    2014-11-01

    This report presents the results from measuring the X-ray resolving power of a curved potassium acid phthalate (KAP(001)) spectrometer crystal using two independent methods. It is part of a continuing effort to measure the fundamental diffraction properties of bent crystals that are used to study various characteristics of high temperature plasmas. Bent crystals like KAP(001) do not usually have the same diffraction properties as corresponding flat crystals. Models that do exist to calculate the effect of bending the crystal on the diffraction properties have simplifying assumptions and their accuracy limits have not been adequately determined. The type of crystals that we measured is being used in a spectrometer on the Z machine at Sandia National Laboratories (SNL) in Albuquerque, NM. The first technique for measuring the crystal resolving power measures the X-ray spectral line width of the characteristic lines from several metal anodes. The second method uses a diode X-ray source and a dual goniometer arrangement to measure the reflectivity curve of the KAP(001) crystal. The width of that curve is inversely proportional to the crystal resolving power. The measurement results are analyzed and discussed.

  1. Measuring the x-ray resolving power of bent potassium acid phthalate diffraction crystals

    SciTech Connect

    Haugh, M. J. Jacoby, K. D.; Wu, M.; Loisel, G. P.

    2014-11-15

    This report presents the results from measuring the X-ray resolving power of a curved potassium acid phthalate (KAP(001)) spectrometer crystal using two independent methods. It is part of a continuing effort to measure the fundamental diffraction properties of bent crystals that are used to study various characteristics of high temperature plasmas. Bent crystals like KAP(001) do not usually have the same diffraction properties as corresponding flat crystals. Models that do exist to calculate the effect of bending the crystal on the diffraction properties have simplifying assumptions and their accuracy limits have not been adequately determined. The type of crystals that we measured is being used in a spectrometer on the Z machine at Sandia National Laboratories in Albuquerque, New Mexico. The first technique for measuring the crystal resolving power measures the X-ray spectral line width of the characteristic lines from several metal anodes. The second method uses a diode X-ray source and a double crystal diffractometer arrangement to measure the reflectivity curve of the KAP(001) crystal. The width of that curve is inversely proportional to the crystal resolving power. The measurement results are analyzed and discussed.

  2. Fuel ethanol production from corn stover under optimized dilute phosphoric acid pretreatment and enzymatic hydrolysis

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Ethanol is a renewable oxygenated fuel. Dilute acid pretreatment is a promising pretreatment technology for conversion of lignocellulosic biomass to fuel ethanol. Generation of fermentable sugars from corn stover involves pretreatment and enzymatic saccharification. Pretreatment is crucial as nat...

  3. Determination of free silica in dust particles: effect of particle size for the X-ray diffraction and phosphoric acid methods.

    PubMed

    Yabuta, Juji; Ohta, Hisayosi

    2003-07-01

    The X-ray diffraction method and the phosphoric acid method are widely used to determine the fraction of free silica (mainly quartz and other silica polymorphs) in respirable dust sampled in working environments in Japan. In this study, we clarified the size effect of quartz dust for the X-ray diffraction method and the phosphoric acid method using size controlled quartz samples. The quartz samples were classified into 6 fractions with different size ranges: 1 microm and smaller, 1 to 3 microm, 3 to 5 microm, 5 to 7 microm, 7 to 10 microm and 10 microm and larger. Both of the determination methods were affected by the particle size, and especially particles smaller than 3 microm fairly dissolved in hot phosphoric acid and reduced X-ray diffraction intensity remarkably. If the content of these fine particles in the standard quartz sample is lower than that of the test samples, the fraction of free silica may be underestimated by these methods. For this reason, the standard quartz sample should have a representative size distribution of the field samples. The dust samples containing quartz were collected at a foundry and dissolved by phosphoric acid to remove non-quartz materials. The size fractions of dissolved samples were 50% for 5-10 microm, 25% for 3-5 microm, 20% for 1-3 microm and 5% for 1 microm and smaller. As the size distribution is similar to the present standard sample widely used in Japan, we concluded that the standard sample is suitable for these determination methods. PMID:12916756

  4. Influence of duration of phosphoric acid pre-etching on bond durability of universal adhesives and surface free-energy characteristics of enamel.

    PubMed

    Tsujimoto, Akimasa; Barkmeier, Wayne W; Takamizawa, Toshiki; Watanabe, Hidehiko; Johnson, William W; Latta, Mark A; Miyazaki, Masashi

    2016-08-01

    The purpose of this study was to evaluate the influence of duration of phosphoric acid pre-etching on the bond durability of universal adhesives and the surface free-energy characteristics of enamel. Three universal adhesives and extracted human molars were used. Two no-pre-etching groups were prepared: ground enamel; and enamel after ultrasonic cleaning with distilled water for 30 s to remove the smear layer. Four pre-etching groups were prepared: enamel pre-etched with phosphoric acid for 3, 5, 10, and 15 s. Shear bond strength (SBS) values of universal adhesive after no thermal cycling and after 30,000 or 60,000 thermal cycles, and surface free-energy values of enamel surfaces, calculated from contact angle measurements, were determined. The specimens that had been pre-etched showed significantly higher SBS and surface free-energy values than the specimens that had not been pre-etched, regardless of the aging condition and adhesive type. The SBS and surface free-energy values did not increase for pre-etching times of longer than 3 s. There were no significant differences in SBS values and surface free-energy characteristics between the specimens with and without a smear layer. The results of this study suggest that phosphoric acid pre-etching of enamel improves the bond durability of universal adhesives and the surface free-energy characteristics of enamel, but these bonding properties do not increase for phosphoric acid pre-etching times of longer than 3 s. PMID:27315775

  5. 40 CFR 721.6120 - Phosphoric acid, 1,2-eth-a-ne-diyl tet-ra-kis(2-chloro-1-meth-yl-ethyl) ester.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 31 2014-07-01 2014-07-01 false Phosphoric acid, 1,2-eth-a-ne-diyl tet-ra-kis(2-chloro-1-meth-yl-ethyl) ester. 721.6120 Section 721.6120 Protection of Environment...-diyl tet-ra-kis(2-chloro-1-meth-yl-ethyl) ester. (a) Chemical substances and significant new...

  6. 40 CFR 721.6120 - Phosphoric acid, 1,2-eth-a-ne-diyl tet-ra-kis(2-chloro-1-meth-yl-ethyl) ester.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 32 2012-07-01 2012-07-01 false Phosphoric acid, 1,2-eth-a-ne-diyl tet-ra-kis(2-chloro-1-meth-yl-ethyl) ester. 721.6120 Section 721.6120 Protection of Environment...-diyl tet-ra-kis(2-chloro-1-meth-yl-ethyl) ester. (a) Chemical substances and significant new...

  7. Influence of duration of phosphoric acid pre-etching on bond durability of universal adhesives and surface free-energy characteristics of enamel.

    PubMed

    Tsujimoto, Akimasa; Barkmeier, Wayne W; Takamizawa, Toshiki; Watanabe, Hidehiko; Johnson, William W; Latta, Mark A; Miyazaki, Masashi

    2016-08-01

    The purpose of this study was to evaluate the influence of duration of phosphoric acid pre-etching on the bond durability of universal adhesives and the surface free-energy characteristics of enamel. Three universal adhesives and extracted human molars were used. Two no-pre-etching groups were prepared: ground enamel; and enamel after ultrasonic cleaning with distilled water for 30 s to remove the smear layer. Four pre-etching groups were prepared: enamel pre-etched with phosphoric acid for 3, 5, 10, and 15 s. Shear bond strength (SBS) values of universal adhesive after no thermal cycling and after 30,000 or 60,000 thermal cycles, and surface free-energy values of enamel surfaces, calculated from contact angle measurements, were determined. The specimens that had been pre-etched showed significantly higher SBS and surface free-energy values than the specimens that had not been pre-etched, regardless of the aging condition and adhesive type. The SBS and surface free-energy values did not increase for pre-etching times of longer than 3 s. There were no significant differences in SBS values and surface free-energy characteristics between the specimens with and without a smear layer. The results of this study suggest that phosphoric acid pre-etching of enamel improves the bond durability of universal adhesives and the surface free-energy characteristics of enamel, but these bonding properties do not increase for phosphoric acid pre-etching times of longer than 3 s.

  8. Chiral phosphoric acid catalyzed highly enantioselective Friedel-Crafts alkylation reaction of C3-substituted indoles to β,γ-unsaturated α-ketimino esters.

    PubMed

    Bi, Bo; Lou, Qin-Xin; Ding, Yu-Yang; Chen, Sheng-Wei; Zhang, Sha-Sha; Hu, Wen-Hui; Zhao, Jun-Ling

    2015-02-01

    A highly enantioselective C2 Friedel-Crafts alkylation reaction of 3-substituted indoles to β,γ-unsaturated α-ketimino esters has been developed. This reaction was efficiently catalyzed by a chiral phosphoric acid catalyst. The corresponding C2-substituted indole derivatives, bearing an α-ketimino ester motif, were obtained in moderate to high yields (up to 93%) and with high enantioselectivities (up to >99% ee). PMID:25594307

  9. Arachidonic acid-mediated inhibition of a potassium current in the giant neurons of Aplysia

    SciTech Connect

    Carlson, R.O.

    1990-01-01

    Biochemical and electrophysiological approaches were used to investigate the role of arachidonic acid (AA) in the modulation of an inwardly rectifying potassium current (I{sub R}) in the giant neurons of the marine snail, Aplysia californica. Using ({sup 3}H)AA as tracer, the intracellular free AA pool in Aplysia ganglia was found to be in a state of constant and rapid turnover through deacylation and reacylation of phospholipid, primarily phosphatidyl-inositol. This constant turnover was accompanied by a constant release of free AA and eicosanoids into the extracellular medium. The effects of three pharmacological agents were characterized with regard to AA metabolism in Aplysia ganglia. 4-O-tetra-decanoylphorbol 13-acetate (TPA), an activator of protein kinase C, stimulated liberation of AA from phospholipid, and 4-bromophenacylbromide (BPB), an inhibitor of phospholipate A{sub 2}, inhibited this liberation. Indomethacin at 250 {mu}M was found to inhibit uptake of AA, likely through inhibition of acyl-CoA synthetase. These agents were also found to modulate I{sub R} in ways which were consistent with their biological effects: TPA inhibited I{sub R}, and both BPB and indomethacin stimulated I{sub R} . Modulation of I{sub R} by these substances was found not to involve cAMP metabolism. Acute application of exogenous AA did not affect I{sub R}; however, I{sub R} in giant neurons was found to be inhibited after dialysis with AA or other unsaturated fatty acids. Also, after perfusion with BSA overnight, a treatment which strips the giant neurons of AA in lipid storage, I{sub R} was found to have increased over 2-fold. This perfusion-induced increase was inhibited by the presence of AA or by pretreatment of the giant neurons with BPB. These results suggest AA, provided through constant turnover from phospholipid, mediates constitutive inhibition of I{sub R}.

  10. Maximum power output and load matching of a phosphoric acid fuel cell-thermoelectric generator hybrid system

    NASA Astrophysics Data System (ADS)

    Chen, Xiaohang; Wang, Yuan; Cai, Ling; Zhou, Yinghui

    2015-10-01

    Based on the current models of phosphoric acid fuel cells (PAFCs) and thermoelectric generators (TGs), a new hybrid system is proposed, in which the effects of multi-irreversibilities resulting from the activation, concentration, and ohmic overpotentials in the PAFC, Joule heat and heat leak in the TG, finite-rate heat transfer between the TG and the heat reservoirs, and heat leak from the PAFC to the environment are taken into account. Expressions for the power output and efficiency of the PAFC, TG, and hybrid system are analytically derived and directly used to discuss the performance characteristics of the hybrid system. The optimal relationship between the electric currents in the PAFC and TG is obtained. The maximum power output is numerically calculated. It is found that the maximum power output density of the hybrid system will increase about 150 Wm-2, compared with that of a single PAFC. The problem how to optimally match the load resistances of two subsystems is discussed. Some significant results for practical hybrid systems are obtained.

  11. Ultra-sensitive detection of zinc oxide nanowires using a quartz crystal microbalance and phosphoric acid DNA

    NASA Astrophysics Data System (ADS)

    Jang, Kuewhan; You, Juneseok; Park, Chanhoo; Park, Hyunjun; Choi, Jaeyeong; Choi, Chang-Hwan; Park, Jinsung; Lee, Howon; Na, Sungsoo

    2016-09-01

    Recent advancements of nanomaterials have inspired numerous scientific and industrial applications. Zinc oxide nanowires (ZnO NWs) is one of the most important nanomaterials due to their extraordinary properties. However, studies performed over the past decade have reported toxicity of ZnO NWs. Therefore, there has been increasing demand for effective detection of ZnO NWs. In this study, we propose a method for the detection of ZnO NW using a quartz crystal microbalance (QCM) and DNA probes. The detection method is based on the covalent interaction between ZnO NWs and the phosphoric acid group of single-stranded DNA (i.e., linker DNA), and DNA hybridization between the linker DNA and the probe DNA strand on the QCM electrode. Rapid, high sensitivity, in situ detection of ZnO NWs was demonstrated for the first time. The limit of detection was 10‑4 μg ml‑1 in deionized water, which represents a sensitivity that is 100000 times higher than the toxic ZnO NW concentration level. Moreover, the selectivity of the ZnO NW detection method was demonstrated by comparison with other types of nanowires and the method was able to detect ZnO NWs in tap water sensitively even after stored for 14 d in a refrigerator. The performance of our proposed method was sufficient to achieve detection of ZnO NW in the ‘real-world’ environment.

  12. Ultra-sensitive detection of zinc oxide nanowires using a quartz crystal microbalance and phosphoric acid DNA

    NASA Astrophysics Data System (ADS)

    Jang, Kuewhan; You, Juneseok; Park, Chanhoo; Park, Hyunjun; Choi, Jaeyeong; Choi, Chang-Hwan; Park, Jinsung; Lee, Howon; Na, Sungsoo

    2016-09-01

    Recent advancements of nanomaterials have inspired numerous scientific and industrial applications. Zinc oxide nanowires (ZnO NWs) is one of the most important nanomaterials due to their extraordinary properties. However, studies performed over the past decade have reported toxicity of ZnO NWs. Therefore, there has been increasing demand for effective detection of ZnO NWs. In this study, we propose a method for the detection of ZnO NW using a quartz crystal microbalance (QCM) and DNA probes. The detection method is based on the covalent interaction between ZnO NWs and the phosphoric acid group of single-stranded DNA (i.e., linker DNA), and DNA hybridization between the linker DNA and the probe DNA strand on the QCM electrode. Rapid, high sensitivity, in situ detection of ZnO NWs was demonstrated for the first time. The limit of detection was 10-4 μg ml-1 in deionized water, which represents a sensitivity that is 100000 times higher than the toxic ZnO NW concentration level. Moreover, the selectivity of the ZnO NW detection method was demonstrated by comparison with other types of nanowires and the method was able to detect ZnO NWs in tap water sensitively even after stored for 14 d in a refrigerator. The performance of our proposed method was sufficient to achieve detection of ZnO NW in the ‘real-world’ environment.

  13. Some aromatic hydrazone derivatives as inhibitors for the corrosion of C-steel in phosphoric acid solution.

    PubMed

    Fouda, Abd El-Aziz S; Al-Sarawy, Ahmed A; Radwan, Mohamed S

    2006-01-01

    The effect of furfural benzoylhydrazone and its derivatives (I-VII) as corrosion inhibitors for C-steel in 1M phosphoric acid solution has been studied by weight-loss and galvanostatic polarization techniques. A significant decrease in the corrosion rate of C-steel was observed in the presence of the investigated inhibitors. This study revealed that, the inhibition efficiency increases with increasing the inhibitor concentration, and the addition of iodide ions enhances it to a considerable extent. The effect of temperature on the inhibition efficiency of these compounds was studied using weight-loss method. Activation energy (E(a)*) and other thermodynamic parameters for the corrosion process were calculated and discussed. The galvanostatic polarization data indicated that, the inhibitors were of mixed-type, but the cathode is more polarized than the anode. The adsorption of these compounds on C-steel surface has been found to obey Frumkin's adsorption isotherm. The mechanism of inhibition was discussed in the light of the chemical structure of the undertaken inhibitors.

  14. Field assessment of treatment efficacy by three methods of phosphoric acid application in lead-contaminated urban soil.

    PubMed

    Yang, John; Mosby, David

    2006-07-31

    In situ soil treatment using phosphoric acid (H(3)PO(4)) may be an effective remedial technology for immobilizing soil Pb and reducing Pb risk to human health and ecosystem. The treatment efficacy of three H(3)PO(4) application methods was assessed in a smelter-contaminated urban soil located in the Jasper County Superfund Site, Missouri. Soil, with an average of 3529 mg Pb kg(-1) and in the 2- by 4-m plot size, was treated with H(3)PO(4) at a rate of 10 g P kg(-1) in four replicates by each of three methods: rototilling; surface application; pressure injection. Three soil cores, 2.5-cm diameter and 30-cm long, were taken from each plot before and 90 days after treatment and analyzed for soluble P, bioaccessible Pb and solid-Pb speciation. Applications of H(3)PO(4) induced the heterogeneity of soluble P in soil, with the highest concentrations in the surface. Three application methods mixed the H(3)PO(4) more effectively in the horizontals than the verticals of treated soil zone. The H(3)PO(4) applications significantly reduced Pb bioaccessibility in the soil, which was influenced by the concentrations of soil soluble P and solid-Pb species. The risk reductions of soil Pb were achieved by formation of pyromorphites or pyromorphite-like minerals. The rototilling appears to be the most effective treatment method in context of the homogeneity of soluble P and the reduction of Pb bioaccessibility in treated soil.

  15. Phase Structure Transition and Properties of Salt-Free Phosphoric Acid/Non-ionic Surfactants in Water.

    PubMed

    Wang, Lihuan; Zhao, Wenrong; Dong, Renhao; Hao, Jingcheng

    2016-08-23

    Precise control of phase structure transition for the synthesis of multi-dimensional soft materials is a fascinating target in amphiphilic molecule self-assembly. Here, we demonstrate a spontaneous formation of a closely packed lamellar phase consisting of uni- and multi-lamellar vesicles through the incorporation of a small amount of an extractant, di(2-ethylhexyl)phosphoric acid (DEHPA), into the highly swollen, planar lamellar phase of a non-ionic tetraethylene glycol monododecyl ether (C12EO4) surfactant in water. It is figured out that the introduction of negative membrane charges results in the electrostatic repulsion among the lamellae, which suppresses the Helfrich undulation and induces a phase structure transition from planar lamellae to closely packed vesicles. Our results provide important insight into amphiphilic molecule self-assembly, where additives and pH can satisfy the opportunities for the precise tuning of the lamellar structures, which makes a way for the development of lamellar soft materials. PMID:27490998

  16. Low thermal budget n-type doping into Ge(001) surface using ultraviolet laser irradiation in phosphoric acid solution

    NASA Astrophysics Data System (ADS)

    Takahashi, Kouta; Kurosawa, Masashi; Ikenoue, Hiroshi; Sakashita, Mitsuo; Takeuchi, Wakana; Nakatsuka, Osamu; Zaima, Shigeaki

    2016-02-01

    We have investigated phosphorus (P) doping into Ge(001) surfaces by using ultraviolet laser irradiation in phosphoric acid solution at room temperature. We demonstrated that the diffusion depth of P in Ge and the concentration of electrically activated P can be controlled by the number of laser shots. Indeed, a high concentration of electrically activated P of 2.4 × 1019 cm-3 was realized by 1000-times laser shots at a laser energy of 1.0 J/cm2, which is comparable or better than the counterparts of conventional n-type doping using a high thermal budget over 600 °C. The generation current is dominant in the reverse bias condition for the laser-doped pn-junction diodes independent on the number of laser shots, thus indicating low-damage during the pn-junction formation. These results open up the possibility for applicable low thermal budget doping process for Ge-based devices fabricated on flexible substrates as well as Si electronics.

  17. Ultra-sensitive detection of zinc oxide nanowires using a quartz crystal microbalance and phosphoric acid DNA.

    PubMed

    Jang, Kuewhan; You, Juneseok; Park, Chanhoo; Park, Hyunjun; Choi, Jaeyeong; Choi, Chang-Hwan; Park, Jinsung; Lee, Howon; Na, Sungsoo

    2016-09-01

    Recent advancements of nanomaterials have inspired numerous scientific and industrial applications. Zinc oxide nanowires (ZnO NWs) is one of the most important nanomaterials due to their extraordinary properties. However, studies performed over the past decade have reported toxicity of ZnO NWs. Therefore, there has been increasing demand for effective detection of ZnO NWs. In this study, we propose a method for the detection of ZnO NW using a quartz crystal microbalance (QCM) and DNA probes. The detection method is based on the covalent interaction between ZnO NWs and the phosphoric acid group of single-stranded DNA (i.e., linker DNA), and DNA hybridization between the linker DNA and the probe DNA strand on the QCM electrode. Rapid, high sensitivity, in situ detection of ZnO NWs was demonstrated for the first time. The limit of detection was 10(-4) μg ml(-1) in deionized water, which represents a sensitivity that is 100000 times higher than the toxic ZnO NW concentration level. Moreover, the selectivity of the ZnO NW detection method was demonstrated by comparison with other types of nanowires and the method was able to detect ZnO NWs in tap water sensitively even after stored for 14 d in a refrigerator. The performance of our proposed method was sufficient to achieve detection of ZnO NW in the 'real-world' environment.

  18. Valoniopsis pachynema Extract as a Green Inhibitor for Corrosion of Brass in 0.1 N Phosphoric Acid Solution

    NASA Astrophysics Data System (ADS)

    Selva Kumar, R.; Chandrasekaran, V.

    2016-04-01

    The effect of marine alga Valoniopsis pachynema extract on corrosion inhibition of brass in phosphoric acid was investigated by weight-loss method, potentiodynamic polarization, and electrochemical impedance spectroscopy studies. The inhibition efficiency is found to increase with increasing concentration of extract and decreases with rise in temperature. The activation energy, thermodynamic parameters (free energy, enthalpy, and entropy change) and kinetic parameters (rate constant and half-life) for inhibition process were calculated. These thermodynamic and kinetic parameters indicate a strong interaction between the inhibitor and the brass surface. The inhibition is assumed to occur via adsorption of inhibitor molecules on brass surface, which obeys Temkin adsorption isotherm. The adsorption of inhibitor on the brass surface is exothermic, physical, and spontaneous, and follows first-order kinetics. The polarization measurements showed that the inhibitor behaves as a mixed type inhibitor and the higher inhibition surface coverage on the brass was predicted. Inhibition efficiency values were found to show good trend with weight-loss method, potentiodynamic polarization, and electrochemical impedance spectroscopy studies. Surface study techniques (FT-IR and SEM) were carried out to ascertain the inhibitive nature of the algal extract on the brass surface.

  19. Ultra-sensitive detection of zinc oxide nanowires using a quartz crystal microbalance and phosphoric acid DNA.

    PubMed

    Jang, Kuewhan; You, Juneseok; Park, Chanhoo; Park, Hyunjun; Choi, Jaeyeong; Choi, Chang-Hwan; Park, Jinsung; Lee, Howon; Na, Sungsoo

    2016-09-01

    Recent advancements of nanomaterials have inspired numerous scientific and industrial applications. Zinc oxide nanowires (ZnO NWs) is one of the most important nanomaterials due to their extraordinary properties. However, studies performed over the past decade have reported toxicity of ZnO NWs. Therefore, there has been increasing demand for effective detection of ZnO NWs. In this study, we propose a method for the detection of ZnO NW using a quartz crystal microbalance (QCM) and DNA probes. The detection method is based on the covalent interaction between ZnO NWs and the phosphoric acid group of single-stranded DNA (i.e., linker DNA), and DNA hybridization between the linker DNA and the probe DNA strand on the QCM electrode. Rapid, high sensitivity, in situ detection of ZnO NWs was demonstrated for the first time. The limit of detection was 10(-4) μg ml(-1) in deionized water, which represents a sensitivity that is 100000 times higher than the toxic ZnO NW concentration level. Moreover, the selectivity of the ZnO NW detection method was demonstrated by comparison with other types of nanowires and the method was able to detect ZnO NWs in tap water sensitively even after stored for 14 d in a refrigerator. The performance of our proposed method was sufficient to achieve detection of ZnO NW in the 'real-world' environment. PMID:27479871

  20. A fuel cell operating between room temperature and 250 °C based on a new phosphoric acid based composite electrolyte

    NASA Astrophysics Data System (ADS)

    Lan, Rong; Xu, Xiaoxiang; Tao, Shanwen; Irvine, John T. S.

    A phosphoric acid based composite material with core-shell microstructure has been developed to be used as a new electrolyte for fuel cells. A fuel cell based on this electrolyte can operate at room temperature indicating leaching of H 3PO 4 with liquid water is insignificant at room temperature. This will help to improve the thermal cyclability of phosphoric acid based electrolyte to make it easier for practical use. The conductivity of this H 3PO 4-based electrolyte is stable at 250 °C with addition of the hydrophilic inorganic compound BPO 4 forming a core-shell microstructure which makes it possible to run a PAFC at a temperature above 200 °C. The core-shell microstructure retains after the fuel cell measurements. A power density of 350 mW/cm 2 for a H 2/O 2 fuel cell has been achieved at 200 °C. The increase in operating temperature does not have significant benefit to the performance of a H 2/O 2 fuel cell. For the first time, a composite electrolyte material for phosphoric acid fuel cells which can operate in a wide range of temperature has been evaluated but certainly further investigation is required.

  1. High temperature dilute phosphoric acid pretreatment of corn stover for furfural and ethanol production

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Furfural was produced from corn stover by one stage pretreatment process using dilute H3PO4 and solid residues following furfural production were used for ethanol production by Saccharomyces cerevisiae NRRL- Y2034. A series of experiments were conducted at varied temperatures (140-200 oC) and acid ...

  2. Green Phosphors

    NASA Astrophysics Data System (ADS)

    Singh, Vijay; Chakradhar, R. P. S.; Rao, J. L.; Dhoble, S. J.; Kim, S. H.

    2014-11-01

    Manganese-doped LaMgAl11O19 powder has been prepared by an easy combustion method. Powder x-ray diffraction and scanning electron microscopy have been used to characterize the as-prepared phosphor. The electron paramagnetic resonance (EPR) spectrum of LaMgAl11O19:Mn2+ phosphor exhibits six-line hyperfine structure centered at g ≈ 1.973. The number of spins participating in resonance ( N) and the paramagnetic susceptibility ( χ) for the resonance signal at g ≈ 1.973 have been calculated as a function of temperature. The photoluminescence spectrum exhibits green emission at 516 nm, which is attributed to 4T1 → 6A1 transition of Mn2+ ions. From EPR and luminescence studies, it is observed that Mn2+ ions occupy Mg2+ sites and Mn2+ ions are located at tetrahedral sites in the prepared phosphors.

  3. Bonding to enamel/dentin etched with phosphoric and hydrofluoric acids.

    PubMed

    Barghi, Nassar; Covington, Kendra; Fischer, Dan E; Herbold, Edward T

    2004-10-01

    Repairing porcelain intraorally allows clinicians to provide their patients with a conservative means of treating fractured or debonded restorations. This requires, however, the etching of both porcelain and tooth structure with etching solutions. It is thus relevant to understand the effect that different etching procedures have on shear bond strengths of composite resins to both dentin and enamel structures. Based on the results of this investigation, the authors recommend isolation of tooth structures and the etching of porcelain with hydrofluoric acid.

  4. Modeling the hydrolysis of perfluorinated compounds containing carboxylic and phosphoric acid ester functions and sulfonamide groups.

    PubMed

    Rayne, Sierra; Forest, Kaya

    2010-01-01

    Temperature-dependent rate constants were estimated for the acid- and base-catalyzed and neutral hydrolysis reactions of perfluorinated telomer acrylates (FTAcrs) and phosphate esters (FTPEs), and the S(N)1 and S(N)2 hydrolysis reactions of fluorotelomer iodides (FTIs). Under some environmental conditions, hydrolysis of monomeric FTAcrs could be rapid (half-lives of several years in marine systems and as low as several days in some landfills) and represent a dominant portion of their overall degradation. Abiotic hydrolysis of monomeric FTAcrs may be a significant contributor to current environmental loadings of fluorotelomer alcohols (FTOHs) and perfluoroalkyl carboxylic acids (PFCAs). Polymeric FTAcrs are expected to be hydrolyzed more slowly, with estimated half-lives in soil and natural waters ranging between several centuries to several millenia absent additional surface area limitations on reactivity. Poor agreement was found between the limited experimental data on FTPE hydrolysis and computational estimates, requiring more detailed experimental data before any further modeling can occur on these compounds or their perfluoroalkyl sulfonamidoethanol phosphate ester (PFSamPE) analogs. FTIs are expected to have hydrolytic half-lives of about 130 days in most natural waters, suggesting they may be contributing to substantial FTOH and PFCA inputs in aquatic systems. Perfluoroalkyl sulfonamides (PFSams) appear unlikely to undergo abiotic hydrolysis at the S-N, C-S, or N-C linkages under environmentally relevant conditions, although potentially facile S-N hydrolysis via intramolecular catalysis by ethanol and acetic acid amide substituents warrants further investigation. PMID:20390888

  5. Potassium increases the antitumor effects of ascorbic acid in breast cancer cell lines in vitro

    PubMed Central

    FRAJESE, GIOVANNI VANNI; BENVENUTO, MONICA; FANTINI, MASSIMO; AMBROSIN, ELENA; SACCHETTI, PAMELA; MASUELLI, LAURA; GIGANTI, MARIA GABRIELLA; MODESTI, ANDREA; BEI, ROBERTO

    2016-01-01

    Ascorbic acid (A) has been demonstrated to exhibit anti-cancer activity in association with chemotherapeutic agents. Potassium (K) is a regulator of cellular proliferation. In the present study, the biological effects of A and K bicarbonate, alone or in combination (A+K), on breast cancer cell lines were evaluated. The survival of cancer cells was determined by sulforhodamine B cell proliferation assay, while analysis of the cell cycle distribution was conducted via fluorescence-activated cell sorting. In addition, the expression of signaling proteins was analyzed upon treatment. The results indicated that there was a heterogeneous response of the different cell lines to A and K, and the best effects were achieved by A+K and A treatment. The interaction between A+K indicated an additive or synergistic effect. In addition, A+K increased the percentage of cells in the sub-G1 phase of the cell cycle, and was the most effective treatment in activating the degradation of poly(adenosine diphosphate-ribose) polymerase-1. In the breast cancer cell line MCF-7, A+K induced the appearance of the 18 kDa isoform of B-cell lymphoma-2-associated X protein (Bax), which is a more potent inducer of apoptosis than the full-length Bax-p21. The effects of A and K on the phosphorylation of extracellular signal-regulated kinase (ERK)1 and ERK2 were heterogeneous. In addition, treatment with K, A and A+K inhibited the expression of nuclear factor-κB. Overall, the results of the present study indicated that K potentiated the anti-tumoral effects of A in breast cancer cells in vitro. PMID:27313770

  6. Safety assessment of (-)-hydroxycitric acid and Super CitriMax, a novel calcium/potassium salt.

    PubMed

    Soni, M G; Burdock, G A; Preuss, H G; Stohs, S J; Ohia, S E; Bagchi, D

    2004-09-01

    (-)-Hydroxycitric acid (HCA) is a principle constituent (10-30%) of the dried fruit rind of Garcinia cambogia, a plant native to Southeastern Asia. The dried rind has been used for centuries throughout Southeast Asia as a food preservative, flavoring agent and carminative. Extensive experimental studies show that HCA inhibits fat synthesis and reduces food intake. The objective of this review is to systematically review the available safety/toxicity literature on HCA to determine its safety in-use. The primary mechanism of action of HCA appears to be related to its ability to act as a competitive inhibitor of the enzyme ATP-citrate lyase, which catalyzes the conversion of citrate and coenzyme A to oxaloacetate and acetyl coenzyme A (acetyl-CoA), primary building blocks of fatty acid and cholesterol synthesis. Super CitriMax, a novel calcium/potassium-HCA extract (HCA-SX), is considerably more soluble and bioavailable than calcium-based HCA ingredients. Acute oral toxicity studies in animals demonstrate that CitriMax (50% HCA as calcium salt) has a low acute oral toxicity. In a subchronic study in rats, the gavage administration of HCA-SX at doses up to 2500 mg/kg/day for a period of 90 days caused a significant decrease in body weight and reduction in feed consumption without any adverse effects. The structure, mechanism of action, long history of use of HCA and other toxicity studies indicate that HCA-SX is unlikely to cause reproductive or developmental effects. HCA-SX was not mutagenic in the presence or absence of metabolic activation in Ames genotoxicity assays in strains TA98 and TA102. HCA-SX-induced increases in number of revertants in other strains (TA100 and TA1535 in the absence of metabolic activation and in strain TA1537 in the presence of metabolic activation) but these were not considered as biologically indicative of a mutagenic effect. In several, placebo-controlled, double-blind trials employing up to 2800 mg/day HCA, no treatment-related adverse

  7. Efficacy of a novel calcium/potassium salt of (-)-hydroxycitric acid in weight control.

    PubMed

    Preuss, H G; Garis, R I; Bramble, J D; Bagchi, D; Bagchi, M; Rao, C V S; Satyanarayana, S

    2005-01-01

    The weight-loss efficacy of a novel, water-soluble, calcium-potassium salt of (-)-hydroxycitric acid (HCA-SX) was re-examined in 90 obese subjects (BMI: 30-50.8 kg/m2). We combined data from two previously reported randomized, double-blind, placebo-controlled clinical studies in order to achieve a better statistical evaluation based on a larger population. This re-examination of data also allowed us to reflect more intensely on various aspects of weight loss studies. Subjects were randomly divided into three groups: group A received a daily dose of HCA-SX 4, 667 mg (providing 2,800 mg HCA per day); group B was given a daily dose of a combination of HCA-SX 4,667 mg, niacin-bound chromium (NBC) 4 mg (providing 400 microg elemental chromium), and Gymnema sylvestre extract (GSE) 400 mg (providing 100 mg gymnemic acid); and group C received a placebo in three equally divided doses 30-60 min before each meal. All subjects were provided a 2,000 kcal diet/day and participated in a supervised walking program for 30 min/day, 5 days/week. Eighty-two subjects completed the study. At the end of 8 weeks, in group A, both body weight and BMI decreased by 5.4%, low-density lipoprotein and triglycerides levels were reduced by 12.9% and 6.9%, respectively, while high-density lipoprotein levels increased by 8.9%, serum leptin levels decreased by 38%, serotonin levels increased by 44.5% and urinary excretion of fat metabolites increased by 32-109%. Group B demonstrated similar beneficial changes, but generally to a greater extent. No significant adverse effects were observed. The combined results confirm that HCA-SX and, to a greater degree, the combination of HCA-SX plus NBC and GSE reduce body weight and BMI, suppress appetite, improve blood lipid profiles, increase serum leptin and serotonin levels and increase fat oxidation more than placebo. We conclude that dosage levels, timing of administration, subject compliance and bioavailability of HCA-SX significantly affect results and

  8. Highly proton conductive phosphoric acid-nonionic surfactant lyotropic liquid crystalline mesophases and application in graphene optical modulators.

    PubMed

    Tunkara, Ebrima; Albayrak, Cemal; Polat, Emre O; Kocabas, Coskun; Dag, Ömer

    2014-10-28

    Proton conducting gel electrolytes are very important components of clean energy devices. Phosphoric acid (PA, H(3)PO(4) · H2O) is one of the best proton conductors, but needs to be incorporated into some matrix for real device applications, such as into lyotropic liquid crystalline mesophases (LLCMs). Herein, we show that PA and nonionic surfactant (NS, C(12)H(25)(OCH(2)CH(2))(10)OH, C(12)E(10)) molecules self-assemble into PANS-LLCMs and display high proton conductivity. The content of the PANS-LLCM can be as high 75% H(3)PO(4) · H2O and 25% 10-lauryl ether (C(12)H(25)(OCH(2)CH(2))(10)OH, C(12)E(10)), and the mesophase follows the usual LLC trend, bicontinuous cubic (V1)-normal hexagonal (H1)-micelle cubic (I1), by increasing the PA concentration in the media. The PANS-LLCMs are stable under ambient conditions, as well as at high (up to 130 °C) and low (-100 °C) temperatures with a high proton conductivity, in the range of 10(-2) to 10(-6) S/cm. The mesophase becomes a mesostructured solid with decent proton conductivity below -100 °C. The mesophase can be used in many applications as a proton-conducting media as well as a phosphate source for the synthesis of various metal phosphates. As an application, we demonstrate a graphene-based optical modulator using supercapacitor structure formed by graphene electrodes and a PANS electrolyte. A PANS-LLC electrolyte-based supercapacitor enables efficient optical modulation of graphene electrodes over a range of wavelengths, from 500 nm to 2 μm, under ambient conditions.

  9. Effect of the application time of phosphoric acid and self-etch adhesive systems to sclerotic dentin

    PubMed Central

    MENA-SERRANO, Alexandra Patricia; GARCIA, Eugenio Jose; PEREZ, Miguel Muñoz; MARTINS, Gislaine Cristine; GRANDE, Rosa Helena Miranda; LOGUERCIO, Alessandro Dourado; REIS, Alessandra

    2013-01-01

    Objectives: To evaluate the effect of application time on the resin-dentin bond strength (µTBS) and etching pattern of adhesive systems applied on sclerotic dentine. Material and Methods: A total of forty-two bovine incisors had their roots removed. The 1-step self-etch GO (SDI), the 2-step self-etch Adper SE Bond (3MESPE) and the 35% phosphoric acid (3MESPE) from the 2-step etch-and-rinse Adper Single Bond 2 (3MESPE) were applied on the bovine incisal surfaces according to the manufacturer's instructions or duplicating the recommended conditioning time. After adhesive application, thirty teeth were restored with composite resin, stored for 24 h in distilled water at 37º C, and sectioned into resin-dentin bonded sticks (0.8 mm2) and tested according to the µTBS at 0.5 mm/min. The etching pattern of the remaining twelve teeth (n=4 for each material) was examined under scanning electron microscopy. Each tooth was divided into a buccal-to-lingual direction into three thirds, and each third randomly assigned to the groups: control (no treatment), according to the manufacturers' instructions and duplicating the recommended application time. The µTBS and the relative percentage of the tubule area opening were evaluated by two-way repeated measures ANOVA and Tukey's tests (α=0.05). Results: The duplication of the conditioning time favored only the GO adhesive (p<0.05). Both application methods significantly increased the tubule area opening (p<0.05) compared to the controls. Conclusions: The efficacy of duplicating the conditioning time was only effective for the 1-step self-etch adhesive system tested. PMID:23739856

  10. Effects of phosphoric acid sprayed into an incinerator furnace on the flue gas pressure drop at fabric filters.

    PubMed

    Takahashi, Shigetoshi; Hwang, In-Hee; Matsuto, Toshihiko

    2016-06-01

    Fabric filters are widely used to remove dust from flue gas generated by waste incineration. However, a pressure drop occurs at the filters, caused by growth of a dust layer on the filter fabric despite regular cleaning by pulsed-jet air. The pressure drop at the fabric filters leads to energy consumption at induced draft fan to keep the incinerator on negative pressure, so that its proper control is important to operate incineration facility efficiently. The pressure drop at fabric filters decreased whenever phosphoric acid wastewater (PAW) was sprayed into an incinerator for treating industrial waste. Operational data obtained from the incineration facility were analyzed to determine the short- and long-term effects of PAW spraying on the pressure drop. For the short-term effect, it was confirmed that the pressure drop at the fabric filters always decreased to 0.3-1.2kPa within about 5h after spraying PAW. This effect was expected to be obtained by about one third of present PAW spraying amount. However, from the long-term perspective, the pressure drop showed an increase in the periods of PAW spraying compared with periods for which PAW spraying was not performed. The pressure drop increase was particularly noticeable after the initial PAW spraying, regardless of the age and type of fabric filters used. These results suggest that present PAW spraying causes a temporary pressure drop reduction, leading to short-term energy consumption savings; however, it also causes an increase of the pressure drop over the long-term, degrading the overall operating conditions. Thus, appropriate PAW spraying conditions are needed to make effective use of PAW to reduce the pressure drop at fabric filters from a short- and long-term point of view.

  11. Environmental, health, and safety issues of fuel cells in transportation. Volume 1: Phosphoric acid fuel-cell buses

    SciTech Connect

    Ring, S

    1994-12-01

    The U.S. Department of Energy (DOE) chartered the Phosphoric Acid Fuel-Cell (PAFC) Bus Program to demonstrate the feasibility of fuel cells in heavy-duty transportation systems. As part of this program, PAFC- powered buses are being built to meet transit industry design and performance standards. Test-bed bus-1 (TBB-1) was designed in 1993 and integrated in March 1994. TBB-2 and TBB-3 are under construction and should be integrated in early 1995. In 1987 Phase I of the program began with the development and testing of two conceptual system designs- liquid- and air-cooled systems. The liquid-cooled PAFC system was chosen to continue, through a competitive award, into Phase H, beginning in 1991. Three hybrid buses, which combine fuel-cell and battery technologies, were designed during Phase III. After completing Phase II, DOE plans a comprehensive performance testing program (Phase HI) to verify that the buses meet stringent transit industry requirements. The Phase III study will evaluate the PAFC bus and compare it to a conventional diesel bus. This NREL study assesses the environmental, health, and safety (EH&S) issues that may affect the commercialization of the PAFC bus. Because safety is a critical factor for consumer acceptance of new transportation-based technologies the study focuses on these issues. The study examines health and safety together because they are integrally related. In addition, this report briefly discusses two environmental issues that are of concern to the Environmental Protection Agency (EPA). The first issue involves a surge battery used by the PAFC bus that contains hazardous constituents. The second issue concerns the regulated air emissions produced during operation of the PAFC bus.

  12. Effects of phosphoric acid sprayed into an incinerator furnace on the flue gas pressure drop at fabric filters.

    PubMed

    Takahashi, Shigetoshi; Hwang, In-Hee; Matsuto, Toshihiko

    2016-06-01

    Fabric filters are widely used to remove dust from flue gas generated by waste incineration. However, a pressure drop occurs at the filters, caused by growth of a dust layer on the filter fabric despite regular cleaning by pulsed-jet air. The pressure drop at the fabric filters leads to energy consumption at induced draft fan to keep the incinerator on negative pressure, so that its proper control is important to operate incineration facility efficiently. The pressure drop at fabric filters decreased whenever phosphoric acid wastewater (PAW) was sprayed into an incinerator for treating industrial waste. Operational data obtained from the incineration facility were analyzed to determine the short- and long-term effects of PAW spraying on the pressure drop. For the short-term effect, it was confirmed that the pressure drop at the fabric filters always decreased to 0.3-1.2kPa within about 5h after spraying PAW. This effect was expected to be obtained by about one third of present PAW spraying amount. However, from the long-term perspective, the pressure drop showed an increase in the periods of PAW spraying compared with periods for which PAW spraying was not performed. The pressure drop increase was particularly noticeable after the initial PAW spraying, regardless of the age and type of fabric filters used. These results suggest that present PAW spraying causes a temporary pressure drop reduction, leading to short-term energy consumption savings; however, it also causes an increase of the pressure drop over the long-term, degrading the overall operating conditions. Thus, appropriate PAW spraying conditions are needed to make effective use of PAW to reduce the pressure drop at fabric filters from a short- and long-term point of view. PMID:27040089

  13. Removal of arsenic and cadmium with sequential soil washing techniques using Na2EDTA, oxalic and phosphoric acid: Optimization conditions, removal effectiveness and ecological risks.

    PubMed

    Wei, Meng; Chen, Jiajun; Wang, Xingwei

    2016-08-01

    Testing of sequential soil washing in triplicate using typical chelating agent (Na2EDTA), organic acid (oxalic acid) and inorganic weak acid (phosphoric acid) was conducted to remediate soil contaminated by heavy metals close to a mining area. The aim of the testing was to improve removal efficiency and reduce mobility of heavy metals. The sequential extraction procedure and further speciation analysis of heavy metals demonstrated that the primary components of arsenic and cadmium in the soil were residual As (O-As) and exchangeable fraction, which accounted for 60% and 70% of total arsenic and cadmium, respectively. It was determined that soil washing agents and their washing order were critical to removal efficiencies of metal fractions, metal bioavailability and potential mobility due to different levels of dissolution of residual fractions and inter-transformation of metal fractions. The optimal soil washing option for arsenic and cadmium was identified as phosphoric-oxalic acid-Na2EDTA sequence (POE) based on the high removal efficiency (41.9% for arsenic and 89.6% for cadmium) and the minimal harmful effects of the mobility and bioavailability of the remaining heavy metals.

  14. Removal of arsenic and cadmium with sequential soil washing techniques using Na2EDTA, oxalic and phosphoric acid: Optimization conditions, removal effectiveness and ecological risks.

    PubMed

    Wei, Meng; Chen, Jiajun; Wang, Xingwei

    2016-08-01

    Testing of sequential soil washing in triplicate using typical chelating agent (Na2EDTA), organic acid (oxalic acid) and inorganic weak acid (phosphoric acid) was conducted to remediate soil contaminated by heavy metals close to a mining area. The aim of the testing was to improve removal efficiency and reduce mobility of heavy metals. The sequential extraction procedure and further speciation analysis of heavy metals demonstrated that the primary components of arsenic and cadmium in the soil were residual As (O-As) and exchangeable fraction, which accounted for 60% and 70% of total arsenic and cadmium, respectively. It was determined that soil washing agents and their washing order were critical to removal efficiencies of metal fractions, metal bioavailability and potential mobility due to different levels of dissolution of residual fractions and inter-transformation of metal fractions. The optimal soil washing option for arsenic and cadmium was identified as phosphoric-oxalic acid-Na2EDTA sequence (POE) based on the high removal efficiency (41.9% for arsenic and 89.6% for cadmium) and the minimal harmful effects of the mobility and bioavailability of the remaining heavy metals. PMID:27179243

  15. 1,2-Dichlorobenzene Pretreatment via Phosphoric Acid-Mediated Fenton Reagent.

    PubMed

    Richmond, Mark D

    2015-07-01

    A large industrial water resource recovery facility needed to significantly reduce the amount of 1,2-dichlorobenzene (ODCB) entering its biological treatment units. Numerous Advanced Oxidation Processes (AOPs) were considered based on literature and industry reports. Many AOPs appear to be incompatible with some of the native species present in groundwater or wastewater matrices. Iron, in particular, is often viewed as a nuisance increasing the complexity of the overall treatment scheme. The approach used in the current study was to incorporate the new AOP into the existing groundwater matrix and facilities as much as possible. To that end, native iron was exploited as the reaction catalyst, an acid was selected to fit with current macro nutrient needs of the biotreatment units, and the reactor was designed to require minimum modification of the existing facilities. The "green chemical" (Noyori, 2003) treatment process selected was demonstrated at full-scale, achieving good agreement with the results of prior laboratory studies. Up to eighty percent destruction of ODCB was demonstrated in a new pretreatment unit whose effluent fit seamlessly with the existing bioreactors. PMID:26163501

  16. Characterization of Hybrid Polyhedral Oligomeric Silsesquioxane (POSS)-Polybenzimidazole (PBI)-Phosphoric Acid (PA) Materials Intended for Proton Exchange Membranes (PEM)

    NASA Astrophysics Data System (ADS)

    Bubeck, Robert; Stark, Edmund; Decker, Berryinne; Hartmann-Thompson, Claire

    2013-03-01

    Isophthalic acid and 3,3'-diaminobenzidine (DAB) were polymerized in the presence of polyphosphoric acid (PPA) and various additives, degree of polymerization was monitored by viscosity and torque change measurements, and membranes were prepared by casting the reaction solution and allowing PPA to hydrolyze to PA under ambient conditions. As a function of relative humidity, the membranes were characterized for (1) acid content, (2) in-plane conductivity and (3) complex shear modulus G* obtained via oscillatory parallel plate dynamic mechanical spectroscopy. The addition of sulfonated octaphenyl polyhedral oligomeric silsesquixane (S-POSS) to m-polybenzimidazole (PBI)-phosphoric acid (PA) membranes resulted in increased in-plane proton conductivity at high temperatures (120-150 °C) and increased G* relative to a m-PBI control membrane and to m-PBI control membranes carrying comparable weight loadings of non-proton conducting octaphenyl-POSS nanoadditive or silica.

  17. Changes in mobility of toxic elements during the production of phosphoric acid in the fertilizer industry of Huelva (SW Spain) and environmental impact of phosphogypsum wastes.

    PubMed

    Pérez-López, Rafael; Alvarez-Valero, Antonio M; Nieto, José Miguel

    2007-09-30

    Presently, about 3 million tonnes of phosphogypsum are being generated annually in Spain as by-product from phosphoric acid in a fertilizer factory located in Huelva (southwestern Iberian Peninsula). Phosphate rock from Morocco is used as raw material in this process. Phosphogypsum wastes are stored in a stack containing 100Mt (approximately 1200ha of surface) over salt marshes of an estuary formed by the confluence of the Tinto and Odiel rivers, less than 1km away from the city centre. A very low proportion of this waste is used to improve fertility of agricultural soils in the area of the Guadalquivir river valley (Seville, SW Spain). The chemical speciation of potentially toxic elements (Ba, Cd, Cu, Ni, Sr, U and Zn) in phosphogypsum and phosphate rock was performed using the modified BCR-sequential extraction procedure, as described by the European Community Bureau of Reference (1999). This study has been done with the main of: (1) evaluate changes in the mobility of metals during the production of phosphoric acid; (2) estimate the amount of mobile metals that can affect the environmental surrounding; and (3) verify the environmentally safe use of phosphogypsum as an amendment to agricultural soils. The main environmental concern associated to phosphoric acid production is that Uranium, a radiotoxic element, is transferred from the non-mobile fraction in the phosphate rock to the bioavailable fraction in phosphogypsum in a rate of 23%. Around 21% of Ba, 6% of Cu and Sr, 5% of Cd and Ni, and 2% of Zn are also contained in the water-soluble phase of the final waste. Considering the total mass of phosphogypsum, the amount of metals easily soluble in water is approximately 6178, 3089, 1931, 579, 232, 193 and 77t for Sr, U, Ba, Zn, Ni, Cu and Cd, respectively. This gives an idea of the pollution potential of this waste. PMID:17683858

  18. 21 CFR 184.1643 - Potassium sulfate.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 3 2014-04-01 2014-04-01 false Potassium sulfate. 184.1643 Section 184.1643 Food... GRAS § 184.1643 Potassium sulfate. (a) Potassium sulfate (K2SO4, CAS Reg. No. 7778-80-5) occurs.... It is prepared by the neutralization of sulfuric acid with potassium hydroxide or potassium...

  19. 21 CFR 184.1610 - Potassium alginate.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 3 2014-04-01 2014-04-01 false Potassium alginate. 184.1610 Section 184.1610 Food... GRAS § 184.1610 Potassium alginate. (a) Potassium alginate (CAS Reg. No. 9005-36-1) is the potassium salt of alginic acid, a natural polyuronide constituent of certain brown algae. Potassium alginate...

  20. 21 CFR 184.1634 - Potassium iodide.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 3 2014-04-01 2014-04-01 false Potassium iodide. 184.1634 Section 184.1634 Food... GRAS § 184.1634 Potassium iodide. (a) Potassium iodide (KI, CAS Reg. No. 7681-11-0) is the potassium... reacting hydriodic acid (HI) with potassium bicarbonate (KHCO3). (b) The ingredient meets...

  1. Potassium Counts.

    ERIC Educational Resources Information Center

    Gipps, John

    1995-01-01

    Presents an activity to determine whether the radioactivity of a pure potassium salt is directly proportional to the amount of potassium in it and whether this could be used as a method of analysis for potassium in a solid. (MKR)

  2. Mechanistic investigation of the influence of phosphoric and boric acids in the formation of homogeneous Ni-P/ZnO@SiO2 coatings.

    PubMed

    Sharifalhoseini, Zahra; Entezari, Mohammad H; Shahidi, Mohsen

    2016-02-15

    High agglomeration of the nanoparticles and low volume fraction of nanosized inert particles within the nanocomposite thin films are found as the practical problems. In our previous work, silica coated ZnO nanoparticles (ZnO@SiO2 NPs) were synthesized to prevent dissolution of the ZnO nanoparticles (ZnO NPs) in the electrolytic Ni bath. The high agglomeration of these core-shell particles led to an unequal particle distribution in the deposit matrix. In this work, we aimed to prepare a highly homogeneous nanocomposite coating by stabilizing the nanoparticles in the medium. Adding the buffering agents, including phosphoric and boric acids to the medium, disclosed their new aspect of these inorganic acids in the prevention of particle agglomeration. The corrosion study of the resulting well-dispersed Ni-P/Zn@SiO2 nanocomposite coating confirmed a significant increase in anticorrosion performance. This increase was about 2.3 times compared to the previously prepared coating. Moreover, the probable mechanisms of phosphoric and boric acids in particle stability through the steric or/and electrostatic repulsion at the interfaces between the colloidal nanoparticles (ZnO@SiO2 NPs) and the electrolyte solution were investigated in detail. PMID:26658358

  3. Mechanistic investigation of the influence of phosphoric and boric acids in the formation of homogeneous Ni-P/ZnO@SiO2 coatings.

    PubMed

    Sharifalhoseini, Zahra; Entezari, Mohammad H; Shahidi, Mohsen

    2016-02-15

    High agglomeration of the nanoparticles and low volume fraction of nanosized inert particles within the nanocomposite thin films are found as the practical problems. In our previous work, silica coated ZnO nanoparticles (ZnO@SiO2 NPs) were synthesized to prevent dissolution of the ZnO nanoparticles (ZnO NPs) in the electrolytic Ni bath. The high agglomeration of these core-shell particles led to an unequal particle distribution in the deposit matrix. In this work, we aimed to prepare a highly homogeneous nanocomposite coating by stabilizing the nanoparticles in the medium. Adding the buffering agents, including phosphoric and boric acids to the medium, disclosed their new aspect of these inorganic acids in the prevention of particle agglomeration. The corrosion study of the resulting well-dispersed Ni-P/Zn@SiO2 nanocomposite coating confirmed a significant increase in anticorrosion performance. This increase was about 2.3 times compared to the previously prepared coating. Moreover, the probable mechanisms of phosphoric and boric acids in particle stability through the steric or/and electrostatic repulsion at the interfaces between the colloidal nanoparticles (ZnO@SiO2 NPs) and the electrolyte solution were investigated in detail.

  4. Determination of Water Vapor Pressure Over Corrosive Chemicals Versus Temperature Using Raman Spectroscopy as Exemplified with 85.5% Phosphoric Acid.

    PubMed

    Rodier, Marion; Li, Qingfeng; Berg, Rolf Willestofte; Bjerrum, Niels Janniksen

    2016-07-01

    A method to determine the water vapor pressure over a corrosive substance was developed and tested with 85.5 ± 0.4% phosphoric acid. The water vapor pressure was obtained at a range of temperatures from ∼25 ℃ to ∼200 ℃ using Raman spectrometry. The acid was placed in an ampoule and sealed with a reference gas (either hydrogen or methane) at a known pressure (typically ∼0.5 bar). By comparing the Raman signals from the water vapor and the references, the water pressure was determined as a function of temperature. A considerable amount of data on the vapor pressure of phosphoric acid are available in the literature, to which our results could successfully be compared. A record value of the vapor pressure, 3.40 bar, was determined at 210 ℃. The method required a determination of the precise Raman scattering ratios between the substance, water, and the used reference gas, hydrogen or methane. In our case the scattering ratios between water and reference ν1 Q-branches were found to be 1.20 ± 0.03 and 0.40 ± 0.02 for H2 and CH4, respectively.

  5. Determination of Water Vapor Pressure Over Corrosive Chemicals Versus Temperature Using Raman Spectroscopy as Exemplified with 85.5% Phosphoric Acid.

    PubMed

    Rodier, Marion; Li, Qingfeng; Berg, Rolf Willestofte; Bjerrum, Niels Janniksen

    2016-07-01

    A method to determine the water vapor pressure over a corrosive substance was developed and tested with 85.5 ± 0.4% phosphoric acid. The water vapor pressure was obtained at a range of temperatures from ∼25 ℃ to ∼200 ℃ using Raman spectrometry. The acid was placed in an ampoule and sealed with a reference gas (either hydrogen or methane) at a known pressure (typically ∼0.5 bar). By comparing the Raman signals from the water vapor and the references, the water pressure was determined as a function of temperature. A considerable amount of data on the vapor pressure of phosphoric acid are available in the literature, to which our results could successfully be compared. A record value of the vapor pressure, 3.40 bar, was determined at 210 ℃. The method required a determination of the precise Raman scattering ratios between the substance, water, and the used reference gas, hydrogen or methane. In our case the scattering ratios between water and reference ν1 Q-branches were found to be 1.20 ± 0.03 and 0.40 ± 0.02 for H2 and CH4, respectively. PMID:27273974

  6. Fluroide concentration in enamel treated with 50% phosphoric acid and NaF with subsequent decalcification in "acid-gel".

    PubMed

    Bohrer, J; Gedalia, I

    1980-06-01

    Fluoride concentration of enamel surfaces treated with 50% H3PO4, together with high NaF contents or etched with 50% H3PO4 followed by application with a water solution of high NaF content, was examined. In addition, the degree of decalcification and the fluoride content of subsequently incubated enamel samples in acid-gel at 37 degrees C were determined. Generally, incubation highly increased the fluoride contents of the etched and fluoridated (experimental), control (etched only), and untreated (vaseline) enamel samples. An increasing demineralization effect was observed in the samples of the following order: experimental, control, and baseline. It appears does not predispose to an increased caries challenge in vitro.

  7. Calcium and potassium ion binding by tobacco mosaic virus ribonucleic acid.

    PubMed

    Gastfriend, H H; Lauffer, M A

    1983-11-15

    Calcium and potassium ion titration experiments were performed on solutions of tobacco mosaic virus RNA using ion-specific electrodes. The data obtained were analyzed using Scatchard and Klotz plots for the number of binding sites per nucleotide (n), and the apparent stability constant for complex formation, beta Me. The experimental design also allowed for the determination of the number of protons released per metal ion bound, chi. The calcium ion titration in water yielded values of 0.45 for n, 6.03 for log beta Ca and 0.24 for chi. When this titration was repeated in 0.01 M-KCl, the values were found to be 0.11 for n, 5.08 for log beta Ca and zero for chi. An aqueous potassium titration was also performed, with values for n, log beta K and chi of 0.25, 2.96 and less than 0.10, respectively.

  8. Impact of the substrate loading regime and phosphoric acid supplementation on performance of biogas reactors and microbial community dynamics during anaerobic digestion of chicken wastes.

    PubMed

    Belostotskiy, Dmitry E; Ziganshina, Elvira E; Siniagina, Maria; Boulygina, Eugenia A; Miluykov, Vasili A; Ziganshin, Ayrat M

    2015-10-01

    This study evaluates the effects of increasing organic loading rate (OLR) and decreasing hydraulic retention time (HRT) as well as phosphoric acid addition on mesophilic reactors' performance and biogas production from chicken wastes. Furthermore, microbial community composition in reactors was characterized by a 16S rRNA gene-based pyrosequencing analysis. Each step of increasing OLR impacted on the activity of microorganisms what caused a temporary decrease in biogas production. The addition of phosphoric acid resulted in the increased biogas production with values between 361 and 447 mL g(VS)(-1) from day 61 to day 74 compared to control reactor (309-350 mL g(VS)(-1)). With reactors' operation, Bacteroidetes phylotypes were noticeably replaced with Firmicutes representatives, and significant increase of Clostridium sp. was identified. Within Euryarchaeota, Methanosarcina sp. dominated in all analyzed samples, in which high ammonium levels were detected (3.4-4.9 NH4(+)-N g L(-1)). These results can help in better understanding the anaerobic digestion process of simultaneously ammonium/phosphate-rich substrates.

  9. Oxidations of organic matter present in the phosphoric acid 54% by the ozone: characterization of groups carbonyls upstream and downstream of the ozonation

    NASA Astrophysics Data System (ADS)

    Linda, D.; Louati, A.; Chtara, C.; Kabadou, A.

    2012-02-01

    This study was focused on the oxidation of organic matter in phosphoric acid 54% by ozone. In order to understand the mechanisms involved in this process, the identification of this matter upstream and downstream of the ozonation was necessary. For the identification, after an extraction by a mixture (dichloro-methanol), the organic phase was divided into two parts: the residue and the extract:-The residue was studied by infrared spectroscopy Fourier Transform (IR-TF). It contains Kérogène which is a mixture of saturated hydrocarbons with high molecular weights. The absorption bands of the FT-IR showed that the residue contains also quantities of amino that correspond to the remains of dinoflagellate cysts, which are abundant in sediments.-The extract has been the subject of a detailed study by, chromatography on silica column, IR-TF spectroscopy and CG-SM. The passage of this extract on a silica column yielded two fractions (saturated fraction and polar fraction). Both of these fractions were analyzed by CG-SM. The yield of the reduction of the organic matter content in the phosphoric acid 54% could not exceed 29%. Therefore, we can conclude that the reduction in the rate of organic matter remains limited by the fact that some compounds are inert towards ozone.

  10. Effect of cavity preparation method on microtensile bond strength of a self-etching primer vs phosphoric acid etchant to enamel.

    PubMed

    de Souza-Zaroni, Wanessa Christine; Delfino, Carina Sinclér; Ciccone-Nogueira, Juliane Cristina; Palma-Dibb, Regina Guenka; Corona, Silmara Aparecida Milori

    2007-10-01

    This study evaluated the effect of cavity preparation using air abrasion or carbide bur on bond strength to enamel treated with a self-etching primer (Tyrian SPE) or a phosphoric acid etchant. Twenty-four molars were divided into three groups: high-speed; standard handpiece (ST air abrasion) or supersonic handpiece (SP air abrasion) of the same air-abrasive system. The enamel surfaces were treated with one of the two etchants and the same adhesive agent One Step Plus, and then composite buildups were done with Filtek Z250. After 24 h at 37 degrees C, beams (0.8 mm2) were obtained and subjected to tensile stress in a universal testing machine (0.5 mm/min). The data were submitted to analysis of variance and Tukey's test (P < 0.05). For the conditioning agents, it was observed that the specimens conditioned with phosphoric acid presented superior results than the specimens that used Tyrian SPE. For the preparation techniques, it was verified that the SP air abrasion groups showed the highest bond strengths and carbide-bur groups presented the lowest bond strengths when the specimens were conditioned with Tyrian SPE. It can be concluded that the influence of the cavity preparation method was dependent on the conditioning system used, only when using carbide-bur preparation technique.

  11. Elemental stoichiometry indicates predominant influence of potassium and phosphorus limitation on arbuscular mycorrhizal symbiosis in acidic soil at high altitude.

    PubMed

    Khan, Mohammad Haneef; Meghvansi, Mukesh K; Gupta, Rajeev; Veer, Vijay

    2015-09-15

    The functioning of high-altitude agro-ecosystems is constrained by the harsh environmental conditions, such as low temperatures, acidic soil, and low nutrient supply. It is therefore imperative to investigate the site-specific ecological stoichiometry with respect to AM symbiosis in order to maximize the arbuscular mycorrhizal (AM) benefits for the plants in such ecosystems. Here, we assess the elemental stoichiometry of four Capsicum genotypes grown on acidic soil at high altitude in Arunachal Pradesh, India. Further, we try to identify the predominant resource limitations influencing the symbioses of different Capsicum genotypes with the AM fungi. Foliar and soil elemental stoichiometric relations of Capsicum genotypes were evaluated with arbuscular mycorrhizal (AM) colonization and occurrence under field conditions. AM fungal diversity in rhizosphere, was estimated through PCR-DGGE profiling. Results demonstrated that the symbiotic interaction of various Capsicum genotypes with the AM fungi in acidic soil was not prominent in the study site as evident from the low range of root colonization (21-43.67%). In addition, despite the rich availability of carbon in plant leaves as well as in soil, the carbon-for-phosphorus trade between AMF and plants appeared to be limited. Our results provide strong evidences of predominant influence of the potassium-limitation, in addition to phosphorus-limitation, on AM symbiosis with Capsicum in acidic soil at high altitude. We also conclude that the potassium should be considered in addition to carbon, nitrogen, and phosphorus in further studies investigating the stoichiometric relationships with the AMF symbioses in high altitude agro-ecosystems. PMID:26555273

  12. Elemental stoichiometry indicates predominant influence of potassium and phosphorus limitation on arbuscular mycorrhizal symbiosis in acidic soil at high altitude.

    PubMed

    Khan, Mohammad Haneef; Meghvansi, Mukesh K; Gupta, Rajeev; Veer, Vijay

    2015-09-15

    The functioning of high-altitude agro-ecosystems is constrained by the harsh environmental conditions, such as low temperatures, acidic soil, and low nutrient supply. It is therefore imperative to investigate the site-specific ecological stoichiometry with respect to AM symbiosis in order to maximize the arbuscular mycorrhizal (AM) benefits for the plants in such ecosystems. Here, we assess the elemental stoichiometry of four Capsicum genotypes grown on acidic soil at high altitude in Arunachal Pradesh, India. Further, we try to identify the predominant resource limitations influencing the symbioses of different Capsicum genotypes with the AM fungi. Foliar and soil elemental stoichiometric relations of Capsicum genotypes were evaluated with arbuscular mycorrhizal (AM) colonization and occurrence under field conditions. AM fungal diversity in rhizosphere, was estimated through PCR-DGGE profiling. Results demonstrated that the symbiotic interaction of various Capsicum genotypes with the AM fungi in acidic soil was not prominent in the study site as evident from the low range of root colonization (21-43.67%). In addition, despite the rich availability of carbon in plant leaves as well as in soil, the carbon-for-phosphorus trade between AMF and plants appeared to be limited. Our results provide strong evidences of predominant influence of the potassium-limitation, in addition to phosphorus-limitation, on AM symbiosis with Capsicum in acidic soil at high altitude. We also conclude that the potassium should be considered in addition to carbon, nitrogen, and phosphorus in further studies investigating the stoichiometric relationships with the AMF symbioses in high altitude agro-ecosystems.

  13. Solvent effect on proton transfer in the complexes of N,N-dimethylformamide with sulfuric and phosphoric acid: A DFT investigation

    NASA Astrophysics Data System (ADS)

    Fedorova, Irina V.; Krestyaninov, Michael A.; Kiselev, Michael G.; Safonova, Lyubov P.

    2016-02-01

    Ab initio quantum-chemical calculations of structure and energies of the complexes of N,N-dimethylformamide (DMF) with sulfuric (H2SO4) and phosphoric (H3PO4) acids have been carried out. It has been found that the hydrogen bond between H2SO4 and DMF molecules is a little shorter and stronger than that between H3PO4 and DMF. The H-bond strength is different both in acid-acid and (acid)n-DMF complexes for n = 1, 2. The polar solvent effect is taken into account by using the CPCM approach. The differences of geometric parameters of the H-bonds in the gas phase and DMF are analyzed. The potential energy surface (PES) of the proton transfer reaction in acid-DMF and (acid)2-DMF complexes was calculated. The calculations have shown that the gas phase PES has a single distinct minimum (with the exception of the (H2SO4)2-DMF). In DMF, the proton transfer reaction takes place in all complexes, if OACID … ODMF distance is constrained. The solvent effect favors a proton transfer from sulfuric acid to oxygen atom of DMF molecule and formation of stable ionic pairs.

  14. Effect of sodium and potassium salts on the extraction of 1-butanol from aqueous solution by the ethyl esters of soybean oil fatty acids

    SciTech Connect

    Compere, A.L.; Googin, J.M.; Griffith, W.L.

    1985-01-01

    The effect of 0 to 0.15 M sodium chloride, sulfate, and sulfite, and potassium acid phosphate on the extraction of 0.1 to 4.1% 1-butanol from aqueous solutions (derived from fermentation of wood pulp liquors) at 25, 40, and 55 C was evaluated using a factorial experiment. The changes in distribution coefficient were small, with mild increases occurring with increasing temperature and increasing sodium chloride, sodium sulfate, and potassium acid phosphate. Mild decreases in 1-butanol extraction occurred with increasing sodium sulfite. 6 refs., 4 tabs.

  15. Poly[diaqua(μ2-3-carboxypyrazine-2-carboxylato)(μ2-pyrazine-2,3-dicarboxylic acid)potassium(I)

    PubMed Central

    Tombul, Mustafa; Güven, Kutalmis; Svoboda, Ingrid

    2008-01-01

    The structural unit of the title compound, [K(C6H3N2O4)(C6H4N2O4)(H2O)2]n, consists of one potassium cation, one hydrogen pyrazine-2,3-dicarboxyl­ate anion, one pyrazine-2,3-dicarboxylic acid mol­ecule and two water mol­ecules; this is twice the asymmetric unit, since the potassium cation lies on an inversion centre. Each anion or acid mol­ecule is linked to two potassium cations, while the potassium cation has contacts to four symmetry-equivalent organic ligands, with two different coordination modes towards this cation. In addition, each potassium cation is coordinated by two water O atoms, raising the coordination number to eight. One of the carboxyl groups of the acid retains its H atom, which forms a hydrogen bond to a coordinated water mol­ecule. The other carboxyl group is deprotonated in half of the ligands and protonated in the other half, taking part in a strong O—H⋯O hydrogen bond disordered over an inversion centre. The stabilization of the crystal structure is further assisted by O—H⋯O and O—H⋯N hydrogen bonds in which water acts as the donor. PMID:21200587

  16. Poly[diaqua(μ(2)-3-carboxypyrazine-2-carboxylato)(μ(2)-pyrazine-2,3-dicarboxylic acid)potassium(I)].

    PubMed

    Tombul, Mustafa; Güven, Kutalmis; Svoboda, Ingrid

    2007-01-01

    The structural unit of the title compound, [K(C(6)H(3)N(2)O(4))(C(6)H(4)N(2)O(4))(H(2)O)(2)](n), consists of one potassium cation, one hydrogen pyrazine-2,3-dicarboxyl-ate anion, one pyrazine-2,3-dicarboxylic acid mol-ecule and two water mol-ecules; this is twice the asymmetric unit, since the potassium cation lies on an inversion centre. Each anion or acid mol-ecule is linked to two potassium cations, while the potassium cation has contacts to four symmetry-equivalent organic ligands, with two different coordination modes towards this cation. In addition, each potassium cation is coordinated by two water O atoms, raising the coordination number to eight. One of the carboxyl groups of the acid retains its H atom, which forms a hydrogen bond to a coordinated water mol-ecule. The other carboxyl group is deprotonated in half of the ligands and protonated in the other half, taking part in a strong O-H⋯O hydrogen bond disordered over an inversion centre. The stabilization of the crystal structure is further assisted by O-H⋯O and O-H⋯N hydrogen bonds in which water acts as the donor. PMID:21200587

  17. The effects of potassium sorbate and lactic acid on the shelf-life of vacuum-packed chicken meats.

    PubMed

    Kolsarici, N; Candogan, K

    1995-11-01

    In this research, the effects of 5% potassium sorbate (PS) and 3% lactic acid (LA) applications on total mesophylic aerobic bacteria, total psychrotrophic aerobic bacteria, lactic acid bacteria, staphylococci and coliform bacteria, pH values, thiobarbituric acid (TBA) numbers, and sensorial properties of vacuum-packed chicken leg and breast meats were investigated during storage at 4 +/- 1 C. In addition, residual sorbate was examined. A decrease in bacterial counts of chicken leg and breast meats was observed in the periods following the treatments of PS and LA; however, towards the end of the storage period, the effectiveness of PS was greater than that of LA. Although no effect was observed on pH values of samples treated with PS, LA caused a decrease in pH values in chicken meats. Both PS and LA treatments resulted in high TBA numbers. Although the shelf-life periods of samples treated with PS and LA were about 30 d, vacuum-packed controls and unsealed controls (both of which were untreated) lost their edibility on the 18th and the 6th d, respectively. Sensory analysis panel members could not distinguish between PS samples and control samples. However, samples containing LA had lower scores than others. Both PS and LA treatments were considered to be acceptable. Quantities of sorbic acid found in the samples treated with PS were below the Acceptable Daily Intake established by the Food and Agriculture Organization/World Health Organization.

  18. Microbial, instrumental color and sensory characteristics of inoculated ground beef produced using potassium lactate, sodium metasilicate or peroxyacetic acid as multiple antimicrobial interventions.

    PubMed

    Quilo, S A; Pohlman, F W; Dias-Morse, P N; Brown, A H; Crandall, P G; Story, R P

    2010-03-01

    Effectiveness of multiple antimicrobial interventions on ground beef microbial, instrumental color and sensory attributes through display was evaluated. Beef trimmings were inoculated with Escherichia coli (EC) and Salmonella typhimurium (ST) then treated with either: (1) 3% potassium lactate followed by 4% sodium metasilicate (KN); (2) 4% sodium metasilicate followed by 3% potassium lactate (NK); (3) 200-ppm peroxyacetic acid followed by 3% potassium lactate (PK); (4) 200-ppm peroxyacetic acid followed by 4% sodium metasilicate (PN); or control (CON). Trimmings were ground, packaged and sampled on days 0-7 of display for EC, ST, coliforms, aerobic plate count, instrumental color and sensory characteristics. Only PK reduced (P<0.05) all bacterial types evaluated. The PN treatment remained (P<0.05) redder (a*), contained more (P<0.05) oxymyoglobin and had less (P<0.05) discoloration than CON by days 3-7 of display. All treatments maintained or improved odor attributes. PMID:20374812

  19. Effectiveness of copper sulfate, potassium permanganate, and peracetic acid to reduce mortality and infestation of Ichthyobodo nector in channel catfish Ictalurus punctatus (Rafinesque 1818)

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Ichthyobodo necator is a single celled bi-flagellate parasite, and in high density can causes significant mortality in young fish. Copper sulfate (CuSO4), potassium permanganate (KMnO4) and peracetic acid (PAA) were evaluated for effectiveness against ichthyobodosis. Treatments were: untreated con...

  20. Bacteria recovered from whole-carcass rinsates of broiler carcasses washed in a spray cabinet with lauric acid-potassium hydroxide

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The effect of spray washing carcasses with lauric acid (LA)-potassium hydroxide (KOH) on bacteria recovered from whole-carcass-rinsates (WCR) was examined. Skin of carcasses was inoculated with a cecal paste containing antibiotic resistant strains of Escherichia coli, Salmonella Typhimirum, and Camp...

  1. [Analysis of preservatives used in cosmetic products: salicylic acid, sodium benzoate, sodium dehydroacetate, potassium sorbate, phenoxyethanol, and parabens].

    PubMed

    Ikarashi, Yoshiaki; Uchino, Tadashi; Nishimura, Tetsuji

    2010-01-01

    Preservatives are used to inhibit the growth of microorganisms in cosmetic products. The Japanese standards for cosmetics set restrictions on the maximum amount of each preservative added to cosmetics as per the purpose of use of cosmetics. For the investigation into the actual conditions of commonly used preservatives in commercial cosmetics, we analyzed parabens, phenoxyethanol, sodium benzoate, sodium dehydroacetate, salicylic acid, and potassium sorbate by high-performance liquid chromatography (HPLC). Twenty-one samples were obtained from cosmetic product manufacturers located in 14 prefectures in Japan. Among different acid- and salt-based preservatives, sodium benzoate was observed to have been used in many products. These acid- and salt-based preservatives were used with parabens in personal washing products, such as shampoo and soap. The labels of two of the cosmetic product samples displayed inaccurate ingredient information, that is, a preservative other than the one used in the corresponding product was listed on them. The amount of preservatives used did not exceed regulatory limits in any of the analyzed samples.

  2. Goldilocks Catalysts: Computational Insights into the Role of the 3,3' Substituents on the Selectivity of BINOL-Derived Phosphoric Acid Catalysts.

    PubMed

    Reid, Jolene P; Goodman, Jonathan M

    2016-06-29

    BINOL-derived phosphoric acids provide effective asymmetric catalysis for many organic reactions. Catalysts based on this scaffold show a large structural diversity, especially in the 3,3' substituents, and little is known about the molecular requirements for high selectivity. As a result, selection of the best catalyst for a particular transformation requires a trial and error screening process, as the size of the 3,3' substituents is not simply related to their efficacy: the right choice is neither too large nor too small. We have developed an approach to identify and quantify structural features on the catalyst that determine selectivity. We show that the application of quantitative steric parameters (a new measure, AREA(θ), and rotation barrier) to an imine hydrogenation reaction allows the identification of catalyst features necessary for efficient stereoinduction, validated by QM/MM hybrid calculations. PMID:27227372

  3. ELECTROCHEMICAL PROPERTIES, MECHANICAL TESTING, AND GEL MORPHOLOGY STUDY OF PHOSPHORIC ACID-DOPED META-POLYBENZIMIDAZOLE MEMBRANES VIA CONVENTIONALLY IMBIBING AND THE SOL-GEL PROCESS

    SciTech Connect

    Perry, Kelly A; More, Karren Leslie; Benicewicz, Brian

    2009-01-01

    Proton exchange membrane (PEM) research has been directed at phosphoric acid (PA)-doped polybenzimidazole (PBI) membranes since the 1990s. PEM fuel cells based on PA-doped PBI membranes produced via a sol-gel transition process have achieved lifetimes >10,000hrs with low degradation rates. It has been suggested that the gel morphology of the PA-doped PBI membranes is responsible for their excellent electrochemical performance. Thus, a study has been underway to characterize the microstructure of PA-doped PBI membranes, and to correlate structure with performance. However, PA-doped PBI membranes present special challenges for microscopy analysis, as these membranes are extremely sensitive to the electron beam and high vacuum conditions. This paper will discuss and compare the mechanical, electrochemical, and cryo-SEM analyses of PA-doped meta-PBI membranes produced via conventional imbibing and the sol-gel process.

  4. A novel phosphoric acid doped poly(ethersulphone)-poly(vinyl pyrrolidone) blend membrane for high-temperature proton exchange membrane fuel cells

    NASA Astrophysics Data System (ADS)

    Xu, Xin; Wang, Haining; Lu, Shanfu; Guo, Zhibin; Rao, Siyuan; Xiu, Ruijie; Xiang, Yan

    2015-07-01

    A high-temperature proton exchange membrane, poly(ethersulphone)-poly(vinyl pyrrolidone) (PES-PVP) blend membrane is successfully prepared by scalable polymer blending method. The physical properties of blend membrane are characterized by DSC, TG and tensile strength test. The DSC and TG results indicate PES-PVP blend membranes possess excellent thermal stability. After phosphoric acid (PA) doping treatment, the blend membrane shows enhanced proton conductivity. PA doping level and volume swelling ratio of the blend membrane are found to be positively related to the PVP content. A high proton conductivity of 0.21 S/cm is achieved at 180 °C for PA doped PES-PVP 80% with a PA doping level of 9.1. PEM fuel cell based on PA doped PES-PVP 80% membrane shows a high power density of 850 mW/cm2 and outstanding stability at 180 °C without extra humidification.

  5. Growth of thin, c-axis oriented Sr-doped LaP3O9 electrolyte membranes in condensed phosphoric acid solutions

    NASA Astrophysics Data System (ADS)

    Hatada, Naoyuki; Takahashi, Kota; Adachi, Yoshinobu; Uda, Tetsuya

    2016-08-01

    Proton-conducting Sr-doped LaP3O9 has potential application as electrolytes in intermediate temperature fuel cells, but reduction of the electrical resistance of the electrolyte membranes is necessary for practical applications. In this study, we focused on reducing the resistance by reducing the electrolyte thickness, while maintaining a preferable microstructure for proton conduction (c-axis orientation and absence of the small-crystal layer). Thin, c-axis oriented Sr-doped LaP3O9 membranes were successfully obtained in condensed phosphoric acid solutions by a novel "two-step precipitation method". In this method, Sr-doped LaP3O9 powder was artificially deposited on the surface of the carbon paper supports as seeds, and then columnar crystals were grown "downward" in the solutions. We expect that this method will be utilized to produce LaP3O9 electrolyte membranes with lower electrical resistance.

  6. FT-IR spectral, DFT studies and detailed vibrational assignment on N,N',N"-tris(2-aminoethyl)-phosphoric acid triamide.

    PubMed

    Unsalan, O; Szolnoki, B; Toldy, A; Marosi, G

    2012-12-01

    Structure of N,N',N"-tris(2-aminoethyl)-phosphoric acid triamide (TEDAP), which is a phosphorus-containing reactive amine crosslinking agent and flame retardant material as well, identified by Fourier transform infrared (FT-IR) spectroscopy and quantum chemical calculations. The FT-IR spectrum of TEDAP, being a recently synthesized new compound, has been recorded in the 4000-650 cm(-1) region for the first time. The molecular geometry and vibrational wavenumbers of the compound in its ground state have been calculated by using Density Functional Theory (DFT) using B3LYP functional with 6-311++G(d,p) basis set. All calculations were performed with Gaussian09 software. The obtained vibrational wavenumbers and optimized geometric parameters were seen to be in good agreement with the experimental data. Furthermore, assignments of each vibrational mode were interpreted in terms of potential energy distributions (PED) in detail.

  7. Isolation and structural characterization of sugarcane bagasse lignin after dilute phosphoric acid plus steam explosion pretreatment and its effect on cellulose hydrolysis.

    PubMed

    Zeng, Jijiao; Tong, Zhaohui; Wang, Letian; Zhu, J Y; Ingram, Lonnie

    2014-02-01

    The structure of lignin after dilute phosphoric acid plus steam explosion pretreatment process of sugarcane bagasse in a pilot scale and the effect of the lignin extracted by ethanol on subsequent cellulose hydrolysis were investigated. The lignin structural changes caused by pretreatment were identified using advanced nondestructive techniques such as gel permeation chromatography (GPC), quantitative (13)C, and 2-D nuclear magnetic resonance (NMR). The structural analysis revealed that ethanol extractable lignin preserved basic lignin structure, but had relatively lower amount of β-O-4 linkages, syringyl/guaiacyl units ratio (S/G), p-coumarate/ferulate ratio, and other ending structures. The results also indicated that approximately 8% of mass weight was extracted by pure ethanol. The bagasse after ethanol extraction had an approximate 22% higher glucose yield after enzyme hydrolysis compared to pretreated bagasse without extraction.

  8. 21 CFR 184.1610 - Potassium alginate.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 3 2013-04-01 2013-04-01 false Potassium alginate. 184.1610 Section 184.1610 Food... Specific Substances Affirmed as GRAS § 184.1610 Potassium alginate. (a) Potassium alginate (CAS Reg. No. 9005-36-1) is the potassium salt of alginic acid, a natural polyuronide constituent of certain...

  9. 21 CFR 184.1634 - Potassium iodide.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 3 2012-04-01 2012-04-01 false Potassium iodide. 184.1634 Section 184.1634 Food... Specific Substances Affirmed as GRAS § 184.1634 Potassium iodide. (a) Potassium iodide (KI, CAS Reg. No. 7681-11-0) is the potassium salt of hydriodic acid. It occurs naturally in sea water and in...

  10. 21 CFR 184.1634 - Potassium iodide.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 3 2011-04-01 2011-04-01 false Potassium iodide. 184.1634 Section 184.1634 Food... Specific Substances Affirmed as GRAS § 184.1634 Potassium iodide. (a) Potassium iodide (KI, CAS Reg. No. 7681-11-0) is the potassium salt of hydriodic acid. It occurs naturally in sea water and in...

  11. 21 CFR 184.1610 - Potassium alginate.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 3 2011-04-01 2011-04-01 false Potassium alginate. 184.1610 Section 184.1610 Food... Specific Substances Affirmed as GRAS § 184.1610 Potassium alginate. (a) Potassium alginate (CAS Reg. No. 9005-36-1) is the potassium salt of alginic acid, a natural polyuronide constituent of certain...

  12. 21 CFR 184.1634 - Potassium iodide.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 3 2013-04-01 2013-04-01 false Potassium iodide. 184.1634 Section 184.1634 Food... Specific Substances Affirmed as GRAS § 184.1634 Potassium iodide. (a) Potassium iodide (KI, CAS Reg. No. 7681-11-0) is the potassium salt of hydriodic acid. It occurs naturally in sea water and in...

  13. 21 CFR 184.1610 - Potassium alginate.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 3 2012-04-01 2012-04-01 false Potassium alginate. 184.1610 Section 184.1610 Food... Specific Substances Affirmed as GRAS § 184.1610 Potassium alginate. (a) Potassium alginate (CAS Reg. No. 9005-36-1) is the potassium salt of alginic acid, a natural polyuronide constituent of certain...

  14. 21 CFR 184.1610 - Potassium alginate.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Potassium alginate. 184.1610 Section 184.1610 Food... Specific Substances Affirmed as GRAS § 184.1610 Potassium alginate. (a) Potassium alginate (CAS Reg. No. 9005-36-1) is the potassium salt of alginic acid, a natural polyuronide constituent of certain...

  15. 21 CFR 184.1634 - Potassium iodide.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Potassium iodide. 184.1634 Section 184.1634 Food... Specific Substances Affirmed as GRAS § 184.1634 Potassium iodide. (a) Potassium iodide (KI, CAS Reg. No. 7681-11-0) is the potassium salt of hydriodic acid. It occurs naturally in sea water and in...

  16. Shear Bond Strength of an Etch-and-rinse Adhesive to Er:YAG Laser- and/or Phosphoric Acid-treated Dentin

    PubMed Central

    Davari, Abdolrahim; Sadeghi, Mostafa; Bakhshi, Hamid

    2013-01-01

    Background and aims. Er:YAG laser irradiation has been claimed to improve the adhesive properties of dentin; therefore, it has been proposed as an alternative to acid etching. The aim of this in vitro study was to investigate the shear bond strength of an etch-and-rinse adhesive system to dentin surfaces following Er:YAG laser and/or phosphoric acid etching. Materials and methods. The roots of 75 sound maxillary premolars were sectioned below the CEJ and the crowns were embedded in auto-polymerizing acrylic resin with the buccal surfaces facing up. The buccal surfaces were ground using a diamond bur and polished until the dentin was exposed; the samples were randomly divided into five groups (n=15) according to the surface treatment: (1) acid etching; (2) laser etching; (3) laser etching followed by acid etching; (4) acid etching followed by laser etching and (5) no acid etching and no laser etching (control group). Composite resin rods (Point 4, Kerr Co) were bonded to treated dentin surfaces with an etch-and-rise adhesive system (Optibond FL, Kerr Co) and light-cured.After storage for two weeks at 37°C and 100% humidity and then thermocycling, bond strength was measured with a Zwick Universal Testing Machine at a crosshead speed of 1 mm/min. Data was analyzed using parametric and non-parametric tests (P<0.05). Results. Mean shear bond strength for acid etching (20.1±1.8 MPa) and acid+laser (15.6±3.5 MPa) groups were significantly higher than those for laser+acid (15.6±3.5 MPa), laser etching (14.1±3.4 MPa) and control (8.1±2.1 MPa) groups. However, there were no significant differences between acid etching and acid+laser groups, and between laser+acid and laser groups. Conclusion. When the cavity is prepared by bur, it is not necessary to etch the dentin surface by Er:YAG laser following acid etching and acid etching after laser etching. PMID:23875083

  17. Alkaline and alkaline earth metal phosphate halides and phosphors

    SciTech Connect

    Lyons, Robert Joseph; Setlur, Anant Achyut; Cleaver, Robert John

    2012-11-13

    Compounds, phosphor materials and apparatus related to nacaphite family of materials are presented. Potassium and rubidium based nacaphite family compounds and phosphors designed by doping divalent rare earth elements in the sites of alkaline earth metals in the nacaphite material families are descried. An apparatus comprising the phosphors based on the nacaphite family materials are presented herein. The compounds presented is of formula A.sub.2B.sub.1-yR.sub.yPO.sub.4X where the elements A, B, R, X and suffix y are defined such that A is potassium, rubidium, or a combination of potassium and rubidium and B is calcium, strontium, barium, or a combination of any of calcium, strontium and barium. X is fluorine, chlorine, or a combination of fluorine and chlorine, R is europium, samarium, ytterbium, or a combination of any of europium, samarium, and ytterbium, and y ranges from 0 to about 0.1.

  18. Potassium channel KCNJ15 is required for histamine-stimulated gastric acid secretion.

    PubMed

    Yuan, Jianye; Liu, Wensheng; Karvar, Serhan; Baker, Susan S; He, Wenjun; Baker, Robert D; Ji, Guang; Xie, Jianqun; Zhu, Lixin

    2015-08-15

    Gastric acid secretion is mediated by the K(+)-dependent proton pump (H(+),K(+)-ATPase), which requires a continuous supply of K(+) at the luminal side of the apical membrane. Several K(+) channels are implicated in gastric acid secretion. However, the identity of the K(+) channel(s) responsible for apical K(+) supply is still elusive. Our previous studies have shown the translocation of KCNJ15 from cytoplasmic vesicles to the apical membrane on stimulation, indicating its involvement in gastric acid secretion. In this study, the stimulation associated trafficking of KCNJ15 was observed in a more native context with a live cell imaging system. KCNJ15 molecules in resting live cells were scattered in cytoplasm but exhibited apical localization after stimulation. Furthermore, knocking down KCNJ15 expression with a short hairpin RNA adenoviral construct abolished histamine-stimulated acid secretion in rabbit primary parietal cells. Moreover, KCNJ15, like H(+),K(+)-ATPase, was detected in all of the parietal cells by immunofluorescence staining, whereas only about half of the parietal cells were positive for KCNQ1 under the same condition. Consistently, the endogenous protein levels of KCNJ15, analyzed by Western blotting, were higher than those of KCNQ1 in the gastric mucosa of human, mouse, and rabbit. These results provide evidence for a major role of KCNJ15 in apical K(+) supply during stimulated acid secretion. PMID:26108660

  19. Determination of Free Acid by Standard Addition with Potassium Thiocyanate as Complexant

    SciTech Connect

    Baumann, E.W.

    2001-05-29

    A method is described for determination of free acid in solutions containing the hydrolyzable ions Al (III), Cr(III), Fe(III), Hg(II), Ni(II), Th(IV), and U(VI). The concentration of the sample is calculated either by solving three simultaneous Nernst equations, by the Gran plot procedure, or by means of a microprocessor pH meter. Molar concentrations of metal ion up to 2.5 times that of the acid can be tolerated. The method has been applied to analysis of nuclear processing solutions that contain Pu(III), in addition to the ions listed above.

  20. Combining octyl(phenyl)-N,N-diisobutyl-carbamoylmethylphosphine oxide and bis-(2-ethylhexyl)phosphoric acid extractants for recovering transuranic elements from irradiated nuclear fuel

    SciTech Connect

    Lumetta, Gregg J.; Carter, Jennifer C.; Gelis, Artem V.; Vandegrift, George F.

    2009-10-14

    Advanced concepts for closing the nuclear fuel cycle include separating Am and Cm from other fuel components. Separating these elements from the lanthanide elements at an industrial scale remains a significant technical challenge. We describe here a chemical system in which a neutral extractant--octyl(phenyl)-N,N-diisobutyl-carbamoylmethyl-phosphine oxide (CMPO)--is combined with an acidic extractant--bis-(2-ethylhexyl)phosphoric acid (HDEHP)--to form a single process solvent (with dodecane as the diluent) for separating Am and Cm from the other components of irradiated nuclear fuel. Continuous variation experiments in which the relative CMPO and HDEHP concentrations are varied indicate a synergistic relationship between the two extractants in the extraction of Am from buffered diethylenetriaminepentaacetic acid (DTPA) solutions. A solvent mixture consisting or 0.1 M CMPO + 1 M HDEHP in dodecane offers acceptable extraction efficiency for the trivalent lanthanides and actinides from 1 M HNO3 while maintaining good lanthanide/actinide separation factors in the stripping regime (buffered DTPA solutions with pH 3.5 to 4). Using citrate buffer instead of lactate buffer results in improved lanthanide/actinide separation factors.

  1. Two new frameworks of potassium saccharate obtained from acidic and alkaline solution

    SciTech Connect

    Lv, Yao-Kang; Feng, Yun-Long; Liu, Ji-Wei; Jiang, Zhan-Guo

    2011-05-15

    Two chiral K(I) complexes based on D-saccharic acid (H{sub 2}sac), [K(Hsac)]{sub n} (1) and [K{sub 2}(sac)]{sub n} (2) were obtained from acidic and alkaline solution. The 3D framework of 1 includes K(I) polyhedral rods and typical pairwise coaxial right- and left-handed helical chains, and displays binodal 6-connected pcu topology. 2 contains 2D polyhedral sheets consisting of left-handed helical chains, and generates 3D network with an unprecedented (7,11)-connected net. Cyclic voltammetry tests and charge-discharge tests indicate that the addition of complex 2 to the electrolyte could improve the electrochemical properties of the nickel hydroxide electrode. -- Graphical abstract: Two K(I) complexes based on D-saccharic acid (H{sub 2}sac), [K(Hsac)]{sub n} (1) and [K{sub 2}(sac)]{sub n} (2) were obtained and characterized. Electrochemical studies indicate the potential use of 2 in Ni-MH battery. Display Omitted highlights: > Two novel chiral K(I) frameworks based on D-saccharic acid were obtained. > The structure of 1 includes K(I) polyhedral rods and typical helical chains. > 2 contains 2D polyhedral sheets and generates an unprecedented (7,11)-connected net. > Addition of 2 to electrolyte could improve the nickel hydroxide electrode's property.

  2. Rare earth phosphors and phosphor screens

    DOEpatents

    Buchanan, Robert A.; Maple, T. Grant; Sklensky, Alden F.

    1981-01-01

    This invention relates to rare earth phosphor screens for converting image carrying incident radiation to image carrying visible or near-visible radiation and to the rare earth phosphor materials utilized in such screens. The invention further relates to methods for converting image carrying charged particles to image carrying radiation principally in the blue and near-ultraviolet region of the spectrum and to stabilized rare earth phosphors characterized by having a continuous surface layer of the phosphors of the invention. More particularly, the phosphors of the invention are oxychlorides and oxybromides of yttrium, lanthanum and gadolinium activated with trivalent cerium and the conversion screens are of the type illustratively including x-ray conversion screens, image amplifier tube screens, neutron imaging screens, cathode ray tube screens, high energy gamma ray screens, scintillation detector screens and screens for real-time translation of image carrying high energy radiation to image carrying visible or near-visible radiation.

  3. Effects of supplemental potassium and sodium chloride salts on ruminal turnover rates, acid-base and mineral status of lactating dairy cows during heat stress.

    PubMed

    Schneider, P L; Beede, D K; Wilcox, C J

    1988-01-01

    Effects of added dietary sodium and potassium chloride salts on ruminal turnover rates, acid-base balance and mineral status of lactating dairy cows experiencing a nycterohemeral cycle of heat stress were examined. Black globe-humidity index in the chambers averaged 94 during the daytime and 68 during the nighttime. Four ruminally cannulated multiparous Holstein cows in mid-lactation were confined in climatic chambers for a single-reversal experiment consisting of two 17-d periods. To the basal diet (50% corn silage: 50% concentrate, which contained .97% potassium, .19% sodium and .20% chloride), 1.25% sodium chloride plus 1.85% potassium chloride were added, making the high mineral treatment (1.93% potassium, 68% sodium and 1.85% chloride). Liquid dilution rates from the rumen were measured by chromium-ethylenediaminetetraacetate disappearance. Turnover rates of solids were determined by appearance of ytterbium in feces. Ruminal contents, arterial blood and urine were collected hourly for 26 h. Grab samples of feces were sampled over 6 d. Dry matter intakes and milk yields were not affected by the diets (averaging 17.8 and 21.1 kg/d, respectively). Cows fed the high mineral diet drank 17% more water (P less than .01). Tests for homogeneity of regression were utilized to compare chromium disappearance and ytterbium appearance data, which were best described by second-order polynomial functions. Increased ruminal chromium disappearance (P less than .01) and decreased total volatile fatty acid concentrations (P less than .01) suggested faster liquid dilution rates with high mineral diet, but turnover rates of solids were not affected. Urinary potassium secretion compensated for the high potassium content of the high mineral diet without an alkalogenic effect on acid-base status. Lower urine pH and higher urine ammonium concentrations during cool hours suggested that the high chloride content of the high mineral diet had an acidogenic effect. The results are

  4. Stable 5,6-epoxyeicosatrienoic acid analog relaxes coronary arteries through potassium channel activation.

    PubMed

    Yang, Wenqi; Gauthier, Kathryn M; Reddy, L Manmohan; Sangras, Bhavani; Sharma, Kamalesh K; Nithipatikom, Kasem; Falck, John R; Campbell, William B

    2005-04-01

    5,6-epoxyeicosatrienoic acid (5,6-EET) is a cytochrome P450 epoxygenase metabolite of arachidonic acid that causes vasorelaxation. However, investigations of its role in biological systems have been limited by its chemical instability. We developed a stable agonist of 5,6-EET, 5-(pentadeca-3(Z),6(Z),9(Z)-trienyloxy)pentanoic acid (PTPA), in which the 5,6-epoxide was replaced with a 5-ether. PTPA obviates chemical and enzymatic hydrolysis. In bovine coronary artery rings precontracted with U46619, PTPA (1 nmol/L to 10 micromol/L) induced concentration-dependent relaxations, with maximal relaxation of 86+/-5% and EC50 of 1 micromol/L. The relaxations were inhibited by the cyclooxygenase inhibitor indomethacin (10 micromol/L; max relaxation 43+/-9%); the ATP-sensitive K+ channel inhibitor glybenclamide (10 micromol/L; max relaxation 49+/-6%); and the large conductance calcium-activated K+ channel inhibitor iberiotoxin (100 nmol/L; max relaxation 38+/-6%) and abolished by the combination of iberiotoxin with indomethacin or glybenclamide or increasing extracellular K+ to 20 mmol/L. Whole-cell outward K+ current was increased nearly 6-fold by PTPA (10 micromol/L), which was also blocked by iberiotoxin. Additionally, we synthesized 5-(pentadeca-6(Z),9(Z)-dienyloxy)pentanoic acid and 5-(pentadeca-3(Z),9(Z)-dienyloxy)pentanoic acid (PDPA), PTPA analogs that lack the 8,9 or 11,12 double bonds of arachidonic acid and therefore are not substrates for cyclooxygenase. The PDPAs caused concentration-dependent relaxations (max relaxations 46+/-13% and 52+/-7%, respectively; EC50 1micromol/L), which were not altered by glybenclamide but blocked by iberiotoxin. These studies suggested that PTPA induces relaxation through 2 mechanisms: (1) cyclooxygenase-dependent metabolism to 5-ether-containing prostaglandins that activate ATP-sensitive K+ channels and (2) activation of smooth muscle large conductance calcium-activated K+ channels. PDPAs only activate large conductance calcium

  5. Sources, solubility, and acid processing of aerosol iron and phosphorous over the South China Sea: East Asian dust and pollution outflows vs. Southeast Asian biomass burning

    NASA Astrophysics Data System (ADS)

    Hsu, S.-C.; Gong, G.-C.; Shiah, F.-K.; Hung, C.-C.; Kao, S.-J.; Zhang, R.; Chen, W.-N.; Chen, C.-C.; Chou, C. C.-K.; Lin, Y.-C.; Lin, F.-J.; Lin, S.-H.

    2014-08-01

    Iron and phosphorous are essential to marine microorganisms in vast regions in oceans worldwide. Atmospheric inputs are important allochthonous sources of Fe and P. The variability in airborne Fe deposition is hypothesized to serve an important function in previous glacial-interglacial cycles, contributing to the variability in atmospheric CO2 and ultimately the climate. Understanding the mechanisms underlying the mobilization of airborne Fe and P from insoluble to soluble forms is critical to evaluate the biogeochemical effects of these elements. In this study, we present a robust power-law correlation between fractional Fe solubility and non-sea-salt-sulfate / Total-Fe (nss-sulfate / FeT) molar ratio independent of distinct sources of airborne Fe of natural and/or anthropogenic origins over the South China Sea. This area receives Asian dust and pollution outflows and Southeast Asian biomass burning. This correlation is also valid for nitrate and total acids, demonstrating the significance of acid processing in enhancing Fe mobilization. Such correlations are also found for P, yet source dependent. These relationships serve as straightforward parameters that can be directly incorporated into available atmosphere-ocean coupling models that facilitate the assessment of Fe and P fertilization effects. Although biomass burning activity may supply Fe to the bioavailable Fe pool, pyrogenic soils are possibly the main contributors, not the burned plants. This finding warrants a multidisciplinary investigation that integrates atmospheric observations with the resulting biogeochemistry in the South China Sea, which is influenced by atmospheric forcings and nutrient dynamics with monsoons.

  6. Visualization of diffusion of the drug solution during aluminum potassium tannic acid injection therapy: a pilot study.

    PubMed

    Yamamoto, Yutaka; Miwa, Mitsuharu

    2013-06-01

    Sclerotherapy with aluminum potassium tannic acid (ALTA), which was approved in Japan for the treatment of internal hemorrhoids in July 2004 (Takano et al., Int J Colorectal Dis 21:44-51, 2006), has been widely accepted because of its effectiveness and low invasiveness. More than 200,000 patients have received ALTA injection therapy. ALTA is injected directly into 4 points of an internal hemorrhoid (4-step injection) to induce sclerosis and remission of the hemorrhoids, and consequently, resolution of symptoms such as prolapse and bleeding. The precision of the 4-step injection is considered to be a crucial determinant of the success of this therapy and the risk of complications. However, sufficient evidence has not yet been obtained concerning the diffusion and distribution of the injected drug. A pilot study visualized the real-time diffusion/distribution of the drug solution following the 4-step injection, using the ICG (indocyanine green) fluorescence technique, and an infrared camera (Photodynamic EYE; PDE, Hamamatsu Photonics K.K.).

  7. DNA microarray technology in the evaluation of weight management potential of a novel calcium-potassium salt of (-)-hydroxycitric Acid.

    PubMed

    Bagchi, Manashi; Zafra-Stone, Shirley; Sen, Chandan K; Roy, Sashwati; Bagchi, Debasis

    2006-01-01

    Quality and quantity of diet and nutrients are key factors of human health and disease prevention. Molecular diagnostics and cellular signaling play a fundamental role in the usefulness of novel nutraceuticals and functional foods. Increasing knowledge of the genes and molecules involved in the development of obesity is creating new methods of obesity regulation. Traditional herbal medicines may have some potential in weight management. Botanical dietary supplements often contain complex mixtures of phytochemicals that have additive or synergistic interactions. Evidence from numerous human and animal dietary studies has demonstrated the potential therapeutic effects of traditional herbal medicines in controlling obesity. We analyzed the effects of low-dose oral administration of calcium-potassium salt of (-)-hydroxycitric acid (HCA-SX) on the body weight and abdominal fat transcriptome in rats. HCA-SX restricted body weight gain in rats and lowered abdominal fat leptin expression. High-density microarray analysis of 9960 genes and ESTs present in the fat tissue identified a small set of specific genes sensitive to dietary HCA-SX. Mitochondrial/nuclear proteins necessary for fundamental support of the tissue were not affected by HCA-SX, further demonstrating its safety. Functional characterization of HCA-SX sensitive genes revealed that up-regulation of genes encoding serotonin receptors represents a distinct effect of HCA-SX on appetite suppression. PMID:20021004

  8. Potassium nitrite reaction with 11-nor-delta 9-tetrahydrocannabinol-9-carboxylic acid in urine in relation to the drug screening analysis.

    PubMed

    Lewis, S A; Lewis, L A; Tuinman, A

    1999-09-01

    Recently potassium nitrite has been used as an adulterant to interfere with the analysis of 11-nor-delta 9-tetrahydro-cannabinol-9-carboxylic acid (THC-COOH) in urine. A comprehensive study of the THC-COOH and nitrite reaction chemistry and stability under various conditions is presented. Reverse phase high performance liquid chromatography (HPLC) and negative electrospray mass spectrometry (ESMS) results are given to substantiate the derived reaction mechanism and properties leading to reaction termination. The addition of potassium carbonate as a buffering agent prior to or following sample void as a means of preventing the formation of a nitroso-complexed form of the 11-nor-delta 9+-tetrahydrocannabinol-9-carboxylic acid is evaluated.

  9. Palladium-Catalyzed Synthesis of (Hetero)Aryl Alkyl Sulfones from (Hetero)Aryl Boronic Acids, Unactivated Alkyl Halides, and Potassium Metabisulfite.

    PubMed

    Shavnya, Andre; Hesp, Kevin D; Mascitti, Vincent; Smith, Aaron C

    2015-11-01

    A palladium-catalyzed one-step synthesis of (hetero)aryl alkyl sulfones from (hetero)arylboronic acids, potassium metabisulfite, and unactivated or activated alkylhalides is described. This transformation is of broad scope, occurs under mild conditions, and employs readily available reactants. A stoichiometric experiment has led to the isolation of a catalytically active dimeric palladium sulfinate complex, which was characterized by X-ray diffraction analysis.

  10. Safety assessment of a calcium-potassium salt of (-)-hydroxycitric acid.

    PubMed

    Stohs, Sidney J; Lau, Francis C; Kim, Doun; Kim, Seung Un; Bagchi, Manashi; Bagchi, Debasis

    2010-11-01

    The safety of Garcinia cambogiaextract, its active ingredient (-)-hydroxycitric acid (HCA), and the marketed weight management formula, Super CitriMax(®) (HCA-SX), is supported by numerous in vitro and animal experimental studies as well as several clinical studies. HCA-SX has been shown to reduce appetite, inhibit fat synthesis, and decrease body weight. A series of toxicological tests including acute, short-term, and sub-chronic studies as well as teratogenicity/reproduction and genotoxicity studies were performed on HCA-SX. In the acute oral toxicity study, administration of a single dose of 5,000 mg/kg of HCA-SX did not reveal any significant changes for all examined tissues. Following the high dose safety testing, there were no remarkable changes or differences observed in any of the experimental conditions monitored. There were no macroscopic abnormalities for any examined tissues at scheduled necropsies. On the basis of these findings, the consumption of HCA-SX at dose level of up to 4667 mg/day is considered safe. PMID:20946014

  11. Organic acids inhibit the formation of pyromorphite and Zn-phosphate in phosphorous amended Pb- and Zn-contaminated soil.

    PubMed

    Debela, F; Arocena, J M; Thring, R W; Whitcombe, T

    2013-02-15

    Pyromorphite (PY) and some zinc phosphates (Zn-P) are very sparingly soluble minerals and hence can immobilize Pb and Zn in contaminated soils. However, mechanisms leading to the poor efficiency of PY and Zn-P formation in contaminated soils amended with P still remain unclear. We studied the influence of two low molecular weight organic acids (LMWOA) - oxalic acid and citric acid and diethylene triamine pentaacetic acid (DTPA) - in PY and Zn-P formation in a P-amended contaminated soil. Despite the high levels of metals (∼4% Pb and 21% Zn) in the study soil, the addition of up to 1% inorganic P transformed only up to 37% and 17% of the total Pb and Zn to PY and Zn-P, respectively. Semi-quantitative estimates from a linear combination fitting of X-ray absorption near edge spectra (LC-XANES fitting) showed that the formation of PY decreased from 37% to 3% of the total Pb in the presence of oxalic acid and the addition of 1% P. The reduced PY formation may be associated with the increase in organic-bound Pb from 9% to 54% and decrease in carbonate associated Pb from 42% to 12% with oxalic acid addition as indicated by a chemical sequential extraction (SE) technique. Citric acid seemed to have a less adverse effect in PY formation than oxalic acid. Our data also suggests both oxalic and citric acids have less adverse effects on the efficiency of Zn-P formation. From this study we conclude that the abundance of LMWOA in soil environments can be one factor contributing to the poor efficiency of P amendments practices to effectively immobilize Pb and Zn in metal contaminated soils.

  12. Bioefficacy of a novel calcium-potassium salt of (-)-hydroxycitric acid.

    PubMed

    Downs, Bernard W; Bagchi, Manashi; Subbaraju, Gottumukkala V; Shara, Michael A; Preuss, Harry G; Bagchi, Debasis

    2005-11-11

    Obesity is associated with cardiovascular disease, diabetes and certain forms of cancer. Popular strategies on weight loss often fail to address many key factors such as fat mass, muscle density, bone density, water mass, their inter-relationships and impact on energy production, body composition, and overall health and well-being. (-)-Hydroxycitric acid (HCA), a natural plant extract from the dried fruit rind of Garcinia cambogia, has been reported to promote body fat loss in humans without stimulating the central nervous system. The level of effectiveness of G. cambogia extract is typically attributed solely to HCA. However, other components by their presence or absence may significantly contribute to its therapeutic effectiveness. Typically, HCA used in dietary weight loss supplement is bound to calcium, which results in a poorly soluble (<50%) and less bioavailable form. Conversely, the structural characteristics of a novel Ca2+/K+ bound (-)-HCA salt (HCA-SX or Super CitriMax) make it completely water soluble as well as bioavailable. An efficacious dosage of HCA-SX (4500 mg/day t.i.d.) provides a good source of Ca2+ (495 mg, 49.5% of RDI) and K+ (720 mg, 15% of RDI). Ca2+ ions are involved in weight management by increasing lipid metabolism, enhancing thermogenesis, and increasing bone density. K+, on the other hand, increases energy, reduces hypertension, increases muscle strength and regulates arrhythmias. Both Ca and K act as buffers in pH homeostasis. HCA-SX has been shown to increase serotonin availability, reduce appetite, increase fat oxidation, improve blood lipid levels, reduce body weight, and modulate a number of obesity regulatory genes without affecting the mitochondrial and nuclear proteins required for normal biochemical and physiological functions. PMID:16055158

  13. Microbial evolution during storage of seasoned olives prepared with organic acids with potassium sorbate, sodium benzoate, and ozone used as preservatives.

    PubMed

    Arroyo López, F N; Durán Quintana, M C; Garrido Fernández, A

    2006-06-01

    The effect of potassium sorbate, sodium benzoate, and ozone in combination with citric, lactic, and acetic acids on the microbial population of seasoned table olives of the olive 'Aloreña' cultivar was studied in both fresh (FF) and stored fruits (SF). The inactivation/growth curves were modeled and the biological parameters estimated, with yeast used as the target microorganism. Regardless of the acid added, potassium sorbate showed a general inactivation effect on yeasts in the products prepared from both FF and SE Sodium benzoate had a rapid inactivation effect with FF, but with SF, it was effective only in the presence of acetic acid. A strain of Issatchenkia occidentalis was found that was resistant to the combination of this preservative with citric or lactic acids. In FF, ozone showed an initial marked inhibition against yeasts, but later, yeasts were again able to grow. In SF, ozone was a strong inactivating agent when it replaced any of the traditional preservatives. Lactic acid bacteria were always absent in products prepared from FF, and apparently were not affected by the different preservative agents in those prepared from SF. The behavior of yeasts and lactic acid bacteria populations in commercial products were similar to those found in experimental treatments.

  14. Features of the Thermodynamics of Trivalent Lanthanide/Actinide Distribution Reactions by Tri-n-Octylphosphine Oxide and Bis(2-EthylHexyl) Phosphoric Acid

    SciTech Connect

    Travis S. Grimes; Peter R. Zalupski

    2014-11-01

    A new methodology has been developed to study the thermochemical features of the biphasic transfer reactions of trisnitrato complexes of lanthanides and americium by a mono-functional solvating ligand (tri-n-octyl phosphine oxide - TOPO). Stability constants for successive nitrato complexes (M(NO3)x3-x (aq) where M is Eu3+, Am3+ or Cm3+) were determined to assist in the calculation of the extraction constant, Kex, for the metal ions under study. Enthalpies of extraction (?Hextr) for the lanthanide series (excluding Pm3+) and Am3+ by TOPO have been measured using isothermal titration calorimetry. The observed ?Hextr were found to be constant at ~29 kJ mol-1across the series from La3+-Er3+, with a slight decrease observed from Tm3+-Lu3+. These heats were found to be consistent with enthalpies determined using van ’t Hoff analysis of temperature dependent extraction studies. A complete set of thermodynamic parameters (?G, ?H, ?S) was calculated for Eu(NO3)3, Am(NO3)3 and Cm(NO3)3 extraction by TOPO and Am3+ and Cm3+ extraction by bis(2-ethylhexyl) phosphoric acid (HDEHP). A discussion comparing the energetics of these systems is offered. The measured biphasic extraction heats for the transplutonium elements, ?Hextr, presented in these studies are the first ever direct measurements offered using two-phase calorimetric techniques.

  15. Central metal ion exchange in a coordination polymer based on lanthanide ions and di(2-ethylhexyl)phosphoric acid: exchange rate and tunable affinity.

    PubMed

    Tasaki-Handa, Yuiko; Abe, Yukie; Ooi, Kenta; Tanaka, Mikiya; Wakisaka, Akihiro

    2014-01-01

    In this paper the exchange of lanthanide(III) ions (Ln(3+)) between a solution and a coordination polymer (CP) of di(2-ethylhexyl)phosphoric acid (Hdehp), [Ln(dehp)3], is studied. Kinetic and selectivity studies suggest that a polymeric network of [Ln(dehp)3] has different characteristics than the corresponding monomeric complex. The reaction rate is remarkably slow and requires over 600 h to reach in nearly equilibrium, and this can be explained by the polymeric crystalline structure and high valency of Ln(3+). The affinity of the exchange reaction reaches a maximum with the Ln(3+) possessing an ionic radius 7% smaller than that of the central Ln(3+), therefore, the affinity of the [Ln(dehp)3] is tunable based on the choice of the central metal ion. Such unique affinity, which differs from the monomeric complex, can be explained by two factors: the coordination preference and steric strain caused by the polymeric structure. The latter likely becomes predominant for Ln(3+) exchange when the ionic radius of the ion in solution is smaller than the original Ln(3+) by more than 7%. Structural studies suggest that the incoming Ln(3+) forms a new phase though an exchange reaction, and this could plausibly cause the structural strain.

  16. Dormancy and Impotency of Cocklebur Seeds: IV. Effects of Gibberellic Acid, Benzyladenine, Thiourea, and Potassium Nitrate on the Growth of Embryonic Axis and Cotyledon Segments.

    PubMed

    Esashi, Y; Katoh, H

    1977-02-01

    Germination of nondormant but impotent small cocklebur seeds (Xanthium pennsylvanicum Wallr.) was promoted profoundly with thiourea or benzyladenine, and slightly with gibberellic acid. Gibberellic acid was ineffective in causing the germination of dormant cocklebur seeds, although thiourea and benzyladenine were effective. Experiments with excised seed pieces showed that the promotive effects of thiourea, benzyladenine, and gibberellic acid on cocklebur seed germination were associated with the enhancement of growth of seed parts; thiourea stimulated predominantly the axial growth, whereas benzyladenine stimulated predominantly the cotyledonary growth.Potassium nitrate or indoleacetic acid had little effect on the initial growth of either axes or cotyledons. Except for gibberellic acid, all of the compounds employed enhanced ethylene production, but in general, the ethylene production seemed more likely to be a consequence of growth rather than a cause of it. We concluded that the chemical regulation of seed germination may be a consequence of the alteration of growth capabilities in either the axes or cotyledons, or both.

  17. Evaluation of effects of melatonin and caffeic acid phenethyl ester on acute potassium dichromate toxicity and genotoxicity in rats

    PubMed Central

    Cengiz, Mujgan; Alansal, Nurnisa Oya; Tuncdemir, Matem; Tanriverdi, Gamze; Bayoglu, Burcu

    2016-01-01

    Objective: The aim of this study is to investigate the possible protective effects of melatonin and caffeic acid phenethyl ester (CAPE) on potassium dichromate (K2 Cr2O7)-induced nephrotoxicity and genotoxicity. Methods: A total of 40 Wistar albino rats were divided into five groups: control, K2Cr2O7(K2Cr2O715 mg/kg, one dose, i.p.), K2Cr2O7 + melatonin, K2Cr2O7 + CAPE, and K2Cr2O7 + melatonin + CAPE. Urine and blood samples were collected from rats before scarification. One kidney was collected for histopathological studies, and the other was stored at −80°C for further determination of catalase (CAT), superoxide dismutase (SOD), malondialdehyde (MDA), glutathione (GSH), glutathione S-transferase (GST), and glutathione reductase (GR) levels with spectrophotometric method. Comet assay was used to evaluate the genotoxicity. Results: We observed a significant amelioration in genotoxicity by melatonin and simultaneous melatonin + CAPE treatment compared to K2Cr2O7 group (p1, p2< 0.05). SOD, CAT, GSH, GST, and MDA levels did not change when compared with controls. When K2Cr2O7 applied group was treated with melatonin and CAPE, neither melatonin nor CAPE made any changes in kidney GSH, GST, SOD, and MDA levels (P > 0.05). We noted that treatment with CAPE and melatonin + CAPE together caused a significant decrease in renal tissue damage, an upregulation in the kidney CAT levels (P < 0.05) and a slight healing at GR levels when compared with the K2Cr2O7 group. Conclusion: Our results revealed, CAPE and melatonin may have protective effects on K2Cr2O7 induced nephrotoxicity and cellular damage in rats. PMID:27756952

  18. Aluminum potassium sulfate and tannic acid sclerotherapy for Goligher Grades II and III hemorrhoids: Results from a multicenter study

    PubMed Central

    Miyamoto, Hidenori; Hada, Takenori; Ishiyama, Gentaro; Ono, Yoshito; Watanabe, Hideo

    2016-01-01

    AIM: To show that aluminum potassium sulfate and tannic acid (ALTA) sclerotherapy has a high success rate for Grade II and III hemorrhoids. METHODS: This study was based on the clinical data of 604 patients with hemorrhoids who underwent ALTA sclerotherapy between January 2009 and February 2015. The objective of this study was to assess the efficacy of this treatment for Grades II and III hemorrhoids. Preoperative and postoperative symptoms, complications and success rate were all assessed retrospectively. Follow-up consisted of a simple questionnaire, physical examination and an anoscopy. Patients were followed-up at one day, one week, two weeks, one month, one year, two years, three years, four years and five years after the ALTA sclerotherapy. RESULTS: One hundred and sixty-nine patients were diagnosed with Grade II hemorrhoids and 435 patients were diagnosed with Grade III hemorrhoids. The one year, three year and five year cumulative success rates of ALTA sclerotherapy for Grades II and III hemorrhoids were 95.9% and 93.1%; 89.3% and 83.7%; and 89.3% and 78.2%, respectively. No significant differences were observed in the cumulative success rates after ALTA sclerotherapy between Grades II and III hemorrhoids (P = 0.09). There were forty-seven post-operative complications (low grade fever; anal pain; urinary retention; rectal ulcer; and others). No serious or life-threatening complications occurred and all cases improved through conservative treatment. At univariate analysis there were no predictive factors of failure. CONCLUSION: ALTA sclerotherapy has had a high success rate for Grade II and III hemorrhoids during five years of post-operative treatment. However, additional studies are needed to evaluate the efficacy of this ALTA sclerotherapy in the management of hemorrhoidal disease. PMID:27458504

  19. Response surface optimization of corn stover pretreatment using dilute phosphoric acid for enzymatic hydrolysis and ethanol production

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Dilute H3PO4 (0.0 - 2.0%, v/v) was used to pretreat corn stover (10%, w/w) for conversion to ethanol. Pretreatment conditions were optimized for temperature, acid loading, and time using a central composite design. Optimal pretreatment conditions were chosen to promote sugar yields following enzym...

  20. ELECTRIC POWER GENERATION USING A PHOSPHORIC ACID FUEL CELL ON A MUNICIPAL SOLID WASTE LANDFILL GAS STREAM

    EPA Science Inventory

    The report gives results of tests to verify the performance of a landfill gas pretreatment unit (GPU) and a phorsphoric acid fuel cell system. The complete system removes contaminants from landfill gas and produces electricity for on-site use or connection to an electric grid. Th...

  1. Response surface optimization of corn stover pretreatment using dilute phosphoric acid for enzymatic hydrolysis and ethanol production.

    PubMed

    Avci, Ayse; Saha, Badal C; Dien, Bruce S; Kennedy, Gregory J; Cotta, Michael A

    2013-02-01

    Dilute H(3)PO(4) (0.0-2.0%, v/v) was used to pretreat corn stover (10%, w/w) for conversion to ethanol. Pretreatment conditions were optimized for temperature, acid loading, and time using central composite design. Optimal pretreatment conditions were chosen to promote sugar yields following enzymatic digestion while minimizing formation of furans, which are potent inhibitors of fermentation. The maximum glucose yield (85%) was obtained after enzymatic hydrolysis of corn stover pretreated with 0.5% (v/v) acid at 180°C for 15min while highest yield for xylose (91.4%) was observed from corn stover pretreated with 1% (v/v) acid at 160°C for 10min. About 26.4±0.1g ethanol was produced per L by recombinant Escherichia coli strain FBR5 from 55.1±1.0g sugars generated from enzymatically hydrolyzed corn stover (10%, w/w) pretreated under a balanced optimized condition (161.81°C, 0.78% acid, 9.78min) where only 0.4±0.0g furfural and 0.1±0.0 hydroxylmethyl furfural were produced.

  2. Effects of plant food potassium salts (citrate, galacturonate or tartrate) on acid-base status and digestive fermentations in rats.

    PubMed

    Sabboh, Houda; Coxam, Véronique; Horcajada, Marie-Noëlle; Rémésy, Christian; Demigné, Christian

    2007-07-01

    Potassium (K) organic anion salts, such as potassium citrate or potassium malate in plant foods, may counteract low-grade metabolic acidosis induced by western diets, but little is known about the effect of other minor plant anions. Effects of K salts (chloride, citrate, galacturonate or tartrate) were thus studied on the mineral balance and digestive fermentations in groups of 6-week-old rats adapted to an acidogenic/5 % inulin diet. In all diet groups, substantial amounts of lactate and succinate were present in the caecum, besides SCFA. SCFA were poorly affected by K salts conditions. The KCl-supplemented diet elicited an accumulation of lactate in the caecum; whereas the lactate caecal pool was low in rats fed the potassium tartrate-supplemented (K TAR) diet. A fraction of tartrate (around 50 %) was recovered in urine of rats fed the K TAR diet. Potassium citrate and potassium galacturonate diets exerted a marked alkalinizing effect on urine pH and promoted a notable citraturia (around 0.5 micro mol/24 h). All the K organic anion salts counteracted Ca and Mg hyperexcretion in urine, especially potassium tartrate as to magnesuria. The present findings indicate that K salts of unabsorbed organic anions exert alkalinizing effects when metabolizable in the large intestine, even if K and finally available anions (likely SCFA) are not simultaneously bioavailable. Whether this observation is also relevant for a fraction of SCFA arising from dietary fibre breakdown (which represents the major organic anions absorbed in the digestive tract in man) deserves further investigation.

  3. Enhanced photocatalytic activity of Cl-residual rutile TiO2 nanorods after targeted co-modification with phosphoric and boric acids.

    PubMed

    Wu, Jing; Cui, Haiqin; Zhang, Xuliang; Luan, Yunbo; Jing, Liqiang

    2015-06-28

    The promotion of O2 adsorption on semiconductor surfaces for effectively capturing photogenerated electrons in the photocatalytic degradation of pollutants is highly desired. In this study, the targeted co-modification of residual chlorine rutile TiO2 nanorods with phosphoric and boric acids has been accomplished for the first time by simple wet chemical processes. The key to targeted co-modification is to connect -P-OH and -B-OH to the Cl-residual TiO2 surfaces by -Ti-OH and -Ti-Cl, respectively, consequently forming -Ti-O-P-OH and -Ti-Cl:B-OH ends. By means of the atmosphere-controlled surface photovoltage spectroscopy, the degrees for capturing photogenerated electrons by the adsorbed O2 as receptors on the resulting TiO2 nanorods are quantitatively analyzed. It is confirmed that the targeted co-modification could greatly promote the capture of the photogenerated electrons compared to the phosphate and borate modification alone. This is attributed to increased amounts of adsorbed O2 based on electrochemical O2 reduction and O2 temperature-programmed desorption measurements, further leading to the enhanced separation of photogenerated charges, characterized by an increase in the amount of produced hydroxyl radicals. This is responsible for the obviously enhanced photocatalytic activity of TiO2 nanorods towards the degradation of colorless gas-phase acetaldehyde and liquid-phase phenol. This work would provide us a feasible route for the co-modification with inorganic acids to synthesize efficient nanosized TiO2-based photocatalysts.

  4. Dicationic ion-pairing of phosphoric acid diesters post-liquid chromatography and subsequent determination by electrospray positive ionization-tandem mass spectrometry.

    PubMed

    Chu, Shaogang; Chen, Da; Letcher, Robert J

    2011-11-01

    Several organophosphate triesters are widely used as flame retardants and can be metabolized to dibutyl (DBP), diphenyl (DPhP), di(2-ethylhexyl) (DEHP) and di(1,3-dichloro-2-propyl) (or bis(1,3-dichloro-2-propyl); DDCPP) phosphoric acid, respectively. A highly sensitive liquid chromatography-electrospray ionization(+)-triple quadrupole mass spectrometry (LC-ESI(+)-QQQ-MS/MS) based analysis method was presently developed. In this method the target compounds were separated with a C(18)-based reversed phase LC column, and decamethonium hydroxide (dicatonic reagent) was introduced post-LC to form ion-pairs, which were subsequently detected by ESI(+). For the phosphate acid diester ion-pairs, the mass spectra showed the most abundant ion to be [(CH(3))(2)N(CH(2))(10)N(CH(3))(3)](+), with lesser abundances of [[M-H](-)[(CH(3))(3)N(CH(2))(9)CH(2)](2+)](+) and [CH(2)CH(CH(2))(8)N(CH(3))(3)](+). For DDCPP, the fragment ions of [[Cl](-)[(CH(3))(3)N(CH(2))(10)N(CH(3))(3)](2+)](+) and [[Cl](-)[(CH(3))(3)N(CH(2))(9)CH(2)](2+)](+) could also be observed. The limits of quantitation (LOQs) by LC-ESI(+)-MS/MS (based on multiple reaction monitoring) were 0.14, 0.03, 0.14 and 0.02 ng/mL for DPhP, DBP, DDCPP and DEHP, respectively. The response was highly linearly correlated (r>0.995) with concentration over the range of the LOD to 1000 ng/mL. The matrix effect on ESI+ was negligible for the samples in experiment of in vitro metabolism using rat liver microsomes. PMID:21945623

  5. Potassium Channelopathies and Gastrointestinal Ulceration

    PubMed Central

    Han, Jaeyong; Lee, Seung Hun; Giebisch, Gerhard; Wang, Tong

    2016-01-01

    Potassium channels and transporters maintain potassium homeostasis and play significant roles in several different biological actions via potassium ion regulation. In previous decades, the key revelations that potassium channels and transporters are involved in the production of gastric acid and the regulation of secretion in the stomach have been recognized. Drugs used to treat peptic ulceration are often potassium transporter inhibitors. It has also been reported that potassium channels are involved in ulcerative colitis. Direct toxicity to the intestines from nonsteroidal anti-inflammatory drugs has been associated with altered potassium channel activities. Several reports have indicated that the long-term use of the antianginal drug Nicorandil, an adenosine triphosphate-sensitive potassium channel opener, increases the chances of ulceration and perforation from the oral to anal regions throughout the gastrointestinal (GI) tract. Several of these drug features provide further insights into the role of potassium channels in the occurrence of ulceration in the GI tract. The purpose of this review is to investigate whether potassium channelopathies are involved in the mechanisms responsible for ulceration that occurs throughout the GI tract. PMID:27784845

  6. Potassium Iodide

    MedlinePlus

    Potassium iodide is used to protect the thyroid gland from taking in radioactive iodine that may be released during a nuclear radiation emergency. Radioactive iodine can damage the thyroid gland. You should only ...

  7. Potassium test

    MedlinePlus

    ... also be done if your provider suspects metabolic acidosis (for example, caused by uncontrolled diabetes) or alkalosis ( ... Hypoaldosteronism (very rare) Kidney failure Metabolic or respiratory acidosis Red blood cell destruction Too much potassium in ...

  8. The effect of phosphoric acid concentration on the synthesis of nano-whiskers of calcium metaphosphate by chemical precipitation Method

    NASA Astrophysics Data System (ADS)

    Yao, Nengjian; Zhang, Yin; Kong, Deshuang; Zhu, Jianping; Tao, Yaqiu; Qiu, Tai

    2011-10-01

    Calcium metaphosphate (CMP) nano-whiskers were produced by a chemical precipitation method. In order to produce nano-powders, CMP was prepared by the mixing of two precursors, calcium oxide (CaO) and phosphate acid (H3PO4). Sparingly soluble chemicals, the Ca/P ratio of the mixture was set to be 0.50 to produce stoichiometric CMP, were chemical agitated in phosphate acid solution. At least 3 hours of pre-hydrolysis of phosphorus precursor were required to obtain CMP phase. The CMP powders were dried in a drying oven at 60 °C for 7 days and then followed by a heat treatment at 390 °C for 8hours. The obtained powder was analyzed using XRD, XRF, FT-IR, SEM, TG-DTA, Zeta Potential Meter, Specific Surface Area, and Particle Size Analyzer. The results showed that obtained CMP nano-whiskers have a significantly powder characteristics.

  9. New evidence on the structure of potassium salts of 12-tungstophosphoric acid, KxH3-xPW12O40.

    PubMed

    Haber, Jerzy; Matachowski, Leszek; Mucha, Dariusz; Stoch, Jerzy; Sarv, Priit

    2005-09-19

    Physicochemical properties and compositions of KxH(3-x)PW12O40 salts, where 2 < or = x < or = 3, have been investigated. It has been found that freshly prepared K2HPW12O40 salt (drying at 313 K) contains particles of heteropolyacid and particles of the neutral potassium salt, the sample being in 78.6% amorphous. On aging at room temperature, the heteropolyacid spreads to form a surface layer covering the neutral potassium salt particles K3PW12O40. Heat treatment of KxH(3-x)PW12O40 salts, where 2 < or = x < 3, from 313 K to higher temperatures induces the transformation of the heteropolyacid-covering K(3) core into a well-dispersed, amorphous surface layer. On further heating of the acidic potassium salts, the surface layer decomposes between 855 and 915 K with the formation of a PW8O26-type bronze as a new phase, the K3PW12O40 salt remaining unchanged. The latter starts to decompose at 1093 K, and in the case of all samples, the process is completed at about 1183 K. Rietveld structure refinement, XPS, and 31P NMR measurements of acidic potassium salts indicate that the core of these salts is always formed by the K3PW12O40 salt, which is covered by a heteropolyacid. Comparison of lattice parameters of the K3 salt and HPW leads to the conclusion that the layer is composed of partially or completely dehydrated heteropolyacid molecules. The coverage of the core by HPW in the K2 sample was estimated to be equal to one monolayer.

  10. 21 CFR 184.1643 - Potassium sulfate.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 3 2011-04-01 2011-04-01 false Potassium sulfate. 184.1643 Section 184.1643 Food... Specific Substances Affirmed as GRAS § 184.1643 Potassium sulfate. (a) Potassium sulfate (K2SO4, CAS Reg... having a bitter, saline taste. It is prepared by the neutralization of sulfuric acid with...

  11. 21 CFR 184.1643 - Potassium sulfate.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 3 2012-04-01 2012-04-01 false Potassium sulfate. 184.1643 Section 184.1643 Food... Specific Substances Affirmed as GRAS § 184.1643 Potassium sulfate. (a) Potassium sulfate (K2SO4, CAS Reg... having a bitter, saline taste. It is prepared by the neutralization of sulfuric acid with...

  12. 21 CFR 184.1643 - Potassium sulfate.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 3 2013-04-01 2013-04-01 false Potassium sulfate. 184.1643 Section 184.1643 Food... Specific Substances Affirmed as GRAS § 184.1643 Potassium sulfate. (a) Potassium sulfate (K2SO4, CAS Reg... having a bitter, saline taste. It is prepared by the neutralization of sulfuric acid with...

  13. 21 CFR 184.1643 - Potassium sulfate.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Potassium sulfate. 184.1643 Section 184.1643 Food... Specific Substances Affirmed as GRAS § 184.1643 Potassium sulfate. (a) Potassium sulfate (K2SO4, CAS Reg... having a bitter, saline taste. It is prepared by the neutralization of sulfuric acid with...

  14. Separation of berkelium (IV) from trivalent transplutonium elements on ion-exchangers in solutions of phosphoric acid

    SciTech Connect

    Guseva, L.I.; Stepushkina, V.V.; Tikhomirova, G.S.

    1985-01-01

    The dependences of Am, Cm, Bk, Cf and Es behavior on anion- and cation-exchangers in solutions of 0.1-8.0 M H/sub 3/PO/sub 4/ on acid concentration and oxidant content in solution (KBrO/sub 3/) or in resin (PbO/sub 2/) have been studied. Significant differences in distribution coefficients of Bk and other transplutonium elements (TPE) have been found that can be explained by Bk oxidation to the tetravalent state. A simple and effective method of Bk (IV) separation from trivalent TPE has been developed. The method was applied to the isolation of isotopes Bk-249 and Bk-250; the purification factor of Bk (IV) from other TPE is 10/sup 4/-10/sub 6/ per cycle. The possibility of Bk separation from bromate and phosphate ions by its sorption on a cation-exchanger from diluted H/sub 3/PO/sub 4/ solutions with subsequent desorption by the mineral acid has been shown. 20 references, 8 figures.

  15. DISTRIBUTION OF LANTHANIDE AND ACTINIDE ELEMENTS BETWEEN BIS-(2-ETHYLHEXYL)PHOSPHORIC ACID AND BUFFERED LACTATE SOLUTIONS CONTAINING SELECTED COMPLEXANTS

    SciTech Connect

    Rudisill, Tracy S.; Diprete, David P.; Thompson, Major C.

    2013-04-15

    With the renewed interest in the closure of the nuclear fuel cycle, the TALSPEAK process is being considered for the separation of Am and Cm from the lanthanide fission products in a next generation reprocessing plant. However, an efficient separation requires tight control of the pH which likely will be difficult to achieve on a large scale. To address this issue, we measured the distribution of lanthanide and actinide elements between aqueous and organic phases in the presence of complexants which were potentially less sensitive to pH control than the diethylenetriaminepentaacetic (DTPA) used in the process. To perform the extractions, a rapid and accurate method was developed for measuring distribution coefficients based on the preparation of lanthanide tracers in the Savannah River National Laboratory neutron activation analysis facility. The complexants tested included aceto-, benzo-, and salicylhydroxamic acids, N,N,N',N'-tetrakis(2-pyridylmethyl)ethylenediamine (TPEN), and ammonium thiocyanate (NH{sub 4}SCN). The hydroxamic acids were the least effective of the complexants tested. The separation factors for TPEN and NH{sub 4}SCN were higher, especially for the heaviest lanthanides in the series; however, no conditions were identified which resulted in separations factors which consistently approached those measured for the use of DTPA.

  16. Safety of a Novel Calcium/Potassium Saltof (-)-Hydroxycitric Acid (HCA-SX): II.Developmental Toxicity Study in Rats.

    PubMed

    Deshmukh, N S; Bagchi, M; Yasmin, T; Bagchi, D

    2008-01-01

    ABSTRACT (-)-Hydroxycitric acid (HCA), active constituent (10%-30%) of the dried fruit rind of Garcinia cambogia, is commonly used as a dietary supplement for weight management. The objective of the present study was to evaluate the teratogenic potential of a novel calcium/potassium salt of HCA (HCA-SX) in Sprague-Dawley rats. Due to its potential to affect fat synthesis and reduce food intake, processes that are often crucial in normal fetal development, this teratology study was undertaken as part of a multigeneration reproductive investigation. The animals in this study were selected randomly after weaning from each F(2b) litter of the F(1) generation from the two-generation reproductive toxicity study. To start the teratology study, Sprague-Dawley rat pups ( approximately 30/sex/group) from the F(2b) generation were allowed to grow up to 10 to 12 weeks of age before mating. The rats in the treatment group were exposed directly to HCA-SX through feed, while prior to their weaning, they had indirect exposure to the test material during lactation. The dietary exposure levels were the same as those employed for the two-generation reproductive toxicity study, viz. 1000, 3000, or 10,000 ppm. Following mating at maturity, the pregnant rats were observed daily for clinical signs of adverse effects, and body weight and feed consumption were recorded. On day 20 of gestation, animals were subjected to a necropsy and cesarean section to examine the uterus, ovaries, and fetuses for assessment of different parameters of pregnancy and embryo-fetal defects. Despite a slight (13%) lowering of maternal body weight gain during gestation period in the group receiving 10,000 ppm HCA-SX, no evidence of maternal toxicity, adverse effects on the parameters evaluated for the gravid uteri, external abnormalities in the fetuses, soft tissue abnormalities in the fetuses, or skeletal abnormalities in the fetuses were noted. Based on the results of this developmental toxicity study

  17. Safety of a Novel Calcium/Potassium Saltof (-)-Hydroxycitric Acid (HCA-SX): II.Developmental Toxicity Study in Rats.

    PubMed

    Deshmukh, N S; Bagchi, M; Yasmin, T; Bagchi, D

    2008-01-01

    ABSTRACT (-)-Hydroxycitric acid (HCA), active constituent (10%-30%) of the dried fruit rind of Garcinia cambogia, is commonly used as a dietary supplement for weight management. The objective of the present study was to evaluate the teratogenic potential of a novel calcium/potassium salt of HCA (HCA-SX) in Sprague-Dawley rats. Due to its potential to affect fat synthesis and reduce food intake, processes that are often crucial in normal fetal development, this teratology study was undertaken as part of a multigeneration reproductive investigation. The animals in this study were selected randomly after weaning from each F(2b) litter of the F(1) generation from the two-generation reproductive toxicity study. To start the teratology study, Sprague-Dawley rat pups ( approximately 30/sex/group) from the F(2b) generation were allowed to grow up to 10 to 12 weeks of age before mating. The rats in the treatment group were exposed directly to HCA-SX through feed, while prior to their weaning, they had indirect exposure to the test material during lactation. The dietary exposure levels were the same as those employed for the two-generation reproductive toxicity study, viz. 1000, 3000, or 10,000 ppm. Following mating at maturity, the pregnant rats were observed daily for clinical signs of adverse effects, and body weight and feed consumption were recorded. On day 20 of gestation, animals were subjected to a necropsy and cesarean section to examine the uterus, ovaries, and fetuses for assessment of different parameters of pregnancy and embryo-fetal defects. Despite a slight (13%) lowering of maternal body weight gain during gestation period in the group receiving 10,000 ppm HCA-SX, no evidence of maternal toxicity, adverse effects on the parameters evaluated for the gravid uteri, external abnormalities in the fetuses, soft tissue abnormalities in the fetuses, or skeletal abnormalities in the fetuses were noted. Based on the results of this developmental toxicity study

  18. Thermopressurized diluted phosphoric acid pretreatment of ligno(hemi)cellulose to make free sugars and nutraceutical oligosaccharides.

    PubMed

    Tiboni, Marcela; Grzybowski, Adelia; Baldo, Gizele Rejane; Dias, Edson Flausino; Tanner, Robert D; Kornfield, Julia Ann; Fontana, José Domingos

    2014-06-01

    Ligno(hemi)cellulosics (L(h)Cs) as sugarcane bagasse and loblolly pine sawdust are currently being used to produce biofuels such as bioethanol and biobutanol through fermentation of free sugars that are often obtained enzymatically. However, this bioconversion requires a pretreatment to solubilize the hemicellulose fractions, thus facilitating the action of the cellulolytic enzymes. Instead of the main free monosaccharides used in these current models, the modulation of thermopressurized orthophosphoric acid as a pretreatment, in the ranges of 3-12 atm and pH 1.5-2.5, can produce nondigestible oligosaccharides (NDOS) such as xylo-oligosaccharides (XOS) because heteroxylan is present in both types of hardwood and softwood hemicelluloses. A comparative thin-layer chromatographic analysis of the hydrolytic products showed the best conditions for NDOS production to be 7 atm/water, pH 2.25 and 2.50, and 8.5 atm/water for both sources. Particular hydrolysates from 7 atm (171 °C) at pHs 2.25 and 2.50 both for cane bagasse and pine sawdust, with respective oligosaccharide contents of 57 and 59 %, once mixed in a proportion of 1:1 for each plant source, were used in vitro as carbon sources for Bifidobacterium or Lactobacillus. Once both bacteria attained the stationary phase of growth, an unforeseen feature emerged: the preference of B. animalis for bagasse hydrolysates and, conversely, the preference of L. casei for pine hydrolysates. Considering the fact that nutraceutical oligosaccharides from both hemicelluloses correspond to higher value-added byproducts, the technology using a much diluted thermopressurized orthophosphoric acid pretreatment becomes an attractive choice for L(h)Cs. PMID:24747989

  19. Features of the thermodynamics of trivalent lanthanide/actinide distribution reactions by tri-n-octylphosphine oxide and bis(2-ethylhexyl) phosphoric acid.

    PubMed

    Grimes, Travis S; Zalupski, Peter R; Martin, Leigh R

    2014-11-01

    A new methodology has been developed to study the thermochemical features of the biphasic transfer reactions of trisnitrato complexes of lanthanides and americium by a monofunctional solvating ligand (tri-n-octylphosphine oxide, TOPO). Stability constants for successive nitrato complexes (M(NO3)x(3-x)(aq) where M is Eu(3+), Am(3+), or Cm(3+)) were determined to assist in the calculation of the extraction constant, K(ex), for the metal ions under study. Enthalpies of extraction (ΔH(extr)) for the lanthanide series (excluding Pm(3+)) and Am(3+) by TOPO have been measured using isothermal titration calorimetry. The observed ΔH(extr) were found to be constant at ~29 kJ mol(-1) across the series from La(3+) to Er(3+), with a slight decrease observed from Tm(3+) to Lu(3+). These heats were found to be consistent with enthalpies determined using van't Hoff analysis of temperature dependent extraction studies. A complete set of thermodynamic parameters (ΔG, ΔH, ΔS) was calculated for Eu(NO3)3, Am(NO3)3, and Cm(NO3)3 extraction by TOPO and Am(3+) and Cm(3+) extraction by bis(2-ethylhexyl) phosphoric acid (HDEHP). A discussion comparing the energetics of these systems is offered. The measured biphasic extraction heats for the transplutonium elements, ΔH(extr), presented in these studies are the first ever direct measurements offered using two-phase calorimetric techniques. PMID:25315891

  20. Phosphorus-containing fluorinated organics: polyfluoroalkyl phosphoric acid diesters (diPAPs), perfluorophosphonates (PFPAs), and perfluorophosphinates (PFPIAs) in residential indoor dust.

    PubMed

    De Silva, Amila O; Allard, Cody N; Spencer, Christine; Webster, Glenys M; Shoeib, Mahiba

    2012-11-20

    Indoor dust is thought to be a source of human exposure to perfluorocarboxylates (PFCAs) and perfluorosulfonates (PFSAs), but exposures to emerging organofluorine compounds, including precursors to PFCAs and PFSAs via indoor dust, remain unknown. We report an analytical method for measuring several groups of emerging phosphorus-containing fluorinated compounds, including polyfluoroalkyl phosphoric acid diesters (diPAP), perfluorophosphonates (PFPA), and perfluorophosphinates (PFPIA), as well as perfluoroethylcyclohexane sulfonate (PFECHS) in indoor dust. This method was used to analyze diPAP, PFPA, and PFPIA levels in 102 residential dust samples collected in 2007-2008 from Vancouver, Canada. The results indicated a predominant and ubiquitous presence of diPAPs (frequency of detection 100%, mean and median ΣdiPAPs 7637 and 2215 ng/g). Previously measured median concentrations of perfluorooctane sulfonate (PFOS), perfluorooctanoate (PFOA), and fluorotelomer alcohols (FTOHs) in the same samples were 14-74 times lower than ΣdiPAP levels, i.e. 71 ng/g PFOS, 30 ng/g PFOA, and 152 ng/g ΣFTOHs. PFPAs and PFPIAs were detected in 62% and 85% of samples, respectively, at concentrations nearly 3 orders of magnitude lower than diPAPs (median 2.3 ng/g ΣPFPAs and 2.3 ng/g ΣPFPIAs). PFECHS was detected in only 8% of dust samples. To the best of our knowledge, this is the first report of these compounds in indoor dust. In this study, diPAP concentrations represented 98% ± 7% of the total measured analytes in the dust samples. Detection of diPAPs at such high concentrations in indoor dust may represent an important and as-yet unrecognized indirect source of PFCA exposure in humans, given the identified biotransformation pathways. Identifying the sources of diPAPs to the indoor environment is a priority for future research to improve air quality in households.

  1. Lanthanide ion exchange properties of a coordination polymer consisting of di(2-ethylhexyl) phosphoric acid and trivalent metal ions (Ce3+, Fe3+, or Al3+).

    PubMed

    Ooi, Kenta; Tasaki-Handa, Yuiko; Abe, Yukie; Wakisaka, Akihiko

    2014-03-28

    Three kinds of coordination polymers ([M(dehp)3], M = Ce, Fe, or Al) were prepared by mixing the sodium form (Na(dehp)) of di(2-ethylhexyl) phosphoric acid and MCl3 in an ethanol-water binary mixture. They have monoclinic crystalline structure with similar lattice parameters. The lanthanide ion (Ln(3+) = La(3+), Sm(3+), Dy(3+), or Yb(3+)) exchange properties were studied in a 20 : 80 vol% ethanol-water binary mixture containing 2 mM Ln(NO3)3 at room temperature. The rate of Ln(3+) adsorption is relatively slow; it requires over 3 weeks to reach equilibrium. [M(dehp)3] has different Ln(3+) affinities depending on the kind of central metal ions: the affinity order at 3 week adsorption is Yb(3+) < La(3+) < Dy(3+) < Sm(3+) for [Ce(dehp)3], La(3+) < Sm(3+) < Dy(3+) < Yb(3+) for [Fe(dehp)3], and La(3+) < Sm(3+), Dy(3+), Yb(3+) for [Al(dehp)3]. The difference in affinity order can be explained by two factors: the coordination preference and steric strain caused by the polymeric structure. The chemical and structural analyses suggested that the Ln(3+) adsorption progresses first by the central M(3+)/Ln(3+) exchange, followed by a morphological change to a rod-like or fibrous form by a solid phase reaction. In the case of [Fe(dehp)3], the eluted Fe(3+) may be hydrolyzed and precipitated as amorphous iron hydroxide.

  2. Characterization and application of expanded graphite modified with phosphoric acid and glucose for the removal of Ni(II) from aqueous solution

    NASA Astrophysics Data System (ADS)

    Jiang, Li; Zhang, Jian; Xu, Xiaoli; Zhang, Jie; Liu, Hai; Guo, Zizhang; Kang, Yan; Li, Yiran; Xu, Jingtao

    2015-12-01

    Three kinds of modified expanded graphite (EG), impregnated with phosphoric acid (H3PO4) (P-EG), impregnated with glucose (G-EG), and impregnated with H3PO4 and glucose (G-P-EG), were prepared under a low temperature (150 °C). The adsorption capacity of G-P-EG (Qm = 7.016 mg/g) is much higher than original expanded graphite (EG Qm = 0.423 mg/g) and other two kinds of modified expanded graphite (P-EG Qm = 0.770 mg/g; G-EG Qm = 0.507 mg/g). The physicochemical properties of EG and G-P-EG were characterized by N2 adsorption/desorption, Boehm's titration and X-ray photoelectron spectroscopy (XPS). EG exhibited higher values of BET surface area (11.357 m2/g) and total pore volume (0.0303 cm3/g) than that of G-P-EG (4.808 m3/g and 0.0109 cm3/g). However, the results of Bohm's titration and XPS showed that G-P-EG contained more surface oxygen-containing functional groups. The Ni(II) adsorption equilibrium data agreed well with the Langmuir model. And the experimental data of EG and G-P-EG fitted better by pseudo-second order model. Based on the results of batch adsorption experiments and XPS analysis, there were several possible mechanisms for Ni(II) adsorption on the G-P-EG, including chemical adsorption, cation exchange, electrostatic attraction and surface complication.

  3. 21 CFR 184.1639 - Potassium lactate.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 3 2013-04-01 2013-04-01 false Potassium lactate. 184.1639 Section 184.1639 Food... Specific Substances Affirmed as GRAS § 184.1639 Potassium lactate. (a) Potassium lactate (C3H5O3K, CAS Reg. No. 996-31-6) is the potassium salt of lactic acid. It is a hydroscopic, white, odorless solid and...

  4. 21 CFR 184.1639 - Potassium lactate.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 3 2011-04-01 2011-04-01 false Potassium lactate. 184.1639 Section 184.1639 Food... Specific Substances Affirmed as GRAS § 184.1639 Potassium lactate. (a) Potassium lactate (C3H5O3K, CAS Reg. No. 996-31-6) is the potassium salt of lactic acid. It is a hydroscopic, white, odorless solid and...

  5. 21 CFR 184.1639 - Potassium lactate.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 3 2012-04-01 2012-04-01 false Potassium lactate. 184.1639 Section 184.1639 Food... Specific Substances Affirmed as GRAS § 184.1639 Potassium lactate. (a) Potassium lactate (C3H5O3K, CAS Reg. No. 996-31-6) is the potassium salt of lactic acid. It is a hydroscopic, white, odorless solid and...

  6. 21 CFR 184.1639 - Potassium lactate.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 3 2014-04-01 2014-04-01 false Potassium lactate. 184.1639 Section 184.1639 Food... GRAS § 184.1639 Potassium lactate. (a) Potassium lactate (C3H5O3K, CAS Reg. No. 996-31-6) is the potassium salt of lactic acid. It is a hydroscopic, white, odorless solid and is prepared commercially...

  7. 21 CFR 184.1639 - Potassium lactate.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Potassium lactate. 184.1639 Section 184.1639 Food... Specific Substances Affirmed as GRAS § 184.1639 Potassium lactate. (a) Potassium lactate (C3H5O3K, CAS Reg. No. 996-31-6) is the potassium salt of lactic acid. It is a hydroscopic, white, odorless solid and...

  8. Microscopic and mesoscopic structural features of an activated carbon sample, prepared from sorghum via activation by phosphoric acid

    SciTech Connect

    Temleitner, László; Pusztai, László; Rubio-Arroyo, Manuel F.; Aguilar-López, Sergio; Pizio, Orest

    2012-12-15

    Graphical abstract: Display Omitted Highlights: ► Preparation of a new activated carbon sample from sorghum. ► Characterization by adsorption/desorption methods. ► Determination of the structure by synchrotron X-ray diffraction. ► The sample is amorphous and contains distorted graphene fragments. ► A characteristic nanoscale distance is established from the radial distribution function. -- Abstract: An acidic chemical activation procedure has been used for preparing activated carbon with a surface area exceeding 1000 m{sup 2}/g from sorghum. In order to reveal structural features, synchrotron X-ray diffraction measurements have been performed. The structure of the material has been characterized by the total scattering structure factor and the radial distribution function describing short-range arrangement of atoms at distances of the order of a few atomic diameters as well as correlations at a longer scale, of the order of nanometers. The atomic arrangement has been found to be consistent with that of amorphous graphite-like carbon. As far as the mesoscopic structure is concerned, the presence of a characteristic distance is suggested on the basis of the clear nanometer scale oscillations of the radial distribution function, which distance may be assigned as the mesopore size in the material. It is suggested that the approach devized here may later be applied routinely for other activated carbon samples, too, for characterizing atomic and nanoscale order simultaneously.

  9. A new facile route for synthesizing of graphene oxide using mixture of sulfuric-nitric-phosphoric acids as intercalating agent

    NASA Astrophysics Data System (ADS)

    Panwar, Vinay; Chattree, Ananya; Pal, Kaushik

    2015-09-01

    In this work, graphene oxide (GO) has been prepared through three different processes namely, eco-friendly Hummers method, modification in improved Hummers method and a new approach. This new approach has been designed by changing some processing parameters and intercalating agent for significant reduction in processing time and to improve the quantity of GO in comparison to the other two methods. This has been achieved through better oxidization of graphite using nitric-sulfuric acid (HNO3-H2SO4) as intercalating agent. X-ray diffraction (XRD), Field Emission Scanning Electron Microscopy (FESEM), Energy-dispersive X-ray spectroscopy (EDX), Raman spectroscopy, Atomic Force Microscopy (AFM), X-ray photoelectron spectroscopy (XPS), UV-visible spectroscopy, and Thermogravimetric analysis (TGA) are used to characterize the GO prepared through different processes. These characterizations have confirmed an improved exfoliation of graphite, using addition of HNO3 in intercalating agent, in a short processing time and bring on higher yield of GO via this new process.

  10. Kimzeyite garnet phosphors

    DOEpatents

    Lyons, Robert Joseph

    2013-05-14

    A phosphor of formula I is included in a phosphor composition in a lighting apparatus capable of emitting white light, Ca.sub.3-x-zSr.sub.xCe.sub.zM.sup.1.sub.2M.sup.2AlSiO.sub.12 (I) wherein M.sup.1 is Hf, Zr, or a combination thereof; M.sup.2 is Al, or a combination of Al and Ga; z<3-x; and 0.2>x.gtoreq.0. The lighting apparatus includes a semiconductor light source in addition to the phosphor composition.

  11. Potassium cyanide

    Integrated Risk Information System (IRIS)

    Jump to main content . Integrated Risk Information System Recent Additions | Contact Us Search : All EPA IRIS • You are here : EPA Home • Research • Environmental Assessment • IRIS • IRIS Summaries Redirect Page As of September 28 , 2010 , the assessment summary for potassium cyanide is included in

  12. Flows of elements, ions and abscisic acid in Ricinus communis and site of nitrate reduction under potassium limitation.

    PubMed

    Peuke, Andreas D; Jeschke, W Dieter; Hartung, Wolfram

    2002-02-01

    In a pot experiment Ricinus communis plants were cultivated in quartz sand and supplied daily with a nutrient solution which contained 4 mol m(-3) nitrate as the nitrogen source and either full strength potassium (1.3 mol m(-3), control) or 8% potassium (0.1 mol m(-3), K(+)-limitation). Although the final fresh weight of the whole plant was not affected by K(+)-limitation, the root-shoot ratio was increased due to a relatively increased root growth and inhibited development of younger shoot parts. Owing to K(+)-limitation, photosynthesis was slightly decreased, while dark respiration of the shoot markedly decreased and root respiration was nearly doubled. The transport of carbon in the phloem, and to some extent in the xylem, was greater and the root was favoured in the partitioning of carbon. This was also true for nitrogen and potassium which were both taken up at lower rates, particularly potassium. In these two cases a high remobilization and recycling from the old part of the shoot was observed. By contrast, uptake of sodium was 2.4-fold higher under K(+)-limitation and this resulted in increased flows in the plants, which was discussed generally as a means for charge balance (in combination with a slight increase in uptake of magnesium and calcium). Nitrate reduction took place in the same portion in the root and shoot. This was a shift to the root compared to the control and points to an inhibition of xylem transport caused by limitation of K(+) as an easily permeating countercation. Low K(+) supply also resulted in an increased biosynthesis of ABA in the roots (265%). This caused a slightly increased deposition of ABA in the roots (193%) and a 4.6-fold higher root-to-shoot and a doubled shoot-to-root ABA signal in the xylem or phloem, respectively. The high degradation of ABA in the shoots prevented ABA accumulation there. PMID:11807128

  13. Investigations on the growth, optical, thermal, dielectric, and laser damage threshold properties of crystal violet dye-doped potassium acid phthalate single crystal

    NASA Astrophysics Data System (ADS)

    Rao, G. Babu; Rajesh, P.; Ramasamy, P.

    2016-03-01

    Influence of crystal violet dye with different concentration on potassium acid phthalate single crystal grown by conventional method has been studied. No change has been observed in the structure, whereas changes have been observed in the external morphology of the crystal when the dyes are incorporated in the crystal lattice. Thermogravimetric and differential thermal analyses show the onset decomposition temperatures to be at 302, 285, 284, and 285 °C for pure, 0.1, 0.3, and 0.5 mol% crystal violet-doped potassium acid phthalate crystals, respectively. The dielectric measurement was carried out on the grown crystals as a function of frequency at various temperatures. In addition, strong luminescent emission bands at 638, 648, and 640 nm were observed in which the relative intensity was found to be reversed as a result of doping concentration. The laser damage threshold value significantly increased for dye-doped crystal in comparison with pure crystal which may make it suitable for the solid-state dye laser applications.

  14. Deactivation mechanism of potassium on the V₂O₅/CeO₂ catalysts for SCR reaction: acidity, reducibility and adsorbed-NOx.

    PubMed

    Peng, Yue; Li, Junhua; Huang, Xu; Li, Xiang; Su, Wenkang; Sun, Xiaoxu; Wang, Dezhi; Hao, Jiming

    2014-04-15

    A series of V2O5/CeO2 catalysts with different potassium loadings were prepared to investigate alkali deactivations for selective catalytic reduction of NOx with NH3. An alkali poisoning mechanism could be attributed to surface acidity, reducibility, and NOx adsorption/desorption behaviors. The detailed factors are as follows: (1) decrease of surface acidity suppresses NH3 adsorption by strong bonding of alkali to vanadia (major factor); (2) low reducibility prohibits NH3 activation and NO oxidation by formation bonding of alkali to vanadia and ceria (important factor); (3) active NOx(-) species at low temperature diminish because of coverage of alkali on the surfaces (minor factor); and (4) stable, inactive nitrate species at high temperature increase by generating new basic sites (important factor).

  15. High temperature thermometric phosphors

    DOEpatents

    Allison, Stephen W.; Cates, Michael R.; Boatner, Lynn A.; Gillies, George T.

    1999-03-23

    A high temperature phosphor consists essentially of a material having the general formula LuPO.sub.4 :Dy.sub.(x),Eu.sub.y) wherein: 0.1 wt %.ltoreq.x.ltoreq.20 wt % and 0.1 wt %.ltoreq.y.ltoreq.20 wt %. The high temperature phosphor is in contact with an article whose temperature is to be determined. The article having the phosphor in contact with it is placed in the environment for which the temperature of the article is to be determined. The phosphor is excited by a laser causing the phosphor to fluoresce. The emission from the phosphor is optically focused into a beam-splitting mirror which separates the emission into two separate emissions, the emission caused by the dysprosium dopant and the emission caused by the europium dopent. The separated emissions are optically filtered and the intensities of the emission are detected and measured. The ratio of the intensity of each emission is determined and the temperature of the article is calculated from the ratio of the intensities of the separate emissions.

  16. High temperature thermometric phosphors

    DOEpatents

    Allison, S.W.; Cates, M.R.; Boatner, L.A.; Gillies, G.T.

    1999-03-23

    A high temperature phosphor consists essentially of a material having the general formula LuPO{sub 4}:Dy{sub x},Eu{sub y} wherein: 0.1 wt % {<=} x {<=} 20 wt % and 0.1 wt % {<=} y {<=} 20 wt %. The high temperature phosphor is in contact with an article whose temperature is to be determined. The article having the phosphor in contact with it is placed in the environment for which the temperature of the article is to be determined. The phosphor is excited by a laser causing the phosphor to fluoresce. The emission from the phosphor is optically focused into a beam-splitting mirror which separates the emission into two separate emissions, the emission caused by the dysprosium dopant and the emission caused by the europium dopant. The separated emissions are optically filtered and the intensities of the emission are detected and measured. The ratio of the intensity of each emission is determined and the temperature of the article is calculated from the ratio of the intensities of the separate emissions. 2 figs.

  17. Phosphor thermometry system

    DOEpatents

    Beshears, David L.; Sitter, Jr., David N.; Andrews, William H.; Simpson, Marc L.; Abston, Ruth A.; Cates, Michael R.; Allison, Steve W.

    2000-01-01

    An apparatus for measuring the temperature of a moving substrate includes an air gun with a powder inlet port in communication with the outlet port of a powder reservoir, an air inlet port in communication with a pressurized air source, and an outlet nozzle spaced from and directed toward the moving substrate. The air gun is activated by the air pulses to spray controlled amounts of the powdered phosphor onto the moving substrate, where the phosphor assumes the temperature of the moving substrate. A laser produces light pulses, and optics direct the light pulses onto the phosphor on the moving substrate, in response to which the phosphor emits a luminescence with a decay rate indicative of the temperature of the phosphor. A collection lens is disposed to focus the luminescence, and a photodetector detects the luminescence focused by the collection lens and produces an electrical signal that is characteristic of the brightness of the luminescence. A processor analyzes the electrical signal to determine the decay characteristic of the luminescence and to determine the temperature of the phosphor from the decay characteristic.

  18. Phosphors for LED lamps

    DOEpatents

    Murphy, James Edward; Manepalli, Satya Kishore; Kumar, Prasanth Nammalwar

    2013-08-13

    A phosphor, a phosphor blend including the phosphor, a phosphor prepared by a process, and a lighting apparatus including the phosphor blend are disclosed. The phosphor has the formula (Ca.sub.1-p-qCe.sub.pK.sub.q).sub.xSc.sub.y(Si.sub.1-rGa.sub.r).sub.zO.su- b.12+.delta. or derived from a process followed using disclosed amounts of reactants. In the formula, (0

  19. Inhibition of radical reactions for an improved potassium tert-butoxide-promoted (11) C-methylation strategy for the synthesis of α-(11) C-methyl amino acids.

    PubMed

    Suzuki, Chie; Kato, Koichi; Tsuji, Atsushi B; Zhang, Ming-Rong; Arano, Yasushi; Saga, Tsuneo

    2015-03-01

    α-(11) C-Methyl amino acids are useful tools for biological imaging studies. However, a robust procedure for the labeling of amino acids has not yet been established. In this study, the (11) C-methylation of Schiff-base-activated α-amino acid derivatives has been optimized for the radiosynthesis of various α-(11) C-methyl amino acids. The benzophenone imine analog of methyl 2-amino butyrate was (11) C-methylated with [(11) C]methyl iodide following its initial deprotonation with potassium tert-butoxide (KOtBu). The use of an alternative base such as tetrabutylammonium fluoride, triethylamine, and 1,8-diazabicyclo[5.4.0]undec-7-ene did not result in the (11) C-methylated product. Furthermore, the KOtBu-promoted (11) C-methylation of the Schiff-base-activated amino acid analog was enhanced by the addition of 1,2,4,5-tetramethoxybenzene or 2,2,6,6-tetramethylpiperidine-1-oxyl (TEMPO) and inhibited by the addition of 1,10-phenanthroline. These results suggest that inhibition of radical generation induced by KOtBu improves the α-(11) C-methylation of the Schiff-base-activated amino acids. The addition of a mixture of KOtBu and TEMPO to a solution of Schiff-base-activated amino acid ester and [(11) C]methyl iodide provided optimal results, and the tert-butyl ester and benzophenone imine groups could be readily hydrolyzed to give the desired α-(11) C-methyl amino acids with a high radiochemical conversion. This strategy could be readily applied to the synthesis of other α-(11) C-methyl amino acids.

  20. The effect of ethoxyquin on the quality of ground poultry mortality carcasses preserved by lactic acid fermentation and phosphoric acid stabilization.

    PubMed

    Middleton, T F; Ferket, P R; Boyd, L C

    2001-08-01

    Fermentation and acidification have been shown to preserve the protein quality of ground poultry coproducts, but the effects of these processes on their lipid stability are unknown, especially in the presence of an antioxidant. To evaluate the effects of these treatments on lipid quality, ground poultry mortality carcasses, with and without an addition of 500 ppm ethoxyquin, were stabilized for 14 and 45 d by lactic acid fermentation or acidification with 2.76, 5.07, 7.35, or 9.65% feed-grade H3PO4. Ethoxyquin treatment significantly (P < 0.001) improved the oxidative stability of lipids from all storage treatments. However, the addition of ethoxyquin increased (P < 0.001) the levels of volatile N (VN) from 2.51 to 3.18% in products stored for 45 d and resulted in an increase (P < 0.001) in free fatty acids in all ensiled products. Ethoxyquin addition had no effect (P > 0.120) on the fatty acid profile of products stored for 14 d but significantly increased (P < 0.001) the levels of stearic (C18:0) and arachidonic acids (C20:4) in products stored for 45 d. In this experiment, the addition of ethoxyquin to preservation systems for the short-term storage of poultry mortality carcasses improved the lipid quality of the ground material without compromising the protein quality or affecting proximate analysis parameters. However, the increased oxidative stability of mortality silage materials that contain ethoxyquin may contribute to enhanced microbial or enzymatic activities that result in proteolytic or lypolytic breakdown products following longer periods of storage. PMID:11495468

  1. Protective effect of iridoid glycosides from Paederia scandens (LOUR.) MERRILL (Rubiaceae) on uric acid nephropathy rats induced by yeast and potassium oxonate.

    PubMed

    Hou, Shi-xiang; Zhu, Wen-jing; Pang, Ming-qun; Jeffry, Joseph; Zhou, Lan-lan

    2014-02-01

    Iridoid glycosides of Paederia scandens (IGPS) are an active component isolated from Chinese herb P. scandens (LOUR.) MERRILL (Rubiaceae). Uric acid nephropathy (UAN) is caused by excessive uric acid, which results in damage of kidney tissue via urate crystals deposition in the kidneys. This study aimed to investigate the protective effects of IGPS on UAN in rats induced by yeast and potassium oxonate. Treatment groups received different doses of IGPS and allopurinol (AP) daily for 35 days respectively. The results showed that treatment with IGPS significantly prevented the increases of uric acid in serum and the elevation of systolic blood pressure (SBP), attenuated renal tissue injury, improved renal function and reserved the biological activity of NOS-1. IGPS also inhibited the biological activity of TNF-α and TGF-β1, and suppressed the mRNA expressions of TNF-α and TGF-β1 in renal tissue. Taken together, the present and our previous findings suggest that IGPS exerts protective effects against kidney damage in UAN rats through its uric acid-lowering, anti-inflammatory and immunomodulatory properties. Furthermore, decreasing SBP by up regulation of NOS-1 expression and down regulation of TNF-α and TGF-β1 expression are involved in the effect of IGPS on high uric acid-induced nephropathy. PMID:24287205

  2. Color stable manganese-doped phosphors

    DOEpatents

    Lyons, Robert Joseph; Setlur, Anant Achyut; Deshpande, Anirundha Rajendra; Grigorov, Ljudmil Slavchev

    2014-04-29

    A lighting apparatus capable of emitting white light includes a semiconductor light source; and a phosphor material radiationally coupled to the light source. The phosphor material includes a color-stable Mn.sup.+4 doped phosphor prepared by a process including providing a phosphor of formula I; A.sub.x[MF.sub.y]:Mn.sup.+4 I and contacting the phosphor in particulate form with a saturated solution of a composition of formula II in aqueous hydrofluoric acid; A.sub.x[MF.sub.y]; II wherein A is Li, Na, K, Rb, Cs, NR.sub.4 or a combination thereof; M is Si, Ge, Sn, Ti, Zr, Al, Ga, In, Sc, Y, La, Nb, Ta, Bi, Gd, or a combination thereof; R is H, lower alkyl, or a combination thereof; x is the absolute value of the charge of the [MF.sub.y] ion; and y is 5, 6 or 7. In particular embodiments, M is Si, Ge, Sn, Ti, Zr, or a combination thereof.

  3. Color stable manganese-doped phosphors

    DOEpatents

    Lyons, Robert Joseph; Setlur, Anant Achyut; Deshpande, Anirudha Rajendra; Grigorov, Ljudmil Slavchev

    2012-08-28

    A process for preparing color stable Mn.sup.+4 doped phosphors includes providing a phosphor of formula I; A.sub.x[MF.sub.y]:Mn.sup.+4 I and contacting the phosphor in particulate form with a saturated solution of a composition of formula II in aqueous hydrofluoric acid; A.sub.x[MF.sub.y]; II wherein A is Li, Na, K, Rb, Cs, NR.sub.4 or a combination thereof; M is Si, Ge, Sn, Ti, Zr, Al, Ga, In, Sc, Y, La, Nb, Ta, Bi, Gd, or a combination thereof; R is H, lower alkyl, or a combination thereof; x is the absolute value of the charge of the [MF.sub.y] ion; and y is 5, 6 or 7. In particular embodiments, M is Si, Ge, Sn, Ti, Zr, or a combination thereof. A lighting apparatus capable of emitting white light includes a semiconductor light source; and a phosphor composition radiationally coupled to the light source, and which includes a color stable Mn.sup.+4 doped phosphor.

  4. Nickel cobalt phosphorous low stress electroplating

    NASA Technical Reports Server (NTRS)

    Engelhaupt, Darell E. (Inventor); Ramsey, Brian D. (Inventor)

    2002-01-01

    An electrolytic plating process is provided for electrodepositing a nickel or nickel cobalt alloy which contains at least about 2% to 25% by atomic volume of phosphorous. The process solutions contains nickel and optionally cobalt sulfate, hypophosphorous acid or a salt thereof, boric acid or a salt thereof, a monodentate organic acid or a salt thereof, and a multidentate organic acid or a salt thereof. The pH of the plating bath is from about 3.0 to about 4.5. An electroplating process is also provided which includes electroplating from the bath a nickel or nickel cobalt phosphorous alloy. This process can achieve a deposit with high microyield of at least about 84 kg/mm.sup.2 (120 ksi) and a density lower than pure nickel of about 8.0 gm/cc. This process can be used to plate a deposit of essentially zero stress at plating temperatures from ambient to 70.degree. C.

  5. Addition of potassium carbonate to continuous cultures of mixed ruminal bacteria shifts volatile fatty acids and daily production of biohydrogenation intermediates.

    PubMed

    Jenkins, T C; Bridges, W C; Harrison, J H; Young, K M

    2014-02-01

    A recent study reported a 0.4 percentage unit increase in milk fat of lactating dairy cattle when dietary K was increased from 1.2 to 2% with potassium carbonate. Because milk fat yield has been associated with ruminal production of certain conjugated linoleic acid (CLA) isomers, 2 studies were conducted to determine if increasing potassium carbonate in the rumen would alter patterns of fermentation and biohydrogenation. In experiment 1, 5 dual-flow continuous fermenters were injected just before each feeding with a 10% (wt/wt) stock potassium carbonate solution to provide the equivalent of 1.1 (K1), 2.2 (K2), and 3.3 (K3) % of diet dry matter (DM) as added K. One of the remaining fermenters received no K (K0) and the last fermenter (NaOH) was injected with adequate NaOH stock solution (10%, wt/wt) to match the pH observed for the K3 treatment. For experiment 2, 6 dual-flow continuous fermenters were used to evaluate 6 treatments arranged in a 2 × 3 factorial to examine 2 levels of soybean oil (0 and 3.64% of diet DM) and added K at 0, 1.6, and 3.3% of diet DM. In both experiments, fermenters were fed 55 to 57 g of DM/d of a typical dairy diet consisting of 1:1 forage (10% alfalfa hay and 90% corn silage) to concentrate mix in 2 equal portions at 0800 and 1630 h, and fed the respective diets for 10-d periods. Potassium carbonate addition increased pH in both experiments. Acetate:propionate ratio and pH in experiment 1 increased linearly for K0 to K3. Acetate:propionate ratio was lower for NaOH compared with K3 but the pH was the same. The trans-11 18:1 and cis-9,trans-11 CLA production rates (mg/d) increased linearly from K0 to K3, but K3 and NaOH did not differ. Production of trans-10 18:1 decreased and that of trans-10,cis-12 tended to decrease from K0 to K3, but production of trans-10,cis-12 CLA remained high for NaOH. Addition of K to the cultures in experiment 2 decreased propionate and increased acetate and acetate:propionate ratio for the 0% fat diet but

  6. Flow injection determination of diclofenac sodium based on its sensitizing effect on the chemiluminescent reaction of acidic potassium permanganate-formaldehyde.

    PubMed

    Song, Jingjing; Sun, Pulv; Ji, Zhongling; Li, Jianguo

    2015-02-01

    A sensitive and simple chemiluminescent (CL) method for the determination of diclofenac sodium has been developed by combining the flow injection technique and its sensitizing effect on the weak CL reaction between formaldehyde and acidic potassium permanganate. A calibration curve is constructed for diclofenac sodium under optimized experimental parameters over the range 0.040-5.0 µg/mL and the limit of detection is 0.020 µg/mL (3σ). The inter-assay relative standard deviation for 0.040 µg/mL diclofenac sodium (n = 11) is 2.0%. This method is rapid, sensitive, simple, and shows good selectivity and reproducibility. The proposed method has been successfully applied to the determination of the studied diclofenac sodium in pharmaceutical preparations with satisfactory results. Furthermore, the possible mechanism for the CL reaction has been discussed in detail on the basis of UV and CL spectra.

  7. Phosphorus, phosphorous, and phosphate.

    PubMed

    Iheagwara, O Susan; Ing, Todd S; Kjellstrand, Carl M; Lew, Susie Q

    2013-10-01

    This article distinguishes the terms "phosphorus, phosphorous, and phosphate" which are frequently used interchangeably. We point out the difference between phosphorus and phosphate, with an emphasis on the unit of measure. Expressing a value without the proper name or unit of measure may lead to misunderstanding and erroneous conclusions. We indicate why phosphate must be expressed as milligrams per deciliter or millimoles per liter and not as milliequivalents per liter. Therefore, we elucidate the distinction among the terms "phosphorus, phosphorous, and phosphate" and the importance of saying precisely what one really means.

  8. [Bioconversion of conjugated linoleic acid by resting cells of Lactobacillus plantarum ZS2058 in potassium phosphate buffer system].

    PubMed

    Niu, Xiao-yan; Chen, Wei; Tian, Feng-wei; Zhao, Jian-xin; Zhang, Hao

    2007-04-01

    Lactobacillus plantarum ZS2058, which was screened from the Chinese traditional fermented vegetable, has the capacity to convert the linoleic acid (LA) into conjugated linoleic acid (CLA). Some specific isomers of CLA with potentially beneficial physiological and anticarcinogenic effects, were efficiently produced from free linoleic acid by washed cells of Lactobacillus plantarum ZS2058 under aerobic conditions. The produced CLA isomers are identified as the mixture of cis-9, trans-ll-octadecadienoic acid (CLA1) trans-10, cis-12-octadecadienoic acid (CLA2), 96.4% of which is CLA1. The washed cells of Lactobacillus plantarum ZS2058 producing high levels of c9, t11-CLA were obtained by cultivated in MRS media containing 0.5 mg/mL linoleic acid, indicating that the enzyme system for CLA production is induced by linoleic acid. After a 24-hour bioconversion at 37 degrees C with shaking (120 r/min), 312.4 microg/mL c9, t11-CLA is produced. And after a 36-hour bioconversion, the content of c9, t11-CLA decreases while hydroxy-octadecaenoic acid increases. In addition, the c9, t11-CLA isomer can be transformed to hydroxy- octadecaenoic acid when the mixed CLA (c9, t11-CLA and t10, c12-CLA) were used as the substrate, which suggests that c9, t11-CLA is one of the intermediates of the bioconversion products from free LA by washed cells of Lactobacillus plantarum ZS2058.

  9. Effect of Functional Bread Rich in Potassium, γ-Aminobutyric Acid and Angiotensin-Converting Enzyme Inhibitors on Blood Pressure, Glucose Metabolism and Endothelial Function

    PubMed Central

    Becerra-Tomás, Nerea; Guasch-Ferré, Marta; Quilez, Joan; Merino, Jordi; Ferré, Raimon; Díaz-López, Andrés; Bulló, Mònica; Hernández-Alonso, Pablo; Palau-Galindo, Antoni; Salas-Salvadó, Jordi

    2015-01-01

    Abstract Because it has been suggested that food rich in γ-aminobutyric acid (GABA) or angiotensin-converting enzyme inhibitor (ACEI) peptides have beneficial effects on blood pressure (BP) and other cardiovascular risk factors, we tested the effects of low-sodium bread, but rich in potassium, GABA, and ACEI peptides on 24-hour BP, glucose metabolism, and endothelial function. A randomized, double-blind, crossover trial was conducted in 30 patients with pre or mild-to-moderate hypertension, comparing three 4-week nutritional interventions separated by 2-week washout periods. Patients were randomly assigned to consume 120 g/day of 1 of the 3 types of bread for each nutritional intervention: conventional wheat bread (CB), low-sodium wheat bread enriched in potassium (LSB), and low-sodium wheat bread rich in potassium, GABA, and ACEI peptides (LSB + G). For each period, 24-hour BP measurements, in vivo endothelial function, and biochemical samples were obtained. After LSB + G consumption, 24-hour ambulatory BP underwent a nonsignificant greater reduction than after the consumption of CB and LSB (0.26 mm Hg in systolic BP and −0.63 mm Hg in diastolic BP for CB; −0.71 mm Hg in systolic BP and −1.08 mm Hg in diastolic BP for LSB; and −0.75 mm Hg in systolic BP and −2.12 mm Hg in diastolic BP for LSB + G, respectively). Diastolic BP at rest decreased significantly during the LSB + G intervention, although there were no significant differences in changes between interventions. There were no significant differences between interventions in terms of changes in in vivo endothelial function, glucose metabolism, and peripheral inflammatory parameters. Compared with the consumption of CB or LSB, no greater beneficial effects on 24-hour BP, endothelial function, or glucose metabolism were demonstrated after the consumption of LSB + G in a population with pre or mild-to-moderate hypertension. Further studies are warranted to clarify the

  10. A high sensitive phosphor for dosimetric applications

    SciTech Connect

    Kore, Bhushan P. Dhoble, S. J.; Dhoble, N. S.; Lochab, S. P.

    2015-06-24

    In this study a novel TL phosphor CaMg{sub 3}(SO{sub 4}){sub 4}:Dy{sup 3+} was prepared by acid distillation method. The TL response of this phosphor towards γ-rays and carbon ion beam was tested. Good dosimetric glow curve was observed which is stable against both the type of radiations. The CaMg{sub 3}(SO{sub 4}){sub 4}:Dy{sup 3+} phosphor doped with 0.2 mol% of Dy{sup 3+}, irradiated with γ-ray shows nearly equal sensitivity to that of commercially available CaSO{sub 4}:Dy TLD phosphor whereas 3.5 times more sensitivity than CaSO{sub 4}:Dy, when irradiated with carbon ion beam. The change in glow peak intensities and glow peak temperature with variation in irradiation species and energy of ion beam is discussed here. The effect of these on trapping parameters is also illustrated.

  11. Surface modification with phosphoric acid of SiO2/Nb2O5 prepared by the sol-gel method: structural-textural and acid sites studies and an ion exchange model.

    PubMed

    Francisco, M S P; Cardoso, W S; Gushikem, Y; Landers, R; Kholin, Y V

    2004-09-28

    In this work, the structural and textural properties of the SiO2/Nb2O5 system prepared by the sol-gel method and then modified by phosphoric acid were studied. The different materials were prepared, with three different mol % Nb2O5 (2.5, 5.0, and 7.5 mol %), and calcined in the temperature range of 423-1273 K. BET specific surface area determinations, scanning electron microscopy connected to a X-ray emission analyzer, Fourier transform infrared spectroscopy, and X-ray photoelectron spectroscopy (XPS) were used for the investigation. For the lowest temperature of calcination (423 K), the mesopores and micropores of the modified material were blocked, resulting in a decrease of the specific surface area compared to the SBET values obtained for the SiNb matrix. Under intermediate temperatures of calcination (423-873 K), the modified material acquired textural stability. By XPS analysis, the presence of the dihydrogenphosphate species was identified, the P/Nb atomic ratios being independent of the thermal treatment. 31P magic angle spinning NMR confirmed the XPS data and also showed that the chemical shift of the (H2PO4)- ions strongly depended on the crystallization degree of the Nb2O5. Structural thermal stability was also shown by the presence of Brønsted acid sites in the modified material calcined at high temperature (1273 K). The thermal stability is directly associated with obtainment of the same value for K+ exchange capacity (0.74 mmol g(-1), average value) for the modified materials calcined at 423 and 1273 K. The chemical analyses of phosphorus for the modified materials were made by using the inductively coupled plasma. The value was 0.36 mmol g(-1), corroborating the presence of (H2PO4)- ions. The ion exchange isotherms presented an S-shaped form characteristic of energetically heterogeneous ion exchangers, permitting application of a model of fixed polydentate centers, in which ion exchange took place. PMID:15379496

  12. Singlet oxygen-sensitized delayed emissions from hydrogen peroxide/gallic acid/potassium ferricyanide systems containing organic solvents

    NASA Astrophysics Data System (ADS)

    Ishii, Hiroshi; Tsukino, Kazuo; Sekine, Masahiko; Nakata, Munetaka

    2009-06-01

    Fourier-transform chemiluminescence spectra of H 2O 2/gallic acid/K 3[Fe(CN) 6] systems containing organic solvents were measured. Emission bands with peaks around 530 and 700 nm were observed in systems containing solvents with a carbonyl group such as N, N-dimethylformamide, and those with a hydroxyl group such as methanol, respectively. The relative band intensities depended strongly on the concentration of these organic solvents. The emission species are attributed to gallic acid-ferricyanide complexes excited by energy transfer from singlet oxygen dimol, ( 1O 2) 2. The effects of organic solvents are interpreted in terms of intermolecular interactions of gallic acid-ferricyanide complexes, water molecules and organic solvents.

  13. Phosphorous trapped within buckminsterfullerene

    NASA Astrophysics Data System (ADS)

    Larsson, J. A.; Greer, J. C.; Harneit, W.; Weidinger, A.

    2002-05-01

    Under normal circumstances, when covalent molecules form, electrons are exchanged between atoms to form bonds. However, experiment and theoretical computations reveal exactly the opposite effect for the formation of group V elements nitrogen and phosphorous encapsulated within a buckminsterfullerene molecule. The C60 carbon cage remains intact upon encapsulation of the atom, whereas the electronic charge cloud of the N or P atom contracts. We have studied the chemical, spin, and thermodynamic properties of endohedral phosphorous (P@C60) and have compared our results with earlier findings for N@C60. From a combined experimental and theoretical vantage, we are able to elucidate a model for the interaction between the trapped group V atom and the fullerene cage. A picture emerges for the electronic structure of these complexes, whereby an atom is trapped within a fullerene, and interacts weakly with the molecular orbitals of the C60 cage.

  14. Hydrothermal carbonization (HTC) of wheat straw: influence of feedwater pH prepared by acetic acid and potassium hydroxide.

    PubMed

    Reza, M Toufiq; Rottler, Erwin; Herklotz, Laureen; Wirth, Benjamin

    2015-04-01

    In this study, influence of feedwater pH (2-12) was studied for hydrothermal carbonization (HTC) of wheat straw at 200 and 260°C. Acetic acid and KOH were used as acidic and basic medium, respectively. Hydrochars were characterized by elemental and fiber analyses, SEM, surface area, pore volume and size, and ATR-FTIR, while HTC process liquids were analyzed by HPLC and GC. Both hydrochar and HTC process liquid qualities vary with feedwater pH. At acidic pH, cellulose and elemental carbon increase in hydrochar, while hemicellulose and pseudo-lignin decrease. Hydrochars produced at pH 2 feedwater has 2.7 times larger surface area than that produced at pH 12. It also has the largest pore volume (1.1 × 10(-1) ml g(-1)) and pore size (20.2 nm). Organic acids were increasing, while sugars were decreasing in case of basic feedwater, however, phenolic compounds were present only at 260°C and their concentrations were increasing in basic feedwater. PMID:25710573

  15. Cathode catalyst for primary phosphoric fuel cells

    NASA Technical Reports Server (NTRS)

    Walsh, F.

    1980-01-01

    Alkylation of Vulcan XC-72 provided the most stable bond type for linking CoTAA to the surface of the carbon; this result is based on data obtained by cyclic voltammetry, pulse voltammetry and by release of 14C from bonded CoTAA. Half-cell tests at 100 C in 85% phosphoric acid showed that CoTAA bonded to the surface of carbon (Vulcan XC-72) via an alkylation procedure is a more active catalyst than is platinum based on a factor of two improvement in Tafel slope; dimeric CoTAA has catalytic activity equal to platinum. Half-cell tests also showed that bonded CoTAA catalysts do not suffer a loss in potential when air is used as a fuel rather than oxygen. Commercially available PTFE was shown to be stable for four months in 200 C 85% phosphoric acid based on lack of change in surface wetting properties, IR and physical characteristics. When stressed electrochemically in 150 C 85% phosphoric acid, PTFE also showed no changes after one month.

  16. Green emitting phosphors and blends thereof

    DOEpatents

    Setlur, Anant Achyut; Siclovan, Oltea Puica; Nammalwar, Prasanth Kumar; Sathyanarayan, Ramesh Rao; Porob, Digamber G.; Chandran, Ramachandran Gopi; Heward, William Jordan; Radkov, Emil Vergilov; Briel, Linda Jane Valyou

    2010-12-28

    Phosphor compositions, blends thereof and light emitting devices including white light emitting LED based devices, and backlights, based on such phosphor compositions. The devices include a light source and a phosphor material as described. Also disclosed are phosphor blends including such a phosphor and devices made therefrom.

  17. Randomised clinical trial: safety, tolerability, pharmacokinetics and pharmacodynamics of repeated doses of TAK-438 (vonoprazan), a novel potassium-competitive acid blocker, in healthy male subjects

    PubMed Central

    Jenkins, H; Sakurai, Y; Nishimura, A; Okamoto, H; Hibberd, M; Jenkins, R; Yoneyama, T; Ashida, K; Ogama, Y; Warrington, S

    2015-01-01

    Background TAK-438 (vonoprazan) is a potassium-competitive acid blocker that reversibly inhibits gastric H+, K+-ATPase. Aim To evaluate the safety, tolerability, pharmacokinetics and pharmacodynamics of TAK-438 in healthy Japanese and non-Japanese men. Methods In two Phase I, randomised, double-blind, placebo-controlled studies, healthy men (Japan N = 60; UK N = 48) received TAK-438 10–40 mg once daily at a fixed dose level for 7 consecutive days. Assessments included safety, tolerability, pharmacokinetics and pharmacodynamics (intragastric pH). Results Plasma concentration–time profiles of TAK-438 at all dose levels showed rapid absorption (median Tmax ≤2 h). Mean elimination half-life was up to 9 h. Exposure was slightly greater than dose proportional, with no apparent time-dependent inhibition of metabolism. There was no important difference between the two studies in AUC0-tau on Day 7. TAK-438 caused dose-dependent acid suppression. On Day 7, mean 24-h intragastric pH>4 holding time ratio (HTR) with 40 mg TAK-438 was 100% (Japan) and 93.2% (UK), and mean night-time pH>4 HTR was 100% (Japan) and 90.4% (UK). TAK-438 was well tolerated. The frequency of adverse events was similar at all dose levels and there were no serious adverse events. There were no important increases in serum alanine transaminase activity. Serum gastrin and pepsinogen I and II concentrations increased with TAK-438 dose. Conclusions TAK-438 in multiple rising oral dose levels of 10–40 mg once daily for 7 days was safe and well tolerated in healthy men and caused rapid, profound and sustained suppression of gastric acid secretion throughout each 24-h dosing interval. Clinicaltrials.gov identifiers: NCT02123953 and NCT02141711. PMID:25707624

  18. Long-persistence blue phosphors

    NASA Technical Reports Server (NTRS)

    Yen, William M. (Inventor); Jia, Weiyi (Inventor); Lu, Lizhu (Inventor); Yuan, Huabiao (Inventor)

    2000-01-01

    This invention relates to phosphors including long-persistence blue phosphors. Phosphors of the invention are represented by the general formula: MO . mAl.sub.2 O.sub.3 :Eu.sup.2+,R.sup.3+ wherein m is a number ranging from about 1.6 to about 2.2, M is Sr or a combination of Sr with Ca and Ba or both, R.sup.3+ is a trivalent metal ion or trivalent Bi or a mixture of these trivalent ions, Eu.sup.2+ is present at a level up to about 5 mol % of M, and R.sup.3+ is present at a level up to about 5 mol % of M. Phosphors of this invention include powders, ceramics, single crystals and single crystal fibers. A method of manufacturing improved phosphors and a method of manufacturing single crystal phosphors are also provided.

  19. Blue light emitting thiogallate phosphor

    DOEpatents

    Dye, Robert C.; Smith, David C.; King, Christopher N.; Tuenge, Richard T.

    1998-01-01

    A crystalline blue emitting thiogallate phosphor of the formula RGa.sub.2 S.sub.4 :Ce.sub.x where R is selected from the group consisting of calcium, strontium, barium and zinc, and x is from about 1 to 10 atomic percent, the phosphor characterized as having a crystalline microstructure on the size order of from about 100 .ANG. to about 10,000 .ANG. is provided together with a process of preparing a crystalline blue emitting thiogallate phosphor by depositing on a substrate by CVD and resultant thin film electroluminescent devices including a layer of such deposited phosphor on an ordinary glass substrate.

  20. Effect of dietary potassium and anionic salts on acid-base and mineral status in periparturient cows.

    PubMed

    Rérat, M; Schlegel, P

    2014-06-01

    Dry cow diets based on grassland forage from intensive production contain high amounts of K and could be responsible for a reduced ability to maintain Ca homoeostasis. The aim of this study was to determine whether a moderate anionic salt supplementation to a forage-based pre-calving diet with varying native K content affects the mineral and acid-base status in transition cows. Twenty-four dry and pregnant Holstein cows, without antecedent episodes of clinical hypocalcemia, were assigned to two diets during the last 4 weeks before estimated calving date. Twelve cows were fed a hay-based diet low in K (18 g K/kg DM), and 12, a hay-based diet high in K (35 g K/kg DM). Within each diet, six cows received anionic salts during the last 2 weeks before the estimated calving day. After calving, all cows received the high K diet ad libitum. Blood samples were taken daily from day 11 pre-partum to day 5 post-partum. Urine samples were taken on days 7 and 2 pre-partum and on day 2 post-partum. The anionic salt did not alter feed intake during the pre-partum period. Serum Ca was not influenced by the dietary treatments. Feeding pre-partum diets with low K concentrations induced a reduced metabolic alkalotic charge, as indicated by reduced pre-partum urinary base-acid quotient. Transition cows fed the low K diet including anionic salts induced a mild metabolic acidosis before calving, as indicated by higher urinary Ca, lower urinary pH and net acid-base excretion. Although serum Ca during the post-partum period was not affected by dietary treatment, feeding a low K diet moderately supplemented with anionic salts to reach a dietary cation-anion difference close to zero permitted to obtain a metabolic response in periparturient cows without altering the dry matter intake.