Science.gov

Sample records for phosphorus fertilizer application

  1. Phosphorus concentration and loading reductions following changes in fertilizer application and formulation on managed turf.

    PubMed

    King, K W; Balogh, J C; Agrawal, S G; Tritabaugh, C J; Ryan, J A

    2012-11-01

    Excess phosphorus, particularly in surface waters can lead to severe eutrophication. Identifying source areas, quantifying contributions, and evaluating management practices are required to address current and future water quality concerns. A before-after study was conducted from 2003-2010 on a sub-watershed of Northland Country Club Golf Course in Duluth, MN to demonstrate the impacts of two different phosphorus management approaches (Period 1: traditional application and timing using commercially available synthetic blends; Period 2: reduced rate, low dose applications, and organic formulations). Outflow median dissolved reactive phosphorus (DRP) and total phosphorus (TP) stream concentrations were significantly less in Period 2 compared to Period 1. There was no statistical difference in the mean TP loading in Period 1 (0.25 kg ha(-1) year(-1)) compared to Period 2 (0.20 kg ha(-1) year(-1)) or between the DRP loading in Period 1 (0.15 kg ha(-1) year(-1)) compared to Period 2 (0.09 kg ha(-1) year(-1)). However, by switching to organic phosphorus formulations and reducing application rates by greater than 75%, substantial reduction in DRP and TP concentrations was achieved. Based on these findings it is recommended that turf managers (parks and recreation to golf courses) explore the feasibility of altering their fertility management related to phosphorus by including organic formulations, low dose applications, and overall rate reductions. Additionally, it is recommended that the fertilizer industry develop and make more readily available commercial blends with lesser to zero amounts of phosphorus.

  2. [Effects of combined application of biochar and inorganic fertilizers on the available phosphorus content of upland red soil].

    PubMed

    Jing, Yan; Chen, Xiao-min; Liu, Zu-xiang; Huang, Qian-ru; LiI, Qiu-xia; Chen, Chen; Lu, Shao-shan

    2013-04-01

    Aiming at the low content of available phosphorus in upland red soil of Southern China, this paper studied the effects of combined application of biochar and inorganic fertilizers on the available phosphorus and organic carbon contents and the pH of this soil. With the combined application of biochar and inorganic fertilizers, the soil physical and chemical properties improved to different degrees. As compared with the control, the soil pH and the soil organic carbon and available phosphorus contents at different growth stages of oil rape after the combined application of biochar and inorganic fertilizers all had an improvement, with the increments at bolting stage, flowering stage, and ripening stage being 16%, 24% and 26%, 23%, 34% and 38%, and 100%, 191% and 317% , respectively. The soil pH and the soil organic carbon and available phosphorus contents were increased with the increasing amount of applied biochar. Under-the application of biochar, the soil available phosphorus had a significant correlation with the soil pH and soil organic carbon content. This study could provide scientific basis to improve the phosphorus deficiency and the physical and chemical properties of upland red soil.

  3. Reducing rice field algae and cyanobacteria abundance by altering phosphorus fertilizer applications

    USDA-ARS?s Scientific Manuscript database

    In California’s water seeded rice systems algal/cyanobacterial biomass can be a problem during rice establishment. Algal/cyanobacterial growth may be stimulated by phosphorus (P) additions in freshwater habitats, so we set up experiments to evaluate the effects of fertilizer P management on algal/cy...

  4. Phosphorus loss to runoff water twenty-four hours after application of liquid swine manure or fertilizer.

    PubMed

    Tabbara, Hadi

    2003-01-01

    Phosphorus (P) added to soil from fertilizer or manure application could pose a threat to water quality due to its role in eutrophication of fresh water resources. Incorporating such amendments into the soil is an established best management practice (BMP) for reducing soluble P losses in runoff water, but could also lead to higher erosion. The objective of this study was to test whether incorporation of manure or fertilizer 24 h before an intense rain could also reduce sediment-bound and total phosphorus (TP) losses in runoff. A rainfall simulation study was conducted on field plots (sandy loam with 6-7% slope, little surface residue, recently cultivated) that received two application rates of liquid swine manure or liquid ammonium polyphosphate fertilizer, using either surface-broadcast or incorporated methods of application. Incorporation increased the total suspended solids (TSS) concentrations in runoff but mass losses were not affected. Incorporation also reduced flow-weighted concentrations and losses of dissolved reactive phosphorus (DRP) and TP by as much as 30 to 60% depending on source (fertilizer vs. manure) and application rate. Phosphorus is moved below the mixing zone of interaction on incorporation, and thus the effect of the amount and availability of P in this zone is more important than cultivation on subsequent P losses in runoff. Incorporating manure or fertilizer in areas of intense erosive rain, recent extensive tillage, and with little or no surface residue is therefore a best management practice that should be adhered to in order to minimize contamination of surface water. Results also show comparatively lower P losses from manure than fertilizer.

  5. Phosphorus and nitrate nitrogen in runoff following fertilizer application to turfgrass.

    PubMed

    Shuman, L M

    2002-01-01

    Intensively managed golf courses are perceived by the public as possibly adding nutrients to surface waters via surface transport. An experiment was designed to determine the transport of nitrate N and phosphate P from simulated golf course fairways of 'Tifway' bermudagrass [Cynodon dactylon (L.) Pers.]. Fertilizer treatments were 10-10-10 granular at three rates and rainfall events were simulated at four intervals after treatment (hours after treatment, HAT). Runoff volume was directly related to simulated rainfall amounts and soil moisture at the time of the event and varied from 24.3 to 43.5% of that added for the 50-mm events and 3.1 to 27.4% for the 25-mm events. The highest concentration and mass of phosphorus in runoff was during the first simulated rainfall event at 4 HAT with a dramatic decrease at 24 HAT and subsequent events. Nitrate N concentrations were low in the runoff water (approximately 0.5 mg L-1) for the first three runoff events and highest (approximately 1-1.5 mg L-1) at 168 HAT due to the time elapsed for conversion of ammonia to nitrate. Nitrate N mass was highest at the 4 and 24 HAT events and stepwise increases with rate were evident at 24 HAT. Total P transported for all events was 15.6 and 13.8% of that added for the two non-zero rates, respectively. Total nitrate N transported was 1.5 and 0.9% of that added for the two rates, respectively. Results indicate that turfgrass management should include applying minimum amounts of irrigation after fertilizer application and avoiding application before intense rain or when soil is very moist.

  6. Modeling the risk of phosphorus runoff following single and split phosphorus fertilizer applications in two contrasting catchments.

    PubMed

    Burkitt, Lucy L; Dougherty, Warwick J; Corkrey, Ross; Broad, Shane T

    2011-01-01

    The potential loss of P in runoff is a function of the combined effects of fertilizer-soil interactions and climatic characteristics. In this study, we applied a Bayesian approach to experimental data to model the annualized long-term risk of P runoff following single and split P fertilizer applications using two example catchments with contrasting rainfall/runoff patterns. Split P fertilizer strategies are commonly used in intensive pasture production in Australia and our results showed that three applications of 13.3 kg P ha(-1) resulted in a greater risk of P runoff compared with a single application of 40 kg P ha(-1) when long-term surface runoff data were incorporated into a Bayesian P risk model. Splitting P fertilizer applications increased the likelihood of a coincidence of fertilizer application and runoff occurring. We found that the overall risk of P runoff is also increased in catchments where the rainfall/runoff pattern is less predictable, compared with catchments where rainfall/runoff is winter dominant. The findings of our study also question the effectiveness of current recommendations to avoid applying fertilizer if runoff is likely to occur in the next few days, as we found that total P concentrations at the half-life were still very high (18.2 and 8.2 mg P L(-1)) following single and split P treatments, respectively. Data from the current study also highlight that omitting P fertilizer on soils that already have adequate soil test P concentrations is an effective method of reducing P loss in surface runoff. If P fertilizer must be applied, we recommend less frequent applications and only during periods of the year when the risk of surface P runoff is low.

  7. Phosphorus leaching risk assessment with manure fertilizer application in south China.

    PubMed

    Ding, Xiaodong; Wei, Changbin; Wang, Rongping; Liao, Xinrong; Li, Shuyi

    2014-07-01

    To investigate the phosphorus (P) leaching risk caused by applying manure fertilizer, six different manure fertilizers, namely, 0 (CK), 3,000 (F200), 4,500 (F300), 7,500 (F500), 10,500 (F700), and 15,000 kg ha(-2) (F1000), were applied to the surface soil (0-20 cm) prior to vegetable planting. The maximum Olsen P decreased with increasing amounts of the manure fertilizer. Total P did not change with treatments below 7,500, but decreased in the higher manure treatments. Water dissolved P (WDP) was highest in the upper (0-20 cm soil) layer, intermediate in the middle (20-40 cm soil) layer, and lowest in the lower (40-60 cm soil) layer. The 7,500, 10,500, and 15,000 treatments increased the WDPs in both the middle and lower soil layers and enhanced the degree of P saturation in the lower layer. This indicates that vertical leachate movement of P accumulation in the middle soil layer may be underestimated and the P leaching risk is enhanced using manure fertilizer levels >7,500 kg ha(-2).

  8. PHOSPHORUS RUNOFF LOSS RISK ASSESSMENT FOR UNINCORPORATED MANURE AND FERTILIZER APPLICATIONS

    USDA-ARS?s Scientific Manuscript database

    Wisconsin’s cropland phosphorus loss risk assessment for nutrient management planning (P Index) has been revised to account for the probability and potential volume of runoff events following manure applications. This P Index uses a simplified modeling approach to estimate annual unit area phosphoru...

  9. Phosphorus concentration and loading reductions following changes in fertilizer application and formulation on managed turf

    USDA-ARS?s Scientific Manuscript database

    All current and future efforts to address water quality impairment must focus on phosphorus. Phosphorus is a natural element in the environment and is an essential element of all life. However, excess phosphorus, particularly in surface waters can lead to severe eutrophication. Identifying source ar...

  10. Phosphorus transfer in runoff following application of fertilizer, manure, and sewage sludge.

    PubMed

    Withers, P J; Clay, S D; Breeze, V G

    2001-01-01

    Phosphorus (P) transfer in surface runoff from field plots receiving either no P, triplesuperphoshate (TSP), liquid cattle manure (LCS), liquid anaerobically digested sludge (LDS), or dewatered sludge cake (DSC) was compared over a 2-yr period. Dissolved inorganic P concentrations in runoff increased from 0.1 to 0.2 mg L(-1) on control and sludge-treated plots to 3.8 and 6.5 mg L(-1) following application of LCS and TSP, respectively, to a cereal crop in spring. When incorporated into the soil in autumn, runoff dissolved P concentrations were typically < 0.5 mg L(-1) across all plots, and particulate P remained the dominant P form. When surface-applied in autumn to a consolidated seedbed, direct loss of LCS and LDS increased both runoff volume and P transfers, but release of dissolved P occurred only from LCS. The largest P concentrations (>70 mg L(-1)) were recorded following TSP application without any increase in runoff volume, while application of bulky DSC significantly reduced total P transfers by 70% compared with the control due to a reduced runoff volume. Treatment effects in each monitoring period were most pronounced in the first runoff event. Differences in the release of P from the different P sources were related to the amounts of P extracted by either water or sodium bicarbonate in the order TSP > LCS > LDS > DSC. The results suggest there is a lower risk of P transfer in land runoff following application of sludge compared with other agricultural P amendments at similar P rates.

  11. Effect of the time of application of phosphorus fertilizer on yield and quality parameters of melon crop amended with winery waste compost.

    NASA Astrophysics Data System (ADS)

    Requejo Mariscal, María Isabel; Cartagena, María Carmen; Villena Gordo, Raquel; Arce Martínez, Augusto; Ribas Elcorobarrutia, Francisco; Jesús Cabello Cabello, María; Castellanos Serrano, María Teresa

    2016-04-01

    In Spain, drip irrigation systems are widely used for horticultural crop production. In drip irrigation systems, emitter clogging has been identified as one of the most important concerns. Clogging is closely related to the quality of the irrigation water and the structure of the emitter flow path, and occurs as a result of multiple physical, biological and chemical factors. So, the use of acid fertilizers (e.g. phosphoric acid) in these systems is common to avoid the emitter clogging. Moreover, in this country the use of exhausted grape marc compost as source of nutrients and organic matter has been identified as a good management option of soil fertility, especially in grape-growing areas with a large generation of wastes from the wine and distillery industries. The purpose of this work was to study the effect of the time of application of phosphorus fertilizer with fertirrigation in a melon crop amended with winery waste compost on yield and quality parameters. During two years, the melon crop was grown under field conditions and beside the control treatment, three doses of compost were applied: 6.7, 13.3 and 20.0 t ha-1. All the compost treatments received 120 kg ha-1 of phosphorus fertilizer (phosphoric acid) for the season varying the time of application: The first year phosphorus application started after male and female flowering, and the second year the application started before flowering. Yield and quality parameters were evaluated to assess the suitability of these practices. Acknowledgements: This project has been supported by INIA-RTA2010-00110-C03. Keywords: Phosphorus fertilizer, exhausted grape marc compost, melon crop, yield and quality parameters.

  12. Glyphosate loss by runoff and its relationship with phosphorus fertilization.

    PubMed

    Sasal, María Carolina; Demonte, Luisina; Cislaghi, Andrea; Gabioud, Emmanuel A; Oszust, José D; Wilson, Marcelo G; Michlig, Nicolás; Beldoménico, Horacio R; Repetti, María Rosa

    2015-05-13

    The aim of this study was to evaluate the relationship between glyphosate and phosphate fertilizer application and their contribution to surface water runoff contamination. The study was performed in Aquic Argiudoll soil (Tezanos Pinto series). Four treatments were assessed on three dates of rainfall simulation after fertilizer and herbicide application. The soluble phosphorus in runoff water was determined by a colorimetric method. For the determination of glyphosate and aminomethylphosphonic acid (AMPA), a method based on fluorenylmethyloxycarbonyl (FMOC) group derivatization, solid phase extraction (SPE) purification, and ultrahigh-performance liquid chromatography-tandem mass spectrometry (UHPLC-MS/MS) was employed. The application of phosphorus fertilizer resulted in an increased loss of glyphosate by runoff after 1 day of application. These results suggest the need for further study to understand the interactions and to determine appropriate application timing with the goal of reducing the pollution risk by runoff.

  13. Phosphorus availability and microbial immobilization in a Nitisol with the application of mineral and organo-mineral fertilizers.

    PubMed

    Morais, Francisco A; Gatiboni, Luciano C

    2015-01-01

    The aim of this study was to evaluate P availability, P and C contained in the microbial biomass, and enzymatic activity (acid phosphatases and β-glucosidases) in a Nitisol with the application of mineral and organo-mineral fertilizers. The experiment was performed in a protected environment with control over air temperature and soil moisture. The experimental design was organized in a "5 x 4" factorial arrangement with five sources of P and four times of soil incubation. The sources were: control (without P), triple superphosphate, diammonium phosphate, natural Arad reactive rock phosphate, and organo-mineral fertilizer. The experimental units consisted of PVC columns filled with agricultural soil. The columns were incubated and broken down for analysis at 1, 20, 40, and 60 days after application of the fertilizers. In each column, samples were taken at the layers of 0-2.5, 2.5-5.0, and 5.0-15.0 cm below the zone of the fertilizers. The application of soluble phosphates and organo-mineral fertilizer temporarily increased P availability in the zone near the fertilizers (0-2.5 cm), with maximum availability occurring at approximately 32 days. Microbial immobilization showed behavior similar to P availability, and the greatest immobilizations occurred at approximately 30 days. The organo-mineral fertilizer was not different from soluble phosphates.

  14. Production of fluid fertilizer from phosphorus furnace waste stream

    SciTech Connect

    Barber, J. C.

    1985-04-30

    Processes and compositions of matter are disclosed for the production of liquid fertilizers wherein wastewater from a phosphorus smelting furnace is incorporated in liquid fertilizer processes. The wastewater replaces water evaporated and the wastewater dissolves fertilizer salts. A serious water pollution problem is avoided when wastewater is incorporated in liquid fertilizers. The invention discloses a process for making orthophosphate suspension fertilizer wherein impure phosphoric acid is neutralized in the condensing system, water from the condensing system is bled off, and a suspending clay is added to produce orthophosphate suspension fertilizer. In this process, phosphorus sludge made at phosphorus furnaces is used to produce suspension fertilizer, and wastewater from phosphate smelting furnaces is recovered. New compositions of matter are disclosed. A process is disclosed for making phosphoric acid with low impurities content wherein phosphorus sludge is burned to make impure orthophosphoric acid and the impure acid is recycled to an agglomerating step in a process for making elemental phosphorus.

  15. Phosphorus runoff from turfgrass as affected by phosphorus fertilization and clipping management.

    PubMed

    Bierman, Peter M; Horgan, Brian P; Rosen, Carl J; Hollman, Andrew B; Pagliari, Paulo H

    2010-01-01

    Phosphorus enrichment of surface water is a concern in many urban watersheds. A 3-yr study on a silt loam soil with 5% slope and high soil test P (27 mg kg(-1) Bray P1) was conducted to evaluate P fertilization and clipping management effects on P runoff from turfgrass (Poa pratensis L.) under frozen and nonfrozen conditions. Four fertilizer treatments were compared: (i) no fertilizer, (ii) nitrogen (N)+potassium (K)+0xP, (iii) N+K+1xP, and (iv) N+K+3xP. Phosphorus rates were 21.3 and 63.9 kg ha(-1) yr(-1) the first year and 7.1 and 21.3 kg ha(-1) yr(-1) the following 2 yr. Each fertilizer treatment was evaluated with clippings removed or clippings recycled back to the turf. In the first year, P runoff increased with increasing P rate and P losses were greater in runoff from frozen than nonfrozen soil. In year 2, total P runoff from the no fertilizer treatment was greater than from treatments receiving fertilizer. This was because reduced turf quality resulted in greater runoff depth from the no fertilizer treatment. In year 3, total P runoff from frozen soil and cumulative total P runoff increased with increasing P rate. Clipping management was not an important factor in any year, indicating that returning clippings does not significantly increase P runoff from turf. In the presence of N and K, P fertilization did not improve turf growth or quality in any year. Phosphorus runoff can be reduced by not applying P to high testing soils and avoiding fall applications when P is needed.

  16. Phosphorus in recycling fertilizers - analytical challenges.

    PubMed

    Krüger, Oliver; Adam, Christian

    2017-05-01

    The importance of secondary raw materials for phosphorus (P) fertilizer production is expected to increase in the future due to resource depletion, supply risks, and heavy metal contamination of fossil phosphate resources. Municipal wastewater is a promising source for P recovery. In Germany for instance, it contains almost 50% of the total amount of P that is currently applied as mineral fertilizer. Several procedures have been developed to recover and re-use P resulting in a growing number of recycling fertilizers that are currently not regulated in terms of fertilizer efficiency. We tested various materials and matrices for their total P content, solubility of P in neutral ammonium citrate (Pnac) and water, and performed robustness tests to check if existing analytical methods are suitable for those new materials. Digestion with inverse aqua regia was best suited to determine the total P content. Pnac sample preparation and analyses were feasible for all matrices. However, we found significant time and temperature dependencies, especially for materials containing organic matter. Furthermore, several materials didn't reach equilibrium during the extractions. Thus, strict compliance of the test conditions is strongly recommended to achieve comparable results. Copyright © 2017 Elsevier Inc. All rights reserved.

  17. Soil test phosphorus and cumulative phosphorus budgets in fertilized grassland.

    PubMed

    Messiga, Aimé Jean; Ziadi, Noura; Jouany, Claire; Virkajärvi, Perttu; Suomela, Raija; Sinaj, Sokrat; Bélanger, Gilles; Stroia, Ciprian; Morel, Christian

    2015-03-01

    We analyzed the linearity of relationships between soil test P (STP) and cumulative phosphorus (P) budget using data from six long-term fertilized grassland sites in four countries: France (Ercé and Gramond), Switzerland (Les Verrières), Canada (Lévis), and Finland (Maaninka and Siikajoki). STP was determined according to existing national guidelines. A linear-plateau model was used to determine the presence of deflection points in the relationships. Deflection points with (x, y) coordinates were observed everywhere but Maaninka. Above the deflection point, a significant linear relationship was obtained (0.33 < r (2) < 0.72) at four sites, while below the deflection point, the relationship was not significant, with a negligible rate of STP decrease. The relationship was not linear over the range of STP encountered at most sites, suggesting a need for caution when using the P budget approach to predict STP changes in grasslands, particularly in situations of very low P fertilization. Our study provides insights and description of a tool to improve global P strategies aimed at maintaining STP at levels adequate for grassland production while reducing the risk of P pollution of water.

  18. Assessing Long Term Impact of Phosphorus Fertilization on Phosphorus Loadings Using AnnAGNPS

    EPA Science Inventory

    High phosphorus (P) loss from agricultural fields has been an environmental concern because of potential water quality problems in streams and lakes. To better understand the process of P loss and evaluate the different phosphorus fertilization rates on phosphorus losses, the US...

  19. Assessing Long Term Impact of Phosphorus Fertilization on Phosphorus Loadings Using AnnAGNPS

    EPA Science Inventory

    High phosphorus (P) loss from agricultural fields has been an environmental concern because of potential water quality problems in streams and lakes. To better understand the process of P loss and evaluate the different phosphorus fertilization rates on phosphorus losses, the US...

  20. Phosphorus content in long-term fertilized soils

    NASA Astrophysics Data System (ADS)

    Pizzeghello, D.; Morari, F.; Berti, A.; Nardi, S.; Giardini, L.

    2009-04-01

    Phosphorous (P) is often considered a limiting nutrient in crop production. However, particularly in intensive livestock and pig farming areas large surplus of P inputs associated with manure application to agricultural soils may result in an excessive P accumulation and a consequent gradual saturation of the soil P-sorption capacity. This event must be discouraged in order to contain possible eutrophication. In this study we investigated the impact of a long-term fertilization experiment on the accumulation in soil of different form of P. The experiment has been underway since 1964 on the University of Padova Experimental farm. The treatments derived from the factorial combination of 3 types of soil (clay, sandy and peaty) with 3 types of mineral, organic or mixed fertilization, organized in two randomized blocks. A total of 36 lysimeters (surface of 4 m2 and 80 cm deep) were cultivated. Fertilization rates were as follows: 0, no fertilization; F1 manure (20 t ha-1 y-1); M1, mineral fertilization (100 kg ha-1 y-1 N); F1M1, manure (20 t ha-1 y-1) + mineral fertilization (100 kg ha-1 y-1 N); F2 manure (40 t ha-1 y-1); M2, mineral fertilization (200 kg ha-1 y-1 N - 100 P2O5 - 280 K2O). Soil samples were taken using a 2-cm diameter auger from 0 to 100 cm depth, every 10 cm. P was analysed in term of total, organic and available (Olsen) phosphorus. Only treatments 0, M2 and F2 were subjected to soil sampling and chemical analyses. Results showed as the variables were affected by all the factors considered (treatment, soil and depth). Both farmyard manure and mineral fertilization increased the P content in function of soil types. In particular, as concerning the interaction between fertilization and depth, manure as well as mineral fertilization influenced the available P along soil profiles. The long-term fertilizer applications increased the P content at a level which resulted potentially hazardous for the environment.

  1. Phosphorus fertilizer and grazing management effects on phosphorus in runoff from dairy pastures.

    PubMed

    Dougherty, Warwick J; Nicholls, Paul J; Milham, Paul J; Havilah, Euie J; Lawrie, Roy A

    2008-01-01

    Fertilizer phosphorus (P) and grazing-related factors can influence runoff P concentrations from grazed pastures. To investigate these effects, we monitored the concentrations of P in surface runoff from grazed dairy pasture plots (50 x 25 m) treated with four fertilizer P rates (0, 20, 40, and 80 kg ha(-1) yr(-1)) for 3.5 yr at Camden, New South Wales. Total P concentrations in runoff were high (0.86-11.13 mg L(-1)) even from the control plot (average 1.94 mg L(-1)). Phosphorus fertilizer significantly (P < 0.001) increased runoff P concentrations (average runoff P concentrations from the P(20), P(40), and P(80) treatments were 2.78, 3.32, and 5.57 mg L(-1), respectively). However, the magnitude of the effect of P fertilizer varied between runoff events (P < 0.01). Further analysis revealed the combined effects on runoff P concentration of P rate, P rate x number of applications (P < 0.001), P rate x time since fertilizer (P < 0.001), dung P (P < 0.001), time since grazing (P < 0.05), and pasture biomass (P < 0.001). A conceptual model of the sources of P in runoff comprising three components is proposed to explain the mobilization of P in runoff and to identify strategies to reduce runoff P concentrations. Our data suggest that the principal strategy for minimizing runoff P concentrations from grazed dairy pastures should be the maintenance of soil P at or near the agronomic optimum by the use of appropriate rates of P fertilizer.

  2. Soil and Foliar Guidelines for Phosphorus Fertilization of Loblolly Pine

    Treesearch

    Carol G. Wells; D.M. Crutchfield; N.M. Berenyi; C.B. Davey

    1973-01-01

    Several established studies of phosphorus fertilization in 3-year-old plantations of loblolly pine were measured for tree height and sampled for soil tests and needle analysis in order to relate soil and needle content to response to fertilization. Soil tests with the extractant adopted by the North Carolina Soil Testing Laboratories and percentage of P in needles were...

  3. Plant growth, phosphorus nutrition, and root morphological responses to arbuscular mycorrhizas, phosphorus fertilization, and intraspecific density.

    PubMed

    Schroeder, M S; Janos, D P

    2005-05-01

    We examined the effects of arbuscular mycorrhizas (AM), phosphorus fertilization, intraspecific density, and their interaction, on the growth, phosphorus uptake, and root morphology of three facultative mycotrophic crops (Capsicum annuum, Zea mays, and Cucurbita pepo). Plants were grown in pots with or without AM at three densities and four phosphorus availabilities for 10 weeks. AM colonization, plant weight, and shoot phosphorus concentration were measured at harvest. Root morphology was assessed for C. annuum and Z. mays. Phosphorus fertilization reduced but did not eliminate AM colonization of all species. AM, phosphorus, and density interacted significantly to modify growth of C. annuum and C. pepo such that increased density and phosphorus diminished beneficial effects of AM. Increased density reduced positive effects of AM on C. annuum and C. pepo shoot phosphorus concentrations. AM altered both Z. mays and C. annuum root morphology in ways that complemented potential phosphorus uptake by mycorrhizas, but increased density and phosphorus diminished these effects. We infer that increased density predominantly influenced plant responses by affecting whether or not carbon (photosynthate) or phosphorus limited plant growth. By exacerbating carbon limitation, high density reduced the benefit/cost ratio of mycorrhizas and minimized their effects.

  4. Phosphorus runoff from incorporated and surface-applied liquid swine manure and phosphorus fertilizer.

    PubMed

    Daverede, I C; Kravchenko, A N; Hoeft, R G; Nafziger, E D; Bullock, D G; Warren, J J; Gonzini, L C

    2004-01-01

    Excessive fertilization with organic and/or inorganic P amendments to cropland increases the potential risk of P loss to surface waters. The objective of this study was to evaluate the effects of soil test P level, source, and application method of P amendments on P in runoff following soybean [Glycine max (L.) Merr.]. The treatments consisted of two rates of swine (Sus scrofa domestica) liquid manure surface-applied and injected, 54 kg P ha(-1) triple superphosphate (TSP) surface-applied and incorporated, and a control with and without chisel-plowing. Rainfall simulations were conducted one month (1MO) and six months (6MO) after P amendment application for 2 yr. Soil injection of swine manure compared with surface application resulted in runoff P concentration decreases of 93, 82, and 94%, and P load decreases of 99, 94, and 99% for dissolved reactive phosphorus (DRP), total phosphorus (TP), and algal-available phosphorus (AAP), respectively. Incorporation of TSP also reduced P concentration in runoff significantly. Runoff P concentration and load from incorporated amendments did not differ from the control. Factors most strongly related to P in runoff from the incorporated treatments included Bray P1 soil extraction value for DRP concentration, and Bray P1 and sediment content in runoff for AAP and TP concentration and load. Injecting manure and chisel-plowing inorganic fertilizer reduced runoff P losses, decreased runoff volumes, and increased the time to runoff, thus minimizing the potential risk of surface water contamination. After incorporating the P amendments, controlling erosion is the main target to minimize TP losses from agricultural soils.

  5. Effect of Fertilizer-P application on the relative abundance of nitrogen cycle genes in a phosphorus limited paddy soil from subtropical region

    NASA Astrophysics Data System (ADS)

    Ge, Tida; Wei, Xiaomeng; Wu, Jinshui

    2017-04-01

    The addition of phosphorus to P-limited soils has been shown to cause a marked increase in the loss of gaseous N. The reasons for this remain unclear but linked nutrient cycling in the rhizosphere (C:N:P) leading to enhanced nitrification and denitrification have been proposed. We investigated the impact of adding P to P-limited soils on the dynamics of soil N-cycle functional genes. Rice seedlings were planted in P poor soils and incubated under different water conditions with or without P application. The abundance of ammonia-oxidizing bacteria and archaea in the rhizosphere and bulk soil were quantified by Real Time PCR (qPCR) using amoA gene abundance. Results showed that P addition resulted in a decrease in soil NH4+ content and a reduction in the the abundance of ammonia-oxidizing bacteria (AOB). There was little measurable effect on ammonia-oxidizing archaea (AOA). As expected from the marked increase in gaseous N loss, the relative abundances of the four functional genes (narG nirK, nirS, nosZ) increased following P application. This is thought to be a consequence of reducing the impact of P limitation on denitrifying bacteria in the bulk soil. The experimental design used allowed us to deteremine whether the gene responses to P addition in the rhizosphere (where the molar ratios of C:N:P were expected to differ) were different from those of the bulk soil. This 'rhizosphere effect' was weakened for ammonia oxidizing functional genes and enhanced for denitrifying funcational genes by P application, resulted in a greater abundance of AOB (amoA gene) and lower amounts of nirK, nirS and nosZ in rhizosphere soil. The work reported here shows the impact of available P in regulating gaseous N loss from soil and demonstrates the importance of stoichiometry and balanced nutrient availability on the fertilization and management of agricultural soils.

  6. Attributes for NHDPlus Catchments (Version 1.1) for the Conterminous United States: Nutrient Application (Phosphorus and Nitrogen ) for Fertilizer and Manure Applied to Crops (Cropsplit), 2002

    USGS Publications Warehouse

    Wieczorek, Michael; LaMotte, Andrew E.

    2010-01-01

    This data set represents the estimated amount of phosphorus and nitrogen fertilizers applied to selected crops for the year 2002, compiled for every catchment of NHDPlus for the conterminous United States. The source data set is based on 2002 fertilizer data (Ruddy and others, 2006) and tabulated by crop type per county (Alexander and others, 2007). The NHDPlus Version 1.1 is an integrated suite of application-ready geospatial datasets that incorporates many of the best features of the National Hydrography Dataset (NHD) and the National Elevation Dataset (NED). The NHDPlus includes a stream network (based on the 1:100,00-scale NHD), improved networking, naming, and value-added attributes (VAAs). NHDPlus also includes elevation-derived catchments (drainage areas) produced using a drainage enforcement technique first widely used in New England, and thus referred to as "the New England Method." This technique involves "burning in" the 1:100,000-scale NHD and when available building "walls" using the National Watershed Boundary Dataset (WBD). The resulting modified digital elevation model (HydroDEM) is used to produce hydrologic derivatives that agree with the NHD and WBD. Over the past two years, an interdisciplinary team from the U.S. Geological Survey (USGS), and the U.S. Environmental Protection Agency (USEPA), and contractors, found that this method produces the best quality NHD catchments using an automated process (USEPA, 2007). The NHDPlus dataset is organized by 18 Production Units that cover the conterminous United States. The NHDPlus version 1.1 data are grouped by the U.S. Geologic Survey's Major River Basins (MRBs, Crawford and others, 2006). MRB1, covering the New England and Mid-Atlantic River basins, contains NHDPlus Production Units 1 and 2. MRB2, covering the South Atlantic-Gulf and Tennessee River basins, contains NHDPlus Production Units 3 and 6. MRB3, covering the Great Lakes, Ohio, Upper Mississippi, and Souris-Red-Rainy River basins, contains

  7. Phosphorus fertilization, soil stratification and potential water quality impacts

    USDA-ARS?s Scientific Manuscript database

    Water quality experts have suggested that no-till induces phosphorus stratification, which may exacerbate soluble P runoff from agricultural fields, leading to eutrophication. The objectives of this study were to explore P fertilization strategies on P stratification and P runoff from a corn-soybea...

  8. Yield and persistence response of forage chicory to phosphorus fertility

    USDA-ARS?s Scientific Manuscript database

    Forage chicory (Cichorium intybus) is a productive plant that appears particularly well suited to improving summer yield of pastures in the USA. Poor palatability of some chicory cultivars in locations with low soil phosphorus fertility has been linked to high levels of sesquiterpene lactone, a bit...

  9. Nutritive value response of forage chicory cultivars to phosphorus fertility

    USDA-ARS?s Scientific Manuscript database

    Forage chicory (Cichorium intybus L.) is a productive plant that appears particularly well suited to improving summer yield of pastures in the USA. Poor palatability of some chicory cultivars in locations with low soil phosphorus fertility has been linked to high levels of sesquiterpene lactones, b...

  10. Phosphorus fertilization differentially influences fatty acids, protein and oil in soybean

    USDA-ARS?s Scientific Manuscript database

    Information is limited about phosphorus (P) fertilization effects on soybean seed composition. A field experiment was conducted to investigate the effects of P application rates on the concentrations of various fatty acids, protein, and oil in soybean under no-tillage on low and high testing P soils...

  11. Releasing phosphorus from calcium for struvite fertilizer production from anaerobically digested dairy effluent.

    PubMed

    Zhang, Tianxi; Bowers, Keith E; Harrison, Joseph H; Chen, Shulin

    2010-01-01

    Being a non-renewable resource and a source of potential water pollution, phosphorus could be recovered from animal manure in the form of struvite (MgNH4PO4.6H2O) to be used as a slow-release fertilizer. It was found recently that the majority of phosphorus in anaerobically digested dairy effluent is tied up in a fine suspended calcium-phosphate solid, thus becoming unavailable for struvite formation. Acidification and use of a chelating agent were investigated for converting the calcium-associated phosphorus in the digested effluent to dissolved phosphate ions, so that struvite can be produced. The results demonstrated that the phosphorus in the effluent was released into the solution by lowering the pH. In addition, the phosphorus concentration in the solution increased significantly with increased ethylenediaminetetraacetic acid (EDTA) concentration, as EDTA has a high stability constant with calcium. Most of the phosphorus (91%) was released into the solution after adding EDTA. Further, the freed phosphorus ion precipitated out as struvite provided that sufficient magnesium ions (Mg2+) were present in the solution. Furthermore, the phase structure of the solid precipitate obtained from the EDTA treatment matched well with standard struvite, based on the data from X-ray diffraction analysis. These results provide methods for altering the forms of phosphorus for the design and application of phosphorus-removal technologies for dairy wastewater management.

  12. The fate of phosphorus fertilizer in Amazon soya bean fields.

    PubMed

    Riskin, Shelby H; Porder, Stephen; Neill, Christopher; Figueira, Adelaine Michela e Silva; Tubbesing, Carmen; Mahowald, Natalie

    2013-06-05

    Fertilizer-intensive soya bean agriculture has recently expanded in southeastern Amazonia, and whereas intensive fertilizer use in the temperate zone has led to widespread eutrophication of freshwater ecosystems, the effects in tropical systems are less well understood. We examined the fate of fertilizer phosphorus (P) by comparing P forms and budgets across a chronosequence of soya bean fields (converted to soya beans between 2003 and 2008) and forests on an 800 km(2) soya bean farm in Mato Grosso, Brazil. Soya bean fields were fertilized with 50 kg P ha(-1) yr(-1) (30 kg P ha(-1) yr(-1) above what is removed in crops). We used modified Hedley fractionation to quantify soil P pools and found increases in less-plant-available inorganic pools and decreases in organic pools in agricultural soils compared with forest. Fertilizer P did not move below 20 cm. Measurements of P sorption capacity suggest that while fertilizer inputs quench close to half of the sorption capacity of fast-reacting pools, most added P is bound in more slowly reacting pools. Our data suggest that this agricultural system currently has a low risk of P losses to waterways and that long time-scales are required to reach critical soil thresholds that would allow continued high yields with reduced fertilizer inputs.

  13. The fate of phosphorus fertilizer in Amazon soya bean fields

    PubMed Central

    Riskin, Shelby H.; Porder, Stephen; Neill, Christopher; Figueira, Adelaine Michela e Silva; Tubbesing, Carmen; Mahowald, Natalie

    2013-01-01

    Fertilizer-intensive soya bean agriculture has recently expanded in southeastern Amazonia, and whereas intensive fertilizer use in the temperate zone has led to widespread eutrophication of freshwater ecosystems, the effects in tropical systems are less well understood. We examined the fate of fertilizer phosphorus (P) by comparing P forms and budgets across a chronosequence of soya bean fields (converted to soya beans between 2003 and 2008) and forests on an 800 km2 soya bean farm in Mato Grosso, Brazil. Soya bean fields were fertilized with 50 kg P ha−1 yr−1 (30 kg P ha−1 yr−1 above what is removed in crops). We used modified Hedley fractionation to quantify soil P pools and found increases in less-plant-available inorganic pools and decreases in organic pools in agricultural soils compared with forest. Fertilizer P did not move below 20 cm. Measurements of P sorption capacity suggest that while fertilizer inputs quench close to half of the sorption capacity of fast-reacting pools, most added P is bound in more slowly reacting pools. Our data suggest that this agricultural system currently has a low risk of P losses to waterways and that long time-scales are required to reach critical soil thresholds that would allow continued high yields with reduced fertilizer inputs. PMID:23610165

  14. Development of a phosphorus index for pastures fertilized with poultry litter--factors affecting phosphorus runoff.

    PubMed

    DeLaune, Paul B; Moore, Philip A; Carman, Dennis K; Sharpley, Andrew N; Haggard, Brian E; Daniel, Tommy C

    2004-01-01

    Currently, several state and federal agencies are proposing upper limits on soil test phosphorus (P), above which animal manures cannot be applied, based on the assumption that high P concentrations in runoff are due to high soil test P. Recent studies show that other factors are more indicative of P concentrations in runoff from areas where manure is being applied. The original P index was developed as an alternative P management tool incorporating factors affecting both the source and transport of P. The objective of this research was to evaluate the effects of multiple variables on P concentrations in runoff water and to construct a P source component of a P index for pastures that incorporates these effects. The evaluated variables were: (i) soil test P, (ii) soluble P in poultry litter, (iii) P in poultry diets, (iv) fertilizer type, and (v) poultry litter application rate. Field studies with simulated rainfall showed that P runoff was affected by the amount of soluble P applied in the fertilizer source. Before manure applications, soil test P was directly related to soluble P concentrations in runoff water. However, soil test P had little effect on P runoff after animal manure was applied. Unlike most other P indices, weighting factors of the P source components in the P index for pastures are based on results from runoff studies conducted under various management scenarios. As a result, weighting factors for the P source potential variables are well justified. A modification of the P index using scientific data should strengthen the ability of the P index concept to evaluate locations and management alternatives for P losses.

  15. Influence of aeration implements, phosphorus fertilizers, and soil taxa on phosphorus losses from grasslands.

    PubMed

    Franklin, D H; Butler, D M; Cabrera, M L; Calvert, V H; West, L T; Rema, J A

    2011-01-01

    Attenuation of rainfall within the solum may help to move contaminants and nutrients into the soil to be better sequestered or utilized by crops. Surface application of phosphorus (P) amendments to grasslands may lead to elevated concentrations of P in surface runoff and eutrophication of surface waters. Aeration of grasslands has been proposed as a treatment to reduce losses of applied P. Here, results from two small-plot aeration studies and two field-scale, paired-watershed studies are supplemented with previously unpublished soil P data and synthesized. The overall objective of these studies was to determine the impact of aeration on soil P, runoff volume, and runoff P losses from mixed tall fescue [Lolium arundinaceum (Schreb.) Darbysh.]-bermudagrass (Cynodon dactylon L.) grasslands fertilized with P. Small-scale rainfall simulations were conducted on two soil taxa using three types of aeration implements: spikes, disks, and cores. The-field scale study was conducted on four soil taxa with slit and knife aeration. Small-plot studies showed that core aeration reduced loads of total P and dissolved reactive P (DRP) in runoff from plots fertilized with broiler litter and that aeration was effective in reducing P export when it increased soil P in the upper 5 cm. In the field-scale study, slit aeration reduced DRP losses by 35% in fields with well-drained soils but not in poorly drained soils. Flow-weighted concentrations of DRP in aerated fields were related to water-soluble P applied in amendments and soil test P in the upper 5 cm. These studies show that the overall effectiveness of mechanical soil aeration on runoff volume and P losses is controlled by the interaction of soil characteristics such as internal drainage and compaction, soil P, type of surface-applied manure, and type of aeration implement.

  16. Soil available phosphorus in a permanent grassland excessively fertilized

    NASA Astrophysics Data System (ADS)

    García Tomillo, Aitor; Valcárcel Armesto, Montserrat; Dafonte Dafonte, Jorge; Marinho, Mara de Andrade; Ramón Raposo, Juan; de Abreu, Cleide A.

    2013-04-01

    Phosphorus is an essential element for crop growth and it is necessary to maintain profitable agriculture. In agricultural areas with high cattle manure and/or slurry inputs, available soil P levels are in excess of crop needs, so they had the potential to enrich surface water by runoff, which may trigger eutrophication. This is the case in Galicia, a temperate humid region in north-western of Spain. Soil nutrient testing is a management tool that can help accurately determine the available nutrient status of soils and guide the efficient use of fertilizers. Differences in soil phosphorus (P) contents measured by various techniques may have agronomic and environmental implications. The aim of this study was to analyze the spatial variability of available phosphorus in a permanent grassland field fertilized with organic manure. determined both after exchange resin and Mehlich 3 extraction. The experimental site was located at Castro de Ribeira de Lea, Lugo province, Spain. The studied soil was characterized by a loamy to loam sandy A horizon, rich in organic matter over tertizry-quaternary sediments. Soil was sampled at two successive depths, 0-20 cm and > 20 cm over a 6 ha field. Eighty soil samples were collected. Available P was colorimetrically determined after extraction with Mehlich 3 and exchangeable resin. Mean available P contents extracted using Mehlich 3 and resin were 29.9 and 108.8 mg.kg-1, respectively. Phosphorus extracted by Mehlich 3 ranged from 40.2 to 203.1 mg.kg-1, whereas resin extractable P ranged from 12.4 to 61 mg.kg-1 . These test results indicate excess P all over the studied field. Spatial variability of P over the experimental field was analyzed using geostatistics.

  17. Phosphorus vertical migration in aquic brown soil and light chernozem under different phosphorous application rate: a soil column leaching experiment.

    PubMed

    Zhao, Muqiu; Chen, Xin; Shi, Yi; Zhou, Quanlai; Lu, Caiyan

    2009-01-01

    A soil column leaching experiment was conducted to study the vertical migration of phosphorus in aquic brown soil and light chernozem under different phosphorus fertilization rates. The results showed that total dissolved phosphorus concentration in the leachates from the two soils was nearly the same, but dissolved inorganic phosphorus concentration was obviously different. In all fertilization treatments, aquic brown soil had a higher content of phosphorus in calcium chloride extracts compared with light chernozem. But Olsen phosphorus content was higher at the soil depth beneath 0-20 cm, and increased with increasing phosphorus application rate.

  18. Recovered phosphorus from animal manure and its use as fertilizer

    USDA-ARS?s Scientific Manuscript database

    Repeated land application of large amounts of manure from confined livestock facilities is an environmental concern frequently associated to excess phosphorus (P) in soils and a likely source for pollution of water resources. Animal waste treatments that include recovery of P from manure are a manag...

  19. Phosphorus uptake by potato from fertilizers recovered from anaerobic digestion

    USDA-ARS?s Scientific Manuscript database

    Field experiments were conducted in the Columbia Basin of South Central Washington to assess the yield of potato (Solanum tuberosum) in response to application of phosphorus enriched materials recovered from anaerobic digestion of manure. The treatments were comprised of four rates (0, 56, 112 and ...

  20. Phosphorus fertilization for rice and control of environmental pollution problems.

    PubMed

    Choudhury, A T M A; Kennedy, I R; Ahmed, M F; Kecskés, M L

    2007-07-01

    Aim of this study to review information on various aspects of P fertilization in rice i.e., P nutrition of rice, P response of rice plant, P availability in rice soils and P adsorption in rice soils for better understanding of P fertilization in rice culture. A substantial portion of the applied P along with the soil P is lost from rice fields to water bodies causing environmental pollution problems through eutrophication. These pollution problems can be minimized by using proper source of P as fertilizer, proper timing and methods of P fertilizer application, soil P management, transport management, use of plant growth promoting microorganisms which helps in efficient use of P by crops and use of green manure crops which improves soil fertility as well as helps in efficient use of P by crops.

  1. Response of Douglas-fir seedlings to nitrogen, sulfur, and phosphorus fertilizers.

    Treesearch

    M.A. Radwan; J.S. Shumway

    1985-01-01

    Effects of nitrogen, sulfur, and phosphorus fertilizers on growth and nutrient content of Douglas-fir seedlings potted in Grove and Bunker forest soils were determined. Growth was primarily stimulated with nitrogen in the Grove soil and with phosphorus in the Bunker soil. Fertilization influenced nutrient levels in the seedlings. Growth results agree with observed...

  2. Negative interactive effects between biochar and phosphorus fertilization on phosphorus availability and plant yield in saline sodic soil.

    PubMed

    Xu, Gang; Zhang, You; Sun, Junna; Shao, Hongbo

    2016-10-15

    Little is known about the interactive effects between biochar application and phosphorus (P) fertilization on plant growth and P uptake. For this purpose, five wheat straw biochars (produced at 25°C, 300°C, 400°C, 500°C and 600°C for 4h) with equal P (36mgkg(-1)) amount, with and without additional P fertilization (100mgkg(-1)) were applied in a pot experiment to investigate the growth of Suaeda salsa and their uptake of P from biochar and P fertilization amended saline sodic soil. Soil P fractions, dry matter yield, and plant P concentrations were determined after harvesting 90days. Our results confirmed that relatively lower pyrolysis temperature (<400°C) biochar retained P availability and increased plant growth. The plant P concentration was significantly correlated with NaHCO3-Pi (P<0.05), and NaOH-Pi (P<0.1) during early incubation time (4days) for biochar amended soil. As revealed by statistical analysis, a significant (P<0.05) negative (antagonistic) interaction occurred between biochar and P fertilization on the biomass production and plant P concentration. For plant biomass, the effects size of biochar (B), P, and their interaction followed the order of B×P (0.819)>B (0.569)≈P (0.568) based on the partial Eta squared values whereas the order changed as P (0.782)>B (0.562)>B×P (0.515) for plant P concentration. When biochar and P fertilization applied together, phosphate precipitation/sorption reaction occurred in saline sodic soil which explained the decreased plant P availability and plant yield in saline sodic soil. The negative interaction effects between biochar and P fertilization indicated limited utility value of biochar application in saline sodic soil. Copyright © 2016 Elsevier B.V. All rights reserved.

  3. [Effects of phosphorus fertilizer on the root system and its relationship with the aboveground part of flue-cured tobacco].

    PubMed

    Wang, Yan-li; Liu, Guo-shun; Ding, Song-shuang; Wang, Jing; Li, Yuan-bo; Dong, Xiao-li

    2015-05-01

    Using 'Yuyan 10' as the material, the effects of different phosphorus fertilizer application on root characteristics of tobacco, such as root dry mass and the difference of dry matter distribution and mineral nutrient accumulation between its above and underground parts were investigated. The results showed that the growth of flue-cured tobacco root system and the distribution of dry matter to the aboveground part were significantly promoted by phosphorus fertilizer application. The application of 30 kg P2O5 · hm(-2) led to the maximums of root dry mass, root volume, root activity and the minimum of root to shoot ratio. The maximum nutrient accumulation rates of root and leaf appeared 57-66 days after transplanting and 44-55 days after transplanting, respectively. Phosphorus could not only promote the mineral nutrition absorption of tobacco and the earlier appearance of maximum nutrient accumulation, but significantly promote the nutrient accumulation of the aboveground part. But, the positive effects described above would be weakened when the amount of phosphorus fertilizer was more than 30 kg P2O5 · hm(-2). Therefore, it's necessary to control the amount of phosphorus application to improve the quality of tobacco leaves.

  4. Managing phosphorus fertilizer to reduce algae, maintain water quality, and sustain yields in water-seeded rice

    USDA-ARS?s Scientific Manuscript database

    In water-seeded rice systems blue-green algae (cyanobacteria) hinder early-season crop growth by dislodging rice seedlings and reducing light. Since algae are often phosphorus (P) limited, we investigated whether changing the timing of P fertilizer application could reduce algae without reducing cro...

  5. Phosphorus recovery from municipal and fertilizer wastewater: China's potential and perspective.

    PubMed

    Zhou, Kuangxin; Barjenbruch, Matthias; Kabbe, Christian; Inial, Goulven; Remy, Christian

    2017-02-01

    Phosphorus (P) is a limited resource, which can neither be synthesized nor substituted in its essential functions as nutrient. Currently explored and economically feasible global reserves may be depleted within generations. China is the largest phosphate fertilizer producing and consuming country in the world. China's municipal wastewater contains up to 293,163Mgyear of phosphorus, which equals approximately 5.5% of the chemical fertilizer phosphorus consumed in China. Phosphorus in wastewater can be seen not only as a source of pollution to be reduced, but also as a limited resource to be recovered. Based upon existing phosphorus-recovery technologies and the current wastewater infrastructure in China, three options for phosphorus recovery from sewage sludge, sludge ash and the fertilizer industry were analyzed according to the specific conditions in China.

  6. Effects of phosphorus fertilizer supplementation on processing quality and functional food ingredients in tomato.

    PubMed

    Oke, Moustapha; Ahn, Taehyun; Schofield, Andrew; Paliyath, Gopinadhan

    2005-03-09

    Even though several types of phosphorus fertilizers are used in crop production, the influence of phosphorus on produce quality is not well understood. Several quality attributes of tomato juice were analyzed in relation to phosphorus supplementation during a three-year field study (2000-2002). In addition to the recommended phosphorus fertilization, phosphorus supplementations, either through soil (low and high) or through foliar spray (hydrophos, seniphos), were tested. In general, soil and foliar phosphorus supplementation did not provide a statistically significant increase in yield. Tomato juice was evaluated for various quality characteristics including pH, titratable acidity, precipitate weight ratio, total solids, serum viscosity, Brookfield viscosity, color, lycopene levels, vitamin C, and flavor volatiles. Changes observed in several quality parameters were marginal, statistically insignificant and influenced by the season. Therefore, it appears that phosphorus supplementation may not significantly affect the processing quality parameters in tomato fruits.

  7. Fertilization of the Neoproterozoic ocean by phosphorus from flood basalts

    NASA Astrophysics Data System (ADS)

    Horton, F.

    2016-12-01

    The weathering of voluminous large igneous provinces (LIPs) fertilized the Neoproterozoic ocean with the biolimiting nutrient phosphorus (P). The consequent increase in primary productivity contributed to profound climatic and biologic developments, including ocean-atmosphere oxygenation, global glaciations, and rapid biologic diversification. Flood basalt volcanism began at 850 Ma as the supercontinent Rodinia began to break apart and culminated with the massive Franklin LIP at 720 Ma. Prior to eruption, LIP magmas became variably enriched in P during liquid-crystal fractionation and by entraining metasomatized parts of the lithosphere. The mafic dike swarms through which the magmas erupted cover 3.7 × 106 km2, or 4% of the Neoproterozoic land surface. The flood basalts (now largely eroded) may have covered twice that area. Assuming chemical weathering liberated much of the P contained in these basalts, a bioavailable LIP-derived P flux of 1-5 × 109 mol/yr may have been sustained for millions of years, increasing the global flux of dissolved P to the ocean by a factor of two or more. This fertilization would have increased the burial of organic carbon and therefore the rate of O2 production in the ocean. Meanwhile, the removal of CO2 from the ocean-atmosphere system by basalt weathering and photosynthesis may have triggered the Sturtian glaciation. These tectonically driven events set the stage for the development of complex multicellular life.

  8. County-level estimates of nitrogen and phosphorus from commercial fertilizer for the Conterminous United States, 1987–2006

    USGS Publications Warehouse

    Gronberg, Jo Ann M.; Spahr, Norman E.

    2012-01-01

    The U.S. Geological Survey’s National Water-Quality Assessment program requires nutrient input for analysis of the national and regional assessment of water quality. Detailed information on nutrient inputs to the environment are needed to understand and address the many serious problems that arise from excess nutrients in the streams and groundwater of the Nation. This report updates estimated county-level farm and nonfarm nitrogen and phosphorus input from commercial fertilizer sales for the conterminous United States for 1987 through 2006. Estimates were calculated from the Association of American Plant Food Control Officials fertilizer sales data, Census of Agriculture fertilizer expenditures, and U.S. Census Bureau county population. A previous national approach for deriving farm and nonfarm fertilizer nutrient estimates was evaluated, and a revised method for selecting representative states to calculate national farm and nonfarm proportions was developed. A national approach was used to estimate farm and nonfarm fertilizer inputs because not all states distinguish between farm and nonfarm use, and the quality of fertilizer reporting varies from year to year. For states that distinguish between farm and nonfarm use, the spatial distribution of the ratios of nonfarm-to-total fertilizer estimates for nitrogen and phosphorus calculated using the national-based farm and nonfarm proportions were similar to the spatial distribution of the ratios generated using state-based farm and nonfarm proportions. In addition, the relative highs and lows in the temporal distribution of farm and nonfarm nitrogen and phosphorus input at the state level were maintained—the periods of high and low usage coincide between national- and state-based values. With a few exceptions, nonfarm nitrogen estimates were found to be reasonable when compared to the amounts that would result if the lawn application rates recommended by state and university agricultural agencies were used. Also

  9. Engineering phosphorus metabolism in plants to produce a dual fertilization and weed control system.

    PubMed

    López-Arredondo, Damar Lizbeth; Herrera-Estrella, Luis

    2012-09-01

    High crop yields depend on the continuous input of orthophosphate (PO(4)(−3))-based fertilizers and herbicides. Two major challenges for agriculture are that phosphorus is a nonrenewable resource and that weeds have developed broad herbicide resistance. One strategy to overcome both problems is to engineer plants to outcompete weeds and microorganisms for limiting resources, thereby reducing the requirement for both fertilizers and herbicides. Plants and most microorganisms are unable to metabolize phosphite (PO(3)(−3)), so we developed a dual fertilization and weed control system by generating transgenic plants that can use phosphite as a sole phosphorus source. Under greenhouse conditions, these transgenic plants require 30–50% less phosphorus input when fertilized with phosphite to achieve similar productivity to that obtained by the same plants using orthophosphate fertilizer and, when in competition with weeds, accumulate 2–10 times greater biomass than when fertilized with orthophosphate.

  10. [Effects of nitrogen and phosphorus fertilizer on atrazine degradation and detoxification by degrading strain HB-5].

    PubMed

    Su, Jun; Zhu, Lu-Sheng; Li, Xu-Hua; Wang, Jun; Xie, Hui; Wang, Jin-Hua; Wang, Qi; Jia, Wen-Tao

    2010-10-01

    An atrazine-degrading strain HB-5 was used as a bacteria for biodegradation. Treatments of soil with nitrogen single, phosphate single and nitrogen phosphate together with HB-5 were carried out for degradation and eco-toxicity test; then, relationship between atrazine degradation rate and soil available nitrogen, available phosphorus were discussed. Atrazine residues were determined by HPLC; available nitrogen was determined with alkaline hydrolysis diffusion method; available phosphorus was determined with 0.5 mol/L-NaHCO3 extraction and molybdenum stibium anti-color method, and toxicity test was carried out with micronucleus test of Vicia faba root tip cells. The results showed that: After separately or together application, nitrogenous and phosphorous fertilizers could significantly accelerate atrazine degradation than soil with HB-5 only. On day 5, the order of atrazine degradation was ANP > AP > AN > A; 7 days later, no statistically significant differences were found between treatments. The available nitrogen and phosphorus level in soil reduced as the degradation rate increased in the soil. The soil of eco-toxicity test results indicated that the eco-toxicity significantly reduced with the degradation of atrazine by HB-5, and the eco-toxicity on treatments of soil with fertilizer were all below the treatments without fertilizer. On day 5, the order of eco-toxicity was ANP < AP < AN < A; 7 days later, all treatments were decreased in control levels. So, adjusting soil nutrient content could not only promote atrazine degradation in soil but also could reduce the soil eco-toxicity effects that atrazine caused. All these results could be keystone of atrazine pollution remediation in contaminated soil in the future.

  11. Runoff phosphorus losses as related to phosphorus source, application method, and application rate on a Piedmont soil.

    PubMed

    Tarkalson, David D; Mikkelsen, Robert L

    2004-01-01

    Land application of animal manures and fertilizers has resulted in an increased potential for excessive P losses in runoff to nutrient-sensitive surface waters. The purpose of this research was to measure P losses in runoff from a bare Piedmont soil in the southeastern United States receiving broiler litter or inorganic P fertilizer either incorporated or surface-applied at varying P application rates (inorganic P, 0-110 kg P ha(-1); broiler litter, 0-82 kg P ha(-1)). Rainfall simulation was applied at a rate of 76 mm h(-1). Runoff samples were collected at 5-min intervals for 30 min and analyzed for reactive phosphorus (RP), algal-available phosphorus (AAP), and total phosphorus (TP). Incorporation of both P sources resulted in P losses not significantly different than the unfertilized control at all application rates. Incorporation of broiler litter decreased flow-weighted concentration of RP in runoff by 97% and mass loss of TP in runoff by 88% compared with surface application. Surface application of broiler litter resulted in runoff containing between 2.3 and 21.8 mg RP L(-1) for application rates of 8 to 82 kg P ha(-1), respectively. Mass loss of TP in runoff from surface-applied broiler litter ranged from 1.3 to 8.5 kg P ha(-1) over the same application rates. Flow-weighted concentrations of RP and mass losses of TP in runoff were not related to application rate when inorganic P fertilizer was applied to the soil surface. Results for this study can be used by P loss assessment tools to fine-tune P source, application rate, and application method site factors, and to estimate extreme-case P loss from cropland receiving broiler litter and inorganic P fertilizers.

  12. Phosphorus Accumulation and Sorption in Calcareous Soil under Long-Term Fertilization

    PubMed Central

    Wang, Rui; Guo, Shengli; Li, Nana; Li, Rujian; Zhang, Yanjun; Jiang, Jishao; Wang, Zhiqi; Liu, Qingfang; Wu, Defeng; Sun, Qiqi; Du, Lanlan; Zhao, Man

    2015-01-01

    Application of phosphorus (P) fertilizers to P-deficient soils can also result in P accumulation. In this study, soil P status and P uptake by apple trees were investigated in 5-, 10-, and 15-year-old orchards in the semi-arid Loess Plateau, China, and subset soils with different soil P statuses (14–90 Olsen-P mg kg−1) were selected to evaluate the characteristic P adsorption. Due to the low P-use efficiency (4–6%), total soil P increased from 540 mg kg−1 to 904 mg kg−1, Olsen-P ranged from 3.4 mg kg−1 to 30.7 mg kg−1, and CaCl2-P increased from less than 0.1 mg kg−1 to 0.66 mg kg−1 under continuous P fertilization. The P sorption isotherms for each apple orchard were found to fit the Langmuir isotherm model (R2 = 0.91–0.98). K (binding energy) and Qm (P sorption maximum) decreased, whereas DPS (degree of phosphorus sorption) increased with increasing P concentration. CaCl2-P increased significantly with the increase of Olsen-P, especially above the change point of 46.1 mg kg−1. Application of surplus P could result in P enrichment in P-deficient soil which has high P fixation capacity, thus posing a significant environmental risk. PMID:26288011

  13. [Effects of phosphorus fertilization on yield of winter wheat and utilization of soil nitrogen].

    PubMed

    Xing, Dan; Li, Shu-wen; Xia, Bo; Wen, Hong-da

    2015-02-01

    In order to evaluate the threshold of phosphorus (P) application rate and improve the utilization efficiency of fertilizers in Baoding region of Hebei Province, a field experiment was conducted to examine the impacts of P fertilization on wheat yield, soil NO(3-)-N and nitrogen use efficiency. Results showed that, compared with the CK (P0), all treatments with P application (P1, 120 kg · hm(-2); P2, 240 kg · hm(-2) and P3, 480 kg · hm(-2)) increased the plant height, flag leaf areas and total leaf areas per plant of winter wheat, which was conducive to the accumulation of photosynthetic products. In addition, P application increased the spike number, kernels per spike and yield of winter wheat but slightly decreased the grain mass per 1000 seeds. Of the P-fertilized treatments, P2 had the highest wheat yield of 6102 kg · hm(-2), which was similar to P1 but significantly greater than those of P0 and P3. Furthermore, P fertilization reduced the NO(3-)-N content in top soil layer although the total accumulation of NO3- was still rather high. The N grain production efficiencies (GPE(N)) and N uptake efficiencies (UE(N)) of P1 and P2 were similar but greater than the other treatments. The use efficiency (UR(P)) , agronomic efficiency (AE(P)) and partial productivity of P fertilizer (PFP(P)) in P1 were significantly greater than P2 and P3. In conclusion, the P application rate of 120 kg · hm(-2) (P1) in this study could be an appropriate threshold in Baoding, Hebei, from the aspects of wheat yield, nitrogen and phosphate use efficiencies and accumulation of soil NO3-.

  14. Synthetic apatite nanoparticles as a phosphorus fertilizer for soybean (Glycine max).

    PubMed

    Liu, Ruiqiang; Lal, Rattan

    2014-07-14

    Some soluble phosphate salts, heavily used in agriculture as highly effective phosphorus (P) fertilizers, cause surface water eutrophication, while solid phosphates are less effective in supplying the nutrient P. In contrast, synthetic apatite nanoparticles could hypothetically supply sufficient P nutrients to crops but with less mobility in the environment and with less bioavailable P to algae in comparison to the soluble counterparts. Thus, a greenhouse experiment was conducted to assess the fertilizing effect of synthetic apatite nanoparticles on soybean (Glycine max). The particles, prepared using one-step wet chemical method, were spherical in shape with diameters of 15.8 ± 7.4 nm and the chemical composition was pure hydroxyapatite. The data show that application of the nanoparticles increased the growth rate and seed yield by 32.6% and 20.4%, respectively, compared to those of soybeans treated with a regular P fertilizer (Ca(H2PO4)2). Biomass productions were enhanced by 18.2% (above-ground) and 41.2% (below-ground). Using apatite nanoparticles as a new class of P fertilizer can potentially enhance agronomical yield and reduce risks of water eutrophication.

  15. Synthetic apatite nanoparticles as a phosphorus fertilizer for soybean (Glycine max)

    NASA Astrophysics Data System (ADS)

    Liu, Ruiqiang; Lal, Rattan

    2014-07-01

    Some soluble phosphate salts, heavily used in agriculture as highly effective phosphorus (P) fertilizers, cause surface water eutrophication, while solid phosphates are less effective in supplying the nutrient P. In contrast, synthetic apatite nanoparticles could hypothetically supply sufficient P nutrients to crops but with less mobility in the environment and with less bioavailable P to algae in comparison to the soluble counterparts. Thus, a greenhouse experiment was conducted to assess the fertilizing effect of synthetic apatite nanoparticles on soybean (Glycine max). The particles, prepared using one-step wet chemical method, were spherical in shape with diameters of 15.8 +/- 7.4 nm and the chemical composition was pure hydroxyapatite. The data show that application of the nanoparticles increased the growth rate and seed yield by 32.6% and 20.4%, respectively, compared to those of soybeans treated with a regular P fertilizer (Ca(H2PO4)2). Biomass productions were enhanced by 18.2% (above-ground) and 41.2% (below-ground). Using apatite nanoparticles as a new class of P fertilizer can potentially enhance agronomical yield and reduce risks of water eutrophication.

  16. Synthetic apatite nanoparticles as a phosphorus fertilizer for soybean (Glycine max)

    PubMed Central

    Liu, Ruiqiang; Lal, Rattan

    2014-01-01

    Some soluble phosphate salts, heavily used in agriculture as highly effective phosphorus (P) fertilizers, cause surface water eutrophication, while solid phosphates are less effective in supplying the nutrient P. In contrast, synthetic apatite nanoparticles could hypothetically supply sufficient P nutrients to crops but with less mobility in the environment and with less bioavailable P to algae in comparison to the soluble counterparts. Thus, a greenhouse experiment was conducted to assess the fertilizing effect of synthetic apatite nanoparticles on soybean (Glycine max). The particles, prepared using one-step wet chemical method, were spherical in shape with diameters of 15.8 ± 7.4 nm and the chemical composition was pure hydroxyapatite. The data show that application of the nanoparticles increased the growth rate and seed yield by 32.6% and 20.4%, respectively, compared to those of soybeans treated with a regular P fertilizer (Ca(H2PO4)2). Biomass productions were enhanced by 18.2% (above-ground) and 41.2% (below-ground). Using apatite nanoparticles as a new class of P fertilizer can potentially enhance agronomical yield and reduce risks of water eutrophication. PMID:25023201

  17. Reproductive response to nitrogen and phosphorus fertilization along the Hawaiian archipelago's natural soil fertility gradient.

    PubMed

    DiManno, Nicole M; Ostertag, Rebecca

    2016-01-01

    Nitrogen (N) and phosphorus (P) are the most important nutrients involved in plant reproduction and typically the most limiting in terrestrial ecosystems. The natural soil fertility gradient of the Hawaiian archipelago, in which younger islands are N limited and older islands are P limited, provides a model system to examine questions regarding allocation of nutrients. Using fertilized plots (+N or +P) at the extreme sites of the Hawaiian archipelago, vegetative productivity (e.g., net primary productivity, growth, and litterfall) and foliar nutrient responses have previously been studied for the dominant canopy tree, Metrosideros polymorpha. Here, we investigated whether the reproductive response of M. polymorpha mirrors the previously found vegetative productivity and foliar nutrient responses, by quantifying: (1) inflorescence and seed productivity, and (2) nutrient concentration of reproductive structures. Fertilization with N and P did not significantly affect the productivity of inflorescences or seeds, or seed viability at either site. However, nutrient concentrations increased after fertilization; %P increased in inflorescences in the +P treatment at the P-limited site. Seeds and inflorescences generally contained higher nutrient concentrations than leaves at both sites. Unlike foliar data, reproductive strategies of M. polymorpha differed depending on soil nutrient limitation with emphasis on quality (higher seed viability/greater nutrient concentrations) at the P-limited site. We suggest that in response to P additions M. polymorpha employs a nutrient conservation strategy for its inflorescences and an investment strategy for its seeds. Examining N and P simultaneously challenges a basic assumption that reproductive allocation follows a similar pattern to the often measured aboveground productivity.

  18. Phosphorus runoff from agricultural land and direct fertilizer effects: a review.

    PubMed

    Hart, Murray R; Quin, Bert F; Nguyen, M Long

    2004-01-01

    Phosphorus (P) is one of the most important mineral nutrients in agricultural systems, and along with nitrogen (N), is generally the most limiting nutrient for plant production. Farming systems have intensified greatly over time, and in recent years it has become apparent that the concomitant increase in losses of N and P from agricultural land is having a serious detrimental effect on water quality and the environment. The last two decades have seen a marked increase in research into the issues surrounding diffuse losses of P to surface and ground water. This paper reviews this research, examining the issue of P forms in runoff, and highlighting the exceptions to some generally held assumptions about land use and P transport. In particular the review focuses on P losses associated with recent P fertilizer application, as opposed to organic manures, both on the amounts and the forms of P in runoff water. The effects of the physicochemical characteristics of different forms of P fertilizer are explored, particularly in relation to water solubility. Various means of mitigating the risk of loss of P are discussed. It is argued that the influence of recent fertilizer applications is an under-researched area, yet may offer the most readily applicable opportunity to mitigate P losses by land users. This review highlights and discusses some options that have recently become available that may make a significant contribution to the task of sustainable management of nutrient losses from agriculture.

  19. Phosphorus recovered from swine wastewater as a fertilizer for cotton grown with conservation tillage

    USDA-ARS?s Scientific Manuscript database

    Current technologies for recycling phosphorus (P) from animal waste through precipitation result in non-conventional fertilizer products. The objective of this research was to evaluate the use of surface broadcasting recovered calcium phosphate as a P fertilizer source for cotton (Gossypium hirsutum...

  20. Speciation And Distribution Of Phosphorus In A Fertilized Soil: A Synchrotron-Based Investigation

    EPA Science Inventory

    Phosphorus availability is often a limiting factor for crop production around the world. The efficiency of P fertilizers in calcareous soils is limited by reactions that decrease P availability; however, fluid fertilizers have recently been shown, in highly calcareous soils of s...

  1. Speciation And Distribution Of Phosphorus In A Fertilized Soil: A Synchrotron-Based Investigation

    EPA Science Inventory

    Phosphorus availability is often a limiting factor for crop production around the world. The efficiency of P fertilizers in calcareous soils is limited by reactions that decrease P availability; however, fluid fertilizers have recently been shown, in highly calcareous soils of s...

  2. Fertilization with phosphorus increases soil nitrogen absorption in young plants of Eucalyptus grandis.

    Treesearch

    Corina Graciano; Juan F. Goya; Jorge L. Frangi; Juan J. Guiamet

    2006-01-01

    Nitrogen (N) and phosphorus (P) are the nutrients that most commonly limit tree growth. Interactions between fertilization and soil type are well known, and in soils with moderate or low N availability, N-fertilization is frequently recommended to improve tree nutrition. The aim of this paper was to analyze how different doses of P and N applied in three different...

  3. Nutrient losses from manure and fertilizer applications as impacted by time to first runoff event.

    PubMed

    Smith, D R; Owens, P R; Leytem, A B; Warnemuende, E A

    2007-05-01

    Nutrient losses to surface waters following fertilization contribute to eutrophication. This study was conducted to compare the impacts of fertilization with inorganic fertilizer, swine (Sus scrofa domesticus) manure or poultry (Gallus domesticus) litter on runoff water quality, and how the duration between application and the first runoff event affects resulting water quality. Fertilizers were applied at 35 kg P ha-1, and the duration between application and the first runoff event varied between 1 and 29 days. Swine manure was the greatest risk to water quality 1 day after fertilization due to elevated phosphorus (8.4 mg P L-1) and ammonium (10.3 mg NH4-N L-1) concentrations; however, this risk decreased rapidly. Phosphorus concentrations were 2.6 mg L-1 29 days after fertilization with inorganic fertilizer. This research demonstrates that manures might be more environmentally sustainable than inorganic fertilizers, provided runoff events do not occur soon after application.

  4. Runoff, nitrogen (N) and phosphorus (P) losses from purple slope cropland soil under rating fertilization in Three Gorges Region.

    PubMed

    Bouraima, Abdel-Kabirou; He, Binghui; Tian, Taiqiang

    2016-03-01

    Soil erosion along with soil particles and nutrients losses is detrimental to crop production. We carried out a 5-year (2010 to 2014) study to characterize the soil erosion and nitrogen and phosphorus losses caused by rainfall under different fertilizer application levels in order to provide a theoretical evidence for the agricultural production and coordinate land management to improve ecological environment. The experiment took place under rotation cropping, winter wheat-summer maize, on a 15° slope purple soil in Chongqing (China) within the Three Gorges Region (TGR). Four treatments, control (CK) without fertilizer, combined manure with chemical fertilizer (T1), chemical fertilization (T2), and chemical fertilizer with increasing fertilization (T3), were designed on experimental runoff plots for a long-term observation aiming to study their effects on soil erosion and nutrients losses. The results showed that fertilization reduced surface runoff and nutrient losses as compared to CK. T1, T2, and T3, compared to CK, reduced runoff volume by 35.7, 29.6, and 16.8 %, respectively and sediment yield by 40.5, 20.9, and 49.6 %, respectively. Regression analysis results indicated that there were significant relationships between soil loss and runoff volume in all treatments. The combined manure with chemical fertilizer (T1) treatment highly reduced total nitrogen and total phosphorus losses by 41.2 and 33.33 %, respectively as compared with CK. Through this 5-year experiment, we can conclude that, on the sloping purple soil, the combined application of manure with fertilizer is beneficial for controlling runoff sediments losses and preventing soil erosion.

  5. Development of a biologically based fertilizer, incorporating Bacillus megaterium A6, for improved phosphorus nutrition of oilseed rape.

    PubMed

    Hu, Xiaojia; Roberts, Daniel P; Xie, Lihua; Maul, Jude E; Yu, Changbing; Li, Yinshui; Zhang, Shujie; Liao, Xing

    2013-04-01

    Sustainable methods with diminished impact on the environment need to be developed for the production of oilseed rape in China and other regions of the world. A biological fertilizer consisting of Bacillus megaterium A6 cultured on oilseed rape meal improved oilseed rape seed yield (P < 0.0001) relative to the nontreated control in 2 greenhouse pot experiments using natural soil. This treatment resulted in slightly greater yield than oilseed rape meal without strain A6 in 1 of 2 experiments, suggesting a role for strain A6 in improving yield. Strain A6 was capable of solubilizing phosphorus from rock phosphate in liquid culture and produced enzymes capable of mineralizing organic phosphorus (acid phosphatase, phytase) in liquid culture and in the biological fertilizer. The biologically based fertilizer, containing strain A6, improved plant phosphorus nutrition in greenhouse pot experiments resulting in significantly greater available phosphorus in natural soil and in significantly greater plant phosphorus content relative to the nontreated control. Seed yield and available phosphorus in natural soil were significantly greater with a synthetic chemical fertilizer treatment, reduced in phosphorus content, than the biological fertilizer treatment, but a treatment containing the biological fertilizer combined with the synthetic fertilizer provided the significantly greatest seed yield, available phosphorus in natural soil, and plant phosphorus content. These results suggest that the biological fertilizer was capable of improving oilseed rape seed yield, at least in part, through the phosphorus-solubilizing activity of B. megaterium A6.

  6. 40 CFR 422.20 - Applicability; description of the phosphorus consuming subcategory.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... phosphorus consuming subcategory. 422.20 Section 422.20 Protection of Environment ENVIRONMENTAL PROTECTION... Phosphorus Consuming Subcategory § 422.20 Applicability; description of the phosphorus consuming subcategory... manufacture of phosphoric acid, phosphorus pentoxide, phosphorus pentasulfide, phosphorus trichloride,...

  7. 40 CFR 422.20 - Applicability; description of the phosphorus consuming subcategory.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... phosphorus consuming subcategory. 422.20 Section 422.20 Protection of Environment ENVIRONMENTAL PROTECTION... Phosphorus Consuming Subcategory § 422.20 Applicability; description of the phosphorus consuming subcategory... manufacture of phosphoric acid, phosphorus pentoxide, phosphorus pentasulfide, phosphorus trichloride,...

  8. 40 CFR 422.20 - Applicability; description of the phosphorus consuming subcategory.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... phosphorus consuming subcategory. 422.20 Section 422.20 Protection of Environment ENVIRONMENTAL PROTECTION... Phosphorus Consuming Subcategory § 422.20 Applicability; description of the phosphorus consuming subcategory... manufacture of phosphoric acid, phosphorus pentoxide, phosphorus pentasulfide, phosphorus trichloride,...

  9. 40 CFR 422.20 - Applicability; description of the phosphorus consuming subcategory.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... phosphorus consuming subcategory. 422.20 Section 422.20 Protection of Environment ENVIRONMENTAL PROTECTION... Phosphorus Consuming Subcategory § 422.20 Applicability; description of the phosphorus consuming subcategory... manufacture of phosphoric acid, phosphorus pentoxide, phosphorus pentasulfide, phosphorus trichloride,...

  10. Global Phosphorus Fertilizer Market and National Policies: A Case Study Revisiting the 2008 Price Peak.

    PubMed

    Khabarov, Nikolay; Obersteiner, Michael

    2017-01-01

    The commodity market super-cycle and food price crisis have been associated with rampant food insecurity and the Arab spring. A multitude of factors were identified as culprits for excessive volatility on the commodity markets. However, as it regards fertilizers, a clear attribution of market drivers explaining the emergence of extreme price events is still missing. In this paper, we provide a quantitative assessment of the price spike of the global phosphorus fertilizer market in 2008 focusing on diammonium phosphate (DAP). We find that fertilizer market policies in India, the largest global importer of phosphorus fertilizers and phosphate rock, turned out to be a major contributor to the global price spike. India doubled its import of P-fertilizer in 2008 at a time when prices doubled. The analysis of a wide set of factors pertinent to the 2008 price spike in phosphorus fertilizer market leads us to the discovery of a price spike magnification and triggering mechanisms. We find that the price spike was magnified on the one hand by protective trade measures of fertilizer suppliers leading to a 19% drop in global phosphate fertilizer export. On the other hand, the Indian fertilizer subsidy scheme led to farmers not adjusting their demand for fertilizer. The triggering mechanism appeared to be the Indian production outage of P-fertilizer resulting in the additional import demand for DAP in size of about 20% of annual global supply. The main conclusion is that these three factors have jointly caused the spike, underscoring the need for ex ante improvements in fertilizer market regulation on both national and international levels.

  11. Global Phosphorus Fertilizer Market and National Policies: A Case Study Revisiting the 2008 Price Peak

    PubMed Central

    Khabarov, Nikolay; Obersteiner, Michael

    2017-01-01

    The commodity market super-cycle and food price crisis have been associated with rampant food insecurity and the Arab spring. A multitude of factors were identified as culprits for excessive volatility on the commodity markets. However, as it regards fertilizers, a clear attribution of market drivers explaining the emergence of extreme price events is still missing. In this paper, we provide a quantitative assessment of the price spike of the global phosphorus fertilizer market in 2008 focusing on diammonium phosphate (DAP). We find that fertilizer market policies in India, the largest global importer of phosphorus fertilizers and phosphate rock, turned out to be a major contributor to the global price spike. India doubled its import of P-fertilizer in 2008 at a time when prices doubled. The analysis of a wide set of factors pertinent to the 2008 price spike in phosphorus fertilizer market leads us to the discovery of a price spike magnification and triggering mechanisms. We find that the price spike was magnified on the one hand by protective trade measures of fertilizer suppliers leading to a 19% drop in global phosphate fertilizer export. On the other hand, the Indian fertilizer subsidy scheme led to farmers not adjusting their demand for fertilizer. The triggering mechanism appeared to be the Indian production outage of P-fertilizer resulting in the additional import demand for DAP in size of about 20% of annual global supply. The main conclusion is that these three factors have jointly caused the spike, underscoring the need for ex ante improvements in fertilizer market regulation on both national and international levels. PMID:28660192

  12. Temperature sensitivity of soil respiration: Synthetic effects of nitrogen and phosphorus fertilization on Chinese Loess Plateau.

    PubMed

    Wang, Rui; Sun, Qiqi; Wang, Ying; Liu, Qingfang; Du, Lanlan; Zhao, Man; Gao, Xin; Hu, Yaxian; Guo, Shengli

    2017-01-01

    Nitrogen (N) and phosphorus (P) fertilization has the potential to alter soil respiration temperature sensitivity (Q10) by changing soil biochemical and crop physiological process. A four-year field experiment was conducted to determine how Q10 responded to these biochemical and physiological changes in rain-fed agro-ecosystems on the semi-arid Loess Plateau. Soil respiration, as well as biotic and abiotic factors were measured in winter wheat (Triticum aestivum L.), with three fertilization treatments: (no fertilization (CK), 160kgNhm(-1) (N), and 160kgNha(-1) with 39kgPha(-1) (N+P). Mean annual soil respiration rate (calculated by averaging the four years) in the N treatment and N+P treatment was 18% and 48% higher than that in the CK treatment, respectively; and it was increased by 26% (14%-48%) in the N+P treatment as compared with that in the N treatment. The decrease of Q10 in the N and N+P treatments against the CK treatment was not stable for each year, ranging from 0.01 to 0.28. The maximum decrease of Q10 in the N and N+P treatments was 10% and 15% in 2014-2015, while in other years the decrease of Q10 was numerical but not significant. Soil microbial biomass carbon (SMBC) was increased by 10% and 50%, dissolved organic carbon (DOC) was increased by 6% and 21%, and photosynthesis rate was increased ranging from 6% to 33% with N and N+P fertilization. The relative abundance of Acidobacteria, Actinobacteria and Chloroflexi were significantly higher by 32.9%-54.1% in N addition soils (N and N+P) compared to CK treatment, whereas additional P application into soils increased the relative abundance of the family Micrococcaceae, Nocardioidaceae and Chitinophagaceae. Soil respiration was positively related to SMBC, DOC and photosynthesis rate (p<0.05). However, variation in Q10 may be related to the increase of soil mineral N content and variation of the relative abundance of soil microbial community in our study. Nitrogen and additional phosphorus fertilization

  13. Can arbuscular mycorrhiza and fertilizer management reduce phosphorus runoff from paddy fields?

    PubMed

    Zhang, Shujuan; Wang, Li; Ma, Fang; Zhang, Xue; Li, Zhe; Li, Shiyang; Jiang, Xiaofeng

    2015-07-01

    Our study sought to assess how much phosphorus (P) runoff from paddy fields could be cut down by fertilizer management and inoculation with arbuscular mycorrhizal fungi. A field experiment was conducted in Lalin River basin, in the northeast China: six nitrogen-phosphorus-potassium fertilizer levels were provided (0, 20%, 40%, 60%, 80%, and 100% of the recommended fertilizer supply), with or without inoculation with Glomus mosseae. The volume and concentrations of particle P (PP) and dissolved P (DP) were measured for each runoff during the rice growing season. It was found that the seasonal P runoff, including DP and PP, under the local fertilization was 3.7 kg/ha, with PP, rather than DP, being the main form of P in runoff water. Additionally, the seasonal P runoff dropped only by 8.9% when fertilization decreased by 20%; rice yields decreased with declining fertilization. We also found that inoculation increased rice yields and decreased P runoff at each fertilizer level and these effects were lower under higher fertilization. Conclusively, while rice yields were guaranteed arbuscular mycorrhizal inoculation and fertilizer management would play a key role in reducing P runoff from paddy fields.

  14. Sugarcane yields do not respond to phosphorus fertilizer in ratoon crops of LCP 85-384 in Louisiana

    USDA-ARS?s Scientific Manuscript database

    The effects of phosphorus fertilizer on sugarcane (interspecific hybrids of Saccharum Spp. cv. 'LCP 85-384') yield components and soil properties were evaluated at seven locations in Louisiana. Five rates of phosphorus fertilizer (0 - 84 kg P2O5 ha-1) were applied to first-, second- and third-ratoo...

  15. Phosphorus distribution in a soil fertilized with recovered manure phosphates

    USDA-ARS?s Scientific Manuscript database

    Phosphorus (P) can be recovered in a concentrated form from livestock manure and poultry litter. A greenhouse study was conducted to evaluate the short-term leaching potential and plant availability of P from recovered P materials from liquid pig manure (SRP) and broiler litter (LRP) in a characteri...

  16. Effects of phosphorus fertilization, seed source, and soil type on growth of Acacia koa

    Treesearch

    P. G. Scowcroft; J. A. Silva

    2005-01-01

    The endemic tree Acacia koa is used to reforest abandoned agricuItural lands in Hawaii. Growth may be constrained by soil infertility and toxic concentrations of aluminum (AI) and manganese (Mn) in acidic Oxisols and Ultisols, The effects of phosphorus (P) fertilization at time of planting, soil type, and seed source on koa growth were studied for three years....

  17. Fertilization and pH effects on processes and mechanisms controlling dissolved inorganic phosphorus in soils

    NASA Astrophysics Data System (ADS)

    Devau, Nicolas; Hinsinger, Philippe; Le Cadre, Edith; Colomb, Bruno; Gérard, Frédéric

    2011-05-01

    We used of a set of mechanistic adsorption models (1-pK TPM, ion exchange and Nica-Donnan) within the framework of the component additive (CA) approach in an attempt to determine the effect of repeated massive application of inorganic P fertilizer on the processes and mechanisms controlling the concentration of dissolved inorganic phosphorus (DIP) in soils. We studied the surface layer of a Luvisol with markedly different total concentrations of inorganic P as the result of different P fertilizer history (i.e. massive or no application for 40 years). Soil pH was made to vary from acid to alkaline. Soil solutions were extracted with water and CaCl 2 (0.01 M). The occurrence of montmorillonite led us to determine the binding properties of P and Ca ions for this clay mineral. Satisfactory results were obtained using generic values for model parameters and soil-specific ones, which were either determined directly by measurements or estimated from the literature. We showed that adsorption largely controlled the variations of DIP concentration and that, because of kinetic constrains, only little Ca-phosphates may be precipitated under alkaline conditions, particularly in the P fertilized treatment. The mineral-P pool initially present in both P treatments did not dissolve significantly during the course of the experiments. The adsorption of Ca ions onto soil minerals also promoted adsorption of P ions through electrostatic interactions. The intensity of the mechanism was high under neutral to alkaline conditions. Changes in DIP concentration as a function of these environmental variables can be related to changes in the contribution of the various soil minerals to P adsorption. The extra P adsorbed in the fertilized treatment compared with the control treatment was mainly adsorbed onto illite. This clay mineral was the major P-fixing constituent from neutral to alkaline pH conditions, because the repulsion interactions between deprotonated hydroxyl surface sites and P

  18. Overuse of Phosphorus Fertilizer Reduces the Grain and Flour Protein Contents and Zinc Bioavailability of Winter Wheat (Triticum aestivum L.).

    PubMed

    Zhang, Wei; Liu, Dunyi; Liu, Yumin; Chen, Xinping; Zou, Chunqin

    2017-03-01

    To supplement human dietary nutrition, it is necessary to evaluate the effects of phosphorus (P) fertilizer application on grain and flour protein contents and especially on the bioavailability of zinc (Zn). A field experiment of winter wheat with six P application rates (0, 25, 50, 100, 200, 400 kg/ha) was conducted from 2013 to 2015. The grain yield increased with P application but was not further enhanced when P rates exceeded 50 kg/ha. As P application increased, the protein concentration in grain and standard flour and the viscosity of standard flour decreased. Phosphorus and phytic acid (PA) concentrations in grain and flours increased and then plateaued, whereas Zn concentration decreased and then plateaued as P application increased from 0 to 100 kg/ha. Estimated Zn bioavailability in grain and flours decreased as P application increased from 0 to 100 kg/ha and then plateaued. Estimated Zn bioavailability was greater in standard flour, bread flour, and refined flour than in grain or coarse flour. Phosphorus supply in the intensive cropping of wheat can be optimized to simultaneously obtain high grain yields, high grain and flour protein contents, and high Zn bioavailability.

  19. Three-year growth response of young Douglas-fir to nitrogen, calcium, phosphorus, and blended fertilizers in Oregon and Washington

    USGS Publications Warehouse

    Mainwaring, Douglas B.; Maguire, Douglas A.; Perakis, Steven S.

    2014-01-01

    Studies of nutrient limitation in Douglas-fir forests of the Pacific Northwest focus predominantly on nitrogen, yet many stands demonstrate negligible or even negative growth response to nitrogen fertilization. To understand what nutrients other than nitrogen may limit forest productivity in this region, we tested six fertilizer treatments for their ability to increase stem volume growth response of dominant and co-dominant trees in young Douglas-fir plantations across a range of foliar and soil chemistry in western Oregon and Washington. We evaluated responses to single applications of urea, lime, calcium chloride, or monosodium phosphate at 16 sites, and to two site-specific nutrients blends at 12 of these sites. Across sites, the average stem volume growth increased marginally with urea, lime, and phosphorus fertilization. Fertilization responses generally aligned with plant and soil indicators of nutrient limitation. Response to nitrogen addition was greatest on soils with low total nitrogen and high exchangeable calcium concentrations. Responses to lime and calcium chloride additions were greatest at sites with low foliar calcium and low soil pH. Response to phosphorus addition was greatest on sites with low foliar phosphorus and high soil pH. Blended fertilizers yielded only marginal growth increases at one site, with no consistent effect across sites. Overall, our results highlight that calcium and phosphorus can be important growth limiting nutrients on specific sites in nitrogen-rich Douglas-fir forests of the Pacific Northwest.

  20. Both Phosphorus Fertilizers and Indigenous Bacteria Enhance Arsenic Release into Groundwater in Arsenic-Contaminated Aquifers.

    PubMed

    Lin, Tzu-Yu; Wei, Chia-Cheng; Huang, Chi-Wei; Chang, Chun-Han; Hsu, Fu-Lan; Liao, Vivian Hsiu-Chuan

    2016-03-23

    Arsenic (As) is a human carcinogen, and arsenic contamination in groundwater is a worldwide public health concern. Arsenic-affected areas are found in many places but are reported mostly in agricultural farmlands, yet the interaction of fertilizers, microorganisms, and arsenic mobilization in arsenic-contaminated aquifers remains uncharacterized. This study investigates the effects of fertilizers and bacteria on the mobilization of arsenic in two arsenic-contaminated aquifers. We performed microcosm experiments using arsenic-contaminated sediments and amended with inorganic nitrogenous or phosphorus fertilizers for 1 and 4 months under aerobic and anaerobic conditions. The results show that microcosms amended with 100 mg/L phosphorus fertilizers (dipotassium phosphate), but not nitrogenous fertilizers (ammonium sulfate), significantly increase aqueous As(III) release in arsenic-contaminated sediments under anaerobic condition. We also show that concentrations of iron, manganese, potassium, sodium, calcium, and magnesium are increased in the aqueous phase and that the addition of dipotassium phosphate causes a further increase in aqueous iron, potassium, and sodium, suggesting that multiple metal elements may take part in the arsenic release process. Furthermore, microbial analysis indicates that the dominant microbial phylum is shifted from α-proteobacteria to β- and γ-proteobacteria when the As(III) is increased and phosphate is added in the aquifer. Our results provide evidence that both phosphorus fertilizers and microorganisms can mediate the release of arsenic to groundwater in arsenic-contaminated sediments under anaerobic condition. Our study suggests that agricultural activity such as the use of fertilizers and monitoring phosphate concentration in groundwater should be taken into consideration for the management of arsenic in groundwater.

  1. Attributes for MRB_E2RF1 Catchments by Major River Basins in the Conterminous United States: Nutrient Application (Phosphorus and Nitrogen) for Fertilizer and Manure Applied to Crops (Cropsplit), 2002

    USGS Publications Warehouse

    Wieczorek, Michael; LaMotte, Andrew E.

    2010-01-01

    This tabular data set represents the estimated amount of phosphorus and nitrogen fertilizers applied to selected crops for the year 2002, compiled for every MRB_E2RF1 catchment of Major River Basins (MRBs, Crawford and others, 2006). The source data set is based on 2002 fertilizer data (Ruddy and others, 2006) and tabulated by crop type per county (Alexander and others, 2007). The MRB_E2RF1 catchments are based on a modified version of the U.S. Environmental Protection Agency's (USEPA) ERF1_2 and include enhancements to support national and regional-scale surface-water quality modeling (Nolan and others, 2002; Brakebill and others, 2011). Data were compiled for MRB_E2RF1 catchments for the conterminous United States covering New England and Mid-Atlantic (MRB1), South Atlantic-Gulf and Tennessee (MRB2), the Great Lakes, Ohio, Upper Mississippi, and Souris-Red-Rainy (MRB3), the Missouri (MRB4), the Lower Mississippi, Arkansas-White-Red, and Texas-Gulf (MRB5), the Rio Grande, Colorado, and the Great basin (MRB6), the Pacific Northwest (MRB7) river basins, and California (MRB8).

  2. County-level estimates of nitrogen and phosphorus fertilizer use in the United States, 1945 to 1985

    USGS Publications Warehouse

    Alexander, Richard B.; Smith, Richard A.

    1990-01-01

    Estimates of nitrogen and phosphorus fertilizer use were made for counties in the United States for the period 1945 to 1985. County fertilizer use estimates were obtained through the disaggregation of state-level fertilizer use in proportion to the amount of state fertilized acreage reported to exist in counties. Numerical values of nitrogen and phosphorus fertilizer use by county are not presented in the text of this report because of the size of the data file, but are available in machine-readable form upon request. Graphical summaries of national, state, and county nitrogen and phosphorus fertilizer use are presented to briefly describe the spatial and temporal variability that exist in the data.

  3. Long-term phosphorus fertilization impacts soil fungal and bacterial diversity but not AM fungal community in alfalfa.

    PubMed

    Beauregard, M S; Hamel, C; Atul-Nayyar; St-Arnaud, M

    2010-02-01

    Soil function may be affected by cropping practices impacting the soil microbial community. The effect of different phosphorus (P) fertilization rates (0, 20, or 40 kg P(2)O(5) ha(-1)) on soil microbial diversity was studied in 8-year-old alfalfa monocultures. The hypothesis that P fertilization modifies soil microbial community was tested using denaturing gradient gel electrophoresis and phospholipids fatty acid (PLFA) profiling to describe soil bacteria, fungi, and arbuscular mycorrhizal (AM) fungi diversity. Soil parameters related to fertility (soil phosphate flux, soluble P, moisture, phosphatase and dehydrogenase assays, and carbon and nitrogen content of the light fraction of soil organic matter) were also monitored and related to soil microbial ribotype profiles. Change in soil P fertility with the application of fertilizer had no effect on crop yield in 8 years, but on the year of this study was associated with shifts in the composition of fungal and bacterial communities without affecting their richness, as evidenced by the absence of effect on the average number of ribotypes detected. However, variation in soil P level created by a history of differential fertilization did not significantly influence AM fungi ribotype assemblages nor AM fungi biomass measured with the PLFA 16:1omega5. Fertilization increased P flux and soil soluble P level but reduced soil moisture and soil microbial activity, as revealed by dehydrogenase assay. Results suggest that soil P fertility management could influence soil processes involving soil microorganisms. Seasonal variations were also recorded in microbial activity, soil soluble P level as well as in the abundance of specific bacterial and fungal PLFA indicators of soil microbial biomass.

  4. Estimating Phosphorus Loss in Runoff from Manure and Fertilizer for a Phosphorus Loss Quantification Tool

    USDA-ARS?s Scientific Manuscript database

    Non-point source pollution of fresh waters by phosphorus (P) is a concern because it contributes to accelerated eutrophication. Qualitative P Indexes that estimate the risk of field-scale P loss have been developed in the USA and Europe. However, given the state of the science concerning agricultura...

  5. [Effects of applying different kind fertilizers on enzyme activities related to carbon, nitrogen, and phosphorus cycles in reddish paddy soil].

    PubMed

    Xu, Li-Li; Wang, Qiu-Bing; Zhang, Xin-Yu; Sun, Xiao-Min; Dai, Xiao-Qin; Yang, Feng-Ting; Bu, Jin-Feng; Wang, Hui-min

    2013-04-01

    Based on the long-term fixed position experimental data from Qianyanzhou Ecological Experiment Station, Chinese Academy of Sciences in 1998, this paper analyzed the effects of applying different kind fertilizers (straw, ST; pig manure, OM; and chemical fertilizer, NPK) on the nutrients (C, N, and P) status and the activities of related enzymes ( beta-1,4-glucosidase, betaG; beta-1,4-N-acetylglucosaminidase, NAG; L-leucine aminopeptidase, LAP; and acid phosphatase, AP) in reddish paddy soil. With the application of OM, the activities of soil betaG, NAG, and LAP increased significantly, as compared with other treatments, and were 1.4, 2. 6, and 1.9 times higher than the control (CK) , respectively. Applying OM also improved the ratio of soil organic carbon to total nitrogen (C/N), but decreased the soil betaG/(NAG+LAP) ratio, suggesting that pig manure could benefit the degradation of soil cellulose and the accumulation of soil organic carbon. Applying NPK increased the activities of soil betaG, NAG, and LAP, but decreased the AP activity, with a decrement of 34% as compared with CK. Under the application of NPK, the soilbetaG/AP and (NAG+ LAP)/AP ratios increased, but the ratios of soil organic carbon to total phosphorus (C/P) and of soil total nitrogen to total phosphorus (N/P) decreased, indicating that chemical fertilizers could induce the accumulation of soil inorganic phosphorus, and inhibit the microbial functions of degrading polysaccharides and phosphate phospholipids.

  6. Use of dolomite phosphate rock (DPR) fertilizers to reduce phosphorus leaching from sandy soil.

    PubMed

    Chen, G C; He, Z L; Stoffella, P J; Yang, X E; Yu, S; Calvert, D

    2006-01-01

    There is increasing concern over P leaching from sandy soils applied with water-soluble P fertilizers. Laboratory column leaching experiments were conducted to evaluate P leaching from a typical acidic sandy soil in Florida amended with DPR fertilizers developed from dolomite phosphate rock (DPR) and N-Viro soil. Ten leaching events were carried out at an interval of 7 days, with a total leaching volume of 1,183 mm equivalent to the mean annual rainfall of this region during the period of 2001-2003. Leachates were collected and analyzed for total P and inorganic P. Phosphorus in the leachate was dominantly reactive, accounting for 67.7-99.9% of total P leached. Phosphorus leaching loss mainly occurred in the first three leaching events, accounting for 62.0-98.8% of the total P leached over the whole period. The percentage of P leached (in the total P added) from the soil amended with water-soluble P fertilizer was higher than those receiving the DPR fertilizers. The former was up to 96.6%, whereas the latter ranged from 0.3% to 3.8%. These results indicate that the use of N-Viro-based DPR fertilizers can reduce P leaching from sandy soils.

  7. Estimating phosphorus loss in runoff from manure and fertilizer for a phosphorus loss quantification tool.

    PubMed

    Vadas, P A; Good, L W; Moore, P A; Widman, N

    2009-01-01

    Nonpoint-source pollution of fresh waters by P is a concern because it contributes to accelerated eutrophication. Given the state of the science concerning agricultural P transport, a simple tool to quantify annual, field-scale P loss is a realistic goal. We developed new methods to predict annual dissolved P loss in runoff from surface-applied manures and fertilizers and validated the methods with data from 21 published field studies. We incorporated these manure and fertilizer P runoff loss methods into an annual, field-scale P loss quantification tool that estimates dissolved and particulate P loss in runoff from soil, manure, fertilizer, and eroded sediment. We validated the P loss tool using independent data from 28 studies that monitored P loss in runoff from a variety of agricultural land uses for at least 1 yr. Results demonstrated (i) that our new methods to estimate P loss from surface manure and fertilizer are an improvement over methods used in existing Indexes, and (ii) that it was possible to reliably quantify annual dissolved, sediment, and total P loss in runoff using relatively simple methods and readily available inputs. Thus, a P loss quantification tool that does not require greater degrees of complexity or input data than existing P Indexes could accurately predict P loss across a variety of management and fertilization practices, soil types, climates, and geographic locations. However, estimates of runoff and erosion are still needed that are accurate to a level appropriate for the intended use of the quantification tool.

  8. Long-term phosphorus fertility in wastewater-irrigated cropland.

    PubMed

    Jaiswal, D; Elliott, H A

    2011-01-01

    Land treatment of municipal wastewater effluent is a proven method for augmenting freshwater resources and avoiding direct nutrient discharges to surface waters. We assessed changes in soil test phosphorus (P) of the Ap horizon of cropped fields continuously irrigated for 26 yr with secondary effluent from the Penn State University wastewater treatment plant. For annual P additions averaging 97 kg P ha(-1), Mehlich-3 P (M3P) response in the 0- to 20-cm surface soil (initially < 20 mg kg(-1)) was represented by two lines. For the first 12 yr of irrigation, soil test P increased, with 14.5 kg P ha(-1) needed to increase M3P by 1 mg P kg(-1). After the initial buildup, M3P maintained a quasi-steady-state value of approximately 110 mg kg(-1). Over time, the surface soil equilibrium P concentration at zero sorption increased markedly (from < 1 to 5.5 mg P L(-1)), and extractable aluminum (Al) decreased significantly (P < 0.001). Speciation modeling using Visual MINTEQ suggests complexation of Al by dissolved organic carbon at site pH conditions. Loss of Al from the surface layer lowered its P-sorbing capacity, causing added effluent-P to move into the subsoil. Results suggest that current management practices can continue for many years without exceeding the surface soil M3P environmental threshold (200 mg kg(-1)) used in state P-based nutrient policies.

  9. [Effects of nitrogen, phosphorus and potassium fertilizers on the yield, quality and nutrient uptake of Pulsatilla cernua].

    PubMed

    Wan, Run-lan; Li, Hai-yan; Zhang, Wu-qu; Piao, Zhong-yun

    2013-11-01

    To study the effects of nitrogen (N), phosphorus (P2O5) and potassium (K2O) fertilizers on the growth, yield total saponins content and nutrient absorption of Pulsatilla cernua and provide a theoretical basis for good agriculture practice. Field plot experiments was conducted, based on the D-saturation optimal design with three factors of nitrogen, phosphorus and potassium. Samples collected periodically were used for determination the contents of nutrient and total saponins, and for measurement of yield and agronomic characters. Nutrient contents in Pulsatilla cernua varied with growth stage and part under the same growth stage. Nutrient contents in aerial part were higher than that in root, while the proportion of nutritional absorption from seedling stage to the middle growth stage was larger than that at the late growth stage. Yield and total saponins content of Pulsatilla cernua were significantly influenced by the N1P2O5 and K2O applications, among three factors, N had the greatest effects, the next was K2O and P5O2. Pulsatilla cerntua under field cultivation should be fertilized properly, top-dressing with these fertilizers during the early growth stage and increasing the proportion of potassium. According to total saponin production of Pulsatilla cernua, the optimum fertilization model for high yield and good quality is 180 kg/hm2 of N, 79.74 kg/hm2 of P2O5, and 225 kg/hm2 of K20, with a N : P2O : K2O ratio of approximately 2.3 : 1 : 2.8.

  10. [Changes of crop yield and soil fertility under long-term application of fertilizer and recycled nutrients in manure on a black soil III. Soil nutrient budget].

    PubMed

    Liu, Hongxiang; Wang, Delu; Wang, Shouyu; Meng, Kai; Han, Xiaozeng; Zhang, Lu; Shen, Shanmin

    2002-11-01

    The nutrient budget of fertilization models under different treatments was calculated using data from a field experiment over the period of 1985-1999. The results indicated that application of nitrogen fertilizer accelerated a large deficit of soil phosphorus, and the use of nitrogen and phosphorus accelerated the deficit of potassium. The experimental data demonstrated the appearance of a large area of soil deficit of phosphorus from 1970s and of potassium from 1980s in China. Nutrient recycled in farming system improved soil nutrient budget, but could not meet the nutrient requirements from high-yield crops. The use of recycled nutrients with an appropriate use of fertilizers according to the soil fertility could produce higher crop yields, balance soil nutrient budget, and not cause surplus nutrients to emit into environment.

  11. Effect of Nitrogen and Phosphorus Fertilization on Growth of a Sweetgum Plantation Damaged by an Ice Storm

    Treesearch

    Yanfei Guo; Curtis Vanderschaaf

    2002-01-01

    In 1994, an ice storm impacted a 19-year-old sweetgum plantation (Liquidambar styraciflua L.) fertilized with nitrogen (N) and phosphorus (P) at age 4. Thirty-nine percent of the stems were broken, 55 percent were not damaged, and 6 percent were leaning. After the ice storm, differences in height and dbh among the fertilization treatments disappeared...

  12. Speciation and Distribution of Phosphorus in a Fertilized Soil: A Synchrotron-Based Investigation

    SciTech Connect

    Lombi, E.; Scheckel, K.G.; Armstrong, R.D.; Forrester, S.; Cutler, J.N.; Paterson, D.

    2008-06-09

    Phosphorus availability is often a limiting factor for crop production around the world. The efficiency of P fertilizers in calcareous soils is limited by reactions that decrease P availability; however, fluid fertilizers have recently been shown, in highly calcareous soils of southern Australia, to be more efficient for crop (wheat [Triticum aestivum L.]) P nutrition than granular products. To elucidate the mechanisms responsible for this differential response, an isotopic dilution technique (E value) coupled with a synchrotron-based spectroscopic investigation were used to assess the reaction products of a granular (monoammonium phosphate, MAP) and a fluid P (technical-grade monoammonium phosphate, TG-MAP) fertilizer in a highly calcareous soil. The isotopic exchangeability of P from the fluid fertilizer, measured with the E-value technique, was higher than that of the granular product. The spatially resolved spectroscopic investigation, performed using nano x-ray fluorescence and nano x-ray absorption near-edge structure (n-XANES), showed that P is heterogeneously distributed in soil and that, at least in this highly calcareous soil, it is invariably associated with Ca rather than Fe at the nanoscale. 'Bulk' XANES spectroscopy revealed that, in the soil surrounding fertilizer granules, P precipitation in the form of octacalcium phosphate and apatite-like compounds is the dominant mechanism responsible for decreases in P exchangeability. This process was less prominent when the fluid P fertilizer was applied to the soil.

  13. [Effects of phosphorus fertilization on leaf area index, biomass accumulation and allocation, and phosphorus use efficiency of intercropped maize].

    PubMed

    Chen, Yuan-Xue; Li, Han-Han; Zhou, Tao; Chen, Xin-Ping; Huang, Wei; Liu, Jing; Zhang, Chao-Chun; Xu, Kai-Wei

    2013-10-01

    A 2-year field experiment was conducted in 2011 and 2012 to investigate the effects of phosphorus (P) fertilization on the leaf area index (LAI), dry matter accumulation (DMA), and P use efficiency (PUE) of maize in wheat/maize/soybean intercropping system. Five P fertilization rates were installed, i.e., 0, 45, 90, 135, and 180 kg P2O5 x hm(-2) for wheat, marked as WP0, WP1, WP2, WP3, and WP4, respectively, and 0, 37.5, 75, 112.5, and 150 kg P2O5 x hm(-2) for maize, marked as MP0, MP1, MP2, MP3, and MP4, respectively. During the coexisted growth periods of wheat and maize, P fertilization increased the LAI, leaf area duration (LAD), and stem and leaf DMA of maize significantly. After the jointing stage of maize, the maize LAI, LAD, DMA, and crop growth rate (CGR) all decreased after an initial increase with the increasing P rate, with the maximum growth in treatment MP2 or MP3. During the reproductive stage of maize, the maize dry mass translocation from vegetative to reproductive organ increased with increasing P fertilization rate, and the grain yield of both maize and whole cropping system increased firstly and decreased then, with the maximum grain yield of maize and whole cropping system being 6588 and 11955 kg x hm(-2) in treatment P3, respectively. The P apparent recovery efficiency of maize was the highest (26.3%) in treatment MP2, being 82.6%, 38.4%, and 152.9% higher than that in MP1 (14.4%), MP3 (19.0%), and MP4 (10.4%), respectively. In sum, for the wheat/maize/soybean intercropping system, applying appropriate amount of P fertilizer could promote maize growth, alleviate the impact of wheat on maize, and consequently, increase the P apparent recovery efficiency of maize. In this study, the appropriate P fertilization rate was 75-112.5 kg P2O5 x hm(-2).

  14. Effect of fertilization in interaction with glyphosate on the availability of phosphorus in rice soils of Corrientes - Argentina

    NASA Astrophysics Data System (ADS)

    Micaela biassoni, Maria; Rey Montoya, Tania; Herber, Luciana; De Geronimo, Eduardo; Aparicio, Virginia

    2017-04-01

    The rice crop (Oryza sativa) in the province of Corrientes, Argentina, represents 46% of the national production. To obtain potential yields, adequate practices of fertilization, pesticides application, and management of the irrigation system are needed. Nitrogen (N), phosphorus (P) and potassium (K) are key minerals in rice production. In Argentina, P deficiency is a common problem in rice crops and represents a main yield limiting factor, therefore P fertilization is a regular practice. On the other hand, glyphosate is widely used to control weeds. This molecule is rapidly inactivated in soil due to the adsorption to clay particles and organic matter, however, is excluded from adsorption sites by inorganic phosphates. Meanwhile, both practices of fertilization and herbicide application can interact and influence the phosphate nutrition of rice plants. The objective of this work was to evaluate the effect of different doses of fertilizer in interaction with glyphosate on the availability of soil phosphorus. A field experiment following a completely randomized design was carried out with four replicates. We evaluated four levels of fertilization (0-18-40): Control: 0 kg ha-1, Dose 1: 120 kg ha-1, Dose 2: 150 kg ha-1, Dose 3: 180 kg ha-1; and two levels of Glyphosate: with (Gly) or without (no-Gly) application. Soil sampling was carried out at three moments along crop season: vegetative stage before irrigation (V4), in floral primordial differentiation (DPF) with flooded soil, and at physiological maturity (MF). The method used for the determination of P was Bray & Kurtz I. We found a negative relation and non-significant interaction (p <0.05) between P and Gly contents in soil along crop season. Soil P was higher in Gly treatments compared with ones without application of the herbicide. Indeed, Dose 1 showed higher P contents in Gly during the three sampling stages of the crop, whereas for Doses 2 and Doses 3 the highest contents of P were found in the treatments

  15. 40 CFR 422.10 - Applicability; description of the phosphorus production subcategory.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... phosphorus production subcategory. 422.10 Section 422.10 Protection of Environment ENVIRONMENTAL PROTECTION... Phosphorus Production Subcategory § 422.10 Applicability; description of the phosphorus production... production of phosphorus and ferrophosphorus by smelting of phosphate ore....

  16. 40 CFR 422.10 - Applicability; description of the phosphorus production subcategory.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... phosphorus production subcategory. 422.10 Section 422.10 Protection of Environment ENVIRONMENTAL PROTECTION... Phosphorus Production Subcategory § 422.10 Applicability; description of the phosphorus production... production of phosphorus and ferrophosphorus by smelting of phosphate ore....

  17. 40 CFR 422.10 - Applicability; description of the phosphorus production subcategory.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... phosphorus production subcategory. 422.10 Section 422.10 Protection of Environment ENVIRONMENTAL PROTECTION... Phosphorus Production Subcategory § 422.10 Applicability; description of the phosphorus production... production of phosphorus and ferrophosphorus by smelting of phosphate ore....

  18. 40 CFR 422.10 - Applicability; description of the phosphorus production subcategory.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... phosphorus production subcategory. 422.10 Section 422.10 Protection of Environment ENVIRONMENTAL PROTECTION... Phosphorus Production Subcategory § 422.10 Applicability; description of the phosphorus production... production of phosphorus and ferrophosphorus by smelting of phosphate ore....

  19. 40 CFR 422.10 - Applicability; description of the phosphorus production subcategory.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... phosphorus production subcategory. 422.10 Section 422.10 Protection of Environment ENVIRONMENTAL PROTECTION... Phosphorus Production Subcategory § 422.10 Applicability; description of the phosphorus production... production of phosphorus and ferrophosphorus by smelting of phosphate ore....

  20. Field demonstration of reduction of lead availability in soil and cabbage (Brassica Chinensis L.) contaminated by mining tailings using phosphorus fertilizers*

    PubMed Central

    Xie, Zheng-miao; Wang, Bi-ling; Sun, Ye-fang; Li, Jing

    2006-01-01

    A field demonstration of reduction of lead availability in a soil and cabbage (Brassica Chinensis L.) contaminated by mining tailings, located in Shaoxing, China was carried out to evaluate the effects of applications of phosphorus fertilizers on Pb fractionation and Pb phytoavailability in the soil. It was found that the addition of all three P fertilizers including single super phosphate (SSP), phosphate rock (PR), and calcium magnesium phosphate (CMP) significantly decreased the percentage of water-soluble and exchangeable (WE) soil Pb and then reduced the uptake of Pb, Cd, and Zn by the cabbage compared to the control (CK). The results showed that the level of 300 g P/m2 soil was the most cost-effective application rate of P fertilizers for reducing Pb availability at the first stage of remediation, and that at this P level, the effect of WE fraction of Pb in the soil decreased by three phosphorus fertilizers followed the order: CMP (79%)>SSP (41%)>PR (23%); Effectiveness on the reduction of Pb uptake by cabbage was in the order: CMP (53%)>SSP (41%)>PR (30%). Therefore our field trial demonstrated that it was effective and feasible to reduce Pb availability in soil and cabbage contaminated by mining tailings using P fertilizers in China and PR would be a most cost-effective amendment. PMID:16365925

  1. Drivers of Phosphorus Uptake by Barley Following Secondary Resource Application.

    PubMed

    Brod, Eva; Øgaard, Anne Falk; Krogstad, Tore; Haraldsen, Trond Knapp; Frossard, Emmanuel; Oberson, Astrid

    2016-01-01

    Minable rock phosphate is a finite resource. Replacing mineral phosphorus (P) fertilizer with P-rich secondary resources is one way to manage P more efficiently, but the importance of physicochemical and microbial soil processes induced by secondary resources for plant P uptake is still poorly understood. Using radioactive-labeling techniques, the fertilization effects of dairy manure, fish sludge, meat bone meal, and wood ash were studied as P uptake by barley after 44 days and compared with those of water-soluble mineral P (MinP) and an unfertilized control (NoP) in a pot experiment with an agricultural soil containing little available P at two soil pH levels, approximately pH 5.3 (unlimed soil) and pH 6.2 (limed soil). In a parallel incubation experiment, the effects of the secondary resources on physicochemical and microbial soil processes were studied. The results showed that the relative agronomic efficiency compared with MinP decreased in the order: manure ≥fish sludge ≥wood ash ≥meat bone meal. The solubility of inorganic P in secondary resources was the main driver for P uptake by barley (Hordeum vulgare). The effects of secondary resources on physicochemical and microbial soil processes were of little overall importance. Application of organic carbon with manure resulted in microbial P immobilization and decreased uptake by barley of P derived from the soil. On both soils, P uptake by barley was best explained by a positive linear relationship with the H2O + NaHCO3-soluble inorganic P fraction in fertilizers or by a linear negative relationship with the HCl-soluble inorganic P fraction in fertilizers.

  2. Drivers of Phosphorus Uptake by Barley Following Secondary Resource Application

    PubMed Central

    Brod, Eva; Øgaard, Anne Falk; Krogstad, Tore; Haraldsen, Trond Knapp; Frossard, Emmanuel; Oberson, Astrid

    2016-01-01

    Minable rock phosphate is a finite resource. Replacing mineral phosphorus (P) fertilizer with P-rich secondary resources is one way to manage P more efficiently, but the importance of physicochemical and microbial soil processes induced by secondary resources for plant P uptake is still poorly understood. Using radioactive-labeling techniques, the fertilization effects of dairy manure, fish sludge, meat bone meal, and wood ash were studied as P uptake by barley after 44 days and compared with those of water-soluble mineral P (MinP) and an unfertilized control (NoP) in a pot experiment with an agricultural soil containing little available P at two soil pH levels, approximately pH 5.3 (unlimed soil) and pH 6.2 (limed soil). In a parallel incubation experiment, the effects of the secondary resources on physicochemical and microbial soil processes were studied. The results showed that the relative agronomic efficiency compared with MinP decreased in the order: manure ≥fish sludge ≥wood ash ≥meat bone meal. The solubility of inorganic P in secondary resources was the main driver for P uptake by barley (Hordeum vulgare). The effects of secondary resources on physicochemical and microbial soil processes were of little overall importance. Application of organic carbon with manure resulted in microbial P immobilization and decreased uptake by barley of P derived from the soil. On both soils, P uptake by barley was best explained by a positive linear relationship with the H2O + NaHCO3-soluble inorganic P fraction in fertilizers or by a linear negative relationship with the HCl-soluble inorganic P fraction in fertilizers. PMID:27243015

  3. Phosphorus recovery from pig manure solids prior to land application.

    PubMed

    Szögi, Ariel A; Vanotti, Matias B; Hunt, Patrick G

    2015-07-01

    Land disposal of pig manure is an environmental concern due to an imbalance of the nitrogen to phosphorus (N:P) ratio for crop production, leading to excess phosphorus (P) in soils and potential risks of water pollution. A process called "quick wash" was investigated for its feasibility to extract and recover P from pig manure solids. This process consists of selective dissolution of P from solid manure into a liquid extract using mineral or organic acid solutions, and recovery of P from the liquid extract by adding lime and an organic polymer to form a P precipitate. Laboratory tests confirmed the quick wash process selectively removed and recovered up to 90% of the total (TP) from fresh pig manure solids while leaving significant amounts of nitrogen (N) in the washed manure residue. As a result of manure P extraction, the washed solid residue became environmentally safer for land application with a more balanced N:P ratio for crop production. The recovered P can be recycled and used as fertilizer for crop production while minimizing manure P losses into the environment.

  4. Selective removal of phosphorus from wastewater combined with its recovery as a solid-phase fertilizer.

    PubMed

    Sengupta, Sukalyan; Pandit, Arka

    2011-05-01

    Influx of Phosphorus (P) into freshwater ecosystems is the primary cause of eutrophication which has many undesirable effects. Therefore, P discharge limits for effluents from WWTPs is becoming increasingly common, and may be as low as 10 μg/L as P. While precipitation, filtration, membrane processes, Enhanced Biological Phosphorus Removal (EBPR) and Physico-chemical (adsorption based) methods have been successfully used to effect P removal, only adsorption has the potential to recover the P as a usable fertilizer. This benefit will gain importance with time since P is a non-renewable resource and is mined from P-rich rocks. This article provides details of a process where a polymeric anion exchanger is impregnated with iron oxide nanoparticles to effectuate selective P removal from wastewater and its recovery as a solid-phase fertilizer. Three such hybrid materials were studied: HAIX, DOW-HFO, & DOW-HFO-Cu. Each of these materials combines the durability, robustness, and ease-of-use of a polymeric ion-exchanger resin with the high sorption affinity of Hydrated Ferric Oxide (HFO) toward phosphate. Laboratory experiments demonstrate that each of the three materials studies can selectively remove phosphate from the background of competing anions and phosphorus can be recovered as a solid-phase fertilizer upon efficient regeneration of the exchanger and addition of a calcium or magnesium salt in equimolar (Ca/P or Mg/P) ratio. Also, there is no leaching of Fe or Cu from any of these hybrid exchangers. Copyright © 2011 Elsevier Ltd. All rights reserved.

  5. [Effects of different long-term fertilization on the activities of enzymes related to carbon, nitrogen, and phosphorus cycles in a red soil].

    PubMed

    Fan, Miao-zhen; Yin, Chang; Fan, Fen-liang; Song, A-lin; Wang, Bo-ren; Li, Dong-chu; Liang, Yong-chao

    2015-03-01

    Using a microplate fluorimetric assay method, five fertilization treatments, i.e. no-fertilizer control (CK) , sole application of nitrogen (N), balanced application of nitrogen, phosphorus, and potassium fertilizer (NPK), application of pig manure (M), and combination of pig manure with balanced chemical fertilizer (MNPK) were selected to investigate the effects of different long-term fertilization regimes on the activity of five enzymes (β-1, 4-glucosidase, βG; cellobiohydrolase, CBH; β-1, 4-xylosidase, βX; β-1, 4-N-acetylglucosaminidase, NAG; acid phosphatase, AP) in a red soil sampled from Qiyang, Hunnan Province. The results showed that compared with CK treatment, N treatment had no impact on βG, βX, CBH, and NAG activities but reduced AP activity, while NPK, M and MNPK treatments increased the activities of all the five enzymes. Correlation analysis indicated that all the five enzyme activities were positively correlated with the content of nitrate (r=0.465-0.733) , the content of available phosphorus (r=0.612-0.947) , soil respiration (r=0.781-0.949) and crop yield (r=0.735-0.960), while βG, CBH and AP were positively correlated with pH (r= 0.707-0.809), only AP was significantly correlated with dissolvable organic carbon (r = -0.480). These results suggested that the activities of the measured enzymes could be used as indicators of red soil fertility under different fertilization regimes, but the five enzymes tested provided limited information on the degree of acidification induced by application of mineral nitrogen.

  6. Determination of phosphorus fertilizer soil reactions by Raman and synchrotron infrared microspectroscopy.

    PubMed

    Vogel, Christian; Adam, Christian; Sekine, Ryo; Schiller, Tara; Lipiec, Ewelina; McNaughton, Don

    2013-10-01

    The reaction mechanisms of phosphate-bearing mineral phases from sewage sludge ash-based fertilizers in soil were determined by Raman and synchrotron infrared microspectroscopy. Different reaction mechanisms in wet soil were found for calcium and magnesium (pyro-) phosphates. Calcium orthophosphates were converted over time to hydroxyapatite. Conversely, different magnesium phosphates were transformed to trimagnesium phosphate. Since the magnesium phosphates are unable to form an apatite structure, the plant-available phosphorus remains in the soil, leading to better growth results observed in agricultural pot experiments. The pyrophosphates also reacted very differently. Calcium pyrophosphate is unreactive in soil. In contrast, magnesium pyrophosphate quickly formed plant-available dimagnesium phosphate.

  7. Effects of nitrogen and phosphorus fertilization in a lowland evergreen rainforest.

    PubMed Central

    Mirmanto, E; Proctor, J; Green, J; Nagy, L; Suriantata

    1999-01-01

    A nutrient addition experiment was set up in August 1993 in a species-rich primary lowland dipterocarp forest in Barito Ulu, Central Kalimantan, Indonesia. The following treatments were applied: control, +N, +P and +NP. There were five blocks of four 50 m x 50 m plots with a separate treatment for each plot. Fine litterfall was measured on all the plots from 1 May 1994 for 12 months. Litterfall mass and phosphorus concentrations were significantly higher in all the fertilizer treatments compared with the controls. All trees (> or = 10 cm dbh) were measured in August 1993 and in August 1998, and there was no significant girth increment response to fertilization in dipterocarps or non-dipterocarps. Dipterocarps of the red meranti group showed a doubling of girth increment in the +NP treatment, however, the difference from the control fell short of significance. PMID:11605625

  8. Effects of nitrogen and phosphorus fertilization in a lowland evergreen rainforest.

    PubMed

    Mirmanto, E; Proctor, J; Green, J; Nagy, L; Suriantata

    1999-11-29

    A nutrient addition experiment was set up in August 1993 in a species-rich primary lowland dipterocarp forest in Barito Ulu, Central Kalimantan, Indonesia. The following treatments were applied: control, +N, +P and +NP. There were five blocks of four 50 m x 50 m plots with a separate treatment for each plot. Fine litterfall was measured on all the plots from 1 May 1994 for 12 months. Litterfall mass and phosphorus concentrations were significantly higher in all the fertilizer treatments compared with the controls. All trees (> or = 10 cm dbh) were measured in August 1993 and in August 1998, and there was no significant girth increment response to fertilization in dipterocarps or non-dipterocarps. Dipterocarps of the red meranti group showed a doubling of girth increment in the +NP treatment, however, the difference from the control fell short of significance.

  9. Fertilization strategies affect phosphorus forms and release from soils and suspended solids.

    PubMed

    Borda, Teresa; Celi, Luisella; Bünemann, Else K; Oberson, Astrid; Frossard, Emmanuel; Barberis, Elisabetta

    2014-05-01

    The release of phosphorus from soils in surface runoff is strongly influenced by fertilizer inputs and contributes significantly to agriculturally driven eutrophication. This work evaluated the forms and availability of P in bulk soils and suspended solids (SS) produced by a water dispersion test that mimics the action of rain events and/or irrigation. This test was applied on soils cultivated with maize and fertilized with mineral N, P, and K (NPK); mineral P and K (PK); bovine slurry and P (S); or manure and P (M) for 15 yr. The P surplus in the treated soils was in the order NPK < PK < S < M. Forms and availability of P were analyzed in bulk soils, and their respective SS (<20 μm) by the Hedley sequential P fractionation method and the isotopic exchange kinetics. The labile forms increased according to P surplus and represented up to 15 and 25% of total P in the bulk soil and in the SS, respectively, indicating a selective enrichment of the more labile P forms in the erodible particles. Exchangeability of P from SS was rapid and intense as a result of a shift of P solution equilibrium at the increased water/solid ratio and a larger accumulation of more labile P in the detached particles than in the bulk soil. Phosphorus saturation of iron and aluminum oxides and the enrichment of fertilizer-derived P salts in the suspended solids control P forms and exchangeability for mineral fertilizer treatments, whereas in M soil carbon content assumed a key role. Copyright © by the American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America, Inc.

  10. Alfalfa (Medicago sativa L.) seed yield in relation to phosphorus fertilization and honeybee pollination.

    PubMed

    Al-Kahtani, Saad Naser; Taha, El-Kazafy Abdou; Al-Abdulsalam, Mohammed

    2017-07-01

    This investigation was conducted at the Agricultural and Veterinary Training and Research Station, King Faisal University, Al-Ahsa, Saudi Arabia, during the alfalfa growing season in 2014. The study aimed to evaluate the impact of phosphorus fertilization and honeybee pollination on alfalfa seed production. The experiment was divided into 9 treatments of open pollination, honeybee pollination, and non-pollination with three different levels (0, 300 or 600 kg P2O5/ha/year) of triple super phosphate. All vegetative growth attributes of Hassawi alfalfa were significantly higher in the non-insect pollination plots, while the yield and yield component traits were significantly higher with either open pollination or honeybee pollination in parallel with the increasing level of phosphorus fertilizer up to 600 kg P2O5/ha/year in light salt-affected loamy sand soils. There was no seed yield in Hassawi alfalfa without insect pollination. Therefore, placing honeybee colonies near the fields of Hassawi alfalfa and adding 600 kg P2O5/ha/year can increase seed production.

  11. Greenhouse evaluation and environmental impact assessment of different urine-derived struvite fertilizers as phosphorus sources for plants.

    PubMed

    Antonini, Samantha; Arias, Maria Alejandra; Eichert, Thomas; Clemens, Joachim

    2012-11-01

    A selection of six urine-derived struvite fertilizers generated by innovative precipitation technologies was assessed for their quality and their effectiveness as phosphorus sources for crops. Struvite purity was influenced by drying techniques and magnesium dosage. In a greenhouse experiment, the urine fertilizers led to biomass yields and phosphorus uptakes comparable to or higher than those induced by a commercial mineral fertilizer. Heavy metal concentrations of the different struvite fertilizers were below the threshold limits specified by the German Fertilizer and Sewage Sludge Regulations. The computed loading rates of heavy metals to agricultural land were also below the threshold limits decreed by the Federal Soil Protection Act. Urine-derived struvite contributed less to heavy metal inputs to farmland than other recycling products or commercial mineral and organic fertilizers. When combined with other soil conditioners, urine-derived struvite is an efficient fertilizer which covers the magnesium and more than half of the phosphorus demand of crops. Copyright © 2012 Elsevier Ltd. All rights reserved.

  12. Carbon and Phosphorus in soil particulate fraction: effect of continuous agriculture, tillage and fertilization

    NASA Astrophysics Data System (ADS)

    Wyngaard, N.; Echeverrıa, H. E.; Vidaurreta, A.; Picone, L. I.; Divito, G. A.

    2012-04-01

    In Argentinean Pampas region, the practice of intensive agriculture has diminished total organic carbon (TOC) content in soil. This degradation process can impact over phosphorus (P) organic fractions associated to it, and therefore limit soil capacity to provide P through mineralization. Along this line, P content in soil particulate fraction (PF) has been proposed as an index to estimate this capacity. The aims of this work were to evaluate (1) the effect of continuous agriculture, tillage and P fertilization over TOC and P fractions content in soil and PF, and (2) the stability of P-PF as a mineralization index. To this end, a long term experiment initiated in 2001 in Balcarce, Argentina, under continuous agriculture, was analyzed. There, two tillage systems - conventional till (CT) and no till (NT) - and two fertilization treatments - nitrogen (N) and N + P (NP) - were evaluated. Phosphorus rate was 30 kg ha-1 year-1. In each plot, the following parameters were determined in 2002, 2005, 2008 and 2011: TOC, P Bray, total P (Pt), inorganic P (Pi), and organic P (Po) content in the whole soil and in the PF. Also, C supply by residues and P soil balance during the experiment were calculated, and the P sorption capacity was determined in samples from 2011. C supply was greater in CT (7% relative to NT) and in NP (14% relative to N). However, TOC in soil was not modified neither by tillage or fertilization. Even though, C in the PF decreased (3% annually) by the use of continuous agriculture. This reduction was positively associated to the one observed in other soil properties as Pt, Pi and Po in the PF. P fertilization lessened this reduction in Pt (18,9 mg kg-1 in N and 23,1 mg kg-1 in NP in 2011) and Pi (4,2 mg kg-1 in N and 6,2 mg kg-1 in NP in 2011), but not in Po. This indicates that, Po is affected by management practices and, contrary to Pt, is stable to fertilization. Therefore Po can be studied as a potential P mineralization index. The difference among P

  13. Effects of phosphorus fertilizer supplementation on antioxidant enzyme activities in tomato fruits.

    PubMed

    Ahn, Taehyun; Oke, Moustapha; Schofield, Andrew; Paliyath, Gopinadhan

    2005-03-09

    The effects of soil and foliar phosphorus supplementation on the activities and levels of superoxide dismutase (SOD), guaiacol peroxidase (POX), and ascorbate peroxidase (APX) in tomato fruits were evaluated by determining enzyme activities and isoenzyme analysis. Both protein levels and enzyme activities varied depending on the variety and season. In general, phosphorus supplementation did not alter SOD, POX, and APX activities significantly;however, some treatments showed season- and stage-specific enhancement in activities as noticed with hydrophos and seniphos supplementation. Three different SOD isozymes were observed, and these isozymes showed very similar staining intensities in response to P application and during the three developmental stages studied. Two major isozymes of POX and two different APX isozymes were observed at all the developmental stages. The results suggest that antioxidant enzyme activities may be influenced by the availability of phosphorus, but are subject to considerable variation depending on the developmental stage and the season.

  14. Variation in Yield Gap Induced by Nitrogen, Phosphorus and Potassium Fertilizer in North China Plain

    PubMed Central

    Dai, Xiaoqin; Ouyang, Zhu; Li, Yunsheng; Wang, Huimin

    2013-01-01

    A field experiment was conducted under a wheat-maize rotation system from 1990 to 2006 in North China Plain (NCP) to determine the effects of N, P and K on yield and yield gap. There were five treatments: NPK, PK, NK, NP and a control. Average wheat and maize yields were the highest in the NPK treatment, followed by those in the NP plots among all treatments. For wheat and maize yield, a significant increasing trend over time was found in the NPK-treated plots and a decreasing trend in the NK-treated plots. In the absence of N or P, wheat and maize yields were significantly lower than those in the NPK treatment. For both crops, the increasing rate of the yield gap was the highest in the P omission plots, i.e., 189.1 kg ha−1 yr−1 for wheat and 560.6 kg ha−1 yr−1 for maize. The cumulative omission of P fertilizer induced a deficit in the soil available N and extractable P concentrations for maize. The P fertilizer was more pivotal in long-term wheat and maize growth and soil fertility conservation in NCP, although the N fertilizer input was important for both crops growth. The crop response to K fertilizers was much lower than that to N or P fertilizers, but for maize, the cumulative omission of K fertilizer decreased the yield by 26% and increased the yield gap at a rate of 322.7 kg ha−1 yr−1. The soil indigenous K supply was not sufficiently high to meet maize K requirement over a long period. The proper application of K fertilizers is necessary for maize production in the region. Thus, the appropriate application of N and P fertilizers for the growth of both crops, while regularly combining K fertilizers for maize growth, is absolutely necessary for sustainable crop production in the NCP. PMID:24349204

  15. Variation in yield gap induced by nitrogen, phosphorus and potassium fertilizer in North China Plain.

    PubMed

    Dai, Xiaoqin; Ouyang, Zhu; Li, Yunsheng; Wang, Huimin

    2013-01-01

    A field experiment was conducted under a wheat-maize rotation system from 1990 to 2006 in North China Plain (NCP) to determine the effects of N, P and K on yield and yield gap. There were five treatments: NPK, PK, NK, NP and a control. Average wheat and maize yields were the highest in the NPK treatment, followed by those in the NP plots among all treatments. For wheat and maize yield, a significant increasing trend over time was found in the NPK-treated plots and a decreasing trend in the NK-treated plots. In the absence of N or P, wheat and maize yields were significantly lower than those in the NPK treatment. For both crops, the increasing rate of the yield gap was the highest in the P omission plots, i.e., 189.1 kg ha(-1) yr(-1) for wheat and 560.6 kg ha(-1) yr(-1) for maize. The cumulative omission of P fertilizer induced a deficit in the soil available N and extractable P concentrations for maize. The P fertilizer was more pivotal in long-term wheat and maize growth and soil fertility conservation in NCP, although the N fertilizer input was important for both crops growth. The crop response to K fertilizers was much lower than that to N or P fertilizers, but for maize, the cumulative omission of K fertilizer decreased the yield by 26% and increased the yield gap at a rate of 322.7 kg ha(-1) yr(-1). The soil indigenous K supply was not sufficiently high to meet maize K requirement over a long period. The proper application of K fertilizers is necessary for maize production in the region. Thus, the appropriate application of N and P fertilizers for the growth of both crops, while regularly combining K fertilizers for maize growth, is absolutely necessary for sustainable crop production in the NCP.

  16. Predicting the Soil Phosphorus Dynamics of the Ploughed Layer Under Continuous Cultivation and P Fertilization

    NASA Astrophysics Data System (ADS)

    Morel, C.; Augusto, L.; Gallet-Budynek, A. S.

    2011-12-01

    One major component of the biogeochemical cycling of phosphorus (P) in soils is the plant-available soil P. Its sound management, to minimize the loss of soil P to surface waters while ensuring enough P to sustain soil fertility, requires being able to predict the long term dynamics of plant-available soil P with the P budget. We examined the ability of a simple model to predict the change in plant-available soil P of the ploughed layer for almost 3 decades of continuous cultivation and P fertilization. We used a process-based assessment of plant-availability that considers both the concentration (Cp) of phosphate ions (Pi) in solution and the time-dependent amount (Pr) of Pi bound to the soil solid phase that can diffuse towards solution that equilibrates with time Pi in solution under the effect of a gradient of concentration. Soil analyses were performed in batch experiment on soil suspensions using a 32Pi-dilution method at steady-state. The modeling considered the difference between P inputs minus P outputs. This annual P budget was partitioned between Cp and Pr for one year. Every year the P budget was calculated as the added P to soil minus the P removed in grain yields and the P that leaves the plough layer by leaching estimated as the simulated Cp value multiplied by the annual volume of drainage water. Other fluxes that can play a role in P cycling such as atmospheric deposit, preferential, subsurface and surface flows were neglected. We analyzed archived soil samples, taken up every 3-4 years from a long-term field experiment (1972-2000) on a sandy soil under temperate climate. It comprised 4 replicates and 3 annual rates of P application as commercial superphosphate: 0, 44 and 96 kg Pha-1 yr-1. The crop was a monoculture of irrigated-maize. Grain yields and their P content were determined every year for all plots. The overall corn grain yield over almost 3 decades was: 11.6 t ha-1 yr-1 (mean P content of grain = 3.0 g P kg¬-1). The starting Cp value in

  17. Cadmium accumulations and bioavailability in soils from long-term phosphorus fertilization

    SciTech Connect

    Mulla, D.J.; Page, A.L.; Ganje, T.J.

    1980-07-01

    Soils from citrus groves that had been fertilized with the equivalent of approximately 175 kg P/ha per year (as treble superphosphate (TSP)) over a 36-year period were sampled and analyzed for total P, Cd, and Zn as well as water-soluble P and Cd. A P fertilization rate of 175 kg/ha is much higher than normal field rates, which are typically about 30 kg/ha. Concentrations of total Cd in surface soil were highly correlated (r = 0.89) with concentrations of total P. The concentrations of Cd in surface soil receiving broadcast P for 36 years averaged 1.0 ..mu..g/g, and were considerably greater than those of the controls, which showed a mean concentration of 0.07 ..mu..g/g. Phosphorus in soil saturation paste extracts ranged from 0.10 ..mu..g/ml (controls) to 8.87 ..mu..g/ml in P fertilized soils. Water-soluble saturation extract Cd ranged from 0.008 ..mu..g/ml in controls to 0.017 ..mu..g/ml in fertilized soils, and was not well correlated with water-soluble P. Cadmium levels in barley (Hordeum vulgare var. U.C. 566) grain and leaves grown in the field on soil subject to long-term heavy P fertilization were not elevated above levels in barley grown on the control soil. Swiss chard (Beta vulgaris var. cicla) was grown in the greenhouse on the above surface soils collected from the field. Although Cd levels averaging 1.6 ..mu..g/g in plant tissue were significantly elevated over those on the control soil (0.26 ..mu..g/gm), no yield depression was observed.

  18. Soil fertilization with wastewater biosolids - monitoring changes in the 'soil-fertilizer-plant' system and phosphorus recovery options.

    PubMed

    Kathijotes, Nicholas; Zlatareva, Elena; Marinova, Svetla; Petrova, Vera

    2016-09-01

    The aim of this study is to establish changes that may occur after a prolonged application of wastewater sludge treated to biosolids, in the 'soil-fertilizer-plant' system. Thirteen experimental plots with different soil types planted with experimental crops were investigated in order to evaluate the suitability of these biosolids as soil conditioners and fertilizers. The biosolids were incorporated in soil starting in 2006 in different quantities (from 6 tons per ha) for various arrays. The rate of application was calculated on the basis of imported nitrogen and was consistent with the characteristics of the sludge, soil diversity, growing crop requirements, and other factors. In 2013 (after 7 years of land use) average soil samples from the same arrays were taken and analyzed. No chemical fertilizer was applied during the experimental period. The results show that the use of sewage biosolids as a soil improver in accordance with local legislation does not pose any serious environmental risks but can maintain and improve soil fertility and crop yield. A slight increase in Cu and Zn in plants was detected, however the content of heavy metals in all soil samples was below maximum allowable limits and no signs of phytotoxicity were observed.

  19. Phosphorus Over-Fertilization and Nutrient Misbalance of Irrigated Tomato Crops in Brazil

    PubMed Central

    Nowaki, Rodrigo H. D.; Parent, Serge-Étienne; Cecílio Filho, Arthur B.; Rozane, Danilo E.; Meneses, Natália B.; da Silva, Juliana A. dos Santos; Natale, William; Parent, Léon E.

    2017-01-01

    Over the past 20 years, the use of center-pivot irrigation has increased tomato (Solanum lycopersicum L.) yields in Brazil from 42 Mg ha−1 to more than 80 Mg ha−1. In the absence of field trials to support fertilizer recommendations, substantial amounts of phosphorus (P) have been applied to crops. Additional P dosing has been based on an equilibrated nutrient P budget adjusted for low-P fertilizer-use efficiency in high-P fixing tropical soils. To document nutrient requirements and prevent over-fertilization, tissue samples and crop yield data can be acquired through crop surveys and fertilizer trials. Nevertheless, most tissue diagnostic methods pose numerical difficulties that can be avoided by using the nutrient balance concept. The objectives of this study were to model the response of irrigated tomato crops to P fertilization in low- and high-P soils and to provide tissue diagnostic models for high crop yield. Three P trials, arranged in a randomized block design with six P treatments (0–437 kg P ha−1) and three or four replications, were established on a low-P soil in 2013 and high-P soils in 2013 and 2014, totaling 66 plots in all. Together with crop yield data, 65 tissue samples were collected from tomato farms. We found no significant yield response to P fertilization, despite large differences in soil-test P (coefficient of variation, 24%). High- and low-yield classes (cutoff: 91 Mg fruits ha−1) were classified by balance models with 78–81% accuracy using logit and Cate–Nelson partitioning models. The critical Mahalanobis distance for the partition was 5.31. Tomato yields were apparently not limited by P but were limited by calcium. There was no evidence that P fertilization should differ between center-pivot-irrigated and rain-fed crops. Use of the P budget method to arrive at the P requirement for tomato crops proved to be fallacious, as several nutrients should be rebalanced in Brazilian tomato cropping systems. PMID:28580000

  20. Macronutrients use efficiency and changes in chemical properties of an oxisol as influenced by phosphorus fertilization and tropical cover crops

    USDA-ARS?s Scientific Manuscript database

    Cover crops are important components of copping systems due to their beneficial effects on soil physical, chemical and biological properties. A green house experiment was conducted to evaluate influence of phosphorus (P) fertilization on nutrient use efficiency of 14 tropical cover crops. The P leve...

  1. Phosphorus status and microbial community of paddy soil with the growth of annual ryegrass (Lolium multiflorum Lam.) under different phosphorus fertilizer treatments*

    PubMed Central

    Guo, Hai-chao; Wang, Guang-huo

    2009-01-01

    Annual ryegrass (Lolium multiflorum Lam.) was grown in paddy soil in pots under different phosphorus (P) fertilizer treatments to investigate changes of P fractions and microbial community of the soil. The treatments included Kunyang phosphate rock (KPR) applications at 50 mg P/kg (KPR50) and 250 mg P/kg (KPR250), mono-calcium phosphate (MCP) application at 50 mg P/kg (MCP50), and the control without P application. The results showed that KPR50, KPR250, and MCP50 applications significantly increased the dry weight of the ryegrass by 13%, 38%, and 55%, and increased P uptake by 19%, 135%, and 324%, respectively. Compared with MCP50, the relative effectiveness of KPR50 and KPR250 treatments in ryegrass production was about 23% and 68%, respectively. After one season of ryegrass growth, the KPR50, KPR250, and MCP50 applications increased soil-available P by 13.4%, 26.8%, and 55.2%, respectively. More than 80% of the applied KPR-P remained as HCl-P fraction in the soil. Phospholipid fatty acid (PLFA) analysis showed that the total and bacterial PLFAs were significantly higher in the soils with KPR250 and MCP50 treatments compared with KPR50 and control. The latter had no significant difference in the total or bacterial PLFAs. The KPR50, KPR250, and MCP50 treatments increased fungal PLFA by 69%, 103%, and 69%, respectively. Both the principal component analysis and the cluster analysis of the PLFA data suggest that P treatments altered the microbial community composition of the soils, and that P availability might be an important contributor to the changes in the microbial community structure during the ryegrass growth in the paddy soils. PMID:19817001

  2. Influence of phosphorus application and arbuscular mycorrhizal inoculation on growth, foliar nitrogen mobilization, and phosphorus partitioning in cowpea plants.

    PubMed

    Taffouo, Victor Désiré; Ngwene, Benard; Akoa, Amougou; Franken, Philipp

    2014-07-01

    The present study was undertaken to evaluate the effects of phosphorus (P) application and arbuscular mycorrhizal (AM) fungi (Funneliformis mosseae) on growth, foliar nitrogen mobilization, and phosphorus partitioning in cowpea (Vigna unguiculata cv. Vita-5) plants. The experiment was conducted in a greenhouse in pots containing a mixture of vermiculite and sterilized quartz sand. Mycorrhizal and non-mycorrhizal cowpea plants were supplied with three levels of soluble P (0.1 (low P), 0.5 (medium P), or 1.0 mM (high P)).Cowpea plants supplied with low P fertilization showed significantly (p < 0.05) higher root colonization than those with medium and high P fertilization at both the vegetative and pod-filling stages. P uptake and growth parameters of cowpea plants were positively influenced by mycorrhizal inoculation only in the medium P fertilization treatment at the vegetative stage. Lack of these effects in the other treatments may be linked to either a very low P supply (in the low P treatment at the vegetative stage) or the availability of optimal levels of freely diffusible P in the substrate towards the pod-filling stage due to accumulation with time. The N concentration in leaves of all cowpea plants were lower at the pod-filling stage than at the vegetative stage, presumably as a result of N mobilization from vegetative organs to the developing pods. This was however not influenced by AM fungal inoculation and may be a consequence of the lack of an improved plant P acquisition by the fungus at the pod-filling stage.

  3. Dry weight partitioning and hydraulic traits in young Pinus taeda trees fertilized with nitrogen and phosphorus in a subtropical area.

    PubMed

    Faustino, Laura I; Bulfe, Nardia M L; Pinazo, Martín A; Monteoliva, Silvia E; Graciano, Corina

    2013-03-01

    Plants of Pinus taeda L. from each of four families were fertilized with nitrogen (N), phosphorus (P) or N + P at planting. The H family had the highest growth in dry mass while the L family had the lowest growth. Measurements of plant hydraulic architecture traits were performed during the first year after planting. Stomatal conductance (gs), water potential at predawn (Ψpredawn) and at midday (Ψmidday), branch hydraulic conductivity (ks and kl) and shoot hydraulic conductance (K) were measured. One year after planting, dry weight partitioning of all aboveground organs was performed. Phosphorus fertilization increased growth in all four families, while N fertilization had a negative effect on growth. L family plants were more negatively affected than H family plants. This negative effect was not due to limitations in N or P uptake because plants from all the families and treatments had the same N and P concentration in the needles. Phosphorus fertilization changed some hydraulic parameters, but those changes did not affect growth. However, the negative effect of N can be explained by changes in hydraulic traits. L family plants had a high leaf dry weight per branch, which was increased by N fertilization. This change occurred together with a decrease in shoot conductance. Therefore, the reduction in gs was not enough to avoid the drop in Ψmidday. Consequently, stomatal closure and the deficient water status of the needles resulted in a reduction in growth. In H family plants, the increase in the number of needles per branch due to N fertilization was counteracted by a reduction in gs and also by a reduction in tracheid lumen size and length. Because of these two changes, Ψmidday did not drop and water availability in the needles was adequate for sustained growth. In conclusion, fertilization affects the hydraulic architecture of plants, and different families develop different strategies. Some of the hydraulic changes can explain the negative effect of N

  4. Phosphorus Fertilizer Rate, Soil P Availability, and Long-Term Growth Response in a Loblolly Pine Plantation on a Weathered Ultisol

    Treesearch

    D. Andrew Scott; Christine M. Bliss

    2012-01-01

    Phosphorus is widely deficient throughout the southern pine region of the United States. Growth responses to P fertilization are generally long-lasting in a wide range of soil types, but little is known about fertilization rates and long-term P cycling and availability. In 1982, exceptionally high P fertilization rates (0, 81, 162, and 324 kg P ha-1...

  5. [Effect of long-term fertilization practices on mobility of phosphorus in a Huangnitu paddy soil receiving low P input in the Taihu Lake region, Jiangsu Province].

    PubMed

    Pan, Genxing; Jiao, Shaojun; Li, Lianqing; Xu, Xiangdong; Qiu, Duosheng; Xu, Xiaobo; Chu, Qiuhua; Zhao, Hongxiang

    2003-05-01

    Analysis of mobile forms of phosphorus of a Huangnitu, a typical paddy soil in the Taihu Lake region, Jiangsu was conducted. The soil has been put into a scheme of longterm fertilization treatments for 13 years. Total P content varied in arrange of 0.3-0.5 g.kg-1 under a range of total P fertilizer input of 0-53 kg/(hm2.a). As estimated from the total P pool values by mass balance principle, the soil had been subjected to water loss of P 2-8 kg/(hm2.a), with that under chemical fertilizers only being the biggest. The ratio of soluble P to the total was in a range of 0.2%-0.4%, without significant influence by the different fertilization schemes. While chemical fertilizer plus pig slurry manure applications had remarkably enhanced the resin-P pool by 20-40 mg.kg-1, P mobilization was not observed due to combined application of chemical fertilizers and straw amendments despite of the increase of the SOM. Therefore, P water loss in paddy soils might have active under continuous chemical fertilization alone in agriculture of this region and could not be accounted for by dissolution in water and subsequent runoff migration. For reducing the present prominent non point source pollution of N and P in the region, it is suggested that chemical fertilizers are applied in combination with an appropriate amount of manure or straw return for reducing soil P loss and, in turn, the non-point source pollution loading.

  6. Vertical distribution of phosphorus in a sandy soil fertilized with recovered manure phosphates

    USDA-ARS?s Scientific Manuscript database

    Purpose: To evaluate the environmental fate of recovered manure phosphates to provide application recommendations for their use as crop fertilizers. Materials and methods: A greenhouse study was conducted to evaluate the leaching potential and vertical distribution of total and plant available phos...

  7. [Regional difference of NPK fertilizers application and environmental risk assessment in Jiangsu Province, China].

    PubMed

    Liu, Qin-pu

    2015-05-01

    It is of great importance to have a deep understanding of the spatial distribution of NPK fertilizers application and the potential threat to the ecological environment in Jiangsu Province, which is helpful for regulating the rational fertilization, strengthening the fertilizer use risk management and guidance, and preventing agricultural non-point pollution. Based on the environmental risk assessment model with consideration of different impacts of N, P, K fertilizers on environment, this paper researched the regional differentiation characteristic and environmental risk of intensity of NPK fertilizer usages in Jiangsu. Analystic hierarchy process ( AHP) was used to determine the weithts of N, P, K. The environmental safety thresholds of N, P, K were made according to the standard of 250 kg · hm(-2) for the construction of ecological counties sponsered by Chinese government and the proportion of 1:0.5:0.5 for N:P:K surposed by some developed countries. The results showed that the intensity of NPK fertilizer application currently presented a gradually increasing trend from south to north of Jiangsu, with the extremum ratio of 3.3, and the extremum ratios of nitrogen fertilizer, phosphorus fertilizer and potassium fertilizer were 3.3, 4.5 and 4.4, respectively. The average proportion of nitrogen fertilizer, phosphorus fertilizer and potassium fertilizer of 13 cities in Jiangsu was 1:0.39:0.26. Their proportion was relatively in equilibrium in southern Jiangsu, but the nutrient structure disorder was serious in northern Jiangsu. In Jiangsu, the environmental risk index of fertilization averaged at 0.69 and in the middle-range of environmental risk. The environmental risk index of fertilizer application in southern and central Jiangsu was respectively at the low and moderate levels, while that of cities in northern Jiangsu was at the moderate, serious or severe level. In Jiangsu, the regional difference of fertilizer application and environmental risk assessment were

  8. Contribution of anthropogenic phosphorus to agricultural soil fertility and food production

    NASA Astrophysics Data System (ADS)

    Ringeval, B.; Nowak, B.; Nesme, T.; Delmas, M.; Pellerin, S.

    2014-07-01

    Agricultural intensification over the last few decades has been accompanied by the extensive use of anthropogenic phosphorus (P) derived from mined phosphate rock. Given the increasing scarcity of P resources, accurate estimates of the reliance of agriculture on anthropogenic P are required. Here we propose a modeling approach for assessing the contribution of anthropogenic P to agricultural soil fertility and food production. We performed computations at country level, and France was chosen as a typical western European country with intensive agriculture. Four soil P pools were identified based on their bioavailability (labile versus stable) and origin (anthropogenic versus natural). Pool evolution between 1948 and 2009 was estimated by combining international databases and a simple biogeochemical model. An optimization procedure demonstrated the necessity of representing a stable P pool capable of replenishing the labile pool within 14 to 33 years in order to match country-scale observations. Mean simulated P pool sizes for 2009 (0-35 cm soil horizon) were 146, 616, 31, and 156 kgP/ha for natural stable, anthropogenic stable, natural labile, and anthropogenic labile pools, respectively. We found that, on average, 82% (min-max: 68-91%) of soil P (sum of labile and above defined stable) in that year was anthropogenic. The temporal evolution of this contribution is directly related to the integral of chemical fertilizer use over time, starting from 1948. The contribution of anthropogenic P to food production was similar at 84% (min-max: 72-91%), which is greater than budget-based estimates ( 50-60%) commonly reported in the literature. By focusing on soil fertility and food production, this study provides a quantitative estimation of human perturbations of the P cycle in agroecosystems.

  9. Changes in Olsen Phosphorus Concentration and Its Response to Phosphorus Balance in Black Soils under Different Long-Term Fertilization Patterns.

    PubMed

    Zhan, Xiaoying; Zhang, Li; Zhou, Baoku; Zhu, Ping; Zhang, Shuxiang; Xu, Minggang

    2015-01-01

    The Olsen phosphorus (P) concentration of a soil is a key index that can be used to evaluate the P supply capacity of the soil and to estimate the optimal P fertilization rate. A study of the relationship between the soil Olsen P concentration and the P balance (P input minus P output) and their variations among different fertilization patterns will help to provide useful information for proper management of P fertilization. In this paper, the two investigated long-term experiments were established on black soils in the northeast region of China. Six fertilization treatments were selected: (1) unfertilized (CK); (2) nitrogen only (N); (3) nitrogen and potassium (NK); (4) nitrogen and phosphorus (NP); (5) nitrogen, phosphorus, and potassium (NPK); and (6) nitrogen, phosphorus, potassium and manure (NPKM). The results showed that the average Olsen P concentrations in the black soils at Gongzhuling and Harbin (16- and 31-year study periods, respectively), decreased by 0.49 and 0.56 mg kg-1 a-1, respectively, without P addition and increased by 3.17 and 1.78 mg kg-1 a-1, respectively, with P fertilization. The changes in soil Olsen P concentrations were significantly (P<0.05) correlated with the P balances at both sites except for the NP and NPK treatments at Gongzhuling. Under an average deficit of 100 kg ha-1 P, the soil Olsen P concentration at both sites decreased by 1.36~3.35 mg kg-1 in the treatments without P addition and increased by 4.80~16.04 mg kg-1 in the treatments with 100 kg ha-1 of P accumulation. In addition, the changes in Olsen P concentrations in the soil with 100 kg ha-1of P balance were significantly correlated with the P activation coefficient (PAC, percentage of Olsen P to total P, r=0.99, P<0.01) and soil organic matter content (r=0.91, P<0.01). A low pH was related to large changes of Olsen P by 1 kg ha-1 of P balance. These results indicated that soil organic matter and pH have important effects on the change in soil Olsen P by 1 kg ha-1 of P

  10. Changes in Olsen Phosphorus Concentration and Its Response to Phosphorus Balance in Black Soils under Different Long-Term Fertilization Patterns

    PubMed Central

    Zhan, Xiaoying; Zhang, Li; Zhou, Baoku; Zhu, Ping; Zhang, Shuxiang; Xu, Minggang

    2015-01-01

    The Olsen phosphorus (P) concentration of a soil is a key index that can be used to evaluate the P supply capacity of the soil and to estimate the optimal P fertilization rate. A study of the relationship between the soil Olsen P concentration and the P balance (P input minus P output) and their variations among different fertilization patterns will help to provide useful information for proper management of P fertilization. In this paper, the two investigated long-term experiments were established on black soils in the northeast region of China. Six fertilization treatments were selected: (1) unfertilized (CK); (2) nitrogen only (N); (3) nitrogen and potassium (NK); (4) nitrogen and phosphorus (NP); (5) nitrogen, phosphorus, and potassium (NPK); and (6) nitrogen, phosphorus, potassium and manure (NPKM). The results showed that the average Olsen P concentrations in the black soils at Gongzhuling and Harbin (16- and 31-year study periods, respectively), decreased by 0.49 and 0.56 mg kg-1 a-1, respectively, without P addition and increased by 3.17 and 1.78 mg kg-1 a-1, respectively, with P fertilization. The changes in soil Olsen P concentrations were significantly (P<0.05) correlated with the P balances at both sites except for the NP and NPK treatments at Gongzhuling. Under an average deficit of 100 kg ha-1 P, the soil Olsen P concentration at both sites decreased by 1.36~3.35 mg kg-1 in the treatments without P addition and increased by 4.80~16.04 mg kg-1 in the treatments with 100 kg ha-1 of P accumulation. In addition, the changes in Olsen P concentrations in the soil with 100 kg ha-1of P balance were significantly correlated with the P activation coefficient (PAC, percentage of Olsen P to total P, r=0.99, P<0.01) and soil organic matter content (r=0.91, P<0.01). A low pH was related to large changes of Olsen P by 1 kg ha-1 of P balance. These results indicated that soil organic matter and pH have important effects on the change in soil Olsen P by 1 kg ha-1 of P

  11. Effect of long-term phosphorus fertilization on soil Se and transfer of soil Se to crops in northern Japan.

    PubMed

    Altansuvd, Javkhlantuya; Nakamaru, Yasuo M; Kasajima, Shinya; Ito, Hirotake; Yoshida, Hozumi

    2014-07-01

    Phosphorus (P) fertilizer can potentially serve as a source for Se accumulation in croplands. Furthermore, it has been reported that the addition of P fertilizer to soil may enhance Se availability. Japanese agricultural soils are typically enriched in P as a result of long-term, excessive P fertilization. Therefore, we conducted a three-year field experiment in order to evaluate the effect of P fertilization on the Se content of soils and crops. Potato, wheat and barley were cultivated with and without P fertilization at two field sites in Hokkaido (northern Japan) with different levels of historical P accumulation. The first field site consisted of an Andosol soil with low available P and the second site, a Cambisol soil with high available P. The three years of continuous P fertilization over the course of the experiment did not result in a significant increase in the Se content of soils or plants. The Se content of soils and plants, however, was higher in soil samples from the Cambisol field site than from the Andosol field site, and total soil Se was significantly correlated with available soil P. Soluble soil Se and the soil-plant transfer factor for Se were not affected by P fertilization. Thus, we concluded that the higher plant Se content at the Cambisol field site was primarily due to the higher levels of accumulated Se in the soil at the site and that historical excess P fertilization typical of agricultural soils in Japan contributes to increased Se uptake by crops.

  12. Phosphorus in manure and sewage sludge more recyclable than in soluble inorganic fertilizer.

    PubMed

    Kahiluoto, H; Kuisma, M; Ketoja, E; Salo, T; Heikkinen, J

    2015-02-17

    Phosphorus (P) flow from deposits through agriculture to waterways leads to eutrophication and depletion of P reserves. Therefore, P must be recycled. Low and unpredictable plant availability of P in residues is considered to be a limiting factor for recycling. We identified the determinants for the plant-availability of P in agrifood residues. We quantified P in Italian ryegrass (Lolium multiflorum) and in field soil fractions with different plant availabilities of P as a response to manure and sewage sludge with a range of P capture and hygienization treatments. P was more available in manure and in sludge, when it was captured biologically or with a moderate iron (Fe)/P (1.6), than in NPK. Increasing rate of sludge impaired P recovery and high Fe/P (9.8) prevented it. Anaerobic digestion (AD) reduced plant-availability at relevant rates. The recovery of P was increased in AD manure via composting and in AD sludge via combined acid and oxidizer. P was not available to plants in the sludge hygienized with a high calcium/P. Contrary to assumed knowledge, the recyclability of P in appropriately treated residues can be better than in NPK. The prevention of P sorption in soil by organic substances in fertilizers critically enhances the recyclability of P.

  13. Bone char: a clean and renewable phosphorus fertilizer with cadmium immobilization capability.

    PubMed

    Siebers, Nina; Leinweber, Peter

    2013-01-01

    Soil contamination with Cd from P fertilizer and other anthropogenic and geogenic sources is a serious problem. In situ immobilization by P application to soil is known as an applicable remediation technique leading to reduced Cd uptake by plants, and use of a Cd-free P fertilizer from renewable sources would be most favorable. Bone char (BC) (15% P, 28% Ca, 0.7% Mg) may be used as such a quality P fertilizer, but it is unknown if its dissolution in soil provides sufficient P and immobilizes Cd in moderately contaminated soils. We incubated BC and triple superphosphate (TSP) in 11 soils that contained between 0.3 to 19.6 mg Cd kg and determined the kinetics of P dissolution during a time period of 145 d. The concomitant Cd immobilization was determined by extracting the mobile Cd with 1 mol L NHNO solution. For most soils, BC increased the concentration of labile P immediately after application, reaching a maximum after 34 d, although the solubility was below that of TSP (2.9-19.3 vs. 4.1-24.0%). Among five kinetic models, the Langmuir-type equation provided the best description of P dissolution from BC and TSP. The Cd immobilization resulting from BC dissolution exceeded that of TSP by a factor of 1.4 to 2.7. The P dissolution from BC was negatively correlated with pH and positively with P sorption capacity, whereas Cd immobilization was positively correlated with soil pH. These causal relationships were expressed in multiple equations that enable predictions of P dissolution and Cd immobilization and thus may help to introduce BC as sustainable P fertilizer and useful soil amendment. Copyright © by the American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America, Inc.

  14. An Application of the Phosphorus Consistent Rule for Environmentally Acceptable Cost-Efficient Management of Broiler Litter in Crop Production

    NASA Technical Reports Server (NTRS)

    Paudel, Krishna P.; Limaye, Ashutosh; Adhikari, Murali; Martin, Neil R., Jr.

    2004-01-01

    We calculated the profitability of using broiler litter as a source of plant nutrients using the phosphorus consistent litter application rule. The cost saving by using litter is 37% over the use of chemical fertilizer-only option to meet the nutrient needs of major crops grown in Alabama. In the optimal solution, only a few routes of all the possible routes developed were used for inter- and intra- county litter hauling. If litter is not adopted as the sole source of crop nutrients, the best environmental policy may be to pair the phosphorus consistent rule with taxes, marketable permits, and subsidies.flaws

  15. Thermochemical treatment of sewage sludge ash with sodium salt additives for phosphorus fertilizer production--Analysis of underlying chemical reactions.

    PubMed

    Stemann, Jan; Peplinski, Burkhard; Adam, Christian

    2015-11-01

    Stocks of high grade phosphate rock are becoming scarce, and there is growing concern about potentially harmful impurities in conventional phosphorus fertilizers. Sewage sludge ash is a promising secondary phosphorus source. However, to remove heavy metals and convert the phosphorus contained in sewage sludge ash into mineral phases available to plants, an after-treatment is required. Laboratory-scale calcination experiments of sewage sludge ash blended with sodium salts using dried sewage sludge as a reducing agent were carried out at 1000°C. Thus, the Ca3(PO4)2 or whitlockite component of raw sewage sludge ash, which is not readily plant available, was converted to CaNaPO4 (buchwaldite). Consequently, nearly complete phosphorus solubility in ammonium citrate (a well-established indicator for plant availability) was achieved. Moreover, it was shown that Na2CO3 may be replaced by moderately priced Na2SO4. However, molar ratios of Na/P>2 were required to achieve >80% phosphorus solubility. Such over-stoichiometric Na consumption is largely caused by side reactions with the SiO2 component of the sewage sludge ash - an explanation for which clear evidence is provided for the first time.

  16. Study and Agrotechnical Evaluation of Turbine Fertilizer Applicator,

    DTIC Science & Technology

    Many field tests and scientific studies of the AT-2A and ATD-2 fertilizer applicators in the USSR and Bulgaria have shown that these units do not...of moist mineral fertilizers is poor, the application rate either decreasing or terminating entirely; the inadequate fertilizer applicator hopper...volume requires frequent stops for reloading, during extended operation the fertilizer leaks out between the spreader disk and the hopper. The objective

  17. Phytase supplementation and reduced-phosphorus turkey diets reduce phosphorus loss in runoff following litter application.

    PubMed

    Maguire, R O; Sims, J T; Applegate, T J

    2005-01-01

    Concerns about regional surpluses of manure phosphorus (P) leading to increased P losses in runoff have led to interest in diet modification to reduce P concentrations in diets. The objectives of this study were to investigate how dietary P amendment affected P concentrations in litters and P losses in runoff following land application. We grew two flocks of turkeys on the same bed of litter using diets with two levels of non-phytate phosphorus (NPP), with and without phytase. The litters were incorporated into three soils in runoff boxes at a plant-available nitrogen (PAN) rate of 168 kg PAN/ha, with runoff generated on Days 1 and 7 under simulated rainfall and analyzed for dissolved reactive phosphorus (DRP) and total P. Litters were analyzed for water-soluble phosphorus (WSP) and total P, while soils in the runoff boxes were analyzed for WSP and Mehlich-3 phosphorus (M3-P). Formulating diets with lower NPP and phytase both decreased litter total P. Phytase had no significant effect on litter WSP at a 1:200 litter to water extraction ratio, but decreased WSP at a 1:10 extraction ratio. Using a combination of reducing NPP fed and phytase decreased the total P application rate by up to 38% and the P in surplus of crop removal by approximately 48%. Reducing the NPP fed reduced DRP in runoff from litter-amended soils at Day 1, while phytase had no effect on DRP concentrations. Increase in soil M3-P was dependent on total P applied, irrespective of diet. Reducing overfeeding of NPP and utilizing phytase in diets for turkeys should decrease the buildup of P in soils in areas of intensive poultry production, without increasing short-term concerns about dissolved P losses.

  18. Inorganic phosphorus fertilizer ameliorates maize growth by reducing metal uptake, improving soil enzyme activity and microbial community structure.

    PubMed

    Wu, Wencheng; Wu, Jiahui; Liu, Xiaowen; Chen, Xianbin; Wu, Yingxin; Yu, Shixiao

    2017-09-01

    Recently, several studies have showed that both organic and inorganic fertilizers are effective in immobilizing heavy metals at low cost, in comparison to other remediation strategies for heavy metal-contaminated farmlands. A pot trial was conducted in this study to examine the effects of inorganic P fertilizer and organic fertilizer, in single application or in combination, on growth of maize, heavy metal availabilities, enzyme activities, and microbial community structure in metal-contaminated soils from an electronic waste recycling region. Results showed that biomass of maize shoot and root from the inorganic P fertilizer treatments were respectively 17.8 and 10.0 folds higher than the un-amended treatments (CK), while the biomass in the organic fertilizer treatments was only comparable to the CK. In addition, there were decreases of 85.0% in Cd, 74.3% in Pb, 66.3% in Cu, and 91.9% in Zn concentrations in the roots of maize grown in inorganic P fertilizer amended soil. Consistently, urease and catalase activities in the inorganic P fertilizer amended soil were 3.3 and 2.0 times higher than the CK, whereas no enhancement was observed in the organic fertilizer amended soil. Moreover, microbial community structure was improved by the application of inorganic P fertilizer, but not by organic fertilizer; the beneficial microbial groups such as Kaistobacter and Koribacter were most frequently detected in the inorganic P fertilizer amended soil. The negligible effect from the organic fertilizer might be ascribed to the decreased pH value in soils. The results suggest that the application of inorganic P fertilizer (or in combination with organic fertilizer) might be a promising strategy for the remediation of heavy metals contaminated soils in electronic waste recycling region. Copyright © 2017. Published by Elsevier Inc.

  19. Reducing soil phosphorus fertility brings potential long-term environmental gains: A UK analysis

    NASA Astrophysics Data System (ADS)

    Withers, Paul J. A.; Hodgkinson, Robin A.; Rollett, Alison; Dyer, Chris; Dils, Rachael; Collins, Adrian L.; Bilsborrow, Paul E.; Bailey, Geoff; Sylvester-Bradley, Roger

    2017-05-01

    Soil phosphorus (P) fertility arising from historic P inputs is a major driver of P mobilisation in agricultural runoff and increases the risk of aquatic eutrophication. To determine the environmental benefit of lowering soil P fertility, a meta-analysis of the relationship between soil test P (measured as Olsen-P) and P concentrations in agricultural drainflow and surface runoff in mostly UK soils was undertaken in relation to current eutrophication control targets (30-35 µg P L-1). At agronomic-optimum Olsen P (16-25 mg kg-1), concentrations of soluble reactive P (SRP), total dissolved P (TDP), total P (TP) and sediment-P (SS-P) in runoff were predicted by linear regression analysis to vary between 24 and 183 µg L-1, 38 and 315 µg L-1, 0.2 and 9.6 mg L-1, and 0.31 and 3.2 g kg-1, respectively. Concentrations of SRP and TDP in runoff were much more sensitive to changes in Olsen-P than were TP and SS-P concentrations, which confirms that separate strategies are required for mitigating the mobilisation of dissolved and particulate P forms. As the main driver of eutrophication, SRP concentrations in runoff were reduced on average by 60 µg L-1 (71%) by lowering soil Olsen-P from optimum (25 mg kg-1) to 10 mg kg-1. At Olsen-P concentrations below 12 mg kg-1, dissolved hydrolysable P (largely organic) became the dominant form of soluble P transported. We concluded that maintaining agronomic-optimum Olsen-P could still pose a eutrophication risk, and that a greater research focus on reducing critical soil test P through innovative agro-engineering of soils, crops and fertilisers would give long-term benefits in reducing the endemic eutrophication risk arising from legacy soil P. Soil P testing should become compulsory in priority catchments suffering, or sensitive to, eutrophication to ensure soil P reserves are fully accounted for as part of good fertiliser and manure management.

  20. Effects of Nitrogen and Phosphorus Fertilization on Soil Carbon Fractions in Alpine Meadows on the Qinghai-Tibetan Plateau

    PubMed Central

    Li, Jin Hua; Yang, Yu Jie; Li, Bo Wen; Li, Wen Jin; Wang, Gang; Knops, Johannes M. H.

    2014-01-01

    In grassland ecosystems, N and P fertilization often increase plant productivity, but there is no concensus if fertilization affects soil C fractions. We tested effects of N, P and N+P fertilization at 5, 10, 15 g m−2 yr−1 (N5, N10, N15, P5, P10, P15, N5P5, N10P10, and N15P15) compared to unfertilized control on soil C, soil microbial biomass and functional diversity at the 0–20 cm and 20–40 cm depth in an alpine meadow after 5 years of continuous fertilization. Fertilization increased total aboveground biomass of community and grass but decreased legume and forb biomass compared to no fertilization. All fertilization treatments decreased the C:N ratios of legumes and roots compared to control, however fertilization at rates of 5 and 15 g m−2 yr−1 decreased the C:N ratios of the grasses. Compared to the control, soil microbial biomass C increased in N5, N10, P5, and P10 in 0–20 cm, and increased in N10 and P5 while decreased in other treatments in 20–40 cm. Most of the fertilization treatments decreased the respiratory quotient (qCO2) in 0–20 cm but increased qCO2 in 20–40 cm. Fertilization increased soil microbial functional diversity (except N15) but decreased cumulative C mineralization (except in N15 in 0–20 cm and N5 in 20–40 cm). Soil organic C (SOC) decreased in P5 and P15 in 0–20 cm and for most of the fertilization treatments (except N15P15) in 20–40 cm. Overall, these results suggested that soils will not be a C sink (except N15P15). Nitrogen and phosphorus fertilization may lower the SOC pool by altering the plant biomass composition, especially the C:N ratios of different plant functional groups, and modifying C substrate utilization patterns of soil microbial communities. The N+P fertilization at 15 g m−2 yr−1 may be used in increasing plant aboveground biomass and soil C accumulation under these meadows. PMID:25075624

  1. Closing the Phosphorus Loop by Recovering Phosphorus From Waste Streams With Layered Double Hydroxide Nanocomposites and Converting the Product into an Efficient Fertilizer

    NASA Astrophysics Data System (ADS)

    Yan, H.; Shih, K.

    2015-12-01

    Phosphorus (P) recovery has been frequently discussed in recent decades due to the uncertain availability and uneven distribution of global phosphate rock reserves. Sorption technology is increasingly considered as a reliable, efficient and environmentally friendly P removal method from aqueous solution. In this study, a series of Mg-Al-based layered double hydroxide nanocomposites and their corresponding calcined products were fabricated and applied as phosphate adsorbents. The prepared samples were with average size at ~50 nm and self-assembled into larger particles in irregular shapes. The results of batch adsorption experiments demonstrated that calcination significantly enhanced the adsorption ability of LDHs for phosphorus, and the maximum adsorption capacity of calcined Mg-Al-LDH was as high as 100.7 mg-P/g. Furthermore, incorporation of Zr4+ and La3+ into LDH materials increases the sorption selectivity as well as sorption amount of phosphorus in LDHs, which was confirmed by experiments operated in synthetic human urine. For the first time ammonia (NH4OH) and potassium hydroxide (KOH) solutions were employed to desorb the P-loaded LDH. Identification of solids derived from two eluting solutions showed that struvite (MgNH4PO4•6H2O, MAP) was precipitated in ammonia solution while most phosphate was desorbed into liquid phase in KOH system without crystallization of potassium struvite (MgKPO4•6H2O) due to its higher solubility. Quantitative X-ray diffraction technique was used to determine struvite contents in obtained solids and the results revealed that ~ 30% of adsorbed P was transferred into struvite form in the sample extracted by 0.5M NH4OH. Leaching tests suggested that the phosphorus releasing kinetics of ammonia treated LDH was comparable to that of pure struvite product, indicating that postsorption Mg-Al-LDH desorbed with ammonia could serve as a slow-releasing fertilizer in agriculture (see Figure 1).

  2. Phosphates (V) recovery from phosphorus mineral fertilizers industry wastewater by continuous struvite reaction crystallization process.

    PubMed

    Hutnik, Nina; Kozik, Anna; Mazienczuk, Agata; Piotrowski, Krzysztof; Wierzbowska, Boguslawa; Matynia, Andrzej

    2013-07-01

    Continuous DT MSMPR (Draft Tube Mixed Suspension Mixed Product Removal) crystallizer was provided with typical wastewater from phosphorus mineral fertilizers industry (pH < 4, 0.445 mass % of PO4(3-), inorganic impurities presence), dissolved substrates (magnesium and ammonium chlorides) and solution alkalising the environment of struvite MgNH4PO4·6H2O reaction crystallization process. Research ran in constant temperature 298 K assuming stoichiometric proportions of substrates or 20% excess of magnesium ions. Influence of pH (8.5-10) and mean residence time (900-3600 s) on product size distribution, its chemical composition, crystals shape, size-homogeneity and process kinetics was identified. Crystals of mean size ca. 25-37 μm and homogeneity CV 70-83% were produced. The largest crystals, of acceptable homogeneity, were produced using 20% excess of magnesium ions, pH 9 and mean residence time 3600 s. Under these conditions nucleation rate did not exceed 9 × 10(7) 1/(s m(3)) according to SIG (Size Independent Growth) MSMPR kinetic model. Linear crystal growth rate was 4.27 × 10(-9) m/s. Excess of magnesium ions influenced struvite reaction crystallization process yield advantageously. Concentration of phosphate(V) ions decreased from 0.445 to 9.2 × 10(-4) mass %. This can be regarded as a very good process result. In product crystals, besides main component - struvite, all impurities from wastewater were detected analytically. Copyright © 2013 Elsevier Ltd. All rights reserved.

  3. Irrigated mountain meadow fertilizer application timing effects on overland flow water quality.

    PubMed

    White, Shawn K; Brummer, Joe E; Leininger, Wayne C; Frasier, Gary W; Waskom, Reagan M; Bauder, Troy A

    2003-01-01

    Nonpoint-source pollution from agricultural activities is currently the leading cause of degradation of waterways in the United States. Applying best management practices to flood-irrigated mountain meadows may improve agricultural runoff and return flow water quality. Prior research has focused on fertilizer use for increased hay yields, while few studies have investigated the environmental implications of this practice. We examined the effects of fertilizer application timing on overland flow water quality from an irrigated mountain meadow near Gunnison, Colorado. Application of 40 kg phosphorus (P) and 19 kg nitrogen (N) ha(-1) using monoammonium phosphate (11-52-0, N-P-K) fertilizer to plots in the fall significantly reduced concentrations of reactive P and ammonium N in irrigation overland flow compared with early or late spring fertilization. Reactive P loading was 9 to almost 16 times greater when fertilizer was applied in the early or late spring, respectively, compared with in the fall. Ammonium N followed a similar trend with early spring loading more than 18 times greater and late spring loading more than 34 times greater than loads from fall-fertilized plots. Losses of 45% of the applied P and more than 17% of the N were measured in runoff when fertilizer was applied in the late spring. These results, coupled with those from previous studies, suggest that mountain meadow hay producers should apply fertilizer in the fall, especially P-based fertilizers, to improve hay yields, avoid economic losses from loss of applied fertilizers, and reduce the potential for impacts to water quality.

  4. Effect of Vermicompost Alone and Its Combination with Recommended Dose of Fertilizers on Available Nitrogen, Phosphorus, Potassium in Rice Field.

    PubMed

    Shwetha, S; Narayana, J

    2014-01-01

    Rice variety KMP101 was treated with both organic and inorganic manure. The field and experimental studies were conducted, before applying organic and inorganic manures.The values obtained for available nitrogen, phosphorous and potassium were 360 kg/ha, 12 kg/ha and 166 kg/ha respectively. After treatment and harvest there was a gradual increase in available nitrogen, phosphorus and potassium ranging between 335-415, 14 -23 and 173- 235 kg/ha respectively among the treatments. Applying 15 t of vermicompost /ha and 10 t of vermicompost /ha and recommended dose of fertilizer showed a greater availability of nitrogen and phosphorus. It is revealed that after addition of organics into the soil year-wise, the soil became more stable. Also, the biological activity increased in the soil and was influenced to maintain the available nitrogen in the soil. Therefore, it is evident that vermicompost significantly increases the availability of available nutrients.

  5. Phosphorus application and elevated CO2 enhance drought tolerance in field pea grown in a phosphorus-deficient vertisol

    PubMed Central

    Jin, Jian; Lauricella, Dominic; Armstrong, Roger; Sale, Peter; Tang, Caixian

    2015-01-01

    Background and Aims Benefits to crop productivity arising from increasing CO2 fertilization may be offset by detrimental effects of global climate change, such as an increasing frequency of drought. Phosphorus (P) nutrition plays an important role in crop responses to water stress, but how elevated CO2 (eCO2) and P nutrition interact, especially in legumes, is unclear. This study aimed to elucidate whether P supply improves plant drought tolerance under eCO2. Methods A soil-column experiment was conducted in a free air CO2 enrichment (SoilFACE) system. Field pea (Pisum sativum) was grown in a P-deficient vertisol, supplied with 15 mg P kg−1 (deficient) or 60 mg P kg−1 (adequate for crop growth) and exposed to ambient CO2 (aCO2; 380–400 ppm) or eCO2 (550–580 ppm). Drought treatments commenced at flowering. Measurements were taken of soil and leaf water content, photosynthesis, stomatal conductance, total soluble sugars and inorganic P content (Pi). Key Results Water-use efficiency was greatest under eCO2 when the plants were supplied with adequate P compared with other treatments irrespective of drought treatment. Elevated CO2 decreased stomatal conductance and transpiration rate, and increased the concentration of soluble sugars and relative water contents in leaves. Adequate P supply increased concentrations of soluble sugars and Pi in drought-stressed plants. Adequate P supply but not eCO2 increased root length distribution in deeper soil layers. Conclusions Phosphorus application and eCO2 interactively enhanced periodic drought tolerance in field pea as a result of decreased stomatal conductance, deeper rooting and high Pi availability for carbon assimilation in leaves. PMID:25429008

  6. Phosphorus application and elevated CO2 enhance drought tolerance in field pea grown in a phosphorus-deficient vertisol.

    PubMed

    Jin, Jian; Lauricella, Dominic; Armstrong, Roger; Sale, Peter; Tang, Caixian

    2015-11-01

    Benefits to crop productivity arising from increasing CO2 fertilization may be offset by detrimental effects of global climate change, such as an increasing frequency of drought. Phosphorus (P) nutrition plays an important role in crop responses to water stress, but how elevated CO2 (eCO2) and P nutrition interact, especially in legumes, is unclear. This study aimed to elucidate whether P supply improves plant drought tolerance under eCO2. A soil-column experiment was conducted in a free air CO2 enrichment (SoilFACE) system. Field pea (Pisum sativum) was grown in a P-deficient vertisol, supplied with 15 mg P kg(-1) (deficient) or 60 mg P kg(-1) (adequate for crop growth) and exposed to ambient CO2 (aCO2; 380-400 ppm) or eCO2 (550-580 ppm). Drought treatments commenced at flowering. Measurements were taken of soil and leaf water content, photosynthesis, stomatal conductance, total soluble sugars and inorganic P content (Pi). Water-use efficiency was greatest under eCO2 when the plants were supplied with adequate P compared with other treatments irrespective of drought treatment. Elevated CO2 decreased stomatal conductance and transpiration rate, and increased the concentration of soluble sugars and relative water contents in leaves. Adequate P supply increased concentrations of soluble sugars and Pi in drought-stressed plants. Adequate P supply but not eCO2 increased root length distribution in deeper soil layers. Phosphorus application and eCO2 interactively enhanced periodic drought tolerance in field pea as a result of decreased stomatal conductance, deeper rooting and high Pi availability for carbon assimilation in leaves. © The Author 2014. Published by Oxford University Press on behalf of the Annals of Botany Company. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  7. Decline in Soluble Phosphorus Mobility from Land-Applied Dairy Manure - Modeling and Practical Applications

    NASA Astrophysics Data System (ADS)

    Archibald, J. A.; Walter, M. T.; Peterson, M.; Richards, B. K.; Giri, S. K.

    2014-12-01

    Non-point source transport of soluble-reactive phosphorus (SRP) from agricultural systems to freshwater ecosystems is a significant water quality concern. Although farmers are encouraged to avoid manure or fertilizer application before runoff events, the implications of these management choices remain largely unquantified. We conducted soil box experiments to test how manure application timing and temperature or moisture conditions impact SRP concentration in runoff. We found that SRP concentrations dropped off exponentially over time, and that higher temperatures accelerated the decline in SRP in overland runoff over time. During the first runoff events after manure application, infiltration depth prior to runoff was not a primary driver of SRP concentrations. This research has implications for incorporating manure spreading timing into watershed models.

  8. Changes imposed by pyrolysis, thermal gasification and incineration on composition and phosphorus fertilizer quality of municipal sewage sludge.

    PubMed

    Thomsen, Tobias Pape; Sárossy, Zsuzsa; Ahrenfeldt, Jesper; Henriksen, Ulrik B; Frandsen, Flemming J; Müller-Stöver, Dorette Sophie

    2017-08-01

    Fertilizer quality of ash and char from incineration, gasification and pyrolysis of a single municipal sewage sludge sample were investigated by comparing composition and phosphorus (P) plant availability. A process for post oxidation of gasification ash and pyrolysis char was developed and the oxidized materials were investigated as well. Sequential extraction with full elemental balances of the extracted pools as well as scanning electron microscopy with energy dispersive X-ray spectroscopy were used to investigate the mechanisms driving the observed differences in composition and P plant availability in a short-term soil incubation study. The compositional changes related mainly to differences in the proximate composition as well as to the release of especially nitrogen, sulfur, cadmium and to some extent, phosphorus (P). The cadmium load per unit of P was reduced with 75-85% in gasification processes and 10-15% in pyrolysis whereas no reduction was observed in incineration processes. The influence on other heavy metals was less pronounced. The plant availability of P in the substrates varied from almost zero to almost 100% of the plant availability of P in the untreated sludge. Post-oxidized slow pyrolysis char was found to be the substrate with the highest P fertilizer value while ash from commercial fluid bed sludge incineration had the lowest P fertilizer quality. The high P fertilizer value in the best substrate is suggested to be a function of several different mechanisms including structural surface changes and improvements in the association of P to especially magnesium, calcium and aluminum. Copyright © 2017 Elsevier Ltd. All rights reserved.

  9. Global nitrogen and phosphorus fertilizer use for agriculture production in the past half century: shifted hot spots and nutrient imbalance

    NASA Astrophysics Data System (ADS)

    Lu, Chaoqun; Tian, Hanqin

    2017-03-01

    In addition to enhancing agricultural productivity, synthetic nitrogen (N) and phosphorous (P) fertilizer application in croplands dramatically alters global nutrient budget, water quality, greenhouse gas balance, and their feedback to the climate system. However, due to the lack of geospatial fertilizer input data, current Earth system and land surface modeling studies have to ignore or use oversimplified data (e.g., static, spatially uniform fertilizer use) to characterize agricultural N and P input over decadal or century-long periods. In this study, we therefore develop global time series gridded data of annual synthetic N and P fertilizer use rate in agricultural lands, matched with HYDE 3.2 historical land use maps, at a resolution of 0.5° × 0.5° latitude-longitude during 1961-2013. Our data indicate N and P fertilizer use rates on per unit cropland area increased by approximately 8 times and 3 times, respectively, since the year 1961 when IFA (International Fertilizer Industry Association) and FAO (Food and Agricultural Organization) surveys of country-level fertilizer input became available. Considering cropland expansion, the increase in total fertilizer consumption is even larger. Hotspots of agricultural N fertilizer application shifted from the US and western Europe in the 1960s to eastern Asia in the early 21st century. P fertilizer input shows a similar pattern with an additional current hotspot in Brazil. We found a global increase in fertilizer N / P ratio by 0.8 g N g-1 P per decade (p < 0.05) during 1961-2013, which may have an important global implication for human impacts on agroecosystem functions in the long run. Our data can serve as one of critical input drivers for regional and global models to assess the impacts of nutrient enrichment on climate system, water resources, food security, etc. Datasets available at doi:10.1594/PANGAEA.863323.

  10. [Responses of soil nematode communities to long-term application of inorganic fertilizers in upland red soil].

    PubMed

    Zhang, Wei; Liu, Man-Qiang; He, Yuan-Qiu; Fan, Jian-Bo; Chen, Yan

    2014-08-01

    Soil biota plays a key role in ecosystem functioning of red soil. Based on the long-term inorganic fertilization field experiment (25-year) in an upland red soil, the impacts of different inorganic fertilization managements, including NPK (nitrogen, phosphorus and potassium fertilizers), NPKCaS (NPK plus gypsum fertilizers), NP (nitrogen and phosphorus fertilizers), NK (nitrogen and potassium fertilizers) and PK (phosphorus and potassium fertilizers), on the assemblage of soil nematodes during the growing period of peanut were investigated. Significant differences among the treatments were observed for total nematode abundance, trophic groups and ecological indices (P < 0.01). The total nematode abundance decreased in the order of PK > NPKCaS > NPK > NP > NK. The total number of nematodes was significantly higher in NPKCaS and PK than in NPK, NP and NK except in May. Plant parasitic nematodes were the dominant trophic group in all treatments excepted in NPKCaS, and their proportion ranged between 38% and 65%. The dominant trophic group in NPKCaS was bacterivores and represented 42.1%. Furthermore, the higher values of maturity index, Wasilewska index and structure index in NPKCaS indicated that the combined application of NPK and gypsum could remarkably relieve soil acidification, resulting in a more mature and stable soil food web structure. While, that of the NK had the opposite effect. In conclusion, our study suggested that the application of both gypsum and phosphate is an effective practice to improve soil quality. Moreover, the analysis of nematode assemblage is relevant to reflect the impact of different inorganic fertilizer on the red soil ecosystem.

  11. Growth and Yield Responses of Cowpea to Inoculation and Phosphorus Fertilization in Different Environments

    PubMed Central

    Kyei-Boahen, Stephen; Savala, Canon E. N.; Chikoye, David; Abaidoo, Robert

    2017-01-01

    Cowpea (Vigna unguiculata) is a major source of dietary protein and essential component of the cropping systems in semi-arid regions of Sub-Saharan Africa. However, yields are very low due to lack of improved cultivars, poor management practices, and limited inputs use. The objectives of this study were to assess the effects of rhizobia inoculant and P on nodulation, N accumulation and yield of two cowpea cultivars in Mozambique. Field study was conducted in three contrasting environments during the 2013/2014 and 2014/2015 seasons using randomized complete block design with four replications and four treatments. Treatments consisted of seed inoculation, application of 40 kg P2O5 ha-1, inoculation + P, and a non-inoculated control. The most probable number (MPN) technique was used to estimate the indigenous bradyrhizobia populations at the experimental sites. The rhizobia numbers at the sites varied from 5.27 × 102 to 1.07 × 103 cells g-1 soil. Inoculation increased nodule number by 34–76% and doubled nodule dry weight (78 to 160 mg plant-1). P application improved nodulation and interacted positively with the inoculant. Inoculation, P, and inoculant + P increased shoot dry weight, and shoot and grain N content across locations but increases in number of pods plant-1, seeds pod-1, and 100-seed weight were not consistent among treatments across locations. Shoot N content was consistently high for the inoculated plants and also for the inoculated + P fertilized plants, whereas the non-inoculated control plants had the lowest tissue N content. P uptake in shoot ranged from 1.72 to 3.77 g kg-1 and was higher for plants that received P fertilizer alone. Inoculation and P either alone or in combination consistently increased cowpea grain yield across locations with yields ranging from 1097 kg ha-1 for the non-inoculated control to 1674 kg ha-1 for the inoculant + P treatment. Grain protein concentration followed a similar trend as grain yield and ranged from 223 to

  12. Characterizing differences in the phosphorus activation coefficient of three typical cropland soils and the influencing factors under long-term fertilization.

    PubMed

    Wu, Qihua; Zhang, Shuxiang; Zhu, Ping; Huang, Shaomin; Wang, Boren; Zhao, LinPing; Xu, Minggang

    2017-01-01

    The phosphorus activation coefficient (PAC, the ratio of available P to total P) is an important indicator of soil P availability and the transformation of P fractions. Understanding the details of the PAC is useful to estimate soil available P status and to provide P management guidance. In this research, soils from five long-term (23 years) fertilization treatments in three croplands were selected to examine the relationships between the PAC and P fractions and to analyse the influencing factors. PAC was affected by both soil types and fertilization treatments. Compared to the unfertilized control (CK) treatment, long-term P application significantly increased the PAC, all of the inorganic P (Pi) fractions and most of the organic P (Po) fractions in all the three soils, particularly in chemical fertilizer combined with manure treatment (NPKM). The PAC was significantly correlated to all of the Pi fractions proportions (P<0.05) except for Dil. HCl-Pi and Conc. HCl-Pi. Compared with CK, the chemical P and chemical P combined with manure treatments increased the ratio of total Pi fractions to total Po fractions (Pit/Pot); furthermore, NPKM significantly increased the organic C (Co) content and decreased the Co/Pot ratio. Stepwise multiple regressions showed that PAC = 0.93 Co+0.69 Pit/Pot-0.07 Co/Pot-0.27CaCO3-3.79 (R2 = 0.924, P<0.001). In addition, the variance partitioning analysis showed that more variance of PAC is explained by soil factors (29.53%) than by P input (0.19%) and climate (0.25%) factors. Our findings demonstrate that P application increased the PAC by changing the Co content and the proportion of P fractions. Moreover, soil factors were the most important drivers of P transformations, and NPKM was optimal for improving soil fertility in Chinese croplands.

  13. Recycling slaughterhouse waste into fertilizer: how do pyrolysis temperature and biomass additions affect phosphorus availability and chemistry?

    PubMed

    Zwetsloot, Marie J; Lehmann, Johannes; Solomon, Dawit

    2015-01-01

    Pyrolysis of slaughterhouse waste could promote more sustainable phosphorus (P) usage through the development of alternative P fertilizers. This study investigated how pyrolysis temperature (220, 350, 550 and 750 °C), rendering before pyrolysis, and wood or corn biomass additions affect P chemistry in bone char, plant availability, and its potential as P fertilizer. Linear combination fitting of synchrotron-based X-ray absorption near edge structure spectra demonstrated that higher pyrolysis temperatures decreased the fit with organic P references, but increased the fit with a hydroxyapatite (HA) reference, used as an indicator of high calcium phosphate (CaP) crystallinity. The fit to the HA reference increased from 0% to 69% in bone with meat residue and from 20% to 95% in rendered bone. Biomass additions to the bone with meat residue reduced the fit to the HA reference by 83% for wood and 95% for corn, and additions to rendered bone by 37% for wood. No detectable aromatic P forms were generated by pyrolysis. High CaP crystallinity was correlated with low water-extractable P, but high formic acid-extractable P indicative of high plant availability. Bone char supplied available P which was only 24% lower than Triple Superphosphate fertilizer and two- to five-fold higher than rock phosphate. Pyrolysis temperature and biomass additions can be used to design P fertilizer characteristics of bone char through changing CaP crystallinity that optimize P availability to plants. © 2014 Society of Chemical Industry.

  14. Forage response to nitrogen and phosphorus fertilization in a 25-year-old plantation of slash pine

    Treesearch

    Ralph H. Hughes; George W. Bengston; Thaddeus a. Harrington

    1971-01-01

    In a 25-year-old plantation of slash pine near Olustee, Florida, a single application of 200 lb. of nitrogen and 44 lb. of phosphorus per acre increased production of herbaccous understory (primarily native bluestem grasses) to more than a ton per acre the first year, a fifefold increase. Production declined sharply the second year, and the response disappeared in the...

  15. Land Application of Wastes: An Educational Program. Phosphorus Considerations - Module 19, Objectives, and Script.

    ERIC Educational Resources Information Center

    Clarkson, W. W.; And Others

    The treatment of wastewater phosphorus via land application includes both chemical and biological mechanisms. Chemically, phosphorus reacts with iron, aluminum, and calcium compounds in the soil providing efficient removal over a wide range of pH values. Phosphorus is also absorbed by rooted plants which, upon harvest, constitute a further removal…

  16. Land Application of Wastes: An Educational Program. Phosphorus Considerations - Module 19, Objectives, and Script.

    ERIC Educational Resources Information Center

    Clarkson, W. W.; And Others

    The treatment of wastewater phosphorus via land application includes both chemical and biological mechanisms. Chemically, phosphorus reacts with iron, aluminum, and calcium compounds in the soil providing efficient removal over a wide range of pH values. Phosphorus is also absorbed by rooted plants which, upon harvest, constitute a further removal…

  17. Spring nitrogen fertilization of ryegrass-bermudagrass for phytoremediation of phosphorus-enriched soils

    USDA-ARS?s Scientific Manuscript database

    Nitrogen fertilization of forage grasses is critical for optimizing biomass and utilization of manure soil nutrients. Field studies were conducted in 2007-09 to determine the effects of spring N fertilization on amelioration of high soil P when cool-season, annual ryegrass (Lolium multiflorum L.) is...

  18. Streamside Management Zones Affect Movement of Silvicultural Nitrogen and Phosphorus Fertilizers to Piedmont Streams

    Treesearch

    Joseph M. Secoges; Wallace M. Aust; John R. Seiler; C. Andrew Dolloff; William A. Lakel

    2013-01-01

    Forestry best management practices (BMP) recommendations for streamside management zones (SMZs) are based on limited data regarding SMZ width, partial harvests, and nutrient movements after forest fertilization. Agricultural fertilization is commonly linked to increased stream nutrients. However, less is known about effectiveness of SMZ options for controlling nutrient...

  19. Hydrothermal Detoxization of Slate Containing Asbestos and the Possibility of Application for Fertilizer of its Products

    SciTech Connect

    Myojin, Sachi; Yamasaki, Chizuko; Yamasaki, Nakamichi; Kuroki, Toshihiro; Manabe, Wataru

    2010-11-24

    Hydrothermal decomposition of slate (building materials) containing asbestos has been attempted by using a NH{sub 4}H{sub 2}PO{sub 4} solution. Firstly, the alteration of chrysotile as a starting material was investigated under hydrothermal conditions of 200 deg. C, 12 hrs of reaction time and with a phosphate solution. It was confirmed that the original fibrous form of chrysotile had been perfectly collapsed by the SEM observation. The chrysotile (asbestos) disappeared to form Mg-Ca-Silicate (Ca{sub 7}Mg{sub 2}P{sub 6}O{sup 24}) estimated by XRD. The composition and chemical form of reaction products (Mg-Ca-Silicate) was predicted to application as a fertilizer. Fertilizer effect of these resulted product on cultivations of Japanese radish (leaves), soybeans and tomatoes, was examined by using a special medium of mixed soil with a low content of N, P, K and a thermal-treated zeolite one. The fertilizer effects of the product were compared to commercial fertilizers such as N, N-K-P and P types. In order to estimate the fertilizer effect, the size of crops, number of fruits and number of leaves were measured everyday. As a result, these hydrothermal products of slate containing asbestos were as good as commercial fertilizers on the market. Fruits groups especially had a good crop using the hydrothermal slate product. These results show that the main components of hydrothermal treatments slate are calcium silicate and magnesium phosphate. Its decomposition reaction products may have the possibility of application for fertilization of crops which require nucleic acid--phosphorus.

  20. Hydrothermal Detoxization of Slate Containing Asbestos and the Possibility of Application for Fertilizer of its Products

    NASA Astrophysics Data System (ADS)

    Myojin, Sachi; Kuroki, Toshihiro; Manabe, Wataru; Yamasaki, Chizuko; Yamasaki, Nakamichi

    2010-11-01

    Hydrothermal decomposition of slate (building materials) containing asbestos has been attempted by using a NH4H2PO4 solution. Firstly, the alteration of chrysotile as a starting material was investigated under hydrothermal conditions of 200° C, 12 hrs of reaction time and with a phosphate solution. It was confirmed that the original fibrous form of chrysotile had been perfectly collapsed by the SEM observation. The chrysotile (asbestos) disappeared to form Mg-Ca-Silicate (Ca7Mg2P6O24) estimated by XRD. The composition and chemical form of reaction products (Mg-Ca-Silicate) was predicted to application as a fertilizer. Fertilizer effect of these resulted product on cultivations of Japanese radish (leaves), soybeans and tomatoes, was examined by using a special medium of mixed soil with a low content of N, P, K and a thermal-treated zeolite one. The fertilizer effects of the product were compared to commercial fertilizers such as N, N-K-P and P types. In order to estimate the fertilizer effect, the size of crops, number of fruits and number of leaves were measured everyday. As a result, these hydrothermal products of slate containing asbestos were as good as commercial fertilizers on the market. Fruits groups especially had a good crop using the hydrothermal slate product. These results show that the main components of hydrothermal treatments slate are calcium silicate and magnesium phosphate. Its decomposition reaction products may have the possibility of application for fertilization of crops which require nucleic acid—phosphorus.

  1. Distribution of phosphorus in an Ultisol fertilized with recovered manure phosphates

    USDA-ARS?s Scientific Manuscript database

    Phosphorus (P) can be recovered in concentrated form from livestock manure and poultry litter. A greenhouse study was conducted to evaluate the the short-term leaching potential and plant availability of P from recovered P materials from liquid pig manure (SRP) and broiler litter (LRP) in a characte...

  2. Effects of nitrogen and phosphorus fertilizers on deer browsing and growth of young Douglas-fir.

    Treesearch

    Glenn L. Crouch; M.A. Radwan

    1981-01-01

    Nitrogen and phosphorus were applied to young Douglas-fir (Pseudotsuga menziesii (Mirb.) Franco) trees to determine their effects on deer browsing and tree growth. Nitrogen (N) proauced measurable responses in browsing of terminal shoots and growth of trees the first year, but effects were mostly negligible 2 years after treatments. No responses to...

  3. Effects of fertilization on phosphorus pools in the volcanic soil of a managed tropical forest

    Treesearch

    Dean F. Meason; Travis W. Idol; J.B. Friday; Paul G. Scowcroft

    2009-01-01

    Acacia koa forests benefit from phosphorus fertilisation, but it is unknown if fertilisation is a short or long term effect on P availability. Past research suggests that P cycling in soils with high P sorption capacity, such as Andisols, was through organic pathways. We studied leaf P and soil P fractions in a tropical forest Andisol for 3 years...

  4. Soil phosphorus mobilization in the rhizosphere of cover crops has little effect on phosphorus cycling in California agricultural soils

    USDA-ARS?s Scientific Manuscript database

    External phosphorus (P) inputs to agricultural soils are needed to replace soil P removed by harvest and maintain soil fertility. Alternative fertilization approaches that maintain soil fertility while reducing P inputs could improve current practices that often result in excessive P application and...

  5. [A long-term field trial on fertilization and on use of recycled nutrients in farming systems IV. Soil fertility changes].

    PubMed

    Zhang, Lu; Shen, Shanmin; Yu, Wantai

    2002-11-01

    The fertility changes of soil under different fertilization treatments of a twelve years field trial indicated that the application of compost recycled in a farming system with appropriate amount of fertilizer applied to balance the soil nutrient budget, could not only produce higher crop yields and less surplus of nutrients into environment, but also improved soil fertility with significant increase of soil organic carbon and nitrogen in cultivated layer. However, maintaine higher soil available phosphorus, it was not sufficient just to balance the budget of soil phosphorus, and more phosphorus fertilizer application was needed.

  6. Fertilizer application equipment for bareroot and container nurseries

    Treesearch

    John W. Bartok

    2002-01-01

    Fertilizer application equipment can apply chemicals in dry or liquid form or as manure. The appropriate equipment will place the material at the desired rate in the desired location. In bareroot nurseries, fertilizer is usually applied dry in granulated pellets or coated form. Where in plentiful supply, animal manure may be used, both for nutrients and organic matter...

  7. Distributions and stoichiometry of dissolved nitrogen and phosphorus in the iron-fertilized region near Kerguelen (Southern Ocean)

    NASA Astrophysics Data System (ADS)

    Blain, S.; Capparos, J.; Guéneuguès, A.; Obernosterer, I.; Oriol, L.

    2015-01-01

    During KEOPS2 (Kerguelen Ocean and Plateau Compared Study 2), we determined dissolved inorganic and organic nitrogen and phosphorus species in the naturally fertilized region of Kerguelen Island (Southern Ocean). Above 150 m, stations were clearly separated by the polar front (PF), with concentrations of NO3-, NO2- and PO43- overall lower north of the PF than south. Though less pronounced, a similar trend was detectable for dissolved organic nitrogen (DON) and dissolved organic phosphorus (DOP). At all stations offshore and above the plateau, a subsurface maximum of NH4+ was observed between 50 and 150 m. We examined nutrient stoichiometry by calculating the linear combination N* = [NO3-]-16 [PO43-]. The majority of stations and depths revealed N* close to -3 μM; however, for surface waters north of the PF, N* increased up to 6 μM. This suggests a preferential uptake of PO43- versus NO3- by fast-growing diatoms. Using the tracer TNxs = [TDN]-16[TDP] (TDN, total dissolved nitrogen; TDP, total dissolved phosphorus) revealed that the dissolved organic fraction significantly contributed to changes in TNxs. TNxs values were negative for most stations and depths, and relatively constant in the 0-500 m layer. As for N*, the stations north of the PF had higher TNxs in the 0-100 m layer. We discuss this stoichiometric anomaly with respect to possible external sources and sinks of N and P. Additional data collected in February 2013 at two sites revealed the occurrence of a subsurface minimum of N* located just below the pycnocline, which denotes a layer where remineralization of particulate organic matter with low N : P ratio P, possibly associated with preferential remineralization of P versus N, persists throughout the season.

  8. Nitrogen, phosphorus, potassium, calcium and magnesium release from two compressed fertilizers: column experiments

    NASA Astrophysics Data System (ADS)

    Fernández-Sanjurjo, M. J.; Alvarez-Rodríguez, E.; Núñez-Delgado, A.; Fernández-Marcos, M. L.; Romar-Gasalla, A.

    2014-07-01

    We used soil columns to study nutrients release from two compressed NPK fertilizers. The columns were filled with soil material from the surface horizon of a granitic soil. Tablets of two slow-release NPK fertilizers (11-18-11 or 8-8-16) were placed into the soil, and then water was percolated through the columns in a saturated regime. Percolates were analyzed for N, P, K, Ca and Mg. These nutrients were also determined in soil and fertilizer tablets at the end of the trials. Nutrient concentrations were high in the first percolates, reaching a steady state when 1426 mm water have percolated, which is equivalent to approximately 1.5 years of rainfall in the geographic area. In the whole trial, both tablets lost more than 80% of their initial N, P and K contents. However, K, Ca and Mg were the most leached, whereas N and P were lost in leachates to a lesser extent. Nutrient release was slower from the tablet with composition 8-8-16 than from the 11-18-11 fertilizer. In view of that, the 8-8-16 tablet can be considered more adequate for crops with a nutrient demand sustained over time. At the end of the trial, the effects of these fertilizers on soil chemical parameters were still evident.

  9. Tomato response to starter fertilizer, polyethylene mulch, and level of soil phosphorus

    SciTech Connect

    Grubinger, V.P.; Minotti, P.L.; Wien, H.C.; Turner, A.D. . Dept. of Fruit and Vegetable Science)

    1993-03-01

    Unmulched and polyethylene-mulched tomatoes (Lycopersicon esculentum Mill.) were grown with and without starter fertilizer (SF) in four field experiments. The field varied as to residual P level and the amount of P incorporated before planting. No benefits from SF were obtained on a soil with high residual P that was moderately fertilized with P before transplanting or on a soil with low residual P that was heavily fertilized with P. A positive effect from SF was observed only when residual P was low and no P was broadcast, and this was true in mulched and unmulched plots. No significant SF by mulch interaction was obtained in these experiments even though mulching consistently increased shoot P concentrations and fruit yield. The mulch was beneficial even under conditions where unmulched tomato leaves contained 0.4% P 3 weeks after transplanting, indicating that factors in addition to improved P nutrition are also involved in the mulch effect.

  10. Phosphorus Lewis acids: emerging reactivity and applications in catalysis.

    PubMed

    Bayne, J M; Stephan, D W

    2016-02-21

    Part of the renaissance in main group chemistry has been a result of the focus on reactivity. This has led to the development of applications in stoichiometric reactivity and catalysis. In this tutorial review, we focus attention on the role of phosphorus-based Lewis acids in such advances. While early literature recognizes the role of P(iii) and P(v) electrophiles in coordination chemistry, it has generally been more recent studies that have focused on applications of this Lewis acidity. Applications of these novel P-based Lewis acids in stoichiometric reactivity, Lewis acid catalysis and frustrated Lewis pair (FLP) reactivity are reviewed. These advances demonstrate that P-based Lewis acids are a powerful tool for further developments in metal-free catalysis.

  11. Nitrogen, phosphorus, potassium, calcium and magnesium release from two compressed fertilizers: column experiments

    NASA Astrophysics Data System (ADS)

    Fernández-Sanjurjo, M. J.; Alvarez-Rodríguez, E.; Núñez-Delgado, A.; Fernández-Marcos, M. L.; Romar-Gasalla, A.

    2014-12-01

    The objective of this work was to study nutrients release from two compressed nitrogen-potassium-phosphorous (NPK) fertilizers. In the Lourizán Forest Center, tablet-type controlled-release fertilizers (CRF) were prepared by compressing various mixtures of fertilizers without covers or binders. We used soil columns (50 cm long and 7.3 cm inner diameter) that were filled with soil from the surface layer (0-20 cm) of an A horizon corresponding to a Cambic Umbrisol. Tablets of two slow-release NPK fertilizers (11-18-11 or 8-8-16) were placed into the soil (within the first 3 cm), and then water was percolated through the columns in a saturated regime for 80 days. Percolates were analyzed for N, P, K+, Ca2+ and Mg2+. These elements were also determined in soil and fertilizer tablets at the end of the trials. Nutrient concentrations were high in the first leachates and reached a steady state when 1426 mm of water had been percolated, which is equivalent to approximately 1.5 years of rainfall in this geographic area. In the whole trial, both tablets lost more than 80% of their initial N, P and K contents. However, K+, Ca2+ and Mg2+ were the most leached, whereas N and P were lost in leachates to a lesser extent. Nutrient release was slower from the tablet with a composition of 8-8-16 than from the 11-18-11 fertilizer. In view of that, the 8-8-16 tablet can be considered more adequate for crops with a nutrient demand sustained over time. At the end of the trial, the effects of these fertilizers on soil chemical parameters were still evident, with a significant increase of pH, available Ca2+, Mg2+, K+, P and effective cation exchange capacity (eCEC) in the fertilized columns, as well as a significant decrease in exchangeable Al3+, reaching values < 0.08 cmol (+) kg-1.

  12. Optimizing Available Phosphorus in Calcareous Soils Fertilized with Diammonium Phosphate and Phosphoric Acid Using Freundlich Adsorption Isotherm

    PubMed Central

    Akhtar, Muhammad

    2013-01-01

    In calcareous soils, phosphorus (P) retention and immobilization take place due to precipitation and adsorption. Since soil pH is considered a major soil variable affecting the P sorption, an acidic P fertilizer could result in low P adsorption compared to alkaline one. Therefore, P adsorption from DAP and phosphoric acid (PA) required to produce desired soil solution P concentration was estimated using Freundlich sorption isotherms. Two soils from Faisalabad and T. T. Singh districts were spiked with 0, 10, and 20 % CaCO3 for 15 days. Freundlich adsorption isotherms (P = aC b/a) were constructed, and theoretical doses of PA and DAP to develop a desired soil solution P level (i.e., 0.20 mg L−1) were calculated. It was observed that P adsorption in soil increased with CaCO3. Moreover, at all the levels of CaCO3, P adsorption from PA was lower compared to that from DAP in both the soils. Consequently, lesser quantity of PA was required to produce desired solution P, 0.2 mg L−1, compared to DAP. However, extrapolating the developed relationship between soil CaCO3 contents and quantity of fertilizer to other similar textured soils needs confirmation. PMID:24307878

  13. Optimizing available phosphorus in calcareous soils fertilized with diammonium phosphate and phosphoric acid using Freundlich adsorption isotherm.

    PubMed

    Naeem, Asif; Akhtar, Muhammad; Ahmad, Waqar

    2013-01-01

    In calcareous soils, phosphorus (P) retention and immobilization take place due to precipitation and adsorption. Since soil pH is considered a major soil variable affecting the P sorption, an acidic P fertilizer could result in low P adsorption compared to alkaline one. Therefore, P adsorption from DAP and phosphoric acid (PA) required to produce desired soil solution P concentration was estimated using Freundlich sorption isotherms. Two soils from Faisalabad and T. T. Singh districts were spiked with 0, 10, and 20 % CaCO3 for 15 days. Freundlich adsorption isotherms (P = aC(b/a)) were constructed, and theoretical doses of PA and DAP to develop a desired soil solution P level (i.e., 0.20 mg L(-1)) were calculated. It was observed that P adsorption in soil increased with CaCO3. Moreover, at all the levels of CaCO3, P adsorption from PA was lower compared to that from DAP in both the soils. Consequently, lesser quantity of PA was required to produce desired solution P, 0.2 mg L(-1), compared to DAP. However, extrapolating the developed relationship between soil CaCO3 contents and quantity of fertilizer to other similar textured soils needs confirmation.

  14. Phosphorus and nitrogen in runoff after phosphorus- or nitrogen-based manure applications.

    PubMed

    Miller, Jim J; Chanasyk, David S; Curtis, Tony W; Olson, Barry M

    2011-01-01

    Application of beef cattle () manure based on nitrogen (N) requirements of crops has resulted in elevated concentrations of soil test phosphorus (P) in surface soils, and runoff from this cropland can contribute to eutrophication of surface waters. We conducted a 3-yr field study (2005-2007) on a Lethbridge loam soil cropped to dryland barley () in southern Alberta, Canada to evaluate the effect of annual and triennial P-based and annual N-based feedlot manure on P and N in runoff. The manure was spring applied and incorporated. There was one unamended control plot. A portable rainfall simulator was used to generate runoff in the spring of each year after recent manure incorporation, and the runoff was analyzed for total P, total dissolved P, total particulate P, dissolved reactive P, total N, total dissolved N, total particulate N, NO-N, and NH-N. Annual or triennial P-based application resulted in significantly ( ≤ 0.05) lower (by 50 to 94%) concentrations or loads of mainly dissolved P fractions in runoff for some years compared with annual N-based application, and this was related to lower rates of annual manure P applied. For example, mean dissolved reactive P concentrations in 2006 and 2007 were significantly lower for the annual P-based (0.12-0.20 mg L) than for the annual N-based application (0.24-0.48 mg L), and mean values were significantly lower for the triennial P-based (0.06-0.13 mg L) than for the annual N-based application. In contrast, other P fractions in runoff were unaffected by annual P-based application. Our findings suggested no environmental benefit of annual P-based application over triennial P-based application with respect to P and N in runoff. Similar concentrations and loads of N fractions in runoff for the P- and N-based applications indicated that shifting to a P-based application would not significantly influence N in runoff. American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America.

  15. Phosphorus in China's intensive vegetable production systems: over-fertilization,soil enrichment, and enviromental implications

    USDA-ARS?s Scientific Manuscript database

    China’s vegetable production has experienced a rapid growth in recent years. Total production amounted to 522.7 million Mg in 2009, which was more than nine times that in 1980 and represented >50% of the world production.Meanwhile, excessive use of animal manure and chemical fertilizers in vegetab...

  16. Managing acute phosphorus loss with fertilizer source and placement: Proof of concept

    USDA-ARS?s Scientific Manuscript database

    Surface water eutrophication is a pervasive global problem, with P losses from agriculture often identified as a contributor. This study was conducted to evaluate the implications of fertilizer source and placement on potential soluble P (SP) runoff. National P Runoff Project protocols were used f...

  17. Forage cutting height and interval: Relationship to phosphorus uptake by bermudagrass fertilized with boiler litter

    USDA-ARS?s Scientific Manuscript database

    Broiler litter applied to meet bermudagrass N requirement contains more P than required for optimum forage production. Maximizing P uptake would facilitate greater P removal from hay fields fertilized with litter and decrease the potential for P transport by runoff or leaching that may cause eutroph...

  18. [Impact of chemical fertilizers application on soil ecological environment].

    PubMed

    Li, Dong-Po; Wu, Zhi-Jie

    2008-05-01

    China heads the list in the world's chemical fertilizers production and consumption. In 2006, the chemical fertilizers production in this country was 5304.8 x 10(4) t, being 14.2% higher than that in 2005. At present, its chemical nitrogen application rate is averagely more than 220 kg hm(-2), and phosphorous fertilizer application rate is more than 102 kg hm(-2) (P2O5) in single growing season. Some chemical fertilizers in use contain toxic by-components such as heavy metals, inorganic acids and organic pollutants, and thus, a long-term application of these chemical fertilizers can possibly induce the accumulation of these by-components in soil, resulting in the worsening of soil ecological environment, and making the heavy metals, nitrate, and other harmful components in agricultural products including vegetables, grains and fruits seriously surpassed the standards. In this paper, the causes, characteristics, and consequences of soil contamination via chemical fertilizers application were discussed, and some countermeasures for the mitigation of agro-ecological environmental pollution by chemical fertilizers were put forward.

  19. Legacy phosphorus in calcareous soils: effects of long-term poultry litter application on phosphorus distribution in Texas Blackland Vertisol

    USDA-ARS?s Scientific Manuscript database

    Sequential fractionation techniques, coupled with phosphatase hydrolysis, have allowed for greater understanding of manure/litter effects on soil phosphorus (P) distribution. We evaluated the effect of long-term (> 10 years) poultry litter (broiler and turkey litter) application at rates of 4.5, 6.7...

  20. Bacterial phosphate metabolism and its application to phosphorus recovery and industrial bioprocesses.

    PubMed

    Hirota, Ryuichi; Kuroda, Akio; Kato, Junichi; Ohtake, Hisao

    2010-05-01

    Enhanced biological phosphorus removal (EBPR) has become a well-established process and is currently applied in many full-scale wastewater treatment processes. Phosphorus recovered from EBPR waste sludge can be used as a raw material for the fertilizer industry, if a sound recycling strategy is developed and applied. In this review, we summarize our current knowledge on phosphate metabolism in bacteria, focusing on molecular mechanisms of bacterial polyphosphate (polyP) accumulation. A simple method for releasing polyP from EBPR waste sludge and recovering phosphorus in a reusable form for the fertilizer industry is presented. We also describe a recent development of bioprocesses for the expanded use of polyP in the production of value-added chemicals. (c) 2009 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.

  1. Aqueous and gaseous nitrogen losses induced by fertilizer application

    SciTech Connect

    Gu, C.; Maggi, F.; Riley, W.J.; Hornberger, G.M.; Xu, T.; Oldenburg, C.M.; Spycher, N.; Miller, N.L.; Venterea, R.T.; Steefel, C.

    2009-01-15

    In recent years concern has grown over the contribution of nitrogen (N) fertilizer use to nitrate (NO{sub 3}{sup -}) water pollution and nitrous oxide (N{sub 2}O), nitric oxide (NO), and ammonia (NH{sub 3}) atmospheric pollution. Characterizing soil N effluxes is essential in developing a strategy to mitigate N leaching and emissions to the atmosphere. In this paper, a previously described and tested mechanistic N cycle model (TOUGHREACT-N) was successfully tested against additional observations of soil pH and N{sub 2}O emissions after fertilization and irrigation, and before plant emergence. We used TOUGHREACT-N to explain the significantly different N gas emissions and nitrate leaching rates resulting from the different N fertilizer types, application methods, and soil properties. The N{sub 2}O emissions from NH{sub 4}{sup +}-N fertilizer were higher than from urea and NO{sub 3}{sup -}-N fertilizers in coarse-textured soils. This difference increased with decreases in fertilization application rate and increases in soil buffering capacity. In contrast to methods used to estimate global terrestrial gas emissions, we found strongly non-linear N{sub 2}O emissions as a function of fertilizer application rate and soil calcite content. Speciation of predicted gas N flux into N{sub 2}O and N{sub 2} depended on pH, fertilizer form, and soil properties. Our results highlighted the need to derive emission and leaching factors that account for fertilizer type, application method, and soil properties.

  2. Spatial 2D distribution of the proportion of soil phosphorus uptake by maize and soybean caused by tillage and fertilization

    NASA Astrophysics Data System (ADS)

    Li, Haixiao; Mollier, Alain; Ziadi, Noura; Messiga, Aimé Jean; Parent, Leon-Étienne; Morel, Christian

    2017-04-01

    Plant-available soil phosphorus (P) accumulates primarily in the topsoil due to P fertilization and P released from crop residues. In contrast with conventional tillage (moldboard plough, MP), conservation tillage [e.g. no-till, (NT)] often leads to higher P concentrations in the topsoil mainly due to the absence of mixing between soil, fertilizer, and crop residues. Our objective was to estimate the proportion of P uptake from a given soil mass across the soil profile under maize and soybean as the product of root surface density proportions and local plant-available soil P. This study was conducted on a long-term field experiment initiated in 1992 in southern Quebec, Canada, and established on a clay-loam soil under MP and NT systems. The experiment was factorially treated with three P doses (0, 17.5 and 35 kg P ha-1 applied as triple superphosphate on maize at 5 cm depth and at 5 cm on one side of the crop row). Soil was sampled at flowering stage at five depths (0-5, 5-10, 10-20, 20-30 and 30-40 cm) and three horizontal distances perpendicular to the crop row (5, 15 and 25 cm) in 2014 and 2015 to map a grid soil P availability to plants, e.g. phosphate ion concentrations in solution and the time-dependent amount of phosphate ions that can equilibrate- solution by diffusion, root distribution, and consequently crop P uptake, which was calculated as the fraction of plant-available soil P intercepted by surface roots. In general, NT tended to have higher soil P status in the upper soil layer and lower soil P status in the deeper soil layer compared to MP ; confirming previous results obtained from the same experimental site. This variation along the soil profile was significantly affected by sampling distance to crop row with higher concentration observed at 5-cm distance mainly because of the placement of P fertilizers. The 2D distribution of P uptake depended on tillage practice and P fertilization. There was higher proportions of P uptake from the 0-10 and 0

  3. Distributions and stoichiometry of dissolved nitrogen and phosphorus in the iron fertilized region near Kerguelen (Southern Ocean)

    NASA Astrophysics Data System (ADS)

    Blain, S.; Capparos, J.; Guéneuguès, A.; Obernosterer, I.; Oriol, L.

    2014-06-01

    During KEOPS2 (Kerguelen Ocean and Plateau Compared Study 2), we determined dissolved inorganic and organic nitrogen and phosphorus species in the naturally fertilized region of Kerguelen Island (Southern Ocean). Above 150 m, stations were clearly separated by the Polar Front (PF), with concentrations of NO3-, NO2- and PO43- overall lower north than south of the PF. Though less pronounced, a similar trend was detectable for dissolved organic nitrogen (DON) and phosphorus (DOP). At all stations offshore and above the plateau, a subsurface maximum of NH4+ was observed between 50 and 150 m. We examined nutrient stoichiometry by calculating the linear combination N* = [NO3-] - 16[PO43- ]. The majority of stations and depths revealed N* close to -3 μM, however, for surface waters north of the PF N* increased up to 6 μM. This suggests a preferential uptake of PO43- vs. NO3- by fast growing diatoms. Using the tracer TNxs = [TDN] - 16[TDP] revealed that the dissolved organic fraction significantly contributed to changes in TNxs. TNxs were negative for most stations and depths, and relatively constant in the layer 0-500 m. As for N*, the stations north of the PF had higher TNxs in the layer 0-100 m. We discuss this stoichiometric anomaly with respect to possible external sources and sinks of N and P. Additional data collected in February 2013 at two sites revealed the occurrence of a subsurface of N* located just below the pycnocline that denotes a~layer where preferential remineralization of P vs. N persists throughout the season.

  4. [Effects of different fertilizer application on soil active organic carbon].

    PubMed

    Zhang, Rui; Zhang, Gui-Long; Ji, Yan-Yan; Li, Gang; Chang, Hong; Yang, Dian-Lin

    2013-01-01

    The variation characteristics of the content and components of soil active organic carbon under different fertilizer application were investigated in samples of calcareous fluvo-aquic soil from a field experiment growing winter wheat and summer maize in rotation in the North China Plain. The results showed that RF (recommended fertilization), CF (conventional fertilization) and NPK (mineral fertilizer alone) significantly increased the content of soil dissolved organic carbon and easily oxidized organic carbon by 24.92-38.63 mg x kg(-1) and 0.94-0.58 mg x kg(-1) respectively compared to CK (unfertilized control). The soil dissolved organic carbon content under OM (organic manure) increased greater than those under NPK and single fertilization, soil easily oxidized organic carbon content under OM and NPK increased greater than that under single chemical fertilization. OM and NPK showed no significant role in promoting the soil microbial biomass carbon, but combined application of OM and NPK significantly increased the soil microbial biomass carbon content by 36.06% and 20.69%, respectively. Soil easily oxidized organic carbon, dissolved organic carbon and microbial biomass carbon accounted for 8.41% - 14.83%, 0.47% - 0.70% and 0.89% - 1.20% of the total organic carbon (TOC), respectively. According to the results, the fertilizer application significantly increased the proportion of soil dissolved organic carbon and easily oxidized organic carbon, but there was no significant difference in the increasing extent of dissolved organic carbon. The RF and CF increased the proportion of soil easily oxidized organic carbon greater than OM or NPK, and significantly increased the proportion of microbial biomass carbon. OM or RF had no significant effect on the proportion of microbial biomass carbon. Therefore, in the field experiment, appropriate application of organic manure and chemical fertilizers played an important role for the increase of soil active organic carbon

  5. Import-export balance of nitrogen and phosphorus in food, fodder and fertilizers in the Baltic Sea drainage area.

    PubMed

    Asmala, Eero; Saikku, Laura; Vienonen, Sanna

    2011-11-01

    Nitrogen (N) and phosphorus (P) are essential elements for life, but in excess they contribute to aquatic eutrophication. The Baltic Sea is a brackish semi-enclosed sea that is heavily influenced by anthropogenic loading of nutrients, resulting in a major environmental problem, eutrophication. In this study, the nutrient balance of the food production and consumption system in seven countries in the Baltic Sea drainage area was quantified for the period 2002-2005. The food production and consumption system accumulates nutrients in the Baltic Sea drainage area, due to extensive imports to the system. The average annual net surplus of nutrients was 1,800,000 tons N and 320,000 tons P in 2002-2005, or annually 28 kg N and 5 kg P per capita. The average total annual import was 2,100,000 tons N and 340,000 tons P during 2002-2005. The largest imports to the system were fertilizers, totaling 1,700,000 tons N and 290,000 tons P. Traded nutrients in food and fodder amounted to a net annual surplus of 180,000 tons N and 25,000 tons P. The nutrient load to the Baltic Sea due to the food consumption and production system was 21% N and 6% P of the respective annual net inputs to the region. This study shows that large amounts of nutrients to Baltic Sea drainage area are inputs from outside the region, eventually contributing to eutrophication. To reduce the nutrient imports, fertilizers should be used more efficiently, nutrients should be recycled more efficiently inside the region, and food system should be guided toward low-nutrient intensive diets.

  6. 40 CFR 418.70 - Applicability; description of the mixed and blend fertilizer production subcategory.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... and blend fertilizer production subcategory. 418.70 Section 418.70 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS FERTILIZER MANUFACTURING POINT SOURCE CATEGORY Mixed and Blend Fertilizer Production Subcategory § 418.70 Applicability; description...

  7. 40 CFR 418.70 - Applicability; description of the mixed and blend fertilizer production subcategory.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... and blend fertilizer production subcategory. 418.70 Section 418.70 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS FERTILIZER MANUFACTURING POINT SOURCE CATEGORY Mixed and Blend Fertilizer Production Subcategory § 418.70 Applicability; description...

  8. 40 CFR 418.70 - Applicability; description of the mixed and blend fertilizer production subcategory.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... and blend fertilizer production subcategory. 418.70 Section 418.70 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS FERTILIZER MANUFACTURING POINT SOURCE CATEGORY Mixed and Blend Fertilizer Production Subcategory § 418.70 Applicability; description...

  9. 40 CFR 418.70 - Applicability; description of the mixed and blend fertilizer production subcategory.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... and blend fertilizer production subcategory. 418.70 Section 418.70 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS FERTILIZER MANUFACTURING POINT SOURCE CATEGORY Mixed and Blend Fertilizer Production Subcategory § 418.70 Applicability; description...

  10. Phosphorus runoff from Coastal Plain forest soil in Louisiana

    USDA-ARS?s Scientific Manuscript database

    Although not a common practice, poultry litter (PL) may be used for forest fertilization. Despite usually low soil phosphorus (P) and runoff under forest, repeated or high rates of PL application may cause appreciable P loss. Phosphorus in natural runoff under loblolly pine (Pinus taeda L.) fertiliz...

  11. Effect of long-term compost and inorganic fertilizer application on background N2O and fertilizer-induced N2O emissions from an intensively cultivated soil.

    PubMed

    Ding, Weixin; Luo, Jiafa; Li, Jie; Yu, Hongyan; Fan, Jianling; Liu, Deyan

    2013-11-01

    The influence of inorganic fertilizer and compost on background nitrous oxide (N2O) and fertilizer-induced N2O emissions were examined over a maize-wheat rotation year from June 2008 to May 2009 in a fluvo-aquic soil in Henan Province of China where a field experiment had been established in 1989 to evaluate the long-term effects of manure and fertilizer on soil organic status. The study involved five treatments: compost (OM), fertilizer NPK (nitrogen-phosphorus-potassium, NPK), half compost N plus half fertilizer N (HOM), fertilizer NK (NK), and control without any fertilizer (CK). The natural logarithms of the background N2O fluxes were significantly (P<0.05) correlated with soil temperature, but not with soil moisture, during the maize or wheat growing season. The 18-year application of compost alone and inorganic fertilizer not only significantly (P<0.05) increased soil organic carbon (SOC) by 152% and 10-43% (respectively), but also increased background N2O emissions by 106% and 48-76% (respectively) compared with the control. Total N in soils was a better indicator for predicting annual background N2O emission than SOC. The estimated emission factor (EF) of mineralized N, calculated by dividing annual N2O emission by mineralized N was 0.13-0.19%, significantly (P<0.05) lower than the EF of added N (0.30-0.39%). The annual N2O emission in the NPK, HOM and OM soils amended with 300 kg ha(-1) organic or inorganic N was 1427, 1325 and 1178 g N ha(-1), respectively. There was a significant (P<0.05) difference between the NPK and OM. The results of this study indicate that soil indigenous N was less efficiently converted into N2O compared with exogenous N. Increasing SOC by compost application, then partially increasing N supply to crops instead of adding inorganic N fertilizer, may be an effective measure to mitigate N2O emissions from arable soils in the North China plain. Copyright © 2012 Elsevier B.V. All rights reserved.

  12. Optimal fertilizer application for Panax notoginseng and effect of soil water on root rot disease and saponin contents.

    PubMed

    Xia, Pengguo; Guo, Hongbo; Zhao, Hongguang; Jiao, Jie; Deyholos, Michael K; Yan, Xijun; Liu, Yan; Liang, Zongsuo

    2016-01-01

    Blind and excessive application of fertilizers was found during the cultivation of Panax notoginseng in fields, as well as increase in root rot disease incidence. Both "3414" application and orthogonal test designs were performed at Shilin county, Yunnan province, China, for NPK (nitrogen, phosphorus, and potassium) and mineral fertilizers, respectively. The data were used to construct the one-, two-, and three-factor quadratic regression models. The effect of fertilizer deficiency on root yield loss was also analyzed to confirm the result predicted by these models. A pot culture experiment was performed to observe the incidence rate of root rot disease and to obtain the best range in which the highest yield of root and saponins could be realized. The best application strategy for NPK fertilizer was 0 kg/667 m(2), 17.01 kg/667 m(2), and 56.87 kg/667 m(2), respectively, which can produce the highest root yield of 1,861.90 g (dried root of 100 plants). For mineral fertilizers, calcium and magnesium fertilizers had a significant and positive effect on root yield and the content of four active saponins, respectively. The severity of root rot disease increased with the increase in soil moisture. The best range of soil moisture varied from 0.56 FC (field capacity of water) to 0.59 FC, when the highest yield of root and saponins could be realized as well as the lower incidence rate of root disease. These results indicate that the amount of nitrogen fertilizer used in these fields is excessive and that of potassium fertilizer is deficient. Higher soil moisture is an important factor that increases the severity of the root rot disease.

  13. Optimal fertilizer application for Panax notoginseng and effect of soil water on root rot disease and saponin contents

    PubMed Central

    Xia, Pengguo; Guo, Hongbo; Zhao, Hongguang; Jiao, Jie; Deyholos, Michael K.; Yan, Xijun; Liu, Yan; Liang, Zongsuo

    2015-01-01

    Background Blind and excessive application of fertilizers was found during the cultivation of Panax notoginseng in fields, as well as increase in root rot disease incidence. Methods Both “3414” application and orthogonal test designs were performed at Shilin county, Yunnan province, China, for NPK (nitrogen, phosphorus, and potassium) and mineral fertilizers, respectively. The data were used to construct the one-, two-, and three-factor quadratic regression models. The effect of fertilizer deficiency on root yield loss was also analyzed to confirm the result predicted by these models. A pot culture experiment was performed to observe the incidence rate of root rot disease and to obtain the best range in which the highest yield of root and saponins could be realized. Results The best application strategy for NPK fertilizer was 0 kg/667 m2, 17.01 kg/667 m2, and 56.87 kg/667 m2, respectively, which can produce the highest root yield of 1,861.90 g (dried root of 100 plants). For mineral fertilizers, calcium and magnesium fertilizers had a significant and positive effect on root yield and the content of four active saponins, respectively. The severity of root rot disease increased with the increase in soil moisture. The best range of soil moisture varied from 0.56 FC (field capacity of water) to 0.59 FC, when the highest yield of root and saponins could be realized as well as the lower incidence rate of root disease. Conclusion These results indicate that the amount of nitrogen fertilizer used in these fields is excessive and that of potassium fertilizer is deficient. Higher soil moisture is an important factor that increases the severity of the root rot disease. PMID:26843820

  14. Phosphorus recovery from pig manure solids prior to land application

    USDA-ARS?s Scientific Manuscript database

    Land disposal of pig manure is an environmental concern due to an imbalance of the nitrogen to phosphorus (N:P) ratio for crop production, leading to excess phosphorus (P) in soils and potential risks of water pollution. A process called “quick wash” was investigated for its feasibility to extract ...

  15. Effect of land application of phosphorus-saturated gypsum on soil phosphorus in a laboratory incubation

    USDA-ARS?s Scientific Manuscript database

    Agricultural drainage ditches can deliver high loads of phosphorus (P) to surface water. Installation of filter structures containing P sorbing materials (PSMs), including gypsum, is an emerging practice that has shown promise to reduce these P loads. The objective of this study was to evaluate what...

  16. Black Phosphorus (BP) Nanodots for Potential Biomedical Applications.

    PubMed

    Lee, Hyun Uk; Park, So Young; Lee, Soon Chang; Choi, Saehae; Seo, Soonjoo; Kim, Hyeran; Won, Jonghan; Choi, Kyuseok; Kang, Kyoung Suk; Park, Hyun Gyu; Kim, Hee-Sik; An, Ha Rim; Jeong, Kwang-Hun; Lee, Young-Chul; Lee, Jouhahn

    2016-01-13

    Recently, the appeal of 2D black phosphorus (BP) has been rising due to its unique optical and electronic properties with a tunable band gap (≈0.3-1.5 eV). While numerous research efforts have recently been devoted to nano- and optoelectronic applications of BP, no attention has been paid to promising medical applications. In this article, the preparation of BP-nanodots of a few nm to <20 nm with an average diameter of ≈10 nm and height of ≈8.7 nm is reported by a modified ultrasonication-assisted solution method. Stable formation of nontoxic phosphates and phosphonates from BP crystals with exposure in water or air is observed. As for the BP-nanodot crystals' stability (ionization and persistence of fluorescent intensity) in aqueous solution, after 10 d, ≈80% at 1.5 mg mL(-1) are degraded (i.e., ionized) in phosphate buffered saline. They showed no or little cytotoxic cell-viability effects in vitro involving blue- and green-fluorescence cell imaging. Thus, BP-nanodots can be considered a promising agent for drug delivery or cellular tracking systems.

  17. Potential negative consequences of adding phosphorus-based fertilizers to immobilize lead in soil

    SciTech Connect

    Kilgour, Douglas W.; Moseley, Rebecca A.; Savage, Kaye S; Jardine, Philip M

    2008-09-01

    A study of the potential negative consequences of adding phosphate (P)-based fertilizers as amendments to immobilize lead (Pb) in contaminated soils was conducted. Lead-contaminated firing range soils also contained elevated concentrations of antimony (Sb), a common Pb hardening agent, and some arsenic (As) of unknown (possibly background) origin. After amending the soils with triple superphosphate, a relatively soluble P source, column leaching experiments revealed elevated concentrations of Sb, As, and Pb in the leachate, reflecting an initial spike in soluble Pb and a particularly dramatic increase in Sb and As mobility. Minimal As, Sb, and Pb leaching was observed during column tests performed on non-amended control soils. In vitro extractions tests were performed to assess changes in Pb, As, and Sb bioaccessibility on P amendment. Lead bioaccessibility was systematically lowered with increasing P dosage, but there was much less of an effect on As and Sb bioaccessibility than on mobility. Our results indicate that although P amendments may aid in lowering the bioaccessibility of soil-bound Pb, it may also produce an initial increase in Pb mobility and a significant release of Sb and As from the soil, dramatically increasing their mobility and to a lesser extent their bioavailability.

  18. Rational Phosphorus Application Facilitates the Sustainability of the Wheat/Maize/Soybean Relay Strip Intercropping System.

    PubMed

    Chen, Yuanxue; Zhou, Tao; Zhang, Chaochun; Wang, Ke; Liu, Jing; Lu, Junyu; Xu, Kaiwei

    2015-01-01

    Wheat (Triticum aestivum L.)/maize (Zea mays L.)/soybean (Glycine max L.) relay strip intercropping (W/M/S) system is commonly used by the smallholders in the Southwest of China. However, little known is how to manage phosphorus (P) to enhance P use efficiency of the W/M/S system and to mitigate P leaching that is a major source of pollution. Field experiments were carried out in 2011, 2012, and 2013 to test the impact of five P application rates on yield and P use efficiency of the W/M/S system. The study measured grain yield, shoot P uptake, apparent P recovery efficiency (PRE) and soil P content. A linear-plateau model was used to determine the critical P rate that maximizes gains in the indexes of system productivity. The results show that increase in P application rates aggrandized shoot P uptake and crops yields at threshold rates of 70 and 71.5 kg P ha-1 respectively. With P application rates increasing, the W/M/S system decreased the PRE from 35.9% to 12.3% averaged over the three years. A rational P application rate, 72 kg P ha-1, or an appropriate soil Olsen-P level, 19.1 mg kg-1, drives the W/M/S system to maximize total grain yield while minimizing P surplus, as a result of the PRE up to 28.0%. We conclude that rational P application is an important approach for relay intercropping to produce high yield while mitigating P pollution and the rational P application-based integrated P fertilizer management is vital for sustainable intensification of agriculture in the Southwest of China.

  19. Rational Phosphorus Application Facilitates the Sustainability of the Wheat/Maize/Soybean Relay Strip Intercropping System

    PubMed Central

    Wang, Ke; Liu, Jing; Lu, Junyu; Xu, Kaiwei

    2015-01-01

    Wheat (Triticum aestivum L.)/maize (Zea mays L.)/soybean (Glycine max L.) relay strip intercropping (W/M/S) system is commonly used by the smallholders in the Southwest of China. However, little known is how to manage phosphorus (P) to enhance P use efficiency of the W/M/S system and to mitigate P leaching that is a major source of pollution. Field experiments were carried out in 2011, 2012, and 2013 to test the impact of five P application rates on yield and P use efficiency of the W/M/S system. The study measured grain yield, shoot P uptake, apparent P recovery efficiency (PRE) and soil P content. A linear-plateau model was used to determine the critical P rate that maximizes gains in the indexes of system productivity. The results show that increase in P application rates aggrandized shoot P uptake and crops yields at threshold rates of 70 and 71.5 kg P ha-1 respectively. With P application rates increasing, the W/M/S system decreased the PRE from 35.9% to 12.3% averaged over the three years. A rational P application rate, 72 kg P ha-1, or an appropriate soil Olsen-P level, 19.1 mg kg-1, drives the W/M/S system to maximize total grain yield while minimizing P surplus, as a result of the PRE up to 28.0%. We conclude that rational P application is an important approach for relay intercropping to produce high yield while mitigating P pollution and the rational P application-based integrated P fertilizer management is vital for sustainable intensification of agriculture in the Southwest of China. PMID:26540207

  20. Soil Fertility, Phosphorus Fractions, and Maize Yield as Affected by Poultry Manure and Single Superphosphate

    PubMed Central

    Ojo, A. O.; Adetunji, M. T.; Okeleye, K. A.; Adejuyigbe, C. O.

    2015-01-01

    A field experiment was conducted in 2007 and 2008 on a slightly acidic alfisol. Poultry manure (PM) was applied at 0, 5 t ha−1, 10 t ha−1, 15 t ha−1, and 20 t ha−1 in combination with SSP at 0, 15 kg P ha−1, 30 kg P ha−1, 45 kg P ha−1, and 60 kg P ha−1, which was replicated three times. The pH and organic C were significantly increased by the application of PM alone while available P was highly increased by the sole application of SSP. Plant tissue P was significantly increased with the application of 30 kg P ha−1 while the largest grain yield was obtained when PM at 20 t ha−1 was combined with SSP at 60 kg P ha−1. The buildup of organic P was observed when PM was applied at 15 t ha−1 while the combination of the two treatments increased residual P and Fe-P. However, P occlusion was effectively reduced with the sole application of PM. Organic P and residual P however had a strong positive relationship with the grain yield. Comparing the sole and combined application of the treatments, the combined application was more effective for most of the parameters observed. PMID:27347532

  1. Legacy phosphorus in calcareous soils: Effects of long-term poultry litter application

    USDA-ARS?s Scientific Manuscript database

    The effect of manure application on soil phosphorus has been intensively studied with modifications of the Hedley sequential fractionation procedure, X ray absorption near edge structure spectroscopy, and 31P nuclear magnetic resonance. Modern sequential fractionation techniques, coupled with phosph...

  2. Polyimides Containing Fluorine and Phosphorus for Potential Space Applications

    NASA Technical Reports Server (NTRS)

    Connell, John W.; Watson, Kent A.

    2000-01-01

    As part of an effort to develop low color, ultraviolet (UV) radiation and atomic oxygen resistant polyimides for potential space applications, a novel diamine containing fluorine and phosphorus was synthesized and used to prepare polyimides. The approach was to combine attributes from colorless, UV resistant polyimides and atomic oxygen (AO) resistant polymers into a single material. Preparation of colorless polyimides has focused on minimization of charge transfer complex formation by incorporation of bulky substituents and disrupting conjugation by using meta-catenated monomers. AO resistant polymer technology development has focused on placing phenylphosphine oxide groups into the backbone of aromatic polymers. However, polyimides prepared utilizing this approach thus far have all exhibited significant color. Thus in an attempt to combine these features in a polyimide a new diamine, bis(3-aminophenyl)-3,5-di(trifluoromethyl)phenylphosphine oxide (TFMDA) was synthesized and used to prepare polyimides. The polyimides were cast into films and characterized for physical and mechanical properties, optical transmission and AO and UV resistance.

  3. Polyimides Containing Fluorine and Phosphorus for Potential Space Applications

    NASA Technical Reports Server (NTRS)

    Connell, John W.; Watson, Kent A.

    2000-01-01

    As part of an effort to develop low color, ultraviolet (UV) radiation and atomic oxygen resistant polyimides for potential space applications, a novel diamine containing fluorine and phosphorus was synthesized and used to prepare polyimides. The approach was to combine attributes from colorless, UV resistant polyimides and atomic oxygen (AO) resistant polymers into a single material. Preparation of colorless polyimides has focused on minimization of charge transfer complex formation by incorporation of bulky substituents and disrupting conjugation by using meta-catenated monomers. AO resistant polymer technology development has focused on placing phenylphosphine oxide groups into the backbone of aromatic polymers. However, polyimides prepared utilizing this approach thus far have all exhibited significant color. Thus in an attempt to combine these features in a polyimide a new diamine, bis(3-aminophenyl)-3,5-di(trifluoromethyl)phenylphosphine oxide (TFMDA) was synthesized and used to prepare polyimides. The polyimides were cast into films and characterized for physical and mechanical properties, optical transmission and AO and UV resistance.

  4. Phosphorus Determination by Derivative Activation Analysis: A Multifaceted Radiochemical Application.

    ERIC Educational Resources Information Center

    Kleppinger, E. W.; And Others

    1984-01-01

    Although determination of phosphorus is important in biology, physiology, and environmental science, traditional gravimetric and colorimetric methods are cumbersome and lack the requisite sensitivity. Therefore, a derivative activation analysis method is suggested. Background information, procedures, and results are provided. (JN)

  5. Phosphorus Determination by Derivative Activation Analysis: A Multifaceted Radiochemical Application.

    ERIC Educational Resources Information Center

    Kleppinger, E. W.; And Others

    1984-01-01

    Although determination of phosphorus is important in biology, physiology, and environmental science, traditional gravimetric and colorimetric methods are cumbersome and lack the requisite sensitivity. Therefore, a derivative activation analysis method is suggested. Background information, procedures, and results are provided. (JN)

  6. Phosphorus availability to rice (Oriza sativa L.)-wheat (Triticum estivum L.) in a Vertisol after eight years of inorganic and organic fertilizer additions.

    PubMed

    Singh, Muneshwar; Reddy, K Sammi; Singh, V P; Rupa, T R

    2007-05-01

    Integrated use of inorganic fertilizer N and well decomposed cattle manure (CM) or 30-35 days old Parthenium (Parthenium hysterophorus L.), a weed grown off site as green manure (GM) under repeated applications of fertilizer P and urea N for eight years in a rice (Oriza sativa L.)-wheat (Triticum estivum L.) sequence was studied on transformation of fertilizer P applied to soil at the National Research Center for Weed Science, Jabalpur, India. Based on the results, it appeared that, repeated applications of 52 kg super-phosphate P resulted in a marked increase in Olsen P linearly with time. Conjunctive use of urea fertilizer N with organic manure resulted in a larger increase in Olsen P in the Vertisol. Studies further revealed that the greater accumulation of fertilizer P applied in excess to crop removal occurred in inorganic P in the plots receiving only fertilizer N. However, plots receiving fertilizer N along with organic manures led to P accumulation predominantly in organic forms. The study suggests that these two pools of P acted as a sink when fertilizer P was applied in excess to crop removal and are bio-chemically active. The Olsen P status after 8 cycles of rice-wheat crops revealed that the average amount of fertilizer P required after adjusting for crop uptake to increase Olsen P by 1 mg kg(-1) soil was 7.2 kg Pha(-1) in the plots receiving only fertilizer N. Whereas, application of 5t FYM or 6t GM reduced it to 4.6 kg Pha(-1). The plots receiving manure always maintained a greater concentration of Olsen P. The application of CM or GM with fertilizer N enriched short-term inorganic P as well as long-term organic P fertility. After eight years, larger concentrations of organic P in the subsurface layer (16-30 cm), compared to initial values, indicates downward movement of P in organic forms.

  7. Reduced Environmental Impact of Fertilizers Using PGPR

    USDA-ARS?s Scientific Manuscript database

    The use of fertilizers is becoming a threat to sustainability in agriculture. Inorganic fertilizer is linked to nitrate contamination of groundwater and phosphorus runoff. Even with organic fertilizers, such as poultry litter, high phosphorus bioavailability, nitrogen accumulation, and leaching may ...

  8. Phosphorus recovery from wastes

    USDA-ARS?s Scientific Manuscript database

    Phosphorus (P) is an important macro-nutrient essential for all living organisms and phosphate rock is the main raw material for all inorganic P fertilizers. It is expected that there will be a P peak and resulting P fertilizer shortage in near future. In general, phosphorus use efficiency is low a...

  9. Growth and Productivity Response of Hybrid Rice to Application of Animal Manures, Plant Residues and Phosphorus

    PubMed Central

    Amanullah; Khan, Shams-ul-Tamraiz; Iqbal, Asif; Fahad, Shah

    2016-01-01

    The objective of this research was to evaluate the impact of organic sources (animal manures vs. plant residues at the rate of 10 t ha−1 each) on the productivity of hybrid rice (Oryza sativa L.) production under different levels of phosphorus (0, 30, 60, and 90 kg P ha−1) fertilization. Two separate field experiments were conducted. In experiment (1), impact of three animal manures sources (cattle, sheep, and poultry manures) and P levels were studied along with one control plot (no animal manure and P applied) was investigated. In experiment (2), three plant residues sources (peach leaves, garlic residues, and wheat straw) and P levels were studied along with one control plot (no plant residues and P applied). Both the experiments were carried out on small land farmer field at District Swabi, Khyber Pakhtunkhwa Province (Northwest Pakistan) during summer 2015. The results revealed that in both experiments the control plot had significantly (p ≤ 0.05) less productivity than the average of all treated plots with organic sources and P level. The increase in P levels in both experiments (animal manure vs. plant residues) resulted in higher rice productivity (90 > 60 > 30 > 0 kg P ha−1). In the experiment under animal manures, application of poultry manure increased rice productivity as compared with sheep and cattle manures (poultry > sheep > cattle manures). In the experiment under plant residues, application of peach leaves or garlic residues had higher rice productivity than wheat straw (peach leaves = garlic residues > wheat straw). On average, rice grown under animal manures produced about 20% higher grain yield than rice grown under crop residues. We conclude from this study that application of 90 kg P ha−1 along with combined application of animal manures, especially poultry manure increases rice productivity. Also, the use of either garlic residues or peach leaves, never applied before as organic manures, can increase crop productivity and will help

  10. Manure and nitrogen application enhances soil phosphorus mobility in calcareous soil in greenhouses.

    PubMed

    Yan, Zhengjuan; Chen, Shuo; Li, Junliang; Alva, Ashok; Chen, Qing

    2016-10-01

    Over many years, high phosphorus (P) loading for intensive vegetable cropping in greenhouses of North China has contributed to excessive P accumulation, resulting in environmental risk. In this study, the influences of manure and nitrogen (N) application on the transformation and transport of soil P were investigated after nine years in a greenhouse tomato double cropping system (winter-spring and autumn-winter seasons). High loading of manure significantly increased the soil inorganic P (Pi), inositol hexakisphosphate (IHP), mobile P and P saturation ratio (PSR, >0.7 in 0-30 cm depth soil; PSR was estimated from P/(Fe + Al) in an oxalate extract of the soil). The high rate of N fertilizer application to the studied calcareous soil with heavy loading of manure increased the following: (i) mobile organic P (Po) and Pi fractions, as evidenced by the decrease in the ratio of monoesters to diesters and the proportion of stable Pi (i.e., HCl-Pi) in total P (Pt) in 0-30 cm depth soil; (ii) relative distribution of Po in the subsoil layer; and (iii) P leaching to soil depths below 90 cm and the proportion of Po in Pt in the leachate. More acidic soil due to excessive N application increased P mobility and leaching. The increase in Ox-Al (oxalate-extractable Al) and the proportion of microbe-associated Po related to N application at soil depths of 0-30 cm suggested decrease in the net Po mineralization, which may contribute to downward transport of Po in the soil profile.

  11. Growth and Productivity Response of Hybrid Rice to Application of Animal Manures, Plant Residues and Phosphorus.

    PubMed

    Amanullah; Khan, Shams-Ul-Tamraiz; Iqbal, Asif; Fahad, Shah

    2016-01-01

    The objective of this research was to evaluate the impact of organic sources (animal manures vs. plant residues at the rate of 10 t ha(-1) each) on the productivity of hybrid rice (Oryza sativa L.) production under different levels of phosphorus (0, 30, 60, and 90 kg P ha(-1)) fertilization. Two separate field experiments were conducted. In experiment (1), impact of three animal manures sources (cattle, sheep, and poultry manures) and P levels were studied along with one control plot (no animal manure and P applied) was investigated. In experiment (2), three plant residues sources (peach leaves, garlic residues, and wheat straw) and P levels were studied along with one control plot (no plant residues and P applied). Both the experiments were carried out on small land farmer field at District Swabi, Khyber Pakhtunkhwa Province (Northwest Pakistan) during summer 2015. The results revealed that in both experiments the control plot had significantly (p ≤ 0.05) less productivity than the average of all treated plots with organic sources and P level. The increase in P levels in both experiments (animal manure vs. plant residues) resulted in higher rice productivity (90 > 60 > 30 > 0 kg P ha(-1)). In the experiment under animal manures, application of poultry manure increased rice productivity as compared with sheep and cattle manures (poultry > sheep > cattle manures). In the experiment under plant residues, application of peach leaves or garlic residues had higher rice productivity than wheat straw (peach leaves = garlic residues > wheat straw). On average, rice grown under animal manures produced about 20% higher grain yield than rice grown under crop residues. We conclude from this study that application of 90 kg P ha(-1) along with combined application of animal manures, especially poultry manure increases rice productivity. Also, the use of either garlic residues or peach leaves, never applied before as organic manures, can increase crop productivity and will help

  12. NIOSH Method 7905: Phosphorus

    EPA Pesticide Factsheets

    Method 7905 describes procedures for analysis of phosphorus in air samples using GC-FPD. The method is applicable to vapor-phase phosphorus only; if particulate phosphorus is expected, a filter could be used in the sampling train.

  13. [Effects of fertilizer application on contents of 2-undecanone and soluble carbonhydrate in Houttuynia cordata with different fertilizers].

    PubMed

    Lin, Rui-yu; Lin, Hao-sen; Sun, Xiao-xia; Zhang, Zhong-yi; Peng, Chun-hua; Li, Zhen-fang; Chen, Hui; Lin, Wen-xiong

    2007-11-01

    To investigate the effect of five kinds of fertilizers at three application levels on the content of 2-undecanone and carbohydrate in Houttuynia cordata. A single factor randomized block design was used to investigate the content of 2-undecanone and carbohydrate in the plant. The results showed that the content of 2-undecanone was the highest both in aerial and underground parts of H. cordata, which was fertilized with complex fertilizers served in conventional way, having the content 18.6 microg g(-1) and 26.0 microg g(-1) respectively. In addition, 2-undecanone contents in aerial parts of H. cordata (14.9 microg g(-1)) fertilized with manure of human were also higher than that with chemical fertilizer, pig and duck manures, but no significant difference were found among the other treatments in aerial or underground parts of the plants, respectively. The results also demonstrated that fertilized with organic fertilizer might be beneficial to enhance the quality of sugar in H. cordata, mainly including the contents of total sugar, solutable sugar, fructose and reduced sugar in the plants, especially with manure of human and pig. As the result of this study and the related previous research on yield of H. cordata were considered, the fertilizing ways for increasing quality of H. cordata should take the manure of human as a main fertilizer and mix with the other organic fertilizers, complex fertilizers and chemical ones may be needed to balance the plant nutrient. In the field practice, the amount of organic fertilizer including 108,000 kg hm(-2) human mature, together with some high-efficient complex fertilizer and a small amount of quick-acting chemical fertilizer is recommended.

  14. 40 CFR 422.20 - Applicability; description of the phosphorus consuming subcategory.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... manufacture of phosphoric acid, phosphorus pentoxide, phosphorus pentasulfide, phosphorus trichloride, and... phosphorus oxychloride creates waste water pollutants not completely amenable to the procedures utilized for...

  15. Analysis of broadcast and banded fertilizer applications for corn production on reconstructed coal mine soil

    SciTech Connect

    Lamb, J.A.; Dumenil, L.C.; Henning, S.J.

    1980-12-01

    Multiple-regression analysis was used to analyze the data from a fertility experiment conducted on reconstructed soil at the Iowa Coal Project Demonstration Mine in Mahaska County, Iowa. In this experiment, the effects of broadcast and row-applied fertilizer on corn yield were compared. The corn yield responses to the fertilizer treatments were masked by variability caused by uncontrolled reclamation conditions and environmental factors. Only 12% of the yield variation (with block effects removed) could be explained by the fertilizer treatments with use of conventional analysis of variance procedures. When the regression technique was used with selected covariables, about 72% of the yield variation could be explained, and the effect of each fertility treatment on corn yield could be determined. The response of yield to each fertility treatment was influenced by the date of corn silking. At early silking, broadcast phosphorus and banded nitrogen fertilizer increased yield, but at late silking, they decreased yield. However, banded phosphorus fertilizer decreased and increased yield at early and late silking, respectively.

  16. Plant growth-promoting rhizobacteria allow reduced application rates of chemical fertilizers.

    PubMed

    Adesemoye, A O; Torbert, H A; Kloepper, J W

    2009-11-01

    The search for microorganisms that improve soil fertility and enhance plant nutrition has continued to attract attention due to the increasing cost of fertilizers and some of their negative environmental impacts. The objectives of this greenhouse study with tomato were to determine (1) if reduced rates of inorganic fertilizer coupled with microbial inoculants will produce plant growth, yield, and nutrient uptake levels equivalent to those with full rates of the fertilizer and (2) the minimum level to which fertilizer could be reduced when inoculants were used. The microbial inoculants used in the study were a mixture of plant growth-promoting rhizobacteria (PGPR) strains Bacillus amyloliquefaciens IN937a and Bacillus pumilus T4, a formulated PGPR product, and the arbuscular mycorrhiza fungus (AMF), Glomus intraradices. Results showed that supplementing 75% of the recommended fertilizer rate with inoculants produced plant growth, yield, and nutrient (nitrogen and phosphorus) uptake that were statistically equivalent to the full fertilizer rate without inoculants. When inoculants were used with rates of fertilizer below 75% of the recommended rate, the beneficial effects were usually not consistent; however, inoculation with the mixture of PGPR and AMF at 70% fertility consistently produced the same yield as the full fertility rate without inoculants. Without inoculants, use of fertilizer rates lower than the recommended resulted in significantly less plant growth, yield, and nutrient uptake or inconsistent impacts. The results suggest that PGPR-based inoculants can be used and should be further evaluated as components of integrated nutrient management strategies.

  17. Phosphorus chemistry in everyday living

    SciTech Connect

    Toy, D.F.; Walsh, E.F.

    1987-01-01

    This book brings to life the versatility of phosphorus and its compounds and is filled with personal anecdotes and experiences of the authors. Covers the uses of phosphorus in matches and warfare; phosphates and food, fertilizers, cleaners, and detergents; organic phosphorus nerve gases and insecticides. Also discusses phosphoric acids, organic phosphorus polymers, deoxyribonucleic and ribonucleic acids and adenosine triphosphate.

  18. Factors affecting 137Cs bio- availability under the application of different fertilizing systems

    NASA Astrophysics Data System (ADS)

    Fedorkova, M. V.; Belova, N. I.

    2012-04-01

    : soil pH< available phosphorus < humus content < exchangeable Ca2+ and Mg2+ < exchangeable K+. Inorganic fertilizers in high and temperate rates decrease 137Cs transfer to crops in 2.3-5.5 times. Organic fertilizers are less efficient, but its application can decrease 137Cs accumulation by farm crops during 2-3 years. Correlation analysis shows inversely proportional dependence between organic matter content and exchangeable form of 137Cs in soil (r2 = 0.81). A linear relation between 137Cs transfer factors (TF) to plants and exchangeable radionuclide content has been found (r2=0.68). Inversely proportional relation between the mobility level of potassium, its mobile form content and TF 137Cs was detected (r2 = 0.78).

  19. Groundwater Nutrient Flux Meter Application for Determination of Phosphorus Flux: Application in Lake Okeechobee Basin, FL

    NASA Astrophysics Data System (ADS)

    Hamilton, M. K.; Cho, J.; Jawitz, J. W.; Annable, M. D.; Hatfield, K.

    2004-12-01

    As part of a larger study of phosphorus (P) movement within cow-calf agricultural systems, nutrient flux meters (NFM's) were deployed around several isolated wetlands to monitor and determine P flux. Phosphorus loading is a recurring problem in agricultural systems as excess phosphorus concentrations drive P-limited systems to a eutrophic state. The (NFM) is a cylindrical, permeable unit of variable length containing a sorbent that fits tightly into a well casing and was designed to use a variety of sorbents depending on application. A strongly basic anion exchange resin was used to retain phosphate present in groundwater while a separate sorbent was used to hold a tracer to determine water flux. Lab experiments were conducted for the selection of an appropriate sorbent that was suited for low concentrations of P and other parameters. The NFM was deployed in several monitoring wells to determine the mass flux of P present in the groundwater resulting from cow-calf operations at the Larson Ranch in Okeechobee, Florida. Several NFM's were deployed in groundwater monitoring wells surrounding the isolated wetlands and in the artificial drain from the wetlands. Phosphorus fluxes were determined by extraction from the anion exchange resin. From the deployment of the NFM for a pre-determined amount of time, P mass flux was found to be higher in the wells that were upgradient of the wetland and reduced at the exit point. Groundwater flux was also determined to be toward the wetland based on the observed gradients. The NFM is a useful tool for measuring groundwater nutrient movement in groundwater around wetlands and in general for TMDL applications.

  20. Phosphorus Containing Flame Retardants and Their Textile Applications

    USDA-ARS?s Scientific Manuscript database

    In this paper, we discuss the new challenge phosphorus containing flame retardant compounds and the properties for covalently bonded cotton’s surface. We showed the design, synthesis, and characterization of (2-methyl-oxiranylmethyl)-phosphonic acid dimethyl ester and [2-(dimethoxy-phosphorylmethyl)...

  1. Long-term balanced fertilization increases the soil microbial functional diversity in a phosphorus-limited paddy soil.

    PubMed

    Su, Jian-Qiang; Ding, Long-Jun; Xue, Kai; Yao, Huai-Ying; Quensen, John; Bai, Shi-Jie; Wei, Wen-Xue; Wu, Jin-Shui; Zhou, Jizhong; Tiedje, James M; Zhu, Yong-Guan

    2015-01-01

    The influence of long-term chemical fertilization on soil microbial communities has been one of the frontier topics of agricultural and environmental sciences and is critical for linking soil microbial flora with soil functions. In this study, 16S rRNA gene pyrosequencing and a functional gene array, geochip 4.0, were used to investigate the shifts in microbial composition and functional gene structure in paddy soils with different fertilization treatments over a 22-year period. These included a control without fertilizers; chemical nitrogen fertilizer (N); N and phosphate (NP); N and potassium (NK); and N, P and K (NPK). Based on 16S rRNA gene data, both species evenness and key genera were affected by P fertilization. Functional gene array-based analysis revealed that long-term fertilization significantly changed the overall microbial functional structures. Chemical fertilization significantly increased the diversity and abundance of most genes involved in C, N, P and S cycling, especially for the treatments NK and NPK. Significant correlations were found among functional gene structure and abundance, related soil enzymatic activities and rice yield, suggesting that a fertilizer-induced shift in the microbial community may accelerate the nutrient turnover in soil, which in turn influenced rice growth. The effect of N fertilization on soil microbial functional genes was mitigated by the addition of P fertilizer in this P-limited paddy soil, suggesting that balanced chemical fertilization is beneficial to the soil microbial community and its functions.

  2. Response of Sugarcane in a Red Ultisol to Phosphorus Rates, Phosphorus Sources, and Filter Cake

    PubMed Central

    Prado, Renato de Mello; Campos, Cid Naudi Silva; Rosatto Moda, Leandro; de Lima Vasconcelos, Ricardo; Pizauro Júnior, João Martins

    2015-01-01

    We evaluated the effect of phosphorus application rates from various sources and in the presence or absence of filter cake on soil phosphorus, plant phosphorus, changes in acid phosphatase activity, and sugarcane productivity grown in Eutrophic Red Ultisol. Three P sources were used (triple superphosphate, Araxa rock phosphate, and Bayovar rock phosphate) and four application rates (0, 90, 180, and 360 kg ha−1 of P2O5) in the presence or absence of filter cake (7.5 t ha−1, dry basis). The soil P, the accumulated plant P, the leaf acid phosphatase activity and straw, the stalk productivity, the concentration of soluble solids in the juice (Brix), the juice sucrose content (Pol), and the purity were the parameters evaluated. We found that P applications increased levels of soil, leaf, and juice phosphorus and led to higher phosphorus accumulation and greater stalk and straw productivity. These levels were highest in the presence of filter cake. Acid phosphatase activity decreased with increasing plant phosphorus concentration. Phosphate fertilization did not show effect on sugarcane technological quality. We concluded that P application, regardless of source, improved phosphorus nutrition and increased productivity in sugarcane and, when associated with filter cake, reduced the need for mineral fertilizer. PMID:26078993

  3. The spatial distribution of acid phosphatase activity in ectomycorrhizal tissues depends on soil fertility and morphotype, and relates to host plant phosphorus uptake.

    PubMed

    Alvarez, Maricel; Huygens, Dries; Díaz, Leila Milena; Villanueva, Claudia Añazco; Heyser, Wolfgang; Boeckx, Pascal

    2012-01-01

    Acid phosphatase (ACP) enzymes are involved in the mobilization of soil phosphorus (P) and polyphosphate accumulated in the fungal tissues of ectomycorrhizal roots, thereby influencing the amounts of P that are stored in the fungus and transferred to the host plant. This study evaluated the effects of ectomycorrhizal morphotype and soil fertility on ACP activity in the extraradical mycelium (ACP(myc)), the mantle (ACP(mantle)) and the Hartig net region (ACP(Hartig)) of ectomycorrhizal Nothofagus obliqua seedlings. ACP activity was quantified in vivo using enzyme-labelled fluorescence-97 (ELF-97) substrate, confocal laser microscopy and digital image processing routines. There was a significant effect of ectomycorrhizal morphotype on ACP(myc), ACP(mantle) and ACP(Hartig), while soil fertility had a significant effect on ACP(myc) and ACP(Hartig). The relative contribution of the mantle and the Hartig net region to the ACP activity on the ectomycorrhizal root was significantly affected by ectomycorrhizal morphotype and soil fertility. A positive correlation between ACP(Hartig) and the shoot P concentration was found, providing evidence that ACP activity at the fungus:root interface is involved in P transfer from the fungus to the host. It is concluded that the spatial distribution of ACP in ectomycorrhizas varies as a function of soil fertility and colonizing fungus.

  4. 31P NMR characterization and efficiency of new types of water-insoluble phosphate fertilizers to supply plant-available phosphorus in diverse soil types.

    PubMed

    Erro, Javier; Baigorri, Roberto; Yvin, Jean-Claude; Garcia-Mina, Jose M

    2011-03-09

    Hydroponic plant experiments demonstrated the efficiency of a type of humic acid-based water-insoluble phosphate fertilizers, named rhizosphere controlled fertilizers (RCF), to supply available phosphorus (P) to different plant species. This effect was well correlated to the root release of specific organic acids. In this context, the aims of this study are (i) to study the chemical nature of RCF using solid-state (31)P NMR and (ii) to evaluate the real efficiency of RCF matrix as a source of P for wheat plants cultivated in an alkaline and acid soil in comparison with traditional water-soluble (simple superphosphate, SSP) and water-insoluble (dicalcium phosphate, DCP) P fertilizers. The (31)P NMR study revealed the formation of multimetal (double and triple, MgZn and/or MgZnCa) phosphates associated with chelating groups of the humic acid through the formation of metal bridges. With regard to P fertilizer efficiency, the results obtained show that the RCF matrix produced higher plant yields than SSP in both types of soil, with DCP and the water-insoluble fraction from the RCF matrix (WI) exhibiting the best results in the alkaline soil. By contrast, in the acid soil, DCP showed very low efficiency, WI performed on a par with SSP, and RCF exhibited the highest efficiency, thus suggesting a protector effect of humic acid from soil fixation.

  5. Microrobots for in vitro fertilization applications.

    PubMed

    Boukallel, M; Gauthier, M; Piat, E; Abadie, J; Roux, C

    2004-05-01

    The Micromanipulation and Micro-actuation Research Group at the LAB has activities related to biological and surgical applications. Concerning cells micromanipulation, our laboratory works in collaboration with the research team "Genetic and Reproduction" of the Besançon's hospital (France). The global final objective is the development of an automatic intra cytoplasmic sperm injection (ICSI) device in order to improve performances and ergonomics of current devices. In the future this new device will contain various modules: module for removal of cumulus cells, modules for characterization of oocytes, microinjection module, cells transport system. The first subsystem developed is a new single cell transport system. It consists in a so-called micropusher which pushes single cells without having contact with the external environment. This micropusher is a ferromagnetic particle (from 400 x 400 x 20 microm3 to 100 x 100 x 5 microm3) which follows the movement of a permanent magnet located under the biological medium. A 2D micro-positioning table moves this magnet under the glass slide. The pusher and cells positions are measured through an optical microscope with a CCD camera located above the biological medium. The second subsystem is developed to measure oocytes mechanical stiffness in order to sort them. We have then developed a micro/nano-force sensor based on the diamagnetic levitation principle: a glass tip end-effector (with 20 microm in diameter) is fixed on the equipment which is in levitation (0.5 mm in diameter, 100 mm in length). When a force is applied to the levitated glass tip, it moves to a new equilibrium position. Thanks to themeasurement of this displacement, the applied force can be measured. Since there is no contact and friction between the levitated tip and the fixed part, the resolution of this sensor is very high (10 nN).

  6. Effect of fertilizer application on soil heavy metal concentration.

    PubMed

    Atafar, Zahra; Mesdaghinia, Alireza; Nouri, Jafar; Homaee, Mehdi; Yunesian, Masoud; Ahmadimoghaddam, Mehdi; Mahvi, Amir Hossein

    2010-01-01

    A large amount of chemicals is annually applied at the agricultural soils as fertilizers and pesticides. Such applications may result in the increase of heavy metals particularly Cd, Pb, and As. The objective of this study was to investigate the variability of chemical applications on Cd, Pb, and As concentrations of wheat-cultivated soils. Consequently, a study area was designed and was divided into four subareas (A, B, C, and D). The soil sampling was carried out in 40 points of cultivated durum wheat during the 2006-2007 periods. The samples were taken to the laboratory to measure their heavy metal concentration, soil texture, pH, electrical conductivity, cationic exchange capacity, organic matter, and carbonate contents. The result indicated that Cd, Pb, and As concentrations were increased in the cultivated soils due to fertilizer application. Although the statistical analysis indicates that these heavy metals increased significantly (P value<0.05), the lead and arsenic concentrations were increased dramatically compared to Cd concentration. This can be related to overapplication of fertilizers as well as the pesticides that are used to replant plant pests, herbs, and rats.

  7. [Silkworm excrement organic fertilizer: its nutrient properties and application effect].

    PubMed

    Chen, Xiao-ping; Xie, Ya-jun; Luo, Guang-en; Shi, Wei-yong

    2011-07-01

    In this paper, silkworm excrement was harmless-treated via controlled fermentation to prepare silkworm excrement organic fertilizer (SEOF). The nutrient properties of the SEOF were determined, and a pot experiment was conducted to examine the application effect of the fertilizer. After fermentation, the total N, P, and K contents in the SEOF had a significant increase, being 58.0%, 84.4% , and 29.7% higher than those in the raw material, respectively. The addition of microbial inoculants shortened the fermentation period, and decreased the carbon and nitrogen losses during fermentation. With the application of SEOF, the seed germination index of cabbage and tomato was higher than 80% , suggesting that the fertilizer had no inhibitory effect on the seed germination. The application of SEOF not only increased the Chinese cabbage yield and its nutrients and Vc contents, decreased the plant nitrate content, but also improved the soil pH value, and increased the soil available nutrients and organic matter contents and soil enzyme activities, with better effect than applying composted goat feces.

  8. Effects of farmyard manure and nitrogen fertilizers on mobility of phosphorus and sulphur in wheat and activity of selected hydrolases in soil

    NASA Astrophysics Data System (ADS)

    Lemanowicz, Joanna; Siwik-Ziomek, Anetta; Koper, Jan

    2014-03-01

    The paper demonstrates the results of research on the mobility of phosphorus and sulphur in winter wheat fertilized with several rates (0, 20, 40, 60, 80 t ha-1) of farmyard manure and nitrogen (0, 40, 80, 120 kg N ha-1). The content of these nutrients was related to the activity of acid phosphatase and arylsulphatase in a Haplic Luvisol. The highest content of available phosphorus (91.58 mg P kg-1) was reported in the soil amended with farmyard manure at the rate of 60 t ha-1. The content of sulphates (VI) in the Haplic Luvisol was high and, on average, equal to 25.22 mg kg-1. The activity of acid phosphatase in the soil increased with increasing mineral nitrogen rates. The highest content of sulphates (VI) and the lowest activity of arylsulphatase were identified at the nitrogen rate of 40 kg N ha-1. The mobility of phosphorus in winter wheat was the highest when farmyard manure at the rate of 60 t ha-1 and mineral nitrogen at the rate of 120 kg N ha-1 were incorporated into the soil. The greatest translocation of sulphur was reported at the high farmyard manure rates (40, 60 and 80 t ha-1) and the nitrogen rate of 80 kg N ha-1.

  9. Phosphorus in agroecosystems on gray forest soils in the opolie regions of Central Russia

    NASA Astrophysics Data System (ADS)

    Nikitishen, V. I.; Lichko, V. I.; Kurganova, E. V.

    2008-08-01

    Long-term stationary field experiments revealed a poor supply of gray forest soils with available phosphorus, which provides no more than half the amount necessary for optimum nutrition of plants. It was found that agricultural crops with different capacities to assimilate phosphates from the soil and fertilizers have strong requirements for phosphorus fertilizers and abruptly increase their utilization in the production process with increasing level of nitrogen nutrition. Crops with the optimum level of nitrogen nutrition uptake a double amount of phosphorus compared to crops depleted in nitrogen. Clover and barley have an increased capacity to mobilize soil phosphates from the lower horizons at an extremely low content of available forms of them in the plow layer. Winter wheat and corn are characterized by an active uptake of phosphorus applied with fertilizer and its efficient utilization in the production process if the nitrogen supply is not a limiting factor. The level of phosphorus nutrition of subsequent rotation crops increases due to the enrichment of the root-inhabited soil layer with phosphorus from clover root and harvest residues. Based on the data about the unacceptably abrupt decrease in the application of mineral fertilizers in Russian agriculture (90% of fertilizers are exported now), it is shown that the export of fertilizers should be limited at the state level, because chemicals, and primarily phosphorus fertilizers, should be considered strategic resources for internal use only.

  10. Low temperature circulating fluidized bed gasification and co-gasification of municipal sewage sludge. Part 2: Evaluation of ash materials as phosphorus fertilizer.

    PubMed

    Thomsen, Tobias Pape; Hauggaard-Nielsen, Henrik; Gøbel, Benny; Stoholm, Peder; Ahrenfeldt, Jesper; Henriksen, Ulrik B; Müller-Stöver, Dorette Sophie

    2017-08-01

    The study is part 2 of 2 in an investigation of gasification and co-gasification of municipal sewage sludge in low temperature gasifiers. In this work, solid residuals from thermal gasification and co-gasification of municipal sewage sludge were investigated for their potential use as fertilizer. Ashes from five different low temperature circulating fluidized bed (LT-CFB) gasification campaigns including two mono-sludge campaigns, two sludge/straw mixed fuels campaigns and a straw reference campaign were compared. Experiments were conducted on two different LT-CFBs with thermal capacities of 100kW and 6MW, respectively. The assessment included: (i) Elemental composition and recovery of key elements and heavy metals; (ii) content of total carbon (C) and total nitrogen (N); (iii) pH; (iv) water extractability of phosphorus after incubation in soil; and (v) plant phosphorus response measured in a pot experiment with the most promising ash material. Co-gasification of straw and sludge in LT-CFB gasifiers produced ashes with a high content of recalcitrant C, phosphorus (P) and potassium (K), a low content of heavy metals (especially cadmium) and an improved plant P availability compared to the mono-sludge ashes, thereby showing the best fertilizer qualities among all assessed materials. It was also found that bottom ashes from the char reactor contained even less heavy metals than cyclone ashes. It is concluded that LT-CFB gasification and co-gasification is a highly effective way to purify and sanitize sewage sludge for subsequent use in agricultural systems. Copyright © 2017 Elsevier Ltd. All rights reserved.

  11. Arsenic bioaccessibility in a soil amended with drinking-water treatment residuals in the presence of phosphorus fertilizer.

    PubMed

    Sarkar, D; Quazi, S; Makris, K C; Datta, R; Khairom, A

    2007-10-01

    A laboratory incubation study was conducted to determine the effect of drinking-water treatment residuals (WTRs) on arsenic (As) bioaccessibility and phytoavailability in a poorly As-sorbing soil contaminated with arsenical pesticides and fertilized with triple super phosphate (TSP). The Immokalee soil (a sandy spodosol with minimal As-retention capacity) was amended with 2 WTRs (Al and Fe) at 5 application rates ranging between 0% and 5% wt/wt. Sodium arsenate and TSP were used to spike the soil with 90 mg As kg(-1) and 115 mg P kg(-1), respectively. Bioaccessible As was determined at time 0 (immediately after spiking), and at 6 and 12 months of equilibration using an in vitro gastrointestinal test, and As phytoavailability was measured with a 1-M KC1 extraction test. Arsenic phytoavailability decreased immediately after spiking (20% availability at 5% rate), but only after 6 months for the Al-WTR- and the Fe-WTR-amended soil, respectively. Arsenic bioaccessibility simulated for the stomach and intestine phases showed that the Fe-WTR was more effective than the Al-WTR in resisting the harsh acidic conditions of the human stomach, thus preventing As release. Both the phytoavailable As and the bioaccessible As were significantly correlated (p < 0.001) for soil spiked with either Al- or Fe-WTR. Both WTRs were able to decrease soil As bioaccessibility irrespective of the presence or absence of P, which was added as TSP. Results indicate the potential of WTRs in immobilizing As in contaminated soils fertilized with P, thereby minimizing soil As bioaccessibility and phytoavailability.

  12. Assessing the impact of manure application method on runoff phosphorus using controlled and natural rainfall

    USDA-ARS?s Scientific Manuscript database

    Land application of manure is a cost-effective method for recycling nutrients from livestock operations. Increasingly, there has been interest in promoting alternative methods of manure application that minimize nonpoint source phosphorus pollution. Watershed and nutrient trading programs rely upon ...

  13. Enhancing phosphorus uptake and yield of wheat with phosphoric acid application in calcareous soil.

    PubMed

    Hashmi, Zafar Ul Haq; Khan, Muhammad Jamal; Akhtar, Muhammad; Sarwar, Tahir; Khan, Mohammad Jamal

    2017-04-01

    Low phosphorus (P) availability to wheat from commercial fertilizers is one of the reasons for lower grain yield and hence justifies search for more efficient P source under alkaline calcareous soils. Phosphoric acid (PA) and diammonium phosphate (DAP), applied through conventional and modified methods, were assessed for P supply and wheat yield in a calcareous soil. Under laboratory conditions, pre-incubated soil with 70 mg P kg(-1) soil as PA and DAP was assessed for solution P (Cp ) for 4 weeks. Phosphorus sorption data were fitted using the Freundlich model for describing analyzed sorption in soil incubated with or without DAP and PA. The fitted model equations exhibited comparatively higher effluxes of P from the solution system in control treatment. Compared to DAP, lower quantities (19.6%) of P for PA-treated soil were required for producing optimum P concentration in soil solution, i.e. 0.2 mg P L(-1) . The greenhouse study involved (32) P tracer technique to quantify the proportion of applied P derived by wheat from fertilizer or soil. The results showed that P derived from fertilizer was highest (47.5%) in PA placement, while the lowest (31.5%) was in DAP broadcast treatment. The field study also showed similar trends to that of the greenhouse study. The PA placement treatment resulted in highest (23.4%) phosphorus use efficiency, whereas the lowest one (17.1%) was recorded for DAP broadcast treatment. PA proved to be a better P source than DAP for improving P content and achieving higher yield and recovery of applied P by wheat grown in alkaline calcareous soils. © 2016 Society of Chemical Industry. © 2016 Society of Chemical Industry.

  14. Dolomite phosphate rock (DPR) application in acidic sandy soil in reducing leaching of phosphorus and heavy metals-a column leaching study.

    PubMed

    Yang, Yuangen; He, Zhenli; Yang, Xiaoe; Stoffella, Peter J

    2013-06-01

    A column leaching study was designed to investigate the leaching potential of phosphorus (P) and heavy metals from acidic sandy soils applied with dolomite phosphate rock (DPR) fertilizers containing varying amounts of DPR material and N-Viro soils. DPR fertilizers were made from DPR materials mixing with N-Viro soils at the ratios of 30, 40, 50, 60, and 70 %, and applied in acidic sandy soils at the level of 100 mg available P per kilogram soil. A control and a soluble P chemical fertilizer were also included. The amended soils were incubated at room temperature with 70 % field water holding capacity for 21 days before packed into a soil column and subjected to leaching. Seven leaching events were conducted at days 1, 3, 7, 14, 28, 56, and 70, respectively, and 258.9 mL of deionized water was applied at each leaching events. The leachate was collected for the analyses of pH, electrical conductivity (EC), dissolved organic carbon (DOC), major elements, and heavy metals. DPR fertilizer application resulted in elevations up to 1 unit in pH, 7-10 times in EC, and 20-40 times in K and Ca concentrations, but 3-10 times reduction in P concentration in the leachate as compared with the chemical fertilizer or the control. After seven leaching events, DPR fertilizers with adequate DPR materials significantly reduced cumulative leaching losses of Fe, P, Mn, Cu, and Zn by 20, 55, 3.7, 2.7, and 2.5 times than chemical fertilizer or control. Even though higher cumulative losses of Pb, Co, and Ni were observed after DPR fertilizer application, the loss of Pb, Co, and Ni in leachate was <0.10 mg (in total 1,812 mL leachate). Significant correlations of pH (negative) and DOC (positive) with Cu, Pb, and Zn (P<0.01) in leachate were observed. The results indicated that DPR fertilizers had a great advantage over the soluble chemical fertilizer in reducing P loss from the acidic sandy soil with minimal likelihood of heavy metal risk to the water environment. pH elevation and high

  15. Arbuscular mycorrhizal fungi are an alternative to the application of chemical fertilizer in the production of the medicinal and aromatic plant Coriandrum sativum L.

    PubMed

    Oliveira, Rui S; Ma, Ying; Rocha, Inês; Carvalho, Maria F; Vosátka, Miroslav; Freitas, Helena

    2016-01-01

    The widespread use of agrochemicals is detrimental to the environment and may exert harmful effects on human health. The consumer demand for organic food plants has been increasing. There is thus a rising need for alternatives to agrochemicals that can foster sustainable plant production. The aim of this study was to evaluate the potential use of an arbuscular mycorrhizal (AM) fungus as an alternative to application of chemical fertilizer for improving growth performance of the medicinal and aromatic plant Coriandrum sativum. Plants were inoculated with the AM fungus Rhizophagus irregularis BEG163 and/or supplemented with a commercial chemical fertilizer (Plant Marvel, Nutriculture Bent Special) in agricultural soil. Plant growth, nutrition, and development of AM fungus were assessed. Plants inoculated with R. irregularis and those supplemented with chemical fertilizer displayed significantly improved growth performances when compared with controls. There were no significant differences in total fresh weight between plants inoculated with R. irregularis or those supplemented with chemical fertilizer. Leaf chlorophyll a + b (82%), shoot nitrogen (44%), phosphorus (254%), and potassium (27%) concentrations increased in plants inoculated with R. irregularis compared to controls. Application of chemical fertilizer inhibited root mycorrhizal colonization and the length of the extraradical mycelium of R. irregularis. Inoculation with R. irregularis was equally or more efficient than application of chemical fertilizer in promoting growth and nutrition of C. sativum. AM fungi may thus contribute to improve biologically based production of food plants and reduce the dependence on agrochemicals in agriculture.

  16. Soil Fertility Status, Nutrient Uptake, and Maize (Zea mays L.) Yield Following Organic Matters and P Fertilizer Application on Andisol

    NASA Astrophysics Data System (ADS)

    Minardi, S.; Harieni, S.; Anasrullah, A.; Purwanto, H.

    2017-04-01

    Objective of this study were to elucidate effects of organic matters and P fertilizer application on soil fertility status, nutrient uptake and maize yield in the Andisol. This experiment consisted of two factors. The first factor comprised of four levels of organic matters input (without organic matter, manure, rice straw, and Gliricidia sepium leaves), with the application dosage 10 t.ha-1 and the second factor comprised of three levels of P fertilizer application (without P addition (control), 50 kg P2O5 ha-1, 100 kg P2O5 ha-1). Results of this study showed that organic matters and P fertilizer application improved soil fertility status, especially pH, soil organic C, cation exchange capacity (CEC), available P which resulted in an increase in P uptake that improve yield of maize. The highest yield of maize (corn cob) was obtained through application Gliricida sepium (8.40 t.ha-1), followed by manure (6.02 t.ha-1) and rice straw (5.87 t.ha-1). Application of 50 kg P2O5 Ha-1 yield was (5.76 t.ha-1) and application of 100 Kg P2O5 Ha-1 yield was (6.12 t.ha-1).

  17. Impact of long-term application fertilizer on soil total sulphur and valid sulphur

    NASA Astrophysics Data System (ADS)

    Gao, Mengyu; Lu, Xiaoling; Huang, Yuqian; Liu, Ning; Yang, Jinfeng

    2017-06-01

    The object of this study was to investigate the effect of the long-term application fertilizer on soil total sulphur and valid sulphur. The results showed that applying fertilizer can improve total sulphur and valid sulphur. In comparison with the low level of nitrogen fertilization treatment, the high one total sulphur and valid sulphur were obviously increased by 29.41% and 19.0%, respectively. Compared with in application of different levels nitrogen and the low level of organic fertilizer, the high level treatment total sulphur and valid sulphur contents were significantly increased by 10.73% and 23.47% than the low one. In application of organic fertilization can also improve total sulphur and valid sulphur The total sulphur and valid sulphur content were higher than organic fertilization only treatment 34.14% and 455.89% in comparison with high levels of organic fertilization mix with nitrogen, phosphorous and potassium fertilization treatment.

  18. Environmental Benefits and Burdens of Phosphorus Recovery from Municipal Wastewater.

    PubMed

    Bradford-Hartke, Zenah; Lane, Joe; Lant, Paul; Leslie, Gregory

    2015-07-21

    The environmental benefits and burdens of phosphorus recovery in four centralized and two decentralized municipal wastewater systems were compared using life cycle assessment (LCA). In centralized systems, phosphorus recovered as struvite from the solids dewatering liquid resulted in an environmental benefit except for the terrestrial ecotoxicity and freshwater eutrophication impact categories, with power and chemical use offset by operational savings and avoided fertilizer production. Chemical-based phosphorus recovery, however, generally required more resources than were offset by avoided fertilizers, resulting in a net environmental burden. In decentralized systems, phosphorus recovery via urine source separation reduced the global warming and ozone depletion potentials but increased terrestrial ecotoxicity and salinization potentials due to application of untreated urine to land. Overall, mineral depletion and eutrophication are well-documented arguments for phosphorus recovery; however, phosphorus recovery does not necessarily present a net environmental benefit. While avoided fertilizer production does reduce potential impacts, phosphorus recovery does not necessarily offset the resources consumed in the process. LCA results indicate that selection of an appropriate phosphorus recovery method should consider both local conditions and other environmental impacts, including global warming, ozone depletion, toxicity, and salinization, in addition to eutrophication and mineral depletion impacts.

  19. A combined application of biochar and phosphorus alleviates heat-induced adversities on physiological, agronomical and quality attributes of rice.

    PubMed

    Fahad, Shah; Hussain, Saddam; Saud, Shah; Hassan, Shah; Tanveer, Mohsin; Ihsan, Muhammad Zahid; Shah, Adnan Noor; Ullah, Abid; Nasrullah; Khan, Fahad; Ullah, Sami; Alharby, Hesham; Nasim, Wajid; Wu, Chao; Huang, Jianliang

    2016-06-01

    Present study examined the influence of high-temperature stress and different biochar and phosphorus (P) fertilization treatments on the growth, grain yield and quality of two rice cultivars (IR-64 and Huanghuazhan). Plants were subjected to high day temperature-HDT (35 °C ± 2), high night temperature-HNT (32 °C ± 2), and control temperature-CT (28 °C ± 2) in controlled growth chambers. The different fertilization treatments were control, biochar alone, phosphorous (P) alone and biochar + P. High-temperature stress severely reduced the photosynthesis, stomatal conductance, water use efficiency, and increased the leaf water potential of both rice cultivars. Grain yield and its related attributes except for number of panicles, were reduced under high temperature. The HDT posed more negative effects on rice physiological attributes, while HNT was more destructive for grain yield. High temperature stress also hampered the grain appearance and milling quality traits in both rice cultivars. The Huanghuazhan performed better than IR-64 under high-temperature stress with better growth and higher grain yield. Different soil fertilization treatments were helpful in ameliorating the detrimental effects of high temperature. Addition of biochar alone improved some growth and yield parameters but such positive effects were lower when compared with the combined application of biochar and P. The biochar+P application recorded 7% higher grain yield (plant(-1)) of rice compared with control averaged across different temperature treatments and cultivars. The highest grain production and better grain quality in biochar+P treatments might be due to enhanced photosynthesis, water use efficiency, and grain size, which compensated the adversities of high temperature stress.

  20. Use of sugarcane filter cake and nitrogen, phosphorus and potassium fertilization in the process of bioremediation of soil contaminated with diesel.

    PubMed

    Tellechea, Fernando Reynel Fundora; Martins, Marco Antônio; da Silva, Alexsandro Araujo; da Gama-Rodrigues, Emanuela Forestieri; Martins, Meire Lelis Leal

    2016-09-01

    This study evaluated the use of sugarcane filter cake and nitrogen, phosphorus and potassium (NPK) fertilization in the bioremediation of a soil contaminated with diesel fuel using a completely randomized design. Five treatments (uncontaminated soil, T1; soil contaminated with diesel, T2; soil contaminated with diesel and treated with 15 % (wt) filter cake, T3; soil contaminated with diesel and treated with NPK fertilizer, T4; and soil contaminated with diesel and treated with 15 % (wt) filter cake and NPK fertilizer, T5) and four evaluation periods (1, 60, 120, and 180 days after the beginning of the experiment) were used according to a 4 × 5 factorial design to analyze CO2 release. The variables total organic carbon (TOC) and total petroleum hydrocarbons (TPH) remaining in the soil were analyzed using a 5 × 2 factorial design, with the same treatments described above and two evaluation periods (1 and 180 days after the beginning of the experiment). In T3 and T5, CO2 release was significantly higher, compared with the other treatments. Significant TPH removal was observed on day 180, when percent removal values were 61.9, 70.1, 68.2, and 75.9 in treatments T2, T3, T4, and T5, respectively, compared with the initial value (T1).

  1. [Effects of combined application of nitrogen and phosphorus on diurnal variation of photosynthesis at grain-filling stage and grain yield of super high-yielding wheat].

    PubMed

    Zhao, Hai-bo; Lin, Qi; Liu, Yi-guo; Jiang, Wen; Liu, Jian-jun; Zhai, Yan-ju

    2010-10-01

    Taking super high-yielding wheat cultivar Jimai 22 as test material, a field experiment was conducted to study the effects of combined application of nitrogen (N) and phosphorus (P) on the diurnal variation of photosynthesis at grain-filling stage and the grain yield of the cultivar. In treatments CK (without N and P application) and low N/P application (225 kg N x hm(-2) and 75 kg P x hm(-2)), the diurnal variation of net photosynthetic rate (Pn) was presented as double-peak curve, and there existed obvious midday depression of photosynthesis. Under reasonable application of N/P (300 kg N x hm(-2) and 150 kg P x hm(-2), treatment N2P2), the midday depression of photosynthesis weakened or even disappeared. Stomatal and non-stomatal limitations could be the causes of the midday depression. Increasing N and P supply increased the Pn, stomatal conductance (Gs), stomatal limitation value (Ls), and transpiration rate (Tr). Fertilizer P had less effects on the photosynthesis, compared with fertilizer N. When the P supply was over 150 kg x hm(-2), the increment of Pn was alleviated and even decreased. Among the fertilization treatments, treatment N2P2 had the highest Pn, Gs, and water use efficiency, being significantly different from CK. It appeared that fertilizer N had greater regulatory effect on the diurnal variation of photosynthesis, compared with fertilizer P, while the combined application of N and P had significant co-effect on the Pn, Gs, and Tr. A combined application of 300 kg N x hm(-2) and 150 kg P x hm(-2) benefited the enhancement of Pn and grain yield.

  2. 40 CFR 418.70 - Applicability; description of the mixed and blend fertilizer production subcategory.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... mixed and blend fertilizer production subcategory. 418.70 Section 418.70 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS FERTILIZER MANUFACTURING POINT SOURCE CATEGORY Mixed and Blend Fertilizer Production Subcategory § 418.70 Applicability; description...

  3. Phosphorus recovery prior to land application of biosolids using the "quick wash" process developed by USDA

    USDA-ARS?s Scientific Manuscript database

    Excess soil phosphorus (P) beyond the assimilative capacity of soils is a major factor to discontinue application of biosolids to land nearby municipal wastewater treatment plants. For this reason, municipalities incur in hefty fees for transportation and landfilling biosolids that otherwise could b...

  4. Applicability of models to predict phosphorus losses in drained fields: a review

    USDA-ARS?s Scientific Manuscript database

    Most phosphorus (P) modeling studies of water quality have focused on surface runoff loses. However, a growing number of experimental studies have shown that P loses can occur in drainage water from artificially drained fields. In this review paper, we assess the applicability of nine models to pred...

  5. Total and available phosphorus at the field scale after long-term manure application

    NASA Astrophysics Data System (ADS)

    Machado Siqueira, Glécio; da Silva Días, Rosane; Garcia Tomillo, Aitor; Vidal Vázquez, Eva

    2013-04-01

    long-term manure application. Linear correlations coefficients between the four P forms analyzed were highly significant; however a two-straight-line model or a quadratic relationship was more adequate for describing the dependence between the two determination procedures after M3 extraction, i.e. M3-COL-P and M3-ICP-P. Coefficients of variation varied from 25 to 54 % and ranked as M3-COL-P < Total P < M3-ICP-P < AER-P, indicating medium to high variability of the P concentrations in the experimental field. This study confirms that Mehlich 3 soil tests are a rapid and effective means for evaluating the phosphorus status of agricultural soils with excess levels and high inputs of organic fertilizers. Both, colorimetric and ICP-MS determination methods were capable to evaluate excessive soil P at the topsoil. On the other hand, geostatistical analysis showed spatial dependence of all the four studied P forms, characterized by semivariograms with small nugget effect and ranges of spatial dependence from 60 to 140 m. Kriging maps showed the highest P accumulations at the lowest border of the field, suggesting sheet erosion and tillage erosion as main factors responsible for P spatial distribution in this field. Most overload patches within the field exhibited three to four times more P concentrations than those with the lowest accumulation.

  6. Fertilizer Nutrient Leaching and Nutrient Mobility: A Simple Laboratory Exercise.

    ERIC Educational Resources Information Center

    Owens, D. S.; Johnson, G. V.

    1996-01-01

    Describes an exercise developed to demonstrate the degree to which nitrogen, phosphorus, and potassium fertilizers move through different soils. The results support the common practices of broadcasting nitrogen fertilizer and banding phosphorus and potassium fertilizers. (DDR)

  7. Fertilizer Nutrient Leaching and Nutrient Mobility: A Simple Laboratory Exercise.

    ERIC Educational Resources Information Center

    Owens, D. S.; Johnson, G. V.

    1996-01-01

    Describes an exercise developed to demonstrate the degree to which nitrogen, phosphorus, and potassium fertilizers move through different soils. The results support the common practices of broadcasting nitrogen fertilizer and banding phosphorus and potassium fertilizers. (DDR)

  8. Growth, Root Formation, and Nutrient Value of Triticale Plants Fertilized with Biosolids

    PubMed Central

    Rauw, Wendy Mercedes; Teglas, Michael Bela; Chandra, Sudeep; Forister, Matthew Lewis

    2012-01-01

    Biosolids are utilized as nutrient rich fertilizer. Little material is available on benefits to forage crops resulting from fertilization with biosolids. This paper aimed to compare the effects of fertilization with biosolids versus commercial nitrogen fertilizer on growth, root formation, and nutrient value of triticale plants in a greenhouse experiment. Per treatment, five pots were seeded with five triticale seeds each. Treatments included a nonfertilized control, fertilization with 100, 200, 300, 400, and 500 ml biosolids per pot, and fertilization with a commercial nitrogen fertilizer at the recommended application rate and at double that rate. Biomass production, root length, root diameter, nitrogen, phosphorus, and potassium concentration were analyzed at harvest. Fertilization with biosolids increased triticale production (P < 0.001); production was similar for the 100 to 400 mL treatments. Root length, nitrogen, and phosphorus concentration increased, and potassium concentration decreased linearly with application rate. At the recommended rate, biomass production was similar between fertilization with biosolids and commercial fertilizer. However, plants fertilized with commercial fertilizer had considerably longer roots (P < 0.001), higher nitrogen concentration (P < 0.05), and lower potassium concentration (P < 0.01) than those fertilized with biosolids. Our results indicate that at the recommended application rate, biomass production was similar between fertilization with biosolids and with commercial nitrogen fertilizer, indicating the value of biosolids fertilization as a potential alternative. PMID:22593686

  9. Growth, root formation, and nutrient value of triticale plants fertilized with biosolids.

    PubMed

    Rauw, Wendy Mercedes; Teglas, Michael Bela; Chandra, Sudeep; Forister, Matthew Lewis

    2012-01-01

    Biosolids are utilized as nutrient rich fertilizer. Little material is available on benefits to forage crops resulting from fertilization with biosolids. This paper aimed to compare the effects of fertilization with biosolids versus commercial nitrogen fertilizer on growth, root formation, and nutrient value of triticale plants in a greenhouse experiment. Per treatment, five pots were seeded with five triticale seeds each. Treatments included a nonfertilized control, fertilization with 100, 200, 300, 400, and 500 ml biosolids per pot, and fertilization with a commercial nitrogen fertilizer at the recommended application rate and at double that rate. Biomass production, root length, root diameter, nitrogen, phosphorus, and potassium concentration were analyzed at harvest. Fertilization with biosolids increased triticale production (P < 0.001); production was similar for the 100 to 400 mL treatments. Root length, nitrogen, and phosphorus concentration increased, and potassium concentration decreased linearly with application rate. At the recommended rate, biomass production was similar between fertilization with biosolids and commercial fertilizer. However, plants fertilized with commercial fertilizer had considerably longer roots (P < 0.001), higher nitrogen concentration (P < 0.05), and lower potassium concentration (P < 0.01) than those fertilized with biosolids. Our results indicate that at the recommended application rate, biomass production was similar between fertilization with biosolids and with commercial nitrogen fertilizer, indicating the value of biosolids fertilization as a potential alternative.

  10. The application of soil amendments benefits to the reduction of phosphorus depletion and the growth of cabbage and corn.

    PubMed

    Liu, Wei; Ji, Hongli; Kerr, Philip; Wu, Yonghong; Fang, Yanming

    2015-11-01

    The loss of phosphorus from agricultural intensive areas can cause ecological problems such as eutrophication in downstream surface waters. Therefore, the purpose of this study is to control the phosphorus loss using environmentally benign soil amendments, viz, ferrous sulfate (FES), aluminum sulfate (ALS), and polyacrylamide (PAM). The phosphorus concentration changes in soil and leaching solution, the morphological index of plant (including stem and root), and root activity and quality (represented by chlorophyll and soluble sugar) at different growth stages of cabbage (Brassica oleracea L. var. capitata L.) were monitored in a pilot experiment. Phosphorus contents in soil and runoff were also investigated in field experiments cultivated with corn (Zea mays L.). The results show that the application of these amendments improved the phosphorus uptake by cabbage and corn, resulting in the enhanced morphologies of root and stem as well as the root activity at the early and middle stages of cabbage growth. The soil total phosphorus and available phosphorus in soils treated with FES, ALS, and PAM declined, resulting in lower concentrations of phosphorus in the leachate and the soil runoff. During the use of the soil amendments, the cabbage quality measures, determined as chlorophyll and soluble sugar in leaves, were not significantly different from those in the control. It is suggested that the application of these soil amendments is safe for cabbage production under single season cropping conditions, and the use of these three amendments is a promising measure to reduce phosphorus loss in intensive agricultural areas.

  11. Effect of Different Fertilizer Application on the Soil Fertility of Paddy Soils in Red Soil Region of Southern China

    PubMed Central

    Dong, Wenyi; Zhang, Xinyu; Wang, Huimin; Dai, Xiaoqin; Sun, Xiaomin; Qiu, Weiwen; Yang, Fengting

    2012-01-01

    Appropriate fertilizer application is an important management practice to improve soil fertility and quality in the red soil regions of China. In the present study, we examined the effects of five fertilization treatments [these were: no fertilizer (CK), rice straw return (SR), chemical fertilizer (NPK), organic manure (OM) and green manure (GM)] on soil pH, soil organic carbon (SOC), total nitrogen (TN), C/N ratio and available nutrients (AN, AP and AK) contents in the plowed layer (0–20 cm) of paddy soil from 1998 to 2009 in Jiangxi Province, southern China. Results showed that the soil pH was the lowest with an average of 5.33 units in CK and was significantly higher in NPK (5.89 units) and OM (5.63 units) treatments (P<0.05). The application of fertilizers have remarkably improved SOC and TN values compared with the CK, Specifically, the OM treatment resulted in the highest SOC and TN concentrations (72.5% and 51.2% higher than CK) and NPK treatment increased the SOC and TN contents by 22.0% and 17.8% compared with CK. The average amounts of C/N ratio ranged from 9.66 to 10.98 in different treatments, and reached the highest in OM treatment (P<0.05). During the experimental period, the average AN and AP contents were highest in OM treatment (about 1.6 and 29.6 times of that in the CK, respectively) and second highest in NPK treatment (about 1.2 and 20.3 times of that in the CK). Unlike AN and AP, the highest value of AK content was observed in NPK treatments with 38.10 mg·kg−1. Thus, these indicated that organic manure should be recommended to improve soil fertility in this region and K fertilizer should be simultaneously applied considering the soil K contents. Considering the long-term fertilizer efficiency, our results also suggest that annual straw returning application could improve soil fertility in this trial region. PMID:23028550

  12. Effect of different fertilizer application on the soil fertility of paddy soils in red soil region of southern China.

    PubMed

    Dong, Wenyi; Zhang, Xinyu; Wang, Huimin; Dai, Xiaoqin; Sun, Xiaomin; Qiu, Weiwen; Yang, Fengting

    2012-01-01

    Appropriate fertilizer application is an important management practice to improve soil fertility and quality in the red soil regions of China. In the present study, we examined the effects of five fertilization treatments [these were: no fertilizer (CK), rice straw return (SR), chemical fertilizer (NPK), organic manure (OM) and green manure (GM)] on soil pH, soil organic carbon (SOC), total nitrogen (TN), C/N ratio and available nutrients (AN, AP and AK) contents in the plowed layer (0-20 cm) of paddy soil from 1998 to 2009 in Jiangxi Province, southern China. Results showed that the soil pH was the lowest with an average of 5.33 units in CK and was significantly higher in NPK (5.89 units) and OM (5.63 units) treatments (P<0.05). The application of fertilizers have remarkably improved SOC and TN values compared with the CK, Specifically, the OM treatment resulted in the highest SOC and TN concentrations (72.5% and 51.2% higher than CK) and NPK treatment increased the SOC and TN contents by 22.0% and 17.8% compared with CK. The average amounts of C/N ratio ranged from 9.66 to 10.98 in different treatments, and reached the highest in OM treatment (P<0.05). During the experimental period, the average AN and AP contents were highest in OM treatment (about 1.6 and 29.6 times of that in the CK, respectively) and second highest in NPK treatment (about 1.2 and 20.3 times of that in the CK). Unlike AN and AP, the highest value of AK content was observed in NPK treatments with 38.10 mg·kg(-1). Thus, these indicated that organic manure should be recommended to improve soil fertility in this region and K fertilizer should be simultaneously applied considering the soil K contents. Considering the long-term fertilizer efficiency, our results also suggest that annual straw returning application could improve soil fertility in this trial region.

  13. Effect of long-term fertilizer application in maize crop growing on chemical element leaching in Fluvisol

    NASA Astrophysics Data System (ADS)

    Simeonova, Tsetska; Stoicheva, Dimitranka; Koleva, Venelina; Sokołowska, Zofia; Hajnos, Mieczysław

    2017-04-01

    The study characterized the regime of nutrient leaching under different nitrogen and phosphorus supply of irrigated maize grown as monoculture on Fluvisol for the period 1999-2008 and additionally studied in the years 2009, 2010, and 2011. The aim of the study was to estimate the effect of longterm fertilizer application on the leaching of nutrients from the soil under maize grown as monoculture. The experiment design included four nitrogen fertilizer rates (B1-control, B5, B4, B3, B2) calculated to compensate 50, 75, 100, and 125% from the plant N uptake, respectively. The field plots were equipped with lysimeters (at 50 and 100 cm depth) for studying the relationship between the applied fertilizer rates and the nutrient concentrations in the lysimetric water. The greatest nitrogen concentration in lysimetric water was observed under variant (B3-N200 P150) throughout the study period and the highest N losses were registered (36 kg ha-1) in 2010 under the same treatment (B3). A very good correlation was found between the N rates, calcium, and magnesium losses. Lysimetric water component compensation shows that agricultural activities have only influenced the speed of weathering and had no significant effect on the rates.

  14. [Application of microfluidics in sperm isolation and in vitro fertilization].

    PubMed

    Li, Fang-Fang; Wang, Xiao-Ying; Zhou, Shu-Min; You, Fan

    2014-05-01

    Due to the low effectiveness of traditional assisted reproductive technology (ART), new technological possibilities are constantly explored. Lots of studies have demonstrated the potential of microfluidics to revolutionize the fundamental processes of in vitro fertilization (IVF). With the advantages of high efficiency, short time, harmless collection, real-time observation of separation, similar microenvironment, and automation, the application of microfluidics in sperm isolation and IVF has shown an evident superiority over the conventional approaches and provided a new platform for ART. This review highlights the application of various microfluidic techniques in sperm motility assessment and isolation, sperm chemotaxis assay, IVF, sperm concentration, and sperm separation and enrichment in recent years. It also briefly introduces the basic principles, structural design, and operation processes of the microfluidic platform, focusing on the advantages and disadvantages of each method and the potential of their clinical application. Obviously, there are still some challenges to the application of microfluidics in ART. However, it is believed that the development of this new technology would be toward a highly integrated application of several steps in one single device, known as IVF-lab-on-a-chip.

  15. Phosphorus applications improved the soil microbial responses under nitrogen additions in Chinese fir plantations of subtropical China

    NASA Astrophysics Data System (ADS)

    Zhang, Xinyu; Li, Dandan; Yang, Yang; Tang, Yuqian; Wang, Huimin; Chen, Fusheng; Sun, Xiaomin

    2016-04-01

    Nitrogen (N) deposition and low soil phosphorus (P) content aggravate the P limitation in subtropical forest soils. However, the responses of soil microbial communities, enzyme kinetics, and N cycling genes to P additions in subtropical plantations are still not clear. The hypothesis that P application can alleviate the limitation and improve the soil microbial properties was tested by long term field experiment in the Chinese fir plantations in subtropical China. Thirty 20m×20m plots were established in November 2011 and six different treatments were randomly distributed with five replicates. The treatments are control (CK, no N and P application), low N addition (N1: 50 kg N ha-1 yr-1), high N addition (N2: 100 kg N ha-1 yr-1), P addition (P: 50 kg P ha-1 yr-1), low N and P addition (N1P: 50 kg N ha-1 yr-1 and 50 kg P ha-1 yr-1) and high N and P addition (N2P: 100 kg N ha-1 yr-1 and 50 kg P ha-1 yr-1). A suite of responses of soil microorganism across four years (2012-2015) during three seasons (spring, summer and autumn) were measured. Following 4 years of N amendments, fertilized soils were more acidic and had lower soil microbial biomass carbon contents than CK. However, P alleviated the soil acidification and increased the soil microbial biomass carbon contents. Increases in microbial PLFA biomarkers and exoenzyme kinetics in N fertilized plots were observed in the initial year (2013) but reduced since then (2014 and 2015). Whereas P amendments increased the soil PLFA biomarkers and exoenzyme kinetics through the four years except that the acid phosphatase activities declined after 3 years applications. P applications enhanced the soil N cycling by increases the abundances of nitrifiers (ammonia-oxidizing archea) and denitrifiers (nos Z, norG, and nirK). The bacterial and fungal residue carbons (calculated by amino sugar indicators) were higher under NP fertilizations than the other treatments. Our results suggest that P application could improve the soil

  16. Hydrological Variables and Dissolved Phosphorus in the Runoff from No-tilled Soil after Application of Swine Liquid

    NASA Astrophysics Data System (ADS)

    Barbosa, F. T.; Bertol, I.; de Amaral, A. J.; Grahl dos Santos, P.; Ramos, R. R.; Werner, R. S.; Miras Avalos, J. M.

    2012-04-01

    Swine manure is used as a soil fertilizer in South Brazil. Commonly, it is applied continuously and in great amounts over surfaces with an important relief and without facilities that avoid water erosion. Thus, this manure is a potential risk of environmental pollution, mainly for the eutrophication of water bodies due to a runoff rich in nutrients. The aim of this work was to assess some soil hydrological parameters and to quantify the dissolved phosphorus losses in the runoff from no-tilled soils after the application of swine liquid manure. The experiment was carried out in the Highlands of Santa Catarina State, Brazil, in June 2009, over a Nitisol. On field plots, a 90-minute simulated rainfall test was performed with a rotating boom rainfall simulator and rainfall intensity of 70 mm h-1. Prior to the rainfall simulation, sowing was performed using a disk planter either with or without tines. Spacing between lines was 0.5 m. Swine liquid manure was applied at rates of 0.0, 30 and 60 m3ha-1 to the plots planted using tines; whereas it was applied at 15, 45 e 75 m3ha-1 to the plots were no tines were used for planting. During rainfall simulation, readings of runoff rate were taken each five minutes; total water loss was calculated by integrating all the 5-minute readings. Runoff samples were collected at 10 minutes intervals, and they were filtered through a 0.45 μm filter to determine dissolved phosphorus. Hydrological variables were significantly affected by the use of tines, which favoured infiltration and reduced runoff as compared to the non-use of tines. Runoff started at 28 and 11 minutes, water losses were 252 and 467 m3 ha-1, maximum runoff rate were 29 and 42 mm h-1 and constant rates of infiltration were 41 and 28 mm h-1, for treatments with and without tines, respectively. Dissolved phosphorus increased with the rate of swine liquid manure applied, with a trend to decrease from the beginning to the end of rainfall. The highest concentration was 0

  17. Development of a biologically based fertilizer, incorporating Bacillus megaterium A6, for improved phosphorus nutrition of oilseed rape

    USDA-ARS?s Scientific Manuscript database

    Sustainable methods with diminished impact on the environment need to be developed for the production of oilseed rape in China and other regions of the world. A biological fertilizer consisting of Bacillus megaterium A6 cultured on oilseed rape meal doubled oilseed rape seed yield (P < 0.0001) rela...

  18. [Effects of different potassium fertilizer application periods on the yield and quality of Fuji apple].

    PubMed

    Lu, Yong-li; Yang, Xian-long; Li, Ru; Li, Shui-li; Tong, Yan-an

    2015-04-01

    In order to ascertain the effects of potassium fertilizer application periods on apple production, we conducted a field experiment and analyzed the differences in apple yield, fruit quality, potassium fertilizer use efficiency, and nutrient concentrations in leaves and fruits among treatments with differences in timing of potassium application. The results indicated that, compared with no potassium-applied treatment (CK), all potassium fertilizer application treatments significantly increased the apple yield by 4.3%-33.2%, meanwhile, it also obviously improved the fruit quality. In comparison with the application of 100% potassium fertilizer as a base, the application of 50% or 100% of potassium fertilizer at the fruit enlargement stage (the remaining 50% applied as a base or after flowering) significantly increased the apple yield by 20.5% - 27.7% and improved the fruit quality. Compared with the application 100% potassium fertilizer at the stage of fruit enlargement, the evenly split application as base flowering stage and at the fruit enlargement: stage not only contributed to a higher yield, better quality and higher potassium use efficiency, but also maintained a relatively stable potassium concentration level in leaves. However, the split potassium fertilizer application at the flowering and fruit enlargement stages resulted in the significant decrease in concentration of calcium in fruit, which would be negative to fruit quality. In conclusion, our research suggested that evenly split application of potassium fertilizer as a base and at the fruit enlargement stage was the suitable period for apple production in Fuji apple orchards in this region.

  19. Cadmium and zinc in soil solution extracts following the application of phosphate fertilizers.

    PubMed

    Lambert, Raphaël; Grant, Cynthia; Sauvé, Sébastien

    2007-06-01

    This study investigated the solubility of cadmium and zinc in soils after the application of phosphate fertilizers containing those two metals. The solubility of cadmium and zinc was assessed by measuring their concentration in soil water extracts. Three monoammonium phosphate fertilizers containing various amounts of metals were applied on cultivated fields for 3 years at three different rates. In order to investigate the effects of long-term applications of fertilizers on the solubility of Cd and Zn, a similar design was used to apply contaminated fertilizers to soils in a laboratory experiment using a single fertilizer addition equivalent to 15 years of application. Phosphate fertilizers increased the concentration of Cd in soil extracts compared to control in 87% and 80% of the treatments in field and laboratory experiments respectively. Both increasing the rate of application and using fertilizer containing more Cd lead to higher Cd concentrations in extracts for the field and the laboratory experiments. The addition of the equivalent of 15 years of fertilizer application in the laboratory results in higher Cd concentration in extracts compared to the field experiment. For Zn, the fertilizer treatments enhanced the metal solution concentration in 83% of field treatments, but no significant correlations could be found between Zn inputs and its concentration in solution. In the laboratory, fertilizer additions increase the Zn concentrations in 53% of the treatments and decrease it in most of the other treatments. The decrease in Zn concentrations in the laboratory trial is attributed to the higher phosphate concentrations in the soil solution; which is presumed to have contributed to the precipitation of Zn-phosphates. For both trials, the metal concentrations in soil extracts cannot be related to the Zn concentration in the fertilizer or the rate of application. The high Zn to Cd ratio is presumably responsible for the Cd increase in the soil extracts due to

  20. Modeling biogeochemical processes of phosphorus for global food supply.

    PubMed

    Dumas, Marion; Frossard, Emmanuel; Scholz, Roland W

    2011-08-01

    Harvests of crops, their trade and consumption, soil erosion, fertilization and recycling of organic waste generate fluxes of phosphorus in and out of the soil that continuously change the worldwide spatial distribution of total phosphorus in arable soils. Furthermore, due to variability in the properties of the virgin soils and the different histories of agricultural practices, on a planetary scale, the distribution of total soil phosphorus is very heterogeneous. There are two key relationships that determine how this distribution and its change over time affect crop yields. One is the relationship between total soil phosphorus and bioavailable soil phosphorus and the second is the relationship between bioavailable soil phosphorus and yields. Both of these depend on environmental variables such as soil properties and climate. We propose a model in which these relationships are described probabilistically and integrated with the dynamic feedbacks of P cycling in the human ecosystem. The model we propose is a first step towards evaluating the large-scale effects of different nutrient management scenarios. One application of particular interest is to evaluate the vulnerability of different regions to an increased scarcity in P mineral fertilizers. Another is to evaluate different regions' deficiency in total soil phosphorus compared with the level at which they could sustain their maximum potential yield without external mineral inputs of phosphorus but solely by recycling organic matter to close the nutrient cycle.

  1. Application of zeolite/hydrous zirconia composite as a novel sediment capping material to immobilize phosphorus.

    PubMed

    Fan, Yi; Li, Yiwen; Wu, Deyi; Li, Chunjie; Kong, Hainan

    2017-10-15

    A unique sediment-capping agent consisting of a zeolite/hydrous zirconia composite (ZHZ) was developed and tested for P-immobilization in the overlying water and sediment cores from a freshwater pond. In the ZHZ, NaP1 zeolite was covered with hydrous zirconia, which existed as an amorphous phase. Experimental results in pond water indicated that ZHZ could efficiently remove soluble reactive phosphorus. The 28-day sediment incubation experiments showed that capping sediment with ZHZ resulted in a more efficient, rapid and sustained decrease in P concentration when compared with the traditional alum treatment method. Furthermore, ZHZ increased the sediment stability, resulting in the lowest turbidity, total phosphorus and soluble reactive phosphorus concentrations in overlying water following artificially induced resuspension of sediment. Phosphorus fractionation of sediment showed that the dominant P form transferred from HCl-extractable P to residual P, and the most release-sensitive P (labile P and reductant reactive P) was decreased after ZHZ application. Overall, ZHZ is a highly effective P-immobilization material. ZHZ has high potential as a sediment capping material to control internal P loading in eutrophic water bodies. Copyright © 2017 Elsevier Ltd. All rights reserved.

  2. Effect of mineral and manure phosphorus sources on runoff phosphorus.

    PubMed

    Kleinman, Peter J A; Sharpley, Andrew N; Moyer, Barton G; Elwinger, Gerald F

    2002-01-01

    Concern over nonpoint-source phosphorus (P) losses from agricultural lands to surface waters has resulted in scrutiny of factors affecting P loss potential. A rainfall simulation study was conducted to quantify the effects of alternative P sources (dairy manure, poultry manure, swine slurry, and diammonium phosphate), application methods, and initial soil P concentrations on runoff P losses from three acidic soils (Buchanan-Hartleton, Hagerstown, and Lewbeach). Low P (12 to 26 mg kg(-1) Mehlich-3 P) and high P (396 to 415 mg kg(-1) Mehlich-3 P) members of each soil were amended with 100 kg total P ha(-1) from each of the four P sources either by surface application or mixing, and subjected to simulated rainfall (70 mm h(-1) to produce 30 min runoff). Phosphorus losses from fertilizer and manure applied to the soil surface differed significantly by source, with dissolved reactive phosphorus (DRP) accounting for 64% of total phosphorus (TP) (versus 9% for the unamended soils). For manure amended soils, these losses were linearly related to water-soluble P concentration of manure (r2 = 0.86 for DRP, r2 = 0.78 for TP). Mixing the P sources into the soil significantly decreased P losses relative to surface P application, such that DRP losses from amended, mixed soils were not significantly different from the unamended soil. Results of this study can be applied to site assessment indices to quantify the potential for P loss from recently manured soils.

  3. Polymers containing phosphorus groups and polyethers: from synthesis to application

    PubMed Central

    2012-01-01

    Background Phosphorus-containing high performance polymers have aroused wide interest, mainly due to good mechanical properties and their excellent fire resistance. The flexibility of synthetic polyphosphoesters allows the development of polymers in order to obtain solid polymer electrolytes for rechargeable lithium batteries based on solid films with superior fire resistance. Results Novel linear Phosphonate-PEG polymers were synthesized by solution polycondensation of 4-chlorophenyldichlorophosphonate as a linking agent and poly(ethylene glycol)s with different molecular weights in the presence of triethylamine or 1-methylimidazole as acid scavenger. The yields were between 54% and 88% and inherent viscosity between 0.18-0.48 dl/g. Molar masses, Mn were about 26300 g/mol for polyphosphonates with PEG 2000 and 4600 g/mol for polyphosphonates with PEG 200. The LOI values for these polymers and membranes are in the range of 26–29. The membranes based on polyphosphonate with PEG 200 and 2000 showed conductivity between 6 × 10-8 S.cm-1 and 6 × 10-7 S.cm-1 at room temperature and total ionic transference number between 0.87- 0.96. The evolution of conductivity vs. temperature is linear. Conclusions 1-methylimidazole was found to be better HCl scavenger than triethylamine, and allowed higher yields and more eco-friendly synthesis of the Phosphonate-PEG polymers for SPE. These polymers and membranes based on these polymers showed good LOI values and indicate an improvement of the safety of lithium batteries. The membranes present conductivities around 6 × 10-7 S.cm-1at room temperature and total ionic transference number is higher for membranes based on polymers with high EG unit content. Best results yield 88%, inherent viscosities 0.48 dl/g and Mn 26000 were obtained with 1-methylimidazole and PEG 2000. These membranes based on these polymers showed good LOI values (in the range 26-29%) and indicate an improvement of the safety of lithium batteries. PMID:23134834

  4. The core root microbiome of sugarcanes cultivated under varying nitrogen fertilizer application.

    PubMed

    Yeoh, Yun Kit; Paungfoo-Lonhienne, Chanyarat; Dennis, Paul G; Robinson, Nicole; Ragan, Mark A; Schmidt, Susanne; Hugenholtz, Philip

    2016-05-01

    Diazotrophic bacteria potentially supply substantial amounts of biologically fixed nitrogen to crops, but their occurrence may be suppressed by high nitrogen fertilizer application. Here, we explored the impact of high nitrogen fertilizer rates on the presence of diazotrophs in field-grown sugarcane with industry-standard or reduced nitrogen fertilizer application. Despite large differences in soil microbial communities between test sites, a core sugarcane root microbiome was identified. The sugarcane root-enriched core taxa overlap with those of Arabidopsis thaliana raising the possibility that certain bacterial families have had long association with plants. Reduced nitrogen fertilizer application had remarkably little effect on the core root microbiome and did not increase the relative abundance of root-associated diazotrophs or nif gene counts. Correspondingly, low nitrogen fertilizer crops had lower biomass and nitrogen content, reflecting a lack of major input of biologically fixed nitrogen, indicating that manipulating nitrogen fertilizer rates does not improve sugarcane yields by enriching diazotrophic populations under the test conditions. Standard nitrogen fertilizer crops had improved biomass and nitrogen content, and corresponding soils had higher abundances of nitrification and denitrification genes. These findings highlight that achieving a balance in maximizing crop yields and minimizing nutrient pollution associated with nitrogen fertilizer application requires understanding of how microbial communities respond to fertilizer use.

  5. Virtual phosphorus ore requirement of Japanese economy.

    PubMed

    Matsubae, Kazuyo; Kajiyama, Jun; Hiraki, Takehito; Nagasaka, Tetsuya

    2011-08-01

    Phosphorus is indispensable for agricultural production. Hence, the consumption of imported food indirectly implies the import of phosphorus resources. The global consumption of agricultural products depends on a small number of ore-producing countries. For sustainable management of phosphorus resources, the global supply and demand network should be clarified. In this study, we propose the virtual phosphorus ore requirement as a new indicator of the direct and indirect phosphorus requirements for our society. The virtual phosphorus ore requirement indicates the direct and indirect demands for phosphorus ore transformed into agricultural products and fertilizer. In this study, the virtual phosphorus ore requirement was evaluated for the Japanese economy in 2005. Importantly, the results show that our society requires twice as much phosphorus ore as the domestic demand for fertilizer production. The phosphorus contained in "eaten" agricultural products was only 12% of virtual phosphorus ore requirement.

  6. Short-term fertilizer application alters phenotypic traits of symbiotic nitrogen fixing bacteria

    PubMed Central

    Han, Shery; Rekret, Phil; Rentschler, Christine S.; Heath, Katy D.; Stinchcombe, John R.

    2015-01-01

    Fertilizer application is a common anthropogenic alteration to terrestrial systems. Increased nutrient input can impact soil microbial diversity or function directly through altered soil environments, or indirectly through plant-microbe feedbacks, with potentially important effects on ecologically-important plant-associated mutualists. We investigated the impacts of plant fertilizer, containing all common macro and micronutrients on symbiotic nitrogen-fixing bacteria (rhizobia), a group of bacteria that are important for plant productivity and ecosystem function. We collected rhizobia nodule isolates from natural field soil that was treated with slow-release plant fertilizer over a single growing season and compared phenotypic traits related to free-living growth and host partner quality in these isolates to those of rhizobia from unfertilized soils. Through a series of single inoculation assays in controlled glasshouse conditions, we found that isolates from fertilized field soil provided legume hosts with higher mutualistic benefits. Through growth assays on media containing variable plant fertilizer concentrations, we found that plant fertilizer was generally beneficial for rhizobia growth. Rhizobia isolated from fertilized field soil had higher growth rates in the presence of plant fertilizer compared to isolates from unfertilized field soil, indicating that plant fertilizer application favoured rhizobia isolates with higher abilities to utilize fertilizer for free-living growth. We found a positive correlation between growth responses to fertilizer and mutualism benefits among isolates from fertilized field soil, demonstrating that variable plant fertilizer induces context-dependent genetic correlations, potentially changing the evolutionary trajectory of either trait through increased trait dependencies. Our study shows that short-term application is sufficient to alter the composition of rhizobia isolates in the population or community, either directly

  7. Short-term fertilizer application alters phenotypic traits of symbiotic nitrogen fixing bacteria.

    PubMed

    Simonsen, Anna K; Han, Shery; Rekret, Phil; Rentschler, Christine S; Heath, Katy D; Stinchcombe, John R

    2015-01-01

    Fertilizer application is a common anthropogenic alteration to terrestrial systems. Increased nutrient input can impact soil microbial diversity or function directly through altered soil environments, or indirectly through plant-microbe feedbacks, with potentially important effects on ecologically-important plant-associated mutualists. We investigated the impacts of plant fertilizer, containing all common macro and micronutrients on symbiotic nitrogen-fixing bacteria (rhizobia), a group of bacteria that are important for plant productivity and ecosystem function. We collected rhizobia nodule isolates from natural field soil that was treated with slow-release plant fertilizer over a single growing season and compared phenotypic traits related to free-living growth and host partner quality in these isolates to those of rhizobia from unfertilized soils. Through a series of single inoculation assays in controlled glasshouse conditions, we found that isolates from fertilized field soil provided legume hosts with higher mutualistic benefits. Through growth assays on media containing variable plant fertilizer concentrations, we found that plant fertilizer was generally beneficial for rhizobia growth. Rhizobia isolated from fertilized field soil had higher growth rates in the presence of plant fertilizer compared to isolates from unfertilized field soil, indicating that plant fertilizer application favoured rhizobia isolates with higher abilities to utilize fertilizer for free-living growth. We found a positive correlation between growth responses to fertilizer and mutualism benefits among isolates from fertilized field soil, demonstrating that variable plant fertilizer induces context-dependent genetic correlations, potentially changing the evolutionary trajectory of either trait through increased trait dependencies. Our study shows that short-term application is sufficient to alter the composition of rhizobia isolates in the population or community, either directly

  8. Effect of Polonite used for phosphorus removal from wastewater on soil properties and fertility of a mountain meadow.

    PubMed

    Cucarella, Victor; Mazurek, Ryszard; Zaleski, Tomasz; Kopeć, Michał; Renman, Gunno

    2009-07-01

    Reactive filter materials used for phosphorus (P) removal from wastewater can be disposed of as soil amendments after treatment, thus recycling P and other macro- and micro-nutrients to plants. In addition, materials with a high pH and Ca content, such as Polonite, are potential soil conditioners, which can be particularly beneficial for acid soils. Polonite previously used for on-site wastewater treatment was applied as a soil amendment to a mountain meadow. The amendment significantly increased soil pH and decreased the hydrolytic acidity, thus reducing Al toxicity risks. The effects were comparable to those of liming. No difference in yield and P uptake by meadow plants was observed. The uptake of metals was lower for amended soils, especially the uptake of Mn. Using Polonite after wastewater treatment as a soil amendment is thus a viable disposal alternative that can replace liming, when necessary, being capable of recycling P and other nutrients to meadow plants.

  9. Effect of reactive substrates used for the removal of phosphorus from wastewater on the fertility of acid soils.

    PubMed

    Cucarella, Victor; Zaleski, Tomasz; Mazurek, Ryszard; Renman, Gunno

    2008-07-01

    Reactive substrates used in filter systems can reduce phosphorus (P) pollution and, once saturated with P, may be recycled in agriculture. These substrates are usually calcium carbonate derivates with high pH values, which may be particularly beneficial for acid soils. Three reactive substrates (Filtra P, Polonite and wollastonite) saturated with P were used as amendments to an acid soil in a pot experiment. Substrate amendments tended to improve ryegrass yield and P uptake compared with control and potassium phosphate treatments. Polonite produced the highest yield/amendment ratio, while Polonite and Filtra P significantly increased the concentrations of P and Ca in the ryegrass. Addition of all three substrates increased the pH, AL-extractable P and cation exchange capacity of soils during the experiment. These substrates can therefore be applied to acid soils in order to recycle P and improve soil properties.

  10. Optimizing organic fertilizer applications under steady-state conditions.

    PubMed

    Crohn, David M

    2006-01-01

    Because organic N fertilizers must be mineralized before they become plant-available, application designs should consider time and temperature effects on N release as well as crop N requirements. This study presents deterministic (DOpt) and stochastic (SOpt) linear optimization models to determine sustainable land application schedules. The easily solved models minimize the amount of N that is applied while assuring than crop N demands are met as they develop. Temperature effects on N mineralization were included by using the Arrhenius equation to create a temperature-adjusted time series. Uncertainties associated with mineralization rates and the temperature-adjustment (Q10) factor are considered by SOpt. Examples are presented for a summer maize (Zea mays L.) and winter triticale (Triticum aestivum L. x Secale cereale L.) rotation operated by a hypothetical dairy operation in Stanislaus County, California. Monte Carlo simulations were used to test the models. A closed-form solution for estimating the time until steady state is presented and steady-state conditions were reached within 7 yr after applications were initiated. Because of temperature effects, DOpt solutions were 12% greater during the winter and 29% lower during the summer than a reference approach that applied liquid manure at 130% of the crop N demand. Stochastic linear optimization values were 1.7% greater than DOpt values in the summer and 6.2% greater in the winter. Surplus N estimates from Monte Carlo simulations averaged 104 kg ha(-1) for DOpt and 126 ka ha(-1) for SOpt, but SOpt was much less likely to result in crop N deficits. Linear optimization is a viable tool for scheduling organic N applications.

  11. [Dynamics of soil phosphorus adsorption-desorption in maize/soybean relay intercropping system in purple hilly area].

    PubMed

    Xu, Min; Song, Chun; Dai, Wei; Xiao, Xia; Mao, Lu; Wang, Xiao-chun; Yang, Wen-yu

    2015-07-01

    Field plot experiment was carried out to study the effect of phosphorus application on soil phosphorus adsorption-desorption characteristics under three cropping patterns including maize/soybean relay intercropping (M/S), maize monoculture (M), and soybean monoculture (S). Results showed that without phosphorus fertilization, the system crop yield under M/S was increased by 9.8% and 79. 1% compared with that of M and S, respectively, and the land equivalent ratio (LER) was 1.58. With phosphate fertilizer application, the system crop yield under M/S was increased by 10.4% and 80.3% compared with that of M and S, respectively, and the LER was 1.62. The system crop yields under M/S, M and S with phosphate fertilizer application were increased by 12.7%, 12. 2% and 17. 6%, respectively, compared with that without phosphorus fertilization. Among three cropping patterns, the soil buffer capacity (SBC) values were in the order of M/S>M >S regardless of phosphate fertilizer applied or not. The SBC values of M/S, M and S without phosphate fertilizer application were reduced by 19.6%, 30.3% and 12.0% compared with phosphate fertilizer application treatments, respectively. The soil desorption per absorption (b) values of the three cropping patterns with phosphate fertilizer application were in the order of M/S>M>S, and the b values increased by 10.9%, 39.1% and -9.6%, respectively, compared with non phosphate fertilizer application. The soil phosphorus maximum absorption (Qm) and soil phosphorus desorption rate also showed the same trend.

  12. Application of ionomics to plant and soil in fields under long-term fertilizer trials.

    PubMed

    Watanabe, Toshihiro; Urayama, Masaru; Shinano, Takuro; Okada, Ryosuke; Osaki, Mitsuru

    2015-01-01

    Ionomics is the study of elemental accumulation in living organisms using high-throughput elemental profiling. In the present study, we examined the ionomic responses to nutrient deficiency in maize grown in the field in long-term fertilizer trials. Furthermore, the available elements in the field soils were analyzed to investigate their changes under long-term fertilizer treatment and the ionomic relationships between plant and soil. Maize was cultivated in a field with the following five long-term fertilizer treatments: complete fertilization, fertilization without nitrogen, without phosphorus, without potassium, and no fertilization. Concentrations of 22 elements in leaves at an early flowering stage and in soils after harvest were determined. The fertilizer treatments changed the availabilities of many elements in soils. For example, available cesium was decreased by 39 % and increased by 126 % by fertilizations without nitrogen and potassium, respectively. Effects of treatments on the ionome in leaves were evaluated using the translocation ratio (the concentration in leaves relative to the available concentration in soils) for each element. Nitrogen deficiency specifically increased the uptake ability of molybdenum, which might induce the enhancement of nitrogen assimilation and/or endophytic nitrogen fixation in plant. Potassium deficiency drastically enhanced the uptake ability of various cationic elements. These elements might act as alternatives to K in osmoregulation and counterion of organic/inorganic anions. Two major groups of elements were detected by multivariate analyses of plant ionome. Elements in the same group may be linked more or less in uptake and/or translocation systems. No significant correlation between plant and soil was found in concentrations of many elements, even though various soil extraction methods were applied, implying that the interactions between the target and other elements in soil must be considered when analyzing mineral

  13. Role of phosphate fertilizers in heavy metal uptake and detoxification of toxic metals.

    PubMed

    Gupta, D K; Chatterjee, S; Datta, S; Veer, V; Walther, C

    2014-08-01

    As a nonrenewable resource, phosphorus (P) is the second most important macronutrient for plant growth and nutrition. Demand of phosphorus application in the agricultural production is increasing fast throughout the globe. The bioavailability of phosphorus is distinctively low due to its slow diffusion and high fixation in soils which make phosphorus a key limiting factor for crop production. Applications of phosphorus-based fertilizers improve the soil fertility and agriculture yield but at the same time concerns over a number of factors that lead to environmental damage need to be addressed properly. Phosphate rock mining leads to reallocation and exposure of several heavy metals and radionuclides in crop fields and water bodies throughout the world. Proper management of phosphorus along with its fertilizers is required that may help the maximum utilization by plants and minimum run-off and wastage. Phosphorus solubilizing bacteria along with the root rhizosphere of plant integrated with root morphological and physiological adaptive strategies need to be explored further for utilization of this extremely valuable nonrenewable resource judiciously. The main objective of this review is to assess the role of phosphorus in fertilizers, their uptake along with other elements and signaling during P starvation. Copyright © 2014 Elsevier Ltd. All rights reserved.

  14. Current progress in black phosphorus materials and their applications in electrochemical energy storage.

    PubMed

    Qiu, M; Sun, Z T; Sang, D K; Han, X G; Zhang, H; Niu, C M

    2017-09-21

    Recently, a new two-dimensional material, single- or few-layered black phosphorus (BP), has attracted considerable attention for applications in electronics, optoelectronics, and batteries due to its unique properties, including large specific surface area, anisotropy, and tunable and direct band gaps. In particular, contributions to electrochemical energy storage devices, such as lithium and sodium ion batteries and supercapacitors, have emerged. However, critical issues remain to be explored before scaled-up commercial production of BP, such as preparation, stability, and performance. Herein, we present the first review of recent progress in BP-based electrochemical energy storage device. The preparation and electrochemical properties of black phosphorus, recent advances, potential challenges, and relevant perspectives in electrochemical energy storage, and the potential of BP are discussed in this work.

  15. Changes of the content of oil products in the oil-polluted peat soil of a high-moor bog in a field experiment with application of lime and fertilizers

    NASA Astrophysics Data System (ADS)

    Erkenova, M. I.; Tolpeshta, I. I.; Trofimov, S. Ya.; Aptikaev, R. S.; Lazarev, A. S.

    2016-11-01

    A field model experiment on stimulating the activity of native oil microorganisms-decomposers was performed on an oil-polluted area in a high-moor bog under its total flooding in the northern taiga (Western Siberia). For two summer months, the doses of lime and nitrogen, phosphorus, and potassium fertilizers applied have caused a decrease in the oil products (OP) content by 54% relative to their initial amount. The decrease of the OP content in the soil profiles was nonuniform, and at the depth of 30-50 cm it was accompanied by the acidification of peat. The stimulation of the activity of aboriginal microorganisms by applying lime and mineral fertilizers led to the development of migration processes with the participation of oil and products of its transformation. These processes differed from those in the soil without application of lime and fertilizers. An original technology of applying lime and fertilizers providing minimal disturbances the upper 50-cm peat layer is suggested.

  16. Online measurement of contents in compound fertilizer and application research using VIS-NIR spectroscopy

    NASA Astrophysics Data System (ADS)

    Lin, Zhidan; Wang, Yubing; Wang, Rujing; Liu, Jing; Lu, Cuiping; Wang, Liusan

    2015-10-01

    The on-line measurement of the main component contents is essential for production, detection and identification of compound fertilizer. Using developed VIS-NIR sensors for on-line measurement of the main component contents in compound fertilizer, primary results about nitrogen (N), phosphorus pentoxide (P2O5) and potassium oxide (K2O) were reported. A visible (VIS) and near infrared (NIR) spectrophotometer (Ocean Optics), with a measurement range of 360.18-2221.53 nm was used to measure fertilizer spectra in reflectance mode. By using principal component analysis (PCA) and mahalanobis distance method, 3 outlier samples were detected and eliminated from 174 samples firstly. Then these models of three components with the 124 samples in calibration set were established using principal component regress (PCR) and partial least squares regression (PLS) coupled respectively with the full cross-validation technique after preprocessing the original spectrum with different methods. These models were used to estimate the contents of N, P2O5 and K2O of the other 47 samples in predicted set. The research results showed that the method could be applied to rapid measurement to the main component contents in compound fertilizer. Compared with the traditional analysis method, the on-line measurement could do it rapidly, inexpensively and pollution-freely. It suggested the potential use of the VIS-NIR sensing system for on-line measurement in the production, detection and identification process of compound fertilizer.

  17. Phosphorus sequestration by chemical amendments to reduce leaching from wastewater applications.

    PubMed

    Zvomuya, Francis; Rosen, Carl J; Gupta, Satish C

    2006-01-01

    Phosphorus-immobilizing amendments can be useful in minimizing P leaching from high P soils that may be irrigated with wastewater. This study tested the P-binding ability of various amendment materials in a laboratory incubation experiment and then tested the best amendment in a field setup using drainage lysimeters. The laboratory experiment involved incubating 100-g samples of soil (72 mg kg(-1) water-extractable phosphorus, WEP) with various amendments at different rates for 63 d at field moisture capacity and 25 degrees C. The amendments tested were alum [Al2SO4)3.14H2O], ferric chloride (FeCl3), calcium carbonate (CaCO3), water treatment residual (WTR), and sugarbeet lime (SBL). Ferric chloride and alum at rates of 1.5 and 3.9 g kg(-1), respectively, were the most effective amendments that decreased WEP to 20 mg kg(-1), below which leaching has previously been shown to be low. Alum (1.3 kg m(-2)), which is less sensitive to redox conditions, was subsequently tested under field conditions, where it reduced WEP concentration in the 0- to 0.15-m layer from 119 mg kg(-1) on Day 0 to 36.1 mg kg(-1) (85% decrease) on Day 41. Lysimeter breakthrough tests using tertiary-treated potato-processing wastewater (mean total phosphorus [TP] = 3.4 mg L(-1)) showed that alum application reduced leachate TP and soluble reactive phosphorus (SRP) concentrations by 27 and 25%, respectively. These results indicate that alum application may be an effective strategy to immobilize P in high P coarse-textured soils. The relatively smaller decreases in TP and SRP in the leachate compared to WEP suggest some of the P may be coming from depths below 0.2 m. Thus, to achieve higher P sequestration, deeper incorporation of the alum may be necessary.

  18. Phytic acid in green leaves of herbaceous plants-temporal variation in situ and response to different nitrogen/phosphorus fertilizing regimes.

    PubMed

    Alkarawi, Hassan Hadi; Zotz, Gerhard

    2014-08-13

    Phytic acid is the major storage compound for phosphorus (P) in plants. While accounting for up to 90 % in many seeds, usually only <10 % of total P is found in phytic acid in green leaves. This study follows up on the findings of a recent review of the occurrence of phytic acid in green leaves which revealed that (i) the current knowledge of phytic acid in leaves is mostly based on data from (fertilized) crop plants and (ii) the proportion of total P in phytic acid seems to decrease with improved P status in leaves in contrast to an increase in seeds and fruit. We studied five species of wild herbaceous plants in the field and under controlled conditions. Foliar P concentrations were much lower than those of the crops of earlier studies, but the proportion of P in phytic acid was similar, with little variation during the observation period. Both the field data and the experimental data showed a statistically indistinguishable negative correlation of phytic acid-P/total P and total P. In contrast to our expectation, this negative relationship was not related to differences in relative growth rates. We conclude that (i) our data of phytic acid concentrations in leaves of wild plants are in line with earlier observations on crops, and (ii) the trend towards lower proportions of phytic acid-P with increasing P status is probably a general phenomenon. Currently lacking a convincing explanation for the second observation, the role of phytic acid in foliar P metabolism is still unclear.

  19. [Characteristics of 'salt island' and 'fertile island' for Tamarix chinensis and soil carbon, nitrogen and phosphorus ecological stoichiometry in saline-alkali land].

    PubMed

    Zhang, Li-hua; Chen, Xiao-bing

    2015-03-01

    To clarify the nutrient characteristics of 'salt island' and 'fertile island' effects in saline-alkali soil, the native Tamarix chinensis of the Yellow River Delta (YRD) was selected to measure its soil pH, electrical conductivity (EC), organic carbon (SOC), total nitrogen (N), total phosphorus (P) and their stoichiometry characteristics at different soil depths. The results showed that soil pH and EC increased with the increasing soil depth. Soil EC and P in the 0-20 cm layer decreased and increased from canopied area to interspace, respectively. SOC, N, N/P and C/P in the 20-40 cm soil layer decreased, and C/N increased from the shrub center to interspace. SOC and N contents between island and interspace both decreased but P content decreased firstly and then increased with the increasing soil depth. Soil pH correlated positively with EC. In addition, pH and EC correlated negatively with C, N, P contents and their ecological stoichiometry.

  20. Application of different fertilizers on morphological traits of dill (Anethum graveolens L.).

    PubMed

    Nejatzadeh-Barandozi, Fatemeh; Gholami-Borujeni, Fathollah

    2014-12-01

    The aim of this study was to evaluate the effects of nitroxin biofertilizer and chemical fertilizer on the growth, yield, and essential oil composition of dill. The experiment was conducted under field condition in randomized complete block design with three replications and two factors. The first factor was the concentrations of nitroxin biofertilizer (0%, 50%, and 100%) of the recommended amount (1 l of biological fertilizer for 30 kg of seed). The second factor was the following chemical fertilizer treatments: no fertilizer (control) and 50 and 100 kg ha(-1) urea along with 300 kg ha(-1) ammonium phosphate. Different characteristics such as plant height, number of umbel per plant, number of umbellet per umbel, number of grain per umbellet, 1,000 seed weight, grain yield, biological yield, and oil percentage were recorded. According to the results, the highest height, biological yield, and grain yield components (except harvest index) were obtained on biological fertilizer. The results showed the highest essential oil content detected in biological fertilizer and chemical fertilizer. Identification of essential oil composition showed that the content of carvone increased with the application of biofertilizers and chemical fertilizers. The results indicated that the application of biofertilizers enhanced yield and other plant criteria in this plant. Generally, it seems that the use of biofertilizers or combinations of biofertilizer and chemical fertilizer could improve dill performance in addition to reduction of environmental pollution.

  1. Dynamic adjustment in agricultural practices to economic incentives aiming to decrease fertilizer application.

    PubMed

    Sun, Shanxia; Delgado, Michael S; Sesmero, Juan P

    2016-07-15

    Input- and output-based economic policies designed to reduce water pollution from fertilizer runoff by adjusting management practices are theoretically justified and well-understood. Yet, in practice, adjustment in fertilizer application or land allocation may be sluggish. We provide practical guidance for policymakers regarding the relative magnitude and speed of adjustment of input- and output-based policies. Through a dynamic dual model of corn production that takes fertilizer as one of several production inputs, we measure the short- and long-term effects of policies that affect the relative prices of inputs and outputs through the short- and long-term price elasticities of fertilizer application, and also the total time required for different policies to affect fertilizer application through the adjustment rates of capital and land. These estimates allow us to compare input- and output-based policies based on their relative cost-effectiveness. Using data from Indiana and Illinois, we find that input-based policies are more cost-effective than their output-based counterparts in achieving a target reduction in fertilizer application. We show that input- and output-based policies yield adjustment in fertilizer application at the same speed, and that most of the adjustment takes place in the short-term. Copyright © 2016 Elsevier Ltd. All rights reserved.

  2. [Effects of fertilizer application on greenhouse vegetable yield: a case study of Shouguang].

    PubMed

    Liu, Ping; Li, Yan; Jiang, Li-Hua; Liu, Zhao-Hui; Gao, Xin-Hao; Lin, Hai-Tao; Zheng, Fu-Li; Shi, Jing

    2014-06-01

    Data collected from 51 representative greenhouses of Shouguang through questionnaire survey were analyzed to investigate the effect of chemical fertilizers on vegetable yield, relationship between application of organic manure and yield, and influence factors and evolution rule of fertilizer application rate. The results showed that averages of 3338 kg N x hm(-2), 1710 kg P2O5 x hm(-2) 3446 kg K2O x hm(-2) were applied to greenhouse vegetables annually in Shouguang, 6-14 times as that in the local wheat-maize rotation system. The application rates of chemical N, P, and K fertilizers accounted for about 35%, 49% and 42% of the total input. Increasing application of chemical fertilizers had no significant effect on vegetable yields, while organic manure input significantly increased the vegetable yields. With the increase of greenhouse cultivating time, no significant changes in the input of chemical N, P, and K fertilizers were observed in greenhouse vegetable production while organic manure input decreased significantly. Differences in vegetable species, planting pattern and cultivating time of greenhouses was one of the reasons for large variations in nutrient application rate. In recent more than ten years, organic manure nutrient input increased significantly, chemical N and P fertilizer input presented a downward trend, chemical K fertilizer input increased significantly, and the N/P/K ratio became more and more reasonable in greenhouse vegetable production in Shouguang.

  3. Does nitrogen fertilizer application rate to corn affect nitrous oxide emissions from the rotated soybean crop?

    PubMed

    Iqbal, Javed; Mitchell, David C; Barker, Daniel W; Miguez, Fernando; Sawyer, John E; Pantoja, Jose; Castellano, Michael J

    2015-05-01

    Little information exists on the potential for N fertilizer application to corn ( L.) to affect NO emissions during subsequent unfertilized crops in a rotation. To determine if N fertilizer application to corn affects NO emissions during subsequent crops in rotation, we measured NO emissions for 3 yr (2011-2013) in an Iowa, corn-soybean [ (L.) Merr.] rotation with three N fertilizer rates applied to corn (0 kg N ha, the recommended rate of 135 kg N ha, and a high rate of 225 kg N ha); soybean received no N fertilizer. We further investigated the potential for a winter cereal rye ( L.) cover crop to interact with N fertilizer rate to affect NO emissions from both crops. The cover crop did not consistently affect NO emissions. Across all years and irrespective of cover crop, N fertilizer application above the recommended rate resulted in a 16% increase in mean NO flux rate during the corn phase of the rotation. In 2 of the 3 yr, N fertilizer application to corn (0-225 kg N ha) did not affect mean NO flux rates from the subsequent unfertilized soybean crop. However, in 1 yr after a drought, mean NO flux rates from the soybean crops that received 135 and 225 kg N ha N application in the corn year were 35 and 70% higher than those from the soybean crop that received no N application in the corn year. Our results are consistent with previous studies demonstrating that cover crop effects on NO emissions are not easily generalizable. When N fertilizer affects NO emissions during a subsequent unfertilized crop, it will be important to determine if total fertilizer-induced NO emissions are altered or only spread across a greater period of time.

  4. Environmental risks of trace elements associated with long-term phosphate fertilizers applications: a review.

    PubMed

    Jiao, Wentao; Chen, Weiping; Chang, Andrew C; Page, Albert L

    2012-09-01

    Application of phosphate fertilizer can be a significant contributor of potentially hazardous trace elements such as arsenic, cadmium, and lead in croplands. These trace elements have the potential to accumulate in soils and be transferred through the food chain. We articulated the environmental risks of trace elements associated with long-term phosphate fertilizer applications by combining data from the literature and results from model simulations. Results illustrate that under normal cropping practice, the impact of phosphate fertilizers applications on trace element accumulation in receiving soils has been limited and localized. Their plant uptake varied greatly depending on the fertilizer application rates, soil and plant characteristics. This has led to a great deal of uncertainty in characterizing soil distribution coefficients, Kd, and plant uptake factors, PUF, two of the most used parameters in assessing the risks of accumulations. Therefore, the risks may be more appropriately assessed based on the probabilistic distributions of Kd and PUF. Copyright © 2012 Elsevier Ltd. All rights reserved.

  5. Stabilized nitrogen fertilizers and application rate influence nitrogen losses under rainfed spring wheat

    USDA-ARS?s Scientific Manuscript database

    Nitrogen (N) losses associated with fertilizer application have negative economic and environmental consequences, but urease and nitrification inhibitors have potential to reduce N losses. The effectiveness of these inhibitors has been studied extensively in irrigated but not rainfed systems. Theref...

  6. [Optimal chemical fertilizer application rate accorded with local economic and ecological benefits].

    PubMed

    Xiang, Ping'an; Zhou, Yan; Zheng, Hua; Yan, Huimin; Huang, Huang; Huang, Qingyun

    2006-11-01

    This paper studied the exterior cost of applying chemical fertilizer on the farmland in Dongting Lake area, one of the main foodstuff production regions in China, aimed to search for an optimal chemical fertilizer application rate accorded with local economic and ecological benefits. The exterior cost was estimated by the method of economic and environmental evaluation, while the optimal application rate was calculated based on Exterior Diseconomy Theory and by using production function model, with both ecological and farmers' economic benefits considered. The results showed that in 2002, the exterior cost of inappropriately applying chemical fertilizer was about 1.35 x 10(8) yuan, equivalent to 0.3 yuan x kg(-1) fertilizer N. Under current situation of test area, the optimal application rate of chemical fertilizer should be 208.26 - 210.65 kg x hm(-2), and the corresponding foodstuff supply would be 5528 - 5539 kg x hm(-2). However, the actual fertilizer application rate in 2002 exceeded the optimal one. A suggestion was made to impose tax for the environmental pollution of over-using chemical fertilizer.

  7. Improving phosphorus uptake and wheat productivity by phosphoric acid application in alkaline calcareous soils.

    PubMed

    Akhtar, Muhammad; Yaqub, Muhammad; Naeem, Asif; Ashraf, Muhammad; Hernandez, Vicente Espinosa

    2016-08-01

    Low phosphorus (P) efficiency from existing granular fertilisers necessitates searching for efficient alternatives to improve wheat productivity in calcareous soil. Multi-location trials have shown that phosphoric acid (PA) produced 16% higher wheat grain over commercial P fertilisers, i.e. diammonium phosphate (DAP) and triple superphosphate (TSP). Methods of P application significantly influenced grain yield and the efficiency of methods was observed in the order: PA placement below seed > PA, DAP or TSP fertigation > DAP or TSP broadcast. The sub-surface application of PA produced highest grain yields (mean of all rates), i.e. 4669, 4158 and 3910 kg ha(-1) in Bagh, Bhalwal and Shahpur soil series, respectively. Phosphoric acid at 66 kg P2 O5 ha(-1) was found more effective in increasing gain yield over that of control. Trend in grain P uptake was found similar to that observed for grain yield. Maximum P uptake by grain was recorded at the highest P rate and the lowest at zero P. The significant increase in P uptake with P rates was generally related to the increase in yield rather than its concentration in grain. Phosphorus agronomic efficiency (PAE) and phosphorus recovery efficiency (PRE) were found higher at lower P rate (44 kg P2 O5 ha(-1) ) and decreased with P application. However, PA applied by the either method resulted in higher PAE and PRE compared to DAP and TSP. Phosphoric acid is suggested as an efficient alternative to commercial granular P fertilisers for wheat production in alkaline calcareous soils. © 2015 Society of Chemical Industry. © 2015 Society of Chemical Industry.

  8. Combined effect of Nitrogen, Phosphorus and Potassium fertilizers on the contents of glucosinolates in rocket salad (Eruca sativa Mill.).

    PubMed

    Chun, Jin-Hyuk; Kim, Silbia; Arasu, Mariadhas Valan; Al-Dhabi, Naif Abdullah; Chung, Doug Young; Kim, Sun-Ju

    2017-02-01

    Nitrogen (N), phosphorous (P) and potassium (K) are the most limiting factors in crop production. N often affects the amino acid composition of protein and in turn its nutritional quality. In Brassica plants, abundant supply of N fertilizer decreases the relative proportion of glucosinolates (GSLs), thus reducing the biological and medical values of the vegetables. Hence effort was made to evaluate the influence of different proportions of nutrient solutions containing N-P-K on the GSL profiles of rocket salad (Eruca sativa Mill.). Fifteen desulpho-(DS) GSLs were isolated and identified using liquid chromatography-mass spectrometry (LC/MS) analysis. Rocket salad plants supplied with lesser amount of N, P or higher concentrations of K showed a typical improvement in total GSL contents. In contrast, total GSL levels were less at higher N supply. Furthermore, with N concentrations above 5 mM and K concentrations less than 2.5 mM, the GSL amounts were on average 13.51 and 13.75 μmol/g dry weight (DW), respectively. Aliphatic GSLs predominated in all concentrations of NPK while indolyl GSLs made up marginally less amount of the total compositions. Five and 2 mM N and P possessed much higher levels of several types of aliphatic GSLs than other concentrations, including glucoerucin, glucoraphanin and dimeric 4-mercaptobutyl GSL. From this perspective, it is contended that supply of less N results in enhancing the metabolic pathway for the synthesis of GSLs in rocket salad.

  9. Filtering fens: mechanisms explaining phosphorus-limited hotspots of biodiversity in wetlands adjacent to heavily fertilized areas.

    PubMed

    Cusell, Casper; Kooijman, Annemieke; Fernandez, Filippo; van Wirdum, Geert; Geurts, Jeroen J M; van Loon, E Emiel; Kalbitz, Karsten; Lamers, Leon P M

    2014-05-15

    The conservation of biodiverse wetland vegetation, including that of rich fens, has a high priority at a global scale. Although P-eutrophication may strongly decrease biodiversity in rich fens, some well-developed habitats do still survive in highly fertilized regions due to nutrient filtering services of large wetlands. The occurrence of such nutrient gradients is well-known, but the biogeochemical mechanisms that determine these patterns are often unclear. We therefore analyzed chemical speciation and binding of relevant nutrients and minerals in surface waters, soils and plants along such gradients in the large Ramsar nature reserve Weerribben-Wieden in the Netherlands. P-availability was lowest in relatively isolated floating rich fens, where plant N:P ratios indicated P-limitation. P-limitation can persist here despite high P-concentrations in surface waters near the peripheral entry locations, because only a small part of the P-input reaches the more isolated waters and fens. This pattern in P-availability appears to be primarily due to precipitation of Fe-phosphates, which mainly occurs close to entry locations as indicated by decreasing concentrations of Fe- and Al-bound P in the sub-aquatic sediments along this gradient. A further decrease of P-availability is caused by biological sequestration, which occurs throughout the wetland as indicated by equal concentrations of organic P in all sub-aquatic sediments. Our results clearly show that the periphery of large wetlands does indeed act as an efficient P-filter, sustaining the necessary P-limitation in more isolated parts. However, this filtering function does harm the ecological quality of the peripheral parts of the reserve. The filtering mechanisms, such as precipitation of Fe-phosphates and biological uptake of P, are crucial for the conservation and restoration of biodiverse rich fens in wetlands that receive eutrophic water from their surroundings. This seems to implicate that biodiverse wetland

  10. Changes phosphorus associated to phosphatase activity because of application of carbon, nitrogen and manure

    NASA Astrophysics Data System (ADS)

    Paredes, Cecilia; Gianfreda, Liliana; Mora, María de la Luz

    2015-04-01

    The Chilean Andisols are of great importance in the economy of southern Chile supporting the bulk of agricultural production. The major characteristics of Chilean volcanic soils are the high adsorption capacity of P with a concomitant low P availability to plants. Studies preliminary using dairy cattle dung suggest that we can improve P availability using organic P sources within the soil because of microorganism. Phosphorous solubilization by microorganisms is a complex phenomenon, which depends on many factors such as nutritional, physiological and growth condition of the culture. The principal mechanism for mineral phosphate solubilization is the production of organic acids where the enzyme phosphatases play a major role in the mineralization of organic phosphorous in soil. The objective of this study was to evaluate changes in soil phosphorus fractions due to application the cattle dung, glucose, nitrogen (N) and phosphorus (P). In this experiment we incubated soil samples with 300 g of cattle dung, 30 mg kg-1 of N and P and 1000 mg glucose kg-1. The soil samples were moistened to field capacity and incubated in plastic bags to room temperature by different time. The changes in P forms in soil were monitored through the Hedley fractionation procedure and phosphatase activity. Our preliminary results indicated that the application of cattle dung, glucose nitrogen and phosphorus, caused the increased phosphatase activity until to 7 days and then apparently return to normal values. Interestingly, we observed a rise in the inorganic P fraction extracted by NaHCO3 in the same period. In summary, the increase biological activity by carbon and nitrogen increase P availability. Acknowledgements: The authors thank Fondecyt 1141247 Project.

  11. Phosphorus release capacity of soluble P fertilizers and insoluble rock phosphate in response to phosphate solubilizing bacteria and poultry manure and their effect on plant growth promotion and P utilization efficiency of chilli (Capsicum annuum L.)

    NASA Astrophysics Data System (ADS)

    Abbasi, M. K.; Musa, N.; Manzoor, M.

    2015-01-01

    The ability of soil microorganisms and organic manures to convert insoluble phosphorus (P) to an accessible form offers a biological rescue system for improving P solubilization and utilization in soil-plant systems. Our objective was to examine the P supplying capacity of soluble P fertilizers (SPF) i.e. single super phosphate (SSP) and di-ammonium phosphate (DAP) and insoluble rock phosphate (RP) after adding phosphate solubilizing bacteria (PSB) and poultry manure (PM) and their subsequent effect on the growth, yield and P-utilization efficiency (PUE) of chill (Capsicum annuum L.). An incubation study was carried-out on a sandy loam neutral soil with twelve treatments including T0: control; T1: RP; T2: SSP; T3: DAP; T4: PM; T5: 1/2 RP + 1/2 SSP; T6: 1/2 RP + 1/2 DAP; T7: 1/2 RP + 1/2 PM; T8: RP + PSB; T9: 1/2 RP + 1/2 SSP + PSB; T10: 1/2 RP + 1/2 DAP + PSB; T11: 1/2 RP + 1/2 PM + PSB. Phosphorus release capacity of added amendments was measured by analyzing extractable P from the amended soil incubated under controlled condition at 25 °C for 0, 5, 15, 25, 35, 60 days period. To complement the incubation study, a greenhouse experiment was conducted in pots with chilli (Capsicum annuum L.) used as a test crop. Growth, yield, P-uptake and PUE of the chilli was determined during the study. Results indicated that P release capacity of soil amended with RP varied between 6.0 and 11.5 mg kg-1 while the soluble P fertilizers i.e. SSP and DAP displayed a maximum of 73 and 68 mg P kg-1 at the start of the experiment (day 0). However, the P released tendency from SSP and DAP declined during incubation and at the end 82 and 79% of P initially present had been lost from the mineral pool. Integrated use of PSB and PM with RP in 1/2 RP + 1/2 PM + PSB treatment stimulated P mineralization by releasing a maximum of 25 mg P kg-1 that was maintained at high levels without any loss. Application of PSB tended to decrease pH showing an acidifying effect on soil. In the greenhouse

  12. Effects of arbuscular mycorrhiza and phosphorus application on artemisinin concentration in Artemisia annua L.

    PubMed

    Kapoor, Rupam; Chaudhary, Vidhi; Bhatnagar, A K

    2007-10-01

    Annual wormwood (Artemisia annua L.) produces an array of complex terpenoids including artemisinin, a compound of current interest in the treatment of drug-resistant malaria. However, this promising antimalarial compound remains expensive and is hardly available on the global scale. Synthesis of artemisinin has not been proved to be feasible commercially. Therefore, increase in yield of naturally occurring artemisinin is an important area of investigation. The effects of inoculation by two arbuscular mycorrhizal (AM) fungi, Glomus macrocarpum and Glomus fasciculatum, either alone or supplemented with P-fertilizer, on artemisinin concentration in A. annua were studied. The concentration of artemisinin was determined by reverse-phase high-performance liquid chromatography with UV detection. The two fungi significantly increased concentration of artemisinin in the herb. Although there was significant increase in concentration of artemisinin in nonmycorrhizal P-fertilized plants as compared to control, the extent of the increase was less compared to mycorrhizal plants grown with or without P-fertilization. This suggests that the increase in artemisinin concentration may not be entirely attributed to enhanced P-nutrition and improved growth. A strong positive linear correlation was observed between glandular trichome density on leaves and artemisinin concentration. Mycorrhizal plants possessed higher foliar glandular trichome (site for artemisinin biosynthesis and sequestration) density compared to nonmycorrhizal plants. Glandular trichome density was not influenced by P-fertilizer application. The study suggests a potential role of AM fungi in improving the concentration of artemisinin in A. annua.

  13. Total phosphorus, zinc, copper, and manganese concentrations in cecil soil through ten years of poultry litter application

    USDA-ARS?s Scientific Manuscript database

    Poultry litter (PL) is an inexpensive and effective source of plant nutrients. However, over application could result in phosphorus and heavy metal accumulation in soils. A field experiment evaluating PL application to a Cecil soil used for cotton and corn production has been maintained for 10 years...

  14. Aqeuous and Gaseous Nitrogen Losses Induced by Fertilizer Application

    USDA-ARS?s Scientific Manuscript database

    In recent years concern has grown over the contribution of nitrogen (N) fertilizers to nitrate (NO3-) water pollution and atmospheric pollution of nitrous oxide (N2O), nitric oxide (NO), and ammonia (NH3). Characterizing the amount and species of N losses is therefore essential in developing a strat...

  15. Fertilizer applications for container-grown ornamental tree production

    USDA-ARS?s Scientific Manuscript database

    Knowledge of better utilization of nutrients during the growing season is needed to produce marketable container-grown ornamental shade trees economically. Fertilizer practices to grow Acer rubrum ‘Red Sunset’ trees in two separate fields (each containing four plots) irrigated with either city or po...

  16. Irrigation and Fertilization Type, Rate, and Frequency of Application

    Treesearch

    Thomas E. Starkey

    2002-01-01

    There is no "cookbook" formula for growing longleaf pine (Pinus palustris Mill.). However, some very definite minimum guidelines must be followed to successfully produce an acceptable crop of trees. Irrigation and fertilization are the two most important management practices in the growth of the seedlings. Specific guidelines and...

  17. [Mechanisms for the increased fertilizer nitrogen use efficiency of rice in wheat-rice rotation system under combined application of inorganic and organic fertilizers].

    PubMed

    Liu, Yi-Ren; Li, Xiang; Yu, Jie; Shen, Qi-Rong; Xu, Yang-Chun

    2012-01-01

    A pot experiment was conducted to study the effects of combined application of organic and inorganic fertilizers on the nitrogen uptake by rice and the nitrogen supply by soil in a wheat-rice rotation system, and approach the mechanisms for the increased fertilizer nitrogen use efficiency of rice under the combined fertilization from the viewpoint of microbiology. Comparing with applying inorganic fertilizers, combined application of organic and inorganic fertilizers decreased the soil microbial biomass carbon and nitrogen and soil mineral nitrogen contents before tillering stage, but increased them significantly from heading to filling stage. Under the combined fertilization, the dynamics of soil nitrogen supply matched best the dynamics of rice nitrogen uptake and utilization, which promoted the nitrogen accumulation in rice plant and the increase of rice yield and biomass, and increased the fertilizer nitrogen use efficiency of rice significantly. Combined application of inorganic and organic fertilizers also promoted the propagation of soil microbes, and consequently, more mineral nitrogen in soil was immobilized by the microbes at rice early growth stage, and the immobilized nitrogen was gradually released at the mid and late growth stages of rice, being able to better satisfy the nitrogen demand of rice in its various growth and development stages.

  18. Differences in Chemical Composition of Soil Organic Carbon Resulting From Long-Term Fertilization Strategies

    PubMed Central

    Li, Zengqiang; Zhao, Bingzi; Wang, Qingyun; Cao, Xiaoyan; Zhang, Jiabao

    2015-01-01

    Chemical composition of soil organic carbon (SOC) is central to soil fertility. We hypothesize that change in SOC content resulting from various long-term fertilization strategies accompanies the shift in SOC chemical structure. This study examined the effect of fertilization strategies along with the time of fertilizer application on the SOC composition by 13C nuclear magnetic resonance (NMR) spectroscopy. The soils (Aquic Inceptisol) subjected to seven fertilizer treatments were collected in 1989, 1999 and 2009, representing 0, 10 and 20 years of fertilization, respectively. The seven fertilizer treatments were (1–3) balanced fertilization with application of nitrogen (N), phosphorus (P) and potassium (K) including organic compost (OM), half organic compost plus half chemical fertilizer (1/2OM), and pure chemical NPK fertilizer (NPK); (4–6) unbalanced chemical fertilization without application of one of the major elements including NP fertilizer (NP), PK fertilizer (PK), and NK fertilizer (NK); and (7) an unamended control (CK). The SOC content in the balanced fertilization treatments were 2.3–52.6% and 9.4–64.6% higher than in the unbalanced fertilization/CK treatments in 1999 and 2009, respectively, indicating significant differences in SOC content with time of fertilizer application between the two treatment groups. There was a significantly greater proportion of O-alkyl C and a lower proportion of aromatic C in the balanced fertilization than in unbalanced fertilization/CK treatments in 1999, but not in 2009, because their proportions in the former treatments approached the latter in 2009. Principal component analysis further showed that the C functional groups from various fertilization strategies tended to become compositionally similar with time. The results suggest that a shift in SOC chemical composition may be firstly dominated by fertilization strategies, followed by fertilization duration. PMID:25884713

  19. Differences in chemical composition of soil organic carbon resulting from long-term fertilization strategies.

    PubMed

    Li, Zengqiang; Zhao, Bingzi; Wang, Qingyun; Cao, Xiaoyan; Zhang, Jiabao

    2015-01-01

    Chemical composition of soil organic carbon (SOC) is central to soil fertility. We hypothesize that change in SOC content resulting from various long-term fertilization strategies accompanies the shift in SOC chemical structure. This study examined the effect of fertilization strategies along with the time of fertilizer application on the SOC composition by 13C nuclear magnetic resonance (NMR) spectroscopy. The soils (Aquic Inceptisol) subjected to seven fertilizer treatments were collected in 1989, 1999 and 2009, representing 0, 10 and 20 years of fertilization, respectively. The seven fertilizer treatments were (1-3) balanced fertilization with application of nitrogen (N), phosphorus (P) and potassium (K) including organic compost (OM), half organic compost plus half chemical fertilizer (1/2OM), and pure chemical NPK fertilizer (NPK); (4-6) unbalanced chemical fertilization without application of one of the major elements including NP fertilizer (NP), PK fertilizer (PK), and NK fertilizer (NK); and (7) an unamended control (CK). The SOC content in the balanced fertilization treatments were 2.3-52.6% and 9.4-64.6% higher than in the unbalanced fertilization/CK treatments in 1999 and 2009, respectively, indicating significant differences in SOC content with time of fertilizer application between the two treatment groups. There was a significantly greater proportion of O-alkyl C and a lower proportion of aromatic C in the balanced fertilization than in unbalanced fertilization/CK treatments in 1999, but not in 2009, because their proportions in the former treatments approached the latter in 2009. Principal component analysis further showed that the C functional groups from various fertilization strategies tended to become compositionally similar with time. The results suggest that a shift in SOC chemical composition may be firstly dominated by fertilization strategies, followed by fertilization duration.

  20. [Effects of organic fertilizer application rate on leaf photosynthetic characteristics and grain yield of dryland maize].

    PubMed

    Wang, Xiao-Juan; Jia, Zhi-Kuan; Liang, Lian-You; Ding, Rui-Xia; Wang, Min; Li, Han

    2012-02-01

    A 4-year field experiment was conducted at the Heyang Research Station in Weibei dryland to study the effects of organic fertilizer application rate on the leaf photosynthetic characteristics and grain yield of dryland maize. Comparing with applying chemical fertilizer, applying organic fertilizer increased the leaf photosynthetic rate and stomatal conductance, but decreased the leaf intercellular CO2 concentration at each growth stage of maize significantly. With the increasing application rate of organic fertilizer, the leaf photosynthetic rate and stomatal conductance at each growth stage of maize had a gradual increase, while the leaf intercellular CO2 concentration had a gradual decrease. The leaf photosynthesis of maize at each growth stage was controlled by non-stomatal factors, and the application of organic fertilizer reduced the non-stomatal limitation on the photosynthesis performance significantly. The 4-year application of organic fertilizer improved soil nutrient status, and soil nutrients were no longer the main factors limiting the leaf photosynthetic rate and grain yield of maize.

  1. A Novel Mild Phase-Transition to Prepare Black Phosphorus Nanosheets with Excellent Energy Applications.

    PubMed

    Zhao, Gang; Wang, Tailin; Shao, Yongliang; Wu, Yongzhong; Huang, Baibiao; Hao, Xiaopeng

    2017-02-01

    Based on the phase transformation of phosphorus and Gibbs free energy theory, a new mild method to fabricate black phosphorus nanosheets from their red phosphorus microsphere counterparts is proposed. Interestingly, the as-prepared black phosphorus nanosheets, as a kind of novel metal-free photocatalyst, exhibit excellent photocatalytic H2 production performance owing to their intrinsic layered polycrystalline structure. Besides, the nanosheet is also a kind of potential anode material in lithium-ion batteries and shows good electrochemical performance.

  2. PHOSPHORUS AND NITRATE NITROGEN IN RUNOFF FOLLOWING FERTILIZER APPLICATION TO TURFGRASS. (R828007)

    EPA Science Inventory

    The perspectives, information and conclusions conveyed in research project abstracts, progress reports, final reports, journal abstracts and journal publications convey the viewpoints of the principal investigator and may not represent the views and policies of ORD and EPA. Concl...

  3. Development and application of a Polder Hydrology and Phosphorus Simulator (PHPS)

    NASA Astrophysics Data System (ADS)

    Yan, Renhua; Huang, Jiacong; Gao, Junfeng

    2017-04-01

    Phosphorus transportation of polders is critical to eutrophication problems of downstream freshwater ecosystems. Some equations that account for groundwater transport of phosphorus were introduced to the phosphorus module of Phosphorus Dynamic model for lowland Polder systems(PDP). Then this revised phosphorus module was coupled to WALRUS-paddy to produce a new tool called Polder Hydrological and Phosphorus Modeling system (PHPS). It explicitly represents the migration and transformation of phosphorus in the surface water, notably phosphorus releasing and resuspension from sediment, phosphorus absorbing by plant and settling to the sediment, mineralization of particulate phosphorus during the long retention time of runoff water in the ponds and ditches. Based on the hydro-climate data from Jianwei polder, China, HydroPSO and k-fold cross validation method are used to calibrate and validate PHPS. The modeled results show that a good performance can be achieved in reproducing phosphorus. The phosphorus export from polder to surrounding acquatic ecosystema is substantially reduced because of the hydraulic regulation effect of pumping stations and the settling, uptake and natural degradation of nutrients at the rententaion stage of surface water. This implies that lowland polders play an important role in intercepting and absorbing nutrients to alleviate the problem of surrounding water pollution, compared to non-polder catchment.

  4. Fertilizer application timing influences greenhouse gas fluxes over a growing season.

    PubMed

    Phillips, Rebecca L; Tanaka, Donald L; Archer, David W; Hanson, Jon D

    2009-01-01

    Microbial production and consumption of greenhouse gases (GHG) is influenced by temperature and nutrients, especially during the first few weeks after agricultural fertilization. The effect of fertilization on GHG fluxes should occur during and shortly after application, yet data indicating how application timing affects both GHG fluxes and crop yields during a growing season are lacking. We designed a replicated (n = 5) field experiment to test for the short-term effect of fertilizer application timing on fluxes of methane (CH(4)), carbon dioxide (CO(2)), and nitrous oxide (N(2)O) over a growing season in the northern Great Plains. Each 0.30-ha plot was planted to maize (Zea mays L.) and treated similarly with the exception of fertilizer timing: five plots were fertilized with urea in early spring (1 April) and five plots were fertilized with urea in late spring (13 May). We hypothesized time-integrated fluxes over a growing season would be greater for the late-spring treatment, resulting in a greater net GHG flux, as compared to the early-spring treatment. Data collected on 59 dates and integrated over a 5-mo time course indicated CO(2) fluxes were greater (P < 0.0001) and CH(4) fluxes were lower (P < 0.05) for soils fertilized in late spring. Net GHG flux was also significantly affected by treatment, with 0.84 +/- 0.11 kg CO(2) equivalents m(-2) for early spring and 1.04 +/- 0.13 kg CO(2) equivalents m(-2) for late spring. Nitrous oxide fluxes, however, were similar for both treatments. Results indicate fertilizer application timing influences net GHG emissions in dryland cropping systems.

  5. Effect of fertilizer applications and grazing exclusion on species composition and biomass in wet meadow restoration in eastern Washington.

    Treesearch

    John Beebe; Richard Everett; George Scherer; Carl. Davis

    2002-01-01

    Fertilizer applications and grazing exclusion were used as restoration strategies in degraded wet meadows in eastern Washington to grow biomass in the root systems where it could not be grazed. We used a split-block design to test vegetation responses to six fertilizer rates, eight fertilizer types, and three grazing treatments after three growing seasons. Little...

  6. High-performance black phosphorus top-gate ferroelectric transistor for nonvolatile memory applications

    NASA Astrophysics Data System (ADS)

    Lee, Young Tack; Hwang, Do Kyung; Choi, Won Kook

    2016-10-01

    Two-dimensional (2D) van der Waals (vdW) atomic crystals have been extensively studied and significant progress has been made. The newest 2D vdW material, called black phosphorus (BP), has attracted considerable attention due to its unique physical properties, such as its being a singlecomponent material like graphene, and its having a high mobility and direct band gap. Here, we report on a high-performance BP nanosheet based ferroelectric field effect transistor (FeFET) with a poly(vinylidenefluoride-trifluoroethylene) top-gate insulator for a nonvolatile memory application. The BP FeFETs show the highest linear hole mobility of 563 cm2/Vs and a clear memory window of more than 15 V. For more advanced nonvolatile memory circuit applications, two different types of resistive-load and complementary ferroelectric memory inverters were implemented, which showed distinct memory on/off switching characteristics.

  7. Liquid exfoliation of solvent-stabilized few-layer black phosphorus for applications beyond electronics

    NASA Astrophysics Data System (ADS)

    Hanlon, Damien; Backes, Claudia; Doherty, Evie; Cucinotta, Clotilde S.; Berner, Nina C.; Boland, Conor; Lee, Kangho; Harvey, Andrew; Lynch, Peter; Gholamvand, Zahra; Zhang, Saifeng; Wang, Kangpeng; Moynihan, Glenn; Pokle, Anuj; Ramasse, Quentin M.; McEvoy, Niall; Blau, Werner J.; Wang, Jun; Abellan, Gonzalo; Hauke, Frank; Hirsch, Andreas; Sanvito, Stefano; O'Regan, David D.; Duesberg, Georg S.; Nicolosi, Valeria; Coleman, Jonathan N.

    2015-10-01

    Few-layer black phosphorus (BP) is a new two-dimensional material which is of great interest for applications, mainly in electronics. However, its lack of environmental stability severely limits its synthesis and processing. Here we demonstrate that high-quality, few-layer BP nanosheets, with controllable size and observable photoluminescence, can be produced in large quantities by liquid phase exfoliation under ambient conditions in solvents such as N-cyclohexyl-2-pyrrolidone (CHP). Nanosheets are surprisingly stable in CHP, probably due to the solvation shell protecting the nanosheets from reacting with water or oxygen. Experiments, supported by simulations, show reactions to occur only at the nanosheet edge, with the rate and extent of the reaction dependent on the water/oxygen content. We demonstrate that liquid-exfoliated BP nanosheets are potentially useful in a range of applications from ultrafast saturable absorbers to gas sensors to fillers for composite reinforcement.

  8. Liquid exfoliation of solvent-stabilized few-layer black phosphorus for applications beyond electronics

    PubMed Central

    Hanlon, Damien; Backes, Claudia; Doherty, Evie; Cucinotta, Clotilde S.; Berner, Nina C.; Boland, Conor; Lee, Kangho; Harvey, Andrew; Lynch, Peter; Gholamvand, Zahra; Zhang, Saifeng; Wang, Kangpeng; Moynihan, Glenn; Pokle, Anuj; Ramasse, Quentin M.; McEvoy, Niall; Blau, Werner J.; Wang, Jun; Abellan, Gonzalo; Hauke, Frank; Hirsch, Andreas; Sanvito, Stefano; O'Regan, David D.; Duesberg, Georg S.; Nicolosi, Valeria; Coleman, Jonathan N.

    2015-01-01

    Few-layer black phosphorus (BP) is a new two-dimensional material which is of great interest for applications, mainly in electronics. However, its lack of environmental stability severely limits its synthesis and processing. Here we demonstrate that high-quality, few-layer BP nanosheets, with controllable size and observable photoluminescence, can be produced in large quantities by liquid phase exfoliation under ambient conditions in solvents such as N-cyclohexyl-2-pyrrolidone (CHP). Nanosheets are surprisingly stable in CHP, probably due to the solvation shell protecting the nanosheets from reacting with water or oxygen. Experiments, supported by simulations, show reactions to occur only at the nanosheet edge, with the rate and extent of the reaction dependent on the water/oxygen content. We demonstrate that liquid-exfoliated BP nanosheets are potentially useful in a range of applications from ultrafast saturable absorbers to gas sensors to fillers for composite reinforcement. PMID:26469634

  9. Catalytic phosphorus and boron doping of amorphous silicon films for application to silicon heterojunction solar cells

    NASA Astrophysics Data System (ADS)

    Ohdaira, Keisuke; Seto, Junichi; Matsumura, Hideki

    2017-08-01

    We investigate a novel doping method, catalytic impurity doping (Cat-doping), for application to the fabrication of silicon heterojunction (SHJ) solar cells. Thin n- or p-type doped layers can be formed on intrinsic amorphous Si (a-Si) films by exposing P- or B-related radicals generated by the catalytic cracking of phosphine (PH3) or diborane (B2H6) gas molecules. The passivation quality of underlying a-Si films can be maintained both for phosphorus (P) and boron (B) Cat-doping if we carefully choose the appropriate substrate temperature during Cat-doping. We confirm the rectifying and photovoltaic properties of an SHJ solar cell containing a B Cat-doped layer as a p-type a-Si emitter. These findings suggest the applicability of Cat-doping to SHJ solar cells.

  10. Changes in fertility parameters and contents of heavy metals of soddy-podzolic soils upon the long-term application of sewage sludge

    NASA Astrophysics Data System (ADS)

    Vasbieva, M. T.; Kosolapova, A. I.

    2015-05-01

    The effect of the long-term sewage sludge (SS) application on the chemical, agrophysical, and biological properties of a soddy-podzolic soil ( Umbric Albeluvisols Abruptic) was studied. Regular SS application in the course of five crop rotations (1976-2013) ensured the improvement of the soil fertility parameters, i.e., a rise in the contents of humus, available phosphorus, and exchangeable potassium; a better state of the soil adsorption complex, bulk density, and aggregation; and higher cellulolytic, nitrification, and urease activities. The efficiencies of SS and the traditional organic fertilizer (cattle manure) were compared. The effect of the long-term application of SS on the accumulation of heavy metals in the soils was also studied. It was found that the application of SS caused a rise in the bulk content of heavy metals and in the contents of their acid-extractable and mobile forms by 1.1-6.0 times. However, the maximum permissible concentrations of heavy metals in the soils were not exceeded. In the soil subjected to the application of SS for more than 25 years, the cadmium concentration somewhat exceeded the maximum permissible concentration.

  11. Variation in riverine nitrate flux and fall nitrogen fertilizer application in East-central illinois.

    PubMed

    Gentry, Lowell E; David, Mark B; McIsaac, Gregory F

    2014-07-01

    In east-central Illinois, fertilizer sales during the past 20 yr suggest that approximately half of the fertilizer nitrogen (N) applied to corn ( L.) occurs in the fall; however, fall fertilizer N sales were greatly reduced in 2009 as wet soil conditions restricted fall fieldwork, including fertilizer N applications. In 2010, we observed unusually low flow-weighted nitrate concentrations (approximately 40% below the long-term average) in two east-central Illinois rivers (5.7 mg N L in the Embarras River and 5.6 mg N L in the Lake Fork of the Kaskaskia River). Using long-term river nitrate data sets (1993-2012 for the Embarras and 1997-2012 for the Kaskaskia), we examined nitrate concentrations and developed regression models to estimate the association between fall fertilizer N application on riverine nitrate yields in these tile-drained watersheds. During these periods of record, annual riverine nitrate yields ranged from 8 to 57 kg N ha yr (30 kg N ha yr average) for the Embarras River and 2.6 to 59 kg N ha yr (32 kg N ha yr average) for the Kaskaskia. Multivariate linear regression relationships with the current and previous year's annual water yields, previous year's corn yield, and nine-county fall fertilizer sales accounted for 96% of the annual variation in nitrate yield in both watersheds. Running the regression models with fall fertilizer sales set to the 2009 amount suggests that the average reduction in nitrate yield (for the period of record) would be 17 and 20% for the Embarras and Kaskaskia Rivers, respectively. These data suggest that shifting fertilizer N application to the spring can be detected in watersheds as large as 481 km. Copyright © by the American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America, Inc.

  12. Fertilizer trends

    SciTech Connect

    Donaldson, R.

    1992-01-01

    This fourteenth edition of Fertilizer Trends presents historical fertilizer market data to aid industry, government, and financial market analysis and planners in their study of fertilizer and agricultural market cycles, market planning, and investment decisions. A 27-year summary of the US fertilizer market is presented in graphic and tabular form. Production, use, and trade data are included for each plant nutrient and sulfur. Canadian statistics have been included because of the important role of the Canadian fertilizer industry in the US fertilizer market. World production and consumption of nitrogen, phosphate, and potash are included because of the strong influence of world markets on the domestic market. Planted acreage and plant nutrient application rates for the major crops have been included to illustrate their effect on fertilizer use. Retail prices of the leading US fertilizer materials also are given.

  13. Fertilizer trends

    SciTech Connect

    Donaldson, R.

    1992-12-31

    This fourteenth edition of Fertilizer Trends presents historical fertilizer market data to aid industry, government, and financial market analysis and planners in their study of fertilizer and agricultural market cycles, market planning, and investment decisions. A 27-year summary of the US fertilizer market is presented in graphic and tabular form. Production, use, and trade data are included for each plant nutrient and sulfur. Canadian statistics have been included because of the important role of the Canadian fertilizer industry in the US fertilizer market. World production and consumption of nitrogen, phosphate, and potash are included because of the strong influence of world markets on the domestic market. Planted acreage and plant nutrient application rates for the major crops have been included to illustrate their effect on fertilizer use. Retail prices of the leading US fertilizer materials also are given.

  14. The impact of biochars prepared from agricultural residues on phosphorus release and availability in two fertile soils.

    PubMed

    Manolikaki, Ioanna I; Mangolis, Argirios; Diamadopoulos, Evan

    2016-10-01

    significant differences were observed in alkaline soil. These results suggest that biochars derived from agricultural residues may act as a source of P in agronomic applications and improve plant growth, although soil conditions may play a significant role.

  15. Application of Mycorrhiza and Soil from a Permaculture System Improved Phosphorus Acquisition in Naranjilla.

    PubMed

    Symanczik, Sarah; Gisler, Michelle; Thonar, Cécile; Schlaeppi, Klaus; Van der Heijden, Marcel; Kahmen, Ansgar; Boller, Thomas; Mäder, Paul

    2017-01-01

    Naranjilla (Solanum quitoense) is a perennial shrub plant mainly cultivated in Ecuador, Colombia, and Central America where it represents an important cash crop. Current cultivation practices not only cause deforestation and large-scale soil degradation but also make plants highly susceptible to pests and diseases. The use of arbuscular mycorrhizal fungi (AMF) can offer a possibility to overcome these problems. AMF can act beneficially in various ways, for example by improving plant nutrition and growth, water relations, soil structure and stability and protection against biotic and abiotic stresses. In this study, the impact of AMF inoculation on growth and nutrition parameters of naranjilla has been assessed. For inoculation three European reference AMF strains (Rhizoglomus irregulare, Claroideoglomus claroideum, and Cetraspora helvetica) and soils originating from three differently managed naranjilla plantations in Ecuador (conventional, organic, and permaculture) have been used. This allowed for a comparison of the performance of exotic AMF strains (reference strains) versus native consortia contained in the three soils used as inocula. To study fungal communities present in the three soils, trap cultures have been established using naranjilla as host plant. The community structures of AMF and other fungi inhabiting the roots of trap cultured naranjilla were assessed using next generation sequencing (NGS) methods. The growth response experiment has shown that two of the three reference AMF strains, a mixture of the three and soil from a permaculture site led to significantly better acquisition of phosphorus (up to 104%) compared to uninoculated controls. These results suggest that the use of AMF strains and local soils as inoculants represent a valid approach to improve nutrient uptake efficiency of naranjilla and consequently to reduce inputs of mineral fertilizers in the cultivation process. Improved phosphorus acquisition after inoculation with permaculture

  16. Application of Mycorrhiza and Soil from a Permaculture System Improved Phosphorus Acquisition in Naranjilla

    PubMed Central

    Symanczik, Sarah; Gisler, Michelle; Thonar, Cécile; Schlaeppi, Klaus; Van der Heijden, Marcel; Kahmen, Ansgar; Boller, Thomas; Mäder, Paul

    2017-01-01

    Naranjilla (Solanum quitoense) is a perennial shrub plant mainly cultivated in Ecuador, Colombia, and Central America where it represents an important cash crop. Current cultivation practices not only cause deforestation and large-scale soil degradation but also make plants highly susceptible to pests and diseases. The use of arbuscular mycorrhizal fungi (AMF) can offer a possibility to overcome these problems. AMF can act beneficially in various ways, for example by improving plant nutrition and growth, water relations, soil structure and stability and protection against biotic and abiotic stresses. In this study, the impact of AMF inoculation on growth and nutrition parameters of naranjilla has been assessed. For inoculation three European reference AMF strains (Rhizoglomus irregulare, Claroideoglomus claroideum, and Cetraspora helvetica) and soils originating from three differently managed naranjilla plantations in Ecuador (conventional, organic, and permaculture) have been used. This allowed for a comparison of the performance of exotic AMF strains (reference strains) versus native consortia contained in the three soils used as inocula. To study fungal communities present in the three soils, trap cultures have been established using naranjilla as host plant. The community structures of AMF and other fungi inhabiting the roots of trap cultured naranjilla were assessed using next generation sequencing (NGS) methods. The growth response experiment has shown that two of the three reference AMF strains, a mixture of the three and soil from a permaculture site led to significantly better acquisition of phosphorus (up to 104%) compared to uninoculated controls. These results suggest that the use of AMF strains and local soils as inoculants represent a valid approach to improve nutrient uptake efficiency of naranjilla and consequently to reduce inputs of mineral fertilizers in the cultivation process. Improved phosphorus acquisition after inoculation with permaculture

  17. Distribution of phosphorus in manure slurry and its infiltration after application to soils.

    PubMed

    Vadas, Peter A

    2006-01-01

    Computer models help identify agricultural areas where P transport potential is high, but commonly used models do not simulate surface application of manures and P transport from manures to runoff. As part of an effort to model such P transport, we conducted manure slurry separation and soil infiltration experiments to determine how much slurry P infiltrates into soil after application but before rain, thus becoming less available to runoff. We applied dairy and swine slurry to soil columns and after both 24 and 96 h analyzed solids remaining on the soil surface for dry matter, total phosphorus (TP), and water-extractable inorganic (WEIP) and organic (WEOP) phosphorus. We analyzed underlying soils for Mehlich-3 and water-extractable P. We also conducted slurry separation experiments by sieving, centrifuging, and suction-filtering to determine which method could easily estimate slurry P infiltration into soils. About 20% of slurry solids and 40 to 65% of slurry TP and WEIP infiltrated into soil after application, rendering this P less available to transport in runoff. Slurry separation by suction-filtering through a screen with 0.75-mm-diameter openings was the best method to estimate this slurry P infiltration. Measured quantities of manure WEOP changed too much during experiments to estimate WEOP infiltration into soil or what separation method can approximate infiltration. Applying slurries to soils always increased soil P in the top 0 to 1 cm of soil, frequently in the 1- to 2-cm depth of soil, but rarely below 2 cm. Future research should use soils with coarser texture or large macropores, and slurry with low dry matter content (1-2%).

  18. DGT estimates cadmium accumulation in wheat and potato from phosphate fertilizer applications.

    PubMed

    Pérez, Angela L; Anderson, Kim A

    2009-09-01

    Cadmium is a common impurity in phosphatic fertilizers and may contribute to soil Cd accumulation. Changes in total and bioavailable Cd burdens to agricultural soils and the potential for plant Cd accumulation resulting from fertilizer input was investigated. Three year field studies were conducted using three dose levels of cadmium-rich, commercial, phosphate fertilizers applied at four agricultural sites. Labile Cd concentrations, measured using the passive sampling device Diffusive Gradients in Thin Films (Cd(DGT)), increased with increasing fertilizer application rates. Cd also accumulated in the edible portion of wheat and potato crops grown at the sites, and showed strong positive dose response with fertilizer treatment. Regression models were calculated for each site, year, and for individual crops. Model comparisons indicated that soil physical and chemical parameters in addition to soil Cd fractions, were important determinants of Cd(DGT). Significant factors contributing to Cd(DGT) concentrations were Cd from fertilizer input (Cd(fertilizer)), pH, cation exchange capacity (CEC), and total recoverable Cd (Cd(total)). Important factors used to determine Cd concentrations in wheat grain (Cd(wheat)) and in potato (Cd(potato)) were as follows: Cd(wheat):Cd(fertilizer), and Cd(DGT); and Cd(potato):Cd(fertilizer), Cd(DGT), % O.M. The effective concentration, C(E), calculated from DGT did not correlate well with Cd(wheat) or with Cd(potato). Direct measurements of Cd(DGT) correlated better with Cd found in edible plant tissue. The modeling approach presented in this study helps to estimate Cd accumulation in plant tissue over multiple years and in distinct agricultural soil systems.

  19. Application of manure to no-till soils: Phosphorus losses by sub-surface and surface pathways

    USDA-ARS?s Scientific Manuscript database

    Concern over the acceleration of eutrophication by agricultural runoff has focused attention on manure management in no-till. We evaluated losses of phosphorus (P) in sub-surface and surface flow as a function of dairy manure application to no-till soils on a dairy farm in north-central Pennsylvania...

  20. Long-term reclaimed water application effects on phosphorus leaching potential in rapid infiltration basins.

    PubMed

    Moura, Daniel R; Silveira, Maria L; O'Connor, George A; Wise, William R

    2011-09-01

    Rapid infiltration basins (RIBs) are effective tools for wastewater treatment and groundwater recharge, but continuous application of wastewater can increase soil P concentrations and subsequently impact groundwater quality. The objectives of this study were to (1) investigate the effects of reclaimed water infiltration rate and "age" of RIBs on soil P concentrations at various depths, and (2) estimate the degree (percentage) of sorption equilibrium reached between effluent P and soil attained during reclaimed water application to different RIBs. The study was conducted in four contrasting cells of a RIB system with up to a 25 year history of secondary wastewater application. Soil samples were collected from 0 to 300 cm depth at 30 cm intervals and analyzed for water extractable phosphorus (WEP) and oxalate extractable P, Al, and Fe concentrations. Water extractable P and P saturation ratio (PSR) values were generally greater in the cells receiving reclaimed water compared to control soils, suggesting that reclaimed water P application can increase soil P concentrations and the risk of P movement to greater depths. Differences between treatment and control samples were more evident in cells with longer histories of reclaimed water application due to greater P loading. Data also indicated considerable spatial variability in WEP concentrations and PSR values, especially within cells from RIBs characterized by fast infiltration rates. This occurs because wastewater-P flows through surface soils much faster than the minimum time required for sorption equilibrium to occur. Studies should be conducted to investigate soil P saturation at deeper depths to assess possible groundwater contamination.

  1. Phosphorus content in three physical fractions of typical Chernozem

    NASA Astrophysics Data System (ADS)

    Kotelnikova, Anna; Egorova, Zoya; Sushkov, Nikolai; Matveeva, Natalia; Fastovets, Ilya; Rogova, Olga; Volkov, Dmitriy

    2017-04-01

    The widespread use of fertilizers makes it necessary to study not only the content but also the forms of occurrence of nutrients in soil, as well as the phase in which nutrients are transferred. These characteristics determine the availability of chemical elements for plants, but remain insufficiently studied. In this work we attempted to gain insight into the distribution of organo-mineral fractions in agriculturally used Chernozem from Voronezh (Russia) and the distribution of phosphorus - one of the most important nutrient elements - in this type of soil. We compared the distributions of phosphorus in physical fractions of the soil in 3 experimental groups: the control group (without fertilizers), the group fertilized with 1 dose of NPK, and the group fertilized with 2 doses of NPK. The soil was sampled during the period of treatment with fertilizers and during the period of aftereffect (4 years after the last application of fertilizers). In order to analyze organo-mineral fractions, we used size-density fractionation to separate the soil samples into three physical fractions: clay-associated fraction with particle size < 1μm (CF), light fraction with particle density < 2.0 g cm-3 (LF), and residual fraction > 2.0 g cm-3 (RF). Total phosphorus content (TPC) in the fractions was determined with Agilent 5100 ICP-AES spectrometer. To compare groups, simultaneous confidence intervals were computed from pooled variance estimators in ANOVA, and Fisher's LSD test was used. We showed that during the period of treatment with fertilizers LF increased proportionally to the dose of fertilizers, and a simultaneous reduction in RF was observed. During the period of aftereffect, the content of these fractions tended to the control value. The increase of LF may indicate increasing availability of nutrients, since this fraction is likely to participate in biological cycles. The analysis of TPC in fractions suggested that during the period of treatment with fertilizers most of

  2. New industrial heat pump applications to phosphate fertilizer production

    SciTech Connect

    Not Available

    1990-06-01

    In this study Process Integration techniques based on Pinch Technology have been applied to Chevron's fertilizer complex in Rock Springs, Wyoming. The objectives of the study were to: identify heat pump opportunities and to determine the cost effectiveness of heat pumping compared to other process improvements. Significance of this Work Chevron's fertilizer complex is an example of an exothermic process. The sulfuric acid plant produces more heat than is needed for the rest of the site. The complex has, therefore, no need for a heating utility. The heat created in the sulfuric acid plant is used to produce high pressure steam, which is let down through a turbo generator satisfying most of the site's electrical needs. This type of process would normally not be considered for heat pumping because there is no heating utility load to reduce. However, reducing the requirements for extraction steam will liberate more steam for power generation. Heat recovery and heat pumping, therefore, have the unusual effect of an increase in electricity production, resulting in a reduction in electricity import, rather than a reduction in fuel consumption. Heat recovery opportunities show promise at both the sulfuric acid and phosphoric acid plants. No economically attractive opportunities were found for heat pumps in the process units when they were considered individually; however, the study identified that significant energy savings can be achieved by heat integration between the sulfuric acid plant and the phosphoric acid plant. 16 figs.

  3. Application of Bioorganic Fertilizer Significantly Increased Apple Yields and Shaped Bacterial Community Structure in Orchard Soil.

    PubMed

    Wang, Lei; Li, Jing; Yang, Fang; E, Yaoyao; Raza, Waseem; Huang, Qiwei; Shen, Qirong

    2017-02-01

    Application of bioorganic fertilizers has been reported to improve crop yields and change soil bacterial community structure; however, little work has been done in apple orchard soils where the biological properties of the soils are being degraded due to long-term application of chemical fertilizers. In this study, we used Illumina-based sequencing approach to characterize the bacterial community in the 0-60-cm soil profile under different fertilizer regimes in the Loess Plateau. The experiment includes three treatments: (1) control without fertilization (CK); (2) application of chemical fertilizer (CF); and (3) application of bioorganic fertilizer and organic-inorganic mixed fertilizer (BOF). The results showed that the treatment BOF increased the apple yields by 114 and 67 % compared to the CK and CF treatments, respectively. The treatment BOF also increased the soil organic matter (SOM) by 22 and 16 % compared to the CK and CF treatments, respectively. The Illumina-based sequencing showed that Acidobacteria and Proteobacteria were the predominant phyla and Alphaproteobacteria and Gammaproteobacteria were the most abundant classes in the soil profile. The bacterial richness for ACE was increased after the addition of BOF. Compared to CK and CF treatments, BOF-treated soil revealed higher abundance of Proteobacteria, Alphaproteobacteria and Gammaproteobacteria, Rhizobiales, and Xanthomonadales while Acidobacteria, Gp7, Gp17, and Sphaerobacter were found in lower abundance throughout the soil profile. Bacterial community structure varied with soil depth under different fertilizer treatments, e.g., the bacterial richness, diversity, and the relative abundance of Verruccomicrobia, Candidatus Brocadiales, and Skermanella were decreased with the soil depth in all three treatments. Permutational multivariate analysis showed that the fertilizer regime was the major factor than soil depth in the variations of the bacterial community composition. Two groups, Lysobacter

  4. Development and initial application of δ18Op to understand phosphorus cycling in river, lake and groundwater ecosystems

    NASA Astrophysics Data System (ADS)

    Surridge, Ben; Gooddy, Daren; Newton, Rob; Moore, Oliver; Heaton, Timothy; Lapworth, Daniel; Davies, Ceri

    2014-05-01

    Variation in the stable isotope composition of oxygen within dissolved phosphate (δ18Op) represents a novel and potentially powerful environmental tracer. In freshwater, marine and terrestrial ecosystems, δ18Op can act as an inherent label for the sources of phosphorus and the extent to which phosphorus from different sources is metabolised. This paper focuses on the methodological development and initial application of δ18Op across a range of freshwater ecosystems. Initially, we report modifications to the analytical protocol for δ18Op that are designed to minimise incorporation of contaminant oxygen in the final silver phosphate precipitate prior to pyrolysis. This is critical given the range of possible sources of contaminant oxygen within freshwater matrices. Subsequently, we consider the potential utility of δ18Opthrough application of the technique within a range of freshwater ecosystems in England, UK. Firstly, we characterise δ18Opin river water and effluents from Sewage Treatment Works (STW), and examine the opportunity to use the δ18Op of STW effluents to trace the entry and downstream fate of phosphorus from these point sources in rivers. Secondly, we analyse δ18Opto gain insights into variations in the sources and biological cycling of phosphorus in a seasonally-stratified lake ecosystem. Thirdly, we characterise δ18Op in shallow and deep groundwater samples, considering whether δ18Op might provide evidence for variation in source and extent of metabolism for phosphorus in groundwater ecosystems. Taken together, these data extend the catalogue of δ18Op in freshwater ecosystems, and further the scope of δ18Op as a tool to better understand phosphorus biogeochemistry.

  5. [Effects of combined application of biogas residues and chemical fertilizers on greenhouse tomato's growth and its fruit yield and quality].

    PubMed

    Xie, Jing-huan; Chen, Gang; Yuan, Qiao-xia; Lin, Gui-ying; Wang, Zhi-shan; Guo, Cong-ying; Zhong, Hui

    2010-09-01

    With randomized block design, a field experiment was conducted in greenhouse to study the effects of combined application of biogas residues and chemical fertilizers on the tomato growth and its fruit yield and quality. The combined application of biogas residues and chemical fertilizers benefited the tomato growth and its fruit yield and quality. The yield of the combined application of 60% biogas residues and 40% chemical fertilizers were higher than the other treatments. The fruit quality under the application of 60% biogas residue and 40% chemical fertilizers also improved significantly, with the Vc content (91.09 mg x kg(-1)) and total sugar content being 21.32 mg x kg(-1) and 2.13% higher than the control, respectively. Among the test fertilization combinations, 60% biogas residue combined with 40% chemical fertilizers was the best one for greenhouse tomato's growth and its fruit yield and quality.

  6. Phosphorus leaching from loamy sand and clay loam topsoils after application of pig slurry.

    PubMed

    Liu, Jian; Aronsson, Helena; Bergström, Lars; Sharpley, Andrew

    2012-12-01

    Appropriate management of animal waste is essential for guaranteeing good water quality. A laboratory leaching study with intact soil columns was performed to investigate the risk of phosphorus (P) leaching from a clay loam and a loamy sand. The columns (0.2 m deep) were irrigated before and after application of pig slurry on the surface or after incorporation, or application of mineral P, each at a rate of 30 kg P ha(-1). The two soils had different initial P contents (i.e. the ammonium lactate-extractable P was 65 and 142 mg kg(-1) for the clay loam and loamy sand, respectively), but had similar P sorption characteristics (P sorption index 3.0) and degree of P saturation (17-21%). Concentrations of dissolved reactive P (DRP) and total P (TP) before P application were significantly higher in leachate from the loamy sand (TP 0.21 mg L(-1)) than from the clay loam (TP 0.13 mg L(-1)), but only increased significantly after P application to the clay loam. The highest concentrations were found when slurry was surface-applied (DRP 1.77 mg L(-1)), while incorporation decreased the DRP concentration by 64% in the clay loam. Thus moderate slurry application to a sandy soil with low P saturation did not pose a major risk of P leaching. However, application of P increased the risk of P leaching from the clay loam, irrespective of application method and despite low P saturation. The results show the importance of considering soil texture and structure in addition to soil chemical characteristics in risk assessments of P leaching. Structured soils such as the clay loam used in this study are high risk soils and application of P to bare soil during wet periods, e.g. in autumn or spring, should be followed by incorporation or avoided completely.

  7. Nitrogen Use Efficiency of Coffee at the Vegetative Stage as Influenced by Fertilizer Application Method.

    PubMed

    Salamanca-Jimenez, Alveiro; Doane, Timothy A; Horwath, William R

    2017-01-01

    Nitrogen (N) is the most limiting nutrient for coffee production in Colombia. An adequate supply is especially important during the vegetative period of growth, since any deficiency during this short period is known to have lasting effects on subsequent coffee bean production. Urea fertilizer is commonly applied on the soil surface since steep slopes hamper incorporation into soil, a practice which increases the risk of N volatilization. Little information is available on N recovery during early growth stages under different fertilizer application practices. The aim of this study was therefore to provide a comparison of (15)N uptake during the early vegetative growth stage under surface-applied and incorporation practices at two contrasting locations. The highest proportion of plant N derived from fertilizer (Ndff) occurred 60 days following application at the site with greater precipitation and soil organic matter, where surface application also increased the Ndff in roots and stems after 120 days. Although fertilizer N supplied approximately 20-29% of total plant N after 4 months, this fertilizer-derived N corresponded on average to only 5% of the total application, indicating that very little fertilizer (relative to how much is applied) reaches plants during this time. Apart from the difference in Ndff observed at the wetter site, there was no effect of application method on dry weight and macronutrient content in different plant components, root to shoot ratio, and leaf (13)C content. However, site effects were registered for most of these measurements, with the exception of total nutrient uptake. Similarly to Ndff trends, lower root/shoot ratio and higher concentrations of N, K, and Mg in aboveground biomass were found in the site with higher rainfall and soil organic matter, likely resulting from higher soil water and N availability. These findings provide new information useful as a direction for further research looking toward increasing NUE during the

  8. Nitrogen Use Efficiency of Coffee at the Vegetative Stage as Influenced by Fertilizer Application Method

    PubMed Central

    Salamanca-Jimenez, Alveiro; Doane, Timothy A.; Horwath, William R.

    2017-01-01

    Nitrogen (N) is the most limiting nutrient for coffee production in Colombia. An adequate supply is especially important during the vegetative period of growth, since any deficiency during this short period is known to have lasting effects on subsequent coffee bean production. Urea fertilizer is commonly applied on the soil surface since steep slopes hamper incorporation into soil, a practice which increases the risk of N volatilization. Little information is available on N recovery during early growth stages under different fertilizer application practices. The aim of this study was therefore to provide a comparison of 15N uptake during the early vegetative growth stage under surface-applied and incorporation practices at two contrasting locations. The highest proportion of plant N derived from fertilizer (Ndff) occurred 60 days following application at the site with greater precipitation and soil organic matter, where surface application also increased the Ndff in roots and stems after 120 days. Although fertilizer N supplied approximately 20–29% of total plant N after 4 months, this fertilizer-derived N corresponded on average to only 5% of the total application, indicating that very little fertilizer (relative to how much is applied) reaches plants during this time. Apart from the difference in Ndff observed at the wetter site, there was no effect of application method on dry weight and macronutrient content in different plant components, root to shoot ratio, and leaf 13C content. However, site effects were registered for most of these measurements, with the exception of total nutrient uptake. Similarly to Ndff trends, lower root/shoot ratio and higher concentrations of N, K, and Mg in aboveground biomass were found in the site with higher rainfall and soil organic matter, likely resulting from higher soil water and N availability. These findings provide new information useful as a direction for further research looking toward increasing NUE during the

  9. The content of available mineral phosphorus compounds in chestnut soils of Northern Mongolia upon application of different forms of phosphorite

    NASA Astrophysics Data System (ADS)

    Ubugunov, L. L.; Enkhtuyaa, B.; Merkusheva, M. G.

    2015-06-01

    The effect of different forms of phosphorite (activated and crude ground) of the Burenkhansk deposit on the phosphate status of chestnut soils and the productivity of spring wheat was studied in Northern Mongolia. It was found that the transformation of mineral soil phosphates upon the application of activated phosphorite (together with NK) is similar to that upon superphosphate application, and the available phosphorus concentration is even a gradation higher. The application of crude ground phosphorite helped to preserve the content of mineral phosphates in the soil at the initial level. Optimum concentrations of available phosphorus and the sum of loosely bound and calcium phosphates in the plow horizon were estimated 33-35 mg/kg) and 16-18 mg/100 g, respectively. Under these concentrations, high and sustainable yields of spring wheat were obtained upon application of activated phosphorite.

  10. [Effects of "3414" fertilizer application on the yield of Fagopyrum cymosum].

    PubMed

    Li, Gui-qiang; He, Ping; Zhang, Chun-ping; Zhang, Yi-feng; Hu, Shi-jun

    2011-02-01

    To study the effects of different fertilizer applications on the yield of Fagopyrum cymosum and explore the hese scheme for getting the maximum yield on purple soil in the Chongqing-west. Experiment with implementing plan of "3414"; The quality Assessment by the contents of bipoly-chrysanthemin; The data process program under the Excel 2003, SPSS 13.0, MatlaB 7.0, Word 2003 environments. Various fertilizer combinations had different transformation efficiency which the N3P2K2 combination was the maximum 97.09% and the NOP2K2 combination was the minimum 4.32%; The NOP2K2 combination had the lowest yield except of the bland group which was 186 kg/667 m2; When the N fertilizer Rate was controlled in the level of 15 kg/667 m2 The yied had no obvious change as the increase of another two kinds fertilizer rate; Three kinds of function could better reflect the relationships between fertilizer and yields, which all of the R2 value were above 0.88; The best one was N K function with the maximum R2; The blank group had maximum content 8.67% of bipoly-chrysanthemin and the content had a little decrease as the increase of N or K, but all higher than 7.14% which were planted in Bei Jing area. Various fertilizer combinations influenced the transformation efficiency of N, P, K;N is the key fertilizer on purple soil; Reconmentation funtion was N,K function which could be as the guiding function; F; Fertilizer would not influence the quality of Fagopyrum cymosum.

  11. Global baseline data on phosphorus pollution of large lakes

    NASA Astrophysics Data System (ADS)

    Fink, Gabriel; Flörke, Martina; Alcamo, Joseph

    2016-04-01

    Lakes are exposed to harmful eutrophication which is the most concerning water quality issue on global scale. Eutrophication is caused by phosphorous pollution in most lakes. Hence, global consistent base line data on phosphorus loadings are needed to assess future sustainable development. We used the modeling framework WaterGAP3 to calculate present total phosphorus loadings to the world's largest lakes. Estimates of modeled total phosphorus (TP) loadings as well as the contributions of different sectors were successfully validated against measured data. Based on these findings, annual total phosphorus loadings to lakes were calculated for diffuse and point sources according to the different sectors domestic, manufacturing, urban surface runoff, agriculture and background for the time period 1990 to 2010. Our results show high phosphorus loadings into lakes in southern latitudes. On global average, industrial fertilizer is the main anthropogenic source while background loadings are low in comparison. Nevertheless, both features indicate a high potential to reduce the exposure to eutrophication in lakes which are faced with high phosphor inputs. The global average of TP loadings was 7% higher in the time period 2005-2010 than in the period 1990-1995. The global average in 2005-2010 results from an increase in TP loadings of 79% in South America, which was dampened by a decrease in Europe, North America, and Asia. Chinese lakes were exposed to massive increasing phosphorus loadings, too. Both increasing and decreasing trends are caused primarily by changing industrial fertilizer application rates. In conclusion, this study provides a consistent and model based synopsis of global trends and sources of phosphorus loadings to large lakes. The estimates of phosphorus pollution of lakes present a basis for assessing and managing the global eutrophication problem.

  12. Fibrin in Reproductive Tissue Engineering: A Review on Its Application as a Biomaterial for Fertility Preservation.

    PubMed

    Chiti, M C; Dolmans, M M; Donnez, J; Amorim, C A

    2017-03-07

    In recent years, reproductive medicine has made good use of tissue engineering and regenerative medicine techniques to develop alternatives to restore fertility in cancer patients. For young female cancer patients who cannot undergo any of the currently applied strategies due to the possible presence of malignant cells in their ovaries, the challenge is creating an in vitro or in vivo artificial ovary using carefully selected biomaterials. Thanks to its numerous qualities, fibrin has been widely used as a scaffold material for fertility preservation applications. The goal of this review is to examine and discuss the applications and advantages of this biopolymer for fertility restoration in cancer patients, and consider the main results achieved so far.

  13. North American fertilizer capacity data

    SciTech Connect

    Not Available

    1991-12-01

    This listing of producers and their fertilizer production capacities was compiled in October 1991 with the cooperation of the US and Canadian fertilizer industries. Yearly production and forecasts are given for 1987 through 1997. Fertilizers reported on include: ammonium sulfate, nitric acid, wet-process superphosphoric acid, normal superphosphate, elemental phosphorus, potassium sulfate, and sulfate of potash/magnesia.

  14. Fertilization regimes affect the soil biological characteristics of a sudangrass and ryegrass rotation system.

    PubMed

    Li, WenXi; Lu, JianWei; Li, FangBai; Wang, Yan; Lu, JunMing; Li, XiaoKun

    2011-06-01

    The sudangrass (Sorghum sudanense) and ryegrass (Lolium multiflorum L.) rotation is an intensive and new cropping system in Central China. Nutrient management practices in this rotation system may influence soil fertility, the important aspects of which are soil biological properties and quality. As sensitive soil biological properties and quality indicators, soil microbial community activity, microbial biomass, enzyme activities, soil organic matter (SOM) and total N resulting from different fertilization regimes in this rotation system were studied through a four-year field experiment from April 2005 to May 2009. Treatments included control (CK), fertilizer phosphorus and potassium (PK), fertilizer nitrogen and potassium (NK), fertilizer nitrogen and phosphorus (NP) and a fertilizer nitrogen, phosphorus and potassium combination (NPK). Soil microbial community activities in the NK, NP and NPK treatments were significantly lower than those in the CK and PK treatments after the sudangrass and ryegrass trial. The highest microbial biomass C, microbial biomass N, SOM, total N, sucrase and urease activities were found in the NPK treatment, and these soil quality indicators were significantly higher in the NK, NP and NPK treatments than in the PK and CK treatments. Soil microbial biomass and enzyme activities were positively associated with SOM in the sudangrass and ryegrass rotation system, indicating that fertilization regimes, especially N application, reduced microbial community activity in the soil. Proper fertilization regimes will increase microbial biomass, enzyme activity and SOM and improve soil fertility.

  15. [Preparation of microencapsulated red phosphorus and its flame-retardant application in PP composites].

    PubMed

    Jiang, Wen-Jun; Li, Zhe-Zhao; Zhang, Chun-Xiang; Fang, Jin; Yang, Xu-Jie; Lu, Lu-De; Pu, Long-Juan

    2010-05-01

    In the present study, the melamine-formaldehyde prepolymer (MFP) was first synthesized at pH 8-8.5 under about 80 degrees C with melamine, formaldehyde, triethanolamine and methanol as the starting materials. Subsequently, the microencapsulated red phosphorus (MRP) was successfully prepared by in-situ polymerization at pH 5.5 under 65 degrees C, using MFP and red phosphorus (RP) powders as raw materials, and potassium persulphate (KPS) as catalyst. The obtained products were detected by differential scan calorimetry (DSC), scanning electron microscope (SEM), Fourier transform infrared (FTIR) and X-ray photo-electron spectroscopy (XPS). It was found that KPS is useful in enhancing the reaction activity of MFP, which can make RP be well encapsulated by melamine-formaldehyde resin (MF) and reduce the reaction time. The DSC, SEM and XPS results show that it won't get well-encapsulated MRP only under acidic condition and without any KPS. When a proper quantity of KPS is employed, the RP particles can be almost completely-encapsulated by MF and the peak temperature of oxidation reaction for MRP is 480 degrees C, which is much higher than that of RP, extending the applications for MRP. The FTIR spectrum demonstrates that the coating material on the surface of RP accurately is MF, in agreement with the reference. Polyproplene (PP) composites with different formulations were prepared by melt extrusion. It was shown that the flame-retardant efficiencies are very low when the PP composites only contain MRP or MH. However, the flame-retardant property can obviously improve if MRP and MH are both used in the PP composites. When PP : MRP: MH = 100 (phr) : 15 (phr) : 50 (phr), the limited oxygen index of the MRP/MH/PP composite is 26%, and vertical firing ranks UL-94 V-0. In addition, the possible flame-retardant mechanism of the PP composites has also been discussed, and further verified by FTIR and Raman spectroscopy.

  16. Agronomic phosphorus imbalances across the world's croplands

    PubMed Central

    MacDonald, Graham K.; Bennett, Elena M.; Potter, Philip A.; Ramankutty, Navin

    2011-01-01

    Increased phosphorus (P) fertilizer use and livestock production has fundamentally altered the global P cycle. We calculated spatially explicit P balances for cropland soils at 0.5° resolution based on the principal agronomic P inputs and outputs associated with production of 123 crops globally for the year 2000. Although agronomic inputs of P fertilizer (14.2 Tg of P·y−1) and manure (9.6 Tg of P·y−1) collectively exceeded P removal by harvested crops (12.3 Tg of P·y−1) at the global scale, P deficits covered almost 30% of the global cropland area. There was massive variation in the magnitudes of these P imbalances across most regions, particularly Europe and South America. High P fertilizer application relative to crop P use resulted in a greater proportion of the intense P surpluses (>13 kg of P·ha−1·y−1) globally than manure P application. High P fertilizer application was also typically associated with areas of relatively low P-use efficiency. Although manure was an important driver of P surpluses in some locations with high livestock densities, P deficits were common in areas producing forage crops used as livestock feed. Resolving agronomic P imbalances may be possible with more efficient use of P fertilizers and more effective recycling of manure P. Such reforms are needed to increase global agricultural productivity while maintaining or improving freshwater quality. PMID:21282605

  17. Reducing fertilizer-derived N2O emission: Point injection vs. surface application of ammonium-N fertilizer at a loamy sand site

    NASA Astrophysics Data System (ADS)

    Deppe, Marianna; Well, Reinhard; Giesemann, Anette; Kücke, Martin; Flessa, Heinz

    2013-04-01

    N2O emitted from soil originates either from denitrification of nitrate and/or nitrification of ammonium. N fertilization can have an important impact on N2O emission rates. Injection of nitrate-free ammonium-N fertilizer, in Germany also known as CULTAN (Controlled Uptake Long-Term Ammonium Nutrition), results in fertilizer depots with ammonium concentrations of up to 10 mg N g-1 soil-1. High concentrations of ammonium are known to inhibit nitrification. However, it has not yet been clarified how N2O fluxes are affected by CULTAN. In a field experiment, two application methods of nitrogen fertilizer were used at a loamy sand site: Ammonium sulphate was applied either by point injection or by surface application. 15N-ammonium sulphate was used to distinguish between N2O originating from either fertilizer-N or soil-N. Unfertilized plots and plots fertilized with unlabeled ammonium sulphate served as control. N2O emissions were measured using static chambers, nitrate and ammonium concentrations were determined in soil extracts. Stable isotope analysis of 15N in N2O, nitrate and ammonium was used to calculate the contribution of fertilizer N to N2O emissions and the fertilizer turnover in soil. 15N analysis clearly indicated that fertilizer derived N2O fluxes were higher from surface application plots. For the period of the growing season, about 24% of the flux measured in surface application treatment and less than 10% from injection treatment plots originated from the fertilizer. In addition, a lab experiment was conducted to gain insight into processes leading to N2O emission from fertilizer depots. One aim was to examine whether the ratio of N2O to nitrate formation differs depending on the ammonium concentration. Loamy sand soil was incubated in microcosms continuously flushed with air under conditions favouring nitrification. 15N-labeled nitrate was used to differentiate between nitrification and denitrification. Stable isotope analyses of 15N were performed on

  18. Potential Application of Silica Mineral from Dieng Mountain in Agriculture Sector to Control the Release Rate of Fertilizer Elements

    NASA Astrophysics Data System (ADS)

    Solihin; Mursito, Anggoro Tri; Dida, Eki N.; Erlangga, Bagus D.; Widodo

    2017-07-01

    Silica mineral, which comes along with geothermal fluid in Dieng, is a product of erosion, decomposition and dissolution of silicon oxide based mineral, which is followed by precipitation to form silica mineral. This silica cell structure is non crystalline, and it contains 85,60 % silicon oxide, 6.49 volatile elements, and also other oxide elements. Among the direct potential application of this silica is as raw material in slow release fertilizer. Silica in compacted slow release fertilizer is able control the release rate of fertilizer elements. Two type of slow release fertilizer has been made by using silica as the matrix in these slow release fertilizer. The first type is the mixing of ordinary solid fertilizer with Dieng silica, whereas the second one is the mixing of disposal leach water with Dieng silica. The release test shows that both of these modified fertilizers have slow release fertilizer characteristic. The release rate of fertilizer elements (magnesium, potassium, ammonium, and phosphate) can be significantly reduced. The addition of kaolin in the first type of slow release fertilizer makes the release rate of fertilizer elements can be more slowed down. Meanwhile in the second type of slow release fertilizer, the release rate is determined by ratio of silica/hydrogel. The lowest release rate is achieved by sample that has highest ratio of silica/hydrogel.

  19. [Further reduction of nitrogen fertilizer application in paddy field under green manuring of Taihu Area, China].

    PubMed

    Zhao, Dong; Yan, Ting-mei; Qiao, Jun; Yang, Lin-zhang; Tang, Fang; Song, Yun-fei

    2015-06-01

    This study focused on the nitrogen loss via runoff, change of nitrogen in different forms in surface water in paddy field, and grain yield, through further reduction of nitrogen fertilizer application rate under green manuring without basal dressing. Results showed that with 150 kg · hm(-2) inorganic N fertilizer input after return of green manure to soil, no basal dressing could not only sharply reduce N concentration in surface water and decrease 17.2% of N loss, but also increase 2.8% of grain yield in comparison with basal dressing. It was a worthwhile farming method that inorganic nitrogen fertilizer was not used for basal dressing but for topdressing after return of green ma- nure to soil in Taihu Area. However, the grain yield would decrease if the rate of topdressing nitro- gen was excessively reduced or increased. After all, it was feasible to realize harmonization of grain yield and environmental benefits in Taihu Area, with 133 kg · hm(-2) inorganic N fertilizer input after return of green manure to soil as well as no application of basal dressing, which could greatly reduce N fertilizer input and N loss as well as ensure rice yield.

  20. Nutrient and Estrogenic Activity of Runoff Post–Application of Animal Waste-Based Fertilizer to Frozen Fields

    USDA-ARS?s Scientific Manuscript database

    While nutrient loading of surface waters from agricultural use of fertilizer has long been an environmental concern, recently attention has focused on hormonal contamination of waters from application of animal wastes as fertilizer. Application of manure to frozen fields may further increase the env...

  1. Reducing phosphorus in swine effluent with aluminum chloride treatment during lagoon cleanout

    USDA-ARS?s Scientific Manuscript database

    Phosphorus (P) runoff from agricultural lands fertilized with swine manure can be a significant environmental issue. The objective of this study was to evaluate the effect of aluminum chloride (AlCl3) applications to a swine lagoon during total clean out on P concentrations in manure and runoff wat...

  2. Speciation of Phosphorus by coupled HPLC-ICPMS: Application for quantification of reduced forms of phosphorus in rocks and natural waters.

    NASA Astrophysics Data System (ADS)

    Atlas, Z. D.; Pasek, M. A.; Sampson, J.

    2014-12-01

    Phosphorus is a geologically important element making up approximately 0.12 % of the Earth's crust. It is commonly found as relatively insoluble apatite and this causes phosphorus to be a limiting nutrient in biologic processes. Despite this, phosphorus is a key element in DNA, RNA and other cellular materials. Recent works suggest that reduced phosphorus played a substantial role in the development of life on the early Earth. Reduced phosphorus is considerably more soluble than oxidized phosphorus, and reduced phosphorus may continue to play a role in biologic productivity. This study examines a new methodology for quantification of reduced phosphorus separated by coupled HPLC - ICP-MS. We show that phosphorus species (P1+, P3+ and P5+) are cleanly separated in the HPLC and coupled with the ICP-MS reaction cell (using O2 gas) effectively convert elemental P to P-O producing lower background and flatter baseline chromatography. Results suggest very low detection limits (0.05 mM) for P species analyzed as P-O at M/Z = 47. Additionally this technique has potential to speciate at least 5 other metastable forms of phosphorus. We verified this method on numerous materials including leached Archean rocks to suburban retention pond waters and many samples show small but detectible levels of reduced phosphorus. These data highlight a significant role of redox processing of phosphorus throughout the history of the Earth, with the reduced oxidation state phosphorus compounds, phosphite and hypophosphite, potentially acting as significant constituents in the anaerobic environment.

  3. Impacts of multiple applications of fertilizer on stream chemistry in the Ouachita Mountains

    Treesearch

    Hal O. Liechty; Jami Nettles; Stacy Wilson

    2006-01-01

    We have previously reported changes in stream chemistry following a late winter application of urea and diammonium phosphate to a loblolly pine (Pinus taeda L.) plantation located in a 176-ha subwatershed in the Ouachita Mountains. This stand was again fertilized with 437 kg/ha of urea in March of 2001. Water chemistry prior to, during, and after...

  4. Application of LIDAR to Improve Implementation of the Phosphorus Index in Flat and Steeply Sloping Terrain

    USDA-ARS?s Scientific Manuscript database

    The Phosphorus Index is a central component of modern nutrient management planning that targets nutrient reduction measures to critical source areas in the landscape. While the Phosphorus Index has widely been adopted throughout the U.S., the technique can be costly to implement and is prone to hum...

  5. Fluoride accumulation in pasture forages and soils following long-term applications of phosphorus fertilisers.

    PubMed

    Loganathan, P; Hedley, M J; Wallace, G C; Roberts, A H

    2001-01-01

    Ingestion of soils with high fluoride (F) concentration may cause chronic fluorosis in grazing animals. Analysis of New Zealand pasture soils with long-term phosphorus (P) fertilisation histories showed that total surface soil (0-75 mm depth) F concentration increased up to 217-454 mg kg-1 with P fertiliser application. One-third to two-thirds of F applied in fertilisers resides in the top 75 mm soil depth. Pasture forage accumulation of F was low, and therefore, F intake by grazing animals through pasture consumption is expected to be much lower than F intake by soil ingestion. Ten annual applications of single superphosphate (30 and 60 kg P ha-1 year-1) to a Pallic Soil (Aeric Fragiaqualf) significantly increased total F and labile F (0.01 M CaCl2 extract) concentrations to 200 and 120 mm depths, respectively, of the 300 mm depth investigated. The mobility of F in the soil profile was similar to two other elements, P and cadmium derived from the fertiliser.

  6. Predicting Nitrogen in Streams: A Comparison of Two Estimates of Fertilizer Application

    NASA Astrophysics Data System (ADS)

    Mehaffey, M.; Neale, A.

    2011-12-01

    Decision makers frequently rely on water and air quality models to develop nutrient management strategies. Obviously, the results of these models (e.g., SWAT, SPARROW, CMAQ) are only as good as the nutrient source input data and recently the Nutrient Innovations Task Group has called for a better accounting of nonpoint nutrient sources. Currently, modelers frequently rely on county level fertilizer sales records combined with acreage of crops to estimate nitrogen sources from fertilizer for counties or watersheds. However, since fertilizer sales data are based on reported amounts they do not necessarily reflect actual use on the fields. In addition the reported sales data quality varies by state resulting in differing accuracy between states. In this study we examine an alternative method potentially providing a more uniform, spatially explicit, estimate of fertilizer use. Our nitrogen application data is estimated at a 30m pixel resolution which allows for scalable inputs for use in water and air quality models. To develop this dataset we combined raster data from the National Cropland data layer (CDL) data with the National Land Cover Data (NLCD). This process expanded the NLCD's 'cultivated crops' classes to included major grains, cover crops, and vegetable and fruits. The Agriculture Resource Management Survey chemical fertilizer application rate data were summarized by crop type and year for each state, encompassing the corn, soybean, spring wheat, and winter wheat crop types (ARMS, 2002-2005). The chemical fertilizer application rate data were then used to estimate annual application parameters for nitrogen, phosphate, potash, herbicide, pesticide, and total pesticide, all expressed on a mass-per-unit-crop-area basis for each state for each crop type. By linking crop types to nitrogen application rates, we can better estimate where applied fertilizer would likely be in excess of the amounts used by crops or where conservation practices may improve retention

  7. Reducing environmental risk of excessively fertilized soils and improving cucumber growth by Caragana microphylla-straw compost application in long-term continuous cropping systems.

    PubMed

    Tian, Yongqiang; Wang, Qing; Zhang, Weihua; Gao, Lihong

    2016-02-15

    Continuous cropping is a common agricultural practice in the word. In China, farmers often apply excessive fertilizers to fields in an attempt to maintain yields in continuous cropping systems. However, this practice often results in high nutrient concentrations in soils, nutrient pollution in leaching water and more crop disease. Here, we investigated 8 different soils from continuously cropped cucumbers in Northern China that grouped into those with extremely high nutrient levels (EHNL) and those with lower nutrient levels (LNL). All soils were treated with Caragana microphylla-straw (CMS) compost addition, and then were used to measure soil physiochemical and microbial properties, leaching water quality, plant root growth and cucumber fruit yield. In general, the EHNL-soil showed higher nitrate, phosphorus and potassium concentrations in the leaching water compared to the LNL-soil. However, the CMS compost application increased soil nutrient and water holding capacities, total microbial biomass (bacteria and fungi), root length, plant biomass and fruit yields, but decreased nutrient concentrations in the leaching water from the EHNL-soil. In addition, the CMS compost decreased the number of Fusarium oxysporum f. sp. cucumerinum in soils with very high concentration of mineral nitrogen. Our results infer that CMS compost application was an effective method for reducing environmental risk of excessively fertilized soils.

  8. Phosphorus derivatives of salicylic acid

    NASA Astrophysics Data System (ADS)

    Chvertkina, L. V.; Khoklov, P. S.; Mironov, Vladimir F.

    1992-10-01

    The present state of work on the methods of synthesis, chemical properties, and practical applications of phosphorus-containing derivatives of salicylic acid has been reviewed. The characteristics of the chemical transformations of cyclic and acyclic phosphorus derivatives of salicylic acid related to the coordination state of the phosphorus atom have been examined. The bibliography includes 158 references.

  9. Application of steel slag coated with sodium hydroxide to enhance precipitation-coagulation for phosphorus removal.

    PubMed

    Park, Taejun; Ampunan, Vanvimol; Maeng, Sungkyu; Chung, Eunhyea

    2017-01-01

    Phosphorus removal has been studied for decades to reduce the environmental impact of phosphorus in natural waterbodies. Slag has been applied for the phosphorus removal by several mechanisms. In this study, sodium hydroxide coating was applied on the slag surface to enhance the efficiency of precipitation-coagulation process. In the batch test, it was found that the capacity of the slag to maintain high pH decreases with increasing its exposure time to the aqueous solution. In the column test, the coarse-grained coated slag showed higher phosphorus removal efficiency than the fine-grained uncoated slag. The coated slag maintained pH higher than uncoated slag and, accordingly, the removal efficiency of phosphorus was higher. Especially, when pH was less than 8, the removal efficiency decreased significantly. However, coated slag provided an excess amount of aluminum and sodium. Thus, a return process to reuse aluminum and sodium as a coagulant was introduced. The return process yields longer lifespan of slag with higher phosphorus removal and lower concentration of cations in the effluent. With the return process, the phosphorus removal efficiency was kept higher than 60% until 150 bed volumes; meanwhile, the efficiency without return process became lower than 60% at 25 bed volumes. Copyright © 2016 Elsevier Ltd. All rights reserved.

  10. Microbial Phosphorus Solubilization and Its Potential for Use in Sustainable Agriculture

    PubMed Central

    Alori, Elizabeth T.; Glick, Bernard R.; Babalola, Olubukola O.

    2017-01-01

    The use of excess conventional Phosphorus (P) fertilizers to improve agricultural productivity, in order to meet constantly increasing global food demand, potentially causes surface and ground water pollution, waterway eutrophication, soil fertility depletion, and accumulation of toxic elements such as high concentration of selenium (Se), arsenic (As) in the soil. Quite a number of soil microorganisms are capable of solubilizing/mineralizing insoluble soil phosphate to release soluble P and making it available to plants. These microorganisms improve the growth and yield of a wide variety of crops. Thus, inoculating seeds/crops/soil with Phosphate Solubilizing Microorganisms (PSM) is a promising strategy to improve world food production without causing any environmental hazard. Despite their great significance in soil fertility improvement, phosphorus-solubilizing microorganisms have yet to replace conventional chemical fertilizers in commercial agriculture. A better understanding of recent developments in PSM functional diversity, colonizing ability, mode of actions and judicious application should facilitate their use as reliable components of sustainable agricultural systems. In this review, we discussed various soil microorganisms that have the ability to solubilize phosphorus and hence have the potential to be used as bio fertilizers. The mechanisms of inorganic phosphate solubilization by PSM and the mechanisms of organic phosphorus mineralization are highlighted together with some factors that determine the success of this technology. Finally we provide some indications that the use of PSM will promote sustainable agriculture and conclude that this technology is ready for commercial exploitation in various regions worldwide. PMID:28626450

  11. Microbial Phosphorus Solubilization and Its Potential for Use in Sustainable Agriculture.

    PubMed

    Alori, Elizabeth T; Glick, Bernard R; Babalola, Olubukola O

    2017-01-01

    The use of excess conventional Phosphorus (P) fertilizers to improve agricultural productivity, in order to meet constantly increasing global food demand, potentially causes surface and ground water pollution, waterway eutrophication, soil fertility depletion, and accumulation of toxic elements such as high concentration of selenium (Se), arsenic (As) in the soil. Quite a number of soil microorganisms are capable of solubilizing/mineralizing insoluble soil phosphate to release soluble P and making it available to plants. These microorganisms improve the growth and yield of a wide variety of crops. Thus, inoculating seeds/crops/soil with Phosphate Solubilizing Microorganisms (PSM) is a promising strategy to improve world food production without causing any environmental hazard. Despite their great significance in soil fertility improvement, phosphorus-solubilizing microorganisms have yet to replace conventional chemical fertilizers in commercial agriculture. A better understanding of recent developments in PSM functional diversity, colonizing ability, mode of actions and judicious application should facilitate their use as reliable components of sustainable agricultural systems. In this review, we discussed various soil microorganisms that have the ability to solubilize phosphorus and hence have the potential to be used as bio fertilizers. The mechanisms of inorganic phosphate solubilization by PSM and the mechanisms of organic phosphorus mineralization are highlighted together with some factors that determine the success of this technology. Finally we provide some indications that the use of PSM will promote sustainable agriculture and conclude that this technology is ready for commercial exploitation in various regions worldwide.

  12. Determination of phosphorus and potassium in commercial inorganic fertilizers by inductively coupled plasma-optical emission spectrometry: single-laboratory validation.

    PubMed

    Bartos, James M; Boggs, Barton L; Falls, J Harold; Siegel, Sanford A

    2014-01-01

    A two-part single-laboratory validation study was conducted for determination of the P and K content in commercial fertilizer materials by inductively coupled plasma-optical emission spectrometry (ICP-OES). While several methods exist for determination of P and K in fertilizer products, the main focus of this study was on ICP-OES determination, which offers several unique advantages. Fertilizer samples with consensus P and K values from the Magruder and Association of Fertilizer and Phosphate Chemists (AFPC) check sample programs were selected for this study. Validation materials ranging from 4.4 to 52.4% P205 (1.7 to 22.7% P) and 3 to 62% K20 (2.5 to 51.5% K) were utilized. Because all P and K compounds contained in fertilizer materials are not "available" for plants to use, this study was conducted in two parts. Part A focused on ammonium citrate-disodium EDTA as the extraction solvent, as it estimates the pool of fertilizer P and K that is considered available to plants. Part B focused on hydrochloric acid as the digestion solvent, as it estimates the total P and K content of the fertilizer product. Selectivity studies indicated that this method can have a high bias for fertilizer products containing sources of phosphite or organic P compared to gravimetric or colorimetric methods that measure just orthophosphate. Provided the analytical challenges outlined in this study are addressed, this method offers the potential for a quick, accurate, and safe alternative for determining the P and K content of commercial inorganic fertilizer materials.

  13. Net nitrogen mineralization from past year's manure and fertilizer applications.

    USDA-ARS?s Scientific Manuscript database

    Manure from the semiarid West’s dairy industries is a rich nutrient source, but its use for crops can be problematic because soil N availability from manure may vary substantially depending on the year of application. Experimental plots established in Idaho on a Portneuf silt loam (coarse silty, mi...

  14. [Effects of bio-organic fertilizer and fungicide application on continuous cropping obstacles of cut chrysanthemum].

    PubMed

    Chen, Xi; Zhao, Shuang; Yao, Jian-jun; Ye, Yan-ping; Song, Ai-ping; Chen, Fa-di; Chen, Su-mei; Dong, Xue-na

    2015-04-01

    Abstract: Fusarium wilt is a soil borne disease caused by plant continuous cropping in monoculture Chrysanthemum morifolium 'Youxiang' monoculture not only declines plant quality and yield but also decreases soil enzymes and soil microbial diversity over successive cultivation. In this article, the effects of fungicide (Carbendazim MBC), antifungal enhanced bio-organic fertilizer (BOF), and their combined application on the quality and soil enzymes activities of Chrysanthemum morifolium 'Youxiang' in continuous cropping systems were investigated. The results showed that both bioorganic fertilizer (BOF) and fungicide (MBC) single application could effectively prevent the occurrence of Fusarium wilt disease of cut chrysanthemum. Bio-organic fertilizer application was more effective on root activity, soil enzymes activities and quality (shoot height, stem diameter, leaf SPAD value, ray floret number, shoot fresh mass) improvement of cut chrysanthemum, while fungicide single application was responsible for soil enzymatic activities suppression to some extent. The combined application treatment (MBC+BOF) showed the best effects on quality improvement and soil enzyme activities promotion.

  15. Environmental assessment of nutrient recycling from biological pig slurry treatment--impact of fertilizer substitution and field emissions.

    PubMed

    Brockmann, Doris; Hanhoun, Mary; Négri, Ophélie; Hélias, Arnaud

    2014-07-01

    Pig slurry treatment is an important means in reducing nitrogen loads applied to farmland. Solid phase separation prior to biological treatment further allows for recovering phosphorus with the solid phase. The organic residues from the pig slurry treatment can be applied as organic fertilizers to farmland replacing mineral fertilizers. The environmental impacts of nutrient recycling from aerobic, biological pig slurry treatment were evaluated applying the life cycle assessment (LCA) methodology. LCA results revealed that direct field emissions from organic fertilizer application and the amount of avoided mineral fertilizers dominated the environmental impacts. A modified plant available nitrogen calculation (PAN) was introduced taking into account calculated nitrogen emissions from organic fertilizer application. Additionally, an equation for calculating the quantity of avoided mineral fertilizers based on the modified PAN calculation was proposed, which accounted for nitrogen emissions from mineral fertilizer application.

  16. Phosphorus and nitrogen leaching before and after tillage and urea application.

    PubMed

    Han, Kun; Kleinman, Peter J A; Saporito, Lou S; Church, Clinton; McGrath, Joshua M; Reiter, Mark S; Tingle, Shawn C; Allen, Arthur L; Wang, L Q; Bryant, Ray B

    2015-03-01

    Leaching of nutrients through agricultural soils is a priority water quality concern on the Atlantic Coastal Plain. This study evaluated the effect of tillage and urea application on leaching of phosphorus (P) and nitrogen (N) from soils of the Delmarva Peninsula that had previously been under no-till management. Intact soil columns (30 cm wide × 50 cm deep) were irrigated for 6 wk to establish a baseline of leaching response. After 2 wk of drying, a subset of soil columns was subjected to simulated tillage (0-20 cm) in an attempt to curtail leaching of surface nutrients, especially P. Urea (145 kg N ha) was then broadcast on all soils (tilled and untilled), and the columns were irrigated for another 8 wk. Comparison of leachate recoveries representing rapid and slow flows confirmed the potential to manipulate flow fractions with tillage, albeit with mixed results across soils. Leachate trends in the finer-textured soil suggest that tillage impeded macropore flow and forced greater matrix flow. Despite significant vertical stratification of soil P that suggested tillage could prevent leaching of P via macropores from the surface to the subsoil, tillage had no significant impact on P leaching losses. Relatively high levels of soil P below 20 cm may have served as the source of P enrichment in leachate waters. However, tillage did lower losses of applied urea in leachate from two of the three soils, partially confirming the study's premise that tillage would destroy macropore pathways transmitting surface constituents to the subsoil.

  17. Black phosphorus gas sensors.

    PubMed

    Abbas, Ahmad N; Liu, Bilu; Chen, Liang; Ma, Yuqiang; Cong, Sen; Aroonyadet, Noppadol; Köpf, Marianne; Nilges, Tom; Zhou, Chongwu

    2015-05-26

    The utilization of black phosphorus and its monolayer (phosphorene) and few-layers in field-effect transistors has attracted a lot of attention to this elemental two-dimensional material. Various studies on optimization of black phosphorus field-effect transistors, PN junctions, photodetectors, and other applications have been demonstrated. Although chemical sensing based on black phosphorus devices was theoretically predicted, there is still no experimental verification of such an important study of this material. In this article, we report on chemical sensing of nitrogen dioxide (NO2) using field-effect transistors based on multilayer black phosphorus. Black phosphorus sensors exhibited increased conduction upon NO2 exposure and excellent sensitivity for detection of NO2 down to 5 ppb. Moreover, when the multilayer black phosphorus field-effect transistor was exposed to NO2 concentrations of 5, 10, 20, and 40 ppb, its relative conduction change followed the Langmuir isotherm for molecules adsorbed on a surface. Additionally, on the basis of an exponential conductance change, the rate constants for adsorption and desorption of NO2 on black phosphorus were extracted for different NO2 concentrations, and they were in the range of 130-840 s. These results shed light on important electronic and sensing characteristics of black phosphorus, which can be utilized in future studies and applications.

  18. DGT estimates cadmium accumulation in wheat and potato from phosphate fertilizer applications

    PubMed Central

    Pérez, Angela L.; Anderson, Kim A.

    2014-01-01

    Cadmium is a common impurity in phosphatic fertilizers and may contribute to soil Cd accumulation. Changes in total and bioavailable Cd burdens to agricultural soils and the potential for plant Cd accumulation resulting from fertilizer input was investigated. Three year field studies were conducted using three dose levels of cadmium-rich, commercial, phosphate fertilizers applied at four agricultural sites. Labile Cd concentrations, measured using the passive sampling device Diffusive Gradients in Thin Films (CdDGT), increased with increasing fertilizer application rates. Cd also accumulated in the edible portion of wheat and potato crops grown at the sites, and showed strong positive dose response with fertilizer treatment. Regression models were calculated for each site, year, and for individual crops. Model comparisons indicated that soil physical and chemical parameters in addition to soil Cd fractions, were important determinants of CdDGT. Significant factors contributing to CdDGT concentrations were Cd from fertilizer input (Cdfertilizer), pH, cation exchange capacity (CEC), and total recoverable Cd (Cdtotal). Important factors used to determine Cd concentrations in wheat grain (Cdwheat) and in potato (Cdpotato) were as follows: Cdwheat:Cdfertilizer, and CdDGT; and Cdpotato:Cdfertilizer, CdDGT, % O.M. The effective concentration, CE, calculated from DGT did not correlate well with Cdwheat or with Cdpotato. Direct measurements of CdDGT correlated better with Cd found in edible plant tissue. The modeling approach presented in this study helps to estimate Cd accumulation in plant tissue over multiple years and in distinct agricultural soil systems. PMID:19552942

  19. The effect of phosphate bio-fertilizer (Barvar-2) on the growth of marigold.

    PubMed

    Zaredost, Fatemeh; Hashemabadi, Davood; Ziyabari, Maryam Barari; Torkashvand, Ali Mohammadi; Kaviani, Behzad; Solimandarabi, Maryam Jadid; Zarchini, Mohammad

    2014-03-01

    The present study was conducted to study the individual and combined effect of bio-fertilizer (Barvar-2) and chemical phosphate fertilizer on the floral quality of marigold (Tagetes erecta L.). A factorial experiment was carried out which consisted of two factors: i) inoculation of seed, root and seed + root with bio-fertilizer (Barvar-2) and control; application of chemical phosphorus at 100 mg I(-1), 200 mg l(-1), 300 mg l(-1) and 400 mg l(-1) levels. In this study, flowering time, display life, fresh and dry weight of flower, available soil phosphorus, shoot phosphorus and carotenoid content were evaluated. Results showed that the combined effect of bio- and chemical fertilizer was insignificant (p < 1 and 5%) for most of the characteristics studied except for shoot phosphorus and carotenoid content in petals. The lowest time to flowering (64.67 days) was obtained in seeds and transplant roots inoculation to bio-fertilizer x 400 mg I(-1) P. Maximum display life (25.35), fresh weight (16.20 g), carotenoid content (3.903 mg g(-1) d. wt.) and concentration of P in shoots (0.352%) were observed in transplant roots inoculation to bio-fertilizer x 400 mg I(-1) P.

  20. Music therapy: fertile ground for application of research in practice.

    PubMed

    Leonard, J E

    1993-03-01

    When participating in research studies in the clinical setting it is important to remember the goals of the interventions under study. Frequently the parameters and design of the research, while necessary to validate findings, are not written in stone for future application. It is possible to consider other situations in which the intervention might be applied that lie outside the current research protocols. To fully utilize research findings, apply them to your own unique practice and then set up your own study using the original work as a starting place.

  1. Attributes for NHDPlus Catchments (Version 1.1) for the Conterminous United States: Nutrient Inputs from Fertilizer and Manure, Nitrogen and Phosphorus (N&P), 2002

    USGS Publications Warehouse

    Wieczorek, Michael; LaMotte, Andrew E.

    2010-01-01

    This data set represents the estimated amount of nitrogen and phosphorus in kilograms for the year 2002, compiled for every catchment of NHDPlus for the conterminous United States. The source data set is County-Level Estimates of Nutrient Inputs to the Land Surface of the Conterminous United States, 1982-2001 (Ruddy and others, 2006). The NHDPlus Version 1.1 is an integrated suite of application-ready geospatial datasets that incorporates many of the best features of the National Hydrography Dataset (NHD) and the National Elevation Dataset (NED). The NHDPlus includes a stream network (based on the 1:100,00-scale NHD), improved networking, naming, and value-added attributes (VAAs). NHDPlus also includes elevation-derived catchments (drainage areas) produced using a drainage enforcement technique first widely used in New England, and thus referred to as "the New England Method." This technique involves "burning in" the 1:100,000-scale NHD and when available building "walls" using the National Watershed Boundary Dataset (WBD). The resulting modified digital elevation model (HydroDEM) is used to produce hydrologic derivatives that agree with the NHD and WBD. Over the past two years, an interdisciplinary team from the U.S. Geological Survey (USGS), and the U.S. Environmental Protection Agency (USEPA), and contractors, found that this method produces the best quality NHD catchments using an automated process (USEPA, 2007). The NHDPlus dataset is organized by 18 Production Units that cover the conterminous United States. The NHDPlus version 1.1 data are grouped by the U.S. Geologic Survey's Major River Basins (MRBs, Crawford and others, 2006). MRB1, covering the New England and Mid-Atlantic River basins, contains NHDPlus Production Units 1 and 2. MRB2, covering the South Atlantic-Gulf and Tennessee River basins, contains NHDPlus Production Units 3 and 6. MRB3, covering the Great Lakes, Ohio, Upper Mississippi, and Souris-Red-Rainy River basins, contains NHDPlus Production

  2. Scheduling fertilizer applications as a simple mitigation option for reducing N2O emission in intensively managed mown grassland systems

    NASA Astrophysics Data System (ADS)

    Neftel, Albrecht; Calanca, Pierluigi; Felber, Raphael; Grant, Robert; Conen, Franz

    2014-05-01

    A general principle in all proposed N2O mitigation options is the fertilization according to plants' requirements. Meanwhile the amount of N fertilization allowed is regulated in many countries. Due to the high pressure from food security and the need for economic efficiency the given limits are generally used up. In mown grassland systems a simple mitigation option is to optimize the timing of the fertilizer applications. Application of fertilizer, both organic manure and mineral fertilizer, is generally scheduled after each cut in a narrow time window. In practice, the delay between cut and fertilizer application is determined by weather conditions, management conditions and most important by the planning and experience of the individual farmer. Many field experiments have shown that enhanced N2O emissions tend to occur after cuts but before the application of fertilizer, especially when soils are characterized by a high WFPS. These findings suggest that the time of fertilizer application has an important implications for the N2O emission rate and that scheduling fertilization according to soil conditions might be a simple, cheap and efficient measure to mitigate N2O emissions. In this paper we report on results from a sensitivity analysis aiming at quantifying the effects of the timing of the fertilizer applications on N2O emissions from intensively managed, mown grasslands. Simulations for different time schedules were carried out with the comprehensive ecosystem model "ECOSYS" . To our knowledge this aspect has not been systematically investigated from a scientific point of view, but might have been always there within the experiences of attentive environmentally concerned farmers.

  3. Machining aspects of nickel-phosphorus coatings

    SciTech Connect

    Dini, J.W.

    1992-07-01

    Nickel-phosphorus coatings with greater than 10% phosphorus have been widely used for diamond turning applications such as fabrication of large optics and other high precision parts. This paper discusses the importance of phosphorus content of the alloy on wear of the diamond tool and provides some speculation on the role of phosphorus on machining characteristics.

  4. The Rengen Grassland experiment: bryophytes biomass and element concentrations after 65 years of fertilizer application.

    PubMed

    Hejcman, Michal; Száková, Jirina; Schellberg, Jürgen; Srek, Petr; Tlustos, Pavel; Balík, Jirí

    2010-07-01

    The Rengen Grassland Experiment in Germany, established in 1941, consists of the following fertilizer treatments applied under a two cut management: control, Ca, CaN, CaNP, CaNP-KCl, and CaNP-K(2)SO(4). The aim of this study was (1) to identify effects of fertilizer application on biomass and species composition of bryophytes and (2) to investigate the impact of fertilizer application on macro- (N, P, K, Ca, Mg), micro- (Cu, Fe, Mn, Zn), and toxic (As, Cd, Cr, Pb, Ni) element concentrations in bryophyte biomass. In June 2006, Rhytidiadelphus squarrosus was the only bryophyte species recorded in the control. In treatment Ca, R. squarrosus was the dominant bryophyte species whereas Brachythecium rutabulum occurred sporadically only in a single plot of that treatment. The latter was the only bryophyte species collected in CaN, CaNP, CaNP-KCl, and CaNP-K(2)SO(4) treatments. Dry matter accumulation of bryophytes was highest in the control (180 g m(-2)) followed by Ca (46 g m(-2)), CaNP (25 g m(-2)), CaNP-KCl (15 g m(-2)), CaNP-K(2)SO(4) (9 g m(-2)), and CaN (2 g m(-2)) treatments. A negative correlation between biomass production of bryophytes and dry matter production of vascular plants was revealed up to a threshold value of 400 g m(-2). Above this limit, biomass production of bryophytes remained obviously unaffected by further increase in biomass production of vascular plants. A significant effect of treatment on As, Cd, Cr, Fe, Mn, Ni, Pb, P, Ca, Mg, K, and N concentrations was revealed. Concentrations of these elements were a function of amount of elements supplied with fertilizers. Bryophytes seem to be promising bio-indicators not only for airborne deposition of toxic element but also for fertilizer introduced as well.

  5. [Effects of calcium fertilizer application on peanut growth, physiological characteristics, yield and quality under drought stress].

    PubMed

    Gu, Xue-hua; Sun, Lian-qiang; Gao, Bo; Sun, Qi-ze; Liu, Chen; Zhang, Jia-lei; Li, Xiang-dong

    2015-05-01

    An experiment was carried out to study the effects of different rates of calcium application on peanut growth, physiological characteristics, yield and quality under drought stress at pegging stage and pod setting stage in pool cultivation with rainproof, using variety 606 as experimental material. The results showed that applying Ca fertilizer under drought stress could promote peanut growth, increase the chlorophyll content, leaf photosynthetic rate and the root vitality, increase the recovery ability of peanut during rewatering after drought stress, alleviate the impact of drought stress on peanut. Applying Ca fertilizer under drought stress increased pod and kernel yields because of the increase of kernel rate and pod number per plant. It also increased the fat and protein contents of peanut kernel, and improved peanut kernel quality under drought stress. It was suggested that 300 kg · hm(-2) Ca application is the best choice to alleviate the impact of drought stress on peanut.

  6. Phosphorus Test

    MedlinePlus

    ... AACC products and services. Advertising & Sponsorship: Policy | Opportunities Phosphorus Share this page: Was this page helpful? Also ... else I should know? How is it used? Phosphorus tests are most often ordered along with other ...

  7. Indicators: Phosphorus

    EPA Pesticide Factsheets

    Phosphorus, like nitrogen, is a critical nutrient required for all life. Phosphate (PO4), which plays major roles in the formation of DNA, cellular energy, and cell membranes (and plant cell walls). Too much phosphorus can create water quality problems.

  8. A Loblolly Pine Management Guide: When and Where to Apply Fertilizer

    Treesearch

    Carol G. Wells; Lee Allen

    1985-01-01

    Growth rates in loblolly pine (Pinus taeda L.) stands can often be increased markedly by applying phosphorus, nitrogen, or nitrogen and phosphorus fertilizers. On phosphorus-deficient Lowe Coastal Plain sites, the growth improvement from phosphorus fertilization of loblolly pine often amounts to an increase in site index (age 25) of 15 feet.Nitrogen and nitrogen plus...

  9. USA Nutrient managment forecasting via the "Fertilizer Forecaster": linking surface runnof, nutrient application and ecohydrology.

    NASA Astrophysics Data System (ADS)

    Drohan, Patrick; Buda, Anthony; Kleinman, Peter; Miller, Douglas; Lin, Henry; Beegle, Douglas; Knight, Paul

    2017-04-01

    USA and state nutrient management planning offers strategic guidance that strives to educate farmers and those involved in nutrient management to make wise management decisions. A goal of such programs is to manage hotspots of water quality degradation that threaten human and ecosystem health, water and food security. The guidance provided by nutrient management plans does not provide the day-to-day support necessary to make operational decisions, particularly when and where to apply nutrients over the short term. These short-term decisions on when and where to apply nutrients often make the difference between whether the nutrients impact water quality or are efficiently utilized by crops. Infiltrating rainfall events occurring shortly after broadcast nutrient applications are beneficial, given they will wash soluble nutrients into the soil where they are used by crops. Rainfall events that generate runoff shortly after nutrients are broadcast may wash off applied nutrients, and produce substantial nutrient losses from that site. We are developing a model and data based support tool for nutrient management, the Fertilizer Forecaster, which identifies the relative probability of runoff or infiltrating events in Pennsylvania (PA) landscapes in order to improve water quality. This tool will support field specific decisions by farmers and land managers on when and where to apply fertilizers and manures over 24, 48 and 72 hour periods. Our objectives are to: (1) monitor agricultural hillslopes in watersheds representing four of the five Physiographic Provinces of the Chesapeake Bay basin; (2) validate a high resolution mapping model that identifies soils prone to runoff; (3) develop an empirically based approach to relate state-of-the-art weather forecast variables to site-specific rainfall infiltration or runoff occurrence; (4) test the empirical forecasting model against alternative approaches to forecasting runoff occurrence; and (5) recruit farmers from the four

  10. Improving the efficiency of boron application on the vineyards during NPK fertilization

    NASA Astrophysics Data System (ADS)

    Magomadov, Andy; Batukaev, Abdulmalik; Kalinitchenko, Valeriy; Minkina, Tatiana; Sushkova, Svetlana

    2017-04-01

    The effect of different doses and time of boron fertilization on growth and development of grape plants were studied on the soils of Terek-Kumskiy sands of Chechen Republic, Russian Federation. The studies have shown that sandy soils of pilot area have a low content of main macronutrients except of potassium. The boron content in the sandy soils varies within wide limits and characterizes this soil as lack of boron content especially in water-soluble boron distribution through the soil profile. It was developed a technique for roots feeding of grapes for the first time, that allows to control chemical processes the NPK uptake by plant roots. The studied process realized by implementation of optimum amount of boron in plant-available form, introduced in a certain phase of plants growth. It helps to improve the efficiency of nitrogen, phosphate, potassium using. It was found that boron improves the movement of growth substances and ascorbic acid from the leaves to the fertile parts and cannot be replaced by other nutrients. The plants need of boron throughout the growing season. Boron plays an important role in cell division and protein synthesis is an essential component of cell membranes. The use of boric acid as a fertilizer to increase the number of ovaries on grape plants, stimulating the formation of new points of stems and root growth, increased the number of shoots, improved growth, increased the sugar content of the grapes and taste of the fruit, which is a result of more active uptake of boron by grapes. The optimal dose of boron fertilization on the sandy soil and the comparative agroecological and economic evaluation of its application presented in the research. The use of boron fertilizers allowed to increase the sugar content, acidity, tasting score grapes up to 12-38%. The greatest effect of boron fertilization achieved by application to the phase start of sap flow in a dose of 3 kg/ha in the background N90P90K90. The developed technique for sandy

  11. Diversity enhances agricultural productivity via rhizosphere phosphorus facilitation on phosphorus-deficient soils

    PubMed Central

    Li, Long; Li, Shu-Min; Sun, Jian-Hao; Zhou, Li-Li; Bao, Xing-Guo; Zhang, Hong-Gang; Zhang, Fu-Suo

    2007-01-01

    Intercropping, which grows at least two crop species on the same pieces of land at the same time, can increase grain yields greatly. Legume–grass intercrops are known to overyield because of legume nitrogen fixation. However, many agricultural soils are deficient in phosphorus. Here we show that a new mechanism of overyielding, in which phosphorus mobilized by one crop species increases the growth of a second crop species grown in alternate rows, led to large yield increases on phosphorus-deficient soils. In 4 years of field experiments, maize (Zea mays L.) overyielded by 43% and faba bean (Vicia faba L.) overyielded by 26% when intercropped on a low-phosphorus but high-nitrogen soil. We found that overyielding of maize was attributable to below-ground interactions between faba bean and maize in another field experiment. Intercropping with faba bean improved maize grain yield significantly and above-ground biomass marginally significantly, compared with maize grown with wheat, at lower rates of P fertilizer application (<75 kg of P2O5 per hectare), and not significantly at high rate of P application (>112.5 kg of P2O5 per hectare). By using permeable and impermeable root barriers, we found that maize overyielding resulted from its uptake of phosphorus mobilized by the acidification of the rhizosphere via faba bean root release of organic acids and protons. Faba bean overyielded because its growth season and rooting depth differed from maize. The large increase in yields from intercropping on low-phosphorus soils is likely to be especially important on heavily weathered soils. PMID:17592130

  12. Chinese tallow trees (Triadica sebifera) from the invasive range outperform those from the native range with an active soil community or phosphorus fertilization.

    PubMed

    Zhang, Ling; Zhang, Yaojun; Wang, Hong; Zou, Jianwen; Siemann, Evan

    2013-01-01

    Two mechanisms that have been proposed to explain success of invasive plants are unusual biotic interactions, such as enemy release or enhanced mutualisms, and increased resource availability. However, while these mechanisms are usually considered separately, both may be involved in successful invasions. Biotic interactions may be positive or negative and may interact with nutritional resources in determining invasion success. In addition, the effects of different nutrients on invasions may vary. Finally, genetic variation in traits between populations located in introduced versus native ranges may be important for biotic interactions and/or resource use. Here, we investigated the roles of soil biota, resource availability, and plant genetic variation using seedlings of Triadica sebifera in an experiment in the native range (China). We manipulated nitrogen (control or 4 g/m(2)), phosphorus (control or 0.5 g/m(2)), soil biota (untreated or sterilized field soil), and plant origin (4 populations from the invasive range, 4 populations from the native range) in a full factorial experiment. Phosphorus addition increased root, stem, and leaf masses. Leaf mass and height growth depended on population origin and soil sterilization. Invasive populations had higher leaf mass and growth rates than native populations did in fresh soil but they had lower, comparable leaf mass and growth rates in sterilized soil. Invasive populations had higher growth rates with phosphorus addition but native ones did not. Soil sterilization decreased specific leaf area in both native and exotic populations. Negative effects of soil sterilization suggest that soil pathogens may not be as important as soil mutualists for T. sebifera performance. Moreover, interactive effects of sterilization and origin suggest that invasive T. sebifera may have evolved more beneficial relationships with the soil biota. Overall, seedlings from the invasive range outperformed those from the native range, however

  13. Repeated compost application effects on phosphorus runoff in the Virginia Piedmont.

    PubMed

    Spargo, John T; Evanylo, Gregory K; Alley, Marcus M

    2006-01-01

    Increasing amounts of animal and municipal wastes are being composted before land application to improve handling and spreading characteristics, and to reduce odor and disease incidence. Repeated applications of composted biosolids and manure to cropland may increase the risk for P enrichment of agricultural runoff. We conducted field research in 2003 and 2004 on a Fauquier silty clay loam (Ultic Hapludalfs) to compare the effects of annual (since 1999) applications of composted and uncomposted organic residuals on P runoff characteristics. Biosolids compost (BSC), poultry litter-yard waste compost (PLC), and uncomposted poultry litter (PL) were applied based on estimated plant-available N. A commercial fertilizer treatment (CF) and an unamended control treatment (CTL) were also included. Corn (Zea mays L.) and a cereal rye (Secale cereal L.) cover crop were planted each year. We applied simulated rainfall in fall 2004 and analyzed runoff for dissolved reactive P (DRP), total dissolved P (TDP), total P (TP), total organic C (TOC), and total suspended solids (TSS). End of season soil samples were analyzed for Mehlich-3 P (M3P), EPA 3050 P (3050P), water soluble P (WSP), degree of P saturation (DPS), soil C, and bulk density. Compost treatments significantly increased soil C, decreased bulk density, and increased M3P, 3050P, WSP, and DPS. The concentration of DRP, TDP, and TP in runoff was highest in compost treatments, but the mass of DRP and TDP was not different among treatments because infiltration was higher and runoff lower in compost-amended soil. Improved soil physical properties associated with poultry litter-yard waste compost application decreased loss of TP and TSS.

  14. [Effects of different application amount of N, P, K fertilizers on physiological characteristics, yield and kernel quality of peanut].

    PubMed

    Zhou, Lu-ying; Li, Xiang-dong; Tang, Xiao; Lin, Ying-jie; Li, Zong-feng

    2007-11-01

    The field experiment was executed with peanut cv. Fenghua No. 1 from 2004 to 2005 in the experimental station of Shandong Agricultural University to study the effects of N, P, K fertilizers application amount on physiological characteristics, yield and kernel quality of peanut. The results showed that, compared with no fertilization, application N, P, K fertilizers increased the content of chlorophyll and soluble protein, enhanced photosynthetic rate and the activities of superoxide dismutase (SOD), peroxidase (POD) and catlase (CAT), and reduced malondialdeyde (MDA) accumulation amount in peanut leaves. The effects of applying N 300-450 kg x hm(-2), P5O2, 150-225 kg x hm(-2) and K2O 300-450 kg x hm(-2) treatments were the most significant. The improvement effect of N fertilizer on photosynthesis properties was mainly at early stage, and that of P was at middle-later stage, K was at whole stage. Applying N, P, K fertilizers increased the pod yield of peanut remarkably, and with the increasing of N application amount the pod yield enhanced, the pod yields were highest when P and K application were at middle amount rates (P5O2, 150 kg x hm(-2) K2O 300 kg x hm(-2)). The increasing effect on pod yield of K fertilizer was greater than that of N and P fertilizers. Applying a small amount of P and K fertilizers (P2O5 75 kg x hm(-2), K2O 150 kg x hm(-2)) could significantly increase the contents of fat and protein in peanut kernel, applying a small amount of N fertilizer (N 150 kg x hm(-2)) could significantly increase the content of protein in peanut kernel, but applying a large amount of N fertilizer (N 450 kg x hm(-2)) could significantly increase the content of fat in peanut kernel. Applying P fertilizer obviously increased fat and protein content, applying N fertilizer mainly enhanced protein content, and applying K fertilizer mainly raised the content of soluble sugar. In addition, the application of N, P and K fertilizers also increased the contents of lysine and

  15. Bioremediation of palm industry wastes using vermicomposting technology: its environmental application as green fertilizer.

    PubMed

    Rupani, Parveen Fatemeh; Embrandiri, Asha; Ibrahim, Mahamd Hakimi; Shahadat, Mohammad; Hansen, Sune Balle; Mansor, Nur Naha Abu

    2017-07-01

    Several technologies are being applied for treatment of palm oil mill wastes. Among them, the biological treatments (vermicomposting) have widely been recognized as one of the most efficient and eco-friendly methods for converting organic waste materials into valuable products. The present study focuses on vermicomposting of acidic palm oil mill effluent (POME) mixed with the palm pressed fibre (PPF) which are found difficult to decompose in the environment. The industrial waste (POME) was vermicomposted using Lumbricus rubellus under laboratory conditions for a period of 45 days. A significant improvement in nitrogen, phosphorus, and potassium content was monitored during vermicomposting process. In addition, the decline in C:N ratio of vermicompost (up to 17.20 ± 0.60) reflects the degree of stabilization of POME-PPF mixture. Different percentages of the vermicompost extract obtained from POME-PPF mixture were also examined for the germination of mung bean (Vigna radiata) seed. The results showed that 75% vermicompost extract demonstrated better performance for the seed germination. On the basis of significant findings, POME-PPF mixture can be successfully used as a feeding material for the earthworms, while on the other hand, it can also be used as a cost-effective fertilizer for the germination and the proper growth of mung bean.

  16. Eco-Stoichiometric Alterations in Paddy Soil Ecosystem Driven by Phosphorus Application

    PubMed Central

    Li, Xia; Wang, Hang; Gan, ShaoHua; Jiang, DaQian; Tian, GuangMing; Zhang, ZhiJian

    2013-01-01

    Agricultural fertilization may change processes of elemental biogeochemical cycles and alter the ecological function. Ecoenzymatic stoichiometric feature plays a critical role in global soil carbon (C) metabolism, driving element cycles, and mediating atmospheric composition in response to agricultural nutrient management. Despite the importance on crop growth, the role of phosphorous (P) in compliance with eco-stoichiometry on soil C and nitrogen (N) sequestration in the paddy field remains poorly understood in the context of climate change. Here, we collected soil samples from a field experiment after 6 years of chemical P application at a gradient of 0 (P-0), 30 (P-30), 60 (P-60), and 90 (P-90) kg ha−1 in order to evaluate the role of P on stoichiometric properties in terms of soil chemical, microbial biomass, and eco-enzyme activities as well as greenhouse gas (GHG: CO2, N2O and CH4) emissions. Continuous P input increased soil total organic C and N by 1.3–9.2% and 3%–13%, respectively. P input induced C and N limitations as indicated by the decreased ratio of C:P and N:P in the soil and microbial biomass. A synergistic mechanism among the ecoenzymatic stoichiometry, which regulated the ecological function of microbial C and N acquisition and were stoichiometrically related to P input, stimulated soil C and N sequestration in the paddy field. The lower emissions of N2O and CH4 under the higher P application (P-60 and P-90) in July and the insignificant difference in N2O emission in August compared to P-30; however, continuous P input enhanced CO2 fluxes for both samplings. There is a technical conflict for simultaneously regulating three types of GHGs in terms of the eco-stoichiometry mechanism under P fertilization. Thus, it is recommended that the P input in paddy fields not exceed 60 kg ha−1 may maximize soil C sequestration, minimize P export, and guarantee grain yields. PMID:23667435

  17. Reconstruction of spatially detailed global map of NH4+ and NO3- application in synthetic nitrogen fertilizer

    NASA Astrophysics Data System (ADS)

    Nishina, Kazuya; Ito, Akihiko; Hanasaki, Naota; Hayashi, Seiji

    2017-02-01

    Currently, available historical global N fertilizer map as an input data to global biogeochemical model is still limited and existing maps were not considered NH4+ and NO3- in the fertilizer application rates. This paper provides a method for constructing a new historical global nitrogen fertilizer application map (0.5° × 0.5° resolution) for the period 1961-2010 based on country-specific information from Food and Agriculture Organization statistics (FAOSTAT) and various global datasets. This new map incorporates the fraction of NH4+ (and NO3-) in N fertilizer inputs by utilizing fertilizer species information in FAOSTAT, in which species can be categorized as NH4+- and/or NO3--forming N fertilizers. During data processing, we applied a statistical data imputation method for the missing data (19 % of national N fertilizer consumption) in FAOSTAT. The multiple imputation method enabled us to fill gaps in the time-series data using plausible values using covariates information (year, population, GDP, and crop area). After the imputation, we downscaled the national consumption data to a gridded cropland map. Also, we applied the multiple imputation method to the available chemical fertilizer species consumption, allowing for the estimation of the NH4+ / NO3- ratio in national fertilizer consumption. In this study, the synthetic N fertilizer inputs in 2000 showed a general consistency with the existing N fertilizer map (Potter et al., 2010) in relation to the ranges of N fertilizer inputs. Globally, the estimated N fertilizer inputs based on the sum of filled data increased from 15 to 110 Tg-N during 1961-2010. On the other hand, the global NO3- input started to decline after the late 1980s and the fraction of NO3- in global N fertilizer decreased consistently from 35 to 13 % over a 50-year period. NH4+-forming fertilizers are dominant in most countries; however, the NH4+ / NO3- ratio in N fertilizer inputs shows clear differences temporally and geographically. This

  18. Nitrogen and phosphorus flux from the production of Nile tilapia through the application of environmental indicators.

    PubMed

    Osti, J A S; Moraes, M A B; Carmo, C F; Mercante, C T J

    2017-07-10

    We aimed in this study utilize environmental indicators as a quantitative method to evaluate and discuss the nitrogen (TN) and phosphorus (TP) flux by a production stage grow-out (termination) of Nile tilapia (Oreochromis niloticus) in fishpond. The TN and TP load, the mass balance, the input of TN and TP via feed and the converted nutrients in fish biomass are the environmental indicators applied in this study. During the production cycle (128 days), the system exported 15,931 g TN and 4,189 g TP that were related to the amount of feed supplied (r Pearson = 0.8825 and r = 0.8523, respectively), corroborated by the feed conversion ratio (1.61:1). The indicators showed that 26% TN and 45% TP were reversed into fish biomass, 62% TN and 40% TP were retained in the fishpond, and 12% TN and 15% TP were exported via effluent. The largest contribution of nutrients generated by the system and exported via effluent was observed in phase III and IV. This result is supported by the feed conversion ratio 2.14 and 2.21:1 obtained at this phase, a fact explained by the amount of feed offered and the fish metabolism. Application of environmental indicators showed to be an efficient tool to quantify flux of TN and TP produced during the grow-out period of Nile tilapia and therefore, guide management practices more sustainable. Concerning the environmental sustainability of the activity the implementation of best management practices such as the better control of the feed amount offered would lead to a smaller loss of TN and TP to the water. Furthermore, the use of better quality feeds would allow greater nutrient assimilation efficiency.

  19. P-31 NMR characterization of fertilizer residual P in cotton/corn fields

    USDA-ARS?s Scientific Manuscript database

    Phosphorus (P) is an essential plant nutrient. However, over application of P to soils has raised concerns because excess P in runoff could result in eutrophication of fresh water bodies. A field experiment of poultry litter (PL) and chemical fertilizer (CF) to a Cecil soil used for cotton and corn...

  20. Variance in response of pole-size trees and seedlings of Douglas-fir and western hemlock to nitrogen and phosphorus fertilizers.

    Treesearch

    M.A. Radwan; J.S. Shumway; D.S. Debell; J.M. Kraft

    1991-01-01

    Three experiments were conducted to determine effects of N and P fertilizers on growth and levels of plant-tissue nutrients of Douglas-fir (Pseudotsuga menziesii (Mirb.) Franco) and western hemlock (Tsuga heterophylla (Raf.) Sarg.). Both pole-size trees in closed-canopy stands and potted seedlings were use d . Soil series were...

  1. Tropical soils in Mato Grosso, Brazil, retain high phosphorus (P) binding capacity after 30 years of intensive fertilization and will remain a P sink for another 50-160 years.

    NASA Astrophysics Data System (ADS)

    Porder, S.; Roy, E.; Willig, E.; Martinelli, L. A.; Pegorini, L.; Richards, P.; Spera, S. A.; Vazquez, F. F.

    2016-12-01

    Intensification of tropical agriculture is one way to meet increasing global food demand, but tropical soils often require more phosphorus (P) fertilizer than those in the world's traditional breadbaskets. Recent studies from Europe suggest that P fertilizer additions will eventually saturate soil P binding capacity, and can build a soil P bank upon which future crop production can draw. We tested this hypothesis in Mato Grosso, Brazil, where highly mechanized agriculture produces 9% of the world's soy harvest on soils with high P binding capacity. In this region, P fertilizer inputs typically exceed harvests by 10kg P/ha, and our expectation was that total P and available P would increase, and P binding capacity would decrease, with time in cultivation. To test this hypothesis, we measured P availability, binding, and accumulation on 31 fields ranging from 0-31 years in intensive production. We also estimated the number of years in production that would be required to saturate the soils with P, since after that time P additions could be reduced to equal harvest P removal. As expected, our data show increasing P availability, and decreasing P binding capacity, over time. A multiple regression including only soil [SiO2] (a proxy for both mineralogy and texture) and years in production explained 87, 63 and 91% of the observed variation in total P, Bray-extractable P, and P sorption capacity, respectively. However, the effect of [SiO2], and thus texture and mineralogy, was 1.7, 1.2, and 4.9 times more important in predicting our dependent variables than was years in production. Despite fertilizer inputs in excess of harvest removals, the reduction in P binding capacity is slow, and we estimate it will take between 50-160 years for fertilizer inputs to saturate the P binding capacity of these soils. These results suggest that the P tax imposed by high P binding soils in the tropics will impose substantial material costs to tropical farmers in the coming decades, and

  2. Runoff phosphorus loss immediately after poultry manure application as influenced by the application rate and tillage.

    PubMed

    Kaiser, Daniel E; Mallarino, Antonio P; Haq, Mazhar U; Allen, Brett L

    2009-01-01

    Excessive or N-based application of poultry manure for crops may result in significant risk of P loss with surface runoff. This study assessed P loss immediately after poultry manure application to soybean [Glycine max (L.) Merr.] residue with and without tillage at eight Iowa fields. Manure from chickens (Gallus gallus domesticus) or turkeys (Melleagris gollopavo) was applied at intended rates of 0, 84, or 168 kg total N ha(-1) (total P was 0, 21-63, 50-123 kg P ha(-1), respectively) with three replications. Simulated rainfall (76 mm h(-1)) was applied to 3-m2 sections of larger field plots with 2 to 7% slope, usually within 2 d of application, to collect runoff during 30 min. Runoff was analyzed for concentrations of sediment, dissolved reactive P (DRPC), bioavailable P (BAPC), and total P (TPRC). Non-incorporated manure consistently increased (P < or = 0.10) concentrations of all runoff P fractions in five sites, but there were increasing trends at all sites, and on average manure increased DRPC, BAPC, and TPRC 32, 23, and 12 times, respectively, over the control. Tillage to incorporate manure reduced DRPC, BAPC, and TPRC by 88, 89, and 77% on average, respectively, although in non-manured plots tillage seldom affected DRPC or BAPC and often increased TPRC. Tillage increased sediment concentration in runoff but not enough to offset the benefits of manure P incorporation. Runoff P loads generally followed trends of runoff P concentrations but were more variable, and significant treatment effects were less frequent. Overall, incorporation of manure by tillage was very effective at reducing P loss during runoff events shortly after poultry manure application under the conditions of this study.

  3. An application of a probabilistic fertility model to estimate some female family life cycle stages in Paraguay.

    PubMed

    Neupert, R F

    1994-01-01

    Women's life cycle involves reproduction, labor force, and inactivity. In developing countries with inadequate data, mathematical models can be used to analyze economic behavior of individuals and families in different stages of the life cycle. This study described a model and empirically tested the model on data from Paraguay. The model provided estimates of the mean age of women at first birth, the mean age of women at last birth, time spent in reproduction, and mean life after the birth of the last child for 1950-55, 1980-85, and projection to 2020-25. Values were generated from age-specific mortality and fertility rates. Simulations were performed with varying mortality and fertility schedules. The method was based on techniques developed by Krishnamoorty, who based his methods on models proposed by Hoem and Goodman, Keyfitz, and Pullum. The method was based on an assumption of a stable population with a fixed age pattern of mortality and fertility. An assumption was also that more and less fertile women had the same mortality risks, and fertility and mortality at any one age was applicable to all ages. The total and net fertility rates and life expectancy followed a linear pattern. Application of the method showed that the net fertility rate declined by 27% from 6.15 during 1950-55 to 4.49 during 1980-85, but the time spent in reproduction declined only by 15%, from 15.7 years to 15.9 years. The cause of fertility decline was not a shortened reproductive period, but birth spacing. Projections to 2020-25 showed a decline in the reproductive period of 7 years and a net fertility rate of 3.0 children per woman. When a simulation of one of the 8 UN models of fertility age structure was used to project future fertility, the results showed the reproductive period declined from 11.8 years to 9.7 years. When fertility was assumed to be 2.3, which was considerably lower than 4.49 during 1980-85, the results showed replacement level fertility during 2020-25 and an early

  4. NH3 Emission from Fertilizer Application: A Collaborative Study in the Midwestern U.S.

    NASA Astrophysics Data System (ADS)

    Myles, L.; Koloutsou-Vakakis, S.; Bernacchi, C.; Lehmann, C.; Saylor, R. D.; Heuer, M.; Sibble, D.; Caldwell, J. A.; Balasubramanian, S.; Nelson, A. J.; Rood, M. J.

    2014-12-01

    Atmospheric ammonia (NH3) is a precursor for secondary particulate matter and a contributor to soil acidification and eutrophication when deposited to land and surface waters. Fertilizer application is a major source of atmospheric NH3, particularly in intensive agricultural regions such as the Midwestern U.S. Quantification of NH3 emission from fertilized crops remains highly uncertain, which limits the representativeness of NH3 emissions that are used in air quality models. A collaborative study to improve understanding of NH3 emission from fertilizer application focused on [1] measurement of above-canopy NH3 fluxes from a fertilized corn field in Illinois using the relaxed eddy accumulation (REA) and flux gradient methods and in-canopy fluxes with the inverse Lagrangian dispersion analysis method, [2] estimation of NH3 emissions at the regional scale using a process-based approach with available archived independent variables, and the currently used top-down approach, in order to compare and determine differences in predicted spatial and temporal variability of NH3 emissions, and [3] performance of spatial analysis to determine spatial and temporal patterns of ammonia emissions and relate them to independent variables characteristic of land use, soil, meteorology, and agricultural management practices. NH3 flux was measured over and within a maize canopy from pre-cultivation through senescence (May-September 2014) at the University of Illinois at Urbana-Champaign (UIUC) Energy Biosciences Institute Energy Farm, and data from the field study was incorporated into models to facilitate connection of local emissions with the regional scale and to improve understanding of the processes that drive emission and deposition.

  5. Hydrology and phosphorus transport simulation in a lowland polder by a coupled modeling system.

    PubMed

    Yan, Renhua; Huang, Jiacong; Li, Lingling; Gao, Junfeng

    2017-08-01

    Modeling the rain-runoff processes and phosphorus transport processes in lowland polders is critical in finding reasonable measures to alleviate the eutrophication problem of downstream rivers and lakes. This study develops a lowland Polder Hydrology and Phosphorus modeling System (PHPS) by coupling the WALRUS-paddy model and an improved phosphorus module of a Phosphorus Dynamic model for lowland Polder systems (PDP). It considers some important hydrological characteristics, such as groundwater-unsaturated zone coupling, groundwater-surface water feedback, human-controlled irrigation and discharge, and detailed physical and biochemical cycles of phosphorus in surface water. The application of the model in the Jianwei polder shows that the simulated phosphorus matches well with the measured values. The high precision of this model combined with its low input data requirement and efficient computation make it practical and easy to the water resources management of Chinese polders. Parameter sensitivity analysis demonstrates that Kuptake, cQ2, cW1, and cQ1 exert a significant effect on the modeled results, whereas KresuspensionMax, Ksettling, and Kmineralization have little effect on the modeled total phosphorus. Among the three types of uncertainties (i.e., parameter, initial condition, and forcing uncertainties), forcing uncertainty produces the strongest effect on the simulated phosphorus. Based on the analysis result of annual phosphorus balance when considering the high import from irrigation and fertilization, lowland polder is capable of retaining phosphorus and reducing phosphorus export to surrounding aquatic ecosystems because of their special hydrological regulation regime. Copyright © 2016 Elsevier Ltd. All rights reserved.

  6. [Nutrient use efficiency and yield-increasing effect of single basal application of rice specific controlled release fertilizer].

    PubMed

    Chen, Jiansheng; Xu, Peizhi; Tang, Shuanhu; Zhang, Fabao; Xie, Chunsheng

    2005-10-01

    A series of pot and field experiments and field demonstrations showed that in comparing with the commonly used specific-fertilizers containing same amounts of nutrients, single basal application of rice-specific controlled release fertilizer could increase the use efficiency of N and P by 12.2% - 22.7% and 7.0% - 35.0%, respectively in pot experiment, and the use efficiency of N by 17.1% in field experiment. In 167 field demonstrations successively conducted for 3 years in various rice production areas of Guangdong Province, single basal application of the fertilizer saved the application rate of N and P by 22.1% and 21.8%, respectively, and increased the yield by 8.2%, compared with normal split fertilization.

  7. Stratification of phosphorus forms from long-term conservation tillage and poultry litter application

    USDA-ARS?s Scientific Manuscript database

    Phosphorus (P) stratification leaves high P concentrations at the soil surface, which are vulnerable to loss in runoff. Understanding P forms at the soil surface may help control P loss, but little information is available on how P forms stratify in soil. We used 31P-nuclear magnetic resonance spec...

  8. Land application of spent gypsum from ditch filters: phosphorus source or sink?

    USDA-ARS?s Scientific Manuscript database

    Agricultural drainage ditches can provide a direct connection between fields and surface waters, and some have been shown to deliver high loads of phosphorus (P) to sensitive water bodies. A potential way to reduce nutrient loads in drainage ditches is to install filter structures containing P sorbi...

  9. 75 FR 36306 - Chemical Mixtures Containing Listed Forms of Phosphorus and Change in Application Process

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-06-25

    ... chemical mixtures containing red phosphorus in a concentration of 80 percent or less and mixtures containing hypophosphorous acid and its salts (hypophosphite salts) in a concentration of 30 percent and less... subject to CSA chemical regulatory controls regardless of concentration. DEA recognizes that concentration...

  10. 76 FR 31824 - Chemical Mixtures Containing Listed Forms of Phosphorus and Change in Application Process

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-06-02

    ... mixtures containing red phosphorus in a concentration of 80 percent or less and mixtures containing hypophosphorous acid and its salts (hypophosphite salts) in a concentration of 30 percent and less, shall qualify for automatic exemption. DEA is not implementing automatic exemption for any concentration of chemical...

  11. Application of dithionite reduction to explore insoluble Fe-associated phosphorus in organic wastes

    USDA-ARS?s Scientific Manuscript database

    Phosphorus (P) loss from agricultural soil has been identifed as a major non-point factor affecting water quality in streams, rivers and lakes through its effect on eutrophication processes. Research has shown that redox status plays improtant roles in P bioavailability as Fe(II)-P speices are more...

  12. Phosphorus and nitrogen leaching before and after tillage and urea application

    USDA-ARS?s Scientific Manuscript database

    Leaching of nutrients through agricultural soils is a priority water quality concern on the Atlantic Coastal Plain. The objective of this study was to assess the effect of tillage on leaching of phosphorus (P) and nitrogen (N) from no-till soils of the Delmarva Peninsula, evaluating low and high nut...

  13. Downstream approaches to phosphorus management in agricultural landscapes: Regional applicability and use

    USDA-ARS?s Scientific Manuscript database

    This review provides a synthesis of conservation practices that are aimed at improving water quality by retaining phosphorus (P) downstream of runoff genesis. The review is structured around specific downstream practices that are prevalent in various parts of the United States, but also focuses on t...

  14. Spatial variability of soil total and DTPA-extractable cadmium caused by long-term application of phosphate fertilizers, crop rotation, and soil characteristics.

    PubMed

    Jafarnejadi, A R; Sayyad, Gh; Homaee, M; Davamei, A H

    2013-05-01

    Increasing cadmium (Cd) accumulation in agricultural soils is undesirable due to its hazardous influences on human health. Thus, having more information on spatial variability of Cd and factors effective to increase its content on the cultivated soils is very important. Phosphate fertilizers are main contamination source of cadmium (Cd) in cultivated soils. Also, crop rotation is a critical management practice which can alter soil Cd content. This study was conducted to evaluate the effects of long-term consumption of the phosphate fertilizers, crop rotations, and soil characteristics on spatial variability of two soil Cd species (i.e., total and diethylene triamine pentaacetic acid (DTPA) extractable) in agricultural soils. The study was conducted in wheat farms of Khuzestan Province, Iran. Long-term (27-year period (1980 to 2006)) data including the rate and the type of phosphate fertilizers application, the respective area, and the rotation type of different regions were used. Afterwards, soil Cd content (total or DTPA extractable) and its spatial variability in study area (400,000 ha) were determined by sampling from soils of 255 fields. The results showed that the consumption rate of di-ammonium phosphate fertilizer have been varied enormously in the period study. The application rate of phosphorus fertilizers was very high in some subregions with have extensive agricultural activities (more than 95 kg/ha). The average and maximum contents of total Cd in the study region were obtained as 1.47 and 2.19 mg/kg and DTPA-extractable Cd as 0.084 and 0.35 mg/kg, respectively. The spatial variability of Cd indicated that total and DTPA-extractable Cd contents were over 0.8 and 0.1 mg/kg in 95 and 25 % of samples, respectively. The spherical model enjoys the best fitting and lowest error rate to appraise the Cd content. Comparing the phosphate fertilizer consumption rate with spatial variability of the soil cadmium (both total and DTPA extractable) revealed the high

  15. Response of seed tocopherols in oilseed rape to nitrogen fertilizer sources and application rates* #

    PubMed Central

    Hussain, Nazim; Li, Hui; Jiang, Yu-xiao; Jabeen, Zahra; Shamsi, Imran Haider; Ali, Essa; Jiang, Li-xi

    2014-01-01

    Tocopherols (Tocs) are vital scavengers of reactive oxygen species (ROS) and important seed oil quality indicators. Nitrogen (N) is one of the most important fertilizers in promoting biomass and grain yield in crop production. However, the effect of different sources and application rates of N on seed Toc contents in oilseed rape is poorly understood. In this study, pot trials were conducted to evaluate the effect of two sources of N fertilizer (urea and ammonium nitrate). Each source was applied to five oilseed rape genotypes (Zheshuang 72, Jiu-Er-1358, Zheshuang 758, Shiralee, and Pakola) at three different application rates (0.41 g/pot (N1), 0.81 g/pot (N2), and 1.20 g/pot (N3)). Results indicated that urea increased α-, γ-, and total Toc (T-Toc) more than did ammonium nitrate. N3 was proven as the most efficient application rate, which yielded high contents of γ-Toc and T-Toc. Highly significant correlations were observed between Toc isomers, T-Toc, and α-/γ-Toc ratio. These results clearly demonstrate that N sources and application rates significantly affect seed Toc contents in oilseed rape. PMID:24510711

  16. Initial response of loblolly pine and competition to mid rotation fertilization and herbicide application in the gulf coastal plain

    Treesearch

    Hal O. Liechty; Conner Fristoe

    2010-01-01

    Application of N and P to mid-rotation loblolly pines (Pinus taeda L.) stands is a common silvicultural practice used to increase crop tree production in the Gulf Coastal Plain. Mid-rotation applications of herbicides or combined applications of herbicide and fertilizer are a less common practice. We applied herbicide (1.17 l imazapyr and 0.23 l...

  17. Nitrous Oxide Emissions from a Golf Course Fairway and Rough after Application of Different Nitrogen Fertilizers.

    PubMed

    Gillette, Katrina L; Qian, Yaling; Follett, Ronald F; Del Grosso, Stephen

    2016-09-01

    Few studies have quantified nitrous oxide (NO) emissions from intensively managed turfgrass systems on golf courses. Fertilizer treatments consisting of urea with inhibitors of nitrification and urease (INU), polymer-coated urea (PCU), and uncoated balanced methylene urea (BMU) chain, which use different mechanisms to control the release of N substrate, were applied to a golf course fairway and rough three times during the 2011 growing season at a rate of 50 kg N ha per application. The vented chamber method was used to measure turf-soil-atmospheric NO exchange. Cumulative emissions from fairway INU, PCU, and BMU treatments totaled 6.5, 1.9, and 7.6 kg NO-N ha yr, representing a 4.02, 1.25, and 4.75% loss of total N applied, respectively. Summer INU and BMU fertilization to the fairway produced the greatest NO fluxes. Rapid fluxes during the summer were likely related to low physiological activity in cool-season turfgrass and to warm, wet soil conditions that increased denitrification rates. However, PCU applied to the fairway was more resistant to NO losses than other fertilizer treatments. Fertilizer treatments applied to the rough had cumulative emissions of 2.4, 1.50, and 1.49 kg NO-N ha yr from INU, PCU, and BMU treatments, corresponding to a 1.21, 0.62, and 0.61% loss of total N applied, respectively. The lower NO emission on roughs was likely associated with greater carbon pools, lower soil moisture, and lower temperatures. This study supports the effectiveness of PCU to reduce NO emission from cool-season turfgrass fairways when soil conditions favored denitrification during warm periods. Applying INU and BMU when soil was cool and dry was effective in moderating NO losses. Copyright © by the American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America, Inc.

  18. Effects of nitrogen fertilizer application on greenhouse gas emissions and economics of corn production.

    PubMed

    Kim, Seungdo; Dale, Bruce E

    2008-08-15

    Nitrogen fertilizer plays an important role in corn cultivation in terms of both economic and environmental aspects. Nitrogen fertilizer positively affects corn yield and the soil organic carbon level, but it also has negative environmental effects through nitrogen-related emissions from soil (e.g., N20, NOx, NO3(-) leaching, etc.). Effects of nitrogen fertilizer on greenhouse gas emissions associated with corn grain are investigated via life cycle assessment. Ecoefficiency analysis is also used to determine an economically and environmentally optimal nitrogen application rate (NAR). The ecoefficiency index in this study is defined as the ratio of economic return due to nitrogen fertilizer to the greenhouse gas emissions of corn cultivation. Greenhouse gas emissions associated with corn grain decrease as NAR increases at a lower NAR until a minimum greenhouse gas emission level is reached because corn yield and soil organic carbon level increase with NAR. Further increasing NAR after a minimum greenhouse gas emission level raises greenhouse gas emissions associated with corn grain. Increased greenhouse gas emissions of corn grain due to nitrous oxide emissions from soil are much higher than reductions of greenhouse gas emissions of corn grain due to corn yield and changes in soil organic carbon levels at a higher NAR. Thus, there exists an environmentally optimal NAR in terms of greenhouse gas emissions. The trends of the ecoefficiency index are similar to those of economic return to nitrogen and greenhouse gas emissions associated with corn grain. Therefore, an appropriate NAR could enhance profitability as well as reduce greenhouse gas emissions associated with corn grain.

  19. Increase of As release and phytotoxicity to rice seedlings in As-contaminated paddy soils by Si fertilizer application.

    PubMed

    Lee, Chia-Hsing; Huang, Hsuan-Han; Syu, Chien-Hui; Lin, Tzu-Huei; Lee, Dar-Yuan

    2014-07-15

    Silicon (Si) was shown to be able to reduce arsenic (As) uptake by rice in hydroponic culture or in low As soils using high Si application rates. However, the effect of Si application on As uptake of rice grown in As-contaminated soils using Si fertilizer recommendation rate has not been investigated. In this study, the effect of Si application using Si fertilizer recommendation rate on As release and phytotoxicity in soils with different properties and contents of As was examined. The results show that the concentrations of As in soil solutions increased after Si applications due to competitive adsorption between As and Si on soil solids and the Si concentrations in soil solutions were also elevated to beneficial levels for rice growth. The rice seedlings accumulated more As and its growth was inhibited by Si application in As contaminated/spiked soils. The results indicate that there is an initial aggravation in As toxicity before the beneficial effects of Si fertilizing to rice were revealed when Si application based on fertilizer recommendation rate to As-contaminated paddy soils. Therefore, for As-contaminated paddy soils with high levels of As, the application of Si fertilizer could result in increasing As phytotoxicity and uptake by rice.

  20. Slug responses to grassland cutting and fertilizer application under plant functional group removal

    NASA Astrophysics Data System (ADS)

    Everwand, Georg; Scherber, Christoph; Tscharntke, Teja

    2013-04-01

    Current studies on trophic interactions in biodiversity experiments have largely relied on artificially sown gradients in plant diversity, but removal experiments with their more natural plant community composition are more realistic. Slugs are a major part of the invertebrate herbivore community, with some species being common pests in agriculture. We therefore investigated how strongly slugs are influenced by grassland management, plant biodiversity and composition. Here we analysed the effects of cutting frequency, fertilizer application and plant functional group composition on slug densities and their contribution to herbivory on Rumex acetosa in a removal experiment within a >100-year old grassland in Northern Germany. The experiment was laid out as a Latin rectangle with full factorial combinations of (i) plant functional group removal (3 levels) using herbicides, (ii) fertilizer application (2 levels) and (iii) cutting frequency (2 levels). The resulting 12 treatment combinations were replicated 6 times, resulting in 72 plots. We collected a total of 1020 individuals belonging to three species Arion distinctus (60.4% of individuals), Deroceras reticulatum (34.7%) and Arion lusitanicus (4.9%) using a cover board technique and additionally measured herbivore damage to R. acetosa. We found the highest slug abundance on plots with a low cutting frequency and high food resource availability (increased cover of forbs and taller vegetation). Fertilizer application had no significant effect on slug abundance, but caused higher herbivore damage to on R. acetosa, possibly as a result of increased tissue quality. The negative effect of higher cutting frequency on slug abundance was lowest in control plots with their naturally developed graminoid-forb communities (cutting reduced slug density by 6% in the control vs. 29% in herbicide plots). Our experiments therefore support the idea that more natural plant species compositions reduce the impact of disturbances (e

  1. Modelling of catchment nitrogen concentrations response to observed varying fertilizer application intensities

    NASA Astrophysics Data System (ADS)

    Jomaa, Seifeddine; Jiang, Sanyuan; Yang, Xiaoqiang; Rode, Michael

    2016-04-01

    Eutrophication is a serious environmental problem. Despite numerous experimental and modelling efforts, understanding of the effect of land use and agriculture practices on in-stream nitrogen fluxes is still not fully achieved. This study combined intensive field monitoring and numerical modelling using 30 years of surface water quality data of a drinking water reservoir catchment in central Germany. The Weida catchment (99.5 km2) is part of the Elbe river basin and has a share of 67% of agricultural land use with significant changes in agricultural practices within the investigation period. The geology of the Weida catchment is characterized by clay schists and eruptive rocks, where rocks have low permeability. The semi-distributed hydrological water quality HYPE (Hydrological Predictions for the Environment) model was used to reproduce the measured data. First, the model was calibrated for discharge and nitrate-N concentrations (NO3-N) during the period 1997-2000. Then, the HYPE model was validated successfully for three different periods 1983-1987, 1989-1996 and 2000-2003, which are charaterized by different fertilizer application rates (with lowest discharge prediction performance of NSE = 0.78 and PBIAS = 3.74%, considering calibration and validation periods). Results showed that the measured as well as simulated in-stream nitrate-N concentration respond quickly to fertilizer application changes (increase/decrease). This rapid response can be explained with short residence times of interflow and baseflow runoff components due to the hardrock geological properties of the catchment. Results revealed that the surface runoff and interflow are the most dominant runoff components. HYPE model could reproduce reasonably well the NO3-N daily loads for varying fertilizer application, when detailed input data in terms of crop management (field-specific survey) are considered.

  2. Predicting phosphorus availability from soil-applied composted and non-composted cattle feedlot manure.

    PubMed

    Zvomuya, Francis; Helgason, Bobbi L; Larney, Francis J; Janzen, H Henry; Akinremi, Olalekan O; Olson, Barry M

    2006-01-01

    Prediction of phosphorus (P) availability from soil-applied composts and manure is important for agronomic and environmental reasons. This study utilized chemical properties of eight composted and two non-composted beef cattle (Bos taurus) manures to predict cumulative phosphorus uptake (CPU) during a 363-d controlled environment chamber bioassay. Ten growth cycles of canola (Brassica napus L.) were raised in pots containing 2 kg of a Dark Brown Chernozemic clay loam soil (fine-loamy, mixed, Typic Haploboroll) mixed with 0.04 kg of the amendments. Inorganic P fertilizer (KH2PO4) and an unamended control were included for comparison. All treatments received a nutrient solution containing an adequate supply of all essential nutrients, except P, which was supplied by the amendments. Cumulative P uptake was similar for composted (74 mg kg-1 soil) and non-composted manures (60 mg kg-1 soil) and for the latter and the fertilizer (40 mg kg-1 soil). However, the CPU was significantly higher for organic amendments than the control (24 mg kg-1 soil) and for composted manure than the fertilizer. Apparent phosphorus recovery (APR) from composted manure (24%) was significantly lower than that from non-composted manure (33%), but there was no significant difference in APR between the organic amendments and the fertilizer (27%). Partial least squares (PLS) regression indicated that only two parameters [total water-extractable phosphorus (TPH2O) and total phosphorus (TP) concentration of amendments] were adequate to model amendment-derived cumulative phosphorus uptake (ACPU), explaining 81% of the variation in ACPU. These results suggest that P availability from soil-applied composted and non-composted manures can be adequately predicted from a few simple amendment chemical measurements. Accurate prediction of P availability and plant P recovery may help tailor manure and compost applications to plant needs and minimize the buildup of bioavailable P, which can contribute to

  3. A literature review of nonbiological remediation technologies which may be applicable to fertilizer/agrichemical dealer sites

    SciTech Connect

    Enlow, P.D.

    1990-10-01

    The National Fertilizer and Environmental Research Center at TVA has initiated a Window of Opportunity (WOO) project for the Development of Waste Treatment and Site Remediation Technologies for Fertilizer Dealers.'' The overall objectives of this project are to identify, evaluate, modify, research, develop, demonstrate, introduce, and market waste treatment and site remediation technologies/strategies for fertilizer dealers.'' This bulletin supports the WOO project by providing a general literature overview of the more prominent nonbiological remediation technologies that may be applicable to fertilizer/agrichemical dealer sites. The technologies discussed are: incineration, anaerobic pyrolysis, in situ vitrification, thermal desorption, air stripping (soil), air stripping (water), steam stripping, soil washing, solvent extraction, solidification/stabilization, supercritical fluid extraction, and supercritical water oxidation. The advantages, disadvantages, applicability to remediation of contaminated sites, and need for further research are discussed.

  4. A literature review of nonbiological remediation technologies which may be applicable to fertilizer/agrichemical dealer sites

    SciTech Connect

    Enlow, P.D.

    1990-10-01

    The National Fertilizer and Environmental Research Center at TVA has initiated a Window of Opportunity (WOO) project for the ``Development of Waste Treatment and Site Remediation Technologies for Fertilizer Dealers.`` The overall objectives of this project are ``to identify, evaluate, modify, research, develop, demonstrate, introduce, and market waste treatment and site remediation technologies/strategies for fertilizer dealers.`` This bulletin supports the WOO project by providing a general literature overview of the more prominent nonbiological remediation technologies that may be applicable to fertilizer/agrichemical dealer sites. The technologies discussed are: incineration, anaerobic pyrolysis, in situ vitrification, thermal desorption, air stripping (soil), air stripping (water), steam stripping, soil washing, solvent extraction, solidification/stabilization, supercritical fluid extraction, and supercritical water oxidation. The advantages, disadvantages, applicability to remediation of contaminated sites, and need for further research are discussed.

  5. Reduction of phosphorus concentration in mineral supplement on fertility rate, maternal ability and costs of beef cows reared in pastures of Urochloa decumbens.

    PubMed

    Costa, Rogério Magnoli; Ponsano, Elisa Helena Giglio; de Souza, Vinícius Carneiro; Malafaia, Pedro

    2016-02-01

    Manufacturing and marketing of mineral mixtures with less than 40 g kg(-1) phosphorus (P) is prohibited under Brazilian regulations, although scientific evidence rejects this recommendation. Considering the hypothesis that P levels in commercial mineral supplements can be reduced without affecting animal performance and health, the objective of this experiment was to evaluate the effects of reducing the concentration of P in the mineral supplement (from 40 to 18 g kg(-1)) of a herd of beef cows grazing tropical pastures of signal grass (Urochloa decumbens). The experiment was carried out in the savanna region of Mato Grosso do Sul, Brazil, during the years 2011 to 2013. Variables analyzed included pregnancy rate, calving interval, weight of calves at weaning, and cost of mineral supplementation. There were no changes in the reproductive parameters of the herd and the weight at weaning of the calves. However, the cost of mineral supplementation was significantly lower when the herd was supplemented with the mineral mix containing only 18 g kg(-1) P. Phosphorus concentration of the forage was analyzed monthly during 1 year and averaged 1.9 ± 0.45 g kg(-1) DM. Thus, it appears possible to reduce P content and cost of mineral supplementation without any adverse effects on the health and productivity of beef cattle herds in the State of Mato Grosso do Sul. However, the final decision should be made based on the clinical-nutritional examination and by constant technical assistance to the farm.

  6. [Variation characteristics of maize yield and fertilizer utilization rate on an upland yellow soil under long term fertilization].

    PubMed

    Luo, Long-Zao; Li, Yu; Zhang, Wen-An; Xiao, Hou-Jun; Jiang, Tai-Ming

    2013-10-01

    An analysis was made on the 16-year experimental data from the long term fertilization, experiment of maize on a yellow soil in Guizhou of Southwest China. Four treatments, i. e. , no fertilization (CK), chemical fertilization (165 kg N x hm(-2), 82.5 kg P2O5 x hm(-2), and 82.5 kg K2O x hm(-2), NPK), organic manure (30555 kg x hm(-2), M), and combined applicatioin of chemical fertilizers and organic manure (NPKM), were selected to analyze the variation trends of maize yield and fertilizer use efficiency on yellow soil under effects of different long term fertilization modes, aimed to provide references for evaluating and establishing long term fertilization mode and promote the sustainable development of crop production. Overall, the maize yield under long term fertilization had an increasing trend, with a large annual variation. Treatment NPKM had the best yield-increasing effect, with the maize yield increased by 4075.71 kg x hm(-2) and the increment being up to 139.2%. Long term fertilization increased the fertilizer utilization efficiency of maize. In treatment M, the nitrogen and phosphorus utilization rates were increased significantly by 35.4% and 18.8%, respectively. Treatment NPK had obvious effect in improving potassium utilization rate, with an increment of 20% and being far higher than that in treatments M (8.7%) and NPKM (9.2%). The results showed that long term fertilization, especially the combined application of chemical fertilizers and organic manure, was of great importance in increasing crop yield and fertilizer use efficiency.

  7. North American fertilizer capacity data. Supplement

    SciTech Connect

    Not Available

    1991-12-01

    This listing of producers and their fertilizer production capacities was compiled in October 1991 with the cooperation of the US and Canadian fertilizer industries. Yearly production and forecasts are given for 1987 through 1997. Fertilizers reported on include: ammonium sulfate, nitric acid, wet-process superphosphoric acid, normal superphosphate, elemental phosphorus, potassium sulfate, and sulfate of potash/magnesia.

  8. [Effects of soil fertility and nitrogen application rate on nitrogen absorption and translocation, grain yield, and grain protein content of wheat].

    PubMed

    Wang, Yuefu; Yu, Zhenwen; Li, Xiangxia; Yu, Songlie

    2003-11-01

    The results of this study showed that nitrogen application improved the nitrogen uptake by wheat, especially during its late growth stage. Although a higher nitrogen application rate could increase the amount of absorbed nitrogen, an excess of nitrogen would remain in vegetative organs at the stage after flowering, owing to the low translocation rate of nitrogen from these organs to the grain, and hence, the nitrogen use efficiency and nitrogen harvest index were decreased. Compared with that on high fertility soil, the ratio of nitrogen absorbed from fertilizer to total absorbed nitrogen was higher when the wheat was grown on low fertility soil. On high fertility soil, wheat plant absorbed more nitrogen from top-dressed fertilizer than from basis fertilizer, and top-dressed fertilizer contributed more nitrogen to the grain. It was reversed on low fertility soil.

  9. Timescales and controls on phosphorus loss from a grassland hillslope following a cessation in P application.

    NASA Astrophysics Data System (ADS)

    Cassidy, Rachel; Doody, Donnacha; Watson, Catherine

    2016-04-01

    Despite the implementation of EU regulations controlling the use of fertilisers in agriculture, reserves of phosphorus (P) in soils continue to pose a threat to water quality. Mobilisation and transport of legacy P from soil to surface waters has been highlighted as a probable cause of many water bodies continuing to fail to achieve targets under the Water Framework Directive. However, the rates and quantities lost from farmland, and the timescales for positive change to water quality, following cessation of P inputs, remain poorly understood. Monitoring data from an instrumented grassland research site in Northern Ireland provide some insights. The site is located in a hydrologically 'flashy' landscape characterised by steep gradients and poorly drained soils over impermeable bedrock. Between 2000 and 2005 soil Olsen P concentrations were altered in five 0.2 ha hydrologically isolated grazed grassland plots through chemical fertiliser applications of 0, 10, 20, 40, 80 kg P ha-1yr-1. By 2004 this had resulted in soil Olsen P concentrations of 19, 24, 28, 38 and 67 mg P L-1 across the plots, after which applications ceased. Subsequently, until 2012, changes in soil Olsen P across the plots and losses to overland flow and drainage were monitored, with near-continuous flow measurement and water samples abstracted for chemical analysis. Runoff events were sampled at 20 minute intervals while drainage flows were taken as a weekly composite of 4-hourly samples. Overland flow events were defined by at least 24 hours without flow being recorded at the respective plot outlets. Drainage flow was examined on a weekly basis as it was continuous except during prolonged dry periods. To examine the hydrological drivers of overland flow and drainage losses the dissolved reactive P (DRP) and total P (TP) time series were synchronised with rainfall data and modelled soil moisture deficits. Results demonstrated that from 2005-2012 there was no significant difference among plots in

  10. Response of nitric and nitrous oxide fluxes to N fertilizer application in greenhouse vegetable cropping systems in southeast China

    PubMed Central

    Zhang, Yaojun; Lin, Feng; Jin, Yaguo; Wang, Xiaofei; Liu, Shuwei; Zou, Jianwen

    2016-01-01

    It is of great concern worldwide that active nitrogenous gases in the global nitrogen cycle contribute to regional and global-scale environmental issues. Nitrous oxide (N2O) and nitric oxide (NO) are generally interrelated in soil nitrogen biogeochemical cycles, while few studies have simultaneously examined these two gases emission from typical croplands. Field experiments were conducted to measure N2O and NO fluxes in response to chemical N fertilizer application in annual greenhouse vegetable cropping systems in southeast China. Annual N2O and NO fluxes averaged 52.05 and 14.87 μg N m−2 h−1 for the controls without N fertilizer inputs, respectively. Both N2O and NO emissions linearly increased with N fertilizer application. The emission factors of N fertilizer for N2O and NO were estimated to be 1.43% and 1.15%, with an annual background emission of 5.07 kg N2O-N ha−1 and 1.58 kg NO-N ha−1, respectively. The NO-N/N2O-N ratio was significantly affected by cropping type and fertilizer application, and NO would exceed N2O emissions when soil moisture is below 54% WFPS. Overall, local conventional input rate of chemical N fertilizer could be partially reduced to attain high yield of vegetable and low N2O and NO emissions in greenhouse vegetable cropping systems in China. PMID:26848094

  11. Response of nitric and nitrous oxide fluxes to N fertilizer application in greenhouse vegetable cropping systems in southeast China.

    PubMed

    Zhang, Yaojun; Lin, Feng; Jin, Yaguo; Wang, Xiaofei; Liu, Shuwei; Zou, Jianwen

    2016-02-05

    It is of great concern worldwide that active nitrogenous gases in the global nitrogen cycle contribute to regional and global-scale environmental issues. Nitrous oxide (N2O) and nitric oxide (NO) are generally interrelated in soil nitrogen biogeochemical cycles, while few studies have simultaneously examined these two gases emission from typical croplands. Field experiments were conducted to measure N2O and NO fluxes in response to chemical N fertilizer application in annual greenhouse vegetable cropping systems in southeast China. Annual N2O and NO fluxes averaged 52.05 and 14.87 μg N m(-2) h(-1) for the controls without N fertilizer inputs, respectively. Both N2O and NO emissions linearly increased with N fertilizer application. The emission factors of N fertilizer for N2O and NO were estimated to be 1.43% and 1.15%, with an annual background emission of 5.07 kg N2O-N ha(-1) and 1.58 kg NO-N ha(-1), respectively. The NO-N/N2O-N ratio was significantly affected by cropping type and fertilizer application, and NO would exceed N2O emissions when soil moisture is below 54% WFPS. Overall, local conventional input rate of chemical N fertilizer could be partially reduced to attain high yield of vegetable and low N2O and NO emissions in greenhouse vegetable cropping systems in China.

  12. Response of nitric and nitrous oxide fluxes to N fertilizer application in greenhouse vegetable cropping systems in southeast China

    NASA Astrophysics Data System (ADS)

    Zhang, Yaojun; Lin, Feng; Jin, Yaguo; Wang, Xiaofei; Liu, Shuwei; Zou, Jianwen

    2016-02-01

    It is of great concern worldwide that active nitrogenous gases in the global nitrogen cycle contribute to regional and global-scale environmental issues. Nitrous oxide (N2O) and nitric oxide (NO) are generally interrelated in soil nitrogen biogeochemical cycles, while few studies have simultaneously examined these two gases emission from typical croplands. Field experiments were conducted to measure N2O and NO fluxes in response to chemical N fertilizer application in annual greenhouse vegetable cropping systems in southeast China. Annual N2O and NO fluxes averaged 52.05 and 14.87 μg N m‑2 h‑1 for the controls without N fertilizer inputs, respectively. Both N2O and NO emissions linearly increased with N fertilizer application. The emission factors of N fertilizer for N2O and NO were estimated to be 1.43% and 1.15%, with an annual background emission of 5.07 kg N2O-N ha‑1 and 1.58 kg NO-N ha‑1, respectively. The NO-N/N2O-N ratio was significantly affected by cropping type and fertilizer application, and NO would exceed N2O emissions when soil moisture is below 54% WFPS. Overall, local conventional input rate of chemical N fertilizer could be partially reduced to attain high yield of vegetable and low N2O and NO emissions in greenhouse vegetable cropping systems in China.

  13. Predicting fertility.

    PubMed

    Maheshwari, Abha; Bhattacharya, Siladitya; Johnson, Neil P

    2008-06-01

    Various predictors of fertility have been described, suggesting that none are ideal. The literature on tests of ovarian reserve is largely limited to women undergoing in vitro fertilization, and is reliant on the use of surrogate markers, such as cycle cancellation and number of oocytes retrieved, as reference standards. Currently available prediction models are far from ideal; most are applicable only to subfertile women seeking assisted reproduction, and lack external validation. Systematic reviews and meta-analyses of predictors of fertility are limited by their heterogeneity in terms of the population sampled, predictors tested and reference standards used. There is an urgent need for consensus in the design of these studies, definition of abnormal tests, and, above all, a need to use robust outcomes such as live birth as the reference standard. There are no reliable predictors of fertility that can guide women as to how long childbearing can be deferred.

  14. Parameterization of DFTB3/3OB for Sulfur and Phosphorus for Chemical and Biological Applications

    PubMed Central

    2015-01-01

    We report the parametrization of the approximate density functional tight binding method, DFTB3, for sulfur and phosphorus. The parametrization is done in a framework consistent with our previous 3OB set established for O, N, C, and H, thus the resulting parameters can be used to describe a broad set of organic and biologically relevant molecules. The 3d orbitals are included in the parametrization, and the electronic parameters are chosen to minimize errors in the atomization energies. The parameters are tested using a fairly diverse set of molecules of biological relevance, focusing on the geometries, reaction energies, proton affinities, and hydrogen bonding interactions of these molecules; vibrational frequencies are also examined, although less systematically. The results of DFTB3/3OB are compared to those from DFT (B3LYP and PBE), ab initio (MP2, G3B3), and several popular semiempirical methods (PM6 and PDDG), as well as predictions of DFTB3 with the older parametrization (the MIO set). In general, DFTB3/3OB is a major improvement over the previous parametrization (DFTB3/MIO), and for the majority cases tested here, it also outperforms PM6 and PDDG, especially for structural properties, vibrational frequencies, hydrogen bonding interactions, and proton affinities. For reaction energies, DFTB3/3OB exhibits major improvement over DFTB3/MIO, due mainly to significant reduction of errors in atomization energies; compared to PM6 and PDDG, DFTB3/3OB also generally performs better, although the magnitude of improvement is more modest. Compared to high-level calculations, DFTB3/3OB is most successful at predicting geometries; larger errors are found in the energies, although the results can be greatly improved by computing single point energies at a high level with DFTB3 geometries. There are several remaining issues with the DFTB3/3OB approach, most notably its difficulty in describing phosphate hydrolysis reactions involving a change in the coordination number of

  15. Transition of fertilizer application and agricultural pollution loads: a case study in the Nhue-Day River basin.

    PubMed

    Giang, P H; Harada, H; Fujii, S; Lien, N P H; Hai, H T; Anh, P N; Tanaka, S

    2015-01-01

    Rapid socio-economic development in suburban areas of developing countries has induced changes in agricultural waste and nutrient management, resulting in water pollution. The study aimed at estimating agricultural nutrient cycles and their contribution to the water environment. A material flow model of nitrogen (N) and phosphorus (P) was developed focusing on agricultural activities from 1980 to 2010 in Trai hamlet, an agricultural watershed in Nhue-Day River basin, Vietnam. The model focused on the change in household management of human excreta and livestock excreta, and chemical fertilizer consumption. The results showed that the proportion of nutrients from compost/manure applied to paddy fields decreased from 85 to 41% for both N and P between 1980 and 2010. The nutrient inputs derived from chemical fertilizer decreased 6% between 1980 and 2000 for both N and P. Then, these nutrients increased 1.4 times for N and 1.2 times for P from 2000 to 2010. As of 2010, the total inputs to paddy fields have amounted to 435 kg-N/ha/year and 90 kg-P/ha/year. Of these nutrient inputs, 40% of N and 65% of P were derived from chemical fertilizer. Thirty per cent (30%) of total N input was discharged to the water bodies through agricultural runoff and 47% of total P input accumulated in soil.

  16. Biochar as phosphorus transporter to support the closure of the phosphorus cycle

    NASA Astrophysics Data System (ADS)

    Soja, Gerhard; Jagerhofer, Reinhard; Fristak, Vladimir; Pfeifer, Christoph

    2017-04-01

    Waste materials rich in phosphorus could partly substitute rock phosphate-based mineral fertilizers. As rock phosphate is listed as critical raw material, measures for increasing the recovery rate of phosphorus and for closing the phosphorus cycle are required. However, direct use of the waste materials as fertilizers are frequently not possible because of legal constraints, adverse side effects because of co-occurring contaminants or hygienic concerns. So this study had the objective to test the appropriateness of carbonizing P-rich residues that can be used as secondary P resources for producing P fertilizers. The resulting biochar or hydrochar products should be tested for the bioavailability of P for plant uptake. Feedstock materials tested as secondary P resources were chicken manure, animal bone flour, sewage sludge, and digestates. These materials were either pyrolyzed at different temperatures, partly with different chemical modifications, or hydrothermally carbonized. The biochar and hydrochar products were analyzed for their total and available P concentrations, and the plant bioavailability was determined with a standardized plant growth test with rye (Neubauer-test). The results showed that biochar produced from a mixture of chicken manure and saw dust was equivalent to a standard phosphate fertilizer (superphosphate) with respect to P available for plant uptake. For most materials, a pyrolysis temperature of 400 °C was slightly more beneficial for P availability than 500 °C. Pyrolytic carbonization mostly was more supportive for plant growth than hydrothermal carbonization of the tested feedstocks. For some feedstocks the addition of sodium carbonate improved the P uptake of the plants without affecting the biomass production. The results show that P-rich waste materials used as secondary resources for carbonization can effectively contribute to increased P recovery, savings in the use of mineral phosphate fertilizers and reduced P loads to non

  17. Determination of Nitrogen, Phosphorus, and Potassium Release Rates of Slow- and Controlled-Release Fertilizers: Single-Laboratory Validation, First Action 2015.15.

    PubMed

    Thiex, Nancy

    2016-01-01

    A previously validated method for the determination of nitrogen release patterns of slow- and controlled-release fertilizers (SRFs and CRFs, respectively) was submitted to the Expert Review Panel (ERP) for Fertilizers for consideration of First Action Official Method(SM) status. The ERP evaluated the single-laboratory validation results and recommended the method for First Action Official Method status and provided recommendations for achieving Final Action. The 180 day soil incubation-column leaching technique was demonstrated to be a robust and reliable method for characterizing N release patterns from SRFs and CRFs. The method was reproducible, and the results were only slightly affected by variations in environmental factors such as microbial activity, soil moisture, temperature, and texture. The release of P and K were also studied, but at fewer replications than for N. Optimization experiments on the accelerated 74 h extraction method indicated that temperature was the only factor found to substantially influence nutrient-release rates from the materials studied, and an optimized extraction profile was established as follows: 2 h at 25°C, 2 h at 50°C, 20 h at 55°C, and 50 h at 60°C.

  18. A simple and fast method for assessment of the nitrogen-phosphorus-potassium rating of fertilizers using high-resolution continuum source atomic and molecular absorption spectrometry

    NASA Astrophysics Data System (ADS)

    Bechlin, Marcos André; Fortunato, Felipe Manfroi; da Silva, Ricardo Moutinho; Ferreira, Edilene Cristina; Gomes Neto, José Anchieta

    2014-11-01

    The determination of N, P, and K in fertilizers by high-resolution continuum source flame atomic and molecular absorption spectrometry is proposed. Under optimized conditions, measurements of the diatomic molecules NO and PO at 215.360 and 247.620 nm, respectively, and K using the wing of the alternative line at 404.722 nm allowed calibration curves to be constructed in the ranges 500-5000 mg L- 1 N (r = 0.9994), 100-2000 mg L- 1 P (r = 0.9946), and 100-2500 mg L- 1 K (r = 0.9995). Commercial fertilizers were analyzed by the proposed method and the concentrations of N, P, and K were found to be in agreement with those obtained by Kjeldahl, spectrophotometric, and flame atomic emission spectrometry methods, respectively, at a 95% confidence level (paired t-test). A phosphate rock certified reference material (CRM) was analyzed and the results for P and K were in agreement with the reference values. Recoveries from spiked CRM were in the ranges 97-105% (NO3--N), 95-103% (NH4+-N), 93-103% (urea-N), 99-108% (P), and 99-102% (K). The relative standard deviations (n = 12) for N, P, and K were 6, 4, and 2%, respectively.

  19. The Relevance of Phosphorus and Iron Chemistry to the Recovery of Phosphorus from Wastewater: A Review.

    PubMed

    Wilfert, Philipp; Kumar, Prashanth Suresh; Korving, Leon; Witkamp, Geert-Jan; van Loosdrecht, Mark C M

    2015-08-18

    The addition of iron is a convenient way for removing phosphorus from wastewater, but this is often considered to limit phosphorus recovery. Struvite precipitation is currently used to recover phosphorus, and this approach has attracted much interest. However, it requires the use of enhanced biological phosphorus removal (EBPR). EBPR is not yet widely applied and the recovery potential is low. Other phosphorus recovery methods, including sludge application to agricultural land or recovering phosphorus from sludge ash, also have limitations. Energy-producing wastewater treatment plants increasingly rely on phosphorus removal using iron, but the problem (as in current processes) is the subsequent recovery of phosphorus from the iron. In contrast, phosphorus is efficiently mobilized from iron by natural processes in sediments and soils. Iron-phosphorus chemistry is diverse, and many parameters influence the binding and release of phosphorus, including redox conditions, pH, presence of organic substances, and particle morphology. We suggest that the current poor understanding of iron and phosphorus chemistry in wastewater systems is preventing processes being developed to recover phosphorus from iron-phosphorus rich wastes like municipal wastewater sludge. Parameters that affect phosphorus recovery are reviewed here, and methods are suggested for manipulating iron-phosphorus chemistry in wastewater treatment processes to allow phosphorus to be recovered.

  20. [Effects of fertilization on the P accumulation and leaching in vegetable greenhouse soil].

    PubMed

    Zhao, Ya-jie; Zhao, Mu-qiu; Lu, Cai-yan; Shi, Yi; Chen, Xin

    2015-02-01

    A packed soil column experiment was conducted to investigate the effect of different fertilization practices on phosphorus (P) accumulation and leaching potential in a vegetable greenhouse soil with different fertility levels. The results showed that the leaching loss of total P in the leachates elevated with the increment of leaching time while the accumulative leaching loss of total P was relatively low, indicating P was mainly accumulated in the soil instead of in the leachate. At the end of the leaching experiment, soil fertility and fertilization treatment affected the content of total phosphorus and Olsen-P significantly. Compared with the low-level-fertility soil, the contents of total P and Olsen-P increased by 14.3% and 12.2% in the medium-level-fertility soil, 33.3% and 37.7% in the high-level-fertility soil. Total P in the combined application of poultry manure and chemical fertilizer (M+NPK) was elevated by 5.7% and 4.3%, compared with the NPK and M treatment. Compared with NPK treatment, Olsen-P in M and M + NPK treatments augmented by 13.0% and 3.1%, respectively. Soil total P and Olsen-P mainly accumulated in the 0-10 cm and 10-20 cm soil layers, and much less in the 20-40 cm soil layer.

  1. Phosphorus dynamics within agricultural drainage ditches in the lower Mississippi Alluvial Valley

    USDA-ARS?s Scientific Manuscript database

    Excessive phosphorus loading from fertilizers in agriculture results in enriched runoff and downstream freshwater and saltwater aquatic system eutrophication. This study evaluated phosphorus dynamics in agricultural drainage ditches across eight sites within the Lower Mississippi Alluvial Valley (LM...

  2. Dissolved phosphorus speciation of flash carbonization, slow pyrolysis, and fast pyrolysis biochars

    USDA-ARS?s Scientific Manuscript database

    Pyrolysis of waste biomass is a promising technology to produce sterile and renewable organic phosphorus fertilizers. Systematic studies are necessary to understand how different pyrolysis platforms influence the chemical speciation of dissolved (bioavailable) phosphorus. This study employed solut...

  3. Strategies for reducing the fertilizer application rate in the ridge and furrow rainfall harvesting system in semiarid regions.

    PubMed

    Lian, Yanhao; Meng, Xiangping; Yang, Zhen; Wang, Tianlu; Ali, Shahzad; Yang, Baoping; Zhang, Peng; Han, Qingfang; Jia, Zhikuan; Ren, Xiaolong

    2017-06-01

    The ridge and furrow rainwater harvesting (RFRH) system is a promising water-saving planting technique for dryland farming, but we lack a full understanding of the effects of different fertilizer rates (N:P) on plant nutrient uptake and nutrient use efficiency (NuUE) in foxtail millet using this planting method, as well as the available nutrient residues in the soil. We conducted field studies (Loess Plateau, China) comparing RFRH planting (R) and traditional flat planting (T) at four different fertilizer rates to determine suitable fertilizer application rates for R during 2013-2015. Compared with T, R improved the soil moisture and the utilization of rainwater and fertilizer, thereby enhancing the grain yield, water use efficiency (WUE), grain nutrient uptake, and NUE in a dry year, but with no improvements in a rainy year. The grain yield and WUE exhibited parabolic increasing trends as the fertilizer application rate increased over three years, but no significant increase was found when the fertilizer rate exceeded 189:96 kg N:P ha(-1) under R, which significantly reduced the NuUE and might waste nutrients. Therefore, we recommend R combined with 189:96 kg N:P ha(-1) as a promising planting strategy for foxtail millet in semiarid areas.

  4. Bronx River bed sediments phosphorus pool and phosphorus compound identification

    NASA Astrophysics Data System (ADS)

    Wang, J.; Pant, H. K.

    2008-12-01

    Phosphorus (P) transport in the Bronx River degraded water quality, decreased oxygen levels, and resulted in bioaccumulation in sediment potentially resulting in eutrophication, algal blooms and oxygen depletion under certain temperature and pH conditions. The anthropogenic P sources are storm water runoff, raw sewage discharge, fertilizer application in lawn, golf course and New York Botanical Garden; manure from the Bronx zoo; combined sewoverflows (CSO's) from parkway and Hunts Point sewage plant; pollutants from East River. This research was conducted in the urban river system in New York City area, in order to control P source, figure out P transport temporal and spatial variations and the impact on water quality; aimed to regulate P application, sharing data with Bronx River Alliance, EPA, DEP and DEC. The sediment characteristics influence the distribution and bioavailbility of P in the Bronx River. The P sequential extraction gave the quantitative analysis of the P pool, quantifying the inorganic and organic P from the sediments. There were different P pool patterns at the 15 sites, and the substantial amount of inorganic P pool indicated that a large amount P is bioavailable. The 31P- NMR (Nuclear Magnetic Resonance Spectroscopy) technology had been used to identify P species in the 15 sites of the Bronx River, which gave a qualitative analysis on phosphorus transport in the river. The P compounds in the Bronx River bed sediments are mostly glycerophophate (GlyP), nucleoside monophosphates (NMP), polynucleotides (PolyN), and few sites showed the small amount of glucose-6-phosphate (G6P), glycerophosphoethanoamine (GPEA), phosphoenopyruvates (PEP), and inosine monophosphate (IMP). The land use spatial and temporal variations influence local water P levels, P distributions, and P compositions.

  5. Community structure of ammonia-oxidizing bacteria under long-term application of mineral fertilizer and organic manure in a sandy loam soil.

    PubMed

    Chu, Haiyan; Fujii, Takeshi; Morimoto, Sho; Lin, Xiangui; Yagi, Kazuyuki; Hu, Junli; Zhang, Jiabao

    2007-01-01

    The effects of mineral fertilizer (NPK) and organic manure on the community structure of soil ammonia-oxidizing bacteria (AOB) was investigated in a long-term (16-year) fertilizer experiment. The experiment included seven treatments: organic manure, half organic manure N plus half fertilizer N, fertilizer NPK, fertilizer NP, fertilizer NK, fertilizer PK, and the control (without fertilization). N fertilization greatly increased soil nitrification potential, and mineral N fertilizer had a greater impact than organic manure, while N deficiency treatment (PK) had no significant effect. AOB community structure was analyzed by PCR-denaturing gradient gel electrophoresis (PCR-DGGE) of the amoA gene, which encodes the alpha subunit of ammonia monooxygenase. DGGE profiles showed that the AOB community was more diverse in N-fertilized treatments than in the PK-fertilized treatment or the control, while one dominant band observed in the control could not be detected in any of the fertilized treatments. Phylogenetic analysis showed that the DGGE bands derived from N-fertilized treatments belonged to Nitrosospira cluster 3, indicating that N fertilization resulted in the dominance of Nitrosospira cluster 3 in soil. These results demonstrate that long-term application of N fertilizers could result in increased soil nitrification potential and the AOB community shifts in soil. Our results also showed the different effects of mineral fertilizer N versus organic manure N; the effects of P and K on the soil AOB community; and the importance of balanced fertilization with N, P, and K in promoting nitrification functions in arable soils.

  6. Community Structure of Ammonia-Oxidizing Bacteria under Long-Term Application of Mineral Fertilizer and Organic Manure in a Sandy Loam Soil▿

    PubMed Central

    Chu, Haiyan; Fujii, Takeshi; Morimoto, Sho; Lin, Xiangui; Yagi, Kazuyuki; Hu, Junli; Zhang, Jiabao

    2007-01-01

    The effects of mineral fertilizer (NPK) and organic manure on the community structure of soil ammonia-oxidizing bacteria (AOB) was investigated in a long-term (16-year) fertilizer experiment. The experiment included seven treatments: organic manure, half organic manure N plus half fertilizer N, fertilizer NPK, fertilizer NP, fertilizer NK, fertilizer PK, and the control (without fertilization). N fertilization greatly increased soil nitrification potential, and mineral N fertilizer had a greater impact than organic manure, while N deficiency treatment (PK) had no significant effect. AOB community structure was analyzed by PCR-denaturing gradient gel electrophoresis (PCR-DGGE) of the amoA gene, which encodes the α subunit of ammonia monooxygenase. DGGE profiles showed that the AOB community was more diverse in N-fertilized treatments than in the PK-fertilized treatment or the control, while one dominant band observed in the control could not be detected in any of the fertilized treatments. Phylogenetic analysis showed that the DGGE bands derived from N-fertilized treatments belonged to Nitrosospira cluster 3, indicating that N fertilization resulted in the dominance of Nitrosospira cluster 3 in soil. These results demonstrate that long-term application of N fertilizers could result in increased soil nitrification potential and the AOB community shifts in soil. Our results also showed the different effects of mineral fertilizer N versus organic manure N; the effects of P and K on the soil AOB community; and the importance of balanced fertilization with N, P, and K in promoting nitrification functions in arable soils. PMID:17098920

  7. Fertilizer summary data 1990

    SciTech Connect

    Berry, J.T.; Hargett, N.L.

    1991-05-01

    Fertilizer Summary Data, published biennially by the National Fertilizer and Environmental Research Center (NFERC), combines fertilizer application and consumption statistics, crop acreage, and farm income/expense data by state and region for the period 1970 through 1990. This sixteenth edition contains statistics on commercial fertilizers sold for farm and nonfarm use, fertilizer distribution by class, and the leading fertilizer grades. Fertilizers are classified as single- or multiple-nutrient materials. Single-nutrient fertilizers, such as anhydrous ammonia (82-0-0), contain only one primary plant nutrient. Multiple-nutrient fertilizers contain two or more plant nutrients and include the ammonium phosphates and grades manufactured by dry or fluid mixing or chemical processing. In some cases, States report materials used in blending multiple-nutrient fertilizers as single-nutrient ingredients lather than the final manufactured product. Fertilizer consumption statistics for 1970 through 1980 are from US Department of Agriculture annual reports. Annual consumption data for 1985 through 1990 are based on the tabulation of individual state fertilizer tonnage reports submitted annually to TVA for inclusion in the National record of fertilizer consumption, Commercial Fertilizers. Crop statistics, fertilizer application rates, and farm income and expense data are supplied by the National Agricultural Statistics Service and the Economic Research Service, USDA.

  8. Fertilizer summary data 1990

    SciTech Connect

    Berry, J.T.; Hargett, N.L.

    1991-05-01

    Fertilizer Summary Data, published biennially by the National Fertilizer and Environmental Research Center (NFERC), combines fertilizer application and consumption statistics, crop acreage, and farm income/expense data by state and region for the period 1970 through 1990. This sixteenth edition contains statistics on commercial fertilizers sold for farm and nonfarm use, fertilizer distribution by class, and the leading fertilizer grades. Fertilizers are classified as single- or multiple-nutrient materials. Single-nutrient fertilizers, such as anhydrous ammonia (82-0-0), contain only one primary plant nutrient. Multiple-nutrient fertilizers contain two or more plant nutrients and include the ammonium phosphates and grades manufactured by dry or fluid mixing or chemical processing. In some cases, States report materials used in blending multiple-nutrient fertilizers as single-nutrient ingredients lather than the final manufactured product. Fertilizer consumption statistics for 1970 through 1980 are from US Department of Agriculture annual reports. Annual consumption data for 1985 through 1990 are based on the tabulation of individual state fertilizer tonnage reports submitted annually to TVA for inclusion in the National record of fertilizer consumption, Commercial Fertilizers. Crop statistics, fertilizer application rates, and farm income and expense data are supplied by the National Agricultural Statistics Service and the Economic Research Service, USDA.

  9. Impact of implanted phosphorus on the diffusivity of boron and its applicability to silicon solar cells

    NASA Astrophysics Data System (ADS)

    Schrof, Julian; Müller, Ralph; Reedy, Robert C.; Benick, Jan; Hermle, Martin

    2015-07-01

    Boron diffusivity reduction in extrinsically doped silicon was investigated in the context of a process combination consisting of BBr3 furnace diffusion and preceding Phosphorus ion implantation. The implantation of Phosphorus leads to a substantial blocking of Boron during the subsequent Boron diffusion. First, the influences of ion implantation induced point defects as well as the initial P doping on B diffusivity were studied independently. Here, it was found that not the defects created during ion implantation but the P doping itself results in the observed B diffusion retardation. The influence of the initial P concentration was investigated in more detail by varying the P implantation dose. A secondary ion mass spectrometry (SIMS) analysis of the BSG layer after the B diffusion revealed that the B diffusion retardation is not due to potential P content in the BSG layer but rather caused by the n-type doping of the crystalline silicon itself. Based on the observations the B diffusion retardation was classified into three groups: (i) no reduction of B diffusivity, (ii) reduced B diffusivity, and (iii) blocking of the B diffusion. The retardation of B diffusion can well be explained by the phosphorus doping level resulting in a Fermi level shift and pairing of B and P ions, both reducing the B diffusivity. Besides these main influences, there are probably additional transient phenomena responsible for the blocking of boron. Those might be an interstitial transport mechanism caused by P diffusion that reduces interstitial concentration at the surface or the silicon/BSG interface shift due to oxidation during the BBr3 diffusion process. Lifetime measurements revealed that the residual (non-blocked) B leads to an increased dark saturation current density in the P doped region. Nevertheless, electrical quality is on a high level and was further increased by reducing the B dose as well as by removing the first few nanometers of the silicon surface after the BBr3

  10. Impact of implanted phosphorus on the diffusivity of boron and its applicability to silicon solar cells

    SciTech Connect

    Schrof, Julian Müller, Ralph; Benick, Jan; Hermle, Martin; Reedy, Robert C.

    2015-07-28

    Boron diffusivity reduction in extrinsically doped silicon was investigated in the context of a process combination consisting of BBr{sub 3} furnace diffusion and preceding Phosphorus ion implantation. The implantation of Phosphorus leads to a substantial blocking of Boron during the subsequent Boron diffusion. First, the influences of ion implantation induced point defects as well as the initial P doping on B diffusivity were studied independently. Here, it was found that not the defects created during ion implantation but the P doping itself results in the observed B diffusion retardation. The influence of the initial P concentration was investigated in more detail by varying the P implantation dose. A secondary ion mass spectrometry (SIMS) analysis of the BSG layer after the B diffusion revealed that the B diffusion retardation is not due to potential P content in the BSG layer but rather caused by the n-type doping of the crystalline silicon itself. Based on the observations the B diffusion retardation was classified into three groups: (i) no reduction of B diffusivity, (ii) reduced B diffusivity, and (iii) blocking of the B diffusion. The retardation of B diffusion can well be explained by the phosphorus doping level resulting in a Fermi level shift and pairing of B and P ions, both reducing the B diffusivity. Besides these main influences, there are probably additional transient phenomena responsible for the blocking of boron. Those might be an interstitial transport mechanism caused by P diffusion that reduces interstitial concentration at the surface or the silicon/BSG interface shift due to oxidation during the BBr{sub 3} diffusion process. Lifetime measurements revealed that the residual (non-blocked) B leads to an increased dark saturation current density in the P doped region. Nevertheless, electrical quality is on a high level and was further increased by reducing the B dose as well as by removing the first few nanometers of the silicon surface after

  11. Impact of implanted phosphorus on the diffusivity of boron and its applicability to silicon solar cells

    SciTech Connect

    Schrof, Julian; Müller, Ralph; Reedy, Robert C.; Benick, Jan; Hermle, Martin

    2015-07-28

    Boron diffusivity reduction in extrinsically doped silicon was investigated in the context of a process combination consisting of BBr3 furnace diffusion and preceding Phosphorus ion implantation. The implantation of Phosphorus leads to a substantial blocking of Boron during the subsequent Boron diffusion. First, the influences of ion implantation induced point defects as well as the initial P doping on B diffusivity were studied independently. Here, it was found that not the defects created during ion implantation but the P doping itself results in the observed B diffusion retardation. The influence of the initial P concentration was investigated in more detail by varying the P implantation dose. A secondary ion mass spectrometry (SIMS) analysis of the BSG layer after the B diffusion revealed that the B diffusion retardation is not due to potential P content in the BSG layer but rather caused by the n-type doping of the crystalline silicon itself. Based on the observations the B diffusion retardation was classified into three groups: (i) no reduction of B diffusivity, (ii) reduced B diffusivity, and (iii) blocking of the B diffusion. The retardation of B diffusion can well be explained by the phosphorus doping level resulting in a Fermi level shift and pairing of B and P ions, both reducing the B diffusivity. Besides these main influences, there are probably additional transient phenomena responsible for the blocking of boron. Those might be an interstitial transport mechanism caused by P diffusion that reduces interstitial concentration at the surface or the silicon/BSG interface shift due to oxidation during the BBr3 diffusion process. Lifetime measurements revealed that the residual (non-blocked) B leads to an increased dark saturation current density in the P doped region. Nevertheless, electrical quality is on a high level and was further increased by reducing the B dose as well as by removing the first few nanometers of the silicon surface after the BBr3

  12. Determination of Phosphorus and Potassium in Commercial Inorganic Fertilizers by Inductively Coupled Plasma-Optical Emission Spectrometry: Single-Laboratory Validation, First Action 2015.18.

    PubMed

    Thiex, Nancy J

    2016-07-01

    A previously validated method for the determination of both citrate-EDTA-soluble P and K and acid-soluble P and K in commercial inorganic fertilizers by inductively coupled plasma-optical emission spectrometry was submitted to the expert review panel (ERP) for fertilizers for consideration of First Action Official Method(SM) status. The ERP evaluated the single-laboratory validation results and recommended the method for First Action Official Method status and provided recommendations for achieving Final Action. Validation materials ranging from 4.4 to 52.4% P2O5 (1.7-22.7% P) and 3-62% K2O (2.5-51.1% K) were used for the validation. Recoveries from validation materials for citrate-soluble P and K ranged from 99.3 to 124.9% P and from 98.4 to 100.7% K. Recoveries from validation materials for acid-soluble "total" P and K ranged from 95.53 to 99.40% P and from 98.36 to 107.28% K. Values of r for citrate-soluble P and K, expressed as RSD, ranged from 0.28 to 1.30% for P and from 0.41 to 1.52% for K. Values of r for total P and K, expressed as RSD, ranged from 0.71 to 1.13% for P and from 0.39 to 1.18% for K. Based on the validation data, the ERP recommended the method (with alternatives for the citrate-soluble and the acid-soluble extractions) for First Action Official Method status and provided recommendations for achieving Final Action status.

  13. Effects of combined application of organic and inorganic fertilizers plus nitrification inhibitor DMPP on nitrogen runoff loss in vegetable soils.

    PubMed

    Yu, Qiaogang; Ma, Junwei; Zou, Ping; Lin, Hui; Sun, Wanchun; Yin, Jianzhen; Fu, Jianrong

    2015-01-01

    The application of nitrogen fertilizers leads to various ecological problems such as large amounts of nitrogen runoff loss causing water body eutrophication. The proposal that nitrification inhibitors could be used as nitrogen runoff loss retardants has been suggested in many countries. In this study, simulated artificial rainfall was used to illustrate the effect of the nitrification inhibitor DMPP (3,4-dimethyl pyrazole phosphate) on nitrogen loss from vegetable fields under combined organic and inorganic nitrogen fertilizer application. The results showed that during the three-time simulated artificial rainfall period, the ammonium nitrogen content in the surface runoff water collected from the DMPP application treatment increased by 1.05, 1.13, and 1.10 times compared to regular organic and inorganic combined fertilization treatment, respectively. In the organic and inorganic combined fertilization with DMPP addition treatment, the nitrate nitrogen content decreased by 38.8, 43.0, and 30.1% in the three simulated artificial rainfall runoff water, respectively. Besides, the nitrite nitrogen content decreased by 95.4, 96.7, and 94.1% in the three-time simulated artificial rainfall runoff water, respectively. A robust decline in the nitrate and nitrite nitrogen surface runoff loss could be observed in the treatments after the DMPP addition. The nitrite nitrogen in DMPP addition treatment exhibited a significant low level, which is near to the no fertilizer application treatment. Compared to only organic and inorganic combined fertilizer treatment, the total inorganic nitrogen runoff loss declined by 22.0 to 45.3% in the organic and inorganic combined fertilizers with DMPP addition treatment. Therefore, DMPP could be used as an effective nitrification inhibitor to control the soil ammonium oxidation in agriculture and decline the nitrogen runoff loss, minimizing the nitrogen transformation risk to the water body and being beneficial for the ecological environment.

  14. [Fertility and Environmental Impacts of Urban Scattered Human Feces Used as Organic Granular Fertilizer for Leaf Vegetables].

    PubMed

    Lü, Wen-zhou; Qiao, Yu-xiang; Yu, Ning; Shi, Rong-hua; Wang, Guang-ming

    2015-09-01

    The disposal of urban scattered human feces has become a difficult problem for the management of modern city. In present study, the scattered human feces underwent the collection, scum removal, flocculation and dehydration, finally became the granular fertilizer; the effects of the ratio of fertilizer to soil on the growth of the pakchoi and the quality of soil and leaching water were evaluated, and the feasibility of granular fertilizer manuring the pakchoi was discussed by pot experiments. The results showed that the granular fertilizer significantly enhanced the production of the pakchoi which were not polluted by the intestinal microorganisms under the experiment conditions; meanwhile, at the proper ratio of fertilizer to soil, the concentration of these microorganisms in the leaching water was lower than that in the control check. Chemical analyses of soil revealed that the nutrient content of nitrogen, phosphorus, potassium and organic matters in soil became much richer in all treatments. In addition, the granular fertilizer improved the physical- chemical properties of soil, including raising the level of soil porosity and reducing the volume weight of soil. Application of granular fertilizer won't pollute the soil or leaching water; instead, it can also prevent nitrogen, potassium and intestinal microorganisms from leaching inio ground water at the proper ratio of granular fertilizer to soil.

  15. Fertilizer potential of liquid and solid effluent from thermophilic anaerobic digestion of poultry waste.

    PubMed

    Liedl, B E; Bombardiere, J; Chaffield, J M

    2006-01-01

    Thermophilic anaerobic treatment of poultry litter produces an effluent stream of digested materials that can be separated into solid and liquid fractions for use as a crop fertilizer. The majority of the phosphorus is partitioned into the solid fraction while the majority of the nitrogen is present in the liquid fraction in the form of ammonium. These materials were tested over six years as an alternative fertilizer for the production of vegetable, fruit, and grassland crops. Application of the solids as a field crop fertilizer for vegetables and blueberries resulted in lower yields than the other fertilizer treatments, but an increase in soil phosphorus over a four-year period. Application of the digested liquids on grass and vegetable plots resulted in similar or superior yields to plots treated with commercially available nitrogen fertilizers. Hydroponic production of lettuce using liquid effluent was comparable to a commercial hydroponic fertilizer regime; however, the effluent treatment for hydroponic tomato production required supplementation and conversion of ammonium to nitrate. While not a total fertilizer solution, our research shows the effectiveness of digested effluent as part of a nutrient management program which could turn a livestock residuals problem into a crop nutrient resource.

  16. Effects of different mechanized soil fertilization methods on corn soil fertility under continuous cropping

    NASA Astrophysics Data System (ADS)

    Shi, Qingwen; Wang, Huixin; Bai, Chunming; Wu, Di; Song, Qiaobo; Gao, Depeng; Dong, Zengqi; Cheng, Xin; Dong, Qiping; Zhang, Yahao; Mu, Jiahui; Chen, Qinghong; Liao, Wenqing; Qu, Tianru; Zhang, Chunling; Zhang, Xinyu; Liu, Yifei; Han, Xiaori

    2017-05-01

    Experiments for mechanized soil fertilization for corns were conducted in Faku demonstration zone. On this basis, we studied effects on corn soil fertility under continuous cropping due to different mechanized soil fertilization methods. Our study would serve as a theoretical basis further for mechanized soil fertilization improvement and soil quality improvement in brown soil area. Based on the survey of soil physical characteristics during different corn growth periods, we collected soil samples from different corn growth periods to determine and make statistical analysis accordingly. Stalk returning to field with deep tillage proved to be the most effective on available nutrient improvement for arable soil in the demonstration zone. Different mechanized soil fertilization methods were remarkably effective on total phosphorus improvement for arable soil in the demonstration zone, while less effective on total nitrogen or total potassium, and not so effective on C/N ratio in soil. Stalk returning with deep tillage was more favorable to improve content of organic matter in soil, when compared with surface application, and organic granular fertilizer more favorable when compared with decomposed cow dung for such a purpose, too.

  17. Novel Applications for Oxalate-Phosphate-Amine Metal-Organic-Frameworks (OPA-MOFs): Can an Iron-Based OPA-MOF Be Used as Slow-Release Fertilizer?

    PubMed

    Anstoetz, Manuela; Rose, Terry J; Clark, Malcolm W; Yee, Lachlan H; Raymond, Carolyn A; Vancov, Tony

    2015-01-01

    A porous iron-based oxalate-phosphate-amine metal-organic framework material (OPA-MOF) was investigated as a microbially-induced slow-release nitrogen (N) and phosphorus (P) fertilizer. Seedling growth, grain yields, nutrient uptake of wheat plants, and soil dynamics in incubated soil, were investigated using OPA-MOF vs standard P (triple-superphosphate) and N (urea) fertilizers in an acidic Ferralsol at two application rates (equivalent 120 and 40 kg N ha(-1)). While urea hydrolysis in the OPA-MOF treatment was rapid, conversion of ammonium to nitrate was significantly inhibited compared to urea treatment. Reduced wheat growth in OPA-MOF treatments was not caused by N-deficiency, but by limited P-bioavailability. Two likely reasons were slow P-mobilisation from the OPA-MOF or rapid P-binding in the acid soil. P-uptake and yield in OPA-MOF treatments were significantly higher than in nil-P controls, but significantly lower than in conventionally-fertilised plants. OPA-MOF showed potential as enhanced efficiency N fertilizer. However, as P-bioavailability was insufficient to meet plant demands, further work should determine if P-availability may be enhanced in alkaline soils, or whether central ions other than Fe, forming the inorganic metal-P framework in the MOF, may act as a more effective P-source in acid soils.

  18. Novel Applications for Oxalate-Phosphate-Amine Metal-Organic-Frameworks (OPA-MOFs): Can an Iron-Based OPA-MOF Be Used as Slow-Release Fertilizer?

    PubMed Central

    Anstoetz, Manuela; Rose, Terry J.; Clark, Malcolm W.; Yee, Lachlan H.; Raymond, Carolyn A.; Vancov, Tony

    2015-01-01

    A porous iron-based oxalate-phosphate-amine metal-organic framework material (OPA-MOF) was investigated as a microbially-induced slow-release nitrogen (N) and phosphorus (P) fertilizer. Seedling growth, grain yields, nutrient uptake of wheat plants, and soil dynamics in incubated soil, were investigated using OPA-MOF vs standard P (triple-superphosphate) and N (urea) fertilizers in an acidic Ferralsol at two application rates (equivalent 120 and 40 kg N ha-1). While urea hydrolysis in the OPA-MOF treatment was rapid, conversion of ammonium to nitrate was significantly inhibited compared to urea treatment. Reduced wheat growth in OPA-MOF treatments was not caused by N-deficiency, but by limited P-bioavailability. Two likely reasons were slow P-mobilisation from the OPA-MOF or rapid P-binding in the acid soil. P-uptake and yield in OPA-MOF treatments were significantly higher than in nil-P controls, but significantly lower than in conventionally-fertilised plants. OPA-MOF showed potential as enhanced efficiency N fertilizer. However, as P-bioavailability was insufficient to meet plant demands, further work should determine if P-availability may be enhanced in alkaline soils, or whether central ions other than Fe, forming the inorganic metal-P framework in the MOF, may act as a more effective P-source in acid soils. PMID:26633174

  19. Effects of arbuscular mycorrhizal colonization and phosphorus application on nuclear ploidy in Allium porrum plants.

    PubMed

    Fusconi, Anna; Lingua, Guido; Trotta, Antonio; Berta, Graziella

    2005-07-01

    Arbuscular mycorrhizal (AM) colonization can strongly affect the plant cell nucleus, causing displacement from the periphery to the center of the cell, hypertrophy and polyploidization. The hypertrophy response has been shown in a variety of AM plants whilst polyploidization has been reported only in Lycopersicon esculentum, a multiploid species with a small genome. In order to determine whether polyploidization is a general plant response to AM colonization, analyses were performed on Allium porrum, a plant with a large genome, which is much less subject to polyploidization than L. esculentum. The ploidy status of leaves, complete root systems and four zones of the adventitious roots was investigated in relation to phosphorus content, AM colonization and root differentiation in A. porrum plants grown under two different regimes of phosphate nutrition in order to distinguish direct effects of the fungus from those of improved nutrition. Results showed the presence of two nuclear populations (2C and 4C) in all treatments and samples. Linear regression analyses suggested a general negative correlation between phosphorus content and the proportion of 2C nuclei. The percentage of 2C nuclei (and consequently that of 4C nuclei), was also influenced by AM colonization, differentiation and ageing of the root cells, which resulted in earlier occurrence, in time and space, of polyploid nuclei.

  20. Long-term manure application effects on phosphorus speciation, kinetics and distribution in highly weathered agricultural soils.

    PubMed

    Abdala, Dalton Belchior; da Silva, Ivo Ribeiro; Vergütz, Leonardus; Sparks, Donald Lewis

    2015-01-01

    Phosphorus (P) K-edge XANES and Fe K-edge EXAFS spectroscopies along with sequential P chemical fractionation and desorption kinetics experiments, were employed to provide micro- and macro-scale information on the long-term fate of manure application on the solid-state speciation, kinetics and distribution of P in highly weathered agricultural soils of southern Brazil. Soil test P values ranged from 7.3 up to 16.5 times as much higher than the reference soil. A sharp increase in amorphous Fe and Al amounts were observed as an effect of the consecutive application of manures. Whereas our results showed that the P sorption capacity of some manured soils was not significantly affected, P risk assessment indices indicated that P losses should be expected, likely due to the excessive manure rates applied to the soils. The much higher contents of amorphous Fe and Al (hydr)oxides (55% and 80% increase with respect to the reference soil, respectively) in manured soils seem to have counterbalanced the inhibiting effect of soil organic matter on P sorption by creating additional P sorption sites. Accordingly, the newly created P sorbing surfaces were important to prevent an even larger P loss potential. Phosphorus K-edge XANES lent complimentary hints on the loss of crystallinity and transformation of originally present Fe-P minerals into poorly crystalline ones as an effect of manuring, whereas Fe K-edge EXAFS provided insights into the structural changes underwent in the soils upon manure application and soil management.

  1. Effect of cow manure and empty fruit bunches application treated with different fertilizers on growth and yield of chili (Capsicum annum)

    NASA Astrophysics Data System (ADS)

    Ghazali, Mohd Rashdan; Mutalib, Sahilah Abd.; Abdullah, Aminah

    2016-11-01

    Study on the comparison of cow manure (CM) and empty fruit bunches (EFB) compost application as planting medium was conducted using four different treatments of fertilizer (without fertilizer, chemical fertilizer, organic fertilizer, and both fertilizer) on growth and yield of chili (Capsicum annum). The experiment started on August until December 2014 which consisted of eight treatments and were laid in a completely randomized block design (CRBD) with three replications. Variety chili that was used was Cilibangi 3. The seed was planted inside the tray for one week and transferred into the polybag containing growth media consisted of soil, compost (CM or EFB compost) and sand with ratio 3:2:1. Treatments without fertilizer were acted as a control. Throughout the study, plant growth performance and yield were recorded. The highest height of the plants for CM compost was 100.8 cm using chemical fertilizer and have significant different between the groups. For EFB compost was 92.7 cm using also chemical fertilizer but no significant different between the groups. The highest fruits weight per plant for CM compost was 485.67 g treated with both fertilizers and for EFB compost was 420.17 g treated with chemical fertilizer. Analysis of variance (ANOVA) table stated that fruits weight per plant has significant different for both planting medium with the fertilizer treatment. For the highest total fruits per plant, CM compost recorded about average 55 fruits per plant using both fertilizers and EFB compost recorded around 45 fruit per plant using chemical fertilizer. There was significantly different for total fruits per plant for both planting medium with the fertilizer treatment according to the ANOVA table. For CM, the ripening time was around 102-112 days and for EFB compost was around 96-110 days. Thus, application of CM compost treated with both chemical and organic fertilizers demonstrated better growth and fruit yield. While EFB compost was better growth and fruit

  2. Improving phosphorus use efficiency: a complex trait with emerging opportunities.

    PubMed

    Heuer, Sigrid; Gaxiola, Roberto; Schilling, Rhiannon; Herrera-Estrella, Luis; López-Arredondo, Damar; Wissuwa, Matthias; Delhaize, Emmanuel; Rouached, Hatem

    2017-06-01

    Phosphorus (P) is one of the essential nutrients for plants, and is indispensable for plant growth and development. P deficiency severely limits crop yield, and regular fertilizer applications are required to obtain high yields and to prevent soil degradation. To access P from the soil, plants have evolved high- and low-affinity Pi transporters and the ability to induce root architectural changes to forage P. Also, adjustments of numerous cellular processes are triggered by the P starvation response, a tightly regulated process in plants. With the increasing demand for food as a result of a growing population, the demand for P fertilizer is steadily increasing. Given the high costs of fertilizers and in light of the fact that phosphate rock, the source of P fertilizer, is a finite natural resource, there is a need to enhance P fertilizer use efficiency in agricultural systems and to develop plants with enhanced Pi uptake and internal P-use efficiency (PUE). In this review we will provide an overview of continuing relevant research and highlight different approaches towards developing crops with enhanced PUE. In this context, we will summarize our current understanding of root responses to low phosphorus conditions and will emphasize the importance of combining PUE with tolerance of other stresses, such as aluminum toxicity. Of the many genes associated with Pi deficiency, this review will focus on those that hold promise or are already at an advanced stage of testing (OsPSTOL1, AVP1, PHO1 and OsPHT1;6). Finally, an update is provided on the progress made exploring alternative technologies, such as phosphite fertilizer. © 2016 The Authors The Plant Journal © 2016 John Wiley & Sons Ltd.

  3. Plant Growth-promoting Rhizobacteria Allow Reduced Application Rates of Chemical Fertilizers

    USDA-ARS?s Scientific Manuscript database

    Efforts to reduce fertilizer rates while increasing nutrient uptake to maintain high yields are very important due to the increasing cost of fertilizers and their potential negative environmental impacts. The objectives of this study were to determine (i) if reduced rates of inorganic fertilizer cou...

  4. Stream Chemistry After An Operational Fertilizer Application in the Ouachita Mountains

    Treesearch

    Hal O. Liechty; Jami Nettles; Daniel A. Marion; Donald J. Turton

    1999-01-01

    The amount of forested land annually fertilized in the southern United States has increased rapidly in the past 10 years. Although forest growth responses to fertilizer are fairly well understood, knowledge concerning the effects of fertilization on stream chemistry and health in this region is limited. To better understand the potential changes in stream chemistry...

  5. Characterization and sonochemical synthesis of black phosphorus from red phosphorus

    NASA Astrophysics Data System (ADS)

    Aldave, Sandra H.; Yogeesh, Maruthi N.; Zhu, Weinan; Kim, Joonseok; Sonde, Sushant S.; Nayak, Avinash P.; Akinwande, Deji

    2016-03-01

    Phosphorene is a new two-dimensional material which is commonly prepared by exfoliation from black phosphorus bulk crystals that historically have been synthesized from white phosphorus under high-pressure conditions. The few layers of phosphorene have a direct band gap in the range of 0.3-2 eV and high mobility at room temperature comparable to epitaxial graphene. These characteristics can be used for the design of high speed digital circuits, radio frequency circuits, flexible and printed systems, and optoelectronic devices. In this work, we synthesized black phosphorus from red phosphorus, which is a safer solid precursor, using sonochemistry. Furthermore, via a variety of microscopy and spectroscopy techniques, we report characterization results of the sonochemically synthesized black phosphorus in addition to the commercial black phosphorus. Finally, we describe the air stability of black phosphors and the crystalline structure of the synthesized material. This is the first result of sonochemical or solution-based synthesis of black phosphorus based on readily available low-cost red phosphorus. This solution-based synthesis of black phosphorus is suitable for printable applications of nanomaterial.

  6. Modelling of microalgal growth and lipid production in Dunaliella tertiolecta using nitrogen-phosphorus-potassium fertilizer medium in sintered disk chromatographic glass bubble column.

    PubMed

    Kumar, Anup; Guria, Chandan; Chitres, G; Chakraborty, Arunangshu; Pathak, A K

    2016-10-01

    A comprehensive mathematical model involving NPK-10:26:26 fertilizer, NaCl, NaHCO3, light and temperature operating variables for Dunaliella tertiolecta cultivation is formulated to predict microalgae-biomass and lipid productivity. Proposed model includes Monod/Andrews kinetics for the absorption of essential nutrients into algae-biomass and Droop model involving internal nutrient cell quota for microalgae growth, assuming algae-biomass is composed of sugar, functional-pool and neutral-lipid. Biokinetic model parameters are determined by minimizing the residual-sum-of-square-errors between experimental and computed microalgae-biomass and lipid productivity using genetic algorithm. Developed model is validated with the experiments of Dunaliella tertiolecta cultivation using air-agitated sintered-disk chromatographic glass-bubble column and the effects of operating variables on microalgae-biomass and lipid productivity is investigated. Finally, parametric sensitivity analysis is carried out to know the sensitivity of model parameters on the obtained results in the input parameter space. Proposed model may be helpful in scale-up studies and implementation of model-based control strategy in large-scale algal cultivation.

  7. Towards global phosphorus security: a systems framework for phosphorus recovery and reuse options.

    PubMed

    Cordell, D; Rosemarin, A; Schröder, J J; Smit, A L

    2011-08-01

    Human intervention in the global phosphorus cycle has mobilised nearly half a billion tonnes of the element from phosphate rock into the hydrosphere over the past half century. The resultant water pollution concerns have been the main driver for sustainable phosphorus use (including phosphorus recovery). However the emerging global challenge of phosphorus scarcity with serious implications for future food security, means phosphorus will also need to be recovered for productive reuse as a fertilizer in food production to replace increasingly scarce and more expensive phosphate rock. Through an integrated and systems framework, this paper examines the full spectrum of sustainable phosphorus recovery and reuse options (from small-scale low-cost to large-scale high-tech), facilitates integrated decision-making and identifies future opportunities and challenges for achieving global phosphorus security. Case studies are provided rather than focusing on a specific technology or process. There is no single solution to achieving a phosphorus-secure future: in addition to increasing phosphorus use efficiency, phosphorus will need to be recovered and reused from all current waste streams throughout the food production and consumption system (from human and animal excreta to food and crop wastes). There is a need for new sustainable policies, partnerships and strategic frameworks to develop renewable phosphorus fertilizer systems for farmers. Further research is also required to determine the most sustainable means in a given context for recovering phosphorus from waste streams and converting the final products into effective fertilizers, accounting for life cycle costs, resource and energy consumption, availability, farmer accessibility and pollution. Copyright © 2011 Elsevier Ltd. All rights reserved.

  8. Continous application of bioorganic fertilizer induced resilient culturable bacteria community associated with banana Fusarium wilt suppression

    PubMed Central

    Fu, Lin; Ruan, Yunze; Tao, Chengyuan; Li, Rong; Shen, Qirong

    2016-01-01

    Fusarium wilt of banana always drives farmers to find new land for banana cultivation due to the comeback of the disease after a few cropping years. A novel idea for solving this problem is the continuous application of bioorganic fertilizer (BIO), which should be practiced from the beginning of banana planting. In this study, BIO was applied in newly reclaimed fields to pre-control banana Fusarium wilt and the culturable rhizobacteria community were evaluated using Biolog Ecoplates and culture-dependent denaturing gradient gel electrophoresis (CD-DGGE). The results showed that BIO application significantly reduced disease incidences and increased crop yields, respectivly. And the stabilized general bacterial metabolic potential, especially for the utilization of carbohydrates, carboxylic acids and phenolic compounds, was induced by BIO application. DGGE profiles demonstrated that resilient community structure of culturable rhizobacteria with higher richness and diversity were observed in BIO treated soils. Morever, enriched culturable bacteria affiliated with Firmicutes, Gammaproteobacteria and Actinobacteria were also detected. In total, continuous application of BIO effectively suppressed Fusarium wilt disease by stabilizing culturable bacterial metabolic potential and community structure. This study revealed a new method to control Fusarium wilt of banana for long term banana cultivation. PMID:27306096

  9. Continous application of bioorganic fertilizer induced resilient culturable bacteria community associated with banana Fusarium wilt suppression.

    PubMed

    Fu, Lin; Ruan, Yunze; Tao, Chengyuan; Li, Rong; Shen, Qirong

    2016-06-16

    Fusarium wilt of banana always drives farmers to find new land for banana cultivation due to the comeback of the disease after a few cropping years. A novel idea for solving this problem is the continuous application of bioorganic fertilizer (BIO), which should be practiced from the beginning of banana planting. In this study, BIO was applied in newly reclaimed fields to pre-control banana Fusarium wilt and the culturable rhizobacteria community were evaluated using Biolog Ecoplates and culture-dependent denaturing gradient gel electrophoresis (CD-DGGE). The results showed that BIO application significantly reduced disease incidences and increased crop yields, respectivly. And the stabilized general bacterial metabolic potential, especially for the utilization of carbohydrates, carboxylic acids and phenolic compounds, was induced by BIO application. DGGE profiles demonstrated that resilient community structure of culturable rhizobacteria with higher richness and diversity were observed in BIO treated soils. Morever, enriched culturable bacteria affiliated with Firmicutes, Gammaproteobacteria and Actinobacteria were also detected. In total, continuous application of BIO effectively suppressed Fusarium wilt disease by stabilizing culturable bacterial metabolic potential and community structure. This study revealed a new method to control Fusarium wilt of banana for long term banana cultivation.

  10. Continous application of bioorganic fertilizer induced resilient culturable bacteria community associated with banana Fusarium wilt suppression

    NASA Astrophysics Data System (ADS)

    Fu, Lin; Ruan, Yunze; Tao, Chengyuan; Li, Rong; Shen, Qirong

    2016-06-01

    Fusarium wilt of banana always drives farmers to find new land for banana cultivation due to the comeback of the disease after a few cropping years. A novel idea for solving this problem is the continuous application of bioorganic fertilizer (BIO), which should be practiced from the beginning of banana planting. In this study, BIO was applied in newly reclaimed fields to pre-control banana Fusarium wilt and the culturable rhizobacteria community were evaluated using Biolog Ecoplates and culture-dependent denaturing gradient gel electrophoresis (CD-DGGE). The results showed that BIO application significantly reduced disease incidences and increased crop yields, respectivly. And the stabilized general bacterial metabolic potential, especially for the utilization of carbohydrates, carboxylic acids and phenolic compounds, was induced by BIO application. DGGE profiles demonstrated that resilient community structure of culturable rhizobacteria with higher richness and diversity were observed in BIO treated soils. Morever, enriched culturable bacteria affiliated with Firmicutes, Gammaproteobacteria and Actinobacteria were also detected. In total, continuous application of BIO effectively suppressed Fusarium wilt disease by stabilizing culturable bacterial metabolic potential and community structure. This study revealed a new method to control Fusarium wilt of banana for long term banana cultivation.

  11. Reducing soluble phosphorus in dairy effluents through application of mine drainage residuals

    USGS Publications Warehouse

    Sibrell, Philip L.; Penn, Chad J.; Hedin, Robert S.

    2015-01-01

    Three different dairy manure wastewater effluent samples were amended with mine drainage residuals (MDR) to evaluate the suitability of MDR for sequestration of phosphorus (P). Geochemical modeling of the manure wastewater compositions indicated that partially soluble P-bearing minerals including hydroxyapatite, octacalcium phosphate, and vivianite were all oversaturated in each of the manure wastewater samples. Initial MDR amendment test results indicated that these partially soluble P minerals suspended in the wastewater replenished P in the water phase as it was sorbed by the MDR samples. Further investigations revealed that the MDR samples were effective in decreasing soluble P when the amended manure was tested using the water-extractable P procedure. Under these conditions, up to 90 percent of the soluble P in the manure was converted to a sorbed, water-insoluble state. Water contamination and large-scale validation tests of the process were also conducted.

  12. Synthesis and application in polypropylene of a novel of phosphorus-containing intumescent flame retardant.

    PubMed

    Zuo, Jian-Dong; Liu, Shu-Mei; Sheng, Qi

    2010-10-28

    A novel phosphorus-containing triazine oligomer poly(2-morpholinyl-4-penta-erythritol phosphate-1,3,5-triazine) (PMPT) was synthesized as a kind of tri-component intumescent flame retardant (IFR). The chemical structure of PMPT was characterized by FTIR, 1H-NMR and 31P-NMR, and the mechanical and flammability properties of FR-PP were measured. The FTIR results showed that the expected chemical reactions had  happened at each step. The 1H-NMR and 31P-NMR spectra also agreed with the chemical structure of PMPT. The slight effect of PMPT on the mechanical properties of FR-PP suggested that PMPT and PP are compatible. The high limited oxygen index (LOI) values of FR-PP revealed that PMPT was an efficient IFR and there was the synergistic effect between PMPT and ammonium polyphosphate/ pentaerythritol (APP/PER).

  13. Effects of Late-Stage Nitrogen Fertilizer Application on the Starch Structure and Cooking Quality of Rice.

    PubMed

    Cao, XianMei; Sun, HuiYan; Wang, ChunGe; Ren, XiaoJia; Liu, HongFei; Zhang, ZuJian

    2017-10-09

    With the rapid development of modern agriculture, high-quality rice production and consumption has become the current urgent demand for the development of rice production. In this paper, the effects of late-stage nitrogen fertilizer application on rice quality were studied under the same genetic background, Wx near-isogenic lines were used as test materials to study the starch composition, amylopectin structure, and cooking quality of rice. Results showed that rice amylose content and gel consistency significantly differed when different Wx genes were tranformed into waxy rice, the law of apparent amylose content in rice is Wx(a) >Wx(in) >Wx(b) >wx at the same nitrogen level, while the trend of gel consistency was opposite to that of apparent amylose content, presenting obvious characteristics of Indica and Japonica varieties. As the amount of fertilizer application increased, apparent amylose content increased, gel consistency decreased, breakdown and peak viscosities dropped, and setback viscosity and peak time increased. Moreover, the cooking quality of rice significantly decreased with the use of nitrogen fertilizer, especially under low-level nitrogen fertilizer application. Amylopectin structure varied significantly in different genotypes of the Wx gene, and the degree of branching was as follows: wx>Wx(b) >Wx(in) >Wx(a) . This result indicated that the closer to Indica rice, the less short chains of amylopectin. Starch crystallinity and swelling potential were negatively correlated with amylose content but significantly positively correlated with amylopectin branching degree, decreasing with the increase of late-stage nitrogen fertilization. the late-stage nitrogen fertilization reduced the cooking quality of rice by increasing amylose content, reducing amylopectin branching degree, which decreased starch crystallinity, and aggravated pasting properties. Obviously, controlling late nitrogen application is essential to optimize rice quality. This article is

  14. Distribution of uranium in soil components of agricultural fields after long-term application of phosphate fertilizers.

    PubMed

    Yamaguchi, N; Kawasaki, A; Iiyama, I

    2009-02-01

    Long-term application of phosphate fertilizers causes accumulation of U in the surface soil of agricultural fields. We investigated the soil constituents that contribute to the accumulation of U by using chemical extraction methods. Surface soil samples were obtained from upland fields, pastures, and paddy fields cultivated without any phosphate fertilizer (control site), with NPK fertilizer (NPK site), and with both NPK fertilizer and compost (NPK+compost site) for more than 20 years. In addition to the total U (Ut) concentration in soil, the concentrations of pyrophosphate- and acid oxalate-extractable U were determined as a measure of U associated with soil organic matter and poorly crystalline Fe/Al minerals in soil, respectively. The total, pyrophosphate-extractable, and acid oxalate-extractable U concentrations were higher in the soil obtained from the NPK and NPK+compost sites than in that obtained from the control site. The difference in the U concentrations between the NPK or NPK+compost site and the control site corresponded with the increased U concentration observed after the application of the phosphate fertilizer or both the fertilizer and compost. In the upland field and pasture soil, the increase in pyrophosphate-extractable U was 83-94% of that in Ut. On the other hand, the increase in acid oxalate-extractable U was 44-58% of that in Ut in the upland field and pasture soil, but it was almost equivalent to the increase in Ut in the paddy soil with NPK. In conclusion, most of the phosphate fertilizer-derived U was either incorporated into the soil organic matter or poorly crystalline Fe/Al minerals in the surface soil of agricultural fields. Thus, soil organic matter is an important pool of U in upland field and pasture soil, whereas poorly crystalline Fe/Al minerals are important pools of U in paddy soil experiencing alternating changes in redox conditions.

  15. [Influences of long-term application of organic and inorganic fertilizers on the composition and abundance of nirS-type denitrifiers in black soil].

    PubMed

    Yin, Chang; Fan, Fen-Liang; Li, Zhao-Jun; Song, A-Lin; Zhu, Ping; Peng, Chang; Liang, Yong-Chao

    2012-11-01

    The objectives of this study were to explore the effects of long-term organic and inorganic fertilizations on the composition and abundance of nirS-type denitrifiers in black soil. Soil samples were collected from 4 treatments (i. e. no fertilizer treatment, CK; organic manure treatment, OM; chemical fertilizer treatment (NPK) and combination of organic and chemical fertilizers treatment (MNPK)) in Gongzhuling Long-term Fertilization Experiment Station. Composition and abundance of nirS-type denitrifiers were analyzed with terminal restriction fragment length polymorphism (T-RFLP) and real-time quantitative PCR (Q-PCR), respectively. Denitrification enzyme activity (DEA) and soil properties were also measured. Application of organic fertilizers (OM and MNPK) significantly increased the DEAs of black soil, with the DEAs in OM and MNPK being 5.92 and 6.03 times higher than that in CK treatment, respectively, whereas there was no significant difference between NPK and CK. OM and MNPK treatments increased the abundances of nirS-type denitrifiers by 2.73 and 3.83 times relative to that of CK treatment, respectively. The abundance of nirS-type denitrifiers in NPK treatment was not significantly different from that of CK. The T-RFLP analysis of nirS genes showed significant differences in community composition between organic and inorganic treatments, with the emergence of a 79 bp T-RF, a significant decrease in relative abundance of the 84 bp T-RF and a loss of the 99 bp T-RF in all organic treatments. Phylogenetic analysis indicated that the airS-type denitrifiers in the black soil were mainly composed of alpha, beta and gamma-Proteobacteria. The 79 bp-type denitrifiers inhabiting exclusively in organic treatments (OM and MNPK) were affiliated to Pseudomonadaceae in gamma-Proteobacteria and Burkholderiales in beta-Proteobacteria. The 84 bp-types were related to Burkholderiales and Rhodocyclales. Correlation analysis indicated that pH, concentrations of total nitrogen

  16. Effect of Polyphosphate-accumulating Organisms on Phosphorus Mobility in Variably Saturated Sand Columns

    NASA Astrophysics Data System (ADS)

    Stockton, M.; Rojas, C.; Regan, J. M.; Saia, S. M.; Buda, A. R.; Carrick, H. J.; Walter, M. T.

    2016-12-01

    Excessive application of phosphorus-containing fertilizer along with incomplete knowledge about the factors affecting phosphorus transport and mobility has allowed for a growing number of cases of eutrophication in water bodies. Previous research on enhanced biological phosphorus removal (EBPR) systems used in wastewater treatment plants (WWTPs) has identified polyphosphate-accumulating organisms (PAOs) that are known to accumulate and release phosphorus depending on aerobic/anaerobic conditions. Under anaerobic conditions, intracellular polyphosphate (poly-P) bodies are hydrolyzed releasing phosphate, while under aerobic conditions phosphate is taken up and poly-P inclusions are reformed. The presence of PAOs outside of WWTPs has been shown, but their potential impact on phosphorus mobility in other contexts is not as well known. To study that potential impact, sand columns were subjected to alternating cycles of saturation and unsaturation to mimic variably saturated soils and the resultant anaerobic and aerobic conditions that select for PAOs in a WWTP. Pore water samples collected from sterile control columns and columns inoculated with PAOs from a WWTP were compared during each cycle to monitor changes in dissolved inorganic phosphate and total phosphorus concentrations. In addition, continuous redox data were collected to confirm reducing conditions developed during periods of saturation. Sand particles will be subjected to FISH and DAPI staining to visualize PAOs using probes developed for PAOs in EBPR processes and to determine if changes in intracellular poly-P are detectable between the two cycles in the inoculated columns. Studying the effects of PAOs on phosphorus mobility in these controlled column experiments can contribute to understanding phosphorus retention and release by naturally occurring PAOs in terrestrial system, which ultimately can improve the development of management practices that mitigate phosphorus pollution of water bodies.

  17. Effect of long-term combined application of organic and inorganic fertilizers on soil nematode communities within aggregates.

    PubMed

    Zhang, Zhiyong; Zhang, Xiaoke; Mahamood, Md; Zhang, Shuiqing; Huang, Shaomin; Liang, Wenju

    2016-08-09

    A long-term fertilization experiment was conducted to examine the effects of different fertilization practices on nematode community composition within aggregates in a wheat-maize rotation system. The study was a randomized complete block design with three replicates. The experiment involved the following four treatments: no fertilizer, inorganic N, P and K fertilizer (NPK), NPK plus manure (NPKM) and NPK plus maize straw (NPKS). Soil samples were taken at 0-20 cm depth during the wheat harvest stage. Based on our results, NPKS contributed to soil aggregation and moisture retention, with a positive effect on soil total nitrogen accumulation, particularly within small macroaggregates (0.25-1 mm) and microaggregates (<0.25 mm). The C/N ratio was correlated to the distribution of the soil nematode community. Both manure application and straw incorporation increased the nematode functional metabolic footprints within all aggregates. Additionally, the functional metabolic footprints decreased with a decline in aggregate size. The accumulation of total nitrogen within <1 mm aggregates under NPKS might play a key role in maintaining the survival of soil nematodes. In our study, both crop straw incorporation and inorganic fertilizer application effectively improved soil physicochemical properties and were also beneficial for nematode survival within small aggregate size fractions.

  18. Effect of long-term combined application of organic and inorganic fertilizers on soil nematode communities within aggregates

    PubMed Central

    Zhang, Zhiyong; Zhang, Xiaoke; Mahamood, Md.; Zhang, Shuiqing; Huang, Shaomin; Liang, Wenju

    2016-01-01

    A long-term fertilization experiment was conducted to examine the effects of different fertilization practices on nematode community composition within aggregates in a wheat-maize rotation system. The study was a randomized complete block design with three replicates. The experiment involved the following four treatments: no fertilizer, inorganic N, P and K fertilizer (NPK), NPK plus manure (NPKM) and NPK plus maize straw (NPKS). Soil samples were taken at 0–20 cm depth during the wheat harvest stage. Based on our results, NPKS contributed to soil aggregation and moisture retention, with a positive effect on soil total nitrogen accumulation, particularly within small macroaggregates (0.25–1 mm) and microaggregates (<0.25 mm). The C/N ratio was correlated to the distribution of the soil nematode community. Both manure application and straw incorporation increased the nematode functional metabolic footprints within all aggregates. Additionally, the functional metabolic footprints decreased with a decline in aggregate size. The accumulation of total nitrogen within <1 mm aggregates under NPKS might play a key role in maintaining the survival of soil nematodes. In our study, both crop straw incorporation and inorganic fertilizer application effectively improved soil physicochemical properties and were also beneficial for nematode survival within small aggregate size fractions. PMID:27502433

  19. Impact of organic and inorganic fertilizers application on the phytochemical and antioxidant activity of Kacip Fatimah (Labisia pumila Benth).

    PubMed

    Ibrahim, Mohd Hafiz; Jaafar, Hawa Z E; Karimi, Ehsan; Ghasemzadeh, Ali

    2013-09-05

    A study was conducted to compare secondary metabolites and antioxidant activity of Labisia pumila Benth (Kacip Fatimah) in response to two sources of fertilizer [i.e., organic (chicken dung; 10% N:10% P₂O₅:10% K₂O) and inorganic fertilizer (NPK green; 15% N, 15% P₂O₅, 15% K₂O)] under different N rates of 0, 90, 180 and 270 kg N/ha. The experiment was arranged in a randomized complete block design replicated three times. At the end of 15 weeks, it was observed that the application of organic fertilizer enhanced the production of total phenolics, flavonoids, ascorbic acid, saponin and gluthathione content in L. pumila, compared to the use of inorganic fertilizer. The nitrate content was also reduced under organic fertilization. The application of nitrogen at 90 kg N/ha improved the production of secondary metabolites in Labisia pumila. Higher rates in excess of 90 kg N/ha reduced the level of secondary metabolites and antioxidant activity of this herb. The DPPH and FRAP activity was also highest at 90 kg N/ha. The results indicated that the use of chicken dung can enhance the production of secondary metabolites and improve antioxidant activity of this herb.

  20. Application of indigenous sulfur-oxidizing bacteria from municipal wastewater to selectively bioleach phosphorus from high-phosphorus iron ore: effect of particle size.

    PubMed

    Shen, Shaobo; Rao, Ruirui; Wang, Jincao

    2013-01-01

    The effects of ore particle size on selectively bioleaching phosphorus (P) from high-phosphorus iron ore were studied. The average contents of P and Fe in the iron ore were 1.06 and 47.90% (w/w), respectively. The particle sizes of the ores used ranged from 58 to 3350 microm. It was found that the indigenous sulfur-oxidizing bacteria from municipal wastewater could grow well in the slurries of solid high-phosphorus iron ore and municipal wastewater. The minimum bioleaching pH reached for the current work was 0.33. The P content in bioleached iron ore reduced slightly with decreasing particle size, while the removal percentage of Fe decreased appreciably with decreasing particle size. The optimal particle size fraction was 58-75 microm, because the P content in bioleached iron ore reached a minimum of 0.16% (w/w), the removal percentage of P attained a maximum of 86.7%, while the removal percentage of Fe dropped to a minimum of 1.3% and the Fe content in bioleached iron ore was a maximum of 56.4% (w/w) in this case. The iron ores thus obtained were suitable to be used in the iron-making process. The removal percentage of ore solid decreased with decreasing particle size at particle size range of 106-3350 microm. The possible reasons resulting in above phenomena were explored in the current work. It was inferred that the particle sizes of the iron ore used in this work have no significant effect on the viability of the sulfur-oxidizing bacteria.

  1. Improvement of biological total phosphorus release and uptake by low electrical current application in lab-scale bio-electrochemical reactors.

    PubMed

    Zhang, Lehua; Ma, Jingxing; Liu, Yongdi; Li, Dongmei; Shi, Haifeng; Cai, Lankun

    2012-12-01

    The overall process enhancement by different electrical current application on the biological phosphorus release and uptake have been investigated. Five reactors were constructed for three experiments and activated sludge was used as inoculums. In Exp.1 by comparing the control and the bio-electrochemical reactors, it was found that the overall phosphorus removal efficiency could be enhanced at lower electrical current applications of 5mA and 10mA, but were restrained at higher than 20mA, although 20mA could be a sensitive turning point. Moreover, the electrochemical effects of the cathodic and the anodic reactions on the phosphorus release and uptake, respectively, have been further evaluated separately under an electrical current application of 10mA in Exp.2 and Exp.3, respectively. As observed, both of the biological release and uptake were improved by the cathodic reactions in the cathode reactor, but not by the anodic reactions in the anode reactor, and thus indicated that the cathodic reactions play an important role in the improvement of the biological phosphorus release and uptake.

  2. African dust phosphorus fertilizing the Amazon and the Atlantic Ocean is derived from marine sediments and igneous rocks - no indication for Bodélé diatomite contribution

    NASA Astrophysics Data System (ADS)

    Gross, Avner; Castido, Danilo; Pio, Casimero; Angert, Alon

    2013-04-01

    Dust eroded from West Africa is blown across the Atlantic Ocean towards the tropics and constitutes a major external source of phosphorus (P) to the Amazon and marine surface waters. It is usually assumed that the P concentration in dust is ~700 µg P g/dust based on the average concentrations in crust material. In addition, previous studies have claimed that diatomites from the Bodélé depression in Chad are a major source of P to the equatorial Atlantic Ocean and the Amazon. In this study we have utilized the oxygen isotopes in resin extractable inorganic phosphate (δ18OP) of dust particles to identify their P sources. The data presented here is from over 100 PM10 dust samples, collected during major dust events in October- April 2011 and 2012, as part of the CV-DUST project in Cape-Verde. This archipelago is located downwind of the Sahara and Sahel dust producing areas, and is thus well suited for collecting dust blown out from Africa. Air mass back trajectories computations show that the dust origin can be classified to 3 sectors: the north and west Saharan sector, south and central Saharan sector and the Sahel sector. Dust particles approaching from these 3 sectors shows distinct resin-P concentrations (in the range of 1160 µg P g/dust to 7260 µg P g/dust) and distinct δ18OP values which ranges from 7.2‰ to 21.7‰. Major elements concentrations also showed distinct pattern. Dust particles approaching from the north and west Saharan sector shows the lowest P concentrations and a δ18OP values of ~21‰ which are typical for P originating from marine sediments at the Sahara area. Dust particles from the south west Saharan sector are richest in P and have the lowest δ18OP values of 7.2‰ , which are typical for P originated from igneous source. Dust approaching from the Sahel sector shows mid-range P concentrations and δ18OP values of ~14‰ , and fall on isotopic mixing line (R2=0.91) between the dust samples with igneous and marine sedimentary

  3. Effect of Ditching, Fertilization, and Herbicide Application on Groundwater Levels and Groundwater Quality in a Flatwood Spodosol

    Treesearch

    D.S. Segal; D.G. Neary; G.R. Best; J.L. Michael

    1987-01-01

    Groundwater levels and associated water quality parameters were studied in a young slash pine (Pinus elliottii Engelm.) plantation following ditching, fertilization, and herbicide application. Drainage ditches surrounding each watershed significantly lowered groundwater levels up to 45 m from the ditch for mean and high water table conditions....

  4. A laboratory evaluation of ammonia volatilization and nitrate leaching following nitrogen fertilizer application on a coarse-textured soil

    USDA-ARS?s Scientific Manuscript database

    In a series of field studies, differing rainfall patterns within the first month after nitrogen (N) fertilizer application to a coarse-textured soil significantly affected yields and N-use efficiency of irrigated corn (Zea mays L.), and responses varied with N source. A laboratory study was conducte...

  5. Effect of lime stabilized biosolids and inorganic fertilizer applications on a thinned longleaf stand - ten year results

    Treesearch

    E. David Dickens; Bryan C. McElvany; David J. Moorhead

    2010-01-01

    This project was initiated on the Sand Hills State Forest in Chesterfield County, SC in May 1995 to determine the benefits of inorganic fertilizer (NPK) and lime stabilized biosolids applications in a twice-thinned longleaf pine (Pinus palustris Mill.) stand planted in 1963 on an excessively well drained deep sand (Alpin soil series). Major...

  6. Evaluation of DeNitrification DeComposition model for estimating ammonia fluxes from chemical fertilizer application

    USDA-ARS?s Scientific Manuscript database

    DeNitrification DeComposition (DNDC) model predictions of NH3 fluxes following chemical fertilizer application were evaluated by comparison to relaxed eddy accumulation (REA) measurements, in Central Illinois, United States, over the 2014 growing season of corn. Practical issues for evaluating closu...

  7. Development of a web-based runoff forecasting tool to guide fertilizer and manure application in the Chesapeake Bay watershed

    USDA-ARS?s Scientific Manuscript database

    Managing the land application of fertilizers and manures is critical to protecting water quality in the Chesapeake Bay watershed. While modern nutrient management tools are designed to help farmers with their long-term field management planning, they do not support daily decisions such as when to a...

  8. Improvements in wheat productivity and soil quality can accomplish by co-application of biochars and chemical fertilizers.

    PubMed

    Sadaf, Jawaria; Shah, Ghulam Abbas; Shahzad, Khurram; Ali, Nadeem; Shahid, Muhammad; Ali, Safdar; Hussain, Rai Altaf; Ahmed, Zammurad Iqbal; Traore, Bouba; Ismail, Iqbal M I; Rashid, Muhammad Imtiaz

    2017-12-31

    The beneficial role of biochar is evident in most of infertile soils, however this is argued that increment in crop yield owing to biochar application does not always achieve in cultivated/fertile soils. The nutrient biochar believed to enhance crop yield and soil fertility than structural biochar that may offset the positive effect of chemical fertilizer on crop performance but improves soil structural properties. Therefore, we investigated the effect of biochars [produced from nutrient rich feedstocks like poultry manure (PMB) and farmyard manure (FMB) and structural feedstocks such as wood chips (WCB) and kitchen waste (KWB)], and chemical fertilizers (CF) when applied alone or in combination on soil chemical properties, wheat growth, yield and nitrogen uptake in a cultivated clay loam soil. Sole biochar treatments increased the total carbon and mineral nitrogen content that were 21 and 106% higher, respectively compared to control after 128days (P<0.001). Contrarily, sole biochars application did not increase wheat biological yield and N uptake compared to control (P>0.05) except PMB, the nutrient biochar (P<0.05). Compared to control, grain yield was 6 and 12% lower in WCB and FMB, respectively but not differed from KWB, PMB or WCB-CF. Conversely, co-application of biochars and CF treatments increased crop biological yield but the increment was the highest in nutrient biochars FMB or PMB (29 or 26%), than structural biochars WCB and KWB (15 and 13%), respectively (P<0.05). For N uptake, this increment varies between 16 and 27% and again nutrient biochar has significantly higher N uptake than structural biochars. Hence, nutrient biochars (i.e. PMB) benefited the soil fertility and crop productivity more than structural biochars. Therefore, for immediate crop benefits, it is recommended to use nutrient biochar alone or in combination with chemical fertilizer. Such practice will improve crop performance and the quality of cultivated soil. Copyright © 2017

  9. Photoprotection regulated by phosphorus application can improve photosynthetic performance and alleviate oxidative damage in dwarf bamboo subjected to water stress.

    PubMed

    Liu, Chenggang; Wang, Yanjie; Jin, Yanqiang; Pan, Kaiwen; Zhou, Xingmei; Li, Na

    2017-09-01

    Water and nutrients, particularly phosphorus (P), are the two most limiting factors for dwarf bamboo growth in tropical and subtropical areas. Dwarf bamboo is highly sensitive to water stress and often causes severe P deficiency in its growing soils due to the characteristics of shallower roots and expeditious growth. However, little is known about its photoprotective response to soil water deficit and the underlying mechanisms regulated by P application. In this study, a completely randomized design with two factors of two water regimes (well-watered and water-stressed) and two P levels (with and without P application) was arranged to investigate this issue in dwarf bamboo (Fargesia rufa) plants. Water stress not only decreased water status and photochemical activity but also increased lipid peroxidation due to reactive oxygen species (ROS) accumulation irrespective of P application. In this case, thermal dissipation and antioxidative defense were promoted. Moreover, the role of the water-water cycle under this stress still could not be ignored because it accounted for a large proportion of total energy (JPSII). P application significantly enhanced photochemical activity accompanied by increased chlorophyll content in water-stressed plants. Meanwhile, P application remarkably reduced thermal dissipation and hardly affected photorespiration and the water-water cycle under water stress. Although P application only enhanced ascorbate (AsA) level, ROS, particularly hydrogen peroxide (H2O2), and lipid peroxidation were significantly reduced in water-stressed plants. Therefore, P application can improve the photosynthetic capacity by regulating the redistribution of energy absorbed by PSII antennae and independently activating of the H2O2-scavenging function of AsA to alleviate oxidative damage in F. rufa plants, thereby improving their survival under water stress conditions. Copyright © 2017 Elsevier Masson SAS. All rights reserved.

  10. Accumulation, availability, and uptake of heavy metals in a red soil after 22-year fertilization and cropping.

    PubMed

    Zhou, Shiwei; Liu, Jing; Xu, Minggang; Lv, Jialong; Sun, Nan

    2015-10-01

    Fertilization is important to increase crop yields, but long-term application of fertilizers probably aggravated the risk of heavy metals in acidic soils. In this study, the effect of 22-year fertilization and cropping on accumulation, availability, and uptake of heavy metals in red soil was investigated. The results showed that pig manure promoted significantly cadmium (Cd) accumulation (average 1.1 mg kg(-1)), nearly three times higher than national soil standards and, thus, increased metal availability. But the enrichment of heavy metals decreased remarkably by 50.5 % under manure fertilization, compared with CK (control without fertilization). On the contrary, chemical fertilizers increased greatly lead (Pb) availability and Cd activity; in particular, exceeding 85 % of soil Cd became available to plant under N (nitrogen) treatment during 9-16 years of fertilization, which correspondingly increased their enrichment by 29.5 %. Long-term application of chemical fertilizers caused soil acidification and manure fertilization led to the increase in soil pH, soil organic matter (SOM), and available phosphorus (Olsen P), which influenced strongly metal behavior in red soil, and their effect had extended to deeper soil layer (20∼40 cm). It is advisable to increase application of manure alone with low content of heavy metals or in combination with chemical fertilizers to acidic soils in order to reduce toxic metal risk.

  11. Farmland Runoff of Nitrogen and Phosphorus in Songhuajiang Watershed

    NASA Astrophysics Data System (ADS)

    Yuan, Ruixia; Wang, Zhaohui; Song, Xinshan; Liu, Jianshe; Dong, Jianwei

    2010-05-01

    Qianguo Irrigation District is typical soda saline-alkaline land of Songhuajiang Watershed, where the excess irrigation for leaching Na+ from the root zone has aggravated the non-point source pollution (NPS) from agricultural system and therefore threatened the water quality of Chagan Lake, a national nature reserve. A field experiment with independent irrigation system was conducted to elucidate the dynamic characteristics of nitrogen (N) and phosphorus (P) in surface water of paddy field under different hydrotechnic conditions and their potential environmental impact in 2009. The results showed that split N fertilizer application with four times and single basal application of P fertilizer greatly increased the concentration of nitrate nitrogen (NO3--N), total nitrogen (TN), soluble phosphorus (SP) and total phosphorus in surface water, and then subsequently declined. During all the experimental period, the concentration of N and P in paddy field runoff in the investigated area were TN 1.08~3.90 mg/L, TP 1.32~3.87 mg/L respectively, higher than the surface water quality criteria of Class III and Class V in China, therefore N and P losses from paddy soils during each drainage were contributing to downstream water eutrophication. N and P in runoff mainly consist of particulate phosphorus (PP) and NO3--N, respectively. During rainfall or paddy growth period, the concentration of N and P in the runoff tended to temporal decrease, but showed great fluctuation during irrigation and heavy rainfall. Pollution load of the experimental plot showed that either N and P loss amount or the variation coefficient of TN and TP concentration in drainage was significantly positively correlated with the hydrotechnic conditions. N and P runoff from paddy field directly affected the eutrophication level of offtakes and hence deteriorated the downstream aquatic environment. The ammonia concentration of the return water from farmland was rather high, thus threatening the fish farming in

  12. <