Science.gov

Sample records for phosphorus 21

  1. 21 CFR 862.1580 - Phosphorus (inorganic) test system.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Phosphorus (inorganic) test system. 862.1580... Systems § 862.1580 Phosphorus (inorganic) test system. (a) Identification. A phosphorus (inorganic) test system is a device intended to measure inorganic phosphorus in serum, plasma, and urine. Measurements...

  2. 21 CFR 862.1580 - Phosphorus (inorganic) test system.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Phosphorus (inorganic) test system. 862.1580... Systems § 862.1580 Phosphorus (inorganic) test system. (a) Identification. A phosphorus (inorganic) test system is a device intended to measure inorganic phosphorus in serum, plasma, and urine. Measurements...

  3. 21 CFR 862.1580 - Phosphorus (inorganic) test system.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Phosphorus (inorganic) test system. 862.1580... Systems § 862.1580 Phosphorus (inorganic) test system. (a) Identification. A phosphorus (inorganic) test system is a device intended to measure inorganic phosphorus in serum, plasma, and urine. Measurements...

  4. 21 CFR 862.1580 - Phosphorus (inorganic) test system.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Phosphorus (inorganic) test system. 862.1580... Systems § 862.1580 Phosphorus (inorganic) test system. (a) Identification. A phosphorus (inorganic) test system is a device intended to measure inorganic phosphorus in serum, plasma, and urine. Measurements...

  5. 21 CFR 862.1580 - Phosphorus (inorganic) test system.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Phosphorus (inorganic) test system. 862.1580... Systems § 862.1580 Phosphorus (inorganic) test system. (a) Identification. A phosphorus (inorganic) test system is a device intended to measure inorganic phosphorus in serum, plasma, and urine. Measurements...

  6. Non-phytate phosphorus requirement for broilers from 8 to 21 days of age under heat stress conditions.

    PubMed

    Cardoso, Evandro Ferreira; Donzele, Juarez Lopes; de Oliveira Donzele, Rita Flávia Miranda; Sufiate, Bruna Leite; Silva, Amanda Dione; Tizziani, Tarciso

    2017-10-03

    Two trials were conducted to determine the non-phytate phosphorus (nPP) requirement for broiler under heat stress. In both trials, birds were distributed in a completely randomized 4 × 2 factorial design with four nPP concentrations: 0.25, 0.35, 0.45, and 0.55%, and two Ca supply techniques: Ca fixed at 0.899% (CaF) or varying along with nPP aiming a 2:1 Ca to nPP ratio (CaV). Both trials had eight pens/treatment, with nine and five birds/pen for exp. 1 and exp. 2, respectively. nPP concentration had no effect on feed intake (FI), body weight gain (BWG), feed conversion ratio (FCR), nor fat deposition ratio (FDR). nPP levels showed a linear effect on protein deposition ratio (PDR) only for CaF diets. The nPP levels had a significant effect, regardless the technique adopted, on tibia phosphorus (TibP), which varied quadratically, on tibia calcium (TibCa) that increased quadratically and linearly, respectively, on CaF and CaV diets, and on tibia ash (TibAsh) that showed a quadratic effect for both. No effect was observed on Ca to P ratio in the tibia (TibCa:TibP). The nPP levels showed a linear increase effect over phosphorus intake (PI), phosphorus excreted (PE), and phosphorus retained (PR), and a linear decrease effect on phosphorus retention coefficient (PRC). Therefore, the nPP requirement for broilers from 8 to 21 days of age that provided better performance and bone variables were 0.250 and 0.484%, respectively, for CaF diets and 0.250 and 0.511%, respectively, for CaV diets.

  7. Phosphorus balance and use efficiency on 21 intensive grass-based dairy farms in the South of Ireland.

    PubMed

    Mihailescu, E; Murphy, P N C; Ryan, W; Casey, I A; Humphreys, J

    2015-04-01

    Given the finite nature of global phosphorus (P) resources, there is an increasing concern about balancing agronomic and environmental impacts from P usage on dairy farms. Data from a 3-year (2009-2011) survey were used to assess farm-gate P balances and P use efficiency (PUE) on 21 intensive grass-based dairy farms operating under the good agricultural practice (GAP) regulations in Ireland. Mean stocking rate (SR) was 2·06 livestock units (LU)/ha, mean P surplus was 5·09 kg/ha, or 0·004 kg P/kg milk solids (MS), and mean PUE was 0·70. Phosphorus imports were dominated by inorganic fertilizer (7·61 kg P/ha) and feeds (7·62 kg P/ha), while exports were dominated by milk (6·66 kg P/ha) and livestock (5·10 kg P/ha). Comparison to similar studies carried out before the introduction of the GAP regulations in 2006 indicated that P surplus, both per ha and per kg MS, has significantly decreased (by 74 and 81%, respectively) and PUE increased (by 48%), mostly due to decreased inorganic fertilizer P import and improvements in P management. There has been a notable shift towards spring application of organic manures, indicating improved awareness of the fertilizer value of organic manures and good compliance with the GAP regulations regarding fertilizer application timing. These results suggested a positive impact of the GAP regulations on dairy farm P surplus and PUE, indicating an improvement in both environmental and economic sustainability of dairy production through improved resource use efficiencies. Such improvements will be necessary to achieve national targets of improved water quality and increased dairy production. Results suggest that optimizing fertilizer and feed P imports combined with improved on-farm P recycling are the most effective way to increase PUE. Equally, continued monitoring of soil test P (STP) and P management will be necessary to ensure that adequate soil P fertility is maintained. Mean P surplus was lower and PUE was much higher than

  8. Phosphinate chemistry in the 21st century: a viable alternative to the use of phosphorus trichloride in organophosphorus synthesis.

    PubMed

    Montchamp, Jean-Luc

    2014-01-21

    Organophosphorus compounds are important in everyday applications ranging from agriculture to medicine and are used in flame retardants and other materials. Although organophosphorus chemistry is known as a mature and specialized area, researchers would like to develop new methods for synthesizing organophosphorus compounds to improve the safety and sustainability of these chemical processes. The vast majority of compounds that contain a phosphorus-carbon bond are manufactured using phosphorus trichloride (PCl3) as an intermediate. However, these reactions require chlorine, and researchers would like to avoid the use of PCl3 and develop safer chemistry that also decreases energy consumption and minimizes waste. Researchers have already proposed and discussed two primary strategies based on elemental phosphorus (P4 or Pred) or on phosphine (PH3) as alternatives to PCl3. However, phosphinates, an important class of phosphorus compounds defined as any compound with a phosphorus atom attached to two oxygens, R(1)R(2)P(O)(OR) (R(1)/R(2) = hydrogen/carbon), offer another option. This Account discusses the previously neglected potential of these phosphinates as replacements of PCl3 for the preparation of organophosphorus compounds. Because of their strong reductive properties, industry currently uses the simplest members of this class of compounds, hypophosphites, for one major application: electroless plating. In comparison with other proposed PCl3 surrogates, hypophosphorous derivatives can offer improved stability, lower toxicity, higher solubility, and increased atom economy. When their reducing power is harnessed to form phosphorus-carbon or phosphorus-oxygen bonds, these compounds are also rich and versatile precursors to organophosphorus compounds. This Account examines the use of transition metal-catalyzed reactions such as cross-coupling and hydrophosphinylation for phosphorus-carbon bond formation. Because the most important industrial organophosphorus compounds

  9. Glacial atmospheric phosphorus deposition

    NASA Astrophysics Data System (ADS)

    Kjær, Helle Astrid; Dallmayr, Remi; Gabrieli, Jacopo; Goto-Azuma, Kumiko; Hirabayashi, Motohiro; Svensson, Anders; Vallelonga, Paul

    2016-04-01

    Phosphorus in the atmosphere is poorly studied and thus not much is known about atmospheric phosphorus and phosphate transport and deposition changes over time, though it is well known that phosphorus can be a source of long-range nutrient transport, e.g. Saharan dust transported to the tropical forests of Brazil. In glacial times it has been speculated that transport of phosphorus from exposed shelves would increase the ocean productivity by wash out. However whether the exposed shelf would also increase the atmospheric load to more remote places has not been investigated. Polar ice cores offer a unique opportunity to study the atmospheric transport of aerosols on various timescales, from glacial-interglacial periods to recent anthropogenic influences. We have for the first time determined the atmospheric transport of phosphorus to the Arctic by means of ice core analysis. Both total and dissolved reactive phosphorus were measured to investigate current and past atmospheric transport of phosphorus to the Arctic. Results show that glacial cold stadials had increased atmospheric total phosphorus mass loads of 70 times higher than in the past century, while DRP was only increased by a factor of 14. In the recent period we find evidence of a phosphorus increase over the past 50 yrs in ice cores close to human occupation likely correlated to forest fires. References: Kjær, Helle Astrid, et al. "Continuous flow analysis method for determination of dissolved reactive phosphorus in ice cores." Environmental science & technology 47.21 (2013): 12325-12332. Kjær, Helle Astrid, et al. "Greenland ice cores constrain glacial atmospheric fluxes of phosphorus." Journal of Geophysical Research: Atmospheres120.20 (2015).

  10. Phosphorus Test

    MedlinePlus

    ... AACC products and services. Advertising & Sponsorship: Policy | Opportunities Phosphorus Share this page: Was this page helpful? Also ... else I should know? How is it used? Phosphorus tests are most often ordered along with other ...

  11. Indicators: Phosphorus

    EPA Pesticide Factsheets

    Phosphorus, like nitrogen, is a critical nutrient required for all life. Phosphate (PO4), which plays major roles in the formation of DNA, cellular energy, and cell membranes (and plant cell walls). Too much phosphorus can create water quality problems.

  12. The purple acid phosphatase GmPAP21 enhances internal phosphorus utilization and possibly plays a role in symbiosis with rhizobia in soybean.

    PubMed

    Li, Chengchen; Li, Caifeng; Zhang, Haiyan; Liao, Hong; Wang, Xiurong

    2017-02-01

    Induction of secreted and intracellular purple acid phosphatases (PAPs; EC 3.1.3.2) is widely recognized as an adaptation of plants to phosphorus (P) deficiency. The secretion of PAPs plays important roles in P acquisition. However, little is known about the functions of intracellular PAP in plants and nodules. In this study, we identified a novel PAP gene GmPAP21 in soybean. Expression of GmPAP21 was induced by P limitation in nodules, roots and old leaves, and increased in roots with increasing duration of P starvation. Furthermore, the induction of GmPAP21 in nodules and roots was more intensive than in leaves in both P-efficient genotype HN89 and P-inefficient genotype HN112 in response to P starvation, and the relative expression in the leaves and nodules of HN89 was significantly greater than that of HN112 after P deficiency treatment. Further functional analyses showed that over-expressing GmPAP21 significantly enhanced both acid phosphatase activity and growth performance of hairy roots under P starvation condition, indicating that GmPAP21 plays an important role in P utilization. Moreover, GUS expression driven by GmPAP21 promoter was shown in the nodules besides roots. Overexpression of GmPAP21 in transgenic soybean significantly inhibited nodule growth, and thereby affected plant growth after inoculation with rhizobia. This suggests that GmPAP21 is also possibly involved in regulating P metabolism in nodules. Taken together, our results suggest that GmPAP21 is a novel plant PAP that functions in the adaptation of soybean to P starvation, possibly through its involvement in P recycling in plants and P metabolism in nodules. © 2016 Scandinavian Plant Physiology Society.

  13. Dietary non-phytate phosphorus requirement of broilers fed a conventional corn-soybean meal diet from 1 to 21 d of age.

    PubMed

    Liu, S B; Liao, X D; Lu, L; Li, S F; Wang, L; Zhang, L Y; Jiang, Y; Luo, X G

    2017-01-01

    An experiment was conducted to investigate the effect of dietary non-phytate phosphorus (NPP) level on growth performance, bone characteristics and phosphorus metabolism-related gene expressions, so as to evaluate the dietary NPP requirement of broiler chicks fed a conventional corn-soybean meal diet from 1 to 21 d of age. A total of 540 day-old Arbor Acres male chicks were randomly allocated to one of nine treatments with six replicate cages of 10 birds per cage in a completely randomized design, and fed a basal corn-soybean meal diet (containing 0.08% of NPP) supplemented with 0.10, 0.15, 0.25, 0.30, 0.35, 0.40, 0.45, or 0.50% of inorganic phosphorus in the form of CaHPO4·2H2O, respectively. Each diet contained the constant calcium content of about 1.0%. The results showed that daily weight gain, serum inorganic P, tibia bone strength, tibia ash percentage, tibia bone mineral content (BMC) and density (BMD), middle toe ash percentage, middle toe BMC and BMD were affected (P < 0.0001) by dietary NPP level, and increased linearly (P < 0.0001) and quadraticly (P < 0.004) as dietary NPP levels increased. The gene expression of type IIb sodium-phosphate cotransporter (NaPi-IIb) in the duodenum was affected (P < 0.03) and decreased linearly (P < 0.002) as dietary NPP levels increased. Dietary NPP requirements estimated based on fitted broken-line models (P < 0.0001) of the sensitive indices including daily weight gain, tibia bone strength, tibia ash percentage, tibia BMC and BMD as well as middle toe ash percentage were 0.34∼0.39%. The results from this study indicate that tibia BMC and BMD might be new, sensitive, and noninvasive criteria to evaluate the dietary NPP requirements of broilers, and the dietary NPP requirement is 0.39% for broiler chicks fed a conventional corn-soybean meal diet from 1 to 21 d of age. © 2016 Poultry Science Association Inc.

  14. White phosphorus

    Integrated Risk Information System (IRIS)

    White phosphorus ; CASRN 7723 - 14 - 0 Human health assessment information on a chemical substance is included in the IRIS database only after a comprehensive review of toxicity data , as outlined in the IRIS assessment development process . Sections I ( Health Hazard Assessments for Noncarcinogenic

  15. NIOSH Method 7905: Phosphorus

    EPA Pesticide Factsheets

    Method 7905 describes procedures for analysis of phosphorus in air samples using GC-FPD. The method is applicable to vapor-phase phosphorus only; if particulate phosphorus is expected, a filter could be used in the sampling train.

  16. Dietary phosphorus, serum phosphorus, and cardiovascular disease.

    PubMed

    Menon, Madhav C; Ix, Joachim H

    2013-10-01

    Recent epidemiologic studies have linked higher serum phosphorus concentrations to cardiovascular disease (CVD) events and mortality. This association has been identified in the general population and in those with chronic kidney disease (CKD). The risk of adverse outcomes appears to begin with phosphorus concentrations within the upper limit of the normal reference range. Multiple experimental studies have suggested pathogenetic mechanisms that involve direct and indirect effects of high phosphorus concentrations to explain these associations. Drawing from these observations, guideline-forming agencies have recommended that serum phosphorus concentrations be maintained within the normal reference range in patients with CKD and that dietary phosphorus restriction or use of intestinal phosphate binders should be considered to achieve this goal. However, outside the dialysis population, the links between dietary phosphorus intake and serum phosphorus concentrations, and dietary phosphorus intake and CVD events, are uncertain. With specific reference to the nondialysis populations, this review discusses the available data linking dietary phosphorus intake with serum phosphorus concentrations and CVD events.

  17. Phosphorus: Riverine system transport

    USDA-ARS?s Scientific Manuscript database

    The transport and transformation of phosphorus (P) in riverine systems fundamentally affects the outcome of watershed mitigation strategies aimed at curbing downstream eutrophication. Phosphorus transport and transformations in streams and rivers are mediated by physical (sediment deposition and res...

  18. Phosphorus poisoning in waterfowl

    USGS Publications Warehouse

    Coburn, D.R.; DeWitt, J.B.; Derby, J.V.; Ediger, E.

    1950-01-01

    Black ducks and mallards were found to be highly susceptible to phosphorus poisoning. 3 mg. of white phosphorus per kg. of body weight given in a single dose resulted in death of a black duck in 6 hours. Pathologic changes in both acute and chronic poisoning were studied. Data are presented showing that diagnosis can be made accurately by chemical analysis of stored tissues in cases of phosphorus poisoning.

  19. Biogeochemistry: The fate of phosphorus

    NASA Astrophysics Data System (ADS)

    Némery, Julien; Garnier, Josette

    2016-05-01

    Phosphorus is essential for food production, but it is also a key cause of eutrophication. Estimates of phosphorus flux for the past 40-70 years reveal that large river basins can experience phases of phosphorus accumulation and depletion.

  20. The Global Phosphorus Cycle

    NASA Astrophysics Data System (ADS)

    Ruttenberg, K. C.

    2003-12-01

    Phosphorus is an essential nutrient for all life forms. It is a key player in fundamental biochemical reactions (Westheimer, 1987) involving genetic material (DNA, RNA) and energy transfer (ATP), and in structural support of organisms provided by membranes (phospholipids) and bone (the biomineral hydroxyapatite). Photosynthetic organisms utilize dissolved phosphorus, carbon, and other essential nutrients to build their tissues using energy from the Sun. Biological productivity is contingent upon the availability of phosphorus to these simple organisms that constitute the base of the food web in both terrestrial and aquatic systems. (For reviews of P-utilization, P-biochemicals, and pathways in aquatic plants, see Fogg (1973), Bieleski and Ferguson (1983), and Cembella et al. (1984a, 1984b).)Phosphorus locked up in bedrock, soils, and sediments is not directly available to organisms. Conversion of unavailable forms to dissolved orthophosphate, which can be directly assimilated, occurs through geochemical and biochemical reactions at various stages in the global phosphorus cycle. Production of biomass fueled by P-bioavailability results in the deposition of organic matter in soils and sediments, where it acts as a source of fuel and nutrients to microbial communities. Microbial activity in soils and sediments, in turn, strongly influences the concentration and chemical form of phosphorus incorporated into the geological record.The global phosphorus cycle has four major components: (i) tectonic uplift and exposure of phosphorus-bearing rocks to the forces of weathering; (ii) physical erosion and chemical weathering of rocks producing soils and providing dissolved and particulate phosphorus to rivers; (iii) riverine transport of phosphorus to lakes and the ocean; and (iv) sedimentation of phosphorus associated with organic and mineral matter and burial in sediments (Figure 1). The cycle begins anew with uplift of sediments into the weathering regime.

  1. Water Quality Criteria for White Phosphorus

    DTIC Science & Technology

    1987-08-01

    TECHNIQUES .................... 10 2. ENVIRONMENTAL EFFECTS AND FATE .................................. 14 2.1 ABIOTIC ENVIRONMENTAL EFFECTS...indicates some potential for release to the atmosphere. 1.2 MANUFACTURING AND ANALYTICAL TECHNIQUES The electric arc process is the important commercial means...methods for white phosphorus is given by Gorzny (1972). Lai and Rosenblatt (1977a) and Lai (1979a) developed a neutron activation technique for

  2. Black phosphorus gas sensors.

    PubMed

    Abbas, Ahmad N; Liu, Bilu; Chen, Liang; Ma, Yuqiang; Cong, Sen; Aroonyadet, Noppadol; Köpf, Marianne; Nilges, Tom; Zhou, Chongwu

    2015-05-26

    The utilization of black phosphorus and its monolayer (phosphorene) and few-layers in field-effect transistors has attracted a lot of attention to this elemental two-dimensional material. Various studies on optimization of black phosphorus field-effect transistors, PN junctions, photodetectors, and other applications have been demonstrated. Although chemical sensing based on black phosphorus devices was theoretically predicted, there is still no experimental verification of such an important study of this material. In this article, we report on chemical sensing of nitrogen dioxide (NO2) using field-effect transistors based on multilayer black phosphorus. Black phosphorus sensors exhibited increased conduction upon NO2 exposure and excellent sensitivity for detection of NO2 down to 5 ppb. Moreover, when the multilayer black phosphorus field-effect transistor was exposed to NO2 concentrations of 5, 10, 20, and 40 ppb, its relative conduction change followed the Langmuir isotherm for molecules adsorbed on a surface. Additionally, on the basis of an exponential conductance change, the rate constants for adsorption and desorption of NO2 on black phosphorus were extracted for different NO2 concentrations, and they were in the range of 130-840 s. These results shed light on important electronic and sensing characteristics of black phosphorus, which can be utilized in future studies and applications.

  3. Phosphorus recovery from wastes

    USDA-ARS?s Scientific Manuscript database

    Phosphorus (P) is an important macro-nutrient essential for all living organisms and phosphate rock is the main raw material for all inorganic P fertilizers. It is expected that there will be a P peak and resulting P fertilizer shortage in near future. In general, phosphorus use efficiency is low a...

  4. Black Phosphorus Terahertz Photodetectors.

    PubMed

    Viti, Leonardo; Hu, Jin; Coquillat, Dominique; Knap, Wojciech; Tredicucci, Alessandro; Politano, Antonio; Vitiello, Miriam Serena

    2015-10-07

    The first room-temperature terahertz (THz)-frequency nanodetector exploiting a 10 nm thick flake of exfoliated crystalline black phosphorus as an active channel of a field-effect transistor, is devised. By engineering and embedding planar THz antennas for efficient light harvesting, the first technological demonstration of a phosphorus-based active THz device is described.

  5. Prevention of struvite scaling in digesters combined with phosphorus removal and recovery--the FIX-Phos process.

    PubMed

    Petzet, Sebastian; Cornel, Peter

    2012-03-01

    The fixation of phosphorus (FIX-Phos) combines struvite prevention and phosphorus recovery by the addition of calciumsilicatehydrate (CSH) particles into the anaerobic digester. The CSH fixates phosphorus as calcium phosphate and reduces the phosphorus concentration in the sludge water that allows for control of struvite formation. The phosphorus-containing recovery product can be separated and recovered from the digested sludge. In pilot plant experiments, 21% to 31% of phosphorus contained in digested sludge could be recovered when CSH was added at concentrations of 2 g/L to 3.5 g/L to a mixture of primary sludge and waste activated sludge (WAS) from enhanced biological phosphorus removal. The recovery product contained few heavy metals and a phosphorus content of 18 wt % P2O5, which allows for recycling as fertilizer. The fixation of phosphorus within the digester may increase wastewater sludge dewaterability. The phosphorus recycle stream to the headworks of the wastewater treatment plant is reduced.

  6. Phosphorus chemistry in everyday living

    SciTech Connect

    Toy, D.F.; Walsh, E.F.

    1987-01-01

    This book brings to life the versatility of phosphorus and its compounds and is filled with personal anecdotes and experiences of the authors. Covers the uses of phosphorus in matches and warfare; phosphates and food, fertilizers, cleaners, and detergents; organic phosphorus nerve gases and insecticides. Also discusses phosphoric acids, organic phosphorus polymers, deoxyribonucleic and ribonucleic acids and adenosine triphosphate.

  7. Phosphorus dendrimers for nanomedicine.

    PubMed

    Caminade, Anne-Marie

    2017-08-31

    From biomaterials to imaging, and from drug delivery to drugs by themselves, phosphorus-containing dendrimers offer a large palette of biological properties, depending essentially on their types of terminal functions. The most salient examples of phosphorus dendrimers used for the elaboration of bio-chips and of supports for cell cultures, for imaging biological events, and for carrying and delivering drugs or biomacromolecules are presented in this feature article. Several phosphorus dendrimers can be considered also as drugs per se (by themselves) in particular to fight against cancers, neurodegenerative diseases, and inflammation, both in vitro and in vivo. Toxicity assays are also reported.

  8. Hidden phosphorus in popular beverages.

    PubMed

    Murphy-Gutekunst, Lisa

    2005-01-01

    To maintain normal serum phosphorus levels, dialysis patient education has emphasized adherence with phosphate binder prescription and low phosphorus diet. In addition to the standard advice to avoid dairy products and legumes, education also focused on lower phosphorus protein foods and beverages. To meet the public's demands for more high quality convenience food, food-processing practices have stepped up the use of phosphorus additives. These additives are now found in beverages that were once considered low in phosphorus content.

  9. Phosphorus in diet

    MedlinePlus

    ... body is found in the bones and teeth. Function The main function of phosphorus is in the formation of bones ... vitamins. It also helps with the following: Kidney function Muscle contractions Normal heartbeat Nerve signaling Food Sources ...

  10. Biogeochemistry: Early phosphorus redigested

    NASA Astrophysics Data System (ADS)

    Poulton, Simon W.

    2017-02-01

    Atmospheric oxygen was maintained at low levels throughout huge swathes of Earth's early history. Estimates of phosphorus availability through time suggest that scavenging from anoxic, iron-rich oceans stabilized this low-oxygen world.

  11. Dietary phosphorus intake and distribution in Chinese peritoneal dialysis patients with and without hyperphosphatemia.

    PubMed

    Jiang, Na; Fang, Wei; Yang, Xiaoxiao; Zhang, Lin; Yuan, Jiangzi; Lin, Aiwu; Ni, Zhaohui; Qian, Jiaqi

    2015-08-01

    The present study was conducted to analyze the dietary phosphorus intake and distribution in different food categories in peritoneal dialysis (PD) patients, to evaluate the relationship between dietary phosphorus intake and hyperphosphatemia. It was a cross-sectional study, in which prevalent Chinese PD patients were instructed by dietitians to record 3-day diet diary. Dietary phosphorus and other nutrient contents were calculated using a food composition computer program. Renal and peritoneal phosphorus clearance (CPh) was estimated, and serum phosphorus, as well as other serological parameters, were measured at the same time. 93 PD patients [age 52.9 ± 13.0 years, PD duration 30.1 (8.0, 71.0) months] finished the 3-day diet diary. Hyperphosphatemic patients (serum phosphorus level 1.97 ± 0.28 mmol/l, n = 48) showed higher dietary phosphorus intake (771.6 ± 195.1 versus 620.8 ± 155.3 mg/day, p = 0.040) than those with normal serum phosphorus level (1.37 ± 0.21 mmol/l, n = 45), due to greater phosphorus intake from meat, snacks, beverage, food condiments and additives. Significantly lower dietary phosphorus intake (605.6 ± 122.5 mg/day) and phosphorus to protein ratio (12.7 ± 1.4 mg/g) were observed in patients with anuria who maintained serum phosphorus within normal range. Multivariate linear regression analysis indicated normalized phosphorus intake, renal CPh and dietary protein intake were independently associated with serum phosphorus level. High dietary phosphorus intake is associated with elevated serum phosphorus level in PD patients. The study suggests that PD patients, particularly those with anuria, shall limit the intake of meat, snacks, beverage, food condiments and additives to reduce dietary phosphorus ingestion.

  12. Catalytic decomposition of phosphorus compounds to produce phosphorus atoms

    NASA Astrophysics Data System (ADS)

    Umemoto, Hironobu; Kanemitsu, Taijiro; Kuroda, Yuki

    2014-01-01

    Vacuum-ultraviolet laser-induced fluorescence identified atomic phosphorus in the gas phase when phosphine, triethylphosphine, or molecular phosphorus sublimated from solid red phosphorus was decomposed on heated metal wire surfaces. Atomic phosphorus was found to be one of the major products in all systems, and its density increased monotonically with wire temperature but showed saturation at high temperatures. A wire material dependence of density was observed for molecular phosphorus, suggesting that the decomposition of the compound is catalytic. Electron probe microanalyzer (EPMA) measurement showed that the wires are not phosphorized when heated in the presence of phosphine or molecular phosphorus.

  13. Dietary phosphorus restriction in dialysis patients: potential impact of processed meat, poultry, and fish products as protein sources.

    PubMed

    Sherman, Richard A; Mehta, Ojas

    2009-07-01

    Dietary intake of phosphorus is derived largely from protein sources and is a critical determinant of phosphorus balance in patients with chronic kidney disease. Information about the phosphorus content of prepared foods generally is unavailable, but it is believed to contribute significantly to the phosphorus burden of patients with chronic kidney disease. Analysis of dietary components. We measured the phosphorus content of 44 food products, including 30 refrigerated or frozen precooked meat, poultry, and fish items, generally national brands. Measured and reported phosphorus content of foods. Phosphorus by using Association of Analytical Communities official method 984.27; protein by using Association of Analytical Communities official method 990.03. We found that the ratio of phosphorus to protein content in these items ranged from 6.1 to 21.5 mg of phosphorus per 1 g of protein. The mean ratio in the 19 food products with a label listing phosphorus as an additive was 14.6 mg/g compared with 9.0 mg/g in the 11 items without listed phosphorus. The phosphorus content of only 1 precooked food product was available in a widely used dietary database. Results cannot be extrapolated to other products. Manufacturers also may alter the phosphorus content of foods at any time. Protein content was not directly measured for all foods. Better reporting of phosphorus content of foods by manufacturers could result in improved dietary phosphorus control without risk of protein malnutrition.

  14. Rethinking early Earth phosphorus geochemistry

    PubMed Central

    Pasek, Matthew A.

    2008-01-01

    Phosphorus is a key biologic element, and a prebiotic pathway leading to its incorporation into biomolecules has been difficult to ascertain. Most potentially prebiotic phosphorylation reactions have relied on orthophosphate as the source of phosphorus. It is suggested here that the geochemistry of phosphorus on the early Earth was instead controlled by reduced oxidation state phosphorus compounds such as phosphite (HPO32−), which are more soluble and reactive than orthophosphates. This reduced oxidation state phosphorus originated from extraterrestrial material that fell during the heavy bombardment period or was produced during impacts, and persisted in the mildly reducing atmosphere. This alternate view of early Earth phosphorus geochemistry provides an unexplored route to the formation of pertinent prebiotic phosphorus compounds, suggests a facile reaction pathway to condensed phosphates, and is consistent with the biochemical usage of reduced oxidation state phosphorus compounds in life today. Possible studies are suggested that may detect reduced oxidation state phosphorus compounds in ancient Archean rocks. PMID:18195373

  15. Rethinking early Earth phosphorus geochemistry.

    PubMed

    Pasek, Matthew A

    2008-01-22

    Phosphorus is a key biologic element, and a prebiotic pathway leading to its incorporation into biomolecules has been difficult to ascertain. Most potentially prebiotic phosphorylation reactions have relied on orthophosphate as the source of phosphorus. It is suggested here that the geochemistry of phosphorus on the early Earth was instead controlled by reduced oxidation state phosphorus compounds such as phosphite (HPO(3)(2-)), which are more soluble and reactive than orthophosphates. This reduced oxidation state phosphorus originated from extraterrestrial material that fell during the heavy bombardment period or was produced during impacts, and persisted in the mildly reducing atmosphere. This alternate view of early Earth phosphorus geochemistry provides an unexplored route to the formation of pertinent prebiotic phosphorus compounds, suggests a facile reaction pathway to condensed phosphates, and is consistent with the biochemical usage of reduced oxidation state phosphorus compounds in life today. Possible studies are suggested that may detect reduced oxidation state phosphorus compounds in ancient Archean rocks.

  16. HEATS OF FORMATION OF PHOSPHORUS OXIDES

    DTIC Science & Technology

    Contents: Phosphorus Coated with Lucite, Phosphorus Coated with Cellulose Acetate , Evaluation of the Combustion Results, Sample Calculation of...Corrections for Combustion of Phosphorus Coated with Cellulose Acetate , and Heat of Combustion of Phosphorus.

  17. Phosphorus in prebiotic chemistry

    PubMed Central

    Schwartz, Alan W

    2006-01-01

    The prebiotic synthesis of phosphorus-containing compounds—such as nucleotides and polynucleotides—would require both a geologically plausible source of the element and pathways for its incorporation into chemical systems on the primitive Earth. The mineral apatite, which is the only significant source of phosphate on Earth, has long been thought to be problematical in this respect due to its low solubility and reactivity. However, in the last decade or so, at least two pathways have been demonstrated which would circumvent these perceived problems. In addition, recent results would seem to suggest an additional, extraterrestrial source of reactive phosphorus. It appears that the ‘phosphorus problem’ is no longer the stumbling block which it was once thought to be. PMID:17008215

  18. Effect of anaerobic HRT on biological phosphorus removal and the enrichment of phosphorus accumulating organisms.

    PubMed

    Coats, Erik R; Watkins, David L; Brinkman, Cynthia K; Loge, Frank J

    2011-05-01

    The purpose of this research was to develop a better understanding of the dynamic effects of anaerobic hydraulic retention time (HRT) on both enhanced biological phosphorus removal (EBPR) performance and enrichment of phosphorus accumulating organisms (PAOs). The research was conducted using laboratory-scale sequencing batch reactors inoculated with mixed microbial consortia and fed real wastewater. Exposing microorganisms to extended anaerobic HRTs is not recommended for EBPR configured systems. In this research, however, longer anaerobic exposure did not negatively affect performance even if volatile fatty acids were depleted. Further, extended anaerobic HRTs may positively affect phosphorus removal through enhanced aerobic uptake. The EBPR consortia also appear to maintain reserve energetic capacity in the form of polyphosphate that can be used to survive and grow under variable operational and environmental conditions. Finally, the tested EBPR systems yield mixed microbial consortia enriched with PAOs (specifically Candidatus Accumulibacter phosphatis) at approximately 7.1 to 21.6% of the total population.

  19. Combustion of White Phosphorus

    NASA Astrophysics Data System (ADS)

    Keiter, Richard L.; Gamage, Chaminda P.

    2001-07-01

    The reaction of white phosphorus with pure oxygen is conveniently and safely demonstrated by carrying out the reaction in a retort that has its open end submerged in water. After filling the retort with oxygen gas, a small amount of white phosphorus is introduced and heated with a hot-plate until it ignites. The spectacular reaction leads to consumption and expulsion of oxygen gas, creation of a partial vacuum in the retort, and back suction of water that extinguishes the combustion. Featured on the Cover

  20. Phosphorus derivatives of salicylic acid

    NASA Astrophysics Data System (ADS)

    Chvertkina, L. V.; Khoklov, P. S.; Mironov, Vladimir F.

    1992-10-01

    The present state of work on the methods of synthesis, chemical properties, and practical applications of phosphorus-containing derivatives of salicylic acid has been reviewed. The characteristics of the chemical transformations of cyclic and acyclic phosphorus derivatives of salicylic acid related to the coordination state of the phosphorus atom have been examined. The bibliography includes 158 references.

  1. Calcium and phosphorus requirements of bobwhite quail chicks

    USGS Publications Warehouse

    Nestler, R.B.; DeWitt, J.B.; Derby, J.V.; Moschler, M.

    1948-01-01

    Four experiments involving 873 bob-white quail (Colinus virginianus) chicks were conducted at the Patuxent Research Refuge, Laurel, Maryland. A comparison was made of calcium: phosphorus ratios of 1:1, 15:1, 1%: 1, 2:1, 2+:1,and 2%: 1in diets with phosphorus levels of 0.52, 0.75, 1.00, and 1.25 percent. The results indicate that the optimum level of phosphorus for growth is in the neighborhood of 0.75 per cent, and that of calcium is about 1.00 per cent, making a ratio of 1 1/3: 1....Although the greatest efficiency of feed utilization occurred on the phosphorus level of 0.52 per cent, the liveweight and bone-ash of the birds at the end of ten weeks were significantly lower than they were on the levels of 0.75 and 1.00 per cent, phosphorus. Bone-ash of birds on a Ca: P ratio of 1:1was significantly lower than that on any of the other five ratios, regardless of phosphorus level....There was a significant reverse correlation between the Ca: P ratio of the diet and the storage of vitamin A in the liver. Storage was especially low on the ratio of 2 2/3: 1....The low and high levels of calcium and phosphorus considered in these studies are abnormal, the low level especially being hard to obtain with common feedstuffs, if the protein requirements of the birds are met. Nevertheless, even on such levels, results were not disastrous. The growth of quail in the wild happens during a season when the birds have access to the minerals of the soil and in the abundant animal matter (mostly insects), as well as to minerals in plant material. Therefore, seemingly, calcium and phosphorus need not be critical nutrients for growing quail in the wild.

  2. Whole plant phenotypic variability in nitrogen and phosphorus response of Brachypodium distachyon

    USDA-ARS?s Scientific Manuscript database

    This work evaluates the phenotypic response of the model grass (Brachypodium distachyon) to nitrogen and phosphorus nutrition. Reference line Bd21-3 was grown in sand under controlled conditions using 11 phosphorus and 11 nitrogen application rates. We established a dose-response curve for both nit...

  3. Implications of phosphorus redox geochemistry

    NASA Astrophysics Data System (ADS)

    Pasek, Matthew

    2015-04-01

    Phosphorus is the limiting nutrient in many environments. Until recently, redox changes to phosphorus speciation have been confined to the realm of chemical laboratories as phosphorus was considered to be synonymous with phosphate in the natural environment. The few known phosphorus species with a reduced redox state, such as phosphine gas, were considered novelties. Recent work has revealed a surprising role for low redox state organophosphorus compounds -- the phosphonates -- in biogeochemistry. Additionally, phosphite and hypophosphite (the lower oxyanions of phosphorus) have been identified from natural sources, and microbial genomics suggests these compounds may be ubiquitous in nature. Recent work from our laboratory suggests that reduced phosphorus compounds such as phosphite and hypophosphite may be ubiquitous (Pasek et al. 2014). If so, then these species maybe important in the global phosphorus biogeochemical cycle, and could influence global phosphorus sustainability. Additionally, these compounds could have been relevant on the early earth environment, priming the earth with reactive phosphorus for prebiotic chemistry. Reference: Pasek, M. A., Sampson, J. M., & Atlas, Z. (2014). Redox chemistry in the phosphorus biogeochemical cycle. Proceedings of the National Academy of Sciences, 111(43), 15468-15473.

  4. Relationship of Urine Dopamine with Phosphorus Homeostasis in Humans: The Heart and Soul Study

    PubMed Central

    Bansal, Nisha; Hsu, Chi-yuan; Whooley, Mary; Berg, Anders H.; Ix, Joachim H.

    2013-01-01

    Background Urine dopamine (DA) is produced in the proximal tubule and has been found to increase in response to dietary phosphorus intake, and to contribute to greater urinary phosphorus excretion in animal models. Whether urine DA is associated with phosphorus homeostasis in humans is uncertain. Methods This was a cross-sectional study of 884 outpatients. DA was measured from 24-hour urine collections. We examined cross-sectional associations between urine DA and serum phosphorus, 24-hour urine phosphorus (as an indicator of dietary phosphorus absorption), fractional excretion of phosphorus (FEphos), fibroblast growth factor (FGF)-23, and parathyroid hormone (PTH). Models were adjusted for age, sex, race, eGFR, albuminuria, hypertension, heart failure, tobacco use, body mass index, and diuretic use. Results Mean age was 66.6 ± 11 years and mean eGFR was 71 ± 21.3 ml/min/1.73 m2. The mean urine DA was 193 ± 86 µg/day, mean serum phosphorus was 3.6 ± 0.6 mg/dl, mean daily urine phosphorus excretion was 671 ± 312 mg/day, and mean FEphos was 17 ± 9%. In adjusted models, each standard deviation higher DA was associated with 78.4 mg/day higher urine phosphorus and 0.9% lower FEphos (p < 0.05 for both). There was no statistically significant association between urine DA, serum phosphorus, FGF-23 or PTH in adjusted models. Conclusions Higher dietary phosphorus absorption is associated with higher urine DA in humans, consistent with animal models. However, higher urine DA is not associated with FGF-23 or PTH, suggesting that known mechanisms of renal tubular handling of phosphorus may not be involved in the renal dopamine-phosphorus regulatory pathway in humans. PMID:22572568

  5. The problem with phosphorus

    NASA Astrophysics Data System (ADS)

    Froelich, Phillip N.

    Phosphorus is King of the aquatic plant kingdom.1 Without it there would be no growth, no reproduction, and thus no life.2 This simple principle has been concealed from a generation of aquatic scientists seduced by the powers of the Queen Consort, Nitrogen.3If Phosphorus is King and Nitrogen is Queen, then a naive observer4 of the Chess Queen, then a naive observer4 of the Chess Game of Life might prematurely conclude, after watching the moves unfolding on the board, that the Queen is all powerful and controls the game. She can move both diagonally and laterally across the board5 and travels long distances in one jump.6 Clones can be created from thin air on the back row.7 She literally dances over the board and controls the tempo of the game.8 A game without a dominant Queen is rare.9

  6. Phosphorus in the environment

    NASA Astrophysics Data System (ADS)

    Tamburini, F.; Bernasconi, S. M.; Paytan, A.

    2012-10-01

    IsoPhos 2012: Development of Isotopic Tracers for a Better Understandingof the Phosphorus Cycle;Monte Verità, Switzerland, 24-29 June 2012 IsoPhos 2012, a conference dedicated to cutting-edge research on phosphorus, was held in the Centro Stefano Franscini of the Swiss Federal Institute of Technology of Zurich (ETH Zurich). It gathered 63 scientists, 11 of whom were graduate students, from 16 countries and different areas of expertise, including Earth sciences, oceanography, paleontology, microbiology, soil and plant sciences, and hydrology. The conference focused on the use of stable oxygen isotopes in phosphate. New developments in preparation and analytical techniques have made the application of this tracer viable for fields other than paleoclimatology. However, new challenges with respect to sample preparation, standardization, its use in conjunction with other tracers, and the effect of biochemical processes have arisen.

  7. Characterization and sonochemical synthesis of black phosphorus from red phosphorus

    NASA Astrophysics Data System (ADS)

    Aldave, Sandra H.; Yogeesh, Maruthi N.; Zhu, Weinan; Kim, Joonseok; Sonde, Sushant S.; Nayak, Avinash P.; Akinwande, Deji

    2016-03-01

    Phosphorene is a new two-dimensional material which is commonly prepared by exfoliation from black phosphorus bulk crystals that historically have been synthesized from white phosphorus under high-pressure conditions. The few layers of phosphorene have a direct band gap in the range of 0.3-2 eV and high mobility at room temperature comparable to epitaxial graphene. These characteristics can be used for the design of high speed digital circuits, radio frequency circuits, flexible and printed systems, and optoelectronic devices. In this work, we synthesized black phosphorus from red phosphorus, which is a safer solid precursor, using sonochemistry. Furthermore, via a variety of microscopy and spectroscopy techniques, we report characterization results of the sonochemically synthesized black phosphorus in addition to the commercial black phosphorus. Finally, we describe the air stability of black phosphors and the crystalline structure of the synthesized material. This is the first result of sonochemical or solution-based synthesis of black phosphorus based on readily available low-cost red phosphorus. This solution-based synthesis of black phosphorus is suitable for printable applications of nanomaterial.

  8. Ultrafast Nonlinear Excitation Dynamics of Black Phosphorus Nanosheets from Visible to Mid-Infrared.

    PubMed

    Wang, Kangpeng; Szydłowska, Beata M; Wang, Gaozhong; Zhang, Xiaoyan; Wang, Jing Jing; Magan, John J; Zhang, Long; Coleman, Jonathan N; Wang, Jun; Blau, Werner J

    2016-07-26

    The recent progress on black phosphorus makes it a promising candidate material for broadband nanophotonic devices, especially operating in the mid-infrared spectral region. Here, the excited carrier dynamics and nonlinear optical response of unoxidized black phosphorus nanosheets and their wavelength dependence were systematically studied from 800 nm to 2.1 μm. The wavelength-dependent relaxation times of black phosphorus nanosheets are determined to be 360 fs to 1.36 ps with photon energies from 1.55 to 0.61 eV. In a comparative study with graphene, we found that black phosphorus has a faster carrier relaxation in near- and mid-infrared region. With regard to nonlinear optical absorption, the response of black phosphorus significantly increases from near- to mid-infrared, and black phosphorus is also confirmed to be better as saturable absorber to MoS2 in infrared region.

  9. Preparation of high purity phosphorus

    DOEpatents

    Rupp, Arthur F.; Woo, David V.

    1981-01-01

    High purity phosphorus and phosphorus compounds are prepared by first reacting H.sub.3 PO.sub.4 with a lead compound such as PbO to form Pb.sub.3 (PO.sub.4).sub.2. The Pb.sub.3 (PO.sub.4).sub.2 is reduced with H.sub.2 at a temperature sufficient to form gaseous phosphorus which can be recovered as a high purity phosphorus product. Phosphorus compounds can be easily prepared by reacting the phosphorus product with gaseous reactants. For example, the phosphorus product is reacted with gaseous Cl.sub.2 to form PCl.sub.5. PCl.sub.5 is reduced to PCl.sub.3 by contacting it in the gaseous phase with solid elemental phosphorus. POCl.sub.3 can be prepared by contacting PCl.sub.5 in the gaseous phase with solid P.sub.2 O.sub.5. The general process is particularly suitable for the preparation of radiophosphorus compounds.

  10. Protecting catalyst from phosphorus poisoning

    SciTech Connect

    Caracciolo, F.

    1983-05-03

    A method for protecting vehicle emissions control catalyst from phosphorus poisoning comprising contacting at least one of the crankcase ventilation stream and the exhaust gas recirculation stream with a bed of solid adsorbent capable of removing phosphorus compounds in the gas stream, and circulating the treated gas stream to the intake side of the engine.

  11. Virtual phosphorus ore requirement of Japanese economy.

    PubMed

    Matsubae, Kazuyo; Kajiyama, Jun; Hiraki, Takehito; Nagasaka, Tetsuya

    2011-08-01

    Phosphorus is indispensable for agricultural production. Hence, the consumption of imported food indirectly implies the import of phosphorus resources. The global consumption of agricultural products depends on a small number of ore-producing countries. For sustainable management of phosphorus resources, the global supply and demand network should be clarified. In this study, we propose the virtual phosphorus ore requirement as a new indicator of the direct and indirect phosphorus requirements for our society. The virtual phosphorus ore requirement indicates the direct and indirect demands for phosphorus ore transformed into agricultural products and fertilizer. In this study, the virtual phosphorus ore requirement was evaluated for the Japanese economy in 2005. Importantly, the results show that our society requires twice as much phosphorus ore as the domestic demand for fertilizer production. The phosphorus contained in "eaten" agricultural products was only 12% of virtual phosphorus ore requirement.

  12. Machining aspects of nickel-phosphorus coatings

    SciTech Connect

    Dini, J.W.

    1992-07-01

    Nickel-phosphorus coatings with greater than 10% phosphorus have been widely used for diamond turning applications such as fabrication of large optics and other high precision parts. This paper discusses the importance of phosphorus content of the alloy on wear of the diamond tool and provides some speculation on the role of phosphorus on machining characteristics.

  13. Prebiotic phosphorus chemistry reconsidered

    NASA Technical Reports Server (NTRS)

    Schwartz, A. W.; Orgel, L. E. (Principal Investigator)

    1997-01-01

    The available evidence indicates that the origin of life on Earth certainly occurred earlier than 3.5 billion years ago and perhaps substantially earlier. The time available for the chemical evolution which must have preceded this event is more difficult to estimate. Both endogenic and exogenic contributions to chemical evolution have been considered; i.e., from chemical reactions in a primitive atmosphere, or by introduction in the interiors of comets and/or meteorites. It is argued, however, that the phosphorus chemistry of Earth's earliest hydrosphere, whether primarily exogenic or endogenic in origin, was most likely dominated by compounds less oxidized than phosphoric acid and its esters. A scenario is presented for the early production of a suite of reactive phosphonic acid derivatives, the properties of which may have foreshadowed the later appearance of biophosphates.

  14. [Phosphorus intake and osteoporosis].

    PubMed

    Omi, N; Ezawa, I

    2001-10-01

    Phosphorus (P) is one of the most important nutrients for bone metabolism, such as calcium. In general, P intake is usually adequate in our daily diet, and there is a risk of over-consumption from processed food. On the other hand, Ca intake is not always adequate from the Japanese daily diet. When Ca/P is taken from the daily diet at a level of 0.5 - 2.0, the P intake level dose not affect intestinal Ca absorption. Therefore, it is important not only to pay attention to preventing the over-consumption of P, but also to obtain a sufficient intake of Ca. For the prevention of osteoporosis, it is important to consume sufficient Ca and to maintain and appropriate Ca/P balance from diet.

  15. Prebiotic phosphorus chemistry reconsidered

    NASA Technical Reports Server (NTRS)

    Schwartz, A. W.; Orgel, L. E. (Principal Investigator)

    1997-01-01

    The available evidence indicates that the origin of life on Earth certainly occurred earlier than 3.5 billion years ago and perhaps substantially earlier. The time available for the chemical evolution which must have preceded this event is more difficult to estimate. Both endogenic and exogenic contributions to chemical evolution have been considered; i.e., from chemical reactions in a primitive atmosphere, or by introduction in the interiors of comets and/or meteorites. It is argued, however, that the phosphorus chemistry of Earth's earliest hydrosphere, whether primarily exogenic or endogenic in origin, was most likely dominated by compounds less oxidized than phosphoric acid and its esters. A scenario is presented for the early production of a suite of reactive phosphonic acid derivatives, the properties of which may have foreshadowed the later appearance of biophosphates.

  16. Phosphorus Dynamic in Wetlands

    NASA Astrophysics Data System (ADS)

    Pant, H. K.

    2010-12-01

    The projected greater warming at higher/northern latitudes in the coming decades due to global climatic changes can mineralize substantial amount of the organic matter and supply massive amount of phosphorus (P) to the water column, and cause the collapse of freshwater wetlands. Thus, the rates and duration of organic matter accumulations/decompositions under rising global temperatures are critical determinants of how a freshwater wetland functions as an ecological unit within a landscape. Phosphorus is a limiting nutrient and a primary controller of eutrophication. Once the external P loads are curtailed, internal P regeneration, resulting from decompositions of detritus and soil/sediment organic matter determine the productivity, as well as the water quality of a wetland. Thus, global rise in temperature not only causes hydro-climatic fluctuations but can also change the composition of aquatic/semi-aquatic communities, in turn, could lead to adverse effect on human food chain to collapse of the ecosystem. While P enrichment may lead to immediate algal blooms in wetlands/aquatic systems, decreased in P input from external sources may not be able to stop the blooms for a considerable period of time depending on the P loading from within. The extent of P mineralization under changing conditions, enzymatic hydrolysis, and estimation of different P pools using 31P NMR in sediments and the water columns showed that the stability and bioavailability of P can greatly be influenced by rise in temperature and fluctuations in water level, thus, are crucial in determining the fate of the freshwater wetlands.

  17. Phosphorus speciation and treatment using enhanced phosphorus removal bioretention.

    PubMed

    Liu, Jiayu; Davis, Allen P

    2014-01-01

    This field research investigated the water quality performance of a traditional bioretention cell retrofitted with 5% (by mass) water treatment residual (WTR) for enhanced phosphorus removal. Results indicate that WTR incorporation into the bioretention media does not negatively influence the infiltration mechanism of the bioretention system. Total suspended solids (TSS), total phosphorus (TP), and particulate phosphorus (PP) concentrations in runoff inflow were significantly reduced compared to outflow due to filtration of particulate matter. TP concentrations were significantly reduced by the bioretention cell; before WTR retrofit TP export occurred. Although net removal of soluble reactive phosphorus (SRP) and dissolved organic phosphorus (DOP) from incoming runoff was not found, leaching of dissolved phosphorus (DP) was prevented not only from incoming runoff, but also from the media and captured PP. Near constant outflow SRP and DOP concentrations suggest an equilibrium adsorption treatment mechanism. Both event mean concentrations and mass loads were reduced for TSS and all P species. Pollutant mass removals were higher than the event mean concentration removals due to the attenuation of volume by the bioretention media.

  18. Dietary phosphorus and kidney disease.

    PubMed

    Uribarri, Jaime

    2013-10-01

    High serum phosphate is linked to poor health outcome and mortality in chronic kidney disease (CKD) patients before or after the initiation of dialysis. Therefore, maintenance of normal serum phosphate levels is a major concern in the clinical care of this population with dietary phosphorus restriction and/or use of oral phosphate binders considered to be the best corrective care. This review discusses (1) evidence for an association between serum phosphate levels and bone and cardiovascular disease (CVD) in CKD patients as well as progression of kidney disease itself; (2) the relationship between serum phosphate and dietary phosphorus intake; and (3) implications from these data for future research. Increasing our understanding of the relationship between altered phosphorus metabolism and disease in CKD patients may clarify the potential role of excess dietary phosphorus as a risk factor for disease in the general population.

  19. Missisquoi Bay Phosphorus Model Addendum

    EPA Pesticide Factsheets

    This technical memorandum provides results of an extended load reduction simulation. The memorandum serves as an addendum to the main Missisquoi Bay Phosphorus Mass Balance Model report prepared for the Lake Champlain Basin Program by LimnoTech in 2012

  20. Algorithm Considerations for Evaluating Phosphorus Transport and Environmental Management Strategies Using a Grid-Based Spatial Watershed Model

    DTIC Science & Technology

    2007-11-01

    2005. Biologically labile and refractory phosphorus loads from the agriculturally -managed Upper Eau Galle River watershed. Lake Reserv. Manage. 21...support system framework. BACKGROUND: Phosphorus (P) loss from agricultural watersheds is a leading cause of accel- erated eutrophication and...deteriorating water quality in receiving water bodies. Land use prac- tices that promote increased row cropping within the flood plain, extensive agricultural

  1. phosphorus retention data and metadata

    EPA Pesticide Factsheets

    phosphorus retention in wetlands data and metadataThis dataset is associated with the following publication:Lane , C., and B. Autrey. Phosphorus retention of forested and emergent marsh depressional wetlands in differing land uses in Florida, USA. Wetlands Ecology and Management. Springer Science and Business Media B.V;Formerly Kluwer Academic Publishers B.V., GERMANY, 24(1): 45-60, (2016).

  2. Phosphorus balance with daily dialysis.

    PubMed

    Kooienga, Laura

    2007-01-01

    Hyperphosphatemia is an almost universal finding in patients with end-stage renal disease and is associated with increased all-cause mortality, cardiovascular mortality, and vascular calcification. These associations have raised the question of whether reducing phosphorus levels could result in improved survival. In light of the recent findings that increased per-session dialysis dose, as assessed by urea kinetics, did not result in improved survival, the definition of adequacy of dialysis should be re-evaluated and consideration given to alternative markers. Two alternatives to conventional thrice weekly dialysis (CHD) are nocturnal hemodialysis (NHD) and short daily hemodialysis (SDHD). The elimination kinetics of phosphorus as they relate to these alternative daily dialysis schedules and the clinical implications of overall phosphorus balance are discussed here. The total weekly phosphorus removal with NHD is more than twice that removed by CHD (4985 mg/week +/- 1827 mg vs. 2347 mg/week +/- 697 mg) and this is associated with a significantly lower average serum phosphorous (4.0 mg/dl vs. 6.5 mg/dl). In spite of the observed increase in protein and phosphorus intake seen in patients on SDHD, phosphate binder requirements and serum phosphorus levels are generally stable to decrease although this effect is strongly dependent on the frequency and overall treatment time.

  3. Effects of diet and body size on phosphorus utilization of Liza haematocheila T. & S.

    NASA Astrophysics Data System (ADS)

    Kang, Bin; Xian, Weiwei; Wu, Yunfei

    2008-05-01

    A 21-d laboratory experiment was conducted to study, the phosphorus (P) utilization of two different diets by redlip mullet Liza haematocheila T. & S. Sand-filtered water in salinity 30 and temperature 25°C was used. Twenty-nine fish individuals were divided into three groups: 11 to group 1 (G1) fed on diet 1, 11 to group 2 (G2) fed on diet 2, and 7 to contrast group. Diet 1 was a commercial feed, more valuable in nutrition than diet 2 that similar to natural detritus. The results show the intake phosphorus (IP) of G1 was significantly higher than that of G2, and both increased linearly with body size at a certain amount of diet. The retention phosphorus (RP) in fish of G1 was lower than G2. The relationship between retention phosphorus and body size was positive and stronger in G2. Significant difference in faecal phosphorus (FP) was found between G1 and G2. Body size significantly impacted the excretion phosphorus (EP) in G1 but G2. The loss of intake phosphorus in G1 was 10.83-20.27 mg per g fish weight gain, higher than that in G2 for 6.63-9.56. Of the phosphorus, about 10% was allocated into growth, 50% in faeces, and the rest lost in excretion. The main part of phosphorus was lost in faeces but excretion. The phosphorus budget of the fish could be described as 100IP = 7.40RP + 47.39FP + 36.63EP (Diet 1) or 100IP = 11.93RP + 56.64FP + 21.76EP (Diet 2).

  4. Field investigation of advanced filtration for phosphorus removal from constructed treatment wetland effluents.

    PubMed

    Calder, N; Anderson, B C; Martin, D G

    2006-10-01

    Three sorptive media, blast furnace slag, cement clinker, and gravel were investigated for their capacity to remove phosphorus in a subsurface flow constructed treatment wetland post-treatment filter. Three filters were designed: two containing a mixture of either slag and gravel or clinker and gravel, and one with gravel only as the control filter. They were installed as a demonstration polishing treatment step to a constructed treatment wetland treating residential wastewater collected from 137 mobile home units at the Sunny Creek Estates Mobile Home Park. The filters were commissioned during the summer of the field season, with the data gathering taking place over a period of one year. The slag filter consistently had the lowest outflow dissolved phosphorus concentrations (0.27 +/- 0.08 mg l(-1), n=21), whereas the clinker filter had the highest outflow dissolved phosphorus concentrations (0.72 +/- 0.20 mg l(-1), n=23). The clinker filter performed well below expectations based on previous laboratory investigations, possibly due to lower pH conditions encountered in the field study. All of the filters maintained relatively constant outflow concentrations of phosphorus below 1 mg l(-1), despite varying input conditions and environmental factors such as temperature and phosphorus loading, and the occurrence of net export of phosphorus from the wetland. Net export of phosphorus from the filters occurred in the winter months, which was attributed to the decrease in input phosphorus concentrations below the maintained outflow concentrations (leading to phosphorus desorption), rather than cold temperatures or failure of the filter. Although the exact mechanisms of phosphorus removal are still under investigation, the results from this field study allowed for recommendations to be made for improving phosphorus removal at the Sunny Creek Estates constructed treatment wetland, in addition to providing valuable information for new and existing constructed treatment

  5. Dietary Phosphorus Intake and the Kidney.

    PubMed

    Chang, Alex R; Anderson, Cheryl

    2017-08-21

    Although phosphorus is an essential nutrient required for multiple physiological functions, recent research raises concerns that high phosphorus intake could have detrimental effects on health. Phosphorus is abundant in the food supply of developed countries, occurring naturally in protein-rich foods and as an additive in processed foods. High phosphorus intake can cause vascular and renal calcification, renal tubular injury, and premature death in multiple animal models. Small studies in human suggest that high phosphorus intake may result in positive phosphorus balance and correlate with renal calcification and albuminuria. Although serum phosphorus is strongly associated with cardiovascular disease, progression of kidney disease, and death, limited data exist linking high phosphorus intake directly to adverse clinical outcomes. Further prospective studies are needed to determine whether phosphorus intake is a modifiable risk factor for kidney disease.

  6. Effects of phytase supplementation on calcium and phosphorus output, production traits and mechanical stability of the tibia in broiler chickens.

    PubMed

    Vetési, M; Mézes, M; Baskay, G; Gelencsér, E

    1998-01-01

    A feeding trial was performed using 4 x 60 day-old chickens (Ross 208 cockerels) raised up to 42 days of age to determine whether exogenous phytase addition increases phosphorus utilisation by broiler chickens, and to assess its effects on some production traits as well as on the ash content and mechanical stability of the tibia. The chickens' feed consisted of maize, wheat, soybean meal, fish meal, yeast, and fat powder. The basic feed was supplemented with inorganic phosphorus in groups A and B. In groups C and D, the amount of the inorganic phosphorus supplement (DCP) was decreased by 50%, at the same calcium/phosphorus ratio. The 50% reduction of inorganic phosphorus supplementation represents a 20% decrease of total phosphorus. To the diets of groups B and D a phytase enzyme preparation (Phytase Novo CT) was added. The calculated exogenous phytase activity was 600 FYT/kg feed. The decrease of inorganic phosphorus did not cause significant differences in the daily weight gain but lowered the feed conversion rate by 10%. Calcium and phosphorus excretion decreased by 18% and 15%, and the breaking strength of the tibia was also lower. Phytase supplementation of the feed at a lower rate of inorganic phosphorus supplementation did not cause changes in the body weight gain but improved the feed conversion rate by 5.6%. Phosphorus and calcium output decreased by 21% and 11%, respectively, but chemical composition and mechanical stability of the tibia were unaltered.

  7. [Effects of phosphorus sources on phosphorus fractions in rhizosphere soil of wild barley genotypes with high phosphorus utilization efficiency].

    PubMed

    Cai, Qiu-Yan; Zhang, Xi-Zhou; Li, Ting-Xuan; Chen, Guang-Deng

    2014-11-01

    High P-efficiency (IS-22-30, IS-22-25) and low P-efficiency (IS-07-07) wild barley cultivars were chosen to evaluate characteristics of phosphorus uptake and utilization, and properties of phosphorus fractions in rhizosphere and non-rhizosphere in a pot experiment with 0 (CK) and 30 mg P · kg(-1) supplied as only Pi (KH2PO4), only Po (phytate) or Pi + Po (KH2PO4+ phytate). The results showed that dry matter and phosphorus accumulation of wild barley in the different treatments was ranked as Pi > Pi + Po > Po > CK. In addition, dry matter yield and phosphorus uptake of wild barley with high P-efficiency exhibited significantly greater than that with low P-efficiency. The concentration of soil available phosphorus was significantly different after application of different phosphorus sources, which was presented as Pi > Pi + Po > Po. The concentration of soil available phosphorus in high P-efficiency wild barley was significantly higher than that of low P-efficiency in the rhizosphere soil. There was a deficit in rhizosphere available phosphorus of high P-efficiency wild barley, especially in Pi and Pi+Po treatments. The inorganic phosphorus fractions increased with the increasing Pi treatment, and the concentrations of inorganic phosphorus fractions in soil were sorted as follows: Ca10-P > O-P > Fe-P > Al-P > Ca2-P > Ca8-P. The contents of Ca2-P and Ca8-P for high P-efficiency wild barley showed deficits in rhizosphere soil under each phosphorus source treatment. In addition, enrichment of Al-P and Fe-P was observed in Pi treatment in rhizosphere soil. The concentrations of organic phosphorus fractions in soil were sorted as follows: moderate labile organic phosphorus > moderate resistant, resistant organic phosphorus > labile organic phosphorus. The labile and moderate labile organic phosphorus enriched in rhizosphere soil and the greatest enrichment appeared in Pi treatment. Furthermore, the concentrations of moderate resistant organic phosphorus and resistant

  8. A Substance Flow Model for Global Phosphorus

    NASA Astrophysics Data System (ADS)

    Vaccari, D. A.

    2015-12-01

    A system-based substance flow model (SFM) for phosphorus is developed based on the global phosphorus substance flow analysis (SFA) of Cordell et al (2009). The model is based strictly on mass balance considerations. It predicts the sensitivity of phosphorus consumption to various interventions intended to conserve reserves, as well as interactions among these efforts, allowing a comparison of their impacts on phosphorus demand. The interventions include control of phosphorus losses from soil erosion, food production and food waste, or phosphorus recycling such as from animal manure or human waste.

  9. Recovery of phosphorus from waste ponds

    SciTech Connect

    Crea, D. A.

    1985-01-08

    Process for recovery of elemental phosphorus from waste ponds by dredging the waste pond to obtain an aqueous phosphorus slurry, separating particles larger than 2 mm from the slurry, treating the remaining slurry in an initial hydrocyclone and removing an overflow of solids larger than 500 micrometers, treating the underflow from the initial hydrocyclones in smaller diameter hydrocyclones, removing a second overflow enriched in slimes and diminished in phosphorus, removing a second underflow enriched in phosphorus and diminished in slimes and heating it sufficiently to melt the phosphorus therein, treating the heated second underflow in a centrifugal separator, and separating and recovering a stream of coalesced phosphorus from a heavy fraction of impurities.

  10. The Relevance of Phosphorus and Iron Chemistry to the Recovery of Phosphorus from Wastewater: A Review.

    PubMed

    Wilfert, Philipp; Kumar, Prashanth Suresh; Korving, Leon; Witkamp, Geert-Jan; van Loosdrecht, Mark C M

    2015-08-18

    The addition of iron is a convenient way for removing phosphorus from wastewater, but this is often considered to limit phosphorus recovery. Struvite precipitation is currently used to recover phosphorus, and this approach has attracted much interest. However, it requires the use of enhanced biological phosphorus removal (EBPR). EBPR is not yet widely applied and the recovery potential is low. Other phosphorus recovery methods, including sludge application to agricultural land or recovering phosphorus from sludge ash, also have limitations. Energy-producing wastewater treatment plants increasingly rely on phosphorus removal using iron, but the problem (as in current processes) is the subsequent recovery of phosphorus from the iron. In contrast, phosphorus is efficiently mobilized from iron by natural processes in sediments and soils. Iron-phosphorus chemistry is diverse, and many parameters influence the binding and release of phosphorus, including redox conditions, pH, presence of organic substances, and particle morphology. We suggest that the current poor understanding of iron and phosphorus chemistry in wastewater systems is preventing processes being developed to recover phosphorus from iron-phosphorus rich wastes like municipal wastewater sludge. Parameters that affect phosphorus recovery are reviewed here, and methods are suggested for manipulating iron-phosphorus chemistry in wastewater treatment processes to allow phosphorus to be recovered.

  11. III. Quantitative aspects of phosphorus excretion in ruminants.

    PubMed

    Bravo, David; Sauvant, Daniel; Bogaert, Catherine; Meschy, François

    2003-01-01

    Ruminant phosphorus excretion and metabolism were studied through a database. Faecal endogenous phosphorus is the main pathway of phosphorus excretion and averages 0.85 of total faecal phosphorus. The remaining 0.15 is unabsorbed dietary phosphorus. Faecal endogenous phosphorus is mainly unabsorbed phosphorus, with saliva being the major source, and is correlated to factors influencing saliva secretion (DM intake, physical dietary characteristics and dietary phosphorus content). Another source of faecal endogenous phosphorus is rumen microbial phosphorus that escaped solubilisation during post-rumen digestion. All factors stimulating microbial growth would increase phosphorus uptake by the rumen microbes and consequently the faecal endogenous phosphorus. Understanding the determinants of faecal endogenous phosphorus flow will help to precise the determination of net phosphorus requirements for maintenance. The role of plasma phosphorus in urinary phosphorus loss is discussed.

  12. Effects of phase-feeding dietary phosphorus on survival, growth, and processing characteristics of rainbow trout Oncorhynchus mykiss

    USGS Publications Warehouse

    Lellis, W.A.; Barrows, F.T.; Hardy, R.W.

    2004-01-01

    A factorial experiment involving eight diets and three feeding periods was conducted to determine the minimal level of dietary phosphorus required to maintain survival, growth, and processing characteristics of post-juvenile rainbow trout. Trout were reared to an average size of 200, 300, or 400 g using a commercial feed (1.20% P), then allotted by triplicate groups of nine fish to one of seven experimental diets containing logarithmic increments of dietary phosphorus (0.15%%, 0.21%, 0.30%, 0.42%, 0.60%, 0.85%, and 1.20% P) or a commercial trout feed (1.20% P). At an average weight of 550 g, fish were transported to a commercial processing plant, mechanically filleted, and evaluated for quality. Fish survival and weight gain increased quadratically with increased dietary phosphorus for fish started on treatment at 200 and 300 g, but were similar among all fish started at 400 g. Phosphorus retention decreased with increasing dietary phosphorus level, from approximately 88% in groups fed diets containing 0.21% phosphorus to between 23% and 32% in groups fed diets containing 0.85% phosphorus. Calculated phosphorus losses increased as dietary phosphorus levels increased, from a low of approximately 0.4 g phosphorus kg-1 fish weight gain to between 9.5 and 13 g phosphorus kg-1 fish weight gain at the highest dietary phosphorus level. Dietary phosphorus did not affect carcass moisture, protein, lipid, or ash, but carcass phosphorus increased with increased dietary phosphorus among fish started on treatment at 200 and 300 g. There were no differences among any treatment group in carcass dressing or finishing percentage, or visual or textural appeal. The results indicate that available phosphorus levels can be reduced in rainbow trout diets to 0.60% at 200 g, to 0.30% at 300 g, or to 0.15% at 400 g live weight without loss in production or product quality in fish harvested at 550 g. Using these phase-feeding strategies would reduce the amount of phosphorus fed to the fish

  13. Determination of soil organic phosphorus exchange sensitivity

    NASA Astrophysics Data System (ADS)

    Shand, Charles; Wendler, Renate; Lumsdon, David; Cooper, Pat; George, Timothy; Brown, Lawrie; Giles, Courtney; Stutter, Marc; Menezes-Blackburn, Daniel; Zhang, Hao; Wearing, Catherine; Haygarth, Philip; Blackwell, Martin; Darch, Tegan

    2015-04-01

    Soils contain both organic and inorganic phosphorus (P) species in varying proportions. Studies have shown that many soils contain substantial amounts of inositol hexaphosphate (IHP) and there is much interest worldwide in developing strategies to make some use of this recalcitrant resource for plant growth to reduce P fertilizer inputs. Little is known about the preference of ion exchange processes in the solubilisation of organic vs inorganic P forms in soils, an important first step in making P forms bioavailable. Although they do not possess biotic functions, resins provides a simple means to deplete P forms in soil allowing investigation of exchange selectivity between inorganic and organic P forms. The aim of our work was to determine new understanding of exchange selectivity in soils and provide insight into potential depletion and plant uptake of soil phosphorus, with emphasis on organic forms such as IHP. For our study we used a Cambisol sampled from an agricultural area (Tayport) near Dundee in Scotland. The soil had a high Olsen (0.5 M sodium bicarbonate at pH 8.5) extractable P status (84 mg P/kg) and P-31 nuclear magnetic resonance analysis of its NaOH/EDTA extract showed it contained a substantial proportion of IHP (21 % of total extractable P). For resin extraction we used anion exchange resin sheets (4.17 cm each side) in bicarbonate form to minimise pH related solubilisation effects. We used 3.5 g of soil in 75 ml of water and added 1, 2 or 3 resin squares. After equilibration the resin squares were removed and replaced with fresh resin squares a further 3 times. Phosphorus was recovered from the resin sheets by elution with 0.25 M sulphuric acid and analysed by inductively coupled plasma spectroscopy to determine total P, and colorimetrically with malachite green to determine inorganic P with the remainder assigned to organic P. The data showed that the resin preferentially removed inorganic P and even after four sequential extractions little or

  14. Phosphorus Abundances in FGK Stars

    NASA Astrophysics Data System (ADS)

    Maas, Z. G.; Pilachowski, C. A.; Cescutti, G.

    2017-06-01

    We measured phosphorus abundances in 22 FGK dwarfs and giants that span -0.55 < [Fe/H] < 0.2 using spectra obtained with the Phoenix high-resolution infrared spectrometer on the Kitt Peak National Observatory Mayall 4 m telescope, the Gemini South Telescope, and the Arcturus spectral atlas. We fit synthetic spectra to the P i feature at 10581 Å to determine abundances for our sample. Our results are consistent with previously measured phosphorus abundances; the average [P/Fe] ratio measured in [Fe/H] bins of 0.2 dex for our stars are within ˜1σ compared to averages from other IR phosphorus studies. Our study provides more evidence that models of chemical evolution using the results of theoretical yields are underproducing phosphorus compared to the observed abundances. Our data better fit a chemical evolution model with phosphorus yields increased by a factor of 2.75 compared to models with unadjusted yields. We also found average [P/Si] = 0.02 ± 0.07 and [P/S] = 0.15 ± 0.15 for our sample, showing no significant deviations from the solar ratios for [P/Si] and [P/S] ratios.

  15. Proposed biokinetic model for phosphorus

    SciTech Connect

    Leggett, Richard Wayne

    2014-06-04

    This paper reviews data related to the biokinetics of phosphorus in the human body and proposes a biokinetic model for systemic phosphorus for use in updated International Commission on Radiological Protection (ICRP) guidance on occupational intake of radionuclides. Compared with the ICRP s current occupational model for phosphorus (Publication 68, 1994) the proposed model provides a more realistic description of the paths of movement of phosphorus in the body and improved consistency with experimental, medical, and environmental data on the time-dependent distribution and retention of phosphorus following uptake to blood. For acute uptake of 32P to blood, the proposed model yields roughly a 50% decrease in dose estimates for bone surface and red marrow and a 6-fold increase in estimates for liver and kidney compared with the biokinetic model of Publication 68 (applying Publication 68 dosimetric models in both sets of calculations). For acute uptake of 33P to blood, the proposed model yields roughly a 50% increase in dose estimates for bone surface and red marrow and a 7-fold increase in estimates for liver and kidney compared with the model of Publication 68.

  16. Phosphorus runoff from turfgrass as affected by phosphorus fertilization and clipping management.

    PubMed

    Bierman, Peter M; Horgan, Brian P; Rosen, Carl J; Hollman, Andrew B; Pagliari, Paulo H

    2010-01-01

    Phosphorus enrichment of surface water is a concern in many urban watersheds. A 3-yr study on a silt loam soil with 5% slope and high soil test P (27 mg kg(-1) Bray P1) was conducted to evaluate P fertilization and clipping management effects on P runoff from turfgrass (Poa pratensis L.) under frozen and nonfrozen conditions. Four fertilizer treatments were compared: (i) no fertilizer, (ii) nitrogen (N)+potassium (K)+0xP, (iii) N+K+1xP, and (iv) N+K+3xP. Phosphorus rates were 21.3 and 63.9 kg ha(-1) yr(-1) the first year and 7.1 and 21.3 kg ha(-1) yr(-1) the following 2 yr. Each fertilizer treatment was evaluated with clippings removed or clippings recycled back to the turf. In the first year, P runoff increased with increasing P rate and P losses were greater in runoff from frozen than nonfrozen soil. In year 2, total P runoff from the no fertilizer treatment was greater than from treatments receiving fertilizer. This was because reduced turf quality resulted in greater runoff depth from the no fertilizer treatment. In year 3, total P runoff from frozen soil and cumulative total P runoff increased with increasing P rate. Clipping management was not an important factor in any year, indicating that returning clippings does not significantly increase P runoff from turf. In the presence of N and K, P fertilization did not improve turf growth or quality in any year. Phosphorus runoff can be reduced by not applying P to high testing soils and avoiding fall applications when P is needed.

  17. Fire-Resistant Polyimides Containing Phosphorus

    NASA Technical Reports Server (NTRS)

    Mikroyannidis, J.

    1986-01-01

    Limiting oxygen index increased. Copolyimide with a group containing phosphorus synthesized from 1-2,4-diaminobenzene, m-phenylenediamine, and tetracarboxylic dianhydride. Copolymer more fire resistant than corresponding polyimide without phosphorus.

  18. Low Phosphorus Diet: Best for Kidney Disease?

    MedlinePlus

    ... with higher phosphorus ingredients (milk, dried peas, beans, lentils) Soups made with lower phosphorus ingredients (broth- or ... beans (black, garbanzo, lima, kidney, navy, pinto) or lentils Green peas, green beans or wax beans Processed ...

  19. Economic feasibility study for phosphorus recovery processes.

    PubMed

    Molinos-Senante, María; Hernández-Sancho, Francesc; Sala-Garrido, Ramón; Garrido-Baserba, Manel

    2011-06-01

    Phosphorus recovery from wastewater has become a necessity for sustainable development because phosphorus is a non-renewable essential resource, and its discharge into the environment causes serious negative impacts. There are no economic incentives for the implementation of phosphorus recovery technologies because the selling price of rock phosphate is lower than phosphorus recovered from sewage. The methodologies used to determine the feasibility of such projects are usually focused on internal costs without considering environmental externalities. This article shows a methodology to assess the economic feasibility of wastewater phosphorus recovery projects that takes into account internal and external impacts. The shadow price of phosphorus is estimated using the directional distance function to measure the environmental benefits obtained by preventing the discharge of phosphorus into the environment. The economic feasibility analysis taking into account the environmental benefits shows that the phosphorus recovery is viable not only from sustainable development but also from an economic point of view.

  20. Fire-Resistant Polyimides Containing Phosphorus

    NASA Technical Reports Server (NTRS)

    Mikroyannidis, J.

    1986-01-01

    Limiting oxygen index increased. Copolyimide with a group containing phosphorus synthesized from 1-2,4-diaminobenzene, m-phenylenediamine, and tetracarboxylic dianhydride. Copolymer more fire resistant than corresponding polyimide without phosphorus.

  1. Dietary phosphorus requirement of channel catfish.

    PubMed

    Wilson, R P; Robinson, E H; Gatlin, D M; Poe, W E

    1982-06-01

    Two experiments were conducted to reevaluate the dietary phosphorus requirement of fingerling channel catfish. Basal diets containing either casein with supplemental inorganic phosphorus and 0.5% total calcium or egg albumin with supplemental inorganic phosphorus and 0.75% total calcium yielded similar requirement data. Eleven-week growth, feed efficiency, serum phosphorus, bone ash, bone calcium and bon phosphorus data indicate that 0.33% apparent available dietary phosphorus is adequate for maximum growth and bone mineralization. Based on these data and previous findings, we would suggest a value of 0.4% apparent available phosphorus be used in formulating catfish feeds. The apparent availability of phosphorus from soybean meal, as determined by the chromic oxide indicator method, was 29% for channel catfish.

  2. Phosphorus adlayers on Platinum (110)

    NASA Astrophysics Data System (ADS)

    Heikkinen, Olli; Riihimäki, Ari; Sainio, Jani; Lahtinen, Jouko

    2017-10-01

    Platinum is a metal utilized in many applications. Its catalytic activity can be decreased due to chemical poisoning caused e.g. by phosphorus. To gain more understanding of its poisoning, we present a study of phosphorus adsorption on a platinum (110) single crystal surface. Using X-ray photoelectron spectroscopy, we have found that the adsorbate coverage saturates at around 3 monolayers. Annealing the phosphorus-covered platinum surface at 750 °C gives rise to three different ordered adlayer structures, with symmetries of 2 × 3, 11 × 4 and √{ 2} × 1 , from the lowest to the highest coverage, detected with low-energy electron diffraction. We have studied the sample topography with scanning tunnelling microscopy. We also present a tentative model for the observed structures and their evolution.

  3. Edge phonons in black phosphorus

    PubMed Central

    Ribeiro, H. B.; Villegas, C. E. P.; Bahamon, D. A.; Muraca, D.; Castro Neto, A. H.; de Souza, E. A. T.; Rocha, A. R.; Pimenta, M. A.; de Matos, C. J. S.

    2016-01-01

    Black phosphorus has recently emerged as a new layered crystal that, due to its peculiar and anisotropic crystalline and electronic band structures, may have important applications in electronics, optoelectronics and photonics. Despite the fact that the edges of layered crystals host a range of singular properties whose characterization and exploitation are of utmost importance for device development, the edges of black phosphorus remain poorly characterized. In this work, the atomic structure and behaviour of phonons near different black phosphorus edges are experimentally and theoretically studied using Raman spectroscopy and density functional theory calculations. Polarized Raman results show the appearance of new modes at the edges of the sample, and their spectra depend on the atomic structure of the edges (zigzag or armchair). Theoretical simulations confirm that the new modes are due to edge phonon states that are forbidden in the bulk, and originated from the lattice termination rearrangements. PMID:27412813

  4. Edge phonons in black phosphorus

    NASA Astrophysics Data System (ADS)

    Ribeiro, H. B.; Villegas, C. E. P.; Bahamon, D. A.; Muraca, D.; Castro Neto, A. H.; de Souza, E. A. T.; Rocha, A. R.; Pimenta, M. A.; de Matos, C. J. S.

    2016-07-01

    Black phosphorus has recently emerged as a new layered crystal that, due to its peculiar and anisotropic crystalline and electronic band structures, may have important applications in electronics, optoelectronics and photonics. Despite the fact that the edges of layered crystals host a range of singular properties whose characterization and exploitation are of utmost importance for device development, the edges of black phosphorus remain poorly characterized. In this work, the atomic structure and behaviour of phonons near different black phosphorus edges are experimentally and theoretically studied using Raman spectroscopy and density functional theory calculations. Polarized Raman results show the appearance of new modes at the edges of the sample, and their spectra depend on the atomic structure of the edges (zigzag or armchair). Theoretical simulations confirm that the new modes are due to edge phonon states that are forbidden in the bulk, and originated from the lattice termination rearrangements.

  5. Phosphorus Flamethrower: A Demonstration Using Red and White Allotropes of Phosphorus

    ERIC Educational Resources Information Center

    Golden, Melissa L.; Person, Eric C.; Bejar, Miriam; Golden, Donnie R.; Powell, Jonathan M.

    2010-01-01

    A demonstration was created to display the unique behavior of a familiar element, phosphorus, and to make chemistry more accessible to the introductory student. The common allotropes of phosphorus and their reactivity are discussed. In this demonstration, the white allotrope of phosphorus is synthesized from the red phosphorus obtained from a…

  6. Phosphorus Flamethrower: A Demonstration Using Red and White Allotropes of Phosphorus

    ERIC Educational Resources Information Center

    Golden, Melissa L.; Person, Eric C.; Bejar, Miriam; Golden, Donnie R.; Powell, Jonathan M.

    2010-01-01

    A demonstration was created to display the unique behavior of a familiar element, phosphorus, and to make chemistry more accessible to the introductory student. The common allotropes of phosphorus and their reactivity are discussed. In this demonstration, the white allotrope of phosphorus is synthesized from the red phosphorus obtained from a…

  7. Dietary egg whites for phosphorus control in maintenance haemodialysis patients: a pilot study.

    PubMed

    Taylor, Lynn M; Kalantar-Zadeh, Kamyar; Markewich, Theodore; Colman, Sara; Benner, Debbie; Sim, John J; Kovesdy, Csaba P

    2011-03-01

    High dietary protein intake is associated with greater survival in maintenance haemodialysis (MHD) patients. High-protein foods may increase dietary phosphorus burden, which is associated with increased mortality in these patients. Hypothesis is: an egg white based diet with low phosphorus to protein ratio (<1.4 mg/g) will lower serum phosphorus without deteriorating the nutritional status in MHD patients. We assessed serum phosphorus and albumin levels in MHD patients who agreed to ingest one meal per day with pasteurised liquid egg whites without phosphorus additives, as principal protein source. Thirteen otherwise stable MHD patients with serum phosphorus >4.0 mg/dl agreed to consume eight ounces (225 g) of pasteurised liquid egg whites one meal per day for six weeks. Recipes were suggested to improve diet variety. Thirteen participating patients included seven women, three African Americans and five diabetics. Twelve patients exhibited drop in serum phosphorus. Mean population fall in serum phosphorus was 0.94 mg/dl, i.e. from 5.58 ± 1.34 (mean ± SD) to 4.63 ± 1.18 (p = 0.003). Serum albumin showed an increase by 0.19 g/dl, i.e. from 4.02 ± 0.29 to 4.21 ± 0.36 g/dl (p = 0.014). Changes in phosphorus pill count were not statistically significant (p = 0.88). The egg white diet was well tolerated, and recipe variety appreciated. Pasteurised liquid egg whites may be an effective diet component lowering serum phosphorus without risking malnutrition. Controlled trials are indicated to examine egg white based dietary interventions in MHD patients at home or during haemodialysis treatment. © 2011 European Dialysis and Transplant Nurses Association/European Renal Care Association.

  8. DIETARY EGG WHITES FOR PHOSPHORUS CONTROL IN MAINTENANCE HAEMODIALYSIS PATIENTS: A PILOT STUDY

    PubMed Central

    Taylor, Lynn M.; Kalantar-Zadeh, Kamyar; Markewich, Theodore; Colman, Sara; Benner, Debbie; Sim, John J.; Kovesdy, Csaba P.

    2015-01-01

    SUMMARY Background High dietary protein intake is associated with greater survival in maintenance haemodialysis (MHD) patients. High-protein foods may increase dietary phosphorus burden, which is associated with increased mortality in these patients. Hypothesis is: an egg white based diet with low phosphorus to protein ratio (<1.4 mg/g) will lower serum phosphorus without deteriorating the nutritional status in MHD patients. Objective We assessed serum phosphorus and albumin levels in MHD patients who agreed to ingest one meal per day with pasteurised liquid egg whites without phosphorus additives, as principal protein source. Methods Thirteen otherwise stable MHD patients with serum phosphorus >4.0 mg/dl agreed to consume eight ounces (225 g) of pasteurised liquid egg whites one meal per day for six weeks. Recipes were suggested to improve diet variety. Results Thirteen participating patients included seven women, three African Americans and five diabetics. Twelve patients exhibited drop in serum phosphorus. Mean population fall in serum phosphorus was 0.94 mg/dl, i.e. from 5.58 ± 1.34 (mean ± SD) to 4.63 ± 1.18 (p = 0.003). Serum albumin showed an increase by 0.19 g/dl, i.e. from 4.02 ± 0.29 to 4.21 ± 0.36 g/dl (p = 0.014). Changes in phosphorus pill count were not statistically significant (p = 0.88). The egg white diet was well tolerated, and recipe variety appreciated. Conclusion Pasteurised liquid egg whites may be an effective diet component lowering serum phosphorus without risking malnutrition. Controlled trials are indicated to examine egg white based dietary interventions in MHD patients at home or during haemodialysis treatment. PMID:21288313

  9. Cholestatic presentation of yellow phosphorus poisoning

    PubMed Central

    Lakshmi, C. P.; Goel, Amit; Basu, Debdatta

    2014-01-01

    Yellow phosphorus, a component of certain pesticide pastes and fireworks, is well known to cause hepatotoxicity. Poisoning with yellow phosphorus classically manifests with acute hepatitis leading to acute liver failure which may need liver transplantation. We present a case of yellow phosphorus poisoning in which a patient presented with florid clinical features of cholestasis highlighting the fact that cholestasis can rarely be a presenting feature of yellow phosphorus hepatotoxicity. PMID:24554916

  10. Effect of mineral and manure phosphorus sources on runoff phosphorus.

    PubMed

    Kleinman, Peter J A; Sharpley, Andrew N; Moyer, Barton G; Elwinger, Gerald F

    2002-01-01

    Concern over nonpoint-source phosphorus (P) losses from agricultural lands to surface waters has resulted in scrutiny of factors affecting P loss potential. A rainfall simulation study was conducted to quantify the effects of alternative P sources (dairy manure, poultry manure, swine slurry, and diammonium phosphate), application methods, and initial soil P concentrations on runoff P losses from three acidic soils (Buchanan-Hartleton, Hagerstown, and Lewbeach). Low P (12 to 26 mg kg(-1) Mehlich-3 P) and high P (396 to 415 mg kg(-1) Mehlich-3 P) members of each soil were amended with 100 kg total P ha(-1) from each of the four P sources either by surface application or mixing, and subjected to simulated rainfall (70 mm h(-1) to produce 30 min runoff). Phosphorus losses from fertilizer and manure applied to the soil surface differed significantly by source, with dissolved reactive phosphorus (DRP) accounting for 64% of total phosphorus (TP) (versus 9% for the unamended soils). For manure amended soils, these losses were linearly related to water-soluble P concentration of manure (r2 = 0.86 for DRP, r2 = 0.78 for TP). Mixing the P sources into the soil significantly decreased P losses relative to surface P application, such that DRP losses from amended, mixed soils were not significantly different from the unamended soil. Results of this study can be applied to site assessment indices to quantify the potential for P loss from recently manured soils.

  11. Linking soil phosphorus to dissolved phosphorus losses in the midwest

    USDA-ARS?s Scientific Manuscript database

    Harmful and nuisance algal blooms resulting from excess phosphorus (P) have placed agriculture in the spotlight of the water quality debate. Sixty-eight site years of P loading data from 36 fields in Ohio were used to see if a soil test P (STP) concentration could be identified that would permit P a...

  12. Guiding phosphorus stewardship for multiple ecosystem services

    USDA-ARS?s Scientific Manuscript database

    Phosphorus is vital to agricultural production and water quality regulation. While the role of phosphorus in agriculture and water quality has been studied for decades, the benefits of sustainable phosphorus use and management for society due to its downstream impacts on multiple ecosystem services...

  13. 40 CFR 422.20 - Applicability; description of the phosphorus consuming subcategory.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... phosphorus consuming subcategory. 422.20 Section 422.20 Protection of Environment ENVIRONMENTAL PROTECTION... Phosphorus Consuming Subcategory § 422.20 Applicability; description of the phosphorus consuming subcategory... manufacture of phosphoric acid, phosphorus pentoxide, phosphorus pentasulfide, phosphorus trichloride,...

  14. 40 CFR 422.20 - Applicability; description of the phosphorus consuming subcategory.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... phosphorus consuming subcategory. 422.20 Section 422.20 Protection of Environment ENVIRONMENTAL PROTECTION... Phosphorus Consuming Subcategory § 422.20 Applicability; description of the phosphorus consuming subcategory... manufacture of phosphoric acid, phosphorus pentoxide, phosphorus pentasulfide, phosphorus trichloride,...

  15. 40 CFR 422.20 - Applicability; description of the phosphorus consuming subcategory.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... phosphorus consuming subcategory. 422.20 Section 422.20 Protection of Environment ENVIRONMENTAL PROTECTION... Phosphorus Consuming Subcategory § 422.20 Applicability; description of the phosphorus consuming subcategory... manufacture of phosphoric acid, phosphorus pentoxide, phosphorus pentasulfide, phosphorus trichloride,...

  16. 40 CFR 422.20 - Applicability; description of the phosphorus consuming subcategory.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... phosphorus consuming subcategory. 422.20 Section 422.20 Protection of Environment ENVIRONMENTAL PROTECTION... Phosphorus Consuming Subcategory § 422.20 Applicability; description of the phosphorus consuming subcategory... manufacture of phosphoric acid, phosphorus pentoxide, phosphorus pentasulfide, phosphorus trichloride,...

  17. Gettering Silicon Wafers with Phosphorus

    NASA Technical Reports Server (NTRS)

    Daiello, R. V.

    1983-01-01

    Silicon wafers subjected to gettering in phosphorus atmosphere have longer diffusion lengths and higher solar-cell efficiencies than untreated wafers. Gettering treatment improves properties of solar cells manufactured from impure silicon and is compatible with standard solar-cell processing.

  18. Enzymatic hydrolysis of organic phosphorus

    USDA-ARS?s Scientific Manuscript database

    Orthophosphate-releasing enzymatic hydrolysis is an alternative means for characterizing organic phosphorus (Po) in animal manure. The approach is not only simple and fast, but can also provide information difficult to obtain by other methods. Currently, commercially available phosphatases are mainl...

  19. Gettering Silicon Wafers with Phosphorus

    NASA Technical Reports Server (NTRS)

    Daiello, R. V.

    1983-01-01

    Silicon wafers subjected to gettering in phosphorus atmosphere have longer diffusion lengths and higher solar-cell efficiencies than untreated wafers. Gettering treatment improves properties of solar cells manufactured from impure silicon and is compatible with standard solar-cell processing.

  20. Major Minerals - Calcium, Magnesium, Phosphorus

    USDA-ARS?s Scientific Manuscript database

    Calcium, magnesium and phosphorus are essential elements critically important for the function of the musculoskeletal system, including the formation and transduction of energy and the maintenance of healthy bone. The major calcium concern for physically active healthy middle-aged adults is to consu...

  1. Clinical Disorders of Phosphorus Metabolism

    PubMed Central

    Yu, George C.; Lee, David B. N.

    1987-01-01

    Deranged phosphorus metabolism is commonly encountered in clinical medicine. Disturbances in phosphate intake, excretion and transcellular shift account for the abnormal serum levels. As a result of the essential role played by phosphate in intracellular metabolism, the clinical manifestations of hypophosphatemia and hyperphosphatemia are extensive. An understanding of the pathophysiology of various phosphate disorders is helpful in guiding therapeutic decisions. Images PMID:3321712

  2. Measurement of spin-flip probabilities for ultracold neutrons interacting with nickel phosphorus coated surfaces

    DOE PAGES

    Tang, Zhaowen; Adamek, Evan Robert; Brandt, Aaron; ...

    2016-04-26

    In this paper, we report a measurement of the spin-flip probabilities for ultracold neutrons interacting with surfaces coated with nickel phosphorus. For 50 μm thick nickel phosphorus coated on stainless steel, the spin-flip probability per bounce was found to be βNiP on SS = (3.3 +1.8, -5.6) X 10-6. For 50 μm thick nickel phosphorus coated on aluminum, the spin-flip probability per bounce was found to be βNiP on Al = (3.6 +2.1, -5.9) X 10-6. For the copper guide used as reference, the spin flip probability per bounce was found to be βCu = (6.7 + 5.0, -2.5) Xmore » 10-6. The results on the nickel phosphorus-coated surfaces may be interpreted as upper limits, yielding βNiP on SS < 6.2 X 10-6 (90% C.L.) and βNiP on Al < 7.0 X 10-6 (90% C.L.) for 50 μm thick nickel phosphorus coated on stainless steel and 50 μm thick nickel phosphorus coated on aluminum, respectively. Finally, nickel phosphorus coated stainless steel or aluminum provides a solution when low-cost, mechanically robust, and non-depolarizing UCN guides with a high Fermi potential are needed.« less

  3. Few-layer black phosphorus nanoparticles.

    PubMed

    Sofer, Zdenek; Bouša, Daniel; Luxa, Jan; Mazanek, Vlastimil; Pumera, Martin

    2016-01-28

    Herein, black phosphorus quantum dots and nanoparticles of a few layer thickness were prepared and characterized using STEM, AFM, dynamic light scattering, X-ray photoelectron spectroscopy, X-ray diffraction, Raman spectroscopy and photoluminescence. Impact electrochemistry of the induvidual black phosphorus nanoparticles allows their size determination. The centrifugation of colloidal black phosphorus nanoparticles allowed separation of quantum dots with sizes up to 15 nm. These black phosphorus nanoparticles exhibit a large band gap and are expected to find a wide range of applications from semiconductors to biomolecule tags. The use of black phosphorus nanoparticles for vapour sensing was successfully demonstrated.

  4. Natural phosphorus sources for the Pacific Northwest

    USGS Publications Warehouse

    Johnson, Hank

    2011-01-01

    Phosphorus is a naturally occurring element found in all rocks; the amount varies by the type of rock. The amount of phosphorus in sediments is expected to be correlated with the amount of phosphorus in the parent rocks. Streambed sediment collected by the National Uranium Resource Evaluation (NURE) Program were used to estimate the variation of phosphorus across the Pacific Northwest. This file provides an estimate of the mean concentration of phosphorus in soils for each incremental catchment of the USGS Pacific Northwest SPARROW model.

  5. The Galactic evolution of phosphorus

    NASA Astrophysics Data System (ADS)

    Caffau, E.; Bonifacio, P.; Faraggiana, R.; Steffen, M.

    2011-08-01

    Context. As a galaxy evolves, its chemical composition changes and the abundance ratios of different elements are powerful probes of the underlying evolutionary processes. Phosphorous is an element whose evolution has remained quite elusive until now, because it is difficult to detect in cool stars. The infrared weak P i lines of the multiplet 1, at 1050-1082 nm, are the most reliable indicators of the presence of phosphorus. The availability of CRIRES at VLT has permitted access to this wavelength range in stellar spectra. Aims: We attempt to measure the phosphorus abundance of twenty cool stars in the Galactic disk. Methods: The spectra are analysed with one-dimensional model-atmospheres computed in local thermodynamic equilibrium (LTE). The line formation computations are performed assuming LTE. Results: The ratio of phosphorus to iron behaves similarly to sulphur, increasing towards lower metallicity stars. Its ratio with respect to sulphur is roughly constant and slightly larger than solar, [P/S] = 0.10 ± 0.10. Conclusions: We succeed in taking an important step towards the understanding of the chemical evolution of phosphorus in the Galaxy. However, the observed rise in the P/Fe abundance ratio is steeper than predicted by Galactic chemical evolution model developed by Kobayashi and collaborators. Phosphorus appears to evolve differently from the light odd-Z elements sodium and aluminium. The constant value of [P/S] with metallicity implies that P production is insensitive to the neutron excess, thus processes other than neutron captures operate. We suggest that proton captures on 30Si and α captures on 27Al are possibilities to investigate. We see no clear distinction between our results for stars with planets and stars without any detected planet. Based on observations obtained with the CRIRES spectrograph at ESO-VLT Antu 8.2 m telescope at Paranal, Programme 386.D-0130, P.I. E. Caffau.

  6. Global warming and the phosphorus cycle

    SciTech Connect

    Tarasova, N.P.; Smetannikov, Y.V.; Balitsky, V.Y. )

    1994-09-01

    Greenhouse-induced climate change seriously influences the phosphorus cycle. In this paper the authors have analyzed how environmental conditions cause an increase or a decrease in the phosphorus content of the soil. Phosphorus production in South Kazakhstan without strict control for fulfilling environment-protection measures may lead to the chemical erosion of soils, i.e., disturb the balance of soluble and insoluble, as well as organic and inorganic, forms of phosphorus. Phosphorus accumulation in the soil can be promoted by heavy metals. The authors have constructed a general dynamic system for phosphorus flows in the soil. The results of 7-years monitoring of the soils in the region of South Kazakhstan are discussed and compared with the dynamic system. The role of chemical elements promoting phosphorus accumulation in the soil is further analyzed.

  7. 40 CFR 422.20 - Applicability; description of the phosphorus consuming subcategory.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... manufacture of phosphoric acid, phosphorus pentoxide, phosphorus pentasulfide, phosphorus trichloride, and... phosphorus oxychloride creates waste water pollutants not completely amenable to the procedures utilized for...

  8. NMR of Phosphorus in Iii-Phosphorus Semiconductors.

    NASA Astrophysics Data System (ADS)

    Rutland, Jonathan Mark

    Second moment measurements have been obtained for phosphorus in III-phosphorus semiconductor compounds, including the first such measurements on BP. By the use of various multiple pulse sequences, the second moment contributions due to like and unlike spins can be measured independently. A new technique for extracting the second moment has been developed that eliminates or reduces many of the limitations imposed by previous methods. Previous work has attributed the differences between the measured and theoretical second moment to the indirect nuclear interactions; the exchange and pseudodipolar interactions. Engelsburg and Norberg have shown that the measured second moments place limits on the range of allowed values for the indirect coupling coefficients. Their theory is extended in this work to the case when multiple isotopes are present. The derived coupling coefficient limits are compared to theoretical calculations based on the two-electron bond orbital model. The results are in agreement with a scaling of the coupling coefficients with atomic number.

  9. Agricultural trade and the global phosphorus cycle

    NASA Astrophysics Data System (ADS)

    Schipanski, M.; Bennett, E.; Riskin, S.; Porder, S.

    2012-12-01

    Trends of increasing agricultural trade, increased concentration of livestock production systems, and increased human consumption of livestock products influence the distribution of nutrients across the global landscape. Phosphorus (P) represents a unique management challenge as we are rapidly depleting mineable reserves of this essential and non-renewable resource. At the same time, its overuse can lead to pollution of aquatic ecosystems. We analyzed the relative contributions of food crop, feed crop, and livestock product trade to P flows through agricultural soils for twelve countries from 1961 to 2007. We then used case studies of P fertilizer use in the world's three major soybean export regions: Iowa (USA), Mato Grosso (Brazil), and Buenos Aires (Argentina) to examine the influence of historical P management and soil types on agriculture's environmental consequences. Due to the intensification of agricultural production, average soil surface P balances more than tripled from 6 to 21 kg P per ha between 1961 and 2007 for the twelve study countries. Consequently, countries that are primarily agricultural exporters carried increased risks for water pollution or, for Argentina, reduced soil fertility due to soil P mining to support exports. In 2007, nations imported food and feed from regions with higher apparent P fertilizer use efficiencies than if those crops were produced domestically. However, this was largely because imports were sourced from regions depleting soil P resources to support export crop production. In addition, the pattern of regional specialization and intensification of production systems also reduced the potential to recycle P resources, with greater implications for livestock production than crop production. In a globalizing world, it will be increasingly important to integrate biophysical constraints of our natural resources and environmental impacts of agricultural systems into trade policy and agreements and to develop mechanisms that

  10. Dietary phosphorus acutely impairs endothelial function.

    PubMed

    Shuto, Emi; Taketani, Yutaka; Tanaka, Rieko; Harada, Nagakatsu; Isshiki, Masashi; Sato, Minako; Nashiki, Kunitaka; Amo, Kikuko; Yamamoto, Hironori; Higashi, Yukihito; Nakaya, Yutaka; Takeda, Eiji

    2009-07-01

    Excessive dietary phosphorus may increase cardiovascular risk in healthy individuals as well as in patients with chronic kidney disease, but the mechanisms underlying this risk are not completely understood. To determine whether postprandial hyperphosphatemia may promote endothelial dysfunction, we investigated the acute effect of phosphorus loading on endothelial function in vitro and in vivo. Exposing bovine aortic endothelial cells to a phosphorus load increased production of reactive oxygen species, which depended on phosphorus influx via sodium-dependent phosphate transporters, and decreased nitric oxide production via inhibitory phosphorylation of endothelial nitric oxide synthase. Phosphorus loading inhibited endothelium-dependent vasodilation of rat aortic rings. In 11 healthy men, we alternately served meals containing 400 mg or 1200 mg of phosphorus in a double-blind crossover study and measured flow-mediated dilation of the brachial artery before and 2 h after the meals. The high dietary phosphorus load increased serum phosphorus at 2 h and significantly decreased flow-mediated dilation. Flow-mediated dilation correlated inversely with serum phosphorus. Taken together, these findings suggest that endothelial dysfunction mediated by acute postprandial hyperphosphatemia may contribute to the relationship between serum phosphorus level and the risk for cardiovascular morbidity and mortality.

  11. Dietary Phosphorus Acutely Impairs Endothelial Function

    PubMed Central

    Shuto, Emi; Taketani, Yutaka; Tanaka, Rieko; Harada, Nagakatsu; Isshiki, Masashi; Sato, Minako; Nashiki, Kunitaka; Amo, Kikuko; Yamamoto, Hironori; Higashi, Yukihito; Nakaya, Yutaka; Takeda, Eiji

    2009-01-01

    Excessive dietary phosphorus may increase cardiovascular risk in healthy individuals as well as in patients with chronic kidney disease, but the mechanisms underlying this risk are not completely understood. To determine whether postprandial hyperphosphatemia may promote endothelial dysfunction, we investigated the acute effect of phosphorus loading on endothelial function in vitro and in vivo. Exposing bovine aortic endothelial cells to a phosphorus load increased production of reactive oxygen species, which depended on phosphorus influx via sodium-dependent phosphate transporters, and decreased nitric oxide production via inhibitory phosphorylation of endothelial nitric oxide synthase. Phosphorus loading inhibited endothelium-dependent vasodilation of rat aortic rings. In 11 healthy men, we alternately served meals containing 400 mg or 1200 mg of phosphorus in a double-blind crossover study and measured flow-mediated dilation of the brachial artery before and 2 h after the meals. The high dietary phosphorus load increased serum phosphorus at 2 h and significantly decreased flow-mediated dilation. Flow-mediated dilation correlated inversely with serum phosphorus. Taken together, these findings suggest that endothelial dysfunction mediated by acute postprandial hyperphosphatemia may contribute to the relationship between serum phosphorus level and the risk for cardiovascular morbidity and mortality. PMID:19406976

  12. Organic phosphorus sequestration in subtropical treatment wetlands.

    PubMed

    Turner, Benjamin L; Newman, Susan; Newman, Jana M

    2006-02-01

    Diffuse phosphorus pollution is commonly remediated by diverting runoff through treatment wetlands to sequester phosphorus into soil layers. Much of the sequestered phosphorus occurs in organic forms, yet our understanding of its chemical nature is limited. We used NaOH-EDTA extraction and solution 31P NMR spectroscopy to speciate organic phosphorus sequestered in a large treatment wetland (STA-1W) in Florida, USA. The wetland was constructed on previously farmed peat and was designed to remove phosphorus from agricultural runoff prior to discharge into the Everglades. Unconsolidated benthic floc that had accumulated during the 9-year operation of the wetland was sampled along transects through two connected cells dominated by cattail (Typha dominigensis Pers.) and an additional cell colonized by submerged aquatic vegetation, including southern water nymph (Najas guadalupensis(Spreng.) Magnus) and coontail (Ceratophyllum demersum L.). Organic phosphorus was a greater proportion of the sequestered phosphorus in the cattail marsh compared to the submerged aquatic vegetation wetland, but occurred almost exclusively as phosphate diesters and their alkaline hydrolysis products. Itwas therefore markedly different from the organic phosphorus in mineral soils, which is dominated typically by inositol phosphates. Phosphate diesters are readily degradable in most soils, raising concern about the long-term fate of organic phosphorus in treatment wetlands. Further studies are now necessaryto assess the stability of the sequestered organic phosphorus in response to biogeochemical and hydrological perturbation.

  13. Black phosphorus nonvolatile transistor memory

    NASA Astrophysics Data System (ADS)

    Lee, Dain; Choi, Yongsuk; Hwang, Euyheon; Kang, Moon Sung; Lee, Seungwoo; Cho, Jeong Ho

    2016-04-01

    We demonstrated nanofloating gate transistor memory devices (NFGTMs) using mechanically-exfoliated few-layered black phosphorus (BP) channels and gold nanoparticle (AuNPs) charge trapping layers. The resulting BP-NFGTMs exhibited excellent memory performances, including the five-level data storage, large memory window (58.2 V), stable retention (104 s), and cyclic endurance (1000 cycles).We demonstrated nanofloating gate transistor memory devices (NFGTMs) using mechanically-exfoliated few-layered black phosphorus (BP) channels and gold nanoparticle (AuNPs) charge trapping layers. The resulting BP-NFGTMs exhibited excellent memory performances, including the five-level data storage, large memory window (58.2 V), stable retention (104 s), and cyclic endurance (1000 cycles). Electronic supplementary information (ESI) available. See DOI: 10.1039/c6nr02078j

  14. Phosphorus doping a semiconductor particle

    DOEpatents

    Stevens, G.D.; Reynolds, J.S.

    1999-07-20

    A method of phosphorus doping a semiconductor particle using ammonium phosphate is disclosed. A p-doped silicon sphere is mixed with a diluted solution of ammonium phosphate having a predetermined concentration. These spheres are dried with the phosphorus then being diffused into the sphere to create either a shallow or deep p-n junction. A good PSG glass layer is formed on the surface of the sphere during the diffusion process. A subsequent segregation anneal process is utilized to strip metal impurities from near the p-n junction into the glass layer. A subsequent HF strip procedure is then utilized to removed the PSG layer. Ammonium phosphate is not a restricted chemical, is inexpensive, and does not pose any special shipping, handling, or disposal requirement. 1 fig.

  15. Biological Availability of Total Phosphorus.

    DTIC Science & Technology

    1979-01-01

    STANDARDS-I963- A ELECT MA 18 * SZCURIrY CLASSIFICAION Of THIS PACE (U"n 1De a rnt*.d) 5REPORT DOCUMENTATION PAGEREDISUCON Final Biological Aviaiiyof...Chemical Engineering Department West Virginia University Joseph V. DePinto Clarkson College January 1979 A I , Lake Erie Wastevater Manageuent Study U. S...INTRODUCTION 1 LITERATURE REVIEW 4 A a . Chemical Fractionation of Sediment Phosphorus b. Chemical Measurement of Available P c. Bioassay Measurement of

  16. Phosphorus and Water Quality Paradox

    NASA Astrophysics Data System (ADS)

    Pant, H. K.

    2008-12-01

    Paradoxically, phosphorus (P) is one of the major nutrients for higher agricultural production, as well as it causes eutrophication/algal blooms in aquatic and semi-aquatic systems. Phosphorus loadings from agricultural/urban runoffs into lakes and rivers are becoming a global concern for the protection of water quality. Artificial wetlands are considered as a low cost alternative for treating wastewater including removal of P from sources such as agricultural and urban runoffs. However, the selection of the construction site may well determine the effectiveness of these wetlands. Studies show that P transformations in sediments/ soils are crucial for P sequestration in a wetland rather than the amounts of native P. Using 31Phosphorus Nuclear Magnetic Resonance Spectroscopy (31P NMR), previously unreported an active organic P form, phosphoarginine, was identified, and the study indicates that abandonment of P impacted sites may not solve the P loading problem to the water bodies as the organic P compounds would not be as stable as they were thought, thus, can play a detrimental role in eutrophication of water bodies, after all.

  17. [Effect of low phosphorus concentration on the growth of Scenedesmus obliquus and phosphorus removal].

    PubMed

    Zhang, Ying; Li, Bao-Zhen; Qu, Jiang-Hang; Yang, Jin-Shui; Huang, Huai-Zeng; Yuan, Hong-Li

    2010-11-01

    Effects of phosphorus of low concentrations on the growth and the phosphorus removal efficiency of Scenedesmus obliquus were investigated in this study. Results showed that Scenedesmus obliquus achieved a phosphorus removal efficiency of 100% within 22 h when the initial algal cell concentration was 1 x 10(5) /mL and the initial phosphorus concentration was 0.02-0.10 mg/L. With the initial phosphorus concentration increased from 0.02 mg/L to 0.10 mg/L, both growth velocity of Scenedesmus obliquus and maximum biomass increased obviously. Research found that phosphorus concentration had a significant influence on cell morphology of algal. In the external phosphorus sufficient conditions, most of algae cell present as four cells gather round form, then transformed into two cells side by side form in the absence of external phosphorus in culture medium, Finally in single as the main form of existence.

  18. Unusually Stable Helical Coil Allotrope of Phosphorus.

    PubMed

    Liu, Dan; Guan, Jie; Jiang, Jingwei; Tománek, David

    2016-12-14

    We have identified an unusually stable helical coil allotrope of phosphorus. Our ab initio density functional theory calculations indicate that the uncoiled, isolated straight one-dimensional chain is equally stable as a monolayer of black phosphorus dubbed phosphorene. The coiling tendency and the attraction between adjacent coil segments add an extra stabilization energy of ∼12 meV/atom to the coil allotrope, similar in value to the ∼16 meV/atom interlayer attraction in bulk black phosphorus. Thus, the helical coil structure is essentially as stable as black phosphorus, the most stable phosphorus allotrope known to date. With an optimum radius of 2.4 nm, the helical coil of phosphorus may fit well and even form inside wide carbon nanotubes.

  19. Evolution of the global phosphorus cycle

    NASA Astrophysics Data System (ADS)

    Reinhard, Christopher T.; Planavsky, Noah J.; Gill, Benjamin C.; Ozaki, Kazumi; Robbins, Leslie J.; Lyons, Timothy W.; Fischer, Woodward W.; Wang, Chunjiang; Cole, Devon B.; Konhauser, Kurt O.

    2017-02-01

    The macronutrient phosphorus is thought to limit primary productivity in the oceans on geological timescales. Although there has been a sustained effort to reconstruct the dynamics of the phosphorus cycle over the past 3.5 billion years, it remains uncertain whether phosphorus limitation persisted throughout Earth’s history and therefore whether the phosphorus cycle has consistently modulated biospheric productivity and ocean-atmosphere oxygen levels over time. Here we present a compilation of phosphorus abundances in marine sedimentary rocks spanning the past 3.5 billion years. We find evidence for relatively low authigenic phosphorus burial in shallow marine environments until about 800 to 700 million years ago. Our interpretation of the database leads us to propose that limited marginal phosphorus burial before that time was linked to phosphorus biolimitation, resulting in elemental stoichiometries in primary producers that diverged strongly from the Redfield ratio (the atomic ratio of carbon, nitrogen and phosphorus found in phytoplankton). We place our phosphorus record in a quantitative biogeochemical model framework and find that a combination of enhanced phosphorus scavenging in anoxic, iron-rich oceans and a nutrient-based bistability in atmospheric oxygen levels could have resulted in a stable low-oxygen world. The combination of these factors may explain the protracted oxygenation of Earth’s surface over the last 3.5 billion years of Earth history. However, our analysis also suggests that a fundamental shift in the phosphorus cycle may have occurred during the late Proterozoic eon (between 800 and 635 million years ago), coincident with a previously inferred shift in marine redox states, severe perturbations to Earth’s climate system, and the emergence of animals.

  20. Evolution of the global phosphorus cycle

    NASA Astrophysics Data System (ADS)

    Reinhard, Christopher T.; Planavsky, Noah J.; Gill, Benjamin C.; Ozaki, Kazumi; Robbins, Leslie J.; Lyons, Timothy W.; Fischer, Woodward W.; Wang, Chunjiang; Cole, Devon B.; Konhauser, Kurt O.

    2016-12-01

    The macronutrient phosphorus is thought to limit primary productivity in the oceans on geological timescales. Although there has been a sustained effort to reconstruct the dynamics of the phosphorus cycle over the past 3.5 billion years, it remains uncertain whether phosphorus limitation persisted throughout Earth’s history and therefore whether the phosphorus cycle has consistently modulated biospheric productivity and ocean–atmosphere oxygen levels over time. Here we present a compilation of phosphorus abundances in marine sedimentary rocks spanning the past 3.5 billion years. We find evidence for relatively low authigenic phosphorus burial in shallow marine environments until about 800 to 700 million years ago. Our interpretation of the database leads us to propose that limited marginal phosphorus burial before that time was linked to phosphorus biolimitation, resulting in elemental stoichiometries in primary producers that diverged strongly from the Redfield ratio (the atomic ratio of carbon, nitrogen and phosphorus found in phytoplankton). We place our phosphorus record in a quantitative biogeochemical model framework and find that a combination of enhanced phosphorus scavenging in anoxic, iron-rich oceans and a nutrient-based bistability in atmospheric oxygen levels could have resulted in a stable low-oxygen world. The combination of these factors may explain the protracted oxygenation of Earth’s surface over the last 3.5 billion years of Earth history. However, our analysis also suggests that a fundamental shift in the phosphorus cycle may have occurred during the late Proterozoic eon (between 800 and 635 million years ago), coincident with a previously inferred shift in marine redox states, severe perturbations to Earth’s climate system, and the emergence of animals.

  1. Phosphorus Cycling Through Space and Time

    NASA Astrophysics Data System (ADS)

    Filippelli, Gabriel

    2014-05-01

    The cycling of phosphorus, a biocritical element in short supply in nature, is an important Earth system process. Variations in the phosphorus cycle have occurred in the past. For example, the rapid uplift of the Himalayan-Tibet Plateau increased chemical weathering, which led to enhanced input of phosphorus to the oceans. This drove the late Miocene "biogenic bloom." On glacial timescales, phosphorus is quite dynamic. In terrestrial systems, phosphorus soil mineralogy alters rapidly in response to early soil development, and ultimately becomes limited to plant availability in many setting. In marine systems, the loss of the substantial continental margin sink for reactive P occurs during glacial sea-level lowstands, effectively concentrating phosphorus in the deep sea. Finally, in the modern, the phosphorus cycle is dominated by human activity and agriculture, which causes unwanted pollution due to high phosphorus loading and itself poses significant concerns about the ultimate future availability of this nutrient to feed an expanding human population. This presentation will cover several critical components of the phosphorus cycle, including terrestrial and marine systems, through the lens of geologic time. This perspective reveals the significant changes that have occurred in the availability of phosphorus through time, and how other biogeochemical systems have responded to these changes. Furthermore, the perspective provides some sobering insights into the mechanisms behind the concentration of marine phosphorus into viable sources of phosphate rock. The rarity of high-quality phosphate rock deposits and the limitation of easily minable reserves are becoming critical, as the human demand for fertilizer phosphorus far outstrips the geologic rate of replacement and few prospects exist for new discoveries of phosphate rock.

  2. Phosphorus-containing materials for organic electronics.

    PubMed

    Stolar, Monika; Baumgartner, Thomas

    2014-05-01

    Phosphorus-based materials have received widespread attention in recent years, in particular as possible candidates for practical application in organic electronics. The geometry and electronic nature of phosphorus make it a favorable heteroatom for property tuning in order to obtain better performing organic electronics. This Focus Review discusses recent structural modifications and syntheses of phosphorus-based materials, illustrates property tuning at the same time, and highlights specific examples for device applications.

  3. Evolution of the global phosphorus cycle.

    PubMed

    Reinhard, Christopher T; Planavsky, Noah J; Gill, Benjamin C; Ozaki, Kazumi; Robbins, Leslie J; Lyons, Timothy W; Fischer, Woodward W; Wang, Chunjiang; Cole, Devon B; Konhauser, Kurt O

    2017-01-19

    The macronutrient phosphorus is thought to limit primary productivity in the oceans on geological timescales. Although there has been a sustained effort to reconstruct the dynamics of the phosphorus cycle over the past 3.5 billion years, it remains uncertain whether phosphorus limitation persisted throughout Earth's history and therefore whether the phosphorus cycle has consistently modulated biospheric productivity and ocean-atmosphere oxygen levels over time. Here we present a compilation of phosphorus abundances in marine sedimentary rocks spanning the past 3.5 billion years. We find evidence for relatively low authigenic phosphorus burial in shallow marine environments until about 800 to 700 million years ago. Our interpretation of the database leads us to propose that limited marginal phosphorus burial before that time was linked to phosphorus biolimitation, resulting in elemental stoichiometries in primary producers that diverged strongly from the Redfield ratio (the atomic ratio of carbon, nitrogen and phosphorus found in phytoplankton). We place our phosphorus record in a quantitative biogeochemical model framework and find that a combination of enhanced phosphorus scavenging in anoxic, iron-rich oceans and a nutrient-based bistability in atmospheric oxygen levels could have resulted in a stable low-oxygen world. The combination of these factors may explain the protracted oxygenation of Earth's surface over the last 3.5 billion years of Earth history. However, our analysis also suggests that a fundamental shift in the phosphorus cycle may have occurred during the late Proterozoic eon (between 800 and 635 million years ago), coincident with a previously inferred shift in marine redox states, severe perturbations to Earth's climate system, and the emergence of animals.

  4. Development of a Phosphorus-Eutrophication Management Strategy for Vermont: Evaluations Available Phosphorus Loads.

    DTIC Science & Technology

    1985-11-01

    attention is biological phosphorus removal . 107 This technique has been known for many years, but is only now beginning to receive widespread use...phosphorus from biological treatment plants below that attainable using this technology alone. A recent study indicated that biological phosphorus removal has...Guide for HSPF, EPA 600/3-84-065 (1984). USEPA, Emerging Technology Assessment of Biological Phosphorus Removal , NTIS #PB-85 165-744 (1985). Velz, C. J

  5. Energy and phosphorus recovery from black water.

    PubMed

    de Graaff, M S; Temmink, H; Zeeman, G; Buisman, C J N

    2011-01-01

    Source-separated black water (BW) (toilet water) containing 38% of the organic material and 68% of the phosphorus in the total household waste (water) stream including kitchen waste, is a potential source for energy and phosphorus recovery. The energy recovered, in the form of electricity and heat, is more than sufficient for anaerobic treatment, nitrogen removal and phosphorus recovery. The phosphorus balance of an upflow anaerobic sludge blanket reactor treating concentrated BW showed a phosphorus conservation of 61% in the anaerobic effluent. Precipitation of phosphate as struvite from this stream resulted in a recovery of 0.22 kgP/p/y, representing 10% of the artificial phosphorus fertiliser production in the world. The remaining part of the phosphorus ended up in the anaerobic sludge, mainly due to precipitation (39%). Low dilution and a high pH favour the accumulation of phosphorus in the anaerobic sludge and this sludge could be used as a phosphorus-enriched organic fertiliser, provided that it is safe regarding heavy metals, pathogens and micro-pollutants.

  6. Phosphorus recovery from wastewater through microbial processes.

    PubMed

    Yuan, Zhiguo; Pratt, Steven; Batstone, Damien J

    2012-12-01

    Waste streams offer a compelling opportunity to recover phosphorus (P). 15-20% of world demand for phosphate rock could theoretically be satisfied by recovering phosphorus from domestic waste streams alone. For very dilute streams (<10 mg PL(-1)), including domestic wastewater, it is necessary to concentrate phosphorus in order to make recovery and reuse feasible. This review discusses enhanced biological phosphorus removal (EBPR) as a key technology to achieve this. EBPR relies on polyphosphate accumulating organisms (PAOs) to take up phosphorus from waste streams, so concentrating phosphorus in biomass. The P-rich biosolids can be either directly applied to land, or solubilized and phosphorus recovered as a mineral product. Direct application is effective, but the product is bulky and carries contaminant risks that need to be managed. Phosphorus release can be achieved using either thermochemical or biochemical methods, while recovery is generally by precipitation as struvite. We conclude that while EBPR technology is mature, the subsequent phosphorus release and recovery technologies need additional development.

  7. Phosphorus and Nutrition in Chronic Kidney Disease

    PubMed Central

    González-Parra, Emilio; Gracia-Iguacel, Carolina; Egido, Jesús; Ortiz, Alberto

    2012-01-01

    Patients with renal impairment progressively lose the ability to excrete phosphorus. Decreased glomerular filtration of phosphorus is initially compensated by decreased tubular reabsorption, regulated by PTH and FGF23, maintaining normal serum phosphorus concentrations. There is a close relationship between protein and phosphorus intake. In chronic renal disease, a low dietary protein content slows the progression of kidney disease, especially in patients with proteinuria and decreases the supply of phosphorus, which has been directly related with progression of kidney disease and with patient survival. However, not all animal proteins and vegetables have the same proportion of phosphorus in their composition. Adequate labeling of food requires showing the phosphorus-to-protein ratio. The diet in patients with advanced-stage CKD has been controversial, because a diet with too low protein content can favor malnutrition and increase morbidity and mortality. Phosphorus binders lower serum phosphorus and also FGF23 levels, without decreasing diet protein content. But the interaction between intestinal dysbacteriosis in dialysis patients, phosphate binder efficacy, and patient tolerance to the binder could reduce their efficiency. PMID:22701173

  8. Assessing Long Term Impact of Phosphorus Fertilization on Phosphorus Loadings Using AnnAGNPS

    EPA Science Inventory

    High phosphorus (P) loss from agricultural fields has been an environmental concern because of potential water quality problems in streams and lakes. To better understand the process of P loss and evaluate the different phosphorus fertilization rates on phosphorus losses, the US...

  9. Use of annual phosphorus loss estimator (APLE) model to evaluate a phosphorus index

    USDA-ARS?s Scientific Manuscript database

    Maryland’s Phosphorus Site Index (MD-PSI) has been used to guide management decisions to minimize the potential for phosphorus (P) loss from agricultural fields in Maryland since 2002. The index was recently revised and renamed the University of Maryland Phosphorus Management Tool (UM-PMT), and the...

  10. Assessing Long Term Impact of Phosphorus Fertilization on Phosphorus Loadings Using AnnAGNPS

    EPA Science Inventory

    High phosphorus (P) loss from agricultural fields has been an environmental concern because of potential water quality problems in streams and lakes. To better understand the process of P loss and evaluate the different phosphorus fertilization rates on phosphorus losses, the US...

  11. Optimization of a full-scale Unitank wastewater treatment plant for biological phosphorus removal.

    PubMed

    Zhou, Zhen; Xing, Can; Wu, Zhichao; Tong, Fei; Wang, Junru

    2014-01-01

    The Unitank process combines the advantages of traditional continuous-flow activated sludge processes and sequencing batch reactors, and has been extensively employed in many wastewater treatment plants (WWTPs) in China. Biological phosphorus removal (BPR) of a full-scale Unitank WWTP was optimized by increasing anaerobic time from 80 to 120 min in an operation cycle of 360 min and reducing solid retention time (SRT) from 21.3 to 13.1 d. The BPR efficiency of the full-scale Unitank system increased from 63.8% (SRT of 21.3 d) to 83.2% for a SRT of 13.1 d. When the anaerobic time increased from 80 to 120 min, the net anaerobic phosphorus release amount increased from 0.25 to 1.06 mg L(-1), and sludge phosphorus content rose from 13.8 to 15.0 mgP x (gSS)(-1). During half an operation cycle, the average specific phosphorus release rate increased from 0.097mgP x (gVSS x h)(-1) in 0-40 min to 0.825 mgP x (gVSS x h)(-1) in 40-60 min. Reducing SRT and increasing anaerobic time account for 84.6% and 15.4% in the total increment of phosphorus removal of 1.15 mgL(-1).

  12. Phosphorus in Sintered Steels: Interaction of Phosphorus with Mo

    NASA Astrophysics Data System (ADS)

    Danninger, H.; Üregen, B.

    2016-10-01

    Phosphorus as an alloy element is quite common in powder metallurgy, the contents industrially used being markedly higher than those present in wrought steels. However, embrittlement effects are reported also for sintered steels, in part depending on the alloy elements present. In this study, the influence of phosphorus addition on the mechanical properties of PM steels alloyed with Mo, as the most common VI group element in sintered steels, was investigated. PM steels of the type Fe-x%Mo-0.7%Cy% P were manufactured with varying contents of Mo and P, respectively. It showed that P activates sintering also in these materials and enhances Mo homogenization, but there is in fact a risk of embrittlement in these steels that however strongly depends on the combination of Mo and P in the materials: If a critical level is exceeded, embrittlement is observed. At low Mo contents, higher P concentrations are acceptable and vice versa, but e.g. in a material Fe-1.5%Mo-0.7%C-0.45%P, pronounced intergranular embrittlement occurs, further enhanced by sinter hardening effects. This undesirable phenomenon is more pronounced at higher sintering temperatures and in case of faster heating/cooling; it was observed both in materials prepared from mixed and prealloyed powders, respectively. This typical intergranular failure observed with embrittled specimens, in particular after impact testing, indicates the precipitation of brittle phases at the grain boundaries, apparently when exceeding the solubility product between Mo and P.

  13. [Dietary reference intakes of phosphorus].

    PubMed

    Uenishi, Kazuhiro

    2012-10-01

    Phosphorus (P) exists at the all organs and plays important physiological roles in the body. A wide range of food contains P, which is absorbed at a higher level (60-70%) and its insufficiency and deficiency are rarely found. P is used as food additives in many processed food, where risk of overconsumption could be an issue. P has less evidence in terms of nutrition. P has the adequate intake and the tolerable upper intake level, for risk reduction of health disorders associated with excess intake, at the Dietary Reference Intakes for Japanese (2010 edition).

  14. Phosphorus removal in an enhanced biological phosphorus removal process: roles of extracellular polymeric substances.

    PubMed

    Zhang, Hai-Ling; Fang, Wei; Wang, Yong-Peng; Sheng, Guo-Ping; Zeng, Raymond J; Li, Wen-Wei; Yu, Han-Qing

    2013-10-15

    Phosphorus-accumulating organisms are considered to be the key microorganisms in the enhanced biological phosphorus removal (EBPR) process. A large amount of phosphorus is found in the extracellular polymeric substances (EPS) matrix of these microorganisms. However, the roles of EPS in phosphorus removal have not been fully understood. In this study, the phosphorus in the EBPR sludge was fractionated and further analyzed using quantitative (31)P nuclear magnetic resonance spectroscopy. The amounts and forms of phosphorus in EPS as well as their changes in an anaerobic-aerobic process were also investigated. EPS could act as a reservoir for phosphorus in the anaerobic-aerobic process. About 5-9% of phosphorus in sludge was reserved in the EPS at the end of the aerobic phase and might further contribute to the phosphorus removal. The chain length of the intracellular long-chain polyphosphate (polyP) decreased in the anaerobic phase and then recovered under aerobic conditions. However, the polyP in the EPS had a much shorter chain length than the intracellular polyP in the whole cycle. The migration and transformation of various forms of phosphorus among microbial cells, EPS, and bulk liquid were also explored. On the basis of these results, a model with a consideration of the roles of EPS was proposed, which is beneficial to elucidate the mechanism of phosphorus removal in the EBPR system.

  15. Sedimentary phosphorus cycling and a phosphorus mass balance for the Green Bay (Lake Michigan) ecosystem

    USGS Publications Warehouse

    Klump, J.V.; Edgington, D. N.; Sager, P.E.; Robertson, Dale M.

    2011-01-01

    The tributaries of Green Bay have long been recognized as major sources of phosphorus in the Lake Michigan basin. The status of Green Bay as a sink or source of phosphorus for Lake Michigan proper has been less well defined. The bay receives nearly 70% of its annual load of phosphorus ( 700 metric tons (t) · year-1) from a single source: the Fox River. Most of this phosphorus is deposited in sediments accumulating at rates that reach 160 mg · cm-2 · year-1 with an average of 20 mg · cm-2 · year-1. The phosphorus content of these sediments varies from <5 to >70 µmol · g-1. Deposition is highly focused, with ~70% of the total sediment accumulation and at least 80% of the phosphorus burial occurring within 20% of the surface area of the bay. Diagenetic and stoichiometric models of phosphorus cycling imply that >80% of the phosphorus deposited is permanently buried. External phosphorus loading to the bay is combined with sediment fluxes of phophorus to arrive at a simple phosphorus budget. Green Bay acts as an efficient nutrient trap, with the sediments retaining an estimated 70-90% of the external phosphorus inputs before flowing into Lake Michigan.

  16. Plant growth, phosphorus nutrition, and root morphological responses to arbuscular mycorrhizas, phosphorus fertilization, and intraspecific density.

    PubMed

    Schroeder, M S; Janos, D P

    2005-05-01

    We examined the effects of arbuscular mycorrhizas (AM), phosphorus fertilization, intraspecific density, and their interaction, on the growth, phosphorus uptake, and root morphology of three facultative mycotrophic crops (Capsicum annuum, Zea mays, and Cucurbita pepo). Plants were grown in pots with or without AM at three densities and four phosphorus availabilities for 10 weeks. AM colonization, plant weight, and shoot phosphorus concentration were measured at harvest. Root morphology was assessed for C. annuum and Z. mays. Phosphorus fertilization reduced but did not eliminate AM colonization of all species. AM, phosphorus, and density interacted significantly to modify growth of C. annuum and C. pepo such that increased density and phosphorus diminished beneficial effects of AM. Increased density reduced positive effects of AM on C. annuum and C. pepo shoot phosphorus concentrations. AM altered both Z. mays and C. annuum root morphology in ways that complemented potential phosphorus uptake by mycorrhizas, but increased density and phosphorus diminished these effects. We infer that increased density predominantly influenced plant responses by affecting whether or not carbon (photosynthate) or phosphorus limited plant growth. By exacerbating carbon limitation, high density reduced the benefit/cost ratio of mycorrhizas and minimized their effects.

  17. Reexamining the Phosphorus-Protein Dilemma: Does Phosphorus Restriction Compromise Protein Status?

    PubMed

    St-Jules, David E; Woolf, Kathleen; Pompeii, Mary Lou; Kalantar-Zadeh, Kamyar; Sevick, Mary Ann

    2016-05-01

    Dietary phosphorus restriction is recommended to help control hyperphosphatemia in hemodialysis patients, but many high-phosphorus foods are important sources of protein. In this review, we examine whether restricting dietary phosphorus compromises protein status in hemodialysis patients. Although dietary phosphorus and protein are highly correlated, phosphorus intakes can range up to 600 mg/day for a given energy and protein intake level. Furthermore, the collinearity of phosphorus and protein may be biased because the phosphorus burden of food depends on: (1) the presence of phosphate additives, (2) food preparation method, and (3) bioavailability of phosphorus, which are often unaccounted for in nutrition assessments. Ultimately, we argue that clinically relevant reductions in phosphorus intake can be made without limiting protein intake by avoiding phosphate additives in processed foods, using wet cooking methods such as boiling, and if needed, substituting high-phosphorus foods for nutritionally equivalent foods that are lower in bioavailable phosphorus. Copyright © 2016 National Kidney Foundation, Inc. Published by Elsevier Inc. All rights reserved.

  18. Phosphorus Moieties Make Polymers Less Flammable

    NASA Technical Reports Server (NTRS)

    Kourtides, D. A.; Mikroyannidis, J. A.

    1992-01-01

    Phosphorus incorporated into epoxies and polyamides via curing agent. According to report, use of 1-(di(2-chloroethoxyphosphinyl)methyl)-2,4- and -2,6-diaminobenzene (DCEPD) as curing agent for epoxies and polyamides makes these polymers more fire-retardant than corresponding polymers made with standard curing agents not containing phosphorus.

  19. Phosphatase Hydrolysis of Soil Organic Phosphorus Fractions

    USDA-ARS?s Scientific Manuscript database

    Plant available inorganic phosphorus (Pi) is usually limited in highly weathered Ultisols. The high Fe, Al, and Mn contents in these soils enhance Pi retention and fixation. The metals are also known to form complexes with organic phosphorus (Po) compounds. Hydrolysis of Po compounds is needed for P...

  20. Phosphorus Moieties Make Polymers Less Flammable

    NASA Technical Reports Server (NTRS)

    Kourtides, D. A.; Mikroyannidis, J. A.

    1992-01-01

    Phosphorus incorporated into epoxies and polyamides via curing agent. According to report, use of 1-(di(2-chloroethoxyphosphinyl)methyl)-2,4- and -2,6-diaminobenzene (DCEPD) as curing agent for epoxies and polyamides makes these polymers more fire-retardant than corresponding polymers made with standard curing agents not containing phosphorus.

  1. Sustainable use of phosphorus: a finite resource.

    PubMed

    Scholz, Roland W; Ulrich, Andrea E; Eilittä, Marjatta; Roy, Amit

    2013-09-01

    Phosphorus is an essential element of life and of the modern agricultural system. Today, science, policy, agro-industry and other stakeholder groups are increasingly concerned about the sustainable use of this resource, given the dissipative nature of phosphorus and difficulties in assessing, evaluating, and coping with phosphorus pollution in aquatic and terrestrial systems. We argue that predictions about a forthcoming peak, followed by a quick reduction (i.e., physical phosphate rock scarcity) are unreasoned and stress that access to phosphorus (economic scarcity) is already, and may increasingly become critical, in particular for smallholders farmers in different parts of the world. The paper elaborates on the design, development, goals and cutting-edge contributions of a global transdisciplinary process (i.e. mutual learning between science and society including multiple stakeholders) on the understanding of potential contributions and risks related to the current mode of using phosphorus on multiple scales (Global TraPs). While taking a global and comprehensive view on the whole phosphorus-supply chain, Global TraPs organizes and integrates multiple transdisciplinary case studies to better answer questions which inform sustainable future phosphorus use. Its major goals are to contribute to four issues central to sustainable resource management: i) long-term management of biogeochemical cycles, in particular the challenge of closing the phosphorus cycle, ii) achieving food security, iii) avoiding environmental pollution and iv) sustainability learning on a global level by transdisciplinary processes. Copyright © 2013 Elsevier B.V. All rights reserved.

  2. The management of phosphorus in poultry litter

    USDA-ARS?s Scientific Manuscript database

    Poultry litter provides an important source of plant nutrients including nitrogen, phosphorus, potassium, calcium, magnesium and sulphur. The potential for phosphorus (P) surplus at the farm scale can increase when farming systems change from cropping to intensive poultry and animal production, as P...

  3. Dietary phosphorus supply, egg-shell deposition and plasma inorganic phosphorus in laying hens.

    PubMed

    Boorman, K N; Gunaratne, S P

    2001-03-01

    1. In 2 experiments the effects of dietary phosphorus on relationships between plasma inorganic phosphorus concentration (Pi), shell and egg production and depletion states were measured in brown laying hens. 2. In a 12-week experiment dietary phosphorus concentrations from conventionally deficient (1.6 g non-phytate-phosphorus (PNP)/kg) to moderate excess (3.9 g PNP/kg) had little effect on egg and shell production, although there was evidence that plasma Pi concentration, when not influenced strongly by shell formation, reflected dietary phosphorus content. 3. Among birds at each dietary phosphorus concentration there was a negative linear relationship between shell weight of early eggs in the sequence and plasma Pi concentration. The relationship was apparently not affected by dietary phosphorus concentration. 4. Continued feeding of the deficient diet to 61 weeks of age did not have effects on body weight, egg and shell production, other than those associated with age, but plasma Pi and bone measurements indicated marginal phosphorus depletion. 5. In another experiment excessive dietary phosphorus (11.9 g PNP/kg) fed in a cross-over design caused small adverse effects on shell production, increased food intake and body weight and increased plasma Pi content, while there was no relationship between shell weight and plasma Pi concentration. 6. The results are consistent with an indirect effect of plasma phosphorus accumulation on shell formation, probably via an inhibitory effect on skeletal calcium release, in addition to any effect of excess dietary phosphorus on intestinal calcium availability. 7. Phosphorus requirement and status in the laying hen are complicated by the failure to recognise the contribution of digestible phytate-phosphorus to the available phosphorus supply.

  4. Spectrophotometric determination of phosphorus acid

    SciTech Connect

    Domin, A.V.; Domina, N.G.; Zakharov, Yu.A.; Shechkov, G.T.

    1987-03-01

    A number of procedures have been proposed to determine phosphorus acid and its salts, the phosphites, in the presence of hypophosphorus acid and its salts, the hypophosphites. Among these procedures, iodometric back-titration has produced the most reliable results. In this paper, the authors propose an improved iodometric determination of phosphorus acid that enables the sensitivity to be increased by at least two orders of magnitude. The essence of this improvement is that excess iodine that did not react with phosphite ion is determined not volumetrically but spectrophotometrically. To eliminate the effect of iodine ion that is liberated when iodine reacts with phosphite ion on the optical density of the solution, a 200-fold excess of potassium iodide is added before the photometric measurement. The working iodine solution is prepared by diluting 10 m of 0.025 N iodine titrant and 50 ml of phosphate buffer, pH 6.7-7.2, to 1 liter with distilled water in a coulometric flask. To construct the calibration curve, 5, 10, 15, 20, and 25 ml, respectively of working iodine solution, and 10 ml of 2% aqueous potassium iodide are placed into five 100-ml volumetric flasks, and the solutions are made up to volume with water. After 10 min the photometric measurements are carried out at 380 nm using curvets and the reference solution is obtained by diluting 10 ml of 2% aqueous potassium iodide to 100 ml with distilled water.

  5. Phosphorus dynamics in Delavan Lake Inlet, southeastern Wisconsin, 1994

    USGS Publications Warehouse

    Robertson, D.M.; Field, S.J.; Elder, J.F.; Goddard, G.L.; James, W.F.

    1996-01-01

    The detailed phosphorus budget indicated that the increase in phosphorus concentrations was caused primarily by elevated pH resulting from increased photosynthetic activity of the macrophytes and a high release of phosphorus from the sediments. The release of phosphorus from the sediments was the largest source of phosphorus to the inlet in the spring and summer of 1994 and in other years of low to near normal runoff; however, in years of high runoff, phosphorus input from the inlet's drainage basin was the largest source of phosphorus. A less-detailed phosphorus budget constructed for the period from February 1993 to September 1994 demonstrated that, over the entire year, runoff from the drainage basin was the dominant source in the phosphorus budget. During April-September 1994, the input of phosphorus from the inlet may especially affect the summer productivity in Delavan Lake because almost 80 percent of the phosphorus loading during this time was in the form of dissolved orthophosphate.

  6. Phosphorus Regulation in Chronic Kidney Disease

    PubMed Central

    Suki, Wadi N.; Moore, Linda W.

    2016-01-01

    Serum phosphorus levels stay relatively constant through the influence of multiple factors—such as parathyroid hormone, fibroblast growth factor 23, and vitamin D—on the kidney, bone, and digestive system. Whereas normal serum phosphorus ranges between 3 mg/dL to 4.5 mg/dL, large cross-sectional studies have shown that even people with normal kidney function are sometimes found to have levels ranging between 1.6 mg/dL and 6.2 mg/dL. While this may partially be due to diet and the factors mentioned above, total understanding of these atypical ranges of serum phosphorus remains uncertain. Risks for bone disease are high in people aged 50 and older, and this group comprises a large proportion of people who also have chronic kidney disease. Consuming diets low in calcium and high in phosphorus, especially foods with phosphate additives, further exacerbates bone turnover. Existing bone disease increases the risk for high serum phosphorus, and higher serum phosphorus has been associated with increased adverse events and cardiovascular-related mortality both in people with chronic kidney disease and in those with no evidence of disease. Once kidney function has deteriorated to end-stage disease (Stage 5), maintaining normal serum phosphorus requires dietary restrictions, phosphate-binding medications, and dialysis. Even so, normal serum phosphorus remains elusive in many patients with Stage 5 kidney disease, and researchers are testing novel targets that may inhibit intestinal transport of phosphorus to achieve better phosphate control. Protecting and monitoring bone health should also aid in controlling serum phosphorus as kidney disease advances. PMID:28298956

  7. Phosphorus Regulation in Chronic Kidney Disease.

    PubMed

    Suki, Wadi N; Moore, Linda W

    2016-01-01

    Serum phosphorus levels stay relatively constant through the influence of multiple factors-such as parathyroid hormone, fibroblast growth factor 23, and vitamin D-on the kidney, bone, and digestive system. Whereas normal serum phosphorus ranges between 3 mg/dL to 4.5 mg/dL, large cross-sectional studies have shown that even people with normal kidney function are sometimes found to have levels ranging between 1.6 mg/dL and 6.2 mg/dL. While this may partially be due to diet and the factors mentioned above, total understanding of these atypical ranges of serum phosphorus remains uncertain. Risks for bone disease are high in people aged 50 and older, and this group comprises a large proportion of people who also have chronic kidney disease. Consuming diets low in calcium and high in phosphorus, especially foods with phosphate additives, further exacerbates bone turnover. Existing bone disease increases the risk for high serum phosphorus, and higher serum phosphorus has been associated with increased adverse events and cardiovascular-related mortality both in people with chronic kidney disease and in those with no evidence of disease. Once kidney function has deteriorated to end-stage disease (Stage 5), maintaining normal serum phosphorus requires dietary restrictions, phosphate-binding medications, and dialysis. Even so, normal serum phosphorus remains elusive in many patients with Stage 5 kidney disease, and researchers are testing novel targets that may inhibit intestinal transport of phosphorus to achieve better phosphate control. Protecting and monitoring bone health should also aid in controlling serum phosphorus as kidney disease advances.

  8. Bronx River bed sediments phosphorus pool and phosphorus compound identification

    NASA Astrophysics Data System (ADS)

    Wang, J.; Pant, H. K.

    2008-12-01

    Phosphorus (P) transport in the Bronx River degraded water quality, decreased oxygen levels, and resulted in bioaccumulation in sediment potentially resulting in eutrophication, algal blooms and oxygen depletion under certain temperature and pH conditions. The anthropogenic P sources are storm water runoff, raw sewage discharge, fertilizer application in lawn, golf course and New York Botanical Garden; manure from the Bronx zoo; combined sewoverflows (CSO's) from parkway and Hunts Point sewage plant; pollutants from East River. This research was conducted in the urban river system in New York City area, in order to control P source, figure out P transport temporal and spatial variations and the impact on water quality; aimed to regulate P application, sharing data with Bronx River Alliance, EPA, DEP and DEC. The sediment characteristics influence the distribution and bioavailbility of P in the Bronx River. The P sequential extraction gave the quantitative analysis of the P pool, quantifying the inorganic and organic P from the sediments. There were different P pool patterns at the 15 sites, and the substantial amount of inorganic P pool indicated that a large amount P is bioavailable. The 31P- NMR (Nuclear Magnetic Resonance Spectroscopy) technology had been used to identify P species in the 15 sites of the Bronx River, which gave a qualitative analysis on phosphorus transport in the river. The P compounds in the Bronx River bed sediments are mostly glycerophophate (GlyP), nucleoside monophosphates (NMP), polynucleotides (PolyN), and few sites showed the small amount of glucose-6-phosphate (G6P), glycerophosphoethanoamine (GPEA), phosphoenopyruvates (PEP), and inosine monophosphate (IMP). The land use spatial and temporal variations influence local water P levels, P distributions, and P compositions.

  9. Hidden sources of phosphorus: presence of phosphorus-containing additives in processed foods.

    PubMed

    Lou-Arnal, Luis M; Arnaudas-Casanova, Laura; Caverni-Muñoz, Alberto; Vercet-Tormo, Antonio; Caramelo-Gutiérrez, Rocío; Munguía-Navarro, Paula; Campos-Gutiérrez, Belén; García-Mena, Mercedes; Moragrera, Belén; Moreno-López, Rosario; Bielsa-Gracia, Sara; Cuberes-Izquierdo, Marta

    2014-01-01

    An increased consumption of processed foods that include phosphorus-containing additives has led us to propose the following working hypothesis: using phosphate-rich additives that can be easily absorbed in processed foods involves a significant increase in phosphorus in the diet, which may be considered as hidden phosphorus since it is not registered in the food composition tables. The quantity of phosphorus contained in 118 processed products was determined by spectrophotometry and the results were contrasted with the food composition tables of the Higher Education Centre of Nutrition and Diet, those of Morandeira and those of the BEDCA (Spanish Food Composition Database) Network. Food processing frequently involves the use of phosphoric additives. The products whose label contains these additives have higher phosphorus content and higher phosphorus-protein ratio. We observed a discrepancy with the food composition tables in terms of the amount of phosphorus determined in a sizeable proportion of the products. The phosphorus content of prepared refrigerated foods hardly appears in the tables. Product labels provide little information on phosphorus content. We observed a discrepancy in phosphorus content in certain foods with respect to the food composition tables. We should educate our patients on reviewing the additives on the labels and on the limitation of processed foods. There must be health policy actions to deal with the problem: companies should analyse the phosphorus content of their products, display the correct information on their labels and incorporate it into the food composition tables. Incentives could be established to prepare food with a low phosphorus content and alternatives to phosphorus-containing additives.

  10. Association of dietary phosphorus intake and phosphorus to protein ratio with mortality in hemodialysis patients.

    PubMed

    Noori, Nazanin; Kalantar-Zadeh, Kamyar; Kovesdy, Csaba P; Bross, Rachelle; Benner, Debbie; Kopple, Joel D

    2010-04-01

    Epidemiologic studies show an association between higher predialysis serum phosphorus and increased death risk in maintenance hemodialysis (MHD) patients. The hypothesis that higher dietary phosphorus intake and higher phosphorus content per gram of dietary protein intake are each associated with increased mortality in MHD patients was examined. Food frequency questionnaires were used to conduct a cohort study to examine the survival predictability of dietary phosphorus and the ratio of phosphorus to protein intake. At the start of the cohort, Cox proportional hazard regression was used in 224 MHD patients, who were followed for up to 5 years (2001 to 2006). Both higher dietary phosphorus intake and a higher dietary phosphorus to protein ratio were associated with significantly increased death hazard ratios (HR) in the unadjusted models and after incremental adjustments for case-mix, diet, serum phosphorus, malnutrition-inflammation complex syndrome, and inflammatory markers. The HR of the highest (compared with lowest) dietary phosphorus intake tertile in the fully adjusted model was 2.37. Across categories of dietary phosphorus to protein ratios of <12, 12 to <14, 14 to <16, and > or =16 mg/g, death HRs were 1.13, 1.00 (reference value), 1.80, and 1.99, respectively. Cubic spline models of the survival analyses showed similar incremental associations. Higher dietary phosphorus intake and higher dietary phosphorus to protein ratios are each associated with increased death risk in MHD patients, even after adjustments for serum phosphorus, phosphate binders and their types, and dietary protein, energy, and potassium intakes.

  11. Association of Dietary Phosphorus Intake and Phosphorus to Protein Ratio with Mortality in Hemodialysis Patients

    PubMed Central

    Noori, Nazanin; Kovesdy, Csaba P.; Bross, Rachelle; Benner, Debbie; Kopple, Joel D.

    2010-01-01

    Background and objectives: Epidemiologic studies show an association between higher predialysis serum phosphorus and increased death risk in maintenance hemodialysis (MHD) patients. The hypothesis that higher dietary phosphorus intake and higher phosphorus content per gram of dietary protein intake are each associated with increased mortality in MHD patients was examined. Design, setting, participants, & measurements: Food frequency questionnaires were used to conduct a cohort study to examine the survival predictability of dietary phosphorus and the ratio of phosphorus to protein intake. At the start of the cohort, Cox proportional hazard regression was used in 224 MHD patients, who were followed for up to 5 years (2001 to 2006). Results: Both higher dietary phosphorus intake and a higher dietary phosphorus to protein ratio were associated with significantly increased death hazard ratios (HR) in the unadjusted models and after incremental adjustments for case-mix, diet, serum phosphorus, malnutrition-inflammation complex syndrome, and inflammatory markers. The HR of the highest (compared with lowest) dietary phosphorus intake tertile in the fully adjusted model was 2.37. Across categories of dietary phosphorus to protein ratios of <12, 12 to <14, 14 to <16, and ≥16 mg/g, death HRs were 1.13, 1.00 (reference value), 1.80, and 1.99, respectively. Cubic spline models of the survival analyses showed similar incremental associations. Conclusions: Higher dietary phosphorus intake and higher dietary phosphorus to protein ratios are each associated with increased death risk in MHD patients, even after adjustments for serum phosphorus, phosphate binders and their types, and dietary protein, energy, and potassium intakes. PMID:20185606

  12. Habitual dietary phosphorus intake and urinary excretion in chronic kidney disease patients: a 3-day observational study.

    PubMed

    Salomo, L; Kamper, A-L; Poulsen, G M; Poulsen, S K; Astrup, A; Rix, M

    2016-12-14

    Hyperphosphatemia in chronic kidney disease (CKD) is associated with vascular calcification, cardiovascular morbidity and mortality. The aim of this study was to estimate the daily dietary phosphorus intake compared with recommendations in CKD patients and to evaluate the reproducibility of the 24-h urinary phosphorus excretion. Twenty CKD patients stage 3-4 from the outpatient clinic, collected 24-h urine and kept dietary records for 3 consecutive days. The mean daily phosphorus intake was 1367±499, 1642±815 and 1426±706 mg/day, respectively (P=0.57). The mean urinary phosphorus excretion was 914±465, 954±414 and 994±479 mg/day, respectively (P=0.21). In this population of CKD patients stage 3-4 the daily phosphorus intake was above the recommended. Twenty-four-hour urinary phosphorus excretion was reproducible and the data indicate that a single 24-h urine collection is sufficient to estimate the individual phosphorus excretion.European Journal of Clinical Nutrition advance online publication, 14 December 2016; doi:10.1038/ejcn.2016.247.

  13. An Atom Probe Study of κ-carbide Precipitation in Austenitic Lightweight Steel and the Effect of Phosphorus

    NASA Astrophysics Data System (ADS)

    Bartlett, L. N.; Van Aken, D. C.; Medvedeva, J.; Isheim, D.; Medvedeva, N.; Song, K.

    2017-08-01

    The influence of phosphorus on κ-carbide precipitation and alloy partitioning in an austenitic Fe-30Mn-9Al-1Si-0.9C-0.5Mo cast steel was studied utilizing a combination of transmission electron microscopy, 3D atom probe tomography, X-ray diffraction, and first-principles atomistic modeling. Increasing the amount of phosphorus from 0.006 to 0.043 wt pct P increased the kinetics of the initial ordering reaction. Specimens from the high-phosphorus steel showed some degree of short-range ordering of Fe-Al-C that took place during the quench. It was shown that phosphorus increases both the size and volume fraction of κ-carbide during aging. However, the distribution of phosphorus appears to be homogeneous, and thus long-range diffusion of phosphorus was not responsible for the observed increase in hardening. It is shown that phosphorus encourages the initial short-range ordering into the E21 structure of κ-carbide and also accelerates spinodal decomposition associated with carbon and aluminum diffusions.

  14. Sources of phosphorus to the Carson River upstream from Lahontan Reservoir, Nevada and California, Water Years 2001-02

    USGS Publications Warehouse

    Alvarez, Nancy L.; Seiler, Ralph L.

    2004-01-01

    -sediment concentrations are high. Downstream from Carson Valley, almost all samples exceed the water-quality standard, with the greatest concentrations observed during spring and summer months. Estimated annual total-phosphorus loads ranged from 1.33 tons at the West Fork Carson River at Woodfords to 43.41 tons at the Carson River near Carson City during water years 2001-02. Loads are greatest during spring runoff, followed by fall and winter, and least during the summer, which corresponds to the amount of streamflow in the Carson River. The estimated average annual phosphorus load entering Carson Valley was 21.9 tons; whereas, the estimated average annual phosphorus load leaving Carson Valley was 37.8 tons, for an annual gain in load across Carson Valley of 15.9 tons. Thus, about 58 percent of the total-phosphorus load leaving Carson Valley on an annual basis could be attributed to headwater reaches upstream from Carson Valley. During spring and summer (April 1-September 30) an average of 85 percent of the total-phosphorus load leaving Carson Valley could be attributed to headwater reaches. During fall and winter (October 1-March 31) only 17 percent of the phosphorus load leaving Carson Valley could be attributed to headwater reaches. The composition of the phosphorus changes during summer from particulate phosphorus entering Carson Valley to dissolved orthophosphate leaving Carson Valley. Particulate phosphorus entering Carson Valley could be settling out when water is applied to fields and be replaced by dissolved orthophosphate from other sources. Alternatively, the particulate phosphorus could be converted to dissolved orthophosphate as it travels across Carson Valley. Data collected during the study are not sufficient to distinguish between the two possibilities. Eagle Valley and Dayton-Churchill Valleys may act as sinks for phosphorus. On an annual basis, during water years 2001-02, about 90 percent of the phosphorus entering Eagle Valley left the

  15. 49 CFR 173.188 - White or yellow phosphorus.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 49 Transportation 2 2012-10-01 2012-10-01 false White or yellow phosphorus. 173.188 Section 173... Class 7 § 173.188 White or yellow phosphorus. Phosphorus, white or yellow, when offered for... pound) of phosphorus with screw-top closures; or (2) Steel drums (1A1) not over 250 L (66...

  16. 49 CFR 173.188 - White or yellow phosphorus.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 49 Transportation 2 2014-10-01 2014-10-01 false White or yellow phosphorus. 173.188 Section 173... Class 7 § 173.188 White or yellow phosphorus. Phosphorus, white or yellow, when offered for...) Inner water-tight metal cans containing not over 0.5 kg (1 pound) of phosphorus with screw-top...

  17. 49 CFR 173.188 - White or yellow phosphorus.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 49 Transportation 2 2013-10-01 2013-10-01 false White or yellow phosphorus. 173.188 Section 173... Class 7 § 173.188 White or yellow phosphorus. Phosphorus, white or yellow, when offered for...) Inner water-tight metal cans containing not over 0.5 kg (1 pound) of phosphorus with screw-top...

  18. Phosphorus Compounds in Translocating Phloem

    PubMed Central

    Bieleski, R. L.

    1969-01-01

    Phosphate-32P was introduced into a turnip leaf, and 3 hr later, the vascular bundles were stripped from the petiole and their phosphate ester pattern was studied. The pattern did not alter along their length and was like that of other tissues. Pumpkin leaves were painted with phosphate-32P; and later, the petioles were cut, the sieve tube exudates were collected and their phosphate ester patterns were studied. Exudates collected after 10 min had a high proportion of their 32P present in Pi and nucleoside triphosphates, while exudates collected after long translocation times (4-22 hr) had a lower proportion in these, and a higher proportion in hexose monophosphates and UDP glucose. In general, the ester patterns were like those of other tissues. The results indicate that sieve tubes are metabolically active, and that Pi is the primary form in which phosphorus moves in the phloem. Images PMID:16657091

  19. Black phosphorus for future devices

    NASA Astrophysics Data System (ADS)

    Meunier, Vincent

    Black phosphorus (or ``phosphorene'' at the monolayer limit) has attracted significant attention as an emerging 2D material due to its unique properties compared with well-explored graphene and transition metal dichalcogenides such as MoS2 and WSe2. In bulk form, this monoelemental layered structure is a highly anisotropic semiconductor with a bandgap of 0.3 eV which presents marked distinctions in optical and electronic properties depending on crystalline directions. In addition, black phosphorus possesses a high carrier mobility, making it promising for applications in high frequency electronics. A large number of characterization studies have been performed to understand the intrinsic properties of BP. Here I wil present a number of investigations where first-principles modelling was combined with scanning tunneling microscopy (STM), Raman spectroscopy, and transmission electron microscopy (TEM) to assist in the design of phosphorene-based devices. . I will provide an overview of these studies and position them in the context of the very active research devoted to this material. In particular, I will show how low-frequency Raman spectra provide a unique handle on the physics of multilayered systems and how BP's structural anisotropy weaves its way to its unusual polarization dependent Raman signature. Finally, I will show recent progress where nanopores, nanobridges, and nanogaps have been sculpted directly from a few-layer BP sample using a TEM, and indicate the potential use of these results on the creation of phosphorene-based nanoelectronics. I wil conclude this talk with a critical look at the issues of phosphorene stability under ambient conditions. Collaborators on this research include: Liangbo Liang, Bobby G. Sumpter, Alex Puretzky, Minghu Pan, (Oak Ridge National Laboratory), Marija Drndic (University of Pennsylvania), Mildred Dresselhaus, Xi-Ling, Shengxi Huang (Massachusetts Institute of Technology).

  20. Serum Phosphorus Levels and the Spectrum of Ankle-Brachial Index in Older Men

    PubMed Central

    Meng, Jerry; Wassel, Christina L.; Kestenbaum, Bryan R.; Collins, Tracie C.; Criqui, Michael H.; Lewis, Cora E.; Cummings, Steve R.; Ix, Joachim H.

    2010-01-01

    A higher serum phosphorus level is associated with cardiovascular disease (CVD) events among community-living populations. Mechanisms are unknown. The ankle-brachial index (ABI) provides information on both atherosclerosis and arterial stiffness. In this cross-sectional study (2000–2002), the authors evaluated the association of serum phosphorus levels with low (<0.90) and high (≥1.40 or incompressible) ABI as compared with intermediate ABI in 5,330 older US men, among whom the mean serum phosphorus level was 3.2 mg/dL (standard deviation, 0.4), 6% had a low ABI, and 5% had a high ABI. Each 1-mg/dL increase in serum phosphorus level was associated with a 1.6-fold greater prevalence of low ABI (95% confidence interval (CI): 1.2, 2.1; P < 0.001) and a 1.4-fold greater prevalence of high ABI (95% CI: 1.0, 1.9; P = 0.03) in models adjusted for demographic factors, traditional CVD risk factors, and kidney function. However, the association of phosphorus with high ABI differed by chronic kidney disease (CKD) status (in persons with CKD, prevalence ratio = 2.96, 95% CI: 1.61, 5.45; in persons without CKD, prevalence ratio = 1.14, 95% CI: 0.81, 1.61; interaction P = 0.04). In conclusion, among community-living older men, higher phosphorus levels are associated with low ABI and are also associated with high ABI in persons with CKD. These associations may explain the link between serum phosphorus levels and CVD events. PMID:20237150

  1. Measurement of spin-flip probabilities for ultracold neutrons interacting with nickel phosphorus coated surfaces

    SciTech Connect

    Tang, Zhaowen; Adamek, Evan Robert; Brandt, Aaron; Callahan, Nathan Brannan; Clayton, Steven M.; Currie, Scott Allister; Ito, Takeyasu M.; Makela, Mark F.; Masuda, Yasuhiro; Morris, Christopher L.; Pattie, Robert Wayne; Ramsey, John Clinton; Salvat, Daniel J.; Saunders, Alexander; Young, Albert R.

    2016-04-26

    In this paper, we report a measurement of the spin-flip probabilities for ultracold neutrons interacting with surfaces coated with nickel phosphorus. For 50 μm thick nickel phosphorus coated on stainless steel, the spin-flip probability per bounce was found to be βNiP on SS = (3.3 +1.8, -5.6) X 10-6. For 50 μm thick nickel phosphorus coated on aluminum, the spin-flip probability per bounce was found to be βNiP on Al = (3.6 +2.1, -5.9) X 10-6. For the copper guide used as reference, the spin flip probability per bounce was found to be βCu = (6.7 + 5.0, -2.5) X 10-6. The results on the nickel phosphorus-coated surfaces may be interpreted as upper limits, yielding βNiP on SS < 6.2 X 10-6 (90% C.L.) and βNiP on Al < 7.0 X 10-6 (90% C.L.) for 50 μm thick nickel phosphorus coated on stainless steel and 50 μm thick nickel phosphorus coated on aluminum, respectively. Finally, nickel phosphorus coated stainless steel or aluminum provides a solution when low-cost, mechanically robust, and non-depolarizing UCN guides with a high Fermi potential are needed.

  2. Measurement of spin-flip probabilities for ultracold neutrons interacting with nickel phosphorus coated surfaces

    SciTech Connect

    Tang, Zhaowen; Adamek, Evan Robert; Brandt, Aaron; Callahan, Nathan Brannan; Clayton, Steven M.; Currie, Scott Allister; Ito, Takeyasu M.; Makela, Mark F.; Masuda, Yasuhiro; Morris, Christopher L.; Pattie, Robert Wayne; Ramsey, John Clinton; Salvat, Daniel J.; Saunders, Alexander; Young, Albert R.

    2016-04-26

    In this paper, we report a measurement of the spin-flip probabilities for ultracold neutrons interacting with surfaces coated with nickel phosphorus. For 50 μm thick nickel phosphorus coated on stainless steel, the spin-flip probability per bounce was found to be βNiP on SS = (3.3 +1.8, -5.6) X 10-6. For 50 μm thick nickel phosphorus coated on aluminum, the spin-flip probability per bounce was found to be βNiP on Al = (3.6 +2.1, -5.9) X 10-6. For the copper guide used as reference, the spin flip probability per bounce was found to be βCu = (6.7 + 5.0, -2.5) X 10-6. The results on the nickel phosphorus-coated surfaces may be interpreted as upper limits, yielding βNiP on SS < 6.2 X 10-6 (90% C.L.) and βNiP on Al < 7.0 X 10-6 (90% C.L.) for 50 μm thick nickel phosphorus coated on stainless steel and 50 μm thick nickel phosphorus coated on aluminum, respectively. Finally, nickel phosphorus coated stainless steel or aluminum provides a solution when low-cost, mechanically robust, and non-depolarizing UCN guides with a high Fermi potential are needed.

  3. Syntheses of Novel Nitrogen and Phosphorus Heterocycles.

    DTIC Science & Technology

    2014-09-26

    Chemicals and Materials Research Department, Ultrasystems, Inc. under Contract F49620-82-C-0021, "Syntheses of Novel Nitrogen and Phosphorus Hetero- * cycles ...ADl-NISS9 449 SYNTHESES OF NOVEL NITROGEN AND PHOSPHORUS HETEROCYCLES In (U) ULTRRSYSTENS INC IRVINE CR K L PRCIOREK ET RL. 26 RPR 85 SN-209?-F RFOSR...MICROCOPY RESOLUTION TEST CHART NATIONAL BURE&U OF STAOACS-963-A SR-I"I" s, -Ŕ 500 4 SYNTHESES OF NOVEL NITROGEN AND PHOSPHORUS HETEROCYCLES Contract No

  4. Weak Localization in few layer Black Phosphorus

    NASA Astrophysics Data System (ADS)

    Gillgren, Nathaniel; Shi, Yanmeng; Espiritu, Timothy; Watanabe, Kenji; Taniguchi, Takahashi; Lau, Chun Ning (Jeanie)

    Few-layer black phosphorus has recently attracted interest from the scientific community due to its high mobility, tunable band gap, and large anisotropy. Recent experiments have demonstrated that black phosphorus provides a promising candidate to explore the physics of 2D semiconductors. In this study we explore the magnetotransport of few-layer black phosphorus-boron nitride hetereostructure devices at low magnetic fields. Weak localization is observed at low temperatures. We extract the dephasing length and measure its dependence on temperature, carrier density and electric field.

  5. The phosphorus mass balance: identifying 'hotspots' in the food system as a roadmap to phosphorus security.

    PubMed

    Cordell, Dana; Neset, Tina-Simone Schmid; Prior, Timothy

    2012-12-01

    Phosphorus is a critical element on which all life depends. Global crop production depends on fertilisers derived from phosphate rock to maintain high crop yields. Population increase, changing dietary preferences towards more meat and dairy products, and the continuing intensification of global agriculture supporting this expansion will place increasing pressure on an uncertain, but finite supply of high-quality phosphate rock. Growing concern about phosphorus scarcity and security, coupled with the environmental impact of phosphorus pollution, has encouraged an increase in research exploring how phosphorus is used and lost in the food system-from mine to field to fork. An assessment of recent phosphorus flows analyses at different geographical scales identifies the key phosphorus 'hotspots', for example within the mining, agriculture or food processing sectors, where efficiency and reuse can be substantially improved through biotechnological approaches coupled with policy changes.

  6. Phytoplankton in the ocean use non-phosphorus lipids in response to phosphorus scarcity.

    PubMed

    Van Mooy, Benjamin A S; Fredricks, Helen F; Pedler, Byron E; Dyhrman, Sonya T; Karl, David M; Koblízek, Michal; Lomas, Michael W; Mincer, Tracy J; Moore, Lisa R; Moutin, Thierry; Rappé, Michael S; Webb, Eric A

    2009-03-05

    Phosphorus is an obligate requirement for the growth of all organisms; major biochemical reservoirs of phosphorus in marine plankton include nucleic acids and phospholipids. However, eukaryotic phytoplankton and cyanobacteria (that is, 'phytoplankton' collectively) have the ability to decrease their cellular phosphorus content when phosphorus in their environment is scarce. The biochemical mechanisms that allow phytoplankton to limit their phosphorus demand and still maintain growth are largely unknown. Here we show that phytoplankton, in regions of oligotrophic ocean where phosphate is scarce, reduce their cellular phosphorus requirements by substituting non-phosphorus membrane lipids for phospholipids. In the Sargasso Sea, where phosphate concentrations were less than 10 nmol l-1, we found that only 1.3 +/- 0.6% of phosphate uptake was used for phospholipid synthesis; in contrast, in the South Pacific subtropical gyre, where phosphate was greater than 100 nmol l-1, plankton used 17 6% (ref. 6). Examination of the planktonic membrane lipids at these two locations showed that classes of sulphur- and nitrogen-containing membrane lipids, which are devoid of phosphorus, were more abundant in the Sargasso Sea than in the South Pacific. Furthermore, these non-phosphorus, 'substitute lipids' were dominant in phosphorus-limited cultures of all of the phytoplankton species we examined. In contrast, the marine heterotrophic bacteria we examined contained no substitute lipids and only phospholipids. Thus heterotrophic bacteria, which compete with phytoplankton for nutrients in oligotrophic regions like the Sargasso Sea, appear to have a biochemical phosphorus requirement that phytoplankton avoid by using substitute lipids. Our results suggest that phospholipid substitutions are fundamental biochemical mechanisms that allow phytoplankton to maintain growth in the face of phosphorus limitation.

  7. Towards global phosphorus security: a systems framework for phosphorus recovery and reuse options.

    PubMed

    Cordell, D; Rosemarin, A; Schröder, J J; Smit, A L

    2011-08-01

    Human intervention in the global phosphorus cycle has mobilised nearly half a billion tonnes of the element from phosphate rock into the hydrosphere over the past half century. The resultant water pollution concerns have been the main driver for sustainable phosphorus use (including phosphorus recovery). However the emerging global challenge of phosphorus scarcity with serious implications for future food security, means phosphorus will also need to be recovered for productive reuse as a fertilizer in food production to replace increasingly scarce and more expensive phosphate rock. Through an integrated and systems framework, this paper examines the full spectrum of sustainable phosphorus recovery and reuse options (from small-scale low-cost to large-scale high-tech), facilitates integrated decision-making and identifies future opportunities and challenges for achieving global phosphorus security. Case studies are provided rather than focusing on a specific technology or process. There is no single solution to achieving a phosphorus-secure future: in addition to increasing phosphorus use efficiency, phosphorus will need to be recovered and reused from all current waste streams throughout the food production and consumption system (from human and animal excreta to food and crop wastes). There is a need for new sustainable policies, partnerships and strategic frameworks to develop renewable phosphorus fertilizer systems for farmers. Further research is also required to determine the most sustainable means in a given context for recovering phosphorus from waste streams and converting the final products into effective fertilizers, accounting for life cycle costs, resource and energy consumption, availability, farmer accessibility and pollution. Copyright © 2011 Elsevier Ltd. All rights reserved.

  8. Efficient recovery of carbon, nitrogen, and phosphorus from waste activated sludge.

    PubMed

    Chen, Yinguang; Zheng, Xiong; Feng, Leiyu; Yang, Hong

    2013-01-01

    Carbon, nitrogen, and phosphorus need to be recovered to reduce the environmental impact of waste activated sludge (WAS). In this study the improved short-chain fatty acid (SCFA) production from WAS by the addition of kitchen waste to adjust the ratio of carbon to nitrogen (C/N), and the efficient recovery of nitrogen and phosphorus from the fermentation liquid were reported. Firstly, the optimum conditions for SCFA production were found to be pH 8, temperature 35 °C, C/N ratio 21 mg-C/1 mg-N, and fermentation time 6 d, using the response surface methodology. After alkaline fermentation, the struvite precipitation method was applied to efficiently and simultaneously recover the released ammonia and phosphorus from the fermentation liquid. Finally, the fermentation liquid was used as the additional carbon source for biological nitrogen and phosphorus removal. It was observed that, compared with acetic acid, the use of fermentation liquid as carbon source showed greater removal efficiencies of total nitrogen and total phosphorus.

  9. Epitaxial Growth of Single Layer Blue Phosphorus: A New Phase of Two-Dimensional Phosphorus.

    PubMed

    Zhang, Jia Lin; Zhao, Songtao; Han, Cheng; Wang, Zhunzhun; Zhong, Shu; Sun, Shuo; Guo, Rui; Zhou, Xiong; Gu, Cheng Ding; Yuan, Kai Di; Li, Zhenyu; Chen, Wei

    2016-08-10

    Blue phosphorus, a previously unknown phase of phosphorus, has been recently predicted by theoretical calculations and shares its layered structure and high stability with black phosphorus, a rapidly rising two-dimensional material. Here, we report a molecular beam epitaxial growth of single layer blue phosphorus on Au(111) by using black phosphorus as precursor, through the combination of in situ low temperature scanning tunneling microscopy and density functional theory calculation. The structure of the as-grown single layer blue phosphorus on Au(111) is explained with a (4 × 4) blue phosphorus unit cell coinciding with a (5 × 5) Au(111) unit cell, and this is verified by the theoretical calculations. The electronic bandgap of single layer blue phosphorus on Au(111) is determined to be 1.10 eV by scanning tunneling spectroscopy measurement. The realization of epitaxial growth of large-scale and high quality atomic-layered blue phosphorus can enable the rapid development of novel electronic and optoelectronic devices based on this emerging two-dimensional material.

  10. Edge plasmons in monolayer black phosphorus

    NASA Astrophysics Data System (ADS)

    Bao, Zhi-Wei; Wu, Hong-Wei; Zhou, Yu

    2016-12-01

    In this paper, we numerically investigate the edge plasmons in monolayer black phosphorus. It is found that the complex effective indexes of these modes depend on the molecular configuration of the edge. We have calculated the ratio of the real over the imaginary part of the mode effective index, and the results indicate that such edge modes indeed possess outstanding propagation performances in the mid-infrared. In the case of black phosphorus nanoribbon, it seems that only the anti-symmetric modes have low losses, and may be of use in applications. Compared with those at the edge of monolayer black phosphorus, the propagation performances can be further enhanced due to the mode coupling between the two edges. In the end, the effects of substrates are discussed. Our study shows that monolayer black phosphorus may be regarded as a promising candidate for plasmonic applications in the mid-infrared.

  11. ENZYME DEGRADATION OF CHIRAL ORGANIC PHOSPHORUS INSECTICIDES

    EPA Science Inventory

    Chiral organic phosphorus pesticides (OPs) are expected to be biologically degraded enantioselectively by endogenous enzymes. Various chiral Ops were treated with the enzyme phosphotriesterase (PTE) obtained from partially purified extracts of Escherichia coli strain DH-5- carryi...

  12. ENZYME DEGRADATION OF CHIRAL ORGANIC PHOSPHORUS INSECTICIDES

    EPA Science Inventory

    Chiral organic phosphorus pesticides (OPs) are expected to be biologically degraded enantioselectively by endogenous enzymes. Various chiral Ops were treated with the enzyme phosphotriesterase (PTE) obtained from partially purified extracts of Escherichia coli strain DH-5- carryi...

  13. Black phosphorus: A new bandgap tuning knob

    NASA Astrophysics Data System (ADS)

    Roldán, Rafael; Castellanos-Gomez, Andres

    2017-07-01

    An external 'tuning knob' by means of applying a transverse electric field has been experimentally demonstrated to modify the bandgap of black phosphorus, making the two-dimensional material practical for integration in functional nanodevices.

  14. Phosphorus in antique iron music wire.

    PubMed

    Goodway, M

    1987-05-22

    Harpsichords and other wire-strung musical instruments were made with longer strings about the beginning of the 17th century. This change required stronger music wire. Although these changes coincided with the introduction of the first mass-produced steel (iron alloyed with carbon), carbon was not found in samples of antique iron harpsichord wire. The wire contained an amount of phosphorus sufficient to have impeded its conversion to steel, and may have been drawn from iron rejected for this purpose. The method used to select pig iron for wire drawing ensured the highest possible phosphorus content at a time when its presence in iron was unsuspected. Phosphorus as an alloying element has had the reputation for making steel brittle when worked cold. Nevertheless, in replicating the antique wire, it was found that lowcarbon iron that contained 0.16 percent phosphorus was easily drawn to appropriate gauges and strengths for restringing antique harpsichords.

  15. Economic and environmental optimization of phosphorus removal.

    PubMed

    Clauson-Kaas, J; Poulsen, T Sander; Neergaard-Jacobsen, B; Guildal, T; Thirsing, C

    2004-01-01

    Do operating costs conform to environmental impact after introduction of charges on discharge of wastewater? A study on optimization of phosphorus removal at two Danish wastewater removal plants shows that this is actually the case. By measurement of inlet and outlet concentrations and of chemicals added it was possible to determine the relationships between chemical dosing and phosphorus discharge and thus calculate the operational cost and environmental impact of different dosing/discharge levels.

  16. Soil test phosphorus and cumulative phosphorus budgets in fertilized grassland.

    PubMed

    Messiga, Aimé Jean; Ziadi, Noura; Jouany, Claire; Virkajärvi, Perttu; Suomela, Raija; Sinaj, Sokrat; Bélanger, Gilles; Stroia, Ciprian; Morel, Christian

    2015-03-01

    We analyzed the linearity of relationships between soil test P (STP) and cumulative phosphorus (P) budget using data from six long-term fertilized grassland sites in four countries: France (Ercé and Gramond), Switzerland (Les Verrières), Canada (Lévis), and Finland (Maaninka and Siikajoki). STP was determined according to existing national guidelines. A linear-plateau model was used to determine the presence of deflection points in the relationships. Deflection points with (x, y) coordinates were observed everywhere but Maaninka. Above the deflection point, a significant linear relationship was obtained (0.33 < r (2) < 0.72) at four sites, while below the deflection point, the relationship was not significant, with a negligible rate of STP decrease. The relationship was not linear over the range of STP encountered at most sites, suggesting a need for caution when using the P budget approach to predict STP changes in grasslands, particularly in situations of very low P fertilization. Our study provides insights and description of a tool to improve global P strategies aimed at maintaining STP at levels adequate for grassland production while reducing the risk of P pollution of water.

  17. Soil phosphorus constrains biodiversity across European grasslands.

    PubMed

    Ceulemans, Tobias; Stevens, Carly J; Duchateau, Luc; Jacquemyn, Hans; Gowing, David J G; Merckx, Roel; Wallace, Hilary; van Rooijen, Nils; Goethem, Thomas; Bobbink, Roland; Dorland, Edu; Gaudnik, Cassandre; Alard, Didier; Corcket, Emmanuel; Muller, Serge; Dise, Nancy B; Dupré, Cecilia; Diekmann, Martin; Honnay, Olivier

    2014-12-01

    Nutrient pollution presents a serious threat to biodiversity conservation. In terrestrial ecosystems, the deleterious effects of nitrogen pollution are increasingly understood and several mitigating environmental policies have been developed. Compared to nitrogen, the effects of increased phosphorus have received far less attention, although some studies have indicated that phosphorus pollution may be detrimental for biodiversity as well. On the basis of a dataset covering 501 grassland plots throughout Europe, we demonstrate that, independent of the level of atmospheric nitrogen deposition and soil acidity, plant species richness was consistently negatively related to soil phosphorus. We also identified thresholds in soil phosphorus above which biodiversity appears to remain at a constant low level. Our results indicate that nutrient management policies biased toward reducing nitrogen pollution will fail to preserve biodiversity. As soil phosphorus is known to be extremely persistent and we found no evidence for a critical threshold below which no environmental harm is expected, we suggest that agro-environmental schemes should include grasslands that are permanently free from phosphorus fertilization. © 2014 John Wiley & Sons Ltd.

  18. Assessing phosphorus reduction efforts in the Everglades

    NASA Astrophysics Data System (ADS)

    Tretkoff, Ernie

    2011-05-01

    Years of agricultural and urban runoff have resulted in too much phosphorus in northern regions of the Florida Everglades. To deal with this problem, very large constructed wetlands, known as Stormwater Treatment Areas (STAs), have been built to strip phosphorus from runoff before the water enters protected Everglades areas. The more than $1 billion STA project currently relies on large areas (cells) of submerged aquatic vegetation (SAV) to absorb phosphorus as the final stage of treatment. To evaluate how well the treatment cells are functioning, as well as the potential lower limits of treatment, it is essential to have an accurate picture of the inflows, outflows, and background phosphorus levels. Juston and DeBusk made long-term measurements in one of the SAV cells. They found that after total phosphorous levels in the cells reached about 15 micrograms per liter, no more phosphorus removal occurred. They also analyzed inflow and outflow data from the cell and inferred background phosphorus concentrations for eight additional SAV cells. Background concentrations averaged around 16 micrograms per liter. (Water Resources Research, doi:10.1029/2010WR009294, 2011)

  19. Phosphorus speciation by coupled HPLC-ICPMS: low level determination of reduced phosphorus in natural materials

    NASA Astrophysics Data System (ADS)

    Atlas, Zachary; Pasek, Matthew; Sampson, Jacqueline

    2015-04-01

    Phosphorus is a geologically important minor element in the Earth's crust commonly found as relatively insoluble apatite. This constraint causes phosphorus to be a key limiting nutrient in biologic processes. Despite this, phosphorus plays a direct role in the formation of DNA, RNA and other cellular materials. Recent works suggest that since reduced phosphorus is considerably more soluble than oxidized phosphorus that it was integrally involved in the development of life on the early Earth and may continue to play a role in biologic productivity to this day. This work examines a new method for quantification and identification of reduced phosphorus as well as applications to the speciation of organo-phosphates separated by coupled HPLC - ICP-MS. We show that reduced phosphorus species (P1+, P3+ and P5+) are cleanly separated in the HPLC and coupled with the ICPMS reaction cell, using oxygen as a reaction gas to effectively convert elemental P to P-O. Analysis at M/Z= 47 producing lower background and flatter baseline chromatography than analyses performed at M/Z = 31. Results suggest very low detection limits (0.05 μM) for P species analyzed as P-O. Additionally we show that this technique has potential to speciate at least 5 other forms of phosphorus compounds. We verified the efficacy of method on numerous materials including leached Archean rocks, suburban retention pond waters, blood and urine samples and most samples show small but detectible levels of reduced phosphorus and or organo-phaospates. This finding in nearly all substances analyzed supports the assumption that the redox processing of phosphorus has played a significant role throughout the history of the Earth and it's presence in the present environment is nearly ubiquitous with the reduced oxidation state phosphorus compounds, phosphite and hypophosphite, potentially acting as significant constituents in the anaerobic environment.

  20. Phosphorus K4 Crystal: A New Stable Allotrope

    PubMed Central

    Liu, Jie; Zhang, Shunhong; Guo, Yaguang; Wang, Qian

    2016-01-01

    The intriguing properties of phosphorene motivate scientists to further explore the structures and properties of phosphorus materials. Here, we report a new allotrope named K4 phosphorus composed of three-coordinated phosphorus atoms in non-layered structure which is not only dynamically and mechanically stable, but also possesses thermal stability comparable to that of the orthorhombic black phosphorus (A17). Due to its unique configuration, K4 phosphorus exhibits exceptional properties: it possesses a band gap of 1.54 eV which is much larger than that of black phosphorus (0.30 eV), and it is stiffer than black phosphorus. The band gap of the newly predicted phase can be effectively tuned by appling hydrostastic pressure. In addition, K4 phosphorus exibits a good light absorption in visible and near ultraviolet region. These findings add additional features to the phosphorus family with new potential applications in nanoelectronics and nanomechanics. PMID:27857232

  1. Phosphorus K4 Crystal: A New Stable Allotrope

    NASA Astrophysics Data System (ADS)

    Liu, Jie; Zhang, Shunhong; Guo, Yaguang; Wang, Qian

    2016-11-01

    The intriguing properties of phosphorene motivate scientists to further explore the structures and properties of phosphorus materials. Here, we report a new allotrope named K4 phosphorus composed of three-coordinated phosphorus atoms in non-layered structure which is not only dynamically and mechanically stable, but also possesses thermal stability comparable to that of the orthorhombic black phosphorus (A17). Due to its unique configuration, K4 phosphorus exhibits exceptional properties: it possesses a band gap of 1.54 eV which is much larger than that of black phosphorus (0.30 eV), and it is stiffer than black phosphorus. The band gap of the newly predicted phase can be effectively tuned by appling hydrostastic pressure. In addition, K4 phosphorus exibits a good light absorption in visible and near ultraviolet region. These findings add additional features to the phosphorus family with new potential applications in nanoelectronics and nanomechanics.

  2. Estimate of dietary phosphorus intake using 24-h urine collection.

    PubMed

    Morimoto, Yuuka; Sakuma, Masae; Ohta, Hiroyuki; Suzuki, Akitsu; Matsushita, Asami; Umeda, Minako; Ishikawa, Makoto; Taketani, Yutaka; Takeda, Eiji; Arai, Hidekazu

    2014-07-01

    Increases in serum phosphorus levels and dietary phosphorus intake induces vascular calcification, arterial sclerosis and cardiovascular diseases. Limiting phosphorus intake is advisable, however, no assessment methods are capable of estimating dietary phosphorus intake. We hypothesized that urinary phosphorus excretion can be translated into estimation of dietary phosphorus intake, and we evaluated whether a 24-h urine collection method could estimate dietary phosphorus intake. Thirty two healthy subjects were recruited for this study. Subjects collected urine samples over 24 h and weighed dietary records. We calculated dietary protein intake and phosphorus intake from dietary records and urine collection, and investigated associations between the two methods in estimating protein and phosphorus intake. Significant positive correlations were observed between dietary records and UC for protein and phosphorus intake. The average intakes determined from dietary records were significantly higher than from urine collection for both protein and phosphorus. There was a significant positive correlation between both the phosphorus and protein difference in dietary records and urine collection. The phosphorus-protein ratio in urine collection was significantly higher than in dietary records. Our data indicated that the 24-h urine collection method can estimate the amount of dietary phosphorus intake, and the results were superior to estimation by weighed dietary record.

  3. Dietary phosphorus affects the growth of larval Manduca sexta.

    PubMed

    Perkins, Marc C; Woods, H Arthur; Harrison, Jon F; Elser, James J

    2004-03-01

    Although phosphorus has long been considered an important factor in the growth of diverse biota such as bacteria, algae, and zooplankton, insect nutrition has classically focused on dietary protein and energy content. However, research in elemental stoichiometry has suggested that primary producer biomass has similar N:P ratios in aquatic and terrestrial systems, and phosphorus-rich herbivores in freshwater systems frequently face phosphorus-limited nutritional conditions. Therefore, herbivorous insects should also be prone to phosphorus limitation. We tested this prediction by rearing Manduca sexta larvae on artificial and natural (Datura wrightii leaves) diets containing varying levels of phosphorus (approximately 0.20, 0.55, or 1.2% phosphorus by dry weight). For both artificial and natural diets, increased dietary phosphorus significantly increased growth rates and body phosphorus contents, and shortened the time to the final instar molt. Caterpillars did not consistently exhibit compensatory feeding for phosphorus on either type of diet. The growth and body phosphorus responses were not explicable by changes in amounts of potassium or calcium, which co-varied with phosphorus in the diets. Concentrations of phosphorus in D. wrightii leaves collected in the field varied over a range in which leaf phosphorus is predicted to affect M. sexta's growth rates. These results suggest that natural variation in dietary phosphorus is likely to affect the growth rate and population dynamics of M. sexta, and perhaps larval insects more generally.

  4. Estimate of dietary phosphorus intake using 24-h urine collection

    PubMed Central

    Morimoto, Yuuka; Sakuma, Masae; Ohta, Hiroyuki; Suzuki, Akitsu; Matsushita, Asami; Umeda, Minako; Ishikawa, Makoto; Taketani, Yutaka; Takeda, Eiji; Arai, Hidekazu

    2014-01-01

    Increases in serum phosphorus levels and dietary phosphorus intake induces vascular calcification, arterial sclerosis and cardiovascular diseases. Limiting phosphorus intake is advisable, however, no assessment methods are capable of estimating dietary phosphorus intake. We hypothesized that urinary phosphorus excretion can be translated into estimation of dietary phosphorus intake, and we evaluated whether a 24-h urine collection method could estimate dietary phosphorus intake. Thirty two healthy subjects were recruited for this study. Subjects collected urine samples over 24 h and weighed dietary records. We calculated dietary protein intake and phosphorus intake from dietary records and urine collection, and investigated associations between the two methods in estimating protein and phosphorus intake. Significant positive correlations were observed between dietary records and UC for protein and phosphorus intake. The average intakes determined from dietary records were significantly higher than from urine collection for both protein and phosphorus. There was a significant positive correlation between both the phosphorus and protein difference in dietary records and urine collection. The phosphorus-protein ratio in urine collection was significantly higher than in dietary records. Our data indicated that the 24-h urine collection method can estimate the amount of dietary phosphorus intake, and the results were superior to estimation by weighed dietary record. PMID:25120281

  5. Acid Load and Phosphorus Homeostasis in CKD.

    PubMed

    Khairallah, Pascale; Isakova, Tamara; Asplin, John; Hamm, Lee; Dobre, Mirela; Rahman, Mahboob; Sharma, Kumar; Leonard, Mary; Miller, Edgar; Jaar, Bernard; Brecklin, Carolyn; Yang, Wei; Wang, Xue; Feldman, Harold; Wolf, Myles; Scialla, Julia J

    2017-10-01

    The kidneys maintain acid-base homeostasis through excretion of acid as either ammonium or as titratable acids that primarily use phosphate as a buffer. In chronic kidney disease (CKD), ammoniagenesis is impaired, promoting metabolic acidosis. Metabolic acidosis stimulates phosphaturic hormones, parathyroid hormone (PTH) and fibroblast growth factor 23 (FGF-23) in vitro, possibly to increase urine titratable acid buffers, but this has not been confirmed in humans. We hypothesized that higher acid load and acidosis would associate with altered phosphorus homeostasis, including higher urinary phosphorus excretion and serum PTH and FGF-23. Cross-sectional. 980 participants with CKD enrolled in the Chronic Renal Insufficiency Cohort (CRIC) Study. Net acid excretion as measured in 24-hour urine, potential renal acid load (PRAL) estimated from food frequency questionnaire responses, and serum bicarbonate concentration < 22 mEq/L. 24-hour urine phosphorus and calcium excretion and serum phosphorus, FGF-23, and PTH concentrations. Using linear and log-linear regression adjusted for demographics, kidney function, comorbid conditions, body mass index, diuretic use, and 24-hour urine creatinine excretion, we found that 24-hour urine phosphorus excretion was higher at higher net acid excretion, higher PRAL, and lower serum bicarbonate concentration (each P<0.05). Serum phosphorus concentration was also higher with higher net acid excretion and lower serum bicarbonate concentration (each P=0.001). Only higher net acid excretion associated with higher 24-hour urine calcium excretion (P<0.001). Neither net acid excretion nor PRAL was associated with FGF-23 or PTH concentrations. PTH, but not FGF-23, concentration (P=0.2) was 26% (95% CI, 13%-40%) higher in participants with a serum bicarbonate concentration <22 versus ≥22 mEq/L (P<0.001). Primary results were similar if stratified by estimated glomerular filtration rate categories or adjusted for iothalamate glomerular

  6. Rapid and portable electrochemical quantification of phosphorus.

    PubMed

    Kolliopoulos, Athanasios V; Kampouris, Dimitrios K; Banks, Craig E

    2015-04-21

    Phosphorus is one of the key indicators of eutrophication levels in natural waters where it exists mainly as dissolved phosphorus. Various analytical protocols exist to provide an offsite analysis, and a point of site analysis is required. The current standard method recommended by the Environmental Protection Agency (EPA) for the detection of total phosphorus is colorimetric and based upon the color of a phosphomolybdate complex formed as a result of the reaction between orthophosphates and molybdates ions where ascorbic acid and antimony potassium tartrate are added and serve as reducing agents. Prior to the measurements, all forms of phosphorus are converted into orthophosphates via sample digestion (heating and acidifying). The work presented here details an electrochemical adaptation of this EPA recommended colorimetric approach for the measurement of dissolved phosphorus in water samples using screen-printed graphite macroelectrodes for the first time. This novel indirect electrochemical sensing protocol allows the determination of orthophosphates over the range from 0.5 to 20 μg L(-1) in ideal pH 1 solutions utilizing cyclic voltammetry with a limit of detection (3σ) found to correspond to 0.3 μg L(-1) of phosphorus. The reaction time and influence of foreign ions (potential interferents) upon this electroanalytical protocol was also investigated, where it was found that a reaction time of 5 min, which is essential in the standard colorimetric approach, is not required in the new proposed electrochemically adapted protocol. The proposed electrochemical method was independently validated through the quantification of orthophosphates and total dissolved phosphorus in polluted water samples (canal water samples) with ion chromatography and ICP-OES, respectively. This novel electrochemical protocol exhibits advantages over the established EPA recommended colorimetric determination for total phosphorus with lower detection limits and shorter experimental times

  7. THE CHEMICAL EVOLUTION OF PHOSPHORUS

    SciTech Connect

    Jacobson, Heather R.; Thanathibodee, Thanawuth; Frebel, Anna; Roederer, Ian U.; Cescutti, Gabriele; Matteucci, Francesca

    2014-12-01

    Phosphorus is one of the few remaining light elements for which little is known about its nucleosynthetic origin and chemical evolution, given the lack of optical absorption lines in the spectra of long-lived FGK-type stars. We have identified a P I doublet in the near-ultraviolet (2135/2136 Å) that is measurable in stars of low metallicity. Using archival Hubble Space Telescope-Space Telescope Imaging Spectrograph spectra, we have measured P abundances in 13 stars spanning –3.3 ≤ [Fe/H] ≤ -0.2, and obtained an upper limit for a star with [Fe/H] ∼ -3.8. Combined with the only other sample of P abundances in solar-type stars in the literature, which spans a range of –1 ≤ [Fe/H] ≤ +0.2, we compare the stellar data to chemical evolution models. Our results support previous indications that massive-star P yields may need to be increased by a factor of a few to match stellar data at all metallicities. Our results also show that hypernovae were important contributors to the P production in the early universe. As P is one of the key building blocks of life, we also discuss the chemical evolution of the important elements to life, C-N-O-P-S, together.

  8. The renaissance of black phosphorus

    PubMed Central

    Ling, Xi; Wang, Han; Huang, Shengxi; Xia, Fengnian; Dresselhaus, Mildred S.

    2015-01-01

    One hundred years after its first successful synthesis in the bulk form in 1914, black phosphorus (black P) was recently rediscovered from the perspective of a 2D layered material, attracting tremendous interest from condensed matter physicists, chemists, semiconductor device engineers, and material scientists. Similar to graphite and transition metal dichalcogenides (TMDs), black P has a layered structure but with a unique puckered single-layer geometry. Because the direct electronic band gap of thin film black P can be varied from 0.3 eV to around 2 eV, depending on its film thickness, and because of its high carrier mobility and anisotropic in-plane properties, black P is promising for novel applications in nanoelectronics and nanophotonics different from graphene and TMDs. Black P as a nanomaterial has already attracted much attention from researchers within the past year. Here, we offer our opinions on this emerging material with the goal of motivating and inspiring fellow researchers in the 2D materials community and the broad readership of PNAS to discuss and contribute to this exciting new field. We also give our perspectives on future 2D and thin film black P research directions, aiming to assist researchers coming from a variety of disciplines who are desirous of working in this exciting research field. PMID:25820173

  9. Total Value of Phosphorus Recovery.

    PubMed

    Mayer, Brooke K; Baker, Lawrence A; Boyer, Treavor H; Drechsel, Pay; Gifford, Mac; Hanjra, Munir A; Parameswaran, Prathap; Stoltzfus, Jared; Westerhoff, Paul; Rittmann, Bruce E

    2016-07-05

    Phosphorus (P) is a critical, geographically concentrated, nonrenewable resource necessary to support global food production. In excess (e.g., due to runoff or wastewater discharges), P is also a primary cause of eutrophication. To reconcile the simultaneous shortage and overabundance of P, lost P flows must be recovered and reused, alongside improvements in P-use efficiency. While this motivation is increasingly being recognized, little P recovery is practiced today, as recovered P generally cannot compete with the relatively low cost of mined P. Therefore, P is often captured to prevent its release into the environment without beneficial recovery and reuse. However, additional incentives for P recovery emerge when accounting for the total value of P recovery. This article provides a comprehensive overview of the range of benefits of recovering P from waste streams, i.e., the total value of recovering P. This approach accounts for P products, as well as other assets that are associated with P and can be recovered in parallel, such as energy, nitrogen, metals and minerals, and water. Additionally, P recovery provides valuable services to society and the environment by protecting and improving environmental quality, enhancing efficiency of waste treatment facilities, and improving food security and social equity. The needs to make P recovery a reality are also discussed, including business models, bottlenecks, and policy and education strategies.

  10. Assessing Phosphorus Loading in Wetlands

    NASA Astrophysics Data System (ADS)

    Pant, H. K.

    2011-12-01

    Hari K. Pant Lehman College of the City University of New York, Department of Environmental, Geographic and Geological Sciences, 250 Bedford Park Boulevard West, Bronx, NY 10468; hari.pant@lehman.cuny.edu Depending on ecosystem's resilience, hydro-climatic changes brought upon by global climate change may cause nonlinear and/or irreversible changes in phosphorus (P) dynamic, and instigate P enrichment in freshwater wetlands. Thus, the studies of the influence of expected global climate change and its impacts on P stability in wetlands are in critical need to help manage, or increase the resilience of freshwater wetland ecosystems against undesirable changes. The objectives of this study were to assess P sorption in sediments, and help to estimate potential internal loading of P to the water column from the sediments. Sediment samples were collected from freshwater wetlands that are located within Pelham Bay Park, Bronx, New York. Although P sorption maxima (Smax) of the sediments were high in general (up to 1667 mg kg-1), the equilibrium P concentrations (EPC0) were also fairly high (0.09 -0.24 mg L-1), indicating substantial amounts of P may remain available for biological uptake in the water columns. High percentages of hysteretic P (>96%), as indicated by P retained values (Pr), along with a significant correlation between Smax and oxalate-extractable Fe (r = 0.89), suggest that changes in sediment/water chemistry such as redox status/acidity could cause massive P release to the water columns.

  11. Nitrogen, phosphorus, carbon and population.

    PubMed

    Gilland, Bernard

    2015-01-01

    Population growth makes food production increase necessary; economic growth increases demand for animal products and livestock feed. As further increase of the cropland area is ecologically undesirable, it is necessary to increase crop yields; this requires, inter alia, more nitrogen and phosphorus fertiliser despite the environmental problems which this will exacerbate. It is probable that a satisfactory food supply and an environmentally benign agriculture worldwide cannot be achieved without reducing population to approximately three billion. The reduction could be achieved by 2200 if the total fertility rate--currently 2.5--declined to 1.5 as a world average by 2050, and remained at that level until 2200, but the probability of such a global fertility trajectory is close to zero. It will also be necessary to replace fossil energy by nuclear and renewable energy in order to stabilise atmospheric carbon dioxide concentration, but the phase-out cannot be completed until the 22nd century, when the atmospheric concentration will be approximately 50% above the 2015 level of 400 ppm.

  12. The renaissance of black phosphorus

    NASA Astrophysics Data System (ADS)

    Ling, Xi; Wang, Han; Huang, Shengxi; Xia, Fengnian; Dresselhaus, Mildred S.

    2015-04-01

    One hundred years after its first successful synthesis in the bulk form in 1914, black phosphorus (black P) was recently rediscovered from the perspective of a 2D layered material, attracting tremendous interest from condensed matter physicists, chemists, semiconductor device engineers, and material scientists. Similar to graphite and transition metal dichalcogenides (TMDs), black P has a layered structure but with a unique puckered single-layer geometry. Because the direct electronic band gap of thin film black P can be varied from 0.3 eV to around 2 eV, depending on its film thickness, and because of its high carrier mobility and anisotropic in-plane properties, black P is promising for novel applications in nanoelectronics and nanophotonics different from graphene and TMDs. Black P as a nanomaterial has already attracted much attention from researchers within the past year. Here, we offer our opinions on this emerging material with the goal of motivating and inspiring fellow researchers in the 2D materials community and the broad readership of PNAS to discuss and contribute to this exciting new field. We also give our perspectives on future 2D and thin film black P research directions, aiming to assist researchers coming from a variety of disciplines who are desirous of working in this exciting research field.

  13. Ultra-Long Crystalline Red Phosphorus Nanowires from Amorphous Red Phosphorus Thin Films.

    PubMed

    Smith, Joshua B; Hagaman, Daniel; DiGuiseppi, David; Schweitzer-Stenner, Reinhard; Ji, Hai-Feng

    2016-09-19

    Heating red phosphorus in sealed ampoules in the presence of a Sn/SnI4 catalyst mixture has provided bulk black phosphorus at much lower pressures than those required for allotropic conversion by anvil cells. Herein we report the growth of ultra-long 1D red phosphorus nanowires (>1 mm) selectively onto a wafer substrate from red phosphorus powder and a thin film of red phosphorus in the present of a Sn/SnI4 catalyst. Raman spectra and X-ray diffraction characterization suggested the formation of crystalline red phosphorus nanowires. FET devices constructed with the red phosphorus nanowires displayed a typical I-V curve similar to that of black phosphorus and a similar mobility reaching 300 cm(2)  V(-1)  s with an Ion /Ioff ratio approaching 10(2) . A significant response to infrared light was observed from the FET device. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. Estimation of phosphorus flux in rivers during flooding.

    PubMed

    Chen, Yen-Chang; Liu, Jih-Hung; Kuo, Jan-Tai; Lin, Cheng-Fang

    2013-07-01

    Reservoirs in Taiwan are inundated with nutrients that result in algal growth, and thus also reservoir eutrophication. Controlling the phosphorus load has always been the most crucial issue for maintaining reservoir water quality. Numerous agricultural activities, especially the production of tea in riparian areas, are conducted in watersheds in Taiwan. Nutrients from such activities, including phosphorus, are typically flushed into rivers during flooding, when over 90% of the yearly total amount of phosphorous enters reservoirs. Excessive or enhanced soil erosion from rainstorms can dramatically increase the river sediment load and the amount of particulate phosphorus flushed into rivers. When flow rates are high, particulate phosphorus is the dominant form of phosphorus, but sediment and discharge measurements are difficult during flooding, which makes estimating phosphorus flux in rivers difficult. This study determines total amounts of phosphorus transport by measuring flood discharge and phosphorous levels during flooding. Changes in particulate phosphorus, dissolved phosphorus, and their adsorption behavior during a 24-h period are analyzed owing to the fact that the time for particulate phosphorus adsorption and desorption approaching equilibrium is about 16 h. Erosion of the reservoir watershed was caused by adsorption and desorption of suspended solids in the river, a process which can be summarily described using the Lagmuir isotherm. A method for estimating the phosphorus flux in the Daiyujay Creek during Typhoon Bilis in 2006 is presented in this study. Both sediment and phosphorus are affected by the drastic discharge during flooding. Water quality data were collected during two flood events, flood in June 9, 2006 and Typhoon Bilis, to show the concentrations of suspended solids and total phosphorus during floods are much higher than normal stages. Therefore, the drastic changes of total phosphorus, particulate phosphorus, and dissolved phosphorus in

  15. Simulating soil phosphorus dynamics for a phosphorus loss quantification tool.

    PubMed

    Vadas, Peter A; Joern, Brad C; Moore, Philip A

    2012-01-01

    Pollution of fresh waters by agricultural phosphorus (P) is a water quality concern. Because soils can contribute significantly to P loss in runoff, it is important to assess how management affects soil P status over time, which is often done with models. Our objective was to describe and validate soil P dynamics in the Annual P Loss Estimator (APLE) model. APLE is a user-friendly spreadsheet model that simulates P loss in runoff and soil P dynamics over 10 yr for a given set of runoff, erosion, and management conditions. For soil P dynamics, APLE simulates two layers in the topsoil, each with three inorganic P pools and one organic P pool. It simulates P additions to soil from manure and fertilizer, distribution among pools, mixing between layers due to tillage and bioturbation, leaching between and out of layers, crop P removal, and loss by surface runoff and erosion. We used soil P data from 25 published studies to validate APLE's soil P processes. Our results show that APLE reliably simulated soil P dynamics for a wide range of soil properties, soil depths, P application sources and rates, durations, soil P contents, and management practices. We validated APLE specifically for situations where soil P was increasing from excessive P inputs, where soil P was decreasing due to greater outputs than inputs, and where soil P stratification occurred in no-till and pasture soils. Successful simulations demonstrate APLE's potential to be applied to major management scenarios related to soil P loss in runoff and erosion. Copyright © by the American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America, Inc.

  16. Production of Low-Phosphorus Molten Iron from High-Phosphorus Oolitic Hematite Using Biomass Char

    NASA Astrophysics Data System (ADS)

    Tang, Huiqing; Qi, Tengfei; Qin, Yanqi

    2015-09-01

    In this study, an energy-saving and environmentally friendly method to produce low-phosphorus molten iron from high-phosphorus oolitic hematite was experimentally investigated and theoretically analyzed. The results indicate that biomass char is a suitable reducing agent for the proposed method. In the direct reduction stage, the ore-char briquette reached a metallization degree of 80-82% and a residual carbon content of 0.1-0.3 mass%. Under the optimized condition, phosphorus remained in the gangue as calcium phosphate. In the melting separation stage, phosphorus content ([%P]) in molten iron could be controlled by introducing a Na2CO3 additive, and the phosphorus behavior could be predicted using ion molecular coexistence theory. Molten iron with [%P] less than 0.3 mass% was obtained from the metallic briquettes with the aforementioned quality by introducing 2-4% Na2CO3 and the iron recovery rate was 75-78%.

  17. [Intravenous drop of calcium gluconate for phosphorus burns].

    PubMed

    Hu, A J

    1993-07-01

    20 patients with phosphor burn (TBSA 2%-75%) were cured by i.v. drop of calcium gluconate combined with other therapies including eschar conservation. Our experimental data showed that dogs with burn by spreading 85% phosphoric acid and napalm locally increased the level of plasma phosphorus and pathological damages to the heart, lung, kidney and etc were similar to those previously reported phosphorus burns. Intravenous drop of calcium gluconate after phosphate burn reduced the level of plasma phosphorus to normal rapidly and lessened the visceral damages. We consider that i.v. drop of calcium gluconate can accelerate the elimination of phosphorus, and prevent phosphorus poisoning after phosphorus burns.

  18. Runoff phosphorus losses as related to phosphorus source, application method, and application rate on a Piedmont soil.

    PubMed

    Tarkalson, David D; Mikkelsen, Robert L

    2004-01-01

    Land application of animal manures and fertilizers has resulted in an increased potential for excessive P losses in runoff to nutrient-sensitive surface waters. The purpose of this research was to measure P losses in runoff from a bare Piedmont soil in the southeastern United States receiving broiler litter or inorganic P fertilizer either incorporated or surface-applied at varying P application rates (inorganic P, 0-110 kg P ha(-1); broiler litter, 0-82 kg P ha(-1)). Rainfall simulation was applied at a rate of 76 mm h(-1). Runoff samples were collected at 5-min intervals for 30 min and analyzed for reactive phosphorus (RP), algal-available phosphorus (AAP), and total phosphorus (TP). Incorporation of both P sources resulted in P losses not significantly different than the unfertilized control at all application rates. Incorporation of broiler litter decreased flow-weighted concentration of RP in runoff by 97% and mass loss of TP in runoff by 88% compared with surface application. Surface application of broiler litter resulted in runoff containing between 2.3 and 21.8 mg RP L(-1) for application rates of 8 to 82 kg P ha(-1), respectively. Mass loss of TP in runoff from surface-applied broiler litter ranged from 1.3 to 8.5 kg P ha(-1) over the same application rates. Flow-weighted concentrations of RP and mass losses of TP in runoff were not related to application rate when inorganic P fertilizer was applied to the soil surface. Results for this study can be used by P loss assessment tools to fine-tune P source, application rate, and application method site factors, and to estimate extreme-case P loss from cropland receiving broiler litter and inorganic P fertilizers.

  19. Rainfall intensity and phosphorus source effects on phosphorus transport in surface runoff from soil trays.

    PubMed

    Shigaki, Francirose; Sharpley, Andrew; Prochnow, Luis Ignacio

    2007-02-01

    Phosphorus runoff from agricultural fields amended with mineral fertilizers and manures has been linked to freshwater eutrophication. A rainfall simulation study was conducted to evaluate the effects of different rainfall intensities and P sources differing in water soluble P (WSP) concentration on P transport in runoff from soil trays packed with a Berks loam and grassed with annual ryegrass (Lolium multiflorum Lam.). Triple superphosphate (TSP; 79% WSP), low-grade super single phosphate (LGSSP; 50% WSP), North Carolina rock phosphate (NCRP; 0.5% WSP) and swine manure (SM; 70% WSP), were broadcast (100 kg total P ha-1) and rainfall applied at 25, 50 and 75 mm h-1 1, 7, 21, and 56 days after P source application. The concentration of dissolved reactive (DRP), particulate (PP), and total P (TP) was significantly (P<0.01) greater in runoff with a rainfall intensity of 75 than 25 mm h-1 for all P sources. Further, runoff DRP increased as P source WSP increased, with runoff from a 50 mm h-1 rain 1 day after source application having a DRP concentration of 0.25 mg L-1 for NCRP and 28.21 mg L-1 for TSP. In contrast, the proportion of runoff TP as PP was greater with low (39% PP for NCRP) than high WSP sources (4% PP for TSP) averaged for all rainfall intensities. The increased PP transport is attributed to the detachment and transport of undissolved P source particles during runoff. These results show that P source water solubility and rainfall intensity can influence P transport in runoff, which is important in evaluating the long-term risks of P source application on P transport in surface runoff.

  20. 40 CFR 422.10 - Applicability; description of the phosphorus production subcategory.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... phosphorus production subcategory. 422.10 Section 422.10 Protection of Environment ENVIRONMENTAL PROTECTION... Phosphorus Production Subcategory § 422.10 Applicability; description of the phosphorus production... production of phosphorus and ferrophosphorus by smelting of phosphate ore....

  1. 40 CFR 422.10 - Applicability; description of the phosphorus production subcategory.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... phosphorus production subcategory. 422.10 Section 422.10 Protection of Environment ENVIRONMENTAL PROTECTION... Phosphorus Production Subcategory § 422.10 Applicability; description of the phosphorus production... production of phosphorus and ferrophosphorus by smelting of phosphate ore....

  2. 40 CFR 422.10 - Applicability; description of the phosphorus production subcategory.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... phosphorus production subcategory. 422.10 Section 422.10 Protection of Environment ENVIRONMENTAL PROTECTION... Phosphorus Production Subcategory § 422.10 Applicability; description of the phosphorus production... production of phosphorus and ferrophosphorus by smelting of phosphate ore....

  3. 40 CFR 422.10 - Applicability; description of the phosphorus production subcategory.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... phosphorus production subcategory. 422.10 Section 422.10 Protection of Environment ENVIRONMENTAL PROTECTION... Phosphorus Production Subcategory § 422.10 Applicability; description of the phosphorus production... production of phosphorus and ferrophosphorus by smelting of phosphate ore....

  4. 40 CFR 422.10 - Applicability; description of the phosphorus production subcategory.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... phosphorus production subcategory. 422.10 Section 422.10 Protection of Environment ENVIRONMENTAL PROTECTION... Phosphorus Production Subcategory § 422.10 Applicability; description of the phosphorus production... production of phosphorus and ferrophosphorus by smelting of phosphate ore....

  5. Digital imaging approaches for phenotyping whole plant nitrogen and phosphorus response in Brachypodium distachyon.

    PubMed

    Poiré, Richard; Chochois, Vincent; Sirault, Xavier R R; Vogel, John P; Watt, Michelle; Furbank, Robert T

    2014-08-01

    This work evaluates the phenotypic response of the model grass (Brachypodium distachyon (L.) P. Beauv.) to nitrogen and phosphorus nutrition using a combination of imaging techniques and destructive harvest of shoots and roots. Reference line Bd21-3 was grown in pots using 11 phosphorus and 11 nitrogen concentrations to establish a dose-response curve. Shoot biovolume and biomass, root length and biomass, and tissue phosphorus and nitrogen concentrations increased with nutrient concentration. Shoot biovolume, estimated by imaging, was highly correlated with dry weight (R(2) > 0.92) and both biovolume and growth rate responded strongly to nutrient availability. Higher nutrient supply increased nodal root length more than other root types. Photochemical efficiency was strongly reduced by low phosphorus concentrations as early as 1 week after germination, suggesting that this measurement may be suitable for high throughput screening of phosphorus response. In contrast, nitrogen concentration had little effect on photochemical efficiency. Changes in biovolume over time were used to compare growth rates of four accessions in response to nitrogen and phosphorus supply. We demonstrate that a time series image-based approach coupled with mathematical modeling provides higher resolution of genotypic response to nutrient supply than traditional destructive techniques and shows promise for high throughput screening and determination of genomic regions associated with superior nutrient use efficiency. © 2014 CSIRO Journal of Integrative Plant Biology © 2014 Institute of Botany, Chinese Academy of Sciences This article has been contributed to by US Government employees and their work is in the public domain in the USA.

  6. Phosphorus removal by acid mine drainage sludge from secondary effluents of municipal wastewater treatment plants.

    PubMed

    Wei, Xinchao; Viadero, Roger C; Bhojappa, Shilpa

    2008-07-01

    Acid mine drainage (AMD) sludge, a waste product from coal mine water treatment, was used in this study as an adsorbent to develop a cost-effective treatment approach to phosphorus removal from municipal secondary effluents. Batch tests were carried out to study the effects of pH, temperature, concentration, and contact time for phosphorus removal from wastewater. Batch tests were followed by continuous flow tests using a continuous stirred tank reactor (CSTR). Adsorption of orthophosphate onto AMD sludge particles followed the Freundlich isotherm model with an adsorption capacity ranging from 9.89 to 31.97 mg/g when the final effluent concentration increased from 0.21 to 13.61 mg P/L. P adsorption was found to be a rather rapid process and neutral or acidic pH enhanced phosphorus removal. Based on a thermodynamic assessment, P adsorption by AMD sludge was found to be endothermic; consequently, an increase in temperature could also favor phosphorus adsorption. Results from batch tests showed that leaching of metals common to AMD sludges was not likely to be a major issue of concern over the typical pH range (6-8) of secondary wastewater effluents. CSTR tests with three types of water (synthetic wastewater, river water, and municipal secondary effluent) illustrated that P adsorption by AMD sludge was relatively independent of the presence of other ionic species. In treating municipal secondary effluent, a phosphorus removal efficiency in excess of 98% was obtained. Results of this study indicated that it was very promising to utilize AMD sludge for phosphorus removal from secondary effluents and may be relevant to future efforts focused on the control of eutrophication in surface waters.

  7. [Effect and mechanism of intermittent alkaline stimulation on high phosphorus induced calcification in vascular smooth muscle cells of rats].

    PubMed

    Bai, Y L; Xu, J S; Tian, T; Zhang, J X; Cui, L W; Zhang, H R; Zhang, S L

    2017-06-24

    mRNA(1.16±0.05) and protein(0.93±0.03) expressions of LTCC β(3) were higher in high phosphorus+ pH7.7 group (all P<0.05). (2) Compared with control group, calcium ion influx were higher in high phosphorus+ pH7.4 group (124.61±6.06 vs. 75.68±7.82, P<0.05). Compared with high phosphorus+ pH7.4 group, calcium ion influx was higher in high phosphorus+ pH7.5 group(210.85±9.75, P<0.05). Compared with high phosphorus+ pH7.5 group, calcium ion influx was higher in high phosphorus+ pH7.6 group(298.44±11.42, P<0.05). Compared with high phosphorus+ pH7.6 group, calcium ion influx was higher in high phosphorus+ pH7.7 group(401.13±11.41, P<0.05). (3) Compared with control group, the mRNA and protein expressions of Runx2 and ALP were higher in high phosphorus+ pH7.4 group (0.60±0.04 vs. 0.34±0.03, 0.42±0.04 vs. 0.21±0.02, 67.2±4.3 vs. 23.2±2.3 respectively, all P<0.05). Compared with high phosphorus+ pH7.4 group, the mRNA(0.76±0.05) and protein(0.68±0.03) expressions of Runx2 and ALP(102.1±5.4) were higher in high phosphorus+ pH7.5 group (all P<0.05). Compared with high phosphorus+ pH7.5 group, the mRNA(0.90±0.05) and protein(0.90±0.05) expressions of Runx2 and ALP(139.3±4.9) were higher in high phosphorus+ pH7.6 group (all P<0.05). Compared with high phosphorus+ pH7.6 group, the mRNA(1.11±0.05) and protein(1.08±0.06) expressions of Runx2 and ALP(197.0±6.7) were higher in high phosphorus+ pH7.7 group (all P<0.05). (4) Compared with control group, the calcium content were higher in high phosphorus+ pH7.4 group ((75.4±4.3)mg/g pro vs.(25.2±2.1)mg/g pro, P<0.05). Compared with high phosphorus+ pH7.4 group, the calcium content were higher in high phosphorus+ pH7.5 group ((100.8±5.7) mg/g pro, P<0.05). Compared with high phosphorus+ pH7.5 group, the calcium content were higher in high phosphorus+ pH7.6 group ((143.5±6.1) mg/g pro, P<0.05). Compared with high phosphorus+ pH7.6 group, the calcium content were higher in high phosphorus+ pH7.7 group ((205.1±8

  8. Adaptive Evolution of Phosphorus Metabolism in Prochlorococcus

    PubMed Central

    Mardinoglu, Adil; Nielsen, Jens; Karl, David M.

    2016-01-01

    ABSTRACT Inorganic phosphorus is scarce in the eastern Mediterranean Sea, where the high-light-adapted ecotype HLI of the marine picocyanobacterium Prochlorococcus marinus thrives. Physiological and regulatory control of phosphorus acquisition and partitioning has been observed in HLI both in culture and in the field; however, the optimization of phosphorus metabolism and associated gains for its phosphorus-limited-growth (PLG) phenotype have not been studied. Here, we reconstructed a genome-scale metabolic network of the HLI axenic strain MED4 (iJC568), consisting of 568 metabolic genes in relation to 794 reactions involving 680 metabolites distributed in 6 subcellular locations. iJC568 was used to quantify metabolic fluxes under PLG conditions, and we observed a close correspondence between experimental and computed fluxes. We found that MED4 has minimized its dependence on intracellular phosphate, not only through drastic depletion of phosphorus-containing biomass components but also through network-wide reductions in phosphate-reaction participation and the loss of a key enzyme, succinate dehydrogenase. These alterations occur despite the stringency of having relatively few pathway redundancies and an extremely high proportion of essential metabolic genes (47%; defined as the percentage of lethal in silico gene knockouts). These strategies are examples of nutrient-controlled adaptive evolution and confer a dramatic growth rate advantage to MED4 in phosphorus-limited regions. IMPORTANCE Microbes are known to employ three basic strategies to compete for limiting elemental resources: (i) cell quotas may be adjusted by alterations to cell physiology or by substitution of a more plentiful resource, (ii) stressed cells may synthesize high-affinity transporters, and (iii) cells may access more costly sources from internal stores, by degradation, or by petitioning other microbes. In the case of phosphorus, a limiting resource in vast oceanic regions, the cosmopolitan

  9. Reflections on biocatalysis involving phosphorus.

    PubMed

    Blackburn, G M; Bowler, M W; Jin, Yi; Waltho, J P

    2012-10-01

    Early studies on chemical synthesis of biological molecules can be seen to progress to preparation and biological evaluation of phosphonates as analogues of biological phosphates, with emphasis on their isosteric and isopolar character. Work with such mimics progressed into structural studies with a range of nucleotide-utilising enzymes. The arrival of metal fluorides as analogues of the phosphoryl group, PO(3)(-), for transition state (TS) analysis of enzyme reactions stimulated the symbiotic deployment of (19)F NMR and protein crystallography. Characteristics of enzyme transition state analogues are reviewed for a range of reactions. From the available MF(x) species, trifluoroberyllate gives tetrahedral mimics of ground states (GS) in which phosphate is linked to carboxylate and phosphate oxyanions. Tetrafluoroaluminate is widely employed as a TS mimic, but it necessarily imposes octahedral geometry on the assembled complexes, whereas phosphoryl transfer involves trigonal bipyramidal (tbp) geometry. Trifluoromagnesate (MgF(3)(-)) provides the near-ideal solution, delivering tbp geometry and correct anionic charge. Some of the forty reported tbp structures assigned as having AlF(3)(0) cores have been redefined as trifluoromagnesate complexes. Transition state analogues for a range of kinases, mutases, and phosphatases provide a detailed description of mechanism for phosphoryl group transfer, supporting the concept of charge balance in their TS and of concerted-associative pathways for biocatalysis. Above all, superposition of GS and TS structures reveals that in associative phosphoryl transfer, the phosphorus atom migrates through a triangle of three, near-stationary, equatorial oxygens. The extension of these studies to near attack conformers further illuminates enzyme catalysis of phosphoryl transfer.

  10. [Long-Term Inhibition of FNA on Aerobic Phosphate Uptake and Variation of Phosphorus Uptake Properties of the Sludge].

    PubMed

    Ma, Juan; Li, Lu; Yu, Xiao-jun; Sun, Lei-jun; Sun, Hong-wei; Chen, Yong-zhi

    2015-10-01

    An alternating anaerobic/oxic ( An/O) sequencing batch reactor (SBR) was employed to investigate the long-term inhibitory effect of free nitrous acid (FNA) on aerobic phosphorus uptake performance and variation of phosphorus uptake properties of the sludge by adding nitrite. The reactor was started up under the condition of 21-23 degrees C. The results showed that FNA had no impact on phosphate release and uptake capacities of the sludge. However, the specific phosphate release/uptake rates was found to be higher. As FNA concentration (measure by HNO2-N) was lower than 0.53 x 10(-3) mg x L(-1), phosphorus removal efficiency of the system was higher than 96.9%. When the FNA concentration was increased to 0.99 x 10(-3) mg x L(-1), 1.46 x 10(-3) mg x L(-1) and 1.94 x 10(-3) mg x L(-1), the phosphorus removal performance deteriorated rapidly. The phosphorus removal efficiency was recovered to 64.42%, 67.33% and 44.14% after 50, 12 and 30 days, respectively, which implied the deterioration of phosphorus removal performance caused by FNA inhibition could be recovered and long-term acclimation could shorten the recovery process. Notably, increasing nitrite consumption appeared during aerobic phase with the concentration of FNA below 1.46 x 10(-3) mg x L(-1). It was also observed that the phosphorus uptake properties of the sludge varied after long-term inhibition. Nitrate and nitrite type anoxic phosphorus uptake capacity was increased by 3.35 and 3.86 times, respectively, suggesting long-term dosing FNA may facilitate the denitrifying of polyphosphate in organisms utilizing nitrite as electron acceptor. Moreover, long-term acclimation favored sludge settling.

  11. The Adequacy of Phosphorus Binder Prescriptions Among American Hemodialysis Patients

    PubMed Central

    Huml, Anne M.; Sullivan, Catherine M.; Leon, Janeen B.; Sehgal, Ashwini R.

    2013-01-01

    Because hemodialysis treatment has a limited ability to remove phosphorus, dialysis patients must restrict dietary phosphorus intake and use phosphorus binding medication. Among patients with restricted dietary phosphorus intake (1000 mg/d), phosphorus binders must bind about 250 mg of excess phosphorus per day and among patients with more typical phosphorus intake (1500 mg/d), binders must bind about 750 mg per day. To determine the phosphorus binding capacity of binder prescriptions among American hemodialysis patients, we undertook a cross-sectional study of a random sample of in-center chronic hemodialysis patients. We obtained data for one randomly selected patient from 244 facilities nationwide. About one-third of patients had hyperphosphatemia (serum phosphorus level > 5.5 mg/dL). Among the 224 patients prescribed binders, the mean phosphorus binding capacity was 256 mg/d (SD 143). 59% of prescriptions had insufficient binding capacity for restricted dietary phosphorus intake, and 100% had insufficient binding capacity for typical dietary phosphorus intake. Patients using two binders had a higher binding capacity than patients using one binder (451 vs. 236 mg/d, p <0.001). A majority of binder prescriptions have insufficient binding capacity to maintain phosphorus balance. Use of two binders results in higher binder capacity. Further work is needed to understand the impact of binder prescriptions on mineral balance and metabolism and to determine the value of substantially increasing binder prescriptions. PMID:23013171

  12. Secondary poisoning of kestrels by white phosphorus

    USGS Publications Warehouse

    Sparling, D.W.; Federoff, N.E.

    1997-01-01

    Since 1982, extensive waterfowl mortality due to white phosphorus (P4) has been observed at Eagle River Flats, a tidal marsh near Anchorage, Alaska. Ducks and swans that ingest P4 pellets become lethargic and may display severe convulsions. Intoxicated waterfowl attract raptors and gulls that feed on dead or dying birds. To determine if avian predators can be affected by secondary poisoning, we fed American kestrels (Falco sparverius) 10-day-old domestic chickens that had been dosed with white phosphorus. Eight of 15 kestrels fed intact chicks with a pellet of P4 implanted in their crops died within seven days. Three of 15 kestrels fed chicks that had their upper digestive tracts removed to eliminate any pellets of white phosphorus also died. Hematocrit and hemoglobin in kestrels decreased whereas lactate dehydrogenaseL, glucose, and alanine aminotransferase levels in plasma increased with exposure to contaminated chicks. Histological examination of liver and kidneys showed that the incidence and severity of lesions increased when kestrels were fed contaminated chicks. White phosphorus residues were measurable in 87% of the kestrels dying on study and 20% of the survivors. This study shows that raptors can become intoxicated either by ingesting portions of digestive tracts containing white phosphorus pellets or by consuming tissues of P4 contaminated prey.

  13. Fixed film phosphorus removal--flexible enough?

    PubMed

    Rogalla, F; Johnson, T L; McQuarrie, J

    2006-01-01

    While biological phosphorus removal (BPR) has been practised for 30 years, up to recently it has been restricted mainly to activated sludge processes, with the corresponding need for large basin volumes. Yet, research with biofilm reactors showed that the principle of alternate anaerobic and aerated conditions was applicable to fixed bacteria by changing the conditions in time rather than in space. Attached growth enhanced biological phosphorus removal (EBPR) systems are attractive because of their compactness and capability to retain high biomass levels. However, the phosphorus extraction depends on backwashes to enhance the phosphorus-rich attached biomass, and correct control of unsteady effluent quality created by frequently modified process conditions. Accordingly, EBPR remains a challenging task in terms of combining nitrogen and phosphorus removal using attached growth systems. Nevertheless, a combination of activated sludge and biofilm carriers, in the integrated fixed-film activated sludge system, provides treatment opportunities not readily available using suspended growth systems. Current practice is only at the beginning of exploiting the full potential of this combination, but the first full-scale results show that compact tankage and low nutrient results based on biological principles are possible.

  14. Phosphorus and nitrogen physiology of two contrasting poplar genotypes when exposed to phosphorus and/or nitrogen starvation.

    PubMed

    Gan, Honghao; Jiao, Yu; Jia, Jingbo; Wang, Xinli; Li, Hong; Shi, Wenguang; Peng, Changhui; Polle, Andrea; Luo, Zhi-Bin

    2016-01-01

    Phosphorus (P) and nitrogen (N) are the two essential macronutrients for tree growth and development. To elucidate the P and N physiology of woody plants during acclimation to P and/or N starvation, we exposed saplings of the slow-growing Populus simonii Carr (Ps) and the fast-growing Populus × euramericana Dode (Pe) to complete nutrients or starvation of P, N or both elements (NP). P. × euramericana had lower P and N concentrations and greater P and N amounts due to higher biomass production, thereby resulting in greater phosphorus use efficiency/N use efficiency (PUE/NUE) compared with Ps. Compared with the roots of Ps, the roots of Pe exhibited higher enzymatic activities in terms of acid phosphatases (APs) and malate dehydrogenase (MDH), which are involved in P mobilization, and nitrate reductase (NR), glutamate synthase (GOGAT) and glutamate dehydrogenase (GDH), which participate in N assimilation. The responsiveness of the transcriptional regulation of key genes encoding transporters for phosphate, ammonium and nitrate was stronger in Pe than in Ps. These results suggest that Pe possesses a higher capacity for P/N uptake and assimilation, which promote faster growth compared with Ps. In both poplars, P or NP starvation caused significant decreases in the P concentrations and increases in PUE. Phosphorus deprivation induced the activity levels of APs, phosphoenolpyruvate carboxylase and MDH in both genotypes. Nitrogen or NP deficiency resulted in lower N concentrations, amino acid levels, NR and GOGAT activities, and higher NUE in both poplars. Thus, in Ps and Pe, the mRNA levels of PHT1;5, PHT1;9, PHT2;1, AMT2;1 and NR increased in the roots, while PHT1;9, PHO1;H1, PHO2, AMT1;1 and NRT2;1 increased in the leaves during acclimation to P, N or NP deprivation. These results suggest that both poplars suppress P/N uptake, mobilization and assimilation during acclimation to P, N or NP starvation.

  15. Absolute transition probabilities of phosphorus.

    NASA Technical Reports Server (NTRS)

    Miller, M. H.; Roig, R. A.; Bengtson, R. D.

    1971-01-01

    Use of a gas-driven shock tube to measure the absolute strengths of 21 P I lines and 126 P II lines (from 3300 to 6900 A). Accuracy for prominent, isolated neutral and ionic lines is estimated to be 28 to 40% and 18 to 30%, respectively. The data and the corresponding theoretical predictions are examined for conformity with the sum rules.-

  16. Absolute transition probabilities of phosphorus.

    NASA Technical Reports Server (NTRS)

    Miller, M. H.; Roig, R. A.; Bengtson, R. D.

    1971-01-01

    Use of a gas-driven shock tube to measure the absolute strengths of 21 P I lines and 126 P II lines (from 3300 to 6900 A). Accuracy for prominent, isolated neutral and ionic lines is estimated to be 28 to 40% and 18 to 30%, respectively. The data and the corresponding theoretical predictions are examined for conformity with the sum rules.-

  17. Response of Sugarcane in a Red Ultisol to Phosphorus Rates, Phosphorus Sources, and Filter Cake

    PubMed Central

    Prado, Renato de Mello; Campos, Cid Naudi Silva; Rosatto Moda, Leandro; de Lima Vasconcelos, Ricardo; Pizauro Júnior, João Martins

    2015-01-01

    We evaluated the effect of phosphorus application rates from various sources and in the presence or absence of filter cake on soil phosphorus, plant phosphorus, changes in acid phosphatase activity, and sugarcane productivity grown in Eutrophic Red Ultisol. Three P sources were used (triple superphosphate, Araxa rock phosphate, and Bayovar rock phosphate) and four application rates (0, 90, 180, and 360 kg ha−1 of P2O5) in the presence or absence of filter cake (7.5 t ha−1, dry basis). The soil P, the accumulated plant P, the leaf acid phosphatase activity and straw, the stalk productivity, the concentration of soluble solids in the juice (Brix), the juice sucrose content (Pol), and the purity were the parameters evaluated. We found that P applications increased levels of soil, leaf, and juice phosphorus and led to higher phosphorus accumulation and greater stalk and straw productivity. These levels were highest in the presence of filter cake. Acid phosphatase activity decreased with increasing plant phosphorus concentration. Phosphate fertilization did not show effect on sugarcane technological quality. We concluded that P application, regardless of source, improved phosphorus nutrition and increased productivity in sugarcane and, when associated with filter cake, reduced the need for mineral fertilizer. PMID:26078993

  18. Reduction of dietary phosphorus absorption by phosphorus binders. A theoretical, in vitro, and in vivo study.

    PubMed Central

    Sheikh, M S; Maguire, J A; Emmett, M; Santa Ana, C A; Nicar, M J; Schiller, L R; Fordtran, J S

    1989-01-01

    Antacids used to decrease phosphorus absorption in patients with renal failure may be toxic. To find more efficient or less toxic binders, a three-part study was conducted. First, theoretical calculations showed that phosphorus binding occurs in the following order of avidity: Al3+ greater than H+ greater than Ca2+ greater than Mg2+. In the presence of acid (as in the stomach), aluminum can therefore bind phosphorus better than calcium or magnesium. Second, in vitro studies showed that the time required to reach equilibrium varied from 10 min to 3 wk among different compounds, depending upon solubility in acid and neutral solutions. Third, the relative order of effectiveness of binders in vivo was accurately predicted from theoretical and in vitro results; specifically, calcium acetate and aluminum carbonate gel were superior to calcium carbonate or calcium citrate in inhibiting dietary phosphorus absorption in normal subjects. We concluded that: (a) inhibition of phosphorus absorption by binders involves a complex interplay between chemical reactions and ion transport processes in the stomach and small intestine; (b) theoretical and in vitro studies can identify potentially better in vivo phosphorus binders; and (c) calcium acetate, not previously used for medical purposes, is approximately as efficient as aluminum carbonate gel and more efficient as a phosphorus binder than other currently used calcium salts. PMID:2910921

  19. Biological phosphorus removal from a phosphorus-rich dairy processing wastewater.

    PubMed

    Bickers, P O; Bhamidimarri, R; Shepherd, J; Russell, J

    2003-01-01

    Dairy industry processing wastewaters consist mainly of dilutions of milk, milk products and cleaning solutions and, depending on the processes used, may be rich in phosphorus. In New Zealand and internationally, chemical removal of phosphorus is typically the phosphorus removal method of choice from dairy processing wastewaters. The enhanced biological phosphorus removal (EBPR) process was investigated in this study as an alternative phosphorus removal option using a continuous activated sludge system. A synthetic dairy processing wastewater was firstly subjected to fermentation in an anaerobic reactor (HRT = 12 hrs, pH = 6.5, temperature = 35 degrees C) resulting in a fermented wastewater with an average volatile fatty acid (VFA) concentration of 1055 mg COD/L. The activated sludge reactor was operated in an AO configuration with an HRT of 2.5 days and an SRT of 15 days. Stable EBPR was exhibited with 42 mg P/L removed, resulting in a final sludge phosphorus content of 4.9% mg P/mg TSS. In the anaerobic zone (HRT = 2.85 hrs) the sludge had a phosphorus content of 3.16% mg P/mg TSS and a poly-beta-hydroxyalkanoate (PHA) concentration of 86 mg COD/g TS.

  20. NOVEL MECHANISMS IN THE REGULATION OF PHOSPHORUS HOMEOSTASIS

    PubMed Central

    Berndt, Theresa; Kumar, Rajiv

    2014-01-01

    Phosphorus plays a critical role in diverse biological processes, and therefore, the regulation of phosphorus balance and homeostasis are critical to the well-being of the organism. Changes in environmental, dietary and serum concentrations of inorganic phosphorus are detected by sensors that elicit changes in cellular function and alter the efficiency by which phosphorus is conserved. Short-term, post-cibal responses which occur independently of hormones previously thought to be important in phosphorus homeostasis may play a larger role than previously appreciated in the regulation of phosphorus homeostasis. Several hormones and regulatory factors such as the vitamin D endocrine system, parathyroid hormone, and the phosphatonins (FGF-23, sFRP-4, MEPE) among others, may play a role only in the long-term regulation of phosphorus homeostasis. In this review we will discuss how organisms sense changes in phosphate concentrations and how changes in hormonal factors result in the conservation or excretion of phosphorus. PMID:19196648

  1. Bioretention column studies of phosphorus removal from urban stormwater runoff.

    PubMed

    Hsieh, Chi-hsu; Davis, Allen P; Needelman, Brian A

    2007-02-01

    This study investigated the effectiveness of bioretention as a stormwater management practice using repetitive bioretention columns for phosphorus removal. Bioretention media, with a higher short-term phosphorus sorption capacity, retained more phosphorus from infiltrating runoff after 3 mg/L phosphorus loading. A surface mulch layer prevented clogging after repetitive total suspended solids input. Evidence suggests that long-term phosphorus reactions will regenerate active short-term phosphorus adsorption sites. A high hydraulic conductivity media overlaying one with low hydraulic conductivity resulted in a higher runoff infiltration rate, from 0.51 to 0.16 cm/min at a fixed 15-cm head, and was more efficient in phosphorus removal (85% mass removal) than a profile with low conductivity media over high (63% mass removal). Media extractions suggest that most of the retained phosphorus in the media layers is available for vegetative uptake and that environmental risk thresholds were not exceeded.

  2. A leaf phosphorus assay for seedlings of Acacia mangium.

    PubMed

    Sun, J S; Simpson, R J; Sands, R

    1992-10-01

    Concentrations of extractable and total phosphorus in leaves, stem, root and nodules of 12-week-old seedlings of two provenances of Acacia mangium Willd. were analyzed to identify the fraction of phosphorus and the plant part most suitable for predicting the phosphorus nutritional status of the seedlings.For both provenances, concentrations of extractable phosphorus were more sensitive to changes in soil phosphorus status and varied less among different plant parts than concentrations of total phosphorus. Concentrations of extractable phosphorus in the youngest fully expanded leaf (Leaf 3 from the apex) and the next two older leaves correlated closely with seedling dry mass and may be used to assess the phosphorus nutritional status of Acacia mangium seedlings.

  3. Flammability of Epoxy Resins Containing Phosphorus

    NASA Technical Reports Server (NTRS)

    Hergenrother, P. M.; Thompson, C. M.; Smith, J. G.; Connell, J. W.; Hinkley, J. A.

    2005-01-01

    As part of a program to develop fire-resistant exterior composite structures for future subsonic commercial and general aviation aircraft, flame-retardant epoxy resins are under investigation. Epoxies and their curing agents (aromatic diamines) containing phosphorus were synthesized and used to prepare epoxy formulations. Phosphorus was incorporated within the backbone of the epoxy resin and not used as an additive. The resulting cured neat epoxy formulations were characterized by thermogravimetric analysis, propane torch test, elemental analysis, microscale combustion calorimetry, and fire calorimetry. Several formulations showed excellent flame retardation with phosphorous contents as low as 1.5% by weight. The fracture toughness and compressive strength of several cured formulations showed no detrimental effect due to phosphorus content. The chemistry and properties of these new epoxy formulations are discussed.

  4. Availability of phosphorus in bone meal.

    PubMed

    Baker, A M; Trimm, J R; Sikora, F J

    1989-01-01

    Two commercially available bone meal products (grades 0-12-0 and 6-12-0) were examined. Samples were prepared according to AOAC method 2.007, and total and available phosphorus contents were determined. Portions of these preparations were reground to pass through successively smaller sieves, and subsequent analyses indicated the availability of phosphorus to be directly proportional to fineness of grind. A quantity of the citrate-insoluble fraction of the bone meal was obtained by following AOAC extraction procedures. Agronomic studies were conducted that compared this insoluble fraction with the original bone meal material and with reagent grade Ca(H2PO4)2.H2O. The data indicated poor correlation between the analytically defined and agronomically determined availability of phosphorus.

  5. Hypophosphataemia and phosphorus requirements during intravenous nutrition.

    PubMed Central

    Tovey, S. J.; Benton, K. G.; Lee, H. A.

    1977-01-01

    Seven patients with acute illnesses developed hypophosphataemia whilst receiving intravenous nutrition which included a fat emulsion, Intralipid, a possible source of phosphorus. The authors' observations cast doubt on the bio-availability of the phosphorus contained in the phospholipid content of the fat emulsion. The currently recommended allowance of phosphorus for this type of patient appears to be too low and it is suggested that 0-5-0-75 mmol/kg body weight be provided, preferably as a neutral phosphate solution. Sine hypophosphataemia can occur at various time intervals after starting intravenous nutrition and precede clinical sequelae it is recommended that routine serum phosphate measurements are made in all patients receiving this treatment. PMID:407558

  6. Electric field effect in ultrathin black phosphorus

    SciTech Connect

    Koenig, Steven P.; Schmidt, Hennrik; Doganov, Rostislav A.; Castro Neto, A. H.; Özyilmaz, Barbaros

    2014-03-10

    Black phosphorus exhibits a layered structure similar to graphene, allowing mechanical exfoliation of ultrathin single crystals. Here, we demonstrate few-layer black phosphorus field effect devices on Si/SiO{sub 2} and measure charge carrier mobility in a four-probe configuration as well as drain current modulation in a two-point configuration. We find room-temperature mobilities of up to 300 cm{sup 2}/Vs and drain current modulation of over 10{sup 3}. At low temperatures, the on-off ratio exceeds 10{sup 5}, and the device exhibits both electron and hole conduction. Using atomic force microscopy, we observe significant surface roughening of thin black phosphorus crystals over the course of 1 h after exfoliation.

  7. Observations of interstellar chlorine and phosphorus

    NASA Technical Reports Server (NTRS)

    Jura, M.; York, D. G.

    1978-01-01

    Copernicus observations of interstellar Cl I, Cl II, and P II UV lines toward 10 stars are reported. Column densities are estimated for each species, and upper limits are computed for HCl column densities. Derivation of the gas-phase abundances of chlorine and phosphorus indicates that the averages of both the chlorine and the phosphorus logarithmic abundances relative to hydrogen are between 5.0 and 5.1. It is suggested that interstellar chlorine may be depleted by about a factor of 3 relative to the solar abundance and that interstellar phosphorus is depleted by a factor of 2 to 3. The results are shown to support the prediction that chlorine is ionized in regions containing primarily atomic oxygen and is neutral in regions where there is a significant amount of molecular hydrogen. The photoionization rate of neutral chlorine toward 15 Mon is estimated, and it is concluded that most chlorine is contained within the gas phase.

  8. Phosphorus removal in emergent free surface wetlands.

    PubMed

    Kadlec, Robert H

    2005-01-01

    Constructed and natural wetlands are capable of absorbing new phosphorus loadings, and, in appropriate circumstances, can provide a low-cost alternative to chemical and biological treatment. Phosphorus interacts strongly with wetland soils and biota, which provide both short-term and sustainable long-term storage of this nutrient. Soil sorption may provide initial removal, but this partly reversible storage eventually becomes saturated. Uptake by biota, including bacteria, algae, and duckweed, as well as macrophytes, forms an initial removal mechanism. Cycling through growth, death, and decomposition returns most of the biotic uptake, but an important residual contributes to long-term accretion in newly formed sediments and soils. Despite the apparent complexity of these several removal mechanisms, data analysis shows that relatively simple equations can describe the sustainable processes. Previous global first order removal rates characterize the sustainable removal, but do not incorporate any biotic features. This article reviews the relevant processes and summarizes quantitative data on wetland phosphorus removal.

  9. Observations of interstellar chlorine and phosphorus

    NASA Technical Reports Server (NTRS)

    Jura, M.; York, D. G.

    1978-01-01

    Copernicus observations of interstellar Cl I, Cl II, and P II UV lines toward 10 stars are reported. Column densities are estimated for each species, and upper limits are computed for HCl column densities. Derivation of the gas-phase abundances of chlorine and phosphorus indicates that the averages of both the chlorine and the phosphorus logarithmic abundances relative to hydrogen are between 5.0 and 5.1. It is suggested that interstellar chlorine may be depleted by about a factor of 3 relative to the solar abundance and that interstellar phosphorus is depleted by a factor of 2 to 3. The results are shown to support the prediction that chlorine is ionized in regions containing primarily atomic oxygen and is neutral in regions where there is a significant amount of molecular hydrogen. The photoionization rate of neutral chlorine toward 15 Mon is estimated, and it is concluded that most chlorine is contained within the gas phase.

  10. Enhanced biological phosphorus removal and recovery.

    PubMed

    Machnicka, Alicja; Grubel, Klaudiusz; Suschka, Jan

    2008-07-01

    Activated sludge systems designed for enhanced nutrient removal are based on the principle of altering anaerobic and aerobic conditions for growth of microorganisms with a high capacity of phosphorus accumulation. Most often, filamentous bacteria constitute a component of the activated sludge microflora. The filamentous microorganisms are responsible for foam formation and activated sludge bulking. The results obtained confirm unanimously that the filamentous bacteria have the ability of phosphorus uptake and accumulation as polyphosphates. Hydrodynamic disintegration of the foam microorganisms results in the transfer of phosphorus and metal cations and ammonium-nitrogen into the liquid phase. It was demonstrated that the disintegration of foam permits the removal of a portion of the nutrients in the form of struvite.

  11. Electric field effect in ultrathin black phosphorus

    NASA Astrophysics Data System (ADS)

    Koenig, Steven P.; Doganov, Rostislav A.; Schmidt, Hennrik; Castro Neto, A. H.; Özyilmaz, Barbaros

    2014-03-01

    Black phosphorus exhibits a layered structure similar to graphene, allowing mechanical exfoliation of ultrathin single crystals. Here, we demonstrate few-layer black phosphorus field effect devices on Si/SiO2 and measure charge carrier mobility in a four-probe configuration as well as drain current modulation in a two-point configuration. We find room-temperature mobilities of up to 300 cm2/Vs and drain current modulation of over 103. At low temperatures, the on-off ratio exceeds 105, and the device exhibits both electron and hole conduction. Using atomic force microscopy, we observe significant surface roughening of thin black phosphorus crystals over the course of 1 h after exfoliation.

  12. [Bone and Nutrition. A novel function of phosphorus].

    PubMed

    Taketani, Yutaka; Imi, Yukiko; Abuduli, Maerjianghan

    2015-07-01

    Phosphorus is an essential nutrient for bone formation by forming hydroxyapatite with calcium. Simultaneously, phosphorus is also a component of high energy bond of ATP, nucleic acids, and phospholipids. Recent studies have demonstrated that excess or lack of dietary phosphorus intake may cause vascular dysfunction, cardiac hypertrophy, and impaired glucose tolerance. Here, we introduce recent findings about the effects of high or low dietary phosphorus intake on several organs except for bone.

  13. Flare, Igniter and Pyrotechnic Disposal: Red Phosphorus Smokes

    DTIC Science & Technology

    1975-05-19

    phosphorus is: Ingredients Weight Percent Red Phosphorus ------- 53 Pyrolusite (MnO2) 34 Magnesium---------- 7 Zinc Oxide----------- 3 Linseed Oil ...composition, consisting of red phosphorus, magnesium, manganese dioxide, zinc oxide and linseed oil , were digested with 35% pitric acid for one hour at 105...complete combustion of red phosphorus. A low-sulfur distillate fuel, such a: No. 2 fuel oil , would be satisfactory for incinerator operation. 2. A heat

  14. New phosphorus-containing bisimide resins

    NASA Technical Reports Server (NTRS)

    Varma, I. K.; Fohlen, G. M.; Hsu, M.-T.; Parker, J. A.

    1984-01-01

    Phosphorus-based flame retardants have been effectively used in a wide variety of polymeric materials. Such additives, however, may either influence the decomposition reaction in polymers or lack durability due to a tendency to be leached out by solvents. Attention is given to the synthesis, characterization, thermal stability and degradation mechanisms of bisimide resins, and an evaluation is conducted of the flammability and mechanical properties of graphite cloth-reinforced laminates fabricated from one of the six phosphorus-containing bisimide resins considered.

  15. New phosphorus-containing bisimide resins

    NASA Technical Reports Server (NTRS)

    Varma, I. K.; Fohlen, G. M.; Hsu, M.-T.; Parker, J. A.

    1984-01-01

    Phosphorus-based flame retardants have been effectively used in a wide variety of polymeric materials. Such additives, however, may either influence the decomposition reaction in polymers or lack durability due to a tendency to be leached out by solvents. Attention is given to the synthesis, characterization, thermal stability and degradation mechanisms of bisimide resins, and an evaluation is conducted of the flammability and mechanical properties of graphite cloth-reinforced laminates fabricated from one of the six phosphorus-containing bisimide resins considered.

  16. Enhancing biological phosphorus removal with glycerol.

    PubMed

    Yuan, Q; Sparling, R; Lagasse, P; Lee, Y M; Taniguchi, D; Oleszkiewicz, J A

    2010-01-01

    An enhanced biological phosphorus removal process (EBPR) was successfully operated in presence of acetate. When glycerol was substituted for acetate in the feed the EBPR process failed. Subsequently waste activated sludge (WAS) from the reactor was removed to an off-line fermenter. The same amount of glycerol was added to the WAS fermenter which led to significant volatile fatty acids (VFA) production. By supplying the system with the VFA-enriched supernatant of the fermentate, biological phosphorus removal was enhanced. It was concluded that, if glycerol was to be used as an external carbon source in EBPR, the effective approach was to ferment glycerol with waste activated sludge.

  17. Phosphorus and nitrogen recycle following algal bio-crude production via continuous hydrothermal liquefaction

    DOE PAGES

    Edmundson, S.; Huesemann, M.; Kruk, R.; ...

    2017-07-25

    Phosphorus and nitrogen are essential components of microalgal growth media. Critical to a wide range of biochemical processes, they commonly limit primary productivity. Recycling elemental phosphorus and fixed nitrogen after fuel conversion via hydrothermal liquefaction (HTL) of algae biomass reduces the need for mined phosphorus and synthetic nitrogen resources. We used scenedesmus obliquus DOE 0152.Z and Chlorella sorokiniana DOE1412 as test organisms in assessing nutrient recycle of phosphorus from filtered solids collected downstream of the HTL reactor and nitrogen collected from the aqueous phase after gravimetric biocrude separation. Maximum specific growth rates were measured in growth media using HTL wastemore » as the sole source of either phosphorus or nitrogen and were compared to an algal growth medium control (BG-11). The maximum specific growth rate of both organisms in the recycled phosphorus medium were nearly identical to rates observed in the control medium. Both organisms showed significantly reduced growth rates in the recycled nitrogen medium. C. sorokiniana DOE1412 adapted after several days of exposure whereas S. obliquus DOE0152.Z exhibited poor adaptability to the recycled nitrogen medium. After adaptation, growth rates observed with C. sorokiniana DOE1412 in the recycled nitrogen medium were 3.02 (± 0.13) day-1, 89% of the control medium (3.40 ± 0.21). We further tested maximum specific growth rates of C. sorokiniana DOE1412 in a medium derived entirely from HTL byproducts, completely replacing all components including nitrogen and phosphorus. In this medium we observed rates of 2.70 ± 0.05 day-1, 79% of the control. By adding trace metals to this recycled medium we improved growth rates significantly to 3.10 ± 0.10, 91% of the control, which indicates a critical element is lost in the conversion process. Recycling elemental resources such as phosphorus and nitrogen from the HTL biofuel conversion process can provide a significant

  18. Soil phosphorus dynamics under sprinkler and furrow irrigation

    USDA-ARS?s Scientific Manuscript database

    Furrow irrigation detaches and transports soil particles and subsequently nutrients such as phosphorus. To reduce the risk of erosion and offsite phosphorus movement, producers can convert from furrow to sprinkler irrigation. We completed research on soil phosphorus dynamics in furrow versus sprin...

  19. 49 CFR 173.188 - White or yellow phosphorus.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 49 Transportation 2 2011-10-01 2011-10-01 false White or yellow phosphorus. 173.188 Section 173... Class 7 § 173.188 White or yellow phosphorus. Phosphorus, white or yellow, when offered for... hermetically sealed (soldered) metal cans, or (ii) Inner water-tight metal cans containing not over 0.5 kg...

  20. 49 CFR 173.188 - White or yellow phosphorus.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 49 Transportation 2 2010-10-01 2010-10-01 false White or yellow phosphorus. 173.188 Section 173... Class 7 § 173.188 White or yellow phosphorus. Phosphorus, white or yellow, when offered for... hermetically sealed (soldered) metal cans, or (ii) Inner water-tight metal cans containing not over 0.5 kg...

  1. 76 FR 38592 - Phosphorus Water Quality Standards for Florida Everglades

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-07-01

    ... AGENCY 40 CFR Part 131 Phosphorus Water Quality Standards for Florida Everglades AGENCY: Environmental... provisions of Florida's Water Quality Standards for Phosphorus in the Everglades Protection Area (Phosphorus... are not applicable water quality standards for purposes of the Clean Water Act. EPA is proposing...

  2. 46 CFR 151.50-50 - Elemental phosphorus in water.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 5 2011-10-01 2011-10-01 false Elemental phosphorus in water. 151.50-50 Section 151.50... phosphorus in water. (a) Tanks shall be designed and tested for a head equivalent to the design lading of phosphorus and its water blanket extended to 8 feet above the tank top. In addition, tank design...

  3. 77 FR 46298 - Phosphorus Water Quality Standards for Florida Everglades

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-08-03

    ... AGENCY 40 CFR Part 131 RIN 2040-AF38 Phosphorus Water Quality Standards for Florida Everglades AGENCY... provisions of Florida's Water Quality Standards for Phosphorus in the Everglades Protection Area (Phosphorus... are not applicable water quality standards for purposes of the Clean Water Act. EPA is...

  4. 40 CFR 721.2752 - Epoxy resin containing phosphorus (generic).

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 31 2014-07-01 2014-07-01 false Epoxy resin containing phosphorus... Specific Chemical Substances § 721.2752 Epoxy resin containing phosphorus (generic). (a) Chemical substance... epoxy resin containing phosphorus (PMN P-00-912) is subject to reporting under this section for the...

  5. 40 CFR 721.2752 - Epoxy resin containing phosphorus (generic).

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 30 2010-07-01 2010-07-01 false Epoxy resin containing phosphorus... Specific Chemical Substances § 721.2752 Epoxy resin containing phosphorus (generic). (a) Chemical substance... epoxy resin containing phosphorus (PMN P-00-912) is subject to reporting under this section for the...

  6. 40 CFR 721.2752 - Epoxy resin containing phosphorus (generic).

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 32 2013-07-01 2013-07-01 false Epoxy resin containing phosphorus... Specific Chemical Substances § 721.2752 Epoxy resin containing phosphorus (generic). (a) Chemical substance... epoxy resin containing phosphorus (PMN P-00-912) is subject to reporting under this section for the...

  7. 40 CFR 721.2752 - Epoxy resin containing phosphorus (generic).

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 31 2011-07-01 2011-07-01 false Epoxy resin containing phosphorus... Specific Chemical Substances § 721.2752 Epoxy resin containing phosphorus (generic). (a) Chemical substance... epoxy resin containing phosphorus (PMN P-00-912) is subject to reporting under this section for the...

  8. 40 CFR 721.2752 - Epoxy resin containing phosphorus (generic).

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 32 2012-07-01 2012-07-01 false Epoxy resin containing phosphorus... Specific Chemical Substances § 721.2752 Epoxy resin containing phosphorus (generic). (a) Chemical substance... epoxy resin containing phosphorus (PMN P-00-912) is subject to reporting under this section for the...

  9. Changes in labile phosphorus forms during maturation of vermicompost enriched with phosphorus-solubilizing and diazotrophic bacteria.

    PubMed

    Busato, Jader G; Lima, Lívia S; Aguiar, Natália O; Canellas, Luciano P; Olivares, Fábio L

    2012-04-01

    The aim of this study was to assess the effect of N(2)-fixing and P-solubilizing bacteria during maturation of vermicompost on phosphorus availability. A bacterial suspension containing Burkholderia silvatlantica, Burkholderia spp. and Herbaspirillum seropedicae was applied at the initial stage of vermicomposting. At the end of the incubation time (120days), the nitrogen content had increased by18% compared to uninoculated vermicompost. Water-soluble P was 106% higher in inoculated vermicompost while resin-extractable P increased during the initial vermicomposting stage and was 21% higher at 60days, but was the same in inoculated and uninoculated mature compost. The activity of acid phosphatase was 43% higher in inoculated than uninoculated vermicompost. These data suggest that the introduction of the mixed culture had beneficial effects on vermicompost maturation.

  10. Effects of gender and body weight on fibroblast growth factor 23 responsiveness to estimated dietary phosphorus.

    PubMed

    Ohta, Hiroyuki; Sakuma, Masae; Suzuki, Akitsu; Morimoto, Yuuka; Ishikawa, Makoto; Umeda, Minako; Arai, Hidekazu

    2016-01-01

    Fibroblast growth factor 23 (FGF23) is a molecule involved in regulating phosphorus homeostasis. Although some studies indicated an association between serum FGF23 levels and sex, the association has not been fully investigated. The purpose of this study was to evaluate whether sex could influence FGF23 responsiveness to dietary phosphorus intake in healthy individuals. Thirty two healthy subjects between 21 and 28 years were recruited for this study. Subjects performed 24-hour urine collection and blood samples were collected. We estimated phosphorus intake (UC-P) from the urine collection (UC), and evaluated any association between UC-P and serum FGF23 levels. Subsequently, we compared serum FGF23 levels between males and females. Positive correlation was observed between UC-P and serum FGF23 levels. Serum FGF23 levels were significantly higher in males than in females. Serum FGF23 levels/UC-P was significantly higher in females than in males. There was no significant difference in serum FGF23 levels/UC-P/BW between the male and female groups. Our results indicate that there was no gender difference between FGF23 responsiveness to phosphorus intake per body weight.

  11. Enhancing combined biological nitrogen and phosphorus removal from wastewater by applying mechanically disintegrated excess sludge.

    PubMed

    Zubrowska-Sudol, Monika; Walczak, Justyna

    2015-06-01

    The goal of the study was to evaluate the possibility of applying disintegrated excess sludge as a source of organic carbon to enhance biological nitrogen and phosphorus removal. The experiment, performed in a sequencing batch reactor, consisted of two two-month series, without and with applying mechanically disintegrated excess sludge, respectively. The effects on carbon, nitrogen and phosphorus removal were observed. It was shown that the method allows enhancement of combined nitrogen and phosphorus removal. After using disintegrated sludge, denitrification effectiveness increased from 49.2 ± 6.8% to 76.2 ± 2.3%, which resulted in a decline in the NOx-N concentration in the effluent from the SBR by an average of 21.4 mg NOx-N/L. Effectiveness of biological phosphorus removal increased from 28.1 ± 11.3% to 96.2 ± 2.5%, thus resulting in a drop in the [Formula: see text] concentration in the effluent by, on average, 6.05 mg PO4(3-)-P/L. The application of disintegrated sludge did not deteriorate effluent quality in terms of COD and NH4(+)-N. The concentration of NH4(+)-N in both series averaged 0.16 ± 0.11 mg NH4(+)-N/L, and the concentration of COD was 15.36 ± 3.54 mg O2/L. Copyright © 2015 Elsevier Ltd. All rights reserved.

  12. Enhanced adsorption and regeneration with lignocellulose-based phosphorus removal media using molecular coating nanotechnology.

    PubMed

    Kim, Juyoung; Mann, Justin D; Kwon, Soonjo

    2006-01-01

    The removal of phosphorus in point and non-point-source pollution has become one of the leading problems in water quality since the beginning of the 21st century. Several natural, domestic, and industrial treatment systems already exist, but with very limited efficiencies and serious procedural defects. Lignocellulose-based Anion Removal Media (LAM) was developed in association with iron nanocoating technology as means of phosphorus adsorption from various concentrations of contaminated water. Results revealed that trivalent iron coated lignocellulose pellets can be used to effectively remove phosphorus contaminants from point and non-point-source polluted water. Removal capacities of pelletized cotton media surpass existing materials for phosphorus removal by at least 22 times, while remaining both efficient and cost effective. The materials were also investigated for regeneration, yielding high removal capacities even after the fifth regeneration. Treatment methodology and outlines are proposed, and procedural mechanisms are explored in this study. An economic evaluation of this technology is also assessed for a practical application of LAM to point/non-point-source polluted water.

  13. [Effect of light and temperature on growth kinetics of Anabaena flosaquae under phosphorus limitation].

    PubMed

    Yin, Zhi-Kun; Li, Zhe; Wang, Sheng; Guo, Jin-Song; Xiao, Yan; Liu, Jing; Zhang, Ping

    2015-03-01

    Phosphorus, light and temperature are the key environmental factors leading to algae growth. But the effects of interaction between light and temperature on the growth of Anabaena flosaquae under phosphorus limitation were not well documented in literature. Anabaena flosaquae was selected for the study and lab-scale experiment and simulation were carried out. The results showed that the optimal temperature of Anabaena flosaquae was 20 degrees C under phosphorus limitation when the light intensity was constant, and the optimal light intensity (illuminance) of Anabaena flosaquae was 3 000 lx under phosphorus limitation when the temperature was constant. Based on model fitting and parameter calibration, the optimal temperature and light intensity of Anabaena flosaquae were 21.03 degress C ± 1.55 degrees C and 2 675.12 lx ± 262.93 lx, respectively. These data were close to the actual water environmental condition at the end of spring. Results of this study will provide important foundation for prediction of Anabaena blooms.

  14. [Seasonal dynamics of nitrogen- and phosphorus absorption efficiency of wetland plants in Minjiang River estuary].

    PubMed

    Zhang, Wen-Long; Zeng, Cong-Sheng; Zhang, Lin-Hai; Wang, Wei-Qi; Lin, Yan; Ai, Jin-Quan

    2009-06-01

    Taking the native Phragmites australis and invasive Spartina alterniflora in Minjiang River estuary as test objectives, this paper studied the seasonal dynamics of their biomass and nitrogen- and phosphorus absorption efficiency. A typical single-peak curve was presented for the seasonal dynamics of aboveground biomass and nitrogen- and phosphorus absorption efficiency of the two species. P. australis had the maximum aboveground biomass (2195.33 g X m(-2)) in summer, while S. alterniflora had it (3670.02 g X m(-2)) in autumn. The total nitrogen (TN) and total phosphorus (TP) contents of P. australis reached the peak (21.06 g x m(-2) of TN and 1.12 g x m(-2) of TP) in summer and in autumn, respectively, while those of S. alterniflora all reached the peak (26.76 g x m(-2) of TN and 3.23 g x m(-2) of TP) in autumn. Both of the two species had a higher absorption efficiency in TN than in TP (P < 0.01), and S. alterniflora had a significantly higher absorption efficiency of TN and TP than P. australis (P < 0.05). To some extent, the N/P, C/N, and C/P ratios of plants could indicate the nitrogen- and phosphorus absorption efficiency of the plants.

  15. Simultaneous Recovery of Iron and Phosphorus from a High-Phosphorus Oolitic Iron Ore to Prepare Fe-P Alloy for High-Phosphorus Steel Production

    NASA Astrophysics Data System (ADS)

    Yang, Congcong; Zhu, Deqing; Pan, Jian; Lu, Liming

    2017-09-01

    Unlike previous dephosphorization studies, the present work complies with a concept to recover phosphorus within the utilization of high-phosphorus oolitic iron ores to prepare Fe -P alloy for high-phosphorus steel production. Simultaneous enrichment of iron and phosphorus can be achieved by directly alloying the high-phosphorus oolitic iron ore at high reduction temperatures (≥1623 K). Neither fluxes nor other special additives need to be used. Consequently, the phosphorus element migrates from original apatite to the slag phase with the elevating temperature from 1323 K to 1473 K, and it further moves into metallic iron and forms Fe3P at 1623 K. A metalized iron -phosphorus alloy with assaying of 96.51% iron and 2.03% phosphorus content was obtained at 1623 K for 10 min at corresponding iron and phosphorus recovery rates of 97.50% and 64.51%, respectively. This process exhibits high economic efficiency and is practicable as a stepping-stone for the efficient and direct utilization of high-phosphorus iron ore resources.

  16. Phosphorus vacancy cluster model for phosphorus diffusion gettering of metals in Si

    SciTech Connect

    Chen, Renyu; Trzynadlowski, Bart; Dunham, Scott T.

    2014-02-07

    In this work, we develop models for the gettering of metals in silicon by high phosphorus concentration. We first performed ab initio calculations to determine favorable configurations of complexes involving phosphorus and transition metals (Fe, Cu, Cr, Ni, Ti, Mo, and W). Our ab initio calculations found that the P{sub 4}V cluster, a vacancy surrounded by 4 nearest-neighbor phosphorus atoms, which is the most favorable inactive P species in heavily doped Si, strongly binds metals such as Cu, Cr, Ni, and Fe. Based on the calculated binding energies, we build continuum models to describe the P deactivation and Fe gettering processes with model parameters calibrated against experimental data. In contrast to previous models assuming metal-P{sub 1}V or metal-P{sub 2}V as the gettered species, the binding of metals to P{sub 4}V satisfactorily explains the experimentally observed strong gettering behavior at high phosphorus concentrations.

  17. Residue formations of phosphorus hydride polymers and phosphorus oxyacids during phosphine gas fumigations of stored products.

    PubMed

    Flora, Jason W; Byers, Loran E; Plunkett, Susan E; Faustini, Daryl L

    2006-01-11

    With the extent of international usage and the critical role phosphine gas (PH3) plays in commercial pest control, identification of the residual components deposited during fumigation is mandatory. It has been postulated that these infrequent residues are primarily composed of phosphoric acid or reduced forms of phosphoric acid [hypophosphorous acid (H3PO2) and phosphorous acid (H3PO3)], due to the oxidative degradation of phosphine. Using environmental scanning electron microscopy, gas phase Fourier transform infrared spectroscopy, and X-ray fluorescence spectroscopy, the structural elucidation and formation mechanism of the yellow amorphous polyhydric phosphorus polymers (P(x)H(y)) that occur in addition to the lower oxyacids of phosphorus in residues deposited during PH3 fumigations of select tobacco commodities are explored. This research determined that nitric oxide gas (or nitrogen dioxide) initiates residue formation of phosphorus hydride polymers and phosphorus oxyacids during PH3 fumigations of stored products.

  18. Greater effect of dietary potassium tripolyphosphate than of potassium dihydrogenphosphate on the nephrocalcinosis and proximal tubular function in female rats from the intake of a high-phosphorus diet.

    PubMed

    Matsuzaki, H; Masuyama, R; Uehara, M; Nakamura, K; Suzuki, K

    2001-04-01

    We examined whether a difference in potassium dihydrogenphosphate (KH2PO4) and potassium tripolyphosphate (K5P3O10) as dietary phosphorus sources could differentially effect the nephrocalcinosis and proximal tubular function in female rats. Rats were fed on a diet containing KH2PO4 or K5P3O10, at the normal phosphorus level (normal phosphorus diet) or at a high phosphorus level (high-phosphorus diet) for 21 d. Nephrocalcinosis, as confirmed by a histological examination, was apparent in all rats fed on the high-phosphorus diet, and this condition was more severe in those rats fed on K5P3O10 than in those fed on KH2PO4. As indicators of the proximal tubular function, the N-acetyl-beta-D-glucosaminidase activity in urine and the urinary beta2-microglobulin excretion were significantly increased in those rats fed on the high-phosphorus diet containing K5P3O10. These results indicate that the intake of a high-phosphorus diet, more strongly influenced the nephrocalcinosis and proximal tubular function when K5P3O10 rather than KH2PO4 was used as the dietary phosphorus source.

  19. Fire-Resistant Polyamides Containing Phosphorus

    NASA Technical Reports Server (NTRS)

    Kourtides, Demetrius A.; Mikroyannidis, John A.

    1988-01-01

    Flammability and weight loss reduced. Fire-resistant polymers obtained from 1-{(dialkoxyphosphonyl) methyl}-2, 4- and -2, 6-diaminobenzenes by reaction with acyl or diacyl halides of higher functionality. Incorporation of compounds containing phosphorus into certain polymers shown previously to increase fire retardance. Discovery adds new class of polyamides to group of such polymers.

  20. Modeling Phosphorus in the Environment Review

    USDA-ARS?s Scientific Manuscript database

    Phosphorus (P) is a key component of fertilizer inputs in plant agriculture and a critical ingredient of diets in animal nutrition. Elevated levels of environmental P and nitrogen have often resulted in algal blooms and accelerated eutrophication of lakes and streams, and degrade fragile ecosystems...

  1. Phosphorus recovery and reuse from waste streams

    USDA-ARS?s Scientific Manuscript database

    Phosphorus (P) is a macronutrient essential for all living organisms. Regrettably, it is a finite resource since phosphate rock (PR) is the main material used for production of P fertilizers. Globally, the demand for quality PR is escalating due to many factors including increasing human population....

  2. EFFECT OF PHOSPHORUS TREATMENT ON LEAD MINERALOGY

    EPA Science Inventory

    Remediation of Pb-contaminated soils by amendments of phosphate may prove to be a viable way of sequestering Pb in the natural environment. Test plots of Pb-contaminated soil near Joplin, MO were treated with a variety of phosphorus-based amendments to observe the influence of co...

  3. Lake Erie phosphorus loading and Cladophora updates

    EPA Science Inventory

    The presentation will focus on updates or progress being made on each Phosphorus Loadings and Cladophora for Lake Erie. The format will give a brief summary of data, findings, and results that were used by the Great Lakes Water Quality Agreement (GLWQA) Annex 4 Nutrients Modeli...

  4. Phosphatase hydrolysis of organic phosphorus compounds

    USDA-ARS?s Scientific Manuscript database

    Phosphatases are diverse groups of enzymes that deserve special attention because of the significant roles they play in mineralizing organic phosphorus (P) into inorganic available form. For getting more insight on the enzymatically hydrolysis of organic P, in this work, we compared the catalytic pa...

  5. EFFECT OF PHOSPHORUS TREATMENT ON LEAD MINERALOGY

    EPA Science Inventory

    Remediation of Pb-contaminated soils by amendments of phosphate may prove to be a viable way of sequestering Pb in the natural environment. Test plots of Pb-contaminated soil near Joplin, MO were treated with a variety of phosphorus-based amendments to observe the influence of co...

  6. The management of phosphorus in poultry litter

    USDA-ARS?s Scientific Manuscript database

    The potential for phosphorus (P) surplus at the farm scale can increase when farming systems change from cropping to intensive poultry and animal production, as P inputs become dominated by animal feed rather than fertilizer. Cost-effective and innovative solutions are needed to expand the range of ...

  7. Prospects for phosphorus recovery from poultry litter

    USDA-ARS?s Scientific Manuscript database

    Land disposal of poultry litter is an environmental concern in regions with intense poultry production because there is not enough land for crop utilization of its nutrients, especially phosphorus (P). This situation promotes soil P surplus and potential pollution of water resources. Although poultr...

  8. Fire-Resistant Polyamides Containing Phosphorus

    NASA Technical Reports Server (NTRS)

    Kourtides, Demetrius A.; Mikroyannidis, John A.

    1988-01-01

    Flammability and weight loss reduced. Fire-resistant polymers obtained from 1-{(dialkoxyphosphonyl) methyl}-2, 4- and -2, 6-diaminobenzenes by reaction with acyl or diacyl halides of higher functionality. Incorporation of compounds containing phosphorus into certain polymers shown previously to increase fire retardance. Discovery adds new class of polyamides to group of such polymers.

  9. Lake Erie phosphorus loading and Cladophora updates

    EPA Science Inventory

    The presentation will focus on updates or progress being made on each Phosphorus Loadings and Cladophora for Lake Erie. The format will give a brief summary of data, findings, and results that were used by the Great Lakes Water Quality Agreement (GLWQA) Annex 4 Nutrients Modeli...

  10. The role of phosphorus in chemical evolution.

    PubMed

    Maciá, Enrique

    2005-08-01

    In this tutorial review we consider the role of phosphorus and its compounds within the context of chemical evolution in galaxies. Following an interdisciplinary approach we first discuss the position of P among the main biogenic elements by considering its relevance in most essential biochemical functions as well as its peculiar chemistry under different physicochemical conditions. Then we review the phosphorus distribution in different cosmic sites, such as terrestrial planets, interplanetary dust particles, cometary dust, planetary atmospheres and the interstellar medium (ISM). In this way we realize that this element is both scarce and ubiquitous in the universe. These features can be related to the complex nucleosynthesis of P nuclide in the cores of massive stars under explosive conditions favouring a wide distribution of this element through the ISM, where it would be ready to react with other available atoms. A general tendency towards more oxidized phosphorus compounds is clearly appreciated as chemical evolution proceeds from circumstellar and ISM materials to protoplanetary and planetary condensed matter phases. To conclude we discuss some possible routes allowing for the incorporation of phosphorus compounds of prebiotic interest during the earlier stages of solar system formation.

  11. Osteophagia provide giraffes with phosphorus and calcium?

    PubMed

    Bredin, I P; Skinner, J D; Mitchell, G

    2008-03-01

    The daily requirement for calcium and phosphorus by giraffes to sustain the growth and maintenance of their skeletons is large. The source of sufficient calcium is browse. The source of necessary phosphorus is obscure, but it could be osteophagia, a frequently observed behaviour in giraffes. We have assessed whether bone ingested as a result of osteophagia can be digested in the rumen. Bone samples from cancellous (cervical vertebrae) and dense bones (metacarpal shaft) were immersed in the rumens of five sheep, for a period of up to 30 days, and the effect compared to immersion in distilled water and in artificial saliva for 30 days. Distilled water had no effect on the bones. Dense bone samples were softened by exposure to the saliva and rumen fluid, but did not lose either calcium or phosphorus. In saliva and rumen fluid the cancellous bone samples also softened, and their mass and volume decreased as a result of exposure to saliva, but in neither fluid did they lose significant amounts of calcium and phosphorus. We conclude that although saliva and rumen fluid can soften ingested bones, there is an insignificant digestion of bones in the rumen.

  12. Phosphorus recovery and reuse from waste streams

    USDA-ARS?s Scientific Manuscript database

    Phosphorus (P) is an important macro-nutrient required by higher plants for growth and development. Phosphate rock is the main raw material for P fertilizers and the global rock phosphate production stands at 191,000 thousand tonnes (t) in the year 2011 (Jaisinski, 2012). Phosphate rock is a scarce ...

  13. Potential phosphorus recovery by struvite formation.

    PubMed

    Jaffer, Y; Clark, T A; Pearce, P; Parsons, S A

    2002-04-01

    Formation of struvite (MgNH4PO4 x 6H2O) at sewage treatment works can cause operational problems and decrease efficiency. Struvite has a commercial value and the controlled formation and recovery of it would be beneficial. A mass balance was conducted at full scale across the whole sewage treatment plant in order to identify a stream to conduct bench-scale struvite crystallisation studies. The most suitable stream was identified as the centrifuge liquors. The average flow of the liquor stream was 393 m3 d(-1) and the composition was as follows: 167 mg L(-1) phosphorus, 44 mg L(-1) magnesium, 615 mg L(-1) ammonium, 56 mg L(-1) calcium and 2580 mg L(-1) of alkalinity. The pH averaged at 7.6 and the stream had a predicted struvite precipitation potential of 140 mg L(-1). Struvite crystallisation occurred quickly during the trials, by raising the pH of the centrifuge liquors to 9.0 and dosing with magnesium. Up to 97% phosphorus removal as struvite was achieved. Struvite formation occurred when the molar ratio of magnesium:phosphorus was at least 1.05:1. Below this ratio phosphorus removals of 72% were observed, but not exclusively as struvite. Annual yields of struvite were calculated to be 42-100 tonnes a year, depending on the dose regime. Revenue from the sale of produced struvite could be between Pound Sterling8400 and Pound Sterling20,000 a year.

  14. Lability of Humic-Bound Phosphorus

    USDA-ARS?s Scientific Manuscript database

    Phosphorus (P) has long been known to be present in humic substances from various sources. However, information on the lability of humic-bound P is very limited although such information is critical for understanding the role of humic substances in P cycling and nutrition. In this presentation, we d...

  15. Endangered plants persist under phosphorus limitation.

    PubMed

    Wassen, Martin J; Venterink, Harry Olde; Lapshina, Elena D; Tanneberger, Franziska

    2005-09-22

    Nitrogen enrichment is widely thought to be responsible for the loss of plant species from temperate terrestrial ecosystems. This view is based on field surveys and controlled experiments showing that species richness correlates negatively with high productivity and nitrogen enrichment. However, as the type of nutrient limitation has never been examined on a large geographical scale the causality of these relationships is uncertain. We investigated species richness in herbaceous terrestrial ecosystems, sampled along a transect through temperate Eurasia that represented a gradient of declining levels of atmospheric nitrogen deposition--from approximately 50 kg ha(-1) yr(-1) in western Europe to natural background values of less than 5 kg ha(-1) yr(-1) in Siberia. Here we show that many more endangered plant species persist under phosphorus-limited than under nitrogen-limited conditions, and we conclude that enhanced phosphorus is more likely to be the cause of species loss than nitrogen enrichment. Our results highlight the need for a better understanding of the mechanisms of phosphorus enrichment, and for a stronger focus on conservation management to reduce phosphorus availability.

  16. Revising the phosphorus index for Kentucky

    USDA-ARS?s Scientific Manuscript database

    The phosphorus index (PI) is a field-scale assessment tool developed by the USDA Natural Resources Conservation Service (NRCS) to identify fields most vulnerable to P loss that has been adopted in some form across 48 states. Due to concerns that the use of the PI has not resulted in intended reduct...

  17. Phosphorus Equilibria Among Mafic Silicate Phases

    NASA Technical Reports Server (NTRS)

    Berlin, Jana; Xirouchakis, Dimitris

    2002-01-01

    Phosphorus incorporation in major rock-forming silicate minerals has the following implications: (1) Reactions between phosphorus-hosting major silicates and accessory phosphates, which are also major trace element carriers, may control the stability of the latter and thus may affect the amount of phosphorus and other trace elements released to the coexisting melt or fluid phase. (2) Less of a phosphate mineral is needed to account for the bulk phosphorus of planetaty mantles. (3) During partial melting of mantle mineral assemblages or equilibrium fractional crystallization of basaltic magmas, and in the absence or prior to saturation with a phosphate mineral, silicate melts may become enriched in phosphorus, especially in the geochemically important low melt fraction regime, Although the small differences in the ionic radii of IVp5+, IVSi4+, and IV Al3+ makes phosphoms incorporation into crystalline silicates perhaps unsurprising, isostructural silicate and phosphate crystalline solids do not readily form solutions, e.g., (Fe, Mg)2SiO4 vs. LiMgPO4, SiO)2 VS. AlPO4. Nonetheless, there are reports of, poorly characterized silico-phosphate phases in angrites , 2-4 wt% P2O5 in olivine and pyroxene grains in pallasites and reduced terestrial basalts which are little understood but potentially useful, and up to 17 wt% P2O5 in olivine from ancient slags. However, such enrichments are rare and only underscore the likelihood of phosphoms incorporation in silicate minerals. The mechanisms that allow phosphorus to enter major rock-forming silicate minerals (e.g., Oliv, Px, Gt) remain little understood and the relevant data base is limited. Nonetheless, old and new high-pressure (5-10 GPa) experimental data suggest that P2O5 wt% decreases from silica-poor to silica-rich compositions or from orthosilicate to chain silicate structures (garnet > olivine > orthopyroxene) which implies that phosphorus incorporation in silicates is perhaps more structure-than site-specific. The

  18. Electroless Nickel Phosphorus Plating on AZ31

    NASA Astrophysics Data System (ADS)

    Shartal, Kh. M.; Kipouros, G. J.

    2009-04-01

    One of the major drawbacks to using magnesium parts in automotive applications is poor corrosion resistance, which can be improved with a nickel-boron coating placed on a nickel-phosphorus coating, which, in turn, is placed on a phosphate-permanganate conversion-coating layer produced on the magnesium alloy AZ31. This work reports on the determination of the optimum kinetic parameters for producing a coherent nickel-phosphorus coating using an electroless-procedure phosphate-permanganate conversion-coating layer and for studying the effects of the experimental variables of the electroless plating process on the phosphorus content, surface morphology, and structure of the electroless nickel-phosphorus (EN-P) coatings produced. Measurements of the plating rate as a function of experimental variables such as the compositions of the plating bath constituents, temperature, and pH were implemented using the weight-gain method; the phosphorus content of the EN-P coatings was measured using energy-dispersive spectroscopy (EDS) analysis. The surface morphology of the coating was examined using a scanning electron microscope (SEM); X-ray diffraction (XRD) was used to characterize the structure of each coating. An empirical rate law was determined for EN-P plating on a phosphate-permanganate conversion coating. It is found that the deposition rate of the EN-P coating increases by increasing the deposition temperature, the concentration of free nickel ions, and the concentration of hypophosphite ions in the plating bath. In addition, the deposition rate decreases by increasing both the plating bath pH and the concentration of citric acid in the plating bath.

  19. Do soils loose phosphorus with dissolved organic matter?

    NASA Astrophysics Data System (ADS)

    Kaiser, K.; Brödlin, D.; Hagedorn, F.

    2014-12-01

    During ecosystem development and soil formation, primary mineral sources of phosphorus are becoming increasingly depleted. Inorganic phosphorus forms tend to be bound strongly to or within secondary minerals, thus, are hardly available to plants and are not leached from soil. What about organic forms of phosphorus? Since rarely studied, little is known on the composition, mobility, and bioavailability of dissolved organic phosphorus. There is some evidence that plant-derived compounds, such as phytate, bind strongly to minerals as well, while microbial compounds, such as nucleotides and nucleic acids, may represent more mobile fractions of soil phosphorus. In some weakly developed, shallow soils, leaching losses of phosphorus seem to be governed by mobile organic forms. Consequently, much of the phosphorus losses observed during initial stages of ecosystem development may be due to the leaching of dissolved organic matter. However, the potentially mobile microbial compounds are enzymatically hydrolysable. Forest ecosystems on developed soils already depleted in easily available inorganic phosphorus are characterized by rapid recycling of organic phosphors. That can reduce the production of soluble forms of organic phosphorus as well as increase the enzymatic hydrolysis and subsequent plant uptake of phosphorus bound within dissolved organic matter. This work aims at giving an outlook to the potential role of dissolved organic matter in the cycling of phosphorus within developing forest ecosystems, based on literature evidence and first results of ongoing research.

  20. Impact of Fish Farming on Phosphorus in Reservoir Sediments.

    PubMed

    Jia, Binyang; Tang, Ya; Tian, Liyan; Franz, Leander; Alewell, Christine; Huang, Jen-How

    2015-11-18

    Fish farming has seriously influenced the aquatic environment in Sancha reservoir in SW China since 1985 and has been strongly restricted since 2005. Thus, phosphorus speciation in a sediment core dated between 1945 and 2010 at cm-resolution and in surface sediments from Sancha reservoir may allow us track how fish farming impacts phosphorus dynamics in lake sediments. Fish farming shifts the major binding forms of phosphorus in sediments from organic to residual phosphorus, which mostly originated from fish feed. Sorption to metal oxides and association with organic matters are important mechanisms for phosphorus immobilisation with low fish farming activities, whereas calcium-bound phosphorous had an essential contribution to sediment phosphorus increases under intensive fish framing. Notwithstanding the shifting, the aforementioned phosphorus fractions are usually inert in the lake environment, therefore changing phosphorus mobility little. The use of fish feed and water-purification reagents, the most important additives for fish farming, introduce not only phosphorus but also large amounts of sand-sized minerals such as quartz into the lake, to which phosphorus weakly sorbs. The sand-sized minerals as additional sorbents increase the pool of easily mobilisable phosphorus in sediments, which will slow down the recovery of reservoir water due to its rapid re-mobilisation.

  1. Quantifying phosphorus and light effects in stream algae

    SciTech Connect

    Hill, Walter; Fanta, S.E.; Roberts, Brian J

    2009-01-01

    Simultaneous gradients of phosphorus and light were applied in experimental streams to develop quantitative relationships between these two important abiotic variables and the growth and composition of benthic microalgae. Algal biovolume and whole-stream metabolism responded hyperbolically to phosphorus enrichment, increasing approximately two-fold over the 5-300 g L-1 range of experimental phosphorus concentrations. The saturation threshold for phosphorus effects occurred at 25 g L-1 of soluble reactive phosphorus (SRP). Light effects were much stronger than those of phosphorus, resulting in a nearly ten-fold increase in algal biovolume over the 10-400 mol photons m-2 s-1 range of experimental irradiances. Biovolume accrual was light-saturated at 100 mol photons m-2 s-1 (5 mol photons m-2 d-1). Light effects were diminished by low phosphorus concentrations, and phosphorus effects were diminished by low irradiances, but evidence of simultaneous limitation by both phosphorus and light at subsaturating irradiances was weak. Contrary to the light:nutrient hypothesis, algal phosphorus content was not significantly affected by light, even in the lowest SRP treatments. However, algal nitrogen content increased substantially at lower irradiances, and it was very highly correlated with algal chlorophyll a content. Phosphorus enrichment in streams is likely to have its largest effect at concentrations <25 g L-1 SRP, but the effect of enrichment is probably minimized when streambed irradiances are kept below 2 mol photons m-2 d-1 by riparian shading or turbidity

  2. Impact of Fish Farming on Phosphorus in Reservoir Sediments

    PubMed Central

    Jia, Binyang; Tang, Ya; Tian, Liyan; Franz, Leander; Alewell, Christine; Huang, Jen-How

    2015-01-01

    Fish farming has seriously influenced the aquatic environment in Sancha reservoir in SW China since 1985 and has been strongly restricted since 2005. Thus, phosphorus speciation in a sediment core dated between 1945 and 2010 at cm-resolution and in surface sediments from Sancha reservoir may allow us track how fish farming impacts phosphorus dynamics in lake sediments. Fish farming shifts the major binding forms of phosphorus in sediments from organic to residual phosphorus, which mostly originated from fish feed. Sorption to metal oxides and association with organic matters are important mechanisms for phosphorus immobilisation with low fish farming activities, whereas calcium-bound phosphorous had an essential contribution to sediment phosphorus increases under intensive fish framing. Notwithstanding the shifting, the aforementioned phosphorus fractions are usually inert in the lake environment, therefore changing phosphorus mobility little. The use of fish feed and water-purification reagents, the most important additives for fish farming, introduce not only phosphorus but also large amounts of sand-sized minerals such as quartz into the lake, to which phosphorus weakly sorbs. The sand-sized minerals as additional sorbents increase the pool of easily mobilisable phosphorus in sediments, which will slow down the recovery of reservoir water due to its rapid re-mobilisation. PMID:26577441

  3. Impact of Fish Farming on Phosphorus in Reservoir Sediments

    NASA Astrophysics Data System (ADS)

    Jia, Binyang; Tang, Ya; Tian, Liyan; Franz, Leander; Alewell, Christine; Huang, Jen-How

    2015-11-01

    Fish farming has seriously influenced the aquatic environment in Sancha reservoir in SW China since 1985 and has been strongly restricted since 2005. Thus, phosphorus speciation in a sediment core dated between 1945 and 2010 at cm-resolution and in surface sediments from Sancha reservoir may allow us track how fish farming impacts phosphorus dynamics in lake sediments. Fish farming shifts the major binding forms of phosphorus in sediments from organic to residual phosphorus, which mostly originated from fish feed. Sorption to metal oxides and association with organic matters are important mechanisms for phosphorus immobilisation with low fish farming activities, whereas calcium-bound phosphorous had an essential contribution to sediment phosphorus increases under intensive fish framing. Notwithstanding the shifting, the aforementioned phosphorus fractions are usually inert in the lake environment, therefore changing phosphorus mobility little. The use of fish feed and water-purification reagents, the most important additives for fish farming, introduce not only phosphorus but also large amounts of sand-sized minerals such as quartz into the lake, to which phosphorus weakly sorbs. The sand-sized minerals as additional sorbents increase the pool of easily mobilisable phosphorus in sediments, which will slow down the recovery of reservoir water due to its rapid re-mobilisation.

  4. Isolating phosphorus from sludge in the presence of surfactants

    SciTech Connect

    Nikandrov, I.S.; Kogtev, S.E.; Solinov, I.A.

    1988-09-10

    The authors have examined extracting phosphorus by treatment with solutions containing surfactants, which were oleic acid, sodium tripolyphosphate, and trisodium phosphate, which were of pure or chemically pure grades. The phosphorus slime from the Kuibyshevfosfor Cooperative contained 68% elemental phosphorus; the slime from making red phosphorus at the Korund Cooperative contained 67% elemental phosphorus. The aqueous surfactant was added at an appropriate concentration in a ratio of five to the sludge. The ratio and the concentration providing a high degree of extraction were found in preliminary experiments. The decrease in phosphorus extraction as the temperature difference between the heating medium and the sludge in the reactor increases (it governs the boiling rate) to more than 40% is due to the properties changing on account of the rapid oxidation of the phosphorus and the partial steam distillation. The surfactant isolated from the solution after filtration is suitable for second treatment of new sludge batches.

  5. Sewage-effluent phosphorus: a greater risk to river eutrophication than agricultural phosphorus?

    PubMed

    Jarvie, Helen P; Neal, Colin; Withers, Paul J A

    2006-05-01

    Phosphorus (P) concentrations from water quality monitoring at 54 UK river sites across seven major lowland catchment systems are examined in relation to eutrophication risk and to the relative importance of point and diffuse sources. The over-riding evidence indicates that point (effluent) rather than diffuse (agricultural) sources of phosphorus provide the most significant risk for river eutrophication, even in rural areas with high agricultural phosphorus losses. Traditionally, the relative importance of point and diffuse sources has been assessed from annual P flux budgets, which are often dominated by diffuse inputs in storm runoff from intensively managed agricultural land. However, the ecological risk associated with nuisance algal growth in rivers is largely linked to soluble reactive phosphorus (SRP) concentrations during times of ecological sensitivity (spring/summer low-flow periods), when biological activity is at its highest. The relationships between SRP and total phosphorus (TP; total dissolved P+suspended particulate P) concentrations within UK rivers are evaluated in relation to flow and boron (B; a tracer of sewage effluent). SRP is the dominant P fraction (average 67% of TP) in all of the rivers monitored, with higher percentages at low flows. In most of the rivers the highest SRP concentrations occur under low-flow conditions and SRP concentrations are diluted as flows increase, which is indicative of point, rather than diffuse, sources. Strong positive correlations between SRP and B (also TP and B) across all the 54 river monitoring sites also confirm the primary importance of point source controls of phosphorus concentrations in these rivers, particularly during spring and summer low flows, which are times of greatest eutrophication risk. Particulate phosphorus (PP) may form a significant proportion of the phosphorus load to rivers, particularly during winter storm events, but this is of questionable relevance for river eutrophication

  6. Phosphorus Recycling from an Unexplored Source by Polyphosphate Accumulating Microalgae and Cyanobacteria—A Step to Phosphorus Security in Agriculture

    PubMed Central

    Mukherjee, Chandan; Chowdhury, Rajojit; Ray, Krishna

    2015-01-01

    Phosphorus (P), an essential element required for crop growth has no substitute. The global food security depends on phosphorus availability in soil for crop production. World phosphorus reserves are fast depleting and with an annual increase of 2.3% in phosphorus demand, the current reserves will be exhausted in coming 50–100 years. India and other Western countries are forced to import phosphorus fertilizers at high costs to meet their agricultural demands due to uneven distribution of phosphate rocks on earth. The present study from India, aims to draw attention to an unnoticed source of phosphorus being wasted as parboiled rice mill effluent and subsequent bio-recovery of the valuable element from this unconventional source. The research was conducted in West Bengal, India, a state with the highest number of parboiled rice mills where its effluent carries on an average ~40 mg/L of soluble phosphorus. Technology to recover and recycle this wastewater P in India in a simple, inexpensive mode is yet to be optimized. Our strategy to use microalgae, Chlorella sp. and cyanobacteria, Cyanobacterium sp., Lyngbya sp., and Anabaena sp. to sequester the excess phosphorus from the effluent as polyphosphate inclusions and its subsequent recycling as slow and moderate release phosphorus biofertilizers to aid plant growth, preventing phosphorus loss and pollution, is a contemporary venture to meet the need of the hour. These polyphosphate accumulating microorganisms play a dual role of remediation and recovery of phosphorus, preliminarily validated in laboratory scale. PMID:26733966

  7. Phosphorus homeostasis in normal health and in chronic kidney disease patients with special emphasis on dietary phosphorus intake.

    PubMed

    Uribarri, Jaime

    2007-01-01

    Elevated serum phosphorus has been identified as a cardiovascular risk factor in chronic kidney disease (CKD) patients and a clear understanding of phosphorus homeostasis is very important for practicing nephrologists. At any particular point, serum phosphorus levels reflect the balance between movements of this mineral from and into the intestine, bone, intracellular space, and kidneys. We briefly review here all these exchanges with a particular emphasis on dietary phosphorus intake. Despite all the oral phosphorus binders currently available in the market, dietary restriction of this mineral remains a cornerstone for the prevention and treatment of hyperphosphatemia. An effective restriction of dietary intake of phosphorus requires prescription of a moderate protein intake (0.9-1.0 g/kg/day) and restricted consumption of highly processed fast and convenience foods. Phosphorus added during food processing is an important source of this mineral because of its magnitude and high bioavailabilty. Moreover, as food manufacturers are not required to label the amount of phosphorus added during food processing, a significant amount of the current daily phosphorus intake remains unaccounted when estimating phosphorus intake in CKD patients. The recent development of low phosphorus-containing food products represents a very useful addition for CKD patients.

  8. Innovative Method for Separating Phosphorus and Iron from High-Phosphorus Oolitic Hematite by Iron Nugget Process

    NASA Astrophysics Data System (ADS)

    Han, Hongliang; Duan, Dongping; Wang, Xing; Chen, Siming

    2014-10-01

    This study puts forward a new method to separate phosphorus and iron from high-phosphorus oolitic hematite through iron nuggets process. Firstly, the physical, chemical, and microscopic characteristics of high-phosphorus oolitic hematite are investigated. Then, the reaction mechanisms of high-phosphorus hematite together with feasibility to separating phosphorus and iron by iron nugget process are discussed. Meanwhile, the experiments of high-phosphorus hematite used in rotary hearth furnace iron nugget processes are studied as well. The results indicate that the iron nugget process is a feasible and efficient method for iron and phosphorus separation of high-phosphorus oolitic hematite. The phosphorus content in iron nuggets is relatively low. Through the optimization of process parameters, the lowest of phosphorus in iron nuggets is 0.22 pct, the dephosphorization rate is above 86 pct, and the recovery of Fe is above 85 pct by the iron nugget process. This study aims to provide a theoretical and technical basis for economical and rational use of high-phosphorus oolitic hematite.

  9. Potential Impact of Dietary Choices on Phosphorus Recycling and Global Phosphorus Footprints: The Case of the Average Australian City

    PubMed Central

    Metson, Geneviève S.; Cordell, Dana; Ridoutt, Brad

    2016-01-01

    Changes in human diets, population increases, farming practices, and globalized food chains have led to dramatic increases in the demand for phosphorus fertilizers. Long-term food security and water quality are, however, threatened by such increased phosphorus consumption, because the world’s main source, phosphate rock, is an increasingly scarce resource. At the same time, losses of phosphorus from farms and cities have caused widespread water pollution. As one of the major factors contributing to increased phosphorus demand, dietary choices can play a key role in changing our resource consumption pathway. Importantly, the effects of dietary choices on phosphorus management are twofold: First, dietary choices affect a person or region’s “phosphorus footprint” – the magnitude of mined phosphate required to meet food demand. Second, dietary choices affect the magnitude of phosphorus content in human excreta and hence the recycling- and pollution-potential of phosphorus in sanitation systems. When considering options and impacts of interventions at the city scale (e.g., potential for recycling), dietary changes may be undervalued as a solution toward phosphorus sustainability. For example, in an average Australian city, a vegetable-based diet could marginally increase phosphorus in human excreta (an 8% increase). However, such a shift could simultaneously dramatically decrease the mined phosphate required to meet the city resident’s annual food demand by 72%. Taking a multi-scalar perspective is therefore key to fully exploring dietary choices as one of the tools for sustainable phosphorus management. PMID:27617261

  10. Legume nodules from nutrient-poor soils exhibit high plasticity of cellular phosphorus recycling and conservation during variable phosphorus supply.

    PubMed

    Vardien, Waafeka; Steenkamp, Emma T; Valentine, Alexander J

    2016-02-01

    Nitrogen fixing legumes rely on phosphorus for nodule formation, nodule function and the energy costs of fixation. Phosphorus is however very limited in soils, especially in ancient sandstone-derived soils such as those in the Cape Floristic Region of South Africa. Plants growing in such areas have evolved the ability to tolerate phosphorus stress by eliciting an array of physiological and biochemical responses. In this study we investigated the effects of phosphorus limitation on N2 fixation and phosphorus recycling in the nodules of Virgilia divaricata (Adamson), a legume native to the Cape Floristic Region. In particular, we focused on nutrient acquisition efficiencies, phosphorus fractions and the exudation and accumulation of phosphatases. Our finding indicate that during low phosphorus supply, V. divaricata internally recycles phosphorus and has a lower uptake rate of phosphorus, as well as lower levels adenylates but greater levels of phosphohydrolase exudation suggesting it engages in recycling internal nodule phosphorus pools and making use of alternate bypass routes in order to conserve phosphorus.

  11. Potential Impact of Dietary Choices on Phosphorus Recycling and Global Phosphorus Footprints: The Case of the Average Australian City.

    PubMed

    Metson, Geneviève S; Cordell, Dana; Ridoutt, Brad

    2016-01-01

    Changes in human diets, population increases, farming practices, and globalized food chains have led to dramatic increases in the demand for phosphorus fertilizers. Long-term food security and water quality are, however, threatened by such increased phosphorus consumption, because the world's main source, phosphate rock, is an increasingly scarce resource. At the same time, losses of phosphorus from farms and cities have caused widespread water pollution. As one of the major factors contributing to increased phosphorus demand, dietary choices can play a key role in changing our resource consumption pathway. Importantly, the effects of dietary choices on phosphorus management are twofold: First, dietary choices affect a person or region's "phosphorus footprint" - the magnitude of mined phosphate required to meet food demand. Second, dietary choices affect the magnitude of phosphorus content in human excreta and hence the recycling- and pollution-potential of phosphorus in sanitation systems. When considering options and impacts of interventions at the city scale (e.g., potential for recycling), dietary changes may be undervalued as a solution toward phosphorus sustainability. For example, in an average Australian city, a vegetable-based diet could marginally increase phosphorus in human excreta (an 8% increase). However, such a shift could simultaneously dramatically decrease the mined phosphate required to meet the city resident's annual food demand by 72%. Taking a multi-scalar perspective is therefore key to fully exploring dietary choices as one of the tools for sustainable phosphorus management.

  12. Phosphorus Recycling from an Unexplored Source by Polyphosphate Accumulating Microalgae and Cyanobacteria-A Step to Phosphorus Security in Agriculture.

    PubMed

    Mukherjee, Chandan; Chowdhury, Rajojit; Ray, Krishna

    2015-01-01

    Phosphorus (P), an essential element required for crop growth has no substitute. The global food security depends on phosphorus availability in soil for crop production. World phosphorus reserves are fast depleting and with an annual increase of 2.3% in phosphorus demand, the current reserves will be exhausted in coming 50-100 years. India and other Western countries are forced to import phosphorus fertilizers at high costs to meet their agricultural demands due to uneven distribution of phosphate rocks on earth. The present study from India, aims to draw attention to an unnoticed source of phosphorus being wasted as parboiled rice mill effluent and subsequent bio-recovery of the valuable element from this unconventional source. The research was conducted in West Bengal, India, a state with the highest number of parboiled rice mills where its effluent carries on an average ~40 mg/L of soluble phosphorus. Technology to recover and recycle this wastewater P in India in a simple, inexpensive mode is yet to be optimized. Our strategy to use microalgae, Chlorella sp. and cyanobacteria, Cyanobacterium sp., Lyngbya sp., and Anabaena sp. to sequester the excess phosphorus from the effluent as polyphosphate inclusions and its subsequent recycling as slow and moderate release phosphorus biofertilizers to aid plant growth, preventing phosphorus loss and pollution, is a contemporary venture to meet the need of the hour. These polyphosphate accumulating microorganisms play a dual role of remediation and recovery of phosphorus, preliminarily validated in laboratory scale.

  13. Effect of phosphorus stress on Microcystis aeruginosa growth and phosphorus uptake

    PubMed Central

    Ghaffar, Sajeela; Stevenson, R. Jan; Khan, Zahiruddin

    2017-01-01

    This study was designed to advance understanding of phosphorus regulation of Microcystis aeruginosa growth, phosphorus uptake and storage in changing phosphorus (P) conditions as would occur in lakes. We hypothesized that Microcystis growth and nutrient uptake would fit classic models by Monod, Droop, and Michaelis-Menten in these changing conditions. Microcystis grown in luxury nutrient concentrations was transferred to treatments with phosphorus concentrations ranging from 0–256 μg P∙L-1 and luxury nitrogen. Dissolved phosphorus concentration, cell phosphorus quota, P uptake rate and cell densities were measured at day 3 and 6. Results showed little relationship to predicted models. Microcystis growth was asymptotically related to P treatment from day 0–3, fitting Monod model well, but negatively related to P treatment and cell quota from day 3–6. From day 0–3, cell quota was negatively related to P treatments at <2 μg∙L-1, but increased slightly at higher P. Cell quota decreased greatly in low P treatments from day 3–6, which may have enabled high growths in low P treatments. P uptake was positively and linearly related to P treatment during both periods. Negative uptake rates and increases in measured culture phosphorus concentrations to 5 μg∙L-1 in the lowest P treatments indicated P leaked from cells into culture medium. This leakage during early stages of the experiment may have been sufficient to stimulate metabolism and use of intracellular P stores in low P treatments for rapid growth. Our study shows P regulation of Microcystis growth can be complex as a result of changing P concentrations, and this complexity may be important for modeling Microcystis for nutrient and ecosystem management. PMID:28328927

  14. Effect of phosphorus stress on Microcystis aeruginosa growth and phosphorus uptake.

    PubMed

    Ghaffar, Sajeela; Stevenson, R Jan; Khan, Zahiruddin

    2017-01-01

    This study was designed to advance understanding of phosphorus regulation of Microcystis aeruginosa growth, phosphorus uptake and storage in changing phosphorus (P) conditions as would occur in lakes. We hypothesized that Microcystis growth and nutrient uptake would fit classic models by Monod, Droop, and Michaelis-Menten in these changing conditions. Microcystis grown in luxury nutrient concentrations was transferred to treatments with phosphorus concentrations ranging from 0-256 μg P∙L-1 and luxury nitrogen. Dissolved phosphorus concentration, cell phosphorus quota, P uptake rate and cell densities were measured at day 3 and 6. Results showed little relationship to predicted models. Microcystis growth was asymptotically related to P treatment from day 0-3, fitting Monod model well, but negatively related to P treatment and cell quota from day 3-6. From day 0-3, cell quota was negatively related to P treatments at <2 μg∙L-1, but increased slightly at higher P. Cell quota decreased greatly in low P treatments from day 3-6, which may have enabled high growths in low P treatments. P uptake was positively and linearly related to P treatment during both periods. Negative uptake rates and increases in measured culture phosphorus concentrations to 5 μg∙L-1 in the lowest P treatments indicated P leaked from cells into culture medium. This leakage during early stages of the experiment may have been sufficient to stimulate metabolism and use of intracellular P stores in low P treatments for rapid growth. Our study shows P regulation of Microcystis growth can be complex as a result of changing P concentrations, and this complexity may be important for modeling Microcystis for nutrient and ecosystem management.

  15. Influence of water treatment residuals on phosphorus solubility and leaching.

    PubMed

    Elliott, H A; O'Connor, G A; Lu, P; Brinton, S

    2002-01-01

    Laboratory and greenhouse studies compared the ability of water treatment residuals (WTRs) to alter P solubility and leaching in Immokalee sandy soil (sandy, siliceous, hyperthermic Arenic Alaquod) amended with biosolids and triple superphosphate (TSP). Aluminum sulfate (Al-WTR) and ferric sulfate (Fe-WTR) coagulation residuals, a lime softening residual (Ca-WTR) produced during hardness removal, and pure hematite were examined. In equilibration studies, the ability to reduce soluble P followed the order Al-WTR > Ca-WTR = Fe-WTR > hematite. Differences in the P-fixing capacity of the sesquioxide-dominated materials (Al-WTR, Fe-WTR, hematite) were attributed to their varying reactive Fe- and Al-hydrous oxide contents as measured by oxalate extraction. Leachate P was monitored from greenhouse columns where bahiagrass (Paspalum notatum Flugge) was grown on Immokalee soil amended with biosolids or TSP at an equivalent rate of 224 kg P ha(-1) and WTRs at 2.5% (56 Mg ha(-1)). In the absence of WTRs, 21% of TSP and 11% of Largo cake biosolids total phosphorus (PT) leached over 4 mo. With co-applied WTRs, losses from TSP columns were reduced to 3.5% (Fe-WTR), 2.5% (Ca-WTR), and <1% (Al-WTR) of applied P. For the Largo biosolids treatments all WTRs retarded downward P flux such that leachate P was not statistically different than for control (soil only) columns. The phosphorus saturation index (PSI = [Pox]/ [Al(ox) + Fe(ox)], where Pox, Al, and Fe(ox) are oxalate-extractable P, Al, and Fe, respectively) based on a simple oxalate extraction of the WTR and biosolids is potentially useful for determining WTR application rates for controlled reduction of P in drainage when biosolids are applied to low P-sorbing soils.

  16. Phosphorus leaching from biosolids-amended sandy soils.

    PubMed

    Elliott, H A; O'Connor, G A; Brinton, S

    2002-01-01

    Increasing emphasis on phosphorus (P)-based nutrient management underscores the need to understand P behavior in soils amended with biosolids and manures. Laboratory and greenhouse column studies characterized P forms and leachability of eight biosolids products, chicken manure (CM), and commercial fertilizer (triple superphosphate, TSP). Bahiagrass (Paspalum notatum Flugge) was grown for 4 mo on two acid, P-deficient Florida sands, representing both moderate (Candler series: hyperthermic, uncoated Typic Quartzipsamments) and very low (Immokalee series: sandy, siliceous, hyperthermic Arenic Alaquods) P-sorbing capacities. Amendments were applied at 56 and 224 kg P(T) ha(-1), simulating P-based and N-based nutrient loadings, respectively. Column leachate P was dominantly inorganic and lower for biosolids P sources than TSP. For Candler soil, only TSP at the high P rate exhibited P leaching statistically greater (alpha = 0.05) than control (soil-only) columns. For the high P rate and low P-sorbing Immokalee soil, TSP and CM leached 21 and 3.0% of applied P, respectively. Leachate P for six biosolids was <1.0% of applied P and not statistically different from controls. Largo biosolids, generated from a biological P removal process, exhibited significantly greater leachate P in both cake and pelletized forms (11 and 2.5% of applied P, respectively) than other biosolids. Biosolids P leaching was correlated to the phosphorus saturation index (PSI = [Pox]/[Al(ox) + Fe(ox)]) based on oxalate extraction of the pre-applied biosolids. For hiosolids with PSI < or = approximately 1.1, no appreciable leaching occurred. Only Largo cake (PSI = 1.4) and pellets (PSI = 1.3) exhibited P leaching losses statistically greater than controls. The biosolids PSI appears useful for identifying biosolids with potential to enrich drainage P when applied to low P-sorbing soils.

  17. Calcium acetate versus calcium carbonate as phosphorus binders in patients on chronic haemodialysis: a controlled study.

    PubMed

    Ring, T; Nielsen, C; Andersen, S P; Behrens, J K; Sodemann, B; Kornerup, H J

    1993-01-01

    The first reported double-blind cross-over comparison between the phosphorus binders calcium carbonate and calcium acetate was undertaken in 15 stable patients on chronic maintenance haemodialysis. Detailed registration of diet and analysis of the protein catabolic rate suggested an unchanged phosphorus intake during the study. It was found that predialytic serum phosphate concentration was significantly decreased by 0.11 mmol/l (0.34 mg/dl) (P = 0.021, 95% confidence limits 0.02-0.21 mmol/l; 0.06-0.65 mg/dl) during calcium acetate treatment. The calcium phosphate product was insignificantly decreased during treatment with calcium acetate whereas we could not exclude the possibility that calcium concentration had increased.

  18. The absorption of dietary phosphorus and calcium in hemodialysis patients.

    PubMed

    Ramirez, J A; Emmett, M; White, M G; Fathi, N; Santa Ana, C A; Morawski, S G; Fordtran, J S

    1986-11-01

    Absorption of dietary phosphorus plays a critical role in the development of metabolic bone diseases in patients with chronic renal failure. However, phosphorus absorption is difficult to quantitate in dialysis patients because the dialysis treatments complicate metabolic balance studies. Utilizing a recently developed technique which permits measurement of net absorption of dietary constituents after a single meal, we measured phosphorus absorption in dialysis patients. The following observations were made: A.) Following a meal containing approximately 300 mg phosphorus, mean phosphorus absorption in five hemodialysis patients (with severe vitamin D deficiency) was only slightly less than in matched controls (186 +/- 35 vs. 242 +/- 30). B.) After dialysis patients were treated with 1,25(OH)2-D3, phosphorus absorption increased from 186 +/- 35 to 272 +/- 16 mg (P less than 0.025). C.) The effect of three aluminum containing antacids on phosphorus absorption was studied; each slightly reduced the absorption of phosphorus compared to placebo (P less than 0.01), but there was no significant difference between them. D.) Aluminum hydroxide and calcium carbonate each reduced dietary phosphorus absorption to approximately the same extent. Calcium carbonate ingestion was associated with sharply increased calcium absorption. The absorption of dietary phosphorus is influenced only modestly by 1,25(OH)2-D3 and is inhibited to an equal but only modest degree by various aluminum antacids and by calcium carbonate.

  19. Microstructural characterization of superalloy 718 with boron and phosphorus additions

    SciTech Connect

    Horton, J.A.; McKamey, C.G.; Miller, M.K.; Cao, W.D.; Kennedy, R.L.

    1997-06-01

    Boron and phosphorus additions are known to improve the stress rupture properties of IN-718. One possible mechanism to explain this property improvement relies on the boron and phosphorus additions slowing down the growth of {gamma}{double_prime} and {gamma}{prime} precipitates during high temperature service or aging. However, atom probe analysis found no segregation of boron and phosphorus to {gamma}-{gamma}{double_prime} or to {gamma}-{gamma}{prime} interfaces in the alloys with the high boron and high phosphorus levels. No difference in growth rates were found by transmission electron microscopy in the sizes of the {gamma}{double_prime} or {gamma}{prime} in alloys with high phosphorus and high boron as compared to commercial alloys and to alloys with even lower levels of phosphorus and boron. Atom probe analysis further found that much of the phosphorus, boron, and carbon segregated to grain boundaries. Creep curves comparing the alloys with high levels of phosphorus and boron and alloys with low levels of phosphorus and boron show a large difference in strain rate in the first hours of the test. These results suggest that the boron and phosphorus may have a direct effect on dislocation mobility by some pinning mechanism.

  20. Patient education for phosphorus management in chronic kidney disease

    PubMed Central

    Kalantar-Zadeh, Kamyar

    2013-01-01

    Objectives: This review explores the challenges and solutions in educating patients with chronic kidney disease (CKD) to lower serum phosphorus while avoiding protein insufficiency and hypercalcemia. Methods: A literature search including terms “hyperphosphatemia,” “patient education,” “food fatigue,” “hypercalcemia,” and “phosphorus–protein ratio” was undertaken using PubMed. Results: Hyperphosphatemia is a strong predictor of mortality in advanced CKD and is remediated via diet, phosphorus binders, and dialysis. Dietary counseling should encourage the consumption of foods with the least amount of inorganic or absorbable phosphorus, low phosphorus-to-protein ratios, and adequate protein content, and discourage excessive calcium intake in high-risk patients. Emerging educational initiatives include food labeling using a “traffic light” scheme, motivational interviewing techniques, and the Phosphate Education Program – whereby patients no longer have to memorize the phosphorus content of each individual food component, but only a “phosphorus unit” value for a limited number of food groups. Phosphorus binders are associated with a clear survival advantage in CKD patients, overcome the limitations associated with dietary phosphorus restriction, and permit a more flexible approach to achieving normalization of phosphorus levels. Conclusion: Patient education on phosphorus and calcium management can improve concordance and adherence and empower patients to collaborate actively for optimal control of mineral metabolism. PMID:23667310

  1. Visualizing Alternative Phosphorus Scenarios for Future Food Security.

    PubMed

    Neset, Tina-Simone; Cordell, Dana; Mohr, Steve; VanRiper, Froggi; White, Stuart

    2016-01-01

    The impact of global phosphorus scarcity on food security has increasingly been the focus of scientific studies over the past decade. However, systematic analyses of alternative futures for phosphorus supply and demand throughout the food system are still rare and provide limited inclusion of key stakeholders. Addressing global phosphorus scarcity requires an integrated approach exploring potential demand reduction as well as recycling opportunities. This implies recovering phosphorus from multiple sources, such as food waste, manure, and excreta, as well as exploring novel opportunities to reduce the long-term demand for phosphorus in food production such as changing diets. Presently, there is a lack of stakeholder and scientific consensus around priority measures. To therefore enable exploration of multiple pathways and facilitate a stakeholder dialog on the technical, behavioral, and institutional changes required to meet long-term future phosphorus demand, this paper introduces an interactive web-based tool, designed for visualizing global phosphorus scenarios in real time. The interactive global phosphorus scenario tool builds on several demand and supply side measures that can be selected and manipulated interactively by the user. It provides a platform to facilitate stakeholder dialog to plan for a soft landing and identify a suite of concrete priority options, such as investing in agricultural phosphorus use efficiency, or renewable fertilizers derived from phosphorus recovered from wastewater and food waste, to determine how phosphorus demand to meet future food security could be attained on a global scale in 2040 and 2070. This paper presents four example scenarios, including (1) the potential of full recovery of human excreta, (2) the challenge of a potential increase in non-food phosphorus demand, (3) the potential of decreased animal product consumption, and (4) the potential decrease in phosphorus demand from increased efficiency and yield gains in

  2. Visualizing Alternative Phosphorus Scenarios for Future Food Security

    PubMed Central

    Neset, Tina-Simone; Cordell, Dana; Mohr, Steve; VanRiper, Froggi; White, Stuart

    2016-01-01

    The impact of global phosphorus scarcity on food security has increasingly been the focus of scientific studies over the past decade. However, systematic analyses of alternative futures for phosphorus supply and demand throughout the food system are still rare and provide limited inclusion of key stakeholders. Addressing global phosphorus scarcity requires an integrated approach exploring potential demand reduction as well as recycling opportunities. This implies recovering phosphorus from multiple sources, such as food waste, manure, and excreta, as well as exploring novel opportunities to reduce the long-term demand for phosphorus in food production such as changing diets. Presently, there is a lack of stakeholder and scientific consensus around priority measures. To therefore enable exploration of multiple pathways and facilitate a stakeholder dialog on the technical, behavioral, and institutional changes required to meet long-term future phosphorus demand, this paper introduces an interactive web-based tool, designed for visualizing global phosphorus scenarios in real time. The interactive global phosphorus scenario tool builds on several demand and supply side measures that can be selected and manipulated interactively by the user. It provides a platform to facilitate stakeholder dialog to plan for a soft landing and identify a suite of concrete priority options, such as investing in agricultural phosphorus use efficiency, or renewable fertilizers derived from phosphorus recovered from wastewater and food waste, to determine how phosphorus demand to meet future food security could be attained on a global scale in 2040 and 2070. This paper presents four example scenarios, including (1) the potential of full recovery of human excreta, (2) the challenge of a potential increase in non-food phosphorus demand, (3) the potential of decreased animal product consumption, and (4) the potential decrease in phosphorus demand from increased efficiency and yield gains in

  3. [Research progress on phosphorus budgets and regulations in reservoirs].

    PubMed

    Shen, Xiao; Li, Xu; Zhang, Wang-shou

    2014-12-01

    Phosphorus is an important limiting factor of water eutrophication. A clear understanding of its budget and regulated method is fundamental for reservoir ecological health. In order to pro- mote systematic research further and improve phosphorus regulation system, the budget balance of reservoir phosphorus and its influencing factors were concluded, as well as conventional regulation and control measures. In general, the main phosphorus sources of reservoirs include upstream input, overland runoff, industrial and domestic wastewater, aquaculture, atmospheric deposition and sediment release. Upstream input is the largest phosphorus source among them. The principal output path of phosphorus is the flood discharge, the emission load of which is mainly influenced by drainage patterns. In addition, biological harvest also can export a fraction of phosphorus. There are some factors affecting the reservoir phosphorus balance, including reservoirs' function, hydrological conditions, physical and chemical properties of water, etc. Therefore, the phosphorus budgets of different reservoirs vary greatly, according to different seasons and regions. In order to reduce the phosphorus loading in reservoirs, some methods are carried out, including constructed wetlands, prefix reservoir, sediment dredging, biomanipulation, etc. Different methods need to be chosen and combined according to different reservoirs' characteristics and water quality management goals. Thus, in the future research, it is reasonable to highlight reservoir ecological characteristics and proceed to a complete and systematic analysis of the inherent complexity of phosphorus budget and its impact factors for the reservoirs' management. Besides, the interaction between phosphorus budget and other nutrients in reservoirs also needs to be conducted. It is fundamental to reduce the reservoirs' phosphorus loading to establish a scientific and improved management system based on those researches.

  4. Mechanical strain effects on black phosphorus nanoresonators.

    PubMed

    Wang, Cui-Xia; Zhang, Chao; Jiang, Jin-Wu; Park, Harold S; Rabczuk, Timon

    2016-01-14

    We perform classical molecular dynamics simulations to investigate the effects of mechanical strain on single-layer black phosphorus nanoresonators at different temperatures. We find that the resonant frequency is highly anisotropic in black phosphorus due to its intrinsic puckered configuration, and that the quality factor in the armchair direction is higher than in the zigzag direction at room temperature. The quality factors are also found to be intrinsically larger than those in graphene and MoS2 nanoresonators. The quality factors can be increased by more than a factor of two by applying tensile strain, with uniaxial strain in the armchair direction being the most effective. However, there is an upper bound for the quality factor increase due to nonlinear effects at large strains, after which the quality factor decreases. The tension induced nonlinear effect is stronger along the zigzag direction, resulting in a smaller maximum strain for quality factor enhancement.

  5. Thermoelectric power of bulk black-phosphorus

    NASA Astrophysics Data System (ADS)

    Flores, E.; Ares, J. R.; Castellanos-Gomez, A.; Barawi, M.; Ferrer, I. J.; Sánchez, C.

    2015-01-01

    The potential of bulk black-phosphorus, a layered semiconducting material with a direct band gap of ˜0.3 eV, for thermoelectric applications has been experimentally studied. The Seebeck Coefficient (S) has been measured in the temperature range from 300 K to 385 K, finding a value of S = +335 ± 10 μV/K at room temperature (indicating a naturally occurring p-type conductivity). S increases with temperature, as expected for p-type semiconductors, which can be attributed to an increase of the charge carrier density. The electrical resistance drops up to a 40% while heating in the studied temperature range. As a consequence, the power factor at 385 K is 2.7 times higher than that at room temperature. This work indicates the prospective use of black-phosphorus in thermoelectric applications such as thermal energy scavenging, which typically require devices with high performance at temperatures near room temperature.

  6. In vitro PAMAM, phosphorus and viologen-phosphorus dendrimers prevent rotenone-induced cell damage.

    PubMed

    Milowska, Katarzyna; Szwed, Aleksandra; Zablocka, Maria; Caminade, Anne-Marie; Majoral, Jean-Pierre; Mignani, Serge; Gabryelak, Teresa; Bryszewska, Maria

    2014-10-20

    We have investigated whether polyamidoamine (PAMAM), phosphorus (pd) and viologen-phosphorus (vpd) dendrimers can prevent damage to embryonic mouse hippocampal cells (mHippoE-18) caused by rotenone, which is used as a pesticide, insecticide, and as a nonselective piscicide, that works by interfering with the electron transport chain in mitochondria. Several basic aspects, such as cell viability, production of reactive oxygen species and changes in mitochondrial transmembrane potential, were analyzed. mHippoE-18 cells were treated with these structurally different dendrimers at 0.1μM. A 1h incubation with dendrimers was followed by the addition of rotenone at 1μM, and a further 24h incubation. PAMAM, phosphorus and viologen-phosphorus dendrimers all increased cell viability (reduced cell death-data need to be compared with untreated controls). A lower level of reactive oxygen species and a favorable effect on mitochondrial system were found with PAMAM and viologen-phosphorus dendrimers. These results indicate reduced toxicity in the presence of dendrimers. Copyright © 2014 Elsevier B.V. All rights reserved.

  7. Peak phosphorus - peak food? The need to close the phosphorus cycle.

    PubMed

    Rhodes, Christopher J

    2013-01-01

    The peak in the world production of phosphorus has been predicted to occur in 2033, based on world reserves of rock phosphate (URR) reckoned at around 24,000 million tonnes (Mt), with around 18,000 Mt remaining. This figure was reckoned-up to 71,000 Mt, by the USGS, in 2012, but a production maximum during the present century is still highly probable. There are complex issues over what the demand will be for phosphorus in the future, as measured against a rising population (from 7 billion to over 9 billion in 2050), and a greater per capita demand for fertiliser to grow more grain, in part to feed animals and meet a rising demand for meat by a human species that is not merely more populous but more affluent. As a counterweight to this, we may expect that greater efficiencies in the use of phosphorus - including recycling from farms and of human and animal waste - will reduce the per capita demand for phosphate rock. The unseen game changer is peak oil, since phosphate is mined and recovered using machinery powered by liquid fuels refined from crude oil. Hence, peak oil and peak phosphorus might appear as conjoined twins. There is no unequivocal case that we can afford to ignore the likelihood of a supply-demand gap for phosphorus occurring sometime this century, and it would be perilous to do so.

  8. Woodland Soils in SE Australia: Phosphorus Islands in a Phosphorus Depleted Landscape

    NASA Astrophysics Data System (ADS)

    Lonergan, Vanessa; Wilson, Brian

    2013-04-01

    By international standards, Australian soils are inherently low in Phosphorus and have been further depleted through historical agricultural practice. A range of soils were examined across a land use intensity gradient on a basalt landscape of the Northern Tablelands of NSW. Land-uses included cultivation, pasture and relatively undisturbed woodland systems. We measured extractable P, total P, organic P, organic Carbon and pH and their distribution through the soil profile relative to the land use intensity. Extractable P concentration was significantly higher in the woodland systems compared to the non-wooded sites and woodland soils had larger total phosphorus compared to the more intensively managed sites particularly in the surface horizons. Organic phosphorus as a proportion of the total was also higher in the woodland soils. Concentration and proportion of organic P were strongly related to soil carbon concentration, pH and management intensity. Our data demonstrate that these relatively undisturbed woodland systems represent phosphorus "islands" in a phosphorus depleted landscape.

  9. Phosphorus Migration During Direct Reduction of Coal Composite High-Phosphorus Iron Ore Pellets

    NASA Astrophysics Data System (ADS)

    Cheng, Cheng; Xue, Qingguo; Wang, Guang; Zhang, Yuanyuan; Wang, Jingsong

    2016-02-01

    This study investigated the direct reduction process and phosphorus migration features of high-phosphorus iron ores using simulated experiments. Results show that iron oxide was successfully reduced, and a Fe-Si-Al slag formed in carbon-bearing pellets at 1473 K (1200 °C). Fluorapatite then began to decompose into Ca3(PO4)2 and CaF2. As the reaction continued, Ca3(PO4)2 and Fe-Si-Al slag reacted quickly with each other to generate CaAl2Si2O8 and P2, while CaF2 turned into SiF4 gas in the presence of high SiO2. A small amount remained in the slag phase and formed CaAl2Si2O8. Further analysis detailed the migration process of the phosphorus into iron phases, as well as the relationship between carburization and phosphorus absorption in the iron phases. As carbon content in the iron phase increased, the austenite grain boundary melted and formed a large quantity of liquid iron which quickly absorbed the phosphorus. Based on the results of simulation and analysis, this paper proposed a method which reduced the absorption of P by the metallic iron formed and reduced P content in metallic iron during direct reduction.

  10. Assessment of conservation easements, total phosphorus, and total suspended solids in West Fork Beaver Creek, Minnesota, 1999-2012

    USGS Publications Warehouse

    Christensen, Victoria G.; Kieta, Kristen A.

    2014-01-01

    This study examined conservation easements and their effectiveness at reducing phosphorus and solids transport to streams. The U.S. Geological Survey cooperated with the Minnesota Board of Water and Soil Resources and worked collaboratively with the Hawk Creek Watershed Project to examine the West Fork Beaver Creek Basin in Renville County, which has the largest number of Reinvest In Minnesota land retirement contracts in the State (as of 2013). Among all conservation easement programs, a total of 24,218 acres of agricultural land were retired throughout Renville County, and 2,718 acres were retired in the West Fork Beaver Creek Basin from 1987 through 2012. Total land retirement increased steadily from 1987 until 2000. In 2000, land retirement increased sharply because of the Minnesota River Conservation Reserve Enhancement Program, then leveled off when the program ended in 2002. Streamflow data were collected during 1999 through 2011, and total phosphorus and total suspended solids data were collected during 1999 through 2012. During this period, the highest peak streamflow of 1,320 cubic feet per second was in March 2010. Total phosphorus and total suspended solids are constituents that tend to increase with increases in streamflow. Annual flow-weighted mean total-phosphorus concentrations ranged from 0.140 to 0.759 milligrams per liter, and annual flow-weighted mean total suspended solids concentrations ranged from 21.3 to 217 milligrams per liter. Annual flow-weighted mean total phosphorus and total suspended solids concentrations decreased steadily during the first 4 years of water-quality sample collection. A downward trend in flow-weighted mean total-phosphorus concentrations was significant from 1999 through 2008; however, flow-weighted total-phosphorus concentrations increased substantially in 2009, and the total phosphorus trend was no longer significant. The high annual flow-weighted mean concentrations for total phosphorus and total suspended solids

  11. Anisotropic Thermal Conductivity of Exfoliated Black Phosphorus.

    PubMed

    Jang, Hyejin; Wood, Joshua D; Ryder, Christopher R; Hersam, Mark C; Cahill, David G

    2015-12-22

    The anisotropic thermal conductivity of passivated black phosphorus (BP), a reactive two-dimensional material with strong in-plane anisotropy, is ascertained. The room-temperature thermal conductivity for three crystalline axes of exfoliated BP is measured by time-domain thermo-reflectance. The thermal conductivity along the zigzag direction is ≈2.5 times higher than that of the armchair direction.

  12. White phosphorus poisoning--explosive encounter.

    PubMed

    Pande, T K; Pandey, S

    2004-03-01

    Poisoning by white or yellow phosphorus is reported in various forms and also in ages varying from infants to adults, but spontaneous combustion and explosion during its management has never been described. This incidence occurred while attempting to pass a Ryle's tube. Its free end first exhibited a yellow flame and this later on led to an explosive encounter. Role of static electricity generated while handling plastic materials leading to ignition and explosion cannot be overlooked.

  13. [Information about phosphorus additives and nutritional counseling].

    PubMed

    Kido, Shinsuke; Nomura, Kengo; Sasaki, Shohei; Shiozaki, Yuji; Segawa, Hiroko; Tatsumi, Sawako

    2012-10-01

    Hyperphosphatemia is a common disorder in patients with chronic kidney disease (CKD) , and may result in hyperparathyroidism and renal osteodystrophy. Hyperphosphatemia also may contribute to deterioration vascular calcification and increase mortality. Hence, correction and prevention of hyperphosphatemia is a main component of the management of CKD. This goal is usually approached both by administering phosphorus binders and by restricting dietary phosphorus (P) intake. Dietary intake of phosphorus (P) is derived largely from foods with high protein content or food additives and is an important determinant of P balance in patient with CKD. Food additives (PO4) can dramatically increase the amount of P consumed in the daily diet, especially because P is more readily absorbed in its inorganic form. In addition, information about the P content and type in prepared foods is often unavailable or misleading. Therefore, during dietary counseling of patients with CKD, we recommended that they consider both the absolute dietary P content and the P-to-protein ratio of foods and meals including food additives.

  14. Redox chemistry in the phosphorus biogeochemical cycle

    PubMed Central

    Pasek, Matthew A.; Sampson, Jacqueline M.; Atlas, Zachary

    2014-01-01

    The element phosphorus (P) controls growth in many ecosystems as the limiting nutrient, where it is broadly considered to reside as pentavalent P in phosphate minerals and organic esters. Exceptions to pentavalent P include phosphine—PH3—a trace atmospheric gas, and phosphite and hypophosphite, P anions that have been detected recently in lightning strikes, eutrophic lakes, geothermal springs, and termite hindguts. Reduced oxidation state P compounds include the phosphonates, characterized by C−P bonds, which bear up to 25% of total organic dissolved phosphorus. Reduced P compounds have been considered to be rare; however, the microbial ability to use reduced P compounds as sole P sources is ubiquitous. Here we show that between 10% and 20% of dissolved P bears a redox state of less than +5 in water samples from central Florida, on average, with some samples bearing almost as much reduced P as phosphate. If the quantity of reduced P observed in the water samples from Florida studied here is broadly characteristic of similar environments on the global scale, it accounts well for the concentration of atmospheric phosphine and provides a rationale for the ubiquity of phosphite utilization genes in nature. Phosphine is generated at a quantity consistent with thermodynamic equilibrium established by the disproportionation reaction of reduced P species. Comprising 10–20% of the total dissolved P inventory in Florida environments, reduced P compounds could hence be a critical part of the phosphorus biogeochemical cycle, and in turn may impact global carbon cycling and methanogenesis. PMID:25313061

  15. Hyperpolarization Of Phosphorus Donors In Silicon

    NASA Astrophysics Data System (ADS)

    Sorte, Eric; Baker, William; McCamey, Dane; Laicher, Gernot; Boehme, Christoph; Saam, Brian

    2008-10-01

    Silicon phosphorus (Si:P) is a model system for investigating spin effects in solid state materials. Recently, members of this group demonstrated a simple method for optically inducing a non-equilibrium state of spin hyperpolarization in phosphorus doped silicon by exploiting a modified Overhauser process. The ability to pump high nuclear spin polarizations in this system could have far reaching technological implications for many fields. For example, hyperpolarized silicon nanoparticles have the potential to improve contrast in magnetic resonance imaging. Additionally, well-characterized quantum spin states have the potential to be useful as quantum qubits. Our current work attempts to extend these recent electron paramagnetic resonance (EPR) and electrically detected magnetic resonance (EDMR) measurements to direct nuclear magnetic resonance measurement of the hyperpolarized phosphorus nuclei. In this talk we will report on our current efforts to measure ^31P spin hyper-antipolarization after the sample is briefly exposed to an inert room temperature environment. We demonstrate the procedure of ^31P polarization measurement through low field electron spin resonance as a precursor to direct NMR measurement.

  16. Where is the Phosphorus in Cometary Volatiles?

    NASA Astrophysics Data System (ADS)

    Boice, Daniel C.; de Almeida, Amaury

    2015-08-01

    Phosphorus is a key element in all living organisms but its role in life's origin is not well understood. Phosphorus-bearing compounds have been observed in space, are ubiquitous in meteorites in small quantities, and have been detected as part of the dust component in comets Halley and Wild 2. However, searches for P-bearing species in the gas phase in cometary comae have been unsuccessful. We present results of the first quantitative study of P-bearing molecules in comets to identify likely species containing phosphorus. We found reaction pathways of gas-phase and photolytic chemistry for simple P-bearing molecules likely to be found in comets and important for prebiotic chemistry. We hope to aid future searches for this important element, especially the Rosetta Mission to Comet 67P/Churyumov-Gerasimenko, possibly shedding light on issues of comet formation (time and place) and understanding prebiotic to biotic evolution of life.Acknowledgements: We greatly appreciate support from the NSF Planetary Astronomy Program under Grant No. 0908529 and the Instituto de Astronomia, Geofísica e Ciências Atmosféricas at the University of São Paulo.

  17. Phosphorus transfer from sediments by Myriophyllum spicatum

    SciTech Connect

    Smith, C.S.; Adams, M.S.

    1986-11-01

    The uptake of phosphorus, the biomass, and the standing P stock were measured over the course of a year in roots and shoots of the Eurasian water milfoil, Myriophyllum spicatum, from Lake Wingra, Wisconsin. The resulting data were used to estimate the relative contributions of root and shoot uptake to the phosphorus economy of the plant and to examine the role of the plant in moving phosphorus between sediment and water. The total yearly uptake of P by a square meter of Myriophyllum was 3.0 g P m/sup -2/. Root uptake accounted for 2.2 g, shoot uptake only 0.8 g. The rate of P release from healthy shoots was insignificant, but about 2.8 g P m/sup -2/ yr/sup -1/ was lost due to shoot turnover. Since most of the P uptake is by the roots and much of the plant P is transferred to and lost by the shoots, Myriophyllum is a potentially important vector in the movement of P from the sediments to the water. The net transfer of P from the sediments to shoots of Myriophyllum in Lake Wingra is about 2.0 g P m/sup -2/ yr /sup -1/. Release of this P during decay makes Myriophyllum an important source of P for pelagic phytoplankton and can explain much of the previously reported P export from the littoral zone of Lake Wingra.

  18. Redox chemistry in the phosphorus biogeochemical cycle

    NASA Astrophysics Data System (ADS)

    Pasek, Matthew A.; Sampson, Jacqueline M.; Atlas, Zachary

    2014-10-01

    The element phosphorus (P) controls growth in many ecosystems as the limiting nutrient, where it is broadly considered to reside as pentavalent P in phosphate minerals and organic esters. Exceptions to pentavalent P include phosphine-PH3-a trace atmospheric gas, and phosphite and hypophosphite, P anions that have been detected recently in lightning strikes, eutrophic lakes, geothermal springs, and termite hindguts. Reduced oxidation state P compounds include the phosphonates, characterized by C-P bonds, which bear up to 25% of total organic dissolved phosphorus. Reduced P compounds have been considered to be rare; however, the microbial ability to use reduced P compounds as sole P sources is ubiquitous. Here we show that between 10% and 20% of dissolved P bears a redox state of less than +5 in water samples from central Florida, on average, with some samples bearing almost as much reduced P as phosphate. If the quantity of reduced P observed in the water samples from Florida studied here is broadly characteristic of similar environments on the global scale, it accounts well for the concentration of atmospheric phosphine and provides a rationale for the ubiquity of phosphite utilization genes in nature. Phosphine is generated at a quantity consistent with thermodynamic equilibrium established by the disproportionation reaction of reduced P species. Comprising 10-20% of the total dissolved P inventory in Florida environments, reduced P compounds could hence be a critical part of the phosphorus biogeochemical cycle, and in turn may impact global carbon cycling and methanogenesis.

  19. Biomass fermentation to augment biological phosphorus removal.

    PubMed

    Yuan, Q; Oleszkiewicz, J A

    2010-01-01

    A combination of a lab scale biological phosphorus removal sequencing batch reactor (called mother reactor) and a side-stream biomass fermenter was setup. It was found that when fermented biomass was recirculated back into the mother reactor as volatile fatty acid (VFA) supplement, the phosphate concentration in the effluent decreased from 6 in the control reactor to 4.5 mgL(-1) in the effluent from mother reactor. The addition of the fermentation effluent into the mother reactor increased the phosphate and ammonium loads and resulted in deterioration of nitrification. Phosphorus removal and nitrification improved when the fermented biomass was separated from the liquid phase using an up-flow system, followed by the addition of MgO to the supernatant to precipitate phosphate and ammonium. Phosphorus removal was further improved by delaying the time of VFA addition into mother reactor during the anaerobic period as soon as denitrification ceased. Biomass fermentation was found to generate 157 mg VFA-COD by fermenting 1g of biomass at a solids retention time of 5d. Acetate (78% of generated COD) and propionic acid (10%) were the major components of the produced VFA. It was concluded that biomass fermentation to augment a biological nutrient removal process can be effective if generated phosphate and ammonia are removed, e.g. through struvite precipitation.

  20. Black Phosphorus Rediscovered: From Bulk to Monolayer.

    PubMed

    Gusmao, Rui; Sofer, Zdenek; Pumera, Martin

    2017-01-23

    Phosphorus is a non-metal with several allotropes, from the highly reactive white phosphorus to the thermodynamically stable black phosphorus (BP) with a puckered orthorhombic layered structure. The bulk form of BP was synthesized for the first time more than a century ago, in 1914, not receiving much attention until very recently rediscovered, in 2014, joining the new wave of 2D layered nanomaterials. BP can be exfoliated to a single sheet structure with tunable direct band, semiconducting, high carrier mobility at room temperature and in-plane anisotropic layered structure. Surface chemistry degradation can still be a holdback for the advancement of BP applications, thus compelling efforts to achieve effective BP passivation are ongoing, such as its integration in van der Waals heterostructures. Currently, BP has been tested as a novel nanomaterial in batteries, transistors, sensors and photonics related fields. In this review we take a look back at BP origin story, taking the path from bulk to nowadays few/single layer. Physical and chemical properties are summarized, highlighting the state-of-the-art in BP applications.

  1. The Cytotoxicity of Layered Black Phosphorus.

    PubMed

    Latiff, Naziah Mohamad; Teo, Wei Zhe; Sofer, Zdenek; Fisher, Adrian C; Pumera, Martin

    2015-09-28

    Black phosphorus (BP), the latest addition to the family of 2D layered materials, has attracted much interest owing to potential optoelectronics, nanoelectronics, and biomedicine applications. Little is known about its toxicity, such as whether it could be as toxic as white phosphorus. In response to the possibility of BP employment into commercial products and biomedical devices, its cytotoxicity to human lung carcinoma epithelial cells (A549) was investigated. Following a 24 h exposure of the cells with different BP concentrations, cell viability assessments were conducted using water-soluble tetrazolium salt (WST-8) and methylthiazolyldiphenyltetrazolium bromide (MTT) assays. The toxicological effects were found to be dose-dependent, with BP reducing cell viabilities to 48% (WST-8) and 34% (MTT) at 50 μg mL(-1) exposure. This toxicity was observed to be generally intermediate between that of graphene oxides and exfoliated transition-metal dichalcogenides (MoS2, WS2, WSe2). The relatively low toxicity paves the way to utilization of black phosphorus.

  2. Phosphorus removal and N₂O production in anaerobic/anoxic denitrifying phosphorus removal process: long-term impact of influent phosphorus concentration.

    PubMed

    Wang, Zhen; Meng, Yuan; Fan, Ting; Du, Yuneng; Tang, Jie; Fan, Shisuo

    2015-03-01

    This study was conducted to investigate the long-term impact of influent phosphorus concentration on denitrifying phosphorus removal and N2O production during denitrifying phosphorous removal process. The results showed that, denitrifying phosphate accumulating organisms (DPAOs) could become dominant populations quickly in anaerobic/anoxic SBR by providing optimum cultivating conditions, and the reactor performed well for denitrifying phosphorus removal. The influent phosphorus concentration significantly affected anaerobic poly-β-hydroxyalkanoates (PHA) synthesis, denitrifying phosphorus removal, and N2O production during the denitrifying phosphorus removal process. As the influent phosphorus concentration was more than 20 mg L(-1), the activity of DPAOs began to be inhibited due to the transformation of the available carbon source type. Meanwhile, N2O production was inhibited with the mitigation of anoxic NO2(-)-N accumulation. Adoption of a modified feeding could enhance denitrifying phosphorus removal and inhibit N2O production during denitrifying phosphorous removal processes. Copyright © 2014 Elsevier Ltd. All rights reserved.

  3. Phosphorus removal and recovery from domestic wastewater in a novel process of enhanced biological phosphorus removal coupled with crystallization.

    PubMed

    Zou, Haiming; Wang, Yan

    2016-07-01

    A new process of enhanced biological phosphorus removal coupled with crystallization recovery of phosphorus was developed here, where the feasibility of nutrients removal and potential for phosphorus recovery from domestic wastewater was further assessed. Results showed that an excellent nutrients removal and phosphorus recovery performance was achieved, in which the averaged COD, PO4(3-)-P and NO3(-)-N removal efficiencies were 82.6%, 87.5% and 91.6%, respectively and a total of 59.3% of phosphorus was recovered as hydroxyapatite. What's more, crystallization recovery of phosphorus greatly enhanced the biological phosphorus removal efficiency. After the incorporation of the phosphorus recovery column via side-stream, the phosphorus concentration of effluent was significantly decreased ranging from 1.24mg/L to 0.85mg/L, 0.52mg/L and 0.41mg/L at the lateral flow ratios of 0, 0.1, 0.2 and 0.3, respectively. The results obtained here would be beneficial to provide a prospective alternative for phosphorus removal and recovery from wastewater. Copyright © 2016 Elsevier Ltd. All rights reserved.

  4. The phosphorus cost of agricultural intensification in the tropics.

    PubMed

    Roy, Eric D; Richards, Peter D; Martinelli, Luiz A; Coletta, Luciana Della; Lins, Silvia Rafaela Machado; Vazquez, Felipe Ferraz; Willig, Edwin; Spera, Stephanie A; VanWey, Leah K; Porder, Stephen

    2016-04-18

    Agricultural intensification in the tropics is one way to meet rising global food demand in coming decades(1,2). Although this strategy can potentially spare land from conversion to agriculture(3), it relies on large material inputs. Here we quantify one such material cost, the phosphorus fertilizer required to intensify global crop production atop phosphorus-fixing soils and achieve yields similar to productive temperate agriculture. Phosphorus-fixing soils occur mainly in the tropics, and render added phosphorus less available to crops(4,5). We estimate that intensification of the 8-12% of global croplands overlying phosphorus-fixing soils in 2005 would require 1-4 Tg P yr(-1) to overcome phosphorus fixation, equivalent to 8-25% of global inorganic phosphorus fertilizer consumption that year. This imposed phosphorus 'tax' is in addition to phosphorus added to soils and subsequently harvested in crops, and doubles (2-7 Tg P yr(-1)) for scenarios of cropland extent in 2050(6). Our estimates are informed by local-, state- and national-scale investigations in Brazil, where, more than any other tropical country, low-yielding agriculture has been replaced by intensive production. In the 11 major Brazilian agricultural states, the surplus of added inorganic fertilizer phosphorus retained by soils post harvest is strongly correlated with the fraction of cropland overlying phosphorus-fixing soils (r(2) = 0.84, p < 0.001). Our interviews with 49 farmers in the Brazilian state of Mato Grosso, which produces 8% of the world's soybeans mostly on phosphorus-fixing soils, suggest this phosphorus surplus is required even after three decades of high phosphorus inputs. Our findings in Brazil highlight the need for better understanding of long-term soil phosphorus fixation elsewhere in the tropics. Strategies beyond liming, which is currently widespread in Brazil, are needed to reduce phosphorus retention by phosphorus-fixing soils to better manage the Earth

  5. Phosphorus, a key to life on the primitive earth

    NASA Technical Reports Server (NTRS)

    Griffith, E. J.; Ponnamperuma, C.; Gabel, N. W.

    1977-01-01

    The phosphorus of the primitive earth was present as phosphates. It is strongly probable that a portion of the phosphate was present as condensed phosphates. The primitive earth was highly deficient in the total available phosphorus until a sufficient quantity of phosphorus weathered from the igneous rocks in which it was entrapped. Approximately three billion years were required for the seas to become saturated. Until this time passed the seas acted as a giant sink for phosphorus, diluting it to the extent that all forms of life were deprived of the vital nutrient. When the seas became saturated, the rate of turnover of the phosphorus increased rapidly. As the seas pulsated, they left the excess precipitate phosphorus as sedimentary rock in locally rich deposits on which life could thrive.

  6. Phosphorus, a key to life on the primitive earth

    NASA Technical Reports Server (NTRS)

    Griffith, E. J.; Ponnamperuma, C.; Gabel, N. W.

    1977-01-01

    The phosphorus of the primitive earth was present as phosphates. It is strongly probable that a portion of the phosphate was present as condensed phosphates. The primitive earth was highly deficient in the total available phosphorus until a sufficient quantity of phosphorus weathered from the igneous rocks in which it was entrapped. Approximately three billion years were required for the seas to become saturated. Until this time passed the seas acted as a giant sink for phosphorus, diluting it to the extent that all forms of life were deprived of the vital nutrient. When the seas became saturated, the rate of turnover of the phosphorus increased rapidly. As the seas pulsated, they left the excess precipitate phosphorus as sedimentary rock in locally rich deposits on which life could thrive.

  7. Phosphorus partitioning among mantle silicate phases

    NASA Astrophysics Data System (ADS)

    Xirouchakis, D.; Draper, D. S.

    2002-05-01

    In the absence of a phosphate phase, phosphorus may be considered to behave as an incompatible element during partial melting of mantle mineral assemblages and/or crystallization of residual basaltic liquids. Thus, phosphorus can give valuable constraints on the extent of partial melting and/or magma crystallization, providing that crystal-liquid partition coefficients for P2O5 are known with confidence. In phosphate-normative rocks most of P2O5 is likely contained in phosphate minerals, however, in rocks containing only trace amounts of this oxide, as is often the case of mantle peridotites, silicate minerals can apparently host a large proportion of the bulk P2O5 content. Considering the small differences in the ionic radii of tetrahedrally coordinated P5+ (0.31 Å), Si4+ (0.26 Å), and Al3+ (0.39 Å) the potential for phosphorus incorporation into crystalline silicates is perhaps unsurprising. Although silicate and phosphate phases can be isostructural (e.g., (Fe, Mg)2SiO4 vs. LiMgPO4 or SiO2 vs. AlPO4), this does not warranty mutual solubility (Bradley et al 1966; Brunet et al. 2000). Neglecting the rare reports of significant (2-4 wt%) but also poorly understood P2O5 enrichment in olivine and pyroxene grains in a few extraterrestrial and terrestrial samples (Buseck and Clark, 1984; Goodrich 1984), the overlap in the P2O5 content (wt%) in olivine, pyroxene(s), garnet, and plagioclase, regardless of differences in analytical techniques and compositions, suggests that incorporation of trace quantities of phosphorus in these minerals appears plausible. Parenthetically, there is also considerable overlap in the few published (Henderson 1968; Anderson & Greenland 1969; Thompson 1975; Libourel et al. 1994) or unpublished (Xirouchakis and Draper unpubl. data) partition coefficients for these minerals and mafic silicate liquids. The mechanisms that allow phosphorus to enter the silicate minerals of interest remain unclear or poorly understood, and certainly need to be

  8. Diversity enhances agricultural productivity via rhizosphere phosphorus facilitation on phosphorus-deficient soils

    PubMed Central

    Li, Long; Li, Shu-Min; Sun, Jian-Hao; Zhou, Li-Li; Bao, Xing-Guo; Zhang, Hong-Gang; Zhang, Fu-Suo

    2007-01-01

    Intercropping, which grows at least two crop species on the same pieces of land at the same time, can increase grain yields greatly. Legume–grass intercrops are known to overyield because of legume nitrogen fixation. However, many agricultural soils are deficient in phosphorus. Here we show that a new mechanism of overyielding, in which phosphorus mobilized by one crop species increases the growth of a second crop species grown in alternate rows, led to large yield increases on phosphorus-deficient soils. In 4 years of field experiments, maize (Zea mays L.) overyielded by 43% and faba bean (Vicia faba L.) overyielded by 26% when intercropped on a low-phosphorus but high-nitrogen soil. We found that overyielding of maize was attributable to below-ground interactions between faba bean and maize in another field experiment. Intercropping with faba bean improved maize grain yield significantly and above-ground biomass marginally significantly, compared with maize grown with wheat, at lower rates of P fertilizer application (<75 kg of P2O5 per hectare), and not significantly at high rate of P application (>112.5 kg of P2O5 per hectare). By using permeable and impermeable root barriers, we found that maize overyielding resulted from its uptake of phosphorus mobilized by the acidification of the rhizosphere via faba bean root release of organic acids and protons. Faba bean overyielded because its growth season and rooting depth differed from maize. The large increase in yields from intercropping on low-phosphorus soils is likely to be especially important on heavily weathered soils. PMID:17592130

  9. The New Nordic Diet: phosphorus content and absorption.

    PubMed

    Salomo, Louise; Poulsen, Sanne K; Rix, Marianne; Kamper, Anne-Lise; Larsen, Thomas M; Astrup, Arne

    2016-04-01

    High phosphorus content in the diet may have adverse effect on cardiovascular health. We investigated whether the New Nordic Diet (NND), based mainly on local, organic and less processed food and large amounts of fruit, vegetables, wholegrain and fish, versus an Average Danish Diet (ADD) would reduce the phosphorus load due to less phosphorus-containing food additives, animal protein and more plant-based proteins. Phosphorus and creatinine were measured in plasma and urine at baseline, week 12 and week 26 in 132 centrally obese subjects with normal renal function as part of a post hoc analysis of data acquired from a 26-week controlled trial. We used the fractional phosphorus excretion as a measurement of phosphorus absorption. Mean baseline fractional phosphorus excretion was 20.9 ± 6.6 % in the NND group (n = 82) and 20.8 ± 5.5 % in the ADD group (n = 50) and was decreased by 2.8 ± 5.1 and 3.1 ± 5.4 %, respectively, (p = 0.6) at week 26. At week 26, the mean change in plasma phosphorus was 0.04 ± 0.12 mmol/L in the NND group and -0.03 ± 0.13 mmol/L in the ADD group (p = 0.001). Mean baseline phosphorus intake was 1950 ± 16 mg/10 MJ in the NND group and 1968 ± 22 mg/10 MJ in the ADD group and decreased less in the NND compared to the ADD (67 ± 36 mg/10 MJ and -266 ± 45 mg/day, respectively, p < 0.298). Contrary to expectations, the NND had a high phosphorus intake and did not decrease the fractional phosphorus excretion compared with ADD. Further modifications of the diet are needed in order to make this food concept beneficial regarding phosphorus absorption.

  10. Phosphorus metabolism in peritoneal dialysis- and haemodialysis-treated patients.

    PubMed

    Evenepoel, Pieter; Meijers, Björn K I; Bammens, Bert; Viaene, Liesbeth; Claes, Kathleen; Sprangers, Ben; Naesens, Maarten; Hoekstra, Tiny; Schlieper, Georg; Vanderschueren, Dirk; Kuypers, Dirk

    2016-09-01

    Phosphorus control is generally considered to be better in peritoneal dialysis (PD) patients as compared with haemodialysis (HD) patients. Predialysis phosphorus concentrations are misleading as a measure of phosphorus exposure in HD, as these neglect significant dialysis-related fluctuations. Parameters of mineral metabolism, including parathyroid hormone (PTH) and fibroblast growth factor-23 (FGF-23), were determined in 79 HD and 61 PD patients. In PD, phosphorus levels were determined mid-morning. In HD, time-averaged phosphorus concentrations were modelled from measurements before and after the mid-week dialysis session. Weekly renal, dialytic and total phosphorus clearances as well as total mass removal were calculated from urine and dialysate collections. Time-averaged serum phosphorus concentrations in HD (3.5 ± 1.0 mg/dL) were significantly lower than the mid-morning concentrations in PD (5.0 ± 1.4 mg/dL, P < 0.0001). In contrast, predialysis phosphorus concentrations (4.6 ± 1.4 mg/dL) were not different from PD. PTH and FGF-23 levels were significantly higher in PD. Despite higher residual renal function, total phosphorus clearance was significantly lower in PD (P < 0.0001). Total phosphorus mass removal, conversely, was significantly higher in PD (P < 0.05). Our data suggest that the time-averaged phosphorus concentrations in patients treated with PD are higher as compared with patients treated with HD. Despite a better preserved renal function, total phosphorus clearance is lower in patients treated with PD. Additional studies are needed to confirm these findings in a population with a different demographic profile and dietary background and to define clinical implications. © The Author 2016. Published by Oxford University Press on behalf of ERA-EDTA. All rights reserved.

  11. Benthic phosphorus regeneration in the Potomac River Estuary

    USGS Publications Warehouse

    Callender, E.

    1982-01-01

    The flux of dissolved reactive phosphate from Potomac riverine and estuarine sediments is controlled by processes occurring at the water-sediment interface and within surficial sediment. In situ benthic fluxes (0.1 to 2.0 mmoles m-2 day-1) are generally five to ten times higher than calculated diffusive fluxes (0.020 to 0.30 mmoles m-2 day-1). The discrepancy between the two flux estimates is greatest in the transition zone (river mile 50 to 70) and is attributd to macrofaunal irrigation. Both in situ and diffusive fluxes of dissolved reactive phosphate from Potomac tidal river sediments are low while those from anoxic lower estuarine sediments are high. The net accumulation rate of phosphorus in benthic sediment exhibits an inverse pattern. Thus a large fraction of phosphorus is retained by Potomac tidal river sediments, which contain a surficial oxidized layer and oligochaete worms tolerant of low oxygen conditions, and a large fraction of phosphorus is released from anoxic lower estuary sediments. Tidal river sediment pore waters are in equilibrium with amorphous Fe (OH)3 while lower estuary pore waters are significantly undersaturated with respect to this phase. Benthic regeneration of dissolved reactive phosphorus is sufficient to supply all the phosphorus requirements for net primary production in the lower tidal river and transition-zone waters of the Potomac River Estuary. Benthic regeneration supplies approximately 25% as much phosphorus as inputs from sewage treatment plants and 10% of all phosphorus inputs to the tidal Potomac River. When all available point source phosphorus data are put into a steady-state conservation of mass model and reasonable coefficients for uptake of dissolved phosphorus, remineralization of particulate phosphorus, and sedimentation of particulate phosphorus are used in the model, a reasonably accurate simulation of dissolved and particulate phosphorus in the water column is obtained for the summer of 1980. ?? 1982 Dr W. Junk

  12. Phytate phosphorus hydrolysis in broilers in response to dietary phytase, calcium, and phosphorus concentrations.

    PubMed

    Manangi, M K; Coon, C N

    2008-08-01

    Three 5-d bioassays were conducted to investigate the microbial phytase effect on apparent phytate phosphorus (PP) hydrolysis by 21-d-old broilers using corn-soybean meal basal diets. In Experiment 1, broilers fed corn-soy basal diet [0.7% Ca, 0.4% total P (TP), and 0.12% nonphytate P (NPP)] with 0, 250, 500, 750, 1,000, 1,500, 2,000, and 5,000 FTU of phytase/kg diet produced PP hydrolysis (%) of 43.12, 68.12, 74.7, 85.02, 85.25 92.77, 96.91, and 99.45, respectively. In Experiment 2, broilers fed corn-soy basal (0.5% Ca and 0.17% PP) without added phytase and 0.08, 0.13, 0.18, 0.23, 0.28, 0.33, 0.38, and 0.45% NPP had PP hydrolysis (%) of 8.5, 27.6, 26.4, 28.9, 26.3, 17.1, 21.0, and 27.7, respectively. Broilers fed the same 0.5% Ca basal and NPP concentrations with 1,000 FTU of phytase/kg of diet increased (P < 0.05) PP hydrolysis (%) to 80.9, 75.9, 73.5, 72.2, 68.4, 71.6, 58.3, and 62.5, respectively. Experiment 3 was conducted in the same way as Experiment 2 but Ca was maintained at 0.9% for all diets. Phytate P hydrolysis (%) without addition of phytase in 0.08, 0.13, 0.18, 0.23, 0.28, 0.33, 0.38, and 0.45% NPP-fed groups was 49.2, 19.6, 16.0, 8.0, 9.4, 2.1, 4.0, and 4.2, respectively. The addition of phytase increased (P < 0.05) PP hydrolysis (%) to 85.3, 76.1, 70.0, 76.1, 62.6, 68.6, 67.4, and 63.7, respectively. In conclusion, these studies indicated near-complete hydrolysis (99.45%) of PP at greater dietary phytase (5,000 FTU/kg) supplementation, but maximum TP retention was obtained with only 1,000 FTU of added phytase. Maximum PP hydrolysis occurred for broilers fed diets with 1,000 FTU added phytase when the diets contained the lowest concentration (0.08%) of dietary NPP with either 0.5 or 0.9% dietary Ca concentrations. These data also suggest that broilers fed 0.9% dietary Ca have a greater P physiological threshold before a loss in retention compared with broilers fed lower (0.5%) dietary Ca concentrations with no dietary phytase supplementation.

  13. Soil characteristics and phosphorus level effect on phosphorus loss in runoff.

    PubMed

    Davis, Randall L; Zhang, Hailin; Schroder, Jackie Lee; Wang, Jim J; Payton, Mark E; Zazulak, Anne

    2005-01-01

    The loss of phosphorus (P) in runoff from agricultural soils may accelerate eutrophication in lakes and streams as well as degrade surface water quality. Limited soil specific data exist on the relationship between runoff P and soil P. This study investigated the relationship between runoff dissolved reactive phosphorus (DRP) and soil P for three Oklahoma benchmark soils: Richfield (fine, smectitic, mesic Aridic Argiustoll), Dennis (fine, mixed, active, thermic Aquic Argiudoll), and Kirkland (fine, mixed, superactive, thermic Udertic Paleustoll) series. These soils were selected to represent the most important agricultural soils in Oklahoma across three major land resource areas. Surface soil (0-15 cm) was collected from three designated locations, treated with diammonium phosphate (18-46-0) to establish a wide range of water-soluble phosphorus (WSP) (3.15-230 mg kg(-1)) and Mehlich-3 phosphorus (M3P) (27.8-925 mg kg(-1)). Amended soils were allowed to reach a steady state 210 d before simulated rainfall (75 mm h(-1)). Runoff was collected for 30 min from bare soil boxes (1.0 x 0.42 m and 5% slope) and analyzed for DRP and total P. Soil samples collected immediately before rainfall simulation were analyzed for the following: M3P, WSP, ammonium oxalate P saturation index (PSI(ox)), water-soluble phosphorus saturation index (PSI(WSP)), and phosphorus saturation index calculated from M3P and phosphorus sorption maxima (P(sat)). The DRP in runoff was highly related (p < 0.001) to M3P for individual soil series (r2 > 0.92). Highly significant relationships (p < 0.001) were found between runoff DRP and soil WSP for the individual soil series (r2 > 0.88). Highly significant relationships (p < 0.001) existed between DRP and different P saturation indexes. Significant differences (p < 0.05) among the slopes of the regressions for the DRP-M3P, DRP-WSP, DRP-PSI(ox), DRP-PSI(WSP), and DRP-P(sat) relationships indicate that the relationships are soil specific and phosphorus

  14. Dietary phosphorus in bone health and quality of life.

    PubMed

    Takeda, Eiji; Yamamoto, Hironori; Yamanaka-Okumura, Hisami; Taketani, Yutaka

    2012-06-01

    Awareness of phosphorus intake is important because both phosphorus deficiency and overloading impair bone health and quality of life. Phosphorus consumption is increasing in many countries. Most dietary phosphorus is contained in protein-rich foods such as meat, milk, cheese, poultry, fish, and processed foods that contain phosphate-based additives to improve their consistency and appearance. Elevation of extracellular phosphorus levels causes endothelial dysfunction and medial calcification, which are closely associated with the development of cardiovascular disease (CVD). Long-term excessive phosphorus loading, even if it does not cause hyperphosphatemia, can be a risk factor for CVD. In epidemiological studies, higher levels of phosphorus intake have been associated with reduced blood pressure. Interestingly, when examined further, phosphorus from dairy products, but not from other sources, was usually associated with lower blood pressure. A dietary approach to phosphorus reduction is particularly important to prevent bone impairment and CVD in patients with chronic kidney disease. In order to improve bone health and quality of life in the general population, the impact of phosphorous, including in processed foods, should be considered, and measures to indicate the amount of phosphorous in food products should be implemented.

  15. Contributions to total phosphorus intake: all sources considered.

    PubMed

    Calvo, Mona S; Uribarri, Jaime

    2013-01-01

    High serum phosphorus is linked to poor health outcome and mortality in chronic kidney disease (CKD) patients before or after the initiation of dialysis. Dietary intake of phosphorus, a major determinant of serum phosphorus, seems to be systematically underestimated using the available software tools and generalized nutrient content databases. Several sources of dietary phosphorus including the addition of phosphorus ingredients in food processing, and phosphorus content of vitamin and mineral supplements and commonly used over-the-counter or prescription medications are not fully accounted for by the nutrient content databases and software programs in current clinical use or used in large population studies. In this review, we explore the many unknown sources of phosphorus in the food supply to identify all possible contributors to total phosphorus intake of Americans that have escaped inclusion in past intake estimates. Our goal is to help delineate areas for future interventions that will enable tighter control of dietary phosphorus intake, a critical factor to maintaining health and quality of life in CKD and dialysis patients.

  16. Method of removing and detoxifying a phosphorus-based substance

    DOEpatents

    Vandegrift, G.F.; Steindler, M.J.

    1985-05-21

    A method of removing a phosphorus-based poisonous substance from water contaminated is presented. In addition, the toxicity of the phosphorus-based substance is also subsequently destroyed. A water-immiscible organic solvent is first immobilized on a supported liquid membrane before the contaminated water is contacted with one side of the supported liquid membrane to absorb the phosphorus-based substance in the organic solvent. The other side of the supported liquid membrane is contacted with a hydroxy-affording strong base to react with phosphorus-based solvated species to form a non-toxic product.

  17. Calcium and phosphorus solubility in neonatal intravenous feeding solutions.

    PubMed Central

    MacMahon, P; Mayne, P D; Blair, M; Pope, C; Kovar, I Z

    1990-01-01

    The limited solubility of calcium and phosphorus in standard parenteral nutrition formulations has restricted the ability to provide sufficient minerals to preterm infants to prevent substrate deficient metabolic bone disease. We determined the solubility limits of calcium and phosphorus in a total of 160 formulations under carefully controlled conditions. By increasing the concentrations of dextrose, amino acids, and by using Addiphos instead of 8.7% dipotassium hydrogen phosphate as the phosphorus source, higher concentrations of both calcium and phosphorus were held in solution. This should permit the delivery of increased concentrations of these minerals at rates which approximate fetal accretion. PMID:2110803

  18. Electrically detected magnetic resonance studies of phosphorus doped diamond

    NASA Astrophysics Data System (ADS)

    Graf, T.; Brandt, M. S.; Nebel, C. E.; Stutzmann, M.; Koizumi, S.

    2001-12-01

    Phosphorus doped n-type epitaxial diamond films have been studied by electron spin resonance (ESR) and electrically detected magnetic resonance (EDMR). At low electric field, the dominant defects influencing the electronic transport are carbon dangling bonds, while at higher fields the anisotropic spin resonance signal of a new phosphorus-related center with g⊥=2.0026, g||=2.0042, Aiso=17.6 G, and Aaniso=1.8 G is observed. These results indicate that room temperature conductivity in this film is dominated by hopping via phosphorus-related defect centers rather than via hydrogenic donor states of phosphorus atoms on substitutional sites.

  19. The composition, dynamics, and ecological significance of soil organic phosphorus

    NASA Astrophysics Data System (ADS)

    Turner, B. L.

    2011-12-01

    Studies of plant nutrition often consider only inorganic phosphate to be biologically available, yet organic phosphorus is abundant in soils and its turnover can account for the majority of the phosphorus taken up by natural vegetation. Soil organic phosphorus occurs in a variety of chemical forms, including phosphomonoesters, phosphodiesters, phosphonates, and organic polyphosphates, which can be determined conveniently by alkaline extraction and solution phosphorus-31 nuclear magnetic resonance spectroscopy. The inositol phosphates are of particular interest, because they are widespread in soils, yet only one of the four stereoisomers of inositol hexakisphosphate present in soils has been detected elsewhere in the environment. The mobility and bioavailability of the various organic phosphorus compounds differs depending on factors such as their interaction with metal oxide surfaces, which leads to a disparity between the forms of organic phosphorus entering the soil and the composition of the stable soil organic phosphorus pool. During long-term pedogenesis, organic phosphorus accumulates in the early nitrogen-limited stages of ecosystem development, but then declines as phosphorus-limitation strengthens in old soils. At the same time, the composition of the organic phosphorus varies; for example, the inositol phosphates decline to become a small proportion of the total organic phosphorus in old soils, presumably indicating their potential availability under conditions of strong phosphorus limitation. Plants have evolved a variety of mechanisms to acquire phosphorus from organic compounds, including the synthesis of phosphatase enzymes and the secretion of organic anions. Phosphatase activity is linked strongly to soil organic phosphorus concentrations, as indicated by broad surveys of tropical forest soils, fertilization experiments, and patterns observed during long-term ecosystem development. Organic anion secretion is often linked to inorganic phosphate

  20. Distributions of particle-bound phosphorus in an urbanized estuary

    SciTech Connect

    Lebo, M.L. )

    1990-01-09

    The buffering of phosphate concentrations has been suggested in many estuaries including the Delaware. Previous study in the Delaware Estuary has shown that throughout most of the year (July-February) phosphate concentrations in the low salinity (S < 15 ppt) region are fairly constant ranging 1.5-2.5 [mu]M. Analysis of the suspended particulate matter reveals that there is a continual decrease in total particulate phosphorus ([mu]mole/g) with increasing salinity suggesting the release of particle-bound phosphorus. Analysis of the suspended particulate matter of the Delaware Estuary through sequential leaching extractions reveals phosphorus to be associated with iron, aluminum, calcium, and organic matter. In the organized river, a majority of the inorganic particulate phosphorus (67%) is associated with iron (25%) and aluminum (18%) while only a small fraction (3%) is associated with calcium. The proportions of each fraction, however, change during estuarine mixing. As salinity increases, less particulate phosphorus is associated with iron and aluminum, and calcium-bound phosphorus becomes more important. Simulated estuarine mixing in the laboratory revealed a release of phosphorus with increasing salinity. Particle-bound phosphorus associated with iron and aluminum was observed to decrease during mixing suggesting iron- and aluminum-bound phosphorus are important in the buffering of phosphate in the Delaware.

  1. Water quality criteria for white phosphorus: Final report. [Contains glossary

    SciTech Connect

    Davidson, K.A.; Hovatter, P.S.; Sigmon, C.F.

    1987-08-01

    Data obtained from a review of the literature concerning the environmental fate and aquatic and mammalian toxicity of white phosphorus are presented to derive Water Quality Criteria for the protection of humans and aquatic organisms and their uses. Laboratory and field studies indicate that white phosphorus is quite toxic to aquatic organisms, with fish being more sensitive than macroinvertebrates. Bioaccumulation is rapid and extensive, with the greatest uptake in the liver and muscle of fish and the hepatopancreas of lobster; however, depuration occurs within 7 days postexposure. Other toxic effects to aquatic organisms include cardiovascular and histological changes. Field studies indicate that effluents containing white phosphorus adversely affect receiving aquatic systems by decreasing diversity and increasing mortality of select species. Acute exposure to white phosphorus causes similar effects in laboratory animals and humans. In the absence of medical treatment, the estimated minimal lethal dose of white phosphorus in humans is 100 mg (1.4 mg/kg). Following ingestion, organs damaged by white phosphorus are the gastrointestinal tract, liver, kidney, brain, and cardiovascular system. Chronic and subchronic exposure of laboratory animals to white phosphorus by oral or subcutaneous routes results in reduced growth, reduced survival at high does, increased survival at low doses, and bone pathology. Humans chronically exposed to white phosphorus in the occupational environment develop a specific lesion (different from that observed in laboratory animals) called phosphorus necrosis of the jawbone or ''phossy jaw.'' 139 refs., 1 fig., 18 tabs.

  2. NMR and mass spectrometry of phosphorus in wetlands

    USGS Publications Warehouse

    El-Rifai, H.; Heerboth, M.; Gedris, T.E.; Newman, S.; Orem, W.; Cooper, W.T.

    2008-01-01

    There is at present little information on the long-term stability of phosphorus sequestered in wetlands. Phosphorus sequestered during high loading periods may be relatively unstable and easily remobilized following changes in nutrient status or hydrological regime, but the chemical forms of sequestered phosphorus that do remobilize are largely unknown at this time. A lack of suitable analytical techniques has contributed to this dearth of knowledge regarding the stability of soil organic phosphorus. We analysed phosphorus in soils from the 'head' of Rescue Strand tree island and an adjacent marsh in the Florida Everglades by 31P nuclear magnetic resonance (NMR) spectroscopy and high-resolution mass spectrometry. Tree islands are important areas of biodiversity within the Everglades and offer a unique opportunity to study phosphorus sequestration because they are exposed to large phosphorus loads and appear to be natural nutrient sinks. The 31P NMR profiling of extracts from surface and sediment samples in the tree island indicates that phosphorus input to Rescue Strand tree island soils is mostly in the form of inorganic ortho-phosphate and is either refractory when deposited or rapidly recycled by the native vegetation into a stable phosphorus pool largely resistant to re-utilization by plants or microbes. Mass spectrometry revealed the presence of inositol hexakisphosphate, a common organic monophosphate ester not previously observed in Everglades' soils. ?? 2008 The Authors.

  3. Phosphorus Fate and Dynamics in Greywater Biofiltration Systems.

    PubMed

    Fowdar, Harsha S; Hatt, Belinda E; Cresswell, Tom; Harrison, Jennifer J; Cook, Perran L M; Deletic, Ana

    2017-02-21

    Phosphorus, a critical environmental pollutant, is effectively removed from stormwater by biofiltration systems, mainly via sedimentation and straining. However, the fate of dissolved inflow phosphorus concentrations in these systems is unknown. Given the growing interest in using biofiltration systems to treat other polluted waters, for example greywater, such an understanding is imperative to optimize designs for successful long-term performance. A mass balance method and a radiotracer, (32)P (as H3PO4), were used to investigate the partitioning of phosphorus (concentrations of 2.5-3.5 mg/L, >80% was in dissolved inorganic form) between the various biofilter components at the laboratory scale. Planted columns maintained a phosphorus removal efficiency of >95% over the 15-week study period. Plant storage was found to be the dominant phosphorus sink (64% on average). Approximately 60% of the phosphorus retained in the filter media was recovered in the top 0-6 cm. The (32)P tracer results indicate that adsorption is the immediate primary fate of dissolved phosphorus in the system (up to 57% of input P). Plant assimilation occurs at other times, potentially liberating sorption sites for processing of subsequent incoming phosphorus. Plants with high nutrient uptake capacities and the ability to efficiently extract soil phosphorus, for example Carex appressa, are, thus, recommended for use in greywater biofilters.

  4. Calcium and phosphorus solubility in neonatal intravenous feeding solutions.

    PubMed

    MacMahon, P; Mayne, P D; Blair, M; Pope, C; Kovar, I Z

    1990-04-01

    The limited solubility of calcium and phosphorus in standard parenteral nutrition formulations has restricted the ability to provide sufficient minerals to preterm infants to prevent substrate deficient metabolic bone disease. We determined the solubility limits of calcium and phosphorus in a total of 160 formulations under carefully controlled conditions. By increasing the concentrations of dextrose, amino acids, and by using Addiphos instead of 8.7% dipotassium hydrogen phosphate as the phosphorus source, higher concentrations of both calcium and phosphorus were held in solution. This should permit the delivery of increased concentrations of these minerals at rates which approximate fetal accretion.

  5. Determination of phosphorus in natural waters: A historical review.

    PubMed

    Worsfold, Paul; McKelvie, Ian; Monbet, Phil

    2016-04-28

    The aim of this paper is to introduce a virtual special issue that reviews the development of analytical approaches to the determination of phosphorus species in natural waters. The focus is on sampling and sample treatment, analytical methods and quality assurance of the data. The export of phosphorus from anthropogenic activities (from diffuse and point sources) can result in increased primary production and eutrophication, and potentially the seasonal development of toxic algal blooms, which can significantly impact on water quality. Therefore the quantification of phosphorus species in natural waters provides important baseline data for studying aquatic phosphorus biogeochemistry, assessing ecosystem health and monitoring compliance with legislation.

  6. Phosphorus removal from domestic wastewater by Echinodorus cordifolius L.

    PubMed

    Torit, Jirawan; Siangdung, Wipawan; Thiravetyan, Paitip

    2012-01-01

    This study was to use the plants to remove phosphorus from domestic wastewater which contained high phosphorus concentration. Six higher plant species such as Crinum asiaticum L., Echinodorus cordifolius L., Spathiphyllum clevelandii Schott, Rhizophora apiculata Blume, Thalia dealbata J.fraser., Heliconia psittacorum L.f. were screened for phosphorus removal. Plants were grown in the domestic wastewater and the remaining phosphorus-phosphate concentration in the systems was determined. The results indicated that among studied plants, Echinodorus cordifolius L. was the best for phosphorus removal. Using this plant will improve the quality of domestic wastewater which contained excess phosphorus concentration and induced eutrophication. The relationship between the plants, microorganisms, and soil in the system were also investigated. In this system, adsorption by soil was the major role for phosphorus removal (71%), followed by E. cordifolius (16%), microorganisms in domestic wastewater (7%), and microorganisms in soil (6%). These results indicated the ability of E. cordifolius to remove phosphorus which was superior to that of the microorganisms in the system. Moreover, the rapid phosphorus removal was concomitant to the growth, photosynthesis activity and biomass of E. cordifolius grown in domestic wastewater. The C:N:P ratio of E. cordifolius tissue in the system indicated that elements were taken up from the wastewater. From these results, the suitability of E. cordifolius for domestic wastewater treatment was confirmed.

  7. A novel approach for phosphorus recovery and no wasted sludge in enhanced biological phosphorus removal process with external COD addition.

    PubMed

    Xia, Cheng-Wang; Ma, Yun-Jie; Zhang, Fang; Lu, Yong-Ze; Zeng, Raymond J

    2014-01-01

    In enhanced biological phosphorus removal (EBPR) process, phosphorus (P) in wastewater is removed via wasted sludge without actual recovery. A novel approach to realize phosphorus recovery with special external chemical oxygen demand (COD) addition in EBPR process was proposed. During the new operating approach period, it was found that (1) no phosphorus was detected in the effluent; (2) with an external addition of 10 % of influent COD amount, 79 % phosphorus in the wastewater influent was recovered; (3) without wasted sludge, the MLVSS concentration in the system increased from 2,010 to 3,400 mg/L and kept stable after day 11 during 24-day operating period. This demonstrates that the novel approach is feasible to realize phosphorus recovery with no wasted sludge discharge in EBPR process. Furthermore, this approach decouples P removal and sludge age, which may enhance the application of membrane bioreactor for P removal.

  8. Ascorbic acid, calcium, phosphorus and magnesium intake variations: effects on calcium, phosphorus and magnesium utilization by human adults

    SciTech Connect

    Kies, C.; Brennan, M.A.; Parks, S.K.; Stauffer, D.J.; Wang, H.Y.; Young, S.F.; Fox, H.M.

    1986-03-01

    The objective of the study was to determine the effects of feeding two levels of ascorbic acid, calcium, phosphorus, magnesium and ascorbic acid on the apparent utilization of calcium, phosphorus and magnesium by healthy, human adult subjects. During 4 randomly-arranged experimental periods of 7 days each, a laboratory-controlled diet alone or with supplements of ascorbic acid, dicalcium phosphate or magnesium oxide was fed to the 18 subjects. Results indicated that ascorbic acid supplementation tended to reduce urinary phosphorus loss and to slightly increase fecal phosphorus loss so that overall phosphorus balances became more positive. Conversely, under these conditions, urinary calcium losses were little affected but fecal calcium losses were increased resulting in an overall decrease in calcium balance with ascorbic acid supplementation. Ascorbic acid supplementation resulted in decreased urine and fecal losses of magnesium and more positive magnesium balances. Magnesium supplementation resulted in more positive calcium and phosphorus balances as did calcium phosphate supplementation on magnesium balance.

  9. Simultaneous nitrification and denitrification with anoxic phosphorus uptake in a membrane bioreactor system.

    PubMed

    Patel, Jignesh; Nakhla, George

    2006-10-01

    The performance of an innovative membrane bioreactor (MBR) process using anoxic phosphorus uptake with nitrification and denitrification for the treatment of municipal wastewater with respect to operational performance and effluent quality is addressed in this paper. The system was operated at steady-state conditions with a synthetic acetate-based wastewater at a hydraulic retention time (HRT) of 12 hours and on degritted municipal wastewater at a total system HRT of 6 hours. The MBR system was able to achieve 99% biochemical oxygen demand (BOD), chemical oxygen demand (COD), and ammonia-nitrogen (NH4(+)-N); 98% total Kjeldahl nitrogen (TKN); and 97% phosphorus removal, producing effluent BOD, COD, NH4+-N, TKN, nitrate-nitrogen, nitrite-nitrogen, and phosphate-phosphorus of <3, 14, 0.2, 0.26, 5.8, 0.21, and <0.01 mg/L, respectively, at the 6-hour HRT. The comparison of the synthetic and municipal wastewater run is presented in this paper. Steady-state mass balance on municipal wastewater was performed to reveal some key features of the modified MBR system.

  10. The effects of high phosphorus intake on calcium homeostasis.

    PubMed

    Calvo, M S

    1994-01-01

    Survey data confirm that the dietary pattern of many American women who are at high risk of developing osteoporosis is typically high in phosphorus and low in calcium. The imbalance between calcium and phosphorus intake may become more pronounced with continued changes in food preferences and the growing use of phosphorus-containing food additives. Recent studies in young women have shown that a high phosphorus diet moderately low in calcium results in a mild secondary hyperparathyroidism that persists over 4 weeks. Plasma levels of calcitriol did not change despite changes in PTH and serum ionized calcium. Studies on men have shown that dietary phosphorus at levels within the normal range of intakes can affect the renal production and serum concentration of calcitriol. High phosphorus intakes for ten days reduced their plasma calcitriol levels; a 70% reduction in phosphate intake significantly increased their plasma calcitriol. Thus, several lines of evidence indicate that prolonged high phosphorus intake may impair the usual homeostatic mechanisms that come into play when dietary calcium is limited. This, in turn, could impair achievement of maximal bone mass or accelerate bone loss. Although no clinical studies have linked high phosphorus intake with lower bone mass or higher rates of bone loss in humans, this relationship has been demonstrated in animal models. For example, young beagles fed high phosphorus, moderately low calcium diets showed a significant reduction in vertebral bone mass. Current dietary patterns of high phosphorus, low calcium consumption result in persistent changes in calcium regulating hormones that are not conducive to maximizing peak bone mass during growth or slowing the rate of aging bone loss. The net effect of the present dietary pattern on bone status, particularly in teenage and young adult women, needs to be determined. Optimal nutrition early in life, which may include higher calcium and lower phosphorus intakes, together with

  11. [Modelling nitrogen and phosphorus transfer in Potamogeton malaianus Miq. decompostion].

    PubMed

    Han, Hong-Juan; Zhai, Shui-Jing; Hu, Wei-Ping

    2010-06-01

    Potamogeton malaianus Miq. is one of the dominant species of submerged aquatic vegetations in Lake Taihu, China. The decomposition of its debris and metabolic detritus is an important part of nutrients cycling in the lake water. Nitrogen and phosphorus transfer model in P. malaianus Miq. decomposition has been set up based on an indoor P. malaianus Miq. decomposition experiment to quantitatively characterize the decomposition process. It mainly focuses on the dissolving process of inorganic nitrogen and phosphorus in P. malaianus Miq., the degradation process of its organic nitrogen and phosphorus, and the boundary's adsorbing process of nitrogen and phosphorus in water. There are eight state variables in the model, including inorganic and organic nitrogen in P. malaianus Miq., inorganic and organic phosphorus in P. malaianus Miq., total nitrogen and total phosphorus in water, and nitrogen and phosphorus adsorbed on container boundary. The model calibration showed a good accordance with the observed results of P. malaianus Miq. decomposition experiment. The dissolve rates of inorganic nitrogen and phosphorus in P. malaianus Miq. are 0.04 d(-1) and 0.06 d(-1) respectively. And the decompose rates of these two state variables are 0.005 25 d(-1) and 0.010 44 d(-1) respectively. Model outputs show that 6.7% nitrogen and 35.8% phosphorus can release from P. malaianus Miq. in the former 5 days. Phosphorus release is prior to nitrogen due to the bigger inorganic/organic ratio of phosphorus than that of nitrogen in P. malaianus Miq., Decomposition of P. malaianus Miq. could be affected by water temperature, and the affection is slight when water temperature is lower according to the model. The model also showed that P. malaianus Miq. decomposition process has influences on water quality in the former days, which can be eliminated by adsorbing process later.

  12. 24-Hour Urine Phosphorus Excretion and Mortality and Cardiovascular Events

    PubMed Central

    Palomino, Heather L.; Rifkin, Dena E.; Anderson, Cheryl; Criqui, Michael H.; Whooley, Mary A.

    2013-01-01

    Summary Background and objectives Higher morning serum phosphorus has been associated with cardiovascular disease (CVD) in patients with or without CKD. In patients with CKD and a phosphorous level >4.6 mg/dl, the Kidney Disease Improving Global Outcomes guidelines recommend dietary phosphorus restriction. However, whether phosphorus restriction influences serum phosphorus concentrations and whether dietary phosphorus is itself associated with CVD or death are uncertain. Design, setting, participants, & measurements Among 880 patients with stable CVD and normal kidney function to moderate CKD, 24-hour urine phosphorus excretion (UPE) and serum phosphorus were measured at baseline. Participants were followed for a median of 7.4 years for CVD events and all-cause mortality. Results Mean ± SD age was 67±11 years, estimated GFR (eGFR) was 71±22 ml/min per 1.73 m2, and serum phosphorus was 3.7±0.6 mg/dl. Median UPE was 632 (interquartile range, 439, 853) mg/d. In models adjusted for demographic characteristics and eGFR, UPE was weakly and nonsignificantly associated with serum phosphorus (0.03 mg/dl higher phosphorus per 300 mg higher UPE; P=0.07). When adjusted for demographics, eGFR, and CVD risk factors, each 300-mg higher UPE was associated with 17% lower risk of CVD events. The association of UPE with all-cause mortality was not statistically significant (hazard ratio, 0.93; 95% confidence interval, 0.82 to 1.05). Results were similar irrespective of CKD status (P interactions > 0.87). Conclusions Among outpatients with stable CVD, the magnitude of the association of UPE with morning serum phosphorus is modest. Greater UPE is associated with lower risk for CVD events. The association was similar for all-cause mortality but was not statistically significant. PMID:23539231

  13. Phosphorus solubility of agricultural soils: a surface charge and phosphorus-31 NMR speciation study

    USDA-ARS?s Scientific Manuscript database

    We investigated ten soils from six states in United States to determine the relationship between potentiometric titration derived soil surface charge and Phosphorus-31 (P) nuclear magnetic resonance (NMR) speciation with the concentration of water-extractable P (WEP). The surface charge value at the...

  14. Influence of soil phosphorus and manure on phosphorus leaching in Swedish topsoils

    USDA-ARS?s Scientific Manuscript database

    In Sweden, subsurface transport of phosphorus (P) represents the primary pathway of concern to surface water quality. While strong relationships have been consistently observed between P in surface runoff and soil test P, there have been mixed findings linking P in leachate with soil test P. To expl...

  15. Calcium effect on the metabolic pathway of phosphorus accumulating organisms in enhanced biological phosphorus removal systems.

    PubMed

    Zhang, Hai-Ling; Sheng, Guo-Ping; Fang, Wei; Wang, Yong-Peng; Fang, Cai-Yun; Shao, Li-Min; Yu, Han-Qing

    2015-11-01

    Phosphorus accumulating organisms (PAOs) have been found to act as glycogen-accumulating organisms (GAOs) under certain conditions, thus, the deterioration in the performance of enhanced biological phosphorus removal systems is not always attributed to the proliferation of GAOs. In this work, the effects of calcium on the metabolic pathway of PAOs were explored. It was found that when the influent Ca(2+) concentration was elevated, the tendency and extent of extracellular calcium phosphate precipitation increased, and the intracellular inert Ca-bound polyphosphate was synthesized, while the microbial population remained almost unchanged. The changes in the ratios of phosphorus released/acetate uptaken, the glycogen degraded/acetate uptaken and the poly-β-hydroxyalkanoates synthesized/acetate uptaken during the anaerobic period confirm that, as the influent Ca(2+) concentration was increased, the polyphosphate-accumulating metabolism was partially shifted to the glycogen-accumulating metabolism. At an influent Ca(2+) around 50 mg/L, in addition to the extracellular calcium phosphate precipitation, the intracellular inert Ca-bound polyphosphate synthesis might also be involved in the metabolic change of PAOs. The results of the present work would be beneficial to better understand the biochemical metabolism of PAOs in enhanced biological phosphorus removal systems. Copyright © 2015 Elsevier Ltd. All rights reserved.

  16. Influence of ignited sediments on external phosphorus adsorption and sedimentary phosphorus forms.

    PubMed

    Zhu, PeiYing; Li, DaPeng; Huang, Yong; Li, Yong

    2017-08-15

    Phosphorus (P) adsorpted by sediments, when covered by and mixed with ignited sediments from Meiliang Bay in Tai Lake, was analyzed in the laboratory. Potassium dihydrogen phosphate (KH2PO4) was added to the parallel experimental units to simulate periodic external P input. Based on the Langmuir model, the sediments after ignition had a greater Smax (maximum P adsorption), a lower equilibrium phosphorus concentration at zero adsorption (EPC0), and a lower degree of phosphorus saturation in comparison with sediments without ignition. This was confirmed by the variation in the dissolved inorganic phosphorus in the overlying water. When sediments were mixed with or covered by the ignited sediments, 5.985 and 5.978 mg of input P disappeared from the overlying water, respectively. However, when the sediments were mixed with the ignited sediments, 84.18% of the input P was converted to HCl-P, whereas when they were covered by the ignited sediments, sedimentary P was released, mainly from Fe/Al-P (up to 87.50%). This was attributed to differences in the microenvironments where less-intense anaerobic conditions were formed in the mixed sediments than in the sediments covered by the ignited sediments. This suggests that the injection of ignited sediments into existing sediments enhances their P adsorption and retention. It is favor of the control of the eutrophication with a simple technology.

  17. Estimating Phosphorus Loss in Runoff from Manure and Fertilizer for a Phosphorus Loss Quantification Tool

    USDA-ARS?s Scientific Manuscript database

    Non-point source pollution of fresh waters by phosphorus (P) is a concern because it contributes to accelerated eutrophication. Qualitative P Indexes that estimate the risk of field-scale P loss have been developed in the USA and Europe. However, given the state of the science concerning agricultura...

  18. Transformation of apatite phosphorus and non-apatite inorganic phosphorus during incineration of sewage sludge.

    PubMed

    Li, Rundong; Zhang, Ziheng; Li, Yanlong; Teng, Wenchao; Wang, Weiyun; Yang, Tianhua

    2015-12-01

    The recovery of phosphorus from incinerated sewage sludge ash (SSA) is assumed to be economical. Transformation from non-apatite inorganic phosphorus (NAIP) to apatite phosphorus (AP), which has a higher bioavailability and more extensive industrial applications, was studied at 750-950°C by sewage sludge incineration and model compound incineration with a calcium oxide (CaO) additive. Thermogravimetric differential scanning calorimetry analysis and X-ray diffraction measurements were used to analyze the reactions between NAIP with CaO and crystallized phases in SSA. High temperatures stimulated the volatilization of NAIP instead of AP. Sewage sludge incineration with CaO transformed NAIP into AP, and the percentage of AP from the total phosphorus reached 99% at 950°C. Aluminum phosphate reacted with CaO, forming Ca2P2O7 and Ca3(PO4)2 at 750-950°C. Reactions between iron phosphate and CaO occurred at lower temperatures, forming Ca(PO3)2 before reaching 850°C.

  19. Effect of land application of phosphorus-saturated gypsum on soil phosphorus in a laboratory incubation

    USDA-ARS?s Scientific Manuscript database

    Agricultural drainage ditches can deliver high loads of phosphorus (P) to surface water. Installation of filter structures containing P sorbing materials (PSMs), including gypsum, is an emerging practice that has shown promise to reduce these P loads. The objective of this study was to evaluate what...

  20. Sensing soil and foliar phosphorus fluorescence in Zea mays in response to large phosphorus additions

    USDA-ARS?s Scientific Manuscript database

    Additions of large loads of phosphorus (P) enriched animal manure to soils and the persistence of their environmental impact have been associated with continued surface water quality impairments in regions of high density of confined animal feeding operations. Foliar P in corn (Zea mays L.) and chan...

  1. Urban phosphorus sustainability: Systemically incorporating social, ecological, and technological factors into phosphorus flow analysis

    Treesearch

    Genevieve S. Metson; David M. Iwaniec; Lawrence A. Baker; Elena M. Bennett; Daniel L. Childers; Dana Cordell; Nancy B. Grimm; J. Morgan Grove; Daniel A. Nidzgorski; Stuart. White

    2015-01-01

    Phosphorus (P) is an essential fertilizer for agricultural production but is also a potent aquatic pollutant. Current P management fails to adequately address both the issue of food security due to P scarcity and P pollution threats to water bodies. As centers of food consumption and waste production, cities transport and store much P and thus provide important...

  2. Evaluation of a quantitative phosphorus transport model for potential improvement of southern phosphorus indices

    USDA-ARS?s Scientific Manuscript database

    Due to a shortage of available phosphorus (P) loss data sets, simulated data from a quantitative P transport model could be used to evaluate a P-index. However, the model would need to accurately predict the P loss data sets that are available. The objective of this study was to compare predictions ...

  3. Carbon dioxide diffusion across stomata and mesophyll and photo-biochemical processes as affected by growth CO2 and phosphorus nutrition in cotton

    USDA-ARS?s Scientific Manuscript database

    Nutrients such as phosphorus availability may exert a major control over plant response to rising atmospheric carbon dioxide concentration (CO2), which is projected to double by the end of 21st century. Elevated CO2 may overcome the diffusional limitation to photosynthesis posed by stomata and mesop...

  4. Disorders Involving Calcium, Phosphorus, and Magnesium

    PubMed Central

    Moe, Sharon M.

    2008-01-01

    Abnormalities of calcium, phosphorus and magnesium homeostasis are common, and collectively are called disorders of mineral metabolism. Normal homeostatic regulation maintains serum levels, intracellular levels, and optimal mineral content in bone. This regulation occurs at three major target organs, the intestine, kidney and bone, principally via the complex integration of two hormones, parathyroid hormone and vitamin D. An understanding of normal physiology is necessary to accurately diagnose and treat disorders of mineral metabolism and will be briefly reviewed before discussing the differential diagnosis and treatment of specific disorders. PMID:18486714

  5. Elastic properties of suspended black phosphorus nanosheets

    SciTech Connect

    Wang, Jia-Ying; Li, Yang; Zhen, Liang; Xu, Cheng-Yan; Zhan, Zhao-Yao; Li, Tie

    2016-01-04

    The mechanical properties of black phosphorus (BP) nanosheets suspended over circular holes were measured by an atomic force microscope nanoindentation method. The continuum mechanic model was introduced to calculate the elastic modulus and pretension of BP nanosheets with thicknesses ranging from 14.3 to 34 nm. Elastic modulus of BP nanosheets declines with thickness, and the maximum value is 276 ± 32.4 GPa. Besides, the effective strain of BP ranges from 8 to 17% with a breaking strength of 25 GPa. Our results show that BP nanosheets serve as a promising candidate for flexible electronic applications.

  6. Phosphorus donors in highly strained silicon.

    PubMed

    Huebl, Hans; Stegner, Andre R; Stutzmann, Martin; Brandt, Martin S; Vogg, Guenther; Bensch, Frank; Rauls, Eva; Gerstmann, Uwe

    2006-10-20

    The hyperfine interaction of phosphorus donors in fully strained Si thin films grown on virtual Si(1-x)Ge(x) substrates with x< or =0.3 is determined via electrically detected magnetic resonance. For highly strained epilayers, hyperfine interactions as low as 0.8 mT are observed, significantly below the limit predicted by valley repopulation. Within a Green's function approach, density functional theory shows that the additional reduction is caused by the volume increase of the unit cell and a relaxation of the Si ligands of the donor.

  7. Management of phosphorus load in CKD patients.

    PubMed

    Taketani, Yutaka; Koiwa, Fumihiko; Yokoyama, Keitaro

    2017-03-01

    Disturbances in mineral and bone metabolism play a critical role in the pathogenesis of cardiovascular complications in patients with chronic kidney disease (CKD). The term "renal osteodystrophy" has recently been replaced with "CKD-mineral and bone disorder (CKD-MBD)", which includes vascular calcification as well as bone abnormalities. In Japan, proportions of the aged and long-term dialysis patients are increasing which makes management of vascular calcification and parathyroid function increasingly more important. There are three main strategies to manage phosphate load: phosphorus dietary restriction, administration of phosphate binder and to ensure in the CKD 5D setting, an adequate dialysis.

  8. Enhanced diffusion of phosphorus at grain boundaries

    NASA Technical Reports Server (NTRS)

    Cheng, L. J.; Shyu, C. M.; Stika, K. M.; Daud, T.; Crotty, G. T.

    1982-01-01

    Enhanced diffusion of phosphorus at grain boundaries in cast polycrystalline photovoltaic materials (Wacker, HEM, and Semix) was studied. It was found that the enhancements for the three materials were the same, indicating that the properties of boundaries are similar, even though they were grown by different techniques. In addition, it was observed that grain boundaries capable of enhancing the diffusion always have strong recombination activities. Both phenomena could be related to dangling bonds existing at the boundaries. The present study gives the first evidence that incoherent second order twins of 111/115-plane type are diffusion-active.

  9. Enhanced diffusion of phosphorus at grain boundaries

    NASA Technical Reports Server (NTRS)

    Cheng, L. J.; Shyu, C. M.; Stika, K. M.; Daud, T.; Crotty, G. T.

    1982-01-01

    Enhanced diffusion of phosphorus at grain boundaries in cast polycrystalline photovoltaic materials (Wacker, HEM, and Semix) was studied. It was found that the enhancements for the three materials were the same, indicating that the properties of boundaries are similar, even though they were grown by different techniques. In addition, it was observed that grain boundaries capable of enhancing the diffusion always have strong recombination activities. Both phenomena could be related to dangling bonds existing at the boundaries. The present study gives the first evidence that incoherent second order twins of 111/115-plane type are diffusion-active.

  10. Enhanced biological phosphorus removal employing EDTA disodium

    SciTech Connect

    Bojinova, D.; Velkova, R.

    1996-12-31

    The biological phosphorus removal is a promising alternative to the conventional chemical technologies for processing of phosphate raw materials. The object of this study was the effect of EDTA disodium on the biotreatment of tunisian phosphorite with the strain of Aspergillus niger. The incubation was carried out in two nutritive mediums, with different phosphate content. The experimental results showed that the additives of EDTA disodium in the nutritive medium increased the rate of extraction of P{sub 2}O{sub 5} and shortened significantly the time for biological leaching. 5 refs., 3 figs., 2 tabs.

  11. Assessment risk of phosphorus leaching from calcareous soils using soil test phosphorus.

    PubMed

    Jalali, Mohsen; Jalali, Mahdi

    2017-03-01

    Accurate estimation of phosphorus (P) leaching is important because excess P may reduce surface and ground water quality. Little attention has been paid to estimate P leaching from soil tests in calcareous soils. The relation between different soil tests P (STP), P sorption index (PSI) and degree of P saturation (DPS) and leaching of P were examined for assessing the risk of P loss from calcareous soils. Columns leaching repacked with native soils were leached with either distilled water or 10 mM CaCl2 solutions, separately. Four leaching events were performed at four days, and 28.7 mm of distilled water or 10 mM CaCl2 solutions was applied at each leaching events. Compared with distilled water, CaCl2 had a small ability to solubilize P from soils. Concentration of P in leachate in both leaching solutions was exceeding 0.1 mg l(-1) associated with eutrophication. Cumulative P leached P was ranged from 0.17 to 18.59 mg P kg(-1) and 0.21-8.16 mg P kg(-1), when distilled water and 10 mM CaCl2 solutions were applied, respectively and it was higher in sandy clay loam soils compared with clay soils. Among evaluated environmental soil P tests, PCaCl2-3h (P extracted by 10 mM CaCl2 for 3 h), PCaCl2-1h (P extracted by 10 mM CaCl2 for 1 h) were more accurate than other soil P tests for predicting P concentration in the leachates in both leaching solutions and accounting for 83% and 72% of variation of P concentration, respectively. The water extractable P (WEP) (r = 0.771) and Olsen-P (POls)(r = 0.739) were significantly related to the leached P concentration using distilled water solution in a split line model, with a change point of 27.4 mg P kg(-1) and 61.5 mg P kg(-1), respectively. Various DPS were calculated and related to the leached P concentration. Based on P extracted by Mehlich-3 (PM3) and HCl (PHCl) and PSI, the change point of the relationship between leached P concentration and DPSM3-3 (PM3(PM3+PSI)×100) and DPSHCl-2 (PHCl(PHCl+PSI)×100

  12. Phytase supplementation and reduced-phosphorus turkey diets reduce phosphorus loss in runoff following litter application.

    PubMed

    Maguire, R O; Sims, J T; Applegate, T J

    2005-01-01

    Concerns about regional surpluses of manure phosphorus (P) leading to increased P losses in runoff have led to interest in diet modification to reduce P concentrations in diets. The objectives of this study were to investigate how dietary P amendment affected P concentrations in litters and P losses in runoff following land application. We grew two flocks of turkeys on the same bed of litter using diets with two levels of non-phytate phosphorus (NPP), with and without phytase. The litters were incorporated into three soils in runoff boxes at a plant-available nitrogen (PAN) rate of 168 kg PAN/ha, with runoff generated on Days 1 and 7 under simulated rainfall and analyzed for dissolved reactive phosphorus (DRP) and total P. Litters were analyzed for water-soluble phosphorus (WSP) and total P, while soils in the runoff boxes were analyzed for WSP and Mehlich-3 phosphorus (M3-P). Formulating diets with lower NPP and phytase both decreased litter total P. Phytase had no significant effect on litter WSP at a 1:200 litter to water extraction ratio, but decreased WSP at a 1:10 extraction ratio. Using a combination of reducing NPP fed and phytase decreased the total P application rate by up to 38% and the P in surplus of crop removal by approximately 48%. Reducing the NPP fed reduced DRP in runoff from litter-amended soils at Day 1, while phytase had no effect on DRP concentrations. Increase in soil M3-P was dependent on total P applied, irrespective of diet. Reducing overfeeding of NPP and utilizing phytase in diets for turkeys should decrease the buildup of P in soils in areas of intensive poultry production, without increasing short-term concerns about dissolved P losses.

  13. Hole dephasing caused by hole-hole interaction in a multilayered black phosphorus.

    PubMed

    Li, Lijun; Khan, Muhammad Atif; Lee, Yoontae; Lee, Inyeal; Yun, Sun Jin; Youn, Doo-Hyeb; Kim, Gil-Ho

    2017-09-26

    We study the magnetotransport of holes in a multilayered black phosphorus in a temperature range of 1.9 to 21.5 K. We observed a negative magnetoresistance at magnetic fields up to 1.5 T. This negative magetoresistance was analyzed by weak localization theory in diffusive regime. At the lowest temperature and the highest carrier density we found a phase coherence length of 48 nm. The linear temperature dependence of the dephasing rate shows that the hole-hole scattering processes with small energy transfer are the dominant contribution in breaking the carrier phase coherence.

  14. Evidence for production and lateral transport of dissolved organic phosphorus in the eastern subtropical North Atlantic

    NASA Astrophysics Data System (ADS)

    Reynolds, Sarah; Mahaffey, Claire; Roussenov, Vassil; Williams, Richard G.

    2014-08-01

    The concentration of phosphate and dissolved organic phosphorus (DOP) is chronically low and limits phytoplankton growth in the subtropical North Atlantic relative to other ocean basins. Transport of phosphate and DOP from the productive flanks of the gyre to its interior has been hypothesized as an important phosphorus supply pathway. During a cruise in the eastern Atlantic in spring 2011, the rates of phosphate uptake, alkaline phosphatase activity (APA), and DOP production were measured in the northwest African shelf region, subtropics, and tropics. Rates of DOP production were sixfold higher in the shelf region (43 ± 41 nM d-1) relative to the subtropics (6.9 ± 4.4 nM d-1). In contrast, APA was threefold higher in the subtropics (8.0 ± 7.3 nM d-1), indicative of enhanced DOP utilization, relative to the shelf region (2.6 ± 2.1 nM d-1). Hence, observations suggest net production of DOP in the shelf region and either net consumption of DOP or a near balance in DOP production and consumption in the gyre interior. Eddy-permitting model experiments demonstrate that (i) DOP accounts for over half the total phosphorus in surface waters, (ii) DOP is transported westward from the shelf region by a combination of gyre and eddy circulations, and (iii) advected DOP supports up to 70% of the particle export over much of the subtropical gyre. Our combined observational and modeling study supports the view that the horizontal transport of DOP from the shelf region is an important mechanism supplying phosphorus to the surface subtropical North Atlantic.

  15. The chemistry of phosphorus in dense interstellar clouds

    NASA Technical Reports Server (NTRS)

    Thorne, L. R.; Anicich, V. G.; Prasad, S. S.; Huntress, W. T., Jr.

    1984-01-01

    Laboratory experiments show that the ion-molecule chemistry of phosphorus is significantly different from that of nitrogen in dense interstellar clouds. The PH3 molecule is not readily formed by gas-phase, ion-molecule reactions in these regions. Laboratory results used in a simple kinetic model indicate that the most abundant molecule containing phosphorus in dense clouds is PO.

  16. Dietary phosphorus is associated with greater left ventricular mass.

    PubMed

    Yamamoto, Kalani T; Robinson-Cohen, Cassianne; de Oliveira, Marcia C; Kostina, Alina; Nettleton, Jennifer A; Ix, Joachim H; Nguyen, Ha; Eng, John; Lima, Joao A C; Siscovick, David S; Weiss, Noel S; Kestenbaum, Bryan

    2013-04-01

    Dietary phosphorus consumption has risen steadily in the United States. Oral phosphorus loading alters key regulatory hormones and impairs vascular endothelial function, which may lead to an increase in left ventricular mass (LVM). We investigated the association of dietary phosphorus with LVM in 4494 participants from the Multi-Ethnic Study of Atherosclerosis, a community-based study of individuals who were free of known cardiovascular disease. The intake of dietary phosphorus was estimated using a 120-item food frequency questionnaire and the LVM was measured using magnetic resonance imaging. Regression models were used to determine associations of estimated dietary phosphorus with LVM and left ventricular hypertrophy (LVH). Mean estimated dietary phosphorus intake was 1167 mg/day in men and 1017 mg/day in women. After adjustment for demographics, dietary sodium, total calories, lifestyle factors, comorbidities, and established LVH risk factors, each quintile increase in the estimated dietary phosphate intake was associated with an estimated 1.1 g greater LVM. The highest gender-specific dietary phosphorus quintile was associated with an estimated 6.1 g greater LVM compared with the lowest quintile. Higher dietary phosphorus intake was associated with greater odds of LVH among women, but not men. These associations require confirmation in other studies.

  17. Soil phosphorus availability differences between sprinkler and furrow irrigation

    USDA-ARS?s Scientific Manuscript database

    Water flowing in irrigation furrows detaches and transports soil particles and subsequently nutrients such as phosphorus. To reduce the risk of erosion and offsite phosphorus transport, producers in south-central Idaho have been converting from furrow to sprinkler irrigation. We completed research...

  18. Phosphorus run-off assessment in a watershed.

    PubMed

    Chebud, Yirgalem; Naja, Ghinwa M; Rivero, Rosanna

    2011-01-01

    The Watershed Assessment Model was used to simulate the runoff volume, peak flows, and non-point source phosphorus loadings from the 5870 km(2) Lake Okeechobee watershed as a case study. The results were compared to on-site monitoring to verify the accuracy of the method and to estimate the observed/simulated error. In 2008, the total simulated phosphorus contribution was 9634, 6524 and 3908 kg (P) y(-1) from sod farms, citrus farms and row crop farmlands, respectively. Although the dairies represent less than 1% of the total area of Kissimmee basin, the simulated P load from the dairies (9283 kg (P) y(-1) in 2008) made up 5.4% of the total P load during 2008. On average, the modeled P yield rates from dairies, sod farms and row crop farmlands are 3.85, 2.01 and 0.86 kg (P) ha(-1) y(-1), respectively. The maximum sediment simulated phosphorus yield rate is about 2 kg (P) ha(-1) and the particulate simulated phosphorus contribution from urban, improved pastures and dairies to the total phosphorus load was estimated at 9%, 3.5%, and 1%, respectively. Land parcels with P oversaturated soil as well as the land parcels with high phosphorus assimilation and high total phosphorus contribution were located. The most critical sub-basin was identified for eventual targeting by enforced agricultural best management practices. Phosphorus load, including stream assimilation, incoming to Lake Okeechobee from two selected dairies was also determined.

  19. Approaches and Challenges to Engineering Seed Phytate and Total Phosphorus

    USDA-ARS?s Scientific Manuscript database

    About 75% of seed total phosphorus (P) is found in a single compound, phytic acid (myo-inositol-1,2,3,4,5,6-hexakisphosphate or InsP6). Phytic acid is not efficiently utilized by monogastric animals (poultry, swine, fish), which creates phosphorus management and environmental impact problems in anim...

  20. Reducing watershed scale phosphorus export through integrated management practices

    USDA-ARS?s Scientific Manuscript database

    Phosphorus losses from golf course have been documented and are comparable to losses from agriculture and urban areas. Integrated management practices are required to address the problem. An integrated management approach using filter socks and limiting the amount of phosphorus applied to the golf c...

  1. Solubility of manure phosphorus characterized by selective and sequential extractions

    USDA-ARS?s Scientific Manuscript database

    The increasing awareness of the severity of the problem of phosphorus (P) derived from agricultural production moving off-farm and threatening water quality has led to the search for methods to characterize the forms and potential solubilities of phosphorus in food animal manures and manure products...

  2. Phosphorus runoff from Coastal Plain forest soil in Louisiana

    USDA-ARS?s Scientific Manuscript database

    Although not a common practice, poultry litter (PL) may be used for forest fertilization. Despite usually low soil phosphorus (P) and runoff under forest, repeated or high rates of PL application may cause appreciable P loss. Phosphorus in natural runoff under loblolly pine (Pinus taeda L.) fertiliz...

  3. Low Phytic Acid Barley Responses to Phosphorus Rates

    USDA-ARS?s Scientific Manuscript database

    Low phytic acid (LPA) barley (Hordeum vulgare L.) cultivars partition phosphorus in seed tissue differently than conventional barley cultivars through a reduction in seed phytic acid (myo-inositol-1,2,3,4,5,6-hexkisphosphate) coupled with an increase in inorganic phosphorus. The response of the LPA...

  4. Te-Doped Black Phosphorus Field-Effect Transistors.

    PubMed

    Yang, Bingchao; Wan, Bensong; Zhou, Qionghua; Wang, Yue; Hu, Wentao; Lv, Weiming; Chen, Qian; Zeng, Zhongming; Wen, Fusheng; Xiang, Jianyong; Yuan, Shijun; Wang, Jinlan; Zhang, Baoshun; Wang, Wenhong; Zhang, Junying; Xu, Bo; Zhao, Zhisheng; Tian, Yongjun; Liu, Zhongyuan

    2016-11-01

    Element doping allows manipulation of the electronic properties of 2D materials. Enhanced transport performances and ambient stability of black-phosphorus devices by Te doping are presented. This provides a facile route for achieving airstable black-phosphorus devices. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. Do invasive mussels restrict offshore phosphorus transport in Lake Huron?

    PubMed

    Cha, Yoonkyung; Stow, Craig A; Nalepa, Thomas F; Reckhow, Kenneth H

    2011-09-01

    Dreissenid mussels were first documented in the Laurentian Great Lakes in the late 1980s. Zebra mussels (Dreissena polymorpha) spread quickly into shallow, hard-substrate areas; quagga mussels (Dreissena rostriformis bugensis) spread more slowly and are currently colonizing deep, offshore areas. These mussels occur at high densities, filter large water volumes while feeding on suspended materials, and deposit particulate waste on the lake bottom. This filtering activity has been hypothesized to sequester tributary phosphorus in nearshore regions reducing offshore primary productivity. We used a mass balance model to estimate the phosphorus sedimentation rate in Saginaw Bay, a shallow embayment of Lake Huron, before and after the mussel invasion. Our results indicate that the proportion of tributary phosphorus retained in Saginaw Bay increased from approximately 46-70% when dreissenids appeared, reducing phosphorus export to the main body of Lake Huron. The combined effects of increased phosphorus retention and decreased phosphorus loading have caused an approximate 60% decrease in phosphorus export from Saginaw Bay to Lake Huron. Our results support the hypothesis that the ongoing decline of preyfish and secondary producers including diporeia (Diporeia spp.) in Lake Huron is a bottom-up phenomenon associated with decreased phosphorus availability in the offshore to support primary production.

  6. 46 CFR 151.50-50 - Elemental phosphorus in water.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    .... (b) When a water displacement method of discharge is used, pressure vessel type cargo tanks, designed... 46 Shipping 5 2013-10-01 2013-10-01 false Elemental phosphorus in water. 151.50-50 Section 151.50... phosphorus in water. (a) Tanks shall be designed and tested for a head equivalent to the design lading...

  7. 46 CFR 151.50-50 - Elemental phosphorus in water.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    .... (b) When a water displacement method of discharge is used, pressure vessel type cargo tanks, designed... 46 Shipping 5 2014-10-01 2014-10-01 false Elemental phosphorus in water. 151.50-50 Section 151.50... phosphorus in water. (a) Tanks shall be designed and tested for a head equivalent to the design lading...

  8. The total phosphorus budget of a peat-covered catchment

    NASA Astrophysics Data System (ADS)

    Worrall, Fred; Moody, Catherine S.; Clay, Gareth D.; Burt, Tim P.; Rose, Rob

    2016-07-01

    Although many studies have considered the carbon or greenhouse gas budgets of peat ecosystems, only a few have considered the nutrient budget of peat soils, and this, in turn, has limited the ability of studies to consider the impact of changes in climate and atmospheric deposition on the phosphorus budget of a peat soil. This study considered the total phosphorus (P) budget of an upland peat-covered catchment over the period 1993 to 2012. The study has shown (i) total atmospheric deposition of phosphorus varied from 62 to 175 kg P/km2/yr; (ii) the carbon:phosphorus ratio of the peat profile declines significantly from values in the litter layer (C:P = 1326) to approximately constant at 30 cm depth (C:P = 4240); (iii) the total fluvial flux of phosphorus varied from 49 to 111 kg P/km2/yr, of which between 45 and 77% was dissolved P; and (iv) the total phosphorus sink varied from -5.6 to +71.7 kg P/km2/yr with a median of +29.4 kg P/km2/yr, which is within the range of the estimated long-term accumulation rate of phosphorus in the peat profile of between 3 and 32 kg P/km2/yr. The phosphorus budget of the peat ecosystem relies on rapid recycling near the soil surface, and this means that any vegetation management may critically deprive the ecosystem of this nutrient.

  9. Phosphorus recovery from pig manure solids prior to land application

    USDA-ARS?s Scientific Manuscript database

    Land disposal of pig manure is an environmental concern due to an imbalance of the nitrogen to phosphorus (N:P) ratio for crop production, leading to excess phosphorus (P) in soils and potential risks of water pollution. A process called “quick wash” was investigated for its feasibility to extract ...

  10. The effects of phosphorus limitation on carbon metabolism in diatoms.

    PubMed

    Brembu, Tore; Mühlroth, Alice; Alipanah, Leila; Bones, Atle M

    2017-09-05

    Phosphorus is an essential element for life, serving as an integral component of nucleic acids, lipids and a diverse range of other metabolites. Concentrations of bioavailable phosphorus are low in many aquatic environments. Microalgae, including diatoms, apply physiological and molecular strategies such as phosphorus scavenging or recycling as well as adjusting cell growth in order to adapt to limiting phosphorus concentrations. Such strategies also involve adjustments of the carbon metabolism. Here, we review the effect of phosphorus limitation on carbon metabolism in diatoms. Two transcriptome studies are analysed in detail, supplemented by other transcriptome, proteome and metabolite data, to gain an overview of different pathways and their responses. Phosphorus, nitrogen and silicon limitation responses are compared, and similarities and differences discussed. We use the current knowledge to propose a suggestive model for the carbon flow in phosphorus-replete and phosphorus-limited diatom cells.This article is part of the themed issue 'The peculiar carbon metabolism in diatoms'. © 2017 The Authors.

  11. Removal of vegetative clippings reduces dissolved phosphorus loss in runoff

    USDA-ARS?s Scientific Manuscript database

    Phosphorus-containing sediment entering surface water may degrade water quality and promote eutrophication. Grass is sometimes planted as a vegetated filter strip buffer along vulnerable receiving water to trap sediment and reduce the severity of phosphorus nutrient loading. However, eutrophicatio...

  12. The chemistry of phosphorus in dense interstellar clouds

    NASA Technical Reports Server (NTRS)

    Thorne, L. R.; Anicich, V. G.; Prasad, S. S.; Huntress, W. T., Jr.

    1984-01-01

    Laboratory experiments show that the ion-molecule chemistry of phosphorus is significantly different from that of nitrogen in dense interstellar clouds. The PH3 molecule is not readily formed by gas-phase, ion-molecule reactions in these regions. Laboratory results used in a simple kinetic model indicate that the most abundant molecule containing phosphorus in dense clouds is PO.

  13. Anthropogenic phosphorus flow analysis of Hefei City, China.

    PubMed

    Li, Sisi; Yuan, Zengwei; Bi, Jun; Wu, Huijun

    2010-11-01

    The substance flow analysis (SFA) method was employed to examine phosphorus flow and its connection to water pollution in the city of Hefei, China, in 2008. As human activity is the driving force of phosphorus flux from the environment to the economy, the study provides a conceptual framework for analyzing an anthropogenic phosphorus cycle that includes four stages: extraction, fabrication and manufacturing, use, and waste management. Estimates of phosphorus flow were based on existing data as well as field research, expert advice, local accounting systems, and literature. The total phosphorus input into Hefei in 2008 reached 7810 tons, mainly as phosphate ore, chemical fertilizer, pesticides, crops and animal products. Approximately 33% of the total phosphorus input left the area, and nearly 20% of that amount was discharged as waste to surface water. Effluent containing excessive fertilizer from farming operations plays an important role in phosphorus overloads onto surface water; the other major emission source is sewage discharge. We also provide suggestions for reducing phosphorus emissions, for example reducing fertilizer use, recycling farming residues, and changing human consumption patterns.

  14. [Effect of phosphorus on the production of microcystin].

    PubMed

    Shi, Hong-Xing; Wang, Geng; Wang, Chen-Yu; Li, Yan-Li; Bai, Yun

    2011-10-01

    Effect of phosphorus on the production of microcystin was researched. The effects of soluble reactive phosphorus (SRP) on the growth of cells and on the production of Microcystin were studied. In addition, the efficiency of four different phosphorus compounds was researched. The results showed that microcystin increased with the increase of SRP, and c(TP) = 0.55 mg x L(-1) was the best growth concentration. When c(TP) < or = 0.55 mg x L(-1), the microcystin production increased with the increase of phosphorus concentration and was the lowest without phosphorus. Moreover, when c(TP) > 0.55 mg x L(-1), the microcystin was restrained by the content of phosphorus. At the same time, the effects of three inorganic substance of different phosphorus forms (K3PO4, K2HPO4, and KH2PO4) were no significant difference, but their effects on the production of microcystis were larger than organic phosphorus of sodium beta-glycerophosphate (GP).

  15. [Mapping and cloning of low phosphorus tolerance genes in soybeans].

    PubMed

    Dan, Zhang; Haina, Song; Hao, Cheng; Deyue, Yu

    2015-04-01

    Soybean is a major source of edible oil and phytoprotein. Low phosphorus available in soil is an important factor limiting the current soybean production. Effective ways to solve the problem include identification of germplasms and genes tolerant to low-phosphorus stress, and cultivation of soybean varieties with high phosphorus efficiency. Recently many researches have been carrying out investigations to map and clone genes related to phosphorus efficiency in soybeans. However, due to the complexity of the soybean genome and little knowledge of functional genes, it has been difficult to understand the mechanism of soybean tolerance to low phosphorus. Although quantitative trait locus (QTL) mapping related to low phosphorus tolerance has made some progress, it remains elusive to obtain accurate candidate genes for molecular breeding applications, due to the limited accuracy of QTL. Even for the cloned soybean low phosphorus tolerance genes, the molecular mechanisms are largely unknown, further limiting the application to breeding. In this review, we summarize the progresses on mapping, cloning and functional characterization of soybean low phosphorus tolerance genes.

  16. Environmental Benefits and Burdens of Phosphorus Recovery from Municipal Wastewater.

    PubMed

    Bradford-Hartke, Zenah; Lane, Joe; Lant, Paul; Leslie, Gregory

    2015-07-21

    The environmental benefits and burdens of phosphorus recovery in four centralized and two decentralized municipal wastewater systems were compared using life cycle assessment (LCA). In centralized systems, phosphorus recovered as struvite from the solids dewatering liquid resulted in an environmental benefit except for the terrestrial ecotoxicity and freshwater eutrophication impact categories, with power and chemical use offset by operational savings and avoided fertilizer production. Chemical-based phosphorus recovery, however, generally required more resources than were offset by avoided fertilizers, resulting in a net environmental burden. In decentralized systems, phosphorus recovery via urine source separation reduced the global warming and ozone depletion potentials but increased terrestrial ecotoxicity and salinization potentials due to application of untreated urine to land. Overall, mineral depletion and eutrophication are well-documented arguments for phosphorus recovery; however, phosphorus recovery does not necessarily present a net environmental benefit. While avoided fertilizer production does reduce potential impacts, phosphorus recovery does not necessarily offset the resources consumed in the process. LCA results indicate that selection of an appropriate phosphorus recovery method should consider both local conditions and other environmental impacts, including global warming, ozone depletion, toxicity, and salinization, in addition to eutrophication and mineral depletion impacts.

  17. Phosphorus as a limiting factor on sustainable greywater irrigation.

    PubMed

    Turner, Ryan D R; Will, Geoffrey D; Dawes, Les A; Gardner, Edward A; Lyons, David J

    2013-07-01

    Water reuse through greywater irrigation has been adopted worldwide and has been proposed as a potential sustainable solution to increased water demands. Despite widespread adoption, there is limited domestic knowledge of greywater reuse. There is no pressure to produce low-level phosphorus products and current guidelines and legislation, such as those in Australia, may be inadequate due to the lack of long-term data to provide a sound scientific basis. Research has clearly identified phosphorus as a potential environmental risk to waterways from many forms of irrigation. To assess the sustainability of greywater irrigation, this study compared four residential lots that had been irrigated with greywater for four years and adjacent non-irrigated lots that acted as controls. Each lot was monitored for the volume of greywater applied and selected physic-chemical water quality parameters and soil chemistry profiles were analysed. The non-irrigated soil profiles showed low levels of phosphorus and were used as controls. The Mechlich3 Phosphorus ratio (M3PSR) and Phosphate Environmental Risk Index (PERI) were used to determine the environmental risk of phosphorus leaching from the irrigated soils. Soil phosphorus concentrations were compared to theoretical greywater irrigation loadings. The measured phosphorus soil concentrations and the estimated greywater loadings were of similar magnitude. Sustainable greywater reuse is possible; however incorrect use and/or lack of understanding of how household products affect greywater can result in phosphorus posing a significant risk to the environment. Copyright © 2013 Elsevier B.V. All rights reserved.

  18. Modeling biogeochemical processes of phosphorus for global food supply.

    PubMed

    Dumas, Marion; Frossard, Emmanuel; Scholz, Roland W

    2011-08-01

    Harvests of crops, their trade and consumption, soil erosion, fertilization and recycling of organic waste generate fluxes of phosphorus in and out of the soil that continuously change the worldwide spatial distribution of total phosphorus in arable soils. Furthermore, due to variability in the properties of the virgin soils and the different histories of agricultural practices, on a planetary scale, the distribution of total soil phosphorus is very heterogeneous. There are two key relationships that determine how this distribution and its change over time affect crop yields. One is the relationship between total soil phosphorus and bioavailable soil phosphorus and the second is the relationship between bioavailable soil phosphorus and yields. Both of these depend on environmental variables such as soil properties and climate. We propose a model in which these relationships are described probabilistically and integrated with the dynamic feedbacks of P cycling in the human ecosystem. The model we propose is a first step towards evaluating the large-scale effects of different nutrient management scenarios. One application of particular interest is to evaluate the vulnerability of different regions to an increased scarcity in P mineral fertilizers. Another is to evaluate different regions' deficiency in total soil phosphorus compared with the level at which they could sustain their maximum potential yield without external mineral inputs of phosphorus but solely by recycling organic matter to close the nutrient cycle.

  19. Plant based phosphorus recovery from wastewater via algae and macrophytes.

    PubMed

    Shilton, Andrew N; Powell, Nicola; Guieysse, Benoit

    2012-12-01

    At present, resource recovery by irrigation of wastewater to plants is usually driven by the value of the water resource rather than phosphorus recovery. Expanded irrigation for increased phosphorus recovery may be expected as the scarcity and price of phosphorus increases, but providing the necessary treatment, storage and conveyance comes at significant expense. An alternative to taking the wastewater to the plants is instead to take the plants to the wastewater. Algal ponds and macrophyte wetlands are already in widespread use for wastewater treatment and if harvested, would require less than one-tenth of the area to recover phosphorus compared to terrestrial crops/pastures. This area could be further decreased if the phosphorus content of the macrophytes and algae biomass was tripled from 1% to 3% via luxury uptake. While this and many other opportunities for plant based recovery of phosphorus exist, e.g. offshore cultivation, much of this technology development is still in its infancy. Research that enhances our understanding of how to maximise phosphorus uptake and harvest yields; and further add value to the biomass for reuse would see the recovery of phosphorus via plants become an important solution in the future. Copyright © 2012 Elsevier Ltd. All rights reserved.

  20. Determination of phosphorus fractions in animal protein ingredients.

    PubMed

    Hua, Katheline; Liu, Lijuan; Bureau, Dominique P

    2005-03-09

    Phosphorus (P) is present in different chemical compounds in animal feeds, and the solubility and digestibility of these different compounds are known to differ significantly. Animal protein ingredients generally have a high P content and are major contributors to total P of feeds for fish and other domestic animals. Estimation of different P compounds in these ingredients could help to improve the accuracy of estimates of digestible P contents of feeds. Bone P and organic P contents were quantified in 32 animal protein ingredients, including 10 fish meals, 14 meat and bone meals, and 8 poultry byproducts meals, using a fractionation protocol. The total P contents of the ingredients ranged from 2.1 to 8.3% on a dry matter (DM) basis. Organic P contents varied between 0.3 and 1.3% of DM. Highly significant (p < 0.001) linear relationships were observed between total P and ash and between bone P and ash for all ingredients combined: total P (%) = 0.185 x ash (%) (R (2) = 0.88), and bone P (%) = 0.188 x ash (%) - 0.852 (R (2) = 0.94). These results suggest that bone P can be easily and reliably estimated on the basis of ash content in animal protein ingredients.

  1. Geochemistry of phosphorus in sediment cores from Sishili Bay, China.

    PubMed

    Zhang, Yong; Gao, Xuelu; Wang, Changyou; Chen, Chen-Tung Arthur; Zhou, Fengxia; Yang, Yuwei

    2016-12-15

    This paper presents the distribution of total phosphorus (P), inorganic P (IP) and organic P in sediment cores from Sishili Bay, China. Their concentrations (μmolg(-1)) ranged from 15.04 to 21.59, 12.43 to 18.27 and 0.15 to 5.11, respectively, showing 87.6-96.9% of TP is IP. The distribution of the fractionation of IP , obtained by a sequential extraction technique, was 1.9-3.2% for soluble and loosely bound P (Ex-P), 8.5-13.1% for Al-bound from (Al-P), 7.4-9.5% for Fe-bound P (Fe-P), 5.0-12.4% for reductant-soluble P (Oc-P), 9.7-15.6% for CaCO3-bound P (ACa-P) and 45.9-54.6% for detritus P (Det-P). The P distribution and concentration was consistent with other Chinese coastal seas. No significant difference was found for the sedimentary P forms between scallop cultivation area and background area, indicating that shellfish aquaculture did not have significant effect on the depositional environment in the studied area, at least in case of P. Copyright © 2016 Elsevier Ltd. All rights reserved.

  2. [Characterization of phosphorus forms in different organic materials].

    PubMed

    Deng, Jia; Hu, Meng-Kun; Zhao, Xiu-Lan; Ni, Jiu-Pai; Xie, De-Ti

    2015-03-01

    The existing forms of phosphorus in seven organic waste materials including biogas residues of swine manure (ZZ), biogas residues of cattle manure (NZ), compost of cattle manure and corn straw (NJD), compost of sewage sludge (WD) and compost of rural daily garbage (NSLD) were characterized according to phosphorus fractionation procedures developed by DOU et al. The result showed that there was a great difference in the total phosphorus (TP) and the total phosphorus of various forms (P(t)) among different organic materials. ZZ had the highest content of TP with the value of 23.59 g x kg(-1); while NZ had the lowest TP content with the value of 3.61 g x kg(-1). The contents and proportions of phosphorus fractions in ZZ, NZ, NJD and WD followed the order of HCl-P > Residues-P > NaHCO3-P > NaOH-P > H2O-P, while followed the order of HC1-P > Residues-P > H2O-P > NaHCO3-P > NaOH-P in the three NSLDs. The proportion of HCl-P in the total fractionated phosphorus (P(tt)) in seven organic materials ranged from 47.75% to 84.96%, which indicated that most of P in organic materials existed in the forms that were easier to be extracted by strong extracting agents like HCl, which was difficult to be absorbed by plants. The inorganic phosphorus accounted for 79.72% -94.76% of the total phosphorus in the organic materials. Of all the phosphorus forms, the NaHCO3-P had the highest inorganic phosphorus fractions, but the inorganic phosphorus was mainly distributed in HCl-P. The organic phosphorus was mainly distributed in HCl-P and Residues-P. In addition, the higher proportions of inorganic phosphorus in NJD than those of NZ demonstrated that the composting process was benefit for the mineralization of organic phosphorus in organic materials and thus improving its availability.

  3. Calcium and phosphorus change of the Apollo 17 crew members.

    PubMed

    Rambaut, P C; Leach, C S; Johnson, P C

    1975-01-01

    In association with the 12.6-day lunar flight of Apollo 17, calcium and phosphorus intake and excretion were determined for the crew members before and during the mission. The study showed increased urinary and fecal phosphorus and increased fecal calcium during weightlessness. The calculated mean calcium "loss" for the three crew members was 0.2 percent of estimated total body calcium and phosphorus "loss" was 0.7 percent of estimated total body phosphorus. The ratio of phosphorus lost compared to calcium indicated a reduction in both bone and soft tissue. These changes may be attributed not only to the hypogravia of the lunar and circumlunar environment, but possibly also to disturbances in gastrointestinal absorption.

  4. Production of fluid fertilizer from phosphorus furnace waste stream

    SciTech Connect

    Barber, J. C.

    1985-04-30

    Processes and compositions of matter are disclosed for the production of liquid fertilizers wherein wastewater from a phosphorus smelting furnace is incorporated in liquid fertilizer processes. The wastewater replaces water evaporated and the wastewater dissolves fertilizer salts. A serious water pollution problem is avoided when wastewater is incorporated in liquid fertilizers. The invention discloses a process for making orthophosphate suspension fertilizer wherein impure phosphoric acid is neutralized in the condensing system, water from the condensing system is bled off, and a suspending clay is added to produce orthophosphate suspension fertilizer. In this process, phosphorus sludge made at phosphorus furnaces is used to produce suspension fertilizer, and wastewater from phosphate smelting furnaces is recovered. New compositions of matter are disclosed. A process is disclosed for making phosphoric acid with low impurities content wherein phosphorus sludge is burned to make impure orthophosphoric acid and the impure acid is recycled to an agglomerating step in a process for making elemental phosphorus.

  5. Black Phosphorus: Critical Review and Potential for Water Splitting Photocatalyst.

    PubMed

    Lee, Tae Hyung; Kim, Soo Young; Jang, Ho Won

    2016-10-29

    A century after its first synthesis in 1914, black phosphorus has been attracting significant attention as a promising two-dimensional material in recent years due to its unique properties. Nowadays, with the development of its exfoliation method, there are extensive applications of black phosphorus in transistors, batteries and optoelectronics. Though, because of its hardship in mass production and stability problems, the potential of the black phosphorus in various fields is left unexplored. Here, we provide a comprehensive review of crystal structure, electronic, optical properties and synthesis of black phosphorus. Recent research works about the applications of black phosphorus is summarized. Among them, the possibility of black phosphorous as a solar water splitting photocatalyst is mainly discussed and the feasible novel structure of photocatalysts based on black phosphorous is proposed.

  6. Raman Sensitive Degradation and Etching Dynamics of Exfoliated Black Phosphorus

    NASA Astrophysics Data System (ADS)

    Alsaffar, Fadhel; Alodan, Sarah; Alrasheed, Abdul; Alhussain, Abdulrahman; Alrubaiq, Noura; Abbas, Ahmad; Amer, Moh. R.

    2017-03-01

    Layered black phosphorus has drawn much attention due to the existence of a band gap compared to the widely known graphene. However, environmental stability of black phosphorus is still a major issue, which hinders the realization of practical device applications. Here, we spatially Raman map exfoliated black phosphorus using confocal fast-scanning technique at different time intervals. We observe a Raman intensity modulation for , B2g, and modes. This Raman modulation is found to be caused by optical interference, which gives insights into the oxidation mechanism. Finally, we examine the fabrication compatible PMMA coating as a viable passivation layer. Our measurements indicate that PMMA passivated black phosphorus thin film flakes can stay pristine for a period of 19 days when left in a dark environment, allowing sufficient time for further nanofabrication processing. Our results shed light on black phosphorus degradation which can aid future passivation methods.

  7. Raman Sensitive Degradation and Etching Dynamics of Exfoliated Black Phosphorus.

    PubMed

    Alsaffar, Fadhel; Alodan, Sarah; Alrasheed, Abdul; Alhussain, Abdulrahman; Alrubaiq, Noura; Abbas, Ahmad; Amer, Moh R

    2017-03-20

    Layered black phosphorus has drawn much attention due to the existence of a band gap compared to the widely known graphene. However, environmental stability of black phosphorus is still a major issue, which hinders the realization of practical device applications. Here, we spatially Raman map exfoliated black phosphorus using confocal fast-scanning technique at different time intervals. We observe a Raman intensity modulation for , B2g, and modes. This Raman modulation is found to be caused by optical interference, which gives insights into the oxidation mechanism. Finally, we examine the fabrication compatible PMMA coating as a viable passivation layer. Our measurements indicate that PMMA passivated black phosphorus thin film flakes can stay pristine for a period of 19 days when left in a dark environment, allowing sufficient time for further nanofabrication processing. Our results shed light on black phosphorus degradation which can aid future passivation methods.

  8. Localized Surface Plasmons in Nanostructured Monolayer Black Phosphorus.

    PubMed

    Liu, Zizhuo; Aydin, Koray

    2016-06-08

    Plasmonic materials provide electric-field localization and light confinement at subwavelength scales due to strong light-matter interaction around resonance frequencies. Graphene has been recently studied as an atomically thin plasmonic material for infrared and terahertz wavelengths. Here, we theoretically investigate localized surface plasmon resonances (LSPR) in a monolayer, nanostructured black phosphorus (BP). Using finite-difference time-domain simulations, we demonstrate LSPRs at mid-infrared and far-infrared wavelength regime in BP nanoribbon and nanopatch arrays. Because of strong anisotropic in-plane properties of black phosphorus emerging from its puckered crystal structure, black phosphorus nanostructures provide polarization dependent, anisotropic plasmonic response. Electromagnetic simulations reveal that monolayer black phosphorus nanostructures can strongly confine infrared radiation in an atomically thin material. Black phosphorus can find use as a highly anisotropic plasmonic devices.

  9. Black Phosphorus: Critical Review and Potential for Water Splitting Photocatalyst

    PubMed Central

    Lee, Tae Hyung; Kim, Soo Young; Jang, Ho Won

    2016-01-01

    A century after its first synthesis in 1914, black phosphorus has been attracting significant attention as a promising two-dimensional material in recent years due to its unique properties. Nowadays, with the development of its exfoliation method, there are extensive applications of black phosphorus in transistors, batteries and optoelectronics. Though, because of its hardship in mass production and stability problems, the potential of the black phosphorus in various fields is left unexplored. Here, we provide a comprehensive review of crystal structure, electronic, optical properties and synthesis of black phosphorus. Recent research works about the applications of black phosphorus is summarized. Among them, the possibility of black phosphorous as a solar water splitting photocatalyst is mainly discussed and the feasible novel structure of photocatalysts based on black phosphorous is proposed. PMID:28335322

  10. Quantitation of phosphorus excretion in sheep by compartmental analysis

    SciTech Connect

    Schneider, K.M.; Boston, R.C.; Leaver, D.D.

    1987-04-01

    The control of phosphorus excretion in sheep has been examined by constructing a kinetic model that contains a mechanistic set of connections between blood and gastrointestinal tract. The model was developed using experimental data from chaff-fed sheep and gives an accurate description of the absorption and excretion of /sup 32/P phosphorus in feces and urine of the ruminating sheep. These results indicated the main control site for phosphorus excretion in the ruminating sheep was the gastrointestinal tract, whereas for the non-ruminating sheep fed the liquid diet, control was exerted by the kidney. A critical factor in the induction of adaptation of phosphorus reabsorption by the kidney was the reduction in salivation, and since this response occurred independently of marked changes in the delivery of phosphorus to the kidney, a humoral factor may be involved in this communication between salivary gland and kidney.

  11. [Phosphorus intake in Poland in 1994-2000].

    PubMed

    Gronowska-Senger, Anna; Kotańska, Patrycja

    2004-01-01

    The aim of the study was the evaluation of the phosphorus intake in 8 types of households with different family number of persons in Poland during 1994-2000. The research was conducted on the basis on households budget food consumption data and tables of food composition and nutritional value. Phosphorus intake per capita per day was compared to RDA at the safe level. The intake of phosphorus was high in all investigated households and ranged between 65-144% above lower RDA limit and 34-96% for upper one. When the family number of persons increased, the intake decreased. The main food sources of phosphorus were: bread, meat and meat products, milk and milk drinks and vegetables and mushrooms. The bread has a highest share in phosphorus supply in households maintained from non-earned sources and the lowest for the non-manual labour position one.

  12. Treatment of phosphorus waste water using crystallization method.

    PubMed

    Bian, Dejun; Ai, Shengshu; Liu, Jing; Zuo, Yan; Tian, Xi

    2011-06-01

    Phosphorus is the restrictive factor of water eutrophication and phosphorus removal is the key point to control this phenomenon. It's also important to recover phosphorus resource from wastewater. Crystallization method was used to treat and recycle high concentration phosphorus wastewater, the selection of organic solvent, influence of volume ratio of organic solvent and wastewater, precipitation time and stirring speed on the production of crystal and its structure was investigated. Experimental results indicate that, with ethanol as extractant, under the condition of volume ratio of ethanol to wastewater being 1.5:1 and stirring speed about 200 r/min, crystal precipitated fast with fine crystal shape and purity, phosphorus removal efficiency more than 85% was obtained. Copyright © 2011 The Research Centre for Eco-Environmental Sciences, Chinese Academy of Sciences. Published by Elsevier B.V. All rights reserved.

  13. The Covalent Functionalization of Layered Black Phosphorus by Nucleophilic Reagents.

    PubMed

    Sofer, Zdeněk; Luxa, Jan; Bouša, Daniel; Sedmidubský, David; Lazar, Petr; Hartman, Tomáš; Hardtdegen, Hilde; Pumera, Martin

    2017-08-07

    Layered black phosphorus has been attracting great attention due to its interesting material properties which lead to a plethora of proposed applications. Several approaches are demonstrated here for covalent chemical modifications of layered black phosphorus in order to form P-C and P-O-C bonds. Nucleophilic reagents are highly effective for chemical modification of black phosphorus. Further derivatization approaches investigated were based on radical reactions. These reagents are not as effective as nucleophilic reagents for the surface covalent modification of black phosphorus. The influence of covalent modification on the electronic structure of black phosphorus was investigated using ab initio calculations. Covalent modification exerts a strong effect on the electronic structure including the change of band-gap width and spin polarization. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. Microbial contributions to phosphorus cycling in eutrophic lakes and wastewater.

    PubMed

    McMahon, Katherine D; Read, Emily K

    2013-01-01

    Phosphorus is a key element controlling the productivity of freshwater ecosystems, and microbes drive most of its relevant biogeochemistry. Eutrophic lakes are generally dominated by cyanobacteria that compete fiercely with algae and heterotrophs for the element. In wastewater treatment, engineers select for specialized bacteria capable of sequestering phosphorus from the water, to protect surface waters from further loading. The intracellular storage molecule polyphosphate plays an important role in both systems, allowing key taxa to control phosphorus availability. The importance of dissolved organic phosphorus in eutrophic lakes and mineralization mechanisms is still underappreciated and understudied. The need for functional redundancy through biological diversity in wastewater treatment plants is also clear. In both systems, a holistic ecosystems biology approach is needed to understand the molecular mechanisms controlling phosphorus metabolism and the ecological interactions and factors controlling ecosystem-level process rates.

  15. Raman Sensitive Degradation and Etching Dynamics of Exfoliated Black Phosphorus

    PubMed Central

    Alsaffar, Fadhel; Alodan, Sarah; Alrasheed, Abdul; Alhussain, Abdulrahman; Alrubaiq, Noura; Abbas, Ahmad; Amer, Moh. R.

    2017-01-01

    Layered black phosphorus has drawn much attention due to the existence of a band gap compared to the widely known graphene. However, environmental stability of black phosphorus is still a major issue, which hinders the realization of practical device applications. Here, we spatially Raman map exfoliated black phosphorus using confocal fast-scanning technique at different time intervals. We observe a Raman intensity modulation for , B2g, and modes. This Raman modulation is found to be caused by optical interference, which gives insights into the oxidation mechanism. Finally, we examine the fabrication compatible PMMA coating as a viable passivation layer. Our measurements indicate that PMMA passivated black phosphorus thin film flakes can stay pristine for a period of 19 days when left in a dark environment, allowing sufficient time for further nanofabrication processing. Our results shed light on black phosphorus degradation which can aid future passivation methods. PMID:28317834

  16. Modeling phosphorus trapping in wetlands using generalized additive models

    NASA Astrophysics Data System (ADS)

    Reckhow, Kenneth H.; Qian, Song S.

    1994-11-01

    In the past several years, wetlands have become increasingly used for wastewater treatment purposes. As a consequence, nutrient trapping and accumulation, particularly for phosphorus, have emerged as important environmental management issues. To predict the effectiveness of wetlands for phosphorus removal, data from a large cross-sectional study and from a single wetland over time were obtained with the objective of developing a predictive model. From the analysis of these data, it was found that phosphorus trapping is predictable using a simple function of phosphorus input and water loading. Several statistical models of phosphorus trapping were developed and evaluated using the two data sets. Particular emphasis was placed on generalized additive modeling, a graphics-oriented data-driven approach, for model diagnostic and model-building purposes. A nonlinear model was recommended, and suggestions were made for future work.

  17. Controlled Sculpture of Black Phosphorus Nanoribbons

    SciTech Connect

    Masih Das, Paul; Danda, Gopinath; Cupo, Andrew; Parkin, William M.; Liang, Liangbo; Kharche, Neerav; Ling, Xi; Huang, Shengxi; Dresselhaus, Mildred S.; Meunier, Vincent; Drndić, Marija

    2016-05-18

    Black phosphorus (BP) is a highly anisotropic allotrope of phosphorus with high promise for fast functional electronics and optoelectronics. We demonstrate that high-resolution and controlled structural modification of few-layer BP along arbitrary crystal direction can be achieved with nanometer-scale precision on a few-minute timescales leading to the formation of sub-nm wide armchair and zigzag BP nanoribbons. The nanoribbons are assembled, along with nanopores and nanogaps, using a combination of mechanical-liquid exfoliation and in situ transmission electron microscope (TEM) and scanning TEM nanosculpting. Here we report time-dependent structural properties of the one-dimensional systems under electron irradiation and probe their oxidation properties with electron energy-loss spectroscopy (EELS). Finally, we demonstrate the use of STEM to controllably narrow and thin the nanoribbons until they break into nanogaps. The observations are rationalized using density functional theory for transition state calculations and electronic band-structure evolution for the various stages of the narrowing procedure. In particular, we predict that the sub- and few-nm wide BP nanoribbons realized experimentally possess clear one-dimensional quantum confinement, even when the systems are made up of a few layers. We find the demonstration of this procedure is key for the development of BP-based electronic, optoelectronic, thermoelectric, and other applications in reduced dimensions.

  18. Phosphorus Accumulating Organisms and Biogeochemical Hotspots

    NASA Astrophysics Data System (ADS)

    Archibald, J.; Walter, M. T.

    2008-12-01

    Despite extensive research, many of the processes that control phosphorus (P) movement from agricultural fields to streams and lakes are not well understood. This limits our ability to develop management strategies that will mediate P contamination of freshwater ecosystems and subsequent eutrophication. Recent advances in molecular microbiology have prompted a paradigm shift in wastewater treatment that recognizes and exploits the ways specific microbial processes influence P solubility. Central to this enhanced biological phosphorus removal in wastewater treatment plants is a relatively recently discovered microorganism, Candidatus accumulibacter, which takes-up P and stores it internally as polyphosphate under alternating aerobic and anaerobic conditions. Within the past few months we have discovered this organism in the natural environment and its role in P biogeochemistry is unclear. We speculate that it may function similarly in variable source areas, which experience cycles of saturation and desaturation, as it does in the anaerobic- aerobic cycles in a wastewater treatment plant. If so, there may be potential opportunities to realize similarly new perspectives and advancements in the watershed context as have been seen in wastewater technologies. Here we present some of our preliminary findings.

  19. Controlled Sculpture of Black Phosphorus Nanoribbons

    DOE PAGES

    Masih Das, Paul; Danda, Gopinath; Cupo, Andrew; ...

    2016-05-18

    Black phosphorus (BP) is a highly anisotropic allotrope of phosphorus with high promise for fast functional electronics and optoelectronics. We demonstrate that high-resolution and controlled structural modification of few-layer BP along arbitrary crystal direction can be achieved with nanometer-scale precision on a few-minute timescales leading to the formation of sub-nm wide armchair and zigzag BP nanoribbons. The nanoribbons are assembled, along with nanopores and nanogaps, using a combination of mechanical-liquid exfoliation and in situ transmission electron microscope (TEM) and scanning TEM nanosculpting. Here we report time-dependent structural properties of the one-dimensional systems under electron irradiation and probe their oxidation propertiesmore » with electron energy-loss spectroscopy (EELS). Finally, we demonstrate the use of STEM to controllably narrow and thin the nanoribbons until they break into nanogaps. The observations are rationalized using density functional theory for transition state calculations and electronic band-structure evolution for the various stages of the narrowing procedure. In particular, we predict that the sub- and few-nm wide BP nanoribbons realized experimentally possess clear one-dimensional quantum confinement, even when the systems are made up of a few layers. We find the demonstration of this procedure is key for the development of BP-based electronic, optoelectronic, thermoelectric, and other applications in reduced dimensions.« less

  20. Simulations of twisted bilayer orthorhombic black phosphorus

    NASA Astrophysics Data System (ADS)

    Pan, Douxing; Wang, Tzu-Chiang; Xiao, Wende; Hu, Dongmei; Yao, Yugui

    2017-07-01

    We identified, by means of coincidence site lattice theory, an evaluative stacking phase with a wavelike Moiré pattern, denoted as 2 O -t α P , from all potentially twisted bilayer orthorhombic black phosphorus. Such a twisted stacking comes with a low formation energy of -162.8 meV , very close to existing AB stacking, according to first-principles calculations. Particularly, classic molecular dynamic simulations verified that the stacking can be directly obtained in an in situ cleavage. The stability of 2 O -t α P stacking can be directly attributed to the corrugated configuration of black phosphorus leading to the van der Waals constraining forces, where the top layer can get stuck to the bottom when one layer rotates in plane relative to the other by ˜70 .5∘ . Tribological analysis further revealed that the interlayer friction of 2 O -t α P stacking reaches up to 1.3 nN, playing a key role in the origin of 2 O -t α P .

  1. Sediment and phosphorus transport in irrigation furrows.

    PubMed

    Bjorneberg, D L; Westermann, D T; Aase, J K; Clemmens, A J; Strelkoff, T S

    2006-01-01

    Sediment and phosphorus (P) in agricultural runoff can impair water quality in streams, lakes, and rivers. We studied the factors affecting P transfer and transport in irrigated furrows in six freshly tilled fallow fields, 110 to 180 m long with 0.007 to 0.012 m m-1 slopes without the interference of raindrops or sheet flow that occur during natural or simulated rain. The soil on all fields was Portneuf silt loam (coarse-silty, mixed, superactive, mesic Durinodic Xeric Haplocalcids). Flow rate, sediment concentration, and P concentrations were monitored at four, equally spaced locations in each furrow. Flow rate decreased with distance down the furrow as water infiltrated. Sediment concentration varied with distance and time with no set pattern. Total P concentrations related directly to sediment concentrations (r2=0.75) because typically >90% of the transported P was particulate P, emphasizing the need to control erosion to reduce P loss. Dissolved reactive phosphorus (DRP) concentrations decreased with time at a specific furrow site but increased with distance down the furrow as contact time with soil and suspended sediment increased. The DRP concentration correlated better with sediment concentration than extractable furrow soil P concentration. However, suspended sediment concentration tended to not affect DRP concentration later in the irrigation (>2 h). These results indicate that the effects of soil P can be overshadowed by differences in flow hydraulics, suspended sediment loads, and non-equilibrium conditions.

  2. Controlled Sculpture of Black Phosphorus Nanoribbons

    SciTech Connect

    Masih Das, Paul; Danda, Gopinath; Cupo, Andrew; Parkin, William M.; Liang, Liangbo; Kharche, Neerav; Ling, Xi; Huang, Shengxi; Dresselhaus, Mildred S.; Meunier, Vincent; Drndić, Marija

    2016-05-18

    Black phosphorus (BP) is a highly anisotropic allotrope of phosphorus with high promise for fast functional electronics and optoelectronics. We demonstrate that high-resolution and controlled structural modification of few-layer BP along arbitrary crystal direction can be achieved with nanometer-scale precision on a few-minute timescales leading to the formation of sub-nm wide armchair and zigzag BP nanoribbons. The nanoribbons are assembled, along with nanopores and nanogaps, using a combination of mechanical-liquid exfoliation and in situ transmission electron microscope (TEM) and scanning TEM nanosculpting. Here we report time-dependent structural properties of the one-dimensional systems under electron irradiation and probe their oxidation properties with electron energy-loss spectroscopy (EELS). Finally, we demonstrate the use of STEM to controllably narrow and thin the nanoribbons until they break into nanogaps. The observations are rationalized using density functional theory for transition state calculations and electronic band-structure evolution for the various stages of the narrowing procedure. In particular, we predict that the sub- and few-nm wide BP nanoribbons realized experimentally possess clear one-dimensional quantum confinement, even when the systems are made up of a few layers. We find the demonstration of this procedure is key for the development of BP-based electronic, optoelectronic, thermoelectric, and other applications in reduced dimensions.

  3. Phosphorus metabolism of germinating oat seeds.

    PubMed

    Hall, J R; Hodges, T K

    1966-11-01

    An investigation has been made of the changes in the major phosphorus containing substances in Avena sativa during the first 8 days of dark germination. The endosperm, roots, and shoots were analyzed separately for acid soluble-P, phytic acid-P, inorganic-P, lipid-P, nucleic acid-P, and protein-P. Phytic acid-P comprised 53% of the total seed phosphate, while the sum of lipid-P, nucleic acid-P and protein-P comprised 27% of the seed phosphate. All these reserve phosphate materials were mobilized and transferred to the developing axis. The phosphate from phytic acid appeared almost entirely as inorganic-P in the roots and shoots. A close stoichiometry existed between the rate of loss of nucleic acid-P from the endosperm and its rate of appearance in the roots and shoots. Thus no net synthesis of nucleic acid occurred during the 8-day period examined. The rate of synthesis of lipid-P in the roots and shoots exceeded its rate of disappearance from the endosperm during the first 4 days of germination. Protein-P increased in the roots and shoots during germination, but at a rate less than its rate of disappearance from the endosperm. The results provide a relatively complete description of the over-all aspects of phosphorus metabolism associated with germination of oats.

  4. Phosphorus-containing nanoparticles: biomedical patents review.

    PubMed

    Shcharbin, Dzmitry; Shcharbina, Natallia; Shakhbazau, Antos; Mignani, Serge; Majoral, Jean-Pierre; Bryszewska, Maria

    2015-05-01

    The beginning of the nano-era started with the appearance of artificial nanosized supramolecular systems called nanomaterials and nanoparticles (NPs). In the present review, we have analyzed the patents on phosphorus-based nanomaterials (fullerenes, quantum dots [QDs], graphene, liposomes, dendrimers, gold and silver NPs) in biology and medicine. Their impact in treatment of cancer, viral infections and cardiovascular diseases is discussed. Liposomes and dendrimers had the highest number of biomedical patents. The third candidates were QDs and the fourth and fifth were gold and silver NPs. Fullerenes and carbon nanotubes have the fewest applications in biology and medicine. Thus, our first conclusion was about the 'unifying nanotoxicology paradigm', that 'soft' NPs are significantly more biocompatible than 'hard' NPs. There has been a trend of these nanomaterials being applied in medicine drug and gene delivery, visualization of cells and pathologic processes, using them as antivirals and antimicrobials, contrast agents, antioxidants and photosensitizers. It was unexpected that no patents were found in which phosphorus NPs were used in 3D printing of bones and other biological tissues. The conclusion reached is that nanomaterials are promising tools in future medical applications.

  5. [Biological phosphorus removal in intermittent aerated biological filter].

    PubMed

    Zeng, Long-Yun; Yang, Chun-Ping; Guo, Jun-Yuan; Luo, Sheng-Lian

    2012-01-01

    Under intermittent aerated and continuous fed operation where the biofilm system was subjected to alternated anaerobic/aerobic condition, the effect of influent volatile fatty acids (VFAs) concentrations, operation cycle and backwash on the biological phosphorus removal performance of the biofilter was studied. In the experiment, synthetic domestic wastewater was used, and the influent velocity was 5 L x h(-1) with gas versus liquid ratio of 8:1 and hydraulic retention time (HRT) of 1.3 h, resulting in average COD, ammonium and phosphorus load of 4.7, 0.41 and 0.095 g x (L x d) (-1) respectively. Results show that, (1) effective release and uptake of phosphorus was achieved in a operation cycle; (2) when influent VFAs was 100 mg x L(-1) (calculated by COD value) and operation cycle was 6 h the filter performed best in phosphorus removal, the phosphorus loading removal rate can be as much as 0.059 g x (L x d)(-1) at the aerated phase with those of COD and ammonium being 3.8 g x (L x d)(-1) and 0.28 g x (L x d)(-1) respectively, and with average effluent phosphorus, COD and ammonium concentrations being 1.8, 43.6 and 8.7 mg x L(-1), which shows nitrogen loss also happened; (3) the pause of backwash decreased the phosphorus removal performance rapidly with the removal efficiency lower than 40% in two days, but the consequent daily backwash operation gave a short improvement on the phosphorus removal, which disappeared in another two days. Thus, it is shown that biological phosphorus removal achieved with better phosphorus loading removal performance in the biofilter under intermittent aerated and continuous fed operation, and that sufficient and stable influent VFAs concentration, proper operation cycle, and more frequent backwash favored the performance.

  6. Nitrogen and phosphorus intake by phytoplankton in the Xiamen Bay

    NASA Astrophysics Data System (ADS)

    Lin, Cai; Li, Hui; He, Qing; Xu, Kuncan; Wu, Shengsan; Zhang, Yuanbiao; Chen, Jinmin; Chen, Baohong; Lin, Libin; Lu, Meiluan; Chen, Weifen; Tang, Rongkun; Ji, Weidong

    2010-01-01

    This paper describes a time series experiment examining the nitrogen and phosphorus intake of natural phytoplankton communities by a microcosms approach. Seawater samples containing natural phytoplankton communities were collected from waters around Baozhu Islet in inner Xiamen Bay and around Qingyu Islet in the outer bay. The goal was to elucidate the relationship between phytoplankton population enhancement, the biological removal of nitrogen and phosphorus from the seawater, and the phytoplankton nitrogen and phosphorus intake ratio based on nitrogen and phosphorus removal from seawater by phytoplankton, to provide a basis for detecting prewarning conditions for red tide and the assessment of red tide events. Two key results were obtained: 1. During the experiment, the nitrogen and phosphorus seawater concentrations in samples from these two sites were negatively and closely correlated to the logarithm of the phytoplankton cell concentration and to the value of the apparent oxygen increment. The ratio of the intake coefficients was 3.5:1 for phosphorus and 1.1:1 for nitrogen for the phytoplankton between these samples from around Baozhu Islet and Qingyu Islet, respectively. This indicates that the intake capabilities of phytoplankton for nitrogen in the two waters are essentially identical. However, for phosphorus, the capability was much higher in the Baozhu Islet waters than the Qingyu Islet waters. In other words, the phytoplankton in Qingyu Islet waters produced more biomass while consuming the same amount of phosphorus as the other waters; 2. The phytoplankton nitrogen and phosphorus intake ratio from the Baozhu Islet and Qingyu Islet waters was 20:1 and 36:1, respectively. The latter waters had a significantly higher ratio than the former and both were higher than the Redfield Ratio. These results indicate that nitrogen and phosphorus intake ratios by phytoplankton can vary significantly from region to region.

  7. Common Genetic Variants Associate with Serum Phosphorus Concentration

    PubMed Central

    Glazer, Nicole L.; Köttgen, Anna; Felix, Janine F.; Hwang, Shih-Jen; Liu, Yongmei; Lohman, Kurt; Kritchevsky, Stephen B.; Hausman, Dorothy B.; Petersen, Ann-Kristin; Gieger, Christian; Ried, Janina S.; Meitinger, Thomas; Strom, Tim M.; Wichmann, H. Erich; Campbell, Harry; Hayward, Caroline; Rudan, Igor; de Boer, Ian H.; Psaty, Bruce M.; Rice, Kenneth M.; Chen, Yii-Der Ida; Li, Man; Arking, Dan E.; Boerwinkle, Eric; Coresh, Josef; Yang, Qiong; Levy, Daniel; van Rooij, Frank J.A.; Dehghan, Abbas; Rivadeneira, Fernando; Uitterlinden, André G.; Hofman, Albert; van Duijn, Cornelia M.; Shlipak, Michael G.; Kao, W.H. Linda; Witteman, Jacqueline C.M.; Siscovick, David S.; Fox, Caroline S.

    2010-01-01

    Phosphorus is an essential mineral that maintains cellular energy and mineralizes the skeleton. Because complex actions of ion transporters and regulatory hormones regulate serum phosphorus concentrations, genetic variation may determine interindividual variation in phosphorus metabolism. Here, we report a comprehensive genome-wide association study of serum phosphorus concentration. We evaluated 16,264 participants of European ancestry from the Cardiovascular Heath Study, Atherosclerosis Risk in Communities Study, Framingham Offspring Study, and the Rotterdam Study. We excluded participants with an estimated GFR <45 ml/min per 1.73 m2 to focus on phosphorus metabolism under normal conditions. We imputed genotypes to approximately 2.5 million single-nucleotide polymorphisms in the HapMap and combined study-specific findings using meta-analysis. We tested top polymorphisms from discovery cohorts in a 5444-person replication sample. Polymorphisms in seven loci with minor allele frequencies 0.08 to 0.49 associate with serum phosphorus concentration (P = 3.5 × 10−16 to 3.6 × 10−7). Three loci were near genes encoding the kidney-specific type IIa sodium phosphate co-transporter (SLC34A1), the calcium-sensing receptor (CASR), and fibroblast growth factor 23 (FGF23), proteins that contribute to phosphorus metabolism. We also identified genes encoding phosphatases, kinases, and phosphodiesterases that have yet-undetermined roles in phosphorus homeostasis. In the replication sample, five of seven top polymorphisms associate with serum phosphorous concentrations (P < 0.05 for each). In conclusion, common genetic variants associate with serum phosphorus in the general population. Further study of the loci identified in this study may help elucidate mechanisms of phosphorus regulation. PMID:20558539

  8. [Identification of critical area of phosphorus loss in agricultural areas of Guishui River watershed by phosphorus loss risk assessment].

    PubMed

    Li, Qi; Chen, Li-Ding; Qi, Xin; Zhang, Xin-Yu; Ma, Yan

    2008-01-01

    Agricultural non-point sources pollution is one of severe problems for water environment of agricultural areas in China. Because of the big difficulties, identifying the critical source areas for phosphorus loss becomes the focal point of the non-point sources pollution control. A modified catchment scale phosphorus ranking scheme was developed for agricultural areas in Guishui River watershed. The new scheme included eight assessment factors, which had three phosphorus loss risk ranks respectively and selected quantitative analysis method. The result shows that the phosphorus fertilizer management of the vegetable fields is the most unfit method and has high phosphorus loss probabilities. Most study areas have high soil available phosphorus content and low soil erosion degree. The figure of the assessment result shows that the areas that are categorized as "low" phosphorus loss risk are small. Based on the figure of the result, the critical source areas were confirmed and the management strategies were brought forward according to the analysis on the distribute characteristics of the critical source areas. The result shows that the modified catchment scale phosphorus ranking scheme has operability and practicability to a certain extent.

  9. Phosphorus Utilization and Characterization of Excreta From Swine Fed Diets Containing A Variety of Cereal Grains Balanced For Total Phosphorus

    USDA-ARS?s Scientific Manuscript database

    Intrinsic phytase in swine feeds may alter phytate utilization and solubility of excreted phosphorus. Therefore, the objective of this experiment was to quantify changes in fecal phosphorus composition from swine fed various cereal grains with a range of phytate concentrations and endogenous phytase...

  10. Enhancement of phosphorus removal in a low temperature A(2)/O process by anaerobic phosphorus release of activated sludge.

    PubMed

    Li, Jianzheng; Jin, Yu; Guo, Yaqiong; He, Junguo

    2013-01-01

    An anaerobic phosphorus release tank was introduced to an anaerobic-anoxic-aerobic (A(2)/O) process treating domestic sewage to enhance the phosphorus removal at low temperature. Phosphorus release of the activated sludge from the second sedimentation tank was evaluated at 14 °C by batch cultures, and the nutrient removal in the modified low temperature A(2)/O process was further investigated at the same temperature. The results showed that the feasible sludge retention time was 14 h for sequencing batch reaction and 12 h for continuous flow operation. The ratio of raw sewage to activated sludge from the second sedimentation tank was 1:1 in volume to meet the demand of carbon resource for the growth of phosphorus release microbes. The feasible chemical oxygen demand (COD) loading rate of the activated sludge in the phosphorus release tank was 0.015-0.02 g COD/g MLSS (mixed liquor suspended solids) and the nitrate concentration should be less than 5 mg/L. The phosphorus release was doubled when the sludge was blended intermittently and gently. The anaerobic phosphorus release of the activated sludge improved the phosphate removal remarkably, as well as the removal of NH4(+)-N and total nitrogen (TN) in the modified low temperature A(2)/O process. The effluent COD, NH4(+)-N, TN and total phosphorus could meet a stricter discharge standard.

  11. Responses in calcium and phosphorus metabolism and hepatic lipid deposition among estrogenized chicks fed various dietary ingredients.

    PubMed

    Bolden, S L; Jensen, L S; Takahashi, K

    1984-03-01

    The purpose of this study was to determine whether diet composition would influence calcium and phosphorus metabolism in chicks administered estrogen. At 1 day of age, broiler chicks were fed either a corn-soybean meal diet (CS), or an isoenergetic and isonitrogenous diet containing 5% fish meal, 5% alfalfa meal and 10% torula yeast (FAY). At 21 days equivalent numbers were implanted with one of two lengths of Silastic tubing containing estradiol dipropionate, while the remaining birds served as nonimplanted controls. Significant increases were observed in liver weight, liver lipid, plasma total calcium and inorganic phosphate in chicks that were implanted, while concomitant declines were seen in body weight. Implanted chicks fed the CS diet had significantly higher liver weight, liver lipid, plasma phosphorus and plasma calcium and lower tibial bone ash than those fed the FAY diet. Furthermore, liver lipid values were very highly correlated with plasma phosphorus and calcium. In an identical study with slower growing White Leghorn chicks, the same trends were observed but were less well defined. These data show that the inclusion of certain ingredients into corn-soybean diets balanced for the major nutrients affects the response of chicks to estrogenization. Liver lipid deposition, calcium and phosphorus metabolism are all subject to diet and estrogen interactions.

  12. Improving phosphorus availability in an acid soil using organic amendments produced from agroindustrial wastes.

    PubMed

    Ch'ng, Huck Ywih; Ahmed, Osumanu Haruna; Majid, Nik Muhamad Ab

    2014-01-01

    In acid soils, soluble inorganic phosphorus is fixed by aluminium and iron. To overcome this problem, acid soils are limed to fix aluminium and iron but this practice is not economical. The practice is also not environmentally friendly. This study was conducted to improve phosphorus availability using organic amendments (biochar and compost produced from chicken litter and pineapple leaves, resp.) to fix aluminium and iron instead of phosphorus. Amending soil with biochar or compost or a mixture of biochar and compost increased total phosphorus, available phosphorus, inorganic phosphorus fractions (soluble inorganic phosphorus, aluminium bound inorganic phosphorus, iron bound inorganic phosphorus, redundant soluble inorganic phosphorus, and calcium bound phosphorus), and organic phosphorus. This was possible because the organic amendments increased soil pH and reduced exchangeable acidity, exchangeable aluminium, and exchangeable iron. The findings suggest that the organic amendments altered soil chemical properties in a way that enhanced the availability of phosphorus in this study. The amendments effectively fixed aluminium and iron instead of phosphorus, thus rendering phosphorus available by keeping the inorganic phosphorus in a bioavailable labile phosphorus pool for a longer period compared with application of Triple Superphosphate without organic amendments.

  13. Improving Phosphorus Availability in an Acid Soil Using Organic Amendments Produced from Agroindustrial Wastes

    PubMed Central

    Ch'ng, Huck Ywih; Ahmed, Osumanu Haruna; Majid, Nik Muhamad Ab.

    2014-01-01

    In acid soils, soluble inorganic phosphorus is fixed by aluminium and iron. To overcome this problem, acid soils are limed to fix aluminium and iron but this practice is not economical. The practice is also not environmentally friendly. This study was conducted to improve phosphorus availability using organic amendments (biochar and compost produced from chicken litter and pineapple leaves, resp.) to fix aluminium and iron instead of phosphorus. Amending soil with biochar or compost or a mixture of biochar and compost increased total phosphorus, available phosphorus, inorganic phosphorus fractions (soluble inorganic phosphorus, aluminium bound inorganic phosphorus, iron bound inorganic phosphorus, redundant soluble inorganic phosphorus, and calcium bound phosphorus), and organic phosphorus. This was possible because the organic amendments increased soil pH and reduced exchangeable acidity, exchangeable aluminium, and exchangeable iron. The findings suggest that the organic amendments altered soil chemical properties in a way that enhanced the availability of phosphorus in this study. The amendments effectively fixed aluminium and iron instead of phosphorus, thus rendering phosphorus available by keeping the inorganic phosphorus in a bioavailable labile phosphorus pool for a longer period compared with application of Triple Superphosphate without organic amendments. PMID:25032229

  14. Phosphorus flux from bottom sediments in Lake Eucha, Oklahoma.

    PubMed

    Haggard, B E; Moore, P A; Delaune, P B

    2005-01-01

    Phosphorus inputs into reservoirs include external sources from the watershed and internal sources from the reservoir bottom sediments. This study quantified sediment P flux in Lake Eucha, northeastern Oklahoma, USA, and evaluated the effectiveness of chemical treatment to reduce sediment P flux. Six intact sediment-water columns were collected from three sites in Lake Eucha near the reservoir channel at depths of 10 to 15 m. Three intact sediment and water columns from each site were incubated for 21 d at approximately 22 degrees C under aerobic conditions, and three were incubated under anaerobic conditions (N2 with 300 ppm CO2); sediment P flux was estimated over the 21 d for each core. The overlying water in the cores was bubbled with air for approximately 1 wk and then treated with aluminum sulfate (alum). The cores were incubated at approximately 22 degrees C for an additional 14 d under aerobic or anaerobic conditions, and sediment P flux after alum treatment was estimated for each core. Sediment P flux was approximately four times greater under anaerobic conditions compared with aerobic conditions. Alum treatment of the intact sediment-water columns reduced (8x) sediment P flux under anaerobic conditions. Internal P flux (1.03 and 4.40 mg m(-2) d(-1) under aerobic and anaerobic conditions, respectively) was greater than external P flux (0.13 mg m(-2) d(-1)). The internal P load (12 Mg yr(-1)) from reservoir bottom sediments was almost 25% of the external P load (approximately 48 Mg yr(-1)) estimated using a calibrated watershed model.

  15. Organ-specific phosphorus-allocation patterns and transcript profiles linked to phosphorus efficiency in two contrasting wheat genotypes.

    PubMed

    Aziz, Tariq; Finnegan, Patrick M; Lambers, Hans; Jost, Ricarda

    2014-04-01

    Recent studies have identified genotypic variation in phosphorus (P) efficiency, but rarely have the underlying mechanisms been described at the molecular level. We demonstrate that the highly P-efficient wheat (Triticum aestivum L.) cultivar Chinese 80-55 maintains higher inorganic phosphate (Pi ) concentrations in all organs upon Pi withdrawal in combination with higher Pi acquisition in the presence of Pi when compared with the less-efficient cultivar Machete. These findings correlated with differential organ-specific expression of Pi transporters TaPHT1;2, TaPHT1;5, TaPHT1;8, TaPHT2;1 and H(+) -ATPase TaHa1. Observed transcript level differences between the cultivars suggest that higher de novo phospholipid biosynthetic activities in Pi -limited elongating basal leaf sections are another crucial adaptation in Chinese 80-55 for sustaining growth upon Pi withdrawal. These activities may be supported through enhanced breakdown of starch in Chinese 80-55 stems as suggested by higher TaGPho1 transcript levels. Chinese 80-55 fine roots on the other hand show strong suppression of transcripts involved in glycolysis, transcriptional regulation and ribosomal activities. Our work reveals major differences in the way the two contrasting cultivars allocate Pi and organic P compounds between source and sink tissues and in the acclimation of their metabolism to changes in Pi availability. © 2013 John Wiley & Sons Ltd.

  16. Carbon trading for phosphorus gain: the balance between rhizosphere carboxylates and arbuscular mycorrhizal symbiosis in plant phosphorus acquisition.

    PubMed

    Ryan, M H; Tibbett, M; Edmonds-Tibbett, T; Suriyagoda, L D B; Lambers, H; Cawthray, G R; Pang, J

    2012-12-01

    Two key plant adaptations for phosphorus (P) acquisition are carboxylate exudation into the rhizosphere and mycorrhizal symbioses. These target different soil P resources, presumably with different plant carbon costs. We examined the effect of inoculation with arbuscular mycorrhizal fungi (AMF) on amount of rhizosphere carboxylates and plant P uptake for 10 species of low-P adapted Kennedia grown for 23 weeks in low-P sand. Inoculation decreased carboxylates in some species (up to 50%), decreased plant dry weight (21%) and increased plant P content (23%). There was a positive logarithmic relationship between plant P content and the amount of rhizosphere citric acid for inoculated and uninoculated plants. Causality was indicated by experiments using sand where little citric acid was lost from the soil solution over 2 h and citric acid at low concentrations desorbed P into the soil solution. Senesced leaf P concentration was often low and P-resorption efficiencies reached >90%. In conclusion, we propose that mycorrhizally mediated resource partitioning occurred because inoculation reduced rhizosphere carboxylates, but increased plant P uptake. Hence, presumably, the proportion of plant P acquired from strongly sorbed sources decreased with inoculation, while the proportion from labile inorganic P increased. Implications for plant fitness under field conditions now require investigation. © 2012 Blackwell Publishing Ltd.

  17. The prevalence of phosphorus-containing food additives in top-selling foods in grocery stores.

    PubMed

    León, Janeen B; Sullivan, Catherine M; Sehgal, Ashwini R

    2013-07-01

    The objective of this study was to determine the prevalence of phosphorus-containing food additives in best-selling processed grocery products and to compare the phosphorus content of a subset of top-selling foods with and without phosphorus additives. The labels of 2394 best-selling branded grocery products in northeast Ohio were reviewed for phosphorus additives. The top 5 best-selling products containing phosphorus additives from each food category were matched with similar products without phosphorus additives and analyzed for phosphorus content. Four days of sample meals consisting of foods with and without phosphorus additives were created, and daily phosphorus and pricing differentials were computed. Presence of phosphorus-containing food additives, phosphorus content. Forty-four percent of the best-selling grocery items contained phosphorus additives. The additives were particularly common in prepared frozen foods (72%), dry food mixes (70%), packaged meat (65%), bread and baked goods (57%), soup (54%), and yogurt (51%) categories. Phosphorus additive-containing foods averaged 67 mg phosphorus/100 g more than matched nonadditive-containing foods (P = .03). Sample meals comprised mostly of phosphorus additive-containing foods had 736 mg more phosphorus per day compared with meals consisting of only additive-free foods. Phosphorus additive-free meals cost an average of $2.00 more per day. Phosphorus additives are common in best-selling processed groceries and contribute significantly to their phosphorus content. Moreover, phosphorus additive foods are less costly than phosphorus additive-free foods. As a result, persons with chronic kidney disease may purchase these popular low-cost groceries and unknowingly increase their intake of highly bioavailable phosphorus. Copyright © 2013 National Kidney Foundation, Inc. Published by Elsevier Inc. All rights reserved.

  18. The Prevalence of Phosphorus Containing Food Additives in Top Selling Foods in Grocery Stores

    PubMed Central

    León, Janeen B.; Sullivan, Catherine M.; Sehgal, Ashwini R.

    2013-01-01

    Objective To determine the prevalence of phosphorus-containing food additives in best selling processed grocery products and to compare the phosphorus content of a subset of top selling foods with and without phosphorus additives. Design The labels of 2394 best selling branded grocery products in northeast Ohio were reviewed for phosphorus additives. The top 5 best selling products containing phosphorus additives from each food category were matched with similar products without phosphorus additives and analyzed for phosphorus content. Four days of sample meals consisting of foods with and without phosphorus additives were created and daily phosphorus and pricing differentials were computed. Setting Northeast Ohio Main outcome measures Presence of phosphorus-containing food additives, phosphorus content Results 44% of the best selling grocery items contained phosphorus additives. The additives were particularly common in prepared frozen foods (72%), dry food mixes (70%), packaged meat (65%), bread & baked goods (57%), soup (54%), and yogurt (51%) categories. Phosphorus additive containing foods averaged 67 mg phosphorus/100 gm more than matched non-additive containing foods (p=.03). Sample meals comprised mostly of phosphorus additive-containing foods had 736 mg more phosphorus per day compared to meals consisting of only additive-free foods. Phosphorus additive-free meals cost an average of $2.00 more per day. Conclusion Phosphorus additives are common in best selling processed groceries and contribute significantly to their phosphorus content. Moreover, phosphorus additive foods are less costly than phosphorus additive-free foods. As a result, persons with chronic kidney disease may purchase these popular low-cost groceries and unknowingly increase their intake of highly bioavailable phosphorus. PMID:23402914

  19. Soil organic phosphorus characterisation on a glacial chronosequence (Damma, Switzerland)

    NASA Astrophysics Data System (ADS)

    Jarosch, Klaus A.; Requejo, María I.; Bünemann, Else K.

    2015-04-01

    Soil organic phosphorus (P) may play a significant role in ecosystem P dynamics, yet, little is known about the development of different organic P classes over time. According to the commonly accepted model, relative proportions of organic P are expected to increase quickly after the commencement of soil development, subsequently remaining relatively stable over time. We tested this hypothesis on a young soil chronosequence in the Damma glacier forefield (Switzerland), where we examined the development of different organic P classes over time. In detail, we hypothesized that organic P compounds resistant against broadly active phosphatase-enzymes would increase with soil age. Soil samples (0-5 cm) were taken on 21 sites with 6 to 136 years of soil development. Using enzyme addition assays to soil extracts (0.25 M NaOH / 0.05 M EDTA), four organic P classes were detected: a) Monoester-like P (organic P hydrolysed by an acid phosphatase), b) DNA-like P (organic P hydrolysed by a nuclease in combination with an acid phosphatase, minus monoester-like P), c) Inositol Phosphate-like P (organic P hydrolysed by a phytase, minus monoester like P) and d) Enzyme stable P (difference between total extracted organic P and the three enzyme labile P classes a, b and c). NaOH-EDTA extractable inorganic and organic P increased with soil age from 4.2 and 5.2 mg kg-1 at the youngest sites to 23.9 and 64.5 mg kg-1 at the oldest sites, respectively. On all sites, more organic than inorganic P was extracted. We observed a strong linear relationship between organic and inorganic P along the chronosequence. Between 60 and 100% of extractable organic P was hydrolysed by the added enzymes, without a clear trend with respect to soil age. On most sites, Inositol phosphate-like P was the most prominent organic P class (1.8-24.3 mg kg-1). However, on some sites higher amounts of monoester-like P were detected (0.4-23.4 mg kg-1). DNA-like P ranged from nil to 12.9 mg kg-1. Thus, we observed a

  20. Inhibition of chemical dose in biological phosphorus and nitrogen removal in simultaneous chemical precipitation for phosphorus removal.

    PubMed

    Liu, Yanchen; Shi, Hanchang; Li, Wenlin; Hou, Yanling; He, Miao

    2011-03-01

    A study on the influence of chemical dosing on biological phosphorus and nitrogen removal was carried out through batch experimental tests by lab-scale and a full-scale wastewater treatment plant (employing a typical anaerobic-anoxic-oxic treatment). Results indicated that the inhibition of aluminum salt on biological phosphorus release and uptake processes is significant, as well as the inhibition of aluminum salt on Ammonia-Oxidizing Bacteria (AOB) is dominantly observed in the nitrification process and is recoverability. The inhibition of iron salt in biological phosphorus and nitrogen removal is weak, and only the inhibition of iron salt on phosphorus release at anaerobic periods emerge under large dosing. Evidence shows persistent inhibition from the accumulation of chemical doses in sludge mass. Intermittent chemical dosing proves recommendable for simultaneous chemical phosphorus removal. Copyright © 2010 Elsevier Ltd. All rights reserved.

  1. Studies on the phosphorus requirement and proper calcium/phosphorus ratio in the diet of the black sea bream ( Sparus macrocephalus)

    NASA Astrophysics Data System (ADS)

    Liu, Jingke; Li, Maotang; Wang, Keling; Wang, Xincheng; Liu, Jianking

    1993-06-01

    An expriment on the phosphorus requirement and the proper Ca/P ratio in the diet of the black sea bream using the phosphorus gradient method (with casein as basic diet, sodium dihydrogen phosphate as source of phosphorus, and calcium lactate as source of calcium) showed that growth was greatly affected by the diet's phosphorus content and Ca/P ratio. Inadequate phosphorus in the diet resulted in slow growth and poor food conversion ratio (FCR). Analyses of the fish body showed it contained a high level of lipid but a low level of moisture, ash, calcium and phosphorus. The optimal values of phosphorus and Ca/P ratio in the black sea bream diet are 0.68% and 1∶2 respectively. Phosphorus in excess of this optimum value resulted in slow growth or even death. The results of this experiment clearly indicated that phosphorus is the principal mineral additive affecting black sea bream growth.

  2. The challenge of controlling phosphorus in chronic kidney disease.

    PubMed

    Cannata-Andía, Jorge B; Martin, Kevin J

    2016-04-01

    The pathogenesis and management of chronic kidney disease-mineral bone disorders (CKD-MBD) has experienced major changes, but the control of serum phosphorus at all stages of CKD still seems to be a key factor to improve clinical outcomes. High serum phosphorus is the most important uremia-related, non-traditional risk factor associated with vascular calcification in CKD patients and in the general population. Phosphorus may also be one of the key elements linking vascular calcification with low bone turnover. The main hormones and factors that contribute to the kidney regulation of phosphorus and calcium include parathyroid hormone, FGF-23, klotho and 1,25-dihydroxyvitamin D (1,25(OH)2D). Serum phosphorus did not start rising until CKD 3b in contrast with the earlier changes observed with fibroblast growth factor-23 (FGF-23), Klotho, calcitriol and parathyroid hormone (PTH). Despite FGF-23 and PTH having synergic effects regarding phosphorus removal, they have opposite effects on 1,25(OH)2D3. At the same stages of CKD in which phosphorus retention appears to occur, calcium retention also occurs. As phosphorus accumulation is associated with poor outcomes, an important question without a clear answer is at which level-range should serum phosphorus be maintained at different stages of CKD to improve clinical outcomes. There are four main strategies to manage phosphate homeostasis; phosphorus dietary intake, administration of phosphate binder agents, effective control of hyperparathyroidism and to ensure in the CKD 5D setting, an adequate scheme of dialysis. Despite all the available strategies, and the introduction of new phosphate binder agents in the market, controlling serum phosphorus remains challenging, and hyperphosphatemia continues to be extremely common in CKD 5 patients. Furthermore, despite phosphate binding agents having proved to be effective in reducing serum phosphorus, their ultimate effects on clinical outcomes remain controversial. Thus, we still

  3. Extraction and precipitation of phosphorus from sewage sludge.

    PubMed

    Shiba, Nothando Cynthia; Ntuli, Freeman

    2017-02-01

    Raw sewage sludge from East Rand Water Care Association (ERWAT) had high phosphorus (P) content, approximately 15.2% (w/w) P2O5, which indicates a potential resource for the limiting nutrient. Leaching sewage sludge with 1M sulphuric acid at 5% solid loading for 2h resulted in an 82% phosphorus extraction. However, the phosphorus was recovered as iron phosphates, thus a further purification step using ion exchange to remove iron was required to increase the degree of P release. Magnesium oxide and ammonium hydroxide were used as magnesium and nitrogen sources, respectively, as well as pH regulators to precipitate P as struvite. 57% struvite was precipitated and the total phosphorus content of the precipitate was 25.9%. Kinetic studies showed that the leaching of phosphorus follows the Dickinson model for the first 100min with a rate of reaction of about 2×10(-5)s(-1). The rate limiting step is controlled by diffusion. Phosphorus solubility in 2% critic acid was almost 96%, which is the amount of phosphorus available to plants if the precipitate is applied as a fertiliser. Environmental, gram-positive Bacillus subtilis were found in the precipitate, which are harmless to the environment since they already exist in the soil where the precipitate can be applied as a fertiliser. Copyright © 2016 Elsevier Ltd. All rights reserved.

  4. Relative Contributions of Phosphorus in High Elevation Sierra Nevada Lakes

    NASA Astrophysics Data System (ADS)

    Jensen, L. K.; McIntyre, B. M.; Lyons, R. A.

    2015-12-01

    High elevation lakes of the Sierra Nevada mountain range show signs of eutrophication due to increased phosphorus loading. Phosphorus is a major contributing factor to freshwater lake eutrophication when in excess. Three previously researched sources of phosphorus to high-elevation montane lakes include atmospheric deposition, internal loading from sediments, and excretions from non-native stocked fish. The goal of this research was to isolate the estimated phosphorus contributions from residential shoreline developments and stocked non-native fish. A steady-state phosphorus loading rate model was created to quantify relative phosphorus loading into two lakes in the Eastern Sierra Nevada: Convict and Silver Lake. A conglomerate control lake was created from Eastern Brook Lake in the Eastern Sierra Nevada, Pear Lake in the Southern Sierra Nevada, and Snowflake Lake in Canada. Both Convict and Silver Lakes contain stocked non-native trout species and Silver Lake also has ~25 vacation homes on its eastern shore. Seasonal steady-state total phosphorus concentrations were determined using EPA Method 365.2. Loading rate constants were calculated using loading rates from literature and corresponding concentrations. It was determined that as much as 42% of phosphorous to Silver Lake came from shoreline housing developments, and 24% came from stocked fish depending on the season. Previous studies showed much lower contributions from non-native fish.

  5. Phosphorus removal from anaerobically digested swine wastewater through struvite precipitation.

    PubMed

    Jordaan, E M; Ackerman, J; Cicek, N

    2010-01-01

    Phosphorus removal from agricultural wastewater streams is an important aspect of managing surface water quality, due to the contribution of phosphorus to eutrophication. Removal of phosphorus through struvite precipitation allows for its recovery as a potential fertilizer, and by determining the best conditions for struvite precipitation the removal process can be optimized. The effects of pH, Mg:P ratio, and time on struvite precipitation from anaerobically digested swine manure effluent were investigated. Effluent with Mg:P ratios from 1.0:1 to 1.6:1 were adjusted to pH values between 7.5 and 9.5 and left to equilibrate for 24 h. Results indicate that phosphorus removal increased with increasing pH and Mg:P ratio; the maximum phosphorus removal achieved was 80% at pH 9.0 and a Mg:P ratio of 1.6:1. The purest struvite precipitate was found at pH 7.5, with calcium carbonate and struvite precipitating at higher pH values. A continuously stirred batch of centrate was adjusted to pH 8.4 to determine the struvite formation rate constant. The rate constant was found to be 1.55 h(-1), with 17% phosphorus removal during the first 20 min. The results indicate that struvite precipitation could be a viable method of phosphorus removal from anaerobically digested swine manure.

  6. Ocean acidification: One potential driver of phosphorus eutrophication.

    PubMed

    Ge, Changzi; Chai, Yanchao; Wang, Haiqing; Kan, Manman

    2017-02-15

    Harmful algal blooms which may be limited by phosphorus outbreak increases currently and ocean acidification worsens presently, which implies that ocean acidification might lead to phosphorus eutrophication. To verify the hypothesis, oxic sediments were exposed to seawater with different pH 30days. If pH was 8.1 and 7.7, the total phosphorus (TP) content in sediments was 1.52±0.50 and 1.29±0.40mg/g. The inorganic phosphorus (IP) content in sediments exposed to seawater with pH8.1 and 7.7 was 1.39±0.10 and 1.06±0.20mg/g, respectively. The exchangeable phosphorus (Ex-P) content in sediments was 4.40±0.45 and 2.82±0.15μg/g, if seawater pH was 8.1 and 7.7. Ex-P and IP contents in oxic sediments were reduced by ocean acidification significantly (p<5%). The reduced phosphorus in sediments diffused into water, which implied that ocean acidification was one potential facilitator of phosphorus eutrophication in oxic conditions.

  7. The dissipation of phosphorus in sewage and sewage effluents.

    PubMed

    Collingwood, R W

    Of the 41 kt of phosphorus reaching the sewage works in England and Wales 15 kt is removed in sewage sludge and the remainder is disposed of to rivers. 60% of the sewage sludge is now used as fertilizer and this proportion will no doubt increase in the future. The total use of sewage sludge, however, represents only about 5% of the current annual usage of artificial phosphorus fertilizer. At present there is no general economic incentive to make better use of the phosphorus in effluents. Phosphorus removal is expensive--about 2--3 pence/m3. If all the sewage effluents in England and Wales were to be so treated the cost would be about 100--150 million pounds annually, that is about 50% of the present costs of sewage treatment. In certain cases, but rarely in the UK, phosphate is removed, not to conserve phosphorus but to minimize the problems it creates in the environment. The phosphorus removed has little value as fertilizer. Alternative methods of using the phosphorus in effluents by the production and harvesting of crops of algae or aquatic plants have so far proved uneconomic. However, these methods need to be reviewed periodically as they may in the future become economically more attractive, especially in warmer climates where plant growth can be maintained throughout the year.

  8. Dietary phosphorus requirement of young abalone Haliotis discus Hannai Ino

    NASA Astrophysics Data System (ADS)

    Tan, Bei-Ping; Mai, Kang-Sen; Liufu, Zhi-Guo

    2002-03-01

    An experiment was performed to determine the dietary phosphorus requirement of the young abalone, Haliotis discus hannai. Five semi-purified diets were formulated to provide a series of graded levels of dietary total phosphorus (0.23% 1.98) from monobasic potassium phosphate (KH2P04). The brown alga, Laminaria japonica, was used as a control diet. Similar size abalone were distributed in a single-pass, flow-through system using a completely randomized design with six treatments and three replicates each treatment. The abalone were hand-fed to satiation with appropriate diets in excess, once daily at 17:00. The feeding trial was run for 120-d. Survival rate and soft-body to shell ratio (SB/S) were constantly maintained regardless of dietary treatment. However, the weight gain rate (WGR), daily increment in shell length (DISL), muscle RNA to DNA ratio (RNA/DNA), carcass levels of lipid and protein, soft-body alkaline phosphatase (SBAKP), and phosphorus concentrations of whole body (WB) and soft body (SB) were significantly (ANOVA, P<0.05) affected by the dietary phosphorus level. The dietary phosphorus requirements of the abalone were evaluated from the WGR, DISL, and RNA/DNA ratio respectively, by using second-order polynomial regression analysis. Based on these criteria, about 1.0% 1.2% total dietary phosphorus, i.e. 0.9% 1.1% dietary available phosphorus is recommended for the maximum growth of the abalone.

  9. Effect of pH on biological phosphorus uptake.

    PubMed

    Serralta, J; Ferrer, J; Borrás, L; Seco, A

    2006-12-05

    An anaerobic aerobic laboratory scale sequencing batch reactor (SBR) was operated to study the effect of pH on enhanced biological phosphorus removal. Seven steady states were achieved under different operating conditions. In all of them, a slight variation in the pH value was observed during anaerobic phase. However, pH rose significantly during aerobic phase. The increase observed was due to phosphorus uptake and carbon dioxide stripping. When pH was higher than 8.2-8.25 the phosphorus uptake rate clearly decreased. The capability of Activated Sludge Model No. 2d (ASM2d) and Biological Nutrient Removal Model No. 1 (BNRM1) to simulate experimental results was evaluated. Both models successfully characterized the enhanced biological phosphorus removal performance of the SBR. Furthermore, BNRM1 also reproduced the pH variations observed and the decrease in the phosphorus uptake rate. This model includes a switch function in the kinetic expressions to represent the pH inhibition in biological processes. The pH inhibition constants related to polyphosphate storage process were obtained by adjusting model predictions to measured phosphorus concentrations. On the other hand, pH inhibition should be included in ASM2d to accurately simulate experimental phosphorus evolution observed in an A/O SBR.

  10. Black phosphorus saturable absorber for ultrashort pulse generation

    SciTech Connect

    Sotor, J. Sobon, G.; Abramski, K. M.; Macherzynski, W.; Paletko, P.

    2015-08-03

    Low-dimensional materials, due to their unique and versatile properties, are very interesting for numerous applications in electronics and optoelectronics. Recently rediscovered black phosphorus, with a graphite-like layered structure, can be effectively exfoliated up to the single atomic layer called phosphorene. Contrary to graphene, it possesses a direct band gap controllable by the number of stacked atomic layers. For those reasons, black phosphorus is now intensively investigated and can complement or replace graphene in various photonics and electronics applications. Here, we demonstrate that black phosphorus can serve as a broadband saturable absorber and can be used for ultrashort optical pulse generation. The mechanically exfoliated ∼300 nm thick layers of black phosphorus were transferred onto the fiber core, and under pulsed excitation at 1560 nm wavelength, its transmission increases by 4.6%. We have demonstrated that the saturable absorption of black phosphorus is polarization sensitive. The fabricated device was used to mode-lock an Er-doped fiber laser. The generated optical solitons with the 10.2 nm bandwidth and 272 fs duration were centered at 1550 nm. The obtained results unambiguously show that black phosphorus can be effectively used for ultrashort pulse generation with performances similar or even better than currently used graphene or carbon nanotubes. This application of black phosphorus proves its great potential to future practical use in photonics.

  11. Copper-phosphorus alloys offer advantages in brazing copper

    SciTech Connect

    Rupert, W.D.

    1996-05-01

    Copper-phosphorus brazing alloys are used extensively for joining copper, especially refrigeration and air-conditioning copper tubing and electrical conductors. What is the effect of phosphorus when alloyed with copper? The following are some of the major effects: (1) It lowers the melt temperature of copper (a temperature depressant). (2) It increases the fluidity of the copper when in the liquid state. (3) It acts as a deoxidant or a fluxing agent with copper. (4) It lowers the ductility of copper (embrittles). There is a misconception that silver improves the ductility of the copper-phosphorus alloys. In reality, silver added to copper acts in a similar manner as phosphorus. The addition of silver to copper lowers the melt temperature (temperature depressant) and decreases the ductility. Fortunately, the rate and amount at which silver lowers copper ductility is significantly less than that of phosphorus. Therefore, taking advantage of the temperature depressant property of silver, a Ag-Cu-P alloy can be selected at approximately the same melt temperature as a Cu-P alloy, but at a lower phosphorus content. The lowering of the phosphorus content actually makes the alloy more ductile, not the silver addition. A major advantage of the copper-phosphorus alloys is the self-fluxing characteristic when joining copper to copper. They may also be used with the addition of a paste flux on brass, bronze, and specialized applications on silver, tungsten and molybdenum. Whether it is selection of the proper BCuP alloy or troubleshooting an existing problem, the suggested approach is a review of the desired phosphorus content in the liquid metal and how it is being altered during application. In torch brazing, a slight change in the oxygen-fuel ratio can affect the joint quality or leak tightness.

  12. Dephasing in strongly anisotropic black phosphorus

    NASA Astrophysics Data System (ADS)

    Hemsworth, N.; Tayari, V.; Telesio, F.; Xiang, S.; Roddaro, S.; Caporali, M.; Ienco, A.; Serrano-Ruiz, M.; Peruzzini, M.; Gervais, G.; Szkopek, T.; Heun, S.

    2016-12-01

    Weak localization was observed in a black phosphorus field-effect transistor 65 nm thick. The weak localization behavior was found to be in excellent agreement with the Hikami-Larkin-Nagaoka model for fields up to 1 T, from which characteristic scattering lengths could be inferred. The temperature dependence of the phase coherence length Lφ was investigated, and above 1 K, it was found to decrease weaker than the Lφ∝T-1 /2 dependence characteristic of electron-electron scattering in the presence of elastic scattering in two dimensions. Rather, the observed power law was found to be close to that observed previously in quasi-one-dimensional systems such as metallic nanowires and carbon nanotubes.

  13. A radio search for interstellar phosphorus compounds

    NASA Technical Reports Server (NTRS)

    Hollis, J. M.; Snyder, L. E.; Lovas, F. J.; Ulich, B. L.

    1980-01-01

    The J = 1-0 and 3-2 transitions of phosphorus nitride, PN, with resolvable hyperfine components at 46.99 GHz and blended components at 140.97 GHz, and transitions of phosphine, PH3, at 47.39 and 46.94 GHz, arising from a small induced dipole moment, have been searched for but not found in interstellar molecular clouds. The J = 3/2-1/2, F - 3/2-3/2 transition of nitric oxide, NO, and the J(K-K+) = 16(4, 12) -15(5, 11) transition of sulfur dioxide, SO2, have been detected in Orion and Sagittarius B2. An unidentified emission line, U140921.8 MHz, has been observed in IRC + 10216.

  14. Biological phosphorus cycling in dryland regions

    USGS Publications Warehouse

    Belnap, Jayne; Bunemann, Else; Oberson, Astrid; Frossard, Emmanuel

    2011-01-01

    The relatively few studies done on phosphorus (P) cycling in arid and semiarid lands (drylands) show many factors that distinguish P cycling in drylands from that in more mesic regions. In drylands, most biologically relevant P inputs and losses are from the deposition and loss of dust. Horizontal and vertical redistribution of P is an important process. P is concentrated at the soil surface and thus vulnerable to loss via erosion. High pH and CaCO3 limit P bioavailability, and low rainfall limits microbe and plant ability to free abiotically bound P via exudates, thus making it available for uptake. Many invasive plants are able to access recalcitrant P more effectively than are native plants. As P availability depends on soil moisture and temperature, climate change is expected to have large impacts on P cycling

  15. A radio search for interstellar phosphorus compounds

    NASA Technical Reports Server (NTRS)

    Hollis, J. M.; Snyder, L. E.; Lovas, F. J.; Ulich, B. L.

    1980-01-01

    The J = 1-0 and 3-2 transitions of phosphorus nitride, PN, with resolvable hyperfine components at 46.99 GHz and blended components at 140.97 GHz, and transitions of phosphine, PH3, at 47.39 and 46.94 GHz, arising from a small induced dipole moment, have been searched for but not found in interstellar molecular clouds. The J = 3/2-1/2, F - 3/2-3/2 transition of nitric oxide, NO, and the J(K-K+) = 16(4, 12) -15(5, 11) transition of sulfur dioxide, SO2, have been detected in Orion and Sagittarius B2. An unidentified emission line, U140921.8 MHz, has been observed in IRC + 10216.

  16. Vanadium reduces mortality in phosphorus deficient chicks

    SciTech Connect

    Hill, C.H. )

    1991-03-15

    Since the vanadate anion is similar in structure to the phosphate ion, and since vanadate has been shown to interfere with phosphate metabolism both in vitro and in vivo, experiments were conducted to determine the effect of dietary vanadate (V) on chicks fed phosphorus (P) deficient diets. In these studies, broiler chicks of both sexes were fed the experimental diets from the day of hatching for 19 days. The diets were based on soybean meal and corn, supplemented with methionine, manganese, and vitamins to supply the chick's requirements. Calcium (Ca) and P levels were manipulated by use of feed grade dicalcium phosphate and limestone. V was added as ammonium metavanadate. Serum Ca and P were determined on representative chicks in each group. Increasing Ca levels increased serum Ca and decreased serum P. V increased serum P levels in the chicks receiving 0.2% P but not in those receiving 0.1% P.

  17. Platinum-functionalized black phosphorus hydrogen sensors

    NASA Astrophysics Data System (ADS)

    Lee, Geonyeop; Jung, Sunwoo; Jang, Soohwan; Kim, Jihyun

    2017-06-01

    Black phosphorus (BP), especially in its two-dimensional (2D) form, is an intriguing material because it exhibits higher chemical sensing ability as compared to other thin-film and 2D materials. However, its implementation into hydrogen sensors has been limited due to its insensitivity toward hydrogen. We functionalized exfoliated BP flakes with Pt nanoparticles to improve their hydrogen sensing efficiency. Pt-functionalized BP sensors with back-gated field-effect transistor configuration exhibited a fast response/decay, excellent reproducibility, and high sensitivities (over 50%) at room temperature. Langmuir isotherm model was employed to analyze the Pt-catalyzed BP sensors. Furthermore, the activation energy of hydrogen adsorption on Pt-decorated BP was evaluated, which is equal to the change in work function resulting from hydrogen adsorption on the Pt(111) surface. These results demonstrate that Pt-catalyzed BP exhibits a great potential for next-generation hydrogen sensors.

  18. Black phosphorus mid-infrared photodetectors

    NASA Astrophysics Data System (ADS)

    Xu, Mei; Gu, Yuqian; Peng, Ruoming; Youngblood, Nathan; Li, Mo

    2017-04-01

    Few-layer black phosphorus (BP) has emerged as a promising 2D material for photodetection in the mid-infrared spectral range given its narrow bandgap. However, a comprehensive understanding of BP photodetector's response in the mid-infrared is still lacking. In this paper, we study the photoresponse of few-layer BP photodetector in the mid-infrared range from 2.5 to 3.7 µm. We identify broadband photoresponse of BP photodetectors in the mid-infrared and observe saturation of the response with optical power. Through frequency and time domain measurements, we have also identified the two dominate mechanisms in our device to be due to the photovoltaic and photogating effects. Our results provide valuable information for optimization of BP mid-infrared photodetectors toward rivaling the current infrared photodetection technology based on compound semiconductors.

  19. Black phosphorus edges: a polarized Raman study

    NASA Astrophysics Data System (ADS)

    Ribeiro, H.; Villegas, C.; Bahamon, D.; Castro Neto, A.; de Souza, E.; Rocha, A.; Pimenta, M.; de Matos, C.

    Black phosphorus (BP) has been recently exfoliated down to few-layer thicknesses revealing numerous interesting features such as a tunable direct bandgap. Ever since, demonstrations of BP electronic devices have bloomed, as well as studies of the electric, optical, mechanical and thermal properties of its bulk and few-layer forms. However, the edges of BP crystals have, so far, been poorly characterized, even though the terminations of layered crystals are known to possess a range of interesting properties. In this work, the edges of exfoliated BP flakes are characterized by polarized confocal Raman spectroscopy. We will present experimental Raman spectra at zigzag and armchair edges, as well as density functional theory calculations that explain the peculiarities of the experimental data. Fapesp, INCT/Nanocarbono, Fapemig, CNPq, MackPesquisa, Grid-Unesp, CENAPAD-SP, and NRF.

  20. Intestinal absorption of calcium and phosphorus

    SciTech Connect

    Wasserman, R.H.

    1981-01-01

    The intestinal absorption of calcium and phosphorus has received considerable attention in recent years. The evidence has clearly indicated that calcium is absorbed by two processes: active transport and diffusion. Vitamin D appears to affect both processes, and has a significant effect at the brush border of the intestinal cell. Several proposed models to account for the transmural movement of calcium are discussed. The active transport of phosphate is under the control of vitamin D and is located at the brush border region of the intestinal cell. This transport system, like several others, appears to be sodium-dependent and inhibited by ouabain. In-transit phosphate does not mix with the cellular phosphate pool. Emphasized in the presentation is current knowledge of the transport mechanisms and macromolecular changes that potentially account for the stimulatory effect of vitamin D on calcium and phosphate transport.

  1. Organic Phosphorus in the Deep Subseafloor Environment

    NASA Astrophysics Data System (ADS)

    Defforey, D.; Paytan, A.

    2014-12-01

    Phosphorus (P) is a macronutrient involved both in functional and structural components of all living cells. This makes it an essential nutrient for life, including microbial life in the deep subseafloor habitat. P availability in this environment is limited since organic matter is scarce and P is thought to be mainly present in refractory mineral phases. However, recent estimates suggest that the deep biosphere may contain up to 1% of Earth's total biomass, which implies that microorganisms may possess mechanisms to harvest recalcitrant phosphorus compounds in this environment. In addition, the role of the organic P pool in this setting is poorly understood and could be of great importance should it represent an important P pool fueling the deep biosphere. This study aims to identify and quantify organic P compounds in open ocean sediments using our newly developed sequential extraction procedure for 31P nuclear magnetic resonance spectroscopy (31P NMR). This method amplifies the signal of organic P in spectra by increasing its concentration and quantitatively removing the majority of inorganic P. Briefly, P bound to iron oxyhydroxides is removed from sediment samples during a reductive step; then, P in authigenic and biogenic apatite is solubilized over the course of an extraction in an acidic buffer. These two steps remove the majority of inorganic P from the sample. Lastly, the residue is extracted in 0.25M NaOH+ 0.05M Na2EDTA and the supernatant is frozen and lyophilized prior to 31P NMR analysis. This method will be applied to sediment samples from North Pond (IODP expedition 336), an isolated sediment pond on the western flank of the Mid-Atlantic ridge. This work will provide valuable insight into the diagenetic processes affecting organic P in open ocean sediments and into possible nutrient sources to the deep biosphere.

  2. A Novel Method for Dissolved Phosphorus Analysis

    NASA Astrophysics Data System (ADS)

    Berry, J. M.; Spiese, C. E.

    2012-12-01

    High phosphorus loading is a major problem in the Great Lakes watershed. Phosphate enters waterways via both point and non-point sources (e.g., runoff, tile drainage, etc.), promoting eutrophication, and ultimately leading to algal blooms, hypoxia and loss of aquatic life. Quantification of phosphorus loading is typically done using the molybdenum blue method, which is known to have significant drawbacks. The molybdenum blue method requires strict control on time, involves toxic reagents that have limited shelf-life, and is generally unable to accurately measure sub-micromolar concentrations. This study aims to develop a novel reagent that will overcome many of these problems. Ethanolic europium(III) chloride and 8-hydroxyquinoline-5-sulfonic acid (hqs) were combined to form the bis-hqs complex (Eu-hqs). Eu-hqs was synthesized as the dipotassium salt via a simple one-pot procedure. This complex was found to be highly fluorescent (λex = 360 nm, λem = 510 nm) and exhibited a linear response upon addition of monohydrogen phosphate. The linear response ranged from 0.5 - 25 μM HPO42- (15.5 - 775 μg P L-1). It was also determined that Eu-hqs formed a 1:1 complex with phosphate. Maximum fluorescence was found at a pH of 8.50, and few interferences from other ions were found. Shelf-life of the reagent was at least one month, twice as long as most of the molybdenum blue reagent formulations. In the future, field tests will be undertaken in local rivers, lakes, and wetlands to determine the applicability of the complex to real-world analysis.

  3. Phosphorus losses in furrow irrigation runoff.

    PubMed

    Westermann, D T; Bjorneberg, D L; Aase, J K; Robbins, C W

    2001-01-01

    Phosphorus (P) often limits the eutrophication of streams, rivers, and lakes receiving surface runoff. We evaluated the relationships among selected soil P availability indices and runoff P fractions where manure, whey, or commercial fertilizer applications had previously established a range of soil P availabilities on a Portneuf silt loam (coarse-silty, mixed, superactive, mesic Durinodic Xeric Haplocalcid) surface-irrigated with Snake River water. Water-soluble P, Olsen P (inorganic and organic P), and iron-oxide impregnated paper-extractable P (FeO-Ps) were determined on a 0.03-m soil sample taken from the bottom of each furrow before each irrigation in fall 1998 and spring 1999. Dissolved reactive phosphorus (DRP) in a 0.45-microm filtered runoff sample, and iron-oxide impregnated paper-extractable P (FeO-Pw), total P, and sediment in an unfiltered runoff sample were determined at selected intervals during a 4-h irrigation on 18.3-m field plots. The 1998 and 1999 data sets were combined because there were no significant differences. Flow-weighted average runoff DRP and FeO-Pw concentrations increased linearly as all three soil P test concentrations increased. The average runoff total P concentration was not related to any soil P test but was linearly related to sediment concentration. Stepwise regression selected the independent variables of sediment, soil lime concentration, and soil organic P extracted by the Olsen method as related to average runoff total P concentration. The average runoff total P concentration was 1.08 mg L(-1) at a soil Olsen P concentration of 10 mg kg(-1). Soil erosion control will be necessary to reduce P losses in surface irrigation runoff.

  4. Phosphorus stress effects on assimilation of nitrate

    SciTech Connect

    Rufty, T.W. Jr.; Israel, D.W. ); MacKown, C.T. )

    1990-09-01

    An experiment was conducted to investigate alterations in uptake and assimilation of NO{sub 3}{sup {minus}} by phosphorus-stressed plants. Young tobacco plants (Nicotiana tabacum (L.), cv NC 2326) growing in solution culture were derived of an external phosphorus (P) supply for 12 days. On selected days, plants were exposed to {sup 15}NO{sub 3}{sup {minus}} during the 12 hour light period to determine changes in NO{sub 3}{sup {minus}} assimilation as the P deficiency progressed. Decreased whole-plant growth was evident after 3 days of P deprivation and became more pronounced with time, but root growth was unaffected until after day 6. Uptake of {sup 15}NO{sub 3}{sup {minus}} per gram root dry weight and translocation of absorbed {sup 15}NO{sub 3}{sup {minus}} out of the root were noticeably restricted in -P plants by day 3, and effects on both increased in severity with time. Whole-plant reduction of {sup 15}NO{sub 3}{sup {minus}} and {sup 15}N incorporation into insoluble reduced-N in the shoot decreased after day 3. Although the P limitation was associated with a substantial accumulation of amino acids in the shoot, there was no indication of excessive accumulation of soluble reduced-{sup 15}N in the shoot during the 12 hour {sup 15}NO{sub 3}{sup {minus}} exposure periods. The results indicate that alterations in NO{sub 3}{sup {minus}} transport processes in the root system are the primary initial responses limiting synthesis of shoot protein in P-stressed plants. Elevated amino acid levels evidently are associated with enhanced degradation of protein rather than inhibition of concurrent protein synthesis.

  5. Effects of injection of acetic acid and propionic acid for total phosphorus removal at high temperature in enhanced biological phosphorus removal process.

    PubMed

    Ki, C Y; Kwon, K H; Kim, S W; Min, K S; Lee, T U; Park, D J

    2014-01-01

    In summer, wastewater treatment plant total phosphorus (TP) removal efficiency is low in South Korea. The reason is because of high temperatures or significant fluctuation of inflow characteristics caused by frequent rainfall. Hence, this study tried to raise TP removal efficiency by injecting fixed external carbon sources in real sewage. Polyphosphate accumulating organisms (PAOs) and glycogen accumulating organisms (GAOs) compete to occupy microorganisms at high temperature. Propionate is known to restrain GAOs. Thus, acetate and propionate were chosen as the external carbon source in this study to find out the suitable volume and ratio of carbon source which ensured the dominance of PAOs. An external carbon source was supplied in the anaerobic reactor of the biological phosphorus removal process at high temperature (above 25 °C). TP removal efficiency was improved by injecting an external carbon source compared to that without an external carbon source. Also, it remained relatively stable when injecting an external carbon source, despite the variation in temperature. TP removal efficiency was the highest when injecting acetate and propionate in the proportion of 2:1 (total concentration as chemical oxygen demand (COD) is 12 mg/L in influent).

  6. Serum phosphorus levels and the spectrum of ankle-brachial index in older men: the Osteoporotic Fractures in Men (MrOS) study.

    PubMed

    Meng, Jerry; Wassel, Christina L; Kestenbaum, Bryan R; Collins, Tracie C; Criqui, Michael H; Lewis, Cora E; Cummings, Steve R; Ix, Joachim H

    2010-04-15

    A higher serum phosphorus level is associated with cardiovascular disease (CVD) events among community-living populations. Mechanisms are unknown. The ankle-brachial index (ABI) provides information on both atherosclerosis and arterial stiffness. In this cross-sectional study (2000-2002), the authors evaluated the association of serum phosphorus levels with low (<0.90) and high (> or =1.40 or incompressible) ABI as compared with intermediate ABI in 5,330 older US men, among whom the mean serum phosphorus level was 3.2 mg/dL (standard deviation, 0.4), 6% had a low ABI, and 5% had a high ABI. Each 1-mg/dL increase in serum phosphorus level was associated with a 1.6-fold greater prevalence of low ABI (95% confidence interval (CI): 1.2, 2.1; P < 0.001) and a 1.4-fold greater prevalence of high ABI (95% CI: 1.0, 1.9; P = 0.03) in models adjusted for demographic factors, traditional CVD risk factors, and kidney function. However, the association of phosphorus with high ABI differed by chronic kidney disease (CKD) status (in persons with CKD, prevalence ratio = 2.96, 95% CI: 1.61, 5.45; in persons without CKD, prevalence ratio = 1.14, 95% CI: 0.81, 1.61; interaction P = 0.04). In conclusion, among community-living older men, higher phosphorus levels are associated with low ABI and are also associated with high ABI in persons with CKD. These associations may explain the link between serum phosphorus levels and CVD events.

  7. Nature of Phosphorus Limitation in the Ultraoligotrophic Eastern Mediterranean

    NASA Astrophysics Data System (ADS)

    Thingstad, T. F.; Krom, M. D.; Mantoura, R. F. C.; Flaten, G. A. F.; Groom, S.; Herut, B.; Kress, N.; Law, C. S.; Pasternak, A.; Pitta, P.; Psarra, S.; Rassoulzadegan, F.; Tanaka, T.; Tselepides, A.; Wassmann, P.; Woodward, E. M. S.; Riser, C. Wexels; Zodiatis, G.; Zohary, T.

    2005-08-01

    Phosphate addition to surface waters of the ultraoligotrophic, phosphorus-starved eastern Mediterranean in a Lagrangian experiment caused unexpected ecosystem responses. The system exhibited a decline in chlorophyll and an increase in bacterial production and copepod egg abundance. Although nitrogen and phosphorus colimitation hindered phytoplankton growth, phosphorous may have been transferred through the microbial food web to copepods via two, not mutually exclusive, pathways: (i) bypass of the phytoplankton compartment by phosphorus uptake in heterotrophic bacteria and (ii) tunnelling, whereby phosphate luxury consumption rapidly shifts the stoichiometric composition of copepod prey. Copepods may thus be coupled to lower trophic levels through interactions not usually considered.

  8. Phosphorus management in end-stage renal disease.

    PubMed

    Finn, William F

    2005-01-01

    Chronic kidney disease is an important public health problem, with an increasing number of patients worldwide. One important outcome of renal failure is disordered mineral metabolism, most notably involving calcium and phosphorus balance. Of importance is that increased serum phosphorus levels are associated with increased mortality rates. Despite dietary restrictions, patients receiving dialysis invariably experience hyperphosphatemia and require treatment with phosphate binders. Existing phosphate binders are effective in reducing serum phosphorus levels, but are associated with a number of important disadvantages. Lanthanum carbonate, a new noncalcium, nonaluminum phosphate binder, represents a promising treatment for hyperphosphatemia.

  9. Nature of phosphorus limitation in the ultraoligotrophic eastern Mediterranean.

    PubMed

    Thingstad, T F; Krom, M D; Mantoura, R F C; Flaten, G A F; Groom, S; Herut, B; Kress, N; Law, C S; Pasternak, A; Pitta, P; Psarra, S; Rassoulzadegan, F; Tanaka, T; Tselepides, A; Wassmann, P; Woodward, E M S; Riser, C Wexels; Zodiatis, G; Zohary, T

    2005-08-12

    Phosphate addition to surface waters of the ultraoligotrophic, phosphorus-starved eastern Mediterranean in a Lagrangian experiment caused unexpected ecosystem responses. The system exhibited a decline in chlorophyll and an increase in bacterial production and copepod egg abundance. Although nitrogen and phosphorus colimitation hindered phytoplankton growth, phosphorous may have been transferred through the microbial food web to copepods via two, not mutually exclusive, pathways: (i) bypass of the phytoplankton compartment by phosphorus uptake in heterotrophic bacteria and (ii) tunnelling, whereby phosphate luxury consumption rapidly shifts the stoichiometric composition of copepod prey. Copepods may thus be coupled to lower trophic levels through interactions not usually considered.

  10. Assembly of Ring-Shaped Phosphorus within Carbon Nanotube Nanoreactors.

    PubMed

    Zhang, Jinying; Zhao, Dan; Xiao, Dingbin; Ma, Chuansheng; Du, Hongchu; Li, Xin; Zhang, Lihui; Huang, Jialiang; Huang, Hongyang; Jia, Chun-Lin; Tománek, David; Niu, Chunming

    2017-02-06

    A phosphorus allotrope that has not been observed so far, ring-shaped phosphorus consisting of alternate P8 and P2 structural units, has been assembled inside multi-walled carbon nanotube nanoreactors with inner diameters of 5-8 nm by a chemical vapor transport and reaction of red phosphorus at 500 °C. The ring-shaped nanostructures with surrounding graphene walls are stable under ambient conditions. The nanostructures were characterized by high-resolution transmission electron microscopy, scanning transmission electron microscopy, energy-dispersive X-ray spectroscopy, Raman scattering, attenuated total reflectance Fourier transform infrared spectroscopy, and X-ray photoelectron spectroscopy.

  11. Effect of sludge retention time and phosphorus to carbon ratio on biological phosphorus removal in HS-SBR process.

    PubMed

    Zhu, Rui; Wu, Min; Yang, Jian

    2013-01-01

    Sludge retention time (SRT) and phosphorus to carbon ratio (P/C) in the feed are important control parameters in biological phosphorus removal. In this study, humus soil sequencing batch reactor (HS-SBR) process was operated with different SRTs (five, 10 and 15 days) and P/C feeding (0.0125 and 0.1) to evaluate their phosphorus removal efficiencies. The HS-SBR was composed of a humus soil reactor (HSR) and a conventional SBR (designated as hsSBR to differentiate from the conventional SBR used as a control). The results showed that the phosphorus removal efficiency was 82.7%, 97.3% and 97.3% at SRTs of five, 10 and 15 days respectively and acetate utilization efficiency for phosphorus release with SRTs of 10 and 15 days was much higher than that with an SRT of five days. In addition, a high P/C feeding (0.1) could promote the growth of the phosphate accumulating organisms in the hsSBR; however, the efficiency of phosphorus removal was lower than a low P/C feeding (0.0125) at an SRT of 15 days. All these observations suggested that a relatively long SRT and low P/C feeding exert a useful effect on the phosphorus removal in the hsSBR.

  12. Roasting-induced phase change and its influence on phosphorus removal through acid leaching for high-phosphorus iron ore

    NASA Astrophysics Data System (ADS)

    Yang, Min; Zhu, Qing-shan; Fan, Chuan-lin; Xie, Zhao-hui; Li, Hong-zhong

    2015-04-01

    In the present study, roasting-induced phase change and its influence on phosphorus removal via leaching has been investigated for high-phosphorus iron ore. The findings indicate that phosphorus in the ore is associated with goethite and exists mainly in amorphous Fe3PO7 phase. The phosphorus remains in the amorphous phase after being roasted below 300°C. Grattarolaite (Fe3PO7) is found in samples roasted at 600-700°C, revealing that phosphorus phase is transformed from the amorphous form to crystalline grattarolaite during roasting. Leaching tests on synthesized pure grattarolaite reveal a low rate of phosphorus removal by sulfuric acid leaching. When the roasting temperature is higher than 800°C, grattarolaite is found to react with alumina to form aluminum phosphate, and the reactivity of grattarolaite with alumina increases with increasing roasting temperature. Consequently, the rate of phosphorus removal also increases with increasing roasting temperature due to the formation of acid-soluble aluminum phosphate.

  13. Living donor liver transplantation for acute liver failure in pediatric patients caused by the ingestion of fireworks containing yellow phosphorus.

    PubMed

    Ates, Mustafa; Dirican, Abuzer; Ozgor, Dincer; Aydin, Cemalettin; Isik, Burak; Ara, Cengiz; Yilmaz, Mehmet; Ayse Selimoglu, M; Kayaalp, Cuneyt; Yilmaz, Sezai

    2011-11-01

    Yellow phosphorus is a protoplasmic toxicant that targets the liver. The ingestion of fireworks containing yellow phosphorus, either by children who accidentally consume them or by adults who are attempting suicide, often results in death due to acute liver failure (ALF). We present the outcomes of 10 children who ingested fireworks containing yellow phosphorus. There were 6 boys and 4 girls, and their ages ranged from 21 to 60 months. One patient remained stable without liver complications and was discharged. Three patients died of hepatorenal failure and cardiovascular collapse, and living donor liver transplantation (LDLT) was performed for 6 patients. The patients had grade II or III encephalopathy, a mean alanine aminotransferase level of 1148.2 IU/L, a mean aspartate aminotransferase level of 1437.5 IU/L, a mean total bilirubin level of 6.9 mg/dL, a mean international normalized ratio of 6.6, a mean Pediatric End-Stage Liver Disease score of 33.7, and a mean Child-Pugh score of 11.3. Postoperatively, 2 patients had persistent encephalopathy and died on the second or third postoperative day, and 1 patient died of cardiac arrest on the first postoperative day despite a well-functioning graft. The other 3 patients were still alive at a mean of 204 days. In conclusion, the ingestion of fireworks containing yellow phosphorus causes ALF with a high mortality rate. When signs of irreversible ALF are detected, emergency LDLT should be considered as a lifesaving procedure; however, if yellow phosphorus toxicity affects both the brain and the heart in addition to the liver, the mortality rate remains very high despite liver transplantation.

  14. The course of phosphorus excretion in growing pigs fed continuously increasing phosphorus concentrations after a phosphorus depletion.

    PubMed

    Rodehutscord, M; Faust, M; Pfeffer, E

    1999-01-01

    A balance study was performed in order to quantify the effect of continuously increased phosphorus (P) intake on faecal and urinary P excretion. The aim was to quantify the level of intake where regulatory P excretion becomes relevant for comparative digestibility measurements on P, and when the pig adapts its urinary P excretion to increased P intake. Phosphorus intake of growing pigs was continuously increased on a daily basis starting at a marginal level and P excretion via faeces and urine was continuously followed for 92 days. Two semi-synthetic diets were prepared with different proportions of Na2HPO4 resulting in 2.4 (diet 1) and 6.3 (diet 2) g P/kg DM. Concentration of Ca was adapted to achieve a Ca supply approximately 3.1 fold the digestible P supply. Six castrated male crossbred pigs (31 kg BW) were kept individually in metabolism crates after they had undergone a 14 d P depletion period during which they were fed diet 1 solely. Pigs received 1.04kg of diet 1 per day throughout the experiment, and each day the amount of feed and P supplied to pigs from diet 2 was increased by 12 g and 69 mg, respectively. ME supply was approximately 2.4 fold maintenance and average daily BW gain of pigs during the entire experiment was 690 +/- 30 g. While intake increased linearly, faecal excretion of P and Ca increased non-linearly and could be best described by third order polynomial functions. The proportion of ingested P not excreted via faeces followed a quadratic type of curve with a maximum of 81% at 25 days on experiment and P intake of 4.0 g/d. Thereafter, the proportion decreased continuously. The digestibility of P from diet 2, determined by the slope ratio technique, was constant and not affected by P intake up to a P intake of 5 g/d. Renal P excretion did not exceed inevitable losses until day 60 and increased exponentially thereafter when body P reserves were restored. It is concluded, that an adaptation to surplus P supply occurred earlier on the

  15. Is phosphorus intake that exceeds dietary requirements a risk factor in bone health?

    PubMed

    Calvo, Mona S; Tucker, Katherine L

    2013-10-01

    Phosphorus intake in excess of the nutrient needs of healthy adults is thought to disrupt hormonal regulation of phosphorus (P), calcium (Ca), and vitamin D, contributing to impaired peak bone mass, bone resorption, and greater risk of fracture. Elevation of extracellular phosphorus due to excessive intake is thought to be the main stimulus disrupting phosphorus homeostasis in healthy individuals, as it is in renal disease even when intake is modest. If high serum phosphorus is the critical link to the effect of high phosphorus intake on bone health, the issue could be addressed through epidemiologic or dietary studies. However, several confounding factors, including problems estimating accurate phosphorus intake, the influence of a low dietary Ca:P ratio, the acidic nature of phosphorus, the rapid rate of absorption and greater phosphorus bioavailability from processed food such as cola drinks, and circadian fluctuation in serum phosphorus, make this question difficult to address using conventional study designs. These confounding factors are considered in this review, exploring whether phosphorus intake exceeding nutrient needs in healthy individuals disrupts phosphorus regulation and negatively affects bone accretion or loss. Specific attention is given to phosphorus intake from processed foods rich in phosphorus additives, which significantly contribute to phosphorus intake.

  16. Evaluating the Possible Role of Phosphorus Release from Sediments on Stream Restoration

    NASA Astrophysics Data System (ADS)

    Timm, A.; McGinley, P.

    2010-12-01

    Elevated phosphorus concentrations can lead to algal blooms which impair waters for consumption, recreation, industry and agricultural uses. Along with sources of phosphorus such as runoff from agriculture and the effluent from wastewater treatment plants, there are reservoirs of phosphorus stored in stream sediments. As phosphorus inputs from agriculture and industry are decreased, there is the potential for these phosphorus reserves in the sediment to be released and prolong the time for restoration. Mill Creek in Central Wisconsin has water phosphorus concentrations ranging from 0.1 mg/L to 0.5 mg/L. These high phosphorus concentrations are the result of both wastewater discharges and agriculture runoff. Often a model used to develop a Total Mass Daily Load (TMDL) does not include a sediment reserve as a source of phosphorus. This study evaluates two methods of estimating sediment phosphorus reserves and incorporates them within a model for the phosphorus concentration in a stream. Two methods for estimating phosphorus equilibration with the stream were examined: sorption isotherms with equilibrium phosphorus concentration estimation; and pore-water profiling with equilibrators. This study compares these two approaches along a phosphorus concentration gradient in the stream and examines the sensitivity of stream phosphorus concentration reductions to sediment phosphorus reserves.

  17. Phosphorus Determination by Derivative Activation Analysis: A Multifaceted Radiochemical Application.

    ERIC Educational Resources Information Center

    Kleppinger, E. W.; And Others

    1984-01-01

    Although determination of phosphorus is important in biology, physiology, and environmental science, traditional gravimetric and colorimetric methods are cumbersome and lack the requisite sensitivity. Therefore, a derivative activation analysis method is suggested. Background information, procedures, and results are provided. (JN)

  18. 8-Phosphorus substituted isosteres of purine and deazapurines.

    PubMed Central

    Khwaja, T A; Pande, H

    1979-01-01

    Synthesis of 8-phosphorus substituted isosteres of purine [pyrimidino (4,5-d)-1,3,2-diazaphosphole], 1-deazapurine [pyridino (2,3-d)-1,3,2-diazaphosphole] and 3-deazapurine [pyridino (4,5-d)-1,3,2-diazaphosphole] has been achieved by the reaction of equimolar amounts of triphenylphosphite and 4,5-diaminopyrimidine, 2,3-diaminopyridine and 3,4-diaminopyridine, respectively. These compounds hydrolyzed (cleavage of the phosphorus-nitrogen bounds) in aqueous solutions to provide the corresponding diaminopyrimidine or diaminopyridines. These three new basic ring systems constitute the first reported synthesis of purines in which ring carbon atom is substituted with a phosphorus atom. 8-Phosphorus substituted purine at a concentration of 4 X 10(-4)M caused a 50% inhibition in the growth of leukemia L1210 cells in culture. The biochemical rationale for the synthesis of these compounds is discussed. PMID:493140

  19. Black phosphorus photodetector for multispectral, high-resolution imaging.

    PubMed

    Engel, Michael; Steiner, Mathias; Avouris, Phaedon

    2014-11-12

    Black phosphorus is a layered semiconductor that is intensely researched in view of applications in optoelectronics. In this letter, we investigate a multilayer black phosphorus photodetector that is capable of acquiring high-contrast (V > 0.9) images both in the visible (λVIS = 532 nm) as well as in the infrared (λIR = 1550 nm) spectral regime. In a first step, by using photocurrent microscopy, we map the active area of the device and we characterize responsivity and gain. In a second step, by deploying the black phosphorus device as a point-like detector in a confocal microsope setup, we acquire diffraction-limited optical images with submicron resolution. The results demonstrate the usefulness of black phosphorus as an optoelectronic material for hyperspectral imaging applications.

  20. The specific contribution of phosphorus in dendrimer chemistry.

    PubMed

    Majoral, Jean-Pierre; Caminade, Anne-Marie; Maraval, Valérie

    2002-12-21

    Besides properties commonly found for all types of dendrimers, phosphorus-containing dendrimers possess some specific properties seldom or never found for other types of dendrimers. Emphasis will be put on these specificities.

  1. Method of removing and detoxifying a phosphorus-based substance

    DOEpatents

    Vandegrift, George F.; Steindler, Martin J.

    1989-01-01

    A method of removing organic phosphorus-based poisonous substances from water contaminated therewith and of subsequently destroying the toxicity of the substance is disclosed. Initially, a water-immiscible organic is immobilized on a supported liquid membrane. Thereafter, the contaminated water is contacted with one side of the supported liquid membrane to selectively dissolve the phosphorus-based substance in the organic extractant. At the same time, the other side of the supported liquid membrane is contacted with a hydroxy-affording strong base to react the phosphorus-based substance dissolved by the organic extractant with a hydroxy ion. This forms a non-toxic reaction product in the base. The organic extractant can be a water-insoluble trialkyl amine, such as trilauryl amine. The phosphorus-based substance can be phosphoryl or a thiophosphoryl.

  2. Eutrophication of aquatic ecosystems: Bistability and soil phosphorus

    PubMed Central

    Carpenter, Stephen R.

    2005-01-01

    Eutrophication (the overenrichment of aquatic ecosystems with nutrients leading to algal blooms and anoxic events) is a persistent condition of surface waters and a widespread environmental problem. Some lakes have recovered after sources of nutrients were reduced. In others, recycling of phosphorus from sediments enriched by years of high nutrient inputs causes lakes to remain eutrophic even after external inputs of phosphorus are decreased. Slow flux of phosphorus from overfertilized soils may be even more important for maintaining eutrophication of lakes in agricultural regions. This type of eutrophication is not reversible unless there are substantial changes in soil management. Technologies for rapidly reducing phosphorus content of overenriched soils, or reducing erosion rates, are needed to improve water quality. PMID:15972805

  3. Phosphorus Determination by Derivative Activation Analysis: A Multifaceted Radiochemical Application.

    ERIC Educational Resources Information Center

    Kleppinger, E. W.; And Others

    1984-01-01

    Although determination of phosphorus is important in biology, physiology, and environmental science, traditional gravimetric and colorimetric methods are cumbersome and lack the requisite sensitivity. Therefore, a derivative activation analysis method is suggested. Background information, procedures, and results are provided. (JN)

  4. Phosphorus limitation on bacterial regrowth in drinking water.

    PubMed

    Sang, Jun-qiang; Zhang, Xi-hui; Yu, Guo-zhong; Wang, Zhan-sheng

    2003-11-01

    Assimilable organic carbon (AOC) test and bacterial regrowth potential (BRP) analysis were used to investigate the effect of phosphorus on bacterial regrowth in the drinking water that was made from some raw water taken from a reservoir located in northern China. It was shown that AOC of the drinking water samples increased by 43.9%-59.6% and BRP increased by 100%-235% when 50 microg/L PO4(3-)-P(as NaH2 PO4) was added alone to the drinking water samples. This result was clear evidence of phosphorus limitation on bacteria regrowth in the drinking water. This investigation indicated the importance of phosphorus in ensuring biological stability of drinking water and offered a novel possible option to restrict microbial regrowth in drinking water distribution system by applying appropriate technologies to remove phosphorus efficiently from drinking water in China.

  5. Primary sources of phosphorus and phosphates in chemical evolution.

    PubMed

    Macia, E; Hernandez, M V; Oro, J

    1997-12-01

    In this work we consider the role of phosphorus in chemical evolution from an interdisciplinary approach. First we briefly review the presence of this element in different cosmic sites, such as massive stellar cores, circumstellar and interstellar clouds, meteorites, lunar and Martian samples, interplanetary dust particles, cometary dust and planetary atmospheres. Thus we illustrate the fact that phosphorus seems to be, at the same time, scarce and ubiquitous in the solar system. Afterwards, by comparing the phosphorus content of our planet's main reservoirs with the amount of cometary and meteoritic matter captured by the primitive Earth, we conclude that comets may have provided a primary source for phosphorus compounds of prebiotic interest. Finally, we make a number of proposals aimed to gain observational supporting evidence to the above conclusion and other suggestions made in the article.

  6. Efficient electrical control of thin-film black phosphorus bandgap

    NASA Astrophysics Data System (ADS)

    Deng, Bingchen; Tran, Vy; Xie, Yujun; Jiang, Hao; Li, Cheng; Guo, Qiushi; Wang, Xiaomu; Tian, He; Koester, Steven J.; Wang, Han; Cha, Judy J.; Xia, Qiangfei; Yang, Li; Xia, Fengnian

    2017-04-01

    Recently rediscovered black phosphorus is a layered semiconductor with promising electronic and photonic properties. Dynamic control of its bandgap can allow for the exploration of new physical phenomena. However, theoretical investigations and photoemission spectroscopy experiments indicate that in its few-layer form, an exceedingly large electric field in the order of several volts per nanometre is required to effectively tune its bandgap, making the direct electrical control unfeasible. Here we reveal the unique thickness-dependent bandgap tuning properties in intrinsic black phosphorus, arising from the strong interlayer electronic-state coupling. Furthermore, leveraging a 10 nm-thick black phosphorus, we continuously tune its bandgap from ~300 to below 50 meV, using a moderate displacement field up to 1.1 V nm-1. Such dynamic tuning of bandgap may not only extend the operational wavelength range of tunable black phosphorus photonic devices, but also pave the way for the investigation of electrically tunable topological insulators and semimetals.

  7. Global baseline data on phosphorus pollution of large lakes

    NASA Astrophysics Data System (ADS)

    Fink, Gabriel; Flörke, Martina; Alcamo, Joseph

    2016-04-01

    Lakes are exposed to harmful eutrophication which is the most concerning water quality issue on global scale. Eutrophication is caused by phosphorous pollution in most lakes. Hence, global consistent base line data on phosphorus loadings are needed to assess future sustainable development. We used the modeling framework WaterGAP3 to calculate present total phosphorus loadings to the world's largest lakes. Estimates of modeled total phosphorus (TP) loadings as well as the contributions of different sectors were successfully validated against measured data. Based on these findings, annual total phosphorus loadings to lakes were calculated for diffuse and point sources according to the different sectors domestic, manufacturing, urban surface runoff, agriculture and background for the time period 1990 to 2010. Our results show high phosphorus loadings into lakes in southern latitudes. On global average, industrial fertilizer is the main anthropogenic source while background loadings are low in comparison. Nevertheless, both features indicate a high potential to reduce the exposure to eutrophication in lakes which are faced with high phosphor inputs. The global average of TP loadings was 7% higher in the time period 2005-2010 than in the period 1990-1995. The global average in 2005-2010 results from an increase in TP loadings of 79% in South America, which was dampened by a decrease in Europe, North America, and Asia. Chinese lakes were exposed to massive increasing phosphorus loadings, too. Both increasing and decreasing trends are caused primarily by changing industrial fertilizer application rates. In conclusion, this study provides a consistent and model based synopsis of global trends and sources of phosphorus loadings to large lakes. The estimates of phosphorus pollution of lakes present a basis for assessing and managing the global eutrophication problem.

  8. Global potential of phosphorus recovery from human urine and feces.

    PubMed

    Mihelcic, James R; Fry, Lauren M; Shaw, Ryan

    2011-08-01

    This study geospatially quantifies the mass of an essential fertilizer element, phosphorus, available from human urine and feces, globally, regionally, and by specific country. The analysis is performed over two population scenarios (2009 and 2050). This important material flow is related to the presence of improved sanitation facilities and also considers the global trend of urbanization. Results show that in 2009 the phosphorus available from urine is approximately 1.68 million metric tons (with similar mass available from feces). If collected, the phosphorus available from urine and feces could account for 22% of the total global phosphorus demand. In 2050 the available phosphorus from urine that is associated with population increases only will increase to 2.16 million metric tons (with similar mass available from feces). The available phosphorus from urine and feces produced in urban settings is currently approximately 0.88 million metric tons and will increase with population growth to over 1.5 million metric tons by 2050. Results point to the large potential source of human-derived phosphorus in developing regions like Africa and Asia that have a large population currently unserved by improved sanitation facilities. These regions have great potential to implement urine diversion and reuse and composting or recovery of biosolids, because innovative technologies can be integrated with improvements in sanitation coverage. In contrast, other regions with extensive sanitation coverage like Europe and North America need to determine how to retrofit existing sanitation technology combined that is combined with human behavioral changes to recover phosphorus and other valuable nutrients. Copyright © 2011 Elsevier Ltd. All rights reserved.

  9. Mammalian Toxicologic Evaluation of Hexachloroethane Smoke Mixture and Red Phosphorus

    DTIC Science & Technology

    1981-09-01

    part of th" aerosol was lost due to technical malfunction. The chemical reactiona of the second Sand third burns apleared . dequate. After the voltage...Widemditli by bWeak numbff) --. "Four red phosphorus samples, three containing oil, wero chemically analyse. for conformation to specifications. A...the proposed establishment by the US Army of an RP onshore production facility. Chemical analyses of four red phosphorus samples, three samples of

  10. Electrodeposition of amorphous ternary nickel-chromium-phosphorus alloy

    DOEpatents

    Guilinger, Terry R.

    1990-01-01

    Amorphous ternary nickel-chromium-phosphorus alloys are electrodeposited from a bath comprising a nickel salt, a chromium salt, a phosphorus source such as sodium hypophosphite, a complexing agent for the nickel ions, supporting salts to increase conductivity, and a buffering agent. The process is carried out at about room temperature and requires a current density between about 20 to 40 A/dm.sup.2.

  11. White phosphorus pits focused feasibility study final July 2007.

    SciTech Connect

    Davis, B.; Martino, L.

    2007-08-21

    The White Phosphorus Burning Pits (WPP) Area of Concern (AOC) is a site of about 5.5 acres (2.2 ha) located in the J-Field Study Area, in the Edgewood Area of Aberdeen Proving Ground (APG), Maryland (Figure 1.1). Considerable information about the WPP exists as a result of efforts to characterize the hazards associated with J-Field. Contamination in the J-Field Study Area was first detected during an environmental survey of the APG Edgewood Area conducted in 1977 and 1978 (Nemeth et al. 1983) by the U.S. Army Toxic and Hazardous Materials Agency (USATHAMA; predecessor to the U.S. Army Environmental Center). As part of a subsequent USATHAMA environmental survey, 11 wells were installed and sampled at J-Field (three of them at the WPP) (Nemeth 1989). Contamination was also detected in 1983 during a munitions disposal survey conducted by Princeton Aqua Science (1984). The Princeton Aqua Science investigation involved installing and sampling nine wells (four at the WPP) and collecting and analyzing surficial and deep composite soil samples (including samples from the WPP area). In 1986, the U.S. Environmental Protection Agency (EPA) issued a Resource Conservation and Recovery Act (RCRA) Permit (MD3-21-002-1355) requiring a post-wide RCRA Facility Assessment (RFA) and a hydrogeologic assessment of J-Field. In 1987, the U.S. Geological Survey (USGS) began a two-phase hydrogeologic assessment in which data were collected to model groundwater flow at J-Field. Soil-gas investigations were conducted, several well clusters were installed (four at the WPP), a groundwater flow model was developed, and groundwater and surface water monitoring programs were established that continue today. The results of the USGS study were published by Hughes (1993).

  12. Phosphorus contents and availability of technogenic substrates for soil construction

    NASA Astrophysics Data System (ADS)

    Nehls, Thomas; Lydia, Paetsch; Sarah, Rokia; Schwartz, Christophe; Wessolek, Gerd

    2014-05-01

    Urban areas lack of green and of soil substrates to support this green. A great variety of solid waste materials can be seen as technogenic substances (TS) for the construction of soil-similar plant substrates. Biomass production in the city and the use of waste materials as nutrient sources can help to close regional nutrient cycles. The most important waste materials have been studied for their phosphorus contents, availabilities and diffusion rates in the rhizosphere by combining their analyzed chemical and physical properties. Compost, concrete, green wastes, paper mill sludge, street-sweepings, mix of rubble, bricks, track ballasts and charcoal have (i) been analyzed their P release properties (HF extraction, Olsen-P, adsorption isotherms); (ii) the physical properties (water retention function, saturated hydraulic conductivity) were analyzed at 80 % of the proctor density; (iii) The P availability of the TMs to the roots were simulated for different pressure heads (pF = 1.3, 1.8 and 3.0) using HYDRUS 1-D. We compared the results for TS with these for agricultural soils. Ptot varies from 710 to 21 000 mg kg-1 for bricks and compost, while POlsen varies from 19 to 1 090 mg kg-1 for charcoal and green wastes. The diffusion rates of TSs (pF = 1.3) are up to 10 times higher compared to those of soils, with green wastes showing highest and bricks the lowest P diffusion rates. We conclude that the investigated TS are appropriate for construction of soil similar planting substrates because of their P delivery potential and their favourable physical properties.

  13. Biological phosphorus removal inhibition by roxarsone in batch culture systems.

    PubMed

    Guo, Qingfeng; Liu, Li; Hu, Zhenhu; Chen, Guowei

    2013-06-01

    Roxarsone has been extensively used in the feed of animals, which is usually excreted unchanged in the manure and eventually enter into animal wastewater, challenging the biological phosphorus removal processes. Knowledge of its inhibition effect is key for guiding treatment of roxarsone-contaminated wastewater, and is unfortunately keeping unclear. We study the inhibition of roxarsone on biological phosphorus removal processes for roxarsone-contaminated wastewater treatment, in terms of the removal and rates of chemical oxygen demand (COD), phosphate. Results showed that presence of roxarsone considerably limited the COD removals, especially at roxarsone concentration exceeding 40 mg L(-1). Additionally, roxarsone inhibited both phosphorus release and uptake processes, consistent with the phosphate profiles during the biological phosphorus removal processes; whereas, roxarsone is more toxic to phosphorus uptake process, than release function. The results indicated that it is roxarsone itself, rather than the inorganic arsenics, inhibit biological phosphorus removal processes within both aerobic and anaerobic roxarsone-contaminated wastewater treatment. Copyright © 2013 Elsevier Ltd. All rights reserved.

  14. Thermal conduction in single-layer black phosphorus: highly anisotropic?

    PubMed

    Jiang, Jin-Wu

    2015-02-06

    The single-layer black phosphorus is characteristic for its puckered structure, which has led to distinct anisotropy in its optical, electronic, and mechanical properties. We use the non-equilibrium Green's function approach and the first-principles method to investigate the thermal conductance for single-layer black phosphorus in the ballistic transport regime, in which the phonon-phonon scattering is neglected. We find that the anisotropy in the thermal conduction is very weak for the single-layer black phosphorus--the difference between two in-plane directions is less than 4%. Our phonon calculations disclose that the out-of-plane acoustic phonon branch has lower group velocities in the direction perpendicular to the pucker, as the black phosphorus is softer in this direction, leading to a weakening effect for the thermal conductance in the perpendicular direction. However, the longitudinal acoustic phonon branch behaves abnormally; i.e., the group velocity of this phonon branch is higher in the perpendicular direction, although the single-layer black phosphorus is softer in this direction. The abnormal behavior of the longitudinal acoustic phonon branch is closely related to the highly anisotropic Poisson's ratio in the single-layer black phosphorus. As a result of the counteraction between the out-of-plane phonon mode and the in-plane phonon modes, the thermal conductance in the perpendicular direction is weaker than the parallel direction, but the anisotropy is pretty small.

  15. Phosphorus and Nitrogen Regulate Arbuscular Mycorrhizal Symbiosis in Petunia hybrida

    PubMed Central

    Nouri, Eva; Breuillin-Sessoms, Florence; Feller, Urs; Reinhardt, Didier

    2014-01-01

    Phosphorus and nitrogen are essential nutrient elements that are needed by plants in large amounts. The arbuscular mycorrhizal symbiosis between plants and soil fungi improves phosphorus and nitrogen acquisition under limiting conditions. On the other hand, these nutrients influence root colonization by mycorrhizal fungi and symbiotic functioning. This represents a feedback mechanism that allows plants to control the fungal symbiont depending on nutrient requirements and supply. Elevated phosphorus supply has previously been shown to exert strong inhibition of arbuscular mycorrhizal development. Here, we address to what extent inhibition by phosphorus is influenced by other nutritional pathways in the interaction between Petunia hybrida and R. irregularis. We show that phosphorus and nitrogen are the major nutritional determinants of the interaction. Interestingly, the symbiosis-promoting effect of nitrogen starvation dominantly overruled the suppressive effect of high phosphorus nutrition onto arbuscular mycorrhiza, suggesting that plants promote the symbiosis as long as they are limited by one of the two major nutrients. Our results also show that in a given pair of symbiotic partners (Petunia hybrida and R. irregularis), the entire range from mutually symbiotic to parasitic can be observed depending on the nutritional conditions. Taken together, these results reveal complex nutritional feedback mechanisms in the control of root colonization by arbuscular mycorrhizal fungi. PMID:24608923

  16. Phosphorus and nitrogen regulate arbuscular mycorrhizal symbiosis in Petunia hybrida.

    PubMed

    Nouri, Eva; Breuillin-Sessoms, Florence; Feller, Urs; Reinhardt, Didier

    2014-01-01

    Phosphorus and nitrogen are essential nutrient elements that are needed by plants in large amounts. The arbuscular mycorrhizal symbiosis between plants and soil fungi improves phosphorus and nitrogen acquisition under limiting conditions. On the other hand, these nutrients influence root colonization by mycorrhizal fungi and symbiotic functioning. This represents a feedback mechanism that allows plants to control the fungal symbiont depending on nutrient requirements and supply. Elevated phosphorus supply has previously been shown to exert strong inhibition of arbuscular mycorrhizal development. Here, we address to what extent inhibition by phosphorus is influenced by other nutritional pathways in the interaction between Petunia hybrida and R. irregularis. We show that phosphorus and nitrogen are the major nutritional determinants of the interaction. Interestingly, the symbiosis-promoting effect of nitrogen starvation dominantly overruled the suppressive effect of high phosphorus nutrition onto arbuscular mycorrhiza, suggesting that plants promote the symbiosis as long as they are limited by one of the two major nutrients. Our results also show that in a given pair of symbiotic partners (Petunia hybrida and R. irregularis), the entire range from mutually symbiotic to parasitic can be observed depending on the nutritional conditions. Taken together, these results reveal complex nutritional feedback mechanisms in the control of root colonization by arbuscular mycorrhizal fungi.

  17. Calcium and phosphorus requirements of breeding bobwhite quail

    USGS Publications Warehouse

    DeWitt, J.B.; Nestler, R.B.; Derby, J.V.

    1949-01-01

    In the course of studies designed to determine the calcium and phosphorus requirements of breeding bobwhite quail, it was found that best results were obtained when the Ca/P ratio in the diet was approximately 2.3:1. Variations in the Ca/P ratio produced significant differences in results when the level of phosphorus in the diet was 0.75%, but the differences were less marked when the level of phosphorus was increased to 1.00%. Although diets containing 0.75% phosphorus and 1.8% calcium appeared adequate for reproduction, as judged by the criteria of the maintenance of satisfactory condition in the breeders, egg production, fertility, hatchability and survival of offspring during the first 5 days after hatching, it was found that the winter mortality of the offspring of birds fed such a diet was much greater than that occurring in the offspring of birds fed on diets containing 1.00 or 1.25% phosphorus. It is concluded that breeding bobwhite quail require diets furnishing approximately 1.00% phosphorus and 2.3% calcium.

  18. Global phosphorus scarcity: identifying synergies for a sustainable future.

    PubMed

    Neset, Tina-Simone S; Cordell, Dana

    2012-01-15

    Global food production is dependent on constant inputs of phosphorus. In the current system this phosphorus is not predominantly derived from organic recycled waste, but to a large degree from phosphate-rock based mineral fertilisers. However, phosphate rock is a finite resource that cannot be manufactured. Our dependency therefore needs to be addressed from a sustainability perspective in order to ensure global food supplies for a growing global population. The situation is made more urgent by predictions that, for example, the consumption of resource intensive foods and the demand for biomass energy will increase. The scientific and societal debate has so far been focussed on the exact timing of peak phosphorus and on when the total depletion of the global reserves will occur. Even though the timing of these events is important, all dimensions of phosphorus scarcity need to be addressed in a manner which acknowledges linkages to other sustainable development challenges and which takes into consideration the synergies between different sustainability measures. Many sustainable phosphorus measures have positive impacts on other challenges; for example, shifting global diets to more plant-based foods would not only reduce global phosphorus consumption, but also reduce greenhouse gas emissions, reduce nitrogen fertiliser demand and reduce water consumption.

  19. Phosphorus cycling in the deep subseafloor biosphere at North Pond

    NASA Astrophysics Data System (ADS)

    Defforey, D.; Paytan, A.

    2013-12-01

    Phosphorus is a macronutrient involved both in functional and structural components of all living cells. This makes it an essential nutrient for life, including microbial life in the deep subseafloor habitat. Phosphorus availability in this environment is limited since it is thought to be mainly present in refractory mineral phases. However, recent estimates suggest that the deep biosphere may contain up to 1% of Earth's total biomass, which implies that microorganisms may possess mechanisms to harvest recalcitrant phosphorus compounds in this environment. This study sheds light on those mechanisms by investigating phosphorus cycling in deep open-ocean sediments using stable oxygen isotope ratios in phosphate. Furthermore, this study provides insight into changes in phosphorus bioavailability and mobility under a range of natural environmental conditions within the deep biosphere. Sediment samples were collected from four boreholes drilled during the IODP Expedition 336 to North Pond, an isolated sediment pond on the western flank of the Mid-Atlantic Ridge. Sedimentary phosphorus compounds are characterized using sequential extractions (SEDEX), which separate them into five distinct pools. Phosphate from the various extracts are then concentrated, purified through a series of steps, then converted to silver phosphate, which is pyrolyzed and analyzed by continuous-flow isotope ratio mass spectrometry (CF-IRMS). The isotopic signatures and/or fractionations associated with many of the potential reactions and transformations operating in the P cycle have been determined, and provide the basis for interpreting isotopic data that are obtained from the phosphate extracts.

  20. THE MORTALITY OF BACTERIOPHAGE CONTAINING ASSIMILATED RADIOACTIVE PHOSPHORUS

    PubMed Central

    Hershey, A. D.; Kamen, M. D.; Kennedy, J. W.; Gest, H.

    1951-01-01

    The bacteriophage T4 containing assimilated radioactive phosphorus is inactivated at a rate proportional to the specific radioactivity of the constituent phosphorus. The beta radiation from the phosphorus makes a negligible contribution to this effect. The inactivation is therefore a direct consequence of the nuclear reaction, which kills the phage with an efficiency of about 1/12. Several phages related to T4 behave similarly. When radioactive phage is grown from a seed of non-radioactive phage, all of the phage progeny are subject to killing by radioactive decay. The phage is killed by beta radiation from P32 with an efficiency of about 1/100 per ionization within the particle volume. Bacteriophage T4 and its relatives contain about 500,000 atoms of phosphorus per infective particle. Virtually all this phosphorus is adsorbed to bacteria with the specificity characteristic of the infective particles, and none of it can be removed from the particles by the enzyme desoxyribonuclease. The phosphorus content per particle, together with the published data on analytical composition, indicates a particle diameter close to 110 mµ for the varieties of phage studied. PMID:14824499