Science.gov

Sample records for phosphorus 33

  1. Parameterization of DFTB3/3OB for Sulfur and Phosphorus for Chemical and Biological Applications

    PubMed Central

    2015-01-01

    We report the parametrization of the approximate density functional tight binding method, DFTB3, for sulfur and phosphorus. The parametrization is done in a framework consistent with our previous 3OB set established for O, N, C, and H, thus the resulting parameters can be used to describe a broad set of organic and biologically relevant molecules. The 3d orbitals are included in the parametrization, and the electronic parameters are chosen to minimize errors in the atomization energies. The parameters are tested using a fairly diverse set of molecules of biological relevance, focusing on the geometries, reaction energies, proton affinities, and hydrogen bonding interactions of these molecules; vibrational frequencies are also examined, although less systematically. The results of DFTB3/3OB are compared to those from DFT (B3LYP and PBE), ab initio (MP2, G3B3), and several popular semiempirical methods (PM6 and PDDG), as well as predictions of DFTB3 with the older parametrization (the MIO set). In general, DFTB3/3OB is a major improvement over the previous parametrization (DFTB3/MIO), and for the majority cases tested here, it also outperforms PM6 and PDDG, especially for structural properties, vibrational frequencies, hydrogen bonding interactions, and proton affinities. For reaction energies, DFTB3/3OB exhibits major improvement over DFTB3/MIO, due mainly to significant reduction of errors in atomization energies; compared to PM6 and PDDG, DFTB3/3OB also generally performs better, although the magnitude of improvement is more modest. Compared to high-level calculations, DFTB3/3OB is most successful at predicting geometries; larger errors are found in the energies, although the results can be greatly improved by computing single point energies at a high level with DFTB3 geometries. There are several remaining issues with the DFTB3/3OB approach, most notably its difficulty in describing phosphate hydrolysis reactions involving a change in the coordination number of

  2. Investigating phosphorus uptake in anoxic and sulfidic surface sediments with 33P radiotracer experiments

    NASA Astrophysics Data System (ADS)

    Dijkstra, Nikki; Kraal, Peter; Gonzalez, Santiago; Slomp, Caroline

    2016-04-01

    Phosphorus (P) is a key nutrient for marine organisms. Enhanced P availability in the water column can fuel algal blooms and the development of bottom water anoxia. Recently, it was suggested that micro-organisms in sediments overlain by anoxic and sulfidic bottom waters might take up dissolved P and form Fe(II)-P minerals, thereby enhancing P removal. In this study, we investigated the uptake of P in surface sediments with 33P radiotracer experiments. The sediments were recovered from the anoxic and sulfidic deep basin of the Black Sea and, for comparison, from the adjacent oxic shelf. Results suggest a very fast sedimentary uptake of 33P at all sites but in particular for sediments from the oxic shelf. At all sites, most 33P was sequestered in the citrate-dithionite-bicarbonate-(CDB)-extractable sediment P fraction. No significant differences with abiotic controls were observed, implying that micro-organisms were not directly involved in the P uptake. Whereas 33P uptake by the oxic shelf sediment was likely controlled by sorption of 33P to iron(Fe)-(oxyhydr)oxides, the nature of the CDB-extractable P fraction in the deep basin sediments remains unclear. We discuss whether authigenic formation of Fe(II)-P minerals or fast adsorption of P to calcites may explain our findings.

  3. Three-step preparation and purification of phosphorus-33-labeled creatine phosphate of high specific activity

    SciTech Connect

    Savabi, F.; Geiger, P.J.; Bessman, S.P.

    1984-03-01

    Rabbit heart mitochondria were used as a source of enzymes for the synthesis of phosphorus-labeled creatine phosphate. This method is based on the coupled reaction between mitochondrial oxidative phosphorylation and mitochondrial-bound creatine kinase. It is possible to convert more than 90% of the inorganic phosphate (P/sub i/) to creatine phosphate. The method used only small amounts of adenine nucleotides which led to a product with only slight nucleotide contamination. This could be removed by activated charcoal extraction. For further purification, a method for the removal of residual P/sub i/ is described. 20 references.

  4. Competition between roots and microorganisms for phosphorus: A novel 33P labeling approach

    NASA Astrophysics Data System (ADS)

    Zilla, Thomas; Kuzyakov, Yakov; Zavišiæ, Aljoša; Polle, Andrea

    2015-04-01

    While organic N mineralization exhibits clear seasonal uptake dynamics, knowledge about seasonal variation in microbial P uptake and mineralization is scarce. We hypothesize that the dynamics of P uptake and mineralization by microorganisms in temperate forest soils exhibit a seasonality anti-cyclic to plant P uptake. Therefore, the ratio of microbial P to labile P increases by the transition from acquiring ecosystems (in spring) to recycling ones (in fall). To investigate this, intact soil-plant mesocosms containing Ah horizon with 1 year old F. sylvatica were removed from the P-rich field site Bad Brueckenau and the P-depleted field site Luess in Germany. During incubation under controlled conditions, seasonal pulse labeling by 33P-orthophosphate was performed at 5 time points over the course of one year. 33P recovery in microbial compounds of organic and mineral soil horizons was determined 7 and 30 days after the labeling. This procedure will account for temporal changes in P allocation and also considers the rather slow P transport from the mycorrhiza into the plants and other microorganisms. For the first time we analyzed the 33P incorporation into total PLFA and consequently provide a new technique for the analysis of P uptake by microorganisms, which has clear advantages compared to P quantification after chloroform fumigation. Polar lipids are hereby extracted with a Frostegård-modified Bligh-and-Dyer buffer, i.e. a single phase mixture of chloroform, methanol and citrate buffer (0.8:1:2, v:v:v). Phospholipids (PLFA) are isolated and purified by solid phase extraction via a silica gel column chromatography. Subsequently, PLFA are hydrolyzed and the resulting fatty acids derivatized by methylation. The fatty acid methyl esters were extracted with n-hexane and measured by GC/MS to investigate the composition of the microbial community. The remaining extract, containing head groups, phosphate units and glycerol backbones, was used to determine 33P activity

  5. Efficiency of microbial phytase supplementation in diets formulated with different calcium:phosphorus ratios, supplied to broilers from 22 to 33 days old.

    PubMed

    Naves, L de P; Rodrigues, P B; Teixeira, L do V; de Oliveira, E C; Saldanha, M M; Alvarenga, R R; Corrêa, A D; Lima, R R

    2015-02-01

    An experiment was conducted with broilers from 22 to 33 days of age to evaluate the efficiency of six microbial phytases supplemented in diets (1500 FTU/kg) that were formulated with three different calcium:available phosphorus (Ca:P(avail)) ratios (4.5:1.0, 6.0:1.0 and 7.5:1.0). A positive control diet without phytase was formulated with a Ca:P(avail) ratio of 7.5:3.4 to meet the nutritional requirements of the broilers. The P and ash contents of the tibia, magnesium in the plasma, performance, balance and retention of phytate phosphorus (P(phyt)), intake of total P and nitrogen (N), nitrogen-corrected apparent metabolizable energy and apparent digestibility of dry matter of the diets were not influenced (p > 0.05) by the type of phytase or the dietary Ca:P(avail) ratio. However, there was an interaction (p < 0.05) between the phytase type and the Ca:P(avail) ratio for the retention coefficients of total P, Ca and N. Phytase B resulted in the highest Ca deposition in the tibia (p < 0.01). Phytases D, E and F reduced the Ca concentrations in the tibia (p < 0.01) and plasma (p < 0.05). Phytase D increased the P level in the plasma and decreased the total P excretion (p < 0.01). Phytases E and F increased Ca excretion, while phytase A reduced it (p < 0.01). Regardless of the phytase type, increasing the dietary Ca:P(avail) ratio reduced (p < 0.05) the plasma P concentration and the excretion of total P and N and, conversely, increased (p < 0.05) the plasma concentration, intake and excretion of Ca. For the rearing period evaluated, it is possible to reduce the P(avail) of the diet to 1.0 g/kg when Ca is maintained at 7.5 g/kg, and the diet is supplemented with 1500 FTU of phytase A, C, D or E/kg. This diet allows the maintenance of performance and adequate bone mineralization, and it improves the Ca, total P and P(phyt) utilization in addition to reducing the excretion of N and P into the environment.

  6. Microbial processes dominate P fluxes in a low-phosphorus temperate forest soil: insights provided by 33P and 18O in phosphate

    NASA Astrophysics Data System (ADS)

    Pistocchi, Chiara; Tamburini, Federica; Bünemann, Else; Mészáros, Éva; Frossard, Emmanuel

    2016-04-01

    The classical view of the P cycle in forests is that trees and mycorrhizal fungi associated with them take up most of their phosphorus as phosphate (P) from the soil solution. The soil solution is then replenished by the release of P from sorbed phases, by the dissolution of P containing minerals or by biological mineralization and/or enzymatic hydrolysis of organic P compounds. Direct insight into the processes phosphate goes through at the ecosystem level is, however, missing. Assessing the relevance of inorganic and biological processes controlling P cycling requires the use of appropriate approaches and tracers. Within the German Priority Program "Ecosystem Nutrition: Forest Strategies for limited Phosphorus Resources" we studied P forms and dynamics in organic horizons (Of/Oh) of temperate beech forest soils in Germany with contrasting soil P availability (P-poor and P-rich). We followed the fate of P from the litter into the soil pools, using isotopes as tracers (stable oxygen isotopes in water and phosphate and 33P) and relied on measurements in experimental forest sites and a three-months incubation experiment with litter addition. Using an isotopic dilution approach we were able to estimate gross (7 mg P kg-1 d-1 over the first month) and net mineralization rates (about 5 mg P kg-1 d-1 over the first 10 days) in the P-poor soil. In this soil the immobilization of P in the microbial biomass ranged from 20 to 40% of gross mineralization during the incubation, meaning that a considerable part of mineralized P contributed to replenish the available P pool. In the P-rich soil, physicochemical processes dominated exchangeable P to the point that the contribution of biological/biochemical processes was non-detectable. Oxygen isotopes in phosphate elucidated that organic P mineralization by enzymatic hydrolysis gains more importance with decreasing P availability, both under controlled and under field conditions. In summary, microbial processes dominated P fluxes

  7. Novel Gold(I) and Silver(I) Complexes of Phosphorus-1,1,-dithiolates and Molecular Structure of [O,O’-(Bornyl)2PS2]H3NC(CH3)3

    PubMed Central

    2013-01-01

    Background The novel chiral phosphorus-1,1-dithiolates [4-CH3OC6H4P(S)(OR)S]-[H3NC(CH3)3]+ were synthesized by the reaction of [RPS2)]2 (R = 4-MeOC6H4) or P2S5 and the respective alcohol ROH (R = myrtanyl, 2-naphthylethyl, myrtenyl, borneol) in toluene. The reaction of phosphorus-1,1-dithiolates 1–4 and Au(tht)Cl, AuClPPh3 or AgNO3 and PPh3 gave rise to gold(I)- and silver(I)-complexes in THF. All compounds have been characterised by elemental analyses, IR, NMR (1H-, 13C- and 31P-) spectroscopy as well as MS measurements. Optical rotation values confirmed the chirality of the compounds. The Compound 4 has been characterized structurally by X-ray crystallography. Results Phosphorus-1,1,-dithiolate compounds were formed as liquids and were treated with suitable amine in order to convert them to their salts 1–4 . They have been successfully characterized spectroscopically (IR, 1H, 13C, 31P NMR) as well as mass spectra. The compound 4 has been also structurally by X-ray crystallography. The compound 4 crystallizes in the orthorhombic space group P2(1)2(1)2(1) with Z = 4. Compounds containing phosphorus and sulfur donor atoms are excellent ligands due to offering many metal complexes especially group 11–12 metals. The synthesis of gold(I) and silver(I) complexes with chiral phosphorus-1,1,-dithiolate and triphenylphosphine have been described and investigated. Conclusions In the present work, we report the synthesis, charactreization of the chiral phosphorus-1,1-dithiolate ligands and preparing the gold(I) and silver(I) phosphorus-1,1-dithiolate or S-donor with phosphine complexes. The molecular structure of the Compound 4 was determined by X-ray diffraction. Due to an easy synthesis method of phosphorus-1,1-dithiolate compounds and a good complexion reagent, it is possible the improvement of the collecting metallic gold or silver from the minerals. When the more ionic salt of phosphorus-1,1-dithiolate compounds were prepared in this way, the water can

  8. Indicators: Phosphorus

    EPA Pesticide Factsheets

    Phosphorus, like nitrogen, is a critical nutrient required for all life. Phosphate (PO4), which plays major roles in the formation of DNA, cellular energy, and cell membranes (and plant cell walls). Too much phosphorus can create water quality problems.

  9. Dietary phosphorus requirement of channel catfish.

    PubMed

    Wilson, R P; Robinson, E H; Gatlin, D M; Poe, W E

    1982-06-01

    Two experiments were conducted to reevaluate the dietary phosphorus requirement of fingerling channel catfish. Basal diets containing either casein with supplemental inorganic phosphorus and 0.5% total calcium or egg albumin with supplemental inorganic phosphorus and 0.75% total calcium yielded similar requirement data. Eleven-week growth, feed efficiency, serum phosphorus, bone ash, bone calcium and bon phosphorus data indicate that 0.33% apparent available dietary phosphorus is adequate for maximum growth and bone mineralization. Based on these data and previous findings, we would suggest a value of 0.4% apparent available phosphorus be used in formulating catfish feeds. The apparent availability of phosphorus from soybean meal, as determined by the chromic oxide indicator method, was 29% for channel catfish.

  10. White phosphorus

    Integrated Risk Information System (IRIS)

    White phosphorus ; CASRN 7723 - 14 - 0 Human health assessment information on a chemical substance is included in the IRIS database only after a comprehensive review of toxicity data , as outlined in the IRIS assessment development process . Sections I ( Health Hazard Assessments for Noncarcinogenic

  11. Dietary phosphorus, serum phosphorus, and cardiovascular disease.

    PubMed

    Menon, Madhav C; Ix, Joachim H

    2013-10-01

    Recent epidemiologic studies have linked higher serum phosphorus concentrations to cardiovascular disease (CVD) events and mortality. This association has been identified in the general population and in those with chronic kidney disease (CKD). The risk of adverse outcomes appears to begin with phosphorus concentrations within the upper limit of the normal reference range. Multiple experimental studies have suggested pathogenetic mechanisms that involve direct and indirect effects of high phosphorus concentrations to explain these associations. Drawing from these observations, guideline-forming agencies have recommended that serum phosphorus concentrations be maintained within the normal reference range in patients with CKD and that dietary phosphorus restriction or use of intestinal phosphate binders should be considered to achieve this goal. However, outside the dialysis population, the links between dietary phosphorus intake and serum phosphorus concentrations, and dietary phosphorus intake and CVD events, are uncertain. With specific reference to the nondialysis populations, this review discusses the available data linking dietary phosphorus intake with serum phosphorus concentrations and CVD events.

  12. Phosphorus in diet

    MedlinePlus

    Phosphorus is so readily available in the food supply so deficiency is rare. Excessively high levels of phosphorus in the blood, although rare, can combine with calcium to form deposits in soft tissues such ...

  13. Dietary Sources of Phosphorus among Adults in the United States: Results from NHANES 2001-2014.

    PubMed

    McClure, Scott T; Chang, Alex R; Selvin, Elizabeth; Rebholz, Casey M; Appel, Lawrence J

    2017-01-30

    Interest in the health effects of dietary phosphorus is burgeoning, yet sources and trends in phosphorus consumption have not been well characterized. We describe trends in and primary sources of dietary phosphorus in a nationally representative sample of 34,741 US adults, 20+ years old (NHANES 2001-2014). Dietary sources of phosphorus were estimated in nine food groups and 26 food categories. Phosphorus consumption was expressed in absolute intake, phosphorus density, and proportion contributed by dietary sources. Between 2001 and 2014, dietary phosphorus intake increased from 1345 to 1399 mg/day (p-trend = 0.02), while calorie intake slightly declined (p-trend = 0.1). Grains were the largest dietary phosphorus source, followed by meats, and milk products. Soft drinks accounted for just 3.3% of total dietary phosphorus. Phosphorus intake from grains increased 68 mg/day (p < 0.001), 25 mg/day from meats (p = 0.02), and decreased 75 mg/day (p < 0.001) from milk products. Dietary phosphorus intake and the phosphorus density of the diet are increasing. Grains are an important dietary phosphorus source that has increased in total consumption and phosphorus density. Further research is needed to determine if this is due to individuals' selection of grains or the composition of those available.

  14. Dietary Sources of Phosphorus among Adults in the United States: Results from NHANES 2001–2014

    PubMed Central

    McClure, Scott T.; Chang, Alex R.; Selvin, Elizabeth; Rebholz, Casey M.; Appel, Lawrence J.

    2017-01-01

    Interest in the health effects of dietary phosphorus is burgeoning, yet sources and trends in phosphorus consumption have not been well characterized. We describe trends in and primary sources of dietary phosphorus in a nationally representative sample of 34,741 US adults, 20+ years old (NHANES 2001–2014). Dietary sources of phosphorus were estimated in nine food groups and 26 food categories. Phosphorus consumption was expressed in absolute intake, phosphorus density, and proportion contributed by dietary sources. Between 2001 and 2014, dietary phosphorus intake increased from 1345 to 1399 mg/day (p-trend = 0.02), while calorie intake slightly declined (p-trend = 0.1). Grains were the largest dietary phosphorus source, followed by meats, and milk products. Soft drinks accounted for just 3.3% of total dietary phosphorus. Phosphorus intake from grains increased 68 mg/day (p < 0.001), 25 mg/day from meats (p = 0.02), and decreased 75 mg/day (p < 0.001) from milk products. Dietary phosphorus intake and the phosphorus density of the diet are increasing. Grains are an important dietary phosphorus source that has increased in total consumption and phosphorus density. Further research is needed to determine if this is due to individuals’ selection of grains or the composition of those available. PMID:28146091

  15. Phosphorus poisoning in waterfowl

    USGS Publications Warehouse

    Coburn, D.R.; DeWitt, J.B.; Derby, J.V.; Ediger, E.

    1950-01-01

    Black ducks and mallards were found to be highly susceptible to phosphorus poisoning. 3 mg. of white phosphorus per kg. of body weight given in a single dose resulted in death of a black duck in 6 hours. Pathologic changes in both acute and chronic poisoning were studied. Data are presented showing that diagnosis can be made accurately by chemical analysis of stored tissues in cases of phosphorus poisoning.

  16. Biogeochemistry: The fate of phosphorus

    NASA Astrophysics Data System (ADS)

    Némery, Julien; Garnier, Josette

    2016-05-01

    Phosphorus is essential for food production, but it is also a key cause of eutrophication. Estimates of phosphorus flux for the past 40-70 years reveal that large river basins can experience phases of phosphorus accumulation and depletion.

  17. Synthesis and Characterization of Sterically Hindered Alkylaluminum-Phosphorus and -Arsenic Compounds. X-Ray Crystal Structures of (Me3ECH2)3Al E’(SiMe3)3 (E = Si, E’ = As; E = C, E’ = P, As), (Me3SiCH2)2(Br)Al P(SiMe3)3, and (Me3SiCH2)(X)AlE(SiMe3)22 (X = Br, E = P, As; X = Me3SiCH2, E =As)

    DTIC Science & Technology

    2007-11-02

    Various physical and spectroscopic data, including a variable temperature NMR study of the dimeric compounds 6 through 9, are presented for the above...CHARACTERIZATION OF STERICALLY HINDERED ALKYLALUMINUM-PHOSPHORUS AND -ARSENIC COMPOUNDS . X-RAY CRYSTAL STRUCTURES OF (Me3ECH2)3Al«E’(SiMe3)3 (E = Si, E...Accepted for publication in the Organometallics 12a. DISTRIBUTION /AVAILABILITY STATEMENT Approved for Public Release Distribution Unlimited 12b

  18. Glacial atmospheric phosphorus deposition

    NASA Astrophysics Data System (ADS)

    Kjær, Helle Astrid; Dallmayr, Remi; Gabrieli, Jacopo; Goto-Azuma, Kumiko; Hirabayashi, Motohiro; Svensson, Anders; Vallelonga, Paul

    2016-04-01

    Phosphorus in the atmosphere is poorly studied and thus not much is known about atmospheric phosphorus and phosphate transport and deposition changes over time, though it is well known that phosphorus can be a source of long-range nutrient transport, e.g. Saharan dust transported to the tropical forests of Brazil. In glacial times it has been speculated that transport of phosphorus from exposed shelves would increase the ocean productivity by wash out. However whether the exposed shelf would also increase the atmospheric load to more remote places has not been investigated. Polar ice cores offer a unique opportunity to study the atmospheric transport of aerosols on various timescales, from glacial-interglacial periods to recent anthropogenic influences. We have for the first time determined the atmospheric transport of phosphorus to the Arctic by means of ice core analysis. Both total and dissolved reactive phosphorus were measured to investigate current and past atmospheric transport of phosphorus to the Arctic. Results show that glacial cold stadials had increased atmospheric total phosphorus mass loads of 70 times higher than in the past century, while DRP was only increased by a factor of 14. In the recent period we find evidence of a phosphorus increase over the past 50 yrs in ice cores close to human occupation likely correlated to forest fires. References: Kjær, Helle Astrid, et al. "Continuous flow analysis method for determination of dissolved reactive phosphorus in ice cores." Environmental science & technology 47.21 (2013): 12325-12332. Kjær, Helle Astrid, et al. "Greenland ice cores constrain glacial atmospheric fluxes of phosphorus." Journal of Geophysical Research: Atmospheres120.20 (2015).

  19. Phosphorus recovery from wastes

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Phosphorus (P) is an important macro-nutrient essential for all living organisms and phosphate rock is the main raw material for all inorganic P fertilizers. It is expected that there will be a P peak and resulting P fertilizer shortage in near future. In general, phosphorus use efficiency is low a...

  20. Black Phosphorus Terahertz Photodetectors.

    PubMed

    Viti, Leonardo; Hu, Jin; Coquillat, Dominique; Knap, Wojciech; Tredicucci, Alessandro; Politano, Antonio; Vitiello, Miriam Serena

    2015-10-07

    The first room-temperature terahertz (THz)-frequency nanodetector exploiting a 10 nm thick flake of exfoliated crystalline black phosphorus as an active channel of a field-effect transistor, is devised. By engineering and embedding planar THz antennas for efficient light harvesting, the first technological demonstration of a phosphorus-based active THz device is described.

  1. Black phosphorus gas sensors.

    PubMed

    Abbas, Ahmad N; Liu, Bilu; Chen, Liang; Ma, Yuqiang; Cong, Sen; Aroonyadet, Noppadol; Köpf, Marianne; Nilges, Tom; Zhou, Chongwu

    2015-05-26

    The utilization of black phosphorus and its monolayer (phosphorene) and few-layers in field-effect transistors has attracted a lot of attention to this elemental two-dimensional material. Various studies on optimization of black phosphorus field-effect transistors, PN junctions, photodetectors, and other applications have been demonstrated. Although chemical sensing based on black phosphorus devices was theoretically predicted, there is still no experimental verification of such an important study of this material. In this article, we report on chemical sensing of nitrogen dioxide (NO2) using field-effect transistors based on multilayer black phosphorus. Black phosphorus sensors exhibited increased conduction upon NO2 exposure and excellent sensitivity for detection of NO2 down to 5 ppb. Moreover, when the multilayer black phosphorus field-effect transistor was exposed to NO2 concentrations of 5, 10, 20, and 40 ppb, its relative conduction change followed the Langmuir isotherm for molecules adsorbed on a surface. Additionally, on the basis of an exponential conductance change, the rate constants for adsorption and desorption of NO2 on black phosphorus were extracted for different NO2 concentrations, and they were in the range of 130-840 s. These results shed light on important electronic and sensing characteristics of black phosphorus, which can be utilized in future studies and applications.

  2. Hidden phosphorus in popular beverages.

    PubMed

    Murphy-Gutekunst, Lisa

    2005-01-01

    To maintain normal serum phosphorus levels, dialysis patient education has emphasized adherence with phosphate binder prescription and low phosphorus diet. In addition to the standard advice to avoid dairy products and legumes, education also focused on lower phosphorus protein foods and beverages. To meet the public's demands for more high quality convenience food, food-processing practices have stepped up the use of phosphorus additives. These additives are now found in beverages that were once considered low in phosphorus content.

  3. Biogeochemistry: Early phosphorus redigested

    NASA Astrophysics Data System (ADS)

    Poulton, Simon W.

    2017-02-01

    Atmospheric oxygen was maintained at low levels throughout huge swathes of Earth's early history. Estimates of phosphorus availability through time suggest that scavenging from anoxic, iron-rich oceans stabilized this low-oxygen world.

  4. Rethinking early Earth phosphorus geochemistry

    PubMed Central

    Pasek, Matthew A.

    2008-01-01

    Phosphorus is a key biologic element, and a prebiotic pathway leading to its incorporation into biomolecules has been difficult to ascertain. Most potentially prebiotic phosphorylation reactions have relied on orthophosphate as the source of phosphorus. It is suggested here that the geochemistry of phosphorus on the early Earth was instead controlled by reduced oxidation state phosphorus compounds such as phosphite (HPO32−), which are more soluble and reactive than orthophosphates. This reduced oxidation state phosphorus originated from extraterrestrial material that fell during the heavy bombardment period or was produced during impacts, and persisted in the mildly reducing atmosphere. This alternate view of early Earth phosphorus geochemistry provides an unexplored route to the formation of pertinent prebiotic phosphorus compounds, suggests a facile reaction pathway to condensed phosphates, and is consistent with the biochemical usage of reduced oxidation state phosphorus compounds in life today. Possible studies are suggested that may detect reduced oxidation state phosphorus compounds in ancient Archean rocks. PMID:18195373

  5. HEATS OF FORMATION OF PHOSPHORUS OXIDES

    DTIC Science & Technology

    Contents: Phosphorus Coated with Lucite, Phosphorus Coated with Cellulose Acetate , Evaluation of the Combustion Results, Sample Calculation of...Corrections for Combustion of Phosphorus Coated with Cellulose Acetate , and Heat of Combustion of Phosphorus.

  6. Phosphorus in prebiotic chemistry

    PubMed Central

    Schwartz, Alan W

    2006-01-01

    The prebiotic synthesis of phosphorus-containing compounds—such as nucleotides and polynucleotides—would require both a geologically plausible source of the element and pathways for its incorporation into chemical systems on the primitive Earth. The mineral apatite, which is the only significant source of phosphate on Earth, has long been thought to be problematical in this respect due to its low solubility and reactivity. However, in the last decade or so, at least two pathways have been demonstrated which would circumvent these perceived problems. In addition, recent results would seem to suggest an additional, extraterrestrial source of reactive phosphorus. It appears that the ‘phosphorus problem’ is no longer the stumbling block which it was once thought to be. PMID:17008215

  7. Combustion of White Phosphorus

    NASA Astrophysics Data System (ADS)

    Keiter, Richard L.; Gamage, Chaminda P.

    2001-07-01

    The reaction of white phosphorus with pure oxygen is conveniently and safely demonstrated by carrying out the reaction in a retort that has its open end submerged in water. After filling the retort with oxygen gas, a small amount of white phosphorus is introduced and heated with a hot-plate until it ignites. The spectacular reaction leads to consumption and expulsion of oxygen gas, creation of a partial vacuum in the retort, and back suction of water that extinguishes the combustion. Featured on the Cover

  8. Phosphorus derivatives of salicylic acid

    NASA Astrophysics Data System (ADS)

    Chvertkina, L. V.; Khoklov, P. S.; Mironov, Vladimir F.

    1992-10-01

    The present state of work on the methods of synthesis, chemical properties, and practical applications of phosphorus-containing derivatives of salicylic acid has been reviewed. The characteristics of the chemical transformations of cyclic and acyclic phosphorus derivatives of salicylic acid related to the coordination state of the phosphorus atom have been examined. The bibliography includes 158 references.

  9. Soil test phosphorus and cumulative phosphorus budgets in fertilized grassland.

    PubMed

    Messiga, Aimé Jean; Ziadi, Noura; Jouany, Claire; Virkajärvi, Perttu; Suomela, Raija; Sinaj, Sokrat; Bélanger, Gilles; Stroia, Ciprian; Morel, Christian

    2015-03-01

    We analyzed the linearity of relationships between soil test P (STP) and cumulative phosphorus (P) budget using data from six long-term fertilized grassland sites in four countries: France (Ercé and Gramond), Switzerland (Les Verrières), Canada (Lévis), and Finland (Maaninka and Siikajoki). STP was determined according to existing national guidelines. A linear-plateau model was used to determine the presence of deflection points in the relationships. Deflection points with (x, y) coordinates were observed everywhere but Maaninka. Above the deflection point, a significant linear relationship was obtained (0.33 < r (2) < 0.72) at four sites, while below the deflection point, the relationship was not significant, with a negligible rate of STP decrease. The relationship was not linear over the range of STP encountered at most sites, suggesting a need for caution when using the P budget approach to predict STP changes in grasslands, particularly in situations of very low P fertilization. Our study provides insights and description of a tool to improve global P strategies aimed at maintaining STP at levels adequate for grassland production while reducing the risk of P pollution of water.

  10. Implications of phosphorus redox geochemistry

    NASA Astrophysics Data System (ADS)

    Pasek, Matthew

    2015-04-01

    Phosphorus is the limiting nutrient in many environments. Until recently, redox changes to phosphorus speciation have been confined to the realm of chemical laboratories as phosphorus was considered to be synonymous with phosphate in the natural environment. The few known phosphorus species with a reduced redox state, such as phosphine gas, were considered novelties. Recent work has revealed a surprising role for low redox state organophosphorus compounds -- the phosphonates -- in biogeochemistry. Additionally, phosphite and hypophosphite (the lower oxyanions of phosphorus) have been identified from natural sources, and microbial genomics suggests these compounds may be ubiquitous in nature. Recent work from our laboratory suggests that reduced phosphorus compounds such as phosphite and hypophosphite may be ubiquitous (Pasek et al. 2014). If so, then these species maybe important in the global phosphorus biogeochemical cycle, and could influence global phosphorus sustainability. Additionally, these compounds could have been relevant on the early earth environment, priming the earth with reactive phosphorus for prebiotic chemistry. Reference: Pasek, M. A., Sampson, J. M., & Atlas, Z. (2014). Redox chemistry in the phosphorus biogeochemical cycle. Proceedings of the National Academy of Sciences, 111(43), 15468-15473.

  11. Characterization and sonochemical synthesis of black phosphorus from red phosphorus

    NASA Astrophysics Data System (ADS)

    Aldave, Sandra H.; Yogeesh, Maruthi N.; Zhu, Weinan; Kim, Joonseok; Sonde, Sushant S.; Nayak, Avinash P.; Akinwande, Deji

    2016-03-01

    Phosphorene is a new two-dimensional material which is commonly prepared by exfoliation from black phosphorus bulk crystals that historically have been synthesized from white phosphorus under high-pressure conditions. The few layers of phosphorene have a direct band gap in the range of 0.3-2 eV and high mobility at room temperature comparable to epitaxial graphene. These characteristics can be used for the design of high speed digital circuits, radio frequency circuits, flexible and printed systems, and optoelectronic devices. In this work, we synthesized black phosphorus from red phosphorus, which is a safer solid precursor, using sonochemistry. Furthermore, via a variety of microscopy and spectroscopy techniques, we report characterization results of the sonochemically synthesized black phosphorus in addition to the commercial black phosphorus. Finally, we describe the air stability of black phosphors and the crystalline structure of the synthesized material. This is the first result of sonochemical or solution-based synthesis of black phosphorus based on readily available low-cost red phosphorus. This solution-based synthesis of black phosphorus is suitable for printable applications of nanomaterial.

  12. THE CHEMICAL EVOLUTION OF PHOSPHORUS

    SciTech Connect

    Jacobson, Heather R.; Thanathibodee, Thanawuth; Frebel, Anna; Roederer, Ian U.; Cescutti, Gabriele; Matteucci, Francesca

    2014-12-01

    Phosphorus is one of the few remaining light elements for which little is known about its nucleosynthetic origin and chemical evolution, given the lack of optical absorption lines in the spectra of long-lived FGK-type stars. We have identified a P I doublet in the near-ultraviolet (2135/2136 Å) that is measurable in stars of low metallicity. Using archival Hubble Space Telescope-Space Telescope Imaging Spectrograph spectra, we have measured P abundances in 13 stars spanning –3.3 ≤ [Fe/H] ≤ -0.2, and obtained an upper limit for a star with [Fe/H] ∼ -3.8. Combined with the only other sample of P abundances in solar-type stars in the literature, which spans a range of –1 ≤ [Fe/H] ≤ +0.2, we compare the stellar data to chemical evolution models. Our results support previous indications that massive-star P yields may need to be increased by a factor of a few to match stellar data at all metallicities. Our results also show that hypernovae were important contributors to the P production in the early universe. As P is one of the key building blocks of life, we also discuss the chemical evolution of the important elements to life, C-N-O-P-S, together.

  13. Preparation of high purity phosphorus

    DOEpatents

    Rupp, Arthur F.; Woo, David V.

    1981-01-01

    High purity phosphorus and phosphorus compounds are prepared by first reacting H.sub.3 PO.sub.4 with a lead compound such as PbO to form Pb.sub.3 (PO.sub.4).sub.2. The Pb.sub.3 (PO.sub.4).sub.2 is reduced with H.sub.2 at a temperature sufficient to form gaseous phosphorus which can be recovered as a high purity phosphorus product. Phosphorus compounds can be easily prepared by reacting the phosphorus product with gaseous reactants. For example, the phosphorus product is reacted with gaseous Cl.sub.2 to form PCl.sub.5. PCl.sub.5 is reduced to PCl.sub.3 by contacting it in the gaseous phase with solid elemental phosphorus. POCl.sub.3 can be prepared by contacting PCl.sub.5 in the gaseous phase with solid P.sub.2 O.sub.5. The general process is particularly suitable for the preparation of radiophosphorus compounds.

  14. Virtual phosphorus ore requirement of Japanese economy.

    PubMed

    Matsubae, Kazuyo; Kajiyama, Jun; Hiraki, Takehito; Nagasaka, Tetsuya

    2011-08-01

    Phosphorus is indispensable for agricultural production. Hence, the consumption of imported food indirectly implies the import of phosphorus resources. The global consumption of agricultural products depends on a small number of ore-producing countries. For sustainable management of phosphorus resources, the global supply and demand network should be clarified. In this study, we propose the virtual phosphorus ore requirement as a new indicator of the direct and indirect phosphorus requirements for our society. The virtual phosphorus ore requirement indicates the direct and indirect demands for phosphorus ore transformed into agricultural products and fertilizer. In this study, the virtual phosphorus ore requirement was evaluated for the Japanese economy in 2005. Importantly, the results show that our society requires twice as much phosphorus ore as the domestic demand for fertilizer production. The phosphorus contained in "eaten" agricultural products was only 12% of virtual phosphorus ore requirement.

  15. Prebiotic phosphorus chemistry reconsidered

    NASA Technical Reports Server (NTRS)

    Schwartz, A. W.; Orgel, L. E. (Principal Investigator)

    1997-01-01

    The available evidence indicates that the origin of life on Earth certainly occurred earlier than 3.5 billion years ago and perhaps substantially earlier. The time available for the chemical evolution which must have preceded this event is more difficult to estimate. Both endogenic and exogenic contributions to chemical evolution have been considered; i.e., from chemical reactions in a primitive atmosphere, or by introduction in the interiors of comets and/or meteorites. It is argued, however, that the phosphorus chemistry of Earth's earliest hydrosphere, whether primarily exogenic or endogenic in origin, was most likely dominated by compounds less oxidized than phosphoric acid and its esters. A scenario is presented for the early production of a suite of reactive phosphonic acid derivatives, the properties of which may have foreshadowed the later appearance of biophosphates.

  16. [Phosphorus intake and osteoporosis].

    PubMed

    Omi, N; Ezawa, I

    2001-10-01

    Phosphorus (P) is one of the most important nutrients for bone metabolism, such as calcium. In general, P intake is usually adequate in our daily diet, and there is a risk of over-consumption from processed food. On the other hand, Ca intake is not always adequate from the Japanese daily diet. When Ca/P is taken from the daily diet at a level of 0.5 - 2.0, the P intake level dose not affect intestinal Ca absorption. Therefore, it is important not only to pay attention to preventing the over-consumption of P, but also to obtain a sufficient intake of Ca. For the prevention of osteoporosis, it is important to consume sufficient Ca and to maintain and appropriate Ca/P balance from diet.

  17. Phosphorus Dynamic in Wetlands

    NASA Astrophysics Data System (ADS)

    Pant, H. K.

    2010-12-01

    The projected greater warming at higher/northern latitudes in the coming decades due to global climatic changes can mineralize substantial amount of the organic matter and supply massive amount of phosphorus (P) to the water column, and cause the collapse of freshwater wetlands. Thus, the rates and duration of organic matter accumulations/decompositions under rising global temperatures are critical determinants of how a freshwater wetland functions as an ecological unit within a landscape. Phosphorus is a limiting nutrient and a primary controller of eutrophication. Once the external P loads are curtailed, internal P regeneration, resulting from decompositions of detritus and soil/sediment organic matter determine the productivity, as well as the water quality of a wetland. Thus, global rise in temperature not only causes hydro-climatic fluctuations but can also change the composition of aquatic/semi-aquatic communities, in turn, could lead to adverse effect on human food chain to collapse of the ecosystem. While P enrichment may lead to immediate algal blooms in wetlands/aquatic systems, decreased in P input from external sources may not be able to stop the blooms for a considerable period of time depending on the P loading from within. The extent of P mineralization under changing conditions, enzymatic hydrolysis, and estimation of different P pools using 31P NMR in sediments and the water columns showed that the stability and bioavailability of P can greatly be influenced by rise in temperature and fluctuations in water level, thus, are crucial in determining the fate of the freshwater wetlands.

  18. Phosphorus speciation and treatment using enhanced phosphorus removal bioretention.

    PubMed

    Liu, Jiayu; Davis, Allen P

    2014-01-01

    This field research investigated the water quality performance of a traditional bioretention cell retrofitted with 5% (by mass) water treatment residual (WTR) for enhanced phosphorus removal. Results indicate that WTR incorporation into the bioretention media does not negatively influence the infiltration mechanism of the bioretention system. Total suspended solids (TSS), total phosphorus (TP), and particulate phosphorus (PP) concentrations in runoff inflow were significantly reduced compared to outflow due to filtration of particulate matter. TP concentrations were significantly reduced by the bioretention cell; before WTR retrofit TP export occurred. Although net removal of soluble reactive phosphorus (SRP) and dissolved organic phosphorus (DOP) from incoming runoff was not found, leaching of dissolved phosphorus (DP) was prevented not only from incoming runoff, but also from the media and captured PP. Near constant outflow SRP and DOP concentrations suggest an equilibrium adsorption treatment mechanism. Both event mean concentrations and mass loads were reduced for TSS and all P species. Pollutant mass removals were higher than the event mean concentration removals due to the attenuation of volume by the bioretention media.

  19. Detrital microbial community development and phosphorus dynamics in a stream ecosystem

    SciTech Connect

    Perkins, R.E.; Elwood, J.W.; Sayler, G.S.

    1986-06-01

    Detrital microbial community development and phosphorus dynamics in a lotic system were investigated in non-recirculating laboratory streams contains leaf detritus. Temporal patterns of microbial colonization, as determined by scanning electron microscopy, indicate leaf species dependency and that bacteria were the first colonizers followed by fungi. An extensive glycocalyx layer developed. Phosphorus incorporation rates of both the whole community and intracellular components were determined by time-course measurements of /sup 33/PO/sub 4/ or /sup 32/PO/sub 4/. Phosphorus turnover rates were determined by a sequential double-labeling procedure using /sup 33/PO/sub 4/ and /sup 32/PO/sub 4/, in which the microbiota were labeled with /sup 33/P until in isotopic equilibrium, then /sup 32/P was added. The turnover rate was determined by time-course measurements of the ratio /sup 32/P to /sup 33/P. Snail grazing resulted in an increase in phosphorus metabolism per unit microbial biomass; however, per unit area of leaf surface no increase was observed. Grazing also caused a two-fold reduction in microbial biomass. The results indicate that microbiota associated with decomposing leaves slowly recycle phosphorus, are slowly growing, and have a low metabolic activity. The spiraling length is shortened by microbiota on a short-term basis; however, it may increase on a long-term basis due to hydrological transport of detritus downstream.

  20. Missisquoi Bay Phosphorus Model Addendum

    EPA Pesticide Factsheets

    This technical memorandum provides results of an extended load reduction simulation. The memorandum serves as an addendum to the main Missisquoi Bay Phosphorus Mass Balance Model report prepared for the Lake Champlain Basin Program by LimnoTech in 2012

  1. Dietary phosphorus and kidney disease.

    PubMed

    Uribarri, Jaime

    2013-10-01

    High serum phosphate is linked to poor health outcome and mortality in chronic kidney disease (CKD) patients before or after the initiation of dialysis. Therefore, maintenance of normal serum phosphate levels is a major concern in the clinical care of this population with dietary phosphorus restriction and/or use of oral phosphate binders considered to be the best corrective care. This review discusses (1) evidence for an association between serum phosphate levels and bone and cardiovascular disease (CVD) in CKD patients as well as progression of kidney disease itself; (2) the relationship between serum phosphate and dietary phosphorus intake; and (3) implications from these data for future research. Increasing our understanding of the relationship between altered phosphorus metabolism and disease in CKD patients may clarify the potential role of excess dietary phosphorus as a risk factor for disease in the general population.

  2. Phosphorus balance with daily dialysis.

    PubMed

    Kooienga, Laura

    2007-01-01

    Hyperphosphatemia is an almost universal finding in patients with end-stage renal disease and is associated with increased all-cause mortality, cardiovascular mortality, and vascular calcification. These associations have raised the question of whether reducing phosphorus levels could result in improved survival. In light of the recent findings that increased per-session dialysis dose, as assessed by urea kinetics, did not result in improved survival, the definition of adequacy of dialysis should be re-evaluated and consideration given to alternative markers. Two alternatives to conventional thrice weekly dialysis (CHD) are nocturnal hemodialysis (NHD) and short daily hemodialysis (SDHD). The elimination kinetics of phosphorus as they relate to these alternative daily dialysis schedules and the clinical implications of overall phosphorus balance are discussed here. The total weekly phosphorus removal with NHD is more than twice that removed by CHD (4985 mg/week +/- 1827 mg vs. 2347 mg/week +/- 697 mg) and this is associated with a significantly lower average serum phosphorous (4.0 mg/dl vs. 6.5 mg/dl). In spite of the observed increase in protein and phosphorus intake seen in patients on SDHD, phosphate binder requirements and serum phosphorus levels are generally stable to decrease although this effect is strongly dependent on the frequency and overall treatment time.

  3. Recovery of phosphorus from waste ponds

    SciTech Connect

    Crea, D. A.

    1985-01-08

    Process for recovery of elemental phosphorus from waste ponds by dredging the waste pond to obtain an aqueous phosphorus slurry, separating particles larger than 2 mm from the slurry, treating the remaining slurry in an initial hydrocyclone and removing an overflow of solids larger than 500 micrometers, treating the underflow from the initial hydrocyclones in smaller diameter hydrocyclones, removing a second overflow enriched in slimes and diminished in phosphorus, removing a second underflow enriched in phosphorus and diminished in slimes and heating it sufficiently to melt the phosphorus therein, treating the heated second underflow in a centrifugal separator, and separating and recovering a stream of coalesced phosphorus from a heavy fraction of impurities.

  4. A Substance Flow Model for Global Phosphorus

    NASA Astrophysics Data System (ADS)

    Vaccari, D. A.

    2015-12-01

    A system-based substance flow model (SFM) for phosphorus is developed based on the global phosphorus substance flow analysis (SFA) of Cordell et al (2009). The model is based strictly on mass balance considerations. It predicts the sensitivity of phosphorus consumption to various interventions intended to conserve reserves, as well as interactions among these efforts, allowing a comparison of their impacts on phosphorus demand. The interventions include control of phosphorus losses from soil erosion, food production and food waste, or phosphorus recycling such as from animal manure or human waste.

  5. Reexamining the Phosphorus-Protein Dilemma: Does Phosphorus Restriction Compromise Protein Status?

    PubMed

    St-Jules, David E; Woolf, Kathleen; Pompeii, Mary Lou; Kalantar-Zadeh, Kamyar; Sevick, Mary Ann

    2016-05-01

    Dietary phosphorus restriction is recommended to help control hyperphosphatemia in hemodialysis patients, but many high-phosphorus foods are important sources of protein. In this review, we examine whether restricting dietary phosphorus compromises protein status in hemodialysis patients. Although dietary phosphorus and protein are highly correlated, phosphorus intakes can range up to 600 mg/day for a given energy and protein intake level. Furthermore, the collinearity of phosphorus and protein may be biased because the phosphorus burden of food depends on: (1) the presence of phosphate additives, (2) food preparation method, and (3) bioavailability of phosphorus, which are often unaccounted for in nutrition assessments. Ultimately, we argue that clinically relevant reductions in phosphorus intake can be made without limiting protein intake by avoiding phosphate additives in processed foods, using wet cooking methods such as boiling, and if needed, substituting high-phosphorus foods for nutritionally equivalent foods that are lower in bioavailable phosphorus.

  6. The Relevance of Phosphorus and Iron Chemistry to the Recovery of Phosphorus from Wastewater: A Review.

    PubMed

    Wilfert, Philipp; Kumar, Prashanth Suresh; Korving, Leon; Witkamp, Geert-Jan; van Loosdrecht, Mark C M

    2015-08-18

    The addition of iron is a convenient way for removing phosphorus from wastewater, but this is often considered to limit phosphorus recovery. Struvite precipitation is currently used to recover phosphorus, and this approach has attracted much interest. However, it requires the use of enhanced biological phosphorus removal (EBPR). EBPR is not yet widely applied and the recovery potential is low. Other phosphorus recovery methods, including sludge application to agricultural land or recovering phosphorus from sludge ash, also have limitations. Energy-producing wastewater treatment plants increasingly rely on phosphorus removal using iron, but the problem (as in current processes) is the subsequent recovery of phosphorus from the iron. In contrast, phosphorus is efficiently mobilized from iron by natural processes in sediments and soils. Iron-phosphorus chemistry is diverse, and many parameters influence the binding and release of phosphorus, including redox conditions, pH, presence of organic substances, and particle morphology. We suggest that the current poor understanding of iron and phosphorus chemistry in wastewater systems is preventing processes being developed to recover phosphorus from iron-phosphorus rich wastes like municipal wastewater sludge. Parameters that affect phosphorus recovery are reviewed here, and methods are suggested for manipulating iron-phosphorus chemistry in wastewater treatment processes to allow phosphorus to be recovered.

  7. III. Quantitative aspects of phosphorus excretion in ruminants.

    PubMed

    Bravo, David; Sauvant, Daniel; Bogaert, Catherine; Meschy, François

    2003-01-01

    Ruminant phosphorus excretion and metabolism were studied through a database. Faecal endogenous phosphorus is the main pathway of phosphorus excretion and averages 0.85 of total faecal phosphorus. The remaining 0.15 is unabsorbed dietary phosphorus. Faecal endogenous phosphorus is mainly unabsorbed phosphorus, with saliva being the major source, and is correlated to factors influencing saliva secretion (DM intake, physical dietary characteristics and dietary phosphorus content). Another source of faecal endogenous phosphorus is rumen microbial phosphorus that escaped solubilisation during post-rumen digestion. All factors stimulating microbial growth would increase phosphorus uptake by the rumen microbes and consequently the faecal endogenous phosphorus. Understanding the determinants of faecal endogenous phosphorus flow will help to precise the determination of net phosphorus requirements for maintenance. The role of plasma phosphorus in urinary phosphorus loss is discussed.

  8. Measurement of spin-flip probabilities for ultracold neutrons interacting with nickel phosphorus coated surfaces

    DOE PAGES

    Tang, Zhaowen; Adamek, Evan Robert; Brandt, Aaron; ...

    2016-04-26

    In this paper, we report a measurement of the spin-flip probabilities for ultracold neutrons interacting with surfaces coated with nickel phosphorus. For 50 μm thick nickel phosphorus coated on stainless steel, the spin-flip probability per bounce was found to be βNiP on SS = (3.3 +1.8, -5.6) X 10-6. For 50 μm thick nickel phosphorus coated on aluminum, the spin-flip probability per bounce was found to be βNiP on Al = (3.6 +2.1, -5.9) X 10-6. For the copper guide used as reference, the spin flip probability per bounce was found to be βCu = (6.7 + 5.0, -2.5) Xmore » 10-6. The results on the nickel phosphorus-coated surfaces may be interpreted as upper limits, yielding βNiP on SS < 6.2 X 10-6 (90% C.L.) and βNiP on Al < 7.0 X 10-6 (90% C.L.) for 50 μm thick nickel phosphorus coated on stainless steel and 50 μm thick nickel phosphorus coated on aluminum, respectively. Finally, nickel phosphorus coated stainless steel or aluminum provides a solution when low-cost, mechanically robust, and non-depolarizing UCN guides with a high Fermi potential are needed.« less

  9. Calcium phosphate granulation in anaerobic treatment of black water: a new approach to phosphorus recovery.

    PubMed

    Tervahauta, Taina; van der Weijden, Renata D; Flemming, Roberta L; Hernández Leal, Lucía; Zeeman, Grietje; Buisman, Cees J N

    2014-01-01

    Recovery of phosphorus from wastewater as calcium phosphate could diminish the need for mining of scarce phosphate rock resources. This study introduces a novel approach to phosphorus recovery by precipitation of calcium phosphate granules in anaerobic treatment of black water. The granules formed in the Upflow Anaerobic Sludge Blanket (UASB) reactor at lab- and demonstration-scale were analyzed for chemical composition and mineralogy by Inductively Coupled Plasma-Atomic Emission Spectroscopy (ICP-AES), Electron microprobe (EMP), Fourier transform infrared spectroscopy (FTIR), Raman spectroscopy and micro X-ray Diffraction (XRD). The granules had a diameter of 1-2 mm, organic content of 33 wt%, and phosphorus content of 11-13 wt%. Three calcium phosphate phases were identified in the granules: hydroxyapatite, calcium phosphate hydrate and carbonated hydroxyapatite. Without any addition of chemicals, 7 gP/person/year can be recovered with the calcium phosphate granules, representing 2% of the incoming phosphorus in the UASB reactor. As the heavy metal content was lower compared to other phosphorus recovery products, phosphate rock and phosphorus fertilizer, the calcium phosphate granules could be considered as a new phosphorus product.

  10. Edge phonons in black phosphorus

    PubMed Central

    Ribeiro, H. B.; Villegas, C. E. P.; Bahamon, D. A.; Muraca, D.; Castro Neto, A. H.; de Souza, E. A. T.; Rocha, A. R.; Pimenta, M. A.; de Matos, C. J. S.

    2016-01-01

    Black phosphorus has recently emerged as a new layered crystal that, due to its peculiar and anisotropic crystalline and electronic band structures, may have important applications in electronics, optoelectronics and photonics. Despite the fact that the edges of layered crystals host a range of singular properties whose characterization and exploitation are of utmost importance for device development, the edges of black phosphorus remain poorly characterized. In this work, the atomic structure and behaviour of phonons near different black phosphorus edges are experimentally and theoretically studied using Raman spectroscopy and density functional theory calculations. Polarized Raman results show the appearance of new modes at the edges of the sample, and their spectra depend on the atomic structure of the edges (zigzag or armchair). Theoretical simulations confirm that the new modes are due to edge phonon states that are forbidden in the bulk, and originated from the lattice termination rearrangements. PMID:27412813

  11. Edge phonons in black phosphorus

    NASA Astrophysics Data System (ADS)

    Ribeiro, H. B.; Villegas, C. E. P.; Bahamon, D. A.; Muraca, D.; Castro Neto, A. H.; de Souza, E. A. T.; Rocha, A. R.; Pimenta, M. A.; de Matos, C. J. S.

    2016-07-01

    Black phosphorus has recently emerged as a new layered crystal that, due to its peculiar and anisotropic crystalline and electronic band structures, may have important applications in electronics, optoelectronics and photonics. Despite the fact that the edges of layered crystals host a range of singular properties whose characterization and exploitation are of utmost importance for device development, the edges of black phosphorus remain poorly characterized. In this work, the atomic structure and behaviour of phonons near different black phosphorus edges are experimentally and theoretically studied using Raman spectroscopy and density functional theory calculations. Polarized Raman results show the appearance of new modes at the edges of the sample, and their spectra depend on the atomic structure of the edges (zigzag or armchair). Theoretical simulations confirm that the new modes are due to edge phonon states that are forbidden in the bulk, and originated from the lattice termination rearrangements.

  12. Economic feasibility study for phosphorus recovery processes.

    PubMed

    Molinos-Senante, María; Hernández-Sancho, Francesc; Sala-Garrido, Ramón; Garrido-Baserba, Manel

    2011-06-01

    Phosphorus recovery from wastewater has become a necessity for sustainable development because phosphorus is a non-renewable essential resource, and its discharge into the environment causes serious negative impacts. There are no economic incentives for the implementation of phosphorus recovery technologies because the selling price of rock phosphate is lower than phosphorus recovered from sewage. The methodologies used to determine the feasibility of such projects are usually focused on internal costs without considering environmental externalities. This article shows a methodology to assess the economic feasibility of wastewater phosphorus recovery projects that takes into account internal and external impacts. The shadow price of phosphorus is estimated using the directional distance function to measure the environmental benefits obtained by preventing the discharge of phosphorus into the environment. The economic feasibility analysis taking into account the environmental benefits shows that the phosphorus recovery is viable not only from sustainable development but also from an economic point of view.

  13. Fire-Resistant Polyimides Containing Phosphorus

    NASA Technical Reports Server (NTRS)

    Mikroyannidis, J.

    1986-01-01

    Limiting oxygen index increased. Copolyimide with a group containing phosphorus synthesized from 1-2,4-diaminobenzene, m-phenylenediamine, and tetracarboxylic dianhydride. Copolymer more fire resistant than corresponding polyimide without phosphorus.

  14. Phosphorus Flamethrower: A Demonstration Using Red and White Allotropes of Phosphorus

    ERIC Educational Resources Information Center

    Golden, Melissa L.; Person, Eric C.; Bejar, Miriam; Golden, Donnie R.; Powell, Jonathan M.

    2010-01-01

    A demonstration was created to display the unique behavior of a familiar element, phosphorus, and to make chemistry more accessible to the introductory student. The common allotropes of phosphorus and their reactivity are discussed. In this demonstration, the white allotrope of phosphorus is synthesized from the red phosphorus obtained from a…

  15. Effects of Aspergillus fumigatus phytase on phosphorus digestibility, phosphorus excretion, bone strength and performance in pigs.

    PubMed

    Simões Nunes, C; Guggenbuhl, P

    1998-01-01

    Phytic-phosphorus has a very low bioavailability for monogastric animals and the non-utilized mineral contributes to the phosphorus (P) pollution problems. Phytases may ameliorate phytic-P antinutritive properties. However, phytases are very sensitive to the pelleting temperature commonly used for compound feed production and thus the challenge to produce a more thermostable phytase is very important. Pure Aspergillus fumigatus phytase (AFP) has the ability to refold into a native-like fully active structure after heat denaturation (20 min at 90 degrees C). The aim of the present work was to evaluate in vitro (in feed) and in vivo in young and in growing-finishing pigs the effects of AFP included in the feed at a level of 500 U/kg. Feed supplementation with AFP resulted in an in vitro phosphorus release of about three times higher than that obtained from the basal diets, irrespective of the pH value used for the determination (5.5 or 7). When the supplemented feed was steam pelleted at about 84 degrees C, the free P obtained after incubation at pH 5.5 represented 53% on an average of that obtained from the corresponding mash diets. The phytic-P-rich diets systematically induced hypophosphataemia, hypercalcaemia and hyperphosphatasaemia. The normal blood levels of P, Ca and alkaline phosphatase were restored by AFP. P apparent digestibility was significantly higher for the AFP diet (52.8 versus 30.8%). The improvement in Ca digestibility was not statistically significant. In all three in vivo experiments, AFP significantly decreased the P concentration in faeces (between 13 and 33%) as well as increased the growth rate and decreased the feed conversion ratio. Bone strength was significantly higher in the growing-fattening pigs fed on the AFP diet.

  16. Modifying the Kentucky phosphorus index using published phosphorus loss data

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The phosphorus index (PI) is a field-scale assessment tool developed to identify fields most vulnerable to P loss. The USDA NRCS recently revised its 590 Nutrient Management Standard and Title 190 National Instruction requiring that all NRCS-approved PI tools meet certain criteria. A recent study e...

  17. Clinical Disorders of Phosphorus Metabolism

    PubMed Central

    Yu, George C.; Lee, David B. N.

    1987-01-01

    Deranged phosphorus metabolism is commonly encountered in clinical medicine. Disturbances in phosphate intake, excretion and transcellular shift account for the abnormal serum levels. As a result of the essential role played by phosphate in intracellular metabolism, the clinical manifestations of hypophosphatemia and hyperphosphatemia are extensive. An understanding of the pathophysiology of various phosphate disorders is helpful in guiding therapeutic decisions. Images PMID:3321712

  18. Major Minerals - Calcium, Magnesium, Phosphorus

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Calcium, magnesium and phosphorus are essential elements critically important for the function of the musculoskeletal system, including the formation and transduction of energy and the maintenance of healthy bone. The major calcium concern for physically active healthy middle-aged adults is to consu...

  19. Enzymatic hydrolysis of organic phosphorus

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Orthophosphate-releasing enzymatic hydrolysis is an alternative means for characterizing organic phosphorus (Po) in animal manure. The approach is not only simple and fast, but can also provide information difficult to obtain by other methods. Currently, commercially available phosphatases are mainl...

  20. Gettering Silicon Wafers with Phosphorus

    NASA Technical Reports Server (NTRS)

    Daiello, R. V.

    1983-01-01

    Silicon wafers subjected to gettering in phosphorus atmosphere have longer diffusion lengths and higher solar-cell efficiencies than untreated wafers. Gettering treatment improves properties of solar cells manufactured from impure silicon and is compatible with standard solar-cell processing.

  1. 40 CFR 422.20 - Applicability; description of the phosphorus consuming subcategory.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... phosphorus consuming subcategory. 422.20 Section 422.20 Protection of Environment ENVIRONMENTAL PROTECTION... Phosphorus Consuming Subcategory § 422.20 Applicability; description of the phosphorus consuming subcategory... manufacture of phosphoric acid, phosphorus pentoxide, phosphorus pentasulfide, phosphorus trichloride,...

  2. 40 CFR 422.20 - Applicability; description of the phosphorus consuming subcategory.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... phosphorus consuming subcategory. 422.20 Section 422.20 Protection of Environment ENVIRONMENTAL PROTECTION... Phosphorus Consuming Subcategory § 422.20 Applicability; description of the phosphorus consuming subcategory... manufacture of phosphoric acid, phosphorus pentoxide, phosphorus pentasulfide, phosphorus trichloride,...

  3. 40 CFR 422.20 - Applicability; description of the phosphorus consuming subcategory.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... phosphorus consuming subcategory. 422.20 Section 422.20 Protection of Environment ENVIRONMENTAL PROTECTION... Phosphorus Consuming Subcategory § 422.20 Applicability; description of the phosphorus consuming subcategory... manufacture of phosphoric acid, phosphorus pentoxide, phosphorus pentasulfide, phosphorus trichloride,...

  4. 40 CFR 422.20 - Applicability; description of the phosphorus consuming subcategory.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... phosphorus consuming subcategory. 422.20 Section 422.20 Protection of Environment ENVIRONMENTAL PROTECTION... Phosphorus Consuming Subcategory § 422.20 Applicability; description of the phosphorus consuming subcategory... manufacture of phosphoric acid, phosphorus pentoxide, phosphorus pentasulfide, phosphorus trichloride,...

  5. 40 CFR 422.20 - Applicability; description of the phosphorus consuming subcategory.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... phosphorus consuming subcategory. 422.20 Section 422.20 Protection of Environment ENVIRONMENTAL PROTECTION... Phosphorus Consuming Subcategory § 422.20 Applicability; description of the phosphorus consuming subcategory... manufacture of phosphoric acid, phosphorus pentoxide, phosphorus pentasulfide, phosphorus trichloride,...

  6. Few-layer black phosphorus nanoparticles.

    PubMed

    Sofer, Zdenek; Bouša, Daniel; Luxa, Jan; Mazanek, Vlastimil; Pumera, Martin

    2016-01-28

    Herein, black phosphorus quantum dots and nanoparticles of a few layer thickness were prepared and characterized using STEM, AFM, dynamic light scattering, X-ray photoelectron spectroscopy, X-ray diffraction, Raman spectroscopy and photoluminescence. Impact electrochemistry of the induvidual black phosphorus nanoparticles allows their size determination. The centrifugation of colloidal black phosphorus nanoparticles allowed separation of quantum dots with sizes up to 15 nm. These black phosphorus nanoparticles exhibit a large band gap and are expected to find a wide range of applications from semiconductors to biomolecule tags. The use of black phosphorus nanoparticles for vapour sensing was successfully demonstrated.

  7. The Galactic evolution of phosphorus

    NASA Astrophysics Data System (ADS)

    Caffau, E.; Bonifacio, P.; Faraggiana, R.; Steffen, M.

    2011-08-01

    Context. As a galaxy evolves, its chemical composition changes and the abundance ratios of different elements are powerful probes of the underlying evolutionary processes. Phosphorous is an element whose evolution has remained quite elusive until now, because it is difficult to detect in cool stars. The infrared weak P i lines of the multiplet 1, at 1050-1082 nm, are the most reliable indicators of the presence of phosphorus. The availability of CRIRES at VLT has permitted access to this wavelength range in stellar spectra. Aims: We attempt to measure the phosphorus abundance of twenty cool stars in the Galactic disk. Methods: The spectra are analysed with one-dimensional model-atmospheres computed in local thermodynamic equilibrium (LTE). The line formation computations are performed assuming LTE. Results: The ratio of phosphorus to iron behaves similarly to sulphur, increasing towards lower metallicity stars. Its ratio with respect to sulphur is roughly constant and slightly larger than solar, [P/S] = 0.10 ± 0.10. Conclusions: We succeed in taking an important step towards the understanding of the chemical evolution of phosphorus in the Galaxy. However, the observed rise in the P/Fe abundance ratio is steeper than predicted by Galactic chemical evolution model developed by Kobayashi and collaborators. Phosphorus appears to evolve differently from the light odd-Z elements sodium and aluminium. The constant value of [P/S] with metallicity implies that P production is insensitive to the neutron excess, thus processes other than neutron captures operate. We suggest that proton captures on 30Si and α captures on 27Al are possibilities to investigate. We see no clear distinction between our results for stars with planets and stars without any detected planet. Based on observations obtained with the CRIRES spectrograph at ESO-VLT Antu 8.2 m telescope at Paranal, Programme 386.D-0130, P.I. E. Caffau.

  8. Global warming and the phosphorus cycle

    SciTech Connect

    Tarasova, N.P.; Smetannikov, Y.V.; Balitsky, V.Y. )

    1994-09-01

    Greenhouse-induced climate change seriously influences the phosphorus cycle. In this paper the authors have analyzed how environmental conditions cause an increase or a decrease in the phosphorus content of the soil. Phosphorus production in South Kazakhstan without strict control for fulfilling environment-protection measures may lead to the chemical erosion of soils, i.e., disturb the balance of soluble and insoluble, as well as organic and inorganic, forms of phosphorus. Phosphorus accumulation in the soil can be promoted by heavy metals. The authors have constructed a general dynamic system for phosphorus flows in the soil. The results of 7-years monitoring of the soils in the region of South Kazakhstan are discussed and compared with the dynamic system. The role of chemical elements promoting phosphorus accumulation in the soil is further analyzed.

  9. Thermodynamics of Phosphorus in Solvent Refining of Silicon Using Ferrosilicon Alloys

    NASA Astrophysics Data System (ADS)

    Tafaghodi Khajavi, Leili; Barati, Mansoor

    2017-02-01

    The thermodynamics of phosphorus distribution between solid silicon and iron-silicon melt was studied to examine the degree of phosphorus removal from silicon by solvent refining with ferrosilicon alloys. The experiments were performed on silicon-iron-phosphorus alloys with 80 wt pct silicon and 20 wt pct iron. A phosphorus distribution coefficient, which is defined as the ratio of the mole fraction of phosphorus in solid to that of liquid is as follows: 0.22 ± 0.02 [1583 K (1310 °C)], 0.29 ± 0.02 [1533 K (1260 °C)], and 0.33 ± 0.02 [1483 K (1210 °C)]. The corresponding removal percentages of phosphorus were 86 pct [1583 K (1310 °C)], 75 pct [1533 K (1260 °C)], and 67 pct [1483 K (1210 °C)]. The average phosphorus content of the refined silicon in the current process would be more than two times less than that of the conventional solidification refining techniques. The values of interaction coefficient of phosphorus on iron (ɛ_{{Fe}}P ) at different temperatures were obtained as -3460 ± 155 [1583 K (1310 °C)], -3595 ± 159 [1533 K (1260 °C)], and -3694 ± 119 [1483 K (1210 °C)]. The self-interaction parameters of phosphorus ( {ɛPP } ) at different temperatures are as follows: 68 ± 4 [1583 K (1310 °C)], 78 ± 10 [1533 K (1260 °C)], and 103 ± 19 [(1483 K 1210 °C)]. The calculated values for the distribution coefficients of phosphorus at infinite dilution are 0.22 ± 0.00 [1583 K (1310 °C)], 0.30 ± 0.00 [1533 K (1260 °C)], and 0.34 ± 0.00 [1483 K (1210 °C)]. Considering the solid (red phosphorus) standard state for solid silicon, the activity coefficient of phosphorus in solid silicon is estimated as {{lnγ }}_{{P in solid Si}}^{°} = - 17395( {1/{T}} ) + 10.

  10. Effects of phosphorus concentration and light intensity on the biomass composition of Arthrospira (Spirulina) platensis.

    PubMed

    Markou, Giorgos; Chatzipavlidis, Iordanis; Georgakakis, Dimitris

    2012-08-01

    This paper presents the effects of various phosphorus concentrations (10, 50, 250 and 500 mg l(-1) K(2)HPO(4)) on the biomass production and composition of Arthrospira (Spirulina) platensis in relation to light intensity (24, 42 and 60 μE m(-2) s(-1)). The maximum biomass production was 3,592 ± 392 mg l(-1) and this was observed in 250 mg l(-1) K(2)HPO(4) at 60 μE m(-2) s(-1) light intensity after 32 days of cultivation. A maximum specific growth rate (μ(max)) of 0.55 d(-1) was obtained in 500 mg l(-1) K(2)HPO(4) at 60 μE m(-2) s(-1). The protein, lipid and chlorophyll contents of the biomass varied from 33.59 to 60.57 %, 5.34 to 13.33 % and 0.78 to 2.00 %, respectively. The most significant finding was that phosphorus limitation (10 mg l(-1) K(2)HPO(4)) caused a drastic increase of the carbohydrate content (59.64 %). The effect of phosphorus limitation on the carbohydrate content was independent of the light intensity. The accumulated carbohydrates are proposed to be used as substrate for biofuel generation via one of the appropriate biomass energy conversion technologies. Also, it was observed that phosphorus removal is a function of biomass density, phosphorus concentration and light intensity.

  11. NMR of Phosphorus in Iii-Phosphorus Semiconductors.

    NASA Astrophysics Data System (ADS)

    Rutland, Jonathan Mark

    Second moment measurements have been obtained for phosphorus in III-phosphorus semiconductor compounds, including the first such measurements on BP. By the use of various multiple pulse sequences, the second moment contributions due to like and unlike spins can be measured independently. A new technique for extracting the second moment has been developed that eliminates or reduces many of the limitations imposed by previous methods. Previous work has attributed the differences between the measured and theoretical second moment to the indirect nuclear interactions; the exchange and pseudodipolar interactions. Engelsburg and Norberg have shown that the measured second moments place limits on the range of allowed values for the indirect coupling coefficients. Their theory is extended in this work to the case when multiple isotopes are present. The derived coupling coefficient limits are compared to theoretical calculations based on the two-electron bond orbital model. The results are in agreement with a scaling of the coupling coefficients with atomic number.

  12. 14 CFR 33.33 - Vibration.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 1 2011-01-01 2011-01-01 false Vibration. 33.33 Section 33.33 Aeronautics... STANDARDS: AIRCRAFT ENGINES Design and Construction; Reciprocating Aircraft Engines § 33.33 Vibration. The... vibration and without imparting excessive vibration forces to the aircraft structure....

  13. 14 CFR 33.33 - Vibration.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 14 Aeronautics and Space 1 2012-01-01 2012-01-01 false Vibration. 33.33 Section 33.33 Aeronautics... STANDARDS: AIRCRAFT ENGINES Design and Construction; Reciprocating Aircraft Engines § 33.33 Vibration. The... vibration and without imparting excessive vibration forces to the aircraft structure....

  14. 14 CFR 33.33 - Vibration.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 14 Aeronautics and Space 1 2014-01-01 2014-01-01 false Vibration. 33.33 Section 33.33 Aeronautics... STANDARDS: AIRCRAFT ENGINES Design and Construction; Reciprocating Aircraft Engines § 33.33 Vibration. The... vibration and without imparting excessive vibration forces to the aircraft structure....

  15. 14 CFR 33.33 - Vibration.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 14 Aeronautics and Space 1 2013-01-01 2013-01-01 false Vibration. 33.33 Section 33.33 Aeronautics... STANDARDS: AIRCRAFT ENGINES Design and Construction; Reciprocating Aircraft Engines § 33.33 Vibration. The... vibration and without imparting excessive vibration forces to the aircraft structure....

  16. 14 CFR 33.33 - Vibration.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Vibration. 33.33 Section 33.33 Aeronautics... STANDARDS: AIRCRAFT ENGINES Design and Construction; Reciprocating Aircraft Engines § 33.33 Vibration. The... vibration and without imparting excessive vibration forces to the aircraft structure....

  17. Dietary phosphorus acutely impairs endothelial function.

    PubMed

    Shuto, Emi; Taketani, Yutaka; Tanaka, Rieko; Harada, Nagakatsu; Isshiki, Masashi; Sato, Minako; Nashiki, Kunitaka; Amo, Kikuko; Yamamoto, Hironori; Higashi, Yukihito; Nakaya, Yutaka; Takeda, Eiji

    2009-07-01

    Excessive dietary phosphorus may increase cardiovascular risk in healthy individuals as well as in patients with chronic kidney disease, but the mechanisms underlying this risk are not completely understood. To determine whether postprandial hyperphosphatemia may promote endothelial dysfunction, we investigated the acute effect of phosphorus loading on endothelial function in vitro and in vivo. Exposing bovine aortic endothelial cells to a phosphorus load increased production of reactive oxygen species, which depended on phosphorus influx via sodium-dependent phosphate transporters, and decreased nitric oxide production via inhibitory phosphorylation of endothelial nitric oxide synthase. Phosphorus loading inhibited endothelium-dependent vasodilation of rat aortic rings. In 11 healthy men, we alternately served meals containing 400 mg or 1200 mg of phosphorus in a double-blind crossover study and measured flow-mediated dilation of the brachial artery before and 2 h after the meals. The high dietary phosphorus load increased serum phosphorus at 2 h and significantly decreased flow-mediated dilation. Flow-mediated dilation correlated inversely with serum phosphorus. Taken together, these findings suggest that endothelial dysfunction mediated by acute postprandial hyperphosphatemia may contribute to the relationship between serum phosphorus level and the risk for cardiovascular morbidity and mortality.

  18. Black phosphorus nonvolatile transistor memory

    NASA Astrophysics Data System (ADS)

    Lee, Dain; Choi, Yongsuk; Hwang, Euyheon; Kang, Moon Sung; Lee, Seungwoo; Cho, Jeong Ho

    2016-04-01

    We demonstrated nanofloating gate transistor memory devices (NFGTMs) using mechanically-exfoliated few-layered black phosphorus (BP) channels and gold nanoparticle (AuNPs) charge trapping layers. The resulting BP-NFGTMs exhibited excellent memory performances, including the five-level data storage, large memory window (58.2 V), stable retention (104 s), and cyclic endurance (1000 cycles).We demonstrated nanofloating gate transistor memory devices (NFGTMs) using mechanically-exfoliated few-layered black phosphorus (BP) channels and gold nanoparticle (AuNPs) charge trapping layers. The resulting BP-NFGTMs exhibited excellent memory performances, including the five-level data storage, large memory window (58.2 V), stable retention (104 s), and cyclic endurance (1000 cycles). Electronic supplementary information (ESI) available. See DOI: 10.1039/c6nr02078j

  19. Phosphorus doping a semiconductor particle

    DOEpatents

    Stevens, G.D.; Reynolds, J.S.

    1999-07-20

    A method of phosphorus doping a semiconductor particle using ammonium phosphate is disclosed. A p-doped silicon sphere is mixed with a diluted solution of ammonium phosphate having a predetermined concentration. These spheres are dried with the phosphorus then being diffused into the sphere to create either a shallow or deep p-n junction. A good PSG glass layer is formed on the surface of the sphere during the diffusion process. A subsequent segregation anneal process is utilized to strip metal impurities from near the p-n junction into the glass layer. A subsequent HF strip procedure is then utilized to removed the PSG layer. Ammonium phosphate is not a restricted chemical, is inexpensive, and does not pose any special shipping, handling, or disposal requirement. 1 fig.

  20. Biological Availability of Total Phosphorus.

    DTIC Science & Technology

    1979-01-01

    STANDARDS-I963- A ELECT MA 18 * SZCURIrY CLASSIFICAION Of THIS PACE (U"n 1De a rnt*.d) 5REPORT DOCUMENTATION PAGEREDISUCON Final Biological Aviaiiyof...Chemical Engineering Department West Virginia University Joseph V. DePinto Clarkson College January 1979 A I , Lake Erie Wastevater Manageuent Study U. S...INTRODUCTION 1 LITERATURE REVIEW 4 A a . Chemical Fractionation of Sediment Phosphorus b. Chemical Measurement of Available P c. Bioassay Measurement of

  1. Nonlinear Black Phosphorus for Ultrafast Optical Switching

    NASA Astrophysics Data System (ADS)

    Uddin, Siam; Debnath, Pulak C.; Park, Kichul; Song, Yong-Won

    2017-02-01

    The outstanding electronic and optical properties of black phosphorus (BP) in a two-dimensional (2D) but unique single-layer puckered structure have opened intense research interest ranging from fundamental physics to nanoscale applications covering the electronic and optical domains. The direct and controllable electronic bandgap facilitating wide range of tunable optical response coupled with high anisotropic in-plane properties made BP a promising nonlinear optical material for broadband optical applications. Here, we investigate ultrafast optical switching relying on the optical nonlinearity of BP. Wavelength conversion for modulated signals whose frequency reaches up to 20 GHz is realized by four-wave-mixing (FWM) with BP-deposited D-shaped fiber. In the successful demonstration of the FWM based wavelength conversion, performance parameter has been increased up to ~33% after employing BP in the device. It verifies that BP is able to perform efficient optical switching in the evanescent field interaction regime at very high speed. Our results might suggest that BP-based ultra-fast photonics devices could be potentially developed for broadband applications.

  2. Nonlinear Black Phosphorus for Ultrafast Optical Switching

    PubMed Central

    Uddin, Siam; Debnath, Pulak C.; Park, Kichul; Song, Yong-Won

    2017-01-01

    The outstanding electronic and optical properties of black phosphorus (BP) in a two-dimensional (2D) but unique single-layer puckered structure have opened intense research interest ranging from fundamental physics to nanoscale applications covering the electronic and optical domains. The direct and controllable electronic bandgap facilitating wide range of tunable optical response coupled with high anisotropic in-plane properties made BP a promising nonlinear optical material for broadband optical applications. Here, we investigate ultrafast optical switching relying on the optical nonlinearity of BP. Wavelength conversion for modulated signals whose frequency reaches up to 20 GHz is realized by four-wave-mixing (FWM) with BP-deposited D-shaped fiber. In the successful demonstration of the FWM based wavelength conversion, performance parameter has been increased up to ~33% after employing BP in the device. It verifies that BP is able to perform efficient optical switching in the evanescent field interaction regime at very high speed. Our results might suggest that BP-based ultra-fast photonics devices could be potentially developed for broadband applications. PMID:28240276

  3. [Effect of low phosphorus concentration on the growth of Scenedesmus obliquus and phosphorus removal].

    PubMed

    Zhang, Ying; Li, Bao-Zhen; Qu, Jiang-Hang; Yang, Jin-Shui; Huang, Huai-Zeng; Yuan, Hong-Li

    2010-11-01

    Effects of phosphorus of low concentrations on the growth and the phosphorus removal efficiency of Scenedesmus obliquus were investigated in this study. Results showed that Scenedesmus obliquus achieved a phosphorus removal efficiency of 100% within 22 h when the initial algal cell concentration was 1 x 10(5) /mL and the initial phosphorus concentration was 0.02-0.10 mg/L. With the initial phosphorus concentration increased from 0.02 mg/L to 0.10 mg/L, both growth velocity of Scenedesmus obliquus and maximum biomass increased obviously. Research found that phosphorus concentration had a significant influence on cell morphology of algal. In the external phosphorus sufficient conditions, most of algae cell present as four cells gather round form, then transformed into two cells side by side form in the absence of external phosphorus in culture medium, Finally in single as the main form of existence.

  4. Unusually Stable Helical Coil Allotrope of Phosphorus.

    PubMed

    Liu, Dan; Guan, Jie; Jiang, Jingwei; Tománek, David

    2016-12-14

    We have identified an unusually stable helical coil allotrope of phosphorus. Our ab initio density functional theory calculations indicate that the uncoiled, isolated straight one-dimensional chain is equally stable as a monolayer of black phosphorus dubbed phosphorene. The coiling tendency and the attraction between adjacent coil segments add an extra stabilization energy of ∼12 meV/atom to the coil allotrope, similar in value to the ∼16 meV/atom interlayer attraction in bulk black phosphorus. Thus, the helical coil structure is essentially as stable as black phosphorus, the most stable phosphorus allotrope known to date. With an optimum radius of 2.4 nm, the helical coil of phosphorus may fit well and even form inside wide carbon nanotubes.

  5. Bioavailability of organic phosphorus to Pseudokirchneriella subcapitata as affected by phosphorus starvation: an isotope dilution study.

    PubMed

    Van Moorleghem, Christoff; De Schutter, Nynke; Smolders, Erik; Merckx, Roel

    2013-06-01

    Phosphorus (P) starved algae have a capacity to rapidly take up P when resupplied to P. This study was set-up to measure to what extent P starvation enhances the potential of algae to utilize organic P forms. The initial (<0.5 h) PO4 uptake rates of cells of Pseudokirchneriella subcapitata increased up to 18-fold with increasing starvation. Algae from different levels of P starvation were subsequently exposed to different model organic P forms and carrier-free (33)PO4. Uptake (1h) of P from organic P-increased up to 5-fold with increasing P starvation. The bioavailability of organic P, relative to PO4, was calculated from uptake of (31)P and (33)P isotopes assuming no isotopic exchange with organic P-forms. This relative bioavailability ranged from 0 to 57% and remained generally unaffected by the extent of P-starvation. This result was found for cells that were either or not treated by a wash method to remove extracellular phosphatases. Short-term P uptake rate sharply increases with decreasing internal P content of the algal cells but the bioavailability of organic P, relative to PO4, is not enhanced. Such finding suggests that P-starvation enhances PO4 uptake capacity and organic P hydrolysis capacity to about the same extent.

  6. Trichoderma harzianum might impact phosphorus transport by arbuscular mycorrhizal fungi.

    PubMed

    De Jaeger, Nathalie; de la Providencia, Ivan E; de Boulois, Hervé Dupré; Declerck, Stéphane

    2011-09-01

    Trichoderma sp. is a biocontrol agent active against plant pathogens via mechanisms such as mycoparasitism. Recently, it was demonstrated that Trichoderma harzianum was able to parasitize the mycelium of an arbuscular mycorrhizal (AM) fungus, thus affecting its viability. Here, we question whether this mycoparasitism may reduce the capacity of Glomus sp. to transport phosphorus ((33)P) to its host plant in an in vitro culture system. (33)P was measured in the plant and in the fungal mycelium in the presence/absence of T. harzianum. The viability and metabolic activity of the extraradical mycelium was measured via succinate dehydrogenase and alkaline phosphatase staining. Our study demonstrated an increased uptake of (33)P by the AM fungus in the presence of T. harzianum, possibly related to a stress reaction caused by mycoparasitism. In addition, the disruption of AM extraradical hyphae in the presence of T. harzianum affected the (33)P translocation within the AM fungal mycelium and consequently the transfer of (33)P to the host plant. The effects of T. harzianum on Glomus sp. may thus impact the growth and function of AM fungi and also indirectly plant performance by influencing the source-sink relationship between the two partners of the symbiosis.

  7. Evolution of the global phosphorus cycle.

    PubMed

    Reinhard, Christopher T; Planavsky, Noah J; Gill, Benjamin C; Ozaki, Kazumi; Robbins, Leslie J; Lyons, Timothy W; Fischer, Woodward W; Wang, Chunjiang; Cole, Devon B; Konhauser, Kurt O

    2017-01-19

    The macronutrient phosphorus is thought to limit primary productivity in the oceans on geological timescales. Although there has been a sustained effort to reconstruct the dynamics of the phosphorus cycle over the past 3.5 billion years, it remains uncertain whether phosphorus limitation persisted throughout Earth's history and therefore whether the phosphorus cycle has consistently modulated biospheric productivity and ocean-atmosphere oxygen levels over time. Here we present a compilation of phosphorus abundances in marine sedimentary rocks spanning the past 3.5 billion years. We find evidence for relatively low authigenic phosphorus burial in shallow marine environments until about 800 to 700 million years ago. Our interpretation of the database leads us to propose that limited marginal phosphorus burial before that time was linked to phosphorus biolimitation, resulting in elemental stoichiometries in primary producers that diverged strongly from the Redfield ratio (the atomic ratio of carbon, nitrogen and phosphorus found in phytoplankton). We place our phosphorus record in a quantitative biogeochemical model framework and find that a combination of enhanced phosphorus scavenging in anoxic, iron-rich oceans and a nutrient-based bistability in atmospheric oxygen levels could have resulted in a stable low-oxygen world. The combination of these factors may explain the protracted oxygenation of Earth's surface over the last 3.5 billion years of Earth history. However, our analysis also suggests that a fundamental shift in the phosphorus cycle may have occurred during the late Proterozoic eon (between 800 and 635 million years ago), coincident with a previously inferred shift in marine redox states, severe perturbations to Earth's climate system, and the emergence of animals.

  8. Phosphorus Cycling Through Space and Time

    NASA Astrophysics Data System (ADS)

    Filippelli, Gabriel

    2014-05-01

    The cycling of phosphorus, a biocritical element in short supply in nature, is an important Earth system process. Variations in the phosphorus cycle have occurred in the past. For example, the rapid uplift of the Himalayan-Tibet Plateau increased chemical weathering, which led to enhanced input of phosphorus to the oceans. This drove the late Miocene "biogenic bloom." On glacial timescales, phosphorus is quite dynamic. In terrestrial systems, phosphorus soil mineralogy alters rapidly in response to early soil development, and ultimately becomes limited to plant availability in many setting. In marine systems, the loss of the substantial continental margin sink for reactive P occurs during glacial sea-level lowstands, effectively concentrating phosphorus in the deep sea. Finally, in the modern, the phosphorus cycle is dominated by human activity and agriculture, which causes unwanted pollution due to high phosphorus loading and itself poses significant concerns about the ultimate future availability of this nutrient to feed an expanding human population. This presentation will cover several critical components of the phosphorus cycle, including terrestrial and marine systems, through the lens of geologic time. This perspective reveals the significant changes that have occurred in the availability of phosphorus through time, and how other biogeochemical systems have responded to these changes. Furthermore, the perspective provides some sobering insights into the mechanisms behind the concentration of marine phosphorus into viable sources of phosphate rock. The rarity of high-quality phosphate rock deposits and the limitation of easily minable reserves are becoming critical, as the human demand for fertilizer phosphorus far outstrips the geologic rate of replacement and few prospects exist for new discoveries of phosphate rock.

  9. Phosphorus-containing materials for organic electronics.

    PubMed

    Stolar, Monika; Baumgartner, Thomas

    2014-05-01

    Phosphorus-based materials have received widespread attention in recent years, in particular as possible candidates for practical application in organic electronics. The geometry and electronic nature of phosphorus make it a favorable heteroatom for property tuning in order to obtain better performing organic electronics. This Focus Review discusses recent structural modifications and syntheses of phosphorus-based materials, illustrates property tuning at the same time, and highlights specific examples for device applications.

  10. Evolution of the global phosphorus cycle

    NASA Astrophysics Data System (ADS)

    Reinhard, Christopher T.; Planavsky, Noah J.; Gill, Benjamin C.; Ozaki, Kazumi; Robbins, Leslie J.; Lyons, Timothy W.; Fischer, Woodward W.; Wang, Chunjiang; Cole, Devon B.; Konhauser, Kurt O.

    2016-12-01

    The macronutrient phosphorus is thought to limit primary productivity in the oceans on geological timescales. Although there has been a sustained effort to reconstruct the dynamics of the phosphorus cycle over the past 3.5 billion years, it remains uncertain whether phosphorus limitation persisted throughout Earth’s history and therefore whether the phosphorus cycle has consistently modulated biospheric productivity and ocean–atmosphere oxygen levels over time. Here we present a compilation of phosphorus abundances in marine sedimentary rocks spanning the past 3.5 billion years. We find evidence for relatively low authigenic phosphorus burial in shallow marine environments until about 800 to 700 million years ago. Our interpretation of the database leads us to propose that limited marginal phosphorus burial before that time was linked to phosphorus biolimitation, resulting in elemental stoichiometries in primary producers that diverged strongly from the Redfield ratio (the atomic ratio of carbon, nitrogen and phosphorus found in phytoplankton). We place our phosphorus record in a quantitative biogeochemical model framework and find that a combination of enhanced phosphorus scavenging in anoxic, iron-rich oceans and a nutrient-based bistability in atmospheric oxygen levels could have resulted in a stable low-oxygen world. The combination of these factors may explain the protracted oxygenation of Earth’s surface over the last 3.5 billion years of Earth history. However, our analysis also suggests that a fundamental shift in the phosphorus cycle may have occurred during the late Proterozoic eon (between 800 and 635 million years ago), coincident with a previously inferred shift in marine redox states, severe perturbations to Earth’s climate system, and the emergence of animals.

  11. Development of a Phosphorus-Eutrophication Management Strategy for Vermont: Evaluations Available Phosphorus Loads.

    DTIC Science & Technology

    1985-11-01

    attention is biological phosphorus removal . 107 This technique has been known for many years, but is only now beginning to receive widespread use...phosphorus from biological treatment plants below that attainable using this technology alone. A recent study indicated that biological phosphorus removal has...Guide for HSPF, EPA 600/3-84-065 (1984). USEPA, Emerging Technology Assessment of Biological Phosphorus Removal , NTIS #PB-85 165-744 (1985). Velz, C. J

  12. Energy and phosphorus recovery from black water.

    PubMed

    de Graaff, M S; Temmink, H; Zeeman, G; Buisman, C J N

    2011-01-01

    Source-separated black water (BW) (toilet water) containing 38% of the organic material and 68% of the phosphorus in the total household waste (water) stream including kitchen waste, is a potential source for energy and phosphorus recovery. The energy recovered, in the form of electricity and heat, is more than sufficient for anaerobic treatment, nitrogen removal and phosphorus recovery. The phosphorus balance of an upflow anaerobic sludge blanket reactor treating concentrated BW showed a phosphorus conservation of 61% in the anaerobic effluent. Precipitation of phosphate as struvite from this stream resulted in a recovery of 0.22 kgP/p/y, representing 10% of the artificial phosphorus fertiliser production in the world. The remaining part of the phosphorus ended up in the anaerobic sludge, mainly due to precipitation (39%). Low dilution and a high pH favour the accumulation of phosphorus in the anaerobic sludge and this sludge could be used as a phosphorus-enriched organic fertiliser, provided that it is safe regarding heavy metals, pathogens and micro-pollutants.

  13. Phosphorus recovery from wastewater through microbial processes.

    PubMed

    Yuan, Zhiguo; Pratt, Steven; Batstone, Damien J

    2012-12-01

    Waste streams offer a compelling opportunity to recover phosphorus (P). 15-20% of world demand for phosphate rock could theoretically be satisfied by recovering phosphorus from domestic waste streams alone. For very dilute streams (<10 mg PL(-1)), including domestic wastewater, it is necessary to concentrate phosphorus in order to make recovery and reuse feasible. This review discusses enhanced biological phosphorus removal (EBPR) as a key technology to achieve this. EBPR relies on polyphosphate accumulating organisms (PAOs) to take up phosphorus from waste streams, so concentrating phosphorus in biomass. The P-rich biosolids can be either directly applied to land, or solubilized and phosphorus recovered as a mineral product. Direct application is effective, but the product is bulky and carries contaminant risks that need to be managed. Phosphorus release can be achieved using either thermochemical or biochemical methods, while recovery is generally by precipitation as struvite. We conclude that while EBPR technology is mature, the subsequent phosphorus release and recovery technologies need additional development.

  14. Assessing Long Term Impact of Phosphorus Fertilization on Phosphorus Loadings Using AnnAGNPS

    EPA Science Inventory

    High phosphorus (P) loss from agricultural fields has been an environmental concern because of potential water quality problems in streams and lakes. To better understand the process of P loss and evaluate the different phosphorus fertilization rates on phosphorus losses, the US...

  15. [Kinetic simulation of enhanced biological phosphorus removal with fermentation broth as carbon source].

    PubMed

    Zhang, Chao; Chen, Yin-Guang

    2013-07-01

    As a high-quality carbon source, fermentation broth could promote the phosphorus removal efficiency in enhanced biological phosphorus removal (EBPR). The transformation of substrates in EBPR fed with fermentation broth was well simulated using the modified activated sludge model No. 2 (ASM2) based on the carbon source metabolism. When fermentation broth was used as the sole carbon source, it was found that heterotrophic bacteria acted as a promoter rather than a competitor to the phosphorus accumulating organisms (PAO). When fermentation broth was used as a supplementary carbon source of real municipal wastewater, the wastewater composition was optimized for PAO growth; and the PAO concentration, which was increased by 3.3 times compared to that in EBPR fed with solely real municipal wastewater, accounting for about 40% of the total biomass in the reactor.

  16. Phosphorus in Sintered Steels: Interaction of Phosphorus with Mo

    NASA Astrophysics Data System (ADS)

    Danninger, H.; Üregen, B.

    2016-10-01

    Phosphorus as an alloy element is quite common in powder metallurgy, the contents industrially used being markedly higher than those present in wrought steels. However, embrittlement effects are reported also for sintered steels, in part depending on the alloy elements present. In this study, the influence of phosphorus addition on the mechanical properties of PM steels alloyed with Mo, as the most common VI group element in sintered steels, was investigated. PM steels of the type Fe-x%Mo-0.7%Cy% P were manufactured with varying contents of Mo and P, respectively. It showed that P activates sintering also in these materials and enhances Mo homogenization, but there is in fact a risk of embrittlement in these steels that however strongly depends on the combination of Mo and P in the materials: If a critical level is exceeded, embrittlement is observed. At low Mo contents, higher P concentrations are acceptable and vice versa, but e.g. in a material Fe-1.5%Mo-0.7%C-0.45%P, pronounced intergranular embrittlement occurs, further enhanced by sinter hardening effects. This undesirable phenomenon is more pronounced at higher sintering temperatures and in case of faster heating/cooling; it was observed both in materials prepared from mixed and prealloyed powders, respectively. This typical intergranular failure observed with embrittled specimens, in particular after impact testing, indicates the precipitation of brittle phases at the grain boundaries, apparently when exceeding the solubility product between Mo and P.

  17. [Dietary reference intakes of phosphorus].

    PubMed

    Uenishi, Kazuhiro

    2012-10-01

    Phosphorus (P) exists at the all organs and plays important physiological roles in the body. A wide range of food contains P, which is absorbed at a higher level (60-70%) and its insufficiency and deficiency are rarely found. P is used as food additives in many processed food, where risk of overconsumption could be an issue. P has less evidence in terms of nutrition. P has the adequate intake and the tolerable upper intake level, for risk reduction of health disorders associated with excess intake, at the Dietary Reference Intakes for Japanese (2010 edition).

  18. Sedimentary phosphorus cycling and a phosphorus mass balance for the Green Bay (Lake Michigan) ecosystem

    USGS Publications Warehouse

    Klump, J.V.; Edgington, D. N.; Sager, P.E.; Robertson, D.M.

    2011-01-01

    The tributaries of Green Bay have long been recognized as major sources of phosphorus in the Lake Michigan basin. The status of Green Bay as a sink or source of phosphorus for Lake Michigan proper has been less well defined. The bay receives nearly 70% of its annual load of phosphorus ( 700 metric tons (t) · year-1) from a single source: the Fox River. Most of this phosphorus is deposited in sediments accumulating at rates that reach 160 mg · cm-2 · year-1 with an average of 20 mg · cm-2 · year-1. The phosphorus content of these sediments varies from <5 to >70 µmol · g-1. Deposition is highly focused, with ~70% of the total sediment accumulation and at least 80% of the phosphorus burial occurring within 20% of the surface area of the bay. Diagenetic and stoichiometric models of phosphorus cycling imply that >80% of the phosphorus deposited is permanently buried. External phosphorus loading to the bay is combined with sediment fluxes of phophorus to arrive at a simple phosphorus budget. Green Bay acts as an efficient nutrient trap, with the sediments retaining an estimated 70-90% of the external phosphorus inputs before flowing into Lake Michigan.

  19. Phosphorus removal in an enhanced biological phosphorus removal process: roles of extracellular polymeric substances.

    PubMed

    Zhang, Hai-Ling; Fang, Wei; Wang, Yong-Peng; Sheng, Guo-Ping; Zeng, Raymond J; Li, Wen-Wei; Yu, Han-Qing

    2013-10-15

    Phosphorus-accumulating organisms are considered to be the key microorganisms in the enhanced biological phosphorus removal (EBPR) process. A large amount of phosphorus is found in the extracellular polymeric substances (EPS) matrix of these microorganisms. However, the roles of EPS in phosphorus removal have not been fully understood. In this study, the phosphorus in the EBPR sludge was fractionated and further analyzed using quantitative (31)P nuclear magnetic resonance spectroscopy. The amounts and forms of phosphorus in EPS as well as their changes in an anaerobic-aerobic process were also investigated. EPS could act as a reservoir for phosphorus in the anaerobic-aerobic process. About 5-9% of phosphorus in sludge was reserved in the EPS at the end of the aerobic phase and might further contribute to the phosphorus removal. The chain length of the intracellular long-chain polyphosphate (polyP) decreased in the anaerobic phase and then recovered under aerobic conditions. However, the polyP in the EPS had a much shorter chain length than the intracellular polyP in the whole cycle. The migration and transformation of various forms of phosphorus among microbial cells, EPS, and bulk liquid were also explored. On the basis of these results, a model with a consideration of the roles of EPS was proposed, which is beneficial to elucidate the mechanism of phosphorus removal in the EBPR system.

  20. Sustainable use of phosphorus: a finite resource.

    PubMed

    Scholz, Roland W; Ulrich, Andrea E; Eilittä, Marjatta; Roy, Amit

    2013-09-01

    Phosphorus is an essential element of life and of the modern agricultural system. Today, science, policy, agro-industry and other stakeholder groups are increasingly concerned about the sustainable use of this resource, given the dissipative nature of phosphorus and difficulties in assessing, evaluating, and coping with phosphorus pollution in aquatic and terrestrial systems. We argue that predictions about a forthcoming peak, followed by a quick reduction (i.e., physical phosphate rock scarcity) are unreasoned and stress that access to phosphorus (economic scarcity) is already, and may increasingly become critical, in particular for smallholders farmers in different parts of the world. The paper elaborates on the design, development, goals and cutting-edge contributions of a global transdisciplinary process (i.e. mutual learning between science and society including multiple stakeholders) on the understanding of potential contributions and risks related to the current mode of using phosphorus on multiple scales (Global TraPs). While taking a global and comprehensive view on the whole phosphorus-supply chain, Global TraPs organizes and integrates multiple transdisciplinary case studies to better answer questions which inform sustainable future phosphorus use. Its major goals are to contribute to four issues central to sustainable resource management: i) long-term management of biogeochemical cycles, in particular the challenge of closing the phosphorus cycle, ii) achieving food security, iii) avoiding environmental pollution and iv) sustainability learning on a global level by transdisciplinary processes.

  1. Phosphorus Moieties Make Polymers Less Flammable

    NASA Technical Reports Server (NTRS)

    Kourtides, D. A.; Mikroyannidis, J. A.

    1992-01-01

    Phosphorus incorporated into epoxies and polyamides via curing agent. According to report, use of 1-(di(2-chloroethoxyphosphinyl)methyl)-2,4- and -2,6-diaminobenzene (DCEPD) as curing agent for epoxies and polyamides makes these polymers more fire-retardant than corresponding polymers made with standard curing agents not containing phosphorus.

  2. Sources of phosphorus to the Carson River upstream from Lahontan Reservoir, Nevada and California, Water Years 2001-02

    USGS Publications Warehouse

    Alvarez, Nancy L.; Seiler, Ralph L.

    2004-01-01

    -sediment concentrations are high. Downstream from Carson Valley, almost all samples exceed the water-quality standard, with the greatest concentrations observed during spring and summer months. Estimated annual total-phosphorus loads ranged from 1.33 tons at the West Fork Carson River at Woodfords to 43.41 tons at the Carson River near Carson City during water years 2001-02. Loads are greatest during spring runoff, followed by fall and winter, and least during the summer, which corresponds to the amount of streamflow in the Carson River. The estimated average annual phosphorus load entering Carson Valley was 21.9 tons; whereas, the estimated average annual phosphorus load leaving Carson Valley was 37.8 tons, for an annual gain in load across Carson Valley of 15.9 tons. Thus, about 58 percent of the total-phosphorus load leaving Carson Valley on an annual basis could be attributed to headwater reaches upstream from Carson Valley. During spring and summer (April 1-September 30) an average of 85 percent of the total-phosphorus load leaving Carson Valley could be attributed to headwater reaches. During fall and winter (October 1-March 31) only 17 percent of the phosphorus load leaving Carson Valley could be attributed to headwater reaches. The composition of the phosphorus changes during summer from particulate phosphorus entering Carson Valley to dissolved orthophosphate leaving Carson Valley. Particulate phosphorus entering Carson Valley could be settling out when water is applied to fields and be replaced by dissolved orthophosphate from other sources. Alternatively, the particulate phosphorus could be converted to dissolved orthophosphate as it travels across Carson Valley. Data collected during the study are not sufficient to distinguish between the two possibilities. Eagle Valley and Dayton-Churchill Valleys may act as sinks for phosphorus. On an annual basis, during water years 2001-02, about 90 percent of the phosphorus entering Eagle Valley left the

  3. Measurement of spin-flip probabilities for ultracold neutrons interacting with nickel phosphorus coated surfaces

    SciTech Connect

    Tang, Zhaowen; Adamek, Evan Robert; Brandt, Aaron; Callahan, Nathan Brannan; Clayton, Steven M.; Currie, Scott Allister; Ito, Takeyasu M.; Makela, Mark F.; Masuda, Yasuhiro; Morris, Christopher L.; Pattie, Robert Wayne; Ramsey, John Clinton; Salvat, Daniel J.; Saunders, Alexander; Young, Albert R.

    2016-04-26

    In this paper, we report a measurement of the spin-flip probabilities for ultracold neutrons interacting with surfaces coated with nickel phosphorus. For 50 μm thick nickel phosphorus coated on stainless steel, the spin-flip probability per bounce was found to be βNiP on SS = (3.3 +1.8, -5.6) X 10-6. For 50 μm thick nickel phosphorus coated on aluminum, the spin-flip probability per bounce was found to be βNiP on Al = (3.6 +2.1, -5.9) X 10-6. For the copper guide used as reference, the spin flip probability per bounce was found to be βCu = (6.7 + 5.0, -2.5) X 10-6. The results on the nickel phosphorus-coated surfaces may be interpreted as upper limits, yielding βNiP on SS < 6.2 X 10-6 (90% C.L.) and βNiP on Al < 7.0 X 10-6 (90% C.L.) for 50 μm thick nickel phosphorus coated on stainless steel and 50 μm thick nickel phosphorus coated on aluminum, respectively. Finally, nickel phosphorus coated stainless steel or aluminum provides a solution when low-cost, mechanically robust, and non-depolarizing UCN guides with a high Fermi potential are needed.

  4. Availability of phosphorus from selected inorganic phosphate to juvenile abalone, Haliotis discus hannai ino.

    NASA Astrophysics Data System (ADS)

    Bei-Ping, Tan; Kang-Sen, Mai; Wei, Xu

    2002-06-01

    The availability of phosphorus to juvenile abalone, Haliotis discus hannai from primary, secondary and tertiary calcium phosphate, primary sodium or potassium phosphate separately or in combination was determined in a 120-day feeding trial. Seven semi-purified diets were formulated to contain relatively constant dietary phosphorus, ranging from 0.78%-0.82%. The concentrations of dietary phosphorus were presumed to be slightly below the requirement for abalone. A brown alga, Laminaria japonica, was used as a control diet. Abalone juveniles of silimar size (average weight 1.18 g; average shell length 18.74 mm) were distributed in a single-pass, flow-through system using a completely randomized design with eight treatments and three replicates each treatment. The survival ranged from 71.1% to 81.1%, and was not significantly (P>0.05) related to dietary treatment. However, the weight gain rate (41.72%-65.02%), daily increment in shell length (36.87-55.07 μm) and muscle RNA-DNA ratio (3.44-4.69) were significantly (P<0.05) affected by dietary treatment. Soft body alkaline phosphatase activity (10.9-19.8 U/g wet tissue) and carcass levels of lipid (7.71%-9.33%) and protein (46.68%-49.35%) were significantly (P<0.05) responsive to available phosphorus of the diets. Dietary treatment had significant effect (P<0.05) on concentrations of phosphorus in the whole body (WB) and soft body (SB). Apparent digestibility coefficients (45%-97%) of phosphorus were also significantly (P<0.05) different between dietary treatments. The results indicated that among these inorganic compounds, primary calcium, potassium and sodium phosphates separately or in combination could be utilized effectively by juvenile abalone as dietary phosphorus sources (availability ranging from 87%-97%). However, secondary and tertiary calcium phosphates were found to be low in availability, the values being 45% and 77%, repectively.

  5. Spectrophotometric determination of phosphorus acid

    SciTech Connect

    Domin, A.V.; Domina, N.G.; Zakharov, Yu.A.; Shechkov, G.T.

    1987-03-01

    A number of procedures have been proposed to determine phosphorus acid and its salts, the phosphites, in the presence of hypophosphorus acid and its salts, the hypophosphites. Among these procedures, iodometric back-titration has produced the most reliable results. In this paper, the authors propose an improved iodometric determination of phosphorus acid that enables the sensitivity to be increased by at least two orders of magnitude. The essence of this improvement is that excess iodine that did not react with phosphite ion is determined not volumetrically but spectrophotometrically. To eliminate the effect of iodine ion that is liberated when iodine reacts with phosphite ion on the optical density of the solution, a 200-fold excess of potassium iodide is added before the photometric measurement. The working iodine solution is prepared by diluting 10 m of 0.025 N iodine titrant and 50 ml of phosphate buffer, pH 6.7-7.2, to 1 liter with distilled water in a coulometric flask. To construct the calibration curve, 5, 10, 15, 20, and 25 ml, respectively of working iodine solution, and 10 ml of 2% aqueous potassium iodide are placed into five 100-ml volumetric flasks, and the solutions are made up to volume with water. After 10 min the photometric measurements are carried out at 380 nm using curvets and the reference solution is obtained by diluting 10 ml of 2% aqueous potassium iodide to 100 ml with distilled water.

  6. Phosphorus dynamics in Delavan Lake Inlet, southeastern Wisconsin, 1994

    USGS Publications Warehouse

    Robertson, D.M.; Field, S.J.; Elder, J.F.; Goddard, G.L.; James, W.F.

    1996-01-01

    The detailed phosphorus budget indicated that the increase in phosphorus concentrations was caused primarily by elevated pH resulting from increased photosynthetic activity of the macrophytes and a high release of phosphorus from the sediments. The release of phosphorus from the sediments was the largest source of phosphorus to the inlet in the spring and summer of 1994 and in other years of low to near normal runoff; however, in years of high runoff, phosphorus input from the inlet's drainage basin was the largest source of phosphorus. A less-detailed phosphorus budget constructed for the period from February 1993 to September 1994 demonstrated that, over the entire year, runoff from the drainage basin was the dominant source in the phosphorus budget. During April-September 1994, the input of phosphorus from the inlet may especially affect the summer productivity in Delavan Lake because almost 80 percent of the phosphorus loading during this time was in the form of dissolved orthophosphate.

  7. Phosphorus Regulation in Chronic Kidney Disease

    PubMed Central

    Suki, Wadi N.; Moore, Linda W.

    2016-01-01

    Serum phosphorus levels stay relatively constant through the influence of multiple factors—such as parathyroid hormone, fibroblast growth factor 23, and vitamin D—on the kidney, bone, and digestive system. Whereas normal serum phosphorus ranges between 3 mg/dL to 4.5 mg/dL, large cross-sectional studies have shown that even people with normal kidney function are sometimes found to have levels ranging between 1.6 mg/dL and 6.2 mg/dL. While this may partially be due to diet and the factors mentioned above, total understanding of these atypical ranges of serum phosphorus remains uncertain. Risks for bone disease are high in people aged 50 and older, and this group comprises a large proportion of people who also have chronic kidney disease. Consuming diets low in calcium and high in phosphorus, especially foods with phosphate additives, further exacerbates bone turnover. Existing bone disease increases the risk for high serum phosphorus, and higher serum phosphorus has been associated with increased adverse events and cardiovascular-related mortality both in people with chronic kidney disease and in those with no evidence of disease. Once kidney function has deteriorated to end-stage disease (Stage 5), maintaining normal serum phosphorus requires dietary restrictions, phosphate-binding medications, and dialysis. Even so, normal serum phosphorus remains elusive in many patients with Stage 5 kidney disease, and researchers are testing novel targets that may inhibit intestinal transport of phosphorus to achieve better phosphate control. Protecting and monitoring bone health should also aid in controlling serum phosphorus as kidney disease advances. PMID:28298956

  8. Phosphorus Regulation in Chronic Kidney Disease.

    PubMed

    Suki, Wadi N; Moore, Linda W

    2016-01-01

    Serum phosphorus levels stay relatively constant through the influence of multiple factors-such as parathyroid hormone, fibroblast growth factor 23, and vitamin D-on the kidney, bone, and digestive system. Whereas normal serum phosphorus ranges between 3 mg/dL to 4.5 mg/dL, large cross-sectional studies have shown that even people with normal kidney function are sometimes found to have levels ranging between 1.6 mg/dL and 6.2 mg/dL. While this may partially be due to diet and the factors mentioned above, total understanding of these atypical ranges of serum phosphorus remains uncertain. Risks for bone disease are high in people aged 50 and older, and this group comprises a large proportion of people who also have chronic kidney disease. Consuming diets low in calcium and high in phosphorus, especially foods with phosphate additives, further exacerbates bone turnover. Existing bone disease increases the risk for high serum phosphorus, and higher serum phosphorus has been associated with increased adverse events and cardiovascular-related mortality both in people with chronic kidney disease and in those with no evidence of disease. Once kidney function has deteriorated to end-stage disease (Stage 5), maintaining normal serum phosphorus requires dietary restrictions, phosphate-binding medications, and dialysis. Even so, normal serum phosphorus remains elusive in many patients with Stage 5 kidney disease, and researchers are testing novel targets that may inhibit intestinal transport of phosphorus to achieve better phosphate control. Protecting and monitoring bone health should also aid in controlling serum phosphorus as kidney disease advances.

  9. Bronx River bed sediments phosphorus pool and phosphorus compound identification

    NASA Astrophysics Data System (ADS)

    Wang, J.; Pant, H. K.

    2008-12-01

    Phosphorus (P) transport in the Bronx River degraded water quality, decreased oxygen levels, and resulted in bioaccumulation in sediment potentially resulting in eutrophication, algal blooms and oxygen depletion under certain temperature and pH conditions. The anthropogenic P sources are storm water runoff, raw sewage discharge, fertilizer application in lawn, golf course and New York Botanical Garden; manure from the Bronx zoo; combined sewoverflows (CSO's) from parkway and Hunts Point sewage plant; pollutants from East River. This research was conducted in the urban river system in New York City area, in order to control P source, figure out P transport temporal and spatial variations and the impact on water quality; aimed to regulate P application, sharing data with Bronx River Alliance, EPA, DEP and DEC. The sediment characteristics influence the distribution and bioavailbility of P in the Bronx River. The P sequential extraction gave the quantitative analysis of the P pool, quantifying the inorganic and organic P from the sediments. There were different P pool patterns at the 15 sites, and the substantial amount of inorganic P pool indicated that a large amount P is bioavailable. The 31P- NMR (Nuclear Magnetic Resonance Spectroscopy) technology had been used to identify P species in the 15 sites of the Bronx River, which gave a qualitative analysis on phosphorus transport in the river. The P compounds in the Bronx River bed sediments are mostly glycerophophate (GlyP), nucleoside monophosphates (NMP), polynucleotides (PolyN), and few sites showed the small amount of glucose-6-phosphate (G6P), glycerophosphoethanoamine (GPEA), phosphoenopyruvates (PEP), and inosine monophosphate (IMP). The land use spatial and temporal variations influence local water P levels, P distributions, and P compositions.

  10. Selenium-Doped Black Phosphorus for High-Responsivity 2D Photodetectors.

    PubMed

    Xu, Yijun; Yuan, Jian; Fei, Linfeng; Wang, Xinliang; Bao, Qiaoliang; Wang, Yu; Zhang, Kai; Zhang, Yuegang

    2016-09-01

    Se-doped black phosphorus (BP) crystal, in centimeter scale, is synthesized by a scalable gas-phase growth method under mild conditions. The Se-doped BP exhibits high quality with excellent electrical properties. The Se dope induces over 20-fold enhancement of responsivity (R) for BP-based 2D photodetectors, resulting in a high R and external quantum efficiency of 15.33 A W(-1) and 2993%, respectively.

  11. 21 CFR 862.1580 - Phosphorus (inorganic) test system.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Phosphorus (inorganic) test system. 862.1580... Systems § 862.1580 Phosphorus (inorganic) test system. (a) Identification. A phosphorus (inorganic) test system is a device intended to measure inorganic phosphorus in serum, plasma, and urine. Measurements...

  12. 49 CFR 173.188 - White or yellow phosphorus.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 49 Transportation 2 2011-10-01 2011-10-01 false White or yellow phosphorus. 173.188 Section 173... Class 7 § 173.188 White or yellow phosphorus. Phosphorus, white or yellow, when offered for... pound) of phosphorus with screw-top closures; or (2) Steel drums (1A1) not over 250 L (66...

  13. 21 CFR 862.1580 - Phosphorus (inorganic) test system.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Phosphorus (inorganic) test system. 862.1580... Systems § 862.1580 Phosphorus (inorganic) test system. (a) Identification. A phosphorus (inorganic) test system is a device intended to measure inorganic phosphorus in serum, plasma, and urine. Measurements...

  14. 21 CFR 862.1580 - Phosphorus (inorganic) test system.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Phosphorus (inorganic) test system. 862.1580... Systems § 862.1580 Phosphorus (inorganic) test system. (a) Identification. A phosphorus (inorganic) test system is a device intended to measure inorganic phosphorus in serum, plasma, and urine. Measurements...

  15. 49 CFR 173.188 - White or yellow phosphorus.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 49 Transportation 2 2013-10-01 2013-10-01 false White or yellow phosphorus. 173.188 Section 173... Class 7 § 173.188 White or yellow phosphorus. Phosphorus, white or yellow, when offered for...) Inner water-tight metal cans containing not over 0.5 kg (1 pound) of phosphorus with screw-top...

  16. 49 CFR 173.188 - White or yellow phosphorus.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 49 Transportation 2 2012-10-01 2012-10-01 false White or yellow phosphorus. 173.188 Section 173... Class 7 § 173.188 White or yellow phosphorus. Phosphorus, white or yellow, when offered for... pound) of phosphorus with screw-top closures; or (2) Steel drums (1A1) not over 250 L (66...

  17. 21 CFR 862.1580 - Phosphorus (inorganic) test system.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Phosphorus (inorganic) test system. 862.1580... Systems § 862.1580 Phosphorus (inorganic) test system. (a) Identification. A phosphorus (inorganic) test system is a device intended to measure inorganic phosphorus in serum, plasma, and urine. Measurements...

  18. 49 CFR 173.188 - White or yellow phosphorus.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 49 Transportation 2 2014-10-01 2014-10-01 false White or yellow phosphorus. 173.188 Section 173... Class 7 § 173.188 White or yellow phosphorus. Phosphorus, white or yellow, when offered for...) Inner water-tight metal cans containing not over 0.5 kg (1 pound) of phosphorus with screw-top...

  19. 21 CFR 862.1580 - Phosphorus (inorganic) test system.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Phosphorus (inorganic) test system. 862.1580... Systems § 862.1580 Phosphorus (inorganic) test system. (a) Identification. A phosphorus (inorganic) test system is a device intended to measure inorganic phosphorus in serum, plasma, and urine. Measurements...

  20. Phosphorus Compounds in Translocating Phloem

    PubMed Central

    Bieleski, R. L.

    1969-01-01

    Phosphate-32P was introduced into a turnip leaf, and 3 hr later, the vascular bundles were stripped from the petiole and their phosphate ester pattern was studied. The pattern did not alter along their length and was like that of other tissues. Pumpkin leaves were painted with phosphate-32P; and later, the petioles were cut, the sieve tube exudates were collected and their phosphate ester patterns were studied. Exudates collected after 10 min had a high proportion of their 32P present in Pi and nucleoside triphosphates, while exudates collected after long translocation times (4-22 hr) had a lower proportion in these, and a higher proportion in hexose monophosphates and UDP glucose. In general, the ester patterns were like those of other tissues. The results indicate that sieve tubes are metabolically active, and that Pi is the primary form in which phosphorus moves in the phloem. Images PMID:16657091

  1. Black phosphorus for future devices

    NASA Astrophysics Data System (ADS)

    Meunier, Vincent

    Black phosphorus (or ``phosphorene'' at the monolayer limit) has attracted significant attention as an emerging 2D material due to its unique properties compared with well-explored graphene and transition metal dichalcogenides such as MoS2 and WSe2. In bulk form, this monoelemental layered structure is a highly anisotropic semiconductor with a bandgap of 0.3 eV which presents marked distinctions in optical and electronic properties depending on crystalline directions. In addition, black phosphorus possesses a high carrier mobility, making it promising for applications in high frequency electronics. A large number of characterization studies have been performed to understand the intrinsic properties of BP. Here I wil present a number of investigations where first-principles modelling was combined with scanning tunneling microscopy (STM), Raman spectroscopy, and transmission electron microscopy (TEM) to assist in the design of phosphorene-based devices. . I will provide an overview of these studies and position them in the context of the very active research devoted to this material. In particular, I will show how low-frequency Raman spectra provide a unique handle on the physics of multilayered systems and how BP's structural anisotropy weaves its way to its unusual polarization dependent Raman signature. Finally, I will show recent progress where nanopores, nanobridges, and nanogaps have been sculpted directly from a few-layer BP sample using a TEM, and indicate the potential use of these results on the creation of phosphorene-based nanoelectronics. I wil conclude this talk with a critical look at the issues of phosphorene stability under ambient conditions. Collaborators on this research include: Liangbo Liang, Bobby G. Sumpter, Alex Puretzky, Minghu Pan, (Oak Ridge National Laboratory), Marija Drndic (University of Pennsylvania), Mildred Dresselhaus, Xi-Ling, Shengxi Huang (Massachusetts Institute of Technology).

  2. Syntheses of Novel Nitrogen and Phosphorus Heterocycles.

    DTIC Science & Technology

    2014-09-26

    Chemicals and Materials Research Department, Ultrasystems, Inc. under Contract F49620-82-C-0021, "Syntheses of Novel Nitrogen and Phosphorus Hetero- * cycles ...ADl-NISS9 449 SYNTHESES OF NOVEL NITROGEN AND PHOSPHORUS HETEROCYCLES In (U) ULTRRSYSTENS INC IRVINE CR K L PRCIOREK ET RL. 26 RPR 85 SN-209?-F RFOSR...MICROCOPY RESOLUTION TEST CHART NATIONAL BURE&U OF STAOACS-963-A SR-I"I" s, -Ŕ 500 4 SYNTHESES OF NOVEL NITROGEN AND PHOSPHORUS HETEROCYCLES Contract No

  3. The phosphorus mass balance: identifying 'hotspots' in the food system as a roadmap to phosphorus security.

    PubMed

    Cordell, Dana; Neset, Tina-Simone Schmid; Prior, Timothy

    2012-12-01

    Phosphorus is a critical element on which all life depends. Global crop production depends on fertilisers derived from phosphate rock to maintain high crop yields. Population increase, changing dietary preferences towards more meat and dairy products, and the continuing intensification of global agriculture supporting this expansion will place increasing pressure on an uncertain, but finite supply of high-quality phosphate rock. Growing concern about phosphorus scarcity and security, coupled with the environmental impact of phosphorus pollution, has encouraged an increase in research exploring how phosphorus is used and lost in the food system-from mine to field to fork. An assessment of recent phosphorus flows analyses at different geographical scales identifies the key phosphorus 'hotspots', for example within the mining, agriculture or food processing sectors, where efficiency and reuse can be substantially improved through biotechnological approaches coupled with policy changes.

  4. Towards global phosphorus security: a systems framework for phosphorus recovery and reuse options.

    PubMed

    Cordell, D; Rosemarin, A; Schröder, J J; Smit, A L

    2011-08-01

    Human intervention in the global phosphorus cycle has mobilised nearly half a billion tonnes of the element from phosphate rock into the hydrosphere over the past half century. The resultant water pollution concerns have been the main driver for sustainable phosphorus use (including phosphorus recovery). However the emerging global challenge of phosphorus scarcity with serious implications for future food security, means phosphorus will also need to be recovered for productive reuse as a fertilizer in food production to replace increasingly scarce and more expensive phosphate rock. Through an integrated and systems framework, this paper examines the full spectrum of sustainable phosphorus recovery and reuse options (from small-scale low-cost to large-scale high-tech), facilitates integrated decision-making and identifies future opportunities and challenges for achieving global phosphorus security. Case studies are provided rather than focusing on a specific technology or process. There is no single solution to achieving a phosphorus-secure future: in addition to increasing phosphorus use efficiency, phosphorus will need to be recovered and reused from all current waste streams throughout the food production and consumption system (from human and animal excreta to food and crop wastes). There is a need for new sustainable policies, partnerships and strategic frameworks to develop renewable phosphorus fertilizer systems for farmers. Further research is also required to determine the most sustainable means in a given context for recovering phosphorus from waste streams and converting the final products into effective fertilizers, accounting for life cycle costs, resource and energy consumption, availability, farmer accessibility and pollution.

  5. Phytoplankton in the ocean use non-phosphorus lipids in response to phosphorus scarcity.

    PubMed

    Van Mooy, Benjamin A S; Fredricks, Helen F; Pedler, Byron E; Dyhrman, Sonya T; Karl, David M; Koblízek, Michal; Lomas, Michael W; Mincer, Tracy J; Moore, Lisa R; Moutin, Thierry; Rappé, Michael S; Webb, Eric A

    2009-03-05

    Phosphorus is an obligate requirement for the growth of all organisms; major biochemical reservoirs of phosphorus in marine plankton include nucleic acids and phospholipids. However, eukaryotic phytoplankton and cyanobacteria (that is, 'phytoplankton' collectively) have the ability to decrease their cellular phosphorus content when phosphorus in their environment is scarce. The biochemical mechanisms that allow phytoplankton to limit their phosphorus demand and still maintain growth are largely unknown. Here we show that phytoplankton, in regions of oligotrophic ocean where phosphate is scarce, reduce their cellular phosphorus requirements by substituting non-phosphorus membrane lipids for phospholipids. In the Sargasso Sea, where phosphate concentrations were less than 10 nmol l-1, we found that only 1.3 +/- 0.6% of phosphate uptake was used for phospholipid synthesis; in contrast, in the South Pacific subtropical gyre, where phosphate was greater than 100 nmol l-1, plankton used 17 6% (ref. 6). Examination of the planktonic membrane lipids at these two locations showed that classes of sulphur- and nitrogen-containing membrane lipids, which are devoid of phosphorus, were more abundant in the Sargasso Sea than in the South Pacific. Furthermore, these non-phosphorus, 'substitute lipids' were dominant in phosphorus-limited cultures of all of the phytoplankton species we examined. In contrast, the marine heterotrophic bacteria we examined contained no substitute lipids and only phospholipids. Thus heterotrophic bacteria, which compete with phytoplankton for nutrients in oligotrophic regions like the Sargasso Sea, appear to have a biochemical phosphorus requirement that phytoplankton avoid by using substitute lipids. Our results suggest that phospholipid substitutions are fundamental biochemical mechanisms that allow phytoplankton to maintain growth in the face of phosphorus limitation.

  6. ENZYME DEGRADATION OF CHIRAL ORGANIC PHOSPHORUS INSECTICIDES

    EPA Science Inventory

    Chiral organic phosphorus pesticides (OPs) are expected to be biologically degraded enantioselectively by endogenous enzymes. Various chiral Ops were treated with the enzyme phosphotriesterase (PTE) obtained from partially purified extracts of Escherichia coli strain DH-5- carryi...

  7. Edge plasmons in monolayer black phosphorus

    NASA Astrophysics Data System (ADS)

    Bao, Zhi-Wei; Wu, Hong-Wei; Zhou, Yu

    2016-12-01

    In this paper, we numerically investigate the edge plasmons in monolayer black phosphorus. It is found that the complex effective indexes of these modes depend on the molecular configuration of the edge. We have calculated the ratio of the real over the imaginary part of the mode effective index, and the results indicate that such edge modes indeed possess outstanding propagation performances in the mid-infrared. In the case of black phosphorus nanoribbon, it seems that only the anti-symmetric modes have low losses, and may be of use in applications. Compared with those at the edge of monolayer black phosphorus, the propagation performances can be further enhanced due to the mode coupling between the two edges. In the end, the effects of substrates are discussed. Our study shows that monolayer black phosphorus may be regarded as a promising candidate for plasmonic applications in the mid-infrared.

  8. Phosphorus in antique iron music wire.

    PubMed

    Goodway, M

    1987-05-22

    Harpsichords and other wire-strung musical instruments were made with longer strings about the beginning of the 17th century. This change required stronger music wire. Although these changes coincided with the introduction of the first mass-produced steel (iron alloyed with carbon), carbon was not found in samples of antique iron harpsichord wire. The wire contained an amount of phosphorus sufficient to have impeded its conversion to steel, and may have been drawn from iron rejected for this purpose. The method used to select pig iron for wire drawing ensured the highest possible phosphorus content at a time when its presence in iron was unsuspected. Phosphorus as an alloying element has had the reputation for making steel brittle when worked cold. Nevertheless, in replicating the antique wire, it was found that lowcarbon iron that contained 0.16 percent phosphorus was easily drawn to appropriate gauges and strengths for restringing antique harpsichords.

  9. Innovative methods in soil phosphorus research: A review

    PubMed Central

    Kruse, Jens; Abraham, Marion; Amelung, Wulf; Baum, Christel; Bol, Roland; Kühn, Oliver; Lewandowski, Hans; Niederberger, Jörg; Oelmann, Yvonne; Rüger, Christopher; Santner, Jakob; Siebers, Meike; Siebers, Nina; Spohn, Marie; Vestergren, Johan; Vogts, Angela; Leinweber, Peter

    2015-01-01

    Phosphorus (P) is an indispensable element for all life on Earth and, during the past decade, concerns about the future of its global supply have stimulated much research on soil P and method development. This review provides an overview of advanced state-of-the-art methods currently used in soil P research. These involve bulk and spatially resolved spectroscopic and spectrometric P speciation methods (1 and 2D NMR, IR, Raman, Q-TOF MS/MS, high resolution-MS, NanoSIMS, XRF, XPS, (µ)XAS) as well as methods for assessing soil P reactions (sorption isotherms, quantum-chemical modeling, microbial biomass P, enzymes activity, DGT, 33P isotopic exchange, 18O isotope ratios). Required experimental set-ups and the potentials and limitations of individual methods present a guide for the selection of most suitable methods or combinations. PMID:26167132

  10. Phosphorus-based SAHA analogues as histone deacetylase inhibitors.

    PubMed

    Kapustin, Galina V; Fejér, György; Gronlund, Jennifer L; McCafferty, Dewey G; Seto, Edward; Etzkorn, Felicia A

    2003-08-21

    [structure: see text] Three analogues of suberoyl anilide hydroxamic acid (SAHA) with phosphorus metal-chelating functionalities were synthesized as inhibitors of histone deacetylases (HDACs). The compounds showed weak activity for HeLa nuclear extracts (IC(50) = 0.57-6.1 mM), HDAC8 (IC(50) = 0.28-0.41 mM), and histone-deacetylase-like protein (HDLP, IC(50) = 0.33-1.9 mM), suggesting that the transition state of HDAC is not analogous to zinc proteases. Antiproliferative activity against A2780 cancer cells (IC(50) = 0.11-0.12 mM), comparable to SAHA (0.15 mM), was observed.

  11. A survey of the phosphorus content of pastures and the serum inorganic phosphorus content of dairy cows.

    PubMed

    Betteridge, K

    1986-03-01

    Serum inorganic phosphorus (Pi) concentration of 20 cows in each of ten factory supply dairy herds was assessed at monthly or two-monthly intervals during the 198243 lactation. Pasture on offer was ranked low, medium or high and the phosphorus (P) content assessed monthly on all farms from the two paddocks to be grazed next in the rotation. The mean serum Pi concentration was high (1.98 mmol/l) prior to calving but fell to low levels at peak lactation (1.28 mmol/l) and again during the drought (1.28-1.38 mmol/l) in January, February and March. Individual cows had Pi levels as low as 0.32 mmol/l. Herds on Northern Yellow-brown Earths had higher Pi levels than herds predominantly on Brown Granular Loams (P<0.01). There were differences between cows within herds (P<0.01) and Pi levels declined with cow age (P<0.01). Pasture P content was above minimum requirements for lactating cows (0.33% DM; with ad lib. feeding) from July through October but below requirements in most pastures from December through April, when pasture availability also limited production. The P content in pasture was unrelated to either its grass or legume content, but was higher in pastures given a medium or high DM ranking (P<0.05). The possibility of increasing dairy production with P supplementation in spring is discussed.

  12. Influence of phosphorus sources and rates on soil pH, extractable phosphorus, and DTPA-extractable micronutrients

    SciTech Connect

    Al-Showk, A.M.; Westerman, R.L.; Weeks, D.L.

    1987-07-01

    Two soils (McLain sicl-fine, mixed, thermic, Pachic Argiustoll and Quinlan cl-loamy, mixed, thermic, shallow Typic Ustocrept) that differed in micronutrient content and chemical characteristics were collected from western Oklahoma. Soils were passed through a 2-mm screen and placed in plastic Petri dishes, and five P levels (0, 20, 40, 60, and 80 kg ha/sup -1/) were applied using monocalcium phosphate (MCP), monoammonium phosphate (MAP), and ammonium polyphosphate (APP); the soils were then mixed uniformly. Soils were moistened to approximately 0.33 MPa and incubated for 2 mo at room temperature. Application of P decreased soil pH in both soils, and MAP and APP had a greater effect than MCP, which was attributed to the nitrification of the added ammonium. Bray and Kurtz no. 1 P increased with P application in both soils. Monocalcium phosphate and MAP decreased DTPA-Fe, -Mn, and -Cu in McLain soil. However, high levels of P applied as APP increased DTPA-Fe, -Mn, and -Cu. Phosphorus application, regardless of source, had no effect on DTPA-Zn in McLain soil. Monocalcium phosphate and MAP decreased DTPA-Mn in the Quinlan soil; however; high levels of P applied as APP increased DTPA-Fe. Phosphorus application, regardless of source, had no effect on DTPA-Zn and -Cu in Quinlan soil.

  13. [Long-Term Inhibition of FNA on Aerobic Phosphate Uptake and Variation of Phosphorus Uptake Properties of the Sludge].

    PubMed

    Ma, Juan; Li, Lu; Yu, Xiao-jun; Sun, Lei-jun; Sun, Hong-wei; Chen, Yong-zhi

    2015-10-01

    An alternating anaerobic/oxic ( An/O) sequencing batch reactor (SBR) was employed to investigate the long-term inhibitory effect of free nitrous acid (FNA) on aerobic phosphorus uptake performance and variation of phosphorus uptake properties of the sludge by adding nitrite. The reactor was started up under the condition of 21-23 degrees C. The results showed that FNA had no impact on phosphate release and uptake capacities of the sludge. However, the specific phosphate release/uptake rates was found to be higher. As FNA concentration (measure by HNO2-N) was lower than 0.53 x 10(-3) mg x L(-1), phosphorus removal efficiency of the system was higher than 96.9%. When the FNA concentration was increased to 0.99 x 10(-3) mg x L(-1), 1.46 x 10(-3) mg x L(-1) and 1.94 x 10(-3) mg x L(-1), the phosphorus removal performance deteriorated rapidly. The phosphorus removal efficiency was recovered to 64.42%, 67.33% and 44.14% after 50, 12 and 30 days, respectively, which implied the deterioration of phosphorus removal performance caused by FNA inhibition could be recovered and long-term acclimation could shorten the recovery process. Notably, increasing nitrite consumption appeared during aerobic phase with the concentration of FNA below 1.46 x 10(-3) mg x L(-1). It was also observed that the phosphorus uptake properties of the sludge varied after long-term inhibition. Nitrate and nitrite type anoxic phosphorus uptake capacity was increased by 3.35 and 3.86 times, respectively, suggesting long-term dosing FNA may facilitate the denitrifying of polyphosphate in organisms utilizing nitrite as electron acceptor. Moreover, long-term acclimation favored sludge settling.

  14. Soil phosphorus constrains biodiversity across European grasslands.

    PubMed

    Ceulemans, Tobias; Stevens, Carly J; Duchateau, Luc; Jacquemyn, Hans; Gowing, David J G; Merckx, Roel; Wallace, Hilary; van Rooijen, Nils; Goethem, Thomas; Bobbink, Roland; Dorland, Edu; Gaudnik, Cassandre; Alard, Didier; Corcket, Emmanuel; Muller, Serge; Dise, Nancy B; Dupré, Cecilia; Diekmann, Martin; Honnay, Olivier

    2014-12-01

    Nutrient pollution presents a serious threat to biodiversity conservation. In terrestrial ecosystems, the deleterious effects of nitrogen pollution are increasingly understood and several mitigating environmental policies have been developed. Compared to nitrogen, the effects of increased phosphorus have received far less attention, although some studies have indicated that phosphorus pollution may be detrimental for biodiversity as well. On the basis of a dataset covering 501 grassland plots throughout Europe, we demonstrate that, independent of the level of atmospheric nitrogen deposition and soil acidity, plant species richness was consistently negatively related to soil phosphorus. We also identified thresholds in soil phosphorus above which biodiversity appears to remain at a constant low level. Our results indicate that nutrient management policies biased toward reducing nitrogen pollution will fail to preserve biodiversity. As soil phosphorus is known to be extremely persistent and we found no evidence for a critical threshold below which no environmental harm is expected, we suggest that agro-environmental schemes should include grasslands that are permanently free from phosphorus fertilization.

  15. 33 CFR 142.33 - Foot protection.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... for foot injury to occur shall wear footwear meeting the specifications of ANSI Z41, except when... 33 Navigation and Navigable Waters 2 2010-07-01 2010-07-01 false Foot protection. 142.33 Section... CONTINENTAL SHELF ACTIVITIES WORKPLACE SAFETY AND HEALTH Personal Protective Equipment § 142.33...

  16. 33 CFR 142.33 - Foot protection.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... for foot injury to occur shall wear footwear meeting the specifications of ANSI Z41, except when... 33 Navigation and Navigable Waters 2 2011-07-01 2011-07-01 false Foot protection. 142.33 Section... CONTINENTAL SHELF ACTIVITIES WORKPLACE SAFETY AND HEALTH Personal Protective Equipment § 142.33...

  17. 33 CFR 142.33 - Foot protection.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 33 Navigation and Navigable Waters 2 2014-07-01 2014-07-01 false Foot protection. 142.33 Section... CONTINENTAL SHELF ACTIVITIES WORKPLACE SAFETY AND HEALTH Personal Protective Equipment § 142.33 Foot... for foot injury to occur shall wear footwear meeting the specifications of ANSI Z41, except...

  18. 33 CFR 142.33 - Foot protection.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 33 Navigation and Navigable Waters 2 2012-07-01 2012-07-01 false Foot protection. 142.33 Section... CONTINENTAL SHELF ACTIVITIES WORKPLACE SAFETY AND HEALTH Personal Protective Equipment § 142.33 Foot... for foot injury to occur shall wear footwear meeting the specifications of ANSI Z41, except...

  19. 33 CFR 142.33 - Foot protection.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 33 Navigation and Navigable Waters 2 2013-07-01 2013-07-01 false Foot protection. 142.33 Section... CONTINENTAL SHELF ACTIVITIES WORKPLACE SAFETY AND HEALTH Personal Protective Equipment § 142.33 Foot... for foot injury to occur shall wear footwear meeting the specifications of ANSI Z41, except...

  20. Phosphorus removal and N₂O production in anaerobic/anoxic denitrifying phosphorus removal process: long-term impact of influent phosphorus concentration.

    PubMed

    Wang, Zhen; Meng, Yuan; Fan, Ting; Du, Yuneng; Tang, Jie; Fan, Shisuo

    2015-03-01

    This study was conducted to investigate the long-term impact of influent phosphorus concentration on denitrifying phosphorus removal and N2O production during denitrifying phosphorous removal process. The results showed that, denitrifying phosphate accumulating organisms (DPAOs) could become dominant populations quickly in anaerobic/anoxic SBR by providing optimum cultivating conditions, and the reactor performed well for denitrifying phosphorus removal. The influent phosphorus concentration significantly affected anaerobic poly-β-hydroxyalkanoates (PHA) synthesis, denitrifying phosphorus removal, and N2O production during the denitrifying phosphorus removal process. As the influent phosphorus concentration was more than 20 mg L(-1), the activity of DPAOs began to be inhibited due to the transformation of the available carbon source type. Meanwhile, N2O production was inhibited with the mitigation of anoxic NO2(-)-N accumulation. Adoption of a modified feeding could enhance denitrifying phosphorus removal and inhibit N2O production during denitrifying phosphorous removal processes.

  1. Phosphorus speciation by coupled HPLC-ICPMS: low level determination of reduced phosphorus in natural materials

    NASA Astrophysics Data System (ADS)

    Atlas, Zachary; Pasek, Matthew; Sampson, Jacqueline

    2015-04-01

    Phosphorus is a geologically important minor element in the Earth's crust commonly found as relatively insoluble apatite. This constraint causes phosphorus to be a key limiting nutrient in biologic processes. Despite this, phosphorus plays a direct role in the formation of DNA, RNA and other cellular materials. Recent works suggest that since reduced phosphorus is considerably more soluble than oxidized phosphorus that it was integrally involved in the development of life on the early Earth and may continue to play a role in biologic productivity to this day. This work examines a new method for quantification and identification of reduced phosphorus as well as applications to the speciation of organo-phosphates separated by coupled HPLC - ICP-MS. We show that reduced phosphorus species (P1+, P3+ and P5+) are cleanly separated in the HPLC and coupled with the ICPMS reaction cell, using oxygen as a reaction gas to effectively convert elemental P to P-O. Analysis at M/Z= 47 producing lower background and flatter baseline chromatography than analyses performed at M/Z = 31. Results suggest very low detection limits (0.05 μM) for P species analyzed as P-O. Additionally we show that this technique has potential to speciate at least 5 other forms of phosphorus compounds. We verified the efficacy of method on numerous materials including leached Archean rocks, suburban retention pond waters, blood and urine samples and most samples show small but detectible levels of reduced phosphorus and or organo-phaospates. This finding in nearly all substances analyzed supports the assumption that the redox processing of phosphorus has played a significant role throughout the history of the Earth and it's presence in the present environment is nearly ubiquitous with the reduced oxidation state phosphorus compounds, phosphite and hypophosphite, potentially acting as significant constituents in the anaerobic environment.

  2. Phosphorus K4 Crystal: A New Stable Allotrope

    NASA Astrophysics Data System (ADS)

    Liu, Jie; Zhang, Shunhong; Guo, Yaguang; Wang, Qian

    2016-11-01

    The intriguing properties of phosphorene motivate scientists to further explore the structures and properties of phosphorus materials. Here, we report a new allotrope named K4 phosphorus composed of three-coordinated phosphorus atoms in non-layered structure which is not only dynamically and mechanically stable, but also possesses thermal stability comparable to that of the orthorhombic black phosphorus (A17). Due to its unique configuration, K4 phosphorus exhibits exceptional properties: it possesses a band gap of 1.54 eV which is much larger than that of black phosphorus (0.30 eV), and it is stiffer than black phosphorus. The band gap of the newly predicted phase can be effectively tuned by appling hydrostastic pressure. In addition, K4 phosphorus exibits a good light absorption in visible and near ultraviolet region. These findings add additional features to the phosphorus family with new potential applications in nanoelectronics and nanomechanics.

  3. Phosphorus K4 Crystal: A New Stable Allotrope

    PubMed Central

    Liu, Jie; Zhang, Shunhong; Guo, Yaguang; Wang, Qian

    2016-01-01

    The intriguing properties of phosphorene motivate scientists to further explore the structures and properties of phosphorus materials. Here, we report a new allotrope named K4 phosphorus composed of three-coordinated phosphorus atoms in non-layered structure which is not only dynamically and mechanically stable, but also possesses thermal stability comparable to that of the orthorhombic black phosphorus (A17). Due to its unique configuration, K4 phosphorus exhibits exceptional properties: it possesses a band gap of 1.54 eV which is much larger than that of black phosphorus (0.30 eV), and it is stiffer than black phosphorus. The band gap of the newly predicted phase can be effectively tuned by appling hydrostastic pressure. In addition, K4 phosphorus exibits a good light absorption in visible and near ultraviolet region. These findings add additional features to the phosphorus family with new potential applications in nanoelectronics and nanomechanics. PMID:27857232

  4. The renaissance of black phosphorus

    NASA Astrophysics Data System (ADS)

    Ling, Xi; Wang, Han; Huang, Shengxi; Xia, Fengnian; Dresselhaus, Mildred S.

    2015-04-01

    One hundred years after its first successful synthesis in the bulk form in 1914, black phosphorus (black P) was recently rediscovered from the perspective of a 2D layered material, attracting tremendous interest from condensed matter physicists, chemists, semiconductor device engineers, and material scientists. Similar to graphite and transition metal dichalcogenides (TMDs), black P has a layered structure but with a unique puckered single-layer geometry. Because the direct electronic band gap of thin film black P can be varied from 0.3 eV to around 2 eV, depending on its film thickness, and because of its high carrier mobility and anisotropic in-plane properties, black P is promising for novel applications in nanoelectronics and nanophotonics different from graphene and TMDs. Black P as a nanomaterial has already attracted much attention from researchers within the past year. Here, we offer our opinions on this emerging material with the goal of motivating and inspiring fellow researchers in the 2D materials community and the broad readership of PNAS to discuss and contribute to this exciting new field. We also give our perspectives on future 2D and thin film black P research directions, aiming to assist researchers coming from a variety of disciplines who are desirous of working in this exciting research field.

  5. Assessing Phosphorus Loading in Wetlands

    NASA Astrophysics Data System (ADS)

    Pant, H. K.

    2011-12-01

    Hari K. Pant Lehman College of the City University of New York, Department of Environmental, Geographic and Geological Sciences, 250 Bedford Park Boulevard West, Bronx, NY 10468; hari.pant@lehman.cuny.edu Depending on ecosystem's resilience, hydro-climatic changes brought upon by global climate change may cause nonlinear and/or irreversible changes in phosphorus (P) dynamic, and instigate P enrichment in freshwater wetlands. Thus, the studies of the influence of expected global climate change and its impacts on P stability in wetlands are in critical need to help manage, or increase the resilience of freshwater wetland ecosystems against undesirable changes. The objectives of this study were to assess P sorption in sediments, and help to estimate potential internal loading of P to the water column from the sediments. Sediment samples were collected from freshwater wetlands that are located within Pelham Bay Park, Bronx, New York. Although P sorption maxima (Smax) of the sediments were high in general (up to 1667 mg kg-1), the equilibrium P concentrations (EPC0) were also fairly high (0.09 -0.24 mg L-1), indicating substantial amounts of P may remain available for biological uptake in the water columns. High percentages of hysteretic P (>96%), as indicated by P retained values (Pr), along with a significant correlation between Smax and oxalate-extractable Fe (r = 0.89), suggest that changes in sediment/water chemistry such as redox status/acidity could cause massive P release to the water columns.

  6. The renaissance of black phosphorus

    PubMed Central

    Ling, Xi; Wang, Han; Huang, Shengxi; Xia, Fengnian; Dresselhaus, Mildred S.

    2015-01-01

    One hundred years after its first successful synthesis in the bulk form in 1914, black phosphorus (black P) was recently rediscovered from the perspective of a 2D layered material, attracting tremendous interest from condensed matter physicists, chemists, semiconductor device engineers, and material scientists. Similar to graphite and transition metal dichalcogenides (TMDs), black P has a layered structure but with a unique puckered single-layer geometry. Because the direct electronic band gap of thin film black P can be varied from 0.3 eV to around 2 eV, depending on its film thickness, and because of its high carrier mobility and anisotropic in-plane properties, black P is promising for novel applications in nanoelectronics and nanophotonics different from graphene and TMDs. Black P as a nanomaterial has already attracted much attention from researchers within the past year. Here, we offer our opinions on this emerging material with the goal of motivating and inspiring fellow researchers in the 2D materials community and the broad readership of PNAS to discuss and contribute to this exciting new field. We also give our perspectives on future 2D and thin film black P research directions, aiming to assist researchers coming from a variety of disciplines who are desirous of working in this exciting research field. PMID:25820173

  7. Nitrogen, phosphorus, carbon and population.

    PubMed

    Gilland, Bernard

    2015-01-01

    Population growth makes food production increase necessary; economic growth increases demand for animal products and livestock feed. As further increase of the cropland area is ecologically undesirable, it is necessary to increase crop yields; this requires, inter alia, more nitrogen and phosphorus fertiliser despite the environmental problems which this will exacerbate. It is probable that a satisfactory food supply and an environmentally benign agriculture worldwide cannot be achieved without reducing population to approximately three billion. The reduction could be achieved by 2200 if the total fertility rate--currently 2.5--declined to 1.5 as a world average by 2050, and remained at that level until 2200, but the probability of such a global fertility trajectory is close to zero. It will also be necessary to replace fossil energy by nuclear and renewable energy in order to stabilise atmospheric carbon dioxide concentration, but the phase-out cannot be completed until the 22nd century, when the atmospheric concentration will be approximately 50% above the 2015 level of 400 ppm.

  8. Total Value of Phosphorus Recovery.

    PubMed

    Mayer, Brooke K; Baker, Lawrence A; Boyer, Treavor H; Drechsel, Pay; Gifford, Mac; Hanjra, Munir A; Parameswaran, Prathap; Stoltzfus, Jared; Westerhoff, Paul; Rittmann, Bruce E

    2016-07-05

    Phosphorus (P) is a critical, geographically concentrated, nonrenewable resource necessary to support global food production. In excess (e.g., due to runoff or wastewater discharges), P is also a primary cause of eutrophication. To reconcile the simultaneous shortage and overabundance of P, lost P flows must be recovered and reused, alongside improvements in P-use efficiency. While this motivation is increasingly being recognized, little P recovery is practiced today, as recovered P generally cannot compete with the relatively low cost of mined P. Therefore, P is often captured to prevent its release into the environment without beneficial recovery and reuse. However, additional incentives for P recovery emerge when accounting for the total value of P recovery. This article provides a comprehensive overview of the range of benefits of recovering P from waste streams, i.e., the total value of recovering P. This approach accounts for P products, as well as other assets that are associated with P and can be recovered in parallel, such as energy, nitrogen, metals and minerals, and water. Additionally, P recovery provides valuable services to society and the environment by protecting and improving environmental quality, enhancing efficiency of waste treatment facilities, and improving food security and social equity. The needs to make P recovery a reality are also discussed, including business models, bottlenecks, and policy and education strategies.

  9. Rapid and portable electrochemical quantification of phosphorus.

    PubMed

    Kolliopoulos, Athanasios V; Kampouris, Dimitrios K; Banks, Craig E

    2015-04-21

    Phosphorus is one of the key indicators of eutrophication levels in natural waters where it exists mainly as dissolved phosphorus. Various analytical protocols exist to provide an offsite analysis, and a point of site analysis is required. The current standard method recommended by the Environmental Protection Agency (EPA) for the detection of total phosphorus is colorimetric and based upon the color of a phosphomolybdate complex formed as a result of the reaction between orthophosphates and molybdates ions where ascorbic acid and antimony potassium tartrate are added and serve as reducing agents. Prior to the measurements, all forms of phosphorus are converted into orthophosphates via sample digestion (heating and acidifying). The work presented here details an electrochemical adaptation of this EPA recommended colorimetric approach for the measurement of dissolved phosphorus in water samples using screen-printed graphite macroelectrodes for the first time. This novel indirect electrochemical sensing protocol allows the determination of orthophosphates over the range from 0.5 to 20 μg L(-1) in ideal pH 1 solutions utilizing cyclic voltammetry with a limit of detection (3σ) found to correspond to 0.3 μg L(-1) of phosphorus. The reaction time and influence of foreign ions (potential interferents) upon this electroanalytical protocol was also investigated, where it was found that a reaction time of 5 min, which is essential in the standard colorimetric approach, is not required in the new proposed electrochemically adapted protocol. The proposed electrochemical method was independently validated through the quantification of orthophosphates and total dissolved phosphorus in polluted water samples (canal water samples) with ion chromatography and ICP-OES, respectively. This novel electrochemical protocol exhibits advantages over the established EPA recommended colorimetric determination for total phosphorus with lower detection limits and shorter experimental times

  10. Dietary phosphorus affects the growth of larval Manduca sexta.

    PubMed

    Perkins, Marc C; Woods, H Arthur; Harrison, Jon F; Elser, James J

    2004-03-01

    Although phosphorus has long been considered an important factor in the growth of diverse biota such as bacteria, algae, and zooplankton, insect nutrition has classically focused on dietary protein and energy content. However, research in elemental stoichiometry has suggested that primary producer biomass has similar N:P ratios in aquatic and terrestrial systems, and phosphorus-rich herbivores in freshwater systems frequently face phosphorus-limited nutritional conditions. Therefore, herbivorous insects should also be prone to phosphorus limitation. We tested this prediction by rearing Manduca sexta larvae on artificial and natural (Datura wrightii leaves) diets containing varying levels of phosphorus (approximately 0.20, 0.55, or 1.2% phosphorus by dry weight). For both artificial and natural diets, increased dietary phosphorus significantly increased growth rates and body phosphorus contents, and shortened the time to the final instar molt. Caterpillars did not consistently exhibit compensatory feeding for phosphorus on either type of diet. The growth and body phosphorus responses were not explicable by changes in amounts of potassium or calcium, which co-varied with phosphorus in the diets. Concentrations of phosphorus in D. wrightii leaves collected in the field varied over a range in which leaf phosphorus is predicted to affect M. sexta's growth rates. These results suggest that natural variation in dietary phosphorus is likely to affect the growth rate and population dynamics of M. sexta, and perhaps larval insects more generally.

  11. Estimate of dietary phosphorus intake using 24-h urine collection.

    PubMed

    Morimoto, Yuuka; Sakuma, Masae; Ohta, Hiroyuki; Suzuki, Akitsu; Matsushita, Asami; Umeda, Minako; Ishikawa, Makoto; Taketani, Yutaka; Takeda, Eiji; Arai, Hidekazu

    2014-07-01

    Increases in serum phosphorus levels and dietary phosphorus intake induces vascular calcification, arterial sclerosis and cardiovascular diseases. Limiting phosphorus intake is advisable, however, no assessment methods are capable of estimating dietary phosphorus intake. We hypothesized that urinary phosphorus excretion can be translated into estimation of dietary phosphorus intake, and we evaluated whether a 24-h urine collection method could estimate dietary phosphorus intake. Thirty two healthy subjects were recruited for this study. Subjects collected urine samples over 24 h and weighed dietary records. We calculated dietary protein intake and phosphorus intake from dietary records and urine collection, and investigated associations between the two methods in estimating protein and phosphorus intake. Significant positive correlations were observed between dietary records and UC for protein and phosphorus intake. The average intakes determined from dietary records were significantly higher than from urine collection for both protein and phosphorus. There was a significant positive correlation between both the phosphorus and protein difference in dietary records and urine collection. The phosphorus-protein ratio in urine collection was significantly higher than in dietary records. Our data indicated that the 24-h urine collection method can estimate the amount of dietary phosphorus intake, and the results were superior to estimation by weighed dietary record.

  12. [Seasonal dynamics of nitrogen- and phosphorus absorption efficiency of wetland plants in Minjiang River estuary].

    PubMed

    Zhang, Wen-Long; Zeng, Cong-Sheng; Zhang, Lin-Hai; Wang, Wei-Qi; Lin, Yan; Ai, Jin-Quan

    2009-06-01

    Taking the native Phragmites australis and invasive Spartina alterniflora in Minjiang River estuary as test objectives, this paper studied the seasonal dynamics of their biomass and nitrogen- and phosphorus absorption efficiency. A typical single-peak curve was presented for the seasonal dynamics of aboveground biomass and nitrogen- and phosphorus absorption efficiency of the two species. P. australis had the maximum aboveground biomass (2195.33 g X m(-2)) in summer, while S. alterniflora had it (3670.02 g X m(-2)) in autumn. The total nitrogen (TN) and total phosphorus (TP) contents of P. australis reached the peak (21.06 g x m(-2) of TN and 1.12 g x m(-2) of TP) in summer and in autumn, respectively, while those of S. alterniflora all reached the peak (26.76 g x m(-2) of TN and 3.23 g x m(-2) of TP) in autumn. Both of the two species had a higher absorption efficiency in TN than in TP (P < 0.01), and S. alterniflora had a significantly higher absorption efficiency of TN and TP than P. australis (P < 0.05). To some extent, the N/P, C/N, and C/P ratios of plants could indicate the nitrogen- and phosphorus absorption efficiency of the plants.

  13. Production of Low-Phosphorus Molten Iron from High-Phosphorus Oolitic Hematite Using Biomass Char

    NASA Astrophysics Data System (ADS)

    Tang, Huiqing; Qi, Tengfei; Qin, Yanqi

    2015-09-01

    In this study, an energy-saving and environmentally friendly method to produce low-phosphorus molten iron from high-phosphorus oolitic hematite was experimentally investigated and theoretically analyzed. The results indicate that biomass char is a suitable reducing agent for the proposed method. In the direct reduction stage, the ore-char briquette reached a metallization degree of 80-82% and a residual carbon content of 0.1-0.3 mass%. Under the optimized condition, phosphorus remained in the gangue as calcium phosphate. In the melting separation stage, phosphorus content ([%P]) in molten iron could be controlled by introducing a Na2CO3 additive, and the phosphorus behavior could be predicted using ion molecular coexistence theory. Molten iron with [%P] less than 0.3 mass% was obtained from the metallic briquettes with the aforementioned quality by introducing 2-4% Na2CO3 and the iron recovery rate was 75-78%.

  14. [Intravenous drop of calcium gluconate for phosphorus burns].

    PubMed

    Hu, A J

    1993-07-01

    20 patients with phosphor burn (TBSA 2%-75%) were cured by i.v. drop of calcium gluconate combined with other therapies including eschar conservation. Our experimental data showed that dogs with burn by spreading 85% phosphoric acid and napalm locally increased the level of plasma phosphorus and pathological damages to the heart, lung, kidney and etc were similar to those previously reported phosphorus burns. Intravenous drop of calcium gluconate after phosphate burn reduced the level of plasma phosphorus to normal rapidly and lessened the visceral damages. We consider that i.v. drop of calcium gluconate can accelerate the elimination of phosphorus, and prevent phosphorus poisoning after phosphorus burns.

  15. 40 CFR 422.10 - Applicability; description of the phosphorus production subcategory.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... phosphorus production subcategory. 422.10 Section 422.10 Protection of Environment ENVIRONMENTAL PROTECTION... Phosphorus Production Subcategory § 422.10 Applicability; description of the phosphorus production... production of phosphorus and ferrophosphorus by smelting of phosphate ore....

  16. 40 CFR 422.10 - Applicability; description of the phosphorus production subcategory.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... phosphorus production subcategory. 422.10 Section 422.10 Protection of Environment ENVIRONMENTAL PROTECTION... Phosphorus Production Subcategory § 422.10 Applicability; description of the phosphorus production... production of phosphorus and ferrophosphorus by smelting of phosphate ore....

  17. 40 CFR 422.10 - Applicability; description of the phosphorus production subcategory.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... phosphorus production subcategory. 422.10 Section 422.10 Protection of Environment ENVIRONMENTAL PROTECTION... Phosphorus Production Subcategory § 422.10 Applicability; description of the phosphorus production... production of phosphorus and ferrophosphorus by smelting of phosphate ore....

  18. 40 CFR 422.10 - Applicability; description of the phosphorus production subcategory.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... phosphorus production subcategory. 422.10 Section 422.10 Protection of Environment ENVIRONMENTAL PROTECTION... Phosphorus Production Subcategory § 422.10 Applicability; description of the phosphorus production... production of phosphorus and ferrophosphorus by smelting of phosphate ore....

  19. 40 CFR 422.10 - Applicability; description of the phosphorus production subcategory.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... phosphorus production subcategory. 422.10 Section 422.10 Protection of Environment ENVIRONMENTAL PROTECTION... Phosphorus Production Subcategory § 422.10 Applicability; description of the phosphorus production... production of phosphorus and ferrophosphorus by smelting of phosphate ore....

  20. Adaptive Evolution of Phosphorus Metabolism in Prochlorococcus

    PubMed Central

    Mardinoglu, Adil; Nielsen, Jens; Karl, David M.

    2016-01-01

    ABSTRACT Inorganic phosphorus is scarce in the eastern Mediterranean Sea, where the high-light-adapted ecotype HLI of the marine picocyanobacterium Prochlorococcus marinus thrives. Physiological and regulatory control of phosphorus acquisition and partitioning has been observed in HLI both in culture and in the field; however, the optimization of phosphorus metabolism and associated gains for its phosphorus-limited-growth (PLG) phenotype have not been studied. Here, we reconstructed a genome-scale metabolic network of the HLI axenic strain MED4 (iJC568), consisting of 568 metabolic genes in relation to 794 reactions involving 680 metabolites distributed in 6 subcellular locations. iJC568 was used to quantify metabolic fluxes under PLG conditions, and we observed a close correspondence between experimental and computed fluxes. We found that MED4 has minimized its dependence on intracellular phosphate, not only through drastic depletion of phosphorus-containing biomass components but also through network-wide reductions in phosphate-reaction participation and the loss of a key enzyme, succinate dehydrogenase. These alterations occur despite the stringency of having relatively few pathway redundancies and an extremely high proportion of essential metabolic genes (47%; defined as the percentage of lethal in silico gene knockouts). These strategies are examples of nutrient-controlled adaptive evolution and confer a dramatic growth rate advantage to MED4 in phosphorus-limited regions. IMPORTANCE Microbes are known to employ three basic strategies to compete for limiting elemental resources: (i) cell quotas may be adjusted by alterations to cell physiology or by substitution of a more plentiful resource, (ii) stressed cells may synthesize high-affinity transporters, and (iii) cells may access more costly sources from internal stores, by degradation, or by petitioning other microbes. In the case of phosphorus, a limiting resource in vast oceanic regions, the cosmopolitan

  1. Phosphorus and heavy metal extraction from wastewater treatment plant sludges using microwaves for generation of exceptional quality biosolids.

    PubMed

    Danesh, Paymon; Hong, Seung M; Moon, Kyong W; Park, Jae K

    2008-09-01

    The objectives of this study were to evaluate the amount of phosphorus and metals in sludge that can be released into solution by microwave irradiation when applied to sludge before anaerobic digestion and determine the effectiveness of subsequent lime precipitation. The fraction of phosphorus in the soluble form increased to 23 to 28% for thickened sludge and to 31 to 38% for unthickened sludge, after raising temperatures by microwave heating to 50 to 70 degrees C. Microwave irradiation also caused the release of arsenic, molybdenum, nickel, and selenium into solution to 33, 15, 13, and 28% for thickened sludge and 63, 61, 37, and 27% for unthickened sludge, respectively. Microwave irradiation has been found to destruct pathogens in sludge to meet Class A biosolids requirements. Therefore, the reduction of phosphorus and metals in biosolids using microwave heating is economically attractive when considered as a secondary benefit to the use of microwave heating to generate Class A biosolids.

  2. Secondary poisoning of kestrels by white phosphorus

    USGS Publications Warehouse

    Sparling, D.W.; Federoff, N.E.

    1997-01-01

    Since 1982, extensive waterfowl mortality due to white phosphorus (P4) has been observed at Eagle River Flats, a tidal marsh near Anchorage, Alaska. Ducks and swans that ingest P4 pellets become lethargic and may display severe convulsions. Intoxicated waterfowl attract raptors and gulls that feed on dead or dying birds. To determine if avian predators can be affected by secondary poisoning, we fed American kestrels (Falco sparverius) 10-day-old domestic chickens that had been dosed with white phosphorus. Eight of 15 kestrels fed intact chicks with a pellet of P4 implanted in their crops died within seven days. Three of 15 kestrels fed chicks that had their upper digestive tracts removed to eliminate any pellets of white phosphorus also died. Hematocrit and hemoglobin in kestrels decreased whereas lactate dehydrogenaseL, glucose, and alanine aminotransferase levels in plasma increased with exposure to contaminated chicks. Histological examination of liver and kidneys showed that the incidence and severity of lesions increased when kestrels were fed contaminated chicks. White phosphorus residues were measurable in 87% of the kestrels dying on study and 20% of the survivors. This study shows that raptors can become intoxicated either by ingesting portions of digestive tracts containing white phosphorus pellets or by consuming tissues of P4 contaminated prey.

  3. Fixed film phosphorus removal--flexible enough?

    PubMed

    Rogalla, F; Johnson, T L; McQuarrie, J

    2006-01-01

    While biological phosphorus removal (BPR) has been practised for 30 years, up to recently it has been restricted mainly to activated sludge processes, with the corresponding need for large basin volumes. Yet, research with biofilm reactors showed that the principle of alternate anaerobic and aerated conditions was applicable to fixed bacteria by changing the conditions in time rather than in space. Attached growth enhanced biological phosphorus removal (EBPR) systems are attractive because of their compactness and capability to retain high biomass levels. However, the phosphorus extraction depends on backwashes to enhance the phosphorus-rich attached biomass, and correct control of unsteady effluent quality created by frequently modified process conditions. Accordingly, EBPR remains a challenging task in terms of combining nitrogen and phosphorus removal using attached growth systems. Nevertheless, a combination of activated sludge and biofilm carriers, in the integrated fixed-film activated sludge system, provides treatment opportunities not readily available using suspended growth systems. Current practice is only at the beginning of exploiting the full potential of this combination, but the first full-scale results show that compact tankage and low nutrient results based on biological principles are possible.

  4. Biological phosphorus removal from a phosphorus-rich dairy processing wastewater.

    PubMed

    Bickers, P O; Bhamidimarri, R; Shepherd, J; Russell, J

    2003-01-01

    Dairy industry processing wastewaters consist mainly of dilutions of milk, milk products and cleaning solutions and, depending on the processes used, may be rich in phosphorus. In New Zealand and internationally, chemical removal of phosphorus is typically the phosphorus removal method of choice from dairy processing wastewaters. The enhanced biological phosphorus removal (EBPR) process was investigated in this study as an alternative phosphorus removal option using a continuous activated sludge system. A synthetic dairy processing wastewater was firstly subjected to fermentation in an anaerobic reactor (HRT = 12 hrs, pH = 6.5, temperature = 35 degrees C) resulting in a fermented wastewater with an average volatile fatty acid (VFA) concentration of 1055 mg COD/L. The activated sludge reactor was operated in an AO configuration with an HRT of 2.5 days and an SRT of 15 days. Stable EBPR was exhibited with 42 mg P/L removed, resulting in a final sludge phosphorus content of 4.9% mg P/mg TSS. In the anaerobic zone (HRT = 2.85 hrs) the sludge had a phosphorus content of 3.16% mg P/mg TSS and a poly-beta-hydroxyalkanoate (PHA) concentration of 86 mg COD/g TS.

  5. Response of Sugarcane in a Red Ultisol to Phosphorus Rates, Phosphorus Sources, and Filter Cake

    PubMed Central

    Prado, Renato de Mello; Campos, Cid Naudi Silva; Rosatto Moda, Leandro; de Lima Vasconcelos, Ricardo; Pizauro Júnior, João Martins

    2015-01-01

    We evaluated the effect of phosphorus application rates from various sources and in the presence or absence of filter cake on soil phosphorus, plant phosphorus, changes in acid phosphatase activity, and sugarcane productivity grown in Eutrophic Red Ultisol. Three P sources were used (triple superphosphate, Araxa rock phosphate, and Bayovar rock phosphate) and four application rates (0, 90, 180, and 360 kg ha−1 of P2O5) in the presence or absence of filter cake (7.5 t ha−1, dry basis). The soil P, the accumulated plant P, the leaf acid phosphatase activity and straw, the stalk productivity, the concentration of soluble solids in the juice (Brix), the juice sucrose content (Pol), and the purity were the parameters evaluated. We found that P applications increased levels of soil, leaf, and juice phosphorus and led to higher phosphorus accumulation and greater stalk and straw productivity. These levels were highest in the presence of filter cake. Acid phosphatase activity decreased with increasing plant phosphorus concentration. Phosphate fertilization did not show effect on sugarcane technological quality. We concluded that P application, regardless of source, improved phosphorus nutrition and increased productivity in sugarcane and, when associated with filter cake, reduced the need for mineral fertilizer. PMID:26078993

  6. Flammability of Epoxy Resins Containing Phosphorus

    NASA Technical Reports Server (NTRS)

    Hergenrother, P. M.; Thompson, C. M.; Smith, J. G.; Connell, J. W.; Hinkley, J. A.

    2005-01-01

    As part of a program to develop fire-resistant exterior composite structures for future subsonic commercial and general aviation aircraft, flame-retardant epoxy resins are under investigation. Epoxies and their curing agents (aromatic diamines) containing phosphorus were synthesized and used to prepare epoxy formulations. Phosphorus was incorporated within the backbone of the epoxy resin and not used as an additive. The resulting cured neat epoxy formulations were characterized by thermogravimetric analysis, propane torch test, elemental analysis, microscale combustion calorimetry, and fire calorimetry. Several formulations showed excellent flame retardation with phosphorous contents as low as 1.5% by weight. The fracture toughness and compressive strength of several cured formulations showed no detrimental effect due to phosphorus content. The chemistry and properties of these new epoxy formulations are discussed.

  7. Enhanced biological phosphorus removal and recovery.

    PubMed

    Machnicka, Alicja; Grubel, Klaudiusz; Suschka, Jan

    2008-07-01

    Activated sludge systems designed for enhanced nutrient removal are based on the principle of altering anaerobic and aerobic conditions for growth of microorganisms with a high capacity of phosphorus accumulation. Most often, filamentous bacteria constitute a component of the activated sludge microflora. The filamentous microorganisms are responsible for foam formation and activated sludge bulking. The results obtained confirm unanimously that the filamentous bacteria have the ability of phosphorus uptake and accumulation as polyphosphates. Hydrodynamic disintegration of the foam microorganisms results in the transfer of phosphorus and metal cations and ammonium-nitrogen into the liquid phase. It was demonstrated that the disintegration of foam permits the removal of a portion of the nutrients in the form of struvite.

  8. Electric field effect in ultrathin black phosphorus

    SciTech Connect

    Koenig, Steven P.; Schmidt, Hennrik; Doganov, Rostislav A.; Castro Neto, A. H.; Özyilmaz, Barbaros

    2014-03-10

    Black phosphorus exhibits a layered structure similar to graphene, allowing mechanical exfoliation of ultrathin single crystals. Here, we demonstrate few-layer black phosphorus field effect devices on Si/SiO{sub 2} and measure charge carrier mobility in a four-probe configuration as well as drain current modulation in a two-point configuration. We find room-temperature mobilities of up to 300 cm{sup 2}/Vs and drain current modulation of over 10{sup 3}. At low temperatures, the on-off ratio exceeds 10{sup 5}, and the device exhibits both electron and hole conduction. Using atomic force microscopy, we observe significant surface roughening of thin black phosphorus crystals over the course of 1 h after exfoliation.

  9. Observations of interstellar chlorine and phosphorus

    NASA Technical Reports Server (NTRS)

    Jura, M.; York, D. G.

    1978-01-01

    Copernicus observations of interstellar Cl I, Cl II, and P II UV lines toward 10 stars are reported. Column densities are estimated for each species, and upper limits are computed for HCl column densities. Derivation of the gas-phase abundances of chlorine and phosphorus indicates that the averages of both the chlorine and the phosphorus logarithmic abundances relative to hydrogen are between 5.0 and 5.1. It is suggested that interstellar chlorine may be depleted by about a factor of 3 relative to the solar abundance and that interstellar phosphorus is depleted by a factor of 2 to 3. The results are shown to support the prediction that chlorine is ionized in regions containing primarily atomic oxygen and is neutral in regions where there is a significant amount of molecular hydrogen. The photoionization rate of neutral chlorine toward 15 Mon is estimated, and it is concluded that most chlorine is contained within the gas phase.

  10. Hypophosphataemia and phosphorus requirements during intravenous nutrition.

    PubMed Central

    Tovey, S. J.; Benton, K. G.; Lee, H. A.

    1977-01-01

    Seven patients with acute illnesses developed hypophosphataemia whilst receiving intravenous nutrition which included a fat emulsion, Intralipid, a possible source of phosphorus. The authors' observations cast doubt on the bio-availability of the phosphorus contained in the phospholipid content of the fat emulsion. The currently recommended allowance of phosphorus for this type of patient appears to be too low and it is suggested that 0-5-0-75 mmol/kg body weight be provided, preferably as a neutral phosphate solution. Sine hypophosphataemia can occur at various time intervals after starting intravenous nutrition and precede clinical sequelae it is recommended that routine serum phosphate measurements are made in all patients receiving this treatment. PMID:407558

  11. Electric field effect in ultrathin black phosphorus

    NASA Astrophysics Data System (ADS)

    Koenig, Steven P.; Doganov, Rostislav A.; Schmidt, Hennrik; Castro Neto, A. H.; Özyilmaz, Barbaros

    2014-03-01

    Black phosphorus exhibits a layered structure similar to graphene, allowing mechanical exfoliation of ultrathin single crystals. Here, we demonstrate few-layer black phosphorus field effect devices on Si/SiO2 and measure charge carrier mobility in a four-probe configuration as well as drain current modulation in a two-point configuration. We find room-temperature mobilities of up to 300 cm2/Vs and drain current modulation of over 103. At low temperatures, the on-off ratio exceeds 105, and the device exhibits both electron and hole conduction. Using atomic force microscopy, we observe significant surface roughening of thin black phosphorus crystals over the course of 1 h after exfoliation.

  12. Phosphorus: Tips for People with Chronic Kidney Disease (CKD)

    MedlinePlus

    ... in foods rich in protein, such as meat, poultry, fish, nuts, beans, and dairy products. Phosphorus is ... iced tea Foods Higher in Phosphorus l Meat, poultry, fish l Dairy foods l Beans, lentils, nuts ...

  13. Bioretention column studies of phosphorus removal from urban stormwater runoff.

    PubMed

    Hsieh, Chi-hsu; Davis, Allen P; Needelman, Brian A

    2007-02-01

    This study investigated the effectiveness of bioretention as a stormwater management practice using repetitive bioretention columns for phosphorus removal. Bioretention media, with a higher short-term phosphorus sorption capacity, retained more phosphorus from infiltrating runoff after 3 mg/L phosphorus loading. A surface mulch layer prevented clogging after repetitive total suspended solids input. Evidence suggests that long-term phosphorus reactions will regenerate active short-term phosphorus adsorption sites. A high hydraulic conductivity media overlaying one with low hydraulic conductivity resulted in a higher runoff infiltration rate, from 0.51 to 0.16 cm/min at a fixed 15-cm head, and was more efficient in phosphorus removal (85% mass removal) than a profile with low conductivity media over high (63% mass removal). Media extractions suggest that most of the retained phosphorus in the media layers is available for vegetative uptake and that environmental risk thresholds were not exceeded.

  14. Thick homoepitaxial (110)-oriented phosphorus-doped n-type diamond

    NASA Astrophysics Data System (ADS)

    Balasubramaniam, Y.; Pobedinskas, P.; Janssens, S. D.; Sakr, G.; Jomard, F.; Turner, S.; Lu, Y.-G.; Dexters, W.; Soltani, A.; Verbeeck, J.; Barjon, J.; Nesládek, M.; Haenen, K.

    2016-08-01

    The fabrication of n-type diamond is essential for the realization of electronic components for extreme environments. We report on the growth of a 66 μm thick homoepitaxial phosphorus-doped diamond on a (110)-oriented diamond substrate, grown at a very high deposition rate of 33 μm h-1. A pristine diamond lattice is observed by high resolution transmission electron microscopy, which indicates the growth of high quality diamond. About 2.9 × 1016 cm-3 phosphorus atoms are electrically active as substitutional donors, which is 60% of all incorporated dopant atoms. These results indicate that P-doped (110)-oriented diamond films deposited at high growth rates are promising candidates for future use in high-power electronic applications.

  15. [Bone and Nutrition. A novel function of phosphorus].

    PubMed

    Taketani, Yutaka; Imi, Yukiko; Abuduli, Maerjianghan

    2015-07-01

    Phosphorus is an essential nutrient for bone formation by forming hydroxyapatite with calcium. Simultaneously, phosphorus is also a component of high energy bond of ATP, nucleic acids, and phospholipids. Recent studies have demonstrated that excess or lack of dietary phosphorus intake may cause vascular dysfunction, cardiac hypertrophy, and impaired glucose tolerance. Here, we introduce recent findings about the effects of high or low dietary phosphorus intake on several organs except for bone.

  16. New phosphorus-containing bisimide resins

    NASA Technical Reports Server (NTRS)

    Varma, I. K.; Fohlen, G. M.; Hsu, M.-T.; Parker, J. A.

    1984-01-01

    Phosphorus-based flame retardants have been effectively used in a wide variety of polymeric materials. Such additives, however, may either influence the decomposition reaction in polymers or lack durability due to a tendency to be leached out by solvents. Attention is given to the synthesis, characterization, thermal stability and degradation mechanisms of bisimide resins, and an evaluation is conducted of the flammability and mechanical properties of graphite cloth-reinforced laminates fabricated from one of the six phosphorus-containing bisimide resins considered.

  17. Enhancing biological phosphorus removal with glycerol.

    PubMed

    Yuan, Q; Sparling, R; Lagasse, P; Lee, Y M; Taniguchi, D; Oleszkiewicz, J A

    2010-01-01

    An enhanced biological phosphorus removal process (EBPR) was successfully operated in presence of acetate. When glycerol was substituted for acetate in the feed the EBPR process failed. Subsequently waste activated sludge (WAS) from the reactor was removed to an off-line fermenter. The same amount of glycerol was added to the WAS fermenter which led to significant volatile fatty acids (VFA) production. By supplying the system with the VFA-enriched supernatant of the fermentate, biological phosphorus removal was enhanced. It was concluded that, if glycerol was to be used as an external carbon source in EBPR, the effective approach was to ferment glycerol with waste activated sludge.

  18. Gastrointestinal Inhibition of Sodium-Hydrogen Exchanger 3 Reduces Phosphorus Absorption and Protects against Vascular Calcification in CKD.

    PubMed

    Labonté, Eric D; Carreras, Christopher W; Leadbetter, Michael R; Kozuka, Kenji; Kohler, Jill; Koo-McCoy, Samantha; He, Limin; Dy, Edward; Black, Deborah; Zhong, Ziyang; Langsetmo, Ingrid; Spencer, Andrew G; Bell, Noah; Deshpande, Desiree; Navre, Marc; Lewis, Jason G; Jacobs, Jeffrey W; Charmot, Dominique

    2015-05-01

    In CKD, phosphate retention arising from diminished GFR is a key early step in a pathologic cascade leading to hyperthyroidism, metabolic bone disease, vascular calcification, and cardiovascular mortality. Tenapanor, a minimally systemically available inhibitor of the intestinal sodium-hydrogen exchanger 3, is being evaluated in clinical trials for its potential to (1) lower gastrointestinal sodium absorption, (2) improve fluid overload-related symptoms, such as hypertension and proteinuria, in patients with CKD, and (3) reduce interdialytic weight gain and intradialytic hypotension in ESRD. Here, we report the effects of tenapanor on dietary phosphorous absorption. Oral administration of tenapanor or other intestinal sodium-hydrogen exchanger 3 inhibitors increased fecal phosphorus, decreased urine phosphorus excretion, and reduced [(33)P]orthophosphate uptake in rats. In a rat model of CKD and vascular calcification, tenapanor reduced sodium and phosphorus absorption and significantly decreased ectopic calcification, serum creatinine and serum phosphorus levels, circulating phosphaturic hormone fibroblast growth factor-23 levels, and heart mass. These results indicate that tenapanor is an effective inhibitor of dietary phosphorus absorption and suggest a new approach to phosphate management in renal disease and associated mineral disorders.

  19. 40 CFR 721.2752 - Epoxy resin containing phosphorus (generic).

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 32 2013-07-01 2013-07-01 false Epoxy resin containing phosphorus... Specific Chemical Substances § 721.2752 Epoxy resin containing phosphorus (generic). (a) Chemical substance... epoxy resin containing phosphorus (PMN P-00-912) is subject to reporting under this section for...

  20. 40 CFR 721.2752 - Epoxy resin containing phosphorus (generic).

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 32 2012-07-01 2012-07-01 false Epoxy resin containing phosphorus... Specific Chemical Substances § 721.2752 Epoxy resin containing phosphorus (generic). (a) Chemical substance... epoxy resin containing phosphorus (PMN P-00-912) is subject to reporting under this section for...

  1. 40 CFR 721.2752 - Epoxy resin containing phosphorus (generic).

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 31 2011-07-01 2011-07-01 false Epoxy resin containing phosphorus... Specific Chemical Substances § 721.2752 Epoxy resin containing phosphorus (generic). (a) Chemical substance... epoxy resin containing phosphorus (PMN P-00-912) is subject to reporting under this section for...

  2. 40 CFR 721.2752 - Epoxy resin containing phosphorus (generic).

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 30 2010-07-01 2010-07-01 false Epoxy resin containing phosphorus... Specific Chemical Substances § 721.2752 Epoxy resin containing phosphorus (generic). (a) Chemical substance... epoxy resin containing phosphorus (PMN P-00-912) is subject to reporting under this section for...

  3. 40 CFR 721.2752 - Epoxy resin containing phosphorus (generic).

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 31 2014-07-01 2014-07-01 false Epoxy resin containing phosphorus... Specific Chemical Substances § 721.2752 Epoxy resin containing phosphorus (generic). (a) Chemical substance... epoxy resin containing phosphorus (PMN P-00-912) is subject to reporting under this section for...

  4. Soil phosphorus dynamics under sprinkler and furrow irrigation

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Furrow irrigation detaches and transports soil particles and subsequently nutrients such as phosphorus. To reduce the risk of erosion and offsite phosphorus movement, producers can convert from furrow to sprinkler irrigation. We completed research on soil phosphorus dynamics in furrow versus sprin...

  5. 46 CFR 151.50-50 - Elemental phosphorus in water.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 5 2010-10-01 2010-10-01 false Elemental phosphorus in water. 151.50-50 Section 151.50... phosphorus in water. (a) Tanks shall be designed and tested for a head equivalent to the design lading of phosphorus and its water blanket extended to 8 feet above the tank top. In addition, tank design...

  6. 46 CFR 151.50-50 - Elemental phosphorus in water.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 5 2011-10-01 2011-10-01 false Elemental phosphorus in water. 151.50-50 Section 151.50... phosphorus in water. (a) Tanks shall be designed and tested for a head equivalent to the design lading of phosphorus and its water blanket extended to 8 feet above the tank top. In addition, tank design...

  7. 77 FR 46298 - Phosphorus Water Quality Standards for Florida Everglades

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-08-03

    ... AGENCY 40 CFR Part 131 RIN 2040-AF38 Phosphorus Water Quality Standards for Florida Everglades AGENCY... provisions of Florida's Water Quality Standards for Phosphorus in the Everglades Protection Area (Phosphorus... are not applicable water quality standards for purposes of the Clean Water Act. EPA is...

  8. 76 FR 38592 - Phosphorus Water Quality Standards for Florida Everglades

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-07-01

    ... AGENCY 40 CFR Part 131 Phosphorus Water Quality Standards for Florida Everglades AGENCY: Environmental... provisions of Florida's Water Quality Standards for Phosphorus in the Everglades Protection Area (Phosphorus... are not applicable water quality standards for purposes of the Clean Water Act. EPA is proposing...

  9. 46 CFR 151.50-50 - Elemental phosphorus in water.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 46 Shipping 5 2013-10-01 2013-10-01 false Elemental phosphorus in water. 151.50-50 Section 151.50... phosphorus in water. (a) Tanks shall be designed and tested for a head equivalent to the design lading of phosphorus and its water blanket extended to 8 feet above the tank top. In addition, tank design...

  10. 46 CFR 151.50-50 - Elemental phosphorus in water.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 46 Shipping 5 2014-10-01 2014-10-01 false Elemental phosphorus in water. 151.50-50 Section 151.50... phosphorus in water. (a) Tanks shall be designed and tested for a head equivalent to the design lading of phosphorus and its water blanket extended to 8 feet above the tank top. In addition, tank design...

  11. Nitrogen and phosphorus budgets of the Changjiang River estuary

    NASA Astrophysics Data System (ADS)

    Li, Xiang'an; Yu, Zhiming; Song, Xiuxian; Cao, Xihua; Yuan, Yongquan

    2011-07-01

    Eutrophication has emerged as a key environmental problem in Chinese coastal waters, especially in the Changjiang (Yangtze) River estuary. In this area, large nutrient inputs result in frequent harmful algal blooms and serious hypoxia in bottom waters. Four cruises were made in the estuary in 2006 to assess the concentration and distribution of dissolved inorganic nitrogen (DIN) and phosphorus (DIP). The concentration of DIN decreased gradually in a linear relationship with salinity from the river mouth to outer waters, while DIP was relatively more dispersed. A modified box budget method was used to estimate nutrient fluxes in the estuary and its adjacent waters. Water and nutrient budgets as well as primary production and denitrification rates were estimated from the box budget model. Estimated water residence time in the estuary was about 11 d. The turbid mixing zone released 33% of DIN and 49% of DIP, while in the adjacent outer sea 17.9 mmol DIN/m2·d and 0.36 mmol DIP/m2·d were fixed. Dissolved inorganic phosphorus was imported from the deep open sea waters, supporting primary production and population growth in this zone. Net ecosystem production (NEP) was calculated at 38.2 mmol/m2·d in the outer estuary and the estimated rate (N-fixation minus denitrification) was negative (1.92 mmol/m2·d), implying that a large amount of input nitrogen was taken up by algae and recycled through denitrification in bottom water and sediment.

  12. [Sedimentary Phosphorus Forms Under Disturbances and Algae in Taihu Lake].

    PubMed

    Chen, Jun; Li, Da-peng; Zhu, Pei-ying; Huang, Yong; Wang, Ren

    2015-12-01

    Sedimentary phosphorus forms were investigated to clarify the release of sedimentary phosphorus forms under the repeated disturbance with the addition of algae at different initial concentrations. The sediments and overlying water were taken from the Meiliang Bay in Taihu Lake. The results showed that the concentrations of NH₄ Cl-P and Res-P decreased, while the content of Fe/Al-P and Ca-P increased without disturbance. In addition, the Ca-P increased with the increase of the initial concentration of algae and the net increase of Ca-P increased by 48% (30 µg · L⁻¹), 66% (60 µg · L⁻¹), 74% (120 µg · L⁻¹), respectively. However, under the disturbance, the NH₄Cl-P and Res-P were significantly reduced, the Fe/Al-P increased significantly. The percentage of Fe/Al-P to Tot-P was up to 66. 2% (average of the 3 experiments with the addition of algae of 30 µg · L⁻¹, 60 µg · L⁻¹ and 120 µg L-¹), it was higher than the value (53.%, average of the 3 experiments) without the disturbance. Moreover, under the disturbance, the percentage of Ca-P to Tot-P was 24.1% (average of the 3 experiments with the addition of algae of 30 µg · L⁻¹, 60 µg⁻¹ and 120 µg · L⁻¹) and it was slightly lower than that (33.0%, average of the 3 experiments) without the disturbance. It is suggested that the coexistence of disturbance and algae facilitated the formation of Fe/Al-P, but the algae accelerated the formation of Ca-P without disturbance.

  13. Phosphorus vacancy cluster model for phosphorus diffusion gettering of metals in Si

    SciTech Connect

    Chen, Renyu; Trzynadlowski, Bart; Dunham, Scott T.

    2014-02-07

    In this work, we develop models for the gettering of metals in silicon by high phosphorus concentration. We first performed ab initio calculations to determine favorable configurations of complexes involving phosphorus and transition metals (Fe, Cu, Cr, Ni, Ti, Mo, and W). Our ab initio calculations found that the P{sub 4}V cluster, a vacancy surrounded by 4 nearest-neighbor phosphorus atoms, which is the most favorable inactive P species in heavily doped Si, strongly binds metals such as Cu, Cr, Ni, and Fe. Based on the calculated binding energies, we build continuum models to describe the P deactivation and Fe gettering processes with model parameters calibrated against experimental data. In contrast to previous models assuming metal-P{sub 1}V or metal-P{sub 2}V as the gettered species, the binding of metals to P{sub 4}V satisfactorily explains the experimentally observed strong gettering behavior at high phosphorus concentrations.

  14. Availability of phosphorus from selected inorganic phosphate to juvenile abalone, Haliotis discus hannai ino.

    NASA Astrophysics Data System (ADS)

    Tan, Bei-Ping; Mai, Kang-Sen; Xu, Wei

    2002-06-01

    The availability of phosphorus to juvenile abalone, Haliotis discus hannai from primary, secondary and tertiary calcium phosphate, primary sodium or potassium phosphate separately or in combination was determined in a 120-day feeding trial. Seven semi-purified diets were formulated to contain relatively constant dietary phosphorus, ranging from 0.78% 0.82%. The concentrations of dietary phosphorus were presumed to be slightly below the requirement for abalone. A brown alga, Laminaria japonica, was used as a control diet. Abalone juveniles of silimar size (average weight 1.18 g; average shell length 18.74 mm) were distributed in a single-pass, flow-through system using a completely randomized design with eight treatments and three replicates each treatment. The survival ranged from 71.1% to 81.1%, and was not significantly (P>0.05) related to dietary treatment. However, the weight gain rate (41.72% 65.02%), daily increment in shell length (36.87 55.07 μm) and muscle RNA-DNA ratio (3.44 4.69) were significantly (P<0.05) affected by dietary treatment. Soft body alkaline phosphatase activity (10.9 19.8 U/g wet tissue) and carcass levels of lipid (7.71% 9.33%) and protein (46.68% 49.35%) were significantly (P<0.05) responsive to available phosphorus of the diets. Dietary treatment had significant effect (P<0.05) on concentrations of phosphorus in the whole body (WB) and soft body (SB). Apparent digestibility coefficients (45% 97%) of phosphorus were also significantly (P<0.05) different between dietary treatments. The results indicated that among these inorganic compounds, primary calcium, potassium and sodium phosphates separately or in combination could be utilized effectively by juvenile abalone as dietary phosphorus sources (availability ranging from 87% 97%). However, secondary and tertiary calcium phosphates were found to be low in availability, the values being 45% and 77%, repectively.

  15. Lake Erie phosphorus loading and Cladophora updates

    EPA Science Inventory

    The presentation will focus on updates or progress being made on each Phosphorus Loadings and Cladophora for Lake Erie. The format will give a brief summary of data, findings, and results that were used by the Great Lakes Water Quality Agreement (GLWQA) Annex 4 Nutrients Modeli...

  16. Phosphatase hydrolysis of organic phosphorus compounds

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Phosphatases are diverse groups of enzymes that deserve special attention because of the significant roles they play in mineralizing organic phosphorus (P) into inorganic available form. For getting more insight on the enzymatically hydrolysis of organic P, in this work, we compared the catalytic pa...

  17. EFFECT OF PHOSPHORUS TREATMENT ON LEAD MINERALOGY

    EPA Science Inventory

    Remediation of Pb-contaminated soils by amendments of phosphate may prove to be a viable way of sequestering Pb in the natural environment. Test plots of Pb-contaminated soil near Joplin, MO were treated with a variety of phosphorus-based amendments to observe the influence of co...

  18. Endangered plants persist under phosphorus limitation.

    PubMed

    Wassen, Martin J; Venterink, Harry Olde; Lapshina, Elena D; Tanneberger, Franziska

    2005-09-22

    Nitrogen enrichment is widely thought to be responsible for the loss of plant species from temperate terrestrial ecosystems. This view is based on field surveys and controlled experiments showing that species richness correlates negatively with high productivity and nitrogen enrichment. However, as the type of nutrient limitation has never been examined on a large geographical scale the causality of these relationships is uncertain. We investigated species richness in herbaceous terrestrial ecosystems, sampled along a transect through temperate Eurasia that represented a gradient of declining levels of atmospheric nitrogen deposition--from approximately 50 kg ha(-1) yr(-1) in western Europe to natural background values of less than 5 kg ha(-1) yr(-1) in Siberia. Here we show that many more endangered plant species persist under phosphorus-limited than under nitrogen-limited conditions, and we conclude that enhanced phosphorus is more likely to be the cause of species loss than nitrogen enrichment. Our results highlight the need for a better understanding of the mechanisms of phosphorus enrichment, and for a stronger focus on conservation management to reduce phosphorus availability.

  19. Fire-Resistant Polyamides Containing Phosphorus

    NASA Technical Reports Server (NTRS)

    Kourtides, Demetrius A.; Mikroyannidis, John A.

    1988-01-01

    Flammability and weight loss reduced. Fire-resistant polymers obtained from 1-{(dialkoxyphosphonyl) methyl}-2, 4- and -2, 6-diaminobenzenes by reaction with acyl or diacyl halides of higher functionality. Incorporation of compounds containing phosphorus into certain polymers shown previously to increase fire retardance. Discovery adds new class of polyamides to group of such polymers.

  20. The role of phosphorus in chemical evolution.

    PubMed

    Maciá, Enrique

    2005-08-01

    In this tutorial review we consider the role of phosphorus and its compounds within the context of chemical evolution in galaxies. Following an interdisciplinary approach we first discuss the position of P among the main biogenic elements by considering its relevance in most essential biochemical functions as well as its peculiar chemistry under different physicochemical conditions. Then we review the phosphorus distribution in different cosmic sites, such as terrestrial planets, interplanetary dust particles, cometary dust, planetary atmospheres and the interstellar medium (ISM). In this way we realize that this element is both scarce and ubiquitous in the universe. These features can be related to the complex nucleosynthesis of P nuclide in the cores of massive stars under explosive conditions favouring a wide distribution of this element through the ISM, where it would be ready to react with other available atoms. A general tendency towards more oxidized phosphorus compounds is clearly appreciated as chemical evolution proceeds from circumstellar and ISM materials to protoplanetary and planetary condensed matter phases. To conclude we discuss some possible routes allowing for the incorporation of phosphorus compounds of prebiotic interest during the earlier stages of solar system formation.

  1. Osteophagia provide giraffes with phosphorus and calcium?

    PubMed

    Bredin, I P; Skinner, J D; Mitchell, G

    2008-03-01

    The daily requirement for calcium and phosphorus by giraffes to sustain the growth and maintenance of their skeletons is large. The source of sufficient calcium is browse. The source of necessary phosphorus is obscure, but it could be osteophagia, a frequently observed behaviour in giraffes. We have assessed whether bone ingested as a result of osteophagia can be digested in the rumen. Bone samples from cancellous (cervical vertebrae) and dense bones (metacarpal shaft) were immersed in the rumens of five sheep, for a period of up to 30 days, and the effect compared to immersion in distilled water and in artificial saliva for 30 days. Distilled water had no effect on the bones. Dense bone samples were softened by exposure to the saliva and rumen fluid, but did not lose either calcium or phosphorus. In saliva and rumen fluid the cancellous bone samples also softened, and their mass and volume decreased as a result of exposure to saliva, but in neither fluid did they lose significant amounts of calcium and phosphorus. We conclude that although saliva and rumen fluid can soften ingested bones, there is an insignificant digestion of bones in the rumen.

  2. Phosphorus recovery and reuse from waste streams

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Phosphorus (P) is a macronutrient essential for all living organisms. Regrettably, it is a finite resource since phosphate rock (PR) is the main material used for production of P fertilizers. Globally, the demand for quality PR is escalating due to many factors including increasing human population....

  3. Revising the phosphorus index for Kentucky

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The phosphorus index (PI) is a field-scale assessment tool developed by the USDA Natural Resources Conservation Service (NRCS) to identify fields most vulnerable to P loss that has been adopted in some form across 48 states. Due to concerns that the use of the PI has not resulted in intended reduct...

  4. Phosphorus Equilibria Among Mafic Silicate Phases

    NASA Technical Reports Server (NTRS)

    Berlin, Jana; Xirouchakis, Dimitris

    2002-01-01

    Phosphorus incorporation in major rock-forming silicate minerals has the following implications: (1) Reactions between phosphorus-hosting major silicates and accessory phosphates, which are also major trace element carriers, may control the stability of the latter and thus may affect the amount of phosphorus and other trace elements released to the coexisting melt or fluid phase. (2) Less of a phosphate mineral is needed to account for the bulk phosphorus of planetaty mantles. (3) During partial melting of mantle mineral assemblages or equilibrium fractional crystallization of basaltic magmas, and in the absence or prior to saturation with a phosphate mineral, silicate melts may become enriched in phosphorus, especially in the geochemically important low melt fraction regime, Although the small differences in the ionic radii of IVp5+, IVSi4+, and IV Al3+ makes phosphoms incorporation into crystalline silicates perhaps unsurprising, isostructural silicate and phosphate crystalline solids do not readily form solutions, e.g., (Fe, Mg)2SiO4 vs. LiMgPO4, SiO)2 VS. AlPO4. Nonetheless, there are reports of, poorly characterized silico-phosphate phases in angrites , 2-4 wt% P2O5 in olivine and pyroxene grains in pallasites and reduced terestrial basalts which are little understood but potentially useful, and up to 17 wt% P2O5 in olivine from ancient slags. However, such enrichments are rare and only underscore the likelihood of phosphoms incorporation in silicate minerals. The mechanisms that allow phosphorus to enter major rock-forming silicate minerals (e.g., Oliv, Px, Gt) remain little understood and the relevant data base is limited. Nonetheless, old and new high-pressure (5-10 GPa) experimental data suggest that P2O5 wt% decreases from silica-poor to silica-rich compositions or from orthosilicate to chain silicate structures (garnet > olivine > orthopyroxene) which implies that phosphorus incorporation in silicates is perhaps more structure-than site-specific. The

  5. Temporal dynamics of available and microbial phosphorus and organic phosphorus mineralization in a grassland soil

    NASA Astrophysics Data System (ADS)

    Liebisch, Frank; Keller, Fabrizio; Frossard, Emmanuel; Huguenin-Elie, Olivier; Oberson, Astrid; Bünemann, Else

    2010-05-01

    conditions were reflected by changes in available and microbial P measured in the field. Phosphorus flushes were observed after dry periods (microbial P reduced and available P increased). Whereas fluctuations show microbial P release and P immobilization, an expected counteraction of microbial and available P could not be fully confirmed. In the incubation experiment microbial and available P were similar to average values in the field. A higher respiration rate measured in NPKorg indicated a higher microbial activity than in the other two treatments. Despite the differences in microbial P and respiration, the 33P recovery in the microbial biomass between 3 and 30 days of incubation was about 30% in all treatments. In conclusion we found complex interactions of available and microbial P with climate, fertilization, sward cutting and plant growth. An increased immobilization of P indicated by higher microbial P in the organic fertilized treatment was not confirmed in the isotope study. Gross and net mineralization data are still under analysis and will be presented at the conference.

  6. Electroless Nickel Phosphorus Plating on AZ31

    NASA Astrophysics Data System (ADS)

    Shartal, Kh. M.; Kipouros, G. J.

    2009-04-01

    One of the major drawbacks to using magnesium parts in automotive applications is poor corrosion resistance, which can be improved with a nickel-boron coating placed on a nickel-phosphorus coating, which, in turn, is placed on a phosphate-permanganate conversion-coating layer produced on the magnesium alloy AZ31. This work reports on the determination of the optimum kinetic parameters for producing a coherent nickel-phosphorus coating using an electroless-procedure phosphate-permanganate conversion-coating layer and for studying the effects of the experimental variables of the electroless plating process on the phosphorus content, surface morphology, and structure of the electroless nickel-phosphorus (EN-P) coatings produced. Measurements of the plating rate as a function of experimental variables such as the compositions of the plating bath constituents, temperature, and pH were implemented using the weight-gain method; the phosphorus content of the EN-P coatings was measured using energy-dispersive spectroscopy (EDS) analysis. The surface morphology of the coating was examined using a scanning electron microscope (SEM); X-ray diffraction (XRD) was used to characterize the structure of each coating. An empirical rate law was determined for EN-P plating on a phosphate-permanganate conversion coating. It is found that the deposition rate of the EN-P coating increases by increasing the deposition temperature, the concentration of free nickel ions, and the concentration of hypophosphite ions in the plating bath. In addition, the deposition rate decreases by increasing both the plating bath pH and the concentration of citric acid in the plating bath.

  7. Assessment risk of phosphorus leaching from calcareous soils using soil test phosphorus.

    PubMed

    Jalali, Mohsen; Jalali, Mahdi

    2017-03-01

    Accurate estimation of phosphorus (P) leaching is important because excess P may reduce surface and ground water quality. Little attention has been paid to estimate P leaching from soil tests in calcareous soils. The relation between different soil tests P (STP), P sorption index (PSI) and degree of P saturation (DPS) and leaching of P were examined for assessing the risk of P loss from calcareous soils. Columns leaching repacked with native soils were leached with either distilled water or 10 mM CaCl2 solutions, separately. Four leaching events were performed at four days, and 28.7 mm of distilled water or 10 mM CaCl2 solutions was applied at each leaching events. Compared with distilled water, CaCl2 had a small ability to solubilize P from soils. Concentration of P in leachate in both leaching solutions was exceeding 0.1 mg l(-1) associated with eutrophication. Cumulative P leached P was ranged from 0.17 to 18.59 mg P kg(-1) and 0.21-8.16 mg P kg(-1), when distilled water and 10 mM CaCl2 solutions were applied, respectively and it was higher in sandy clay loam soils compared with clay soils. Among evaluated environmental soil P tests, PCaCl2-3h (P extracted by 10 mM CaCl2 for 3 h), PCaCl2-1h (P extracted by 10 mM CaCl2 for 1 h) were more accurate than other soil P tests for predicting P concentration in the leachates in both leaching solutions and accounting for 83% and 72% of variation of P concentration, respectively. The water extractable P (WEP) (r = 0.771) and Olsen-P (POls)(r = 0.739) were significantly related to the leached P concentration using distilled water solution in a split line model, with a change point of 27.4 mg P kg(-1) and 61.5 mg P kg(-1), respectively. Various DPS were calculated and related to the leached P concentration. Based on P extracted by Mehlich-3 (PM3) and HCl (PHCl) and PSI, the change point of the relationship between leached P concentration and DPSM3-3 (PM3(PM3+PSI)×100) and DPSHCl-2 (PHCl(PHCl+PSI)×100

  8. Quantifying phosphorus and light effects in stream algae

    SciTech Connect

    Hill, Walter; Fanta, S.E.; Roberts, Brian J

    2009-01-01

    Simultaneous gradients of phosphorus and light were applied in experimental streams to develop quantitative relationships between these two important abiotic variables and the growth and composition of benthic microalgae. Algal biovolume and whole-stream metabolism responded hyperbolically to phosphorus enrichment, increasing approximately two-fold over the 5-300 g L-1 range of experimental phosphorus concentrations. The saturation threshold for phosphorus effects occurred at 25 g L-1 of soluble reactive phosphorus (SRP). Light effects were much stronger than those of phosphorus, resulting in a nearly ten-fold increase in algal biovolume over the 10-400 mol photons m-2 s-1 range of experimental irradiances. Biovolume accrual was light-saturated at 100 mol photons m-2 s-1 (5 mol photons m-2 d-1). Light effects were diminished by low phosphorus concentrations, and phosphorus effects were diminished by low irradiances, but evidence of simultaneous limitation by both phosphorus and light at subsaturating irradiances was weak. Contrary to the light:nutrient hypothesis, algal phosphorus content was not significantly affected by light, even in the lowest SRP treatments. However, algal nitrogen content increased substantially at lower irradiances, and it was very highly correlated with algal chlorophyll a content. Phosphorus enrichment in streams is likely to have its largest effect at concentrations <25 g L-1 SRP, but the effect of enrichment is probably minimized when streambed irradiances are kept below 2 mol photons m-2 d-1 by riparian shading or turbidity

  9. Impact of Fish Farming on Phosphorus in Reservoir Sediments.

    PubMed

    Jia, Binyang; Tang, Ya; Tian, Liyan; Franz, Leander; Alewell, Christine; Huang, Jen-How

    2015-11-18

    Fish farming has seriously influenced the aquatic environment in Sancha reservoir in SW China since 1985 and has been strongly restricted since 2005. Thus, phosphorus speciation in a sediment core dated between 1945 and 2010 at cm-resolution and in surface sediments from Sancha reservoir may allow us track how fish farming impacts phosphorus dynamics in lake sediments. Fish farming shifts the major binding forms of phosphorus in sediments from organic to residual phosphorus, which mostly originated from fish feed. Sorption to metal oxides and association with organic matters are important mechanisms for phosphorus immobilisation with low fish farming activities, whereas calcium-bound phosphorous had an essential contribution to sediment phosphorus increases under intensive fish framing. Notwithstanding the shifting, the aforementioned phosphorus fractions are usually inert in the lake environment, therefore changing phosphorus mobility little. The use of fish feed and water-purification reagents, the most important additives for fish farming, introduce not only phosphorus but also large amounts of sand-sized minerals such as quartz into the lake, to which phosphorus weakly sorbs. The sand-sized minerals as additional sorbents increase the pool of easily mobilisable phosphorus in sediments, which will slow down the recovery of reservoir water due to its rapid re-mobilisation.

  10. Impact of Fish Farming on Phosphorus in Reservoir Sediments

    PubMed Central

    Jia, Binyang; Tang, Ya; Tian, Liyan; Franz, Leander; Alewell, Christine; Huang, Jen-How

    2015-01-01

    Fish farming has seriously influenced the aquatic environment in Sancha reservoir in SW China since 1985 and has been strongly restricted since 2005. Thus, phosphorus speciation in a sediment core dated between 1945 and 2010 at cm-resolution and in surface sediments from Sancha reservoir may allow us track how fish farming impacts phosphorus dynamics in lake sediments. Fish farming shifts the major binding forms of phosphorus in sediments from organic to residual phosphorus, which mostly originated from fish feed. Sorption to metal oxides and association with organic matters are important mechanisms for phosphorus immobilisation with low fish farming activities, whereas calcium-bound phosphorous had an essential contribution to sediment phosphorus increases under intensive fish framing. Notwithstanding the shifting, the aforementioned phosphorus fractions are usually inert in the lake environment, therefore changing phosphorus mobility little. The use of fish feed and water-purification reagents, the most important additives for fish farming, introduce not only phosphorus but also large amounts of sand-sized minerals such as quartz into the lake, to which phosphorus weakly sorbs. The sand-sized minerals as additional sorbents increase the pool of easily mobilisable phosphorus in sediments, which will slow down the recovery of reservoir water due to its rapid re-mobilisation. PMID:26577441

  11. Impact of Fish Farming on Phosphorus in Reservoir Sediments

    NASA Astrophysics Data System (ADS)

    Jia, Binyang; Tang, Ya; Tian, Liyan; Franz, Leander; Alewell, Christine; Huang, Jen-How

    2015-11-01

    Fish farming has seriously influenced the aquatic environment in Sancha reservoir in SW China since 1985 and has been strongly restricted since 2005. Thus, phosphorus speciation in a sediment core dated between 1945 and 2010 at cm-resolution and in surface sediments from Sancha reservoir may allow us track how fish farming impacts phosphorus dynamics in lake sediments. Fish farming shifts the major binding forms of phosphorus in sediments from organic to residual phosphorus, which mostly originated from fish feed. Sorption to metal oxides and association with organic matters are important mechanisms for phosphorus immobilisation with low fish farming activities, whereas calcium-bound phosphorous had an essential contribution to sediment phosphorus increases under intensive fish framing. Notwithstanding the shifting, the aforementioned phosphorus fractions are usually inert in the lake environment, therefore changing phosphorus mobility little. The use of fish feed and water-purification reagents, the most important additives for fish farming, introduce not only phosphorus but also large amounts of sand-sized minerals such as quartz into the lake, to which phosphorus weakly sorbs. The sand-sized minerals as additional sorbents increase the pool of easily mobilisable phosphorus in sediments, which will slow down the recovery of reservoir water due to its rapid re-mobilisation.

  12. Do soils loose phosphorus with dissolved organic matter?

    NASA Astrophysics Data System (ADS)

    Kaiser, K.; Brödlin, D.; Hagedorn, F.

    2014-12-01

    During ecosystem development and soil formation, primary mineral sources of phosphorus are becoming increasingly depleted. Inorganic phosphorus forms tend to be bound strongly to or within secondary minerals, thus, are hardly available to plants and are not leached from soil. What about organic forms of phosphorus? Since rarely studied, little is known on the composition, mobility, and bioavailability of dissolved organic phosphorus. There is some evidence that plant-derived compounds, such as phytate, bind strongly to minerals as well, while microbial compounds, such as nucleotides and nucleic acids, may represent more mobile fractions of soil phosphorus. In some weakly developed, shallow soils, leaching losses of phosphorus seem to be governed by mobile organic forms. Consequently, much of the phosphorus losses observed during initial stages of ecosystem development may be due to the leaching of dissolved organic matter. However, the potentially mobile microbial compounds are enzymatically hydrolysable. Forest ecosystems on developed soils already depleted in easily available inorganic phosphorus are characterized by rapid recycling of organic phosphors. That can reduce the production of soluble forms of organic phosphorus as well as increase the enzymatic hydrolysis and subsequent plant uptake of phosphorus bound within dissolved organic matter. This work aims at giving an outlook to the potential role of dissolved organic matter in the cycling of phosphorus within developing forest ecosystems, based on literature evidence and first results of ongoing research.

  13. Sewage-effluent phosphorus: a greater risk to river eutrophication than agricultural phosphorus?

    PubMed

    Jarvie, Helen P; Neal, Colin; Withers, Paul J A

    2006-05-01

    Phosphorus (P) concentrations from water quality monitoring at 54 UK river sites across seven major lowland catchment systems are examined in relation to eutrophication risk and to the relative importance of point and diffuse sources. The over-riding evidence indicates that point (effluent) rather than diffuse (agricultural) sources of phosphorus provide the most significant risk for river eutrophication, even in rural areas with high agricultural phosphorus losses. Traditionally, the relative importance of point and diffuse sources has been assessed from annual P flux budgets, which are often dominated by diffuse inputs in storm runoff from intensively managed agricultural land. However, the ecological risk associated with nuisance algal growth in rivers is largely linked to soluble reactive phosphorus (SRP) concentrations during times of ecological sensitivity (spring/summer low-flow periods), when biological activity is at its highest. The relationships between SRP and total phosphorus (TP; total dissolved P+suspended particulate P) concentrations within UK rivers are evaluated in relation to flow and boron (B; a tracer of sewage effluent). SRP is the dominant P fraction (average 67% of TP) in all of the rivers monitored, with higher percentages at low flows. In most of the rivers the highest SRP concentrations occur under low-flow conditions and SRP concentrations are diluted as flows increase, which is indicative of point, rather than diffuse, sources. Strong positive correlations between SRP and B (also TP and B) across all the 54 river monitoring sites also confirm the primary importance of point source controls of phosphorus concentrations in these rivers, particularly during spring and summer low flows, which are times of greatest eutrophication risk. Particulate phosphorus (PP) may form a significant proportion of the phosphorus load to rivers, particularly during winter storm events, but this is of questionable relevance for river eutrophication

  14. Legume nodules from nutrient-poor soils exhibit high plasticity of cellular phosphorus recycling and conservation during variable phosphorus supply.

    PubMed

    Vardien, Waafeka; Steenkamp, Emma T; Valentine, Alexander J

    2016-02-01

    Nitrogen fixing legumes rely on phosphorus for nodule formation, nodule function and the energy costs of fixation. Phosphorus is however very limited in soils, especially in ancient sandstone-derived soils such as those in the Cape Floristic Region of South Africa. Plants growing in such areas have evolved the ability to tolerate phosphorus stress by eliciting an array of physiological and biochemical responses. In this study we investigated the effects of phosphorus limitation on N2 fixation and phosphorus recycling in the nodules of Virgilia divaricata (Adamson), a legume native to the Cape Floristic Region. In particular, we focused on nutrient acquisition efficiencies, phosphorus fractions and the exudation and accumulation of phosphatases. Our finding indicate that during low phosphorus supply, V. divaricata internally recycles phosphorus and has a lower uptake rate of phosphorus, as well as lower levels adenylates but greater levels of phosphohydrolase exudation suggesting it engages in recycling internal nodule phosphorus pools and making use of alternate bypass routes in order to conserve phosphorus.

  15. Phosphorus homeostasis in normal health and in chronic kidney disease patients with special emphasis on dietary phosphorus intake.

    PubMed

    Uribarri, Jaime

    2007-01-01

    Elevated serum phosphorus has been identified as a cardiovascular risk factor in chronic kidney disease (CKD) patients and a clear understanding of phosphorus homeostasis is very important for practicing nephrologists. At any particular point, serum phosphorus levels reflect the balance between movements of this mineral from and into the intestine, bone, intracellular space, and kidneys. We briefly review here all these exchanges with a particular emphasis on dietary phosphorus intake. Despite all the oral phosphorus binders currently available in the market, dietary restriction of this mineral remains a cornerstone for the prevention and treatment of hyperphosphatemia. An effective restriction of dietary intake of phosphorus requires prescription of a moderate protein intake (0.9-1.0 g/kg/day) and restricted consumption of highly processed fast and convenience foods. Phosphorus added during food processing is an important source of this mineral because of its magnitude and high bioavailabilty. Moreover, as food manufacturers are not required to label the amount of phosphorus added during food processing, a significant amount of the current daily phosphorus intake remains unaccounted when estimating phosphorus intake in CKD patients. The recent development of low phosphorus-containing food products represents a very useful addition for CKD patients.

  16. Phosphorus Recycling from an Unexplored Source by Polyphosphate Accumulating Microalgae and Cyanobacteria—A Step to Phosphorus Security in Agriculture

    PubMed Central

    Mukherjee, Chandan; Chowdhury, Rajojit; Ray, Krishna

    2015-01-01

    Phosphorus (P), an essential element required for crop growth has no substitute. The global food security depends on phosphorus availability in soil for crop production. World phosphorus reserves are fast depleting and with an annual increase of 2.3% in phosphorus demand, the current reserves will be exhausted in coming 50–100 years. India and other Western countries are forced to import phosphorus fertilizers at high costs to meet their agricultural demands due to uneven distribution of phosphate rocks on earth. The present study from India, aims to draw attention to an unnoticed source of phosphorus being wasted as parboiled rice mill effluent and subsequent bio-recovery of the valuable element from this unconventional source. The research was conducted in West Bengal, India, a state with the highest number of parboiled rice mills where its effluent carries on an average ~40 mg/L of soluble phosphorus. Technology to recover and recycle this wastewater P in India in a simple, inexpensive mode is yet to be optimized. Our strategy to use microalgae, Chlorella sp. and cyanobacteria, Cyanobacterium sp., Lyngbya sp., and Anabaena sp. to sequester the excess phosphorus from the effluent as polyphosphate inclusions and its subsequent recycling as slow and moderate release phosphorus biofertilizers to aid plant growth, preventing phosphorus loss and pollution, is a contemporary venture to meet the need of the hour. These polyphosphate accumulating microorganisms play a dual role of remediation and recovery of phosphorus, preliminarily validated in laboratory scale. PMID:26733966

  17. Potential Impact of Dietary Choices on Phosphorus Recycling and Global Phosphorus Footprints: The Case of the Average Australian City

    PubMed Central

    Metson, Geneviève S.; Cordell, Dana; Ridoutt, Brad

    2016-01-01

    Changes in human diets, population increases, farming practices, and globalized food chains have led to dramatic increases in the demand for phosphorus fertilizers. Long-term food security and water quality are, however, threatened by such increased phosphorus consumption, because the world’s main source, phosphate rock, is an increasingly scarce resource. At the same time, losses of phosphorus from farms and cities have caused widespread water pollution. As one of the major factors contributing to increased phosphorus demand, dietary choices can play a key role in changing our resource consumption pathway. Importantly, the effects of dietary choices on phosphorus management are twofold: First, dietary choices affect a person or region’s “phosphorus footprint” – the magnitude of mined phosphate required to meet food demand. Second, dietary choices affect the magnitude of phosphorus content in human excreta and hence the recycling- and pollution-potential of phosphorus in sanitation systems. When considering options and impacts of interventions at the city scale (e.g., potential for recycling), dietary changes may be undervalued as a solution toward phosphorus sustainability. For example, in an average Australian city, a vegetable-based diet could marginally increase phosphorus in human excreta (an 8% increase). However, such a shift could simultaneously dramatically decrease the mined phosphate required to meet the city resident’s annual food demand by 72%. Taking a multi-scalar perspective is therefore key to fully exploring dietary choices as one of the tools for sustainable phosphorus management. PMID:27617261

  18. Phosphorus Recycling from an Unexplored Source by Polyphosphate Accumulating Microalgae and Cyanobacteria-A Step to Phosphorus Security in Agriculture.

    PubMed

    Mukherjee, Chandan; Chowdhury, Rajojit; Ray, Krishna

    2015-01-01

    Phosphorus (P), an essential element required for crop growth has no substitute. The global food security depends on phosphorus availability in soil for crop production. World phosphorus reserves are fast depleting and with an annual increase of 2.3% in phosphorus demand, the current reserves will be exhausted in coming 50-100 years. India and other Western countries are forced to import phosphorus fertilizers at high costs to meet their agricultural demands due to uneven distribution of phosphate rocks on earth. The present study from India, aims to draw attention to an unnoticed source of phosphorus being wasted as parboiled rice mill effluent and subsequent bio-recovery of the valuable element from this unconventional source. The research was conducted in West Bengal, India, a state with the highest number of parboiled rice mills where its effluent carries on an average ~40 mg/L of soluble phosphorus. Technology to recover and recycle this wastewater P in India in a simple, inexpensive mode is yet to be optimized. Our strategy to use microalgae, Chlorella sp. and cyanobacteria, Cyanobacterium sp., Lyngbya sp., and Anabaena sp. to sequester the excess phosphorus from the effluent as polyphosphate inclusions and its subsequent recycling as slow and moderate release phosphorus biofertilizers to aid plant growth, preventing phosphorus loss and pollution, is a contemporary venture to meet the need of the hour. These polyphosphate accumulating microorganisms play a dual role of remediation and recovery of phosphorus, preliminarily validated in laboratory scale.

  19. Competition for phosphorus: differential uptake from dual-isotope-labeled soil interspaces between shrub and grass

    SciTech Connect

    Caldwell, M.M.; Eissenstat, D.M.; Richards, J.H.; Allen, M.F.

    1985-07-26

    Two species of Agropyron grass differed strikingly in their capacity to compete for phosphate in soil interspaces shared with a common competitor, the sagebrush Artemisia tridentata. Of the total phosphorus-32 and -33 absorbed by Artemisia, 86% was from the interspace shared with Agropyron spicatum and only 14% from that shared with Agropyron desertorum. Actively absorbing mycorrhizal roots of Agropyron and Artemisia were present in both interspaces, where competition for the labeled phosphate occurred. The results have important implications about the way in which plants compete for resources below ground in both natural plant communities and agricultural intercropping systems.

  20. [Vertical distribution patterns of nitrogen, phosphorus, and potassium in Chinese pine forest soils developed from different parent materials in Songshan Mountain Nature Reserve, Beijing of China].

    PubMed

    Gou, Li-hui; Sun, Zhao-di; Nie, Li-shui; Luo, Pan-pan; Wu, Ji-Gui; Xu, Wu-de

    2013-04-01

    Taking the soils developed from two kinds of parent materials (granite and limestone) under Pinus tabulaeformis forest at the same altitude in Songshan Mountain Nature Reserve of Beijing as test objects, this paper studied the vertical distribution patterns of soil total nitrogen, available phosphorus, and available potassium. The soil developed from granite had the total nitrogen, available phosphorus, and available potassium contents being 1.61-2. 35 g kg-1, 5. 84-10.74 mg kg- 1, and 39.33-93.66 mg kg-1, while that developed from limestone had the total nitrogen, available phosphorus, and available potassium contents being 1. 69 -2. 36 g kg-1, 4.45-8.57 mg . kg-1, and 60.66-124.00 mg kg-1, respectively. The total nitrogen, available phosphorus, and available potassium contents in the two soils were the highest in 0-10 cm layer, decreased with increasing depth, and had significant differences between different layers, showing that the soil total nitrogen, available phosphorus, and available potassium had a strong tendency to accumulate in surface layer. Such a tendency was more obvious for the soil developed from limestone. The paired t-test for the two soils indicated that the total nitrogen content in different layers had no significant difference, whereas the available phosphorus content in 0-10 cm layer and the available potassium content in 10-20 cm layer differed significantly.

  1. Effect of phosphorus stress on Microcystis aeruginosa growth and phosphorus uptake

    PubMed Central

    Ghaffar, Sajeela; Stevenson, R. Jan; Khan, Zahiruddin

    2017-01-01

    This study was designed to advance understanding of phosphorus regulation of Microcystis aeruginosa growth, phosphorus uptake and storage in changing phosphorus (P) conditions as would occur in lakes. We hypothesized that Microcystis growth and nutrient uptake would fit classic models by Monod, Droop, and Michaelis-Menten in these changing conditions. Microcystis grown in luxury nutrient concentrations was transferred to treatments with phosphorus concentrations ranging from 0–256 μg P∙L-1 and luxury nitrogen. Dissolved phosphorus concentration, cell phosphorus quota, P uptake rate and cell densities were measured at day 3 and 6. Results showed little relationship to predicted models. Microcystis growth was asymptotically related to P treatment from day 0–3, fitting Monod model well, but negatively related to P treatment and cell quota from day 3–6. From day 0–3, cell quota was negatively related to P treatments at <2 μg∙L-1, but increased slightly at higher P. Cell quota decreased greatly in low P treatments from day 3–6, which may have enabled high growths in low P treatments. P uptake was positively and linearly related to P treatment during both periods. Negative uptake rates and increases in measured culture phosphorus concentrations to 5 μg∙L-1 in the lowest P treatments indicated P leaked from cells into culture medium. This leakage during early stages of the experiment may have been sufficient to stimulate metabolism and use of intracellular P stores in low P treatments for rapid growth. Our study shows P regulation of Microcystis growth can be complex as a result of changing P concentrations, and this complexity may be important for modeling Microcystis for nutrient and ecosystem management. PMID:28328927

  2. No independent association of serum phosphorus with risk for death or progression to end-stage renal disease in a large screen for chronic kidney disease.

    PubMed

    Mehrotra, Rajnish; Peralta, Carmen A; Chen, Shu-Cheng; Li, Suying; Sachs, Michael; Shah, Anuja; Norris, Keith; Saab, Georges; Whaley-Connell, Adam; Kestenbaum, Bryan; McCullough, Peter A

    2013-11-01

    Whether higher serum phosphorus levels are associated with a higher risk for death and/or progression of chronic kidney disease (CKD) is not well established, and whether the association is confounded by access and barriers to care is unknown. To answer these questions, data of 10,672 individuals identified to have CKD (estimated glomerular filtration rate <60 ml/min per 1.73 m(2)) from those participating in a community-based screening program were analyzed. Over a median follow-up of 2.3 years, there was no association between quartiles of serum phosphorus and all-cause mortality (adjusted hazards ratio for serum phosphorus over 3.3 to 3.7, over 3.7 to 4.1, and over 4.1 mg/dl, respectively: 1.22 (0.95-1.56), 1.00 (0.76-1.32), and 1.00 (0.75-1.33); reference, serum phosphorus of 3.3 mg/dl and below). Individuals in the highest quartile for serum phosphorus had a significantly higher risk for progression to end-stage renal disease (ESRD) (unadjusted hazards ratio, 6.72 (4.16-10.85)); however, the risk became nonsignificant on adjustment for potential confounders. There was no appreciable change in hazards ratio with inclusion of variables related to access and barriers to care. Additional analyses in subgroups based on 12 different variables yielded similar negative associations. Thus, in the largest cohort of individuals with early-stage CKD to date, we could not validate an independent association of serum phosphorus with risk for death or progression to ESRD.

  3. Amendment in phosphorus levels moderate the chromium toxicity in Raphanus sativus L. as assayed by antioxidant enzymes activities.

    PubMed

    Sayantan, D; Shardendu

    2013-09-01

    Chromium (Z=24), a d-block element, is a potent carcinogen, whereas phosphorus is an essential and limiting nutrient for the plant growth and development. This study undertakes the role of phosphorus in moderating the chromium toxicity in Raphanus sativus L., as both of them compete with each other during the uptake process. Two-factor complete randomized experiment (5 chromium × 5 phosphorus concentrations) was conducted for twenty eight days in green house. The individuals of R. sativus were grown in pots supplied with all essential nutrients. The toxic effects of chromium and the moderation of toxicity due to phosphorus amendment were determined as accumulation of chromium, nitrogen, phosphorus in root tissues and their effects were also examined in the changes in biomass, chlorophyll and antioxidant enzyme levels. Cr and N accumulation were almost doubled at the highest concentration of Cr supply, without any P amendment, whereas at the highest P concentration (125 mM), the accumulation was reduced to almost half. A significant reduction in toxic effects of Cr was determined as there was three-fold increase in total chlorophyll and biomass at the highest P amendment. Antioxidant enzymes like superoxide dismutase, catalase, peroxidase and lipid peroxidation were analyzed at various levels of Cr each amended with five levels of P. It was observed that at highest level of P amendment, the reduction percentage in toxicity was 33, 44, 39 and 44, correspondingly. Conclusively, the phosphorus amendment moderates the toxicity caused by the supplied chromium in R. sativus. This finding can be utilized to develop a novel technology for the amelioration of chromium stressed fields.

  4. Phosphorus limitation strategy to increase propionic acid flux towards 3-hydroxyvaleric acid monomers in Cupriavidus necator.

    PubMed

    Grousseau, Estelle; Blanchet, Elise; Déléris, Stéphane; Albuquerque, Maria G E; Paul, Etienne; Uribelarrea, Jean-Louis

    2014-02-01

    Properties of polyhydroxybutyrate-co-hydroxyvalerate (P(3HB-co-3HV)) depend on their 3HV content. 3HV can be produced by Cupriavidus necator from propionic acid. Few studies explored carbon distribution and dynamics of 3HV and 3HB monomers production, and none of them have been done with phosphorus as limiting nutrient. In this study, fed-batch cultures of C. necator with propionic acid, as sole carbon source or mixed with butyric acid, were performed. Phosphorus deficiency allowed sustaining 3HV production rate and decreasing 3HB production rate, leading to an instant production of up to 100% of 3HV. When a residual growth is sustained by a phosphorus feeding, the maximum 3HV percentage produced from propionic acid is limited to 33% (Mole.Mole(-1)). The association of a second carbon source like butyric acid lead to higher conversion of propionic acid into 3HV. This study showed the importance of the limiting nutrient and of the culture strategy to get the appropriate product.

  5. Phosphorus release rates from sediments and pollutant characteristics in Han River, Seoul, Korea.

    PubMed

    Kim, Lee-Hyung; Choi, Euiso; Gil, Kyung-Ik; Stenstrom, Michael K

    2004-04-05

    The Han River is 469.7-km long and drains a 26219-km(2) watershed. The sediments in the river are highly polluted due to inputs from upstream tributaries as well as partially treated municipal wastewaters that are discharged to the river. The water quality and strategy for control are important because the river is the primary drinking water supply for the City of Seoul, as well as being a major source for irrigation and industrial water. The Jamsil submerged dam partitions the river to isolate an upstream area for drinking water, but also captures sediments. Samples from four sites were studied to determine sediment pollutant concentrations and phosphorus release rates. Phosphorus tends to desorb from sediments when the concentration of overlying water is less than 1.4 mg/l. Water column P concentrations range from 0.04 to 0.1 mg/l, which suggests that sediments will act as a P source. In a series of batch experiments, P was released at approximately 15-20 mg/m(2)week in the winter (1-5 degrees C) and as much as 90 mg/m(2)week in the summer (20-24 degrees C), and is also a function of pH and dissolved oxygen concentration. The sediment total phosphorus concentration, which averages 833 mg/kg, is evenly distributed among non-apatite-P (33%), apatite-P (32%) and residual-P (34%). An equilibrium model is proposed to describe release rate.

  6. Microstructural characterization of superalloy 718 with boron and phosphorus additions

    SciTech Connect

    Horton, J.A.; McKamey, C.G.; Miller, M.K.; Cao, W.D.; Kennedy, R.L.

    1997-06-01

    Boron and phosphorus additions are known to improve the stress rupture properties of IN-718. One possible mechanism to explain this property improvement relies on the boron and phosphorus additions slowing down the growth of {gamma}{double_prime} and {gamma}{prime} precipitates during high temperature service or aging. However, atom probe analysis found no segregation of boron and phosphorus to {gamma}-{gamma}{double_prime} or to {gamma}-{gamma}{prime} interfaces in the alloys with the high boron and high phosphorus levels. No difference in growth rates were found by transmission electron microscopy in the sizes of the {gamma}{double_prime} or {gamma}{prime} in alloys with high phosphorus and high boron as compared to commercial alloys and to alloys with even lower levels of phosphorus and boron. Atom probe analysis further found that much of the phosphorus, boron, and carbon segregated to grain boundaries. Creep curves comparing the alloys with high levels of phosphorus and boron and alloys with low levels of phosphorus and boron show a large difference in strain rate in the first hours of the test. These results suggest that the boron and phosphorus may have a direct effect on dislocation mobility by some pinning mechanism.

  7. [Phosphorus rhizosphere depletion effect of four aquatic plants].

    PubMed

    Wang, Zhen-yu; Wen, Sheng-fang; Xing, Bao-shan; Gao, Dong-mei; Li, Feng-min; Hu, Hong-ying; Sakoda, Akiyoshi; Sagehashi, Masaki

    2008-09-01

    Four aquatic plants (Alternanthera philoxeroides, Typha latifolia, Sagittaria sagittifolia, Phragmites communis ) were cultured on P-enriched soil in a pot experiment to assess the phosphorus rhizosphere depletion effect and analysis the ratio of root to shoot, root morphology, phosphorus uptake efficiency and phosphorus use efficiency. An obvious variation in P concentration of the soil in the rhizophere and non- rhizophere was observed. Compared with the non-rhizosphere (available P: 167.53 microg x g(-1)), the available P in the rhizosphere soil of Alternanthera philoxeroides, Typha latifolia, Sagittaria sagittifolia and Phragmites communis was reduced to 80.17, 124.37, 155.38 and 161.75 microg x g(-1) respectively, with 81%, 42%, 18% and 16% reduction ratio of water-soluble phosphorus. More effective phosphorus depletion was achieved in Alternanthera philoxeroides by higher phosphorus uptake efficiency (1.32 mg x m(-1)), while rooting system was small and phosphorus use efficiency was low (0.34 g x mg(-1)). Phosphorus uptake efficiency of Typha latjfolia is much lower (0.52 mg x m(-1)) than that of Alternanthera philoxeroides, however, its strong rooting system enhanced soil exploration, with higher phosphorus use efficiency (0.64 g x mg(-1)) and the ratio of root to shoot (0.35). Alternantshera philoxeroides and Typha latfolia were more effective in phosphorus depletion of the rhizosphere soil than that in Sagittaria sagittifolia and Phragmites communis.

  8. Patient education for phosphorus management in chronic kidney disease

    PubMed Central

    Kalantar-Zadeh, Kamyar

    2013-01-01

    Objectives: This review explores the challenges and solutions in educating patients with chronic kidney disease (CKD) to lower serum phosphorus while avoiding protein insufficiency and hypercalcemia. Methods: A literature search including terms “hyperphosphatemia,” “patient education,” “food fatigue,” “hypercalcemia,” and “phosphorus–protein ratio” was undertaken using PubMed. Results: Hyperphosphatemia is a strong predictor of mortality in advanced CKD and is remediated via diet, phosphorus binders, and dialysis. Dietary counseling should encourage the consumption of foods with the least amount of inorganic or absorbable phosphorus, low phosphorus-to-protein ratios, and adequate protein content, and discourage excessive calcium intake in high-risk patients. Emerging educational initiatives include food labeling using a “traffic light” scheme, motivational interviewing techniques, and the Phosphate Education Program – whereby patients no longer have to memorize the phosphorus content of each individual food component, but only a “phosphorus unit” value for a limited number of food groups. Phosphorus binders are associated with a clear survival advantage in CKD patients, overcome the limitations associated with dietary phosphorus restriction, and permit a more flexible approach to achieving normalization of phosphorus levels. Conclusion: Patient education on phosphorus and calcium management can improve concordance and adherence and empower patients to collaborate actively for optimal control of mineral metabolism. PMID:23667310

  9. A biological phosphorus removal potential test for wastewaters.

    PubMed

    Park, J K; Whang, L M; Wang, J C; Novotny, G

    2001-01-01

    A simple test was proposed to assess whether phosphorus in a wastewater can be removed using a biological phosphorus removal (BPR) process. The test includes the measurement of phosphorus release during 2 hours of the anaerobic stage in a batch reactor containing phosphorus-accumulating organisms (PAOs) and estimation of the effluent phosphorus concentration using biochemical relationships. The BPR potential test developed allowed for the successful evaluation of BPR feasibility for five wastewater samples. The BPR potential test was validated by comparing the test results with the effluent phosphorus concentrations measured in a sequencing batch reactor (SBR). An effluent phosphorus concentration of 1.9 mg P/L predicted for the BPR potential test performed was close to the effluent phosphorus concentration of 1.8 mg P/L obtained from an SBR on the same day. During the anaerobic stage, phosphorus release was significantly affected by the sludge concentration initially, but became insignificant after 2 hours. The initial sludge concentration affected the phosphorus release rate; thus, it is recommended that the BPR potential test be conducted at a target mixed liquor volatile suspended solids concentration. It is also recommended that the BPR potential test be conducted at the site where the PAO-containing sludge is available and the wastewater sample can be delivered at 4 degrees C in less than 24 hours. The PAOs in different sludges had almost identical phosphorus release after 2 hours; however, the characteristics of facultative bacteria in sludges affected the phosphorus release. If the wastewater is prefermented for at least 3 days before the BPR potential test, the amount of phosphorus released by various PAO-containing sludges is expected to be identical.

  10. Visualizing Alternative Phosphorus Scenarios for Future Food Security.

    PubMed

    Neset, Tina-Simone; Cordell, Dana; Mohr, Steve; VanRiper, Froggi; White, Stuart

    2016-01-01

    The impact of global phosphorus scarcity on food security has increasingly been the focus of scientific studies over the past decade. However, systematic analyses of alternative futures for phosphorus supply and demand throughout the food system are still rare and provide limited inclusion of key stakeholders. Addressing global phosphorus scarcity requires an integrated approach exploring potential demand reduction as well as recycling opportunities. This implies recovering phosphorus from multiple sources, such as food waste, manure, and excreta, as well as exploring novel opportunities to reduce the long-term demand for phosphorus in food production such as changing diets. Presently, there is a lack of stakeholder and scientific consensus around priority measures. To therefore enable exploration of multiple pathways and facilitate a stakeholder dialog on the technical, behavioral, and institutional changes required to meet long-term future phosphorus demand, this paper introduces an interactive web-based tool, designed for visualizing global phosphorus scenarios in real time. The interactive global phosphorus scenario tool builds on several demand and supply side measures that can be selected and manipulated interactively by the user. It provides a platform to facilitate stakeholder dialog to plan for a soft landing and identify a suite of concrete priority options, such as investing in agricultural phosphorus use efficiency, or renewable fertilizers derived from phosphorus recovered from wastewater and food waste, to determine how phosphorus demand to meet future food security could be attained on a global scale in 2040 and 2070. This paper presents four example scenarios, including (1) the potential of full recovery of human excreta, (2) the challenge of a potential increase in non-food phosphorus demand, (3) the potential of decreased animal product consumption, and (4) the potential decrease in phosphorus demand from increased efficiency and yield gains in

  11. Visualizing Alternative Phosphorus Scenarios for Future Food Security

    PubMed Central

    Neset, Tina-Simone; Cordell, Dana; Mohr, Steve; VanRiper, Froggi; White, Stuart

    2016-01-01

    The impact of global phosphorus scarcity on food security has increasingly been the focus of scientific studies over the past decade. However, systematic analyses of alternative futures for phosphorus supply and demand throughout the food system are still rare and provide limited inclusion of key stakeholders. Addressing global phosphorus scarcity requires an integrated approach exploring potential demand reduction as well as recycling opportunities. This implies recovering phosphorus from multiple sources, such as food waste, manure, and excreta, as well as exploring novel opportunities to reduce the long-term demand for phosphorus in food production such as changing diets. Presently, there is a lack of stakeholder and scientific consensus around priority measures. To therefore enable exploration of multiple pathways and facilitate a stakeholder dialog on the technical, behavioral, and institutional changes required to meet long-term future phosphorus demand, this paper introduces an interactive web-based tool, designed for visualizing global phosphorus scenarios in real time. The interactive global phosphorus scenario tool builds on several demand and supply side measures that can be selected and manipulated interactively by the user. It provides a platform to facilitate stakeholder dialog to plan for a soft landing and identify a suite of concrete priority options, such as investing in agricultural phosphorus use efficiency, or renewable fertilizers derived from phosphorus recovered from wastewater and food waste, to determine how phosphorus demand to meet future food security could be attained on a global scale in 2040 and 2070. This paper presents four example scenarios, including (1) the potential of full recovery of human excreta, (2) the challenge of a potential increase in non-food phosphorus demand, (3) the potential of decreased animal product consumption, and (4) the potential decrease in phosphorus demand from increased efficiency and yield gains in

  12. [Research progress on phosphorus budgets and regulations in reservoirs].

    PubMed

    Shen, Xiao; Li, Xu; Zhang, Wang-shou

    2014-12-01

    Phosphorus is an important limiting factor of water eutrophication. A clear understanding of its budget and regulated method is fundamental for reservoir ecological health. In order to pro- mote systematic research further and improve phosphorus regulation system, the budget balance of reservoir phosphorus and its influencing factors were concluded, as well as conventional regulation and control measures. In general, the main phosphorus sources of reservoirs include upstream input, overland runoff, industrial and domestic wastewater, aquaculture, atmospheric deposition and sediment release. Upstream input is the largest phosphorus source among them. The principal output path of phosphorus is the flood discharge, the emission load of which is mainly influenced by drainage patterns. In addition, biological harvest also can export a fraction of phosphorus. There are some factors affecting the reservoir phosphorus balance, including reservoirs' function, hydrological conditions, physical and chemical properties of water, etc. Therefore, the phosphorus budgets of different reservoirs vary greatly, according to different seasons and regions. In order to reduce the phosphorus loading in reservoirs, some methods are carried out, including constructed wetlands, prefix reservoir, sediment dredging, biomanipulation, etc. Different methods need to be chosen and combined according to different reservoirs' characteristics and water quality management goals. Thus, in the future research, it is reasonable to highlight reservoir ecological characteristics and proceed to a complete and systematic analysis of the inherent complexity of phosphorus budget and its impact factors for the reservoirs' management. Besides, the interaction between phosphorus budget and other nutrients in reservoirs also needs to be conducted. It is fundamental to reduce the reservoirs' phosphorus loading to establish a scientific and improved management system based on those researches.

  13. Mechanical strain effects on black phosphorus nanoresonators.

    PubMed

    Wang, Cui-Xia; Zhang, Chao; Jiang, Jin-Wu; Park, Harold S; Rabczuk, Timon

    2016-01-14

    We perform classical molecular dynamics simulations to investigate the effects of mechanical strain on single-layer black phosphorus nanoresonators at different temperatures. We find that the resonant frequency is highly anisotropic in black phosphorus due to its intrinsic puckered configuration, and that the quality factor in the armchair direction is higher than in the zigzag direction at room temperature. The quality factors are also found to be intrinsically larger than those in graphene and MoS2 nanoresonators. The quality factors can be increased by more than a factor of two by applying tensile strain, with uniaxial strain in the armchair direction being the most effective. However, there is an upper bound for the quality factor increase due to nonlinear effects at large strains, after which the quality factor decreases. The tension induced nonlinear effect is stronger along the zigzag direction, resulting in a smaller maximum strain for quality factor enhancement.

  14. Peak phosphorus - peak food? The need to close the phosphorus cycle.

    PubMed

    Rhodes, Christopher J

    2013-01-01

    The peak in the world production of phosphorus has been predicted to occur in 2033, based on world reserves of rock phosphate (URR) reckoned at around 24,000 million tonnes (Mt), with around 18,000 Mt remaining. This figure was reckoned-up to 71,000 Mt, by the USGS, in 2012, but a production maximum during the present century is still highly probable. There are complex issues over what the demand will be for phosphorus in the future, as measured against a rising population (from 7 billion to over 9 billion in 2050), and a greater per capita demand for fertiliser to grow more grain, in part to feed animals and meet a rising demand for meat by a human species that is not merely more populous but more affluent. As a counterweight to this, we may expect that greater efficiencies in the use of phosphorus - including recycling from farms and of human and animal waste - will reduce the per capita demand for phosphate rock. The unseen game changer is peak oil, since phosphate is mined and recovered using machinery powered by liquid fuels refined from crude oil. Hence, peak oil and peak phosphorus might appear as conjoined twins. There is no unequivocal case that we can afford to ignore the likelihood of a supply-demand gap for phosphorus occurring sometime this century, and it would be perilous to do so.

  15. Phosphorus Migration During Direct Reduction of Coal Composite High-Phosphorus Iron Ore Pellets

    NASA Astrophysics Data System (ADS)

    Cheng, Cheng; Xue, Qingguo; Wang, Guang; Zhang, Yuanyuan; Wang, Jingsong

    2016-02-01

    This study investigated the direct reduction process and phosphorus migration features of high-phosphorus iron ores using simulated experiments. Results show that iron oxide was successfully reduced, and a Fe-Si-Al slag formed in carbon-bearing pellets at 1473 K (1200 °C). Fluorapatite then began to decompose into Ca3(PO4)2 and CaF2. As the reaction continued, Ca3(PO4)2 and Fe-Si-Al slag reacted quickly with each other to generate CaAl2Si2O8 and P2, while CaF2 turned into SiF4 gas in the presence of high SiO2. A small amount remained in the slag phase and formed CaAl2Si2O8. Further analysis detailed the migration process of the phosphorus into iron phases, as well as the relationship between carburization and phosphorus absorption in the iron phases. As carbon content in the iron phase increased, the austenite grain boundary melted and formed a large quantity of liquid iron which quickly absorbed the phosphorus. Based on the results of simulation and analysis, this paper proposed a method which reduced the absorption of P by the metallic iron formed and reduced P content in metallic iron during direct reduction.

  16. Water Quality Criteria for White Phosphorus

    DTIC Science & Technology

    1987-08-01

    dissolved oxygen, reduction in pH ( acidification ), and increased deposition of fine particulates. White phosphorus is pri- marily transformed in air...that apparently control the distribution and abundance of some biota in the lake , low pH and low dissolved oxygen, are associated with decaying...water, and soil by oxidation. In water, the oxidation rate can be affected by dissolved oxygen concentration, temp- erature, pH , salinity, and the

  17. Anisotropic Thermal Conductivity of Exfoliated Black Phosphorus.

    PubMed

    Jang, Hyejin; Wood, Joshua D; Ryder, Christopher R; Hersam, Mark C; Cahill, David G

    2015-12-22

    The anisotropic thermal conductivity of passivated black phosphorus (BP), a reactive two-dimensional material with strong in-plane anisotropy, is ascertained. The room-temperature thermal conductivity for three crystalline axes of exfoliated BP is measured by time-domain thermo-reflectance. The thermal conductivity along the zigzag direction is ≈2.5 times higher than that of the armchair direction.

  18. Redox chemistry in the phosphorus biogeochemical cycle

    NASA Astrophysics Data System (ADS)

    Pasek, Matthew A.; Sampson, Jacqueline M.; Atlas, Zachary

    2014-10-01

    The element phosphorus (P) controls growth in many ecosystems as the limiting nutrient, where it is broadly considered to reside as pentavalent P in phosphate minerals and organic esters. Exceptions to pentavalent P include phosphine-PH3-a trace atmospheric gas, and phosphite and hypophosphite, P anions that have been detected recently in lightning strikes, eutrophic lakes, geothermal springs, and termite hindguts. Reduced oxidation state P compounds include the phosphonates, characterized by C-P bonds, which bear up to 25% of total organic dissolved phosphorus. Reduced P compounds have been considered to be rare; however, the microbial ability to use reduced P compounds as sole P sources is ubiquitous. Here we show that between 10% and 20% of dissolved P bears a redox state of less than +5 in water samples from central Florida, on average, with some samples bearing almost as much reduced P as phosphate. If the quantity of reduced P observed in the water samples from Florida studied here is broadly characteristic of similar environments on the global scale, it accounts well for the concentration of atmospheric phosphine and provides a rationale for the ubiquity of phosphite utilization genes in nature. Phosphine is generated at a quantity consistent with thermodynamic equilibrium established by the disproportionation reaction of reduced P species. Comprising 10-20% of the total dissolved P inventory in Florida environments, reduced P compounds could hence be a critical part of the phosphorus biogeochemical cycle, and in turn may impact global carbon cycling and methanogenesis.

  19. Biomass fermentation to augment biological phosphorus removal.

    PubMed

    Yuan, Q; Oleszkiewicz, J A

    2010-01-01

    A combination of a lab scale biological phosphorus removal sequencing batch reactor (called mother reactor) and a side-stream biomass fermenter was setup. It was found that when fermented biomass was recirculated back into the mother reactor as volatile fatty acid (VFA) supplement, the phosphate concentration in the effluent decreased from 6 in the control reactor to 4.5 mgL(-1) in the effluent from mother reactor. The addition of the fermentation effluent into the mother reactor increased the phosphate and ammonium loads and resulted in deterioration of nitrification. Phosphorus removal and nitrification improved when the fermented biomass was separated from the liquid phase using an up-flow system, followed by the addition of MgO to the supernatant to precipitate phosphate and ammonium. Phosphorus removal was further improved by delaying the time of VFA addition into mother reactor during the anaerobic period as soon as denitrification ceased. Biomass fermentation was found to generate 157 mg VFA-COD by fermenting 1g of biomass at a solids retention time of 5d. Acetate (78% of generated COD) and propionic acid (10%) were the major components of the produced VFA. It was concluded that biomass fermentation to augment a biological nutrient removal process can be effective if generated phosphate and ammonia are removed, e.g. through struvite precipitation.

  20. Black Phosphorus Rediscovered: From Bulk to Monolayer.

    PubMed

    Gusmao, Rui; Sofer, Zdenek; Pumera, Martin

    2017-01-23

    Phosphorus is a non-metal with several allotropes, from the highly reactive white phosphorus to the thermodynamically stable black phosphorus (BP) with a puckered orthorhombic layered structure. The bulk form of BP was synthesized for the first time more than a century ago, in 1914, not receiving much attention until very recently rediscovered, in 2014, joining the new wave of 2D layered nanomaterials. BP can be exfoliated to a single sheet structure with tunable direct band, semiconducting, high carrier mobility at room temperature and in-plane anisotropic layered structure. Surface chemistry degradation can still be a holdback for the advancement of BP applications, thus compelling efforts to achieve effective BP passivation are ongoing, such as its integration in van der Waals heterostructures. Currently, BP has been tested as a novel nanomaterial in batteries, transistors, sensors and photonics related fields. In this review we take a look back at BP origin story, taking the path from bulk to nowadays few/single layer. Physical and chemical properties are summarized, highlighting the state-of-the-art in BP applications.

  1. The Cytotoxicity of Layered Black Phosphorus.

    PubMed

    Latiff, Naziah Mohamad; Teo, Wei Zhe; Sofer, Zdenek; Fisher, Adrian C; Pumera, Martin

    2015-09-28

    Black phosphorus (BP), the latest addition to the family of 2D layered materials, has attracted much interest owing to potential optoelectronics, nanoelectronics, and biomedicine applications. Little is known about its toxicity, such as whether it could be as toxic as white phosphorus. In response to the possibility of BP employment into commercial products and biomedical devices, its cytotoxicity to human lung carcinoma epithelial cells (A549) was investigated. Following a 24 h exposure of the cells with different BP concentrations, cell viability assessments were conducted using water-soluble tetrazolium salt (WST-8) and methylthiazolyldiphenyltetrazolium bromide (MTT) assays. The toxicological effects were found to be dose-dependent, with BP reducing cell viabilities to 48% (WST-8) and 34% (MTT) at 50 μg mL(-1) exposure. This toxicity was observed to be generally intermediate between that of graphene oxides and exfoliated transition-metal dichalcogenides (MoS2, WS2, WSe2). The relatively low toxicity paves the way to utilization of black phosphorus.

  2. [Information about phosphorus additives and nutritional counseling].

    PubMed

    Kido, Shinsuke; Nomura, Kengo; Sasaki, Shohei; Shiozaki, Yuji; Segawa, Hiroko; Tatsumi, Sawako

    2012-10-01

    Hyperphosphatemia is a common disorder in patients with chronic kidney disease (CKD) , and may result in hyperparathyroidism and renal osteodystrophy. Hyperphosphatemia also may contribute to deterioration vascular calcification and increase mortality. Hence, correction and prevention of hyperphosphatemia is a main component of the management of CKD. This goal is usually approached both by administering phosphorus binders and by restricting dietary phosphorus (P) intake. Dietary intake of phosphorus (P) is derived largely from foods with high protein content or food additives and is an important determinant of P balance in patient with CKD. Food additives (PO4) can dramatically increase the amount of P consumed in the daily diet, especially because P is more readily absorbed in its inorganic form. In addition, information about the P content and type in prepared foods is often unavailable or misleading. Therefore, during dietary counseling of patients with CKD, we recommended that they consider both the absolute dietary P content and the P-to-protein ratio of foods and meals including food additives.

  3. Redox chemistry in the phosphorus biogeochemical cycle

    PubMed Central

    Pasek, Matthew A.; Sampson, Jacqueline M.; Atlas, Zachary

    2014-01-01

    The element phosphorus (P) controls growth in many ecosystems as the limiting nutrient, where it is broadly considered to reside as pentavalent P in phosphate minerals and organic esters. Exceptions to pentavalent P include phosphine—PH3—a trace atmospheric gas, and phosphite and hypophosphite, P anions that have been detected recently in lightning strikes, eutrophic lakes, geothermal springs, and termite hindguts. Reduced oxidation state P compounds include the phosphonates, characterized by C−P bonds, which bear up to 25% of total organic dissolved phosphorus. Reduced P compounds have been considered to be rare; however, the microbial ability to use reduced P compounds as sole P sources is ubiquitous. Here we show that between 10% and 20% of dissolved P bears a redox state of less than +5 in water samples from central Florida, on average, with some samples bearing almost as much reduced P as phosphate. If the quantity of reduced P observed in the water samples from Florida studied here is broadly characteristic of similar environments on the global scale, it accounts well for the concentration of atmospheric phosphine and provides a rationale for the ubiquity of phosphite utilization genes in nature. Phosphine is generated at a quantity consistent with thermodynamic equilibrium established by the disproportionation reaction of reduced P species. Comprising 10–20% of the total dissolved P inventory in Florida environments, reduced P compounds could hence be a critical part of the phosphorus biogeochemical cycle, and in turn may impact global carbon cycling and methanogenesis. PMID:25313061

  4. Where is the Phosphorus in Cometary Volatiles?

    NASA Astrophysics Data System (ADS)

    Boice, Daniel C.; de Almeida, Amaury

    2015-08-01

    Phosphorus is a key element in all living organisms but its role in life's origin is not well understood. Phosphorus-bearing compounds have been observed in space, are ubiquitous in meteorites in small quantities, and have been detected as part of the dust component in comets Halley and Wild 2. However, searches for P-bearing species in the gas phase in cometary comae have been unsuccessful. We present results of the first quantitative study of P-bearing molecules in comets to identify likely species containing phosphorus. We found reaction pathways of gas-phase and photolytic chemistry for simple P-bearing molecules likely to be found in comets and important for prebiotic chemistry. We hope to aid future searches for this important element, especially the Rosetta Mission to Comet 67P/Churyumov-Gerasimenko, possibly shedding light on issues of comet formation (time and place) and understanding prebiotic to biotic evolution of life.Acknowledgements: We greatly appreciate support from the NSF Planetary Astronomy Program under Grant No. 0908529 and the Instituto de Astronomia, Geofísica e Ciências Atmosféricas at the University of São Paulo.

  5. Phytate phosphorus hydrolysis in broilers in response to dietary phytase, calcium, and phosphorus concentrations.

    PubMed

    Manangi, M K; Coon, C N

    2008-08-01

    Three 5-d bioassays were conducted to investigate the microbial phytase effect on apparent phytate phosphorus (PP) hydrolysis by 21-d-old broilers using corn-soybean meal basal diets. In Experiment 1, broilers fed corn-soy basal diet [0.7% Ca, 0.4% total P (TP), and 0.12% nonphytate P (NPP)] with 0, 250, 500, 750, 1,000, 1,500, 2,000, and 5,000 FTU of phytase/kg diet produced PP hydrolysis (%) of 43.12, 68.12, 74.7, 85.02, 85.25 92.77, 96.91, and 99.45, respectively. In Experiment 2, broilers fed corn-soy basal (0.5% Ca and 0.17% PP) without added phytase and 0.08, 0.13, 0.18, 0.23, 0.28, 0.33, 0.38, and 0.45% NPP had PP hydrolysis (%) of 8.5, 27.6, 26.4, 28.9, 26.3, 17.1, 21.0, and 27.7, respectively. Broilers fed the same 0.5% Ca basal and NPP concentrations with 1,000 FTU of phytase/kg of diet increased (P < 0.05) PP hydrolysis (%) to 80.9, 75.9, 73.5, 72.2, 68.4, 71.6, 58.3, and 62.5, respectively. Experiment 3 was conducted in the same way as Experiment 2 but Ca was maintained at 0.9% for all diets. Phytate P hydrolysis (%) without addition of phytase in 0.08, 0.13, 0.18, 0.23, 0.28, 0.33, 0.38, and 0.45% NPP-fed groups was 49.2, 19.6, 16.0, 8.0, 9.4, 2.1, 4.0, and 4.2, respectively. The addition of phytase increased (P < 0.05) PP hydrolysis (%) to 85.3, 76.1, 70.0, 76.1, 62.6, 68.6, 67.4, and 63.7, respectively. In conclusion, these studies indicated near-complete hydrolysis (99.45%) of PP at greater dietary phytase (5,000 FTU/kg) supplementation, but maximum TP retention was obtained with only 1,000 FTU of added phytase. Maximum PP hydrolysis occurred for broilers fed diets with 1,000 FTU added phytase when the diets contained the lowest concentration (0.08%) of dietary NPP with either 0.5 or 0.9% dietary Ca concentrations. These data also suggest that broilers fed 0.9% dietary Ca have a greater P physiological threshold before a loss in retention compared with broilers fed lower (0.5%) dietary Ca concentrations with no dietary phytase supplementation.

  6. Phosphorus removal and recovery from domestic wastewater in a novel process of enhanced biological phosphorus removal coupled with crystallization.

    PubMed

    Zou, Haiming; Wang, Yan

    2016-07-01

    A new process of enhanced biological phosphorus removal coupled with crystallization recovery of phosphorus was developed here, where the feasibility of nutrients removal and potential for phosphorus recovery from domestic wastewater was further assessed. Results showed that an excellent nutrients removal and phosphorus recovery performance was achieved, in which the averaged COD, PO4(3-)-P and NO3(-)-N removal efficiencies were 82.6%, 87.5% and 91.6%, respectively and a total of 59.3% of phosphorus was recovered as hydroxyapatite. What's more, crystallization recovery of phosphorus greatly enhanced the biological phosphorus removal efficiency. After the incorporation of the phosphorus recovery column via side-stream, the phosphorus concentration of effluent was significantly decreased ranging from 1.24mg/L to 0.85mg/L, 0.52mg/L and 0.41mg/L at the lateral flow ratios of 0, 0.1, 0.2 and 0.3, respectively. The results obtained here would be beneficial to provide a prospective alternative for phosphorus removal and recovery from wastewater.

  7. The phosphorus cost of agricultural intensification in the tropics.

    PubMed

    Roy, Eric D; Richards, Peter D; Martinelli, Luiz A; Coletta, Luciana Della; Lins, Silvia Rafaela Machado; Vazquez, Felipe Ferraz; Willig, Edwin; Spera, Stephanie A; VanWey, Leah K; Porder, Stephen

    2016-04-18

    Agricultural intensification in the tropics is one way to meet rising global food demand in coming decades(1,2). Although this strategy can potentially spare land from conversion to agriculture(3), it relies on large material inputs. Here we quantify one such material cost, the phosphorus fertilizer required to intensify global crop production atop phosphorus-fixing soils and achieve yields similar to productive temperate agriculture. Phosphorus-fixing soils occur mainly in the tropics, and render added phosphorus less available to crops(4,5). We estimate that intensification of the 8-12% of global croplands overlying phosphorus-fixing soils in 2005 would require 1-4 Tg P yr(-1) to overcome phosphorus fixation, equivalent to 8-25% of global inorganic phosphorus fertilizer consumption that year. This imposed phosphorus 'tax' is in addition to phosphorus added to soils and subsequently harvested in crops, and doubles (2-7 Tg P yr(-1)) for scenarios of cropland extent in 2050(6). Our estimates are informed by local-, state- and national-scale investigations in Brazil, where, more than any other tropical country, low-yielding agriculture has been replaced by intensive production. In the 11 major Brazilian agricultural states, the surplus of added inorganic fertilizer phosphorus retained by soils post harvest is strongly correlated with the fraction of cropland overlying phosphorus-fixing soils (r(2) = 0.84, p < 0.001). Our interviews with 49 farmers in the Brazilian state of Mato Grosso, which produces 8% of the world's soybeans mostly on phosphorus-fixing soils, suggest this phosphorus surplus is required even after three decades of high phosphorus inputs. Our findings in Brazil highlight the need for better understanding of long-term soil phosphorus fixation elsewhere in the tropics. Strategies beyond liming, which is currently widespread in Brazil, are needed to reduce phosphorus retention by phosphorus-fixing soils to better manage the Earth

  8. High Sensitivity, Low Volume Method to Determine Dissolved Phosphorus

    NASA Astrophysics Data System (ADS)

    Haberer, J. L.; Brandes, J. A.

    2001-12-01

    A high sensitivity, low volume method was developed to determine nanomolar concentrations of soluble reactive phosphorus (SRP) using reverse phase HPLC. The technique in determining SRP involved using methods from Strickland and Parsons, 1972 and Karl and Tien, 1992. Various techniques for improving blanks and sensitivity will be discussed. The method was applied to seawater and freshwater samples taken from the estuarine Nueces Delta system, Texas, two sites in the Gulf of Mexico, and within two upland (2400 m) forest catchments in the Peruvian Andes. One catchment was partially deforested within the last 3 years, while the other has remained untouched. Samples in the Gulf of Mexico were taken at a series of coastal and open water stations at various depths. Samples in each of the two upland forest catchments in Peru were obtained at 33.3 m distance intervals along a 100 m reach. Samples were taken in the Nueces River, Texas upland from a marsh estuary and from high and low regions of the marsh. Comparisons are made between the forest catchment sites in addition to comparisons made in the Nueces marsh estuary/river system. Depth profiles of SRP in the Gulf of Mexico are established. Future studies should be conducted to investigate phosphate in sediment pore waters. This method has many potential applications, is scalable across a wide range of sample volumes, and can be automated.

  9. Distribution Characteristics of Phosphorus in the Sediments and Overlying Water of Poyang Lake

    PubMed Central

    Wang, Lingqing; Liang, Tao

    2015-01-01

    Phosphorus (P) is a key indicator of the aquatic organism growth and eutrophication in lakes. The distribution and speciation of P and its release characteristics from sediments were investigated by analyzing sediment and water samples collected during high flow and low flow periods. Results showed that the average concentrations (ranges) of total phosphorus (TP) in the surface and deep water were 0.06 mg L-1 (0.03–0.13 mg L-1) and 0.15 mg L-1 (0.06–0.33 mg L-1), respectively, while the average concentration (range) of TP in sediments was 709.17 mg kg-1 (544.76–932.11 mg kg-1). The concentrations of TP and different forms of P varied spatially in the surface sediments, displaying a decreasing trend from south to north. P also varied topographically from estuarine areas to lake areas. The vertical distribution of TP and different forms of P were observed to decrease as depth increased. The P concentrations during the low flow period were higher than those during the high flow period. Inorganic phosphorus (IP) was the dominant form of P, accounting for 61%–82% of TP. The concentration of bioavailable phosphorus in sediments was relatively large, indicating a high risk of release to overlying water. The simulation experiment of P release from sediments showed that the release was relatively fast in the first 0-5 min and then decreased to a plateau after 1 hr. Approximately 84–89% of the maximum amount of P was released during the first hour. PMID:25938758

  10. Phosphorus, a key to life on the primitive earth

    NASA Technical Reports Server (NTRS)

    Griffith, E. J.; Ponnamperuma, C.; Gabel, N. W.

    1977-01-01

    The phosphorus of the primitive earth was present as phosphates. It is strongly probable that a portion of the phosphate was present as condensed phosphates. The primitive earth was highly deficient in the total available phosphorus until a sufficient quantity of phosphorus weathered from the igneous rocks in which it was entrapped. Approximately three billion years were required for the seas to become saturated. Until this time passed the seas acted as a giant sink for phosphorus, diluting it to the extent that all forms of life were deprived of the vital nutrient. When the seas became saturated, the rate of turnover of the phosphorus increased rapidly. As the seas pulsated, they left the excess precipitate phosphorus as sedimentary rock in locally rich deposits on which life could thrive.

  11. Biological phosphorus removal inhibition by roxarsone in batch culture systems.

    PubMed

    Guo, Qingfeng; Liu, Li; Hu, Zhenhu; Chen, Guowei

    2013-06-01

    Roxarsone has been extensively used in the feed of animals, which is usually excreted unchanged in the manure and eventually enter into animal wastewater, challenging the biological phosphorus removal processes. Knowledge of its inhibition effect is key for guiding treatment of roxarsone-contaminated wastewater, and is unfortunately keeping unclear. We study the inhibition of roxarsone on biological phosphorus removal processes for roxarsone-contaminated wastewater treatment, in terms of the removal and rates of chemical oxygen demand (COD), phosphate. Results showed that presence of roxarsone considerably limited the COD removals, especially at roxarsone concentration exceeding 40 mg L(-1). Additionally, roxarsone inhibited both phosphorus release and uptake processes, consistent with the phosphate profiles during the biological phosphorus removal processes; whereas, roxarsone is more toxic to phosphorus uptake process, than release function. The results indicated that it is roxarsone itself, rather than the inorganic arsenics, inhibit biological phosphorus removal processes within both aerobic and anaerobic roxarsone-contaminated wastewater treatment.

  12. Diversity enhances agricultural productivity via rhizosphere phosphorus facilitation on phosphorus-deficient soils

    PubMed Central

    Li, Long; Li, Shu-Min; Sun, Jian-Hao; Zhou, Li-Li; Bao, Xing-Guo; Zhang, Hong-Gang; Zhang, Fu-Suo

    2007-01-01

    Intercropping, which grows at least two crop species on the same pieces of land at the same time, can increase grain yields greatly. Legume–grass intercrops are known to overyield because of legume nitrogen fixation. However, many agricultural soils are deficient in phosphorus. Here we show that a new mechanism of overyielding, in which phosphorus mobilized by one crop species increases the growth of a second crop species grown in alternate rows, led to large yield increases on phosphorus-deficient soils. In 4 years of field experiments, maize (Zea mays L.) overyielded by 43% and faba bean (Vicia faba L.) overyielded by 26% when intercropped on a low-phosphorus but high-nitrogen soil. We found that overyielding of maize was attributable to below-ground interactions between faba bean and maize in another field experiment. Intercropping with faba bean improved maize grain yield significantly and above-ground biomass marginally significantly, compared with maize grown with wheat, at lower rates of P fertilizer application (<75 kg of P2O5 per hectare), and not significantly at high rate of P application (>112.5 kg of P2O5 per hectare). By using permeable and impermeable root barriers, we found that maize overyielding resulted from its uptake of phosphorus mobilized by the acidification of the rhizosphere via faba bean root release of organic acids and protons. Faba bean overyielded because its growth season and rooting depth differed from maize. The large increase in yields from intercropping on low-phosphorus soils is likely to be especially important on heavily weathered soils. PMID:17592130

  13. Benthic phosphorus regeneration in the Potomac River Estuary

    USGS Publications Warehouse

    Callender, E.

    1982-01-01

    The flux of dissolved reactive phosphate from Potomac riverine and estuarine sediments is controlled by processes occurring at the water-sediment interface and within surficial sediment. In situ benthic fluxes (0.1 to 2.0 mmoles m-2 day-1) are generally five to ten times higher than calculated diffusive fluxes (0.020 to 0.30 mmoles m-2 day-1). The discrepancy between the two flux estimates is greatest in the transition zone (river mile 50 to 70) and is attributd to macrofaunal irrigation. Both in situ and diffusive fluxes of dissolved reactive phosphate from Potomac tidal river sediments are low while those from anoxic lower estuarine sediments are high. The net accumulation rate of phosphorus in benthic sediment exhibits an inverse pattern. Thus a large fraction of phosphorus is retained by Potomac tidal river sediments, which contain a surficial oxidized layer and oligochaete worms tolerant of low oxygen conditions, and a large fraction of phosphorus is released from anoxic lower estuary sediments. Tidal river sediment pore waters are in equilibrium with amorphous Fe (OH)3 while lower estuary pore waters are significantly undersaturated with respect to this phase. Benthic regeneration of dissolved reactive phosphorus is sufficient to supply all the phosphorus requirements for net primary production in the lower tidal river and transition-zone waters of the Potomac River Estuary. Benthic regeneration supplies approximately 25% as much phosphorus as inputs from sewage treatment plants and 10% of all phosphorus inputs to the tidal Potomac River. When all available point source phosphorus data are put into a steady-state conservation of mass model and reasonable coefficients for uptake of dissolved phosphorus, remineralization of particulate phosphorus, and sedimentation of particulate phosphorus are used in the model, a reasonably accurate simulation of dissolved and particulate phosphorus in the water column is obtained for the summer of 1980. ?? 1982 Dr W. Junk

  14. Phosphorus Fate and Dynamics in Greywater Biofiltration Systems.

    PubMed

    Fowdar, Harsha S; Hatt, Belinda E; Cresswell, Tom; Harrison, Jennifer J; Cook, Perran L M; Deletic, Ana

    2017-02-21

    Phosphorus, a critical environmental pollutant, is effectively removed from stormwater by biofiltration systems, mainly via sedimentation and straining. However, the fate of dissolved inflow phosphorus concentrations in these systems is unknown. Given the growing interest in using biofiltration systems to treat other polluted waters, for example greywater, such an understanding is imperative to optimize designs for successful long-term performance. A mass balance method and a radiotracer, (32)P (as H3PO4), were used to investigate the partitioning of phosphorus (concentrations of 2.5-3.5 mg/L, >80% was in dissolved inorganic form) between the various biofilter components at the laboratory scale. Planted columns maintained a phosphorus removal efficiency of >95% over the 15-week study period. Plant storage was found to be the dominant phosphorus sink (64% on average). Approximately 60% of the phosphorus retained in the filter media was recovered in the top 0-6 cm. The (32)P tracer results indicate that adsorption is the immediate primary fate of dissolved phosphorus in the system (up to 57% of input P). Plant assimilation occurs at other times, potentially liberating sorption sites for processing of subsequent incoming phosphorus. Plants with high nutrient uptake capacities and the ability to efficiently extract soil phosphorus, for example Carex appressa, are, thus, recommended for use in greywater biofilters.

  15. NMR and mass spectrometry of phosphorus in wetlands

    USGS Publications Warehouse

    El-Rifai, H.; Heerboth, M.; Gedris, T.E.; Newman, S.; Orem, W.; Cooper, W.T.

    2008-01-01

    There is at present little information on the long-term stability of phosphorus sequestered in wetlands. Phosphorus sequestered during high loading periods may be relatively unstable and easily remobilized following changes in nutrient status or hydrological regime, but the chemical forms of sequestered phosphorus that do remobilize are largely unknown at this time. A lack of suitable analytical techniques has contributed to this dearth of knowledge regarding the stability of soil organic phosphorus. We analysed phosphorus in soils from the 'head' of Rescue Strand tree island and an adjacent marsh in the Florida Everglades by 31P nuclear magnetic resonance (NMR) spectroscopy and high-resolution mass spectrometry. Tree islands are important areas of biodiversity within the Everglades and offer a unique opportunity to study phosphorus sequestration because they are exposed to large phosphorus loads and appear to be natural nutrient sinks. The 31P NMR profiling of extracts from surface and sediment samples in the tree island indicates that phosphorus input to Rescue Strand tree island soils is mostly in the form of inorganic ortho-phosphate and is either refractory when deposited or rapidly recycled by the native vegetation into a stable phosphorus pool largely resistant to re-utilization by plants or microbes. Mass spectrometry revealed the presence of inositol hexakisphosphate, a common organic monophosphate ester not previously observed in Everglades' soils. ?? 2008 The Authors.

  16. The composition, dynamics, and ecological significance of soil organic phosphorus

    NASA Astrophysics Data System (ADS)

    Turner, B. L.

    2011-12-01

    Studies of plant nutrition often consider only inorganic phosphate to be biologically available, yet organic phosphorus is abundant in soils and its turnover can account for the majority of the phosphorus taken up by natural vegetation. Soil organic phosphorus occurs in a variety of chemical forms, including phosphomonoesters, phosphodiesters, phosphonates, and organic polyphosphates, which can be determined conveniently by alkaline extraction and solution phosphorus-31 nuclear magnetic resonance spectroscopy. The inositol phosphates are of particular interest, because they are widespread in soils, yet only one of the four stereoisomers of inositol hexakisphosphate present in soils has been detected elsewhere in the environment. The mobility and bioavailability of the various organic phosphorus compounds differs depending on factors such as their interaction with metal oxide surfaces, which leads to a disparity between the forms of organic phosphorus entering the soil and the composition of the stable soil organic phosphorus pool. During long-term pedogenesis, organic phosphorus accumulates in the early nitrogen-limited stages of ecosystem development, but then declines as phosphorus-limitation strengthens in old soils. At the same time, the composition of the organic phosphorus varies; for example, the inositol phosphates decline to become a small proportion of the total organic phosphorus in old soils, presumably indicating their potential availability under conditions of strong phosphorus limitation. Plants have evolved a variety of mechanisms to acquire phosphorus from organic compounds, including the synthesis of phosphatase enzymes and the secretion of organic anions. Phosphatase activity is linked strongly to soil organic phosphorus concentrations, as indicated by broad surveys of tropical forest soils, fertilization experiments, and patterns observed during long-term ecosystem development. Organic anion secretion is often linked to inorganic phosphate

  17. Water quality criteria for white phosphorus: Final report. [Contains glossary

    SciTech Connect

    Davidson, K.A.; Hovatter, P.S.; Sigmon, C.F.

    1987-08-01

    Data obtained from a review of the literature concerning the environmental fate and aquatic and mammalian toxicity of white phosphorus are presented to derive Water Quality Criteria for the protection of humans and aquatic organisms and their uses. Laboratory and field studies indicate that white phosphorus is quite toxic to aquatic organisms, with fish being more sensitive than macroinvertebrates. Bioaccumulation is rapid and extensive, with the greatest uptake in the liver and muscle of fish and the hepatopancreas of lobster; however, depuration occurs within 7 days postexposure. Other toxic effects to aquatic organisms include cardiovascular and histological changes. Field studies indicate that effluents containing white phosphorus adversely affect receiving aquatic systems by decreasing diversity and increasing mortality of select species. Acute exposure to white phosphorus causes similar effects in laboratory animals and humans. In the absence of medical treatment, the estimated minimal lethal dose of white phosphorus in humans is 100 mg (1.4 mg/kg). Following ingestion, organs damaged by white phosphorus are the gastrointestinal tract, liver, kidney, brain, and cardiovascular system. Chronic and subchronic exposure of laboratory animals to white phosphorus by oral or subcutaneous routes results in reduced growth, reduced survival at high does, increased survival at low doses, and bone pathology. Humans chronically exposed to white phosphorus in the occupational environment develop a specific lesion (different from that observed in laboratory animals) called phosphorus necrosis of the jawbone or ''phossy jaw.'' 139 refs., 1 fig., 18 tabs.

  18. Dietary phosphorus in bone health and quality of life.

    PubMed

    Takeda, Eiji; Yamamoto, Hironori; Yamanaka-Okumura, Hisami; Taketani, Yutaka

    2012-06-01

    Awareness of phosphorus intake is important because both phosphorus deficiency and overloading impair bone health and quality of life. Phosphorus consumption is increasing in many countries. Most dietary phosphorus is contained in protein-rich foods such as meat, milk, cheese, poultry, fish, and processed foods that contain phosphate-based additives to improve their consistency and appearance. Elevation of extracellular phosphorus levels causes endothelial dysfunction and medial calcification, which are closely associated with the development of cardiovascular disease (CVD). Long-term excessive phosphorus loading, even if it does not cause hyperphosphatemia, can be a risk factor for CVD. In epidemiological studies, higher levels of phosphorus intake have been associated with reduced blood pressure. Interestingly, when examined further, phosphorus from dairy products, but not from other sources, was usually associated with lower blood pressure. A dietary approach to phosphorus reduction is particularly important to prevent bone impairment and CVD in patients with chronic kidney disease. In order to improve bone health and quality of life in the general population, the impact of phosphorous, including in processed foods, should be considered, and measures to indicate the amount of phosphorous in food products should be implemented.

  19. Contributions to total phosphorus intake: all sources considered.

    PubMed

    Calvo, Mona S; Uribarri, Jaime

    2013-01-01

    High serum phosphorus is linked to poor health outcome and mortality in chronic kidney disease (CKD) patients before or after the initiation of dialysis. Dietary intake of phosphorus, a major determinant of serum phosphorus, seems to be systematically underestimated using the available software tools and generalized nutrient content databases. Several sources of dietary phosphorus including the addition of phosphorus ingredients in food processing, and phosphorus content of vitamin and mineral supplements and commonly used over-the-counter or prescription medications are not fully accounted for by the nutrient content databases and software programs in current clinical use or used in large population studies. In this review, we explore the many unknown sources of phosphorus in the food supply to identify all possible contributors to total phosphorus intake of Americans that have escaped inclusion in past intake estimates. Our goal is to help delineate areas for future interventions that will enable tighter control of dietary phosphorus intake, a critical factor to maintaining health and quality of life in CKD and dialysis patients.

  20. Method of removing and detoxifying a phosphorus-based substance

    DOEpatents

    Vandegrift, G.F.; Steindler, M.J.

    1985-05-21

    A method of removing a phosphorus-based poisonous substance from water contaminated is presented. In addition, the toxicity of the phosphorus-based substance is also subsequently destroyed. A water-immiscible organic solvent is first immobilized on a supported liquid membrane before the contaminated water is contacted with one side of the supported liquid membrane to absorb the phosphorus-based substance in the organic solvent. The other side of the supported liquid membrane is contacted with a hydroxy-affording strong base to react with phosphorus-based solvated species to form a non-toxic product.

  1. Calcium and phosphorus solubility in neonatal intravenous feeding solutions.

    PubMed Central

    MacMahon, P; Mayne, P D; Blair, M; Pope, C; Kovar, I Z

    1990-01-01

    The limited solubility of calcium and phosphorus in standard parenteral nutrition formulations has restricted the ability to provide sufficient minerals to preterm infants to prevent substrate deficient metabolic bone disease. We determined the solubility limits of calcium and phosphorus in a total of 160 formulations under carefully controlled conditions. By increasing the concentrations of dextrose, amino acids, and by using Addiphos instead of 8.7% dipotassium hydrogen phosphate as the phosphorus source, higher concentrations of both calcium and phosphorus were held in solution. This should permit the delivery of increased concentrations of these minerals at rates which approximate fetal accretion. PMID:2110803

  2. Determination of phosphorus in natural waters: A historical review.

    PubMed

    Worsfold, Paul; McKelvie, Ian; Monbet, Phil

    2016-04-28

    The aim of this paper is to introduce a virtual special issue that reviews the development of analytical approaches to the determination of phosphorus species in natural waters. The focus is on sampling and sample treatment, analytical methods and quality assurance of the data. The export of phosphorus from anthropogenic activities (from diffuse and point sources) can result in increased primary production and eutrophication, and potentially the seasonal development of toxic algal blooms, which can significantly impact on water quality. Therefore the quantification of phosphorus species in natural waters provides important baseline data for studying aquatic phosphorus biogeochemistry, assessing ecosystem health and monitoring compliance with legislation.

  3. Phosphorus removal from domestic wastewater by Echinodorus cordifolius L.

    PubMed

    Torit, Jirawan; Siangdung, Wipawan; Thiravetyan, Paitip

    2012-01-01

    This study was to use the plants to remove phosphorus from domestic wastewater which contained high phosphorus concentration. Six higher plant species such as Crinum asiaticum L., Echinodorus cordifolius L., Spathiphyllum clevelandii Schott, Rhizophora apiculata Blume, Thalia dealbata J.fraser., Heliconia psittacorum L.f. were screened for phosphorus removal. Plants were grown in the domestic wastewater and the remaining phosphorus-phosphate concentration in the systems was determined. The results indicated that among studied plants, Echinodorus cordifolius L. was the best for phosphorus removal. Using this plant will improve the quality of domestic wastewater which contained excess phosphorus concentration and induced eutrophication. The relationship between the plants, microorganisms, and soil in the system were also investigated. In this system, adsorption by soil was the major role for phosphorus removal (71%), followed by E. cordifolius (16%), microorganisms in domestic wastewater (7%), and microorganisms in soil (6%). These results indicated the ability of E. cordifolius to remove phosphorus which was superior to that of the microorganisms in the system. Moreover, the rapid phosphorus removal was concomitant to the growth, photosynthesis activity and biomass of E. cordifolius grown in domestic wastewater. The C:N:P ratio of E. cordifolius tissue in the system indicated that elements were taken up from the wastewater. From these results, the suitability of E. cordifolius for domestic wastewater treatment was confirmed.

  4. Ascorbic acid, calcium, phosphorus and magnesium intake variations: effects on calcium, phosphorus and magnesium utilization by human adults

    SciTech Connect

    Kies, C.; Brennan, M.A.; Parks, S.K.; Stauffer, D.J.; Wang, H.Y.; Young, S.F.; Fox, H.M.

    1986-03-01

    The objective of the study was to determine the effects of feeding two levels of ascorbic acid, calcium, phosphorus, magnesium and ascorbic acid on the apparent utilization of calcium, phosphorus and magnesium by healthy, human adult subjects. During 4 randomly-arranged experimental periods of 7 days each, a laboratory-controlled diet alone or with supplements of ascorbic acid, dicalcium phosphate or magnesium oxide was fed to the 18 subjects. Results indicated that ascorbic acid supplementation tended to reduce urinary phosphorus loss and to slightly increase fecal phosphorus loss so that overall phosphorus balances became more positive. Conversely, under these conditions, urinary calcium losses were little affected but fecal calcium losses were increased resulting in an overall decrease in calcium balance with ascorbic acid supplementation. Ascorbic acid supplementation resulted in decreased urine and fecal losses of magnesium and more positive magnesium balances. Magnesium supplementation resulted in more positive calcium and phosphorus balances as did calcium phosphate supplementation on magnesium balance.

  5. A novel approach for phosphorus recovery and no wasted sludge in enhanced biological phosphorus removal process with external COD addition.

    PubMed

    Xia, Cheng-Wang; Ma, Yun-Jie; Zhang, Fang; Lu, Yong-Ze; Zeng, Raymond J

    2014-01-01

    In enhanced biological phosphorus removal (EBPR) process, phosphorus (P) in wastewater is removed via wasted sludge without actual recovery. A novel approach to realize phosphorus recovery with special external chemical oxygen demand (COD) addition in EBPR process was proposed. During the new operating approach period, it was found that (1) no phosphorus was detected in the effluent; (2) with an external addition of 10 % of influent COD amount, 79 % phosphorus in the wastewater influent was recovered; (3) without wasted sludge, the MLVSS concentration in the system increased from 2,010 to 3,400 mg/L and kept stable after day 11 during 24-day operating period. This demonstrates that the novel approach is feasible to realize phosphorus recovery with no wasted sludge discharge in EBPR process. Furthermore, this approach decouples P removal and sludge age, which may enhance the application of membrane bioreactor for P removal.

  6. Application of indigenous sulfur-oxidizing bacteria from municipal wastewater to selectively bioleach phosphorus from high-phosphorus iron ore: effect of particle size.

    PubMed

    Shen, Shaobo; Rao, Ruirui; Wang, Jincao

    2013-01-01

    The effects of ore particle size on selectively bioleaching phosphorus (P) from high-phosphorus iron ore were studied. The average contents of P and Fe in the iron ore were 1.06 and 47.90% (w/w), respectively. The particle sizes of the ores used ranged from 58 to 3350 microm. It was found that the indigenous sulfur-oxidizing bacteria from municipal wastewater could grow well in the slurries of solid high-phosphorus iron ore and municipal wastewater. The minimum bioleaching pH reached for the current work was 0.33. The P content in bioleached iron ore reduced slightly with decreasing particle size, while the removal percentage of Fe decreased appreciably with decreasing particle size. The optimal particle size fraction was 58-75 microm, because the P content in bioleached iron ore reached a minimum of 0.16% (w/w), the removal percentage of P attained a maximum of 86.7%, while the removal percentage of Fe dropped to a minimum of 1.3% and the Fe content in bioleached iron ore was a maximum of 56.4% (w/w) in this case. The iron ores thus obtained were suitable to be used in the iron-making process. The removal percentage of ore solid decreased with decreasing particle size at particle size range of 106-3350 microm. The possible reasons resulting in above phenomena were explored in the current work. It was inferred that the particle sizes of the iron ore used in this work have no significant effect on the viability of the sulfur-oxidizing bacteria.

  7. Using a phosphorus loss model to evaluate the Kentucky phosphorus index

    Technology Transfer Automated Retrieval System (TEKTRAN)

    U.S. Department of Agriculture’s Natural Resource Conservation Service (USDA-NRCS) has recently revised its 590 Nutrient Management Conservation Standard. As part of this revision, USDA-NRCS is requiring states to test the accuracy of their phosphorus (P) index using either measured P loss data or s...

  8. Influence of soil phosphorus and manure on phosphorus leaching in Swedish topsoils

    Technology Transfer Automated Retrieval System (TEKTRAN)

    In Sweden, subsurface transport of phosphorus (P) represents the primary pathway of concern to surface water quality. While strong relationships have been consistently observed between P in surface runoff and soil test P, there have been mixed findings linking P in leachate with soil test P. To expl...

  9. Effect of land application of phosphorus-saturated gypsum on soil phosphorus in a laboratory incubation

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Agricultural drainage ditches can deliver high loads of phosphorus (P) to surface water. Installation of filter structures containing P sorbing materials (PSMs), including gypsum, is an emerging practice that has shown promise to reduce these P loads. The objective of this study was to evaluate what...

  10. Estimating Phosphorus Loss in Runoff from Manure and Fertilizer for a Phosphorus Loss Quantification Tool

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Non-point source pollution of fresh waters by phosphorus (P) is a concern because it contributes to accelerated eutrophication. Qualitative P Indexes that estimate the risk of field-scale P loss have been developed in the USA and Europe. However, given the state of the science concerning agricultura...

  11. Transformation of apatite phosphorus and non-apatite inorganic phosphorus during incineration of sewage sludge.

    PubMed

    Li, Rundong; Zhang, Ziheng; Li, Yanlong; Teng, Wenchao; Wang, Weiyun; Yang, Tianhua

    2015-12-01

    The recovery of phosphorus from incinerated sewage sludge ash (SSA) is assumed to be economical. Transformation from non-apatite inorganic phosphorus (NAIP) to apatite phosphorus (AP), which has a higher bioavailability and more extensive industrial applications, was studied at 750-950°C by sewage sludge incineration and model compound incineration with a calcium oxide (CaO) additive. Thermogravimetric differential scanning calorimetry analysis and X-ray diffraction measurements were used to analyze the reactions between NAIP with CaO and crystallized phases in SSA. High temperatures stimulated the volatilization of NAIP instead of AP. Sewage sludge incineration with CaO transformed NAIP into AP, and the percentage of AP from the total phosphorus reached 99% at 950°C. Aluminum phosphate reacted with CaO, forming Ca2P2O7 and Ca3(PO4)2 at 750-950°C. Reactions between iron phosphate and CaO occurred at lower temperatures, forming Ca(PO3)2 before reaching 850°C.

  12. Calcium effect on the metabolic pathway of phosphorus accumulating organisms in enhanced biological phosphorus removal systems.

    PubMed

    Zhang, Hai-Ling; Sheng, Guo-Ping; Fang, Wei; Wang, Yong-Peng; Fang, Cai-Yun; Shao, Li-Min; Yu, Han-Qing

    2015-11-01

    Phosphorus accumulating organisms (PAOs) have been found to act as glycogen-accumulating organisms (GAOs) under certain conditions, thus, the deterioration in the performance of enhanced biological phosphorus removal systems is not always attributed to the proliferation of GAOs. In this work, the effects of calcium on the metabolic pathway of PAOs were explored. It was found that when the influent Ca(2+) concentration was elevated, the tendency and extent of extracellular calcium phosphate precipitation increased, and the intracellular inert Ca-bound polyphosphate was synthesized, while the microbial population remained almost unchanged. The changes in the ratios of phosphorus released/acetate uptaken, the glycogen degraded/acetate uptaken and the poly-β-hydroxyalkanoates synthesized/acetate uptaken during the anaerobic period confirm that, as the influent Ca(2+) concentration was increased, the polyphosphate-accumulating metabolism was partially shifted to the glycogen-accumulating metabolism. At an influent Ca(2+) around 50 mg/L, in addition to the extracellular calcium phosphate precipitation, the intracellular inert Ca-bound polyphosphate synthesis might also be involved in the metabolic change of PAOs. The results of the present work would be beneficial to better understand the biochemical metabolism of PAOs in enhanced biological phosphorus removal systems.

  13. Phosphorus solubility of agricultural soils: a surface charge and phosphorus-31 NMR speciation study

    Technology Transfer Automated Retrieval System (TEKTRAN)

    We investigated ten soils from six states in United States to determine the relationship between potentiometric titration derived soil surface charge and Phosphorus-31 (P) nuclear magnetic resonance (NMR) speciation with the concentration of water-extractable P (WEP). The surface charge value at the...

  14. Evaluation of a quantitative phosphorus transport model for potential improvement of southern phosphorus indices

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Due to a shortage of available phosphorus (P) loss data sets, simulated data from a quantitative P transport model could be used to evaluate a P-index. However, the model would need to accurately predict the P loss data sets that are available. The objective of this study was to compare predictions ...

  15. Elastic properties of suspended black phosphorus nanosheets

    SciTech Connect

    Wang, Jia-Ying; Li, Yang; Zhen, Liang; Xu, Cheng-Yan; Zhan, Zhao-Yao; Li, Tie

    2016-01-04

    The mechanical properties of black phosphorus (BP) nanosheets suspended over circular holes were measured by an atomic force microscope nanoindentation method. The continuum mechanic model was introduced to calculate the elastic modulus and pretension of BP nanosheets with thicknesses ranging from 14.3 to 34 nm. Elastic modulus of BP nanosheets declines with thickness, and the maximum value is 276 ± 32.4 GPa. Besides, the effective strain of BP ranges from 8 to 17% with a breaking strength of 25 GPa. Our results show that BP nanosheets serve as a promising candidate for flexible electronic applications.

  16. Determination of soil organic phosphorus exchange sensitivity

    NASA Astrophysics Data System (ADS)

    Shand, Charles; Wendler, Renate; Lumsdon, David; Cooper, Pat; George, Timothy; Brown, Lawrie; Giles, Courtney; Stutter, Marc; Menezes-Blackburn, Daniel; Zhang, Hao; Wearing, Catherine; Haygarth, Philip; Blackwell, Martin; Darch, Tegan

    2015-04-01

    Soils contain both organic and inorganic phosphorus (P) species in varying proportions. Studies have shown that many soils contain substantial amounts of inositol hexaphosphate (IHP) and there is much interest worldwide in developing strategies to make some use of this recalcitrant resource for plant growth to reduce P fertilizer inputs. Little is known about the preference of ion exchange processes in the solubilisation of organic vs inorganic P forms in soils, an important first step in making P forms bioavailable. Although they do not possess biotic functions, resins provides a simple means to deplete P forms in soil allowing investigation of exchange selectivity between inorganic and organic P forms. The aim of our work was to determine new understanding of exchange selectivity in soils and provide insight into potential depletion and plant uptake of soil phosphorus, with emphasis on organic forms such as IHP. For our study we used a Cambisol sampled from an agricultural area (Tayport) near Dundee in Scotland. The soil had a high Olsen (0.5 M sodium bicarbonate at pH 8.5) extractable P status (84 mg P/kg) and P-31 nuclear magnetic resonance analysis of its NaOH/EDTA extract showed it contained a substantial proportion of IHP (21 % of total extractable P). For resin extraction we used anion exchange resin sheets (4.17 cm each side) in bicarbonate form to minimise pH related solubilisation effects. We used 3.5 g of soil in 75 ml of water and added 1, 2 or 3 resin squares. After equilibration the resin squares were removed and replaced with fresh resin squares a further 3 times. Phosphorus was recovered from the resin sheets by elution with 0.25 M sulphuric acid and analysed by inductively coupled plasma spectroscopy to determine total P, and colorimetrically with malachite green to determine inorganic P with the remainder assigned to organic P. The data showed that the resin preferentially removed inorganic P and even after four sequential extractions little or

  17. Enhanced diffusion of phosphorus at grain boundaries

    NASA Technical Reports Server (NTRS)

    Cheng, L. J.; Shyu, C. M.; Stika, K. M.; Daud, T.; Crotty, G. T.

    1982-01-01

    Enhanced diffusion of phosphorus at grain boundaries in cast polycrystalline photovoltaic materials (Wacker, HEM, and Semix) was studied. It was found that the enhancements for the three materials were the same, indicating that the properties of boundaries are similar, even though they were grown by different techniques. In addition, it was observed that grain boundaries capable of enhancing the diffusion always have strong recombination activities. Both phenomena could be related to dangling bonds existing at the boundaries. The present study gives the first evidence that incoherent second order twins of 111/115-plane type are diffusion-active.

  18. Enhanced biological phosphorus removal employing EDTA disodium

    SciTech Connect

    Bojinova, D.; Velkova, R.

    1996-12-31

    The biological phosphorus removal is a promising alternative to the conventional chemical technologies for processing of phosphate raw materials. The object of this study was the effect of EDTA disodium on the biotreatment of tunisian phosphorite with the strain of Aspergillus niger. The incubation was carried out in two nutritive mediums, with different phosphate content. The experimental results showed that the additives of EDTA disodium in the nutritive medium increased the rate of extraction of P{sub 2}O{sub 5} and shortened significantly the time for biological leaching. 5 refs., 3 figs., 2 tabs.

  19. Phosphorus as a limiting factor on sustainable greywater irrigation.

    PubMed

    Turner, Ryan D R; Will, Geoffrey D; Dawes, Les A; Gardner, Edward A; Lyons, David J

    2013-07-01

    Water reuse through greywater irrigation has been adopted worldwide and has been proposed as a potential sustainable solution to increased water demands. Despite widespread adoption, there is limited domestic knowledge of greywater reuse. There is no pressure to produce low-level phosphorus products and current guidelines and legislation, such as those in Australia, may be inadequate due to the lack of long-term data to provide a sound scientific basis. Research has clearly identified phosphorus as a potential environmental risk to waterways from many forms of irrigation. To assess the sustainability of greywater irrigation, this study compared four residential lots that had been irrigated with greywater for four years and adjacent non-irrigated lots that acted as controls. Each lot was monitored for the volume of greywater applied and selected physic-chemical water quality parameters and soil chemistry profiles were analysed. The non-irrigated soil profiles showed low levels of phosphorus and were used as controls. The Mechlich3 Phosphorus ratio (M3PSR) and Phosphate Environmental Risk Index (PERI) were used to determine the environmental risk of phosphorus leaching from the irrigated soils. Soil phosphorus concentrations were compared to theoretical greywater irrigation loadings. The measured phosphorus soil concentrations and the estimated greywater loadings were of similar magnitude. Sustainable greywater reuse is possible; however incorrect use and/or lack of understanding of how household products affect greywater can result in phosphorus posing a significant risk to the environment.

  20. [Effect of phosphorus on the production of microcystin].

    PubMed

    Shi, Hong-Xing; Wang, Geng; Wang, Chen-Yu; Li, Yan-Li; Bai, Yun

    2011-10-01

    Effect of phosphorus on the production of microcystin was researched. The effects of soluble reactive phosphorus (SRP) on the growth of cells and on the production of Microcystin were studied. In addition, the efficiency of four different phosphorus compounds was researched. The results showed that microcystin increased with the increase of SRP, and c(TP) = 0.55 mg x L(-1) was the best growth concentration. When c(TP) < or = 0.55 mg x L(-1), the microcystin production increased with the increase of phosphorus concentration and was the lowest without phosphorus. Moreover, when c(TP) > 0.55 mg x L(-1), the microcystin was restrained by the content of phosphorus. At the same time, the effects of three inorganic substance of different phosphorus forms (K3PO4, K2HPO4, and KH2PO4) were no significant difference, but their effects on the production of microcystis were larger than organic phosphorus of sodium beta-glycerophosphate (GP).

  1. Removal of vegetative clippings reduces dissolved phosphorus loss in runoff

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Phosphorus-containing sediment entering surface water may degrade water quality and promote eutrophication. Grass is sometimes planted as a vegetated filter strip buffer along vulnerable receiving water to trap sediment and reduce the severity of phosphorus nutrient loading. However, eutrophicatio...

  2. Phosphorus recovery from pig manure solids prior to land application

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Land disposal of pig manure is an environmental concern due to an imbalance of the nitrogen to phosphorus (N:P) ratio for crop production, leading to excess phosphorus (P) in soils and potential risks of water pollution. A process called “quick wash” was investigated for its feasibility to extract ...

  3. Environmental Benefits and Burdens of Phosphorus Recovery from Municipal Wastewater.

    PubMed

    Bradford-Hartke, Zenah; Lane, Joe; Lant, Paul; Leslie, Gregory

    2015-07-21

    The environmental benefits and burdens of phosphorus recovery in four centralized and two decentralized municipal wastewater systems were compared using life cycle assessment (LCA). In centralized systems, phosphorus recovered as struvite from the solids dewatering liquid resulted in an environmental benefit except for the terrestrial ecotoxicity and freshwater eutrophication impact categories, with power and chemical use offset by operational savings and avoided fertilizer production. Chemical-based phosphorus recovery, however, generally required more resources than were offset by avoided fertilizers, resulting in a net environmental burden. In decentralized systems, phosphorus recovery via urine source separation reduced the global warming and ozone depletion potentials but increased terrestrial ecotoxicity and salinization potentials due to application of untreated urine to land. Overall, mineral depletion and eutrophication are well-documented arguments for phosphorus recovery; however, phosphorus recovery does not necessarily present a net environmental benefit. While avoided fertilizer production does reduce potential impacts, phosphorus recovery does not necessarily offset the resources consumed in the process. LCA results indicate that selection of an appropriate phosphorus recovery method should consider both local conditions and other environmental impacts, including global warming, ozone depletion, toxicity, and salinization, in addition to eutrophication and mineral depletion impacts.

  4. Modeling biogeochemical processes of phosphorus for global food supply.

    PubMed

    Dumas, Marion; Frossard, Emmanuel; Scholz, Roland W

    2011-08-01

    Harvests of crops, their trade and consumption, soil erosion, fertilization and recycling of organic waste generate fluxes of phosphorus in and out of the soil that continuously change the worldwide spatial distribution of total phosphorus in arable soils. Furthermore, due to variability in the properties of the virgin soils and the different histories of agricultural practices, on a planetary scale, the distribution of total soil phosphorus is very heterogeneous. There are two key relationships that determine how this distribution and its change over time affect crop yields. One is the relationship between total soil phosphorus and bioavailable soil phosphorus and the second is the relationship between bioavailable soil phosphorus and yields. Both of these depend on environmental variables such as soil properties and climate. We propose a model in which these relationships are described probabilistically and integrated with the dynamic feedbacks of P cycling in the human ecosystem. The model we propose is a first step towards evaluating the large-scale effects of different nutrient management scenarios. One application of particular interest is to evaluate the vulnerability of different regions to an increased scarcity in P mineral fertilizers. Another is to evaluate different regions' deficiency in total soil phosphorus compared with the level at which they could sustain their maximum potential yield without external mineral inputs of phosphorus but solely by recycling organic matter to close the nutrient cycle.

  5. Soil phosphorus availability differences between sprinkler and furrow irrigation

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Water flowing in irrigation furrows detaches and transports soil particles and subsequently nutrients such as phosphorus. To reduce the risk of erosion and offsite phosphorus transport, producers in south-central Idaho have been converting from furrow to sprinkler irrigation. We completed research...

  6. The chemistry of phosphorus in dense interstellar clouds

    NASA Technical Reports Server (NTRS)

    Thorne, L. R.; Anicich, V. G.; Prasad, S. S.; Huntress, W. T., Jr.

    1984-01-01

    Laboratory experiments show that the ion-molecule chemistry of phosphorus is significantly different from that of nitrogen in dense interstellar clouds. The PH3 molecule is not readily formed by gas-phase, ion-molecule reactions in these regions. Laboratory results used in a simple kinetic model indicate that the most abundant molecule containing phosphorus in dense clouds is PO.

  7. Dietary phosphorus is associated with greater left ventricular mass.

    PubMed

    Yamamoto, Kalani T; Robinson-Cohen, Cassianne; de Oliveira, Marcia C; Kostina, Alina; Nettleton, Jennifer A; Ix, Joachim H; Nguyen, Ha; Eng, John; Lima, Joao A C; Siscovick, David S; Weiss, Noel S; Kestenbaum, Bryan

    2013-04-01

    Dietary phosphorus consumption has risen steadily in the United States. Oral phosphorus loading alters key regulatory hormones and impairs vascular endothelial function, which may lead to an increase in left ventricular mass (LVM). We investigated the association of dietary phosphorus with LVM in 4494 participants from the Multi-Ethnic Study of Atherosclerosis, a community-based study of individuals who were free of known cardiovascular disease. The intake of dietary phosphorus was estimated using a 120-item food frequency questionnaire and the LVM was measured using magnetic resonance imaging. Regression models were used to determine associations of estimated dietary phosphorus with LVM and left ventricular hypertrophy (LVH). Mean estimated dietary phosphorus intake was 1167 mg/day in men and 1017 mg/day in women. After adjustment for demographics, dietary sodium, total calories, lifestyle factors, comorbidities, and established LVH risk factors, each quintile increase in the estimated dietary phosphate intake was associated with an estimated 1.1 g greater LVM. The highest gender-specific dietary phosphorus quintile was associated with an estimated 6.1 g greater LVM compared with the lowest quintile. Higher dietary phosphorus intake was associated with greater odds of LVH among women, but not men. These associations require confirmation in other studies.

  8. Plant based phosphorus recovery from wastewater via algae and macrophytes.

    PubMed

    Shilton, Andrew N; Powell, Nicola; Guieysse, Benoit

    2012-12-01

    At present, resource recovery by irrigation of wastewater to plants is usually driven by the value of the water resource rather than phosphorus recovery. Expanded irrigation for increased phosphorus recovery may be expected as the scarcity and price of phosphorus increases, but providing the necessary treatment, storage and conveyance comes at significant expense. An alternative to taking the wastewater to the plants is instead to take the plants to the wastewater. Algal ponds and macrophyte wetlands are already in widespread use for wastewater treatment and if harvested, would require less than one-tenth of the area to recover phosphorus compared to terrestrial crops/pastures. This area could be further decreased if the phosphorus content of the macrophytes and algae biomass was tripled from 1% to 3% via luxury uptake. While this and many other opportunities for plant based recovery of phosphorus exist, e.g. offshore cultivation, much of this technology development is still in its infancy. Research that enhances our understanding of how to maximise phosphorus uptake and harvest yields; and further add value to the biomass for reuse would see the recovery of phosphorus via plants become an important solution in the future.

  9. The total phosphorus budget of a peat-covered catchment

    NASA Astrophysics Data System (ADS)

    Worrall, Fred; Moody, Catherine S.; Clay, Gareth D.; Burt, Tim P.; Rose, Rob

    2016-07-01

    Although many studies have considered the carbon or greenhouse gas budgets of peat ecosystems, only a few have considered the nutrient budget of peat soils, and this, in turn, has limited the ability of studies to consider the impact of changes in climate and atmospheric deposition on the phosphorus budget of a peat soil. This study considered the total phosphorus (P) budget of an upland peat-covered catchment over the period 1993 to 2012. The study has shown (i) total atmospheric deposition of phosphorus varied from 62 to 175 kg P/km2/yr; (ii) the carbon:phosphorus ratio of the peat profile declines significantly from values in the litter layer (C:P = 1326) to approximately constant at 30 cm depth (C:P = 4240); (iii) the total fluvial flux of phosphorus varied from 49 to 111 kg P/km2/yr, of which between 45 and 77% was dissolved P; and (iv) the total phosphorus sink varied from -5.6 to +71.7 kg P/km2/yr with a median of +29.4 kg P/km2/yr, which is within the range of the estimated long-term accumulation rate of phosphorus in the peat profile of between 3 and 32 kg P/km2/yr. The phosphorus budget of the peat ecosystem relies on rapid recycling near the soil surface, and this means that any vegetation management may critically deprive the ecosystem of this nutrient.

  10. [Mapping and cloning of low phosphorus tolerance genes in soybeans].

    PubMed

    Dan, Zhang; Haina, Song; Hao, Cheng; Deyue, Yu

    2015-04-01

    Soybean is a major source of edible oil and phytoprotein. Low phosphorus available in soil is an important factor limiting the current soybean production. Effective ways to solve the problem include identification of germplasms and genes tolerant to low-phosphorus stress, and cultivation of soybean varieties with high phosphorus efficiency. Recently many researches have been carrying out investigations to map and clone genes related to phosphorus efficiency in soybeans. However, due to the complexity of the soybean genome and little knowledge of functional genes, it has been difficult to understand the mechanism of soybean tolerance to low phosphorus. Although quantitative trait locus (QTL) mapping related to low phosphorus tolerance has made some progress, it remains elusive to obtain accurate candidate genes for molecular breeding applications, due to the limited accuracy of QTL. Even for the cloned soybean low phosphorus tolerance genes, the molecular mechanisms are largely unknown, further limiting the application to breeding. In this review, we summarize the progresses on mapping, cloning and functional characterization of soybean low phosphorus tolerance genes.

  11. Solubility of manure phosphorus characterized by selective and sequential extractions

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The increasing awareness of the severity of the problem of phosphorus (P) derived from agricultural production moving off-farm and threatening water quality has led to the search for methods to characterize the forms and potential solubilities of phosphorus in food animal manures and manure products...

  12. Phosphorus runoff from Coastal Plain forest soil in Louisiana

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Although not a common practice, poultry litter (PL) may be used for forest fertilization. Despite usually low soil phosphorus (P) and runoff under forest, repeated or high rates of PL application may cause appreciable P loss. Phosphorus in natural runoff under loblolly pine (Pinus taeda L.) fertiliz...

  13. Reducing watershed scale phosphorus export through integrated management practices

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Phosphorus losses from golf course have been documented and are comparable to losses from agriculture and urban areas. Integrated management practices are required to address the problem. An integrated management approach using filter socks and limiting the amount of phosphorus applied to the golf c...

  14. Low Phytic Acid Barley Responses to Phosphorus Rates

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Low phytic acid (LPA) barley (Hordeum vulgare L.) cultivars partition phosphorus in seed tissue differently than conventional barley cultivars through a reduction in seed phytic acid (myo-inositol-1,2,3,4,5,6-hexkisphosphate) coupled with an increase in inorganic phosphorus. The response of the LPA...

  15. Do invasive mussels restrict offshore phosphorus transport in Lake Huron?

    PubMed

    Cha, Yoonkyung; Stow, Craig A; Nalepa, Thomas F; Reckhow, Kenneth H

    2011-09-01

    Dreissenid mussels were first documented in the Laurentian Great Lakes in the late 1980s. Zebra mussels (Dreissena polymorpha) spread quickly into shallow, hard-substrate areas; quagga mussels (Dreissena rostriformis bugensis) spread more slowly and are currently colonizing deep, offshore areas. These mussels occur at high densities, filter large water volumes while feeding on suspended materials, and deposit particulate waste on the lake bottom. This filtering activity has been hypothesized to sequester tributary phosphorus in nearshore regions reducing offshore primary productivity. We used a mass balance model to estimate the phosphorus sedimentation rate in Saginaw Bay, a shallow embayment of Lake Huron, before and after the mussel invasion. Our results indicate that the proportion of tributary phosphorus retained in Saginaw Bay increased from approximately 46-70% when dreissenids appeared, reducing phosphorus export to the main body of Lake Huron. The combined effects of increased phosphorus retention and decreased phosphorus loading have caused an approximate 60% decrease in phosphorus export from Saginaw Bay to Lake Huron. Our results support the hypothesis that the ongoing decline of preyfish and secondary producers including diporeia (Diporeia spp.) in Lake Huron is a bottom-up phenomenon associated with decreased phosphorus availability in the offshore to support primary production.

  16. Approaches and Challenges to Engineering Seed Phytate and Total Phosphorus

    Technology Transfer Automated Retrieval System (TEKTRAN)

    About 75% of seed total phosphorus (P) is found in a single compound, phytic acid (myo-inositol-1,2,3,4,5,6-hexakisphosphate or InsP6). Phytic acid is not efficiently utilized by monogastric animals (poultry, swine, fish), which creates phosphorus management and environmental impact problems in anim...

  17. The content of available mineral phosphorus compounds in chestnut soils of Northern Mongolia upon application of different forms of phosphorite

    NASA Astrophysics Data System (ADS)

    Ubugunov, L. L.; Enkhtuyaa, B.; Merkusheva, M. G.

    2015-06-01

    The effect of different forms of phosphorite (activated and crude ground) of the Burenkhansk deposit on the phosphate status of chestnut soils and the productivity of spring wheat was studied in Northern Mongolia. It was found that the transformation of mineral soil phosphates upon the application of activated phosphorite (together with NK) is similar to that upon superphosphate application, and the available phosphorus concentration is even a gradation higher. The application of crude ground phosphorite helped to preserve the content of mineral phosphates in the soil at the initial level. Optimum concentrations of available phosphorus and the sum of loosely bound and calcium phosphates in the plow horizon were estimated 33-35 mg/kg) and 16-18 mg/100 g, respectively. Under these concentrations, high and sustainable yields of spring wheat were obtained upon application of activated phosphorite.

  18. [Kinetic model of enhanced biological phosphorus removal with mixed acetic and propionic acids as carbon sources. (III): Model application].

    PubMed

    Zhang, Chao; Chen, Yin-Guang

    2013-03-01

    The kinetic model based on SCFAs metabolism was applied for the prediction of phosphorus-and glycogen-accumulating organisms (PAO and GAO) competition with different carbon sources and m(P)/m(COD) ratios. When acetic acid was used as the sole carbon source, the biomass compositions were almost the same as those before cultivation, and neither PAO nor GAO could be out-competed from EBPR. However, increasing propionic acid in the influent helped PAO to be the predominance organism, and EBPR performance kept excellent when the ratio of propionate to mixed acids (acetate + propionate) was higher than 0.33. It also found that the m(P)/m(COD) ratio should be kept at 0.04-0.10 to avoid phosphorus became a limiting factor for PAO growth. This was because at low m(P)/m(COD) ratios, such as 0.01, GAO would take up 95% of the total (PAO + GAO) biomass.

  19. Raman Sensitive Degradation and Etching Dynamics of Exfoliated Black Phosphorus

    NASA Astrophysics Data System (ADS)

    Alsaffar, Fadhel; Alodan, Sarah; Alrasheed, Abdul; Alhussain, Abdulrahman; Alrubaiq, Noura; Abbas, Ahmad; Amer, Moh. R.

    2017-03-01

    Layered black phosphorus has drawn much attention due to the existence of a band gap compared to the widely known graphene. However, environmental stability of black phosphorus is still a major issue, which hinders the realization of practical device applications. Here, we spatially Raman map exfoliated black phosphorus using confocal fast-scanning technique at different time intervals. We observe a Raman intensity modulation for , B2g, and modes. This Raman modulation is found to be caused by optical interference, which gives insights into the oxidation mechanism. Finally, we examine the fabrication compatible PMMA coating as a viable passivation layer. Our measurements indicate that PMMA passivated black phosphorus thin film flakes can stay pristine for a period of 19 days when left in a dark environment, allowing sufficient time for further nanofabrication processing. Our results shed light on black phosphorus degradation which can aid future passivation methods.

  20. Raman Sensitive Degradation and Etching Dynamics of Exfoliated Black Phosphorus

    PubMed Central

    Alsaffar, Fadhel; Alodan, Sarah; Alrasheed, Abdul; Alhussain, Abdulrahman; Alrubaiq, Noura; Abbas, Ahmad; Amer, Moh. R.

    2017-01-01

    Layered black phosphorus has drawn much attention due to the existence of a band gap compared to the widely known graphene. However, environmental stability of black phosphorus is still a major issue, which hinders the realization of practical device applications. Here, we spatially Raman map exfoliated black phosphorus using confocal fast-scanning technique at different time intervals. We observe a Raman intensity modulation for , B2g, and modes. This Raman modulation is found to be caused by optical interference, which gives insights into the oxidation mechanism. Finally, we examine the fabrication compatible PMMA coating as a viable passivation layer. Our measurements indicate that PMMA passivated black phosphorus thin film flakes can stay pristine for a period of 19 days when left in a dark environment, allowing sufficient time for further nanofabrication processing. Our results shed light on black phosphorus degradation which can aid future passivation methods. PMID:28317834

  1. Raman Sensitive Degradation and Etching Dynamics of Exfoliated Black Phosphorus.

    PubMed

    Alsaffar, Fadhel; Alodan, Sarah; Alrasheed, Abdul; Alhussain, Abdulrahman; Alrubaiq, Noura; Abbas, Ahmad; Amer, Moh R

    2017-03-20

    Layered black phosphorus has drawn much attention due to the existence of a band gap compared to the widely known graphene. However, environmental stability of black phosphorus is still a major issue, which hinders the realization of practical device applications. Here, we spatially Raman map exfoliated black phosphorus using confocal fast-scanning technique at different time intervals. We observe a Raman intensity modulation for , B2g, and modes. This Raman modulation is found to be caused by optical interference, which gives insights into the oxidation mechanism. Finally, we examine the fabrication compatible PMMA coating as a viable passivation layer. Our measurements indicate that PMMA passivated black phosphorus thin film flakes can stay pristine for a period of 19 days when left in a dark environment, allowing sufficient time for further nanofabrication processing. Our results shed light on black phosphorus degradation which can aid future passivation methods.

  2. Localized Surface Plasmons in Nanostructured Monolayer Black Phosphorus.

    PubMed

    Liu, Zizhuo; Aydin, Koray

    2016-06-08

    Plasmonic materials provide electric-field localization and light confinement at subwavelength scales due to strong light-matter interaction around resonance frequencies. Graphene has been recently studied as an atomically thin plasmonic material for infrared and terahertz wavelengths. Here, we theoretically investigate localized surface plasmon resonances (LSPR) in a monolayer, nanostructured black phosphorus (BP). Using finite-difference time-domain simulations, we demonstrate LSPRs at mid-infrared and far-infrared wavelength regime in BP nanoribbon and nanopatch arrays. Because of strong anisotropic in-plane properties of black phosphorus emerging from its puckered crystal structure, black phosphorus nanostructures provide polarization dependent, anisotropic plasmonic response. Electromagnetic simulations reveal that monolayer black phosphorus nanostructures can strongly confine infrared radiation in an atomically thin material. Black phosphorus can find use as a highly anisotropic plasmonic devices.

  3. Black Phosphorus: Critical Review and Potential for Water Splitting Photocatalyst

    PubMed Central

    Lee, Tae Hyung; Kim, Soo Young; Jang, Ho Won

    2016-01-01

    A century after its first synthesis in 1914, black phosphorus has been attracting significant attention as a promising two-dimensional material in recent years due to its unique properties. Nowadays, with the development of its exfoliation method, there are extensive applications of black phosphorus in transistors, batteries and optoelectronics. Though, because of its hardship in mass production and stability problems, the potential of the black phosphorus in various fields is left unexplored. Here, we provide a comprehensive review of crystal structure, electronic, optical properties and synthesis of black phosphorus. Recent research works about the applications of black phosphorus is summarized. Among them, the possibility of black phosphorous as a solar water splitting photocatalyst is mainly discussed and the feasible novel structure of photocatalysts based on black phosphorous is proposed. PMID:28335322

  4. Calcium and phosphorus change of the Apollo 17 crew members.

    PubMed

    Rambaut, P C; Leach, C S; Johnson, P C

    1975-01-01

    In association with the 12.6-day lunar flight of Apollo 17, calcium and phosphorus intake and excretion were determined for the crew members before and during the mission. The study showed increased urinary and fecal phosphorus and increased fecal calcium during weightlessness. The calculated mean calcium "loss" for the three crew members was 0.2 percent of estimated total body calcium and phosphorus "loss" was 0.7 percent of estimated total body phosphorus. The ratio of phosphorus lost compared to calcium indicated a reduction in both bone and soft tissue. These changes may be attributed not only to the hypogravia of the lunar and circumlunar environment, but possibly also to disturbances in gastrointestinal absorption.

  5. [Phosphorus intake in Poland in 1994-2000].

    PubMed

    Gronowska-Senger, Anna; Kotańska, Patrycja

    2004-01-01

    The aim of the study was the evaluation of the phosphorus intake in 8 types of households with different family number of persons in Poland during 1994-2000. The research was conducted on the basis on households budget food consumption data and tables of food composition and nutritional value. Phosphorus intake per capita per day was compared to RDA at the safe level. The intake of phosphorus was high in all investigated households and ranged between 65-144% above lower RDA limit and 34-96% for upper one. When the family number of persons increased, the intake decreased. The main food sources of phosphorus were: bread, meat and meat products, milk and milk drinks and vegetables and mushrooms. The bread has a highest share in phosphorus supply in households maintained from non-earned sources and the lowest for the non-manual labour position one.

  6. Quantitation of phosphorus excretion in sheep by compartmental analysis

    SciTech Connect

    Schneider, K.M.; Boston, R.C.; Leaver, D.D.

    1987-04-01

    The control of phosphorus excretion in sheep has been examined by constructing a kinetic model that contains a mechanistic set of connections between blood and gastrointestinal tract. The model was developed using experimental data from chaff-fed sheep and gives an accurate description of the absorption and excretion of /sup 32/P phosphorus in feces and urine of the ruminating sheep. These results indicated the main control site for phosphorus excretion in the ruminating sheep was the gastrointestinal tract, whereas for the non-ruminating sheep fed the liquid diet, control was exerted by the kidney. A critical factor in the induction of adaptation of phosphorus reabsorption by the kidney was the reduction in salivation, and since this response occurred independently of marked changes in the delivery of phosphorus to the kidney, a humoral factor may be involved in this communication between salivary gland and kidney.

  7. Microbial contributions to phosphorus cycling in eutrophic lakes and wastewater.

    PubMed

    McMahon, Katherine D; Read, Emily K

    2013-01-01

    Phosphorus is a key element controlling the productivity of freshwater ecosystems, and microbes drive most of its relevant biogeochemistry. Eutrophic lakes are generally dominated by cyanobacteria that compete fiercely with algae and heterotrophs for the element. In wastewater treatment, engineers select for specialized bacteria capable of sequestering phosphorus from the water, to protect surface waters from further loading. The intracellular storage molecule polyphosphate plays an important role in both systems, allowing key taxa to control phosphorus availability. The importance of dissolved organic phosphorus in eutrophic lakes and mineralization mechanisms is still underappreciated and understudied. The need for functional redundancy through biological diversity in wastewater treatment plants is also clear. In both systems, a holistic ecosystems biology approach is needed to understand the molecular mechanisms controlling phosphorus metabolism and the ecological interactions and factors controlling ecosystem-level process rates.

  8. Black Phosphorus: Critical Review and Potential for Water Splitting Photocatalyst.

    PubMed

    Lee, Tae Hyung; Kim, Soo Young; Jang, Ho Won

    2016-10-29

    A century after its first synthesis in 1914, black phosphorus has been attracting significant attention as a promising two-dimensional material in recent years due to its unique properties. Nowadays, with the development of its exfoliation method, there are extensive applications of black phosphorus in transistors, batteries and optoelectronics. Though, because of its hardship in mass production and stability problems, the potential of the black phosphorus in various fields is left unexplored. Here, we provide a comprehensive review of crystal structure, electronic, optical properties and synthesis of black phosphorus. Recent research works about the applications of black phosphorus is summarized. Among them, the possibility of black phosphorous as a solar water splitting photocatalyst is mainly discussed and the feasible novel structure of photocatalysts based on black phosphorous is proposed.

  9. Living donor liver transplantation for acute liver failure in pediatric patients caused by the ingestion of fireworks containing yellow phosphorus.

    PubMed

    Ates, Mustafa; Dirican, Abuzer; Ozgor, Dincer; Aydin, Cemalettin; Isik, Burak; Ara, Cengiz; Yilmaz, Mehmet; Ayse Selimoglu, M; Kayaalp, Cuneyt; Yilmaz, Sezai

    2011-11-01

    Yellow phosphorus is a protoplasmic toxicant that targets the liver. The ingestion of fireworks containing yellow phosphorus, either by children who accidentally consume them or by adults who are attempting suicide, often results in death due to acute liver failure (ALF). We present the outcomes of 10 children who ingested fireworks containing yellow phosphorus. There were 6 boys and 4 girls, and their ages ranged from 21 to 60 months. One patient remained stable without liver complications and was discharged. Three patients died of hepatorenal failure and cardiovascular collapse, and living donor liver transplantation (LDLT) was performed for 6 patients. The patients had grade II or III encephalopathy, a mean alanine aminotransferase level of 1148.2 IU/L, a mean aspartate aminotransferase level of 1437.5 IU/L, a mean total bilirubin level of 6.9 mg/dL, a mean international normalized ratio of 6.6, a mean Pediatric End-Stage Liver Disease score of 33.7, and a mean Child-Pugh score of 11.3. Postoperatively, 2 patients had persistent encephalopathy and died on the second or third postoperative day, and 1 patient died of cardiac arrest on the first postoperative day despite a well-functioning graft. The other 3 patients were still alive at a mean of 204 days. In conclusion, the ingestion of fireworks containing yellow phosphorus causes ALF with a high mortality rate. When signs of irreversible ALF are detected, emergency LDLT should be considered as a lifesaving procedure; however, if yellow phosphorus toxicity affects both the brain and the heart in addition to the liver, the mortality rate remains very high despite liver transplantation.

  10. X-33 RCS model

    NASA Technical Reports Server (NTRS)

    1998-01-01

    Part of the high pressure nitrogen system used for the 1% scale X-33 reaction control system model. Installed in the Unitary Plan Wind Tunnel for supersonic testing. In building 1251, test section #2.

  11. X-33 RCS model

    NASA Technical Reports Server (NTRS)

    1998-01-01

    Model support system and instumentation cabling of the 1% scale X-33 reaction control system model. Installed in the Unitary Plan Wind Tunnel for supersonic testing. In building 1251, test section #2.

  12. Sediment and phosphorus transport in irrigation furrows.

    PubMed

    Bjorneberg, D L; Westermann, D T; Aase, J K; Clemmens, A J; Strelkoff, T S

    2006-01-01

    Sediment and phosphorus (P) in agricultural runoff can impair water quality in streams, lakes, and rivers. We studied the factors affecting P transfer and transport in irrigated furrows in six freshly tilled fallow fields, 110 to 180 m long with 0.007 to 0.012 m m-1 slopes without the interference of raindrops or sheet flow that occur during natural or simulated rain. The soil on all fields was Portneuf silt loam (coarse-silty, mixed, superactive, mesic Durinodic Xeric Haplocalcids). Flow rate, sediment concentration, and P concentrations were monitored at four, equally spaced locations in each furrow. Flow rate decreased with distance down the furrow as water infiltrated. Sediment concentration varied with distance and time with no set pattern. Total P concentrations related directly to sediment concentrations (r2=0.75) because typically >90% of the transported P was particulate P, emphasizing the need to control erosion to reduce P loss. Dissolved reactive phosphorus (DRP) concentrations decreased with time at a specific furrow site but increased with distance down the furrow as contact time with soil and suspended sediment increased. The DRP concentration correlated better with sediment concentration than extractable furrow soil P concentration. However, suspended sediment concentration tended to not affect DRP concentration later in the irrigation (>2 h). These results indicate that the effects of soil P can be overshadowed by differences in flow hydraulics, suspended sediment loads, and non-equilibrium conditions.

  13. Controlled Sculpture of Black Phosphorus Nanoribbons

    DOE PAGES

    Masih Das, Paul; Danda, Gopinath; Cupo, Andrew; ...

    2016-05-18

    Black phosphorus (BP) is a highly anisotropic allotrope of phosphorus with high promise for fast functional electronics and optoelectronics. We demonstrate that high-resolution and controlled structural modification of few-layer BP along arbitrary crystal direction can be achieved with nanometer-scale precision on a few-minute timescales leading to the formation of sub-nm wide armchair and zigzag BP nanoribbons. The nanoribbons are assembled, along with nanopores and nanogaps, using a combination of mechanical-liquid exfoliation and in situ transmission electron microscope (TEM) and scanning TEM nanosculpting. Here we report time-dependent structural properties of the one-dimensional systems under electron irradiation and probe their oxidation propertiesmore » with electron energy-loss spectroscopy (EELS). Finally, we demonstrate the use of STEM to controllably narrow and thin the nanoribbons until they break into nanogaps. The observations are rationalized using density functional theory for transition state calculations and electronic band-structure evolution for the various stages of the narrowing procedure. In particular, we predict that the sub- and few-nm wide BP nanoribbons realized experimentally possess clear one-dimensional quantum confinement, even when the systems are made up of a few layers. We find the demonstration of this procedure is key for the development of BP-based electronic, optoelectronic, thermoelectric, and other applications in reduced dimensions.« less

  14. Controlled Sculpture of Black Phosphorus Nanoribbons

    SciTech Connect

    Masih Das, Paul; Danda, Gopinath; Cupo, Andrew; Parkin, William M.; Liang, Liangbo; Kharche, Neerav; Ling, Xi; Huang, Shengxi; Dresselhaus, Mildred S.; Meunier, Vincent; Drndić, Marija

    2016-05-18

    Black phosphorus (BP) is a highly anisotropic allotrope of phosphorus with high promise for fast functional electronics and optoelectronics. We demonstrate that high-resolution and controlled structural modification of few-layer BP along arbitrary crystal direction can be achieved with nanometer-scale precision on a few-minute timescales leading to the formation of sub-nm wide armchair and zigzag BP nanoribbons. The nanoribbons are assembled, along with nanopores and nanogaps, using a combination of mechanical-liquid exfoliation and in situ transmission electron microscope (TEM) and scanning TEM nanosculpting. Here we report time-dependent structural properties of the one-dimensional systems under electron irradiation and probe their oxidation properties with electron energy-loss spectroscopy (EELS). Finally, we demonstrate the use of STEM to controllably narrow and thin the nanoribbons until they break into nanogaps. The observations are rationalized using density functional theory for transition state calculations and electronic band-structure evolution for the various stages of the narrowing procedure. In particular, we predict that the sub- and few-nm wide BP nanoribbons realized experimentally possess clear one-dimensional quantum confinement, even when the systems are made up of a few layers. We find the demonstration of this procedure is key for the development of BP-based electronic, optoelectronic, thermoelectric, and other applications in reduced dimensions.

  15. Phosphorus Accumulating Organisms and Biogeochemical Hotspots

    NASA Astrophysics Data System (ADS)

    Archibald, J.; Walter, M. T.

    2008-12-01

    Despite extensive research, many of the processes that control phosphorus (P) movement from agricultural fields to streams and lakes are not well understood. This limits our ability to develop management strategies that will mediate P contamination of freshwater ecosystems and subsequent eutrophication. Recent advances in molecular microbiology have prompted a paradigm shift in wastewater treatment that recognizes and exploits the ways specific microbial processes influence P solubility. Central to this enhanced biological phosphorus removal in wastewater treatment plants is a relatively recently discovered microorganism, Candidatus accumulibacter, which takes-up P and stores it internally as polyphosphate under alternating aerobic and anaerobic conditions. Within the past few months we have discovered this organism in the natural environment and its role in P biogeochemistry is unclear. We speculate that it may function similarly in variable source areas, which experience cycles of saturation and desaturation, as it does in the anaerobic- aerobic cycles in a wastewater treatment plant. If so, there may be potential opportunities to realize similarly new perspectives and advancements in the watershed context as have been seen in wastewater technologies. Here we present some of our preliminary findings.

  16. Maize yield response to a phosphorus-solubilizing microbial inoculant in field trials.

    PubMed

    Leggett, M; Newlands, N K; Greenshields, D; West, L; Inman, S; Koivunen, M E

    2015-11-01

    Findings from multi-year, multi-site field trial experiments measuring maize yield response to inoculation with the phosphorus-solubilizing fungus, Penicillium bilaiae Chalabuda are presented. The main objective was to evaluate representative data on crop response to the inoculant across a broad set of different soil, agronomic management and climate conditions. A statistical analysis of crop yield response and its variability was conducted to guide further implementation of a stratified trial and sampling plan. Field trials, analysed in the present study, were conducted across the major maize producing agricultural cropland of the United States (2005-11) comprising 92 small (with sampling replication) and 369 large (without replication) trials. The multi-plot design enabled both a determination of how sampling area affects the estimation of maize yield and yield variance and an estimation of the ability of inoculation with P. bilaiae to increase maize yield. Inoculation increased maize yield in 66 of the 92 small and 295 of the 369 large field trials (within the small plots, yield increased significantly at the 95% confidence level, by 0·17 ± 0·044 t/ha or 1·8%, while in the larger plots, yield increases were higher and less variable (i.e., 0·33 ± 0·026 t/ha or 3·5%). There was considerable inter-annual variability in maize yield response attributed to inoculation compared to the un-inoculated control, with yield increases varying from 0·7 ± 0·75 up to 3·7 ± 0·73%. No significant correlation between yield response and soil acidity (i.e., pH) was detected, and it appears that pH reduction (through organic acid or proton efflux) was unlikely to be the primary pathway for better phosphorus availability measured as increased yield. Seed treatment and granular or dribble band formulations of the inoculant were found to be equally effective. Inoculation was most effective at increasing maize yield in fields that had low or very low soil phosphorus status

  17. X-33 Development History

    NASA Technical Reports Server (NTRS)

    Butrica, Andrew J.

    1997-01-01

    The problem of dealing with various types of proprietary documents, whether from the Lockheed Martin, the Skunk Works, McDonnell Douglas, Rockwell, and other corporations extant or extinct, remains unresolved. The computerized archive finding aid has over 100 records at present. These records consist of X-33 photographs, press releases, media clippings, and the small number of X-33 project records collected to date.

  18. The role of the organic layer for phosphorus nutrition of young beech trees (Fagus sylvatica L.) at two sites differing in soil Phosphorus availability

    NASA Astrophysics Data System (ADS)

    Hauenstein, Simon

    2016-04-01

    Simon Hauenstein1, Thomas Pütz2, and Yvonne Oelmann1, 1 Geoecology, Department of Geosciences, University of Tübingen, Tübingen, Germany 2 Agrosphere (IBG-3), Forschungszentrum Jülich, Jülich, Germany The accumulation of an organic layer in forests is linked to the ratio between litterfall rates and decomposition rates with decomposition rates being decelerated due to acidification and associated nutrient depletion with proceeding ecosystem development. Nevertheless, the nutrient pool in the organic layer might still represent an important source for Phosphorus (P) nutrition of forests on nutrient-poor soils. Our objective was to assess the importance of the organic layer to P nutrition of young beech trees at two sites differing in soil P availability. We established a mesocosm experiment including plants and soil from a Phosphorus depleted forest site on a Haplic Podzol in Lüss and a Phosphorus rich forest site on a Eutric Cambisol in Bad Brückenau either with or without the organic layer. After 1 year under outdoor conditions, we applied 33P to the pots. After 0h, 24h, 48h, 96h, 192h, 528h we destructively harvested the young beech trees (separated into leaves, branches, stems) and sampled the organic layer and mineral soil of the pots. In each soil horizon we measured concentrations of resin-extractable P, plant available P fractions and total P. We extracted the xylem sap of the whole 2-year-old trees by means of scholander pressure bomb. 33P activity was measured for every compartment in soil and plant. The applied 33P was recovered mainly in the organic layer in Lüss, whereas it was evenly distributed among organic and mineral horizons in pots of Bad Brückenau soil. Comparing pots with and without an organic layer, the specific 33P activity differed by 323% between pots with and without an organic layer present in the Lüss soil. For both sites, the presence of the organic layer increased 33P activity in xylem sap compared to the treatment without

  19. [Biological phosphorus removal in intermittent aerated biological filter].

    PubMed

    Zeng, Long-Yun; Yang, Chun-Ping; Guo, Jun-Yuan; Luo, Sheng-Lian

    2012-01-01

    Under intermittent aerated and continuous fed operation where the biofilm system was subjected to alternated anaerobic/aerobic condition, the effect of influent volatile fatty acids (VFAs) concentrations, operation cycle and backwash on the biological phosphorus removal performance of the biofilter was studied. In the experiment, synthetic domestic wastewater was used, and the influent velocity was 5 L x h(-1) with gas versus liquid ratio of 8:1 and hydraulic retention time (HRT) of 1.3 h, resulting in average COD, ammonium and phosphorus load of 4.7, 0.41 and 0.095 g x (L x d) (-1) respectively. Results show that, (1) effective release and uptake of phosphorus was achieved in a operation cycle; (2) when influent VFAs was 100 mg x L(-1) (calculated by COD value) and operation cycle was 6 h the filter performed best in phosphorus removal, the phosphorus loading removal rate can be as much as 0.059 g x (L x d)(-1) at the aerated phase with those of COD and ammonium being 3.8 g x (L x d)(-1) and 0.28 g x (L x d)(-1) respectively, and with average effluent phosphorus, COD and ammonium concentrations being 1.8, 43.6 and 8.7 mg x L(-1), which shows nitrogen loss also happened; (3) the pause of backwash decreased the phosphorus removal performance rapidly with the removal efficiency lower than 40% in two days, but the consequent daily backwash operation gave a short improvement on the phosphorus removal, which disappeared in another two days. Thus, it is shown that biological phosphorus removal achieved with better phosphorus loading removal performance in the biofilter under intermittent aerated and continuous fed operation, and that sufficient and stable influent VFAs concentration, proper operation cycle, and more frequent backwash favored the performance.

  20. Nitrogen and phosphorus intake by phytoplankton in the Xiamen Bay

    NASA Astrophysics Data System (ADS)

    Lin, Cai; Li, Hui; He, Qing; Xu, Kuncan; Wu, Shengsan; Zhang, Yuanbiao; Chen, Jinmin; Chen, Baohong; Lin, Libin; Lu, Meiluan; Chen, Weifen; Tang, Rongkun; Ji, Weidong

    2010-01-01

    This paper describes a time series experiment examining the nitrogen and phosphorus intake of natural phytoplankton communities by a microcosms approach. Seawater samples containing natural phytoplankton communities were collected from waters around Baozhu Islet in inner Xiamen Bay and around Qingyu Islet in the outer bay. The goal was to elucidate the relationship between phytoplankton population enhancement, the biological removal of nitrogen and phosphorus from the seawater, and the phytoplankton nitrogen and phosphorus intake ratio based on nitrogen and phosphorus removal from seawater by phytoplankton, to provide a basis for detecting prewarning conditions for red tide and the assessment of red tide events. Two key results were obtained: 1. During the experiment, the nitrogen and phosphorus seawater concentrations in samples from these two sites were negatively and closely correlated to the logarithm of the phytoplankton cell concentration and to the value of the apparent oxygen increment. The ratio of the intake coefficients was 3.5:1 for phosphorus and 1.1:1 for nitrogen for the phytoplankton between these samples from around Baozhu Islet and Qingyu Islet, respectively. This indicates that the intake capabilities of phytoplankton for nitrogen in the two waters are essentially identical. However, for phosphorus, the capability was much higher in the Baozhu Islet waters than the Qingyu Islet waters. In other words, the phytoplankton in Qingyu Islet waters produced more biomass while consuming the same amount of phosphorus as the other waters; 2. The phytoplankton nitrogen and phosphorus intake ratio from the Baozhu Islet and Qingyu Islet waters was 20:1 and 36:1, respectively. The latter waters had a significantly higher ratio than the former and both were higher than the Redfield Ratio. These results indicate that nitrogen and phosphorus intake ratios by phytoplankton can vary significantly from region to region.

  1. Phosphorus Utilization and Characterization of Excreta From Swine Fed Diets Containing A Variety of Cereal Grains Balanced For Total Phosphorus

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Intrinsic phytase in swine feeds may alter phytate utilization and solubility of excreted phosphorus. Therefore, the objective of this experiment was to quantify changes in fecal phosphorus composition from swine fed various cereal grains with a range of phytate concentrations and endogenous phytase...

  2. [Identification of critical area of phosphorus loss in agricultural areas of Guishui River watershed by phosphorus loss risk assessment].

    PubMed

    Li, Qi; Chen, Li-Ding; Qi, Xin; Zhang, Xin-Yu; Ma, Yan

    2008-01-01

    Agricultural non-point sources pollution is one of severe problems for water environment of agricultural areas in China. Because of the big difficulties, identifying the critical source areas for phosphorus loss becomes the focal point of the non-point sources pollution control. A modified catchment scale phosphorus ranking scheme was developed for agricultural areas in Guishui River watershed. The new scheme included eight assessment factors, which had three phosphorus loss risk ranks respectively and selected quantitative analysis method. The result shows that the phosphorus fertilizer management of the vegetable fields is the most unfit method and has high phosphorus loss probabilities. Most study areas have high soil available phosphorus content and low soil erosion degree. The figure of the assessment result shows that the areas that are categorized as "low" phosphorus loss risk are small. Based on the figure of the result, the critical source areas were confirmed and the management strategies were brought forward according to the analysis on the distribute characteristics of the critical source areas. The result shows that the modified catchment scale phosphorus ranking scheme has operability and practicability to a certain extent.

  3. Enhancement of phosphorus removal in a low temperature A(2)/O process by anaerobic phosphorus release of activated sludge.

    PubMed

    Li, Jianzheng; Jin, Yu; Guo, Yaqiong; He, Junguo

    2013-01-01

    An anaerobic phosphorus release tank was introduced to an anaerobic-anoxic-aerobic (A(2)/O) process treating domestic sewage to enhance the phosphorus removal at low temperature. Phosphorus release of the activated sludge from the second sedimentation tank was evaluated at 14 °C by batch cultures, and the nutrient removal in the modified low temperature A(2)/O process was further investigated at the same temperature. The results showed that the feasible sludge retention time was 14 h for sequencing batch reaction and 12 h for continuous flow operation. The ratio of raw sewage to activated sludge from the second sedimentation tank was 1:1 in volume to meet the demand of carbon resource for the growth of phosphorus release microbes. The feasible chemical oxygen demand (COD) loading rate of the activated sludge in the phosphorus release tank was 0.015-0.02 g COD/g MLSS (mixed liquor suspended solids) and the nitrate concentration should be less than 5 mg/L. The phosphorus release was doubled when the sludge was blended intermittently and gently. The anaerobic phosphorus release of the activated sludge improved the phosphate removal remarkably, as well as the removal of NH4(+)-N and total nitrogen (TN) in the modified low temperature A(2)/O process. The effluent COD, NH4(+)-N, TN and total phosphorus could meet a stricter discharge standard.

  4. Improving phosphorus availability in an acid soil using organic amendments produced from agroindustrial wastes.

    PubMed

    Ch'ng, Huck Ywih; Ahmed, Osumanu Haruna; Majid, Nik Muhamad Ab

    2014-01-01

    In acid soils, soluble inorganic phosphorus is fixed by aluminium and iron. To overcome this problem, acid soils are limed to fix aluminium and iron but this practice is not economical. The practice is also not environmentally friendly. This study was conducted to improve phosphorus availability using organic amendments (biochar and compost produced from chicken litter and pineapple leaves, resp.) to fix aluminium and iron instead of phosphorus. Amending soil with biochar or compost or a mixture of biochar and compost increased total phosphorus, available phosphorus, inorganic phosphorus fractions (soluble inorganic phosphorus, aluminium bound inorganic phosphorus, iron bound inorganic phosphorus, redundant soluble inorganic phosphorus, and calcium bound phosphorus), and organic phosphorus. This was possible because the organic amendments increased soil pH and reduced exchangeable acidity, exchangeable aluminium, and exchangeable iron. The findings suggest that the organic amendments altered soil chemical properties in a way that enhanced the availability of phosphorus in this study. The amendments effectively fixed aluminium and iron instead of phosphorus, thus rendering phosphorus available by keeping the inorganic phosphorus in a bioavailable labile phosphorus pool for a longer period compared with application of Triple Superphosphate without organic amendments.

  5. Improving Phosphorus Availability in an Acid Soil Using Organic Amendments Produced from Agroindustrial Wastes

    PubMed Central

    Ch'ng, Huck Ywih; Ahmed, Osumanu Haruna; Majid, Nik Muhamad Ab.

    2014-01-01

    In acid soils, soluble inorganic phosphorus is fixed by aluminium and iron. To overcome this problem, acid soils are limed to fix aluminium and iron but this practice is not economical. The practice is also not environmentally friendly. This study was conducted to improve phosphorus availability using organic amendments (biochar and compost produced from chicken litter and pineapple leaves, resp.) to fix aluminium and iron instead of phosphorus. Amending soil with biochar or compost or a mixture of biochar and compost increased total phosphorus, available phosphorus, inorganic phosphorus fractions (soluble inorganic phosphorus, aluminium bound inorganic phosphorus, iron bound inorganic phosphorus, redundant soluble inorganic phosphorus, and calcium bound phosphorus), and organic phosphorus. This was possible because the organic amendments increased soil pH and reduced exchangeable acidity, exchangeable aluminium, and exchangeable iron. The findings suggest that the organic amendments altered soil chemical properties in a way that enhanced the availability of phosphorus in this study. The amendments effectively fixed aluminium and iron instead of phosphorus, thus rendering phosphorus available by keeping the inorganic phosphorus in a bioavailable labile phosphorus pool for a longer period compared with application of Triple Superphosphate without organic amendments. PMID:25032229

  6. The X-33 Program Update

    NASA Technical Reports Server (NTRS)

    Dill, Charlie

    2000-01-01

    This viewgraph presentation gives an overview of the X-33 program update, including details on program objectives and plans, the X-33 configuration, technologies used, and X-33 assembly and test status.

  7. The Prevalence of Phosphorus Containing Food Additives in Top Selling Foods in Grocery Stores

    PubMed Central

    León, Janeen B.; Sullivan, Catherine M.; Sehgal, Ashwini R.

    2013-01-01

    Objective To determine the prevalence of phosphorus-containing food additives in best selling processed grocery products and to compare the phosphorus content of a subset of top selling foods with and without phosphorus additives. Design The labels of 2394 best selling branded grocery products in northeast Ohio were reviewed for phosphorus additives. The top 5 best selling products containing phosphorus additives from each food category were matched with similar products without phosphorus additives and analyzed for phosphorus content. Four days of sample meals consisting of foods with and without phosphorus additives were created and daily phosphorus and pricing differentials were computed. Setting Northeast Ohio Main outcome measures Presence of phosphorus-containing food additives, phosphorus content Results 44% of the best selling grocery items contained phosphorus additives. The additives were particularly common in prepared frozen foods (72%), dry food mixes (70%), packaged meat (65%), bread & baked goods (57%), soup (54%), and yogurt (51%) categories. Phosphorus additive containing foods averaged 67 mg phosphorus/100 gm more than matched non-additive containing foods (p=.03). Sample meals comprised mostly of phosphorus additive-containing foods had 736 mg more phosphorus per day compared to meals consisting of only additive-free foods. Phosphorus additive-free meals cost an average of $2.00 more per day. Conclusion Phosphorus additives are common in best selling processed groceries and contribute significantly to their phosphorus content. Moreover, phosphorus additive foods are less costly than phosphorus additive-free foods. As a result, persons with chronic kidney disease may purchase these popular low-cost groceries and unknowingly increase their intake of highly bioavailable phosphorus. PMID:23402914

  8. Inhibition of chemical dose in biological phosphorus and nitrogen removal in simultaneous chemical precipitation for phosphorus removal.

    PubMed

    Liu, Yanchen; Shi, Hanchang; Li, Wenlin; Hou, Yanling; He, Miao

    2011-03-01

    A study on the influence of chemical dosing on biological phosphorus and nitrogen removal was carried out through batch experimental tests by lab-scale and a full-scale wastewater treatment plant (employing a typical anaerobic-anoxic-oxic treatment). Results indicated that the inhibition of aluminum salt on biological phosphorus release and uptake processes is significant, as well as the inhibition of aluminum salt on Ammonia-Oxidizing Bacteria (AOB) is dominantly observed in the nitrification process and is recoverability. The inhibition of iron salt in biological phosphorus and nitrogen removal is weak, and only the inhibition of iron salt on phosphorus release at anaerobic periods emerge under large dosing. Evidence shows persistent inhibition from the accumulation of chemical doses in sludge mass. Intermittent chemical dosing proves recommendable for simultaneous chemical phosphorus removal.

  9. Serum 25-Hydroxyvitamin D, Calcium, Phosphorus, and Electrocardiographic QT Interval Duration: Findings from NHANES III and ARIC

    PubMed Central

    Zhang, Yiyi; Post, Wendy S.; Dalal, Darshan; Bansal, Sandeep; Blasco-Colmenares, Elena; Jan De Beur, Suzanne; Alonso, Alvaro; Soliman, Elsayed Z.; Whitsel, Eric A.; Brugada, Ramón; Tomaselli, Gordon F.

    2011-01-01

    Context: Disturbances in 25-hydroxyvitamin D, calcium, and phosphorus concentrations have been associated with increased risks of total and cardiovascular mortality. It is possible that changes in electrocardiographic QT interval duration may mediate these effects, but the association of 25-hydroxyvitamin D, phosphorus, and calcium concentrations with QT interval duration has not been evaluated in general population samples. Objective: The objective of the study was to evaluate the association of 25-hydroxyvitamin D, phosphorus, and calcium concentrations with QT interval duration in two large samples of the U.S. general population. Design: This study included cross-sectional analyses the Third National Health and Nutrition Survey (NHANES III) and the Atherosclerosis Risk in Communities (ARIC) study. Setting: The study was conducted in the general community. Patients or Other Participants: Patients included 7,312 men and women from NHANES III and 14,825 men and women from the ARIC study. Interventions: Serum 25-hydroxyvitamin D, total and ionized calcium, and inorganic phosphorus were measured in NHANES III, and serum total calcium and inorganic phosphorus were measured in ARIC. Main Outcome Measure: QT interval duration was obtained from standard 12-lead electrocardiograms. Results: In NHANES III, the multivariate adjusted differences in average QT interval duration comparing the highest vs. the lowest quartiles of serum total calcium, ionized calcium, and phosphorus were −3.6 msec (−5.8 to −1.3; P for trend = 0.005), −5.4 msec (−7.4 to −3.5; P for trend <0.001), and 3.9 msec (2.0–5.9; P for trend <0.001), respectively. The corresponding differences in ARIC were −3.1 msec (−4.3 to −2.0; P for trend <0.001), −2.9 msec (−3.8 to −1.9; P for trend <0.001), and 2.3 msec (1.3–3.3; P for trend <0.001). No association was found between 25-hydroxyvitamin D concentrations and QT interval duration. Conclusions: In two large samples of the general

  10. Studies on the phosphorus requirement and proper calcium/phosphorus ratio in the diet of the black sea bream ( Sparus macrocephalus)

    NASA Astrophysics Data System (ADS)

    Liu, Jingke; Li, Maotang; Wang, Keling; Wang, Xincheng; Liu, Jianking

    1993-06-01

    An expriment on the phosphorus requirement and the proper Ca/P ratio in the diet of the black sea bream using the phosphorus gradient method (with casein as basic diet, sodium dihydrogen phosphate as source of phosphorus, and calcium lactate as source of calcium) showed that growth was greatly affected by the diet's phosphorus content and Ca/P ratio. Inadequate phosphorus in the diet resulted in slow growth and poor food conversion ratio (FCR). Analyses of the fish body showed it contained a high level of lipid but a low level of moisture, ash, calcium and phosphorus. The optimal values of phosphorus and Ca/P ratio in the black sea bream diet are 0.68% and 1∶2 respectively. Phosphorus in excess of this optimum value resulted in slow growth or even death. The results of this experiment clearly indicated that phosphorus is the principal mineral additive affecting black sea bream growth.

  11. Effect of pH on biological phosphorus uptake.

    PubMed

    Serralta, J; Ferrer, J; Borrás, L; Seco, A

    2006-12-05

    An anaerobic aerobic laboratory scale sequencing batch reactor (SBR) was operated to study the effect of pH on enhanced biological phosphorus removal. Seven steady states were achieved under different operating conditions. In all of them, a slight variation in the pH value was observed during anaerobic phase. However, pH rose significantly during aerobic phase. The increase observed was due to phosphorus uptake and carbon dioxide stripping. When pH was higher than 8.2-8.25 the phosphorus uptake rate clearly decreased. The capability of Activated Sludge Model No. 2d (ASM2d) and Biological Nutrient Removal Model No. 1 (BNRM1) to simulate experimental results was evaluated. Both models successfully characterized the enhanced biological phosphorus removal performance of the SBR. Furthermore, BNRM1 also reproduced the pH variations observed and the decrease in the phosphorus uptake rate. This model includes a switch function in the kinetic expressions to represent the pH inhibition in biological processes. The pH inhibition constants related to polyphosphate storage process were obtained by adjusting model predictions to measured phosphorus concentrations. On the other hand, pH inhibition should be included in ASM2d to accurately simulate experimental phosphorus evolution observed in an A/O SBR.

  12. Ocean acidification: One potential driver of phosphorus eutrophication.

    PubMed

    Ge, Changzi; Chai, Yanchao; Wang, Haiqing; Kan, Manman

    2017-02-15

    Harmful algal blooms which may be limited by phosphorus outbreak increases currently and ocean acidification worsens presently, which implies that ocean acidification might lead to phosphorus eutrophication. To verify the hypothesis, oxic sediments were exposed to seawater with different pH 30days. If pH was 8.1 and 7.7, the total phosphorus (TP) content in sediments was 1.52±0.50 and 1.29±0.40mg/g. The inorganic phosphorus (IP) content in sediments exposed to seawater with pH8.1 and 7.7 was 1.39±0.10 and 1.06±0.20mg/g, respectively. The exchangeable phosphorus (Ex-P) content in sediments was 4.40±0.45 and 2.82±0.15μg/g, if seawater pH was 8.1 and 7.7. Ex-P and IP contents in oxic sediments were reduced by ocean acidification significantly (p<5%). The reduced phosphorus in sediments diffused into water, which implied that ocean acidification was one potential facilitator of phosphorus eutrophication in oxic conditions.

  13. Phosphorus removal from anaerobically digested swine wastewater through struvite precipitation.

    PubMed

    Jordaan, E M; Ackerman, J; Cicek, N

    2010-01-01

    Phosphorus removal from agricultural wastewater streams is an important aspect of managing surface water quality, due to the contribution of phosphorus to eutrophication. Removal of phosphorus through struvite precipitation allows for its recovery as a potential fertilizer, and by determining the best conditions for struvite precipitation the removal process can be optimized. The effects of pH, Mg:P ratio, and time on struvite precipitation from anaerobically digested swine manure effluent were investigated. Effluent with Mg:P ratios from 1.0:1 to 1.6:1 were adjusted to pH values between 7.5 and 9.5 and left to equilibrate for 24 h. Results indicate that phosphorus removal increased with increasing pH and Mg:P ratio; the maximum phosphorus removal achieved was 80% at pH 9.0 and a Mg:P ratio of 1.6:1. The purest struvite precipitate was found at pH 7.5, with calcium carbonate and struvite precipitating at higher pH values. A continuously stirred batch of centrate was adjusted to pH 8.4 to determine the struvite formation rate constant. The rate constant was found to be 1.55 h(-1), with 17% phosphorus removal during the first 20 min. The results indicate that struvite precipitation could be a viable method of phosphorus removal from anaerobically digested swine manure.

  14. The dissipation of phosphorus in sewage and sewage effluents.

    PubMed

    Collingwood, R W

    Of the 41 kt of phosphorus reaching the sewage works in England and Wales 15 kt is removed in sewage sludge and the remainder is disposed of to rivers. 60% of the sewage sludge is now used as fertilizer and this proportion will no doubt increase in the future. The total use of sewage sludge, however, represents only about 5% of the current annual usage of artificial phosphorus fertilizer. At present there is no general economic incentive to make better use of the phosphorus in effluents. Phosphorus removal is expensive--about 2--3 pence/m3. If all the sewage effluents in England and Wales were to be so treated the cost would be about 100--150 million pounds annually, that is about 50% of the present costs of sewage treatment. In certain cases, but rarely in the UK, phosphate is removed, not to conserve phosphorus but to minimize the problems it creates in the environment. The phosphorus removed has little value as fertilizer. Alternative methods of using the phosphorus in effluents by the production and harvesting of crops of algae or aquatic plants have so far proved uneconomic. However, these methods need to be reviewed periodically as they may in the future become economically more attractive, especially in warmer climates where plant growth can be maintained throughout the year.

  15. Relative Contributions of Phosphorus in High Elevation Sierra Nevada Lakes

    NASA Astrophysics Data System (ADS)

    Jensen, L. K.; McIntyre, B. M.; Lyons, R. A.

    2015-12-01

    High elevation lakes of the Sierra Nevada mountain range show signs of eutrophication due to increased phosphorus loading. Phosphorus is a major contributing factor to freshwater lake eutrophication when in excess. Three previously researched sources of phosphorus to high-elevation montane lakes include atmospheric deposition, internal loading from sediments, and excretions from non-native stocked fish. The goal of this research was to isolate the estimated phosphorus contributions from residential shoreline developments and stocked non-native fish. A steady-state phosphorus loading rate model was created to quantify relative phosphorus loading into two lakes in the Eastern Sierra Nevada: Convict and Silver Lake. A conglomerate control lake was created from Eastern Brook Lake in the Eastern Sierra Nevada, Pear Lake in the Southern Sierra Nevada, and Snowflake Lake in Canada. Both Convict and Silver Lakes contain stocked non-native trout species and Silver Lake also has ~25 vacation homes on its eastern shore. Seasonal steady-state total phosphorus concentrations were determined using EPA Method 365.2. Loading rate constants were calculated using loading rates from literature and corresponding concentrations. It was determined that as much as 42% of phosphorous to Silver Lake came from shoreline housing developments, and 24% came from stocked fish depending on the season. Previous studies showed much lower contributions from non-native fish.

  16. Black phosphorus saturable absorber for ultrashort pulse generation

    SciTech Connect

    Sotor, J. Sobon, G.; Abramski, K. M.; Macherzynski, W.; Paletko, P.

    2015-08-03

    Low-dimensional materials, due to their unique and versatile properties, are very interesting for numerous applications in electronics and optoelectronics. Recently rediscovered black phosphorus, with a graphite-like layered structure, can be effectively exfoliated up to the single atomic layer called phosphorene. Contrary to graphene, it possesses a direct band gap controllable by the number of stacked atomic layers. For those reasons, black phosphorus is now intensively investigated and can complement or replace graphene in various photonics and electronics applications. Here, we demonstrate that black phosphorus can serve as a broadband saturable absorber and can be used for ultrashort optical pulse generation. The mechanically exfoliated ∼300 nm thick layers of black phosphorus were transferred onto the fiber core, and under pulsed excitation at 1560 nm wavelength, its transmission increases by 4.6%. We have demonstrated that the saturable absorption of black phosphorus is polarization sensitive. The fabricated device was used to mode-lock an Er-doped fiber laser. The generated optical solitons with the 10.2 nm bandwidth and 272 fs duration were centered at 1550 nm. The obtained results unambiguously show that black phosphorus can be effectively used for ultrashort pulse generation with performances similar or even better than currently used graphene or carbon nanotubes. This application of black phosphorus proves its great potential to future practical use in photonics.

  17. Copper-phosphorus alloys offer advantages in brazing copper

    SciTech Connect

    Rupert, W.D.

    1996-05-01

    Copper-phosphorus brazing alloys are used extensively for joining copper, especially refrigeration and air-conditioning copper tubing and electrical conductors. What is the effect of phosphorus when alloyed with copper? The following are some of the major effects: (1) It lowers the melt temperature of copper (a temperature depressant). (2) It increases the fluidity of the copper when in the liquid state. (3) It acts as a deoxidant or a fluxing agent with copper. (4) It lowers the ductility of copper (embrittles). There is a misconception that silver improves the ductility of the copper-phosphorus alloys. In reality, silver added to copper acts in a similar manner as phosphorus. The addition of silver to copper lowers the melt temperature (temperature depressant) and decreases the ductility. Fortunately, the rate and amount at which silver lowers copper ductility is significantly less than that of phosphorus. Therefore, taking advantage of the temperature depressant property of silver, a Ag-Cu-P alloy can be selected at approximately the same melt temperature as a Cu-P alloy, but at a lower phosphorus content. The lowering of the phosphorus content actually makes the alloy more ductile, not the silver addition. A major advantage of the copper-phosphorus alloys is the self-fluxing characteristic when joining copper to copper. They may also be used with the addition of a paste flux on brass, bronze, and specialized applications on silver, tungsten and molybdenum. Whether it is selection of the proper BCuP alloy or troubleshooting an existing problem, the suggested approach is a review of the desired phosphorus content in the liquid metal and how it is being altered during application. In torch brazing, a slight change in the oxygen-fuel ratio can affect the joint quality or leak tightness.

  18. Biological phosphorus cycling in dryland regions

    USGS Publications Warehouse

    Belnap, Jayne; Bunemann, Else; Oberson, Astrid; Frossard, Emmanuel

    2011-01-01

    The relatively few studies done on phosphorus (P) cycling in arid and semiarid lands (drylands) show many factors that distinguish P cycling in drylands from that in more mesic regions. In drylands, most biologically relevant P inputs and losses are from the deposition and loss of dust. Horizontal and vertical redistribution of P is an important process. P is concentrated at the soil surface and thus vulnerable to loss via erosion. High pH and CaCO3 limit P bioavailability, and low rainfall limits microbe and plant ability to free abiotically bound P via exudates, thus making it available for uptake. Many invasive plants are able to access recalcitrant P more effectively than are native plants. As P availability depends on soil moisture and temperature, climate change is expected to have large impacts on P cycling

  19. Vanadium reduces mortality in phosphorus deficient chicks

    SciTech Connect

    Hill, C.H. )

    1991-03-15

    Since the vanadate anion is similar in structure to the phosphate ion, and since vanadate has been shown to interfere with phosphate metabolism both in vitro and in vivo, experiments were conducted to determine the effect of dietary vanadate (V) on chicks fed phosphorus (P) deficient diets. In these studies, broiler chicks of both sexes were fed the experimental diets from the day of hatching for 19 days. The diets were based on soybean meal and corn, supplemented with methionine, manganese, and vitamins to supply the chick's requirements. Calcium (Ca) and P levels were manipulated by use of feed grade dicalcium phosphate and limestone. V was added as ammonium metavanadate. Serum Ca and P were determined on representative chicks in each group. Increasing Ca levels increased serum Ca and decreased serum P. V increased serum P levels in the chicks receiving 0.2% P but not in those receiving 0.1% P.

  20. Black phosphorus edges: a polarized Raman study

    NASA Astrophysics Data System (ADS)

    Ribeiro, H.; Villegas, C.; Bahamon, D.; Castro Neto, A.; de Souza, E.; Rocha, A.; Pimenta, M.; de Matos, C.

    Black phosphorus (BP) has been recently exfoliated down to few-layer thicknesses revealing numerous interesting features such as a tunable direct bandgap. Ever since, demonstrations of BP electronic devices have bloomed, as well as studies of the electric, optical, mechanical and thermal properties of its bulk and few-layer forms. However, the edges of BP crystals have, so far, been poorly characterized, even though the terminations of layered crystals are known to possess a range of interesting properties. In this work, the edges of exfoliated BP flakes are characterized by polarized confocal Raman spectroscopy. We will present experimental Raman spectra at zigzag and armchair edges, as well as density functional theory calculations that explain the peculiarities of the experimental data. Fapesp, INCT/Nanocarbono, Fapemig, CNPq, MackPesquisa, Grid-Unesp, CENAPAD-SP, and NRF.

  1. Dephasing in strongly anisotropic black phosphorus

    NASA Astrophysics Data System (ADS)

    Hemsworth, N.; Tayari, V.; Telesio, F.; Xiang, S.; Roddaro, S.; Caporali, M.; Ienco, A.; Serrano-Ruiz, M.; Peruzzini, M.; Gervais, G.; Szkopek, T.; Heun, S.

    2016-12-01

    Weak localization was observed in a black phosphorus field-effect transistor 65 nm thick. The weak localization behavior was found to be in excellent agreement with the Hikami-Larkin-Nagaoka model for fields up to 1 T, from which characteristic scattering lengths could be inferred. The temperature dependence of the phase coherence length Lφ was investigated, and above 1 K, it was found to decrease weaker than the Lφ∝T-1 /2 dependence characteristic of electron-electron scattering in the presence of elastic scattering in two dimensions. Rather, the observed power law was found to be close to that observed previously in quasi-one-dimensional systems such as metallic nanowires and carbon nanotubes.

  2. A radio search for interstellar phosphorus compounds

    NASA Technical Reports Server (NTRS)

    Hollis, J. M.; Snyder, L. E.; Lovas, F. J.; Ulich, B. L.

    1980-01-01

    The J = 1-0 and 3-2 transitions of phosphorus nitride, PN, with resolvable hyperfine components at 46.99 GHz and blended components at 140.97 GHz, and transitions of phosphine, PH3, at 47.39 and 46.94 GHz, arising from a small induced dipole moment, have been searched for but not found in interstellar molecular clouds. The J = 3/2-1/2, F - 3/2-3/2 transition of nitric oxide, NO, and the J(K-K+) = 16(4, 12) -15(5, 11) transition of sulfur dioxide, SO2, have been detected in Orion and Sagittarius B2. An unidentified emission line, U140921.8 MHz, has been observed in IRC + 10216.

  3. Intestinal absorption of calcium and phosphorus

    SciTech Connect

    Wasserman, R.H.

    1981-01-01

    The intestinal absorption of calcium and phosphorus has received considerable attention in recent years. The evidence has clearly indicated that calcium is absorbed by two processes: active transport and diffusion. Vitamin D appears to affect both processes, and has a significant effect at the brush border of the intestinal cell. Several proposed models to account for the transmural movement of calcium are discussed. The active transport of phosphate is under the control of vitamin D and is located at the brush border region of the intestinal cell. This transport system, like several others, appears to be sodium-dependent and inhibited by ouabain. In-transit phosphate does not mix with the cellular phosphate pool. Emphasized in the presentation is current knowledge of the transport mechanisms and macromolecular changes that potentially account for the stimulatory effect of vitamin D on calcium and phosphate transport.

  4. Agricultural trade and the global phosphorus cycle

    NASA Astrophysics Data System (ADS)

    Schipanski, M.; Bennett, E.; Riskin, S.; Porder, S.

    2012-12-01

    Trends of increasing agricultural trade, increased concentration of livestock production systems, and increased human consumption of livestock products influence the distribution of nutrients across the global landscape. Phosphorus (P) represents a unique management challenge as we are rapidly depleting mineable reserves of this essential and non-renewable resource. At the same time, its overuse can lead to pollution of aquatic ecosystems. We analyzed the relative contributions of food crop, feed crop, and livestock product trade to P flows through agricultural soils for twelve countries from 1961 to 2007. We then used case studies of P fertilizer use in the world's three major soybean export regions: Iowa (USA), Mato Grosso (Brazil), and Buenos Aires (Argentina) to examine the influence of historical P management and soil types on agriculture's environmental consequences. Due to the intensification of agricultural production, average soil surface P balances more than tripled from 6 to 21 kg P per ha between 1961 and 2007 for the twelve study countries. Consequently, countries that are primarily agricultural exporters carried increased risks for water pollution or, for Argentina, reduced soil fertility due to soil P mining to support exports. In 2007, nations imported food and feed from regions with higher apparent P fertilizer use efficiencies than if those crops were produced domestically. However, this was largely because imports were sourced from regions depleting soil P resources to support export crop production. In addition, the pattern of regional specialization and intensification of production systems also reduced the potential to recycle P resources, with greater implications for livestock production than crop production. In a globalizing world, it will be increasingly important to integrate biophysical constraints of our natural resources and environmental impacts of agricultural systems into trade policy and agreements and to develop mechanisms that

  5. Phosphorus losses in furrow irrigation runoff.

    PubMed

    Westermann, D T; Bjorneberg, D L; Aase, J K; Robbins, C W

    2001-01-01

    Phosphorus (P) often limits the eutrophication of streams, rivers, and lakes receiving surface runoff. We evaluated the relationships among selected soil P availability indices and runoff P fractions where manure, whey, or commercial fertilizer applications had previously established a range of soil P availabilities on a Portneuf silt loam (coarse-silty, mixed, superactive, mesic Durinodic Xeric Haplocalcid) surface-irrigated with Snake River water. Water-soluble P, Olsen P (inorganic and organic P), and iron-oxide impregnated paper-extractable P (FeO-Ps) were determined on a 0.03-m soil sample taken from the bottom of each furrow before each irrigation in fall 1998 and spring 1999. Dissolved reactive phosphorus (DRP) in a 0.45-microm filtered runoff sample, and iron-oxide impregnated paper-extractable P (FeO-Pw), total P, and sediment in an unfiltered runoff sample were determined at selected intervals during a 4-h irrigation on 18.3-m field plots. The 1998 and 1999 data sets were combined because there were no significant differences. Flow-weighted average runoff DRP and FeO-Pw concentrations increased linearly as all three soil P test concentrations increased. The average runoff total P concentration was not related to any soil P test but was linearly related to sediment concentration. Stepwise regression selected the independent variables of sediment, soil lime concentration, and soil organic P extracted by the Olsen method as related to average runoff total P concentration. The average runoff total P concentration was 1.08 mg L(-1) at a soil Olsen P concentration of 10 mg kg(-1). Soil erosion control will be necessary to reduce P losses in surface irrigation runoff.

  6. A Novel Method for Dissolved Phosphorus Analysis

    NASA Astrophysics Data System (ADS)

    Berry, J. M.; Spiese, C. E.

    2012-12-01

    High phosphorus loading is a major problem in the Great Lakes watershed. Phosphate enters waterways via both point and non-point sources (e.g., runoff, tile drainage, etc.), promoting eutrophication, and ultimately leading to algal blooms, hypoxia and loss of aquatic life. Quantification of phosphorus loading is typically done using the molybdenum blue method, which is known to have significant drawbacks. The molybdenum blue method requires strict control on time, involves toxic reagents that have limited shelf-life, and is generally unable to accurately measure sub-micromolar concentrations. This study aims to develop a novel reagent that will overcome many of these problems. Ethanolic europium(III) chloride and 8-hydroxyquinoline-5-sulfonic acid (hqs) were combined to form the bis-hqs complex (Eu-hqs). Eu-hqs was synthesized as the dipotassium salt via a simple one-pot procedure. This complex was found to be highly fluorescent (λex = 360 nm, λem = 510 nm) and exhibited a linear response upon addition of monohydrogen phosphate. The linear response ranged from 0.5 - 25 μM HPO42- (15.5 - 775 μg P L-1). It was also determined that Eu-hqs formed a 1:1 complex with phosphate. Maximum fluorescence was found at a pH of 8.50, and few interferences from other ions were found. Shelf-life of the reagent was at least one month, twice as long as most of the molybdenum blue reagent formulations. In the future, field tests will be undertaken in local rivers, lakes, and wetlands to determine the applicability of the complex to real-world analysis.

  7. Nature of Phosphorus Limitation in the Ultraoligotrophic Eastern Mediterranean

    NASA Astrophysics Data System (ADS)

    Thingstad, T. F.; Krom, M. D.; Mantoura, R. F. C.; Flaten, G. A. F.; Groom, S.; Herut, B.; Kress, N.; Law, C. S.; Pasternak, A.; Pitta, P.; Psarra, S.; Rassoulzadegan, F.; Tanaka, T.; Tselepides, A.; Wassmann, P.; Woodward, E. M. S.; Riser, C. Wexels; Zodiatis, G.; Zohary, T.

    2005-08-01

    Phosphate addition to surface waters of the ultraoligotrophic, phosphorus-starved eastern Mediterranean in a Lagrangian experiment caused unexpected ecosystem responses. The system exhibited a decline in chlorophyll and an increase in bacterial production and copepod egg abundance. Although nitrogen and phosphorus colimitation hindered phytoplankton growth, phosphorous may have been transferred through the microbial food web to copepods via two, not mutually exclusive, pathways: (i) bypass of the phytoplankton compartment by phosphorus uptake in heterotrophic bacteria and (ii) tunnelling, whereby phosphate luxury consumption rapidly shifts the stoichiometric composition of copepod prey. Copepods may thus be coupled to lower trophic levels through interactions not usually considered.

  8. Assembly of Ring-Shaped Phosphorus within Carbon Nanotube Nanoreactors.

    PubMed

    Zhang, Jinying; Zhao, Dan; Xiao, Dingbin; Ma, Chuansheng; Du, Hongchu; Li, Xin; Zhang, Lihui; Huang, Jialiang; Huang, Hongyang; Jia, Chun-Lin; Tománek, David; Niu, Chunming

    2017-02-06

    A phosphorus allotrope that has not been observed so far, ring-shaped phosphorus consisting of alternate P8 and P2 structural units, has been assembled inside multi-walled carbon nanotube nanoreactors with inner diameters of 5-8 nm by a chemical vapor transport and reaction of red phosphorus at 500 °C. The ring-shaped nanostructures with surrounding graphene walls are stable under ambient conditions. The nanostructures were characterized by high-resolution transmission electron microscopy, scanning transmission electron microscopy, energy-dispersive X-ray spectroscopy, Raman scattering, attenuated total reflectance Fourier transform infrared spectroscopy, and X-ray photoelectron spectroscopy.

  9. Nature of phosphorus limitation in the ultraoligotrophic eastern Mediterranean.

    PubMed

    Thingstad, T F; Krom, M D; Mantoura, R F C; Flaten, G A F; Groom, S; Herut, B; Kress, N; Law, C S; Pasternak, A; Pitta, P; Psarra, S; Rassoulzadegan, F; Tanaka, T; Tselepides, A; Wassmann, P; Woodward, E M S; Riser, C Wexels; Zodiatis, G; Zohary, T

    2005-08-12

    Phosphate addition to surface waters of the ultraoligotrophic, phosphorus-starved eastern Mediterranean in a Lagrangian experiment caused unexpected ecosystem responses. The system exhibited a decline in chlorophyll and an increase in bacterial production and copepod egg abundance. Although nitrogen and phosphorus colimitation hindered phytoplankton growth, phosphorous may have been transferred through the microbial food web to copepods via two, not mutually exclusive, pathways: (i) bypass of the phytoplankton compartment by phosphorus uptake in heterotrophic bacteria and (ii) tunnelling, whereby phosphate luxury consumption rapidly shifts the stoichiometric composition of copepod prey. Copepods may thus be coupled to lower trophic levels through interactions not usually considered.

  10. Phosphorus management in end-stage renal disease.

    PubMed

    Finn, William F

    2005-01-01

    Chronic kidney disease is an important public health problem, with an increasing number of patients worldwide. One important outcome of renal failure is disordered mineral metabolism, most notably involving calcium and phosphorus balance. Of importance is that increased serum phosphorus levels are associated with increased mortality rates. Despite dietary restrictions, patients receiving dialysis invariably experience hyperphosphatemia and require treatment with phosphate binders. Existing phosphate binders are effective in reducing serum phosphorus levels, but are associated with a number of important disadvantages. Lanthanum carbonate, a new noncalcium, nonaluminum phosphate binder, represents a promising treatment for hyperphosphatemia.

  11. Roasting-induced phase change and its influence on phosphorus removal through acid leaching for high-phosphorus iron ore

    NASA Astrophysics Data System (ADS)

    Yang, Min; Zhu, Qing-shan; Fan, Chuan-lin; Xie, Zhao-hui; Li, Hong-zhong

    2015-04-01

    In the present study, roasting-induced phase change and its influence on phosphorus removal via leaching has been investigated for high-phosphorus iron ore. The findings indicate that phosphorus in the ore is associated with goethite and exists mainly in amorphous Fe3PO7 phase. The phosphorus remains in the amorphous phase after being roasted below 300°C. Grattarolaite (Fe3PO7) is found in samples roasted at 600-700°C, revealing that phosphorus phase is transformed from the amorphous form to crystalline grattarolaite during roasting. Leaching tests on synthesized pure grattarolaite reveal a low rate of phosphorus removal by sulfuric acid leaching. When the roasting temperature is higher than 800°C, grattarolaite is found to react with alumina to form aluminum phosphate, and the reactivity of grattarolaite with alumina increases with increasing roasting temperature. Consequently, the rate of phosphorus removal also increases with increasing roasting temperature due to the formation of acid-soluble aluminum phosphate.

  12. Effect of sludge retention time and phosphorus to carbon ratio on biological phosphorus removal in HS-SBR process.

    PubMed

    Zhu, Rui; Wu, Min; Yang, Jian

    2013-01-01

    Sludge retention time (SRT) and phosphorus to carbon ratio (P/C) in the feed are important control parameters in biological phosphorus removal. In this study, humus soil sequencing batch reactor (HS-SBR) process was operated with different SRTs (five, 10 and 15 days) and P/C feeding (0.0125 and 0.1) to evaluate their phosphorus removal efficiencies. The HS-SBR was composed of a humus soil reactor (HSR) and a conventional SBR (designated as hsSBR to differentiate from the conventional SBR used as a control). The results showed that the phosphorus removal efficiency was 82.7%, 97.3% and 97.3% at SRTs of five, 10 and 15 days respectively and acetate utilization efficiency for phosphorus release with SRTs of 10 and 15 days was much higher than that with an SRT of five days. In addition, a high P/C feeding (0.1) could promote the growth of the phosphate accumulating organisms in the hsSBR; however, the efficiency of phosphorus removal was lower than a low P/C feeding (0.0125) at an SRT of 15 days. All these observations suggested that a relatively long SRT and low P/C feeding exert a useful effect on the phosphorus removal in the hsSBR.

  13. Phosphorus loadings associated with a park tourist attraction: limnological consequences of feeding the fish.

    PubMed

    Turner, Andrew M; Ruhl, Nathan

    2007-04-01

    The Linesville spillway of Pymatuning State Park is one of the most visited tourist attractions in Pennsylvania, USA, averaging more than 450,000 visitors . year(-1). Carp (Cyprinus carpio Linnaeus) and waterfowl congregate at the spillway where they are fed bread and other foods by park visitors. We hypothesized that the "breadthrowers" constitute a significant nutrient vector to the upper portion of Pymatuning Reservoir. In the summer of 2002, we estimated phosphorus loadings attributable to breadthrowers, and compared these values to background loadings from Linesville Creek, a major tributary to the upper reservoir. Items fed to fish included bread, donuts, bagels, canned corn, popcorn, corn chips, hot dogs, birthday cakes, and dog food. Phosphorus loading associated with park visitors feeding fish was estimated to be 3233 g day(-1), and estimated P export from the Linesville Creek watershed was 2235 g.day(-1). P loading attributable to breadthrowers exceeded that of the entire Linesville Creek watershed on 33 of the 35 days of study, with only a heavy rainfall event triggering watershed exports that exceeded spillway contributions. Averaged across 5 weeks, breadthrowers contributed 1.45-fold more P to Pymatuning Reservoir than the Linesville Creek watershed. If Linesville Creek P exports are extrapolated to the entire Sanctuary Lake watershed, spillway contributions of P added 48% to the non-point source watershed P entering the lake. Park visitors feeding fish at the Linesville Spillway are a significant source of nutrients entering Sanctuary Lake.

  14. Phosphorus Loadings Associated with a Park Tourist Attraction: Limnological Consequences of Feeding the Fish

    NASA Astrophysics Data System (ADS)

    Turner, Andrew M.; Ruhl, Nathan

    2007-04-01

    The Linesville spillway of Pymatuning State Park is one of the most visited tourist attractions in Pennsylvania, USA, averaging more than 450,000 visitors · year-1. Carp ( Cyprinus carpio Linnaeus) and waterfowl congregate at the spillway where they are fed bread and other foods by park visitors. We hypothesized that the “breadthrowers” constitute a significant nutrient vector to the upper portion of Pymatuning Reservoir. In the summer of 2002, we estimated phosphorus loadings attributable to breadthrowers, and compared these values to background loadings from Linesville Creek, a major tributary to the upper reservoir. Items fed to fish included bread, donuts, bagels, canned corn, popcorn, corn chips, hot dogs, birthday cakes, and dog food. Phosphorus loading associated with park visitors feeding fish was estimated to be 3233 g day-1, and estimated P export from the Linesville Creek watershed was 2235 g·day-1. P loading attributable to breadthrowers exceeded that of the entire Linesville Creek watershed on 33 of the 35 days of study, with only a heavy rainfall event triggering watershed exports that exceeded spillway contributions. Averaged across 5 weeks, breadthrowers contributed 1.45-fold more P to Pymatuning Reservoir than the Linesville Creek watershed. If Linesville Creek P exports are extrapolated to the entire Sanctuary Lake watershed, spillway contributions of P added 48% to the non-point source watershed P entering the lake. Park visitors feeding fish at the Linesville Spillway are a significant source of nutrients entering Sanctuary Lake.

  15. The course of phosphorus excretion in growing pigs fed continuously increasing phosphorus concentrations after a phosphorus depletion.

    PubMed

    Rodehutscord, M; Faust, M; Pfeffer, E

    1999-01-01

    A balance study was performed in order to quantify the effect of continuously increased phosphorus (P) intake on faecal and urinary P excretion. The aim was to quantify the level of intake where regulatory P excretion becomes relevant for comparative digestibility measurements on P, and when the pig adapts its urinary P excretion to increased P intake. Phosphorus intake of growing pigs was continuously increased on a daily basis starting at a marginal level and P excretion via faeces and urine was continuously followed for 92 days. Two semi-synthetic diets were prepared with different proportions of Na2HPO4 resulting in 2.4 (diet 1) and 6.3 (diet 2) g P/kg DM. Concentration of Ca was adapted to achieve a Ca supply approximately 3.1 fold the digestible P supply. Six castrated male crossbred pigs (31 kg BW) were kept individually in metabolism crates after they had undergone a 14 d P depletion period during which they were fed diet 1 solely. Pigs received 1.04kg of diet 1 per day throughout the experiment, and each day the amount of feed and P supplied to pigs from diet 2 was increased by 12 g and 69 mg, respectively. ME supply was approximately 2.4 fold maintenance and average daily BW gain of pigs during the entire experiment was 690 +/- 30 g. While intake increased linearly, faecal excretion of P and Ca increased non-linearly and could be best described by third order polynomial functions. The proportion of ingested P not excreted via faeces followed a quadratic type of curve with a maximum of 81% at 25 days on experiment and P intake of 4.0 g/d. Thereafter, the proportion decreased continuously. The digestibility of P from diet 2, determined by the slope ratio technique, was constant and not affected by P intake up to a P intake of 5 g/d. Renal P excretion did not exceed inevitable losses until day 60 and increased exponentially thereafter when body P reserves were restored. It is concluded, that an adaptation to surplus P supply occurred earlier on the

  16. 3,3-Dimethylbenzidine

    Integrated Risk Information System (IRIS)

    3,3 - Dimethylbenzidine ; CASRN 119 - 93 - 7 Human health assessment information on a chemical substance is included in the IRIS database only after a comprehensive review of toxicity data , as outlined in the IRIS assessment development process . Sections I ( Health Hazard Assessments for Noncarcin

  17. 3,3\\'-Dichlorobenzidine

    Integrated Risk Information System (IRIS)

    3,3 ' - Dichlorobenzidine ; CASRN 91 - 94 - 1 Human health assessment information on a chemical substance is included in the IRIS database only after a comprehensive review of toxicity data , as outlined in the IRIS assessment development process . Sections I ( Health Hazard Assessments for Noncarci

  18. 8-Phosphorus substituted isosteres of purine and deazapurines.

    PubMed Central

    Khwaja, T A; Pande, H

    1979-01-01

    Synthesis of 8-phosphorus substituted isosteres of purine [pyrimidino (4,5-d)-1,3,2-diazaphosphole], 1-deazapurine [pyridino (2,3-d)-1,3,2-diazaphosphole] and 3-deazapurine [pyridino (4,5-d)-1,3,2-diazaphosphole] has been achieved by the reaction of equimolar amounts of triphenylphosphite and 4,5-diaminopyrimidine, 2,3-diaminopyridine and 3,4-diaminopyridine, respectively. These compounds hydrolyzed (cleavage of the phosphorus-nitrogen bounds) in aqueous solutions to provide the corresponding diaminopyrimidine or diaminopyridines. These three new basic ring systems constitute the first reported synthesis of purines in which ring carbon atom is substituted with a phosphorus atom. 8-Phosphorus substituted purine at a concentration of 4 X 10(-4)M caused a 50% inhibition in the growth of leukemia L1210 cells in culture. The biochemical rationale for the synthesis of these compounds is discussed. PMID:493140

  19. Primary sources of phosphorus and phosphates in chemical evolution.

    PubMed

    Macia, E; Hernandez, M V; Oro, J

    1997-12-01

    In this work we consider the role of phosphorus in chemical evolution from an interdisciplinary approach. First we briefly review the presence of this element in different cosmic sites, such as massive stellar cores, circumstellar and interstellar clouds, meteorites, lunar and Martian samples, interplanetary dust particles, cometary dust and planetary atmospheres. Thus we illustrate the fact that phosphorus seems to be, at the same time, scarce and ubiquitous in the solar system. Afterwards, by comparing the phosphorus content of our planet's main reservoirs with the amount of cometary and meteoritic matter captured by the primitive Earth, we conclude that comets may have provided a primary source for phosphorus compounds of prebiotic interest. Finally, we make a number of proposals aimed to gain observational supporting evidence to the above conclusion and other suggestions made in the article.

  20. Black phosphorus photodetector for multispectral, high-resolution imaging.

    PubMed

    Engel, Michael; Steiner, Mathias; Avouris, Phaedon

    2014-11-12

    Black phosphorus is a layered semiconductor that is intensely researched in view of applications in optoelectronics. In this letter, we investigate a multilayer black phosphorus photodetector that is capable of acquiring high-contrast (V > 0.9) images both in the visible (λVIS = 532 nm) as well as in the infrared (λIR = 1550 nm) spectral regime. In a first step, by using photocurrent microscopy, we map the active area of the device and we characterize responsivity and gain. In a second step, by deploying the black phosphorus device as a point-like detector in a confocal microsope setup, we acquire diffraction-limited optical images with submicron resolution. The results demonstrate the usefulness of black phosphorus as an optoelectronic material for hyperspectral imaging applications.

  1. Phosphorus Determination by Derivative Activation Analysis: A Multifaceted Radiochemical Application.

    ERIC Educational Resources Information Center

    Kleppinger, E. W.; And Others

    1984-01-01

    Although determination of phosphorus is important in biology, physiology, and environmental science, traditional gravimetric and colorimetric methods are cumbersome and lack the requisite sensitivity. Therefore, a derivative activation analysis method is suggested. Background information, procedures, and results are provided. (JN)

  2. The specific contribution of phosphorus in dendrimer chemistry.

    PubMed

    Majoral, Jean-Pierre; Caminade, Anne-Marie; Maraval, Valérie

    2002-12-21

    Besides properties commonly found for all types of dendrimers, phosphorus-containing dendrimers possess some specific properties seldom or never found for other types of dendrimers. Emphasis will be put on these specificities.

  3. Method of removing and detoxifying a phosphorus-based substance

    DOEpatents

    Vandegrift, George F.; Steindler, Martin J.

    1989-01-01

    A method of removing organic phosphorus-based poisonous substances from water contaminated therewith and of subsequently destroying the toxicity of the substance is disclosed. Initially, a water-immiscible organic is immobilized on a supported liquid membrane. Thereafter, the contaminated water is contacted with one side of the supported liquid membrane to selectively dissolve the phosphorus-based substance in the organic extractant. At the same time, the other side of the supported liquid membrane is contacted with a hydroxy-affording strong base to react the phosphorus-based substance dissolved by the organic extractant with a hydroxy ion. This forms a non-toxic reaction product in the base. The organic extractant can be a water-insoluble trialkyl amine, such as trilauryl amine. The phosphorus-based substance can be phosphoryl or a thiophosphoryl.

  4. Comparing phosphorus indices and process models with water quality data

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Phosphorus (P) indices in the southern United States frequently produce different recommendations for similar conditions. After assembling data from benchmark southern sites (Arkansas, Georgia, Mississippi, North Carolina, Oklahoma, and Texas), land treatment information was used in the 12 southern...

  5. Evaluating the Possible Role of Phosphorus Release from Sediments on Stream Restoration

    NASA Astrophysics Data System (ADS)

    Timm, A.; McGinley, P.

    2010-12-01

    Elevated phosphorus concentrations can lead to algal blooms which impair waters for consumption, recreation, industry and agricultural uses. Along with sources of phosphorus such as runoff from agriculture and the effluent from wastewater treatment plants, there are reservoirs of phosphorus stored in stream sediments. As phosphorus inputs from agriculture and industry are decreased, there is the potential for these phosphorus reserves in the sediment to be released and prolong the time for restoration. Mill Creek in Central Wisconsin has water phosphorus concentrations ranging from 0.1 mg/L to 0.5 mg/L. These high phosphorus concentrations are the result of both wastewater discharges and agriculture runoff. Often a model used to develop a Total Mass Daily Load (TMDL) does not include a sediment reserve as a source of phosphorus. This study evaluates two methods of estimating sediment phosphorus reserves and incorporates them within a model for the phosphorus concentration in a stream. Two methods for estimating phosphorus equilibration with the stream were examined: sorption isotherms with equilibrium phosphorus concentration estimation; and pore-water profiling with equilibrators. This study compares these two approaches along a phosphorus concentration gradient in the stream and examines the sensitivity of stream phosphorus concentration reductions to sediment phosphorus reserves.

  6. Is phosphorus intake that exceeds dietary requirements a risk factor in bone health?

    PubMed

    Calvo, Mona S; Tucker, Katherine L

    2013-10-01

    Phosphorus intake in excess of the nutrient needs of healthy adults is thought to disrupt hormonal regulation of phosphorus (P), calcium (Ca), and vitamin D, contributing to impaired peak bone mass, bone resorption, and greater risk of fracture. Elevation of extracellular phosphorus due to excessive intake is thought to be the main stimulus disrupting phosphorus homeostasis in healthy individuals, as it is in renal disease even when intake is modest. If high serum phosphorus is the critical link to the effect of high phosphorus intake on bone health, the issue could be addressed through epidemiologic or dietary studies. However, several confounding factors, including problems estimating accurate phosphorus intake, the influence of a low dietary Ca:P ratio, the acidic nature of phosphorus, the rapid rate of absorption and greater phosphorus bioavailability from processed food such as cola drinks, and circadian fluctuation in serum phosphorus, make this question difficult to address using conventional study designs. These confounding factors are considered in this review, exploring whether phosphorus intake exceeding nutrient needs in healthy individuals disrupts phosphorus regulation and negatively affects bone accretion or loss. Specific attention is given to phosphorus intake from processed foods rich in phosphorus additives, which significantly contribute to phosphorus intake.

  7. Electrodeposition of amorphous ternary nickel-chromium-phosphorus alloy

    DOEpatents

    Guilinger, Terry R.

    1990-01-01

    Amorphous ternary nickel-chromium-phosphorus alloys are electrodeposited from a bath comprising a nickel salt, a chromium salt, a phosphorus source such as sodium hypophosphite, a complexing agent for the nickel ions, supporting salts to increase conductivity, and a buffering agent. The process is carried out at about room temperature and requires a current density between about 20 to 40 A/dm.sup.2.

  8. Global baseline data on phosphorus pollution of large lakes

    NASA Astrophysics Data System (ADS)

    Fink, Gabriel; Flörke, Martina; Alcamo, Joseph

    2016-04-01

    Lakes are exposed to harmful eutrophication which is the most concerning water quality issue on global scale. Eutrophication is caused by phosphorous pollution in most lakes. Hence, global consistent base line data on phosphorus loadings are needed to assess future sustainable development. We used the modeling framework WaterGAP3 to calculate present total phosphorus loadings to the world's largest lakes. Estimates of modeled total phosphorus (TP) loadings as well as the contributions of different sectors were successfully validated against measured data. Based on these findings, annual total phosphorus loadings to lakes were calculated for diffuse and point sources according to the different sectors domestic, manufacturing, urban surface runoff, agriculture and background for the time period 1990 to 2010. Our results show high phosphorus loadings into lakes in southern latitudes. On global average, industrial fertilizer is the main anthropogenic source while background loadings are low in comparison. Nevertheless, both features indicate a high potential to reduce the exposure to eutrophication in lakes which are faced with high phosphor inputs. The global average of TP loadings was 7% higher in the time period 2005-2010 than in the period 1990-1995. The global average in 2005-2010 results from an increase in TP loadings of 79% in South America, which was dampened by a decrease in Europe, North America, and Asia. Chinese lakes were exposed to massive increasing phosphorus loadings, too. Both increasing and decreasing trends are caused primarily by changing industrial fertilizer application rates. In conclusion, this study provides a consistent and model based synopsis of global trends and sources of phosphorus loadings to large lakes. The estimates of phosphorus pollution of lakes present a basis for assessing and managing the global eutrophication problem.

  9. Calcium and phosphorus requirements of bobwhite quail chicks

    USGS Publications Warehouse

    Nestler, R.B.; DeWitt, J.B.; Derby, J.V.; Moschler, M.

    1948-01-01

    Four experiments involving 873 bob-white quail (Colinus virginianus) chicks were conducted at the Patuxent Research Refuge, Laurel, Maryland. A comparison was made of calcium: phosphorus ratios of 1:1, 15:1, 1%: 1, 2:1, 2+:1,and 2%: 1in diets with phosphorus levels of 0.52, 0.75, 1.00, and 1.25 percent. The results indicate that the optimum level of phosphorus for growth is in the neighborhood of 0.75 per cent, and that of calcium is about 1.00 per cent, making a ratio of 1 1/3: 1....Although the greatest efficiency of feed utilization occurred on the phosphorus level of 0.52 per cent, the liveweight and bone-ash of the birds at the end of ten weeks were significantly lower than they were on the levels of 0.75 and 1.00 per cent, phosphorus. Bone-ash of birds on a Ca: P ratio of 1:1was significantly lower than that on any of the other five ratios, regardless of phosphorus level....There was a significant reverse correlation between the Ca: P ratio of the diet and the storage of vitamin A in the liver. Storage was especially low on the ratio of 2 2/3: 1....The low and high levels of calcium and phosphorus considered in these studies are abnormal, the low level especially being hard to obtain with common feedstuffs, if the protein requirements of the birds are met. Nevertheless, even on such levels, results were not disastrous. The growth of quail in the wild happens during a season when the birds have access to the minerals of the soil and in the abundant animal matter (mostly insects), as well as to minerals in plant material. Therefore, seemingly, calcium and phosphorus need not be critical nutrients for growing quail in the wild.

  10. Key structure-activity relationships in the vanadium phosphorus oxide catalyst system

    SciTech Connect

    Thompson, M.R. ); Ebner, J.R. )

    1990-04-01

    The crystal structure of vanadyl pyrophosphate has been redetermined using single crystals obtained from a near solidified melt of a microcrystalline catalyst sample. Crystals that index as vanadyl pyrophosphate obtained from this melt are variable in color. Crystallographic refinement of the single crystal x-ray diffraction data indicates that structural differences among these materials can be described in terms of crystal defects associated with linear disorder of the vanadium atoms. The importance of the disorder is outlined in the context of its effect on the proposed surface topology parallel to (1,0,0). Models of the surface topology simply and intuitively account for the non-stoichometric surface atomic P/V ratio exhibited by selective catalysts of this phase. These models also point to the possible role of the excess phosphorus in providing site isolation of reactive centers at the surface. 33 refs., 7 figs.

  11. Calcium and phosphorus requirements of breeding bobwhite quail

    USGS Publications Warehouse

    DeWitt, J.B.; Nestler, R.B.; Derby, J.V.

    1949-01-01

    In the course of studies designed to determine the calcium and phosphorus requirements of breeding bobwhite quail, it was found that best results were obtained when the Ca/P ratio in the diet was approximately 2.3:1. Variations in the Ca/P ratio produced significant differences in results when the level of phosphorus in the diet was 0.75%, but the differences were less marked when the level of phosphorus was increased to 1.00%. Although diets containing 0.75% phosphorus and 1.8% calcium appeared adequate for reproduction, as judged by the criteria of the maintenance of satisfactory condition in the breeders, egg production, fertility, hatchability and survival of offspring during the first 5 days after hatching, it was found that the winter mortality of the offspring of birds fed such a diet was much greater than that occurring in the offspring of birds fed on diets containing 1.00 or 1.25% phosphorus. It is concluded that breeding bobwhite quail require diets furnishing approximately 1.00% phosphorus and 2.3% calcium.

  12. Phosphorus cycling in the deep subseafloor biosphere at North Pond

    NASA Astrophysics Data System (ADS)

    Defforey, D.; Paytan, A.

    2013-12-01

    Phosphorus is a macronutrient involved both in functional and structural components of all living cells. This makes it an essential nutrient for life, including microbial life in the deep subseafloor habitat. Phosphorus availability in this environment is limited since it is thought to be mainly present in refractory mineral phases. However, recent estimates suggest that the deep biosphere may contain up to 1% of Earth's total biomass, which implies that microorganisms may possess mechanisms to harvest recalcitrant phosphorus compounds in this environment. This study sheds light on those mechanisms by investigating phosphorus cycling in deep open-ocean sediments using stable oxygen isotope ratios in phosphate. Furthermore, this study provides insight into changes in phosphorus bioavailability and mobility under a range of natural environmental conditions within the deep biosphere. Sediment samples were collected from four boreholes drilled during the IODP Expedition 336 to North Pond, an isolated sediment pond on the western flank of the Mid-Atlantic Ridge. Sedimentary phosphorus compounds are characterized using sequential extractions (SEDEX), which separate them into five distinct pools. Phosphate from the various extracts are then concentrated, purified through a series of steps, then converted to silver phosphate, which is pyrolyzed and analyzed by continuous-flow isotope ratio mass spectrometry (CF-IRMS). The isotopic signatures and/or fractionations associated with many of the potential reactions and transformations operating in the P cycle have been determined, and provide the basis for interpreting isotopic data that are obtained from the phosphate extracts.

  13. Global phosphorus scarcity: identifying synergies for a sustainable future.

    PubMed

    Neset, Tina-Simone S; Cordell, Dana

    2012-01-15

    Global food production is dependent on constant inputs of phosphorus. In the current system this phosphorus is not predominantly derived from organic recycled waste, but to a large degree from phosphate-rock based mineral fertilisers. However, phosphate rock is a finite resource that cannot be manufactured. Our dependency therefore needs to be addressed from a sustainability perspective in order to ensure global food supplies for a growing global population. The situation is made more urgent by predictions that, for example, the consumption of resource intensive foods and the demand for biomass energy will increase. The scientific and societal debate has so far been focussed on the exact timing of peak phosphorus and on when the total depletion of the global reserves will occur. Even though the timing of these events is important, all dimensions of phosphorus scarcity need to be addressed in a manner which acknowledges linkages to other sustainable development challenges and which takes into consideration the synergies between different sustainability measures. Many sustainable phosphorus measures have positive impacts on other challenges; for example, shifting global diets to more plant-based foods would not only reduce global phosphorus consumption, but also reduce greenhouse gas emissions, reduce nitrogen fertiliser demand and reduce water consumption.

  14. Thermal conduction in single-layer black phosphorus: highly anisotropic?

    PubMed

    Jiang, Jin-Wu

    2015-02-06

    The single-layer black phosphorus is characteristic for its puckered structure, which has led to distinct anisotropy in its optical, electronic, and mechanical properties. We use the non-equilibrium Green's function approach and the first-principles method to investigate the thermal conductance for single-layer black phosphorus in the ballistic transport regime, in which the phonon-phonon scattering is neglected. We find that the anisotropy in the thermal conduction is very weak for the single-layer black phosphorus--the difference between two in-plane directions is less than 4%. Our phonon calculations disclose that the out-of-plane acoustic phonon branch has lower group velocities in the direction perpendicular to the pucker, as the black phosphorus is softer in this direction, leading to a weakening effect for the thermal conductance in the perpendicular direction. However, the longitudinal acoustic phonon branch behaves abnormally; i.e., the group velocity of this phonon branch is higher in the perpendicular direction, although the single-layer black phosphorus is softer in this direction. The abnormal behavior of the longitudinal acoustic phonon branch is closely related to the highly anisotropic Poisson's ratio in the single-layer black phosphorus. As a result of the counteraction between the out-of-plane phonon mode and the in-plane phonon modes, the thermal conductance in the perpendicular direction is weaker than the parallel direction, but the anisotropy is pretty small.

  15. Phosphorus and Nitrogen Regulate Arbuscular Mycorrhizal Symbiosis in Petunia hybrida

    PubMed Central

    Nouri, Eva; Breuillin-Sessoms, Florence; Feller, Urs; Reinhardt, Didier

    2014-01-01

    Phosphorus and nitrogen are essential nutrient elements that are needed by plants in large amounts. The arbuscular mycorrhizal symbiosis between plants and soil fungi improves phosphorus and nitrogen acquisition under limiting conditions. On the other hand, these nutrients influence root colonization by mycorrhizal fungi and symbiotic functioning. This represents a feedback mechanism that allows plants to control the fungal symbiont depending on nutrient requirements and supply. Elevated phosphorus supply has previously been shown to exert strong inhibition of arbuscular mycorrhizal development. Here, we address to what extent inhibition by phosphorus is influenced by other nutritional pathways in the interaction between Petunia hybrida and R. irregularis. We show that phosphorus and nitrogen are the major nutritional determinants of the interaction. Interestingly, the symbiosis-promoting effect of nitrogen starvation dominantly overruled the suppressive effect of high phosphorus nutrition onto arbuscular mycorrhiza, suggesting that plants promote the symbiosis as long as they are limited by one of the two major nutrients. Our results also show that in a given pair of symbiotic partners (Petunia hybrida and R. irregularis), the entire range from mutually symbiotic to parasitic can be observed depending on the nutritional conditions. Taken together, these results reveal complex nutritional feedback mechanisms in the control of root colonization by arbuscular mycorrhizal fungi. PMID:24608923

  16. Phosphorus and nitrogen regulate arbuscular mycorrhizal symbiosis in Petunia hybrida.

    PubMed

    Nouri, Eva; Breuillin-Sessoms, Florence; Feller, Urs; Reinhardt, Didier

    2014-01-01

    Phosphorus and nitrogen are essential nutrient elements that are needed by plants in large amounts. The arbuscular mycorrhizal symbiosis between plants and soil fungi improves phosphorus and nitrogen acquisition under limiting conditions. On the other hand, these nutrients influence root colonization by mycorrhizal fungi and symbiotic functioning. This represents a feedback mechanism that allows plants to control the fungal symbiont depending on nutrient requirements and supply. Elevated phosphorus supply has previously been shown to exert strong inhibition of arbuscular mycorrhizal development. Here, we address to what extent inhibition by phosphorus is influenced by other nutritional pathways in the interaction between Petunia hybrida and R. irregularis. We show that phosphorus and nitrogen are the major nutritional determinants of the interaction. Interestingly, the symbiosis-promoting effect of nitrogen starvation dominantly overruled the suppressive effect of high phosphorus nutrition onto arbuscular mycorrhiza, suggesting that plants promote the symbiosis as long as they are limited by one of the two major nutrients. Our results also show that in a given pair of symbiotic partners (Petunia hybrida and R. irregularis), the entire range from mutually symbiotic to parasitic can be observed depending on the nutritional conditions. Taken together, these results reveal complex nutritional feedback mechanisms in the control of root colonization by arbuscular mycorrhizal fungi.

  17. THE MORTALITY OF BACTERIOPHAGE CONTAINING ASSIMILATED RADIOACTIVE PHOSPHORUS

    PubMed Central

    Hershey, A. D.; Kamen, M. D.; Kennedy, J. W.; Gest, H.

    1951-01-01

    The bacteriophage T4 containing assimilated radioactive phosphorus is inactivated at a rate proportional to the specific radioactivity of the constituent phosphorus. The beta radiation from the phosphorus makes a negligible contribution to this effect. The inactivation is therefore a direct consequence of the nuclear reaction, which kills the phage with an efficiency of about 1/12. Several phages related to T4 behave similarly. When radioactive phage is grown from a seed of non-radioactive phage, all of the phage progeny are subject to killing by radioactive decay. The phage is killed by beta radiation from P32 with an efficiency of about 1/100 per ionization within the particle volume. Bacteriophage T4 and its relatives contain about 500,000 atoms of phosphorus per infective particle. Virtually all this phosphorus is adsorbed to bacteria with the specificity characteristic of the infective particles, and none of it can be removed from the particles by the enzyme desoxyribonuclease. The phosphorus content per particle, together with the published data on analytical composition, indicates a particle diameter close to 110 mµ for the varieties of phage studied. PMID:14824499

  18. Management of natural and added dietary phosphorus burden in kidney disease.

    PubMed

    Cupisti, Adamasco; Kalantar-Zadeh, Kamyar

    2013-03-01

    Phosphorus retention occurs from higher dietary phosphorus intake relative to its renal excretion or dialysis removal. In the gastrointestinal tract the naturally existing organic phosphorus is only partially (∼60%) absorbable; however, this absorption varies widely and is lower for plant-based phosphorus including phytate (<40%) and higher for foods enhanced with inorganic phosphorus-containing preservatives (>80%). The latter phosphorus often remains unrecognized by patients and health care professionals, even though it is widely used in contemporary diets, in particular, low-cost foods. In a nonenhanced mixed diet, digestible phosphorus correlates closely with total protein content, making protein-rich foods a main source of natural phosphorus. Phosphorus burden is limited more appropriately in predialysis patients who are on a low-protein diet (∼0.6 g/kg/d), whereas dialysis patients who require higher protein intake (∼1.2 g/kg/d) are subject to a higher dietary phosphorus load. An effective and patient-friendly approach to reduce phosphorus intake without depriving patients of adequate proteins is to educate patients to avoid foods with high phosphorus relative to protein such as egg yolk and those with high amounts of phosphorus-based preservatives such as certain soft drinks and enhanced cheese and meat. Phosphorus rich foods should be prepared by boiling, which reduces phosphorus as well as sodium and potassium content, or by other types of cooking-induced demineralization. The dose of phosphorus-binding therapy should be adjusted separately for the amount and absorbability of phosphorus in each meal. Dietician counseling to address the emerging aspects of dietary phosphorus management is instrumental for achieving a reduction of phosphorus load.

  19. Phosphorus dendrimers and photodynamic therapy. Spectroscopic studies on two dendrimer-photosensitizer complexes: Cationic phosphorus dendrimer with rose bengal and anionic phosphorus dendrimer with methylene blue.

    PubMed

    Dabrzalska, Monika; Zablocka, Maria; Mignani, Serge; Majoral, Jean Pierre; Klajnert-Maculewicz, Barbara

    2015-08-15

    Dendrimers due to their unique architecture may play an important role in drug delivery systems including chemotherapy, gene therapy and recently, photodynamic therapy as well. We investigated two dendrimer-photosensitizer systems in context of potential use of these systems in photodynamic therapy. The mixtures of an anionic phosphorus dendrimer of the second generation and methylene blue were studied by UV-vis spectroscopy while that of a cationic phosphorus dendrimer (third generation) and rose bengal were investigated by spectrofluorimetric methods. Spectroscopic analysis of these two systems revealed the formation of dendrimer-photosensitizer complexes via electrostatic interactions as well as π stacking. The stoichiometry of the rose bengal-cationic dendrimer complex was estimated to be 7:1 and 9:1 for the methylene blue-anionic dendrimer complex. The results suggest that these polyanionic or polycationic phosphorus dendrimers can be promising candidates as carriers in photodynamic therapy.

  20. Distribution Behavior of Phosphorus and Metallization of Iron Oxide in Carbothermic Reduction of High-Phosphorus Iron Ore

    NASA Astrophysics Data System (ADS)

    Cha, Ji-Whoe; Kim, Dong-Yuk; Jung, Sung-Mo

    2015-10-01

    Distribution behavior of phosphorus and metallization of iron ore in the carbothermic reduction of high-phosphorus iron ore were investigated. Reduction degree of the iron oxide was evaluated by quadruple mass spectrometry connected to thermogravimetric analysis. The distribution of some elements including phosphorus was examined by electron probe micro-analyzer mapping analyses. The reduction behavior of high-phosphorus iron ore was evaluated as a function of reduction temperature, C/O molar ratio, and CaO addition. High reduction temperature accelerated the reduction of both iron oxide and hydroxylapatite, and high C/O molar ratio also promotes both of them. Those were contradictory to the targets of higher reduction degree of iron oxide and of lower one of hydroxylapatite. It was confirmed that appropriate amount of CaO addition could enhance the reduction of iron oxide, and regulate the reduction of hydroxylapatite.

  1. Influence of Antecedent Hydrologic Conditions on Nitrate and Phosphorus Export from a Small Agricultural Catchment in Southern Ontario, Canada

    NASA Astrophysics Data System (ADS)

    Macrae, M. L.; English, M. C.; Schiff, S. L.; Stone, M.

    2009-04-01

    is not always the case. Arheimer, B and R Liden (2000) Nitrogen and phosphorus concentrations from agricultural catchments - influence of spatial and temporal variables. J. Hydrology 227: 140-159. Jordan TE, DL Correll, and DE Weller (1997) Relating nutrient discharges from watersheds to land use and streamflow variability. Water Resources Res. 33: 2579-2590. McDowell RW, AN Sharpley, LM Condron, PM Haygarth, and PC Brookes (2001) Processes controlling soil phosphorus release to runoff and implications for agricultural management. Nutrient Cycling in Agroecosystems 59: 269-284. Stamm C, H Fluhler, R Gachter, J Leuenberger, and H Wunderli (1998) Preferential transport of phosphorus in drained grassland soils. J. Environ. Qual. 27: 515-522. Welsch DL, CN Kroll, JJ McDonnell, and DA Burns (2001) Topographic controls on the chemistry of subsurface stormflow: Hydrological Processes 15: 1925-1938.

  2. Phosphorus runoff from turfgrass as affected by phosphorus fertilization and clipping management.

    PubMed

    Bierman, Peter M; Horgan, Brian P; Rosen, Carl J; Hollman, Andrew B; Pagliari, Paulo H

    2010-01-01

    Phosphorus enrichment of surface water is a concern in many urban watersheds. A 3-yr study on a silt loam soil with 5% slope and high soil test P (27 mg kg(-1) Bray P1) was conducted to evaluate P fertilization and clipping management effects on P runoff from turfgrass (Poa pratensis L.) under frozen and nonfrozen conditions. Four fertilizer treatments were compared: (i) no fertilizer, (ii) nitrogen (N)+potassium (K)+0xP, (iii) N+K+1xP, and (iv) N+K+3xP. Phosphorus rates were 21.3 and 63.9 kg ha(-1) yr(-1) the first year and 7.1 and 21.3 kg ha(-1) yr(-1) the following 2 yr. Each fertilizer treatment was evaluated with clippings removed or clippings recycled back to the turf. In the first year, P runoff increased with increasing P rate and P losses were greater in runoff from frozen than nonfrozen soil. In year 2, total P runoff from the no fertilizer treatment was greater than from treatments receiving fertilizer. This was because reduced turf quality resulted in greater runoff depth from the no fertilizer treatment. In year 3, total P runoff from frozen soil and cumulative total P runoff increased with increasing P rate. Clipping management was not an important factor in any year, indicating that returning clippings does not significantly increase P runoff from turf. In the presence of N and K, P fertilization did not improve turf growth or quality in any year. Phosphorus runoff can be reduced by not applying P to high testing soils and avoiding fall applications when P is needed.

  3. X-33. Phase 2

    NASA Technical Reports Server (NTRS)

    1998-01-01

    In response to the Cooperative Agreement, Lockheed Martin Skunk Works has compiled an Annual Performance Report of the X-33/RLV Program. This report consists of individual reports from all industry team members, as well as NASA team centers. The first milestone was hand delivered to NASA MSFC. The second year has been one of significant accomplishment in which team members have demonstrated their ability to meet vital benchmarks while continuing on the technical adventure of the 20th century.

  4. The Behavior of Phosphorus During Reduction and Carburization of High-Phosphorus Oolitic Hematite with H2 and CH4

    NASA Astrophysics Data System (ADS)

    Wang, Henghui; Li, Guangqiang; Yang, Jian; Ma, Jianghua; Khan, Babar Shahzad

    2016-08-01

    High-phosphorus oolitic hematite has not been widely utilized due to high content of phosphorus. Ca3(PO4)2 is the main component containing phosphorus in high-phosphorus oolitic hematite. In the present work, the thermodynamics was studied for Ca3(PO4)2 reduction by H2 gas and then carburization by CH4 gas. The results show that phosphorous in Ca3(PO4)2 cannot be reduced from gangue during the reduction of hematite and the formation of iron carbide at the temperature from 923 K to 1073 K (650 °C to 800 °C), in H2 and CH4 atmosphere. Reduction and carburization experiments were carried out. And phosphorus in reduced and carburized specimens was analyzed by EDS and wet chemical method. The results confirmed that phosphorous cannot be reduced during the preparation of iron carbide from this iron ore. So the metallic iron or iron carbide can be prepared without the reduction of phosphorous at relatively low temperature, which can be a new route of utilizing high-phosphorus oolitic hematite. After fine milling-magnetic separation, the 99.47 pct of Fe3C-containing material was recovered, but the dephosphorization rate reached to 19.37 pct only.

  5. First-principles study of the effect of phosphorus on nickel grain boundary

    SciTech Connect

    Liu, Wenguan; Ren, Cuilan; Han, Han E-mail: xuhongjie@sinap.ac.cn; Zou, Yang; Zhou, Xingtai; Huai, Ping; Xu, Hongjie E-mail: xuhongjie@sinap.ac.cn; Tan, Jie

    2014-01-28

    Based on first-principles quantum-mechanical calculations, the impurity-dopant effects of phosphorus on Σ5(012) symmetrical tilt grain boundary in nickel have been studied. The calculated binding energy suggests that phosphorus has a strong tendency to segregate to the grain boundary. Phosphorus forms strong and covalent-like bonding with nickel, which is beneficial to the grain boundary cohesion. However, a too high phosphorus content can result in a thin and fragile zone in the grain boundary, due to the repulsion between phosphorus atoms. As the concentration of phosphorus increases, the strength of the grain boundary increases first and then decreases. Obviously, there exists an optimum concentration for phosphorus segregation, which is consistent with observed segregation behaviors of phosphorus in the grain boundary of nickel. This work is very helpful to understand the comprehensive effects of phosphorus.

  6. Phosphorus in lacustrine groundwater discharge drives eutrophication

    NASA Astrophysics Data System (ADS)

    Meinikmann, Karin; Hupfer, Michael; Lewandowski, Jörg

    2016-04-01

    Lake eutrophication has long been mainly associated with phosphorus (P) inputs from overland flow. Our work gives evidence that also groundwater can carry significant loads of dissolved P. We quantified P loads from groundwater to Lake Arendsee using near-shore measurements of P concentrations at a high spatial resolution and volume fluxes of lacustrine groundwater discharge (LGD) derived from a previous study. Results show that LGD accounts for more than 50% of the overall external P load, thus fueling the eutrophication of the lake. Several different approaches of groundwater sampling (groundwater observation wells, temporary piezometers, and domestic wells) reveal a broad spatial heterogeneity of P concentrations in the subsurface catchment of the lake. The highest P concentrations (above 4 mg/L) were found below a settled area along the southern lake shore. Contrary to expectations, other parameters (dissolved iron, ammonium, etc.) were not correlated with P, indicating that natural processes are superimposed by heavy contaminations. Both the intensity of the contamination and its proximity to the lake inhibit nutrient retention within vadose zone and aquifer and allow significant P loads to be discharged into the lake.

  7. Phosphorus component in AnnAGNPS

    USGS Publications Warehouse

    Yuan, Y.; Bingner, R.L.; Theurer, F.D.; Rebich, R.A.; Moore, P.A.

    2005-01-01

    The USDA Annualized Agricultural Non-Point Source Pollution model (AnnAGNPS) has been developed to aid in evaluation of watershed response to agricultural management practices. Previous studies have demonstrated the capability of the model to simulate runoff and sediment, but not phosphorus (P). The main purpose of this article is to evaluate the performance of AnnAGNPS on P simulation using comparisons with measurements from the Deep Hollow watershed of the Mississippi Delta Management Systems Evaluation Area (MDMSEA) project. A sensitivity analysis was performed to identify input parameters whose impact is the greatest on P yields. Sensitivity analysis results indicate that the most sensitive variables of those selected are initial soil P contents, P application rate, and plant P uptake. AnnAGNPS simulations of dissolved P yield do not agree well with observed dissolved P yield (Nash-Sutcliffe coefficient of efficiency of 0.34, R2 of 0.51, and slope of 0.24); however, AnnAGNPS simulations of total P yield agree well with observed total P yield (Nash-Sutcliffe coefficient of efficiency of 0.85, R2 of 0.88, and slope of 0.83). The difference in dissolved P yield may be attributed to limitations in model simulation of P processes. Uncertainties in input parameter selections also affect the model's performance.

  8. Global phosphorus retention by river damming

    PubMed Central

    Maavara, Taylor; Parsons, Christopher T.; Ridenour, Christine; Stojanovic, Severin; Dürr, Hans H.; Powley, Helen R.; Van Cappellen, Philippe

    2015-01-01

    More than 70,000 large dams have been built worldwide. With growing water stress and demand for energy, this number will continue to increase in the foreseeable future. Damming greatly modifies the ecological functioning of river systems. In particular, dam reservoirs sequester nutrient elements and, hence, reduce downstream transfer of nutrients to floodplains, lakes, wetlands, and coastal marine environments. Here, we quantify the global impact of dams on the riverine fluxes and speciation of the limiting nutrient phosphorus (P), using a mechanistic modeling approach that accounts for the in-reservoir biogeochemical transformations of P. According to the model calculations, the mass of total P (TP) trapped in reservoirs nearly doubled between 1970 and 2000, reaching 42 Gmol y−1, or 12% of the global river TP load in 2000. Because of the current surge in dam building, we project that by 2030, about 17% of the global river TP load will be sequestered in reservoir sediments. The largest projected increases in TP and reactive P (RP) retention by damming will take place in Asia and South America, especially in the Yangtze, Mekong, and Amazon drainage basins. Despite the large P retention capacity of reservoirs, the export of RP from watersheds will continue to grow unless additional measures are taken to curb anthropogenic P emissions. PMID:26644553

  9. Photogalvanic effect in monolayer black phosphorus

    NASA Astrophysics Data System (ADS)

    Xie, Yiqun; Zhang, Lei; Zhu, Yu; Liu, Lei; Guo, Hong

    2015-11-01

    We report a first-principles theoretical approach for analyzing linear and circular photogalvanic effects (PGEs) based on density functional theory within the nonequilibrium Green’s function formalism. Using this approach we investigate the PGE phenomena in monolayer black phosphorus (MBP) doped with sulfur atoms. The impurity doping breaks the space inversion symmetry of pristine MBP, leading to a C s symmetry with a mirror reflection plane normal to the zigzag direction of the MBP lattice. Governed by this symmetry, a linear PGE is induced in both zigzag and armchair directions, and a circular PGE is induced along the zigzag direction. A robust broadband photoresponse is found from the near-infrared to the visible range for the MBP device. There is a strong anisotropy in PGE: photoresponse in the zigzag direction can be larger by an order of magnitude than that in the armchair direction. We identify the origin of the observed PGE as the inter-band transitions from the impurity and valence bands to the conduction bands, which involves a transfer of angular momentum from photons to electrons.

  10. Photogalvanic effect in monolayer black phosphorus.

    PubMed

    Xie, Yiqun; Zhang, Lei; Zhu, Yu; Liu, Lei; Guo, Hong

    2015-11-13

    We report a first-principles theoretical approach for analyzing linear and circular photogalvanic effects (PGEs) based on density functional theory within the nonequilibrium Green's function formalism. Using this approach we investigate the PGE phenomena in monolayer black phosphorus (MBP) doped with sulfur atoms. The impurity doping breaks the space inversion symmetry of pristine MBP, leading to a C s symmetry with a mirror reflection plane normal to the zigzag direction of the MBP lattice. Governed by this symmetry, a linear PGE is induced in both zigzag and armchair directions, and a circular PGE is induced along the zigzag direction. A robust broadband photoresponse is found from the near-infrared to the visible range for the MBP device. There is a strong anisotropy in PGE: photoresponse in the zigzag direction can be larger by an order of magnitude than that in the armchair direction. We identify the origin of the observed PGE as the inter-band transitions from the impurity and valence bands to the conduction bands, which involves a transfer of angular momentum from photons to electrons.

  11. Daily phosphorus variation in a mountain stream

    NASA Astrophysics Data System (ADS)

    Hatch, Lorin K.; Reuter, John E.; Goldman, Charles R.

    1999-12-01

    Monthly diel monitoring studies for phosphorus content were conducted (1995-1996 period) for multiple stations on Incline Creek, a mountain stream in the Lake Tahoe basin (California-Nevada). Large discharge and particulate P (PP) concentration fluctuations occurred during June in the early evening as snowmelt from higher elevations arrived at the lower stream reaches. June diel dissolved organic P (DOP) concentrations steadily increased, while soluble reactive P (SRP) concentrations remained constant. June diel PP concentrations associated with sand-sized particles (PPsand: >63 μm) exhibited a clockwise hysteresis, indicating possible sediment source depletion on a daily timescale. June diel PP associated with silt- and clay-sized particles (PPSC: >0.45 μm and <63 μm) exhibited counterclockwise hysteresis behavior, suggesting a potential groundwater contribution to PPSC. PPSC comprised the majority of PP concentration, except during high-discharge events when PPsand concentration was dominant. Areal PP loading, specifically PPsand, appears to originate primarily from the lower eastern branch of Incline Creek during the spring snowmelt season. Possible sources include a ski resort/parking lot and a golf course. DOP and SRP areal loads were greatest from the undeveloped upper subwatershed, suggesting that natural factors such as slope are influencing loading of small-sized P fractions.

  12. Expert systems guide biological phosphorus removal

    SciTech Connect

    Krichten, D.J.; Wilson, K.D.; Tracy, K.D. )

    1991-10-01

    There is a large body of knowledge regarding optimum control strategies for new secondary wastewater treatment technology using an anaerobic selector to provide biological phosphorus removal. However, because the selector technology is new and the concepts differ somewhat from those used in conventional activated sludge wastewater treatment, a method of communicating this knowledge to plant operators is needed. Traditional methods such as classroom training and operating manuals are of limited effectiveness. The commonplace availability and low cost of the personal computer (PC) makes it practical to use a computer program to communicate the type of information required to control a wastewater treatment plant. Knowledge-based systems technology, commonly referred to as expert systems (ES) technology, is easy to use, provides useful information regarding a consistent control strategy, relieves the anxiety associated with learning a new process,' and provides instruction for inexperienced personnel. ES technology does not require special formatted input and is therefore easily accessible. All information required by the program is readily available through routine laboratory analysis, common plant instrumentation, or direct user observation. The program was designed for all levels of computer users and will run on all IBM-compatible or Apple MacIntosh systems.

  13. Exfoliation of black phosphorus in ionic liquids.

    PubMed

    Lee, Miyeon; Roy, Arup Kumer; Jo, Seongho; Choi, Yujin; Chae, Ari; Kim, Bongsoo; Park, Sung Yong; In, Insik

    2017-03-24

    We report the characterization and formation of sonication-assisted liquid phase exfoliation of bulk black phosphorus (BP) crystals with the incorporation of two representative ionic liquids (ILs) ([Emim][Tf2N] and [Bmim][Tf2N]) as green dispersing media was attempted, which resulted in stable dispersion of multi-layer BP flakes with unsuspected high oxidation resistance and chemical/structural integrity due to the presence of IL layer on top of BP flakes. There are two unveiled issues for the generation of BP dispersion in ILs. First, thin films of BP flakes can be simply prepared through our approach. Because self-oxidation of BP in ambient condition can be significantly minimized in ILs, vacuum filtration step can be adopted to produce BP thin films in ambient condition. Second, the binding of IL molecules on BP flakes has been firstly demonstrated by the time-of-flight secondary ion mass spectrometry characterization. In addition to the exploitation of ILs as the green solvents with less environmental harmfulness, IL-based exfoliation of BP might be easily scalable because harsh control of atmospheric oxygen and moisture is unnecessary in this approach.

  14. The role of diet in phosphorus demand

    NASA Astrophysics Data System (ADS)

    Metson, Geneviève S.; Bennett, Elena M.; Elser, James J.

    2012-12-01

    Over the past 50 years, there have been major changes in human diets, including a global average increase in meat consumption and total calorie intake. We quantified how changes in annual per capita national average diets affected requirements for mined P between 1961 and 2007, starting with the per capita availability of a food crop or animal product and then determining the P needed to grow the product. The global per capita P footprint increased 38% over the 46 yr time period, but there was considerable variability among countries. Phosphorus footprints varied between 0.35 kg P capita-1 yr-1 (DPR Congo, 2007) and 7.64 kg P capita-1 yr-1 (Luxembourg, 2007). Temporal trends also differed among countries; for example, while China’s P footprint increased almost 400% between 1961 and 2007, the footprints of other countries, such as Canada, decreased. Meat consumption was the most important factor affecting P footprints; it accounted for 72% of the global average P footprint. Our results show that dietary shifts are an important component of the human amplification of the global P cycle. These dietary trends present an important challenge for sustainable P management.

  15. Exfoliation of black phosphorus in ionic liquids

    NASA Astrophysics Data System (ADS)

    Lee, Miyeon; Kumer Roy, Arup; Jo, Seongho; Choi, Yujin; Chae, Ari; Kim, Bongsoo; Park, Sung Yong; In, Insik

    2017-03-01

    We report the characterization and formation of sonication-assisted liquid phase exfoliation of bulk black phosphorus (BP) crystals with the incorporation of two representative ionic liquids (ILs) ([Emim][Tf2N] and [Bmim][Tf2N]) as green dispersing media was attempted, which resulted in stable dispersion of multi-layer BP flakes with unsuspected high oxidation resistance and chemical/structural integrity due to the presence of IL layer on top of BP flakes. There are two unveiled issues for the generation of BP dispersion in ILs. First, thin films of BP flakes can be simply prepared through our approach. Because self-oxidation of BP in ambient condition can be significantly minimized in ILs, vacuum filtration step can be adopted to produce BP thin films in ambient condition. Second, the binding of IL molecules on BP flakes has been firstly demonstrated by the time-of-flight secondary ion mass spectrometry characterization. In addition to the exploitation of ILs as the green solvents with less environmental harmfulness, IL-based exfoliation of BP might be easily scalable because harsh control of atmospheric oxygen and moisture is unnecessary in this approach.

  16. Determination of Phosphorus in Cola Drinks

    NASA Astrophysics Data System (ADS)

    Lozano-Calero, Diego; Martìn-Palomeque, Pilar; Madueño-Lorguillo, Silvia

    1996-12-01

    Laboratory experiments can improve student interest in science. However, the contrary effect could occur if they are not well designed and seem tedious, too laborious, and disconnected from daily life. Cola beverages are one of the most widely consumed drinks and are most popular among students. Much attention is being paid to possible consequences of excessive consumption for human health. Intensive efforts are being made to assess the erosive potential for teeth because of the beverages' acidity (1, 2); adverse effects secondary to high caffeine intake (e.g., hypertension, allergic reactions, gastrointestinal disturbances) (3 - 5); and adverse effects on calcium metabolism due to their high phosphoric acid content, which combined with low dietary calcium intake could increase the risk of suffering from bone diseases (6 - 9). We propose here the quantification of the phosphorus content in this kind of drinks by a different procedure from that previously described by Murphy in this Journal (10). We think this laboratory experiment will seem very interesting to students.

  17. Agronomic phosphorus imbalances across the world's croplands

    PubMed Central

    MacDonald, Graham K.; Bennett, Elena M.; Potter, Philip A.; Ramankutty, Navin

    2011-01-01

    Increased phosphorus (P) fertilizer use and livestock production has fundamentally altered the global P cycle. We calculated spatially explicit P balances for cropland soils at 0.5° resolution based on the principal agronomic P inputs and outputs associated with production of 123 crops globally for the year 2000. Although agronomic inputs of P fertilizer (14.2 Tg of P·y−1) and manure (9.6 Tg of P·y−1) collectively exceeded P removal by harvested crops (12.3 Tg of P·y−1) at the global scale, P deficits covered almost 30% of the global cropland area. There was massive variation in the magnitudes of these P imbalances across most regions, particularly Europe and South America. High P fertilizer application relative to crop P use resulted in a greater proportion of the intense P surpluses (>13 kg of P·ha−1·y−1) globally than manure P application. High P fertilizer application was also typically associated with areas of relatively low P-use efficiency. Although manure was an important driver of P surpluses in some locations with high livestock densities, P deficits were common in areas producing forage crops used as livestock feed. Resolving agronomic P imbalances may be possible with more efficient use of P fertilizers and more effective recycling of manure P. Such reforms are needed to increase global agricultural productivity while maintaining or improving freshwater quality. PMID:21282605

  18. Forms of organic phosphorus in wetland soils

    NASA Astrophysics Data System (ADS)

    Cheesman, A. W.; Turner, B. L.; Reddy, K. R.

    2014-12-01

    Phosphorus (P) cycling in freshwater wetlands is dominated by biological mechanisms, yet there has been no comprehensive examination of the forms of biogenic P (i.e., forms derived from biological activity) in wetland soils. We used solution 31P NMR spectroscopy to identify and quantify P forms in surface soils of 28 palustrine wetlands spanning a range of climatic, hydrogeomorphic, and vegetation types. Total P concentrations ranged between 51 and 3516 μg P g-1, of which an average of 58% was extracted in a single-step NaOH-EDTA procedure. The extracts contained a broad range of P forms, including phosphomonoesters (averaging 24% of the total soil P), phosphodiesters (averaging 10% of total P), phosphonates (up to 4% of total P), and both pyrophosphate and long-chain polyphosphates (together averaging 6% of total P). Soil P composition was found to be dependant upon two key biogeochemical properties: organic matter content and pH. For example, stereoisomers of inositol hexakisphosphate were detected exclusively in acidic soils with high mineral content, while phosphonates were detected in soils from a broad range of vegetation and hydrogeomorphic types but only under acidic conditions. Conversely inorganic polyphosphates occurred in a broad range of wetland soils, and their abundance appears to reflect more broadly that of a "substantial" and presumably active microbial community with a significant relationship between total inorganic polyphosphates and microbial biomass P. We conclude that soil P composition varies markedly among freshwater wetlands but can be predicted by fundamental soil properties.

  19. Metagenomic analysis of phosphorus removing sludgecommunities

    SciTech Connect

    Garcia Martin, Hector; Ivanova, Natalia; Kunin, Victor; Warnecke,Falk; Barry, Kerrie; McHardy, Alice C.; Yeates, Christine; He, Shaomei; Salamov, Asaf; Szeto, Ernest; Dalin, Eileen; Putnam, Nik; Shapiro, HarrisJ.; Pangilinan, Jasmyn L.; Rigoutsos, Isidore; Kyrpides, Nikos C.; Blackall, Linda Louise; McMahon, Katherine D.; Hugenholtz, Philip

    2006-02-01

    Enhanced Biological Phosphorus Removal (EBPR) is not wellunderstood at the metabolic level despite being one of the best-studiedmicrobially-mediated industrial processes due to its ecological andeconomic relevance. Here we present a metagenomic analysis of twolab-scale EBPR sludges dominated by the uncultured bacterium, "CandidatusAccumulibacter phosphatis." This analysis resolves several controversiesin EBPR metabolic models and provides hypotheses explaining the dominanceof A. phosphatis in this habitat, its lifestyle outside EBPR and probablecultivation requirements. Comparison of the same species from differentEBPR sludges highlights recent evolutionary dynamics in the A. phosphatisgenome that could be linked to mechanisms for environmental adaptation.In spite of an apparent lack of phylogenetic overlap in the flankingcommunities of the two sludges studied, common functional themes werefound, at least one of them complementary to the inferred metabolism ofthe dominant organism. The present study provides a much-needed blueprintfor a systems-level understanding of EBPR and illustrates thatmetagenomics enables detailed, often novel, insights into evenwell-studied biological systems.

  20. Phosphorus and nitrogen in coral reef sediments

    SciTech Connect

    Entsch, B.; Boto, K.G.; Sim, R.G.; Wellington, J.T.

    1983-05-01

    The occurrence of P and N in the sediments has been investigated on Davies Reef in the central region of the Great Barrier Reef Complex. Concentrations of inorganic P and N in the water were typical of nutrient-depleted tropical surface water. Carbonate sediments were found to contain a uniform pool of P (300 ppm by wt), principally in the form of inorganic phosphate. The interstitial water of the surface layer of sediment contained micromolar concentrations of inorganic P and even higher concentrations of inorganic N, principally as ammonium. These nutrient concentrations were considered too low to compete significantly with the uptake of available phasphate into algae. The presence of ammonium and soluble P was associated with anaerobic redox potentials in the sediments just below the surface. Soluble phosphorus was in equilibrium with a small, rapidly exchangeable fraction of the sedimentary pool of inorganic phosphate. Analyses of P in growing tips of Halimeda and corals (which supply more than half of reef sediments) suggested that the skeletons provide a biological mechanism for the replenishment of at least some of the sedimentary pool. Ratios of C:N:P for a selection of benthic algae were used as a preliminary indicator of thier N and P status.

  1. Evaluating the significance of wetland restoration scenarios on phosphorus removal.

    PubMed

    Daneshvar, Fariborz; Nejadhashemi, A Pouyan; Adhikari, Umesh; Elahi, Behin; Abouali, Mohammad; Herman, Matthew R; Martinez-Martinez, Edwin; Calappi, Timothy J; Rohn, Bridget G

    2017-05-01

    Freshwater resources are vital for human and natural systems. However, anthropogenic activities, such as agricultural practices, have led to the degradation of the quality of these limited resources through pollutant loading. Agricultural Best Management Practices (BMPs), such as wetlands, are recommended as a valuable solution for pollutant removal. However, evaluation of their long-term impacts is difficult and requires modeling since performing in-situ monitoring is expensive and not feasible at the watershed scale. In this study, the impact of natural wetland implementation on total phosphorus reduction was evaluated both at the subwatershed and watershed levels. The study area is the Saginaw River Watershed, which is largest watershed in Michigan. The phosphorus reduction performances of four different wetland sizes (2, 4, 6, and 8 ha) were evaluated within this study area by implementing one wetland at a time in areas identified to have the highest potential for wetland restoration. The subwatershed level phosphorus loads were obtained from a calibrated Soil and Water Assessment Tool (SWAT) model. These loads were then incorporated into a wetland model (System for Urban Stormwater Treatment and Analysis IntegratioN-SUSTAIN) to evaluate phosphorus reduction at the subwatershed level and then the SWAT model was again used to route phosphorus transport to the watershed outlet. Statistical analyses were performed to evaluate the spatial impact of wetland size and placement on phosphorus reduction. Overall, the performance of 2 ha wetlands in total phosphorus reduction was significantly lower than the larger sizes at both the subwatershed and watershed levels. Regarding wetland implementation sites, wetlands located in headwaters and downstream had significantly higher phosphorus reduction than the ones located in the middle of the watershed. More specifically, wetlands implemented at distances ranging from 200 to 250 km and 50-100 km from the outlet had the

  2. Dynamics in phosphorus retention in wetlands upstream of Delavan Lake, Wisconsin

    USGS Publications Warehouse

    Robertson, Dale M.; Elder, John F.; Goddard, Gerald L.; James, William F.

    2009-01-01

    A phosphorus budget was constructed for Delavan Lake Inlet, a perennial riverine wetland with submersed and floating aquatic vegetation in southeastern Wisconsin, to better understand the phosphorus dynamics in natural wetlands and the role of wetlands in lake-rehabilitation efforts. During the growing season, the inlet served as a net source of phosphorus, primarily due to the release of phosphorus from the sediments. More phosphorus was released from the sediments of the inlet (600 kg) than was input from the upstream watershed (460 kg). This release was caused by high pH associated with high photosynthetic activity. During the remainder of the year, the inlet served as a net sink for phosphorus, retaining 6% of die phosphorus input from the watershed. Over the entire year, this wetland was a net source of over 500 kg of phosphorus to downstream Delavan Lake. A constructed riverine wetland upstream of Delavan Lake Inlet demonstrated a similar periodic release of phosphorus. However, in this case, the summer release of phosphorus was less than that trapped during the remainder of the year. The constructed wetland served as a net sink for approximately 20% of the input phosphorus on an annual time scale. The role of existing and constructed wetlands as phosphorus traps is complex. Wetlands can act as a source or a sink for phosphorus depending on the ambient conditions in die wetland. Howa wetland fits into a rehabilitation plan depends upon its net retention efficiency and the importance of the periodic releases of phosphorus to downstream waters.

  3. Water quality, hydrology, and simulated response to changes in phosphorus loading of Mercer Lake, Iron County, Wisconsin, with special emphasis on the effects of wastewater discharges

    USGS Publications Warehouse

    Robertson, Dale M.; Garn, Herbert S.; Rose, William J.; Juckem, Paul F.; Reneau, Paul C.

    2012-01-01

    phosphorus was 0.023 mg/L, indicating the lake is borderline mesotrophic-eutrophic, or has moderate to high concentrations of phosphorus, whereas the average summer chlorophyll a concentration was 3.3 mg/L and water clarity, as measured with a Secchi depth, was 10.4 ft, both indicating mesotrophic conditions or that the lake has a moderate amount of algae and water clarity. Although actions have been taken to eliminate the wastewater discharges, the bottom sediment still has slightly elevated concentrations of several pollutants from wastewater discharges, lumber operations, and roadway drainage, and a few naturally occurring metals (such as iron). None of the concentrations, however, were high enough above the defined thresholds to be of concern. Based on nitrogen to phosphorus ratios, the productivity (algal growth) in Mercer Lake should typically be limited by phosphorus; therefore, understanding the phosphorus input to the lake is important when management efforts to improve or prevent degradation of the lake water quality are considered. Total inputs of phosphorus to Mercer Lake were directly estimated for MY 2008-09 at about 340 lb/yr and for a recent year with more typical hydrology at about 475 lb/yr. During these years, the largest sources of phosphorus were from Little Turtle Inlet, which contributed about 45 percent, and the drainage area near the lake containing the adjacent urban and residential developments, which contributed about 24 percent. Prior to 1965, when there was no sewage treatment plant and septic systems and other untreated systems contributed nutrients to the watershed, phosphorus loadings were estimated to be about 71 percent higher than during around 2009. In 1965, a sewage treatment plant was built, but its effluent was released in the downstream end of the lake. Depending on various assumptions on how much effluent was retained in the lake, phosphorus inputs from wastewater may have ranged from 0 to 342 lb. Future highway and stormwater

  4. 33 CFR 137.33 - General all appropriate inquiries requirements.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 33 Navigation and Navigable Waters 2 2011-07-01 2011-07-01 false General all appropriate inquiries requirements. 137.33 Section 137.33 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) MARINE POLLUTION FINANCIAL RESPONSIBILITY AND COMPENSATION OIL SPILL...

  5. 33 CFR 137.33 - General all appropriate inquiries requirements.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 33 Navigation and Navigable Waters 2 2013-07-01 2013-07-01 false General all appropriate inquiries requirements. 137.33 Section 137.33 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) MARINE POLLUTION FINANCIAL RESPONSIBILITY AND COMPENSATION OIL SPILL...

  6. 33 CFR 137.33 - General all appropriate inquiries requirements.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 33 Navigation and Navigable Waters 2 2012-07-01 2012-07-01 false General all appropriate inquiries requirements. 137.33 Section 137.33 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) MARINE POLLUTION FINANCIAL RESPONSIBILITY AND COMPENSATION OIL SPILL...

  7. 33 CFR 137.33 - General all appropriate inquiries requirements.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 33 Navigation and Navigable Waters 2 2014-07-01 2014-07-01 false General all appropriate inquiries requirements. 137.33 Section 137.33 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) MARINE POLLUTION FINANCIAL RESPONSIBILITY AND COMPENSATION OIL SPILL...

  8. 33 CFR 64.33 - Marking by the Coast Guard.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 33 Navigation and Navigable Waters 1 2013-07-01 2013-07-01 false Marking by the Coast Guard. 64.33 Section 64.33 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY AIDS TO... Marking by the Coast Guard. (a) The District Commander may mark for the protection of maritime...

  9. 33 CFR 64.33 - Marking by the Coast Guard.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 33 Navigation and Navigable Waters 1 2014-07-01 2014-07-01 false Marking by the Coast Guard. 64.33 Section 64.33 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY AIDS TO... Marking by the Coast Guard. (a) The District Commander may mark for the protection of maritime...

  10. 33 CFR 64.33 - Marking by the Coast Guard.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 33 Navigation and Navigable Waters 1 2012-07-01 2012-07-01 false Marking by the Coast Guard. 64.33 Section 64.33 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY AIDS TO... Marking by the Coast Guard. (a) The District Commander may mark for the protection of maritime...

  11. 33 CFR 64.33 - Marking by the Coast Guard.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 33 Navigation and Navigable Waters 1 2010-07-01 2010-07-01 false Marking by the Coast Guard. 64.33 Section 64.33 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY AIDS TO... Marking by the Coast Guard. (a) The District Commander may mark for the protection of maritime...

  12. 33 CFR 64.33 - Marking by the Coast Guard.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 33 Navigation and Navigable Waters 1 2011-07-01 2011-07-01 false Marking by the Coast Guard. 64.33 Section 64.33 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY AIDS TO... Marking by the Coast Guard. (a) The District Commander may mark for the protection of maritime...

  13. 33 CFR 62.33 - Information and regulatory marks.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 33 Navigation and Navigable Waters 1 2010-07-01 2010-07-01 false Information and regulatory marks. 62.33 Section 62.33 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY AIDS TO NAVIGATION UNITED STATES AIDS TO NAVIGATION SYSTEM The U.S. Aids to Navigation System §...

  14. 33 CFR 62.33 - Information and regulatory marks.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 33 Navigation and Navigable Waters 1 2014-07-01 2014-07-01 false Information and regulatory marks. 62.33 Section 62.33 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY AIDS TO NAVIGATION UNITED STATES AIDS TO NAVIGATION SYSTEM The U.S. Aids to Navigation System §...

  15. 33 CFR 62.33 - Information and regulatory marks.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 33 Navigation and Navigable Waters 1 2012-07-01 2012-07-01 false Information and regulatory marks. 62.33 Section 62.33 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY AIDS TO NAVIGATION UNITED STATES AIDS TO NAVIGATION SYSTEM The U.S. Aids to Navigation System §...

  16. 33 CFR 62.33 - Information and regulatory marks.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 33 Navigation and Navigable Waters 1 2013-07-01 2013-07-01 false Information and regulatory marks. 62.33 Section 62.33 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY AIDS TO NAVIGATION UNITED STATES AIDS TO NAVIGATION SYSTEM The U.S. Aids to Navigation System §...

  17. 33 CFR 62.33 - Information and regulatory marks.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 33 Navigation and Navigable Waters 1 2011-07-01 2011-07-01 false Information and regulatory marks. 62.33 Section 62.33 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY AIDS TO NAVIGATION UNITED STATES AIDS TO NAVIGATION SYSTEM The U.S. Aids to Navigation System §...

  18. Species and distribution of inorganic and organic phosphorus in enhanced phosphorus removal aerobic granular sludge.

    PubMed

    Huang, Wenli; Huang, Weiwei; Li, Huifang; Lei, Zhongfang; Zhang, Zhenya; Tay, Joo Hwa; Lee, Duu-Jong

    2015-10-01

    The species and distribution of phosphorus (P) in an enhanced biological phosphorus removal (EBPR)-aerobic granular sludge (AGS) were fractionated and further analyzed. Results showed that microbial cells, extracellular polymeric substances (EPS) and mineral precipitates contributed about 73.7%, 17.6% and 5.3-6.4% to the total P (TP) of EBPR-AGS, respectively. Inorganic P (IP) species were orthophosphate, pyrophosphate and polyphosphate among which polyphosphate was the major P species in the AGS, cells and EPS. Monoester and diester phosphates were identified as the organic P (OP) species in the AGS and cells. Hydroxyapatite (Ca5(PO4)3OH) and calcium phosphate (Ca2(PO4)3) were the dominant P minerals accumulated in the core of the granules. Cells along with polyphosphate were mainly in the outer layer of AGS while EPS were distributed in the whole granules. Based on the above results, the distribution of IP and OP species in AGS has been conceived.

  19. Phosphorus doped graphene by inductively coupled plasma and triphenylphosphine treatments

    SciTech Connect

    Shin, Dong-Wook Kim, Tae Sung; Yoo, Ji-Beom

    2016-10-15

    Highlights: • Substitution doping is a promising method for opening the energy band gap of graphene. • Substitution doping with phosphorus in the graphene lattice has numerous advantage such as high band gap, low formation energy, and high net charge density compared to nitrogen. • V{sub dirac} of Inductively coupled plasma (ICP) and triphenylphosphine (TPP) treated graphene was −57 V, which provided clear evidence of n-type doping. • Substitutional doping of graphene with phosphorus is verified by the XPS spectra of P 2p core level and EELS mapping of phosphorus. • The chemical bonding between P and graphene is very stable for a long time in air (2 months). - Abstract: Graphene is considered a host material for various applications in next-generation electronic devices. However, despite its excellent properties, one of the most important issues to be solved as an electronic material is the creation of an energy band gap. Substitution doping is a promising method for opening the energy band gap of graphene. Herein, we demonstrate the substitutional doping of graphene with phosphorus using inductively coupled plasma (ICP) and triphenylphosphine (TPP) treatments. The electrical transfer characteristics of the phosphorus doped graphene field effect transistor (GFET) have a V{sub dirac} of ∼ − 54 V. The chemical bonding between P and C was clearly observed in XPS spectra, and uniform distribution of phosphorus within graphene domains was confirmed by EELS mapping. The capability for substitutional doping of graphene with phosphorus can significantly promote the development of graphene based electronic devices.

  20. [Phosphorus fractions under different land uses in Sanjiang plain].

    PubMed

    Qin, Sheng-jin; Liu, Jing-shuang; Wang, Guo-ping; Zhou, Wang-ming

    2007-12-01

    Five land-uses type (soybean-filed, rice-field, abandoned cultivation, artificial forest, natural wetland) were obtained before planting and soil P fractions were determined by a modified Hedley fraction method. The result showed that the content of total P (TP) in natural wetland was higher than other soil. While the proportion of total inorganic P (TPi) in TP of farm land soil was higher than that of wetland. Adversely, the proportion of total organic P (TPo) was higher in wetland and least in rice-field. There was no obvious difference between that of abandoned field and artificial forest. The values of labile inorganic phosphorus (labile Pi) under different land-uses were similar. The contents of Resin-P and NaHCO3-Pi varied at a range of 32-36.3 mg x kg(-1) and 33.77-50.42 mg x kg(-1), respectively. The contents of NaOH-Pi and C.HCl-Pi in farmland were higher than those of wetland, especially in rice-field which was 152.4 mg x kg(-1). But for D.HCl-Pi, the content was higher in wetland with the value of 84.3 mg x kg(-1), and the contents of NaOH-Pi, C. HCl-Pi and D.HCl-Pi in abandoned field and artificial forest were in the middle of the above two land use patterns, which indicated that the restoration of soil P in abandoned farmland tended to approach the level of natural wetland. The value and percentage of Po was decreased greatly with the reclamation of wetland, and the decrease of C. HCl-Po was the most significant in all forms of organic P, and its values in soybean-filed and rice-field were only 25.96% and 19.26% of that in wetland. As the time went by the content of Po in abandoned arable land increased with very slow speed, which indicated that the restoration of wetland after reclamation would need a long time. The distribution of soil P in different P fractions has significant difference for the land-use change in Sanjiang plain.

  1. [Effects of soil covering on solar greenhouse pepper water use efficiency and soil nitrate N and available phosphorus contents].

    PubMed

    Zhou, Mao-juan; Liang, Yin-li; Chen, Jia-rui; Xiong, Ya-mei; Wei, Ze-xiu

    2007-06-01

    A greenhouse study on the effects of soil covering on pepper (Capsicum anmuum L.) water use efficiency and soil nitrate and available phosphorus contents showed that straw mulch + plastic film mulch could get the highest pepper yield water use efficiency (33.04 kg . m(-3)) and economic water use efficiency (50.22 yuan . m(-3)), followed by plastic film mulch, with the two parameters being 18.81 kg . m(-3) and 28.57 yuan . m(-3), respectively. Significant differences of nitrate N content in 0-20 cm soil layer were observed among different treatments. The control had the highest nitrate N content (50.33 mg . kg(-1)), followed by straw mulch (31.98 mg . kg(-1)) and straw + plastic film mulch (31.96 mg . kg(-1)), and plastic film mulch and applying water preserving agent. Compared with the control, soil covering could increase the nitrate N use efficiency of pepper, and decrease the accumulation of nitrate N in plough layer. In 0-20 cm soil layer, treatment plastic film mulch had the lowest available phosphorus content (0.72 mg . kg(-3)), and the second (0. 92 mg . kg(-1)) was the treatment straw + plastic film mulch. Treatments straw + plastic film mulch and plastic film mulch could increase pepper fruit yield and fertilizer use efficiency, and decrease fertilizer loss.

  2. Extraction Methods in Soil Phosphorus Characterisation

    NASA Astrophysics Data System (ADS)

    Soinne, Helena

    2010-05-01

    Extraction methods are widely used to assess the bioavailability of P and to characterise soil P reserves. Even though new and more sophisticated methods to characterise soil P are constantly developed the use of extraction methods is not likely to be replaced because of the relatively simple analytical equipment needed for the analysis. However, the large variety of extractants, pre-treatments and sample preparation procedures complicate the comparison of published results. In order to improve our understanding of the behaviour and cycling of P in soil, it is important to know the role of extracted P in the soil P cycle. The knowledge of the factors affecting the analytical outcome is a prerequisite for justified interpretation of the results. In this study, the effect of sample pre-treatment and properties of the used extractant on extractable molybdate-reactive phosphorus (MRP) and molybdate-unreactive phosphorus (MUP) was studied. Furthermore, the effect of sample preparation procedures prior the analysis on measured MRP and MUP was studied. Two widely used sequential extraction procedures were compared on their ability to show management induced differences on soil P. These results revealed that pre-treatments changed soil properties and air-drying was found to affect soil P, particularly extractable MUP, thought to represent organic P, by disrupting organic matter. This was evidenced by an increase in the water-extractable small-sized (<0.2 µm) P that, at least partly, took place at the expense of the large-sized (>0.2 µm) P. In addition to the effects of sample pre-treatment, the results showed that extractable organic P was sensitive to the chemical nature of the used extractant and to the sample preparation procedures employed prior to P analysis, including centrifugation and filtering of soil suspensions. Filtering may remove a major proportion of extractable MUP; therefore filtering cannot be recommended in the characterisation of solubilised MUP

  3. X-33 Phase 2

    NASA Technical Reports Server (NTRS)

    1997-01-01

    In response to Clause 17 of the Cooperative Agreement NCC8-115, Lockheed Martin Skunk Works has compiled an Annual Performance Report of the X-33/RLV Program. This report consists of individual reports from all industry team members, as well as NASA team centers. Contract award was announced on July 2, 1996 and the first milestone was hand delivered to NASA MSFC on July 17, 1996. The first year has been one of growth and progress as all team members staffed up and embarked on the technical adventure of the 20th century... the ultimate goal . . a Single Stage to Orbit (SSTO) Reuseable Launch Vehicle (RLV).

  4. Phosphorus Dynamic and Water Quality Paradigm. (Invited)

    NASA Astrophysics Data System (ADS)

    Pant, H. K.

    2009-12-01

    Depending on environmental conditions, stored nutrients and contaminants could be released from organic matrix through mineralization, and recycled within or exported from the ecosystems. The rates and duration of organic matter accumulations under changing hydro-climatic conditions are critical determinants of how a freshwater system functions as an ecological unit within a landscape. Aquatic ecosystems such as freshwaters can be very sensitive to changes, e.g., water quality, quantity and temperature, induced by climatic changes. Phosphorus (P) influx in freshwater systems may occur as a byproduct of single or many activities such as urban development and/or loading from within the systems due to gradual or sudden changes in environmental conditions. Any direct or indirect alterations due to anthropogenic influences, including a global rise in temperature, pose a serious threat of accelerated eutrophication of freshwater systems mainly due to P loading, causing their ultimate destructions. Our studies showed that sediments/soils contain both organic P (e.g., sugar phosphates and nucleoside monophosphates) and inorganic P in significant proportions, as well as acquiring data on P sorption phenomena, phosphatase-induced hydrolysis along with relative composition of various P forms will be helpful to derive P Destabilization Index to aid to the freshwater ecosystem management. It is indicative that any mitigating strategies need to take into account the nonlinear behaviors of the ecosystem processes and components, and begin planning to minimize effects of the changes. Also, it is crucial to be ready to integrate if there may need of policy revisions or adoption of new approaches and technologies, as the ecosystem struggles to attain a new equilibrium.

  5. Reconsideration of the planetary boundary for phosphorus

    NASA Astrophysics Data System (ADS)

    Carpenter, Stephen R.; Bennett, Elena M.

    2011-01-01

    Phosphorus (P) is a critical factor for food production, yet surface freshwaters and some coastal waters are highly sensitive to eutrophication by excess P. A planetary boundary, or upper tolerable limit, for P discharge to the oceans is thought to be ten times the pre-industrial rate, or more than three times the current rate. However this boundary does not take account of freshwater eutrophication. We analyzed the global P cycle to estimate planetary boundaries for freshwater eutrophication. Planetary boundaries were computed for the input of P to freshwaters, the input of P to terrestrial soil, and the mass of P in soil. Each boundary was computed for two water quality targets, 24 mg P m - 3, a typical target for lakes and reservoirs, and 160 mg m - 3, the approximate pre-industrial P concentration in the world's rivers. Planetary boundaries were also computed using three published estimates of current P flow to the sea. Current conditions exceed all planetary boundaries for P. Substantial differences between current conditions and planetary boundaries demonstrate the contrast between large amounts of P needed for food production and the high sensitivity of freshwaters to pollution by P runoff. At the same time, some regions of the world are P-deficient, and there are some indications that a global P shortage is possible in coming decades. More efficient recycling and retention of P within agricultural ecosystems could maintain or increase food production while reducing P pollution and improving water quality. Spatial heterogeneity in the global P cycle suggests that recycling of P in regions of excess and transfer of P to regions of deficiency could mitigate eutrophication, increase agricultural yield, and delay or avoid global P shortage.

  6. Forms of organic phosphorus in wetland soils

    NASA Astrophysics Data System (ADS)

    Cheesman, A. W.; Turner, B. L.; Reddy, K. R.

    2014-06-01

    Phosphorus (P) cycling in freshwater wetlands is dominated by biological mechanisms, yet there has been no comprehensive examination of the forms of biogenic P (i.e. forms derived from biological activity) in wetland soils. We used solution 31P NMR spectroscopy to identify and quantify P forms in surface soils of 28 palustrine wetlands spanning a range of climatic, hydro-geomorphic and vegetation types. Total P concentrations ranged between 51 and 3516 μg P g

  7. Phosphorus removal from wastewater by mineral apatite.

    PubMed

    Bellier, Nathalie; Chazarenc, Florent; Comeau, Yves

    2006-08-01

    Natural apatite has emerged as potentially effective for phosphorus (P) removal from wastewater. The retention capacity of apatite is attributed to a lower activation energy barrier required to form hydroxyapatite (HAP) by crystallization. The aim of our study was to test the P removal potential of four apatites found in North America. Minerals were collected from two geologically different formations: sedimentary apatites from Florida and igneous apatites from Quebec. A granular size ranging from 2.5 to 10mm to prevent clogging in wastewater applications was used. Isotherms (24 and 96 h) were drawn after batch tests using the Langmuir model which indicated that sedimentary apatites presented a higher P-affinity (K(L)=0.009 L/g) than igneous apatites (K(L) approximately 0.004 L/g). The higher density of igneous material probably explained this difference. P-retention capacities were determined to be around 0.3mg P/g apatite (24 h). A 30 mg P/L synthetic effluent was fed during 39 days to four lab-scale columns. A mixture of sedimentary material (apatite and limestone 50-50%, w/w) showed a complete P-retention during 15 days which then declined to 65% until the end of the 39 days lab scale test period. A limitation in calcium may have limited nucleation processes. The same mixture used in a field scale test showed 60% P-retention from a secondary effluent (30 mg COD/L, 10 mg Pt/L) during 65 days without clogging.

  8. Atomic and electronic structure of exfoliated black phosphorus

    SciTech Connect

    Wu, Ryan J.; Topsakal, Mehmet; Jeong, Jong Seok; Wentzcovitch, Renata M.; Mkhoyan, K. Andre; Low, Tony; Robbins, Matthew C.; Haratipour, Nazila; Koester, Steven J.

    2015-11-15

    Black phosphorus, a layered two-dimensional crystal with tunable electronic properties and high hole mobility, is quickly emerging as a promising candidate for future electronic and photonic devices. Although theoretical studies using ab initio calculations have tried to predict its atomic and electronic structure, uncertainty in its fundamental properties due to a lack of clear experimental evidence continues to stymie our full understanding and application of this novel material. In this work, aberration-corrected scanning transmission electron microscopy and ab initio calculations are used to study the crystal structure of few-layer black phosphorus. Directly interpretable annular dark-field images provide a three-dimensional atomic-resolution view of this layered material in which its stacking order and all three lattice parameters can be unambiguously identified. In addition, electron energy-loss spectroscopy (EELS) is used to measure the conduction band density of states of black phosphorus, which agrees well with the results of density functional theory calculations performed for the experimentally determined crystal. Furthermore, experimental EELS measurements of interband transitions and surface plasmon excitations are also consistent with simulated results. Finally, the effects of oxidation on both the atomic and electronic structure of black phosphorus are analyzed to explain observed device degradation. The transformation of black phosphorus into amorphous PO{sub 3} or H{sub 3}PO{sub 3} during oxidation may ultimately be responsible for the degradation of devices exposed to atmosphere over time.

  9. Infrared fingerprints of few-layer black phosphorus

    PubMed Central

    Zhang, Guowei; Huang, Shenyang; Chaves, Andrey; Song, Chaoyu; Özçelik, V. Ongun; Low, Tony; Yan, Hugen

    2017-01-01

    Black phosphorus is an infrared layered material. Its bandgap complements other widely studied two-dimensional materials: zero-gap graphene and visible/near-infrared gap transition metal dichalcogenides. Although highly desirable, a comprehensive infrared characterization is still lacking. Here we report a systematic infrared study of mechanically exfoliated few-layer black phosphorus, with thickness ranging from 2 to 15 layers and photon energy spanning from 0.25 to 1.36 eV. Each few-layer black phosphorus exhibits a thickness-dependent unique infrared spectrum with a series of absorption resonances, which reveals the underlying electronic structure evolution and serves as its infrared fingerprints. Surprisingly, unexpected absorption features, which are associated with the forbidden optical transitions, have been observed. Furthermore, we unambiguously demonstrate that controllable uniaxial strain can be used as a convenient and effective approach to tune the electronic structure of few-layer black phosphorus. Our study paves the way for black phosphorus applications in infrared photonics and optoelectronics. PMID:28059084

  10. Phosphorus removal from trout farm effluents by constructed wetlands.

    PubMed

    Comeau, Y; Brisson, J; Réville, J P; Forget, C; Drizo, A

    2001-01-01

    Freshwater trout farms need a high and continuous clean water flow to keep fish exposed to a non-toxic ammonium concentration. As a result, the concentration of effluents from these farms are even below standard effluent criteria for municipal wastewater effluent for solids, nitrogen and phosphorus. Nevertheless, the mass of pollutants discharged, originating mostly from excreta and undigested fish food, must be reduced by simple and economical treatment processes. We designed and operated a three-stage system aimed at retaining solids by a 60 pm nylon rotating microscreen followed by treatment with a phosphorus-retaining constructed wetland system. Washwater from the microscreen was pumped to a series of two horizontal flow beds of 100 m3 each (0.6 m deep). Coarse (2 mm) and finer (< 2 mm) crushed limestone were used in each bed, respectively, with the first one being planted with reeds (Phragmites australis) and the second one designed to remove even more phosphorus by adsorption and precipitation. Preliminary results indicated that the microscreen captured about 60% of the suspended solids and that greater than 95% of the suspended solids and greater than 80% of the total phosphorus mass loads were retained by the beds. The potential of constructed wetlands as an ecologically attractive and economical method for treating fish farm effluents to reduce solids and phosphorus discharge appears promising.

  11. Removing Phosphorus from Aqueous Solutions Using Lanthanum Modified Pine Needles

    PubMed Central

    Wang, Xianze; Liu, Zhongmou; Liu, Jiancong; Huo, Mingxin; Huo, Hongliang; Yang, Wu

    2015-01-01

    The renewable pine needles was used as an adsorbent to remove phosphorus from aqueous solutions. Using batch experiments, pine needles pretreated with alkali-isopropanol (AI) failed to effectively remove phosphorus, while pine needles modified with lanthanum hydroxide (LH) showed relatively high removal efficiency. LH pine needles were effective at a wide pH ranges, with the highest removal efficiency reaching approximately 85% at a pH of 3. The removal efficiency was kept above 65% using 10 mg/L phosphorus solutions at desired pH values. There was no apparent significant competitive behavior between co-existing anions of sulfate, nitrate, and chloride (SO42-, NO3- and Cl-); however, CO32- exhibited increased interfering behavior as concentrations increased. An intraparticle diffusion model showed that the adsorption process occurred in three phases, suggesting that a boundary layer adsorption phenomena slightly affected the adsorption process, and that intraparticle diffusion was dominant. The adsorption process was thermodynamically unfavorable and non-spontaneous; temperature increases improved phosphorus removal. Total organic carbon (TOC) assays indicated that chemical modification reduced the release of soluble organic compounds from 135.6 mg/L to 7.76 mg/L. This new information about adsorption performances provides valuable information, and can inform future technological applications designed to remove phosphorus from aqueous solutions. PMID:26630014

  12. Temperature dependent phonon shifts in few-layer black phosphorus.

    PubMed

    Late, Dattatray J

    2015-03-18

    Atomically thin two-dimensional (2D) sheets of black phosphorus have attracted much attention due to their potential for future nanoelectronic and photonics device applications. Present investigations deal with the temperature dependent phonon shifts in a few-layer black phosphorus nanosheet sample prepared using micromechanical exfoliation on a 300 nm SiO2/Si substrate. The temperature dependent Raman spectroscopy experiments were carried out on a few-layer black phosphorus sample, which depicts softening of Ag(1), B2g, and Ag(2) modes as temperature increases from 77 to 673 K. The calculated temperature coefficients for Ag(1), B2g, and Ag(2) modes of the few-layer black phosphorus nanosheet sample were observed to be -0.01, -0.013, and -0.014 cm(-1) K(-1), respectively. The temperature dependent softening modes of black phosphorus results were explained on the basis of a double resonance process which is more active in an atomically thin sample. This process can also be fundamentally pertinent in other promising and emerging 2D ultrathin layer and heterostructured materials.

  13. Transport properties of ultrathin black phosphorus on hexagonal boron nitride

    SciTech Connect

    Doganov, Rostislav A.; Özyilmaz, Barbaros; Koenig, Steven P.; Yeo, Yuting; Watanabe, Kenji; Taniguchi, Takashi

    2015-02-23

    Ultrathin black phosphorus, or phosphorene, is a two-dimensional material that allows both high carrier mobility and large on/off ratios. Similar to other atomic crystals, like graphene or layered transition metal dichalcogenides, the transport behavior of few-layer black phosphorus is expected to be affected by the underlying substrate. The properties of black phosphorus have so far been studied on the widely utilized SiO{sub 2} substrate. Here, we characterize few-layer black phosphorus field effect transistors on hexagonal boron nitride—an atomically smooth and charge trap-free substrate. We measure the temperature dependence of the field effect mobility for both holes and electrons and explain the observed behavior in terms of charged impurity limited transport. We find that in-situ vacuum annealing at 400 K removes the p-doping of few-layer black phosphorus on both boron nitride and SiO{sub 2} substrates and reduces the hysteresis at room temperature.

  14. Infrared fingerprints of few-layer black phosphorus.

    PubMed

    Zhang, Guowei; Huang, Shenyang; Chaves, Andrey; Song, Chaoyu; Özçelik, V Ongun; Low, Tony; Yan, Hugen

    2017-01-06

    Black phosphorus is an infrared layered material. Its bandgap complements other widely studied two-dimensional materials: zero-gap graphene and visible/near-infrared gap transition metal dichalcogenides. Although highly desirable, a comprehensive infrared characterization is still lacking. Here we report a systematic infrared study of mechanically exfoliated few-layer black phosphorus, with thickness ranging from 2 to 15 layers and photon energy spanning from 0.25 to 1.36 eV. Each few-layer black phosphorus exhibits a thickness-dependent unique infrared spectrum with a series of absorption resonances, which reveals the underlying electronic structure evolution and serves as its infrared fingerprints. Surprisingly, unexpected absorption features, which are associated with the forbidden optical transitions, have been observed. Furthermore, we unambiguously demonstrate that controllable uniaxial strain can be used as a convenient and effective approach to tune the electronic structure of few-layer black phosphorus. Our study paves the way for black phosphorus applications in infrared photonics and optoelectronics.

  15. Electron Doping of Ultrathin Black Phosphorus with Cu Adatoms.

    PubMed

    Koenig, Steven P; Doganov, Rostislav A; Seixas, Leandro; Carvalho, Alexandra; Tan, Jun You; Watanabe, Kenji; Taniguchi, Takashi; Yakovlev, Nikolai; Castro Neto, Antonio H; Özyilmaz, Barbaros

    2016-04-13

    Few-layer black phosphorus is a monatomic two-dimensional crystal with a direct band gap that has high carrier mobility for both holes and electrons. Similarly to other layered atomic crystals, like graphene or layered transition metal dichalcogenides, the transport behavior of few-layer black phosphorus is sensitive to surface impurities, adsorbates, and adatoms. Here we study the effect of Cu adatoms onto few-layer black phosphorus by characterizing few-layer black phosphorus field effect devices and by performing first-principles calculations. We find that the addition of Cu adatoms can be used to controllably n-dope few layer black phosphorus, thereby lowering the threshold voltage for n-type conduction without degrading the transport properties. We demonstrate a scalable 2D material-based complementary inverter which utilizes a boron nitride gate dielectric, a graphite gate, and a single bP crystal for both the p- and n-channels. The inverter operates at matched input and output voltages, exhibits a gain of 46, and does not require different contact metals or local electrostatic gating.

  16. Isotopic Fingerprint for Phosphorus in Drinking Water Supplies.

    PubMed

    Gooddy, Daren C; Lapworth, Dan J; Ascott, Matthew J; Bennett, Sarah A; Heaton, Timothy H E; Surridge, Ben W J

    2015-08-04

    Phosphate dosing of drinking water supplies, coupled with leakage from distribution networks, represents a significant input of phosphorus to the environment. The oxygen isotope composition of phosphate (δ(18)OPO4), a novel stable isotope tracer for phosphorus, offers new opportunities to understand the importance of phosphorus derived from sources such as drinking water. We report the first assessment of δ(18)OPO4 within drinking water supplies. A total of 40 samples from phosphate-dosed distribution networks were analyzed from across England and Wales. In addition, samples of the source orthophosphoric acid used for dosing were also analyzed. Two distinct isotopic signatures for drinking water were identified (average = +13.2 or +19.7‰), primarily determined by δ(18)OPO4 of the source acid (average = +12.4 or +19.7‰). Dependent upon the source acid used, drinking water δ(18)OPO4 appears isotopically distinct from a number of other phosphorus sources. Isotopic offsets from the source acid ranging from -0.9 to +2.8‰ were observed. There was little evidence that equilibrium isotope fractionation dominated within the networks, with offsets from temperature-dependent equilibrium ranging from -4.8 to +4.2‰. While partial equilibrium fractionation may have occurred, kinetic effects associated with microbial uptake of phosphorus or abiotic sorption and dissolution reactions may also contribute to δ(18)OPO4 within drinking water supplies.

  17. Phosphorus removal characteristics in hydroxyapatite crystallization using converter slag.

    PubMed

    Kim, Eung-Ho; Hwang, Hwan-Kook; Yim, Soo-Bin

    2006-01-01

    This study was performed to investigate the phosphorus removal characteristics in hydroxyapatite (HAP) crystallization using converter slag as a seed crystal and the usefulness of a slag column reactor system. The effects of alkalinity, and the isomorphic-substitutable presence of ionic magnesium, fluoride, and iron on HAP crystallization seeded with converter slag, were examined using a batch reactor system. The phosphorus removal efficiencies of the batch reactor system were found to increase with increases in the iron and fluoride ion concentrations, and to decrease with increases in the alkalinity and magnesium ion concentration. A column reactor system for HAP crystallization using converter slag was found to achieve high, stable levels of phosphorus elimination: the average PO4-P removal efficiency over 414 days of operation was 90.4%, in which the effluent phosphorus concentration was maintained at less than 0.5 mg/L under the appropriate phosphorus crystallization conditions. The X-ray diffraction (XRD) patterns and Fourier transform infrared (FTIR) spectra of the crystalline material deposited on the seed particles exhibited peaks consistent with HAP. Scanning electron micrograph (SEM) images showed that finely distributed crystalline material was formed on the surfaces of the seed particles. Energy dispersive X-ray spectroscopy (EDS) mapping analysis revealed that the molar Ca/P composition ratio of the crystalline material was 1.72.

  18. Phosphorus Recovery Using Zirconium-Loaded Saponified Orange Juice Residue

    NASA Astrophysics Data System (ADS)

    Harada, Hiroyuki; Kondo, Mitsunori; Biswas, Biplob K.; Ohura, Seichirou; Inoue, Katsutoshi; Ishikawa, Susumu; Kawakita, Hidetaka; Ohto, Keisuke

    Zirconium was immobilized to orange juice residue, to investigate the feasibility of using zirconium-loaded saponified orange juice residue (Zr-SOJR) for phosphorus recovery from secondary effluent and the extraction solution from incinerated sewage sludge ash by using H2SO4 and HCl. These had phosphorus concentrations of 68.2 mg/dm3 and 5.9 mg/dm3, respectively. The phosphorus removal rate secondary effluent increased with an increasing solid/liquid ratio in batch experiments. The adsorption capacity of Zr-SOJR was also compared with those obtained using a synthetic phosphorus solution and using zirconium-loaded ferrite. The prepared absorbent was effective for phosphorus removal and exhibited a reasonably high sorption capacity, twice that of zirconium ferrite. Secondary effluent was treated by packed column, and this reached break-through after 300 bed volumes. The results from phosphorous extraction from the ash indicate that can be treated with acid to efficiently recover phosphorous and thus can be absorbed by Zr-SOJR.

  19. Infrared fingerprints of few-layer black phosphorus

    NASA Astrophysics Data System (ADS)

    Zhang, Guowei; Huang, Shenyang; Chaves, Andrey; Song, Chaoyu; Özçelik, V. Ongun; Low, Tony; Yan, Hugen

    2017-01-01

    Black phosphorus is an infrared layered material. Its bandgap complements other widely studied two-dimensional materials: zero-gap graphene and visible/near-infrared gap transition metal dichalcogenides. Although highly desirable, a comprehensive infrared characterization is still lacking. Here we report a systematic infrared study of mechanically exfoliated few-layer black phosphorus, with thickness ranging from 2 to 15 layers and photon energy spanning from 0.25 to 1.36 eV. Each few-layer black phosphorus exhibits a thickness-dependent unique infrared spectrum with a series of absorption resonances, which reveals the underlying electronic structure evolution and serves as its infrared fingerprints. Surprisingly, unexpected absorption features, which are associated with the forbidden optical transitions, have been observed. Furthermore, we unambiguously demonstrate that controllable uniaxial strain can be used as a convenient and effective approach to tune the electronic structure of few-layer black phosphorus. Our study paves the way for black phosphorus applications in infrared photonics and optoelectronics.

  20. APFIM characterization of a high phosphorus Russian RPV weld

    NASA Astrophysics Data System (ADS)

    Miller, M. K.; Russell, K. F.

    1996-03-01

    A microstructural characterization of a high phosphorus (0.035 wt% P) weld from the pressure vessel of a Russian VVER nuclear reactor has been performed. The microstructure of these steels consists of intragranular and intergranular vanadium carbonitride precipitates of average composition 51.3 ± 0.9 at% V, 18.8 ± 0.7 at% C, 22.1 ± 0.7 at% N, 4.9 ± 0.4 at% Cr, 2.4 ± 0.3 at% Mo, 0.36 ± 0.05 at% Fe, 0.07 ± 0.05 at% B and 0.03 ± 0.03 at% P. The lath and grain boundaries were also coated with a thin film of molybdenum carbonitride precipitates. The phosphorus coverage at the boundaries in the unirradiated material was ˜ 13% of a monolayer in agreement with predictions from the McLean model of equilibrium segregation. After neutron irradiation to a fluence of 1.15 × 10 20 n cm -2, the phosphorus coverage had increased significantly to up to ˜ 60% of a monolayer. This result indicates that neutron irradiation significantly enhanced the phosphorus segregation process. Phosphorus and copper clusters were also observed in the matrix of the neutron-irradiated material.

  1. A phosphorus threshold for mycoheterotrophic plants in tropical forests.

    PubMed

    Sheldrake, Merlin; Rosenstock, Nicholas P; Revillini, Daniel; Olsson, Pål Axel; Wright, S Joseph; Turner, Benjamin L

    2017-02-08

    The majority of terrestrial plants associate with arbuscular mycorrhizal (AM) fungi, which typically facilitate the uptake of limiting mineral nutrients by plants in exchange for plant carbon. However, hundreds of non-photosynthetic plant species-mycoheterotrophs-depend entirely on AM fungi for carbon as well as mineral nutrition. Mycoheterotrophs can provide insight into the operation and regulation of AM fungal relationships, but little is known about the factors, fungal or otherwise, that affect mycoheterotroph abundance and distribution. In a lowland tropical forest in Panama, we conducted the first systematic investigation into the influence of abiotic factors on the abundance and distribution of mycoheterotrophs, to ask whether the availability of nitrogen and phosphorus altered the occurrence of mycoheterotrophs and their AM fungal partners. Across a natural fertility gradient spanning the isthmus of Panama, and also in a long-term nutrient-addition experiment, mycoheterotrophs were entirely absent when soil exchangeable phosphate concentrations exceeded 2 mg P kg(-1) Experimental phosphorus addition reduced the abundance of AM fungi, and also reduced the abundance of the specific AM fungal taxa required by the mycoheterotrophs, suggesting that the phosphorus sensitivity of mycoheterotrophs is underpinned by the phosphorus sensitivity of their AM fungal hosts. The soil phosphorus concentration of 2 mg P kg(-1) also corresponds to a marked shift in tree community composition and soil phosphatase activity across the fertility gradient, suggesting that our findings have broad ecological significance.

  2. Organic and inorganic dietary phosphorus and its management in chronic kidney disease.

    PubMed

    Noori, Nazanin; Sims, John J; Kopple, Joel D; Shah, Anuja; Colman, Sara; Shinaberger, Christian S; Bross, Rachelle; Mehrotra, Rajnish; Kovesdy, Csaba P; Kalantar-Zadeh, Kamyar

    2010-04-01

    Dietary phosphorus control is often a main strategy in the management of patients with chronic kidney disease. Dietary protein is a major source of phosphorus intake. Recent data indicate that imposed dietary phosphorus restriction may compromise the need for adequate protein intake, leading to protein-energy wasting and possibly to increased mortality. The two main sources of dietary phosphorus are organic, including animal and vegetarian proteins, and inorganic, mostly food preservatives. Animal-based foods and plant are abundant in organic phosphorus. Usually 40% to 60% of animal-based phosphorus is absorbed; this varies by degree of gastrointestinal vitamin-D-receptor activation, whereas plant phosphorus, mostly associated with phytates, is less absorbable by human gastrointestinal tract. Up to 100% of inorganic phosphorus in processed foods may be absorbed; ie, phosphorus in processed cheese and some soda (cola) drinks. A recent study suggests that a higher dietary phosphorus-protein intake ratio is associated with incremental death risk in patients on long-term hemodialysis. Hence, for phosphorus management in chronic kidney disease, in addition to absolute dietary phosphorus content, the chemical structure (inorganic versus organic), type (animal versus plant), and phosphorus-protein ratio should be considered. We recommend foods and supplements with no or lowest quantity of inorganic phosphorus additives, more plant-based proteins, and a dietary phosphorus-protein ratio of less than 10 mg/g. Fresh (nonprocessed) egg white (phosphorus-protein ratio less than 2 mg/g) is a good example of desirable food, which contains a high proportion of essential amino acids with low amounts of fat, cholesterol, and phosphorus.

  3. Phosphorus and carbon segregation: Effects on fatigue and fracture of gas-carburized modified 4320 steel

    SciTech Connect

    Hyde, R.S.; Krauss, G.; Matlock, D.K. . Advanced Steel Processing and Products Research Center)

    1994-06-01

    Phosphorus and carbon segregation to austenite grain boundaries and its effects on fatigue and fracture were studied in carburized modified 4320 steel with systematic variations, 0.005, 0.017, and 0.031 wt pct, in alloy phosphorus concentration. Specimens subjected to bending fatigue were characterized by light metallography, X-ray analyses for retained austenite and residual stress measurements, and scanning electron microscopy (SEM) of fracture surfaces. Scanning Auger electron spectroscopy (AES) was used to determine intergranular concentrations of phosphorus and carbon. The degree of phosphorus segregation is directly dependent on alloy phosphorus and carbon content. The degree of carbon segregation, in the form of cementite, at austenite grain boundaries was found to be a function of alloy phosphorus concentration. The endurance limit and fracture toughness decreased slightly when alloy phosphorus concentration was increased from 0.005 to 0.017 wt pct. Between 0.017 and 0.031 wt pct phosphorus, the endurance limit and fracture toughness decreased substantially. Other effects related to increasing alloy phosphorus concentration include increased case carbon concentration, decreased case retained austenite, increased case compressive residual stresses, and increased case hardness. All of these results are consistent with the phosphorus-enhanced formation of intergranular cementite and a decrease in carbon solubility in intragranular austenite with increasing phosphorus concentration. Differences in fatigue and fracture correlate with the degree of cementite coverage on the austenite grain boundaries and the buildup of phosphorus at cementite/matrix interfaces because of the insolubility of phosphorus in cementite.

  4. The "phosphorus pyramid": a visual tool for dietary phosphate management in dialysis and CKD patients.

    PubMed

    D'Alessandro, Claudia; Piccoli, Giorgina B; Cupisti, Adamasco

    2015-01-20

    Phosphorus retention plays a pivotal role in the onset of mineral and bone disorders (MBD) in chronic kidney disease (CKD). Phosphorus retention commonly occurs as a result of net intestinal absorption exceeding renal excretion or dialysis removal. The dietary phosphorus load is crucial since the early stages of CKD, throughout the whole course of the disease, up to dialysis-dependent end-stage renal disease.Agreement exits regarding the need for dietary phosphate control, but it is quite challenging in the real-life setting. Effective strategies to control dietary phosphorus intake include restricting phosphorus-rich foods, preferring phosphorus sourced from plant origin, boiling as the preferred cooking procedure and avoiding foods with phosphorus-containing additives. Nutritional education is crucial in this regard.Based on the existing literature, we developed the "phosphorus pyramid", namely a novel, visual, user-friendly tool for the nutritional education of patients and health-care professionals. The pyramid consists of six levels in which foods are arranged on the basis of their phosphorus content, phosphorus to protein ratio and phosphorus bioavailability. Each has a colored edge (from green to red) that corresponds to recommended intake frequency, ranging from "unrestricted" to "avoid as much as possible".The aim of the phosphorus pyramid is to support dietary counseling in order to reduce the phosphorus load, a crucial aspect of integrated CKD-MBD management.

  5. Investigation of the phosphorus removal capacities of basic oxygen furnace slag under variable conditions.

    PubMed

    Han, Chong; Wang, Zhen; Yang, Wangjin; Wu, Qianqian; Yang, He; Xue, Xiangxin

    2016-01-01

    Effects of reaction time, initial phosphorus concentration, basic oxygen furnace slag (BOF-slag) dosage and size, and temperature on the phosphorus removal capacities (PRCs) of BOF-slag have been investigated in detail through batch tests. Weakly bound phosphorus, Fe- and Al-associated phosphorus, and Ca-associated phosphorus from fresh and reacted BOF-slag were analysed using sequential chemical extraction processes. It was determined that the PRCs of BOF-slag increased with the increase of initial phosphorus concentration and temperature while it decreased with the increase of BOF-slag dosage and size. The phosphorus removed by BOF-slag was primarily assigned to weakly bound phosphorus and Ca-associated phosphorus. Weakly bound phosphorus showed a significant decrease with the increase in all experimental parameter values. However, Ca-associated phosphorus exhibited a prominent increase with increasing reaction time, initial phosphorus concentration, and temperature. These demonstrate that experimental parameters can simultaneously affect the PRCs of BOF-slag and the ways of phosphorus removal by BOF-slag.

  6. Factors controlling phosphorus speciation in a Mediterranean basin (River Guadalfeo, Spain)

    NASA Astrophysics Data System (ADS)

    Avilés, Antonio; Rodero, Jesús; Amores, Victoria; de Vicente, Inmaculada; Rodríguez, M. Isabel; Niell, F. Xavier

    2006-12-01

    SummaryThere is a lot of interest nowadays in the role of riverbed sediments in phosphorus cycling and particularly, in the processes that lead the exchange of phosphorus between the sediment and the water column. This study presents results on phosphorus forms and other properties from surface riverbed sediments of the River Guadalfeo and its main tributaries. Results show a wide range of spatial variability within the basin with differences of phosphorus concentration higher than an order of magnitude among different sites. The most abundant form is the apatite inorganic phosphorus (AIP) which accounts for 68% of total phosphorus followed by total organic phosphorus (OP) that represents 29%. The high oversaturation of calcite reached during the summer and early autumn in most studied rivers shows as calcite-phosphorus co-precipitation is the most important self-cleansing mechanism that removes phosphorus from the water column, controlling the phosphorus content in the sediment and the dominance of AIP. Hydroxyapatite formation is only important in a few sampling points, in spite of the vastly oversaturation obtained. External factors such as the lithology of drainage area and sewage inputs are less important in the concentration of sediment phosphorus than physico-chemical and biological processes that take place in the rivers. Taking into account the low biodegradable characteristics of dominant phosphorus forms, it could be concluded that the surface sediment in the Guadalfeo basin acts as a phosphorus sink.

  7. 33 CFR 83.33 - Equipment for sound signals (Rule 33).

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 33 Navigation and Navigable Waters 1 2013-07-01 2013-07-01 false Equipment for sound signals (Rule... INLAND NAVIGATION RULES RULES Sound and Light Signals § 83.33 Equipment for sound signals (Rule 33). (a... gong, the tone and sound of which cannot be confused with that of the bell. The whistle, bell and...

  8. 33 CFR 83.33 - Equipment for sound signals (Rule 33).

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 33 Navigation and Navigable Waters 1 2010-07-01 2010-07-01 false Equipment for sound signals (Rule... INLAND NAVIGATION RULES RULES Sound and Light Signals § 83.33 Equipment for sound signals (Rule 33). (a... gong, the tone and sound of which cannot be confused with that of the bell. The whistle, bell and...

  9. 33 CFR 83.33 - Equipment for sound signals (Rule 33).

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 33 Navigation and Navigable Waters 1 2014-07-01 2014-07-01 false Equipment for sound signals (Rule... INLAND NAVIGATION RULES RULES Sound and Light Signals § 83.33 Equipment for sound signals (Rule 33). (a... gong, the tone and sound of which cannot be confused with that of the bell. The whistle, bell and...

  10. 33 CFR 83.33 - Equipment for sound signals (Rule 33).

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 33 Navigation and Navigable Waters 1 2011-07-01 2011-07-01 false Equipment for sound signals (Rule... INLAND NAVIGATION RULES RULES Sound and Light Signals § 83.33 Equipment for sound signals (Rule 33). (a... gong, the tone and sound of which cannot be confused with that of the bell. The whistle, bell and...

  11. 33 CFR 83.33 - Equipment for sound signals (Rule 33).

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 33 Navigation and Navigable Waters 1 2012-07-01 2012-07-01 false Equipment for sound signals (Rule... INLAND NAVIGATION RULES RULES Sound and Light Signals § 83.33 Equipment for sound signals (Rule 33). (a... gong, the tone and sound of which cannot be confused with that of the bell. The whistle, bell and...

  12. Structure of Tz = 3 / 2 , 33P Nucleus

    NASA Astrophysics Data System (ADS)

    Lubna, Rebeka Sultana; Tripathi, Vandana; Tabor, Samuel; Tai, Pei-Laun; Bender, Peter

    2016-03-01

    The excited states of the nucleus 33P were populated by the 18O(18O, p-2n γ)33P fusion evaporation reaction at Elab = 25 MeV.Gammasphere was used along with the particle detector Microball to detect the γ emissions in coincidence with the emitted charged particles from the compound nucleus 36S. The auxiliary detector Microball was used to select the charged particle channel and to determine the exact position and the energy of the emitted proton. The purpose of finding the position and energy of proton was to determine a more precise angle between the recoil nucleus and the emitted γ which was later employed to get a better Doppler correction. Along with the selection of the proton channel, the γ- γ coincidence technique helped to isolate 33P from the other phosphorus isotopes and also reduced the contaminations from the dominant pure neutron channels. A number of transitions and states was identified that were not observed before. The 4 π arrangement of Gammasphere offered an excellent opportunity to measure the angular distribution of the electromagnetic emissions leading to the assignment of the spins for most of the new states. The experimental observations were compared to the shell model calculation using Work supported by the U.S. National Science Foundation under Grant No. 1401574.

  13. Vertical distribution of sediment phosphorus in Lake Hachirogata related to the effect of land reclamation on phosphorus accumulation.

    PubMed

    Jin, G; Onodera, S; Saito, M; Maruyama, Y; Hayakawa, A; Sato, T; Ota, Y; Aritomi, D

    2016-01-13

    The focus of this work is the change in sediment properties and chemical characteristics that occur after land reclamation projects. The results indicate a higher sedimentation rate in Lake Hachirogata after reclamation, with the rate increasing with proximity to the agricultural zone. In the west-side water samples, higher levels of dissolved total nitrogen and dissolved total phosphorus (DTP) were found in both surface and bottom waters. The increase in P (39-80%) was generally greater than that for N (12-16%), regarding the nutrient supply from reclaimed farmland in the western part of the lake. In the eastern part of the lake, the pore-water Cl(-) profile showed a decreasing vertical gradient in the sediment core. This indicates desalination of the lake water after construction of a sluice gate in 1961. In the western sediment-core sample, a uniform Cl(-) profile indicates the mixing of lake water and pore water after reclamation. Considering the sedimentation of P in the last 100 years, there is a trend of increasing accumulation of P and P-activities after the reclamation project. This appears to be an impact from change in the lake environment as a result of increased agricultural nutrients, desalination, and residence. A large amount of mobile phosphorus (42-72% of TP in the western core sample) trapped in sediment increases the risk of phosphorus release and intensification of algal blooms. High sediment phosphorus and phosphorus mobility should be considered a source of pollution in the coastal environment.

  14. Phosphorus in the young supernova remnant Cassiopeia A.

    PubMed

    Koo, Bon-Chul; Lee, Yong-Hyun; Moon, Dae-Sik; Yoon, Sung-Chul; Raymond, John C

    2013-12-13

    Phosphorus ((31)P), which is essential for life, is thought to be synthesized in massive stars and dispersed into interstellar space when these stars explode as supernovae (SNe). Here, we report on near-infrared spectroscopic observations of the young SN remnant Cassiopeia A, which show that the abundance ratio of phosphorus to the major nucleosynthetic product iron ((56)Fe) in SN material is up to 100 times the average ratio of the Milky Way, confirming that phosphorus is produced in SNe. The observed range is compatible with predictions from SN nucleosynthetic models but not with the scenario in which the chemical elements in the inner SN layers are completely mixed by hydrodynamic instabilities during the explosion.

  15. Synthesis and investigation of tungsten-phosphorus catalysts

    SciTech Connect

    Obrubov, V.A.; Zhdanova, S.A.; Shchukin, V.P.

    1988-11-10

    The authors present the results of their investigation of the effect of phosphorus compounds on the activity of tungsten-containing catalysts in the oxidation of ethane. They investigated tungsten-phosphorus catalysts with different phosphorus concentrations (calculated on the basis of P/sub 2/O/sub 5/). The catalysts were prepared by heat decomposition of the starting compounds at 750/sup 0/C for 4 h. As their starting compounds, they used two types of materials: heteropoly acids mixtures of monosubstituted ammonium phosphoric and tungstic acids. The specific surface area of the catalysts was determined using the nitrogen desorption method. The x-ray phase analysis was carried out using a DRON-1.5 diffractometer. The catalytic activity was determined using the impulse method in a reactor with a vibrofluidized catalyst layer.

  16. Plasmonic Properties of Silicon Nanocrystals Doped with Boron and Phosphorus.

    PubMed

    Kramer, Nicolaas J; Schramke, Katelyn S; Kortshagen, Uwe R

    2015-08-12

    Degenerately doped silicon nanocrystals are appealing plasmonic materials due to silicon's low cost and low toxicity. While surface plasmonic resonances of boron-doped and phosphorus-doped silicon nanocrystals were recently observed, there currently is poor understanding of the effect of surface conditions on their plasmonic behavior. Here, we demonstrate that phosphorus-doped silicon nanocrystals exhibit a plasmon resonance immediately after their synthesis but may lose their plasmonic response with oxidation. In contrast, boron-doped nanocrystals initially do not exhibit plasmonic response but become plasmonically active through postsynthesis oxidation or annealing. We interpret these results in terms of substitutional doping being the dominant doping mechanism for phosphorus-doped silicon nanocrystals, with oxidation-induced defects trapping free electrons. The behavior of boron-doped silicon nanocrystals is more consistent with a strong contribution of surface doping. Importantly, boron-doped silicon nanocrystals exhibit air-stable plasmonic behavior over periods of more than a year.

  17. Electronic band structure of surface-doped black phosphorus

    NASA Astrophysics Data System (ADS)

    Kim, Jimin; Ryu, Sae Hee; Sohn, Yeongsup; Kim, Keun Su

    2015-03-01

    There are rapidly growing interests in the study of few-layer black phosphorus owing to its promising device characteristics that may impact our future electronics technology. The low-energy band structure of black phosphorus has been widely predicted to be controllable by external perturbations, such as strain and doping. In this work, we attempt to control the electronic band structure of black phosphorous by in-situ surface deposition of alkali-metal atoms. We found that surface doping induces steep band bending towards the bulk, leading to the emergence of new 2D electronic states that are confined within only few phosphorene layers of black phosphorus. Using angle-resolved photoemission spectroscopy, we directly measured the electronic band structure and its evolution as a function of dopant density. Supported by IBS.

  18. Phosphorus recovery from sewage sludge ash through an electrodialytic process.

    PubMed

    Guedes, Paula; Couto, Nazaré; Ottosen, Lisbeth M; Ribeiro, Alexandra B

    2014-05-01

    The electrodialytic separation process (ED) was applied to sewage sludge ash (SSA) aiming at phosphorus (P) recovery. As the SSA may have high heavy metals contents, their removal was also assessed. Two SSA were sampled, one immediately after incineration (SA) and the other from an open deposit (SB). Both samples were ED treated as stirred suspensions in sulphuric acid for 3, 7 and 14 days. After 14 days, phosphorus was mainly mobilized towards the anode end (approx. 60% in the SA and 70% in the SB), whereas heavy metals mainly electromigrated towards the cathode end. The anolyte presented a composition of 98% of P, mainly as orthophosphate, and 2% of heavy metals. The highest heavy metal removal was achieved for Cu (ca. 80%) and the lowest for Pb and Fe (between 4% and 6%). The ED showed to be a viable method for phosphorus recovery from SSA, as it promotes the separation of P from the heavy metals.

  19. Weak localization in few-layer black phosphorus

    NASA Astrophysics Data System (ADS)

    Du, Yuchen; Neal, Adam T.; Zhou, Hong; Ye, Peide D.

    2016-06-01

    We have conducted a comprehensive investigation into the magneto-transport properties of few-layer black phosphorus in terms of phase coherence length, phase coherence time, and mobility via weak localization measurement and Hall-effect measurement. We present magnetoresistance data showing the weak localization effect in bare p-type few-layer black phosphorus and reveal its strong dependence on temperature and carrier concentration. The measured weak localization agrees well with the Hikami-Larkin-Nagaoka model and the extracted phase coherence length of 104 nm at 350 mK, decreasing as ˜T-0.513+-0.053 with increased temperature. Weak localization measurement allows us to qualitatively probe the temperature-dependent phase coherence time τ ϕ , which is in agreement with the theory of carrier interaction in the diffusive regime. We also observe the universal conductance fluctuation phenomenon in few-layer black phosphorus within moderate magnetic field and low temperature regime.

  20. Dynamics and Mechanisms of Exfoliated Black Phosphorus Sublimation.

    PubMed

    Fortin-Deschênes, Matthieu; Levesque, Pierre L; Martel, Richard; Moutanabbir, Oussama

    2016-05-05

    We report on real time observations of the sublimation of exfoliated black phosphorus layers throughout annealing using in situ low energy electron microscopy. We found that sublimation manifests itself above 375 ± 20 °C through the nucleation and expansion of asymmetric, faceted holes with the long axis aligned along the [100] direction and sharp tips defined by edges consisting of alternating (10) and (11) steps. This thermally activated process repeats itself via successive sublimation of individual layers. Calculations and simulations using density functional theory and kinetic Monte Carlo allowed to determine the involved atomic pathways. Sublimation is found to occur via detachments of phosphorus dimers rather than single atoms. This behavior and the role of defects is described using an analytical model that captures all essential features. This work establishes an atomistic-level understanding of the thermal stability of exfoliated black phosphorus and defines the temperature window available for material and device processing.

  1. The effect of phosphorus on creep in copper

    NASA Astrophysics Data System (ADS)

    Sandström, Rolf; Andersson, Henrik C. M.

    2008-01-01

    Pure copper with an addition of about 50 ppm phosphorus is the planned material for the outer part of the waste package for spent nuclear fuel in Sweden. Phosphorus is added to improve the creep ductility but it also strongly increases the creep strength. In the present paper the influence of phosphorus on the strength properties of copper is analysed. Using the Labusch-Nabarro model it is demonstrated that 50 ppm has a negligible influence on the yield strength in accordance with observations. For slow moving dislocations, the interaction energy between the P-atoms and the dislocations gives rise to an agglomeration and a locking. The computed break away stresses are in agreement with the difference in creep stress of copper with and without P-additions.

  2. Scaling the respiratory metabolism to phosphorus relationship in plant seedlings

    PubMed Central

    Wang, Zhi-Qiang; Huang, Heng; Deng, Jian-Ming; Liu, Jian-Quan

    2015-01-01

    There are empirical indications of an isometric scaling relationship between plants’ respiratory metabolism rates and nitrogen contents. To test the hypothesis that there may be a similar relationship between plants’ respiratory metabolism and phosphorus contents we used data obtained from 150 laboratory and field-grown seedlings representing 30 herbaceous species and 20 woody deciduous species. Our results show that whole-plant respiration rates strongly scaled to the 0.81-power of the whole-plant phosphorus content, across wide ranges of growth conditions and functional classifications. Moreover, we also found a similar scaling exponent between whole-plant respiration rates and total nitrogen contents for the same set of samples. The similarities of the metabolic scaling relationships suggest that similar mechanisms may be involved in the transport and storage of phosphorus and nitrogen in plants. PMID:26560344

  3. Examining the Proportion of Dietary Phosphorus From Plants, Animals, and Food Additives Excreted in Urine.

    PubMed

    St-Jules, David E; Jagannathan, Ram; Gutekunst, Lisa; Kalantar-Zadeh, Kamyar; Sevick, Mary Ann

    2017-03-01

    Phosphorus bioavailability is an emerging topic of interest in the field of renal nutrition that has important research and clinical implications. Estimates of phosphorus bioavailability, based on digestibility, indicate that bioavailability of phosphorus increases from plants to animals to food additives. In this commentary, we examined the proportion of dietary phosphorus from plants, animals, and food additives excreted in urine from four controlled-feeding studies conducted in healthy adults and patients with chronic kidney disease. As expected, a smaller proportion of phosphorus from plant foods was excreted in urine compared to animal foods. However, contrary to expectations, phosphorus from food additives appeared to be incompletely absorbed. The apparent discrepancy between digestibility of phosphorus additives and the proportion excreted in urine suggests a need for human balance studies to determine the bioavailability of different sources of phosphorus.

  4. Dissolved phosphorus speciation of flash carbonization, slow pyrolysis, and fast pyrolysis biochars

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Pyrolysis of waste biomass is a promising technology to produce sterile and renewable organic phosphorus fertilizers. Systematic studies are necessary to understand how different pyrolysis platforms influence the chemical speciation of dissolved (bioavailable) phosphorus. This study employed solut...

  5. Quantitative changes of calcium, phosphorus, and magnesium in common iliac arteries with aging.

    PubMed

    Tohno, S; Tohno, Y; Moriwake, Y; Azuma, C; Ohnishi, Y; Minami, T

    2001-01-01

    To elucidate the mechanism of element accumulations in the arteries with aging, the authors investigated the mass ratios among calcium, phosphorus, and magnesium in the common iliac arteries by inductively coupled plasma-atomic emission spectrometry. The subjects consisted of 16 men and 8 women, ranging in age from 65 to 93 yr. It was found that there were extremely significant correlations between calcium and phosphorus contents, between calcium and magnesium contents, and between phosphorus and magnesium contents in the common iliac arteries. In regard to the mass ratio, although the mass ratio of calcium to phosphorus was almost constant, the mass ratios of magnesium to calcium and phosphorus were different at early and advanced stages of the accumulation of calcium and phosphorus. It was found that both the mass ratios of magnesium to calcium and phosphorus were higher at an early stage of the accumulation of calcium and phosphorus in the arteries than at an advanced stage of the accumulation.

  6. HANDBOOK: RETROFITTING POTWS FOR PHOSPHORUS REMOVAL IN THE CHESAPEAKE BAY DRAINAGE BASIN

    EPA Science Inventory

    This document assesses the technology, economics, and efficiency of phosphorus removal processes for use in the Chesapeake Bay Drainage basin (CBDB). ince phosphorus removal requirements in the CBDB vary widely with geographic location, this document discusses the feasibility of ...

  7. Phosphorus transport by surface and subsurface flow pathways in an upland agricultural watershed

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Improved understanding of phosphorus transport by surface and subsurface flow pathways is critical to protecting water quality in agricultural watersheds. While considerable attention has been devoted to understanding phosphorus losses in overland flow, comparatively limited research has examined ph...

  8. Impact of fish farming on the distribution of phosphorus in sediments in the middle Adriatic area.

    PubMed

    Matijević, Slavica; Kuspilić, Grozdan; Kljaković-Gaspić, Zorana; Bogner, Danijela

    2008-03-01

    During the last decade, intensive fish farming developed along the central Croatian coast, creating a need to study and evaluate its potential influence on unaffected sites. We considered phosphorus as an indicator of the influence of fish farming and investigated the distribution of phosphorus forms in sediment from several fish farms and marine areas of different trophic status in the middle Adriatic. Analyses of samples were performed with modified SEDEX techniques. Our results indicated that authigenic apatite phosphorus showed no significant differences among the investigated stations, while organic phosphorus concentrations reflected the trophic status of the station area. Below-cage sediment was characterized by enhanced fish debris phosphorus and low detrital apatite phosphorus concentrations, while sediment from an anthropogenically influenced bay showed the highest values of iron bound phosphorus species. Among the different P fractions, fish debris phosphorus proved to be the most sensitive indicator of the influence of fish farming on marine sediment.

  9. Morphological response of forage chicory fine roots to manipulated soil phosphorus levels

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Appalachian pastures suffer multiple stresses that result in reduced yields. Chicory offers the potential for increased phosphorus uptake, reduced drought stress and anthelmintic secondary products. To study the mechanism of improved phosphorus uptake, an experiment with three cultivars, two Appal...

  10. [Calcium pros and cons significance and risk of phosphorus supplementation. The risk of dietary phosphorus intake].

    PubMed

    Ohi, Akiko; Nomura, Kengo; Miyamoto, Ken-ichi

    2011-12-01

    Dietary intake of phosphorus (Pi) is an important determinant of Pi balance in patients who have chronic kidney disease (CKD) and a reduced GFR. High dietary Pi burden may promote vascular calcification and cardiovascular events. Recently, Ohnishi and Razzaque suggest that phosphate toxicity accelerates the mammalian aging process and that reducing the phosphate burden can delay the aging (FASEB J 24, 3562, 2010) . Dietary Pi is derived largely from foods with high protein content or food additives. Accurate information on the Pi content of foods is needed to achieve a low Pi intake and effectively manage CKD and the aging. In this review, we discuss the risk of dietary Pi intake in CKD and the aging.

  11. Molecular and conventional responses of large rainbow trout to dietary phosphorus restriction.

    PubMed

    Sugiura, Shozo H; Kelsey, Kevin; Ferraris, Ronaldo P

    2007-05-01

    The dietary phosphorus (P) requirement for large fish is difficult to estimate because of insensitivities of known P status indicators. We examined dietary P requirement of large rainbow trout (mean body weight 278 g) using recently identified P-responsive genes (mRNA abundances) as well as conventional serum P and bone P. Fish were fed six diets (varied P contents), and the tissues of intestine, pyloric caeca (PC), kidney, serum and bone were collected at varying time intervals. Serum P responded clearly to dietary P by day 2, but the estimated P requirement based on this variable changed as feeding duration continued. Bone P did not respond clearly until week 7. Among P-responsive genes studied, Na/Pi cotransporter in PC (PC-NaPi) was the most sensitive, and responded in 2 days. Fish-to-fish (within treatment) variance was larger in mRNA than in serum P and bone P levels. Estimated dietary P requirements (%P in dry diet) were 0.45 (based on serum P), 0.45 (based on bone P), 0.36 (based on PC-NaPi), 0.33 (based on intestinal NaPi), 0.71 (based on renal NaPi), and 0.33 (based on mitochondrial Pi carrier). This study is the first to evaluate the potential of genomic approaches in determining nutrient requirements of fish.

  12. Phosphorus out-diffusion in laser molten silicon

    SciTech Connect

    Köhler, J. R.; Eisele, S. J.

    2015-04-14

    Laser doping via liquid phase diffusion enables the formation of defect free pn junctions and a tailoring of diffusion profiles by varying the laser pulse energy density and the overlap of laser pulses. We irradiate phosphorus diffused 100 oriented p-type float zone silicon wafers with a 5 μm wide line focused 6.5 ns pulsed frequency doubled Nd:YVO{sub 4} laser beam, using a pulse to pulse overlap of 40%. By varying the number of laser scans N{sub s} = 1, 2, 5, 10, 20, 40 at constant pulse energy density H = 1.3 J/cm{sup 2} and H = 0.79 J/cm{sup 2} we examine the out-diffusion of phosphorus atoms performing secondary ion mass spectroscopy concentration measurements. Phosphorus doping profiles are calculated by using a numerical simulation tool. The tool models laser induced melting and re-solidification of silicon as well as the out-diffusion of phosphorus atoms in liquid silicon during laser irradiation. We investigate the observed out-diffusion process by comparing simulations with experimental concentration measurements. The result is a pulse energy density independent phosphorus out-diffusion velocity v{sub out} = 9 ± 1 cm/s in liquid silicon, a partition coefficient of phosphorus 1 < k{sub p} < 1.1 and a diffusion coefficient D = 1.4(±0.2)cm{sup 2}/s × 10{sup −3 }× exp[−183 meV/(k{sub B}T)].

  13. Phosphorus removal performance of acid mine drainage from wastewater.

    PubMed

    Ruihua, Li; Lin, Zhu; Tao, Tao; Bo, Liu

    2011-06-15

    Acid mine drainage (AMD) in Yunfu iron sulfide mine contain Fe(2+), Fe(3+), and Al(3+) up to 8000, 1700 and 1200 mg/L, respectively. Phosphorus removal from synthetic wastewater with 10mg/L of total phosphorus (TP) concentration and second municipal effluent with 3.5-4.0mg/L of TP concentration were conducted with the AMD by jar tests. Dosage of the AMD and initial pH of water are the two most important parameters affecting the performance of phosphorus removal of the AMD. The optimal phosphorus removal efficiency and residual iron ions (TFe) concentration are 97.0% and 3.0mg/L, respectively, at 1.61 Fe/P molar ratio and pH 8.03 for synthetic wastewater, and 92.1% and 0.32 mg/L, respectively, for second municipal effluent at 1.41 Fe/P molar ratio and pH 7.3. Resultant heavy metal concentration in effluents and precipitate was very low, and the risk of resultant heavy metal contamination was very small. The phosphorus removal performance of the AMD was much similar to that of ferric sulfate (FS) and polyferric sulfate (PFS), and better than that of FeSO(4). And residual TFe concentration in treated water arising from utilization of the AMD was similar to that of FeSO(4), and higher than that of FS and PFS. The AMD could be used as coagulant for phosphorus removal from wastewater directly due to the presence of Fe(2+), Fe(3+), and Al(3+) largely.

  14. Magnetic spin resonance of hydrogenic phosphorus donors in silicon

    NASA Astrophysics Data System (ADS)

    Itoh, Kohei

    2010-03-01

    A variety of electron paramagnetic resonance (EPR) measurements of an ensemble of phosphorus donors in silicon has lead to following intriguing discoveries. Electrically detected magnetic resonance (EDMR) at low magnetic fields (<200G) has revealed transitions involving superposition states between phosphorus electron and nuclear spins. Such states emerge because the hyperfine term overwhelm the electron Zeeman term at such low magnetic fields. A continuous control of the degree of the superposition by applied magnetic field has been demonstrated. Extremely long coherence times ˜0.6 s at 2K of electron spins bound to phosphorus and ˜3 s at 6K of ^31P nuclear spins have been obtained by pulse-EPR and ENDOR of an isotopically enriched ^28Si single crystal (99.992%). Making the Si crystal nearly monoisotopic led to elimination of docoherence due to ^29Si nuclear spins. Not only the electron spin but also phosphorus nuclear spin decoherence time was found to depend strongly on the phosphorus concentration in the range 8x10^13-4x10^15 cm-3. Unexpected observation of shifts in ^31P nuclear transition energies (ENDOR peak positions) with the change in the background silicon isotopic composition is also reported. The four nearest neighbor silicon isotopes of phosphorus are shown to affect strongly the nuclear transition energy of ^31P. Experimental results will be discussed in the context of isotope effect arising from differences in the nuclear mass and spins. This work has been performed in collaborations with S. Tojo, H. Morishita, M. Eto, L. S. Vlasenko, and groups lead by K. Semba, M. L. W. Thewalt, S. A. Lyon, J. J. L. Morton, and M. S. Brandt. Financial supports by Grant-in-Aid for Scientific Research #18001002, NONOQUINE, JST-DFG Strategic Cooperative Program, and Global Center of Excellence at Keio University are greatly appreciated.

  15. Degradation Mechanisms of SOFC Anodes in Coal Gas Containing Phosphorus

    SciTech Connect

    Marina, Olga A.; Coyle, Christopher A.; Thomsen, Edwin C.; Edwards, Danny J.; Coffey, Greg W.; Pederson, Larry R.

    2010-01-22

    The interaction of phosphorus in synthetic coal gas with the nickel-based anode of solid oxide fuel cells has been investigated. Tests with both anode-supported and electrolyte-supported button cells were performed at 700 to 800oC in synthetic coal gas containing 0.5 to 10 ppm phosphorus, introduced as phosphine. Two primary modes of degradation were observed. The most obvious was the formation of a series of bulk nickel phosphide phases, of which Ni3P, Ni5P2, Ni12P5 and Ni2P were identified. Phosphorus was essentially completely captured by the anode, forming a sharp boundary between converted and unconverted anode portions. These products partially coalesced into large grains, which eventually affected electronic percolation through the anode support. Thermodynamic calculations predict that formation of the first binary nickel phosphide phase is possible at sub-parts per billion concentrations in coal gas at temperatures relevant to fuel cell operation. A second mode of degradation is attributed to surface diffusion of phosphorus to the active anode/electrolyte interface to form an adsorption layer. Direct evidence for the presence of such an adsorption layer on nickel was obtained by surface spectroscopies on fracture surfaces. Further, cell performance losses were observed well before the entire anode was converted to bulk nickel phosphide. Impedance spectroscopy revealed that these losses were primarily due to growth in electrodic resistance, whereas large ohmic increases were visible when the entire anode was converted to nickel phosphide phases. The rate of resistance growth for anode-supported cells showed a very low dependence on phosphorus concentration, attributed to phosphorus activity control within the anode by bulk nickel phosphide products.

  16. Probing Phosphorus Efficient Low Phytic Acid Content Soybean Genotypes with Phosphorus Starvation in Hydroponics Growth System.

    PubMed

    Kumar, Varun; Singh, Tiratha Raj; Hada, Alkesh; Jolly, Monica; Ganapathi, Andy; Sachdev, Archana

    2015-10-01

    Phosphorus is an essential nutrient required for soybean growth but is bound in phytic acid which causes negative effects on both the environment as well as the animal nutrition. Lowering of phytic acid levels is associated with reduced agronomic characteristics, and relatively little information is available on the response of soybean plants to phosphorus (P) starvation. In this study, we evaluated the effects of different P starvation concentrations on the phytic acid content, growth, and yield of seven mutant genotypes along with the unirradiated control, JS-335, in a hydroponics growth system. The low phytic acid containing mutant genotypes, IR-JS-101, IR-DS-118, and IR-V-101, showed a relatively high growth rate in low P concentration containing nutrient solution (2 μM), whereas the high P concentration (50 μM) favored the growth of IR-DS-111 and IR-DS-115 mutant genotypes containing moderate phytate levels. The mutant genotypes with high phytic acid content, IR-DS-122, IR-DS-114, and JS-335, responded well under P starvation and did not have any significant effect on the growth and yield of plants. Moreover, the reduction of P concentration in nutrient solution from 50 to 2 μM also reduced the phytic acid content in the seeds of all the soybean genotypes under study. The desirable agronomic performance of low phytic acid containing mutant genotype IR-DS-118 reported in this study suggested it to be a P-efficient genotype which could be considered for agricultural practices under P limiting soils.

  17. Effect of Phosphorus Deficiency on Levels of Phosphorus Compounds in Spirodela

    PubMed Central

    Bieleski, R. L.

    1968-01-01

    When Spirodela plants are transferred to a phosphate-deficient medium, growth slows down immediately, and ceases after 14 days. During this time, inorganic phosphate content falls from 30 to 0.7 μmoles/g fresh weight of tissue, phosphate ester content from 3.5 to 0.6 μmoles/g, phospholipid content from 3.5 to 1.2 μmoles/g, and residual phosphate (mainly RNA) content from 7.5 to 2.0 μmoles/g. Relative proportions of the various phosphate esters, and relative proportions of the various phospholipids, are not markedly affected by phosphate deficiency. Turnover rates of phosphate esters are somewhat higher in phosphate-deficient tissue. In control tissue, inorganic phosphate is present in 2 pools; a metabolic (12%) and a non-metabolic pool (88%). In phosphate-deficient tissues, most of the inorganic phosphate (>90%) is in the metabolic pool. Non-metabolic phosphate is presumably stored in the vacuole, and is not readily accessible to the tissue, so that growth normally occurs at the expense of external phosphate. During deficiency, growth is limited by the rate at which phosphate can be transported through the tonoplast and tissue to the growing point. Growth ceases when the supply of non-metabolic phosphate is exhausted. Metabolic phosphate is presumably located in the cytoplasm: it can not be used for growth. Nor can the plant respond to deficiency by making some phosphorus compounds at the expense of others. In this respect, phosphorus deficiency and nitrogen deficiency are dissimilar. PMID:16656911

  18. A Novel Mild Phase-Transition to Prepare Black Phosphorus Nanosheets with Excellent Energy Applications.

    PubMed

    Zhao, Gang; Wang, Tailin; Shao, Yongliang; Wu, Yongzhong; Huang, Baibiao; Hao, Xiaopeng

    2017-02-01

    Based on the phase transformation of phosphorus and Gibbs free energy theory, a new mild method to fabricate black phosphorus nanosheets from their red phosphorus microsphere counterparts is proposed. Interestingly, the as-prepared black phosphorus nanosheets, as a kind of novel metal-free photocatalyst, exhibit excellent photocatalytic H2 production performance owing to their intrinsic layered polycrystalline structure. Besides, the nanosheet is also a kind of potential anode material in lithium-ion batteries and shows good electrochemical performance.

  19. Nanoscopy Reveals Surface-Metallic Black Phosphorus

    NASA Astrophysics Data System (ADS)

    Abate, Yohannes

    Nanolayer and two-dimensional (2D) materials............. 1 such as graphene... 2,3 , boron nitride... 1,4 , transition metal dichalcogenides... 1 , 5 - 8 (TMDCs), and black phosphorus (BP)... 1 , 9 - 13 have intriguing fundamental physical properties and bear promise of important applications in electronics and optics... 9 , 14 , 15 . Of them, BP... 11 , 12 , 16 is a novel layered material that has been theoretically predicted... 10 to acquire plasmonic behavior for frequencies below ~0.4 eV when highly doped. The electronic properties of BP are unique due to its anisotropic structure . Advantages of BP as a material for nanoelectronics and nanooptics are due to the fact that, in contrast to metals, the free carrier density in it can be dynamically controlled by chemical or electrostatic gating, which has been demonstrated by its use in field-effect transistors.... 9 , 14 , 15 Despite all the interest that BP attracts, near-field and plasmonic properties of BP have not yet been investigated experimentally. Here we report the first observation of nanoscopic near-field properties of BP. We have discovered near-field patterns of outside bright fringes and high surface polarizability of nanofilm BP consistent with its surface-metallic, plasmonic behavior at mid-infrared (mid-IR) frequencies below critical frequency ωm ~ 1176 cm -1 . This has allowed us to estimate plasma frequency ωp ~ 0 . 4 eV, carrier density n ~ 1 . 1 × 1011 nm-1 and the thickness of the surface metallic layer of ~ 1 nm . We have also observed similar behavior in other nanolayer semiconductors such as TMDC MoS 2 and topological insulator Bi 2 Te 3 but not in insulators such as boron nitride. This new phenomenon is attributed to surface band-bending and charging of the semiconductor nanofilms. The surface plasmonic behavior has been found for 10-40 nm BP thickness but absent for 4 nm BP thickness. This discovery opens up a new field of research and potential applications in nanoelectronics

  20. Lateral transport of phosphorus along forested hillslopes

    NASA Astrophysics Data System (ADS)

    Sohrt, Jakob; Weiler, Markus; Puhlmann, Heike

    2016-04-01

    Details about the phosphorus (P)-cycle in temperate forests are still incomplete, though there are indications that the organic topsoil acts as an important source and sink for P. It can act as a sink for P in fallen litter and as a source since the decaying biomass replenishes the pool of inorganic, water soluble and thus plant available P. The aim of this study was to determine the magnitude of lateral mobilization, transport and retention of total P (persulfate digestion method) in the soil at various depths of a broadleaf forest during heavy rainstorm events. On three locations in Germany, 10 m long and over 3m deep trenches were constructed to collect lateral subsurface flow from three discrete depth-layers between the soil surface and a depth of three meters. Sampling is handled through an automated system which collects flow-proportional samples in high temporal resolution. Sampling took place from March to November 2015 including more than 20 rainfall runoff events. Simultaneously to the sampling, flow rate, conductivity and temperature of the interflow was measured as well as soil moisture, rainfall and discharge in the nearest downslope spring. The results show consistently that P-concentrations in interflow samples are highest at the beginning of a rainfall-interflow-event, both for wet and dry initial conditions, and drop considerably over the course of the event until they stabilize. Secondly, P-concentration of interflow samples is by far highest in the organic topsoil, being up to one magnitude higher that in the mineral soil directly below and decreasing further with depth. This pattern applies despite the fact that there is very little temporal delay between the activation of interflow in the topsoil and deeper layers which indicates that at least some of the interflow in the topsoil ends up as interflow in deeper layers within a short time span. These results indicate that the organic topsoil contains a pool of P that is easily mobilized and

  1. Fire-resistant phosphorus containing polyimides and copolyimides

    NASA Technical Reports Server (NTRS)

    Mikroyannidis, J. A. (Inventor)

    1985-01-01

    Phosphorus-containing polyimides and copolyimides are synthesized in a two-step polycondensation reaction from 1- (diorganooxyphosphonl)methly 2,4- and 2,6-diaminobenzenes and tetracarboxylic anhydride. The diorgano position of the diorganooxyphosphonyl group includes alkyl, such as ethyl, substituted alkyl, such as 2-chloroethyl, and aryl such as phenyl. The tetracarboxylic anhydries include compounds such as pyrometallitic dianhydride and benzophenone tetracarboxylic dianhydride. The glass transition temperature (Tg) of the polyimides is reduced by incorporation of the (dialkoxyphosphonyl)methyl groups. The phosphorus-containing copolyimides show a considerably higher degree of fire-resistance as compared to that of the corresponding common polyimides.

  2. Phosphorus and boron diffusion gettering of iron in monocrystalline silicon

    NASA Astrophysics Data System (ADS)

    Talvitie, H.; Vähänissi, V.; Haarahiltunen, A.; Yli-Koski, M.; Savin, H.

    2011-05-01

    We have studied experimentally the phosphorus diffusion gettering (PDG) of iron in monocrystalline silicon at the temperature range of 650-800 °C. Our results fill the lack of data at low temperatures so that we can obtain a reliable segregation coefficient for iron between a phosphorus diffused layer and bulk silicon. The improved segregation coefficient is verified by time dependent PDG simulations. Comparison of the PDG to boron diffusion gettering (BDG) in the same temperature range shows PDG to be only slightly more effective than BDG. In general, we found that BDG requires more carefully designed processing conditions than PDG to reach a high gettering efficiency.

  3. Platelet adhesion on phosphorus-incorporated tetrahedral amorphous carbon films

    NASA Astrophysics Data System (ADS)

    Liu, Aiping; Zhu, Jiaqi; Liu, Meng; Dai, Zhifei; Han, Xiao; Han, Jiecai

    2008-11-01

    The haemocompatibility of phosphorus-incorporated tetrahedral amorphous carbon (ta-C:P) films, synthesized by filtered cathodic vacuum arc technique with PH 3 as the dopant source, was assessed by in vitro platelet adhesion tests. Results based on scanning electron microscopy and contact angle measurements reveal that phosphorus incorporation improves the wettability and blood compatibility of ta-C film. Our studies may provide a novel approach for the design and synthesis of doped ta-C films to repel platelet adhesion and reduce thrombosis risk.

  4. Early metal bis(phosphorus-stabilised)carbene chemistry.

    PubMed

    Liddle, Stephen T; Mills, David P; Wooles, Ashley J

    2011-05-01

    Since the discovery of covalently-bound mid- and late-transition metal carbenes there has been a spectacular explosion of interest in their chemistry, but their early metal counterparts have lagged behind. In recent years, bis(phosphorus-stabilised)carbenes have emerged as valuable ligands for metals across the periodic table, and their use has in particular greatly expanded covalently-bound early metal carbene chemistry. In this tutorial review we introduce the reader to bis(phosphorus-stabilised)carbenes, and cover general preparative methods, structure and bonding features, and emerging reactivity studies of early metal derivatives (groups 1-4 and the f-elements).

  5. [X-33 Systems

    NASA Technical Reports Server (NTRS)

    1999-01-01

    Lockheed Martin Skunk Works has compiled an Annual Performance Report of the X-33/RLV Program. This report consists of individual reports from all industry team members, as well as NASA team centers. This portion of the report is comprised of a status report of Allied-Signal Aerospace's contribution to the program. The following is a summary of the work reviewed under their portion of the agreement: (1) Communication Systems; (2) Environmental Control Systems- Active Thermal Control System (ATCS), Purge and Vent System, Hydrogen Detection System (HDS), Avionics Bay Inerting System (ABIS), and Flush Air Data System (FADS); (2) Landing Systems; (3) Power Management and Generation Systems; (4) Flight Control Actuation System (FCAS)- Electric Power Control & Distribution System (EPCDS), and Battery Power System (BPS); and (5) Vehicle Management Systems (VMS)- VMS Hardware, VMS Software Development Activities, and System Integration Laboratory (SIL).

  6. Speciation of Phosphorus by coupled HPLC-ICPMS: Application for quantification of reduced forms of phosphorus in rocks and natural waters.

    NASA Astrophysics Data System (ADS)

    Atlas, Z. D.; Pasek, M. A.; Sampson, J.

    2014-12-01

    Phosphorus is a geologically important element making up approximately 0.12 % of the Earth's crust. It is commonly found as relatively insoluble apatite and this causes phosphorus to be a limiting nutrient in biologic processes. Despite this, phosphorus is a key element in DNA, RNA and other cellular materials. Recent works suggest that reduced phosphorus played a substantial role in the development of life on the early Earth. Reduced phosphorus is considerably more soluble than oxidized phosphorus, and reduced phosphorus may continue to play a role in biologic productivity. This study examines a new methodology for quantification of reduced phosphorus separated by coupled HPLC - ICP-MS. We show that phosphorus species (P1+, P3+ and P5+) are cleanly separated in the HPLC and coupled with the ICP-MS reaction cell (using O2 gas) effectively convert elemental P to P-O producing lower background and flatter baseline chromatography. Results suggest very low detection limits (0.05 mM) for P species analyzed as P-O at M/Z = 47. Additionally this technique has potential to speciate at least 5 other metastable forms of phosphorus. We verified this method on numerous materials including leached Archean rocks to suburban retention pond waters and many samples show small but detectible levels of reduced phosphorus. These data highlight a significant role of redox processing of phosphorus throughout the history of the Earth, with the reduced oxidation state phosphorus compounds, phosphite and hypophosphite, potentially acting as significant constituents in the anaerobic environment.

  7. Phosphorus concentration and loading reductions following changes in fertilizer application and formulation on managed turf

    Technology Transfer Automated Retrieval System (TEKTRAN)

    All current and future efforts to address water quality impairment must focus on phosphorus. Phosphorus is a natural element in the environment and is an essential element of all life. However, excess phosphorus, particularly in surface waters can lead to severe eutrophication. Identifying source ar...

  8. Using extension phosphorus uptake research to improve Idaho's nutrient management planning program

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Irrigated silage corn is the main crop used for phosphorus removal; however little is known about the actual amounts of phosphorus removed under southern Idaho growing conditions. The purpose of this study was to survey phosphorus removal by irrigated corn grown for silage in southern Idaho under va...

  9. Dietary phosphorus excess: a risk factor in chronic bone, kidney, and cardiovascular disease?

    PubMed

    Uribarri, Jaime; Calvo, Mona S

    2013-09-01

    There is growing evidence in the nephrology literature supporting the deleterious health effect of excess dietary phosphorus intake. This issue has largely escaped the attention of nutrition experts until this symposium, which raised the question of whether the same health concerns should be extended to the general population. The potential hazard of a high phosphorus intake in the healthy population is illustrated by findings from acute and epidemiologic studies. Acute studies in healthy young adults demonstrate that phosphorus intakes in excess of nutrient needs may significantly disrupt the hormonal regulation of phosphorus contributing to disordered mineral metabolism, vascular calcification, bone loss, and impaired kidney function. One of the hormonal factors acutely affected by dietary phosphorus loading is fibroblast growth factor-23, which may be a key factor responsible for many of the cardiovascular disease (CVD) complications of high phosphorus intake. Increasingly, large epidemiological studies suggest that mild elevations of serum phosphorus within the normal range are associated with CVD risk in healthy populations. Few population studies link high dietary phosphorus intake to mild changes in serum phosphorus due to study design issues specific to phosphorus and inaccurate nutrient composition databases. The increasing phosphorus intake due to the use of phosphorus-containing ingredients in processed food and the growing consumption of processed convenience and fast foods is an important factor that needs to be emphasized.

  10. Effects of Phosphorus on Morphology of Hydroponically Grown Scaevola aemula R. Br. "Whirlwind Blue"

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The popular hanging basket plant, fan-flower (Scaevola aemula R. Br. ‘Whirlwind Blue’), is cultivated from low phosphorus soils and requires minimal supplemental phosphorus. To accurately evaluate the effects of phosphorus on morphology, fan-flower was grown hydroponically in order to maintain conc...

  11. Conversion of seed phytate to utilizable phosphorus in soybean seeds expressing a bacterial phytase

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Phytic acid contains the major part of the phosphorus in the soybean, chelates divalent cations, and is not digested by monogastric animals. Untreated soymeal does not provide monogastrics sufficient phosphorus and minerals, and phytic acid in the waste stream leads to phosphorus run-off. We gener...

  12. Hydrologic and biogeochemical controls on phosphorus export from western Lake Erie tributaries

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Understanding the processes controlling phosphorus (P) export from agricultural watersheds is essential for predicting and mitigating adverse environmental impacts. In this study, discharge, dissolved reactive phosphorus load, and total phosphorus load time series data (1975-2014) from two Lake Erie...

  13. Technology for recovery of phosphorus from animal wastewater through calcium phosphate precipitation

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A wastewater treatment process was developed for removal of phosphorus from livestock wastewater. The phosphorus is recovered as calcium phosphate with addition of only small quantities of liquid lime. The process is based on the distinct chemical equilibrium between phosphorus and calcium ions when...

  14. Assessing the health impact of phosphorus in the food supply: issues and considerations.

    PubMed

    Calvo, Mona S; Moshfegh, Alanna J; Tucker, Katherine L

    2014-01-01

    The Western dietary pattern of intake common to many Americans is high in fat, refined carbohydrates, sodium, and phosphorus, all of which are associated with processed food consumption and higher risk of life-threatening chronic diseases. In this review, we focus on the available information on current phosphorus intake with this Western dietary pattern, and new knowledge of how the disruption of phosphorus homeostasis can occur when intake of phosphorus far exceeds nutrient needs and calcium intake is limited. Elevation of extracellular phosphorus, even when phosphorus intake is seemingly modest, but excessive relative to need and calcium intake, may disrupt the endocrine regulation of phosphorus balance in healthy individuals, as it is known to do in renal disease. This elevation in serum phosphate, whether episodic or chronically sustained, may trigger the secretion of regulatory hormones, whose actions can damage tissue, leading to the development of cardiovascular disease, renal impairment, and bone loss. Therefore, we assessed the health impact of excess phosphorus intake in the context of specific issues that reflect changes over time in the U.S. food supply and patterns of intake. Important issues include food processing and food preferences, the need to evaluate phosphorus intake in relation to calcium intake and phosphorus bioavailability, the accuracy of various approaches used to assess phosphorus intake, and the difficulties encountered in evaluating the relations of phosphorus intake to chronic disease markers or incident disease.

  15. Inorganic Clathrates: A Polyhedron with 22 Vertices and up to Ninefold Coordinated Phosphorus Atoms.

    PubMed

    Baumer, Franziska; Nilges, Tom

    2017-02-09

    Attractive phosphorus: Phosphorus atoms coordinated to up to nine neighbors can be found in the host structure of the clathrate Ba8 M24 P28+δ , which results in a new 22-vertex polyhedron (yellow). The physical properties can be tuned by adjusting the amount of phosphorus incorporated in the host framework of this new cage compound.

  16. Land Application of Wastes: An Educational Program. Phosphorus Considerations - Module 19, Objectives, and Script.

    ERIC Educational Resources Information Center

    Clarkson, W. W.; And Others

    The treatment of wastewater phosphorus via land application includes both chemical and biological mechanisms. Chemically, phosphorus reacts with iron, aluminum, and calcium compounds in the soil providing efficient removal over a wide range of pH values. Phosphorus is also absorbed by rooted plants which, upon harvest, constitute a further removal…

  17. Effect of dietary phosphorus on the growth and body components of juvenile Synechogobius hasta

    NASA Astrophysics Data System (ADS)

    Luo, Zhi; Li, Xiaodong; Gong, Shiyuan; Xi, Wenqiu; Li, Yali

    2009-03-01

    The effect of dietary phosphorus on the growth and body components of juvenile Synechogobius hasta was determined. Different percentages of dietary phosphorus (0.63, 0.77, 0.93, 1.06, 1.22 and 1.36) were tested by feeding the fish (body weight, 15.81 g ± 0.32 g; 20 individuals each group; 3 groups each percentage) at a surplus of 5%-10% above satiation for 35 d. Dietary phosphorus did not significantly affect the specific growth rate, feed intake, feed conversion ratio and protein efficiency rate. Nitrogen retention was found to be the highest in fish fed the diet containing 1.06% of phosphorus; however, this was not significantly different from other diets. Fish fed the diet containing 0.93% of phosphorus showed the highest phosphorus retention; similar phosphorus retention rates were found in fish fed the diets containing 0.77% and 1.06% of phosphorus. Fish fed the diet containing the highest percentage of dietary phosphorus were found to contain the least whole body lipid, lower than fish fed other diets ( P<0.05). The protein content increased from 18.59% to 19.55% (although not significant) with the decrease of body lipid content ( P>0.05). The contents of the whole body ash, whole body phosphorus and vertebrae phosphorus increased with dietary phosphorus percentage up to 1.06 ( P<0.05), reaching a plateau after that. Dietary phosphorus did not significantly influence the muscle components (protein, lipid and moisture). Condition factor and hepatosomatic index were the highest in fish fed the diet containing 0.63% of dietary phosphorus; however, this was not significantly different from those of other diets. The second-order polynomial regression of phosphorus retention against dietary phosphorus identified a breakpoint at 0.88% of dietary phosphorus. However, the dietary requirement of phosphorus for maintaining maximum phosphorus storage determined by broken-line analysis of the contents of whole body phosphorus, and ash and vertebrae phosphorus was 1

  18. Chemical and physical characterization of phosphorus smokes for inhalation exposure and toxicology studies. Final report. [Red phosphorus containing butyl rubber; white phosphorus impregnated in felt

    SciTech Connect

    Ramsey, R.S.; Moneyhun, J.H.; Holmberg, R.W.

    1985-04-01

    The chemical and physical properties of the aerosols produced from the combustion of red phosphorus containing butyl rubber (RPBR) and white phosphorus impregnated in felt (WPF) have been examined. The aerosols were produced at a uniform concentration by extruding softened raw material and burning the emerging filament or by igniting fragments of the formulations in a convective air flow. Aeorsol particle sizes were found to be within the respirable range, varying from 0.4 to 1.0 micrometers depending upon generation conditions and aerosol age at collection. Chemically, both RPBR and WPF aerosols were found to be very similar, composed primarily of water and phosphoric acids. Organic compounds and inorganic gases were detected only at trace levels. 11 references, 15 figures, 11 tables.

  19. Geochemical forms and seasonal variations of phosphorus in surface sediments of the East China Sea shelf

    NASA Astrophysics Data System (ADS)

    Zhou, Fengxia; Gao, Xuelu; Yuan, Huamao; Song, Jinming; Chen, Chen-Tung Arthur; Lui, Hon-Kit; Zhang, Yong

    2016-07-01

    Geochemical characteristics of phosphorus (P) in the surface sediments of the East China Sea shelf (ECSS) were studied in spring and autumn, 2014. Distributions, seasonal variations, transformations and their influencing factors were discussed. Besides, burial fluxes of P in different seasons were also calculated. Five operationally defined forms of P, namely exchangeable or loosely sorbed P (Ads-P), iron-bound P (Fe-P), authigenic P (Au-P), detrital apatite plus other inorganic P (De-P) and organic P (OP), were obtained using a sequential extraction procedure. Generally, the concentrations of Ads-P, Fe-P, Au-P and OP decreased seaward and the concentrations of De-P increased seaward in both seasons. In spring, the average concentrations of Ads-P, Fe-P, Au-P, De-P and OP were 13.8 ± 5.0, 21.9 ± 7.6, 148.5 ± 44.5, 153.1 ± 55.8 and 91.7 ± 21.5 μg g- 1, respectively. The corresponding concentrations in autumn were 11.4 ± 4.3, 20.0 ± 10.9, 170.4 ± 53.6, 225.6 ± 101.7 and 77.1 ± 33.9 μg g- 1, respectively. The average percentages of P fractions in total P (TP) in spring and autumn were both in the order: De-P > Au-P > OP > Fe-P > Ads-P. The average concentrations of Bio-available P (Bio-P) were 127.4 ± 31.4 μg g- 1 in spring and 108.5 ± 47.2 μg g- 1 in autumn, accounting for 29.8% ± 7.3% and 21.5% ± 8.2% of corresponding TP, respectively. Seasonal variations of the primary production, hydrodynamic conditions, hypoxia and other environmental conditions were responsible for the seasonal variations of different phosphorus forms. The calculation of burial fluxes reflected that, in most parts of the studied area, TP had relative high burial fluxes in autumn, while Bio-P had relatively high burial fluxes in spring. The burial fluxes of other phosphorus forms also showed different seasonal variations in different parts of the studied area.

  20. Phosphorus use-efficiency of agriculture and food system in the US.

    PubMed

    Suh, Sangwon; Yee, Scott

    2011-08-01

    The rapid increase in human mobilization of phosphorus has raised concerns on both its supply security and its impact on the environment. Increasing the efficiency of phosphorus use is an approach to mitigate the adverse impacts associated with phosphorus consumption. This study estimates the life-cycle phosphorus use-efficiency of the US food system. A framework for accounting phosphorus stocks and flows is developed, and the account was populated with data. A map of phosphorus stocks and flows around the US food system is drawn and phosphorus use-efficiency was calculated. The results show that only 15% of the total phosphorus extracted from nature for the provision of food is eventually ingested by humans and the rest is lost to the environment. Major losses occur during the livestock, meat and dairy production and crop cultivation stage, where about 66% of the total phosphorus extracted is lost to the environment. The results also show that other losses of phosphorus including household food waste, mining waste, and fertilizer manufacturing waste are not negligible, which constitute about 19% of the total phosphorus extracted for food purpose. A data quality assessment and sensitivity analysis was performed to identify data quality hotspots and to envisage effective measures to improving phosphorus use-efficiency. Improving yields of livestock and crop cultivation without additional phosphorus input and reducing household food waste are shown to be effective measures to improve life-cycle phosphorus use-efficiency. The results highlight the need of a concerted effort by all entities along the life-cycle for efficient use of phosphorus.