Diffusion of Super-Gaussian Profiles
ERIC Educational Resources Information Center
Rosenberg, C.-J.; Anderson, D.; Desaix, M.; Johannisson, P.; Lisak, M.
2007-01-01
The present analysis describes an analytically simple and systematic approximation procedure for modelling the free diffusive spreading of initially super-Gaussian profiles. The approach is based on a self-similar ansatz for the evolution of the diffusion profile, and the parameter functions involved in the modelling are determined by suitable…
Absolute instability of the Gaussian wake profile
NASA Technical Reports Server (NTRS)
Hultgren, Lennart S.; Aggarwal, Arun K.
1987-01-01
Linear parallel-flow stability theory has been used to investigate the effect of viscosity on the local absolute instability of a family of wake profiles with a Gaussian velocity distribution. The type of local instability, i.e., convective or absolute, is determined by the location of a branch-point singularity with zero group velocity of the complex dispersion relation for the instability waves. The effects of viscosity were found to be weak for values of the wake Reynolds number, based on the center-line velocity defect and the wake half-width, larger than about 400. Absolute instability occurs only for sufficiently large values of the center-line wake defect. The critical value of this parameter increases with decreasing wake Reynolds number, thereby indicating a shrinking region of absolute instability with decreasing wake Reynolds number. If backflow is not allowed, absolute instability does not occur for wake Reynolds numbers smaller than about 38.
Influence of non-Gaussian roughness on sputter depth profiles
NASA Astrophysics Data System (ADS)
Liu, Y.; Jian, W.; Wang, J. Y.; Hofmann, S.; Kovac, J.
2013-07-01
Surface/interface roughness has a significant influence on the shape of the depth profile measured by any depth profiling technique. Such an influence is particularly significant for thin delta layers and at sharp interfaces of single- and multilayers. In the mixing-roughness-information (MRI) model for quantification of measured depth profiles, the influence of roughness is usually taken into account by a Gaussian height distribution function (HDF). If the roughness cannot be represented by a Gaussian HDF, a non-Gaussian HDF has to be implemented into the MRI model. Deviations of simulated depth profiles using the MRI model with Gaussian and with several well-defined non-Gaussian HDFs are evaluated quantitatively. The results indicate that a realistic non-Gaussian HDF has to be taken into account if high accuracy in quantification of sputter depth profiles is required. Of particular importance is the case of a roughness given by an asymmetrical HDF. Application of an asymmetrical triangle height distribution function in the MRI model yields an excellent fit for the measured AES depth profiling data of a polycrystalline Al film.
The symmetry properties of stable polynomial Gaussian beam profiles
NASA Astrophysics Data System (ADS)
Roux, Filippus S.
2006-12-01
We consider the symmetry properties of polynomial Gaussian beam profiles (intensity distributions) that remain stable during propagation, apart from being scaled and possibly rotated. These beams are expressed as special linear combinations of the Laguerre-Gaussian modes. Two kinds of symmetries are present: discreet rotational symmetries and mirror symmetries. The symmetry properties are shown to depend on the particular subset of Laguerre-Gaussian modes that is used to construct the stable beam. We demonstrate the symmetry properties of a few examples of stable beams through numerical simulations.
GAUSSIAN RANDOM FIELD: PHYSICAL ORIGIN OF SERSIC PROFILES
Cen, Renyue
2014-08-01
While the Sersic profile family provides adequate fits for the surface brightness profiles of observed galaxies, its physical origin is unknown. We show that if the cosmological density field is seeded by random Gaussian fluctuations, as in the standard cold dark matter model, galaxies with steep central profiles have simultaneously extended envelopes of shallow profiles in the outskirts, whereas galaxies with shallow central profiles are accompanied by steep density profiles in the outskirts. These properties are in accord with those of the Sersic profile family. Moreover, galaxies with steep central profiles form their central regions in smaller denser subunits that possibly merge subsequently, which naturally leads to the formation of bulges. In contrast, galaxies with shallow central profiles form their central regions in a coherent fashion without significant substructure, a necessary condition for disk galaxy formation. Thus, the scenario is self-consistent with respect to the correlation between observed galaxy morphology and the Sersic index. We further predict that clusters of galaxies should display a similar trend, which should be verifiable observationally.
Gaussian Random Field: Physical Origin of Sersic Profiles
NASA Astrophysics Data System (ADS)
Cen, Renyue
2014-08-01
While the Sersic profile family provides adequate fits for the surface brightness profiles of observed galaxies, its physical origin is unknown. We show that if the cosmological density field is seeded by random Gaussian fluctuations, as in the standard cold dark matter model, galaxies with steep central profiles have simultaneously extended envelopes of shallow profiles in the outskirts, whereas galaxies with shallow central profiles are accompanied by steep density profiles in the outskirts. These properties are in accord with those of the Sersic profile family. Moreover, galaxies with steep central profiles form their central regions in smaller denser subunits that possibly merge subsequently, which naturally leads to the formation of bulges. In contrast, galaxies with shallow central profiles form their central regions in a coherent fashion without significant substructure, a necessary condition for disk galaxy formation. Thus, the scenario is self-consistent with respect to the correlation between observed galaxy morphology and the Sersic index. We further predict that clusters of galaxies should display a similar trend, which should be verifiable observationally.
Imprint of primordial non-Gaussianity on dark matter halo profiles
Dizgah, Azadeh Moradinezhad; Dodelson, Scott; Riotto, Antonio
2013-09-01
We study the impact of primordial non-Gaussianity on the density profile of dark matter halos by using the semi-analytical model introduced recently by Dalal {\\it et al.} which relates the peaks of the initial linear density field to the final density profile of dark matter halos. Models with primordial non-Gaussianity typically produce an initial density field that differs from that produced in Gaussian models. We use the path-integral formulation of excursion set theory to calculate the non-Gaussian corrections to the peak profile and derive the statistics of the peaks of non-Gaussian density field. In the context of the semi-analytic model for halo profiles, currently allowed values for primordial non-Gaussianity would increase the shapes of the inner dark matter profiles, but only at the sub-percent level except in the very innermost regions.
Gaussian interaction profile kernels for predicting drug-target interaction.
van Laarhoven, Twan; Nabuurs, Sander B; Marchiori, Elena
2011-11-01
The in silico prediction of potential interactions between drugs and target proteins is of core importance for the identification of new drugs or novel targets for existing drugs. However, only a tiny portion of all drug-target pairs in current datasets are experimentally validated interactions. This motivates the need for developing computational methods that predict true interaction pairs with high accuracy. We show that a simple machine learning method that uses the drug-target network as the only source of information is capable of predicting true interaction pairs with high accuracy. Specifically, we introduce interaction profiles of drugs (and of targets) in a network, which are binary vectors specifying the presence or absence of interaction with every target (drug) in that network. We define a kernel on these profiles, called the Gaussian Interaction Profile (GIP) kernel, and use a simple classifier, (kernel) Regularized Least Squares (RLS), for prediction drug-target interactions. We test comparatively the effectiveness of RLS with the GIP kernel on four drug-target interaction networks used in previous studies. The proposed algorithm achieves area under the precision-recall curve (AUPR) up to 92.7, significantly improving over results of state-of-the-art methods. Moreover, we show that using also kernels based on chemical and genomic information further increases accuracy, with a neat improvement on small datasets. These results substantiate the relevance of the network topology (in the form of interaction profiles) as source of information for predicting drug-target interactions. Software and Supplementary Material are available at http://cs.ru.nl/~tvanlaarhoven/drugtarget2011/. tvanlaarhoven@cs.ru.nl; elenam@cs.ru.nl. Supplementary data are available at Bioinformatics online.
Gaussian beam profile shaping apparatus, method therefor and evaluation thereof
Dickey, Fred M.; Holswade, Scott C.; Romero, Louis A.
1999-01-01
A method and apparatus maps a Gaussian beam into a beam with a uniform irradiance profile by exploiting the Fourier transform properties of lenses. A phase element imparts a design phase onto an input beam and the output optical field from a lens is then the Fourier transform of the input beam and the phase function from the phase element. The phase element is selected in accordance with a dimensionless parameter which is dependent upon the radius of the incoming beam, the desired spot shape, the focal length of the lens and the wavelength of the input beam. This dimensionless parameter can also be used to evaluate the quality of a system. In order to control the radius of the incoming beam, optics such as a telescope can be employed. The size of the target spot and the focal length can be altered by exchanging the transform lens, but the dimensionless parameter will remain the same. The quality of the system, and hence the value of the dimensionless parameter, can be altered by exchanging the phase element. The dimensionless parameter provides design guidance, system evaluation, and indication as to how to improve a given system.
Gaussian beam profile shaping apparatus, method therefore and evaluation thereof
Dickey, F.M.; Holswade, S.C.; Romero, L.A.
1999-01-26
A method and apparatus maps a Gaussian beam into a beam with a uniform irradiance profile by exploiting the Fourier transform properties of lenses. A phase element imparts a design phase onto an input beam and the output optical field from a lens is then the Fourier transform of the input beam and the phase function from the phase element. The phase element is selected in accordance with a dimensionless parameter which is dependent upon the radius of the incoming beam, the desired spot shape, the focal length of the lens and the wavelength of the input beam. This dimensionless parameter can also be used to evaluate the quality of a system. In order to control the radius of the incoming beam, optics such as a telescope can be employed. The size of the target spot and the focal length can be altered by exchanging the transform lens, but the dimensionless parameter will remain the same. The quality of the system, and hence the value of the dimensionless parameter, can be altered by exchanging the phase element. The dimensionless parameter provides design guidance, system evaluation, and indication as to how to improve a given system. 27 figs.
Ultrasonic transducer with a two-dimensional Gaussian field profile
NASA Technical Reports Server (NTRS)
Claus, R. O.; Zerwekh, P. S.
1983-01-01
A transducer is described which generates a two-dimensional Gaussian field by controlling both the position of multiple circular electrodes and the voltage applied to each electrode. The transducer is constructed by depositing concentric rings electrodes onto one flat surface of a circular piezoelectric crystal disk and attaching the rings to an impedance matching network which acts as a voltage divider. Geometrical inter-ring separations and electrical inter-ring impedances are designed to minimize the error between the generated acoustic field, modeled as a piecewise linear function, and the desired Gaussian distribution. Total mean squared error between the averaged far-field data and a Gaussian shape is less than two percent.
Diffusion of a mono-energetic implanted species with a Gaussian profile
NASA Astrophysics Data System (ADS)
Malherbe, Johan B.; Selyshchev, P. A.; Odutemowo, O. S.; Theron, C. C.; Njoroge, E. G.; Langa, D. F.; Hlatshwayo, T. T.
2017-09-01
The implanted profile in an isotropic substrate of a mono-energetic ion species is usually very near a Gaussian profile. An exact solution to the time-dependent Fick diffusion equation of an initially Gaussian profile is presented. This solution is a general one also covering the diffusion within the two limiting cases usually considered in solutions to the Fick equation, viz. a perfect sink at the surface and a perfectly reflecting surface plane at the surface. An analysis of the solutions for these two cases shows that at small diffusion times the main effect of annealing is a nearly symmetric broadening of the implanted profile. At the origin and for longer diffusion times the profile deviates significantly from Gaussian. A review is also given of past attempts to extract diffusion coefficients by fitting experimental data to approximate equations based on simplified initial profiles.
A new method for the identification of non-Gaussian line profiles in elliptical galaxies
NASA Technical Reports Server (NTRS)
Van Der Marel, Roeland P.; Franx, Marijn
1993-01-01
A new parameterization for the line profiles of elliptical galaxies, the Gauss-Hermite series, is proposed. This approach expands the line profile as a sum of orthogonal functions which minimizes the correlations between the errors in the parameters of the fit. This method also make use of the fact that Gaussians provide good low-order fits to observed line profiles. The method yields measurements of the line strength, mean radial velocity, and the velocity dispersion as well as two extra parameters, h3 and h4, that measure asymmetric and symmetric deviations of the line profiles from a Gaussian, respectively. The new method was used to derive profiles for three elliptical galaxies which all have asymmetric line profiles on the major axis with symmetric deviations from a Gaussian. Results confirm that elliptical galaxies have complex structures due to their complex formation history.
Electron beam dose planning using Gaussian beams. Improved radial dose profiles.
Lax, I; Brahme, A; Andreo, P
1983-01-01
The Gaussian solution of the transport equation for electrons in a medium omits the large angle single scattering events. These events have been included by using Monte Carlo calculated radial dose profiles for point monodirectional beams. A sum of three Gaussian functions with different relative weights and widths have been fitted to the Monte Carlo calculated radial dose profiles. These profiles have been confirmed by measurements in an almost point monodirectional beam, and the importance of an adequate experimental set-up for determination of radial dose profiles is discussed. The analytic treatment when using three different functions in the Gaussian formalism is presented. Central axis depth dose curves for 10 MeV and 20 MeV have finally been calculated and compared with depth dose curves calculated using Monte Carlo technique and a single Gaussian function. Considerable errors (20-30%) result with the single Gaussian function at small field sizes whereas three components give good agreement with the Monte Carlo method.
S., Juan Manuel Franco; Cywiak, Moises; Cywiak, David; Mourad, Idir
2015-06-24
A homodyne profiler is used for recording the intensity distribution of focused non-truncated Gaussian beams. The spatial distributions are obtained at planes in the vicinity of the back-focal plane of a focusing lens placed at different distances from a He–Ne laser beam with a Gaussian intensity profile. Comparisons of the experimental data with those obtained from the analytical equations for an ideal focusing lens allow us to propose formulae to fine-tune the quadratic term in the Fresnel Gaussian shape invariant at each interface of the propagated field. Furthermore, we give analytical expressions to calculate adequately the propagation of the field through an optical system.
Superdiffusion in a non-Markovian random walk model with a Gaussian memory profile
NASA Astrophysics Data System (ADS)
Borges, G. M.; Ferreira, A. S.; da Silva, M. A. A.; Cressoni, J. C.; Viswanathan, G. M.; Mariz, A. M.
2012-09-01
Most superdiffusive Non-Markovian random walk models assume that correlations are maintained at all time scales, e.g., fractional Brownian motion, Lévy walks, the Elephant walk and Alzheimer walk models. In the latter two models the random walker can always "remember" the initial times near t = 0. Assuming jump size distributions with finite variance, the question naturally arises: is superdiffusion possible if the walker is unable to recall the initial times? We give a conclusive answer to this general question, by studying a non-Markovian model in which the walker's memory of the past is weighted by a Gaussian centered at time t/2, at which time the walker had one half the present age, and with a standard deviation σt which grows linearly as the walker ages. For large widths we find that the model behaves similarly to the Elephant model, but for small widths this Gaussian memory profile model behaves like the Alzheimer walk model. We also report that the phenomenon of amnestically induced persistence, known to occur in the Alzheimer walk model, arises in the Gaussian memory profile model. We conclude that memory of the initial times is not a necessary condition for generating (log-periodic) superdiffusion. We show that the phenomenon of amnestically induced persistence extends to the case of a Gaussian memory profile.
Gaussian versus top-hat profile assumptions in integral plume models
NASA Astrophysics Data System (ADS)
Davidson, G. A.
Numerous integral models describing the behaviour of buoyant plumes released into stratified crossflows have been presented in the literature. One of the differences between these models is the form assumed for the self-similar profile: some models assume a top-hat form while others assume a Gaussian. The differences between these two approaches are evaluated by (a) comparing the governing equations on which Gaussian and top-hat models are based; (b) comparing some typical plume predictions generated by each type of model over a range of model parameters. It is shown that, while the profile assumption does lead to differences in the equations which govern plume variables, the effects of these differences on actual plume predictions is small over the range of parameters of practical interest. Since the predictions of Gaussian and top-hat models are essentially equivalent, it can thus be concluded that the additional physical information incorporated into a Gaussian formulation plays only a minor role in mean plume behaviour, and that the tophat approach, which requires the numerical solution of a simpler set of equations, is adequate for most situations where an integral approach would be used.
Resonant modes in cholesteric liquid crystals with a gaussian pitch profile.
da Silva, R R; Zanetti, F M; de Oliveira, I N
2010-12-01
In this paper, we investigate the spectral properties of a cholesteric film presenting a pitch profile with a gaussian deformation. Using the Berreman 4 × 4 matrix formalism, we numerically obtain the transmission spectrum at normal and oblique light incidence as a function of width and the position of the deformation. Our results reveal that a pair of resonant modes emerges inside the main stop band of the transmission spectrum as the width of the deformation becomes comparable to the helical pitch length. The mechanism behind the emergence of the resonant modes is discussed. The case of a pitch profile with multiple gaussian deformations is also analyzed. At this configuration, a crossover from single to multiple band-gap pattern can be observed in the transmission spectrum, depending on the deformation parameters.
NASA Astrophysics Data System (ADS)
Jeffrey, Natasha L. S.; Fletcher, Lyndsay; Labrosse, Nicolas
2016-05-01
Context. The properties of solar flare plasma can be determined from the observation of optically thin lines. The emitting ion distribution determines the shape of the spectral line profile, with an isothermal Maxwellian ion distribution producing a Gaussian profile. Non-Gaussian line profiles may indicate more complex ion distributions. Aims: We investigate the possibility of determining flare-accelerated non-thermal ion and/or plasma velocity distributions. Methods: We study EUV spectral lines produced during a flare SOL2013-05-15T01:45 using the Hinode EUV Imaging Spectrometer (EIS). The flare is located close to the eastern solar limb with an extended loop structure, allowing the different flare features: ribbons, hard X-ray (HXR) footpoints and the loop-top source to be clearly observed in UV, EUV and X-rays. EUV line spectroscopy is performed in seven different regions covering the flare. We study the line profiles of the isolated and unblended Fe XVI lines (λ262.9760 Å ) mainly formed at temperatures of ~2 to 4 MK. Suitable Fe XVI line profiles at one time close to the peak soft X-ray emission and free of directed mass motions are examined using: 1. a higher moments analysis, 2. Gaussian fitting, and 3. by fitting a kappa distribution line profile convolved with a Gaussian to account for the EIS instrumental profile. Results: Fe XVI line profiles in the flaring loop-top, HXR footpoint and ribbon regions can be confidently fitted with a kappa line profile with an extra variable κ, giving low, non-thermal κ values between 2 and 3.3. An independent higher moments analysis also finds that many of the spectral line kurtosis values are higher than the Gaussian value of 3, even with the presence of a broad Gaussian instrumental profile. Conclusions: A flare-accelerated non-thermal ion population could account for both the observed non-Gaussian line profiles, and for the Fe XVI "excess" broadening found from Gaussian fitting, if the emitting ions are interacting
NASA Astrophysics Data System (ADS)
Ruban, V. P.
2017-06-01
The dynamics of interacting quantized vortex filaments in a rotating Bose-Einstein condensate existing in the Thomas-Fermi regime at zero temperature and obeying the Gross-Pitaevskii equation has been considered in the hydrodynamic "nonelastic" approximation. A noncanonical Hamilton equation of motion for the macroscopically averaged vorticity has been derived for a smoothly inhomogeneous array of filaments (vortex lattice) taking into account spatial nonuniformity of the equilibrium density of the condensate, which is determined by the trap potential. The minimum of the corresponding Hamiltonian describes the static configuration of the deformed vortex lattice against the preset density background. The condition of minimum can be reduced to a nonlinear second-order partial differential vector equation for which some exact and approximate solutions are obtained. It has been shown that if the condensate density has an anisotropic Gaussian profile, the equation of motion for the averaged vorticity has solutions in the form of a vector exhibiting a nontrivial time dependence, but homogeneous in space. An integral representation has also been obtained for the matrix Green function that determines the nonlocal Hamiltonian of a system of several quantized vortices of an arbitrary shape in a Bose-Einstein condensate with the Gaussian density. In particular, if all filaments are straight and oriented along one of the principal axes of the ellipsoid, we have a finitedimensional reduction that can describe the dynamics of the system of pointlike vortices against an inhomogeneous background. A simple approximate expression is proposed for the 2D Green function with an arbitrary density profile and is compared numerically with the exact result in the Gaussian case. The corresponding approximate equations of motion, describing the long-wavelength dynamics of interacting vortex filaments in condensates with a density depending only on transverse coordinates, have been derived.
Gaussian versus flat-top spatial beam profiles for optical stimulation of the prostate nerves
NASA Astrophysics Data System (ADS)
Tozburun, Serhat; Lagoda, Gwen A.; Burnett, Arthur L.; Fried, Nathaniel M.
2010-02-01
The cavernous nerves (CN) course along the prostate surface and are responsible for erectile function. Improved identification and preservation of the CN's is critical to maintaining sexual potency after prostate cancer surgery. Noncontact optical nerve stimulation (ONS) of the CN's was recently demonstrated in a rat model, in vivo, as a potential alternative to electrical nerve stimulation (ENS) for identification of the CN's during prostate surgery. However, the therapeutic window for ONS is narrow, so optimal design of the fiber optic delivery system is critical for safe, reproducible stimulation. This study describes modeling, assembly, and testing of an ONS probe for delivering a small, collimated, flat-top laser beam for uniform CN stimulation. A direct comparison of the magnitude and response time of the intracavernosal pressure (ICP) for both Gaussian and flat-top spatial beam profiles was performed. Thulium fiber laser radiation (λ=1870 nm) was delivered through a 200-μm fiber, with distal fiber tip chemically etched to convert a Gaussian to flat-top beam profile. The laser beam was collimated to a 1-mm-diameter spot using an aspheric lens. Computer simulations of light propagation were used to optimize the probe design. The 10-Fr (3.4-mm-OD) laparoscopic probe provided a constant radiant exposure at the CN surface. The probe was tested in four rats, in vivo. ONS of the CN's was performed with a 1-mm-diameter spot, 5-ms pulse duration, and pulse rate of 20 Hz for a duration of 15-30 s. The flat-top laser beam profile consistently produced a faster and higher ICP response at a lower radiant exposure than the Gaussian beam profile due, in part, to easier alignment of the more uniform beam with nerve. The threshold for ONS was approximately 0.14 J/cm2, corresponding to a temperature increase of 6-8°C at the CN surface after a stimulation time of 15 s. With further development, ONS may be used as a diagnostic tool for identification of CN's during prostate
Bayesian modeling of JET Li-BES for edge electron density profiles using Gaussian processes
NASA Astrophysics Data System (ADS)
Kwak, Sehyun; Svensson, Jakob; Brix, Mathias; Ghim, Young-Chul; JET Contributors Collaboration
2015-11-01
A Bayesian model for the JET lithium beam emission spectroscopy (Li-BES) system has been developed to infer edge electron density profiles. The 26 spatial channels measure emission profiles with ~15 ms temporal resolution and ~1 cm spatial resolution. The lithium I (2p-2s) line radiation in an emission spectrum is calculated using a multi-state model, which expresses collisions between the neutral lithium beam atoms and the plasma particles as a set of differential equations. The emission spectrum is described in the model including photon and electronic noise, spectral line shapes, interference filter curves, and relative calibrations. This spectral modeling gets rid of the need of separate background measurements for calculating the intensity of the line radiation. Gaussian processes are applied to model both emission spectrum and edge electron density profile, and the electron temperature to calculate all the rate coefficients is obtained from the JET high resolution Thomson scattering (HRTS) system. The posterior distributions of the edge electron density profile are explored via the numerical technique and the Markov chain Monte Carlo (MCMC) samplings. See the Appendix of F. Romanelli et al., Proceedings of the 25th IAEA Fusion Energy Conference 2014, Saint Petersburg, Russia.
Kinetically balanced Gaussian basis-set approach to relativistic Compton profiles of atoms
Jaiswal, Prerit; Shukla, Alok
2007-02-15
Atomic Compton profiles (CPs) are a very important property which provide us information about the momentum distribution of atomic electrons. Therefore, for CPs of heavy atoms, relativistic effects are expected to be important, warranting a relativistic treatment of the problem. In this paper, we present an efficient approach aimed at ab initio calculations of atomic CPs within a Dirac-Hartree-Fock (DHF) formalism, employing kinetically balanced Gaussian basis functions. The approach is used to compute the CPs of noble gases ranging from He to Rn, and the results have been compared to the experimental and other theoretical data, wherever possible. The influence of the quality of the basis set on the calculated CPs has also been systematically investigated.
Effluent profile of commercially used low-phosphorus fish feeds.
Sugiura, Shozo H; Marchant, Daniel D; Kelsey, Kevin; Wiggins, Thomas; Ferraris, Ronaldo P
2006-03-01
Excess phosphorus (P) in aquaculture feeds contributes to the eutrophication of natural waters. While commercially available low-P (LP) fish feeds have been developed, there is uncertainty about their potential to reduce effluent P while maintaining fish growth relative to regular P (RP) feeds. We therefore simulated commercial aquaculture conditions and fed for 55 days rainbow trout (approximately 190 kg/raceway, n = 3 raceways/diet) RP (1.4% total P) and LP (1.0%) feeds then determined effluent P levels, fish growth, and feed costs. Excretions of fecal-P and soluble-P, but not particulate-P, in effluents were greater in RP than in LP ponds. Fish growth, bone-P and plasma-P were similar between diets, demonstrating that LP feeds can lower effluent P levels without compromising growth. Costs were 0.97 dollars/kg fish production for LP feeds, and 0.74 dollars/kg for RP. Because feed is the largest variable cost in commercial aquaculture, the use of LP feeds can significantly increase production costs.
Anai, Shigeo; Arimura, Hidetaka; Nakamura, Katsumasa; Araki, Fujio; Matsuki, Takaomi; Yoshikawa, Hideki; Yoshidome, Satoshi; Shioyama, Yoshiyuki; Honda, Hiroshi; Ikeda, Nobuo
2011-07-01
The X-ray source or focal radiation is one of the factors that can degrade the conformal field edge in stereotactic body radiotherapy. For that reason, it is very important to estimate the total focal radiation profiles of linear accelerators, which consists of X-ray focal-spot radiation and extra-focal radiation profiles. Our purpose in this study was to propose an experimental method for estimating the focal-spot and extra-focal radiation profiles of linear accelerators based on triple Gaussian functions. We measured the total X-ray focal radiation profiles of the accelerators by moving a slit in conjunction with a photon field p-type silicon diode. The slit width was changed so that the extra-focal radiation could be optimally included in the total focal radiation. The total focal radiation profiles of an accelerator at 4-MV and 10-MV energies were approximated with a combination of triple Gaussian functions, which correspond to the focal-spot radiation, extra-focal radiation, and radiation transmitted through the slit assembly. As a result, the ratios of the Gaussian peak value of the extra-focal radiation to that of the focal spot for 4 and 10 MV were 0.077 and 0.159, respectively. The peak widths of the focal-spot and extra-focal radiation profiles were 0.57 and 25.0 mm for 4 MV, respectively, and 0.60 and 22.0 mm for 10 MV, respectively. We concluded that the proposed focal radiation profile model based on the triple Gaussian functions may be feasible for estimating the X-ray focal-spot and extra-focal radiation profiles.
NASA Astrophysics Data System (ADS)
Singh, Kunal; Kumar, Sanjay; Goel, Ekta; Singh, Balraj; Kumar, Mirgender; Dubey, Sarvesh; Jit, Satyabrata
2017-01-01
This paper proposes a new model for the subthreshold current and swing of the short-channel symmetric underlap ultrathin double gate metal oxide field effect transistors with a source/drain lateral Gaussian doping profile. The channel potential model already reported earlier has been utilized to formulate the closed form expression for the subthreshold current and swing of the device. The effects of the lateral straggle and geometrical parameters such as the channel length, channel thickness, and oxide thickness on the off current and subthreshold slope have been demonstrated. The devices with source/drain lateral Gaussian doping profiles in the underlap structure are observed to be highly resistant to short channel effects while improving the current drive. The proposed model is validated by comparing the results with the numerical simulation data obtained by using the commercially available ATLAS™, a two-dimensional (2-D) device simulator from SILVACO.
D'Costa, Vijay Richard Yeo, Yee-Chia
2015-02-21
Spectroscopic ellipsometry with photon energy in the 0.045–0.65 eV range was used to investigate germanium samples implanted with 30 keV phosphorus ions and annealed at 700 °C. The infrared response of implanted layers is dominated by free carrier absorption which is modeled using a Drude oscillator. The carrier concentration profiles were modeled using an error function, and compared with those obtained by electrochemical capacitance-voltage profiling and secondary ion mass spectrometry. In the flat region of the carrier concentration profile, average carrier concentration and mobility of 1.40 × 10{sup 19} cm{sup −3} and 336 cm{sup 2}V{sup −1}s{sup −1}, respectively, were obtained. A phosphorus diffusivity of ∼1.2 × 10{sup −13} cm{sup 2}/s was obtained. The mobility versus carrier concentration relationships obtained for the implanted samples are close to the empirical relationship for bulk Ge.
NASA Astrophysics Data System (ADS)
Rodríguez-Marín, Francisco; Anera, Rosario G.; Alarcón, Aixa; Hita, E.; Jiménez, J. R.
2012-04-01
In this work, we propose an adjustment factor to be considered in ablation algorithms used in refractive surgery. This adjustment factor takes into account potential deviations of Lambert-Beer's law and the characteristics of a Gaussian-profile beam. To check whether the adjustment factor deduced is significant for visual function, we applied it to the paraxial Munnerlyn formula and found that it significantly influences the post-surgical corneal radius and p-factor. The use of the adjustment factor can help reduce the discrepancies in corneal shape between the real data and corneal shape expected when applying laser ablation algorithms.
Liu, KeShun; Han, Jianchun
2011-02-01
For determining variation in mineral composition and phosphorus (P) profile among streams of dry-grind ethanol production, samples of ground corn, intermediate streams, and distillers dried grains with solubles (DDGS) were obtained from three commercial plants. Most attributes (dry matter concentrations) increased significantly from corn to cooked slurry but fermentation caused most significant increase in all attributes. During centrifugation, more minerals went into thin stillage than wet grains, making minerals most concentrated in the former. Mineral increase in DDGS over corn was about 3 fold, except for Na, S, Ca, and Fe. The first three had much higher fold of increase, presumably due to exogenous addition. During fermentation, phytate P and inorganic P had 2.54 and 10.37 fold of increase over corn, respectively, while relative to total P, % phytate P decreased and % inorganic P increased significantly. These observations suggest that phytate underwent some degradation, presumably due to activity of yeast phytase.
Zhu, Mengyuan; Zhu, Guangwei; Li, Wei; Zhang, Yunlin; Zhao, Linlin; Gu, Zhao
2013-02-01
Because large, shallow lakes are heavily influenced by wind-wave disturbance, it is difficult to estimate internal phosphorus load using traditional methods. To estimate the potential contribution of phosphorus from sediment to overlying water in eutrophic Lake Taihu, phosphorus fractions of surface and deep layer sediments were quantified and analyzed for algal bloom potential using a Standard Measurements and Testing (SMT) sequential extraction method and incubation experiments. Phosphorus bound to Fe, Al and Mn oxides and hydroxides (Fe-P) and organic phosphorus (OP) were to be found bioactive. The difference in Fe-P and OP contents between surface and deep layers equates to the sediment pool of potentially algal-available phosphorus. This pool was estimated at 5168 tons for the entire lake and was closely related to pollution input and algal blooms. Profiled SMT fractionation analysis is thus a potentially useful tool for estimating internal phosphorus loading in large, shallow lakes. Copyright © 2012 Elsevier Ltd. All rights reserved.
Metabolite Profiling of Root Exudates of Common Bean under Phosphorus Deficiency
Tawaraya, Keitaro; Horie, Ryota; Saito, Saki; Wagatsuma, Tadao; Saito, Kazuki; Oikawa, Akira
2014-01-01
Root exudates improve the nutrient acquisition of plants and affect rhizosphere microbial communities. The plant nutrient status affects the composition of root exudates. The purpose of this study was to examine common bean (Phaseolus vulgaris L.) root exudates under phosphorus (P) deficiency using a metabolite profiling technique. Common bean plants were grown in a culture solution at P concentrations of 0 (P0), 1 (P1) and 8 (P8) mg P L−1 for 1, 10 and 20 days after transplanting (DAT). Root exudates were collected, and their metabolites were determined by capillary electrophoresis time-of-flight mass spectrometry (CE-TOF MS). The shoot P concentration and dry weight of common bean plants grown at P0 were lower than those grown at P8. One hundred and fifty-nine, 203 and 212 metabolites were identified in the root exudates, and 16% (26/159), 13% (26/203) and 9% (20/212) of metabolites showed a P0/P8 ratio higher than 2.0 at 1, 10 and 20 DAT, respectively. The relative peak areas of several metabolites, including organic acids and amino acids, in root exudates were higher at P0 than at P8. These results suggest that more than 10% of primary and secondary metabolites are induced to exude from roots of common bean by P deficiency. PMID:25032978
NASA Astrophysics Data System (ADS)
Storto, Andrea
2016-08-01
Quality control procedures aiming at identifying observations suspected of gross errors are an important component of modern ocean data assimilation systems. On the one hand, assimilating observations whose departures from the background state are large may result in detrimental analyses and compromise the stability of the ocean analysis system. On the other hand, the rejection of these observations may prevent the analysis from ingesting useful information, especially in areas of large variability. In this work, we investigate the quality control of in-situ hydrographic profiles through modifying the probability density function (PDF) of the observational errors and relaxing the assumption of Gaussian PDF. The new PDF is heavier-tailed than Gaussian, thus accommodating the assimilation of observations with large misfits, albeit with smaller weight given to them in the analysis. This implies a different observational term in the analysis equation, and an adaptive quality control procedure based on the innovation statistics themselves. Implemented in a global ocean variational data assimilation system at moderate horizontal resolution, the scheme proves robust and successful in assimilating more observations with respect to the simpler background quality check scheme. This leads to better skill scores against both conventional and satellite observing systems. This approach proves superior also to the case where no quality control is considered. Furthermore, the implementation considers switching on the modified cost function at the 10th iteration of the minimization so that innovation statistics are based on a good approximation of the analysis. Neglecting this strategy and turning on the variational quality control since the beginning of the minimization exhibits worse scores, qualitatively similar to those of the experiment without quality control, suggesting that in this case quality control procedures are too gentle. A specific study investigating the upper
Aziz, Tariq; Finnegan, Patrick M; Lambers, Hans; Jost, Ricarda
2014-04-01
Recent studies have identified genotypic variation in phosphorus (P) efficiency, but rarely have the underlying mechanisms been described at the molecular level. We demonstrate that the highly P-efficient wheat (Triticum aestivum L.) cultivar Chinese 80-55 maintains higher inorganic phosphate (Pi ) concentrations in all organs upon Pi withdrawal in combination with higher Pi acquisition in the presence of Pi when compared with the less-efficient cultivar Machete. These findings correlated with differential organ-specific expression of Pi transporters TaPHT1;2, TaPHT1;5, TaPHT1;8, TaPHT2;1 and H(+) -ATPase TaHa1. Observed transcript level differences between the cultivars suggest that higher de novo phospholipid biosynthetic activities in Pi -limited elongating basal leaf sections are another crucial adaptation in Chinese 80-55 for sustaining growth upon Pi withdrawal. These activities may be supported through enhanced breakdown of starch in Chinese 80-55 stems as suggested by higher TaGPho1 transcript levels. Chinese 80-55 fine roots on the other hand show strong suppression of transcripts involved in glycolysis, transcriptional regulation and ribosomal activities. Our work reveals major differences in the way the two contrasting cultivars allocate Pi and organic P compounds between source and sink tissues and in the acclimation of their metabolism to changes in Pi availability. © 2013 John Wiley & Sons Ltd.
Zhao, Hongwei; Sun, Ruobai; Albrecht, Ute; Padmanabhan, Chellappan; Wang, Airong; Coffey, Michael D; Girke, Thomas; Wang, Zonghua; Close, Timothy J; Roose, Mikeal; Yokomi, Raymond K; Folimonova, Svetlana; Vidalakis, Georgios; Rouse, Robert; Bowman, Kim D; Jin, Hailing
2013-03-01
Huanglongbing (HLB) is a devastating citrus disease that is associated with bacteria of the genus 'Candidatus Liberibacter' (Ca. L.). Powerful diagnostic tools and management strategies are desired to control HLB. Host small RNAs (sRNA) play a vital role in regulating host responses to pathogen infection and are used as early diagnostic markers for many human diseases, including cancers. To determine whether citrus sRNAs regulate host responses to HLB, sRNAs were profiled from Citrus sinensis 10 and 14 weeks post grafting with Ca. L. asiaticus (Las)-positive or healthy tissue. Ten new microRNAs (miRNAs), 76 conserved miRNAs, and many small interfering RNAs (siRNAs) were discovered. Several miRNAs and siRNAs were highly induced by Las infection, and can be potentially developed into early diagnosis markers of HLB. miR399, which is induced by phosphorus starvation in other plant species, was induced specifically by infection of Las but not Spiroplasma citri that causes citrus stubborn-a disease with symptoms similar to HLB. We found a 35% reduction of phosphorus in Las-positive citrus trees compared to healthy trees. Applying phosphorus oxyanion solutions to HLB-positive sweet orange trees reduced HLB symptom severity and significantly improved fruit production during a 3-year field trial in south-west Florida. Our molecular, physiological, and field data suggest that phosphorus deficiency is linked to HLB disease symptomology.
Zhao, Hongwei; Sun, Ruobai; Jin, Hailing
2013-01-01
Huanglongbing (HLB) is a devastating citrus disease that is associated with bacteria of the genus ‘Candidatus Liberibacter’ (Ca. L.). Powerful diagnostic tools and management strategies are desired to control HLB. Host small RNAs (sRNA) play a vital role in regulating host responses to pathogen infection and are used as early diagnostic markers for many human diseases, including cancers. To determine whether citrus sRNAs regulate host responses to HLB, sRNAs were profiled from Citrus sinensis 10 and 14 weeks post grafting with Ca. L. asiaticus (Las)-positive or healthy tissue. Ten new microRNAs (miRNAs), 76 conserved miRNAs, and many small interfering RNAs (siRNAs) were discovered. Several miRNAs and siRNAs were highly induced by Las infection, and can be potentially developed into early diagnosis markers of HLB. miR399, which is induced by phosphorus starvation in other plant species, was induced specifically by infection of Las but not Spiroplasma citri that causes citrus stubborn—a disease with symptoms similar to HLB. We found a 35% reduction of phosphorus in Las-positive citrus trees compared to healthy trees. Applying phosphorus oxyanion solutions to HLB-positive sweet orange trees reduced HLB symptom severity and significantly improved fruit production during a 3-year field trial in south-west Florida. Our molecular, physiological, and field data suggest that phosphorus deficiency is linked to HLB disease symptomology. PMID:23292880
Transcriptomic and Proteomic Profiling of Anabaena sp. Strain 90 under Inorganic Phosphorus Stress
Teikari, Jonna; Österholm, Julia; Kopf, Matthias; Battchikova, Natalia; Wahlsten, Matti; Aro, Eva-Mari; Hess, Wolfgang R.
2015-01-01
Inorganic phosphorus (Pi) is one of the main growth-limiting factors of diazotrophic cyanobacteria. Due to human activity, the availability of Pi has increased in water bodies, resulting in eutrophication and the formation of massive cyanobacterial blooms. In this study, we examined the molecular responses of the cyanobacterium Anabaena sp. strain 90 to phosphorus deprivation, aiming at the identification of candidate genes to monitor the Pi status in cyanobacteria. Furthermore, this study increased the basic understanding of how phosphorus affects diazotrophic and bloom-forming cyanobacteria as a major growth-limiting factor. Based on RNA sequencing data, we identified 246 differentially expressed genes after phosphorus starvation and 823 differentially expressed genes after prolonged Pi limitation, most of them related to central metabolism and cellular growth. The transcripts of the genes related to phosphorus transport and assimilation (pho regulon) were most upregulated during phosphorus depletion. One of the most increased transcripts encodes a giant protein of 1,869 amino acid residues, which contains, among others, a phytase-like domain. Our findings predict its crucial role in phosphorus starvation, but future studies are still needed. Using two-dimensional difference in gel electrophoresis (2D-DIGE) and liquid chromatography-tandem mass spectrometry (LC-MS/MS), we found 43 proteins that were differentially expressed after prolonged phosphorus stress. However, correlation analysis unraveled an association only to some extent between the transcriptomic and proteomic abundances. Based on the present results, we suggest that the method used for monitoring the Pi status in cyanobacterial bloom should contain wider combinations of pho regulon genes (e.g., PstABCS transport systems) in addition to the commonly used alkaline phosphatase gene alone. PMID:26025890
Nessi, G. T. von; Hole, M. J.
2013-06-15
A unified, Bayesian inference of midplane electron temperature and density profiles using both Thomson scattering (TS) and interferometric data is presented. Beyond the Bayesian nature of the analysis, novel features of the inference are the use of a Gaussian process prior to infer a mollification length-scale of inferred profiles and the use of Gauss-Laguerre quadratures to directly calculate the depolarisation term associated with the TS forward model. Results are presented from an application of the method to data from the high resolution TS system on the Mega-Ampere Spherical Tokamak, along with a comparison to profiles coming from the standard analysis carried out on that system.
von Nessi, G T; Hole, M J
2013-06-01
A unified, Bayesian inference of midplane electron temperature and density profiles using both Thomson scattering (TS) and interferometric data is presented. Beyond the Bayesian nature of the analysis, novel features of the inference are the use of a Gaussian process prior to infer a mollification length-scale of inferred profiles and the use of Gauss-Laguerre quadratures to directly calculate the depolarisation term associated with the TS forward model. Results are presented from an application of the method to data from the high resolution TS system on the Mega-Ampere Spherical Tokamak, along with a comparison to profiles coming from the standard analysis carried out on that system.
Cade-Menun, Barbara J; Carter, Martin R; James, Dean C; Liu, Corey W
2010-01-01
In many regions, conservation tillage has replaced conventional tilling practices to reduce soil erosion, improve water conservation, and increase soil organic matter. However, tillage can have marked effects on soil properties, specifically nutrient redistribution or stratification in the soil profile. The objective of this research was to examine soil phosphorus (P) forms and concentrations in a long-term study comparing conservation tillage (direct drilling, "No Till") and conventional tillage (moldboard plowing to 20 cm depth, "Till") established on a fine sandy loam (Orthic Humo-Ferric Podzol) in Prince Edward Island, Canada. No significant differences in total carbon (C), total nitrogen (N), total P, or total organic P concentrations were detected between the tillage systems at any depth in the 0- to 60-cm depth range analyzed. However, analysis with phosphorus-31 nuclear magnetic resonance spectroscopy showed differences in P forms in the plow layer. In particular, the concentration of orthophosphate was significantly higher under No Till than Till at 5 to 10 cm, but the reverse was true at 10 to 20 cm. Mehlich 3-extractable P was also significantly higher in No Till at 5 to 10 cm and significantly higher in Till at 20 to 30 cm. This P stratification appears to be caused by a lack of mixing of applied fertilizer in No Till because the same trends were observed for pH and Mehlich 3-extractable Ca (significantly higher in the Till treatment at 20 to 30 cm), reflecting mixing of applied lime. The P saturation ratio was significantly higher under No Till at 0 to 5 cm and exceeded the recommended limits, suggesting that P stratification under No Till had increased the potential for P loss in runoff from these sites.
Tokuhisa, Atsushi; Joti, Yasumasa; Kitao, Akio; Nakagawa, Hiroshi; Kataoka, Mikio
2007-04-15
Elastic incoherent neutron scattering (EINS) data can be approximated with a Gaussian function of q in a low q region. However, in a higher q region the deviation from a Gaussian function becomes non-negligible. Protein dynamic properties can be derived from the analyses of the non-Gaussian behavior, which has been experimentally investigated. To evaluate the origins of the non-Gaussian behavior of protein dynamics, we conducted a molecular dynamics (MD) simulation of staphylococcal nuclease. Instead of the ordinary cumulant expansion, we decomposed the non-Gaussian terms into three components: (i) the component originating from the heterogeneity of the mean-square fluctuation (ii) that from the anisotropy, and (iii) that from higher-order terms such as anharmonicity. The MD simulation revealed various dynamics for each atom. The atomic motions are classified into three types: (i) 'harmonic', (ii) 'anisotropic', and (iii) 'anharmonic'. However, each atom has a different degree of anisotropy. The contribution of the anisotropy to the total scattering function averages out due to these differences. Anharmonic motion is described as the jump among multiple minima. The jump distance and the probability of the residence at one site vary from atom to atom. Each anharmonic component oscillates between positive and negative values. Thus, the contribution of the anharmonicity to the total scattering is canceled due to the variations in the anharmonicity. Consequently, the non-Gaussian behavior of the total EINS from a protein can be analyzed by the dynamical heterogeneity.
Ganie, Arshid Hussain; Ahmad, Altaf; Pandey, Renu; Aref, Ibrahim M; Yousuf, Peerzada Yasir; Ahmad, Sayeed; Iqbal, Muhammad
2015-01-01
Maize (Zea mays L.) is one of the most widely cultivated crop plants. Unavoidable economic and environmental problems associated with the excessive use of phosphatic fertilizers demands its better management. The solution lies in improving the phosphorus (P) use efficiency to sustain productivity even at low P levels. Untargeted metabolomic profiling of contrasting genotypes provides a snap shot of whole metabolome which differs under specific conditions. This information provides an understanding of the mechanisms underlying tolerance to P stress and the approach for increasing P-use-efficiency. A comparative metabolite-profiling approach based on gas chromatography-mass spectrometry (GC/MS) was applied to investigate the effect of P starvation and its restoration in low-P sensitive (HM-4) and low-P tolerant (PEHM-2) maize genotypes. A comparison of the metabolite profiles of contrasting genotypes in response to P-deficiency revealed distinct differences among low-P sensitive and tolerant genotypes. Another set of these genotypes were grown under P-restoration condition and sampled at different time intervals (3, 5 and 10 days) to investigate if the changes in metabolite profile under P-deficiency was restored. Significant variations in the metabolite pools of these genotypes were observed under P-deficiency which were genotype specific. Out of 180 distinct analytes, 91 were identified. Phosphorus-starvation resulted in accumulation of di- and trisaccharides and metabolites of ammonium metabolism, specifically in leaves, but decreased the levels of phosphate-containing metabolites and organic acids. A sharp increase in the concentrations of glutamine, asparagine, serine and glycine was observed in both shoots and roots under low-P condition. The new insights generated on the maize metabolome in response to P-starvation and restoration would be useful towards improvement of the P-use efficiency in maize.
Ganie, Arshid Hussain; Ahmad, Altaf; Pandey, Renu; Aref, Ibrahim M.; Yousuf, Peerzada Yasir; Ahmad, Sayeed; Iqbal, Muhammad
2015-01-01
Background Maize (Zea mays L.) is one of the most widely cultivated crop plants. Unavoidable economic and environmental problems associated with the excessive use of phosphatic fertilizers demands its better management. The solution lies in improving the phosphorus (P) use efficiency to sustain productivity even at low P levels. Untargeted metabolomic profiling of contrasting genotypes provides a snap shot of whole metabolome which differs under specific conditions. This information provides an understanding of the mechanisms underlying tolerance to P stress and the approach for increasing P-use-efficiency. Methodology/Principal Findings A comparative metabolite-profiling approach based on gas chromatography-mass spectrometry (GC/MS) was applied to investigate the effect of P starvation and its restoration in low-P sensitive (HM-4) and low-P tolerant (PEHM-2) maize genotypes. A comparison of the metabolite profiles of contrasting genotypes in response to P-deficiency revealed distinct differences among low-P sensitive and tolerant genotypes. Another set of these genotypes were grown under P-restoration condition and sampled at different time intervals (3, 5 and 10 days) to investigate if the changes in metabolite profile under P-deficiency was restored. Significant variations in the metabolite pools of these genotypes were observed under P-deficiency which were genotype specific. Out of 180 distinct analytes, 91 were identified. Phosphorus-starvation resulted in accumulation of di- and trisaccharides and metabolites of ammonium metabolism, specifically in leaves, but decreased the levels of phosphate-containing metabolites and organic acids. A sharp increase in the concentrations of glutamine, asparagine, serine and glycine was observed in both shoots and roots under low-P condition. Conclusion The new insights generated on the maize metabolome in resposne to P-starvation and restoration would be useful towards improvement of the P-use efficiency in maize. PMID
NASA Astrophysics Data System (ADS)
M, H. Moghtader Dindarlu; M Kavosh, Tehrani; H, Saghafifar; A, Maleki
2015-12-01
In this paper, according to the temperature and strain distribution obtained by considering the Gaussian pump profile and dependence of physical properties on temperature, we derive an analytical model for refractive index variations of the diode side-pumped Nd:YAG laser rod. Then we evaluate this model by numerical solution and our maximum relative errors are 5% and 10% for variations caused by thermo-optical and thermo-mechanical effects; respectively. Finally, we present an analytical model for calculating the focal length of the thermal lens and spherical aberration. This model is evaluated by experimental results.
Huo, Shouliang; Zhang, Jingtian; Yeager, Kevin M; Xi, Beidou; Wang, Jian; He, Zhuoshi; Wu, Fengchang
2014-11-01
The diffusive gradients in thin films (DGT) technique was applied to obtain high spatial resolution of dissolved reactive phosphorus (DRP) concentrations in overlying water and sediment porewater in Lake Taihu. A strong positive correlation between total phosphorus (TP) in sediments and DRP concentrations using DGT was found in both of the sampled lake regions. For stations ZSW and DPG, which have high TP background values in sediments, DRP concentrations in overlying water and porewater were much higher than those at stations MLW, DPG, and HX. Also, a high potential for P release at the sediment-water interface was revealed at stations ZSW and DPG due to a significant concentration gradient between overlying water and porewater. In sediment cores from stations ZSW and DPG, DRP porewater concentration profiles using DGT with three diffusive gel thicknesses displayed a similar trend, increasing down to -2 cm or -4 cm, then decreasing down to -8 cm, and then becoming relatively stable in deeper layers. High-resolution profiles of DRP were related to dissolved oxygen concentrations and organic matter concentrations in different sediment layers at stations ZSW and DPG. For most sediment with low TP concentrations at stations MLW, DPG, and HX, DRP concentrations could not be determined at and near the sediment-water interface, then increased gradually down to -8 cm or -10 cm, and remained stable. At stations MLW, DPG, and HX, most DRPDGT (DRP concentrations measured by DGT) values were 10-30 % of the DRP concentrations in porewater, indicating a partial resupply of the sediments to porewater.
Olarte, Omar E.; Licea-Rodriguez, Jacob; Palero, Jonathan A.; Gualda, Emilio J.; Artigas, David; Mayer, Jürgen; Swoger, Jim; Sharpe, James; Rocha-Mendoza, Israel; Rangel-Rojo, Raul; Loza-Alvarez, Pablo
2012-01-01
We present the implementation of a combined digital scanned light-sheet microscope (DSLM) able to work in the linear and nonlinear regimes under either Gaussian or Bessel beam excitation schemes. A complete characterization of the setup is performed and a comparison of the performance of each DSLM imaging modality is presented using in vivo Caenorhabditis elegans samples. We found that the use of Bessel beam nonlinear excitation results in better image contrast over a wider field of view. PMID:22808423
An analysis of a non-Gaussian, Gaussian laser beam
NASA Astrophysics Data System (ADS)
Ross, T. Sean
2006-02-01
It is possible to construct summations of Laguerre-Gaussian modes which have the appearance of a zero order fundamental Gaussian but which, in fact, have no zero order content. These examples have circulated informally as a warning against trusting a single beam profile measurement as to the indication of the modal content of a given beam. These 'non-Gaussian' Gaussian beams also turn out to be extremely revealing of the fundamental assumptions upon which all modal decompositions and modal-based beam quality measures are based upon. Due to the contrived nature of these beams, they are also subject to some very subtle but important theoretical errors. This paper will rigorously examine a 'non-Gaussian', Gaussian beam in terms of its amplitude and phase characteristics, propagation behavior, M2 and what it reveals about modal decompositions and modal beam quality measures in general.
Shinano, Takuro; Yoshimura, Tomoko; Watanabe, Toshihiro; Unno, Yusuke; Osaki, Mitsuru; Nanjo, Yohei; Komatsu, Setsuko
2013-11-01
Plant roots are complicated organs that absorb water and nutrients from the soil. Roots also play an essential role in protecting plants from attack by soil pathogens and develop a beneficial role with some soil microorganisms. Plant-derived rhizosphere proteins (e.g., root secretory proteins and root surface binding proteins) are considered to play important roles in developing mutual relationships in the rhizosphere. In the rhizosphere, where plant roots meet the surrounding environment, it has been suggested that root secretory protein and root surface binding protein are important factors. Furthermore, it is not known how the physiological status of the plant affects the profile of these proteins. In this study, rice plants were grown aseptically, with or without phosphorus nutrition, and proteins were obtained from root bathing solution (designated as root secretory proteins) and obtained using 0.2 M CaCl2 solution (designated as root surface binding proteins). The total number of identified proteins in the root bathing solution was 458, and the number of root surface binding proteins was 256. More than half of the proteins were observed in both fractions. Most of the proteins were categorized as either having signal peptides or no membrane transport helix sites. The functional categorization suggested that most of the proteins seemed to have secretory pathways and were involved in defense/disease-related functions. These characteristics seem to be unique to rhizosphere proteins, and the latter might be part of the plants strategy to defeat pathogens in the soil. The low phosphorus treatment significantly increased the number of pathogenesis-related proteins in the root secretory proteins, whereas the change was small in the case of the root surface binding proteins. The results suggested that the roots are actively and selectively secreting protein into the rhizosphere.
NASA Astrophysics Data System (ADS)
Haghighatzadeh, A.; Golnabi, H.
2013-05-01
Both theoretical and experimental results of an optical beam shaping system are investigated in this report. The described system is a two-stage beam shaping device including a fiber-bundle and a prism-duct. A source light is used to illuminate the fiber-bundle and the image of output beam is captured by a CCD camera. The fiber-bundle output beam shape shows a linear arrangement of circular spots lights, which are placed in a rectangular cross section of about 21.37 mm×2.44 mm. In another study, the photograph picture of the prism output beam is taken by a digital camera. The prism output beam cross section is a square shape with a dimension of about 4×4 mm2. According to the experimental results, the prism duct converted a Gaussian beam profile with multiple-peak distribution to a hat-top beam profile with the uniform intensity distribution. For theoretical investigations, using ZEMAX software a simulation is performed to analyze the beam shaping design. By proper modeling the output beam shape and radiance profiles in position space and angle space of the fiber-bundle and the prism duct are investigated. Theoretical radiance profiles are obtained by using simulated images and results are in agreement with the experimental results.
Sun, Yanling; Mu, Chunhua; Chen, Yu; Kong, Xiangpei; Xu, Yuanchao; Zheng, Hongxia; Zhang, Hui; Wang, Qingcheng; Xue, Yanfang; Li, Zongxin; Ding, Zhaojun; Liu, Xia
2016-12-01
Maize (Zea mays L.) is an important food and energy crop, and low phosphate (Pi) availability is one of the major constraints in maize production worldwide. Plants adapt suitably to acclimate to low Pi stress. However, the underlying molecular mechanism of Pi deficiency response is still unclear. In this study, comparative transcriptomic analyses were conducted to investigate the differences of transcriptional responses in two maize genotypes with different tolerances to low phosphorus (LP) stress. LP-tolerant genotype QXN233 maintained higher P and Pi levels in shoots than LP-sensitive genotype QXH0121 suffering from Pi deficiency at seedling stage. Moreover, the transcriptomic analysis identified a total of 1391 Pi-responsive genes differentially expressed between QXN233 and QXH0121 under LP stress. Among these genes, 468 (321 up- and 147 down-regulated) were identified in leaves, and 923 (626 up- and 297 down-regulated) were identified in roots. These Pi-responsive genes were involved in various metabolic pathways, the biosynthesis of secondary metabolites, ion transport, phytohormone regulation, and other adverse stress responses. Consistent with the differential tolerance to LP stress, five maize inorganic Pi transporter genes were more highly up-regulated in QXN233 than in QXH0121. Results provide important information to further study the changes in global gene expression between LP-tolerant and LP-sensitive maize genotypes and to understand the molecular mechanisms underlying maize's long-term response to Pi deficiency. Copyright Â© 2016 The Authors. Published by Elsevier Masson SAS.. All rights reserved.
Adcock, Christopher T; Hausrath, Elisabeth M
2015-12-01
Abundant evidence indicates that significant surface and near-surface liquid water has existed on Mars in the past. Evaluating the potential for habitable environments on Mars requires an understanding of the chemical and physical conditions that prevailed in such aqueous environments. Among the geological features that may hold evidence of past environmental conditions on Mars are weathering profiles, such as those in the phosphorus-rich Wishstone-class rocks in Gusev Crater. The weathering profiles in these rocks indicate that a Ca-phosphate mineral has been lost during past aqueous interactions. The high phosphorus content of these rocks and potential release of phosphorus during aqueous interactions also make them of astrobiological interest, as phosphorus is among the elements required for all known life. In this work, we used Mars mission data, laboratory-derived kinetic and thermodynamic data, and data from terrestrial analogues, including phosphorus-rich basalts from Idaho, to model a conceptualized Wishstone-class rock using the reactive transport code CrunchFlow. Modeling results most consistent with the weathering profiles in Wishstone-class rocks suggest a combination of chemical and physical erosion and past aqueous interactions with near-neutral waters. The modeling results also indicate that multiple Ca-phosphate minerals are likely in Wishstone-class rocks, consistent with observations of martian meteorites. These findings suggest that Gusev Crater experienced a near-neutral phosphate-bearing aqueous environment that may have been conducive to life on Mars in the past. Mars-Gusev Crater-Wishstone-Reactive transport modeling-CrunchFlow-Aqueous interactions-Neutral pH-Habitability.
Self-focusing of a Hermite-cosh Gaussian laser beam in a magnetoplasma with ramp density profile
Nanda, Vikas; Kant, Niti; Wani, Manzoor Ahmad
2013-11-15
The early and strong self-focusing of a Hermite-cosh-Gaussian laser beam in magnetoplasma in the presence of density ramp has been observed. Focusing and de-focusing nature of the Hermite-cosh-Gaussian laser beam with decentered parameter and magnetic field has been studied, and strong self-focusing is reported. It is investigated that decentered parameter 'b' plays a significant role for the self-focusing of the laser beam and is very sensitive as in case of extraordinary mode. For mode indices, m = 0, 1, 2, and b = 4.00, 3.14, and 2.05, strong self-focusing is observed. Similarly in case of ordinary mode, for m = 0, 1, 2 and b = 4.00, 3.14, 2.049, respectively, strong self-focusing is reported. Further, it is seen that extraordinary mode is more prominent toward self-focusing rather than ordinary mode of propagation. For mode indices m = 0, 1, and 2, diffraction term becomes more dominant over nonlinear term for decentered parameter b=0. For selective higher values of decentered parameter in case of mode indices m=0, 1, and 2, self-focusing effect becomes strong for extraordinary mode. Also increase in the value of magnetic field enhances the self-focusing ability of the laser beam, which is very useful in the applications like the generation of inertial fusion energy driven by lasers, laser driven accelerators, and x-ray lasers.
Sigua, Gilbert C; Kang, Woo-Jun; Coleman, Sam W
2006-01-01
Largely influenced by the passage of the Swamp Land Act of 1849, many wetlands were lost in the coastal plain region of the southeastern United States, primarily as a result of drainage for agricultural activities. To better understand the chemical response of soils during wetland conversion, soil core samples were collected from the converted beef cattle pastures and from the natural wetland at Plant City, FL in the summers of 2002 and 2003. Data collected from the natural wetland sites were used as reference data to detect potential changes in soil properties associated with the conversion of wetlands to improved beef cattle (Bos taurus) pastures from 1940 to 2003. The average concentration of total phosphorus (TP) in pasture soils (284 mg kg(-1)) was significantly (p
Hernández, Georgina; Valdés-López, Oswaldo; Ramírez, Mario; Goffard, Nicolas; Weiller, Georg; Aparicio-Fabre, Rosaura; Fuentes, Sara Isabel; Erban, Alexander; Kopka, Joachim; Udvardi, Michael K; Vance, Carroll P
2009-11-01
Phosphorus (P) deficiency is widespread in regions where the common bean (Phaseolus vulgaris), the most important legume for human consumption, is produced, and it is perhaps the factor that most limits nitrogen fixation. Global gene expression and metabolome approaches were used to investigate the responses of nodules from common bean plants inoculated with Rhizobium tropici CIAT899 grown under P-deficient and P-sufficient conditions. P-deficient inoculated plants showed drastic reduction in nodulation and nitrogenase activity as determined by acetylene reduction assay. Nodule transcript profiling was performed through hybridization of nylon filter arrays spotted with cDNAs, approximately 4,000 unigene set, from the nodule and P-deficient root library. A total of 459 genes, representing different biological processes according to updated annotation using the UniProt Knowledgebase database, showed significant differential expression in response to P: 59% of these were induced in P-deficient nodules. The expression platform for transcription factor genes based in quantitative reverse transcriptase-polymerase chain reaction revealed that 37 transcription factor genes were differentially expressed in P-deficient nodules and only one gene was repressed. Data from nontargeted metabolic profiles indicated that amino acids and other nitrogen metabolites were decreased, while organic and polyhydroxy acids were accumulated, in P-deficient nodules. Bioinformatics analyses using MapMan and PathExpress software tools, customized to common bean, were utilized for the analysis of global changes in gene expression that affected overall metabolism. Glycolysis and glycerolipid metabolism, and starch and Suc metabolism, were identified among the pathways significantly induced or repressed in P-deficient nodules, respectively.
From almost Gaussian to Gaussian
NASA Astrophysics Data System (ADS)
Costa, Max H. M.; Rioul, Olivier
2015-01-01
We consider lower and upper bounds on the difference of differential entropies of a Gaussian random vector and an approximately Gaussian random vector after they are "smoothed" by an arbitrarily distributed random vector of finite power. These bounds are important to establish the optimality of the corner points in the capacity region of Gaussian interference channels. A problematic issue in a previous attempt to establish these bounds was detected in 2004 and the mentioned corner points have since been dubbed "the missing corner points". The importance of the given bounds comes from the fact that they induce Fano-type inequalities for the Gaussian interference channel. Usual Fano inequalities are based on a communication requirement. In this case, the new inequalities are derived from a non-disturbance constraint. The upper bound on the difference of differential entropies is established by the data processing inequality (DPI). For the lower bound, we do not have a complete proof, but we present an argument based on continuity and the DPI.
Zhang, Yan; He, Juan; Jia, Lei-Jie; Yuan, Ting-Lu; Zhang, Dong; Guo, Yan; Wang, Yufeng; Tang, Wei-Hua
2016-03-01
The ascomycete fungus Fusarium graminearum causes stalk rot in maize. We tracked this pathogen's growth in wound-inoculated maize stalks using a fluorescence-labeled fungal isolate and observed that invasive hyphae grew intercellularly up to 24 h post inoculation, grew intra- and inter-cellularly between 36-48 h, and fully occupied invaded cells after 72 h. Using laser microdissection and microarray analysis, we profiled changes in global gene expression during pathogen growth inside pith tissues of maize stalk from 12 h to six days after inoculation and documented transcriptomic patterns that provide further insights into the infection process. Expression changes in transcripts encoding various plant cell wall degrading enzymes appeared to correlate with inter- and intracellular hyphal growth. Genes associated with 36 secondary metabolite biosynthesis clusters were expressed. Expression of several F. graminearum genes potentially involved in mobilization of the storage lipid triacylglycerol and phosphorus-free lipid biosynthesis were induced during early infection time points, and deletion of these genes caused reduction of virulence in maize stalk. Furthermore, we demonstrated that the F. graminearum betaine lipid synthase 1 (BTA1) gene was necessary and sufficient for production of phosphorus-free membrane lipids, and that deletion of BTA1 interfered with F. graminearum's ability to advance intercellularly. We conclude that F. graminearum produces phosphorus-free membrane lipids to adapt to a phosphate-limited extracellular microenvironment during early stages of its invasion of maize stalk.
Jia, Lei-Jie; Yuan, Ting-Lu; Zhang, Dong; Guo, Yan; Wang, Yufeng; Tang, Wei-Hua
2016-01-01
The ascomycete fungus Fusarium graminearum causes stalk rot in maize. We tracked this pathogen’s growth in wound-inoculated maize stalks using a fluorescence-labeled fungal isolate and observed that invasive hyphae grew intercellularly up to 24 h post inoculation, grew intra- and inter-cellularly between 36–48 h, and fully occupied invaded cells after 72 h. Using laser microdissection and microarray analysis, we profiled changes in global gene expression during pathogen growth inside pith tissues of maize stalk from 12 h to six days after inoculation and documented transcriptomic patterns that provide further insights into the infection process. Expression changes in transcripts encoding various plant cell wall degrading enzymes appeared to correlate with inter- and intracellular hyphal growth. Genes associated with 36 secondary metabolite biosynthesis clusters were expressed. Expression of several F. graminearum genes potentially involved in mobilization of the storage lipid triacylglycerol and phosphorus-free lipid biosynthesis were induced during early infection time points, and deletion of these genes caused reduction of virulence in maize stalk. Furthermore, we demonstrated that the F. graminearum betaine lipid synthase 1 (BTA1) gene was necessary and sufficient for production of phosphorus-free membrane lipids, and that deletion of BTA1 interfered with F. graminearum’s ability to advance intercellularly. We conclude that F. graminearum produces phosphorus-free membrane lipids to adapt to a phosphate-limited extracellular microenvironment during early stages of its invasion of maize stalk. PMID:26974960
USDA-ARS?s Scientific Manuscript database
Phosphorus (P) deficiency is widespread in regions where the common bean (Phaseolus vulgaris L.), the most important legume for human consumption, is produced and is perhaps the factor that most limits nitrogen (N) fixation. Global gene expression and metabolome approaches were used to investigate t...
... AACC products and services. Advertising & Sponsorship: Policy | Opportunities Phosphorus Share this page: Was this page helpful? Also ... else I should know? How is it used? Phosphorus tests are most often ordered along with other ...
Phosphorus, like nitrogen, is a critical nutrient required for all life. Phosphate (PO4), which plays major roles in the formation of DNA, cellular energy, and cell membranes (and plant cell walls). Too much phosphorus can create water quality problems.
NASA Astrophysics Data System (ADS)
Zhang, G. S.; Li, J. C.
2015-11-01
Riparian buffer can trap sediment and nutrients sourced from upper cropland and minimizing eutrophication risk of water quality. This study aimed to investigate the distributions of soil inorganic phosphorus (Pi) forms among profile and particle-size fractions in an established riparian buffer and adjacent cropped area at the Dian lake, Southwestern China. The Ca-bound fraction (62 %) was the major proportion of the Pi in the riparian soils. Buffer rehabilitation from cropped area had a limited impact on total phosphorus (TP) concentrations after 3 years, but has contributed to a change in Pi forms. At 0-20 cm soil layer, levels of the Olsen-P, nonoccluded, Ca-bound and total Pi were lower in the buffer than the cropped area; however, the Pi distribution between the cropped area and the buffer did not differ significantly as depth increased. The clay fraction corresponded to 57 % of TP and seemed to be both a sink for highly recalcitrant Pi and a source for labile Pi. The lower concentration of Pi forms in the silt and sand particle fraction in the surface soil was observed in the buffer area, which indicating that the Pi distribution in coarse particle fraction has sensitively responded to land-use changes.
NASA Astrophysics Data System (ADS)
Zhang, Guo Sheng; Cha Li, Jian
2016-02-01
Riparian buffers can trap sediment and nutrients sourced from upper cropland, minimizing the eutrophication risk of water quality. This study aimed to investigate the distributions of soil inorganic phosphorus (Pi) forms among profile and particle-size fractions in an established riparian buffer and adjacent cropped area at the Dian lake, southwestern China. The Ca-bound fraction (62 %) was the major proportion of the Pi in the riparian soils. After 3 years' restoration, buffer rehabilitation from cropped area had a limited impact on total phosphorus (TP) concentrations, but has contributed to a change in Pi forms. In the 0-20 cm soil layer, levels of the Olsen-P, non-occluded, Ca-bound, and total Pi were lower in the buffer than the cropped area; however, the Pi distribution between the cropped area and the buffer did not differ significantly as depth increased. The clay fraction corresponded to 57 % of TP and seemed to be both a sink for highly recalcitrant Pi and a source for labile Pi. The lower concentration of Pi forms in the silt and sand particle fraction in the surface soil was observed in the buffer area, which indicated that the Pi distribution in coarse particle fraction had sensitively responded to land use changes.
Propagation of modified Bessel-Gaussian beams in turbulence
NASA Astrophysics Data System (ADS)
Eyyuboğlu, Halil Tanyer; Hardalaç, Fırat
2008-03-01
We investigate the propagation characteristics of modified Bessel-Gaussian beams traveling in a turbulent atmosphere. The source beam formulation comprises a Gaussian exponential and the summation of modified Bessel functions. Based on an extended Huygens-Fresnel principle, the receiver plane intensity is formulated and solved down to a double integral stage. Source beam illustrations show that modified Bessel-Gaussian beams, except the lowest order case, will have well-like shapes. Modified Bessel-Gaussian beams with summations will experience lobe slicing and will display more or less the same profile regardless of order content. After propagating in turbulent atmosphere, it is observed that a modified Bessel-Gaussian beam will transform into a Bessel-Gaussian beam. Furthermore it is seen that modified Bessel-Gaussian beams with different Bessel function combinations, but possessing nearly the same profile, will differentiate during propagation. Increasing turbulence strength is found to accelerate the beam transformation toward the eventual Gaussian shape.
Helical apodizers for tunable hyper Gaussian masks
NASA Astrophysics Data System (ADS)
Ojeda-Castañeda, J.; Ledesma, Sergio; Gómez-Sarabia, Cristina M.
2013-09-01
We discuss an optical method for controlling the half-width of Gaussian like transmittance windows, by using a pair of absorption masks that have both radial and helical amplitude variations. For describing the radial part of the proposed masks, we employ amplitude transmittance profiles of the form T(ρ) = exp(- ρ s ). For s = 2, one has an amplitude transmittance that is proportional to a Gaussian function. A sub Gaussian mask is defined by a value of s < 2. And if s > 2, one has super Gaussian masks. Our discussion considers that any of these radially varying masks has also helical modulations. We show that by using a suitable pair of this type of masks, one can control the halfwidth of Gaussian like windows.
NASA Astrophysics Data System (ADS)
Jiao, C.; Ahyi, A. C.; Dhar, S.; Morisette, D.; Myers-Ward, R.
2017-04-01
We report results on the interface trap density ( D it) of 4H- and 6H-SiC metal-oxide-semiconductor (MOS) capacitors with different interface chemistries. In addition to pure dry oxidation, we studied interfaces formed by annealing thermal oxides in NO or POCl3. The D it profiles, determined by the C- ψ s method, show that, although the as-oxidized 4H-SiC/SiO2 interface has a much higher D it profile than 6H-SiC/SiO2, after postoxidation annealing (POA), both polytypes maintain comparable D it near the conduction band edge for the gate oxides incorporated with nitrogen or phosphorus. Unlike most conventional C- V- or G- ω-based methods, the C- ψ s method is not limited by the maximum probe frequency, therefore taking into account the "fast traps" detected in previous work on 4H-SiC. The results indicate that such fast traps exist near the band edge of 6H-SiC also. For both polytypes, we show that the total interface trap density ( N it) integrated from the C- ψ s method is several times that obtained from the high-low method. The results suggest that the detected fast traps have a detrimental effect on electron transport in metal-oxide-semiconductor field-effect transistor (MOSFET) channels.
Ruppert, David E; Needelman, Brian A; Kleinman, Peter J A; Rabenhorst, Martin C; Momen, Bahram; Wester, David B
2017-05-01
Agricultural drainage ditches function as first-order streams and affect nutrient management. Soil mesocosms from a ditch featuring a vertical (increasing upward) gradient in iron (Fe) and phosphorus (P) were subjected to hydraulic and soil treatments. These manipulations mimicked aspects of dredging and controlled drainage and inspected the soil release and retention of P. Treatments did not remove P from simulated groundwater. Throughput water either gained in P (lack of dredging, especially under Fe-reducing conditions) or had P concentrations indistinguishable from input water (dredging). Undredged mesocosms, when Fe-reducing, released Fe and P simultaneously. Simultaneous release of P and Fe from our Fe-reducing mesocosms indicates a mechanism whereby P capture occurs by Fe precipitation upon emergence to aerated surficial waters. Upwelling and surficial phases of ditch hydrology and the lowering of the ditch surface on dredging complicate interpretation of traditional means of describing ditch P retention and release. Copyright © by the American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America, Inc.
Optimality of Gaussian Discord
NASA Astrophysics Data System (ADS)
Pirandola, Stefano; Spedalieri, Gaetana; Braunstein, Samuel L.; Cerf, Nicolas J.; Lloyd, Seth
2014-10-01
In this Letter we exploit the recently solved conjecture on the bosonic minimum output entropy to show the optimality of Gaussian discord, so that the computation of quantum discord for bipartite Gaussian states can be restricted to local Gaussian measurements. We prove such optimality for a large family of Gaussian states, including all two-mode squeezed thermal states, which are the most typical Gaussian states realized in experiments. Our family also includes other types of Gaussian states and spans their entire set in a suitable limit where they become Choi matrices of Gaussian channels. As a result, we completely characterize the quantum correlations possessed by some of the most important bosonic states in quantum optics and quantum information.
Ultrasonic transducer with Gaussian radial pressure distribution
NASA Technical Reports Server (NTRS)
Claus, R. O.; Zerwekh, P. S. (Inventor)
1984-01-01
An ultrasonic transducer that produces an output that is a symmetrical function comprises a piezoelectric crystal with several concentric ring electrodes on one side of the crystal. A resistor network applies different amplitudes of an ac source to each of the several electrodes. A plot of the different amplitudes from the outermost electrode to the innermost electrode is the first half of a Gaussian function. Consequently, the output of the crystal from the side opposite the electrodes has a Gaussian profile.
Yu, Junbao; Qu, Fanzhu; Wu, Huifeng; Meng, Ling; Du, Siyao; Xie, Baohua
2014-01-01
Modified Hedley fraction method was used to study the forms and profile distribution in the tidal river network region subjected to rapid deposition and hydrologic disturbance in the Yellow River Delta (YRD) estuary, eastern China. The results showed that the total P (Pt) ranged from 612.1 to 657.8 mg kg(-1). Dilute HCl extractable inorganic P (Pi) was the predominant form in all profiles, both as absolute values and as a percentage of total extracted Pi. The NaOH extractable organic P (Po) was the predominant form of total extracted Po, while Bicarb-Pi and C.HCl-Po were the lowest fractions of total extracted Pi and Po in all the P forms. The Resin-P concentrations were high in the top soil layer and decreased with depth. The Pearson correlation matrix indicated that Resin-P, Bicarb-Pi, NaOH-Pi, and C.HCl-Pi were strongly positively correlated with salinity, TOC, Ca, Al, and Fe but negatively correlated with pH. The significant correlation of any studied form of organic P (Bicarb-Po, NaOH-Po, and C.HCl-Po) with geochemical properties were not observed in the study. Duncan multiple-range test indicated that the P forms and distribution heterogeneity in the profiles could be attributed to the influences of vegetation cover and hydrologic disturbance.
Yu, Junbao; Qu, Fanzhu; Wu, Huifeng; Meng, Ling; Du, Siyao; Xie, Baohua
2014-01-01
Modified Hedley fraction method was used to study the forms and profile distribution in the tidal river network region subjected to rapid deposition and hydrologic disturbance in the Yellow River Delta (YRD) estuary, eastern China. The results showed that the total P (Pt) ranged from 612.1 to 657.8 mg kg−1. Dilute HCl extractable inorganic P (Pi) was the predominant form in all profiles, both as absolute values and as a percentage of total extracted Pi. The NaOH extractable organic P (Po) was the predominant form of total extracted Po, while Bicarb-Pi and C.HCl-Po were the lowest fractions of total extracted Pi and Po in all the P forms. The Resin-P concentrations were high in the top soil layer and decreased with depth. The Pearson correlation matrix indicated that Resin-P, Bicarb-Pi, NaOH-Pi, and C.HCl-Pi were strongly positively correlated with salinity, TOC, Ca, Al, and Fe but negatively correlated with pH. The significant correlation of any studied form of organic P (Bicarb-Po, NaOH-Po, and C.HCl-Po) with geochemical properties were not observed in the study. Duncan multiple-range test indicated that the P forms and distribution heterogeneity in the profiles could be attributed to the influences of vegetation cover and hydrologic disturbance. PMID:24971393
Gaussian entanglement of formation
Wolf, M.M.; Giedke, G.; Krueger, O.; Werner, R. F.; Cirac, J.I.
2004-05-01
We introduce a Gaussian version of the entanglement of formation adapted to bipartite Gaussian states by considering decompositions into pure Gaussian states only. We show that this quantity is an entanglement monotone under Gaussian operations and provide a simplified computation for states of arbitrary many modes. For the case of one mode per site the remaining variational problem can be solved analytically. If the considered state is in addition symmetric with respect to interchanging the two modes, we prove additivity of the considered entanglement measure. Moreover, in this case and considering only a single copy, our entanglement measure coincides with the true entanglement of formation.
NGMIX: Gaussian mixture models for 2D images
NASA Astrophysics Data System (ADS)
Sheldon, Erin
2015-08-01
NGMIX implements Gaussian mixture models for 2D images. Both the PSF profile and the galaxy are modeled using mixtures of Gaussians. Convolutions are thus performed analytically, resulting in fast model generation as compared to methods that perform the convolution in Fourier space. For the galaxy model, NGMIX supports exponential disks and de Vaucouleurs and Sérsic profiles; these are implemented approximately as a sum of Gaussians using the fits from Hogg & Lang (2013). Additionally, any number of Gaussians can be fit, either completely free or constrained to be cocentric and co-elliptical.
Gaussian Intrinsic Entanglement
NASA Astrophysics Data System (ADS)
Mišta, Ladislav; Tatham, Richard
2016-12-01
We introduce a cryptographically motivated quantifier of entanglement in bipartite Gaussian systems called Gaussian intrinsic entanglement (GIE). The GIE is defined as the optimized mutual information of a Gaussian distribution of outcomes of measurements on parts of a system, conditioned on the outcomes of a measurement on a purifying subsystem. We show that GIE vanishes only on separable states and exhibits monotonicity under Gaussian local trace-preserving operations and classical communication. In the two-mode case, we compute GIE for all pure states as well as for several important classes of symmetric and asymmetric mixed states. Surprisingly, in all of these cases, GIE is equal to Gaussian Rényi-2 entanglement. As GIE is operationally associated with the secret-key agreement protocol and can be computed for several important classes of states, it offers a compromise between computable and physically meaningful entanglement quantifiers.
Xu, Hongbin; Scherrenberg, Sigrid M; van Lier, Jules B
2012-01-01
Continuous sand filtration (CSF) offers interesting potential for the extensive treatment of wastewater treatment plant (WWTP) effluents for water reclamation and/or restrictive discharge. Research on concentration profiles over the height of the CSF shows that most bacteriological conversions are restricted to the lower part of the filter bed. Dissolved oxygen (DO) rapidly decreases to below 1 mg/L in the first 0.4 m of the filter bed, applying hydraulic velocities of 12.9 ∼ 14.9 m/h and 10 ∼ 20 mm/min sand velocities, independent of the methanol dosage. The DO decrease agrees with the observed decrease in chemical oxygen demand (COD). At the given operational conditions, NO(x)-N and N-total removal is dedicated to the first 0.9 m of the filter bed. Results show that by optimising the CSF operational conditions the very restrictive effluent N and P values of 2.2 and 0.15 mg/L, respectively, as described in the European Water Framework Directive, can be met.
Integrated Risk Information System (IRIS)
White phosphorus ; CASRN 7723 - 14 - 0 Human health assessment information on a chemical substance is included in the IRIS database only after a comprehensive review of toxicity data , as outlined in the IRIS assessment development process . Sections I ( Health Hazard Assessments for Noncarcinogenic
Remarkably Gaussian Tephra Fallout from Basaltic Eruptions
NASA Astrophysics Data System (ADS)
Courtland, L. M.; Kruse, S.; Connor, C.
2008-12-01
Tephra fallout models used to forecast volcanic hazards rely on the advection-diffusion equation to forecast hazards. If the advection-diffusion equation applies, then the thickness of tephra blanket deposits should show Gaussian crosswind profiles and exponential decay with distance from the vent. Complications may arise due to factors such as particle size distributions, particle density, and atmospheric effects not incorporated in the advection-diffusion model. Continuous profiles derived from GPR surveys collected on the tephra blanket of Cerro Negro Volcano, Nicaragua allow us to test the advection-diffusion model. Steady trade winds coupled with eruptions that tend to be brief and relatively low energy create relatively simple deposits. Data was collected for cross wind profiles at varying distances from the vent. Horizons identified in these profiles exhibit Gaussian distributions with a high degree of statistical confidence. Additionally, the shape of one continuous profile leading from the crater rim out onto the tephra blanket is examined.
NASA Astrophysics Data System (ADS)
Ruban, V. P.
2016-12-01
The dynamics of a vortex filament in a Bose-Einstein condensate whose equilibrium density in the reference frame rotating at the angular velocity Ω is Gaussian with the quadratic form r· D̂ r has been considered. It has been shown that the equation of motion of the filament in the local-induction approximation permits a class of exact solutions in the form R(β, t) = β M( t) + N( t) of a straight vortex, where β is the longitudinal parameter and is the time. The vortex slips over the surface of an ellipsoid, which follows from the conservation laws N · D̂N= C 1 and M · D̂N= C 0=0. The equation of the evolution of the tangential vector M( t) appears to be closed and has integrals of motion M · D̂ M= C 2 and (| M| - M· Ĝ Ω) = C, with the matrix Ĝ = 2( ÎTr D̂ - D̂)-1. Crossing of the respective isosurfaces specifies trajectories in the phase space.
Çinar, M; Küçükyilmaz, K; Bozkurt, M; Çatli, A U; Bintaş, E; Akşit, H; Konak, R; Yamaner, Ç; Seyrek, K
2015-01-01
1. Two experiments were designed to determine the effect of dietary boron (B) in broiler chickens. In Experiment 1, a 2 × 4 factorial arrangement of treatments was used to investigate the effect of dietary calcium (Ca) and available phosphorus (aP) (adequate or deficient) and supplemental B (0, 20, 40, and 60 mg/kg diet). In Experiment 2, B, at 20 mg/kg, and phytase (PHY) (500 FTU/kg diet) were incorporated into a basal diet deficient in Ca and aP, either alone or in combination. 2. The parameters that were measured were growth performance indices, serum biochemical activity as well as ash and mineral (i.e. Ca, P, Mg, Fe, Cu and Zn) content of tibia, breast muscle and liver. 3. Results indicated that both supplemental B and dietary Ca and aP had marginal effects on performance indices of chickens grown for 42 d. 4. There were positive correlations (linear effect) between B concentrations of serum, bone, breast muscle and liver and the amount of B consumed. 5. Serum T3 and T4 activities increased linearly with higher B supplementation. 6. Increasing supplemental B had significant implications on breast muscle and liver mineral composition. Lowering dietary Ca and aP level increased Cu content in liver and both Fe and Zn retention in breast muscle. Tibia ash content and mineral composition did not respond to dietary modifications with either Ca-aP or B. 7. The results also suggested that dietary contents of Ca and aP do not affect the response to B regarding tissue mineral profile. Dietary combination with B and PHY did not create a synergism with regard to growth performance and bioavailability of the minerals.
Gaussian Multipole Model (GMM)
Elking, Dennis M.; Cisneros, G. Andrés; Piquemal, Jean-Philip; Darden, Thomas A.; Pedersen, Lee G.
2009-01-01
An electrostatic model based on charge density is proposed as a model for future force fields. The model is composed of a nucleus and a single Slater-type contracted Gaussian multipole charge density on each atom. The Gaussian multipoles are fit to the electrostatic potential (ESP) calculated at the B3LYP/6-31G* and HF/aug-cc-pVTZ levels of theory and tested by comparing electrostatic dimer energies, inter-molecular density overlap integrals, and permanent molecular multipole moments with their respective ab initio values. For the case of water, the atomic Gaussian multipole moments Qlm are shown to be a smooth function of internal geometry (bond length and bond angle), which can be approximated by a truncated linear Taylor series. In addition, results are given when the Gaussian multipole charge density is applied to a model for exchange-repulsion energy based on the inter-molecular density overlap. PMID:20209077
George: Gaussian Process regression
NASA Astrophysics Data System (ADS)
Foreman-Mackey, Daniel
2015-11-01
George is a fast and flexible library, implemented in C++ with Python bindings, for Gaussian Process regression useful for accounting for correlated noise in astronomical datasets, including those for transiting exoplanet discovery and characterization and stellar population modeling.
Hammouda, Boualem
2014-01-01
It is common practice to assume that Bragg scattering peaks have Gaussian shape. The Gaussian shape function is used to perform most instrumental smearing corrections. Using Monte Carlo ray tracing simulation, the resolution of a realistic small-angle neutron scattering (SANS) instrument is generated reliably. Including a single-crystal sample with large d-spacing, Bragg peaks are produced. Bragg peaks contain contributions from the resolution function and from spread in the sample structure. Results show that Bragg peaks are Gaussian in the resolution-limited condition (with negligible sample spread) while this is not the case when spread in the sample structure is non-negligible. When sample spread contributes, the exponentially modified Gaussian function is a better account of the Bragg peak shape. This function is characterized by a non-zero third moment (skewness) which makes Bragg peaks asymmetric for broad neutron wavelength spreads. PMID:26601025
Gaussian operations and privacy
Navascues, Miguel; Acin, Antonio
2005-07-15
We consider the possibilities offered by Gaussian states and operations for two honest parties, Alice and Bob, to obtain privacy against a third eavesdropping party, Eve. We first extend the security analysis of the protocol proposed in [Navascues et al. Phys. Rev. Lett. 94, 010502 (2005)]. Then, we prove that a generalized version of this protocol does not allow one to distill a secret key out of bound entangled Gaussian states.
NASA Astrophysics Data System (ADS)
Weedbrook, Christian; Pirandola, Stefano; García-Patrón, Raúl; Cerf, Nicolas J.; Ralph, Timothy C.; Shapiro, Jeffrey H.; Lloyd, Seth
2012-04-01
The science of quantum information has arisen over the last two decades centered on the manipulation of individual quanta of information, known as quantum bits or qubits. Quantum computers, quantum cryptography, and quantum teleportation are among the most celebrated ideas that have emerged from this new field. It was realized later on that using continuous-variable quantum information carriers, instead of qubits, constitutes an extremely powerful alternative approach to quantum information processing. This review focuses on continuous-variable quantum information processes that rely on any combination of Gaussian states, Gaussian operations, and Gaussian measurements. Interestingly, such a restriction to the Gaussian realm comes with various benefits, since on the theoretical side, simple analytical tools are available and, on the experimental side, optical components effecting Gaussian processes are readily available in the laboratory. Yet, Gaussian quantum information processing opens the way to a wide variety of tasks and applications, including quantum communication, quantum cryptography, quantum computation, quantum teleportation, and quantum state and channel discrimination. This review reports on the state of the art in this field, ranging from the basic theoretical tools and landmark experimental realizations to the most recent successful developments.
Method 7905 describes procedures for analysis of phosphorus in air samples using GC-FPD. The method is applicable to vapor-phase phosphorus only; if particulate phosphorus is expected, a filter could be used in the sampling train.
Simulations of Gaussian electron guns for RHIC electron lens
Pikin, A.
2014-02-28
Simulations of two versions of the electron gun for RHIC electron lens are presented. The electron guns have to generate an electron beam with Gaussian radial profile of the electron beam density. To achieve the Gaussian electron emission profile on the cathode we used a combination of the gun electrodes and shaping of the cathode surface. Dependence of electron gun performance parameters on the geometry of electrodes and the margins for electrodes positioning are presented.
Byrnes, Christian T.; Nurmi, Sami; Tasinato, Gianmassimo; Wands, David E-mail: s.nurmi@thphys.uni-heidelberg.de E-mail: david.wands@port.ac.uk
2012-03-01
We propose a method to probe higher-order correlators of the primordial density field through the inhomogeneity of local non-Gaussian parameters, such as f{sub NL}, measured within smaller patches of the sky. Correlators between n-point functions measured in one patch of the sky and k-point functions measured in another patch depend upon the (n+k)-point functions over the entire sky. The inhomogeneity of non-Gaussian parameters may be a feasible way to detect or constrain higher- order correlators in local models of non-Gaussianity, as well as to distinguish between single and multiple-source scenarios for generating the primordial density perturbation, and more generally to probe the details of inflationary physics.
USDA-ARS?s Scientific Manuscript database
Nitrogen (N), phosphorus (P) and potassium (K) are essential macronutrients that are required in large quantities by growing plants. Deficiency of N, P or K can strongly affect metabolites in plant tissues. However, specific metabolic network responses to nutrient deficiencies are not well-defined. ...
Asymmetric Gaussian optical vortex.
Kotlyar, Victor V; Kovalev, Alexey A; Porfirev, Alexey P
2017-01-01
We theoretically study a Gaussian optical beam with an embedded off-axis optical vortex. We also experimentally generate such an asymmetric Gaussian optical vortex by using an off-axis spiral phase plate. It is shown that depending on the shift distance the laser beam has the form of a crescent, which is rotated upon propagation. An analytical expression is obtained for the orbital angular momentum of such a beam, which appears to be fractional. When the shift increases, the greater the number of spirality of the phase plate or the "fork" hologram, the slower the momentum decreases. The experimental results are in qualitative agreement with the theory.
NASA Technical Reports Server (NTRS)
Dembo, Amir
1989-01-01
Pinsker and Ebert (1970) proved that in channels with additive Gaussian noise, feedback at most doubles the capacity. Cover and Pombra (1989) proved that feedback at most adds half a bit per transmission. Following their approach, the author proves that in the limit as signal power approaches either zero (very low SNR) or infinity (very high SNR), feedback does not increase the finite block-length capacity (which for nonstationary Gaussian channels replaces the standard notion of capacity that may not exist). Tighter upper bounds on the capacity are obtained in the process. Specializing these results to stationary channels, the author recovers some of the bounds recently obtained by Ozarow.
NASA Technical Reports Server (NTRS)
Dembo, Amir
1989-01-01
Pinsker and Ebert (1970) proved that in channels with additive Gaussian noise, feedback at most doubles the capacity. Cover and Pombra (1989) proved that feedback at most adds half a bit per transmission. Following their approach, the author proves that in the limit as signal power approaches either zero (very low SNR) or infinity (very high SNR), feedback does not increase the finite block-length capacity (which for nonstationary Gaussian channels replaces the standard notion of capacity that may not exist). Tighter upper bounds on the capacity are obtained in the process. Specializing these results to stationary channels, the author recovers some of the bounds recently obtained by Ozarow.
NASA Astrophysics Data System (ADS)
Selvendran, S.; Sivanantharaja, A.; Arivazhagan, S.; Kannan, M.
2016-09-01
We propose an index profiled, highly nonlinear ultraflattened dispersion fibre (HN-UFF) with appreciable values of fibre parameters such as dispersion, dispersion slope, effective area, nonlinearity, bending loss and splice loss. The designed fibre has normal zero flattened dispersion over S, C, L, U bands and extends up to 1.9857 μm. The maximum dispersion variation observed for this fibre is as low as 1.61 ps km-1 nm-1 over the 500-nm optical fibre transmission spectrum. This fibre also has two zero dispersion wavelengths at 1.487 and 1.9857 μm and the respective dispersion slopes are 0.02476 and 0.0068 ps nm-2 km-1. The fibre has a very low ITU-T cutoff wavelength of 1.2613 μm and a virtuous nonlinear coefficient of 9.43 W-1 km-1. The wide spectrum of zero flattened dispersion and a good nonlinear coefficient make the designed fibre very promising for different nonlinear optical signal processing applications.
Hydraulic Conductivity Fields: Gaussian or Not?
Meerschaert, Mark M; Dogan, Mine; Van Dam, Remke L; Hyndman, David W; Benson, David A
2013-08-01
Hydraulic conductivity (K) fields are used to parameterize groundwater flow and transport models. Numerical simulations require a detailed representation of the K field, synthesized to interpolate between available data. Several recent studies introduced high resolution K data (HRK) at the Macro Dispersion Experiment (MADE) site, and used ground-penetrating radar (GPR) to delineate the main structural features of the aquifer. This paper describes a statistical analysis of these data, and the implications for K field modeling in alluvial aquifers. Two striking observations have emerged from this analysis. The first is that a simple fractional difference filter can have a profound effect on data histograms, organizing non-Gaussian ln K data into a coherent distribution. The second is that using GPR facies allows us to reproduce the significantly non-Gaussian shape seen in real HRK data profiles, using a simulated Gaussian ln K field in each facies. This illuminates a current controversy in the literature, between those who favor Gaussian ln K models, and those who observe non-Gaussian ln K fields. Both camps are correct, but at different scales.
Bioretention column studies of phosphorus removal from urban stormwater runoff.
Hsieh, Chi-hsu; Davis, Allen P; Needelman, Brian A
2007-02-01
This study investigated the effectiveness of bioretention as a stormwater management practice using repetitive bioretention columns for phosphorus removal. Bioretention media, with a higher short-term phosphorus sorption capacity, retained more phosphorus from infiltrating runoff after 3 mg/L phosphorus loading. A surface mulch layer prevented clogging after repetitive total suspended solids input. Evidence suggests that long-term phosphorus reactions will regenerate active short-term phosphorus adsorption sites. A high hydraulic conductivity media overlaying one with low hydraulic conductivity resulted in a higher runoff infiltration rate, from 0.51 to 0.16 cm/min at a fixed 15-cm head, and was more efficient in phosphorus removal (85% mass removal) than a profile with low conductivity media over high (63% mass removal). Media extractions suggest that most of the retained phosphorus in the media layers is available for vegetative uptake and that environmental risk thresholds were not exceeded.
Autonomous Gaussian Decomposition
NASA Astrophysics Data System (ADS)
Lindner, Robert R.; Vera-Ciro, Carlos; Murray, Claire E.; Stanimirović, Snežana; Babler, Brian; Heiles, Carl; Hennebelle, Patrick; Goss, W. M.; Dickey, John
2015-04-01
We present a new algorithm, named Autonomous Gaussian Decomposition (AGD), for automatically decomposing spectra into Gaussian components. AGD uses derivative spectroscopy and machine learning to provide optimized guesses for the number of Gaussian components in the data, and also their locations, widths, and amplitudes. We test AGD and find that it produces results comparable to human-derived solutions on 21 cm absorption spectra from the 21 cm SPectral line Observations of Neutral Gas with the EVLA (21-SPONGE) survey. We use AGD with Monte Carlo methods to derive the H i line completeness as a function of peak optical depth and velocity width for the 21-SPONGE data, and also show that the results of AGD are stable against varying observational noise intensity. The autonomy and computational efficiency of the method over traditional manual Gaussian fits allow for truly unbiased comparisons between observations and simulations, and for the ability to scale up and interpret the very large data volumes from the upcoming Square Kilometer Array and pathfinder telescopes.
AUTONOMOUS GAUSSIAN DECOMPOSITION
Lindner, Robert R.; Vera-Ciro, Carlos; Murray, Claire E.; Stanimirović, Snežana; Babler, Brian; Heiles, Carl; Hennebelle, Patrick; Dickey, John
2015-04-15
We present a new algorithm, named Autonomous Gaussian Decomposition (AGD), for automatically decomposing spectra into Gaussian components. AGD uses derivative spectroscopy and machine learning to provide optimized guesses for the number of Gaussian components in the data, and also their locations, widths, and amplitudes. We test AGD and find that it produces results comparable to human-derived solutions on 21 cm absorption spectra from the 21 cm SPectral line Observations of Neutral Gas with the EVLA (21-SPONGE) survey. We use AGD with Monte Carlo methods to derive the H i line completeness as a function of peak optical depth and velocity width for the 21-SPONGE data, and also show that the results of AGD are stable against varying observational noise intensity. The autonomy and computational efficiency of the method over traditional manual Gaussian fits allow for truly unbiased comparisons between observations and simulations, and for the ability to scale up and interpret the very large data volumes from the upcoming Square Kilometer Array and pathfinder telescopes.
Optimal Gaussian entanglement swapping
Hoelscher-Obermaier, Jason; Loock, Peter van
2011-01-15
We consider entanglement swapping with general mixed two-mode Gaussian states and calculate the optimal gains for a broad class of such states including those states most relevant in communication scenarios. We show that, for this class of states, entanglement swapping adds no additional mixedness; that is, the ensemble-average output state has the same purity as the input states. This implies that, by using intermediate entanglement swapping steps, it is, in principle, possible to distribute entangled two-mode Gaussian states of higher purity as compared to direct transmission. We then apply the general results on optimal Gaussian swapping to the problem of quantum communication over a lossy fiber and demonstrate that, in contrast to the negative conclusions in the literature, swapping-based schemes in fact often perform better than direct transmission for high input squeezing. However, an effective transmission analysis reveals that the hope for improved performance based on optimal Gaussian entanglement swapping is spurious since the swapping does not lead to an enhancement of the effective transmission. This implies that the same or better results can always be obtained using direct transmission in combination with, in general, less squeezing.
Gaussian Process Morphable Models.
Luthi, Marcel; Gerig, Thomas; Jud, Christoph; Vetter, Thomas
2017-08-14
Models of shape variations have become a central component for the automated analysis of images. An important class of shape models are point distribution models (PDMs). These models represent a class of shapes as a normal distribution of point variations, whose parameters are estimated from example shapes. Principal component analysis (PCA) is applied to obtain a low-dimensional representation of the shape variation in terms of the leading principal components. In this paper, we propose a generalization of PDMs, which we refer to as Gaussian Process Morphable Models (GPMMs). We model the shape variations with a Gaussian process, which we represent using the leading components of its Karhunen-Loève expansion. To compute the expansion, we make use of an approximation scheme based on the Nyström method. The resulting model can be seen as a continuous analog of a standard PDM. However, while for PDMs the shape variation is restricted to the linear span of the example data, with GPMMs we can define the shape variation using any Gaussian process. For example, we can build shape models that correspond to classical spline models and thus do not require any example data. Furthermore, Gaussian processes make it possible to combine different models. For example, a PDM can be extended with a spline model, to obtain a model that incorporates learned shape characteristics but is flexible enough to explain shapes that cannot be represented by the PDM.
NASA Astrophysics Data System (ADS)
Wu, Zhenkun; Gu, Yuzong
2016-12-01
The propagation of two-dimensional beams is analytically and numerically investigated in strongly nonlocal nonlinear media (SNNM) based on the ABCD matrix. The two-dimensional beams reported in this paper are described by the product of the superposition of generalized Laguerre-Gaussian (LG), Hermite-Gaussian (HG), Bessel-Gaussian (BG), and circular Airy (CA) beams, carrying an orbital angular momentum (OAM). Owing to OAM and the modulation of SNNM, we find that the propagation of these two-dimensional beams exhibits complete rotation and periodic inversion: the spatial intensity profile first extends and then diminishes, and during the propagation the process repeats to form a breath-like phenomenon.
Dietary phosphorus, serum phosphorus, and cardiovascular disease.
Menon, Madhav C; Ix, Joachim H
2013-10-01
Recent epidemiologic studies have linked higher serum phosphorus concentrations to cardiovascular disease (CVD) events and mortality. This association has been identified in the general population and in those with chronic kidney disease (CKD). The risk of adverse outcomes appears to begin with phosphorus concentrations within the upper limit of the normal reference range. Multiple experimental studies have suggested pathogenetic mechanisms that involve direct and indirect effects of high phosphorus concentrations to explain these associations. Drawing from these observations, guideline-forming agencies have recommended that serum phosphorus concentrations be maintained within the normal reference range in patients with CKD and that dietary phosphorus restriction or use of intestinal phosphate binders should be considered to achieve this goal. However, outside the dialysis population, the links between dietary phosphorus intake and serum phosphorus concentrations, and dietary phosphorus intake and CVD events, are uncertain. With specific reference to the nondialysis populations, this review discusses the available data linking dietary phosphorus intake with serum phosphorus concentrations and CVD events.
On Gaussian random supergravity
NASA Astrophysics Data System (ADS)
Bachlechner, Thomas C.
2014-04-01
We study the distribution of metastable vacua and the likelihood of slow roll inflation in high dimensional random landscapes. We consider two examples of landscapes: a Gaussian random potential and an effective supergravity potential defined via a Gaussian random superpotential and a trivial Kähler potential. To examine these landscapes we introduce a random matrix model that describes the correlations between various derivatives and we propose an efficient algorithm that allows for a numerical study of high dimensional random fields. Using these novel tools, we find that the vast majority of metastable critical points in N dimensional random supergravities are either approximately supersymmetric with | F| ≪ M susy or supersymmetric. Such approximately supersymmetric points are dynamical attractors in the landscape and the probability that a randomly chosen critical point is metastable scales as log( P ) ∝ - N. We argue that random supergravities lead to potentially interesting inflationary dynamics.
Adaptive Gaussian Pattern Classification
1988-08-01
redundant model of the data to be used in classification . There are two classes of learning, or adaptation schemes. The first, unsupervised learning...37, No. 3, pp. 242-247, 1983. [2] E. F. Codd, Cellular Automata , Academic Press, 1968. [31 H. Everett, G. Gilbreath, S. Alderson, D. J. Marchette...Na al Oca aytm aete !JTI FL E COPY AD-A 199 030 Technical Document 1335 August 1988 Adaptive Gaussian Pattern Classif ication C. E. Priebe D. J
NASA Astrophysics Data System (ADS)
Trofimov, M. Yu.; Zakharenko, A. D.; Kozitskiy, S. B.
2016-10-01
A mode parabolic equation in the ray centered coordinates for 3D underwater sound propagation is developed. The Gaussian beam tracing in this case is constructed. The test calculations are carried out for the ASA wedge benchmark and proved an excellent agreement with the source images method in the case of cross-slope propagation. But in the cases of wave propagation at some angles to the cross-slope direction an account of mode interaction becomes necessary.
Flauger, Raphael; Pajer, Enrico E-mail: ep295@cornell.edu
2011-01-01
We provide a derivation from first principles of the primordial bispectrum of scalar perturbations produced during inflation driven by a canonically normalized scalar field whose potential exhibits small sinusoidal modulations. A potential of this type has been derived in a class of string theory models of inflation based on axion monodromy. We use this model as a concrete example, but we present our derivations and results for a general slow-roll potential with superimposed modulations. We show analytically that a resonance between the oscillations of the background and the oscillations of the fluctuations is responsible for the production of an observably large non-Gaussian signal. We provide an explicit expression for the shape of this resonant non-Gaussianity. We show that there is essentially no overlap between this shape and the local, equilateral, and orthogonal shapes, and we stress that resonant non-Gaussianity is not captured by the simplest version of the effective field theory of inflation. We hope our analytic expression will be useful to further observationally constrain this class of models.
Gaussian mixture models as flux prediction method for central receivers
NASA Astrophysics Data System (ADS)
Grobler, Annemarie; Gauché, Paul; Smit, Willie
2016-05-01
Flux prediction methods are crucial to the design and operation of central receiver systems. Current methods such as the circular and elliptical (bivariate) Gaussian prediction methods are often used in field layout design and aiming strategies. For experimental or small central receiver systems, the flux profile of a single heliostat often deviates significantly from the circular and elliptical Gaussian models. Therefore a novel method of flux prediction was developed by incorporating the fitting of Gaussian mixture models onto flux profiles produced by flux measurement or ray tracing. A method was also developed to predict the Gaussian mixture model parameters of a single heliostat for a given time using image processing. Recording the predicted parameters in a database ensures that more accurate predictions are made in a shorter time frame.
Plasma oscillations in spherical Gaussian shaped ultracold neutral plasma
Chen, Tianxing; Lu, Ronghua Guo, Li; Han, Shensheng
2016-04-15
The collective plasma oscillations are investigated in ultracold neutral plasma with a non-uniform density profile. Instead of the plane configuration widely used, we derive the plasma oscillation equations with spherically symmetric distribution and Gaussian density profile. The damping of radial oscillation is found. The Tonks–Dattner resonances of the ultracold neutral plasma with an applied RF field are also calculated.
Unstable laser resonators with super-Gaussian mirrors
De Silvestri, S.; Laporta, P.; Magni, V.; Svelto, O.; Majocchi, B.
1988-03-01
A new class of tapered reflectivity mirrors with a super-Gaussian profile R atmI exp(-kr/sup n/) is introduced, and a geometrical-optics approach for analysis and design of unstable resonators made with these mirrors is presented. A super-Gaussian mirror, built by a special evaporation technique, has been tested in an unstable resonator of a pulsed Nd:YAG laser, demonstrating its effectiveness in generating diffraction-limited beams.
ERIC Educational Resources Information Center
Macintosh, Henry G.
An introduction to profiles is presented with examples provided to permit an overall appraisal of the potential of profiles, of the principles upon which they might be based, and of the problems that will have to be overcome if their potential is to be realized in practice. The larger scale examples of profiles discussed are the Scottish Pupil…
Phosphorus: Riverine system transport
USDA-ARS?s Scientific Manuscript database
The transport and transformation of phosphorus (P) in riverine systems fundamentally affects the outcome of watershed mitigation strategies aimed at curbing downstream eutrophication. Phosphorus transport and transformations in streams and rivers are mediated by physical (sediment deposition and res...
Truncated Gaussians as tolerance sets
NASA Technical Reports Server (NTRS)
Cozman, Fabio; Krotkov, Eric
1994-01-01
This work focuses on the use of truncated Gaussian distributions as models for bounded data measurements that are constrained to appear between fixed limits. The authors prove that the truncated Gaussian can be viewed as a maximum entropy distribution for truncated bounded data, when mean and covariance are given. The characteristic function for the truncated Gaussian is presented; from this, algorithms are derived for calculation of mean, variance, summation, application of Bayes rule and filtering with truncated Gaussians. As an example of the power of their methods, a derivation of the disparity constraint (used in computer vision) from their models is described. The authors' approach complements results in Statistics, but their proposal is not only to use the truncated Gaussian as a model for selected data; they propose to model measurements as fundamentally in terms of truncated Gaussians.
Elliptic Gaussian optical vortices
NASA Astrophysics Data System (ADS)
Kotlyar, V. V.; Kovalev, A. A.; Porfirev, A. P.
2017-05-01
We analyze an elliptic optical vortex embedded into a Gaussian beam. Explicit closed expressions for the complex amplitude and normalized orbital angular momentum (OAM) of such a beam are derived. The resulting elliptic Gaussian vortex (EGV) is shown to have a fractional OAM whose maximal value equal to the topological charge n of a conventional Gauss vortex is attained for a zero-ellipticity vortex. As the beam propagates, the major axis of the intensity ellipse in the beam cross section rotates, making the angle of 90° between the initial plane and the focal plane of a spherical lens. On the major axis of the intensity ellipse, there are n intensity nulls of the EGV, with the distance between them varying with propagation distance and varying ellipticity. The distance between the intensity nulls is found to be maximal in the focal plane for a given ellipticity. For zero ellipticity, all intensity nulls get merged into a single n -times degenerate on-axis intensity null. The experimental results are in good agreement with theory.
Binomial Gaussian mixture filter
NASA Astrophysics Data System (ADS)
Raitoharju, Matti; Ali-Löytty, Simo; Piché, Robert
2015-12-01
In this work, we present a novel method for approximating a normal distribution with a weighted sum of normal distributions. The approximation is used for splitting normally distributed components in a Gaussian mixture filter, such that components have smaller covariances and cause smaller linearization errors when nonlinear measurements are used for the state update. Our splitting method uses weights from the binomial distribution as component weights. The method preserves the mean and covariance of the original normal distribution, and in addition, the resulting probability density and cumulative distribution functions converge to the original normal distribution when the number of components is increased. Furthermore, an algorithm is presented to do the splitting such as to keep the linearization error below a given threshold with a minimum number of components. The accuracy of the estimate provided by the proposed method is evaluated in four simulated single-update cases and one time series tracking case. In these tests, it is found that the proposed method is more accurate than other Gaussian mixture filters found in the literature when the same number of components is used and that the proposed method is faster and more accurate than particle filters.
McFadden, Paul; Skenderis, Kostas E-mail: K.Skenderis@uva.nl
2011-05-01
We investigate the non-Gaussianity of primordial cosmological perturbations within our recently proposed holographic description of inflationary universes. We derive a holographic formula that determines the bispectrum of cosmological curvature perturbations in terms of correlation functions of a holographically dual three-dimensional non-gravitational quantum field theory (QFT). This allows us to compute the primordial bispectrum for a universe which started in a non-geometric holographic phase, using perturbative QFT calculations. Strikingly, for a class of models specified by a three-dimensional super-renormalisable QFT, the primordial bispectrum is of exactly the factorisable equilateral form with f{sub NL}{sup equil.} = 5/36, irrespective of the details of the dual QFT. A by-product of this investigation is a holographic formula for the three-point function of the trace of the stress-energy tensor along general holographic RG flows, which should have applications outside the remit of this work.
Multi-photon resonance phenomena using Laguerre-Gaussian beams
NASA Astrophysics Data System (ADS)
Hamideh Kazemi, Seyedeh; Mahmoudi, Mohammad
2016-12-01
We study the influence of laser profile on the linewidth of the optical spectrum of multi-photon resonance phenomena. First, we investigate the dependence of the absorption spectrum on the laser profile in a two-level system. Thanks to the Laguerre-Gaussian field, the linewidth of the one-photon optical pumping and two-photon absorption peaks are explicitly narrower than that obtained with a Gaussian field. In the next section, it is shown that, compared to the Gaussian fields, the Laguerre-Gaussian ones reduce the linewidth of the optical spectrum in the coherent population trapping. Interestingly, it turns out that the use of a Laguerre-Gaussian beam makes the linewidth of the spectrum narrower as compared with a Gaussian one in Doppler-broadened electromagnetically induced transparency. Moreover, we study the effect of the laser profile on the Autler-Townes doublet structure in the absorption spectrum for a laser-driven four-level atomic system. We also consider the different values of the Laguerre-Gaussian mode beam waist, and, perhaps more remarkably, we find that for the small waist values, the Autler-Townes doublet can be removed and a prominent narrow central peak appears in the absorption spectrum. Finally, we investigate the effect of the laser profile on the linewidth of the sub-natural three-photon absorption peak of double dark resonance. The differences in the linewidth are quite large, offering potential applications in metrology and isotope separation methods. Our results can be used for super ultra-high resolution laser spectroscopy and to improve the resolution of the technology of isotope/isomer separation and photo-biology even at essential overlap of the spectra of the different particles.
Evaluation of non‐Gaussian diffusion in cardiac MRI
McClymont, Darryl; Teh, Irvin; Carruth, Eric; Omens, Jeffrey; McCulloch, Andrew; Whittington, Hannah J.; Kohl, Peter; Grau, Vicente
2016-01-01
Purpose The diffusion tensor model assumes Gaussian diffusion and is widely applied in cardiac diffusion MRI. However, diffusion in biological tissue deviates from a Gaussian profile as a result of hindrance and restriction from cell and tissue microstructure, and may be quantified better by non‐Gaussian modeling. The aim of this study was to investigate non‐Gaussian diffusion in healthy and hypertrophic hearts. Methods Thirteen rat hearts (five healthy, four sham, four hypertrophic) were imaged ex vivo. Diffusion‐weighted images were acquired at b‐values up to 10,000 s/mm2. Models of diffusion were fit to the data and ranked based on the Akaike information criterion. Results The diffusion tensor was ranked best at b‐values up to 2000 s/mm2 but reflected the signal poorly in the high b‐value regime, in which the best model was a non‐Gaussian “beta distribution” model. Although there was considerable overlap in apparent diffusivities between the healthy, sham, and hypertrophic hearts, diffusion kurtosis and skewness in the hypertrophic hearts were more than 20% higher in the sheetlet and sheetlet‐normal directions. Conclusion Non‐Gaussian diffusion models have a higher sensitivity for the detection of hypertrophy compared with the Gaussian model. In particular, diffusion kurtosis may serve as a useful biomarker for characterization of disease and remodeling in the heart. Magn Reson Med 78:1174–1186, 2017. © 2016 International Society for Magnetic Resonance in Medicine. PMID:27670633
ERIC Educational Resources Information Center
School Arts, 1979
1979-01-01
Profiles seven Black, Native American, and Chicano artists and art teachers: Hale A. Woodruff, Allan Houser, Luis Jimenez, Betrand D. Phillips, James E. Pate, I, and Fernando Navarro. This article is part of a theme issue on multicultural art. (SJL)
ERIC Educational Resources Information Center
School Arts, 1979
1979-01-01
Profiles seven Black, Native American, and Chicano artists and art teachers: Hale A. Woodruff, Allan Houser, Luis Jimenez, Betrand D. Phillips, James E. Pate, I, and Fernando Navarro. This article is part of a theme issue on multicultural art. (SJL)
Normal form decomposition for Gaussian-to-Gaussian superoperators
NASA Astrophysics Data System (ADS)
De Palma, Giacomo; Mari, Andrea; Giovannetti, Vittorio; Holevo, Alexander S.
2015-05-01
In this paper, we explore the set of linear maps sending the set of quantum Gaussian states into itself. These maps are in general not positive, a feature which can be exploited as a test to check whether a given quantum state belongs to the convex hull of Gaussian states (if one of the considered maps sends it into a non-positive operator, the above state is certified not to belong to the set). Generalizing a result known to be valid under the assumption of complete positivity, we provide a characterization of these Gaussian-to-Gaussian (not necessarily positive) superoperators in terms of their action on the characteristic function of the inputs. For the special case of one-mode mappings, we also show that any Gaussian-to-Gaussian superoperator can be expressed as a concatenation of a phase-space dilatation, followed by the action of a completely positive Gaussian channel, possibly composed with a transposition. While a similar decomposition is shown to fail in the multi-mode scenario, we prove that it still holds at least under the further hypothesis of homogeneous action on the covariance matrix.
Normal form decomposition for Gaussian-to-Gaussian superoperators
De Palma, Giacomo; Mari, Andrea; Giovannetti, Vittorio; Holevo, Alexander S.
2015-05-15
In this paper, we explore the set of linear maps sending the set of quantum Gaussian states into itself. These maps are in general not positive, a feature which can be exploited as a test to check whether a given quantum state belongs to the convex hull of Gaussian states (if one of the considered maps sends it into a non-positive operator, the above state is certified not to belong to the set). Generalizing a result known to be valid under the assumption of complete positivity, we provide a characterization of these Gaussian-to-Gaussian (not necessarily positive) superoperators in terms of their action on the characteristic function of the inputs. For the special case of one-mode mappings, we also show that any Gaussian-to-Gaussian superoperator can be expressed as a concatenation of a phase-space dilatation, followed by the action of a completely positive Gaussian channel, possibly composed with a transposition. While a similar decomposition is shown to fail in the multi-mode scenario, we prove that it still holds at least under the further hypothesis of homogeneous action on the covariance matrix.
Evaluating the Possible Role of Phosphorus Release from Sediments on Stream Restoration
NASA Astrophysics Data System (ADS)
Timm, A.; McGinley, P.
2010-12-01
Elevated phosphorus concentrations can lead to algal blooms which impair waters for consumption, recreation, industry and agricultural uses. Along with sources of phosphorus such as runoff from agriculture and the effluent from wastewater treatment plants, there are reservoirs of phosphorus stored in stream sediments. As phosphorus inputs from agriculture and industry are decreased, there is the potential for these phosphorus reserves in the sediment to be released and prolong the time for restoration. Mill Creek in Central Wisconsin has water phosphorus concentrations ranging from 0.1 mg/L to 0.5 mg/L. These high phosphorus concentrations are the result of both wastewater discharges and agriculture runoff. Often a model used to develop a Total Mass Daily Load (TMDL) does not include a sediment reserve as a source of phosphorus. This study evaluates two methods of estimating sediment phosphorus reserves and incorporates them within a model for the phosphorus concentration in a stream. Two methods for estimating phosphorus equilibration with the stream were examined: sorption isotherms with equilibrium phosphorus concentration estimation; and pore-water profiling with equilibrators. This study compares these two approaches along a phosphorus concentration gradient in the stream and examines the sensitivity of stream phosphorus concentration reductions to sediment phosphorus reserves.
Majed, Nehreen; Chernenko, Tatyana; Diem, Max; Gu, April Z
2012-05-01
This study proposed and demonstrated the application of a new Raman microscopy-based method for metabolic state-based identification and quantification of functionally relevant populations, namely polyphosphate accumulating organisms (PAOs) and glycogen accumulating organisms (GAOs), in enhanced biological phosphorus removal (EBPR) system via simultaneous detection of multiple intracellular polymers including polyphosphate (polyP), glycogen, and polyhydroxybutyrate (PHB). The unique Raman spectrum of different combinations of intracellular polymers within a cell at a given stage of the EBPR cycle allowed for its identification as PAO, GAO, or neither. The abundance of total PAOs and GAOs determined by Raman method were consistent with those obtained with polyP staining and fluorescence in situ hybridization (FISH). Different combinations and quantities of intracellular polymer inclusions observed in single cells revealed the distribution of different sub-PAOs groups among the total PAO populations, which exhibit phenotypic and metabolic heterogeneity and diversity. These results also provided evidence for the hypothesis that different PAOs may employ different extents of combination of glycolysis and TCA cycle pathways for anaerobic reducing power and energy generation and it is possible that some PAOs may rely on TCA cycle solely without glycolysis. Sum of cellular level quantification of the internal polymers associated with different population groups showed differentiated and distributed trends of glycogen and PHB level between PAOs and GAOs, which could not be elucidated before with conventional bulk measurements of EBPR mixed cultures. © 2012 American Chemical Society
Propagation properties of elliptical Gaussian beam in uniaxial crystals along the optical axis
NASA Astrophysics Data System (ADS)
Liu, Dajun; Wang, He; Wang, Yaochuan; Yin, Hongming
2015-10-01
Based on the paraxial vectorial theory of beams propagating in uniaxial anisotropic crystal, we have derived the analytical propagation equations of elliptical Gaussian beam in uniaxial crystal along the optical axis, and given the typical numerical example to illustrate our analytical results. It is found that the x-polarized Gaussian beams split into an ordinary beam and an extraordinary beam, which independently propagate along the optical axis, and the elliptical Gaussian beam loses its initial profile with the propagation distance increasing.
Phosphorus poisoning in waterfowl
Coburn, D.R.; DeWitt, J.B.; Derby, J.V.; Ediger, E.
1950-01-01
Black ducks and mallards were found to be highly susceptible to phosphorus poisoning. 3 mg. of white phosphorus per kg. of body weight given in a single dose resulted in death of a black duck in 6 hours. Pathologic changes in both acute and chronic poisoning were studied. Data are presented showing that diagnosis can be made accurately by chemical analysis of stored tissues in cases of phosphorus poisoning.
Li, Hai-Gang; Shen, Jian-Bo; Zhang, Fu-Suo; Lambers, Hans
2010-01-01
Background and Aims Phosphorus (P) is a major factor controlling cluster-root formation. Cluster-root proliferation tends to concentrate in organic matter (OM)-rich surface-soil layers, but the nature of this response of cluster-root formation to OM is not clear. Cluster-root proliferation in response to localized application of OM was characterized in Lupinus albus (white lupin) grown in stratified soil columns to test if the stimulating effect of OM on cluster-root formation was due to (a) P release from breakdown of OM; (b) a decrease in soil density; or (c) effects of micro-organisms other than releasing P from OM. Methods Lupin plants were grown in three-layer stratified soil columns where P was applied at 0 or 330 mg P kg−1 to create a P-deficient or P-sufficient background, and OM, phytate mixed with OM, or perlite was applied to the top or middle layers with or without sterilization. Key Results Non-sterile OM stimulated cluster-root proliferation and root length, and this effect became greater when phytate was supplied in the presence of OM. Both sterile OM and perlite significantly decreased cluster-root formation in the localized layers. The OM position did not change the proportion of total cluster roots to total roots in dry biomass among no-P treatments, but more cluster roots were concentrated in the OM layers with a decreased proportion in other places. Conclusions Localized application of non-sterile OM or phytate plus OM stimulated cluster-root proliferation of L. albus in the localized layers. This effect is predominantly accounted for by P release from breakdown of OM or phytate, but not due to a change in soil density associated with OM. No evidence was found for effects of micro-organisms in OM other than those responsible for P release. PMID:20150198
Gaussian and non-Gaussian fluctuations in pure classical fluids
NASA Astrophysics Data System (ADS)
Naleem, Nawavi; Ploetz, Elizabeth A.; Smith, Paul E.
2017-03-01
The particle number, energy, and volume probability distributions in the canonical, isothermal-isobaric, grand canonical, and isobaric-isenthalpic ensembles are investigated. In particular, we consider Gaussian and non-Gaussian behavior and formulate the results in terms of a single expression valid for all the ensembles employing common, experimentally accessible, thermodynamic derivatives. This is achieved using Fluctuation Solution Theory to help manipulate derivatives of the entropy. The properties of the distributions are then investigated using available equations of state for fluid water and argon. Purely Gaussian behavior is not observed for any of the state points considered here. A set of simple measures, involving thermodynamic derivatives, indicating non-Gaussian behavior is proposed. A general expression, valid in the high temperature limit, for small energy fluctuations in the canonical ensemble is provided.
Some results on Gaussian mixtures
NASA Astrophysics Data System (ADS)
Felgueiras, Miguel; Santos, Rui; Martins, João Paulo
2014-10-01
We investigate Gaussian mixtures with independent components, whose parameters are numerically estimated. A decomposition of a Gaussian mixture is presented when the components have a common variance. We introduce a shifted and scaled t-Student distribution as an approximation for the distribution of Gaussian mixtures when their components have a common mean and develop a hypothesis test for testing the equality of the components means. Finally, we analyse the fitness of the approximate model to the logarithmic daily returns of the Portuguese stock index PSI-20.
Device and method for creating Gaussian aberration-corrected electron beams
McMorran, Benjamin; Linck, Martin
2016-01-19
Electron beam phase gratings have phase profiles that produce a diffracted beam having a Gaussian or other selected intensity profile. Phase profiles can also be selected to correct or compensate electron lens aberrations. Typically, a low diffraction order produces a suitable phase profile, and other orders are discarded.
Biogeochemistry: The fate of phosphorus
NASA Astrophysics Data System (ADS)
Némery, Julien; Garnier, Josette
2016-05-01
Phosphorus is essential for food production, but it is also a key cause of eutrophication. Estimates of phosphorus flux for the past 40-70 years reveal that large river basins can experience phases of phosphorus accumulation and depletion.
Correction Factor for Gaussian Deconvolution of Optically Thick Linewidths in Homogeneous Sources
NASA Technical Reports Server (NTRS)
Kastner, S. O.; Bhatia, A. K.
1999-01-01
Profiles of optically thick, non-Gaussian emission line profiles convoluted with Gaussian instrumental profiles are constructed, and are deconvoluted on the usual Gaussian basis to examine the departure from accuracy thereby caused in "measured" linewidths. It is found that "measured" linewidths underestimate the true linewidths of optically thick lines, by a factor which depends on the resolution factor r congruent to Doppler width/instrumental width and on the optical thickness tau(sub 0). An approximating expression is obtained for this factor, applicable in the range of at least 0 <= tau(sub 0) <= 10, which can provide estimates of the true linewidth and optical thickness.
NASA Astrophysics Data System (ADS)
Ruttenberg, K. C.
2003-12-01
Phosphorus is an essential nutrient for all life forms. It is a key player in fundamental biochemical reactions (Westheimer, 1987) involving genetic material (DNA, RNA) and energy transfer (ATP), and in structural support of organisms provided by membranes (phospholipids) and bone (the biomineral hydroxyapatite). Photosynthetic organisms utilize dissolved phosphorus, carbon, and other essential nutrients to build their tissues using energy from the Sun. Biological productivity is contingent upon the availability of phosphorus to these simple organisms that constitute the base of the food web in both terrestrial and aquatic systems. (For reviews of P-utilization, P-biochemicals, and pathways in aquatic plants, see Fogg (1973), Bieleski and Ferguson (1983), and Cembella et al. (1984a, 1984b).)Phosphorus locked up in bedrock, soils, and sediments is not directly available to organisms. Conversion of unavailable forms to dissolved orthophosphate, which can be directly assimilated, occurs through geochemical and biochemical reactions at various stages in the global phosphorus cycle. Production of biomass fueled by P-bioavailability results in the deposition of organic matter in soils and sediments, where it acts as a source of fuel and nutrients to microbial communities. Microbial activity in soils and sediments, in turn, strongly influences the concentration and chemical form of phosphorus incorporated into the geological record.The global phosphorus cycle has four major components: (i) tectonic uplift and exposure of phosphorus-bearing rocks to the forces of weathering; (ii) physical erosion and chemical weathering of rocks producing soils and providing dissolved and particulate phosphorus to rivers; (iii) riverine transport of phosphorus to lakes and the ocean; and (iv) sedimentation of phosphorus associated with organic and mineral matter and burial in sediments (Figure 1). The cycle begins anew with uplift of sediments into the weathering regime.
Glacial atmospheric phosphorus deposition
NASA Astrophysics Data System (ADS)
Kjær, Helle Astrid; Dallmayr, Remi; Gabrieli, Jacopo; Goto-Azuma, Kumiko; Hirabayashi, Motohiro; Svensson, Anders; Vallelonga, Paul
2016-04-01
Phosphorus in the atmosphere is poorly studied and thus not much is known about atmospheric phosphorus and phosphate transport and deposition changes over time, though it is well known that phosphorus can be a source of long-range nutrient transport, e.g. Saharan dust transported to the tropical forests of Brazil. In glacial times it has been speculated that transport of phosphorus from exposed shelves would increase the ocean productivity by wash out. However whether the exposed shelf would also increase the atmospheric load to more remote places has not been investigated. Polar ice cores offer a unique opportunity to study the atmospheric transport of aerosols on various timescales, from glacial-interglacial periods to recent anthropogenic influences. We have for the first time determined the atmospheric transport of phosphorus to the Arctic by means of ice core analysis. Both total and dissolved reactive phosphorus were measured to investigate current and past atmospheric transport of phosphorus to the Arctic. Results show that glacial cold stadials had increased atmospheric total phosphorus mass loads of 70 times higher than in the past century, while DRP was only increased by a factor of 14. In the recent period we find evidence of a phosphorus increase over the past 50 yrs in ice cores close to human occupation likely correlated to forest fires. References: Kjær, Helle Astrid, et al. "Continuous flow analysis method for determination of dissolved reactive phosphorus in ice cores." Environmental science & technology 47.21 (2013): 12325-12332. Kjær, Helle Astrid, et al. "Greenland ice cores constrain glacial atmospheric fluxes of phosphorus." Journal of Geophysical Research: Atmospheres120.20 (2015).
Arbitrage with fractional Gaussian processes
NASA Astrophysics Data System (ADS)
Zhang, Xili; Xiao, Weilin
2017-04-01
While the arbitrage opportunity in the Black-Scholes model driven by fractional Brownian motion has a long history, the arbitrage strategy in the Black-Scholes model driven by general fractional Gaussian processes is in its infancy. The development of stochastic calculus with respect to fractional Gaussian processes allowed us to study such models. In this paper, following the idea of Shiryaev (1998), an arbitrage strategy is constructed for the Black-Scholes model driven by fractional Gaussian processes, when the stochastic integral is interpreted in the Riemann-Stieltjes sense. Arbitrage opportunities in some fractional Gaussian processes, including fractional Brownian motion, sub-fractional Brownian motion, bi-fractional Brownian motion, weighted-fractional Brownian motion and tempered fractional Brownian motion, are also investigated.
Cusped-gaussian wave functions
NASA Astrophysics Data System (ADS)
Dyer, Sara; Steiner, Erich
The single-excitation configuration interaction method is used to calculate the spin density at the nucleus in the Li atom and the LiH+ molecular ion. A variety of cusped-gaussian, all-gaussian and Slater function basis sets are compared. It is shown that whilst it is difficult to obtain reliable values for the spin density with conventional gaussian basis sets, the cusped-gaussian basis can give values of the properties at a nucleus that are very similar to those obtained with a Slater function basis. It is shown that it is essential for accurate work to ensure that the basis is highly flexible in the region close to a nucleus.
The Multilinear Compound Gaussian Distribution
2012-05-01
which we call the Multilinear Compound Gaussian (MCG) distribution, subsumes both GSM [1] and the previously developed MICA [3-4] distributions as...modeling various natural phenomena of interest. Index Terms— GSM, MICA , MCG, Bayesian, Nonlinear I. INTRODUCTION The compound Gaussian (CG) model—also...We will see how the MCG model developed subsumes both CG and the previously developed multilinear ICA ( MICA ) distribution [3-4] as complementary
Abbas, Ahmad N; Liu, Bilu; Chen, Liang; Ma, Yuqiang; Cong, Sen; Aroonyadet, Noppadol; Köpf, Marianne; Nilges, Tom; Zhou, Chongwu
2015-05-26
The utilization of black phosphorus and its monolayer (phosphorene) and few-layers in field-effect transistors has attracted a lot of attention to this elemental two-dimensional material. Various studies on optimization of black phosphorus field-effect transistors, PN junctions, photodetectors, and other applications have been demonstrated. Although chemical sensing based on black phosphorus devices was theoretically predicted, there is still no experimental verification of such an important study of this material. In this article, we report on chemical sensing of nitrogen dioxide (NO2) using field-effect transistors based on multilayer black phosphorus. Black phosphorus sensors exhibited increased conduction upon NO2 exposure and excellent sensitivity for detection of NO2 down to 5 ppb. Moreover, when the multilayer black phosphorus field-effect transistor was exposed to NO2 concentrations of 5, 10, 20, and 40 ppb, its relative conduction change followed the Langmuir isotherm for molecules adsorbed on a surface. Additionally, on the basis of an exponential conductance change, the rate constants for adsorption and desorption of NO2 on black phosphorus were extracted for different NO2 concentrations, and they were in the range of 130-840 s. These results shed light on important electronic and sensing characteristics of black phosphorus, which can be utilized in future studies and applications.
Phosphorus recovery from wastes
USDA-ARS?s Scientific Manuscript database
Phosphorus (P) is an important macro-nutrient essential for all living organisms and phosphate rock is the main raw material for all inorganic P fertilizers. It is expected that there will be a P peak and resulting P fertilizer shortage in near future. In general, phosphorus use efficiency is low a...
Black Phosphorus Terahertz Photodetectors.
Viti, Leonardo; Hu, Jin; Coquillat, Dominique; Knap, Wojciech; Tredicucci, Alessandro; Politano, Antonio; Vitiello, Miriam Serena
2015-10-07
The first room-temperature terahertz (THz)-frequency nanodetector exploiting a 10 nm thick flake of exfoliated crystalline black phosphorus as an active channel of a field-effect transistor, is devised. By engineering and embedding planar THz antennas for efficient light harvesting, the first technological demonstration of a phosphorus-based active THz device is described.
The total phosphorus budget of a peat-covered catchment
NASA Astrophysics Data System (ADS)
Worrall, Fred; Moody, Catherine S.; Clay, Gareth D.; Burt, Tim P.; Rose, Rob
2016-07-01
Although many studies have considered the carbon or greenhouse gas budgets of peat ecosystems, only a few have considered the nutrient budget of peat soils, and this, in turn, has limited the ability of studies to consider the impact of changes in climate and atmospheric deposition on the phosphorus budget of a peat soil. This study considered the total phosphorus (P) budget of an upland peat-covered catchment over the period 1993 to 2012. The study has shown (i) total atmospheric deposition of phosphorus varied from 62 to 175 kg P/km2/yr; (ii) the carbon:phosphorus ratio of the peat profile declines significantly from values in the litter layer (C:P = 1326) to approximately constant at 30 cm depth (C:P = 4240); (iii) the total fluvial flux of phosphorus varied from 49 to 111 kg P/km2/yr, of which between 45 and 77% was dissolved P; and (iv) the total phosphorus sink varied from -5.6 to +71.7 kg P/km2/yr with a median of +29.4 kg P/km2/yr, which is within the range of the estimated long-term accumulation rate of phosphorus in the peat profile of between 3 and 32 kg P/km2/yr. The phosphorus budget of the peat ecosystem relies on rapid recycling near the soil surface, and this means that any vegetation management may critically deprive the ecosystem of this nutrient.
Phosphorus as a limiting factor on sustainable greywater irrigation.
Turner, Ryan D R; Will, Geoffrey D; Dawes, Les A; Gardner, Edward A; Lyons, David J
2013-07-01
Water reuse through greywater irrigation has been adopted worldwide and has been proposed as a potential sustainable solution to increased water demands. Despite widespread adoption, there is limited domestic knowledge of greywater reuse. There is no pressure to produce low-level phosphorus products and current guidelines and legislation, such as those in Australia, may be inadequate due to the lack of long-term data to provide a sound scientific basis. Research has clearly identified phosphorus as a potential environmental risk to waterways from many forms of irrigation. To assess the sustainability of greywater irrigation, this study compared four residential lots that had been irrigated with greywater for four years and adjacent non-irrigated lots that acted as controls. Each lot was monitored for the volume of greywater applied and selected physic-chemical water quality parameters and soil chemistry profiles were analysed. The non-irrigated soil profiles showed low levels of phosphorus and were used as controls. The Mechlich3 Phosphorus ratio (M3PSR) and Phosphate Environmental Risk Index (PERI) were used to determine the environmental risk of phosphorus leaching from the irrigated soils. Soil phosphorus concentrations were compared to theoretical greywater irrigation loadings. The measured phosphorus soil concentrations and the estimated greywater loadings were of similar magnitude. Sustainable greywater reuse is possible; however incorrect use and/or lack of understanding of how household products affect greywater can result in phosphorus posing a significant risk to the environment. Copyright © 2013 Elsevier B.V. All rights reserved.
Spiraling elliptic Hermite-Gaussian solitons in nonlocal nonlinear media without anisotropy.
Liang, Guo; Dai, Zhiping
2017-06-12
We introduce a kind of the spiraling elliptic Hermite-Gaussian solitons in nonlocal nonlinear media without anisotropy, which carries the orbital angular momentum and can rotate in the transverse. The n-th mode of the spiraling elliptic Hermite-Gaussian solitons has n holes nested in the elliptic profile. The analytical spiraling elliptic Hermite-Gaussian solitons solutions are obtained based on the variational approach, which agree well with the numerical simulations. It is found that the critical power and the critical angular velocity for the spiraling elliptic Hermite-Gaussian solitons are the same as the counterpart of the ground mode.
NMR and mass spectrometry of phosphorus in wetlands
El-Rifai, H.; Heerboth, M.; Gedris, T.E.; Newman, S.; Orem, W.; Cooper, W.T.
2008-01-01
There is at present little information on the long-term stability of phosphorus sequestered in wetlands. Phosphorus sequestered during high loading periods may be relatively unstable and easily remobilized following changes in nutrient status or hydrological regime, but the chemical forms of sequestered phosphorus that do remobilize are largely unknown at this time. A lack of suitable analytical techniques has contributed to this dearth of knowledge regarding the stability of soil organic phosphorus. We analysed phosphorus in soils from the 'head' of Rescue Strand tree island and an adjacent marsh in the Florida Everglades by 31P nuclear magnetic resonance (NMR) spectroscopy and high-resolution mass spectrometry. Tree islands are important areas of biodiversity within the Everglades and offer a unique opportunity to study phosphorus sequestration because they are exposed to large phosphorus loads and appear to be natural nutrient sinks. The 31P NMR profiling of extracts from surface and sediment samples in the tree island indicates that phosphorus input to Rescue Strand tree island soils is mostly in the form of inorganic ortho-phosphate and is either refractory when deposited or rapidly recycled by the native vegetation into a stable phosphorus pool largely resistant to re-utilization by plants or microbes. Mass spectrometry revealed the presence of inositol hexakisphosphate, a common organic monophosphate ester not previously observed in Everglades' soils. ?? 2008 The Authors.
Mandotra, S K; Kumar, Pankaj; Suseela, M R; Nayaka, S; Ramteke, P W
2016-02-01
The present study dealt with biomass, lipid concentration, fatty acid profile and biodiesel properties of microalga Scenedesmus abundans under different phosphate concentrations, pH and light intensities, one at a time. Among different phosphate concentrations, higher biomass (770.10±11.0mg/L) and lipid concentration (176.87±4.6mg/L) were at the concentration of 60mg/L. Light intensity at 6000lux yielded higher biomass and lipid concentration of 742.0±9.7 and 243.15±9.1mg/L, respectively. The biomass (769.0±12.3mg/L) and lipid (179.47±5.5mg/L) concentration were highest at pH 8 and pH 6, respectively. All the culture treatments showed marked effect on the fatty acid profile and biodiesel properties of the extracted oil. FAME derived biodiesel properties were compared with European biodiesel standards (EN 14214), Indian biodiesel standards (IS 15607) and American biodiesel standards (ASTM D 6751-08) to assess the suitability of algal oil as biodiesel feedstock.
Phosphorus metabolism in peritoneal dialysis- and haemodialysis-treated patients.
Evenepoel, Pieter; Meijers, Björn K I; Bammens, Bert; Viaene, Liesbeth; Claes, Kathleen; Sprangers, Ben; Naesens, Maarten; Hoekstra, Tiny; Schlieper, Georg; Vanderschueren, Dirk; Kuypers, Dirk
2016-09-01
Phosphorus control is generally considered to be better in peritoneal dialysis (PD) patients as compared with haemodialysis (HD) patients. Predialysis phosphorus concentrations are misleading as a measure of phosphorus exposure in HD, as these neglect significant dialysis-related fluctuations. Parameters of mineral metabolism, including parathyroid hormone (PTH) and fibroblast growth factor-23 (FGF-23), were determined in 79 HD and 61 PD patients. In PD, phosphorus levels were determined mid-morning. In HD, time-averaged phosphorus concentrations were modelled from measurements before and after the mid-week dialysis session. Weekly renal, dialytic and total phosphorus clearances as well as total mass removal were calculated from urine and dialysate collections. Time-averaged serum phosphorus concentrations in HD (3.5 ± 1.0 mg/dL) were significantly lower than the mid-morning concentrations in PD (5.0 ± 1.4 mg/dL, P < 0.0001). In contrast, predialysis phosphorus concentrations (4.6 ± 1.4 mg/dL) were not different from PD. PTH and FGF-23 levels were significantly higher in PD. Despite higher residual renal function, total phosphorus clearance was significantly lower in PD (P < 0.0001). Total phosphorus mass removal, conversely, was significantly higher in PD (P < 0.05). Our data suggest that the time-averaged phosphorus concentrations in patients treated with PD are higher as compared with patients treated with HD. Despite a better preserved renal function, total phosphorus clearance is lower in patients treated with PD. Additional studies are needed to confirm these findings in a population with a different demographic profile and dietary background and to define clinical implications. © The Author 2016. Published by Oxford University Press on behalf of ERA-EDTA. All rights reserved.
Quantum correlations in Gaussian states via Gaussian channels: steering, entanglement, and discord
NASA Astrophysics Data System (ADS)
Wang, Zhong-Xiao; Wang, Shuhao; Li, Qiting; Wang, Tie-Jun; Wang, Chuan
2016-06-01
Here we study the quantum steering, quantum entanglement, and quantum discord for Gaussian Einstein-Podolsky-Rosen states via Gaussian channels. And the sudden death phenomena for Gaussian steering and Gaussian entanglement are theoretically observed. We find that some Gaussian states have only one-way steering, which confirms the asymmetry of quantum steering. Also we investigate that the entangled Gaussian states without Gaussian steering and correlated Gaussian states own no Gaussian entanglement. Meanwhile, our results support the assumption that quantum entanglement is intermediate between quantum discord and quantum steering. Furthermore, we give experimental recipes for preparing quantum states with desired types of quantum correlations.
Multi-Gaussian Schell-model vortex beam
NASA Astrophysics Data System (ADS)
Zhang, Yongtao; Liu, Lin; Zhao, Chengliang; Cai, Yangjian
2014-02-01
Multi-Gaussian Schell-model (MGSM) beam was introduced recently (Sahin and Korotkova, 2012 [34], and Korotkova et al., 2012 [35]). In this paper, multi-Gaussian Schell-model vortex (MGSMV) beam is introduced as a natural extension of MGSM beam. The explicit expression for the cross-spectral density of a MGSMV beam propagating through a stigmatic ABCD optical system is derived and the focusing properties of a MGSMV beam are studied in detail. It is found that we can shape the focused beam profile by varying the initial beam parameters, which will be useful in material thermal processing and particle trapping.
Phosphorus chemistry in everyday living
Toy, D.F.; Walsh, E.F.
1987-01-01
This book brings to life the versatility of phosphorus and its compounds and is filled with personal anecdotes and experiences of the authors. Covers the uses of phosphorus in matches and warfare; phosphates and food, fertilizers, cleaners, and detergents; organic phosphorus nerve gases and insecticides. Also discusses phosphoric acids, organic phosphorus polymers, deoxyribonucleic and ribonucleic acids and adenosine triphosphate.
Information geometry of Gaussian channels
Monras, Alex; Illuminati, Fabrizio
2010-06-15
We define a local Riemannian metric tensor in the manifold of Gaussian channels and the distance that it induces. We adopt an information-geometric approach and define a metric derived from the Bures-Fisher metric for quantum states. The resulting metric inherits several desirable properties from the Bures-Fisher metric and is operationally motivated by distinguishability considerations: It serves as an upper bound to the attainable quantum Fisher information for the channel parameters using Gaussian states, under generic constraints on the physically available resources. Our approach naturally includes the use of entangled Gaussian probe states. We prove that the metric enjoys some desirable properties like stability and covariance. As a by-product, we also obtain some general results in Gaussian channel estimation that are the continuous-variable analogs of previously known results in finite dimensions. We prove that optimal probe states are always pure and bounded in the number of ancillary modes, even in the presence of constraints on the reduced state input in the channel. This has experimental and computational implications. It limits the complexity of optimal experimental setups for channel estimation and reduces the computational requirements for the evaluation of the metric: Indeed, we construct a converging algorithm for its computation. We provide explicit formulas for computing the multiparametric quantum Fisher information for dissipative channels probed with arbitrary Gaussian states and provide the optimal observables for the estimation of the channel parameters (e.g., bath couplings, squeezing, and temperature).
Phosphorus dendrimers for nanomedicine.
Caminade, Anne-Marie
2017-08-31
From biomaterials to imaging, and from drug delivery to drugs by themselves, phosphorus-containing dendrimers offer a large palette of biological properties, depending essentially on their types of terminal functions. The most salient examples of phosphorus dendrimers used for the elaboration of bio-chips and of supports for cell cultures, for imaging biological events, and for carrying and delivering drugs or biomacromolecules are presented in this feature article. Several phosphorus dendrimers can be considered also as drugs per se (by themselves) in particular to fight against cancers, neurodegenerative diseases, and inflammation, both in vitro and in vivo. Toxicity assays are also reported.
Intensity-based modal decomposition of optical beams in terms of Hermite-Gaussian functions
Xue; Wei; Kirk
2000-06-01
We show that when an arbitrary optical beam is decomposed into a superposition of Hermite-Gaussian functions, it is sufficient to record a number of intensity profiles sampled at various transverse planes to uniquely determine the relative modal weights. This result follows from the parity relation and the nature of the Gouy phase, in addition to the orthogonality of the Fourier-transformed intensity profiles associated with the Hermite-Gaussian modes.
Truncated Gaussian and derived methods
NASA Astrophysics Data System (ADS)
Beucher, Hélène; Renard, Didier
2016-09-01
The interest of a digital model to represent the geological characteristics of the field is well established. However, the way to obtain it is not straightforward because this translation is necessarily a simplification of the actual field. This paper describes a stochastic model called truncated Gaussian simulations (TGS), which distributes a collection of facies or lithotypes over an area of interest. This method is based on facies proportions, spatial distribution and relationships, which can be easily tuned to produce numerous different textures. Initially developed for ordered facies, this model has been extended to complex organizations, where facies are not sequentially ordered. This method called pluri-Gaussian simulation (PGS) considers several Gaussian random functions, which can be correlated. PGS can produce a large variety of lithotype setups, as illustrated by several examples such as oriented deposits or high frequency layering.
Gaussian entanglement distribution via satellite
NASA Astrophysics Data System (ADS)
Hosseinidehaj, Nedasadat; Malaney, Robert
2015-02-01
In this work we analyze three quantum communication schemes for the generation of Gaussian entanglement between two ground stations. Communication occurs via a satellite over two independent atmospheric fading channels dominated by turbulence-induced beam wander. In our first scheme, the engineering complexity remains largely on the ground transceivers, with the satellite acting simply as a reflector. Although the channel state information of the two atmospheric channels remains unknown in this scheme, the Gaussian entanglement generation between the ground stations can still be determined. On the ground, distillation and Gaussification procedures can be applied, leading to a refined Gaussian entanglement generation rate between the ground stations. We compare the rates produced by this first scheme with two competing schemes in which quantum complexity is added to the satellite, thereby illustrating the tradeoff between space-based engineering complexity and the rate of ground-station entanglement generation.
Hidden phosphorus in popular beverages.
Murphy-Gutekunst, Lisa
2005-01-01
To maintain normal serum phosphorus levels, dialysis patient education has emphasized adherence with phosphate binder prescription and low phosphorus diet. In addition to the standard advice to avoid dairy products and legumes, education also focused on lower phosphorus protein foods and beverages. To meet the public's demands for more high quality convenience food, food-processing practices have stepped up the use of phosphorus additives. These additives are now found in beverages that were once considered low in phosphorus content.
Gaussian-mixture umbrella sampling
van der Vaart, Arjan; Karplus, Martin
2009-01-01
We introduce the Gaussian-mixture umbrella sampling method (GAMUS), a biased molecular dynamics technique based on adaptive umbrella sampling that efficiently escapes free energy minima in multi-dimensional problems. The prior simulation data are reweighted with a maximum likelihood formulation, and the new approximate probability density is fit to a Gaussian-mixture model, augmented by information about the unsampled areas. The method can be used to identify free energy minima in multi-dimensional reaction coordinates. To illustrate GAMUS, we apply it to the alanine dipeptide (2D reaction coordinate) and tripeptide (4D reaction coordinate). PMID:19284746
... body is found in the bones and teeth. Function The main function of phosphorus is in the formation of bones ... vitamins. It also helps with the following: Kidney function Muscle contractions Normal heartbeat Nerve signaling Food Sources ...
Biogeochemistry: Early phosphorus redigested
NASA Astrophysics Data System (ADS)
Poulton, Simon W.
2017-02-01
Atmospheric oxygen was maintained at low levels throughout huge swathes of Earth's early history. Estimates of phosphorus availability through time suggest that scavenging from anoxic, iron-rich oceans stabilized this low-oxygen world.
Kamika, Ilunga; Coetzee, Martie; Mamba, Bhekie Brilliance; Msagati, Titus; Momba, Maggy N. B.
2014-01-01
The impact of polyphosphate-accumulating organism (PAO) and glycogen-accumulating organism (GAO) populations as well as of the chemical profile on the performance of Unit-3 (open elutriation tanks) and Unit-5 (covered elutriation tank) of the City of Johannesburg Northern Wastewater Treatment Works was determined. Physicochemical parameters of wastewater samples were measured using standard methods. Bacterial diversity was determined using 16S rRNA gene amplicon pyrosequencing of the variable region V1-3. Results showed soluble COD concentrations from settled sewage for Unit-3 at 192.8 mg COD/L and for Unit-5 at 214.6 mg COD/L, which increased to 301.8 mg COD/L and 411.6 mg COD/L in the overflow from elutriation tanks and decreased to 170.9 mg COD/L and 256.3 mg COD/L at the division boxes, respectively. Both long-chain volatile fatty acids (heptanoic acid, isobutyric acid, 3-methylbutanoic acid, pentanoic acid, 4-methylpentanoic acid, methylheptanoic acid) and short-chain volatile fatty acids (acetic acid, propionic acid, isobutyric acid) were present within concentration ranges of 17.19 mg/L to 54.98 mg/L and 13.64 mg/L to 87.6 mg/L for Unit 3 and 38.61 mg/L to58.85 mg/L and 21.63 mg/L to 92.39 mg/L for Unit 5, respectively. In the secondary settling tanks, the phosphate-removal efficiency in Unit-5 appeared to be slightly higher (0.08 mg P/L) compared to that of Unit-3 (0.11 mg P/L). The average DO concentrations (2.1 mg/L and 2.2 mg/L) as well as the pH values (pH 7 to pH 7.5) were found to be slightly higher in Unit-5 in the aerobic zones. The high presence of PAOs in the bioreactors (Unit-5: Dechloromonas (14.96%), Acinetobacter (6.3%), Zoogloea (4.72%) in the anaerobic zone and Dechloromonas (22.37 %) in the aerobic zone; Unit-3: Dechloromonas (37.25%) in the anaerobic zone and Dechloromonas (23.97%) in the aerobic zone) confirmed the phosphate-removal efficiencies of both units. Negligible GAOs were found in the aerobic zones (Defluviicoccus spp.: 0.33% for
Kamika, Ilunga; Coetzee, Martie; Mamba, Bhekie Brilliance; Msagati, Titus; Momba, Maggy N B
2014-03-10
The impact of polyphosphate-accumulating organism (PAO) and glycogen-accumulating organism (GAO) populations as well as of the chemical profile on the performance of Unit-3 (open elutriation tanks) and Unit-5 (covered elutriation tank) of the City of Johannesburg Northern Wastewater Treatment Works was determined. Physicochemical parameters of wastewater samples were measured using standard methods. Bacterial diversity was determined using 16S rRNA gene amplicon pyrosequencing of the variable region V1-3. Results showed soluble COD concentrations from settled sewage for Unit-3 at 192.8 mg COD/L and for Unit-5 at 214.6 mg COD/L, which increased to 301.8 mg COD/L and 411.6 mg COD/L in the overflow from elutriation tanks and decreased to 170.9 mg COD/L and 256.3 mg COD/L at the division boxes, respectively. Both long-chain volatile fatty acids (heptanoic acid, isobutyric acid, 3-methylbutanoic acid, pentanoic acid, 4-methylpentanoic acid, methylheptanoic acid) and short-chain volatile fatty acids (acetic acid, propionic acid, isobutyric acid) were present within concentration ranges of 17.19 mg/L to 54.98 mg/L and 13.64 mg/L to 87.6 mg/L for Unit 3 and 38.61 mg/L to58.85 mg/L and 21.63 mg/L to 92.39 mg/L for Unit 5, respectively. In the secondary settling tanks, the phosphate-removal efficiency in Unit-5 appeared to be slightly higher (0.08 mg P/L) compared to that of Unit-3 (0.11 mg P/L). The average DO concentrations (2.1 mg/L and 2.2 mg/L) as well as the pH values (pH 7 to pH 7.5) were found to be slightly higher in Unit-5 in the aerobic zones. The high presence of PAOs in the bioreactors (Unit-5: Dechloromonas (14.96%), Acinetobacter (6.3%), Zoogloea (4.72%) in the anaerobic zone and Dechloromonas (22.37 %) in the aerobic zone; Unit-3: Dechloromonas (37.25%) in the anaerobic zone and Dechloromonas (23.97%) in the aerobic zone) confirmed the phosphate-removal efficiencies of both units. Negligible GAOs were found in the aerobic zones (Defluviicoccus spp.: 0.33% for
Catalytic decomposition of phosphorus compounds to produce phosphorus atoms
NASA Astrophysics Data System (ADS)
Umemoto, Hironobu; Kanemitsu, Taijiro; Kuroda, Yuki
2014-01-01
Vacuum-ultraviolet laser-induced fluorescence identified atomic phosphorus in the gas phase when phosphine, triethylphosphine, or molecular phosphorus sublimated from solid red phosphorus was decomposed on heated metal wire surfaces. Atomic phosphorus was found to be one of the major products in all systems, and its density increased monotonically with wire temperature but showed saturation at high temperatures. A wire material dependence of density was observed for molecular phosphorus, suggesting that the decomposition of the compound is catalytic. Electron probe microanalyzer (EPMA) measurement showed that the wires are not phosphorized when heated in the presence of phosphine or molecular phosphorus.
2012 Problem 1: Gaussian Cannon
NASA Astrophysics Data System (ADS)
Xia, Qing; Gao, Wenli; Wang, Sihui; Zhou, Huijun
2015-10-01
Using the theory of elasticity, we establish an accurate collision model and quantitatively explain how Gaussian Cannon gains its most powerful shot under certain experimental parameters. The work done by magnetic force on the steel ball is obtained by measuring the magnetic force. Essential factors to acquire higher ejection speed have been found.
Rethinking early Earth phosphorus geochemistry
Pasek, Matthew A.
2008-01-01
Phosphorus is a key biologic element, and a prebiotic pathway leading to its incorporation into biomolecules has been difficult to ascertain. Most potentially prebiotic phosphorylation reactions have relied on orthophosphate as the source of phosphorus. It is suggested here that the geochemistry of phosphorus on the early Earth was instead controlled by reduced oxidation state phosphorus compounds such as phosphite (HPO32−), which are more soluble and reactive than orthophosphates. This reduced oxidation state phosphorus originated from extraterrestrial material that fell during the heavy bombardment period or was produced during impacts, and persisted in the mildly reducing atmosphere. This alternate view of early Earth phosphorus geochemistry provides an unexplored route to the formation of pertinent prebiotic phosphorus compounds, suggests a facile reaction pathway to condensed phosphates, and is consistent with the biochemical usage of reduced oxidation state phosphorus compounds in life today. Possible studies are suggested that may detect reduced oxidation state phosphorus compounds in ancient Archean rocks. PMID:18195373
Rethinking early Earth phosphorus geochemistry.
Pasek, Matthew A
2008-01-22
Phosphorus is a key biologic element, and a prebiotic pathway leading to its incorporation into biomolecules has been difficult to ascertain. Most potentially prebiotic phosphorylation reactions have relied on orthophosphate as the source of phosphorus. It is suggested here that the geochemistry of phosphorus on the early Earth was instead controlled by reduced oxidation state phosphorus compounds such as phosphite (HPO(3)(2-)), which are more soluble and reactive than orthophosphates. This reduced oxidation state phosphorus originated from extraterrestrial material that fell during the heavy bombardment period or was produced during impacts, and persisted in the mildly reducing atmosphere. This alternate view of early Earth phosphorus geochemistry provides an unexplored route to the formation of pertinent prebiotic phosphorus compounds, suggests a facile reaction pathway to condensed phosphates, and is consistent with the biochemical usage of reduced oxidation state phosphorus compounds in life today. Possible studies are suggested that may detect reduced oxidation state phosphorus compounds in ancient Archean rocks.
GAUSSIAN BEAM LASER RESONATOR PROGRAM
NASA Technical Reports Server (NTRS)
Cross, P. L.
1994-01-01
In designing a laser cavity, the laser engineer is frequently concerned with more than the stability of the resonator. Other considerations include the size of the beam at various optical surfaces within the resonator or the performance of intracavity line-narrowing or other optical elements. Laser resonators obey the laws of Gaussian beam propagation, not geometric optics. The Gaussian Beam Laser Resonator Program models laser resonators using Gaussian ray trace techniques. It can be used to determine the propagation of radiation through laser resonators. The algorithm used in the Gaussian Beam Resonator program has three major components. First, the ray transfer matrix for the laser resonator must be calculated. Next calculations of the initial beam parameters, specifically, the beam stability, the beam waist size and location for the resonator input element, and the wavefront curvature and beam radius at the input surface to the first resonator element are performed. Finally the propagation of the beam through the optical elements is computed. The optical elements can be modeled as parallel plates, lenses, mirrors, dummy surfaces, or Gradient Index (GRIN) lenses. A Gradient Index lens is a good approximation of a laser rod operating under a thermal load. The optical system may contain up to 50 elements. In addition to the internal beam elements the optical system may contain elements external to the resonator. The Gaussian Beam Resonator program was written in Microsoft FORTRAN (Version 4.01). It was developed for the IBM PS/2 80-071 microcomputer and has been implemented on an IBM PC compatible under MS DOS 3.21. The program was developed in 1988 and requires approximately 95K bytes to operate.
Gaussian Velocity Distributions in Avalanches
NASA Astrophysics Data System (ADS)
Shattuck, Mark
2004-03-01
Imagine a world where gravity is so strong that if an ice cube is tilted the shear forces melt the surface and water avalanches down. Further imagine that the ambient temperature is so low that the water re-freezes almost immediately. This is the world of granular flows. As a granular solid is tilted the surface undergoes a sublimation phase transition and a granular gas avalanches down the surface, but the inelastic collisions rapidly remove energy from the flow lowering the granular temperature (kinetic energy per particle) until the gas solidifies again. It is under these extreme conditions that we attempt to uncover continuum granular flow properties. Typical continuum theories like Navier-Stokes equation for fluids follow the space-time evolution of the first few moments of the velocity distribution. We study continuously avalanching flow in a rotating two-dimensional granular drum using high-speed video imaging and extract the position and velocities of the particles. We find a universal near Gaussian velocity distribution throughout the flowing regions, which are characterized by a liquid-like radial distribution function. In the remaining regions, in which the radial distribution function develops sharp crystalline peaks, the velocity distribution has a Gaussian peak but is much broader in the tails. In a companion experiment on a vibrated two-dimensional granular fluid under constant pressure, we find a clear gas-solid phase transition in which both the temperature and density change discontinuously. This suggests that a low temperature crystal and a high temperature gas can coexist in steady state. This coexistence could result in a narrower, cooler, Gaussian peak and a broader, warmer, Gaussian tail like the non-Gaussian behavior seen in the crystalline portions of the rotating drum.
GAUSSIAN BEAM LASER RESONATOR PROGRAM
NASA Technical Reports Server (NTRS)
Cross, P. L.
1994-01-01
In designing a laser cavity, the laser engineer is frequently concerned with more than the stability of the resonator. Other considerations include the size of the beam at various optical surfaces within the resonator or the performance of intracavity line-narrowing or other optical elements. Laser resonators obey the laws of Gaussian beam propagation, not geometric optics. The Gaussian Beam Laser Resonator Program models laser resonators using Gaussian ray trace techniques. It can be used to determine the propagation of radiation through laser resonators. The algorithm used in the Gaussian Beam Resonator program has three major components. First, the ray transfer matrix for the laser resonator must be calculated. Next calculations of the initial beam parameters, specifically, the beam stability, the beam waist size and location for the resonator input element, and the wavefront curvature and beam radius at the input surface to the first resonator element are performed. Finally the propagation of the beam through the optical elements is computed. The optical elements can be modeled as parallel plates, lenses, mirrors, dummy surfaces, or Gradient Index (GRIN) lenses. A Gradient Index lens is a good approximation of a laser rod operating under a thermal load. The optical system may contain up to 50 elements. In addition to the internal beam elements the optical system may contain elements external to the resonator. The Gaussian Beam Resonator program was written in Microsoft FORTRAN (Version 4.01). It was developed for the IBM PS/2 80-071 microcomputer and has been implemented on an IBM PC compatible under MS DOS 3.21. The program was developed in 1988 and requires approximately 95K bytes to operate.
Beam tracing description of non-Gaussian wave beams
NASA Astrophysics Data System (ADS)
Tsironis, Christos; Poli, Emanuele; Pereverzev, Grigory V.
2006-11-01
In experiments involving electron-cyclotron waves, beams with a non-Gaussian amplitude profile can be generated by the launching system or during the propagation in the plasma. The propagation and absorption of non-Gaussian beams is formulated in terms of the beam tracing asymptotic technique. The proper sequence for tracing arbitrary beams has been established, which involves the formulation of the decomposition of arbitrary electric field profiles into Gaussian-Hermite modes, the generalization of the beam width parameter, and the damping of higher-order modes. The effect of the phase-shift of the modes (with respect to the beam axis) is analyzed within beam tracing and included in the description of the beam. As an application, we consider the propagation and absorption of multimode beams in a simplified plasma geometry, where a comparison with an exact solution is possible. Also, the properties of the propagation of a non-Gaussian beam in the transmission line of an EC launching system are analyzed.
Propagation of a cosh-Gaussian beam through an optical system in turbulent atmosphere.
Chu, Xiuxiang
2007-12-24
The propagation of a cosh-Gaussian beam through an arbitrary ABCD optical system in turbulent atmosphere has been investigated. The analytical expressions for the average intensity at any receiver plane are obtained. As an elementary example, the average intensity and its radius at the image plane of a cosh-Gaussian beam through a thin lens are studied. To show the effects of a lens on the average intensity and the intensity radius of the laser beam in turbulent atmosphere, the properties of a collimated cosh-Gaussian beam and a focused cosh-Gaussian beam for direct propagation in turbulent atmosphere are studied and numerically calculated. The average intensity profiles of a cosh-Gaussian beam through a lens can have a shape similar to that of the initial beam for a longer propagation distance than that of a collimated cosh-Gaussian beam for direct propagation. With the increment in the propagation distance, the average intensity radius at the image plane of a cosh-Gaussian beam through a thin lens will be smaller than that at the focal plane of a focused cosh-Gaussian beam for direct propagation. Meanwhile, the intensity distributions at the image plane of a cosh-Gaussian beam through a lens with different w(0) and Omega(0) are also studied.
Inseparability of photon-added Gaussian states
Li Hongrong; Li Fuli; Zhu Shiyao
2007-06-15
The inseparability of photon-added Gaussian states which are generated from two-mode Gaussian states by adding photons is investigated. According to the established inseparability conditions [New J. Phys. 7, 211 (2005); Phys. Rev. Lett. 96, 050503 (2006)], we find that even if a two-mode Gaussian state is separable, the photon-added Gaussian state becomes entangled when the purity of the Gaussian state is larger than a certain value. The lower bound of entanglement of symmetric photon-added Gaussian states is derived. The result shows that entanglement of the photon-added Gaussian states is involved with high-order moment correlations. We find that fidelity of teleporting coherent states cannot be raised by employing the photon-added Gaussian states as a quantum channel of teleportation.
HEATS OF FORMATION OF PHOSPHORUS OXIDES
Contents: Phosphorus Coated with Lucite, Phosphorus Coated with Cellulose Acetate , Evaluation of the Combustion Results, Sample Calculation of...Corrections for Combustion of Phosphorus Coated with Cellulose Acetate , and Heat of Combustion of Phosphorus.
Gaussian statistics for palaeomagnetic vectors
Love, J.J.; Constable, C.G.
2003-01-01
With the aim of treating the statistics of palaeomagnetic directions and intensities jointly and consistently, we represent the mean and the variance of palaeomagnetic vectors, at a particular site and of a particular polarity, by a probability density function in a Cartesian three-space of orthogonal magnetic-field components consisting of a single (unimoda) non-zero mean, spherically-symmetrical (isotropic) Gaussian function. For palaeomagnetic data of mixed polarities, we consider a bimodal distribution consisting of a pair of such symmetrical Gaussian functions, with equal, but opposite, means and equal variances. For both the Gaussian and bi-Gaussian distributions, and in the spherical three-space of intensity, inclination, and declination, we obtain analytical expressions for the marginal density functions, the cumulative distributions, and the expected values and variances for each spherical coordinate (including the angle with respect to the axis of symmetry of the distributions). The mathematical expressions for the intensity and off-axis angle are closed-form and especially manageable, with the intensity distribution being Rayleigh-Rician. In the limit of small relative vectorial dispersion, the Gaussian (bi-Gaussian) directional distribution approaches a Fisher (Bingham) distribution and the intensity distribution approaches a normal distribution. In the opposite limit of large relative vectorial dispersion, the directional distributions approach a spherically-uniform distribution and the intensity distribution approaches a Maxwell distribution. We quantify biases in estimating the properties of the vector field resulting from the use of simple arithmetic averages, such as estimates of the intensity or the inclination of the mean vector, or the variances of these quantities. With the statistical framework developed here and using the maximum-likelihood method, which gives unbiased estimates in the limit of large data numbers, we demonstrate how to
Phosphorus in prebiotic chemistry
Schwartz, Alan W
2006-01-01
The prebiotic synthesis of phosphorus-containing compounds—such as nucleotides and polynucleotides—would require both a geologically plausible source of the element and pathways for its incorporation into chemical systems on the primitive Earth. The mineral apatite, which is the only significant source of phosphate on Earth, has long been thought to be problematical in this respect due to its low solubility and reactivity. However, in the last decade or so, at least two pathways have been demonstrated which would circumvent these perceived problems. In addition, recent results would seem to suggest an additional, extraterrestrial source of reactive phosphorus. It appears that the ‘phosphorus problem’ is no longer the stumbling block which it was once thought to be. PMID:17008215
General Galilei Covariant Gaussian Maps
NASA Astrophysics Data System (ADS)
Gasbarri, Giulio; Toroš, Marko; Bassi, Angelo
2017-09-01
We characterize general non-Markovian Gaussian maps which are covariant under Galilean transformations. In particular, we consider translational and Galilean covariant maps and show that they reduce to the known Holevo result in the Markovian limit. We apply the results to discuss measures of macroscopicity based on classicalization maps, specifically addressing dissipation, Galilean covariance and non-Markovianity. We further suggest a possible generalization of the macroscopicity measure defined by Nimmrichter and Hornberger [Phys. Rev. Lett. 110, 16 (2013)].
Betti Numbers of Gaussian Fields
NASA Astrophysics Data System (ADS)
Park, Changbom; Pranav, Pratyush; Chingangbam, Pravabati; van de Weygaert, Rien; Jones, Bernard; Vegter, Gert; Kim, Inkang; Hidding, Johan; Hellwing, Wojciech A.
2013-06-01
We present the relation between the genus in cosmology and the Betti numbers for excursion sets of three- and two-dimensional smooth Gaussian random fields, and numerically investigate the Betti numbers as a function of threshold level. Betti numbers are topological invariants of figures that can be used to distinguish topological spaces. In the case of the excursion sets of a three-dimensional field there are three possibly non-zero Betti numbers; β_0 is the number of connected regions, β_1 is the number of circular holes (i.e., complement of solid tori), and β_2 is the number of three-dimensional voids (i.e., complement of three-dimensional excursion regions). Their sum with alternating signs is the genus of the surface of excursion regions. It is found that each Betti number has a dominant contribution to the genus in a specific threshold range. β_0 dominates the high-threshold part of the genus curve measuring the abundance of high density regions (clusters). β_1 dominates the genus near the median thresholds which measures the topology of negatively curved iso-density surfaces, and β_2 corresponds to the low-threshold part measuring the void abundance. We average the Betti number curves (the Betti numbers as a function of the threshold level) over many realizations of Gaussian fields and find that both the amplitude and shape of the Betti number curves depend on the slope of the power spectrum n in such a way that their shape becomes broader and their amplitude drops less steeply than the genus as n decreases. This behaviour contrasts with the fact that the shape of the genus curve is fixed for all Gaussian fields regardless of the power spectrum. Even though the Gaussian Betti number curves should be calculated for each given power spectrum, we propose to use the Betti numbers for better specification of the topology of large scale structures in the universe.
Woodland Soils in SE Australia: Phosphorus Islands in a Phosphorus Depleted Landscape
NASA Astrophysics Data System (ADS)
Lonergan, Vanessa; Wilson, Brian
2013-04-01
By international standards, Australian soils are inherently low in Phosphorus and have been further depleted through historical agricultural practice. A range of soils were examined across a land use intensity gradient on a basalt landscape of the Northern Tablelands of NSW. Land-uses included cultivation, pasture and relatively undisturbed woodland systems. We measured extractable P, total P, organic P, organic Carbon and pH and their distribution through the soil profile relative to the land use intensity. Extractable P concentration was significantly higher in the woodland systems compared to the non-wooded sites and woodland soils had larger total phosphorus compared to the more intensively managed sites particularly in the surface horizons. Organic phosphorus as a proportion of the total was also higher in the woodland soils. Concentration and proportion of organic P were strongly related to soil carbon concentration, pH and management intensity. Our data demonstrate that these relatively undisturbed woodland systems represent phosphorus "islands" in a phosphorus depleted landscape.
Nurmi, Sami; Byrnes, Christian T.; Tasinato, Gianmassimo E-mail: ctb22@sussex.ac.uk
2013-06-01
Primordial perturbations with wavelengths greater than the observable universe shift the effective background fields in our observable patch from their global averages over the inflating space. This leads to a landscape picture where the properties of our observable patch depend on its location and may significantly differ from the expectation values predicted by the underlying fundamental inflationary model. We show that if multiple fields are present during inflation, this may happen even if our horizon exit would be preceded by only a few e-foldings of inflation. Non-Gaussian statistics are especially affected: for example models of local non-Gaussianity predicting |f{sub NL}{sup 0}| >> 10 over the entire inflating volume can have a probability up to a few tens of percent to generate a non-detectable bispectrum in our observable patch |f{sub NL}{sup obs.}|∼<10. In this work we establish systematic connections between the observable local properties of primordial perturbations and the global properties of the inflating space which reflect the underlying high energy physics. We study in detail the implications of both a detection and non-detection of primordial non-Gaussianity by Planck, and discover novel ways of characterising the naturalness of different observational configurations.
Boson sampling with Gaussian measurements
NASA Astrophysics Data System (ADS)
Chakhmakhchyan, L.; Cerf, N. J.
2017-09-01
We develop an alternative boson sampling model operating on single-photon states followed by linear interferometry and Gaussian measurements. The hardness proof for simulating such continuous-variable measurements is established in two main steps, making use of the symmetry of quantum evolution under time reversal. Namely, we first construct a twofold version of scattershot boson sampling in which, as opposed to the original proposal, both legs of a collection of two-mode squeezed vacuum states undergo parallel linear-optical transformations. This twofold scattershot model yields, as a corollary, an instance of boson sampling from Gaussian states where photon counting is hard to simulate. Then, a time-reversed setup is used to exhibit a boson sampling model in which the simulation of Gaussian measurements—namely the outcome of eight-port homodyne detection—is proven to be computationally hard. These results illustrate how the symmetry of quantum evolution under time reversal may serve as a tool for analyzing the computational complexity of novel physically motivated computational problems.
Combustion of White Phosphorus
NASA Astrophysics Data System (ADS)
Keiter, Richard L.; Gamage, Chaminda P.
2001-07-01
The reaction of white phosphorus with pure oxygen is conveniently and safely demonstrated by carrying out the reaction in a retort that has its open end submerged in water. After filling the retort with oxygen gas, a small amount of white phosphorus is introduced and heated with a hot-plate until it ignites. The spectacular reaction leads to consumption and expulsion of oxygen gas, creation of a partial vacuum in the retort, and back suction of water that extinguishes the combustion. Featured on the Cover
Wang, Xun; Liu, Zhirong; Zhao, Daomu
2014-10-01
Analytical expressions for the three components of nonparaxial propagation of a polarized elliptical Gaussian vortex beam in uniaxial crystal orthogonal to the optical axis are derived. Intensity and phase distributions of the three components of a polarized elliptical Gaussian vortex beam propagating in a uniaxial crystal orthogonal to the optical axis are illustrated by numerical examples. The influences of the initial beam's parameters and the parameters of the uniaxial crystal on the evolution of the beam's intensity and phase distributions in the uniaxial crystal are examined in detail. Results show that the statistical properties of an elliptical Gaussian vortex beam nonparaxially propagating in uniaxial crystal orthogonal to the optical axis are closely determined by the initial beam's parameters and the parameters of the crystal. The beam waist width ω_{0} not only affects the size of the beam profile in uniaxial crystal but also determines the nonparaxial effect of an elliptical Gaussian vortex beam. The profile of an elliptical Gaussian vortex beam in the uniaxial crystal becomes twisted and tilted, whether the elliptical factor α is greater or smaller than unity. The beam profile is tilted to the left in positive crystal. In contrast, it is inclined to the right in negative crystal. The results indicate that uniaxial crystal provides a convenient method to modulate the intensity and phase distributions of an elliptical Gaussian vortex beam, which is beneficial to optical manipulation of microscopic particles and nonlinear optics involving a specific beam profile and phase.
Phosphorus derivatives of salicylic acid
NASA Astrophysics Data System (ADS)
Chvertkina, L. V.; Khoklov, P. S.; Mironov, Vladimir F.
1992-10-01
The present state of work on the methods of synthesis, chemical properties, and practical applications of phosphorus-containing derivatives of salicylic acid has been reviewed. The characteristics of the chemical transformations of cyclic and acyclic phosphorus derivatives of salicylic acid related to the coordination state of the phosphorus atom have been examined. The bibliography includes 158 references.
Garcia, A.M.; Hoos, A.B.; Terziotti, S.
2011-01-01
We applied the SPARROW model to estimate phosphorus transport from catchments to stream reaches and subsequent delivery to major receiving water bodies in the Southeastern United States (U.S.). We show that six source variables and five land-to-water transport variables are significant (p<0.05) in explaining 67% of the variability in long-term log-transformed mean annual phosphorus yields. Three land-to-water variables are a subset of landscape characteristics that have been used as transport factors in phosphorus indices developed by state agencies and are identified through experimental research as influencing land-to-water phosphorus transport at field and plot scales. Two land-to-water variables - soil organic matter and soil pH - are associated with phosphorus sorption, a significant finding given that most state-developed phosphorus indices do not explicitly contain variables for sorption processes. Our findings for Southeastern U.S. streams emphasize the importance of accounting for phosphorus present in the soil profile to predict attainable instream water quality. Regional estimates of phosphorus associated with soil-parent rock were highly significant in explaining instream phosphorus yield variability. Model predictions associate 31% of phosphorus delivered to receiving water bodies to geology and the highest total phosphorus yields in the Southeast were catchments with already high background levels that have been impacted by human activity. ?? 2011 American Water Resources Association. This article is a US Government work and is in the public domain in the USA.
Accounting for Gaussian quadrature in four-stream radiative transfer algorithms
NASA Astrophysics Data System (ADS)
Zhang, Feng; Wu, Kun; Liu, Peng; Jing, Xianwen; Li, Jiangnan
2017-05-01
The Gaussian-Legendre, Gaussian-Lobatto, Gaussian-Chebyshev and Gaussian quadrature (GQ) with different moment powers have been investigated by applying them into the four-stream solar and infrared radiative transfer algorithms. For solar radiative transfer, the Gaussian-Chebyshev and GQ with moment power m=0 show relatively accurate results compared to other types of 2GQ in a single-layer scattering medium. In a real atmospheric profile including gaseous transmission, Gaussian-Chebyshev and GQ with moment power m=0 are comparable in accuracy for cloud heating rate. GQ with moment power m=0 produces more accurate results in the upward flux at the top of the atmosphere, while Gaussian-Chebyshev produces more accurate results in the downward flux at the surface. These results have been confirmed in evaluations by using satellite observation data. For infrared radiative transfer, the GQ with moment powers m = 0 , 2 , 4 show relatively accurate results in effective emissivity for a single-layer scattering medium. In a real atmospheric profile, the GQ with moment powers m=0 and m=2 show superior accuracy in heating rate and flux. In addition, the evaluations using satellite observation data also show that the accuracy of GQ with moment powers m=0 and m=2 is comparable. Both the schemes are the best candidates for the four-stream radiation algorithms.
Double pulse laser induced breakdown spectroscopy with Gaussian and multimode beams
NASA Astrophysics Data System (ADS)
Lednev, V. N.; Pershin, S. M.; Bunkin, A. F.; Samokhvalov, A. A.; Veiko, V. P.; Kudryashov, S. I.; Ionin, A. A.
2016-10-01
Single vs multimode laser beams were compared for double pulse laser ablation, plasma properties and laser induced breakdown spectroscopy (LIBS) analytical capabilities. Laser beams with Gaussian and multimode profiles were generated within the same Nd:YAG laser in single and double pulse regimes. Gaussian beam produced a small and deep crater while multimode beam formed a wide shallow crater. Greater double pulse enhancement of ablated material and plasma volume were observed for Gaussian beam sampling. The higher intensity for atomic/ionic lines in the plasma spectra was observed for multimode beam sampling due to greater laser pulse energy and larger ablated mass. Interestingly, spectra line intensity enhancement for double pulse ablation was 2-3 times greater for Gaussian than for multimode beam ablation. Background emission decreased for plasma induced by multimode beam when using double pulse mode while for Gaussian beam an opposite dependence was observed. Surprisingly, higher peak fluence at sample surface for Gaussian beam didn't provide higher plasma temperature and electron density for double pulse ablation. Analytical capabilities of LIBS method were compared for double pulse plasma induced by Gaussian and multimode beam in terms of precision, sensitivity and linearity of calibration curves. It was observed that Gaussian beam sampling leads to improvement of analysis precision while sensitivity was element dependent.
The time series modelling of non-Gaussian engineering processes
NASA Astrophysics Data System (ADS)
Watson, W.; Spedding, T. A.
1982-12-01
The basic methods of the time series modeling of surface profiles are extended to non-Gaussian processes which can involve complex correlation structures (e.g., periodic components obtained from turning and other similar processes). Particular attention is given to a class of models for time series formed by a combination of autoregressive (AR) and moving average (MA) processes. The results presented here show that these models are capable of accurately simulating a wide range of surface profile characteristics. The models can be programmed to run automatically and can be combined with standard procedures for fitting ARMA models and, if required, with one or several methods for separating random and periodic components.
Anupriya, J.; Ram, Nibedita; Pattabiraman, M.
2010-04-15
We describe a computational and experimental study on Hanle electromagnetically induced transparency and absorption resonance line shapes with a Laguerre Gaussian (LG) beam. It is seen that the LG beam profile brings about a significant narrowing in the line shape of the Hanle resonance and ground-state Zeeman coherence in comparison to a Gaussian beam. This narrowing is attributed to the azimuthal mode index of the LG field.
FPGA design and implementation of Gaussian filter
NASA Astrophysics Data System (ADS)
Yang, Zhihui; Zhou, Gang
2015-12-01
In this paper , we choose four different variances of 1,3,6 and 12 to conduct FPGA design with three kinds of Gaussian filtering algorithm ,they are implementing Gaussian filter with a Gaussian filter template, Gaussian filter approximation with mean filtering and Gaussian filter approximation with IIR filtering. By waveform simulation and synthesis, we get the processing results on the experimental image and the consumption of FPGA resources of the three methods. We set the result of Gaussian filter used in matlab as standard to get the result error. By comparing the FPGA resources and the error of FPGA implementation methods, we get the best FPGA design to achieve a Gaussian filter. Conclusions can be drawn based on the results we have already got. When the variance is small, the FPGA resources is enough for the algorithm to implement Gaussian filter with a Gaussian filter template which is the best choice. But when the variance is so large that there is no more FPGA resources, we can chose the mean to approximate Gaussian filter with IIR filtering.
Gaussian Decomposition of Laser Altimeter Waveforms
NASA Technical Reports Server (NTRS)
Hofton, Michelle A.; Minster, J. Bernard; Blair, J. Bryan
1999-01-01
We develop a method to decompose a laser altimeter return waveform into its Gaussian components assuming that the position of each Gaussian within the waveform can be used to calculate the mean elevation of a specific reflecting surface within the laser footprint. We estimate the number of Gaussian components from the number of inflection points of a smoothed copy of the laser waveform, and obtain initial estimates of the Gaussian half-widths and positions from the positions of its consecutive inflection points. Initial amplitude estimates are obtained using a non-negative least-squares method. To reduce the likelihood of fitting the background noise within the waveform and to minimize the number of Gaussians needed in the approximation, we rank the "importance" of each Gaussian in the decomposition using its initial half-width and amplitude estimates. The initial parameter estimates of all Gaussians ranked "important" are optimized using the Levenburg-Marquardt method. If the sum of the Gaussians does not approximate the return waveform to a prescribed accuracy, then additional Gaussians are included in the optimization procedure. The Gaussian decomposition method is demonstrated on data collected by the airborne Laser Vegetation Imaging Sensor (LVIS) in October 1997 over the Sequoia National Forest, California.
Non-Gaussian Stochastic Processes.
1986-02-28
Underwriting Risk and Return Paradox Revisited," J. Risk and Insurance .24.L 621-627 (1982). P. Brockett and B. Arnold, "Identifiability for Dependent...Some Ruin Calculations," J. Risk and Insurance 5DIAL 727-731 (1983). P. Brockett, S. Cox, and R. Witt, "Self-Insurance and the Probability of...Financial Regret," J. Risk and Insurance 51(4) 720-729 (1984). P. Brockett, "The Likelihood Ratio Detector for Non-Gaussian Infinitely Divisible and Linear
General Galilei Covariant Gaussian Maps.
Gasbarri, Giulio; Toroš, Marko; Bassi, Angelo
2017-09-08
We characterize general non-Markovian Gaussian maps which are covariant under Galilean transformations. In particular, we consider translational and Galilean covariant maps and show that they reduce to the known Holevo result in the Markovian limit. We apply the results to discuss measures of macroscopicity based on classicalization maps, specifically addressing dissipation, Galilean covariance and non-Markovianity. We further suggest a possible generalization of the macroscopicity measure defined by Nimmrichter and Hornberger [Phys. Rev. Lett. 110, 16 (2013)PRLTAO0031-9007].
Gaussian effective potential: Quantum mechanics
NASA Astrophysics Data System (ADS)
Stevenson, P. M.
1984-10-01
We advertise the virtues of the Gaussian effective potential (GEP) as a guide to the behavior of quantum field theories. Much superior to the usual one-loop effective potential, the GEP is a natural extension of intuitive notions familiar from quantum mechanics. A variety of quantum-mechanical examples are studied here, with an eye to field-theoretic analogies. Quantum restoration of symmetry, dynamical mass generation, and "quantum-mechanical resuscitation" are among the phenomena discussed. We suggest how the GEP could become the basis of a systematic approximation procedure. A companion paper will deal with scalar field theory.
Degradability of Bosonic Gaussian channels
Caruso, Filippo; Giovannetti, Vittorio
2006-12-15
The notion of weak-degradability of quantum channels is introduced by generalizing the degradability definition given by Devetak and Shor. Exploiting the unitary equivalence with beam-splitter/amplifier channels we then prove that a large class of one-mode Bosonic Gaussian channels are either weakly degradable or anti-degradable. In the latter case this implies that their quantum capacity Q is null. In the former case instead, this allows us to establish the additivity of the coherent information for those maps which admit unitary representation with single-mode pure environment.
Information bounds for Gaussian copulas
Hoff, Peter D.; Niu, Xiaoyue; Wellner, Jon A.
2013-01-01
Often of primary interest in the analysis of multivariate data are the copula parameters describing the dependence among the variables, rather than the univariate marginal distributions. Since the ranks of a multivariate dataset are invariant to changes in the univariate marginal distributions, rank-based estimators are natural candidates for semiparametric copula estimation. Asymptotic information bounds for such estimators can be obtained from an asymptotic analysis of the rank likelihood, i.e. the probability of the multivariate ranks. In this article, we obtain limiting normal distributions of the rank likelihood for Gaussian copula models. Our results cover models with structured correlation matrices, such as exchangeable or circular correlation models, as well as unstructured correlation matrices. For all Gaussian copula models, the limiting distribution of the rank likelihood ratio is shown to be equal to that of a parametric likelihood ratio for an appropriately chosen multivariate normal model. This implies that the semiparametric information bounds for rank-based estimators are the same as the information bounds for estimators based on the full data, and that the multivariate normal distributions are least favorable. PMID:25313292
Implications of phosphorus redox geochemistry
NASA Astrophysics Data System (ADS)
Pasek, Matthew
2015-04-01
Phosphorus is the limiting nutrient in many environments. Until recently, redox changes to phosphorus speciation have been confined to the realm of chemical laboratories as phosphorus was considered to be synonymous with phosphate in the natural environment. The few known phosphorus species with a reduced redox state, such as phosphine gas, were considered novelties. Recent work has revealed a surprising role for low redox state organophosphorus compounds -- the phosphonates -- in biogeochemistry. Additionally, phosphite and hypophosphite (the lower oxyanions of phosphorus) have been identified from natural sources, and microbial genomics suggests these compounds may be ubiquitous in nature. Recent work from our laboratory suggests that reduced phosphorus compounds such as phosphite and hypophosphite may be ubiquitous (Pasek et al. 2014). If so, then these species maybe important in the global phosphorus biogeochemical cycle, and could influence global phosphorus sustainability. Additionally, these compounds could have been relevant on the early earth environment, priming the earth with reactive phosphorus for prebiotic chemistry. Reference: Pasek, M. A., Sampson, J. M., & Atlas, Z. (2014). Redox chemistry in the phosphorus biogeochemical cycle. Proceedings of the National Academy of Sciences, 111(43), 15468-15473.
Monogamy inequality for distributed gaussian entanglement.
Hiroshima, Tohya; Adesso, Gerardo; Illuminati, Fabrizio
2007-02-02
We show that for all n-mode Gaussian states of continuous variable systems, the entanglement shared among n parties exhibits the fundamental monogamy property. The monogamy inequality is proven by introducing the Gaussian tangle, an entanglement monotone under Gaussian local operations and classical communication, which is defined in terms of the squared negativity in complete analogy with the case of n-qubit systems. Our results elucidate the structure of quantum correlations in many-body harmonic lattice systems.
NASA Astrophysics Data System (ADS)
Froelich, Phillip N.
Phosphorus is King of the aquatic plant kingdom.1 Without it there would be no growth, no reproduction, and thus no life.2 This simple principle has been concealed from a generation of aquatic scientists seduced by the powers of the Queen Consort, Nitrogen.3If Phosphorus is King and Nitrogen is Queen, then a naive observer4 of the Chess Queen, then a naive observer4 of the Chess Game of Life might prematurely conclude, after watching the moves unfolding on the board, that the Queen is all powerful and controls the game. She can move both diagonally and laterally across the board5 and travels long distances in one jump.6 Clones can be created from thin air on the back row.7 She literally dances over the board and controls the tempo of the game.8 A game without a dominant Queen is rare.9
NASA Astrophysics Data System (ADS)
Tamburini, F.; Bernasconi, S. M.; Paytan, A.
2012-10-01
IsoPhos 2012: Development of Isotopic Tracers for a Better Understandingof the Phosphorus Cycle;Monte Verità, Switzerland, 24-29 June 2012 IsoPhos 2012, a conference dedicated to cutting-edge research on phosphorus, was held in the Centro Stefano Franscini of the Swiss Federal Institute of Technology of Zurich (ETH Zurich). It gathered 63 scientists, 11 of whom were graduate students, from 16 countries and different areas of expertise, including Earth sciences, oceanography, paleontology, microbiology, soil and plant sciences, and hydrology. The conference focused on the use of stable oxygen isotopes in phosphate. New developments in preparation and analytical techniques have made the application of this tracer viable for fields other than paleoclimatology. However, new challenges with respect to sample preparation, standardization, its use in conjunction with other tracers, and the effect of biochemical processes have arisen.
Troncossi, M; Di Sante, R; Rivola, A
2016-10-01
In the field of vibration qualification testing, random excitations are typically imposed on the tested system in terms of a power spectral density (PSD) profile. This is the one of the most popular ways to control the shaker or slip table for durability tests. However, these excitations (and the corresponding system responses) exhibit a Gaussian probability distribution, whereas not all real-life excitations are Gaussian, causing the response to be also non-Gaussian. In order to introduce non-Gaussian peaks, a further parameter, i.e., kurtosis, has to be controlled in addition to the PSD. However, depending on the specimen behaviour and input signal characteristics, the use of non-Gaussian excitations with high kurtosis and a given PSD does not automatically imply a non-Gaussian stress response. For an experimental investigation of these coupled features, suitable measurement methods need to be developed in order to estimate the stress amplitude response at critical failure locations and consequently evaluate the input signals most representative for real-life, non-Gaussian excitations. In this paper, a simple test rig with a notched cantilevered specimen was developed to measure the response and examine the kurtosis values in the case of stationary Gaussian, stationary non-Gaussian, and burst non-Gaussian excitation signals. The laser Doppler vibrometry technique was used in this type of test for the first time, in order to estimate the specimen stress amplitude response as proportional to the differential displacement measured at the notch section ends. A method based on the use of measurements using accelerometers to correct for the occasional signal dropouts occurring during the experiment is described. The results demonstrate the ability of the test procedure to evaluate the output signal features and therefore to select the most appropriate input signal for the fatigue test.
NASA Astrophysics Data System (ADS)
Troncossi, M.; Di Sante, R.; Rivola, A.
2016-10-01
In the field of vibration qualification testing, random excitations are typically imposed on the tested system in terms of a power spectral density (PSD) profile. This is the one of the most popular ways to control the shaker or slip table for durability tests. However, these excitations (and the corresponding system responses) exhibit a Gaussian probability distribution, whereas not all real-life excitations are Gaussian, causing the response to be also non-Gaussian. In order to introduce non-Gaussian peaks, a further parameter, i.e., kurtosis, has to be controlled in addition to the PSD. However, depending on the specimen behaviour and input signal characteristics, the use of non-Gaussian excitations with high kurtosis and a given PSD does not automatically imply a non-Gaussian stress response. For an experimental investigation of these coupled features, suitable measurement methods need to be developed in order to estimate the stress amplitude response at critical failure locations and consequently evaluate the input signals most representative for real-life, non-Gaussian excitations. In this paper, a simple test rig with a notched cantilevered specimen was developed to measure the response and examine the kurtosis values in the case of stationary Gaussian, stationary non-Gaussian, and burst non-Gaussian excitation signals. The laser Doppler vibrometry technique was used in this type of test for the first time, in order to estimate the specimen stress amplitude response as proportional to the differential displacement measured at the notch section ends. A method based on the use of measurements using accelerometers to correct for the occasional signal dropouts occurring during the experiment is described. The results demonstrate the ability of the test procedure to evaluate the output signal features and therefore to select the most appropriate input signal for the fatigue test.
Extremes of Some Gaussian Random Interfaces
NASA Astrophysics Data System (ADS)
Chiarini, Alberto; Cipriani, Alessandra; Hazra, Rajat Subhra
2016-11-01
In this article we give a general criterion for some dependent Gaussian models to belong to maximal domain of attraction of Gumbel, following an application of the Stein-Chen method studied in Arratia et al. (Ann Probab 17(1):9-25, 1989). We also show the convergence of the associated point process. As an application, we show the conditions are satisfied by some of the well-known supercritical Gaussian interface models, namely, membrane model, massive and massless discrete Gaussian free field, fractional Gaussian free field.
Elegant Gaussian beams for enhanced optical manipulation
Alpmann, Christina Schöler, Christoph; Denz, Cornelia
2015-06-15
Generation of micro- and nanostructured complex light beams attains increasing impact in photonics and laser applications. In this contribution, we demonstrate the implementation and experimental realization of the relatively unknown, but highly versatile class of complex-valued Elegant Hermite- and Laguerre-Gaussian beams. These beams create higher trapping forces compared to standard Gaussian light fields due to their propagation changing properties. We demonstrate optical trapping and alignment of complex functional particles as nanocontainers with standard and Elegant Gaussian light beams. Elegant Gaussian beams will inspire manifold applications in optical manipulation, direct laser writing, or microscopy, where the design of the point-spread function is relevant.
Tissue deformation induced by radiation force from Gaussian transducers.
Myers, Matthew R
2006-05-01
Imaging techniques based upon the tissue mechanical response to an acoustic radiation force are being actively researched. In this paper a model for predicting steady-state tissue displacement induced by a radiation force arising from the absorption of Gaussian ultrasound beams is presented. A simple analytic expression is derived that agrees closely with the numerical quadrature of the displacement convolution integrals. The analytic result reveals the dependence of the steady-state axial displacement upon the operational parameters, e.g., an inverse proportional relationship to the tissue shear modulus. The derivation requires that the transducer radius be small compared to the focal length, but accurate results were obtained for transducer radii comparable to the focal length. Favorable comparisons with displacement predictions for non-Gaussian transducers indicate that the theory is also useful for a broader range of transducer intensity profiles.
Mean-field fluid behavior of the gaussian core model
Louis; Bolhuis; Hansen
2000-12-01
We show that the Gaussian core model of particles interacting via a penetrable repulsive Gaussian potential, first considered by Stillinger [J. Chem. Phys. 65, 3968 (1976)], behaves as a weakly correlated "mean-field fluid" over a surprisingly wide density and temperature range. In the bulk, the structure of the fluid phase is accurately described by the random phase approximation for the direct correlation function, and by the more sophisticated hypernetted chain integral equation. The resulting pressure deviates very little from a simple mean-field-like quadratic form in the density, while the low density virial expansion turns out to have an extremely small radius of convergence. Density profiles near a hard wall are also very accurately described by the corresponding mean-field free-energy functional. The binary version of the model exhibits a spinodal instability against demixing at high densities. Possible implications for semidilute polymer solutions are discussed.
Mean-field fluid behavior of the Gaussian core model
NASA Astrophysics Data System (ADS)
Louis, A. A.; Bolhuis, P. G.; Hansen, J. P.
2000-12-01
We show that the Gaussian core model of particles interacting via a penetrable repulsive Gaussian potential, first considered by Stillinger [J. Chem. Phys. 65, 3968 (1976)], behaves as a weakly correlated ``mean-field fluid'' over a surprisingly wide density and temperature range. In the bulk, the structure of the fluid phase is accurately described by the random phase approximation for the direct correlation function, and by the more sophisticated hypernetted chain integral equation. The resulting pressure deviates very little from a simple mean-field-like quadratic form in the density, while the low density virial expansion turns out to have an extremely small radius of convergence. Density profiles near a hard wall are also very accurately described by the corresponding mean-field free-energy functional. The binary version of the model exhibits a spinodal instability against demixing at high densities. Possible implications for semidilute polymer solutions are discussed.
Breaking Gaussian incompatibility on continuous variable quantum systems
Heinosaari, Teiko; Kiukas, Jukka; Schultz, Jussi
2015-08-15
We characterise Gaussian quantum channels that are Gaussian incompatibility breaking, that is, transform every set of Gaussian measurements into a set obtainable from a joint Gaussian observable via Gaussian postprocessing. Such channels represent local noise which renders measurements useless for Gaussian EPR-steering, providing the appropriate generalisation of entanglement breaking channels for this scenario. Understanding the structure of Gaussian incompatibility breaking channels contributes to the resource theory of noisy continuous variable quantum information protocols.
Characterization and sonochemical synthesis of black phosphorus from red phosphorus
NASA Astrophysics Data System (ADS)
Aldave, Sandra H.; Yogeesh, Maruthi N.; Zhu, Weinan; Kim, Joonseok; Sonde, Sushant S.; Nayak, Avinash P.; Akinwande, Deji
2016-03-01
Phosphorene is a new two-dimensional material which is commonly prepared by exfoliation from black phosphorus bulk crystals that historically have been synthesized from white phosphorus under high-pressure conditions. The few layers of phosphorene have a direct band gap in the range of 0.3-2 eV and high mobility at room temperature comparable to epitaxial graphene. These characteristics can be used for the design of high speed digital circuits, radio frequency circuits, flexible and printed systems, and optoelectronic devices. In this work, we synthesized black phosphorus from red phosphorus, which is a safer solid precursor, using sonochemistry. Furthermore, via a variety of microscopy and spectroscopy techniques, we report characterization results of the sonochemically synthesized black phosphorus in addition to the commercial black phosphorus. Finally, we describe the air stability of black phosphors and the crystalline structure of the synthesized material. This is the first result of sonochemical or solution-based synthesis of black phosphorus based on readily available low-cost red phosphorus. This solution-based synthesis of black phosphorus is suitable for printable applications of nanomaterial.
Propagation of Gaussian Schell-model Array beams in free space and atmospheric turbulence
NASA Astrophysics Data System (ADS)
Mao, Yonghua; Mei, Zhangrong; Gu, Juguan
2016-12-01
Based on the extended Huygens-Fresnel principle, the evolution behavior of the spectral density and the spectral degree of coherence of the beam produced by a recently introduced novel class of Gaussian Schell-model Arrays (GSMA) source in free space and turbulence atmospheric are explored and comparatively analyzed. And the influence of the fractal constant of the atmospheric power spectrum and refractive-index structure constant on the spectral density and the spectral degree of coherence of beams are analyzed. It is shown that the optical lattice profile is stable when beams propagate in free space, but the spectral density eventually is suppressed and transformed into a Gaussian profiles when it passes at sufficiently large distances through the turbulent atmosphere. The distributions of the spectral degree of coherence in far field eventually transformed into a shrink Gaussian profile relative to free space which means that the degree of spatial coherence turns worse.
Biological phosphorus removal inhibition by roxarsone in batch culture systems.
Guo, Qingfeng; Liu, Li; Hu, Zhenhu; Chen, Guowei
2013-06-01
Roxarsone has been extensively used in the feed of animals, which is usually excreted unchanged in the manure and eventually enter into animal wastewater, challenging the biological phosphorus removal processes. Knowledge of its inhibition effect is key for guiding treatment of roxarsone-contaminated wastewater, and is unfortunately keeping unclear. We study the inhibition of roxarsone on biological phosphorus removal processes for roxarsone-contaminated wastewater treatment, in terms of the removal and rates of chemical oxygen demand (COD), phosphate. Results showed that presence of roxarsone considerably limited the COD removals, especially at roxarsone concentration exceeding 40 mg L(-1). Additionally, roxarsone inhibited both phosphorus release and uptake processes, consistent with the phosphate profiles during the biological phosphorus removal processes; whereas, roxarsone is more toxic to phosphorus uptake process, than release function. The results indicated that it is roxarsone itself, rather than the inorganic arsenics, inhibit biological phosphorus removal processes within both aerobic and anaerobic roxarsone-contaminated wastewater treatment. Copyright © 2013 Elsevier Ltd. All rights reserved.
Parallel computation of Gaussian processes
NASA Astrophysics Data System (ADS)
Preuss, R.; von Toussaint, U.
2017-06-01
Within the Bayesian framework we utilize Gaussian processes for parametric studies of long running computer codes. Since the simulations are expensive it is necessary to exploit the computational budget in the best possible manner. Employing the sum over variances - being indicators for the quality of the fit - as the utility function we established an optimized and automated sequential parameter selection procedure. However, often it is also desirable to utilize the parallel running capabilities of present computer technology and abandon the sequential parameter selection for a faster overall turn-around time (wall-clock time). The paper proposes to achieve this by marginalizing over the expected outcomes at optimized test points in order to set up a pool of starting values for batch execution.
Matching optics for Gaussian beams
NASA Technical Reports Server (NTRS)
Gunter, William D. (Inventor)
1991-01-01
A system of matching optics for Gaussian beams is described. The matching optics system is positioned between a light beam emitter (such as a laser) and the input optics of a second optics system whereby the output from the light beam emitter is converted into an optimum input for the succeeding parts of the second optical system. The matching optics arrangement includes the combination of a light beam emitter, such as a laser with a movable afocal lens pair (telescope) and a single movable lens placed in the laser's output beam. The single movable lens serves as an input to the telescope. If desired, a second lens, which may be fixed, is positioned in the beam before the adjustable lens to serve as an input processor to the movable lens. The system provides the ability to choose waist diameter and position independently and achieve the desired values with two simple adjustments not requiring iteration.
Cylindrical quasi-Gaussian beams.
Mitri, F G
2013-11-15
Making use of the complex-source-point method in cylindrical coordinates, an exact solution representing a cylindrical quasi-Gaussian beam of arbitrary waist w(0) satisfying both the Helmholtz and Maxwell's equations is introduced. The Cartesian components of the electromagnetic field are derived stemming from different polarizations of the magnetic and electric vector potentials based on Maxwell's vectorial equations and Lorenz's gauge condition, without any approximations. Computations illustrate the theory for tightly focused and quasi-collimated cylindrical beams. The results are particularly useful in beam-forming design using high-aperture or collimated cylindrical laser beams in imaging microscopy, particle manipulation, optical tweezers, and the study of scattering, radiation forces, and torque on cylindrical structures.
NASA Astrophysics Data System (ADS)
Bakhtiari, Farhad; Golmohammady, Shole; Yousefi, Masoud; Ghafary, Bijan
2016-12-01
In the present paper, a scheme for generation of terahertz (THz) radiation in electron-neutral collisional plasma based on beating of two Gaussian laser array beams has been proposed. It is shown that the efficiency of THz radiation based on the Gaussian laser array beams can be enhanced drastically in comparison with the efficiency of THz radiation based on the Gaussian one. Furthermore, the producing THz radiation by the Gaussian laser array beams, which has an exclusive field profile, is affected by some array structure parameters. It can also be used to overcome the negative consequences of electron neutral collisions in plasma, which may be occurring in the THz radiation generation process. Optimizing the collisional plasma, laser beams and array structure parameters, THz radiation efficiency up to 0.07% can be obtained in our scheme which is about three times greater than the maximum efficiency obtained for standard (single) Gaussian laser beam. Also, considering the electrostatic energy channel in solving the THz wave equation, and reduction of THz radiation efficiency to 0.054%, in this assumption, the ratio between the efficiency of Gaussian laser array beams and standard Gaussian laser beam remained unchanged.
Measurement-induced Nonlocality for Gaussian States
NASA Astrophysics Data System (ADS)
Ma, Ruifen; Hou, Jinchuan; Qi, Xiaofei
2017-04-01
We establish an analytic formula of measurement-induced nonlocality (MIN) for two-mode squeezed thermal states and mixed thermal states. Different from the quantum discord case, we show that there is no Gaussian version of MIN by Gaussian positive operator valued measurements.
Conditional and unconditional Gaussian quantum dynamics
NASA Astrophysics Data System (ADS)
Genoni, Marco G.; Lami, Ludovico; Serafini, Alessio
2016-07-01
This article focuses on the general theory of open quantum systems in the Gaussian regime and explores a number of diverse ramifications and consequences of the theory. We shall first introduce the Gaussian framework in its full generality, including a classification of Gaussian (also known as 'general-dyne') quantum measurements. In doing so, we will give a compact proof for the parametrisation of the most general Gaussian completely positive map, which we believe to be missing in the existing literature. We will then move on to consider the linear coupling with a white noise bath, and derive the diffusion equations that describe the evolution of Gaussian states under such circumstances. Starting from these equations, we outline a constructive method to derive general master equations that apply outside the Gaussian regime. Next, we include the general-dyne monitoring of the environmental degrees of freedom and recover the Riccati equation for the conditional evolution of Gaussian states. Our derivation relies exclusively on the standard quantum mechanical update of the system state, through the evaluation of Gaussian overlaps. The parametrisation of the conditional dynamics we obtain is novel and, at variance with existing alternatives, directly ties in to physical detection schemes. We conclude our study with two examples of conditional dynamics that can be dealt with conveniently through our formalism, demonstrating how monitoring can suppress the noise in optical parametric processes as well as stabilise systems subject to diffusive scattering.
Phosphorus-limited growth of a green alga and a blue-green alga
Lang, D.S.; Brown, E.J.
1981-12-01
The phosphorus-limited growth kinetics of the chlorophyte Scenedesmus quadricauda and the cyanophyte Synechococcus Nageli were studied by using batch and continuous culturing techniques. The steady-state phosphate transport capability and the phosphorus storage capacity is higher in S. Nageli than in S. quadricauda. Synechococcus Nageli can also deplete phosphate to much lower levels than can S. quadricauda. These results, along with their morphological characteristics, were used to construct partial physiological profiles for each organism. The profiles indicate that this unicellular cyanophyte (cyanobacterium) is better suited for growth in phosphorus-limited oligotrophic niches than is this chlorophyte (green alga). (Refs. 44).
Phosphorus-Limited Growth of a Green Alga and a Blue-Green Alga
Lang, Douglas S.; Brown, Edward J.
1981-01-01
The phosphorus-limited growth kinetics of the chlorophyte Scenedesmus quadricauda and the cyanophyte Synechococcus Nägeli were studied by using batch and continuous culturing techniques. The steady-state phosphate transport capability and the phosphorus storage capacity is higher in S. Nägeli than in S. quadricauda. Synechococcus Nägeli can also deplete phosphate to much lower levels than can S. quadricauda. These results, along with their morphological characteristics, were used to construct partial physiological profiles for each organism. The profiles indicate that this unicellular cyanophyte (cyanobacterium) is better suited for growth in phosphorus-limited oligotrophic niches than is this chlorophyte (green alga). PMID:16345896
Propagation of a general multi-Gaussian beam in turbulent atmosphere in a slant path.
Chu, Xiuxiang; Liu, Zejin; Wu, Yi
2008-01-01
The propagation of a multi-Gaussian beam in turbulent atmosphere in a slant path is studied. The analytical expression for the average intensity of a general multi-Gaussian beam is derived. As special cases the average intensities of a two- and a four-Gaussian beam are investigated and numerically calculated. The investigation reveals that at lower altitude and with large sigma the intensity distribution at the receiver plane can have a shape (multiple peaks) similar to that at the source plane. But with increase in altitude or decrease in sigma, the multiple peaks gradually disappear and evolve into the profile of a fundamental Gaussian beam. From the comparisons between the different propagations we can see that the beam spreading due to wavelength and initial waist width in a slant path is much slower than that in a horizontal path.
Quantitative comparison of self-healing ability between Bessel–Gaussian beam and Airy beam
Wen, Wei; Chu, Xiuxiang
2015-09-15
The self-healing ability during propagation process is one of the most important properties of non-diffracting beams. This ability has crucial advantages to light sheet-based microscopy to reduce scattering artefacts, increase the quality of the image and enhance the resolution of microscopy. Based on similarity between two infinite-dimensional complex vectors in Hilbert space, the ability to a Bessel–Gaussian beam and an Airy beam have been studied and compared. Comparing the evolution of the similarity of Bessel–Gaussian beam with Airy beam under the same conditions, we find that Bessel–Gaussian beam has stronger self-healing ability and is more stable than that of Airy beam. To confirm this result, the intensity profiles of Bessel–Gaussian beam and Airy beam with different similarities are numerically calculated and compared.
A note on population analysis of dissolution-absorption models using the inverse Gaussian function.
Wang, Jian; Weiss, Michael; D'Argenio, David Z
2008-06-01
Because conventional absorption models often fail to describe plasma concentration-time profiles following oral administration, empirical input functions such as the inverse Gaussian function have been successfully used. The purpose of this note is to extend this model by adding a first-order absorption process and to demonstrate the application of population analysis using maximum likelihood estimation via the EM algorithm (implemented in ADAPT 5). In one example, the analysis of bioavailability data of an extended-release formulation, as well as the mean dissolution times estimated in vivo and in vitro with the use of the inverse Gaussian function, is well in accordance, suggesting that the inverse Gaussian function indeed accounts for the in vivo dissolution process. In the other example, the kinetics of trapidil in patients with liver disease, the absorption/dissolution parameters are characterized by a high interindividual variability. Adding a first-order absorption process to the inverse Gaussian function improved the fit in both cases.
Dynamic generation of Ince-Gaussian modes with a digital micromirror device
Ren, Yu-Xuan; Fang, Zhao-Xiang; Chen, Yue; Lu, Rong-De; Gong, Lei; Huang, Kun
2015-04-07
Ince-Gaussian (IG) beam with elliptical profile, as a connection between Hermite-Gaussian (HG) and Laguerre-Gaussian (LG) beams, has showed unique advantages in some applications such as quantum entanglement and optical micromanipulation. However, its dynamic generation with high switching frequency is still challenging. Here, we experimentally reported the quick generation of Ince-Gaussian beam by using a digital micro-mirror device (DMD), which has the highest switching frequency of 5.2 kHz in principle. The configurable properties of DMD allow us to observe the quasi-smooth variation from LG (with ellipticity ε=0) to IG and HG (ε=∞) beam. This approach might pave a path to high-speed quantum communication in terms of IG beam. Additionally, the characterized axial plane intensity distribution exhibits a 3D mould potentially being employed for optical micromanipulation.
Dynamic generation of Ince-Gaussian modes with a digital micromirror device
NASA Astrophysics Data System (ADS)
Ren, Yu-Xuan; Fang, Zhao-Xiang; Gong, Lei; Huang, Kun; Chen, Yue; Lu, Rong-De
2015-04-01
Ince-Gaussian (IG) beam with elliptical profile, as a connection between Hermite-Gaussian (HG) and Laguerre-Gaussian (LG) beams, has showed unique advantages in some applications such as quantum entanglement and optical micromanipulation. However, its dynamic generation with high switching frequency is still challenging. Here, we experimentally reported the quick generation of Ince-Gaussian beam by using a digital micro-mirror device (DMD), which has the highest switching frequency of 5.2 kHz in principle. The configurable properties of DMD allow us to observe the quasi-smooth variation from LG (with ellipticity ɛ = 0 ) to IG and HG ( ɛ = ∞ ) beam. This approach might pave a path to high-speed quantum communication in terms of IG beam. Additionally, the characterized axial plane intensity distribution exhibits a 3D mould potentially being employed for optical micromanipulation.
Generation and propagation of a sine-azimuthal wavefront modulated Gaussian beam
NASA Astrophysics Data System (ADS)
Lao, Guanming; Zhang, Zhaohui; Luo, Meilan; Zhao, Daomu
2016-07-01
We introduce a method for modulating the Gaussian beam by means of sine-azimuthal wavefront and carry out the experimental generation. The analytical propagation formula of such a beam passing through a paraxial ABCD optical system is derived, by which the intensity properties of the sine-azimuthal wavefront modulated Gaussian (SWMG) beam are examined both theoretically and experimentally. Both of the experimental and theoretical results show that the SWMG beam goes through the process from beam splitting to a Gaussian-like profile, which is closely determined by the phase factor and the propagation distance. Appropriate phase factor and short distance are helpful for the splitting of beam. However, in the cases of large phase factor and focal plane, the intensity distributions tend to take a Gaussian form. Such unique features may be of importance in particle trapping and medical applications.
Generation and propagation of a sine-azimuthal wavefront modulated Gaussian beam
Lao, Guanming; Zhang, Zhaohui; Luo, Meilan; Zhao, Daomu
2016-01-01
We introduce a method for modulating the Gaussian beam by means of sine-azimuthal wavefront and carry out the experimental generation. The analytical propagation formula of such a beam passing through a paraxial ABCD optical system is derived, by which the intensity properties of the sine-azimuthal wavefront modulated Gaussian (SWMG) beam are examined both theoretically and experimentally. Both of the experimental and theoretical results show that the SWMG beam goes through the process from beam splitting to a Gaussian-like profile, which is closely determined by the phase factor and the propagation distance. Appropriate phase factor and short distance are helpful for the splitting of beam. However, in the cases of large phase factor and focal plane, the intensity distributions tend to take a Gaussian form. Such unique features may be of importance in particle trapping and medical applications. PMID:27443798
Generation and propagation of a sine-azimuthal wavefront modulated Gaussian beam.
Lao, Guanming; Zhang, Zhaohui; Luo, Meilan; Zhao, Daomu
2016-07-21
We introduce a method for modulating the Gaussian beam by means of sine-azimuthal wavefront and carry out the experimental generation. The analytical propagation formula of such a beam passing through a paraxial ABCD optical system is derived, by which the intensity properties of the sine-azimuthal wavefront modulated Gaussian (SWMG) beam are examined both theoretically and experimentally. Both of the experimental and theoretical results show that the SWMG beam goes through the process from beam splitting to a Gaussian-like profile, which is closely determined by the phase factor and the propagation distance. Appropriate phase factor and short distance are helpful for the splitting of beam. However, in the cases of large phase factor and focal plane, the intensity distributions tend to take a Gaussian form. Such unique features may be of importance in particle trapping and medical applications.
Jin, G; Onodera, S; Saito, M; Maruyama, Y; Hayakawa, A; Sato, T; Ota, Y; Aritomi, D
2016-01-13
The focus of this work is the change in sediment properties and chemical characteristics that occur after land reclamation projects. The results indicate a higher sedimentation rate in Lake Hachirogata after reclamation, with the rate increasing with proximity to the agricultural zone. In the west-side water samples, higher levels of dissolved total nitrogen and dissolved total phosphorus (DTP) were found in both surface and bottom waters. The increase in P (39-80%) was generally greater than that for N (12-16%), regarding the nutrient supply from reclaimed farmland in the western part of the lake. In the eastern part of the lake, the pore-water Cl(-) profile showed a decreasing vertical gradient in the sediment core. This indicates desalination of the lake water after construction of a sluice gate in 1961. In the western sediment-core sample, a uniform Cl(-) profile indicates the mixing of lake water and pore water after reclamation. Considering the sedimentation of P in the last 100 years, there is a trend of increasing accumulation of P and P-activities after the reclamation project. This appears to be an impact from change in the lake environment as a result of increased agricultural nutrients, desalination, and residence. A large amount of mobile phosphorus (42-72% of TP in the western core sample) trapped in sediment increases the risk of phosphorus release and intensification of algal blooms. High sediment phosphorus and phosphorus mobility should be considered a source of pollution in the coastal environment.
Experimental Studies with Spatial Gaussian-Cut Laser for the LCLS Photocathode Gun
Zhou, F.; Brachmann, A.; Emma, P.; Gilevich, S.; Huang, Z.; /SLAC
2011-12-13
To simplify the LCLS operation and further enhance the injector performances, we are evaluating the various parameters including the photocathode drive laser system. Extensive simulations show that both the projected and time-sliced emittances with spatial Gaussian profiles having reasonable tail-cut are better than those with uniform one. The simulated results are also supported by theoretical analyses. In the LCLS, the spatial uniform or Gaussian-cut laser profiles are conveniently obtained by adjusting the optics of the telescope upstream of an iris, used to define laser size on the cathode. Preliminary beam studies at the LCLS injector show that both the projected and time-sliced emittances with spatial Gaussian-cut laser are almost as good as, although not better than, those with uniform one. In addition, the laser transmission through the iris with the Gaussian-cut profile is twice with uniform one, which can significantly ease LCLS copper cathode/laser operations and thus improve the LCLS operation efficiency. More beam studies are planned to measure FEL performances with the Gaussian-cut in comparison with the uniform one. All simulations and measurements are presented in the paper.
Preparation of high purity phosphorus
Rupp, Arthur F.; Woo, David V.
1981-01-01
High purity phosphorus and phosphorus compounds are prepared by first reacting H.sub.3 PO.sub.4 with a lead compound such as PbO to form Pb.sub.3 (PO.sub.4).sub.2. The Pb.sub.3 (PO.sub.4).sub.2 is reduced with H.sub.2 at a temperature sufficient to form gaseous phosphorus which can be recovered as a high purity phosphorus product. Phosphorus compounds can be easily prepared by reacting the phosphorus product with gaseous reactants. For example, the phosphorus product is reacted with gaseous Cl.sub.2 to form PCl.sub.5. PCl.sub.5 is reduced to PCl.sub.3 by contacting it in the gaseous phase with solid elemental phosphorus. POCl.sub.3 can be prepared by contacting PCl.sub.5 in the gaseous phase with solid P.sub.2 O.sub.5. The general process is particularly suitable for the preparation of radiophosphorus compounds.
Protecting catalyst from phosphorus poisoning
Caracciolo, F.
1983-05-03
A method for protecting vehicle emissions control catalyst from phosphorus poisoning comprising contacting at least one of the crankcase ventilation stream and the exhaust gas recirculation stream with a bed of solid adsorbent capable of removing phosphorus compounds in the gas stream, and circulating the treated gas stream to the intake side of the engine.
Gaussian-based filters for detecting Martian dust devils
Yang, F.; Mlsna, P.A.; Geissler, P.
2006-01-01
The ability to automatically detect dust devils in the Martian atmosphere from orbital imagery is becoming important both for scientific studies of the planet and for the planning of future robotic and manned missions. This paper describes our approach for the unsupervised detection of dust devils and the preliminary results achieved to date. The algorithm centers upon the use of a filter constructed from Gaussian profiles to match dust devil characteristics over a range of scale and orientation. The classification step is designed to reduce false positive errors caused by static surface features such as craters. A brief discussion of planned future work is included. ?? 2006 IEEE.
Lv, Xiao-Mei; Shao, Ming-Fei; Li, Ji; Li, Chao-Lin
2015-04-01
Denitrifying phosphorus removal is an attractive wastewater treatment process due to its reduced carbon source demand and sludge minimization potential. In the present study, the metagenome of denitrifying phosphorus removal sludge from a lab-scale anaerobic-anoxic SBR was generated by Illumina sequencing to study the microbial community. Compared with the aerobic phosphorus removal sludge, the denitrifying phosphorus removal sludge demonstrated quite similar microbial community profile and microbial diversity with sludge from Aalborg East EBPR WWTP. Proteobacteria was the most dominant phylum; within Proteobacteria, β-Proteobacteria was the most dominant class, followed by α-, γ-, δ-, and ε-Proteobacteria. The genes involved in phosphate metabolism and biofilm formation reflected the selective pressure of the phosphorus removal process. Moreover, ppk sequence from DPAO was outside the Accumulibacter clusters, which suggested different core phosphorus removal bacteria in denitrifying and aerobic phosphorus removal systems. In a summary, putative DPAO might be a novel genus that is closely related between Accumulibacter and Dechloromonas within Rhodocyclus. The microbial community and metabolic profiles achieved in this study will eventually help to improve the understanding of key microorganisms and the entire community in order to improve the phosphorus removal efficiency of EBPR processes.
Virtual phosphorus ore requirement of Japanese economy.
Matsubae, Kazuyo; Kajiyama, Jun; Hiraki, Takehito; Nagasaka, Tetsuya
2011-08-01
Phosphorus is indispensable for agricultural production. Hence, the consumption of imported food indirectly implies the import of phosphorus resources. The global consumption of agricultural products depends on a small number of ore-producing countries. For sustainable management of phosphorus resources, the global supply and demand network should be clarified. In this study, we propose the virtual phosphorus ore requirement as a new indicator of the direct and indirect phosphorus requirements for our society. The virtual phosphorus ore requirement indicates the direct and indirect demands for phosphorus ore transformed into agricultural products and fertilizer. In this study, the virtual phosphorus ore requirement was evaluated for the Japanese economy in 2005. Importantly, the results show that our society requires twice as much phosphorus ore as the domestic demand for fertilizer production. The phosphorus contained in "eaten" agricultural products was only 12% of virtual phosphorus ore requirement.
Asymmetric Laguerre-Gaussian beams
NASA Astrophysics Data System (ADS)
Kovalev, A. A.; Kotlyar, V. V.; Porfirev, A. P.
2016-06-01
We introduce a family of asymmetric Laguerre-Gaussian (aLG) laser beams. The beams have been derived via a complex-valued shift of conventional LG beams in the Cartesian plane. While propagating in a uniform medium, the first bright ring of the aLG beam becomes less asymmetric and the energy is redistributed toward peripheral diffraction rings. The projection of the orbital angular momentum (OAM) onto the optical axis is calculated. The OAM is shown to grow quadratically with increasing asymmetry parameter of the aLG beam, which equals the ratio of the shift to the waist radius. Conditions for the OAM becoming equal to the topological charge have been derived. For aLG beams with zero radial index, we have deduced an expression to define the intensity maximum coordinates and shown the crescent-shaped intensity pattern to rotate during propagation. Results of the experimental generation and rotation of aLG beams agree well with theoretical predictions.
Quasi-Gaussian electromagnetic beams
NASA Astrophysics Data System (ADS)
Mitri, F. G.
2013-03-01
A class of Maxwellian beams, which is an exact solution of the vector wave equation (Helmholtz equation) and Maxwell's equations, is introduced. The solution, termed a quasi-Gaussian electromagnetic (EM) beam, is formed from a superposition of sources and sinks with complex coordinates, and is characterized by an arbitrary waist w0 and a diffraction convergence length known as the Rayleigh range zR. An attractive feature of this beam is the description of strongly focused (or strongly divergent) EM-optical wave fields for kw0≤1, where k is the wave number. A vector wave analysis is developed to determine and compute the spatial Cartesian components of the electric and magnetic fields (valid in the near field and the far field) stemming from Maxwell's vector equations and the Lorenz gauge condition, with particular emphasis on the parameter kw0 and the polarization states of the vector potentials used to derive the EM field's components. The results are potentially useful in the study of the axial and/or arbitrary wave scattering, radiation force, and torque in lasers operating with strongly focused (or strongly divergent) beams for particle manipulation in optical tweezers and imaging applications.
Experimental generation of cosine-Gaussian-correlated Schell-model beams with rectangular symmetry.
Liang, Chunhao; Wang, Fei; Liu, Xianlong; Cai, Yangjian; Korotkova, Olga
2014-02-15
Cosine-Gaussian-correlated Schell-model sources whose degree of coherence (DOC) is of circular symmetry have been introduced just recently [Opt. Lett. 38, 2578 (2013)]. In this Letter, we propose a model for a source whose DOC is the superposition of two 1D cosine-Gaussian-correlated Schell-model sources, i.e., possesses rectangular symmetry. The novel model sources and beams they generate are termed rectangular cosine-Gaussian Schell-model (RCGSM). The RCGSM beam exhibits unique features on propagation, e.g., its intensity in the far field (or in the focal plane) displays a four-beamlet array profile, being qualitatively different from the ring-shaped profile of the CGSM beam whose DOC is of circular symmetry. Furthermore, we have carried out experimental generation of the proposed beam and measured its focusing properties. Our experimental results are consistent with the theoretical predictions.
Modeling of Gaussian-to-annular beam shaping by geometrical optics for optical trepanning
NASA Astrophysics Data System (ADS)
Zeng, Danyong; Latham, William P.; Kar, Aravinda
2004-09-01
Laser drilling is very important in many industries such as automotive, aerospace, electronics and materials processing. It can be used to produce critical components with novel hole geometry for advanced systems. Percussion drilling and trepanning are two laser drilling methods. In the conventional trepanning method, a laser beam in scanned along a circular or spiral orbit to remove material to achieve a desired hole shape. These orbits generally trace a circular path at the inner wall of the holes. This suggests that an annular beam can be used to accomplish trepanning, which we referred to as optical trepanning. The ray tracing technique of geometrical optics will be employed in this paper to design the necessary optics to transform a Gaussian laser beam into an annular beam of different intensity profiles. Such profiles include half Gaussian with maximum intensities at the inner and outer surfaces of the annulus, respectively, and full Gaussian with maximum intensity within the annulus.
Estimating Mutual Information by Local Gaussian Approximation
2015-07-13
any one-dimensional kernel function . Then the Local Gaussian Density Estimator, or LGDE, of f(x) is given by f̂ (x) = Nd (x;µ(x),Σ(x)) , (6) Here µ,Σ...term in the right hand side of Eq. 8 is the local- ized version of Gaussian log-likelihood. One can see that without the kernel function , Eq. 8 becomes...similar to the global log-likelihood function of the Gaussian parametric family. However, since we do not have sufficient infor- mation to specify a
Cloning of Gaussian states by linear optics
Olivares, Stefano; Paris, Matteo G. A.; Andersen, Ulrik L.
2006-06-15
We analyze in details a scheme for cloning of Gaussian states based on linear optical components and homodyne detection recently demonstrated by Andersen et al. [Phys. Rev. Lett. 94, 240503 (2005)]. The input-output fidelity is evaluated for a generic (pure or mixed) Gaussian state taking into account the effect of nonunit quantum efficiency and unbalanced mode mixing. In addition, since in most quantum information protocols the covariance matrix of the set of input states is not perfectly known, we evaluate the average cloning fidelity for classes of Gaussian states with the degree of squeezing and the number of thermal photons being only partially known.
Scalar field of nonparaxial Gaussian beams.
Ulanowski, Z; Ludlow, I K
2000-12-15
A family of closed-form expressions for the scalar field of strongly focused Gaussian beams in oblate spheroidal coordinates is given. The solutions satisfy the wave equation and are free from singularities. The lowest-order solution in the far field closely matches the energy density produced by a sine-condition, high-aperture lens illuminated by a paraxial Gaussian beam. At the large waist limit the solution reduces to the paraxial Gaussian beam form. The solution is equivalent to the spherical wave of a combined complex point source and sink but has the advantage of being more directly interpretatable.
Quantum bit commitment under Gaussian constraints
NASA Astrophysics Data System (ADS)
Mandilara, Aikaterini; Cerf, Nicolas J.
2012-06-01
Quantum bit commitment has long been known to be impossible. Nevertheless, just as in the classical case, imposing certain constraints on the power of the parties may enable the construction of asymptotically secure protocols. Here, we introduce a quantum bit commitment protocol and prove that it is asymptotically secure if cheating is restricted to Gaussian operations. This protocol exploits continuous-variable quantum optical carriers, for which such a Gaussian constraint is experimentally relevant as the high optical nonlinearity needed to effect deterministic non-Gaussian cheating is inaccessible.
Rozentryt, Piotr; Nowak, Jolanta; Niedziela, Jacek; Hudzik, Bartosz; Doehner, Wolfram; Jankowska, Ewa A; von Haehling, Stephan; Partyka, Robert; Kawecka, Edyta; Myrda, Krzysztof; Rywik, Tomasz; Szyguła, Bożena; Kokocińska, Danuta; Anker, Stefan D; Ponikowski, Piotr; Poloński, Lech
2014-11-15
Serum phosphorus abnormalities may pose a risk on the cardiovascular system. In heart failure (HF) phosphorus homeostatic mechanisms are altered and may be modified by modern HF therapy. The impact of therapy optimization on phosphorus abnormalities and related outcome remains unknown. In 722 patients with HF subjected to treatment up-titration we analyzed the prevalence of serum phosphorus abnormalities and their relation to HF severity on top of optimal treatment, and we assessed adjusted risk of phosphorus abnormalities at different stages of HF. We analyzed predictors of hypo- and hyperphosphatemia and relation to prognosis. Hypophosphatemia was associated with better response to therapy, was more prevalent in milder HF, and the association was independent of age, sex, BMI, etiology of HF, kidney function and the use of diuretics. Hypophosphatemic patients lost more phosphorus into urine. They had also less catabolic profile. Patients with hyperphosphatemia on top of optimal therapy responded worse to treatment. Hyperphosphatemia was more prevalent in advanced HF, but the effect was attenuated after adjustment for potential confounders. Clinical and biochemical profiles of hyperphosphatemics suggested domination of catabolism. Neither hypophosphatemia nor hyperphosphatemia modifies the outcome Serum phosphorus abnormalities are related to HF severity on top of optimal therapy. Hypophosphatemia occurring on HF up-titration therapy likely has a multifactorial pathophysiology comprising of urinary phosphorus wasting and refeeding effects. Hyperphosphatemia is linked to the catabolic profile but the effect of renal impairment can't be ruled out. The prognostic impact of serum phosphorus abnormalities remain to be established.
Gaussian measures of entanglement versus negativities: Ordering of two-mode Gaussian states
Adesso, Gerardo; Illuminati, Fabrizio
2005-09-15
We study the entanglement of general (pure or mixed) two-mode Gaussian states of continuous-variable systems by comparing the two available classes of computable measures of entanglement: entropy-inspired Gaussian convex-roof measures and positive partial transposition-inspired measures (negativity and logarithmic negativity). We first review the formalism of Gaussian measures of entanglement, adopting the framework introduced in M. M. Wolf et al., Phys. Rev. A 69, 052320 (2004), where the Gaussian entanglement of formation was defined. We compute explicitly Gaussian measures of entanglement for two important families of nonsymmetric two-mode Gaussian state: namely, the states of extremal (maximal and minimal) negativities at fixed global and local purities, introduced in G. Adesso et al., Phys. Rev. Lett. 92, 087901 (2004). This analysis allows us to compare the different orderings induced on the set of entangled two-mode Gaussian states by the negativities and by the Gaussian measures of entanglement. We find that in a certain range of values of the global and local purities (characterizing the covariance matrix of the corresponding extremal states), states of minimum negativity can have more Gaussian entanglement of formation than states of maximum negativity. Consequently, Gaussian measures and negativities are definitely inequivalent measures of entanglement on nonsymmetric two-mode Gaussian states, even when restricted to a class of extremal states. On the other hand, the two families of entanglement measures are completely equivalent on symmetric states, for which the Gaussian entanglement of formation coincides with the true entanglement of formation. Finally, we show that the inequivalence between the two families of continuous-variable entanglement measures is somehow limited. Namely, we rigorously prove that, at fixed negativities, the Gaussian measures of entanglement are bounded from below. Moreover, we provide some strong evidence suggesting that they
García, Ana María; Hoos, Anne B; Terziotti, Silvia
2011-01-01
Abstract We applied the SPARROW model to estimate phosphorus transport from catchments to stream reaches and subsequent delivery to major receiving water bodies in the Southeastern United States (U.S.). We show that six source variables and five land-to-water transport variables are significant (p<0.05) in explaining 67% of the variability in long-term log-transformed mean annual phosphorus yields. Three land-to-water variables are a subset of landscape characteristics that have been used as transport factors in phosphorus indices developed by state agencies and are identified through experimental research as influencing land-to-water phosphorus transport at field and plot scales. Two land-to-water variables – soil organic matter and soil pH – are associated with phosphorus sorption, a significant finding given that most state-developed phosphorus indices do not explicitly contain variables for sorption processes. Our findings for Southeastern U.S. streams emphasize the importance of accounting for phosphorus present in the soil profile to predict attainable instream water quality. Regional estimates of phosphorus associated with soil-parent rock were highly significant in explaining instream phosphorus yield variability. Model predictions associate 31% of phosphorus delivered to receiving water bodies to geology and the highest total phosphorus yields in the Southeast were catchments with already high background levels that have been impacted by human activity. PMID:22457579
Probing Single Vacancies in Black Phosphorus at the Atomic Level
NASA Astrophysics Data System (ADS)
Kiraly, Brian; Hauptmann, Nadine; Rudenko, Alexander N.; Katsnelson, Mikhail I.; Khajetoorians, Alexander A.
2017-06-01
Utilizing a combination of low-temperature scanning tunneling microscopy/spectroscopy (STM/STS) and electronic structure calculations, we characterize the structural and electronic properties of single atomic vacancies within several monolayers of the surface of black phosphorus. We illustrate, with experimental analysis and tight-binding calculations, that we can depth profile these vacancies and assign them to specific sublattices within the unit cell. Measurements reveal that the single vacancies exhibit strongly anisotropic and highly delocalized charge density, laterally extended up to 20 atomic unit cells. The vacancies are then studied with STS, which reveals in-gap resonance states near the valence band edge and a strong p-doping of the bulk black phosphorus crystal. Finally, quasiparticle interference generated near these vacancies enables the direct visualization of the anisotropic band structure of black phosphorus.
Probing Single Vacancies in Black Phosphorus at the Atomic Level.
Kiraly, Brian; Hauptmann, Nadine; Rudenko, Alexander N; Katsnelson, Mikhail I; Khajetoorians, Alexander A
2017-06-14
Utilizing a combination of low-temperature scanning tunneling microscopy/spectroscopy (STM/STS) and electronic structure calculations, we characterize the structural and electronic properties of single atomic vacancies within several monolayers of the surface of black phosphorus. We illustrate, with experimental analysis and tight-binding calculations, that we can depth profile these vacancies and assign them to specific sublattices within the unit cell. Measurements reveal that the single vacancies exhibit strongly anisotropic and highly delocalized charge density, laterally extended up to 20 atomic unit cells. The vacancies are then studied with STS, which reveals in-gap resonance states near the valence band edge and a strong p-doping of the bulk black phosphorus crystal. Finally, quasiparticle interference generated near these vacancies enables the direct visualization of the anisotropic band structure of black phosphorus.
Machining aspects of nickel-phosphorus coatings
Dini, J.W.
1992-07-01
Nickel-phosphorus coatings with greater than 10% phosphorus have been widely used for diamond turning applications such as fabrication of large optics and other high precision parts. This paper discusses the importance of phosphorus content of the alloy on wear of the diamond tool and provides some speculation on the role of phosphorus on machining characteristics.
Improved Gaussian Beam-Scattering Algorithm
NASA Technical Reports Server (NTRS)
Lock, James A.
1995-01-01
The localized model of the beam-shape coefficients for Gaussian beam-scattering theory by a spherical particle provides a great simplification in the numerical implementation of the theory. We derive an alternative form for the localized coefficients that is more convenient for computer computations and that provides physical insight into the details of the scattering process. We construct a FORTRAN program for Gaussian beam scattering with the localized model and compare its computer run time on a personal computer with that of a traditional Mie scattering program and with three other published methods for computing Gaussian beam scattering. We show that the analytical form of the beam-shape coefficients makes evident the fact that the excitation rate of morphology-dependent resonances is greatly enhanced for far off-axis incidence of the Gaussian beam.
Lecture Notes on Non-Gaussianity
NASA Astrophysics Data System (ADS)
Byrnes, Christian T.
We discuss how primordial non-Gaussianity of the curvature perturbation helps to constrain models of the early universe. Observations are consistent with Gaussian initial conditions, compatible with the predictions of the simplest models of inflation. Deviations are constrained to be at the sub percent level, constraining alternative models such as those with multiple fields, non-canonical kinetic terms or breaking the slow-roll conditions. We introduce some of the most important models of inflation which generate non-Gaussian perturbations and provide practical tools on how to calculate the three-point correlation function for a popular class of non-Gaussian models. The current state of the field is summarised and an outlook is given.
Non-Gaussianities in New Ekpyrotic Cosmology.
Buchbinder, Evgeny I; Khoury, Justin; Ovrut, Burt A
2008-05-02
The new ekpyrotic model is an alternative scenario of the early Universe which relies on a phase of slow contraction before the big bang. We calculate the 3-point and 4-point correlation functions of primordial density perturbations and find a generically large non-Gaussian signal, just below the current sensitivity level of cosmic microwave background experiments. This is in contrast with slow-roll inflation, which predicts negligible non-Gaussianity. The model is also distinguishable from alternative inflationary scenarios that can yield large non-Gaussianity, such as Dirac-Born-Infeld inflation and the simplest curvatonlike models, through the shape dependence of the correlation functions. Non-Gaussianity therefore provides a distinguishing and testable prediction of New Ekpyrotic Cosmology.
Galaxy bias and primordial non-Gaussianity
Assassi, Valentin; Baumann, Daniel; Schmidt, Fabian E-mail: D.D.Baumann@uva.nl
2015-12-01
We present a systematic study of galaxy biasing in the presence of primordial non-Gaussianity. For a large class of non-Gaussian initial conditions, we define a general bias expansion and prove that it is closed under renormalization, thereby showing that the basis of operators in the expansion is complete. We then study the effects of primordial non-Gaussianity on the statistics of galaxies. We show that the equivalence principle enforces a relation between the scale-dependent bias in the galaxy power spectrum and that in the dipolar part of the bispectrum. This provides a powerful consistency check to confirm the primordial origin of any observed scale-dependent bias. Finally, we also discuss the imprints of anisotropic non-Gaussianity as motivated by recent studies of higher-spin fields during inflation.
Optimal cloning of mixed Gaussian states
NASA Astrophysics Data System (ADS)
Guţă, Mădălin; Matsumoto, Keiji
2006-09-01
We construct the optimal one to two cloning transformation for the family of displaced thermal equilibrium states of a harmonic oscillator, with a fixed and known temperature. The transformation is Gaussian and it is optimal with respect to the figure of merit based on the joint output state and norm distance. The proof of the result is based on the equivalence between the optimal cloning problem and that of optimal amplification of Gaussian states which is then reduced to an optimization problem for diagonal states of a quantum oscillator. A key concept in finding the optimum is that of stochastic ordering which plays a similar role in the purely classical problem of Gaussian cloning. The result is then extended to the case of n to m cloning of mixed Gaussian states.
Optimal cloning of mixed Gaussian states
Guta, Madalin; Matsumoto, Keiji
2006-09-15
We construct the optimal one to two cloning transformation for the family of displaced thermal equilibrium states of a harmonic oscillator, with a fixed and known temperature. The transformation is Gaussian and it is optimal with respect to the figure of merit based on the joint output state and norm distance. The proof of the result is based on the equivalence between the optimal cloning problem and that of optimal amplification of Gaussian states which is then reduced to an optimization problem for diagonal states of a quantum oscillator. A key concept in finding the optimum is that of stochastic ordering which plays a similar role in the purely classical problem of Gaussian cloning. The result is then extended to the case of n to m cloning of mixed Gaussian states.
Phosphorus out-diffusion in laser molten silicon
Köhler, J. R.; Eisele, S. J.
2015-04-14
Laser doping via liquid phase diffusion enables the formation of defect free pn junctions and a tailoring of diffusion profiles by varying the laser pulse energy density and the overlap of laser pulses. We irradiate phosphorus diffused 100 oriented p-type float zone silicon wafers with a 5 μm wide line focused 6.5 ns pulsed frequency doubled Nd:YVO{sub 4} laser beam, using a pulse to pulse overlap of 40%. By varying the number of laser scans N{sub s} = 1, 2, 5, 10, 20, 40 at constant pulse energy density H = 1.3 J/cm{sup 2} and H = 0.79 J/cm{sup 2} we examine the out-diffusion of phosphorus atoms performing secondary ion mass spectroscopy concentration measurements. Phosphorus doping profiles are calculated by using a numerical simulation tool. The tool models laser induced melting and re-solidification of silicon as well as the out-diffusion of phosphorus atoms in liquid silicon during laser irradiation. We investigate the observed out-diffusion process by comparing simulations with experimental concentration measurements. The result is a pulse energy density independent phosphorus out-diffusion velocity v{sub out} = 9 ± 1 cm/s in liquid silicon, a partition coefficient of phosphorus 1 < k{sub p} < 1.1 and a diffusion coefficient D = 1.4(±0.2)cm{sup 2}/s × 10{sup −3 }× exp[−183 meV/(k{sub B}T)].
Prebiotic phosphorus chemistry reconsidered
NASA Technical Reports Server (NTRS)
Schwartz, A. W.; Orgel, L. E. (Principal Investigator)
1997-01-01
The available evidence indicates that the origin of life on Earth certainly occurred earlier than 3.5 billion years ago and perhaps substantially earlier. The time available for the chemical evolution which must have preceded this event is more difficult to estimate. Both endogenic and exogenic contributions to chemical evolution have been considered; i.e., from chemical reactions in a primitive atmosphere, or by introduction in the interiors of comets and/or meteorites. It is argued, however, that the phosphorus chemistry of Earth's earliest hydrosphere, whether primarily exogenic or endogenic in origin, was most likely dominated by compounds less oxidized than phosphoric acid and its esters. A scenario is presented for the early production of a suite of reactive phosphonic acid derivatives, the properties of which may have foreshadowed the later appearance of biophosphates.
[Phosphorus intake and osteoporosis].
Omi, N; Ezawa, I
2001-10-01
Phosphorus (P) is one of the most important nutrients for bone metabolism, such as calcium. In general, P intake is usually adequate in our daily diet, and there is a risk of over-consumption from processed food. On the other hand, Ca intake is not always adequate from the Japanese daily diet. When Ca/P is taken from the daily diet at a level of 0.5 - 2.0, the P intake level dose not affect intestinal Ca absorption. Therefore, it is important not only to pay attention to preventing the over-consumption of P, but also to obtain a sufficient intake of Ca. For the prevention of osteoporosis, it is important to consume sufficient Ca and to maintain and appropriate Ca/P balance from diet.
Prebiotic phosphorus chemistry reconsidered
NASA Technical Reports Server (NTRS)
Schwartz, A. W.; Orgel, L. E. (Principal Investigator)
1997-01-01
The available evidence indicates that the origin of life on Earth certainly occurred earlier than 3.5 billion years ago and perhaps substantially earlier. The time available for the chemical evolution which must have preceded this event is more difficult to estimate. Both endogenic and exogenic contributions to chemical evolution have been considered; i.e., from chemical reactions in a primitive atmosphere, or by introduction in the interiors of comets and/or meteorites. It is argued, however, that the phosphorus chemistry of Earth's earliest hydrosphere, whether primarily exogenic or endogenic in origin, was most likely dominated by compounds less oxidized than phosphoric acid and its esters. A scenario is presented for the early production of a suite of reactive phosphonic acid derivatives, the properties of which may have foreshadowed the later appearance of biophosphates.
Optimisation of dispersion parameters of Gaussian plume model for CO₂ dispersion.
Liu, Xiong; Godbole, Ajit; Lu, Cheng; Michal, Guillaume; Venton, Philip
2015-11-01
The carbon capture and storage (CCS) and enhanced oil recovery (EOR) projects entail the possibility of accidental release of carbon dioxide (CO2) into the atmosphere. To quantify the spread of CO2 following such release, the 'Gaussian' dispersion model is often used to estimate the resulting CO2 concentration levels in the surroundings. The Gaussian model enables quick estimates of the concentration levels. However, the traditionally recommended values of the 'dispersion parameters' in the Gaussian model may not be directly applicable to CO2 dispersion. This paper presents an optimisation technique to obtain the dispersion parameters in order to achieve a quick estimation of CO2 concentration levels in the atmosphere following CO2 blowouts. The optimised dispersion parameters enable the Gaussian model to produce quick estimates of CO2 concentration levels, precluding the necessity to set up and run much more complicated models. Computational fluid dynamics (CFD) models were employed to produce reference CO2 dispersion profiles in various atmospheric stability classes (ASC), different 'source strengths' and degrees of ground roughness. The performance of the CFD models was validated against the 'Kit Fox' field measurements, involving dispersion over a flat horizontal terrain, both with low and high roughness regions. An optimisation model employing a genetic algorithm (GA) to determine the best dispersion parameters in the Gaussian plume model was set up. Optimum values of the dispersion parameters for different ASCs that can be used in the Gaussian plume model for predicting CO2 dispersion were obtained.
Phosphorus Dynamic in Wetlands
NASA Astrophysics Data System (ADS)
Pant, H. K.
2010-12-01
The projected greater warming at higher/northern latitudes in the coming decades due to global climatic changes can mineralize substantial amount of the organic matter and supply massive amount of phosphorus (P) to the water column, and cause the collapse of freshwater wetlands. Thus, the rates and duration of organic matter accumulations/decompositions under rising global temperatures are critical determinants of how a freshwater wetland functions as an ecological unit within a landscape. Phosphorus is a limiting nutrient and a primary controller of eutrophication. Once the external P loads are curtailed, internal P regeneration, resulting from decompositions of detritus and soil/sediment organic matter determine the productivity, as well as the water quality of a wetland. Thus, global rise in temperature not only causes hydro-climatic fluctuations but can also change the composition of aquatic/semi-aquatic communities, in turn, could lead to adverse effect on human food chain to collapse of the ecosystem. While P enrichment may lead to immediate algal blooms in wetlands/aquatic systems, decreased in P input from external sources may not be able to stop the blooms for a considerable period of time depending on the P loading from within. The extent of P mineralization under changing conditions, enzymatic hydrolysis, and estimation of different P pools using 31P NMR in sediments and the water columns showed that the stability and bioavailability of P can greatly be influenced by rise in temperature and fluctuations in water level, thus, are crucial in determining the fate of the freshwater wetlands.
Homodyne estimation of Gaussian quantum discord.
Blandino, Rémi; Genoni, Marco G; Etesse, Jean; Barbieri, Marco; Paris, Matteo G A; Grangier, Philippe; Tualle-Brouri, Rosa
2012-11-02
We address the experimental estimation of Gaussian quantum discord for a two-mode squeezed thermal state, and demonstrate a measurement scheme based on a pair of homodyne detectors assisted by Bayesian analysis, which provides nearly optimal estimation for small value of discord. In addition, though homodyne detection is not optimal for Gaussian discord, the noise ratio to the ultimate quantum limit, as dictated by the quantum Cramer-Rao bound, is limited to about 10 dB.
Gaussian-Beam Laser-Resonator Program
NASA Technical Reports Server (NTRS)
Cross, Patricia L.; Bair, Clayton H.; Barnes, Norman
1989-01-01
Gaussian Beam Laser Resonator Program models laser resonators by use of Gaussian-beam-propagation techniques. Used to determine radii of beams as functions of position in laser resonators. Algorithm used in program has three major components. First, ray-transfer matrix for laser resonator must be calculated. Next, initial parameters of beam calculated. Finally, propagation of beam through optical elements computed. Written in Microsoft FORTRAN (Version 4.01).
Nonnegative matrix factorization with Gaussian process priors.
Schmidt, Mikkel N; Laurberg, Hans
2008-01-01
We present a general method for including prior knowledge in a nonnegative matrix factorization (NMF), based on Gaussian process priors. We assume that the nonnegative factors in the NMF are linked by a strictly increasing function to an underlying Gaussian process specified by its covariance function. This allows us to find NMF decompositions that agree with our prior knowledge of the distribution of the factors, such as sparseness, smoothness, and symmetries. The method is demonstrated with an example from chemical shift brain imaging.
Gaussian beam tracing for ocean acoustics
NASA Astrophysics Data System (ADS)
Porter, Michael B.; Hursky, Paul
2010-09-01
Gaussian beam tracing methods have emerged as a standard approach for modeling sound propagation in the ocean. The first implementations were developed in the 1970's by Bucker and evolved significantly. Today there are actually some four different types of Gaussian beam algorithms. They are quite different in terms of both the beam characteristics and their performance. This paper will review the development of the methods and their application to typical ocean acoustic problems.
Intensity-based modal analysis of partially coherent beams with Hermite-Gaussian modes.
Gori, F; Santarsiero, M; Borghi, R; Guattari, G
1998-07-01
Many partially coherent beams are made up of a superposition of mutually uncorrelated Hermite-Gaussian modes. We prove that knowledge of the transverse intensity profile of such a beam is sufficient for evaluating the weights of the modes in an exact way. Simulations indicate that the proposed method resists noise well.
Quantum confined Stark effect in Gaussian quantum wells: A tight-binding study
Ramírez-Morales, A.; Martínez-Orozco, J. C.; Rodríguez-Vargas, I.
2014-05-15
The main characteristics of the quantum confined Stark effect (QCSE) are studied theoretically in quantum wells of Gaussian profile. The semi-empirical tight-binding model and the Green function formalism are applied in the numerical calculations. A comparison of the QCSE in quantum wells with different kinds of confining potential is presented.
BRIEF COMMUNICATIONS: Transformation of Gaussian beams using a spatially inhomogeneous beam splitter
NASA Astrophysics Data System (ADS)
Sakyan, A. S.
1989-03-01
A spatially inhomogeneous beam splitter was developed for transformation of the profiles of Gaussian laser beams in a wide range of wavelengths. An experimental investigation of an He-Ne laser showed that a flat-topped beam could be produced in which the relative variation of the distribution of the power density across the beam did not exceed 3%.
Non-Gaussian halo assembly bias
Reid, Beth A.; Verde, Licia; Dolag, Klaus; Matarrese, Sabino; Moscardini, Lauro E-mail: liciaverde@icc.ub.edu E-mail: sabino.matarrese@pd.infn.it
2010-07-01
The strong dependence of the large-scale dark matter halo bias on the (local) non-Gaussianity parameter, f{sub NL}, offers a promising avenue towards constraining primordial non-Gaussianity with large-scale structure surveys. In this paper, we present the first detection of the dependence of the non-Gaussian halo bias on halo formation history using N-body simulations. We also present an analytic derivation of the expected signal based on the extended Press-Schechter formalism. In excellent agreement with our analytic prediction, we find that the halo formation history-dependent contribution to the non-Gaussian halo bias (which we call non-Gaussian halo assembly bias) can be factorized in a form approximately independent of redshift and halo mass. The correction to the non-Gaussian halo bias due to the halo formation history can be as large as 100%, with a suppression of the signal for recently formed halos and enhancement for old halos. This could in principle be a problem for realistic galaxy surveys if observational selection effects were to pick galaxies occupying only recently formed halos. Current semi-analytic galaxy formation models, for example, imply an enhancement in the expected signal of ∼ 23% and ∼ 48% for galaxies at z = 1 selected by stellar mass and star formation rate, respectively.
Gaussian particle flow implementation of PHD filter
NASA Astrophysics Data System (ADS)
Zhao, Lingling; Wang, Junjie; Li, Yunpeng; Coates, Mark J.
2016-05-01
Particle filter and Gaussian mixture implementations of random finite set filters have been proposed to tackle the issue of jointly estimating the number of targets and their states. The Gaussian mixture PHD (GM-PHD) filter has a closed-form expression for the PHD for linear and Gaussian target models, and extensions using the extended Kalman filter or unscented Kalman Filter have been developed to allow the GM-PHD filter to accommodate mildly nonlinear dynamics. Errors resulting from linearization or model mismatch are unavoidable. A particle filter implementation of the PHD filter (PF-PHD) is more suitable for nonlinear and non-Gaussian target models. The particle filter implementations are much more computationally expensive and performance can suffer when the proposal distribution is not a good match to the posterior. In this paper, we propose a novel implementation of the PHD filter named the Gaussian particle flow PHD filter (GPF-PHD). It employs a bank of particle flow filters to approximate the PHD; these play the same role as the Gaussian components in the GM-PHD filter but are better suited to non-linear dynamics and measurement equations. Using the particle flow filter allows the GPF-PHD filter to migrate particles to the dense regions of the posterior, which leads to higher eﬃciency than the PF-PHD. We explore the performance of the new algorithm through numerical simulations.
Non-Gaussianity and intermittency in an ensemble of Gaussian fields
NASA Astrophysics Data System (ADS)
Wilczek, Michael
2016-12-01
Motivated by the need to capture statistical properties of turbulent systems in simple, analytically tractable models, an ensemble of Gaussian sub-ensembles with varying properties of the correlation function such as variance and length scale is investigated. The ensemble statistics naturally exhibit non-Gaussianity and intermittency. Due to the simplicity of Gaussian random fields, many explicit results can be obtained analytically, revealing the origin of non-Gaussianity in this framework. Potential applications of the proposed model ensemble for the description of non-equilibrium statistical mechanics of complex turbulent systems are briefly discussed.
Mei, Zhangrong; Zhao, Daomu; Korotkova, Olga; Mao, Yonghua
2015-12-01
We introduce a novel class of planar, quasi-homogeneous Schell-model source for producing far fields with optical lattice average intensity patterns and derive the corresponding beam conditions. The array dimension, lobes intensity profile, and periodicity of the optical lattice can be flexibly tuned by changing the correlation parameters of the source field. It is also found that, with an appropriate choice of the source parameters, the radiant intensity may possess flat-topped intensity patterns.
Phosphorus speciation and treatment using enhanced phosphorus removal bioretention.
Liu, Jiayu; Davis, Allen P
2014-01-01
This field research investigated the water quality performance of a traditional bioretention cell retrofitted with 5% (by mass) water treatment residual (WTR) for enhanced phosphorus removal. Results indicate that WTR incorporation into the bioretention media does not negatively influence the infiltration mechanism of the bioretention system. Total suspended solids (TSS), total phosphorus (TP), and particulate phosphorus (PP) concentrations in runoff inflow were significantly reduced compared to outflow due to filtration of particulate matter. TP concentrations were significantly reduced by the bioretention cell; before WTR retrofit TP export occurred. Although net removal of soluble reactive phosphorus (SRP) and dissolved organic phosphorus (DOP) from incoming runoff was not found, leaching of dissolved phosphorus (DP) was prevented not only from incoming runoff, but also from the media and captured PP. Near constant outflow SRP and DOP concentrations suggest an equilibrium adsorption treatment mechanism. Both event mean concentrations and mass loads were reduced for TSS and all P species. Pollutant mass removals were higher than the event mean concentration removals due to the attenuation of volume by the bioretention media.
Elliptical Laguerre-Gaussian correlated Schell-model beam.
Chen, Yahong; Liu, Lin; Wang, Fei; Zhao, Chengliang; Cai, Yangjian
2014-06-02
A new kind of partially coherent beam with non-conventional correlation function named elliptical Laguerre-Gaussian correlated Schell-model (LGCSM) beam is introduced. Analytical propagation formula for an elliptical LGCSM beam passing through a stigmatic ABCD optical system is derived. The elliptical LGCSM beam exhibits unique features on propagation, e.g., its intensity in the far field (or in the focal plane) displays an elliptical ring-shaped beam profile, being qualitatively different from the circular ring-shaped beam profile of the circular LGCSM beam. Furthermore, we carry out experimental generation of an elliptical LGCSM beam with controllable ellipticity, and measure its focusing properties. Our experimental results are consistent with the theoretical predictions. The elliptical LGCSM beam will be useful in atomic optics.
PROFILER: 1D galaxy light profile decomposition
NASA Astrophysics Data System (ADS)
Ciambur, Bogdan C.
2017-05-01
Written in Python, PROFILER analyzes the radial surface brightness profiles of galaxies. It accurately models a wide range of galaxies and galaxy components, such as elliptical galaxies, the bulges of spiral and lenticular galaxies, nuclear sources, discs, bars, rings, and spiral arms with a variety of parametric functions routinely employed in the field (Sérsic, core-Sérsic, exponential, Gaussian, Moffat and Ferrers). In addition, Profiler can employ the broken exponential model (relevant for disc truncations or antitruncations) and two special cases of the edge-on disc model: namely along the major axis (in the disc plane) and along the minor axis (perpendicular to the disc plane).
Dietary phosphorus and kidney disease.
Uribarri, Jaime
2013-10-01
High serum phosphate is linked to poor health outcome and mortality in chronic kidney disease (CKD) patients before or after the initiation of dialysis. Therefore, maintenance of normal serum phosphate levels is a major concern in the clinical care of this population with dietary phosphorus restriction and/or use of oral phosphate binders considered to be the best corrective care. This review discusses (1) evidence for an association between serum phosphate levels and bone and cardiovascular disease (CVD) in CKD patients as well as progression of kidney disease itself; (2) the relationship between serum phosphate and dietary phosphorus intake; and (3) implications from these data for future research. Increasing our understanding of the relationship between altered phosphorus metabolism and disease in CKD patients may clarify the potential role of excess dietary phosphorus as a risk factor for disease in the general population.
Missisquoi Bay Phosphorus Model Addendum
This technical memorandum provides results of an extended load reduction simulation. The memorandum serves as an addendum to the main Missisquoi Bay Phosphorus Mass Balance Model report prepared for the Lake Champlain Basin Program by LimnoTech in 2012
phosphorus retention data and metadata
phosphorus retention in wetlands data and metadataThis dataset is associated with the following publication:Lane , C., and B. Autrey. Phosphorus retention of forested and emergent marsh depressional wetlands in differing land uses in Florida, USA. Wetlands Ecology and Management. Springer Science and Business Media B.V;Formerly Kluwer Academic Publishers B.V., GERMANY, 24(1): 45-60, (2016).
Phosphorus balance with daily dialysis.
Kooienga, Laura
2007-01-01
Hyperphosphatemia is an almost universal finding in patients with end-stage renal disease and is associated with increased all-cause mortality, cardiovascular mortality, and vascular calcification. These associations have raised the question of whether reducing phosphorus levels could result in improved survival. In light of the recent findings that increased per-session dialysis dose, as assessed by urea kinetics, did not result in improved survival, the definition of adequacy of dialysis should be re-evaluated and consideration given to alternative markers. Two alternatives to conventional thrice weekly dialysis (CHD) are nocturnal hemodialysis (NHD) and short daily hemodialysis (SDHD). The elimination kinetics of phosphorus as they relate to these alternative daily dialysis schedules and the clinical implications of overall phosphorus balance are discussed here. The total weekly phosphorus removal with NHD is more than twice that removed by CHD (4985 mg/week +/- 1827 mg vs. 2347 mg/week +/- 697 mg) and this is associated with a significantly lower average serum phosphorous (4.0 mg/dl vs. 6.5 mg/dl). In spite of the observed increase in protein and phosphorus intake seen in patients on SDHD, phosphate binder requirements and serum phosphorus levels are generally stable to decrease although this effect is strongly dependent on the frequency and overall treatment time.
From particle counting to Gaussian tomography
NASA Astrophysics Data System (ADS)
Parthasarathy, K. R.; Sengupta, Ritabrata
2015-12-01
The momentum and position observables in an n-mode boson Fock space Γ(ℂn) have the whole real line ℝ as their spectrum. But the total number operator N has a discrete spectrum ℤ+ = {0, 1, 2,…}. An n-mode Gaussian state in Γ(ℂn) is completely determined by the mean values of momentum and position observables and their covariance matrix which together constitute a family of n(2n + 3) real parameters. Starting with N and its unitary conjugates by the Weyl displacement operators and operators from a representation of the symplectic group Sp(2n) in Γ(ℂn), we construct n(2n + 3) observables with spectrum ℤ+ but whose expectation values in a Gaussian state determine all its mean and covariance parameters. Thus measurements of discrete-valued observables enable the tomography of the underlying Gaussian state and it can be done by using five one-mode and four two-mode Gaussian symplectic gates in single and pair mode wires of Γ(ℂn) = Γ(ℂ)⊗n. Thus the tomography protocol admits a simple description in a language similar to circuits in quantum computation theory. Such a Gaussian tomography applied to outputs of a Gaussian channel with coherent input states permit a tomography of the channel parameters. However, in our procedure the number of counting measurements exceeds the number of channel parameters slightly. Presently, it is not clear whether a more efficient method exists for reducing this tomographic complexity. As a byproduct of our approach an elementary derivation of the probability generating function of N in a Gaussian state is given. In many cases the distribution turns out to be infinitely divisible and its underlying Lévy measure can be obtained. However, we are unable to derive the exact distribution in all cases. Whether this property of infinite divisibility holds in general is left as an open problem.
Piepho, Maike; Martin-Creuzburg, Dominik; Wacker, Alexander
2010-12-31
Sterol profiles of microalgae and their change with environmental conditions are of great interest in ecological food web research and taxonomic studies alike. Here, we investigated effects of light intensity and phosphorus supply on the sterol content of phytoplankton and assessed potential interactive effects of these important environmental factors on the sterol composition of algae. We identified sterol contents of four common phytoplankton genera, Scenedesmus, Chlamydomonas, Cryptomonas and Cyclotella, and analysed the change in sterol content with varying light intensities in both a high-phosphorus and a low-phosphorus approach. Sterol contents increased significantly with increasing light in three out of four species. Phosphorus-limitation reversed the change of sterol content with light intensity, i.e., sterol content decreased with increasing light at low phosphorus supply. Generally sterol contents were lower in low-phosphorus cultures. In conclusion, both light and phosphorus conditions strongly affect the sterol composition of algae and hence should be considered in ecological and taxonomic studies investigating the biochemical composition of algae. Data suggest a possible sterol limitation of growth and reproduction of herbivorous crustacean zooplankton during summer when high light intensities and low phosphorus supply decrease sterol contents of algae.
Radiochemical neutron activation analysis for certification of ion-implanted phosphorus in silicon.
Paul, Rick L; Simons, David S; Guthrie, William F; Lu, John
2003-08-15
A radiochemical neutron activation analysis procedure has been developed, critically evaluated, and shown to have the necessary sensitivity, chemical specificity, matrix independence, and precision to certify phosphorus at ion implantation levels in silicon. 32P, produced by neutron capture of 31P, is chemically separated from the sample matrix and measured using a beta proportional counter. The method is used here to certify the amount of phosphorus in SRM 2133 (Phosphorus Implant in Silicon Depth Profile Standard) as (9.58 +/- 0.16) x 10(14) atoms x cm(-2). A detailed evaluation of uncertainties is given.
Dietary Phosphorus Intake and the Kidney.
Chang, Alex R; Anderson, Cheryl
2017-08-21
Although phosphorus is an essential nutrient required for multiple physiological functions, recent research raises concerns that high phosphorus intake could have detrimental effects on health. Phosphorus is abundant in the food supply of developed countries, occurring naturally in protein-rich foods and as an additive in processed foods. High phosphorus intake can cause vascular and renal calcification, renal tubular injury, and premature death in multiple animal models. Small studies in human suggest that high phosphorus intake may result in positive phosphorus balance and correlate with renal calcification and albuminuria. Although serum phosphorus is strongly associated with cardiovascular disease, progression of kidney disease, and death, limited data exist linking high phosphorus intake directly to adverse clinical outcomes. Further prospective studies are needed to determine whether phosphorus intake is a modifiable risk factor for kidney disease.
Generation of coherence via Gaussian measurements
NASA Astrophysics Data System (ADS)
Albarelli, Francesco; Genoni, Marco G.; Paris, Matteo G. A.
2017-07-01
We address measurement-based generation of quantum coherence in continuous variable systems. We consider Gaussian measurements performed on Gaussian states and focus on two scenarios: In the first one, we assume an initially correlated bipartite state shared by two parties and study how correlations may be exploited to remotely create quantum coherence via measurement back action. In particular, we focus on conditional states with zero first moments, so as to address coherence due to properties of the covariance matrix. We consider different classes of bipartite states with incoherent marginals and show that the larger the measurement squeezing, the larger the conditional coherence. Homodyne detection is thus the optimal Gaussian measurement to remotely generate coherence. We also show that for squeezed thermal states there exists a threshold value for the generated coherence which separates entangled and separable states at a fixed energy. Finally, we briefly discuss the tripartite case and the relationship between tripartite correlations and the conditional two-mode coherence. In the second scenario, we address the steady-state coherence of a system interacting with an environment which is continuously monitored. In particular, we discuss the dynamics of an optical parametric oscillator in order to investigate how the coherence of a Gaussian state may be increased by means of time-continuous Gaussian measurement on the interacting environment.
Trap split with Laguerre-Gaussian beams
NASA Astrophysics Data System (ADS)
Hamideh Kazemi, Seyedeh; Ghanbari, Saeed; Mahmoudi, Mohammad
2017-08-01
We present a convenient and effective way to generate a novel phenomenon of trapping, named ‘trap split’, in a conventional four-level double-Λ atomic system, driven by four femtosecond Laguerre-Gaussian laser pulses. We find that trap split can always be achieved when atoms are trapped by such laser pulses, as compared to Gaussian ones. This feature is enabled by the interaction of the atomic system and the Laguerre-Gaussian laser pulses with zero intensity in the center. A further advantage of using Laguerre-Gaussian laser pulses is the insensitivity to fluctuation in the intensity of the lasers in such a way that the separation between the traps remains constant. Moreover, it is demonstrated that the suggested scheme with Laguerre-Gaussian laser pulses can form optical traps with spatial sizes that are not limited by the wavelength of the laser, and can, in principle, become smaller than the wavelength of light. This work would greatly facilitate the trapping and manipulating of particles and the generation of trap split. It may also suggest the possibility of extension into new research fields, such as micro-machining and biophysics.
Temperature modes for nonlinear Gaussian beams.
Myers, Matthew R; Soneson, Joshua E
2009-07-01
In assessing the influence of nonlinear acoustic propagation on thermal bioeffects, approximate methods for quickly estimating the temperature rise as operational parameters are varied can be very useful. This paper provides a formula for the transient temperature rise associated with nonlinear propagation of Gaussian beams. The pressure amplitudes for the Gaussian modes can be obtained rapidly using a method previously published for simulating nonlinear propagation of Gaussian beams. The temperature-mode series shows that the nth temperature mode generated by nonlinear propagation, when normalized by the fundamental, is weaker than the nth heat-rate mode (also normalized by the fundamental in the heat-rate series) by a factor of log(n)/n, where n is the mode number. Predictions of temperature rise and thermal dose were found to be in close agreement with full, finite-difference calculations of the pressure fields, temperature rise, and thermal dose. Applications to non-Gaussian beams were made by fitting the main lobe of the significant modes to Gaussian functions.
Graphical calculus for Gaussian pure states
Menicucci, Nicolas C.; Flammia, Steven T.; Loock, Peter van
2011-04-15
We provide a unified graphical calculus for all Gaussian pure states, including graph transformation rules for all local and semilocal Gaussian unitary operations, as well as local quadrature measurements. We then use this graphical calculus to analyze continuous-variable (CV) cluster states, the essential resource for one-way quantum computing with CV systems. Current graphical approaches to CV cluster states are only valid in the unphysical limit of infinite squeezing, and the associated graph transformation rules only apply when the initial and final states are of this form. Our formalism applies to all Gaussian pure states and subsumes these rules in a natural way. In addition, the term 'CV graph state' currently has several inequivalent definitions in use. Using this formalism we provide a single unifying definition that encompasses all of them. We provide many examples of how the formalism may be used in the context of CV cluster states: defining the 'closest' CV cluster state to a given Gaussian pure state and quantifying the error in the approximation due to finite squeezing; analyzing the optimality of certain methods of generating CV cluster states; drawing connections between this graphical formalism and bosonic Hamiltonians with Gaussian ground states, including those useful for CV one-way quantum computing; and deriving a graphical measure of bipartite entanglement for certain classes of CV cluster states. We mention other possible applications of this formalism and conclude with a brief note on fault tolerance in CV one-way quantum computing.
Comparison of Gaussian and super Gaussian laser beams for addressing atomic qubits
NASA Astrophysics Data System (ADS)
Gillen-Christandl, Katharina; Gillen, Glen D.; Piotrowicz, M. J.; Saffman, M.
2016-05-01
We study the fidelity of single-qubit quantum gates performed with two-frequency laser fields that have a Gaussian or super Gaussian spatial mode. Numerical simulations are used to account for imperfections arising from atomic motion in an optical trap, spatially varying Stark shifts of the trapping and control beams, and transverse and axial misalignment of the control beams. Numerical results that account for the three-dimensional distribution of control light show that a super Gaussian mode with intensity I˜ e^{-2(r/w_0)^n} provides reduced sensitivity to atomic motion and beam misalignment. Choosing a super Gaussian with n=6 the decay time of finite temperature Rabi oscillations can be increased by a factor of 60 compared to an n=2 Gaussian beam, while reducing crosstalk to neighboring qubit sites.
Cai, Qiu-Yan; Zhang, Xi-Zhou; Li, Ting-Xuan; Chen, Guang-Deng
2014-11-01
High P-efficiency (IS-22-30, IS-22-25) and low P-efficiency (IS-07-07) wild barley cultivars were chosen to evaluate characteristics of phosphorus uptake and utilization, and properties of phosphorus fractions in rhizosphere and non-rhizosphere in a pot experiment with 0 (CK) and 30 mg P · kg(-1) supplied as only Pi (KH2PO4), only Po (phytate) or Pi + Po (KH2PO4+ phytate). The results showed that dry matter and phosphorus accumulation of wild barley in the different treatments was ranked as Pi > Pi + Po > Po > CK. In addition, dry matter yield and phosphorus uptake of wild barley with high P-efficiency exhibited significantly greater than that with low P-efficiency. The concentration of soil available phosphorus was significantly different after application of different phosphorus sources, which was presented as Pi > Pi + Po > Po. The concentration of soil available phosphorus in high P-efficiency wild barley was significantly higher than that of low P-efficiency in the rhizosphere soil. There was a deficit in rhizosphere available phosphorus of high P-efficiency wild barley, especially in Pi and Pi+Po treatments. The inorganic phosphorus fractions increased with the increasing Pi treatment, and the concentrations of inorganic phosphorus fractions in soil were sorted as follows: Ca10-P > O-P > Fe-P > Al-P > Ca2-P > Ca8-P. The contents of Ca2-P and Ca8-P for high P-efficiency wild barley showed deficits in rhizosphere soil under each phosphorus source treatment. In addition, enrichment of Al-P and Fe-P was observed in Pi treatment in rhizosphere soil. The concentrations of organic phosphorus fractions in soil were sorted as follows: moderate labile organic phosphorus > moderate resistant, resistant organic phosphorus > labile organic phosphorus. The labile and moderate labile organic phosphorus enriched in rhizosphere soil and the greatest enrichment appeared in Pi treatment. Furthermore, the concentrations of moderate resistant organic phosphorus and resistant
A Substance Flow Model for Global Phosphorus
NASA Astrophysics Data System (ADS)
Vaccari, D. A.
2015-12-01
A system-based substance flow model (SFM) for phosphorus is developed based on the global phosphorus substance flow analysis (SFA) of Cordell et al (2009). The model is based strictly on mass balance considerations. It predicts the sensitivity of phosphorus consumption to various interventions intended to conserve reserves, as well as interactions among these efforts, allowing a comparison of their impacts on phosphorus demand. The interventions include control of phosphorus losses from soil erosion, food production and food waste, or phosphorus recycling such as from animal manure or human waste.
Recovery of phosphorus from waste ponds
Crea, D. A.
1985-01-08
Process for recovery of elemental phosphorus from waste ponds by dredging the waste pond to obtain an aqueous phosphorus slurry, separating particles larger than 2 mm from the slurry, treating the remaining slurry in an initial hydrocyclone and removing an overflow of solids larger than 500 micrometers, treating the underflow from the initial hydrocyclones in smaller diameter hydrocyclones, removing a second overflow enriched in slimes and diminished in phosphorus, removing a second underflow enriched in phosphorus and diminished in slimes and heating it sufficiently to melt the phosphorus therein, treating the heated second underflow in a centrifugal separator, and separating and recovering a stream of coalesced phosphorus from a heavy fraction of impurities.
Majorization preservation of Gaussian bosonic channels
NASA Astrophysics Data System (ADS)
Jabbour, Michael G.; García-Patrón, Raúl; Cerf, Nicolas J.
2016-07-01
It is shown that phase-insensitive Gaussian bosonic channels are majorization-preserving over the set of passive states of the harmonic oscillator. This means that comparable passive states under majorization are transformed into equally comparable passive states by any phase-insensitive Gaussian bosonic channel. Our proof relies on a new preorder relation called Fock-majorization, which coincides with regular majorization for passive states but also induces another order relation in terms of mean boson number, thereby connecting the concepts of energy and disorder of a quantum state. The consequences of majorization preservation are discussed in the context of the broadcast communication capacity of Gaussian bosonic channels. Because most of our results are independent of the specific nature of the system under investigation, they could be generalized to other quantum systems and Hamiltonians, providing a new tool that may prove useful in quantum information theory and especially quantum thermodynamics.
Index Distribution of Gaussian Random Matrices
Majumdar, Satya N.; Nadal, Celine; Scardicchio, Antonello; Vivo, Pierpaolo
2009-11-27
We compute analytically, for large N, the probability distribution of the number of positive eigenvalues (the index N{sub +}) of a random NxN matrix belonging to Gaussian orthogonal (beta=1), unitary (beta=2) or symplectic (beta=4) ensembles. The distribution of the fraction of positive eigenvalues c=N{sub +}/N scales, for large N, as P(c,N){approx_equal}exp[-betaN{sup 2}PHI(c)] where the rate function PHI(c), symmetric around c=1/2 and universal (independent of beta), is calculated exactly. The distribution has non-Gaussian tails, but even near its peak at c=1/2 it is not strictly Gaussian due to an unusual logarithmic singularity in the rate function.
Gaussian state for the bouncing quantum cosmology
NASA Astrophysics Data System (ADS)
Mielczarek, Jakub; Piechocki, Włodzimierz
2012-10-01
We present results concerning propagation of the Gaussian state across the cosmological quantum bounce. The reduced phase space quantization of loop quantum cosmology is applied to the Friedman-Robertson-Walker universe with a free massless scalar field. Evolution of quantum moments of the canonical variables is investigated. The covariance turns out to be a monotonic function so it may be used as an evolution parameter having quantum origin. We show that for the Gaussian state the Universe is least quantum at the bounce. We propose explanation of this counter-intuitive feature using the entropy of squeezing. The obtained time dependence of entropy is in agreement with qualitative predictions based on von Neumann entropy for mixed states. We show that, for the considered Gaussian state, semiclassicality is preserved across the bounce, so there is no cosmic forgetfulness.
Recognition of Images Degraded by Gaussian Blur.
Flusser, Jan; Farokhi, Sajad; Hoschl, Cyril; Suk, Tomas; Zitova, Barbara; Pedone, Matteo
2015-12-23
In this paper we propose a new theory of invariants to Gaussian blur. We introduce a notion of a primordial image as a canonical form of all Gaussian blur-equivalent images. The primordial image is defined in spectral domain by means of projection operators. We prove that the moments of the primordial image are invariant to Gaussian blur and we derive recursive formulae for their direct computation without actually constructing the primordial image itself. We show how to extend their invariance also to image rotation. The application of these invariants is in blur-invariant image comparison and recognition. In the experimental part, we perform an exhaustive comparison with two main competitors, the Zhang distance and the Local Phase Quantization.
Recognition of Images Degraded by Gaussian Blur.
Flusser, Jan; Farokhi, Sajad; Höschl, Cyril; Suk, Tomáš; Zitová, Barbara; Pedone, Matteo
2016-02-01
In this paper, we propose a new theory of invariants to Gaussian blur. We introduce a notion of a primordial image as a canonical form of all Gaussian blur-equivalent images. The primordial image is defined in spectral domain by means of projection operators. We prove that the moments of the primordial image are invariant to Gaussian blur and we derive recursive formulas for their direct computation without actually constructing the primordial image itself. We show how to extend their invariance also to image rotation. The application of these invariants is in blur-invariant image comparison and recognition. In the experimental part, we perform an exhaustive comparison with two main competitors: 1) the Zhang distance and 2) the local phase quantization.
Gaussian entanglement in the turbulent atmosphere
NASA Astrophysics Data System (ADS)
Bohmann, M.; Semenov, A. A.; Sperling, J.; Vogel, W.
2016-07-01
We provide a rigorous treatment of the entanglement properties of two-mode Gaussian states in atmospheric channels by deriving and analyzing the input-output relations for the corresponding entanglement test. A key feature of such turbulent channels is a nontrivial dependence of the transmitted continuous-variable entanglement on coherent displacements of the quantum state of the input field. Remarkably, this allows one to optimize the entanglement certification by modifying local coherent amplitudes using a finite, but optimal amount of squeezing. In addition, we propose a protocol which, in principle, renders it possible to transfer the Gaussian entanglement through any turbulent channel over arbitrary distances. Therefore, our approach provides the theoretical foundation for advanced applications of Gaussian entanglement in free-space quantum communication.
Second order Pseudo-gaussian shaper
Beche, Jean-Francois
2002-11-22
The purpose of this document is to provide a calculus spreadsheet for the design of second-order pseudo-gaussian shapers. A very interesting reference is given by C.H. Mosher ''Pseudo-Gaussian Transfer Functions with Superlative Recovery'', IEEE TNS Volume 23, p. 226-228 (1976). Fred Goulding and Don Landis have studied the structure of those filters and their implementation and this document will outline the calculation leading to the relation between the coefficients of the filter. The general equation of the second order pseudo-gaussian filter is: f(t) = P{sub 0} {center_dot} e{sup -3kt} {center_dot} sin{sup 2}(kt). The parameter k is a normalization factor.
Variational learning for Gaussian mixture models.
Nasios, Nikolaos; Bors, Adrian G
2006-08-01
This paper proposes a joint maximum likelihood and Bayesian methodology for estimating Gaussian mixture models. In Bayesian inference, the distributions of parameters are modeled, characterized by hyperparameters. In the case of Gaussian mixtures, the distributions of parameters are considered as Gaussian for the mean, Wishart for the covariance, and Dirichlet for the mixing probability. The learning task consists of estimating the hyperparameters characterizing these distributions. The integration in the parameter space is decoupled using an unsupervised variational methodology entitled variational expectation-maximization (VEM). This paper introduces a hyperparameter initialization procedure for the training algorithm. In the first stage, distributions of parameters resulting from successive runs of the expectation-maximization algorithm are formed. Afterward, maximum-likelihood estimators are applied to find appropriate initial values for the hyperparameters. The proposed initialization provides faster convergence, more accurate hyperparameter estimates, and better generalization for the VEM training algorithm. The proposed methodology is applied in blind signal detection and in color image segmentation.
CMB non-gaussianity from vector fields
Peloso, Marco
2014-01-01
The Planck satellite has recently measured the CMB temperature anisotropies with unprecedented accuracy, and it has provided strong bounds on primordial non-gaussianity. Such bounds constrain models of inflation, and mechanisms that produce the primordial perturbations. We discuss the non-gaussian signatures from the interactions of the inflation φ with spin-1 fields. We study the two different cases in which the inflaton is (i) a pseudo-scalar field with a (φ)/(fa) F·F interaction with a vector field, and (ii) a scalar field with a f (φ)F² interaction. In the first case we obtain the strong limit f{sub a} ≥ 10¹⁶GeV on the decay constant. In the second case, specific choices of the function f (φ) can lead to a non-gaussianity with a characteristic shape not encountered in standard models of scalar field inflation, and which has also been constrained by Planck.
Wilfert, Philipp; Kumar, Prashanth Suresh; Korving, Leon; Witkamp, Geert-Jan; van Loosdrecht, Mark C M
2015-08-18
The addition of iron is a convenient way for removing phosphorus from wastewater, but this is often considered to limit phosphorus recovery. Struvite precipitation is currently used to recover phosphorus, and this approach has attracted much interest. However, it requires the use of enhanced biological phosphorus removal (EBPR). EBPR is not yet widely applied and the recovery potential is low. Other phosphorus recovery methods, including sludge application to agricultural land or recovering phosphorus from sludge ash, also have limitations. Energy-producing wastewater treatment plants increasingly rely on phosphorus removal using iron, but the problem (as in current processes) is the subsequent recovery of phosphorus from the iron. In contrast, phosphorus is efficiently mobilized from iron by natural processes in sediments and soils. Iron-phosphorus chemistry is diverse, and many parameters influence the binding and release of phosphorus, including redox conditions, pH, presence of organic substances, and particle morphology. We suggest that the current poor understanding of iron and phosphorus chemistry in wastewater systems is preventing processes being developed to recover phosphorus from iron-phosphorus rich wastes like municipal wastewater sludge. Parameters that affect phosphorus recovery are reviewed here, and methods are suggested for manipulating iron-phosphorus chemistry in wastewater treatment processes to allow phosphorus to be recovered.
Semisupervised Gaussian Process for Automated Enzyme Search.
Mellor, Joseph; Grigoras, Ioana; Carbonell, Pablo; Faulon, Jean-Loup
2016-06-17
Synthetic biology is today harnessing the design of novel and greener biosynthesis routes for the production of added-value chemicals and natural products. The design of novel pathways often requires a detailed selection of enzyme sequences to import into the chassis at each of the reaction steps. To address such design requirements in an automated way, we present here a tool for exploring the space of enzymatic reactions. Given a reaction and an enzyme the tool provides a probability estimate that the enzyme catalyzes the reaction. Our tool first considers the similarity of a reaction to known biochemical reactions with respect to signatures around their reaction centers. Signatures are defined based on chemical transformation rules by using extended connectivity fingerprint descriptors. A semisupervised Gaussian process model associated with the similar known reactions then provides the probability estimate. The Gaussian process model uses information about both the reaction and the enzyme in providing the estimate. These estimates were validated experimentally by the application of the Gaussian process model to a newly identified metabolite in Escherichia coli in order to search for the enzymes catalyzing its associated reactions. Furthermore, we show with several pathway design examples how such ability to assign probability estimates to enzymatic reactions provides the potential to assist in bioengineering applications, providing experimental validation to our proposed approach. To the best of our knowledge, the proposed approach is the first application of Gaussian processes dealing with biological sequences and chemicals, the use of a semisupervised Gaussian process framework is also novel in the context of machine learning applied to bioinformatics. However, the ability of an enzyme to catalyze a reaction depends on the affinity between the substrates of the reaction and the enzyme. This affinity is generally quantified by the Michaelis constant KM
Annamalai, Muthiah; Stelmakh, Nikolai; Vasilyev, Michael; Kumar, Prem
2011-12-19
We develop a method for finding the number and shapes of the independently squeezed or amplified modes of a spatially-broadband, travelling-wave, frequency- and polarization-degenerate optical parametric amplifier in the general case of an elliptical Gaussian pump. The obtained results show that for tightly focused pump only one mode is squeezed, and this mode has a Gaussian TEM(00) shape. For larger pump spot sizes that support multiple modes, the shapes of the most-amplified modes are close to Hermite- or Laguerre-Gaussian profiles. These results can be used to generate matched local oscillators for detecting high amounts of squeezing and to design parametric image amplifiers that introduce minimal distortion.
Fresnel zone plate with apodized aperture for hard X-ray Gaussian beam optics.
Takeuchi, Akihisa; Uesugi, Kentaro; Suzuki, Yoshio; Itabashi, Seiichi; Oda, Masatoshi
2017-05-01
Fresnel zone plates with apodized apertures [apodization FZPs (A-FZPs)] have been developed to realise Gaussian beam optics in the hard X-ray region. The designed zone depth of A-FZPs gradually decreases from the center to peripheral regions. Such a zone structure forms a Gaussian-like smooth-shouldered aperture function which optically behaves as an apodization filter and produces a Gaussian-like focusing spot profile. Optical properties of two types of A-FZP, i.e. a circular type and a one-dimensional type, have been evaluated by using a microbeam knife-edge scan test, and have been carefully compared with those of normal FZP optics. Advantages of using A-FZPs are introduced.
III. Quantitative aspects of phosphorus excretion in ruminants.
Bravo, David; Sauvant, Daniel; Bogaert, Catherine; Meschy, François
2003-01-01
Ruminant phosphorus excretion and metabolism were studied through a database. Faecal endogenous phosphorus is the main pathway of phosphorus excretion and averages 0.85 of total faecal phosphorus. The remaining 0.15 is unabsorbed dietary phosphorus. Faecal endogenous phosphorus is mainly unabsorbed phosphorus, with saliva being the major source, and is correlated to factors influencing saliva secretion (DM intake, physical dietary characteristics and dietary phosphorus content). Another source of faecal endogenous phosphorus is rumen microbial phosphorus that escaped solubilisation during post-rumen digestion. All factors stimulating microbial growth would increase phosphorus uptake by the rumen microbes and consequently the faecal endogenous phosphorus. Understanding the determinants of faecal endogenous phosphorus flow will help to precise the determination of net phosphorus requirements for maintenance. The role of plasma phosphorus in urinary phosphorus loss is discussed.
Flat top solitons on linear gaussian potential
NASA Astrophysics Data System (ADS)
Umarov, B. A.; Aklan, N. A. B.; Rosly, M. R.; Hassan, T. H.
2017-09-01
The study of Nonlinear Schrodinger Equation has been wide focus from many researchers especially analysing the result of collision as it describes the soliton propagation. This paper considers the soliton scattering of cubic-quintic Nonlinear Schrodinger Equation on localized Gaussian potential. By applying Super-Gaussian ansatz as the trial function for variational approximation (VA) method, the soliton interaction may acquire flat-top shape with appropriate parameters. The result of VA will be compared to numerical analysis to check the accuracy of analytical predictions.
Cosmological Applications of the Gaussian Kinematic Formula
NASA Astrophysics Data System (ADS)
Fantaye, Yabebal T.; Marinucci, Domenico
2014-05-01
The Gaussian Kinematic Formula (GKF, see Adler and Taylor (2007,2011)) is an extremely powerful tool allowing for explicit analytic predictions of expected values of Minkowski functionals under realistic experimental conditions for cosmological data collections. In this paper, we implement Minkowski functionals on multipoles and needlet components of CMB fields, thus allowing a better control of cosmic variance and extraction of information on both harmonic and real domains; we then exploit the GKF to provide their expected values on spherical maps, in the presence of arbitrary sky masks, and under nonGaussian circumstances.
Gaussian ensembles distributions from mixing quantum systems
NASA Astrophysics Data System (ADS)
Gomez, Ignacio S.; Portesi, M.
2017-08-01
In the context of dynamical systems we present a derivation of the Gaussian ensembles distributions from quantum systems having a classical analogue that is mixing. We find that factorization property is satisfied for the mixing quantum systems expressed as a factorization of quantum mean values. For the case of the kicked rotator and in its fully chaotic regime, the factorization property links decoherence by dephasing with Gaussian ensembles in terms of the weak limit, interpreted as a decohered state. Moreover, a discussion about the connection between random matrix theory and quantum chaotic systems, based on some attempts made in previous works and from the viewpoint of the mixing quantum systems, is presented.
Invariant measures on multimode quantum Gaussian states
Lupo, C.; Mancini, S.; De Pasquale, A.; Facchi, P.; Florio, G.; Pascazio, S.
2012-12-15
We derive the invariant measure on the manifold of multimode quantum Gaussian states, induced by the Haar measure on the group of Gaussian unitary transformations. To this end, by introducing a bipartition of the system in two disjoint subsystems, we use a parameterization highlighting the role of nonlocal degrees of freedom-the symplectic eigenvalues-which characterize quantum entanglement across the given bipartition. A finite measure is then obtained by imposing a physically motivated energy constraint. By averaging over the local degrees of freedom we finally derive the invariant distribution of the symplectic eigenvalues in some cases of particular interest for applications in quantum optics and quantum information.
Invariant measures on multimode quantum Gaussian states
NASA Astrophysics Data System (ADS)
Lupo, C.; Mancini, S.; De Pasquale, A.; Facchi, P.; Florio, G.; Pascazio, S.
2012-12-01
We derive the invariant measure on the manifold of multimode quantum Gaussian states, induced by the Haar measure on the group of Gaussian unitary transformations. To this end, by introducing a bipartition of the system in two disjoint subsystems, we use a parameterization highlighting the role of nonlocal degrees of freedom—the symplectic eigenvalues—which characterize quantum entanglement across the given bipartition. A finite measure is then obtained by imposing a physically motivated energy constraint. By averaging over the local degrees of freedom we finally derive the invariant distribution of the symplectic eigenvalues in some cases of particular interest for applications in quantum optics and quantum information.
Nonnegative Matrix Factorization with Gaussian Process Priors
Schmidt, Mikkel N.; Laurberg, Hans
2008-01-01
We present a general method for including prior knowledge in a nonnegative matrix factorization (NMF), based on Gaussian process priors. We assume that the nonnegative factors in the NMF are linked by a strictly increasing function to an underlying Gaussian process specified by its covariance function. This allows us to find NMF decompositions that agree with our prior knowledge of the distribution of the factors, such as sparseness, smoothness, and symmetries. The method is demonstrated with an example from chemical shift brain imaging. PMID:18464923
Gaussian Quadrature Formulae for Arbitrary Positive Measures
Fernandes, Andrew D.; Atchley, William R.
2007-01-01
We present computational methods and subroutines to compute Gaussian quadrature integration formulas for arbitrary positive measures. For expensive integrands that can be factored into well-known forms, Gaussian quadrature schemes allow for efficient evaluation of high-accuracy and -precision numerical integrals, especially compared to general ad hoc schemes. In addition, for certain well-known density measures (the normal, gamma, log-normal, Student’s t, inverse-gamma, beta, and Fisher’s F) we present exact formulae for computing the respective quadrature scheme. PMID:19455218
Phosphorus Abundances in FGK Stars
NASA Astrophysics Data System (ADS)
Maas, Z. G.; Pilachowski, C. A.; Cescutti, G.
2017-06-01
We measured phosphorus abundances in 22 FGK dwarfs and giants that span -0.55 < [Fe/H] < 0.2 using spectra obtained with the Phoenix high-resolution infrared spectrometer on the Kitt Peak National Observatory Mayall 4 m telescope, the Gemini South Telescope, and the Arcturus spectral atlas. We fit synthetic spectra to the P i feature at 10581 Å to determine abundances for our sample. Our results are consistent with previously measured phosphorus abundances; the average [P/Fe] ratio measured in [Fe/H] bins of 0.2 dex for our stars are within ˜1σ compared to averages from other IR phosphorus studies. Our study provides more evidence that models of chemical evolution using the results of theoretical yields are underproducing phosphorus compared to the observed abundances. Our data better fit a chemical evolution model with phosphorus yields increased by a factor of 2.75 compared to models with unadjusted yields. We also found average [P/Si] = 0.02 ± 0.07 and [P/S] = 0.15 ± 0.15 for our sample, showing no significant deviations from the solar ratios for [P/Si] and [P/S] ratios.
Proposed biokinetic model for phosphorus
Leggett, Richard Wayne
2014-06-04
This paper reviews data related to the biokinetics of phosphorus in the human body and proposes a biokinetic model for systemic phosphorus for use in updated International Commission on Radiological Protection (ICRP) guidance on occupational intake of radionuclides. Compared with the ICRP s current occupational model for phosphorus (Publication 68, 1994) the proposed model provides a more realistic description of the paths of movement of phosphorus in the body and improved consistency with experimental, medical, and environmental data on the time-dependent distribution and retention of phosphorus following uptake to blood. For acute uptake of 32P to blood, the proposed model yields roughly a 50% decrease in dose estimates for bone surface and red marrow and a 6-fold increase in estimates for liver and kidney compared with the biokinetic model of Publication 68 (applying Publication 68 dosimetric models in both sets of calculations). For acute uptake of 33P to blood, the proposed model yields roughly a 50% increase in dose estimates for bone surface and red marrow and a 7-fold increase in estimates for liver and kidney compared with the model of Publication 68.
A Gaussian-product stochastic Gent-McWilliams parameterization
NASA Astrophysics Data System (ADS)
Grooms, Ian
2016-10-01
The locally-averaged horizontal buoyancy flux by mesoscale eddies is computed from eddy-resolving quasigeostrophic simulations of ocean-mesoscale eddy dynamics. This flux has a very non-Gaussian distribution peaked at zero, not at the mean value. This non-Gaussian flux distribution arises because the flux is a product of zero-mean random variables: the eddy velocity and buoyancy. A framework for stochastic Gent-McWilliams (GM) parameterization is presented. Gaussian random field models for subgrid-scale velocity and buoyancy are developed. The product of these Gaussian random fields is used to construct a non-Gaussian stochastic parameterization of the horizontal subgrid-scale density flux, which leads to a non-Gaussian stochastic GM parameterization. This new non-Gaussian stochastic GM parameterization is tested in an idealized box ocean model, and compared to a Gaussian approach that simply multiplies the deterministic GM parameterization by a Gaussian random field. The non-Gaussian approach has a significant impact on both the mean and variability of the simulations, more so than the Gaussian approach; for example, the non-Gaussian simulation has a much larger net kinetic energy and a stronger overturning circulation than a comparable Gaussian simulation. Future directions for development of the stochastic GM parameterization and extensions of the Gaussian-product approach are discussed.
NASA Astrophysics Data System (ADS)
Ji, Se-Wan; Kim, M. S.; Nha, Hyunchul
2015-04-01
It is a topic of fundamental and practical importance how a quantum correlated state can be reliably distributed through a noisy channel for quantum information processing. The concept of quantum steering recently defined in a rigorous manner is relevant to study it under certain circumstances and here we address quantum steerability of Gaussian states to this aim. In particular, we attempt to reformulate the criterion for Gaussian steering in terms of local and global purities and show that it is sufficient and necessary for the case of steering a 1-mode system by an N-mode system. It subsequently enables us to reinforce a strong monogamy relation under which only one party can steer a local system of 1-mode. Moreover, we show that only a negative partial-transpose state can manifest quantum steerability by Gaussian measurements in relation to the Peres conjecture. We also discuss our formulation for the case of distributing a two-mode squeezed state via one-way quantum channels making dissipation and amplification effects, respectively. Finally, we extend our approach to include non-Gaussian measurements, more precisely, all orders of higher-order squeezing measurements, and find that this broad set of non-Gaussian measurements is not useful to demonstrate steering for Gaussian states beyond Gaussian measurements.
Non-Gaussian operations on bosonic modes of light: Photon-added Gaussian channels
NASA Astrophysics Data System (ADS)
Sabapathy, Krishna Kumar; Winter, Andreas
2017-06-01
We present a framework for studying bosonic non-Gaussian channels of continuous-variable systems. Our emphasis is on a class of channels that we call photon-added Gaussian channels, which are experimentally viable with current quantum-optical technologies. A strong motivation for considering these channels is the fact that it is compulsory to go beyond the Gaussian domain for numerous tasks in continuous-variable quantum information processing such as entanglement distillation from Gaussian states and universal quantum computation. The single-mode photon-added channels we consider are obtained by using two-mode beam splitters and squeezing operators with photon addition applied to the ancilla ports giving rise to families of non-Gaussian channels. For each such channel, we derive its operator-sum representation, indispensable in the present context. We observe that these channels are Fock preserving (coherence nongenerating). We then report two examples of activation using our scheme of photon addition, that of quantum-optical nonclassicality at outputs of channels that would otherwise output only classical states and of both the quantum and private communication capacities, hinting at far-reaching applications for quantum-optical communication. Further, we see that noisy Gaussian channels can be expressed as a convex mixture of these non-Gaussian channels. We also present other physical and information-theoretic properties of these channels.
Wang, Chao; White, Philip J; Li, Chunjian
2016-12-30
Effects of soil depth and plant growth stages on arbuscular mycorrhizal fungal (AMF) colonization and community structure in maize roots and their potential contribution to host plant phosphorus (P) nutrition under different P-fertilizer inputs were studied. Research was conducted on a long-term field experiment over 3 years. AMF colonization was assessed by AM colonization rate and arbuscule abundances and their potential contribution to host P nutrition by intensity of fungal alkaline phosphatase (ALP)/acid phosphatase (ACP) activities and expressions of ZmPht1;6 and ZmCCD8a in roots from the topsoil and subsoil layer at different growth stages. AMF community structure was determined by specific amplification of 18S rDNA. Increasing P inputs up to 75-100 kg ha(-1) yr(-1) increased shoot biomass and P content but decreased AMF colonization and interactions between AMF and roots. AM colonization rate, intensity of fungal ACP/ALP activities, and expression of ZmPht1;6 in roots from the subsoil were greater than those from topsoil at elongation and silking but not at the dough stage when plants received adequate or excessive P inputs. Neither P input nor soil depth influenced the number of AMF operational taxonomic units (OTUs) present in roots, but P-fertilizer input, in particular, influenced community composition and relative AMF abundance. In conclusion, although increasing P inputs reduce AMF colonization and influence AMF community structure, AMF can potentially contribute to plant P nutrition even in well-fertilized soils, depending on the soil layer in which roots are located and the growth stage of host plants.
Cosine-Gaussian correlated Schell-model pulsed beams.
Ding, Chaoliang; Korotkova, Olga; Zhang, Yongtao; Pan, Liuzhan
2014-01-13
A new class of partially coherent pulses of Schell type with cosine-Gaussian temporal degree of coherence is introduced. Such waves are termed the Cosine-Gaussian Schell-model (CGSM) pulses. The analytic expression for the temporal mutual coherence function of the CGSM pulse in dispersive media is derived and used to study the evolution of its intensity distribution and its temporal degree of coherence. Further, the numerical calculations are performed in order to show the dependence of the intensity profile and the temporal degree of coherence of the CGSM pulse on the incident pulse duration, the initial temporal coherence length, the order-parameter n and the dispersion of the medium. The most important feature of the novel pulsed wave is its ability to split into two pulses on passage in a dispersive medium at some critical propagation distance. Such critical distance and the subsequent evolution of the split pulses are shown to depend on the source parameters and on the properties of the medium in which the pulse travels.
Non-Gaussian states from continuous-wave Gaussian light sources
NASA Astrophysics Data System (ADS)
Mølmer, Klaus
2006-06-01
We present a general analysis of the state obtained by subjecting a continuous-wave (cw) Gaussian field to non-Gaussian measurements. The generic multimode state of a cw Gaussian field is fully characterized by the time dependent mean values and variances and the two-time covariances of the field quadrature variables. We present a general theory to extract from this information the results of detection and quantum state reduction within specific temporal output modes. The formalism is applied to schemes for heralded production of propagating light pulses with single photon and Schrödinger kitten states from a cw squeezed beam of light.
Fire-Resistant Polyimides Containing Phosphorus
NASA Technical Reports Server (NTRS)
Mikroyannidis, J.
1986-01-01
Limiting oxygen index increased. Copolyimide with a group containing phosphorus synthesized from 1-2,4-diaminobenzene, m-phenylenediamine, and tetracarboxylic dianhydride. Copolymer more fire resistant than corresponding polyimide without phosphorus.
Low Phosphorus Diet: Best for Kidney Disease?
... with higher phosphorus ingredients (milk, dried peas, beans, lentils) Soups made with lower phosphorus ingredients (broth- or ... beans (black, garbanzo, lima, kidney, navy, pinto) or lentils Green peas, green beans or wax beans Processed ...
Economic feasibility study for phosphorus recovery processes.
Molinos-Senante, María; Hernández-Sancho, Francesc; Sala-Garrido, Ramón; Garrido-Baserba, Manel
2011-06-01
Phosphorus recovery from wastewater has become a necessity for sustainable development because phosphorus is a non-renewable essential resource, and its discharge into the environment causes serious negative impacts. There are no economic incentives for the implementation of phosphorus recovery technologies because the selling price of rock phosphate is lower than phosphorus recovered from sewage. The methodologies used to determine the feasibility of such projects are usually focused on internal costs without considering environmental externalities. This article shows a methodology to assess the economic feasibility of wastewater phosphorus recovery projects that takes into account internal and external impacts. The shadow price of phosphorus is estimated using the directional distance function to measure the environmental benefits obtained by preventing the discharge of phosphorus into the environment. The economic feasibility analysis taking into account the environmental benefits shows that the phosphorus recovery is viable not only from sustainable development but also from an economic point of view.
Fire-Resistant Polyimides Containing Phosphorus
NASA Technical Reports Server (NTRS)
Mikroyannidis, J.
1986-01-01
Limiting oxygen index increased. Copolyimide with a group containing phosphorus synthesized from 1-2,4-diaminobenzene, m-phenylenediamine, and tetracarboxylic dianhydride. Copolymer more fire resistant than corresponding polyimide without phosphorus.
Dietary phosphorus requirement of channel catfish.
Wilson, R P; Robinson, E H; Gatlin, D M; Poe, W E
1982-06-01
Two experiments were conducted to reevaluate the dietary phosphorus requirement of fingerling channel catfish. Basal diets containing either casein with supplemental inorganic phosphorus and 0.5% total calcium or egg albumin with supplemental inorganic phosphorus and 0.75% total calcium yielded similar requirement data. Eleven-week growth, feed efficiency, serum phosphorus, bone ash, bone calcium and bon phosphorus data indicate that 0.33% apparent available dietary phosphorus is adequate for maximum growth and bone mineralization. Based on these data and previous findings, we would suggest a value of 0.4% apparent available phosphorus be used in formulating catfish feeds. The apparent availability of phosphorus from soybean meal, as determined by the chromic oxide indicator method, was 29% for channel catfish.
Phosphorus adlayers on Platinum (110)
NASA Astrophysics Data System (ADS)
Heikkinen, Olli; Riihimäki, Ari; Sainio, Jani; Lahtinen, Jouko
2017-10-01
Platinum is a metal utilized in many applications. Its catalytic activity can be decreased due to chemical poisoning caused e.g. by phosphorus. To gain more understanding of its poisoning, we present a study of phosphorus adsorption on a platinum (110) single crystal surface. Using X-ray photoelectron spectroscopy, we have found that the adsorbate coverage saturates at around 3 monolayers. Annealing the phosphorus-covered platinum surface at 750 °C gives rise to three different ordered adlayer structures, with symmetries of 2 × 3, 11 × 4 and √{ 2} × 1 , from the lowest to the highest coverage, detected with low-energy electron diffraction. We have studied the sample topography with scanning tunnelling microscopy. We also present a tentative model for the observed structures and their evolution.
Edge phonons in black phosphorus
Ribeiro, H. B.; Villegas, C. E. P.; Bahamon, D. A.; Muraca, D.; Castro Neto, A. H.; de Souza, E. A. T.; Rocha, A. R.; Pimenta, M. A.; de Matos, C. J. S.
2016-01-01
Black phosphorus has recently emerged as a new layered crystal that, due to its peculiar and anisotropic crystalline and electronic band structures, may have important applications in electronics, optoelectronics and photonics. Despite the fact that the edges of layered crystals host a range of singular properties whose characterization and exploitation are of utmost importance for device development, the edges of black phosphorus remain poorly characterized. In this work, the atomic structure and behaviour of phonons near different black phosphorus edges are experimentally and theoretically studied using Raman spectroscopy and density functional theory calculations. Polarized Raman results show the appearance of new modes at the edges of the sample, and their spectra depend on the atomic structure of the edges (zigzag or armchair). Theoretical simulations confirm that the new modes are due to edge phonon states that are forbidden in the bulk, and originated from the lattice termination rearrangements. PMID:27412813
Edge phonons in black phosphorus
NASA Astrophysics Data System (ADS)
Ribeiro, H. B.; Villegas, C. E. P.; Bahamon, D. A.; Muraca, D.; Castro Neto, A. H.; de Souza, E. A. T.; Rocha, A. R.; Pimenta, M. A.; de Matos, C. J. S.
2016-07-01
Black phosphorus has recently emerged as a new layered crystal that, due to its peculiar and anisotropic crystalline and electronic band structures, may have important applications in electronics, optoelectronics and photonics. Despite the fact that the edges of layered crystals host a range of singular properties whose characterization and exploitation are of utmost importance for device development, the edges of black phosphorus remain poorly characterized. In this work, the atomic structure and behaviour of phonons near different black phosphorus edges are experimentally and theoretically studied using Raman spectroscopy and density functional theory calculations. Polarized Raman results show the appearance of new modes at the edges of the sample, and their spectra depend on the atomic structure of the edges (zigzag or armchair). Theoretical simulations confirm that the new modes are due to edge phonon states that are forbidden in the bulk, and originated from the lattice termination rearrangements.
Dissolved organic phosphorus speciation in the waters of the Tamar estuary (SW England)
NASA Astrophysics Data System (ADS)
Monbet, Phil; McKelvie, Ian D.; Worsfold, Paul J.
2009-02-01
The speciation of dissolved organic phosphorus (DOP) in the temperate Tamar estuary of SW England is described. Eight stations from the riverine to marine end-members were sampled during four seasonal campaigns in 2007 and the DOP pool in the water column and sediment porewater was characterized and quantified using a flow injection manifold after sequential enzymatic hydrolysis. This enabled the enzymatically hydrolysable phosphorus (EHP) fraction and its component labile monoester phosphates, diester phosphates and a phytase-hydrolysable fraction that includes myo-inositol hexakisphosphate (phytic acid), to be determined and compared with the total DOP, dissolved reactive phosphorus (DRP) and total dissolved phosphorus (TDP) pools. The results showed that the DOP pool in the water column varied temporally and spatially within the estuary (1.1-22 μg L -1) and constituted 6-40% of TDP. The EHP fraction of DOP ranged from 1.1-15 μg L -1 and represented a significant and potentially bioavailable phosphorus fraction. Furthermore the spatial profiles of the three components of the EHP pool generally showed non-conservative behavior along the salinity gradient, with apparent internal estuarine sources. Porewater profiles followed broadly similar trends but were notably higher at the marine station throughout the year. In contrast to soil organic phosphorus profiles, the labile monoester phosphate fraction was the largest component, with diester phosphates also prevalent. Phytic acid concentrations were higher in the lower estuary, possibly due to salinity induced desorption processes. The EHP fraction is not commonly determined in aquatic systems due to the lack of a suitable measurement technique and the Tamar results reported here have important implications for phosphorus biogeochemistry, estuarine ecology and the development of efficient strategies for limiting the effects of phosphorus on water quality.
Phosphorus Flamethrower: A Demonstration Using Red and White Allotropes of Phosphorus
ERIC Educational Resources Information Center
Golden, Melissa L.; Person, Eric C.; Bejar, Miriam; Golden, Donnie R.; Powell, Jonathan M.
2010-01-01
A demonstration was created to display the unique behavior of a familiar element, phosphorus, and to make chemistry more accessible to the introductory student. The common allotropes of phosphorus and their reactivity are discussed. In this demonstration, the white allotrope of phosphorus is synthesized from the red phosphorus obtained from a…
Phosphorus Flamethrower: A Demonstration Using Red and White Allotropes of Phosphorus
ERIC Educational Resources Information Center
Golden, Melissa L.; Person, Eric C.; Bejar, Miriam; Golden, Donnie R.; Powell, Jonathan M.
2010-01-01
A demonstration was created to display the unique behavior of a familiar element, phosphorus, and to make chemistry more accessible to the introductory student. The common allotropes of phosphorus and their reactivity are discussed. In this demonstration, the white allotrope of phosphorus is synthesized from the red phosphorus obtained from a…
How Gaussian can our Universe be?
NASA Astrophysics Data System (ADS)
Cabass, G.; Pajer, E.; Schmidt, F.
2017-01-01
Gravity is a non-linear theory, and hence, barring cancellations, the initial super-horizon perturbations produced by inflation must contain some minimum amount of mode coupling, or primordial non-Gaussianity. In single-field slow-roll models, where this lower bound is saturated, non-Gaussianity is controlled by two observables: the tensor-to-scalar ratio, which is uncertain by more than fifty orders of magnitude; and the scalar spectral index, or tilt, which is relatively well measured. It is well known that to leading and next-to-leading order in derivatives, the contributions proportional to the tilt disappear from any local observable, and suspicion has been raised that this might happen to all orders, allowing for an arbitrarily low amount of primordial non-Gaussianity. Employing Conformal Fermi Coordinates, we show explicitly that this is not the case. Instead, a contribution of order the tilt appears in local observables. In summary, the floor of physical primordial non-Gaussianity in our Universe has a squeezed-limit scaling of kl2/ks2, similar to equilateral and orthogonal shapes, and a dimensionless amplitude of order 0.1 × (ns‑1).
The Curious Nonexistence of Gaussian 2-Designs
NASA Astrophysics Data System (ADS)
Blume-Kohout, Robin; Turner, Peter S.
2014-03-01
Ensembles of pure quantum states whose 2nd moments equal those of the unitarily uniform Haar ensemble— 2-designs—are optimal solutions for several tasks in quantum information science, especially state and process tomography. We show that Gaussian states cannot form a 2-design for the continuous-variable (quantum optical) Hilbert space . This is surprising because the affine symplectic group HWSp (the natural symmetry group of Gaussian states) is irreducible on the symmetric subspace of two copies. In finite dimensional Hilbert spaces, irreducibility guarantees that HWSp-covariant ensembles (such as mutually unbiased bases in prime dimensions) are always 2-designs. This property is violated by continuous variables for a subtle reason: the (well-defined) HWSp-invariant ensemble of Gaussian states does not have a density matrix because its defining integral does not converge. In fact, no Gaussian ensemble is even close (in a precise sense) to being a 2-design. This surprising difference between discrete and continuous quantum mechanics has important implications for optical state and process tomography.
Halo clustering with nonlocal non-Gaussianity
Schmidt, Fabian; Kamionkowski, Marc
2010-11-15
We show how the peak-background split (PBS) can be generalized to predict the effect of nonlocal primordial non-Gaussianity on the clustering of halos. Our approach is applicable to arbitrary primordial bispectra. We show that the scale dependence of halo clustering predicted in the peak-background split agrees with that of the local-biasing model on large scales. On smaller scales, k > or approx. 0.01h Mpc{sup -1}, the predictions diverge, a consequence of the assumption of separation of scales in the peak-background split. Even on large scales, PBS and local biasing do not generally agree on the amplitude of the effect outside of the high-peak limit. The scale dependence of the biasing - the effect that provides strong constraints to the local-model bispectrum - is far weaker for the equilateral and self-ordering-scalar-field models of non-Gaussianity. The bias scale dependence for the orthogonal and folded models is weaker than in the local model ({approx}k{sup -1}), but likely still strong enough to be constraining. We show that departures from scale-invariance of the primordial power spectrum may lead to order-unity corrections, relative to predictions made assuming scale-invariance--to the non-Gaussian bias in some of these nonlocal models for non-Gaussianity. An Appendix shows that a nonlocal model can produce the local-model bispectrum, a mathematical curiosity we uncovered in the course of this investigation.
Speech Enhancement Using Gaussian Scale Mixture Models.
Hao, Jiucang; Lee, Te-Won; Sejnowski, Terrence J
2010-08-11
This paper presents a novel probabilistic approach to speech enhancement. Instead of a deterministic logarithmic relationship, we assume a probabilistic relationship between the frequency coefficients and the log-spectra. The speech model in the log-spectral domain is a Gaussian mixture model (GMM). The frequency coefficients obey a zero-mean Gaussian whose covariance equals to the exponential of the log-spectra. This results in a Gaussian scale mixture model (GSMM) for the speech signal in the frequency domain, since the log-spectra can be regarded as scaling factors. The probabilistic relation between frequency coefficients and log-spectra allows these to be treated as two random variables, both to be estimated from the noisy signals. Expectation-maximization (EM) was used to train the GSMM and Bayesian inference was used to compute the posterior signal distribution. Because exact inference of this full probabilistic model is computationally intractable, we developed two approaches to enhance the efficiency: the Laplace method and a variational approximation. The proposed methods were applied to enhance speech corrupted by Gaussian noise and speech-shaped noise (SSN). For both approximations, signals reconstructed from the estimated frequency coefficients provided higher signal-to-noise ratio (SNR) and those reconstructed from the estimated log-spectra produced lower word recognition error rate because the log-spectra fit the inputs to the recognizer better. Our algorithms effectively reduced the SSN, which algorithms based on spectral analysis were not able to suppress.
Efficient Matrix Completion with Gaussian Models
2010-10-01
Sapiro and Mallat have recently reported excellent results in a number of inverse problems [16]. In particular, for inpainting , which is an analogue...been shown to bring dramatic improvements over single Gaussian models in image inpaint - ing [16], are expected to better capture different characteris
Primordial non-Gaussianity and reionization
NASA Astrophysics Data System (ADS)
Lidz, Adam; Baxter, Eric J.; Adshead, Peter; Dodelson, Scott
2013-07-01
The statistical properties of the primordial perturbations contain clues about their origins. Although the Planck collaboration has recently obtained tight constraints on primordial non-Gaussianity from cosmic microwave background measurements, it is still worthwhile to mine upcoming data sets in an effort to place independent or competitive limits. The ionized bubbles that formed at redshift z˜6-20 during the epoch of reionization were seeded by primordial overdensities, and so the statistics of the ionization field at high redshift are related to the statistics of the primordial field. Here we model the effect of primordial non-Gaussianity on the reionization field. The epoch and duration of reionization are affected, as are the sizes of the ionized bubbles, but these changes are degenerate with variations in the properties of the ionizing sources and the surrounding intergalactic medium. A more promising signature is the power spectrum of the spatial fluctuations in the ionization field, which may be probed by upcoming 21 cm surveys. This has the expected 1/k2 dependence on large scales, characteristic of a biased tracer of the matter field. We project how well upcoming 21 cm observations will be able to disentangle this signal from foreground contamination. Although foreground cleaning inevitably removes the large-scale modes most impacted by primordial non-Gaussianity, we find that primordial non-Gaussianity can be separated from foreground contamination for a narrow range of length scales. In principle, futuristic redshifted 21 cm surveys may allow constraints competitive with Planck.
Non-Gaussianity effects in petrophysical quantities
NASA Astrophysics Data System (ADS)
Koohi Lai, Z.; Jafari, G. R.
2013-10-01
It has been proved that there are many indicators (petrophysical quantities) for the estimation of petroleum reservoirs. The value of information contained in each indicator is yet to be addressed. In this work, the most famous and applicable petrophysical quantities for a reservoir, which are the gamma emission (GR), sonic transient time (DT), neutron porosity (NPHI), bulk density (RHOB), and deep induced resistivity (ILD), have been analyzed in order to characterize a reservoir. The implemented technique is the well-logging method. Based on the log-normal model defined in random multiplicative processes, the probability distribution function (PDF) for the data sets is described. The shape of the PDF depends on the parameter λ2 which determines the efficiency of non-Gaussianity. When non-Gaussianity appears, it is a sign of uncertainty and phase transition in the critical regime. The large value and scale-invariant behavior of the non-Gaussian parameter λ2 is an indication of a new phase which proves adequate for the existence of petroleum reservoirs. Our results show that one of the indicators (GR) is more non-Gaussian than the other indicators, scale wise. This means that GR is a continuously critical indicator. But by moving windows with various scales, the estimated λ2 shows that the most appropriate indicator for distinguishing the critical regime is ILD, which shows an increase at the end of the measured region of the well.
Transitional behavior of quantum Gaussian memory channels
NASA Astrophysics Data System (ADS)
Lupo, C.; Mancini, S.
2010-05-01
We address the question of optimality of entangled input states in quantum Gaussian memory channels. For a class of such channels, which can be traced back to the memoryless setting, we state a criterion which relates the optimality of entangled inputs to the symmetry properties of the channels’ action. Several examples of channel models belonging to this class are discussed.
Cholestatic presentation of yellow phosphorus poisoning
Lakshmi, C. P.; Goel, Amit; Basu, Debdatta
2014-01-01
Yellow phosphorus, a component of certain pesticide pastes and fireworks, is well known to cause hepatotoxicity. Poisoning with yellow phosphorus classically manifests with acute hepatitis leading to acute liver failure which may need liver transplantation. We present a case of yellow phosphorus poisoning in which a patient presented with florid clinical features of cholestasis highlighting the fact that cholestasis can rarely be a presenting feature of yellow phosphorus hepatotoxicity. PMID:24554916
Effect of mineral and manure phosphorus sources on runoff phosphorus.
Kleinman, Peter J A; Sharpley, Andrew N; Moyer, Barton G; Elwinger, Gerald F
2002-01-01
Concern over nonpoint-source phosphorus (P) losses from agricultural lands to surface waters has resulted in scrutiny of factors affecting P loss potential. A rainfall simulation study was conducted to quantify the effects of alternative P sources (dairy manure, poultry manure, swine slurry, and diammonium phosphate), application methods, and initial soil P concentrations on runoff P losses from three acidic soils (Buchanan-Hartleton, Hagerstown, and Lewbeach). Low P (12 to 26 mg kg(-1) Mehlich-3 P) and high P (396 to 415 mg kg(-1) Mehlich-3 P) members of each soil were amended with 100 kg total P ha(-1) from each of the four P sources either by surface application or mixing, and subjected to simulated rainfall (70 mm h(-1) to produce 30 min runoff). Phosphorus losses from fertilizer and manure applied to the soil surface differed significantly by source, with dissolved reactive phosphorus (DRP) accounting for 64% of total phosphorus (TP) (versus 9% for the unamended soils). For manure amended soils, these losses were linearly related to water-soluble P concentration of manure (r2 = 0.86 for DRP, r2 = 0.78 for TP). Mixing the P sources into the soil significantly decreased P losses relative to surface P application, such that DRP losses from amended, mixed soils were not significantly different from the unamended soil. Results of this study can be applied to site assessment indices to quantify the potential for P loss from recently manured soils.
Linking soil phosphorus to dissolved phosphorus losses in the midwest
USDA-ARS?s Scientific Manuscript database
Harmful and nuisance algal blooms resulting from excess phosphorus (P) have placed agriculture in the spotlight of the water quality debate. Sixty-eight site years of P loading data from 36 fields in Ohio were used to see if a soil test P (STP) concentration could be identified that would permit P a...
Non-Gaussian spectra in cosmic microwave background temperature anisotropies
NASA Astrophysics Data System (ADS)
Ferreira, Pedro G.; Magueijo, João
1997-03-01
Gaussian cosmic microwave background skies are fully specified by the power spectrum. The conventional method of characterizing non-Gaussian skies is to evaluate higher order moments, the n-point functions, and their Fourier transforms. We argue that this method is inefficient, due to the redundancy of information existing in the complete set of moments. In this paper we propose a set of new statistics or non-Gaussian spectra to be extracted out of the angular distribution of the Fourier transform of the temperature anisotropies in the small field limit. These statistics complement the power spectrum and act as localization, shape, and connectedness statistics. They quantify the generic non-Gaussian structure, and may be used in more general image-processing tasks. We concentrate on a subset of these statistics and argue that while they carry no information in Gaussian theories, they may be the best arena for making predictions in some non-Gaussian theories. As examples of applications we consider superposed Gaussian and non-Gaussian signals, such as point sources in Gaussian theories or the realistic Kaiser-Stebbins effect. We show that in these theories non-Gaussianity is only present in a ring in Fourier space, which is best isolated in our formalism. Subtle but strongly non-Gaussian theories are also written down for which only non-Gaussian spectra may reveal non-Gaussianity.
A Gaussian-product stochastic Gent-McWilliams parameterization
NASA Astrophysics Data System (ADS)
Grooms, I.
2016-12-01
The locally-averaged horizontal buoyancy flux by mesoscale eddies is computed from eddy-resolving quasigeostrophic simulations of ocean-mesoscale eddy dynamics. This flux has a very non-Gaussian distribution peaked at zero, not at the mean value. This non-Gaussian flux distribution arises because the flux is a product of zero-mean random variables: the eddy velocity and buoyancy. A framework for stochastic Gent-McWilliams (GM) parameterization based around stochastic parameterization of the horizontal subgrid-scale density flux is presented. Gaussian random field models for subgrid-scale velocity and buoyancy are developed. The product of these Gaussian random fields is used to construct a non-Gaussian stochastic parameterization of the horizontal subgrid-scale density flux, which leads to a non-Gaussian stochastic GM parameterization. This new parameterization is tested in an idealized box ocean model, and compared to a Gaussian approach that simply multiplies the deterministic GM parameterization by a Gaussian random field. The non-Gaussian approach has a significant impact on both the mean and variability of the simulations, more so than the Gaussian approach; for example, the non-Gaussian simulation has a much larger net kinetic energy and a stronger overturning circulation than a comparable Gaussian simulation. Future directions for development of the stochastic GM parameterization and extensions of the Gaussian-product approach are discussed.
Gaussian benchmark for optical communication aiming towards ultimate capacity
NASA Astrophysics Data System (ADS)
Lee, Jaehak; Ji, Se-Wan; Park, Jiyong; Nha, Hyunchul
2016-05-01
We establish the fundamental limit of communication capacity within Gaussian schemes under phase-insensitive Gaussian channels, which employ multimode Gaussian states for encoding and collective Gaussian operations and measurements for decoding. We prove that this Gaussian capacity is additive, i.e., its upper bound occurs with separable encoding and separable receivers so that a single-mode communication suffices to achieve the largest capacity under Gaussian schemes. This rigorously characterizes the gap between the ultimate Holevo capacity and the capacity within Gaussian communication, showing that Gaussian regime is not sufficient to achieve the Holevo bound particularly in the low-photon regime. Furthermore, the Gaussian benchmark established here can be used to critically assess the performance of non-Gaussian protocols for optical communication. We move on to identify non-Gaussian schemes to beat the Gaussian capacity and show that a non-Gaussian receiver recently implemented by Becerra et al. [F. E. Becerra et al., Nat. Photon. 7, 147 (2013), 10.1038/nphoton.2012.316] can achieve this aim with an appropriately chosen encoding strategy.
Guiding phosphorus stewardship for multiple ecosystem services
USDA-ARS?s Scientific Manuscript database
Phosphorus is vital to agricultural production and water quality regulation. While the role of phosphorus in agriculture and water quality has been studied for decades, the benefits of sustainable phosphorus use and management for society due to its downstream impacts on multiple ecosystem services...
Rayleigh scattering of a Gaussian laser beam from expanding clusters
Kumar, Manoj; Tripathi, V. K.
2009-12-15
Rayleigh scattering of an intense laser with Gaussian temporal and radial profiles from clustered gases is examined. The laser quickly converts the clusters into plasma balls with electron cloud of each ball executing large excursions about the ion sphere. The laser also heats the electrons. As the clusters expand under hydrodynamic pressure, plasma frequency of the cluster electrons omega{sub pe} decreases. The temporal rate of decrease in omega{sub pe} is maximum on laser axis and falls off with r. As the electron density of a cluster approaches plasma resonance, omega{sub pe}=omegasq root(3) (where omega is the frequency of the laser) the oscillatory electron cloud of the cluster produces resonantly enhanced Rayleigh scattering. This resonant enhancement first occurs in clusters on laser axis and afterward in farther clusters. The diffraction divergence of the laser limits the length of the cluster plasma, hence the Rayleigh scattering.
a Distributed Gaussian Discrete Variable Representation
NASA Astrophysics Data System (ADS)
Karabulut, Hasan
In this work a discrete variable representation (DVR) is constructed from a distributed Gaussian basis (DGB). A DGB is a finite or infinite chain of uniformly distributed Gaussians g_{n}(x) = e^{-c^2(x/d-n)^2} where n takes integer values. There are three main parts of this thesis. In the first part (Chapter III) the finite chain distributed Gaussian DVR (Finite Chain DG-DVR) is derived. In order to accomplish this, the distributed Gaussian orthogonal polynomials are introduced. The connection of these polynomials to Stieltjes-Wigert polynomials is shown. The recurrence relation for these orthogonal polynomials is derived. Tested recipes are given to calculate the quadrature points and weights and to construct the corresponding Lagrange functions which are analogs of Lagrange interpolation polynomials. The symmetries of quadrature points, weights, and Lagrange functions are derived. Limit cases ctoinfty and cto 0 are studied. In the second part (Chapter IV)the infinite chain limit DG-DVR is derived from a limit of the finite chain DG-DVR. The quadrature points and weights and the Lagrange functions are found in this limit and kinetic energy operator is constructed. It is shown that in the limit c to 0 the infinite chain DG-DVR reduces to Colbert and Miller's DVR. A discussion of ability of a distributed Gaussian basis to represent an arbitrary function is given. The results of this treatment yield a possible explanation of surprising accuracy of Colbert-Miller DVR. In the third part construction of the DG-DVR is given when one point is chosen arbitrarily. Some interesting identities and integral representations for the b _{n} and sigma_ {n} coefficients that are introduced in the second part are found.
Pressure effects on hole-burning spectra in glasses: Calculation beyond the Gaussian approximation
NASA Astrophysics Data System (ADS)
Kador, L.
1991-07-01
In a recent publication, Laird and Skinner [J. Chem. Phys. 90, 3274 (1990)] proposed a microscopic statistical theory describing the effects of external hydrostatic pressure on hole-burning spectra of impurity molecules in amorphous solids. Using the so-called Gaussian approximation, which is valid in the limit that the density of the solvent molecules is high, the theory predicts the pressure kernel of a hole spectrum as well as the shape of the inhomogeneous band to be characterized by Gaussian profiles. Whereas the maximum position of the kernel increases from lower to higher solvent shift values in the inhomogeneous distribution, its width is constant. Numerical calculations performed without this approximation, however, show that for the data of poly(ethylene) and poly(styrene) doped with free-base phthalocyanine, not only the pressure shift but also the pressure broadening of hole-burning spectra increases from the blue to the red edge of the absorption band. Moreover, the hole spectra are predicted to become asymmetric when the sample is exposed to hydrostatic pressure. These deviations from the results of the Gaussian approximation are distinctly more pronounced than the deviations of the inhomogeneous band shapes from Gaussian profiles.
Radiation pressure acceleration of corrugated thin foils by Gaussian and super-Gaussian beams
Adusumilli, K.; Goyal, D.; Tripathi, V. K.
2012-01-15
Rayleigh-Taylor instability of radiation pressure accelerated ultrathin foils by laser having Gaussian and super-Gaussian intensity distribution is investigated using a single fluid code. The foil is allowed to have ring shaped surface ripples. The radiation pressure force on such a foil is non-uniform with finite transverse component F{sub r}; F{sub r} varies periodically with r. Subsequently, the ripple grows as the foil moves ahead along z. With a Gaussian beam, the foil acquires an overall curvature due to non-uniformity in radiation pressure and gets thinner. In the process, the ripple perturbation is considerably washed off. With super-Gaussian beam, the ripple is found to be more strongly washed out. In order to avoid transmission of the laser through the thinning foil, a criterion on the foil thickness is obtained.
Gaussian States Minimize the Output Entropy of One-Mode Quantum Gaussian Channels.
De Palma, Giacomo; Trevisan, Dario; Giovannetti, Vittorio
2017-04-21
We prove the long-standing conjecture stating that Gaussian thermal input states minimize the output von Neumann entropy of one-mode phase-covariant quantum Gaussian channels among all the input states with a given entropy. Phase-covariant quantum Gaussian channels model the attenuation and the noise that affect any electromagnetic signal in the quantum regime. Our result is crucial to prove the converse theorems for both the triple trade-off region and the capacity region for broadcast communication of the Gaussian quantum-limited amplifier. Our result extends to the quantum regime the entropy power inequality that plays a key role in classical information theory. Our proof exploits a completely new technique based on the recent determination of the p→q norms of the quantum-limited amplifier [De Palma et al., arXiv:1610.09967]. This technique can be applied to any quantum channel.
Gaussian States Minimize the Output Entropy of One-Mode Quantum Gaussian Channels
NASA Astrophysics Data System (ADS)
De Palma, Giacomo; Trevisan, Dario; Giovannetti, Vittorio
2017-04-01
We prove the long-standing conjecture stating that Gaussian thermal input states minimize the output von Neumann entropy of one-mode phase-covariant quantum Gaussian channels among all the input states with a given entropy. Phase-covariant quantum Gaussian channels model the attenuation and the noise that affect any electromagnetic signal in the quantum regime. Our result is crucial to prove the converse theorems for both the triple trade-off region and the capacity region for broadcast communication of the Gaussian quantum-limited amplifier. Our result extends to the quantum regime the entropy power inequality that plays a key role in classical information theory. Our proof exploits a completely new technique based on the recent determination of the p →q norms of the quantum-limited amplifier [De Palma et al., arXiv:1610.09967]. This technique can be applied to any quantum channel.
Shamis, Mira
2013-11-15
We use the supersymmetric formalism to derive an integral formula for the density of states of the Gaussian Orthogonal Ensemble, and then apply saddle-point analysis to give a new derivation of the 1/N-correction to Wigner's law. This extends the work of Disertori on the Gaussian Unitary Ensemble. We also apply our method to the interpolating ensembles of Mehta–Pandey.
40 CFR 422.20 - Applicability; description of the phosphorus consuming subcategory.
Code of Federal Regulations, 2010 CFR
2010-07-01
... phosphorus consuming subcategory. 422.20 Section 422.20 Protection of Environment ENVIRONMENTAL PROTECTION... Phosphorus Consuming Subcategory § 422.20 Applicability; description of the phosphorus consuming subcategory... manufacture of phosphoric acid, phosphorus pentoxide, phosphorus pentasulfide, phosphorus trichloride,...
40 CFR 422.20 - Applicability; description of the phosphorus consuming subcategory.
Code of Federal Regulations, 2011 CFR
2011-07-01
... phosphorus consuming subcategory. 422.20 Section 422.20 Protection of Environment ENVIRONMENTAL PROTECTION... Phosphorus Consuming Subcategory § 422.20 Applicability; description of the phosphorus consuming subcategory... manufacture of phosphoric acid, phosphorus pentoxide, phosphorus pentasulfide, phosphorus trichloride,...
40 CFR 422.20 - Applicability; description of the phosphorus consuming subcategory.
Code of Federal Regulations, 2012 CFR
2012-07-01
... phosphorus consuming subcategory. 422.20 Section 422.20 Protection of Environment ENVIRONMENTAL PROTECTION... Phosphorus Consuming Subcategory § 422.20 Applicability; description of the phosphorus consuming subcategory... manufacture of phosphoric acid, phosphorus pentoxide, phosphorus pentasulfide, phosphorus trichloride,...
40 CFR 422.20 - Applicability; description of the phosphorus consuming subcategory.
Code of Federal Regulations, 2013 CFR
2013-07-01
... phosphorus consuming subcategory. 422.20 Section 422.20 Protection of Environment ENVIRONMENTAL PROTECTION... Phosphorus Consuming Subcategory § 422.20 Applicability; description of the phosphorus consuming subcategory... manufacture of phosphoric acid, phosphorus pentoxide, phosphorus pentasulfide, phosphorus trichloride,...
Gettering Silicon Wafers with Phosphorus
NASA Technical Reports Server (NTRS)
Daiello, R. V.
1983-01-01
Silicon wafers subjected to gettering in phosphorus atmosphere have longer diffusion lengths and higher solar-cell efficiencies than untreated wafers. Gettering treatment improves properties of solar cells manufactured from impure silicon and is compatible with standard solar-cell processing.
Enzymatic hydrolysis of organic phosphorus
USDA-ARS?s Scientific Manuscript database
Orthophosphate-releasing enzymatic hydrolysis is an alternative means for characterizing organic phosphorus (Po) in animal manure. The approach is not only simple and fast, but can also provide information difficult to obtain by other methods. Currently, commercially available phosphatases are mainl...
Gettering Silicon Wafers with Phosphorus
NASA Technical Reports Server (NTRS)
Daiello, R. V.
1983-01-01
Silicon wafers subjected to gettering in phosphorus atmosphere have longer diffusion lengths and higher solar-cell efficiencies than untreated wafers. Gettering treatment improves properties of solar cells manufactured from impure silicon and is compatible with standard solar-cell processing.
Major Minerals - Calcium, Magnesium, Phosphorus
USDA-ARS?s Scientific Manuscript database
Calcium, magnesium and phosphorus are essential elements critically important for the function of the musculoskeletal system, including the formation and transduction of energy and the maintenance of healthy bone. The major calcium concern for physically active healthy middle-aged adults is to consu...
Clinical Disorders of Phosphorus Metabolism
Yu, George C.; Lee, David B. N.
1987-01-01
Deranged phosphorus metabolism is commonly encountered in clinical medicine. Disturbances in phosphate intake, excretion and transcellular shift account for the abnormal serum levels. As a result of the essential role played by phosphate in intracellular metabolism, the clinical manifestations of hypophosphatemia and hyperphosphatemia are extensive. An understanding of the pathophysiology of various phosphate disorders is helpful in guiding therapeutic decisions. Images PMID:3321712
Convolution of a Doppler line by a Gaussian instrument function
NASA Technical Reports Server (NTRS)
Fridovich, B.; Devi, V. M.; Das, P. P.
1980-01-01
A simple and direct method is obtained for assessing the distortion of a Doppler line by a Gaussian instrument function. It is suggested that a close approximation to the width of a Gaussian instrument function, or an almost Gaussian function, may be obtained by measuring a line with a Doppler absorption coefficient. The method is applicable to diode laser measurements, and may be used whenever a Gaussian instrument function is a reasonable approximation to real conditions
Few-layer black phosphorus nanoparticles.
Sofer, Zdenek; Bouša, Daniel; Luxa, Jan; Mazanek, Vlastimil; Pumera, Martin
2016-01-28
Herein, black phosphorus quantum dots and nanoparticles of a few layer thickness were prepared and characterized using STEM, AFM, dynamic light scattering, X-ray photoelectron spectroscopy, X-ray diffraction, Raman spectroscopy and photoluminescence. Impact electrochemistry of the induvidual black phosphorus nanoparticles allows their size determination. The centrifugation of colloidal black phosphorus nanoparticles allowed separation of quantum dots with sizes up to 15 nm. These black phosphorus nanoparticles exhibit a large band gap and are expected to find a wide range of applications from semiconductors to biomolecule tags. The use of black phosphorus nanoparticles for vapour sensing was successfully demonstrated.
Natural phosphorus sources for the Pacific Northwest
Johnson, Hank
2011-01-01
Phosphorus is a naturally occurring element found in all rocks; the amount varies by the type of rock. The amount of phosphorus in sediments is expected to be correlated with the amount of phosphorus in the parent rocks. Streambed sediment collected by the National Uranium Resource Evaluation (NURE) Program were used to estimate the variation of phosphorus across the Pacific Northwest. This file provides an estimate of the mean concentration of phosphorus in soils for each incremental catchment of the USGS Pacific Northwest SPARROW model.
Modeling of Boron and Phosphorus Implantation into (100) Germanium
Suh,Y.; Carroll, M.; Levy, R.; Sahiner, M.; Bisognin, G.; King, C.
2005-01-01
Boron and phosphorus implants into germanium and silicon with energies from 20 to 320 keV and ion doses from 5x10{sup 13} to 5x10{sup 16} cm{sup -2} were characterized using secondary ion mass spectrometry. The first four moments of all implants were calculated from the experimental data. Both the phosphorus and boron implants were found to be shallower in the germanium than in the silicon for the same implant parameters and high hole concentrations, as high as 2x10{sup 20} cm{sup -3}, were detected by spreading resistance profiling immediately after boron implants without subsequent annealing. Channeling experiments using nuclear reaction analysis also indicated high substitutional fractions ({approx}19%) even in the highest dose case immediately after implant. A greater straggle (second moment) is, however, observed in the boron implants in the germanium than in the silicon despite having a shorter projected range in the germanium. Implant profiles predicted by Monte Carlo simulations and Lindhard-Scharff-Schiott theory were calculated to help clarify the implant behavior. Finally, the experimentally obtained moments were used to calculate Pearson distribution fits to the boron and phosphorus implants for rapid simulation of nonamorphizing doses over the entire energy range examined.
The Galactic evolution of phosphorus
NASA Astrophysics Data System (ADS)
Caffau, E.; Bonifacio, P.; Faraggiana, R.; Steffen, M.
2011-08-01
Context. As a galaxy evolves, its chemical composition changes and the abundance ratios of different elements are powerful probes of the underlying evolutionary processes. Phosphorous is an element whose evolution has remained quite elusive until now, because it is difficult to detect in cool stars. The infrared weak P i lines of the multiplet 1, at 1050-1082 nm, are the most reliable indicators of the presence of phosphorus. The availability of CRIRES at VLT has permitted access to this wavelength range in stellar spectra. Aims: We attempt to measure the phosphorus abundance of twenty cool stars in the Galactic disk. Methods: The spectra are analysed with one-dimensional model-atmospheres computed in local thermodynamic equilibrium (LTE). The line formation computations are performed assuming LTE. Results: The ratio of phosphorus to iron behaves similarly to sulphur, increasing towards lower metallicity stars. Its ratio with respect to sulphur is roughly constant and slightly larger than solar, [P/S] = 0.10 ± 0.10. Conclusions: We succeed in taking an important step towards the understanding of the chemical evolution of phosphorus in the Galaxy. However, the observed rise in the P/Fe abundance ratio is steeper than predicted by Galactic chemical evolution model developed by Kobayashi and collaborators. Phosphorus appears to evolve differently from the light odd-Z elements sodium and aluminium. The constant value of [P/S] with metallicity implies that P production is insensitive to the neutron excess, thus processes other than neutron captures operate. We suggest that proton captures on 30Si and α captures on 27Al are possibilities to investigate. We see no clear distinction between our results for stars with planets and stars without any detected planet. Based on observations obtained with the CRIRES spectrograph at ESO-VLT Antu 8.2 m telescope at Paranal, Programme 386.D-0130, P.I. E. Caffau.
Analytic Matrix Elements and Gradients with Shifted Correlated Gaussians
NASA Astrophysics Data System (ADS)
Fedorov, D. V.
2017-01-01
Matrix elements between shifted correlated Gaussians of various potentials with several form-factors are shown to be analytic. Their gradients with respect to the non-linear parameters of the Gaussians are also analytic. Analytic matrix elements are of importance for the correlated Gaussian method in quantum few-body physics.
On the classical capacity of quantum Gaussian channels
NASA Astrophysics Data System (ADS)
Lupo, Cosmo; Pirandola, Stefano; Aniello, Paolo; Mancini, Stefano
2011-02-01
The set of quantum Gaussian channels acting on one bosonic mode can be classified according to the action of the group of Gaussian unitaries. We look for bounds on the classical capacity for channels belonging to such a classification. Lower bounds can be efficiently calculated by restricting the study to Gaussian encodings, for which we provide analytical expressions.
Phosphorus geochemistry of recent sediments in the South Basin of Lake Winnipeg
Mayer, T.; Simpson, S.L.; Thorleifson, L.H.; Lockhart, W.L.; Wilkinson, Philip M.
2006-01-01
Lake Winnipeg supports the largest commercial fishery on Canadian Prairies. It has been influenced by a variety of environmental forces and anthropogenic activities. To gain a better understanding of recent changes in nutrient status of the lake, it is important to reconstruct its previous history from sedimentary records. Lacustrine sediments are known to be an important sink of many dissolved and suspended substances, including phosphorus, hence, they provide a permanent historical record of changes occurring in the lake. These changes may be induced by natural factors or by anthropogenic activities in the watershed. Phosphorus profiles from dated sediment cores collected in 1999 and 1994 from the South Basin of Lake Winnipeg were investigated to determine phosphorus enrichment in recent sediments. To interpret the nutrient status and depositional conditions responsible for the trends in total phosphorus, three operationally defined forms of phosphorus (P) were determined: non-apatite inorganic P, apatite P, and organic P. Significant increases in sediment phosphorus concentrations were observed in the uppermost 20 cm of the cores and several anomalies were observed at depth. A doubling in total phosphorus relative to aluminum over the last fifty years is largely due to increases in the non-apatite inorganic fraction, suggesting that much of sedimentary phosphorus increase is attributable to changes in the nutrient status of the water column related to anthropogenic inputs. Organic phosphorus exhibits a subtle increase in the upper 20 cm of the gravity cores, likely due to increases in the primary productivity of the lake. Except for the slight increase in deeper sediments, apatite phosphorus, which is thought to be of detrital origin, remained fairly constant over the length of the cores. Anomalous spikes in phosphorus concentrations deeper in the cores, comprised mainly of the non-apatite inorganic phosphorus fraction, likely resulted from natural variation in
Global warming and the phosphorus cycle
Tarasova, N.P.; Smetannikov, Y.V.; Balitsky, V.Y. )
1994-09-01
Greenhouse-induced climate change seriously influences the phosphorus cycle. In this paper the authors have analyzed how environmental conditions cause an increase or a decrease in the phosphorus content of the soil. Phosphorus production in South Kazakhstan without strict control for fulfilling environment-protection measures may lead to the chemical erosion of soils, i.e., disturb the balance of soluble and insoluble, as well as organic and inorganic, forms of phosphorus. Phosphorus accumulation in the soil can be promoted by heavy metals. The authors have constructed a general dynamic system for phosphorus flows in the soil. The results of 7-years monitoring of the soils in the region of South Kazakhstan are discussed and compared with the dynamic system. The role of chemical elements promoting phosphorus accumulation in the soil is further analyzed.
Edge Detection By Differences Of Gaussians
NASA Astrophysics Data System (ADS)
Marthon, Ph.; Thiesse, B.; Bruel, A.
1986-06-01
The Differences of Gaussians (DOGs) are of fundamental importance in edge detection. They belong to the human vision system as shown by Enroth-Cugell and Robson [ENR66]. The zero-crossings of their outputs mark the loci of the intensity changes. The set of descriptions from different operator sizes forms the input for later visual processes, such as stereopsis and motion analysis. We show that DOGs uniformly converge to the Laplacian of a Gaussian (ΔG2,σ) when both the inhibitory and excitatory variables converge to σ. Spatial and spectral properties of DOGs and ΔGs are compared: width and height of their central positive regions, bandiwidths... Finally, DOGs' responses to some features such as ideal edge, right angle corner, general corner..., are presented and magnitudes of error on edge position are given.
Gaussian quadrature for multiple orthogonal polynomials
NASA Astrophysics Data System (ADS)
Coussement, Jonathan; van Assche, Walter
2005-06-01
We study multiple orthogonal polynomials of type I and type II, which have orthogonality conditions with respect to r measures. These polynomials are connected by their recurrence relation of order r+1. First we show a relation with the eigenvalue problem of a banded lower Hessenberg matrix Ln, containing the recurrence coefficients. As a consequence, we easily find that the multiple orthogonal polynomials of type I and type II satisfy a generalized Christoffel-Darboux identity. Furthermore, we explain the notion of multiple Gaussian quadrature (for proper multi-indices), which is an extension of the theory of Gaussian quadrature for orthogonal polynomials and was introduced by Borges. In particular, we show that the quadrature points and quadrature weights can be expressed in terms of the eigenvalue problem of Ln.
Fock expansion of multimode pure Gaussian states
Cariolaro, Gianfranco; Pierobon, Gianfranco
2015-12-15
The Fock expansion of multimode pure Gaussian states is derived starting from their representation as displaced and squeezed multimode vacuum states. The approach is new and appears to be simpler and more general than previous ones starting from the phase-space representation given by the characteristic or Wigner function. Fock expansion is performed in terms of easily evaluable two-variable Hermite–Kampé de Fériet polynomials. A relatively simple and compact expression for the joint statistical distribution of the photon numbers in the different modes is obtained. In particular, this result enables one to give a simple characterization of separable and entangled states, as shown for two-mode and three-mode Gaussian states.
Large Non-Gaussianity in Axion Inflation
Barnaby, Neil; Peloso, Marco
2011-05-06
The inflationary paradigm has enjoyed phenomenological success; however, a compelling particle physics realization is still lacking. Axions are among the best-motivated inflaton candidates, since the flatness of their potential is naturally protected by a shift symmetry. We reconsider the cosmological perturbations in axion inflation, consistently accounting for the coupling to gauge fields c{phi}FF-tilde, which is generically present in these models. This coupling leads to production of gauge quanta, which provide a new source of inflaton fluctuations, {delta}{phi}. For c > or approx. 10{sup 2}M{sub p}{sup -1}, these dominate over the vacuum fluctuations, and non-Gaussianity exceeds the current observational bound. This regime is typical for concrete realizations that admit a UV completion; hence, large non-Gaussianity is easily obtained in minimal and natural realizations of inflation.
NASA Astrophysics Data System (ADS)
Meerburg, P. Daniel; Meyers, Joel; van Engelen, Alexander; Ali-Haïmoud, Yacine
2016-06-01
We study the degree to which the cosmic microwave background (CMB) can be used to constrain primordial non-Gaussianity involving one tensor and two scalar fluctuations, focusing on the correlation of one polarization B mode with two temperature modes. In the simplest models of inflation, the tensor-scalar-scalar primordial bispectrum is nonvanishing and is of the same order in slow-roll parameters as the scalar-scalar-scalar bispectrum. We calculate the ⟨B T T ⟩ correlation arising from a primordial tensor-scalar-scalar bispectrum, and show that constraints from an experiment like CMB-Stage IV using this observable are more than an order of magnitude better than those on the same primordial coupling obtained from temperature measurements alone. We argue that B -mode non-Gaussianity opens up an as-yet-unexplored window into the early Universe, demonstrating that significant information on primordial physics remains to be harvested from CMB anisotropies.
Quantum Fidelity for Arbitrary Gaussian States.
Banchi, Leonardo; Braunstein, Samuel L; Pirandola, Stefano
2015-12-31
We derive a computable analytical formula for the quantum fidelity between two arbitrary multimode Gaussian states which is simply expressed in terms of their first- and second-order statistical moments. We also show how such a formula can be written in terms of symplectic invariants and used to derive closed forms for a variety of basic quantities and tools, such as the Bures metric, the quantum Fisher information, and various fidelity-based bounds. Our result can be used to extend the study of continuous-variable protocols, such as quantum teleportation and cloning, beyond the current one-mode or two-mode analyses, and paves the way to solve general problems in quantum metrology and quantum hypothesis testing with arbitrary multimode Gaussian resources.
A Fast Incremental Gaussian Mixture Model
Pinto, Rafael Coimbra; Engel, Paulo Martins
2015-01-01
This work builds upon previous efforts in online incremental learning, namely the Incremental Gaussian Mixture Network (IGMN). The IGMN is capable of learning from data streams in a single-pass by improving its model after analyzing each data point and discarding it thereafter. Nevertheless, it suffers from the scalability point-of-view, due to its asymptotic time complexity of O(NKD3) for N data points, K Gaussian components and D dimensions, rendering it inadequate for high-dimensional data. In this work, we manage to reduce this complexity to O(NKD2) by deriving formulas for working directly with precision matrices instead of covariance matrices. The final result is a much faster and scalable algorithm which can be applied to high dimensional tasks. This is confirmed by applying the modified algorithm to high-dimensional classification datasets. PMID:26444880
Quantum Fidelity for Arbitrary Gaussian States
NASA Astrophysics Data System (ADS)
Banchi, Leonardo; Braunstein, Samuel L.; Pirandola, Stefano
2015-12-01
We derive a computable analytical formula for the quantum fidelity between two arbitrary multimode Gaussian states which is simply expressed in terms of their first- and second-order statistical moments. We also show how such a formula can be written in terms of symplectic invariants and used to derive closed forms for a variety of basic quantities and tools, such as the Bures metric, the quantum Fisher information, and various fidelity-based bounds. Our result can be used to extend the study of continuous-variable protocols, such as quantum teleportation and cloning, beyond the current one-mode or two-mode analyses, and paves the way to solve general problems in quantum metrology and quantum hypothesis testing with arbitrary multimode Gaussian resources.
New insights into phosphorus management in agriculture--A crop rotation approach.
Łukowiak, Remigiusz; Grzebisz, Witold; Sassenrath, Gretchen F
2016-01-15
This manuscript presents research results examining phosphorus (P) management in a soil–plant system for three variables: i) internal resources of soil available phosphorus, ii) cropping sequence, and iii) external input of phosphorus (manure, fertilizers). The research was conducted in long-term cropping sequences with oilseed rape (10 rotations) and maize (six rotations) over three consecutive growing seasons (2004/2005, 2005/2006, and 2006/2007) in a production farm on soils originated from Albic Luvisols in Poland. The soil available phosphorus pool, measured as calcium chloride extractable P (CCE-P), constituted 28% to 67% of the total phosphorus input (PTI) to the soil–plant system in the spring. Oilseed rape and maize dominant cropping sequences showed a significant potential to utilize the CCE-P pool within the soil profile. Cropping sequences containing oilseed rape significantly affected the CCE-P pool, and in turn contributed to the P(TI). The P(TI) uptake use efficiency was 50% on average. Therefore, the CCE-P pool should be taken into account as an important component of a sound and reliable phosphorus balance. The instability of the yield prediction, based on the P(TI), was mainly due to an imbalanced management of both farmyard manure and phosphorus fertilizer. Oilseed rape plants provide a significant positive impact on the CCE-P pool after harvest, improving the productive stability of the entire cropping sequence. This phenomenon was documented by the P(TI) increase during wheat cultivation following oilseed rape. The Unit Phosphorus Uptake index also showed a higher stability in oilseed rape cropping systems compared to rotations based on maize. Cropping sequences are a primary factor impacting phosphorus management. Judicious implementation of crop rotations can improve soil P resources, efficiency of crop P use, and crop yield and yield stability. Use of cropping sequences can reduce the need for external P sources such as farmyard manure
40 CFR 422.20 - Applicability; description of the phosphorus consuming subcategory.
Code of Federal Regulations, 2014 CFR
2014-07-01
... manufacture of phosphoric acid, phosphorus pentoxide, phosphorus pentasulfide, phosphorus trichloride, and... phosphorus oxychloride creates waste water pollutants not completely amenable to the procedures utilized for...
Controlling Hamiltonian chaos via Gaussian curvature.
Oloumi, A; Teychenné, D
1999-12-01
We present a method allowing one to partly stabilize some chaotic Hamiltonians which have two degrees of freedom. The purpose of the method is to avoid the regions of V(q(1),q(2)) where its Gaussian curvature becomes negative. We show the stabilization of the Hénon-Heiles system, over a wide area, for the critical energy E=1/6. Total energy of the system varies only by a few percent.
Entanglement Rate for Gaussian Continuous Variable Beams
2016-08-24
entangledGaussian beamswith arbitrary correlators . This expression is especially useful for situationswhere the source emits an arbitrary frequency spectrum...However, such a naive approach fails if there are correlations between subsequent pairs, or if we consider entangled beams of radiation that cannot be...frequency integral over what we call a ‘spectral density of entanglement’.We showhow to obtain this from the two-point time correlators of the entangled
Description and characterization of plasmonic Gaussian beams
NASA Astrophysics Data System (ADS)
Garcia-Ortiz, Cesar E.; Pisano, Eduardo; Coello, Victor
2017-08-01
In this work, we present for the first time a detailed description and experimental characterization of plasmonic Gaussian beams (PGBs), as well as the analytical expression to describe their field and intensity distributions. The propagation parameters of the PGBs, such as the divergence angle, Rayleigh range, beam width function, and the beam waist are determined experimentally in accordance to the proposed model. The radius of curvature of the wavefront and the Gouy phase shift of PGBs can also be predicted using this method.
Non-Markovianity of Gaussian Channels
NASA Astrophysics Data System (ADS)
Torre, G.; Roga, W.; Illuminati, F.
2015-08-01
We introduce a necessary and sufficient criterion for the non-Markovianity of Gaussian quantum dynamical maps based on the violation of divisibility. The criterion is derived by defining a general vectorial representation of the covariance matrix which is then exploited to determine the condition for the complete positivity of partial maps associated with arbitrary time intervals. Such construction does not rely on the Choi-Jamiolkowski representation and does not require optimization over states.
Non-Markovianity of Gaussian Channels.
Torre, G; Roga, W; Illuminati, F
2015-08-14
We introduce a necessary and sufficient criterion for the non-Markovianity of Gaussian quantum dynamical maps based on the violation of divisibility. The criterion is derived by defining a general vectorial representation of the covariance matrix which is then exploited to determine the condition for the complete positivity of partial maps associated with arbitrary time intervals. Such construction does not rely on the Choi-Jamiolkowski representation and does not require optimization over states.
Entropic Fluctuations in Gaussian Dynamical Systems
NASA Astrophysics Data System (ADS)
Jakšić, V.; Pillet, C.-A.; Shirikyan, A.
2016-06-01
We study nonequilibrium statistical mechanics of a Gaussian dynamical system and compute in closed form the large deviation functionals describing the fluctuations of the entropy production observable with respect to the reference state and the nonequilibrium steady state. The entropy production observable of this model is an unbounded function on the phase space, and its large deviation functionals have a surprisingly rich structure. We explore this structure in some detail.
Least-squares Gaussian beam migration
NASA Astrophysics Data System (ADS)
Yuan, Maolin; Huang, Jianping; Liao, Wenyuan; Jiang, Fuyou
2017-02-01
A theory of least-squares Gaussian beam migration (LSGBM) is presented to optimally estimate a subsurface reflectivity. In the iterative inversion scheme, a Gaussian beam (GB) propagator is used as the kernel of linearized forward modeling (demigration) and its adjoint (migration). Born approximation based GB demigration relies on the calculation of Green’s function by a Gaussian-beam summation for the downward and upward wavefields. The adjoint operator of GB demigration accounts for GB prestack depth migration under the cross-correlation imaging condition, where seismic traces are processed one by one for each shot. A numerical test on the point diffractors model suggests that GB demigration can successfully simulate primary scattered data, while migration (adjoint) can yield a corresponding image. The GB demigration/migration algorithms are used for the least-squares migration scheme to deblur conventional migrated images. The proposed LSGBM is illustrated with two synthetic data for a four-layer model and the Marmousi2 model. Numerical results show that LSGBM, compared to migration (adjoint) with GBs, produces images with more balanced amplitude, higher resolution and even fewer artifacts. Additionally, the LSGBM shows a robust convergence rate.
The Wehrl entropy has Gaussian optimizers
NASA Astrophysics Data System (ADS)
De Palma, Giacomo
2017-09-01
We determine the minimum Wehrl entropy among the quantum states with a given von Neumann entropy and prove that it is achieved by thermal Gaussian states. This result determines the relation between the von Neumann and the Wehrl entropies. The key idea is proving that the quantum-classical channel that associates with a quantum state its Husimi Q representation is asymptotically equivalent to the Gaussian quantum-limited amplifier with infinite amplification parameter. This equivalence also permits to determine the p→ q norms of the aforementioned quantum-classical channel in the two particular cases of one mode and p=q and prove that they are achieved by thermal Gaussian states. The same equivalence permits to prove that the Husimi Q representation of a one-mode passive state (i.e., a state diagonal in the Fock basis with eigenvalues decreasing as the energy increases) majorizes the Husimi Q representation of any other one-mode state with the same spectrum, i.e., it maximizes any convex functional.
Gaussian Hypothesis Testing and Quantum Illumination
NASA Astrophysics Data System (ADS)
Wilde, Mark M.; Tomamichel, Marco; Lloyd, Seth; Berta, Mario
2017-09-01
Quantum hypothesis testing is one of the most basic tasks in quantum information theory and has fundamental links with quantum communication and estimation theory. In this paper, we establish a formula that characterizes the decay rate of the minimal type-II error probability in a quantum hypothesis test of two Gaussian states given a fixed constraint on the type-I error probability. This formula is a direct function of the mean vectors and covariance matrices of the quantum Gaussian states in question. We give an application to quantum illumination, which is the task of determining whether there is a low-reflectivity object embedded in a target region with a bright thermal-noise bath. For the asymmetric-error setting, we find that a quantum illumination transmitter can achieve an error probability exponent stronger than a coherent-state transmitter of the same mean photon number, and furthermore, that it requires far fewer trials to do so. This occurs when the background thermal noise is either low or bright, which means that a quantum advantage is even easier to witness than in the symmetric-error setting because it occurs for a larger range of parameters. Going forward from here, we expect our formula to have applications in settings well beyond those considered in this paper, especially to quantum communication tasks involving quantum Gaussian channels.
Unitarily localizable entanglement of Gaussian states
Serafini, Alessio; Adesso, Gerardo; Illuminati, Fabrizio
2005-03-01
We consider generic (mxn)-mode bipartitions of continuous-variable systems, and study the associated bisymmetric multimode Gaussian states. They are defined as (m+n)-mode Gaussian states invariant under local mode permutations on the m-mode and n-mode subsystems. We prove that such states are equivalent, under local unitary transformations, to the tensor product of a two-mode state and of m+n-2 uncorrelated single-mode states. The entanglement between the m-mode and the n-mode blocks can then be completely concentrated on a single pair of modes by means of local unitary operations alone. This result allows us to prove that the PPT (positivity of the partial transpose) condition is necessary and sufficient for the separability of (m+n)-mode bisymmetric Gaussian states. We determine exactly their negativity and identify a subset of bisymmetric states whose multimode entanglement of formation can be computed analytically. We consider explicit examples of pure and mixed bisymmetric states and study their entanglement scaling with the number of modes.
NMR of Phosphorus in Iii-Phosphorus Semiconductors.
NASA Astrophysics Data System (ADS)
Rutland, Jonathan Mark
Second moment measurements have been obtained for phosphorus in III-phosphorus semiconductor compounds, including the first such measurements on BP. By the use of various multiple pulse sequences, the second moment contributions due to like and unlike spins can be measured independently. A new technique for extracting the second moment has been developed that eliminates or reduces many of the limitations imposed by previous methods. Previous work has attributed the differences between the measured and theoretical second moment to the indirect nuclear interactions; the exchange and pseudodipolar interactions. Engelsburg and Norberg have shown that the measured second moments place limits on the range of allowed values for the indirect coupling coefficients. Their theory is extended in this work to the case when multiple isotopes are present. The derived coupling coefficient limits are compared to theoretical calculations based on the two-electron bond orbital model. The results are in agreement with a scaling of the coupling coefficients with atomic number.
Production and propagation of Hermite-sinusoidal-Gaussian laser beams.
Tovar, A A; Casperson, L W
1998-09-01
Hermite-sinusoidal-Gaussian solutions to the wave equation have recently been obtained. In the limit of large Hermite-Gaussian beam size, the sinusoidal factors are dominant and reduce to the conventional modes of a rectangular waveguide. In the opposite limit the beams reduce to the familiar Hermite-Gaussian form. The propagation of these beams is examined in detail, and resonators are designed that will produce them. As an example, a special resonator is designed to produce hyperbolic-sine-Gaussian beams. This ring resonator contains a hyperbolic-cosine-Gaussian apodized aperture. The beam mode has finite energy and is perturbation stable.
Local Gaussian operations can enhance continuous-variable entanglement distillation
Zhang Shengli; Loock, Peter van
2011-12-15
Entanglement distillation is a fundamental building block in long-distance quantum communication. Though known to be useless on their own for distilling Gaussian entangled states, local Gaussian operations may still help to improve non-Gaussian entanglement distillation schemes. Here we show that by applying local squeezing operations both the performance and the efficiency of existing distillation protocols can be enhanced. We find that such an enhancement through local Gaussian unitaries can be obtained even when the initially shared Gaussian entangled states are mixed, as, for instance, after their distribution through a lossy-fiber communication channel.
NASA Astrophysics Data System (ADS)
Moghtader Dindarlu, M. H.; Tehrani, M. Kavosh; Saghafifar, H.; Maleki, A.; Solookinejad, Gh; Jabbari, M.
2017-02-01
In this paper, an analytical model for temperature distribution of the side-pumped laser rod is extracted. This model can be used for side-pumped laser rods whose absorbed pump profile is a Gaussian profile. Then, it is validated by numerical results which exhibit a good agreement with the analytical results. Afterwards, by considering a general expression for super-Gaussian and top-hat profiles, and solving the heat equation, the influence of profile width and super-Gaussian exponent of the profile on temperature distribution are investigated. Consequently, the profile width turns out to have a greater influence on the temperature compared to the type of the profile.
NASA Astrophysics Data System (ADS)
Saha, Surajit; Ghosh, Manas
2016-03-01
We perform a broad exploration of profiles of third harmonic generation (THG) susceptibility of impurity doped quantum dots (QDs) in the presence and absence of noise. We have invoked Gaussian white noise in the present study. A Gaussian impurity has been introduced into the QD. Noise has been applied to the system additively and multiplicatively. A perpendicular magnetic field emerges out as a confinement source and a static external electric field has been applied. The THG profiles have been pursued as a function of incident photon energy when several important parameters such as electric field strength, magnetic field strength, confinement energy, dopant location, Al concentration, dopant potential, relaxation time and noise strength assume different values. Moreover, the role of the pathway through which noise is applied (additive/multiplicative) on the THG profiles has also been deciphered. The THG profiles are found to be decorated with interesting observations such as shift of THG peak position and maximization/minimization of THG peak intensity. Presence of noise alters the characteristics of THG profiles and sometimes enhances the THG peak intensity. Furthermore, the mode of application of noise (additive/multiplicative) also regulates the THG profiles in a few occasions in contrasting manners. The observations highlight the possible scope of tuning the THG coefficient of doped QD systems in the presence of noise and bears tremendous technological importance.
Detecting quantum non-Gaussianity via the Wigner function
NASA Astrophysics Data System (ADS)
Genoni, Marco G.; Palma, Mattia L.; Tufarelli, Tommaso; Olivares, Stefano; Kim, M. S.; Paris, Matteo G. A.
2013-06-01
We introduce a family of criteria to detect quantum non-Gaussian states of a harmonic oscillator, that is, quantum states that cannot be expressed as a convex mixture of Gaussian states. In particular, we prove that for convex mixtures of Gaussian states, the value of the Wigner function at the origin of phase space is bounded from below by a nonzero positive quantity, which is a function only of the average number of excitations (photons) of the state. As a consequence, if this bound is violated, then the quantum state must be quantum non-Gaussian. We show that this criterion can be further generalized by considering additional Gaussian operations on the state under examination. We then apply these criteria to various non-Gaussian states evolving in a noisy Gaussian channel, proving that the bounds are violated for high values of losses, and thus also for states characterized by a positive Wigner function.
Dietary phosphorus acutely impairs endothelial function.
Shuto, Emi; Taketani, Yutaka; Tanaka, Rieko; Harada, Nagakatsu; Isshiki, Masashi; Sato, Minako; Nashiki, Kunitaka; Amo, Kikuko; Yamamoto, Hironori; Higashi, Yukihito; Nakaya, Yutaka; Takeda, Eiji
2009-07-01
Excessive dietary phosphorus may increase cardiovascular risk in healthy individuals as well as in patients with chronic kidney disease, but the mechanisms underlying this risk are not completely understood. To determine whether postprandial hyperphosphatemia may promote endothelial dysfunction, we investigated the acute effect of phosphorus loading on endothelial function in vitro and in vivo. Exposing bovine aortic endothelial cells to a phosphorus load increased production of reactive oxygen species, which depended on phosphorus influx via sodium-dependent phosphate transporters, and decreased nitric oxide production via inhibitory phosphorylation of endothelial nitric oxide synthase. Phosphorus loading inhibited endothelium-dependent vasodilation of rat aortic rings. In 11 healthy men, we alternately served meals containing 400 mg or 1200 mg of phosphorus in a double-blind crossover study and measured flow-mediated dilation of the brachial artery before and 2 h after the meals. The high dietary phosphorus load increased serum phosphorus at 2 h and significantly decreased flow-mediated dilation. Flow-mediated dilation correlated inversely with serum phosphorus. Taken together, these findings suggest that endothelial dysfunction mediated by acute postprandial hyperphosphatemia may contribute to the relationship between serum phosphorus level and the risk for cardiovascular morbidity and mortality.
Dietary Phosphorus Acutely Impairs Endothelial Function
Shuto, Emi; Taketani, Yutaka; Tanaka, Rieko; Harada, Nagakatsu; Isshiki, Masashi; Sato, Minako; Nashiki, Kunitaka; Amo, Kikuko; Yamamoto, Hironori; Higashi, Yukihito; Nakaya, Yutaka; Takeda, Eiji
2009-01-01
Excessive dietary phosphorus may increase cardiovascular risk in healthy individuals as well as in patients with chronic kidney disease, but the mechanisms underlying this risk are not completely understood. To determine whether postprandial hyperphosphatemia may promote endothelial dysfunction, we investigated the acute effect of phosphorus loading on endothelial function in vitro and in vivo. Exposing bovine aortic endothelial cells to a phosphorus load increased production of reactive oxygen species, which depended on phosphorus influx via sodium-dependent phosphate transporters, and decreased nitric oxide production via inhibitory phosphorylation of endothelial nitric oxide synthase. Phosphorus loading inhibited endothelium-dependent vasodilation of rat aortic rings. In 11 healthy men, we alternately served meals containing 400 mg or 1200 mg of phosphorus in a double-blind crossover study and measured flow-mediated dilation of the brachial artery before and 2 h after the meals. The high dietary phosphorus load increased serum phosphorus at 2 h and significantly decreased flow-mediated dilation. Flow-mediated dilation correlated inversely with serum phosphorus. Taken together, these findings suggest that endothelial dysfunction mediated by acute postprandial hyperphosphatemia may contribute to the relationship between serum phosphorus level and the risk for cardiovascular morbidity and mortality. PMID:19406976
Organic phosphorus sequestration in subtropical treatment wetlands.
Turner, Benjamin L; Newman, Susan; Newman, Jana M
2006-02-01
Diffuse phosphorus pollution is commonly remediated by diverting runoff through treatment wetlands to sequester phosphorus into soil layers. Much of the sequestered phosphorus occurs in organic forms, yet our understanding of its chemical nature is limited. We used NaOH-EDTA extraction and solution 31P NMR spectroscopy to speciate organic phosphorus sequestered in a large treatment wetland (STA-1W) in Florida, USA. The wetland was constructed on previously farmed peat and was designed to remove phosphorus from agricultural runoff prior to discharge into the Everglades. Unconsolidated benthic floc that had accumulated during the 9-year operation of the wetland was sampled along transects through two connected cells dominated by cattail (Typha dominigensis Pers.) and an additional cell colonized by submerged aquatic vegetation, including southern water nymph (Najas guadalupensis(Spreng.) Magnus) and coontail (Ceratophyllum demersum L.). Organic phosphorus was a greater proportion of the sequestered phosphorus in the cattail marsh compared to the submerged aquatic vegetation wetland, but occurred almost exclusively as phosphate diesters and their alkaline hydrolysis products. Itwas therefore markedly different from the organic phosphorus in mineral soils, which is dominated typically by inositol phosphates. Phosphate diesters are readily degradable in most soils, raising concern about the long-term fate of organic phosphorus in treatment wetlands. Further studies are now necessaryto assess the stability of the sequestered organic phosphorus in response to biogeochemical and hydrological perturbation.
Black phosphorus nonvolatile transistor memory
NASA Astrophysics Data System (ADS)
Lee, Dain; Choi, Yongsuk; Hwang, Euyheon; Kang, Moon Sung; Lee, Seungwoo; Cho, Jeong Ho
2016-04-01
We demonstrated nanofloating gate transistor memory devices (NFGTMs) using mechanically-exfoliated few-layered black phosphorus (BP) channels and gold nanoparticle (AuNPs) charge trapping layers. The resulting BP-NFGTMs exhibited excellent memory performances, including the five-level data storage, large memory window (58.2 V), stable retention (104 s), and cyclic endurance (1000 cycles).We demonstrated nanofloating gate transistor memory devices (NFGTMs) using mechanically-exfoliated few-layered black phosphorus (BP) channels and gold nanoparticle (AuNPs) charge trapping layers. The resulting BP-NFGTMs exhibited excellent memory performances, including the five-level data storage, large memory window (58.2 V), stable retention (104 s), and cyclic endurance (1000 cycles). Electronic supplementary information (ESI) available. See DOI: 10.1039/c6nr02078j
Phosphorus doping a semiconductor particle
Stevens, G.D.; Reynolds, J.S.
1999-07-20
A method of phosphorus doping a semiconductor particle using ammonium phosphate is disclosed. A p-doped silicon sphere is mixed with a diluted solution of ammonium phosphate having a predetermined concentration. These spheres are dried with the phosphorus then being diffused into the sphere to create either a shallow or deep p-n junction. A good PSG glass layer is formed on the surface of the sphere during the diffusion process. A subsequent segregation anneal process is utilized to strip metal impurities from near the p-n junction into the glass layer. A subsequent HF strip procedure is then utilized to removed the PSG layer. Ammonium phosphate is not a restricted chemical, is inexpensive, and does not pose any special shipping, handling, or disposal requirement. 1 fig.
Biological Availability of Total Phosphorus.
1979-01-01
STANDARDS-I963- A ELECT MA 18 * SZCURIrY CLASSIFICAION Of THIS PACE (U"n 1De a rnt*.d) 5REPORT DOCUMENTATION PAGEREDISUCON Final Biological Aviaiiyof...Chemical Engineering Department West Virginia University Joseph V. DePinto Clarkson College January 1979 A I , Lake Erie Wastevater Manageuent Study U. S...INTRODUCTION 1 LITERATURE REVIEW 4 A a . Chemical Fractionation of Sediment Phosphorus b. Chemical Measurement of Available P c. Bioassay Measurement of
Gaussian capacity of the quantum bosonic memory channel with additive correlated Gaussian noise
Schaefer, Joachim; Karpov, Evgueni; Cerf, Nicolas J.
2011-09-15
We present an algorithm for calculation of the Gaussian classical capacity of a quantum bosonic memory channel with additive Gaussian noise. The algorithm, restricted to Gaussian input states, is applicable to all channels with noise correlations obeying certain conditions and works in the full input energy domain, beyond previous treatments of this problem. As an illustration, we study the optimal input states and capacity of a quantum memory channel with Gauss-Markov noise [J. Schaefer, Phys. Rev. A 80, 062313 (2009)]. We evaluate the enhancement of the transmission rate when using these optimal entangled input states by comparison with a product coherent-state encoding and find out that such a simple coherent-state encoding achieves not less than 90% of the capacity.
NASA Astrophysics Data System (ADS)
Snoussi, Hichem; Mohammad-Djafari, Ali
2001-05-01
In this contribution, we present new algorithms to source separation for the case of noisy instantaneous linear mixture, within the Bayesian statistical framework. The source distribution prior is modeled by a mixture of Gaussians [1] and the mixing matrix elements distributions by a Gaussian [2]. We model the mixture of Gaussians hierarchically by mean of hidden variables representing the labels of the mixture. Then, we consider the joint a posteriori distribution of sources, mixing matrix elements, labels of the mixture and other parameters of the mixture with appropriate prior probability laws to eliminate degeneracy of the likelihood function of variance parameters and we propose two iterative algorithms to estimate jointly sources, mixing matrix and hyperparameters: Joint MAP (Maximum a posteriori) algorithm and penalized EM algorithm. The illustrative example is taken in [3] to compare with other algorithms proposed in literature. .
Phosphorus and Water Quality Paradox
NASA Astrophysics Data System (ADS)
Pant, H. K.
2008-12-01
Paradoxically, phosphorus (P) is one of the major nutrients for higher agricultural production, as well as it causes eutrophication/algal blooms in aquatic and semi-aquatic systems. Phosphorus loadings from agricultural/urban runoffs into lakes and rivers are becoming a global concern for the protection of water quality. Artificial wetlands are considered as a low cost alternative for treating wastewater including removal of P from sources such as agricultural and urban runoffs. However, the selection of the construction site may well determine the effectiveness of these wetlands. Studies show that P transformations in sediments/ soils are crucial for P sequestration in a wetland rather than the amounts of native P. Using 31Phosphorus Nuclear Magnetic Resonance Spectroscopy (31P NMR), previously unreported an active organic P form, phosphoarginine, was identified, and the study indicates that abandonment of P impacted sites may not solve the P loading problem to the water bodies as the organic P compounds would not be as stable as they were thought, thus, can play a detrimental role in eutrophication of water bodies, after all.
High-Order Local Pooling and Encoding Gaussians Over a Dictionary of Gaussians.
Li, Peihua; Zeng, Hui; Wang, Qilong; Shiu, Simon C K; Zhang, Lei
2017-07-01
Local pooling (LP) in configuration (feature) space proposed by Boureau et al. explicitly restricts similar features to be aggregated, which can preserve as much discriminative information as possible. At the time it appeared, this method combined with sparse coding achieved competitive classification results with only a small dictionary. However, its performance lags far behind the state-of-the-art results as only the zero-order information is exploited. Inspired by the success of high-order statistical information in existing advanced feature coding or pooling methods, we make an attempt to address the limitation of LP. To this end, we present a novel method called high-order LP (HO-LP) to leverage the information higher than the zero-order one. Our idea is intuitively simple: we compute the first- and second-order statistics per configuration bin and model them as a Gaussian. Accordingly, we employ a collection of Gaussians as visual words to represent the universal probability distribution of features from all classes. Our problem is naturally formulated as encoding Gaussians over a dictionary of Gaussians as visual words. This problem, however, is challenging since the space of Gaussians is not a Euclidean space but forms a Riemannian manifold. We address this challenge by mapping Gaussians into the Euclidean space, which enables us to perform coding with common Euclidean operations rather than complex and often expensive Riemannian operations. Our HO-LP preserves the advantages of the original LP: pooling only similar features and using a small dictionary. Meanwhile, it achieves very promising performance on standard benchmarks, with either conventional, hand-engineered features or deep learning-based features.
NASA Astrophysics Data System (ADS)
de Lima Bernardo, Bertúlio; Azevedo, Sérgio; Rosas, Alexandre
2014-11-01
Weak measurements are recognized as a very powerful tool in measuring tiny effects that are perpendicular to the propagation direction of a light beam. In this paper, we develop a simple algebraic description of the weak measurement protocol for both Laguerre-Gaussian and Hermite-Gaussian pointer states in the Schrödinger representation. Since a novel class of position and momentum expectation values could be derived, the present scenario appeared to be very efficient and insightful when compared to analytical methods.
Zhang, Ying; Li, Bao-Zhen; Qu, Jiang-Hang; Yang, Jin-Shui; Huang, Huai-Zeng; Yuan, Hong-Li
2010-11-01
Effects of phosphorus of low concentrations on the growth and the phosphorus removal efficiency of Scenedesmus obliquus were investigated in this study. Results showed that Scenedesmus obliquus achieved a phosphorus removal efficiency of 100% within 22 h when the initial algal cell concentration was 1 x 10(5) /mL and the initial phosphorus concentration was 0.02-0.10 mg/L. With the initial phosphorus concentration increased from 0.02 mg/L to 0.10 mg/L, both growth velocity of Scenedesmus obliquus and maximum biomass increased obviously. Research found that phosphorus concentration had a significant influence on cell morphology of algal. In the external phosphorus sufficient conditions, most of algae cell present as four cells gather round form, then transformed into two cells side by side form in the absence of external phosphorus in culture medium, Finally in single as the main form of existence.
Unusually Stable Helical Coil Allotrope of Phosphorus.
Liu, Dan; Guan, Jie; Jiang, Jingwei; Tománek, David
2016-12-14
We have identified an unusually stable helical coil allotrope of phosphorus. Our ab initio density functional theory calculations indicate that the uncoiled, isolated straight one-dimensional chain is equally stable as a monolayer of black phosphorus dubbed phosphorene. The coiling tendency and the attraction between adjacent coil segments add an extra stabilization energy of ∼12 meV/atom to the coil allotrope, similar in value to the ∼16 meV/atom interlayer attraction in bulk black phosphorus. Thus, the helical coil structure is essentially as stable as black phosphorus, the most stable phosphorus allotrope known to date. With an optimum radius of 2.4 nm, the helical coil of phosphorus may fit well and even form inside wide carbon nanotubes.
Secondary clarifier conditions conducting to secondary phosphorus release in a BNR plant.
Mikola, Anna; Rautiainen, Jyri; Vahala, Riku
2009-01-01
A full-scale study at Pihlajaniemi BNR plant in Savonlinna Finland investigated in detail the conditions in which phosphorus release in the secondary clarifier can occur. For this purpose nutrient and ORP profiles were taken in different process conditions from the sludge blanket in the secondary clarifiers. The results show that in anaerobic conditions secondary phosphorus release can take place in the secondary clarifiers without any addition of exogenous COD. Long sludge retention time in the secondary clarifier was a prerequisite of anaerobic conditions in the sludge blanket, but retention time required varied with seasons and process conditions. Some indications of simultaneous phosphorus release and denitrification without COD input was also found. The re-absorption of the released phosphorus was observed in those parts of the sludge blanket, where nitrates were present. Even with very long sludge retention times the released phosphorus stayed inside the sludge blanket and it did not impair the effluent quality. An 18 month follow-up of the BNR process revealed, however, that occasionally dissolved phosphorus escaped from the sludge blanket. It was suggested, that this was the consequence of the missing nitrate containing layer at the upper part of the sludge blanket.
Evolution of the global phosphorus cycle
NASA Astrophysics Data System (ADS)
Reinhard, Christopher T.; Planavsky, Noah J.; Gill, Benjamin C.; Ozaki, Kazumi; Robbins, Leslie J.; Lyons, Timothy W.; Fischer, Woodward W.; Wang, Chunjiang; Cole, Devon B.; Konhauser, Kurt O.
2017-02-01
The macronutrient phosphorus is thought to limit primary productivity in the oceans on geological timescales. Although there has been a sustained effort to reconstruct the dynamics of the phosphorus cycle over the past 3.5 billion years, it remains uncertain whether phosphorus limitation persisted throughout Earth’s history and therefore whether the phosphorus cycle has consistently modulated biospheric productivity and ocean-atmosphere oxygen levels over time. Here we present a compilation of phosphorus abundances in marine sedimentary rocks spanning the past 3.5 billion years. We find evidence for relatively low authigenic phosphorus burial in shallow marine environments until about 800 to 700 million years ago. Our interpretation of the database leads us to propose that limited marginal phosphorus burial before that time was linked to phosphorus biolimitation, resulting in elemental stoichiometries in primary producers that diverged strongly from the Redfield ratio (the atomic ratio of carbon, nitrogen and phosphorus found in phytoplankton). We place our phosphorus record in a quantitative biogeochemical model framework and find that a combination of enhanced phosphorus scavenging in anoxic, iron-rich oceans and a nutrient-based bistability in atmospheric oxygen levels could have resulted in a stable low-oxygen world. The combination of these factors may explain the protracted oxygenation of Earth’s surface over the last 3.5 billion years of Earth history. However, our analysis also suggests that a fundamental shift in the phosphorus cycle may have occurred during the late Proterozoic eon (between 800 and 635 million years ago), coincident with a previously inferred shift in marine redox states, severe perturbations to Earth’s climate system, and the emergence of animals.
Evolution of the global phosphorus cycle
NASA Astrophysics Data System (ADS)
Reinhard, Christopher T.; Planavsky, Noah J.; Gill, Benjamin C.; Ozaki, Kazumi; Robbins, Leslie J.; Lyons, Timothy W.; Fischer, Woodward W.; Wang, Chunjiang; Cole, Devon B.; Konhauser, Kurt O.
2016-12-01
The macronutrient phosphorus is thought to limit primary productivity in the oceans on geological timescales. Although there has been a sustained effort to reconstruct the dynamics of the phosphorus cycle over the past 3.5 billion years, it remains uncertain whether phosphorus limitation persisted throughout Earth’s history and therefore whether the phosphorus cycle has consistently modulated biospheric productivity and ocean–atmosphere oxygen levels over time. Here we present a compilation of phosphorus abundances in marine sedimentary rocks spanning the past 3.5 billion years. We find evidence for relatively low authigenic phosphorus burial in shallow marine environments until about 800 to 700 million years ago. Our interpretation of the database leads us to propose that limited marginal phosphorus burial before that time was linked to phosphorus biolimitation, resulting in elemental stoichiometries in primary producers that diverged strongly from the Redfield ratio (the atomic ratio of carbon, nitrogen and phosphorus found in phytoplankton). We place our phosphorus record in a quantitative biogeochemical model framework and find that a combination of enhanced phosphorus scavenging in anoxic, iron-rich oceans and a nutrient-based bistability in atmospheric oxygen levels could have resulted in a stable low-oxygen world. The combination of these factors may explain the protracted oxygenation of Earth’s surface over the last 3.5 billion years of Earth history. However, our analysis also suggests that a fundamental shift in the phosphorus cycle may have occurred during the late Proterozoic eon (between 800 and 635 million years ago), coincident with a previously inferred shift in marine redox states, severe perturbations to Earth’s climate system, and the emergence of animals.
Phosphorus Cycling Through Space and Time
NASA Astrophysics Data System (ADS)
Filippelli, Gabriel
2014-05-01
The cycling of phosphorus, a biocritical element in short supply in nature, is an important Earth system process. Variations in the phosphorus cycle have occurred in the past. For example, the rapid uplift of the Himalayan-Tibet Plateau increased chemical weathering, which led to enhanced input of phosphorus to the oceans. This drove the late Miocene "biogenic bloom." On glacial timescales, phosphorus is quite dynamic. In terrestrial systems, phosphorus soil mineralogy alters rapidly in response to early soil development, and ultimately becomes limited to plant availability in many setting. In marine systems, the loss of the substantial continental margin sink for reactive P occurs during glacial sea-level lowstands, effectively concentrating phosphorus in the deep sea. Finally, in the modern, the phosphorus cycle is dominated by human activity and agriculture, which causes unwanted pollution due to high phosphorus loading and itself poses significant concerns about the ultimate future availability of this nutrient to feed an expanding human population. This presentation will cover several critical components of the phosphorus cycle, including terrestrial and marine systems, through the lens of geologic time. This perspective reveals the significant changes that have occurred in the availability of phosphorus through time, and how other biogeochemical systems have responded to these changes. Furthermore, the perspective provides some sobering insights into the mechanisms behind the concentration of marine phosphorus into viable sources of phosphate rock. The rarity of high-quality phosphate rock deposits and the limitation of easily minable reserves are becoming critical, as the human demand for fertilizer phosphorus far outstrips the geologic rate of replacement and few prospects exist for new discoveries of phosphate rock.
Phosphorus-containing materials for organic electronics.
Stolar, Monika; Baumgartner, Thomas
2014-05-01
Phosphorus-based materials have received widespread attention in recent years, in particular as possible candidates for practical application in organic electronics. The geometry and electronic nature of phosphorus make it a favorable heteroatom for property tuning in order to obtain better performing organic electronics. This Focus Review discusses recent structural modifications and syntheses of phosphorus-based materials, illustrates property tuning at the same time, and highlights specific examples for device applications.
Evolution of the global phosphorus cycle.
Reinhard, Christopher T; Planavsky, Noah J; Gill, Benjamin C; Ozaki, Kazumi; Robbins, Leslie J; Lyons, Timothy W; Fischer, Woodward W; Wang, Chunjiang; Cole, Devon B; Konhauser, Kurt O
2017-01-19
The macronutrient phosphorus is thought to limit primary productivity in the oceans on geological timescales. Although there has been a sustained effort to reconstruct the dynamics of the phosphorus cycle over the past 3.5 billion years, it remains uncertain whether phosphorus limitation persisted throughout Earth's history and therefore whether the phosphorus cycle has consistently modulated biospheric productivity and ocean-atmosphere oxygen levels over time. Here we present a compilation of phosphorus abundances in marine sedimentary rocks spanning the past 3.5 billion years. We find evidence for relatively low authigenic phosphorus burial in shallow marine environments until about 800 to 700 million years ago. Our interpretation of the database leads us to propose that limited marginal phosphorus burial before that time was linked to phosphorus biolimitation, resulting in elemental stoichiometries in primary producers that diverged strongly from the Redfield ratio (the atomic ratio of carbon, nitrogen and phosphorus found in phytoplankton). We place our phosphorus record in a quantitative biogeochemical model framework and find that a combination of enhanced phosphorus scavenging in anoxic, iron-rich oceans and a nutrient-based bistability in atmospheric oxygen levels could have resulted in a stable low-oxygen world. The combination of these factors may explain the protracted oxygenation of Earth's surface over the last 3.5 billion years of Earth history. However, our analysis also suggests that a fundamental shift in the phosphorus cycle may have occurred during the late Proterozoic eon (between 800 and 635 million years ago), coincident with a previously inferred shift in marine redox states, severe perturbations to Earth's climate system, and the emergence of animals.
1985-11-01
attention is biological phosphorus removal . 107 This technique has been known for many years, but is only now beginning to receive widespread use...phosphorus from biological treatment plants below that attainable using this technology alone. A recent study indicated that biological phosphorus removal has...Guide for HSPF, EPA 600/3-84-065 (1984). USEPA, Emerging Technology Assessment of Biological Phosphorus Removal , NTIS #PB-85 165-744 (1985). Velz, C. J
Non-Gaussian Photon Probability Distribution
NASA Astrophysics Data System (ADS)
Solomon, Benjamin T.
2010-01-01
This paper investigates the axiom that the photon's probability distribution is a Gaussian distribution. The Airy disc empirical evidence shows that the best fit, if not exact, distribution is a modified Gamma mΓ distribution (whose parameters are α = r, βr/√u ) in the plane orthogonal to the motion of the photon. This modified Gamma distribution is then used to reconstruct the probability distributions along the hypotenuse from the pinhole, arc from the pinhole, and a line parallel to photon motion. This reconstruction shows that the photon's probability distribution is not a Gaussian function. However, under certain conditions, the distribution can appear to be Normal, thereby accounting for the success of quantum mechanics. This modified Gamma distribution changes with the shape of objects around it and thus explains how the observer alters the observation. This property therefore places additional constraints to quantum entanglement experiments. This paper shows that photon interaction is a multi-phenomena effect consisting of the probability to interact Pi, the probabilistic function and the ability to interact Ai, the electromagnetic function. Splitting the probability function Pi from the electromagnetic function Ai enables the investigation of the photon behavior from a purely probabilistic Pi perspective. The Probabilistic Interaction Hypothesis is proposed as a consistent method for handling the two different phenomena, the probability function Pi and the ability to interact Ai, thus redefining radiation shielding, stealth or cloaking, and invisibility as different effects of a single phenomenon Pi of the photon probability distribution. Sub wavelength photon behavior is successfully modeled as a multi-phenomena behavior. The Probabilistic Interaction Hypothesis provides a good fit to Otoshi's (1972) microwave shielding, Schurig et al. (2006) microwave cloaking, and Oulton et al. (2008) sub wavelength confinement; thereby providing a strong case that
Monthly streamflow forecasting using Gaussian Process Regression
NASA Astrophysics Data System (ADS)
Sun, Alexander Y.; Wang, Dingbao; Xu, Xianli
2014-04-01
Streamflow forecasting plays a critical role in nearly all aspects of water resources planning and management. In this work, Gaussian Process Regression (GPR), an effective kernel-based machine learning algorithm, is applied to probabilistic streamflow forecasting. GPR is built on Gaussian process, which is a stochastic process that generalizes multivariate Gaussian distribution to infinite-dimensional space such that distributions over function values can be defined. The GPR algorithm provides a tractable and flexible hierarchical Bayesian framework for inferring the posterior distribution of streamflows. The prediction skill of the algorithm is tested for one-month-ahead prediction using the MOPEX database, which includes long-term hydrometeorological time series collected from 438 basins across the U.S. from 1948 to 2003. Comparisons with linear regression and artificial neural network models indicate that GPR outperforms both regression methods in most cases. The GPR prediction of MOPEX basins is further examined using the Budyko framework, which helps to reveal the close relationships among water-energy partitions, hydrologic similarity, and predictability. Flow regime modification and the resulting loss of predictability have been a major concern in recent years because of climate change and anthropogenic activities. The persistence of streamflow predictability is thus examined by extending the original MOPEX data records to 2012. Results indicate relatively strong persistence of streamflow predictability in the extended period, although the low-predictability basins tend to show more variations. Because many low-predictability basins are located in regions experiencing fast growth of human activities, the significance of sustainable development and water resources management can be even greater for those regions.
Twisted Gaussian Schell-model beams
Simon, R. ); Mukunda, N. Jawaharlal Nehru Centre for Advanced Scientific Research, Bangalore )
1993-01-01
The authors introduce a new class of partially coherent axially symmetric Gaussian Schell-model (GSM) beams incorporating a new twist phase quadratic in configuration variables. This phase twists the beam about its axis during propagation and is shown to be bounded in strength because of the positive semidefiniteness of the cross-spectral density. Propagation characteristics and invariants for such beams are derived and interpreted, and two different geometric representations are developed. Direct effects of the twist phase on free propagation as well as in parabolic index fibers are demonstrated. Production of such twisted GSM beams, starting with Li-Wolf anisotropic GSM beams, is described. 34 refs., 3 figs.
A Gaussian measure of quantum phase noise
NASA Technical Reports Server (NTRS)
Schleich, Wolfgang P.; Dowling, Jonathan P.
1992-01-01
We study the width of the semiclassical phase distribution of a quantum state in its dependence on the average number of photons (m) in this state. As a measure of phase noise, we choose the width, delta phi, of the best Gaussian approximation to the dominant peak of this probability curve. For a coherent state, this width decreases with the square root of (m), whereas for a truncated phase state it decreases linearly with increasing (m). For an optimal phase state, delta phi decreases exponentially but so does the area caught underneath the peak: all the probability is stored in the broad wings of the distribution.
Non-Gaussianity from resonant curvaton decay
Chambers, Alex; Rajantie, Arttu; Nurmi, Sami E-mail: s.nurmi@thphys.uni-heidelberg.de
2010-01-01
We calculate curvature perturbations in the scenario in which the curvaton field decays into another scalar field via parametric resonance. As a result of a nonlinear stage at the end of the resonance, standard perturbative calculation techniques fail in this case. Instead, we use lattice field theory simulations and the separate universe approximation to calculate the curvature perturbation as a nonlinear function of the curvaton field. For the parameters tested, the generated perturbations are highly non-Gaussian and not well approximated by the usual f{sub NL} parameterisation. Resonant decay plays an important role in the curvaton scenario and can have a substantial effect on the resulting perturbations.
2DPUF: A sequential gaussian puff model
Addis, R.P.; O'Steen, B.L.
1990-01-01
This report documents the Environmental Transport Section's (ETS) two-dimensional, sequential gaussian puff transport and dispersion model for emergency response. The sequential puff scheme is described, and the dispersion equations are presented. The advantages of this model over the ETS's PUFF/PLUME model are discussed. Options are calculating a two-dimensional wind field, interpolation procedures, and the wind field grid are described. The various grid systems for puff transport calculations and dose estimates are also described. A flow diagram for the modules comprising the 2DPUF code and a description of each module is presented.
2DPUF: A sequential gaussian puff model
Addis, R.P.; O`Steen, B.L.
1990-12-31
This report documents the Environmental Transport Section`s (ETS) two-dimensional, sequential gaussian puff transport and dispersion model for emergency response. The sequential puff scheme is described, and the dispersion equations are presented. The advantages of this model over the ETS`s PUFF/PLUME model are discussed. Options are calculating a two-dimensional wind field, interpolation procedures, and the wind field grid are described. The various grid systems for puff transport calculations and dose estimates are also described. A flow diagram for the modules comprising the 2DPUF code and a description of each module is presented.
Non-gaussianity from broken symmetries
Kolb, Edward W.; Riotto, Antonio; Vallinotto, Alberto; /Chicago U. /Fermilab
2005-11-01
Recently we studied inflation models in which the inflation potential is characterized by an underlying approximate global symmetry. In the first work we pointed out that in such a model curvature perturbations are generated after the end of the slow-roll phase of inflation. In this work we develop further the observational implications of the model and compute the degree of non-Gaussianity predicted in the scenario. We find that the corresponding nonlinearity parameter, F{sub NL}, can be as large as 10{sup 2}.
Comparison of phosphorus forms in three extracts of dairy feces by solution 31P NMR analysis
USDA-ARS?s Scientific Manuscript database
Using solution 31P NMR spectroscopy, we compared three extractants, deionized water, sodium acetate buffer (pH 5.0) with fresh sodium dithionite (NaAc-SD), and 0.25 M NaOH-0.05 M EDTA (NaOH-EDTA), for the profile of P compounds in two dairy fecal samples. Phosphorus extracted was 35% for water, and...
Energy and phosphorus recovery from black water.
de Graaff, M S; Temmink, H; Zeeman, G; Buisman, C J N
2011-01-01
Source-separated black water (BW) (toilet water) containing 38% of the organic material and 68% of the phosphorus in the total household waste (water) stream including kitchen waste, is a potential source for energy and phosphorus recovery. The energy recovered, in the form of electricity and heat, is more than sufficient for anaerobic treatment, nitrogen removal and phosphorus recovery. The phosphorus balance of an upflow anaerobic sludge blanket reactor treating concentrated BW showed a phosphorus conservation of 61% in the anaerobic effluent. Precipitation of phosphate as struvite from this stream resulted in a recovery of 0.22 kgP/p/y, representing 10% of the artificial phosphorus fertiliser production in the world. The remaining part of the phosphorus ended up in the anaerobic sludge, mainly due to precipitation (39%). Low dilution and a high pH favour the accumulation of phosphorus in the anaerobic sludge and this sludge could be used as a phosphorus-enriched organic fertiliser, provided that it is safe regarding heavy metals, pathogens and micro-pollutants.
Phosphorus recovery from wastewater through microbial processes.
Yuan, Zhiguo; Pratt, Steven; Batstone, Damien J
2012-12-01
Waste streams offer a compelling opportunity to recover phosphorus (P). 15-20% of world demand for phosphate rock could theoretically be satisfied by recovering phosphorus from domestic waste streams alone. For very dilute streams (<10 mg PL(-1)), including domestic wastewater, it is necessary to concentrate phosphorus in order to make recovery and reuse feasible. This review discusses enhanced biological phosphorus removal (EBPR) as a key technology to achieve this. EBPR relies on polyphosphate accumulating organisms (PAOs) to take up phosphorus from waste streams, so concentrating phosphorus in biomass. The P-rich biosolids can be either directly applied to land, or solubilized and phosphorus recovered as a mineral product. Direct application is effective, but the product is bulky and carries contaminant risks that need to be managed. Phosphorus release can be achieved using either thermochemical or biochemical methods, while recovery is generally by precipitation as struvite. We conclude that while EBPR technology is mature, the subsequent phosphorus release and recovery technologies need additional development.
Phosphorus and Nutrition in Chronic Kidney Disease
González-Parra, Emilio; Gracia-Iguacel, Carolina; Egido, Jesús; Ortiz, Alberto
2012-01-01
Patients with renal impairment progressively lose the ability to excrete phosphorus. Decreased glomerular filtration of phosphorus is initially compensated by decreased tubular reabsorption, regulated by PTH and FGF23, maintaining normal serum phosphorus concentrations. There is a close relationship between protein and phosphorus intake. In chronic renal disease, a low dietary protein content slows the progression of kidney disease, especially in patients with proteinuria and decreases the supply of phosphorus, which has been directly related with progression of kidney disease and with patient survival. However, not all animal proteins and vegetables have the same proportion of phosphorus in their composition. Adequate labeling of food requires showing the phosphorus-to-protein ratio. The diet in patients with advanced-stage CKD has been controversial, because a diet with too low protein content can favor malnutrition and increase morbidity and mortality. Phosphorus binders lower serum phosphorus and also FGF23 levels, without decreasing diet protein content. But the interaction between intestinal dysbacteriosis in dialysis patients, phosphate binder efficacy, and patient tolerance to the binder could reduce their efficiency. PMID:22701173
Assessing Long Term Impact of Phosphorus Fertilization on Phosphorus Loadings Using AnnAGNPS
High phosphorus (P) loss from agricultural fields has been an environmental concern because of potential water quality problems in streams and lakes. To better understand the process of P loss and evaluate the different phosphorus fertilization rates on phosphorus losses, the US...
Use of annual phosphorus loss estimator (APLE) model to evaluate a phosphorus index
USDA-ARS?s Scientific Manuscript database
Maryland’s Phosphorus Site Index (MD-PSI) has been used to guide management decisions to minimize the potential for phosphorus (P) loss from agricultural fields in Maryland since 2002. The index was recently revised and renamed the University of Maryland Phosphorus Management Tool (UM-PMT), and the...
Assessing Long Term Impact of Phosphorus Fertilization on Phosphorus Loadings Using AnnAGNPS
High phosphorus (P) loss from agricultural fields has been an environmental concern because of potential water quality problems in streams and lakes. To better understand the process of P loss and evaluate the different phosphorus fertilization rates on phosphorus losses, the US...
Santarsiero, M; Gori, F; Borghi, R; Guattari, G
1999-09-01
A new, to our knowledge, technique for determining the modal content of partially coherent beams that are made up of an incoherent superposition of Hermite-Gaussian modes is studied. The algorithm makes use of the intensity profile of the beam at an arbitrarily chosen transverse plane. Analytical derivations are presented for a Gaussian Schell-model source and flat-topped beams, as well as an analysis of their performances in the presence of experimental errors and noise. Numerical simulations are performed to test the accuracy and the stability of the recovery algorithm.
Gaussian and non-Gaussian inverse modeling of groundwater flow using copulas and random mixing
NASA Astrophysics Data System (ADS)
Bárdossy, András.; Hörning, Sebastian
2016-06-01
This paper presents a new copula-based methodology for Gaussian and non-Gaussian inverse modeling of groundwater flow. The presented approach is embedded in a Monte Carlo framework and it is based on the concept of mixing spatial random fields where a spatial copula serves as spatial dependence function. The target conditional spatial distribution of hydraulic transmissivities is obtained as a linear combination of unconditional spatial fields. The corresponding weights of this linear combination are chosen such that the combined field has the prescribed spatial variability, and honors all the observations of hydraulic transmissivities. The constraints related to hydraulic head observations are nonlinear. In order to fulfill these constraints, a connected domain in the weight space, inside which all linear constraints are fulfilled, is identified. This domain is defined analytically and includes an infinite number of conditional fields (i.e., conditioned on the observed hydraulic transmissivities), and the nonlinear constraints can be fulfilled via minimization of the deviation of the modeled and the observed hydraulic heads. This procedure enables the simulation of a great number of solutions for the inverse problem, allowing a reasonable quantification of the associated uncertainties. The methodology can be used for fields with Gaussian copula dependence, and fields with specific non-Gaussian copula dependence. Further, arbitrary marginal distributions can be considered.
Korsgaard, Inge Riis; Lund, Mogens Sandø; Sorensen, Daniel; Gianola, Daniel; Madsen, Per; Jensen, Just
2003-01-01
A fully Bayesian analysis using Gibbs sampling and data augmentation in a multivariate model of Gaussian, right censored, and grouped Gaussian traits is described. The grouped Gaussian traits are either ordered categorical traits (with more than two categories) or binary traits, where the grouping is determined via thresholds on the underlying Gaussian scale, the liability scale. Allowances are made for unequal models, unknown covariance matrices and missing data. Having outlined the theory, strategies for implementation are reviewed. These include joint sampling of location parameters; efficient sampling from the fully conditional posterior distribution of augmented data, a multivariate truncated normal distribution; and sampling from the conditional inverse Wishart distribution, the fully conditional posterior distribution of the residual covariance matrix. Finally, a simulated dataset was analysed to illustrate the methodology. This paper concentrates on a model where residuals associated with liabilities of the binary traits are assumed to be independent. A Bayesian analysis using Gibbs sampling is outlined for the model where this assumption is relaxed.
Statistics of general functions of a Gaussian field-application to non-Gaussianity from preheating
Suyama, Teruaki; Yokoyama, Shuichiro E-mail: shu@icrr.u-tokyo.ac.jp
2013-06-01
We provide a general formula for calculating correlators of arbitrary function of a Gaussian field. This work extends the standard leading-order approximation based on the δN formalism to the case where truncation of the δN at some low order does not yield the correct answer. As an application of this formula, we investigate 2, 3 and 4-point functions of the primordial curvature perturbation generated in the massless preheating model by approximating the mapping between the curvature perturbation and the Gaussian field as a sum of the many spiky normal distribution functions as suggested by lattice calculations. We also discuss observational consequences of this case and show that trispectrum would be a key observable to search signature of preheating in the CMB map. It is found the forms of the curvature correlation functions for any δN, at the leading order in the correlator of the Gaussian field, coincide with the standard local type ones. Within this approximation, it is also found that the standard formula for the non-linearity parameters given by the product of the derivatives of the e-folding number still holds after we replace the bare e-folding number appearing in the original δN expansion with the one smoothed in the field space with a Gaussian window function.
Bag, Bidhan Chandra; Hu, Chin-Kun
2007-04-01
In a previous paper [Bag and Hu, Phys. Rev. E 73, 061107 (2006)], we studied the mean lifetime (MLT) for the escape of a Brownian particle through an unstable limit cycle driven by multiplicative colored Gaussian and additive Gaussian white noises and found resonant activation (RA) behavior. In the present paper we switch from Gaussian to non-Gaussian multiplicative colored noise. We find that in the RA phenomenon, the minimum appears at a smaller noise correlation time (tau) for non-Gaussian noises compared to Gaussian noises in the plot of MLT vs tau for a fixed noise variance; the same plot for a given noise strength increases linearly and the increasing rate is smaller for non-Gaussian noises than for the Gaussian noises; the plot of logarithm of inverse of MLT vs inverse of the strength of additive noise is Arrhenius-like for Gaussian colored noise and it becomes similar to the quantum-Kramers rate if the multiplicative noise is non-Gaussian.
On the optimization of Gaussian basis sets
NASA Astrophysics Data System (ADS)
Petersson, George A.; Zhong, Shijun; Montgomery, John A.; Frisch, Michael J.
2003-01-01
A new procedure for the optimization of the exponents, αj, of Gaussian basis functions, Ylm(ϑ,φ)rle-αjr2, is proposed and evaluated. The direct optimization of the exponents is hindered by the very strong coupling between these nonlinear variational parameters. However, expansion of the logarithms of the exponents in the orthonormal Legendre polynomials, Pk, of the index, j: ln αj=∑k=0kmaxAkPk((2j-2)/(Nprim-1)-1), yields a new set of well-conditioned parameters, Ak, and a complete sequence of well-conditioned exponent optimizations proceeding from the even-tempered basis set (kmax=1) to a fully optimized basis set (kmax=Nprim-1). The error relative to the exact numerical self-consistent field limit for a six-term expansion is consistently no more than 25% larger than the error for the completely optimized basis set. Thus, there is no need to optimize more than six well-conditioned variational parameters, even for the largest sets of Gaussian primitives.
Modified Gaussian estimation for correlated binary data.
Zhang, Xuemao; Paul, Sudhir
2013-11-01
In this paper, we develop a Gaussian estimation (GE) procedure to estimate the parameters of a regression model for correlated (longitudinal) binary response data using a working correlation matrix. A two-step iterative procedure is proposed for estimating the regression parameters by the GE method and the correlation parameters by the method of moments. Consistency properties of the estimators are discussed. A simulation study was conducted to compare 11 estimators of the regression parameters, namely, four versions of the GE, five versions of the generalized estimating equations (GEEs), and two versions of the weighted GEE. Simulations show that (i) the Gaussian estimates have the smallest mean square error and best coverage probability if the working correlation structure is correctly specified and (ii) when the working correlation structure is correctly specified, the GE and the GEE with exchangeable correlation structure perform best as opposed to when the correlation structure is misspecified. © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Gaussian entanglement distribution with gigahertz bandwidth.
Ast, Stefan; Ast, Melanie; Mehmet, Moritz; Schnabel, Roman
2016-11-01
The distribution of entanglement with Gaussian statistic can be used to generate a mathematically proven secure key for quantum cryptography. The distributed secret key rate is limited by the entanglement strength, the entanglement bandwidth, and the bandwidth of the photoelectric detectors. The development of a source for strongly bipartite entangled light with high bandwidth promises an increased measurement speed and a linear boost in the secure data rate. Here, we present the experimental realization of a Gaussian entanglement source with a bandwidth of more than 1.25 GHz. The entanglement spectrum was measured with balanced homodyne detectors and was quantified via the inseparability criterion introduced by Duan and coworkers with a critical value of 4 below which entanglement is certified. Our measurements yielded an inseparability value of about 1.8 at a frequency of 300 MHz to about 2.8 at 1.2 GHz, extending further to about 3.1 at 1.48 GHz. In the experiment we used two 2.6 mm long monolithic periodically poled potassium titanyl phosphate (KTP) resonators to generate two squeezed fields at the telecommunication wavelength of 1550 nm. Our result proves the possibility of generating and detecting strong continuous-variable entanglement with high speed.
Continuous ultrasound speckle tracking with Gaussian mixtures.
Schretter, Colas; Sun, Jianyong; Bundervoet, Shaun; Dooms, Ann; Schelkens, Peter; de Brito Carvalho, Catarina; Slagmolen, Pieter; D'hooge, Jan
2015-01-01
Speckle tracking echocardiography (STE) is now widely used for measuring strain, deformations, and motion in cardiology. STE involves three successive steps: acquisition of individual frames, speckle detection, and image registration using speckles as landmarks. This work proposes to avoid explicit detection and registration by representing dynamic ultrasound images as sparse collections of moving Gaussian elements in the continuous joint space-time space. Individual speckles or local clusters of speckles are approximated by a single multivariate Gaussian kernel with associated linear trajectory over a short time span. A hierarchical tree-structured model is fitted to sampled input data such that predicted image estimates can be retrieved by regression after reconstruction, allowing a (bias-variance) trade-off between model complexity and image resolution. The inverse image reconstruction problem is solved with an online Bayesian statistical estimation algorithm. Experiments on clinical data could estimate subtle sub-pixel accurate motion that is difficult to capture with frame-to-frame elastic image registration techniques.
Gravitational Wave Emulation Using Gaussian Process Regression
NASA Astrophysics Data System (ADS)
Doctor, Zoheyr; Farr, Ben; Holz, Daniel
2017-01-01
Parameter estimation (PE) for gravitational wave signals from compact binary coalescences (CBCs) requires reliable template waveforms which span the parameter space. Waveforms from numerical relativity are accurate but computationally expensive, so approximate templates are typically used for PE. These `approximants', while quick to compute, can introduce systematic errors and bias PE results. We describe a machine learning method for generating CBC waveforms and uncertainties using existing accurate waveforms as a training set. Coefficients of a reduced order waveform model are computed and each treated as arising from a Gaussian process. These coefficients and their uncertainties are then interpolated using Gaussian process regression (GPR). As a proof of concept, we construct a training set of approximant waveforms (rather than NR waveforms) in the two-dimensional space of chirp mass and mass ratio and interpolate new waveforms with GPR. We demonstrate that the mismatch between interpolated waveforms and approximants is below the 1% level for an appropriate choice of training set and GPR kernel hyperparameters.
Compressive tracking with incremental multivariate Gaussian distribution
NASA Astrophysics Data System (ADS)
Li, Dongdong; Wen, Gongjian; Zhu, Gao; Zeng, Qiaoling
2016-09-01
Various approaches have been proposed for robust visual tracking, among which compressive tracking (CT) yields promising performance. In CT, Haar-like features are efficiently extracted with a very sparse measurement matrix and modeled as an online updated naïve Bayes classifier to account for target appearance change. The naïve Bayes classifier ignores overlap between Haar-like features and assumes that Haar-like features are independently distributed, which leads to drift in complex scenario. To address this problem, we present an extended CT algorithm, which assumes that all Haar-like features are correlated with each other and have multivariate Gaussian distribution. The mean vector and covariance matrix of multivariate normal distribution are incrementally updated with constant computational complexity to adapt to target appearance change. Each frame is associated with a temporal weight to expend less modeling power on old observation. Based on temporal weight, an update scheme with changing but convergent learning rate is derived with strict mathematic proof. Compared with CT, our extended algorithm achieves a richer representation of target appearance. The incremental multivariate Gaussian distribution is integrated into the particle filter framework to achieve better tracking performance. Extensive experiments on the CVPR2013 tracking benchmark demonstrate that our proposed tracker achieves superior performance both qualitatively and quantitatively over several state-of-the-art trackers.
Multiqubit spectroscopy of Gaussian quantum noise
NASA Astrophysics Data System (ADS)
Paz-Silva, Gerardo A.; Norris, Leigh M.; Viola, Lorenza
2017-02-01
We introduce multipulse quantum noise spectroscopy protocols for spectral estimation of the noise affecting multiple qubits coupled to Gaussian dephasing environments including both classical and quantum sources. Our protocols are capable of reconstructing all the noise auto- and cross-correlation spectra entering the multiqubit dynamics, providing access, in particular, to the asymmetric spectra associated with nonclassical environments. Our result relies on (i) an exact analytic solution for the reduced multiqubit dynamics that holds in the presence of an arbitrary Gaussian environment and dephasing-preserving control; (ii) the use of specific timing symmetries, which allow for a frequency comb to be engineered for all filter functions of interest, and for the spectra to be related to experimentally accessible observables. We show that quantum spectra have distinctive dynamical signatures, which we explore in two paradigmatic open-system models describing spin and charge qubits coupled to bosonic environments. Complete noise spectroscopy is demonstrated numerically in a realistic setting consisting of two-exciton qubits coupled to a phonon bath. The estimated spectra allow us to accurately predict the exciton dynamics as well as extract the temperature and spectral density of the quantum environment.
Increasing entanglement between Gaussian states by coherent photon subtraction.
Ourjoumtsev, Alexei; Dantan, Aurélien; Tualle-Brouri, Rosa; Grangier, Philippe
2007-01-19
We experimentally demonstrate that the entanglement between Gaussian entangled states can be increased by non-Gaussian operations. Coherent subtraction of single photons from Gaussian quadrature-entangled light pulses, created by a nondegenerate parametric amplifier, produces delocalized states with negative Wigner functions and complex structures more entangled than the initial states in terms of negativity. The experimental results are in very good agreement with the theoretical predictions.
Constraints on scale-dependent non-Gaussianity
Shandera, Sarah E.
2007-11-20
We review why detection of non-Gaussianity in the spectrum of primordial fluctuations would be an indication of interesting inflationary physics and discuss the observational constraints on a simple type of scale-dependent non-Gaussianity. In particular, if the amount non-Gaussianity increases during inflation then observations on scales smaller than those probed by the Cosmic Microwave Background may provide important constraints. Clusters number counts can be a useful tool in this context.
Gaussian Acoustic Classifier for the Launch of Three Weapon Systems
2013-09-01
Gaussian Acoustic Classifier for the Launch of Three Weapon Systems by Christine Yang and Geoffrey H. Goldman ARL-TN-0576 September 2013...0576 September 2013 Gaussian Acoustic Classifier for the Launch of Three Weapon Systems Christine Yang and Geoffrey H. Goldman Sensors...Final 3. DATES COVERED (From - To) 4. TITLE AND SUBTITLE Gaussian Acoustic Classifier for the Launch of Three Weapon Systems 5a. CONTRACT NUMBER 5b
Relaxation oscillations in a laser with a Gaussian mirror.
Mossakowska-Wyszyńska, Agnieszka; Witoński, Piotr; Szczepański, Paweł
2002-03-20
We present an analysis of the relaxation oscillations in a laser with a Gaussian mirror by taking into account the three-dimensional spatial field distribution of the laser modes and the spatial hole burning effect. In particular, we discuss the influence of the Gaussian mirror peak reflectivity and a Gaussian parameter on the damping rate and frequency of the relaxation oscillation for two different laser structures, i.e., with a classically unstable resonator and a classically stable resonator.
Markov property of Gaussian states of canonical commutation relation algebras
NASA Astrophysics Data System (ADS)
Petz, Dénes; Pitrik, József
2009-11-01
The Markov property of Gaussian states of canonical commutation relation algebras is studied. The detailed description is given by the representing block matrix. The proof is short and allows infinite dimension. The relation to classical Gaussian Markov triplets is also described. The minimizer of relative entropy with respect to a Gaussian Markov state has the Markov property. The appendix contains formulas for the relative entropy.
Determining Phosphorus-sediment Interactions in a Groundwater-fed River through In Situ Measurement
NASA Astrophysics Data System (ADS)
Mullinger, N. J.; Heathwaite, L.; Zhang, H.; Keenan, P. O.
2011-12-01
In stream processing is potentially important in the regulation and availability of nutrients to riverine flora and also in attenuating point and non-point source inputs to rivers, such as wastewater outflows and agricultural runoff. Phosphorus is an important macronutrient and often cited as a limiting factor to plant and algal growth in freshwater systems. The particle-reactive nature of the orthophosphate anion means that river sediments can play an important role in phosphorus attenuation and availability in rivers. However, it is also known that plant root exudates can also affect the mobilisation of sediment adsorbed phosphorus. Results are presented from high resolution (centimetre) measurements of vertical riverbed pore water profiles at a field site in the River Leith, Cumbria, UK. The River Leith is a sub-catchment of the River Eden and is characterised by significant groundwater-surface water interactions at the monitoring site. In situ measurements of soluble reactive phosphorus (SRP) in riverbed pore waters were made using passive sampling diffusive gradient and diffusive equilibration in thin film (DGT and DET) probes. These probes allow in situ measurements of riverbed pore waters to be made to a depth of 30 cm below the riverbed at centimetre resolution. The resulting profiles provide information on the variability in phosphorus pore waters for vegetated and non-vegetated regions of the riverbed. The impact of vegetated root zones in riverbed sediments is poorly characterised for hyporheic exchanges. Comparison of the vertical profiles obtained by DGT and DET probes identifies the potential of sediments to act sources or sinks of in stream phosphorus. Simultaneous analysis for redox sensitive elements provides additional information on the redox status of riverbed sediments. Initial results show spatial and temporal variability of phosphorus in different sedimentary environments and also between vegetated and non-vegetated areas of the riverbed
Bayesian electron density inference from JET lithium beam emission spectra using Gaussian processes
NASA Astrophysics Data System (ADS)
Kwak, Sehyun; Svensson, J.; Brix, M.; Ghim, Y.-C.; Contributors, JET
2017-03-01
A Bayesian model to infer edge electron density profiles is developed for the JET lithium beam emission spectroscopy (Li-BES) system, measuring Li I (2p-2s) line radiation using 26 channels with ∼1 cm spatial resolution and 10∼ 20 ms temporal resolution. The density profile is modelled using a Gaussian process prior, and the uncertainty of the density profile is calculated by a Markov Chain Monte Carlo (MCMC) scheme. From the spectra measured by the transmission grating spectrometer, the Li I line intensities are extracted, and modelled as a function of the plasma density by a multi-state model which describes the relevant processes between neutral lithium beam atoms and plasma particles. The spectral model fully takes into account interference filter and instrument effects, that are separately estimated, again using Gaussian processes. The line intensities are inferred based on a spectral model consistent with the measured spectra within their uncertainties, which includes photon statistics and electronic noise. Our newly developed method to infer JET edge electron density profiles has the following advantages in comparison to the conventional method: (i) providing full posterior distributions of edge density profiles, including their associated uncertainties, (ii) the available radial range for density profiles is increased to the full observation range (∼26 cm), (iii) an assumption of monotonic electron density profile is not necessary, (iv) the absolute calibration factor of the diagnostic system is automatically estimated overcoming the limitation of the conventional technique and allowing us to infer the electron density profiles for all pulses without preprocessing the data or an additional boundary condition, and (v) since the full spectrum is modelled, the procedure of modulating the beam to measure the background signal is only necessary for the case of overlapping of the Li I line with impurity lines.
Phosphorus in Sintered Steels: Interaction of Phosphorus with Mo
NASA Astrophysics Data System (ADS)
Danninger, H.; Üregen, B.
2016-10-01
Phosphorus as an alloy element is quite common in powder metallurgy, the contents industrially used being markedly higher than those present in wrought steels. However, embrittlement effects are reported also for sintered steels, in part depending on the alloy elements present. In this study, the influence of phosphorus addition on the mechanical properties of PM steels alloyed with Mo, as the most common VI group element in sintered steels, was investigated. PM steels of the type Fe-x%Mo-0.7%Cy% P were manufactured with varying contents of Mo and P, respectively. It showed that P activates sintering also in these materials and enhances Mo homogenization, but there is in fact a risk of embrittlement in these steels that however strongly depends on the combination of Mo and P in the materials: If a critical level is exceeded, embrittlement is observed. At low Mo contents, higher P concentrations are acceptable and vice versa, but e.g. in a material Fe-1.5%Mo-0.7%C-0.45%P, pronounced intergranular embrittlement occurs, further enhanced by sinter hardening effects. This undesirable phenomenon is more pronounced at higher sintering temperatures and in case of faster heating/cooling; it was observed both in materials prepared from mixed and prealloyed powders, respectively. This typical intergranular failure observed with embrittled specimens, in particular after impact testing, indicates the precipitation of brittle phases at the grain boundaries, apparently when exceeding the solubility product between Mo and P.
[Dietary reference intakes of phosphorus].
Uenishi, Kazuhiro
2012-10-01
Phosphorus (P) exists at the all organs and plays important physiological roles in the body. A wide range of food contains P, which is absorbed at a higher level (60-70%) and its insufficiency and deficiency are rarely found. P is used as food additives in many processed food, where risk of overconsumption could be an issue. P has less evidence in terms of nutrition. P has the adequate intake and the tolerable upper intake level, for risk reduction of health disorders associated with excess intake, at the Dietary Reference Intakes for Japanese (2010 edition).
BEAM-BEAM SIMULATIONS FOR DOUBLE-GAUSSIAN BEAMS.
MONTAG, C.; MALITSKY, N.; BEN-ZVI, I.; LITVINENKO, V.
2005-05-16
Electron cooling together with intra-beam scattering results in a transverse distribution that can best be described by a sum of two gaussians, one for the high-density core and one for the tails of the distribution. Simulation studies are being performed to understand the beam-beam interaction of these double-gaussian beams. Here we report the effect of low-frequency random tune modulations on diffusion in double-gaussian beams and compare the effects to those in beam-beam interactions with regular gaussian beams and identical tune shift parameters.
Post-Gaussian approximations in phase ordering kinetics
NASA Astrophysics Data System (ADS)
Mazenko, Gene F.
1994-05-01
Existing theories for the growth of order in unstable systems have successfully exploited the use of a Gaussian auxiliary field. The limitations imposed on such theories by assuming this field to be Gaussian have recently become clearer. In this paper it is shown how this Gaussian restriction can be removed in order to obtain improved approximations for the scaling properties of such systems. In particular it is shown how the improved theory can explain the recent numerical results of Blundell, Bray, and Sattler [Phys. Rev. E 48, 2476 (1993)] which are in qualitative disagreement with Gaussian theories.
Evolution properties of Bessel-Gaussian Schell-model beams in non-Kolmogorov turbulence.
Wang, Xiaoyang; Yao, Mingwu; Qiu, Zhiliang; Yi, Xiang; Liu, Zengji
2015-05-18
The analytical expressions for the spectral degree of coherence, the effective radius of curvature and the propagation factor of the Bessel-Gaussian Schell-model (BGSM) beam in turbulent atmosphere are derived based on the extended Huygens-Fresnel principle and the second-order moments of the Wigner distribution function (WDF). The evolution properties of BGSM beams propagating in non-Kolmogorov turbulence are investigated by a set of numerical examples. It is demonstrated that the spectral degree of coherence of the BGSM beam evolves into Gaussian profile twice with the increasing of the propagation distance. The turbulence-induced degradation can be remarkably reduced by using the BGSM beam with the proper source parameters. The effects that the generalized refractive-index structure constant, outer and inner scales, and the spectral index of spatial power spectrum of atmospheric turbulence have on the evolution properties of BGSM beams are also discussed in detail.
NASA Astrophysics Data System (ADS)
Pires, Carlos A. L.; Perdigão, Rui A. P.
2016-04-01
Hydroclimatic spatiotemporal distributions exhibit significant non-Gaussianity with particular emphasis to overweight extremes, rendering their diagnostic and inference suboptimal with traditional statistical techniques. In order to overcome that limitation, we introduce and discuss a set of information-theoretic methodologies for statistical diagnostic and inference issued from exploratory variables of the general atmospheric and oceanic circulation in the cases of non-Gaussian joint probability distributions. Moreover, the nonlinear information among various large-scale ocean-atmospheric processes is explored, bringing out added predictability to elusive weather and hydrologic extremes relative to the current state of the art in nonlinear geophysics. The methodologies are illustrated with the analysis and prediction of resonant ocean-atmospheric thermodynamic anomaly spells underneath high-profile floods and droughts.
Spot size characterization of focused non-Gaussian X-ray laser beams.
Chalupský, J; Krzywinski, J; Juha, L; Hájková, V; Cihelka, J; Burian, T; Vysín, L; Gaudin, J; Gleeson, A; Jurek, M; Khorsand, A R; Klinger, D; Wabnitz, H; Sobierajski, R; Störmer, M; Tiedtke, K; Toleikis, S
2010-12-20
We present a new technique for the characterization of non-Gaussian laser beams which cannot be described by an analytical formula. As a generalization of the beam spot area we apply and refine the definition of so called effective area (A(eff)) [1] in order to avoid using the full-width at half maximum (FWHM) parameter which is inappropriate for non-Gaussian beams. Furthermore, we demonstrate a practical utilization of our technique for a femtosecond soft X-ray free-electron laser. The ablative imprints in poly(methyl methacrylate) - PMMA and amorphous carbon (a-C) are used to characterize the spatial beam profile and to determine the effective area. Two procedures of the effective area determination are presented in this work. An F-scan method, newly developed in this paper, appears to be a good candidate for the spatial beam diagnostics applicable to lasers of various kinds.
Optical trapping Rayleigh particles by using focused multi-Gaussian Schell-model beams.
Liu, Xiayin; Zhao, Daomu
2014-06-20
We numerically investigate the radiation forces of multi-Gaussian Schell-model (MGSM) beams, in which the degree of coherence is modeled by the multi-Gaussian function, exerted on the Rayleigh dielectric sphere. By simulation of the forces calculation it is found that the steepness of the edge of the intensity profile (i.e., the summation index M) and the initial coherence width of the MGSM beams play important roles in the trapping range and stability. We can increase the trapping range at the focal plane by increasing the value of M or decreasing the initial coherence of the MGSM beams. It is also found that the trapping stability becomes lower due to the increase of the value of M or the decrease of coherence. Furthermore, the trapping stability under different conditions is explicitly analyzed. The results presented here are helpful for some possible applications.
Phase-only shaping algorithm for Gaussian-apodized Bessel beams.
Durfee, Charles G; Gemmer, John; Moloney, Jerome V
2013-07-01
Gaussian-apodized Bessel beams can be used to create a Bessel-like axial line focus at a distance from the focusing lens. For many applications it is desirable to create an axial intensity profile that is uniform along the Bessel zone. In this article, we show that this can be accomplished through phase-only shaping of the wavefront in the far field where the beam has an annular ring structure with a Gaussian cross section. We use a one-dimensional transform to map the radial input field to the axial Bessel field and then optimized the axial intensity with a Gerchberg-Saxton algorithm. By separating out the quadratic portion of the shaping phase the algorithm converges more rapidly.
Zhang, Hai-Ling; Fang, Wei; Wang, Yong-Peng; Sheng, Guo-Ping; Zeng, Raymond J; Li, Wen-Wei; Yu, Han-Qing
2013-10-15
Phosphorus-accumulating organisms are considered to be the key microorganisms in the enhanced biological phosphorus removal (EBPR) process. A large amount of phosphorus is found in the extracellular polymeric substances (EPS) matrix of these microorganisms. However, the roles of EPS in phosphorus removal have not been fully understood. In this study, the phosphorus in the EBPR sludge was fractionated and further analyzed using quantitative (31)P nuclear magnetic resonance spectroscopy. The amounts and forms of phosphorus in EPS as well as their changes in an anaerobic-aerobic process were also investigated. EPS could act as a reservoir for phosphorus in the anaerobic-aerobic process. About 5-9% of phosphorus in sludge was reserved in the EPS at the end of the aerobic phase and might further contribute to the phosphorus removal. The chain length of the intracellular long-chain polyphosphate (polyP) decreased in the anaerobic phase and then recovered under aerobic conditions. However, the polyP in the EPS had a much shorter chain length than the intracellular polyP in the whole cycle. The migration and transformation of various forms of phosphorus among microbial cells, EPS, and bulk liquid were also explored. On the basis of these results, a model with a consideration of the roles of EPS was proposed, which is beneficial to elucidate the mechanism of phosphorus removal in the EBPR system.
Klump, J.V.; Edgington, D. N.; Sager, P.E.; Robertson, Dale M.
2011-01-01
The tributaries of Green Bay have long been recognized as major sources of phosphorus in the Lake Michigan basin. The status of Green Bay as a sink or source of phosphorus for Lake Michigan proper has been less well defined. The bay receives nearly 70% of its annual load of phosphorus ( 700 metric tons (t) · year-1) from a single source: the Fox River. Most of this phosphorus is deposited in sediments accumulating at rates that reach 160 mg · cm-2 · year-1 with an average of 20 mg · cm-2 · year-1. The phosphorus content of these sediments varies from <5 to >70 µmol · g-1. Deposition is highly focused, with ~70% of the total sediment accumulation and at least 80% of the phosphorus burial occurring within 20% of the surface area of the bay. Diagenetic and stoichiometric models of phosphorus cycling imply that >80% of the phosphorus deposited is permanently buried. External phosphorus loading to the bay is combined with sediment fluxes of phophorus to arrive at a simple phosphorus budget. Green Bay acts as an efficient nutrient trap, with the sediments retaining an estimated 70-90% of the external phosphorus inputs before flowing into Lake Michigan.
Schroeder, M S; Janos, D P
2005-05-01
We examined the effects of arbuscular mycorrhizas (AM), phosphorus fertilization, intraspecific density, and their interaction, on the growth, phosphorus uptake, and root morphology of three facultative mycotrophic crops (Capsicum annuum, Zea mays, and Cucurbita pepo). Plants were grown in pots with or without AM at three densities and four phosphorus availabilities for 10 weeks. AM colonization, plant weight, and shoot phosphorus concentration were measured at harvest. Root morphology was assessed for C. annuum and Z. mays. Phosphorus fertilization reduced but did not eliminate AM colonization of all species. AM, phosphorus, and density interacted significantly to modify growth of C. annuum and C. pepo such that increased density and phosphorus diminished beneficial effects of AM. Increased density reduced positive effects of AM on C. annuum and C. pepo shoot phosphorus concentrations. AM altered both Z. mays and C. annuum root morphology in ways that complemented potential phosphorus uptake by mycorrhizas, but increased density and phosphorus diminished these effects. We infer that increased density predominantly influenced plant responses by affecting whether or not carbon (photosynthate) or phosphorus limited plant growth. By exacerbating carbon limitation, high density reduced the benefit/cost ratio of mycorrhizas and minimized their effects.
Reexamining the Phosphorus-Protein Dilemma: Does Phosphorus Restriction Compromise Protein Status?
St-Jules, David E; Woolf, Kathleen; Pompeii, Mary Lou; Kalantar-Zadeh, Kamyar; Sevick, Mary Ann
2016-05-01
Dietary phosphorus restriction is recommended to help control hyperphosphatemia in hemodialysis patients, but many high-phosphorus foods are important sources of protein. In this review, we examine whether restricting dietary phosphorus compromises protein status in hemodialysis patients. Although dietary phosphorus and protein are highly correlated, phosphorus intakes can range up to 600 mg/day for a given energy and protein intake level. Furthermore, the collinearity of phosphorus and protein may be biased because the phosphorus burden of food depends on: (1) the presence of phosphate additives, (2) food preparation method, and (3) bioavailability of phosphorus, which are often unaccounted for in nutrition assessments. Ultimately, we argue that clinically relevant reductions in phosphorus intake can be made without limiting protein intake by avoiding phosphate additives in processed foods, using wet cooking methods such as boiling, and if needed, substituting high-phosphorus foods for nutritionally equivalent foods that are lower in bioavailable phosphorus. Copyright © 2016 National Kidney Foundation, Inc. Published by Elsevier Inc. All rights reserved.
Phosphorus Moieties Make Polymers Less Flammable
NASA Technical Reports Server (NTRS)
Kourtides, D. A.; Mikroyannidis, J. A.
1992-01-01
Phosphorus incorporated into epoxies and polyamides via curing agent. According to report, use of 1-(di(2-chloroethoxyphosphinyl)methyl)-2,4- and -2,6-diaminobenzene (DCEPD) as curing agent for epoxies and polyamides makes these polymers more fire-retardant than corresponding polymers made with standard curing agents not containing phosphorus.
Phosphatase Hydrolysis of Soil Organic Phosphorus Fractions
USDA-ARS?s Scientific Manuscript database
Plant available inorganic phosphorus (Pi) is usually limited in highly weathered Ultisols. The high Fe, Al, and Mn contents in these soils enhance Pi retention and fixation. The metals are also known to form complexes with organic phosphorus (Po) compounds. Hydrolysis of Po compounds is needed for P...
Phosphorus Moieties Make Polymers Less Flammable
NASA Technical Reports Server (NTRS)
Kourtides, D. A.; Mikroyannidis, J. A.
1992-01-01
Phosphorus incorporated into epoxies and polyamides via curing agent. According to report, use of 1-(di(2-chloroethoxyphosphinyl)methyl)-2,4- and -2,6-diaminobenzene (DCEPD) as curing agent for epoxies and polyamides makes these polymers more fire-retardant than corresponding polymers made with standard curing agents not containing phosphorus.
Sustainable use of phosphorus: a finite resource.
Scholz, Roland W; Ulrich, Andrea E; Eilittä, Marjatta; Roy, Amit
2013-09-01
Phosphorus is an essential element of life and of the modern agricultural system. Today, science, policy, agro-industry and other stakeholder groups are increasingly concerned about the sustainable use of this resource, given the dissipative nature of phosphorus and difficulties in assessing, evaluating, and coping with phosphorus pollution in aquatic and terrestrial systems. We argue that predictions about a forthcoming peak, followed by a quick reduction (i.e., physical phosphate rock scarcity) are unreasoned and stress that access to phosphorus (economic scarcity) is already, and may increasingly become critical, in particular for smallholders farmers in different parts of the world. The paper elaborates on the design, development, goals and cutting-edge contributions of a global transdisciplinary process (i.e. mutual learning between science and society including multiple stakeholders) on the understanding of potential contributions and risks related to the current mode of using phosphorus on multiple scales (Global TraPs). While taking a global and comprehensive view on the whole phosphorus-supply chain, Global TraPs organizes and integrates multiple transdisciplinary case studies to better answer questions which inform sustainable future phosphorus use. Its major goals are to contribute to four issues central to sustainable resource management: i) long-term management of biogeochemical cycles, in particular the challenge of closing the phosphorus cycle, ii) achieving food security, iii) avoiding environmental pollution and iv) sustainability learning on a global level by transdisciplinary processes. Copyright © 2013 Elsevier B.V. All rights reserved.
The management of phosphorus in poultry litter
USDA-ARS?s Scientific Manuscript database
Poultry litter provides an important source of plant nutrients including nitrogen, phosphorus, potassium, calcium, magnesium and sulphur. The potential for phosphorus (P) surplus at the farm scale can increase when farming systems change from cropping to intensive poultry and animal production, as P...
Flores, J. Mauricio; Cywiak, Moises; Servin, Manuel; Juarez P, Lorenzo
2008-09-20
Recently, an interferometric profilometer based on the heterodyning of three Gaussian beams has been reported. This microscope interferometer, called a three Gaussian beam interferometer, has been used to profile high quality optical surfaces that exhibit constant reflectivity with high vertical resolution and lateral resolution near {lambda}. We report the use of this interferometer to measure the profiles of two commercially available optical surfaces for data storage, namely, the compact disk (CD-R) and the digital versatile disk (DVD-R). We include experimental results from a one-dimensional radial scan of these devices without data marks. The measurements are taken by placing the devices with the polycarbonate surface facing the probe beam of the interferometer. This microscope interferometer is unique when compared with other optical measuring instruments because it uses narrowband detection, filters out undesirable noisy signals, and because the amplitude of the output voltage signal is basically proportional to the local vertical height of the surface under test, thus detecting with high sensitivity. We show that the resulting profiles, measured with this interferometer across the polycarbonate layer, provide valuable information about the track profiles, making this interferometer a suitable tool for quality control of surface storage devices.
Flores, J Mauricio; Cywiak, Moisés; Servín, Manuel; Juárez, Lorenzo
2008-09-20
Recently, an interferometric profilometer based on the heterodyning of three Gaussian beams has been reported. This microscope interferometer, called a three Gaussian beam interferometer, has been used to profile high quality optical surfaces that exhibit constant reflectivity with high vertical resolution and lateral resolution near lambda. We report the use of this interferometer to measure the profiles of two commercially available optical surfaces for data storage, namely, the compact disk (CD-R) and the digital versatile disk (DVD-R). We include experimental results from a one-dimensional radial scan of these devices without data marks. The measurements are taken by placing the devices with the polycarbonate surface facing the probe beam of the interferometer. This microscope interferometer is unique when compared with other optical measuring instruments because it uses narrowband detection, filters out undesirable noisy signals, and because the amplitude of the output voltage signal is basically proportional to the local vertical height of the surface under test, thus detecting with high sensitivity. We show that the resulting profiles, measured with this interferometer across the polycarbonate layer, provide valuable information about the track profiles, making this interferometer a suitable tool for quality control of surface storage devices.
NASA Astrophysics Data System (ADS)
Rohani, A.; Shishegar, A. A.; Safavi-Naeini, S.
2004-03-01
A fast Gaussian beam tracing method for general vectorial astigmatic Gaussian beams based on phase matching has been formulated. Given the parameters of a vectorial Gaussian beam in its principal coordinate system the parameters of the reflected and refracted beams from a general curved surface (with general constitutive parameters) are found. The reflection and transmission of such beams from and through passive photonic structures such as lenses, mirrors and prisms can then be found by considering multiple reflections and transmissions.
Non-Gaussian Photon Probability Distribution
Solomon, Benjamin T.
2010-01-28
This paper investigates the axiom that the photon's probability distribution is a Gaussian distribution. The Airy disc empirical evidence shows that the best fit, if not exact, distribution is a modified Gamma mGAMMA distribution (whose parameters are alpha = r, betar/sq root(u)) in the plane orthogonal to the motion of the photon. This modified Gamma distribution is then used to reconstruct the probability distributions along the hypotenuse from the pinhole, arc from the pinhole, and a line parallel to photon motion. This reconstruction shows that the photon's probability distribution is not a Gaussian function. However, under certain conditions, the distribution can appear to be Normal, thereby accounting for the success of quantum mechanics. This modified Gamma distribution changes with the shape of objects around it and thus explains how the observer alters the observation. This property therefore places additional constraints to quantum entanglement experiments. This paper shows that photon interaction is a multi-phenomena effect consisting of the probability to interact P{sub i}, the probabilistic function and the ability to interact A{sub i}, the electromagnetic function. Splitting the probability function P{sub i} from the electromagnetic function A{sub i} enables the investigation of the photon behavior from a purely probabilistic P{sub i} perspective. The Probabilistic Interaction Hypothesis is proposed as a consistent method for handling the two different phenomena, the probability function P{sub i} and the ability to interact A{sub i}, thus redefining radiation shielding, stealth or cloaking, and invisibility as different effects of a single phenomenon P{sub i} of the photon probability distribution. Sub wavelength photon behavior is successfully modeled as a multi-phenomena behavior. The Probabilistic Interaction Hypothesis provides a good fit to Otoshi's (1972) microwave shielding, Schurig et al.(2006) microwave cloaking, and Oulton et al.(2008) sub
Dietary phosphorus supply, egg-shell deposition and plasma inorganic phosphorus in laying hens.
Boorman, K N; Gunaratne, S P
2001-03-01
1. In 2 experiments the effects of dietary phosphorus on relationships between plasma inorganic phosphorus concentration (Pi), shell and egg production and depletion states were measured in brown laying hens. 2. In a 12-week experiment dietary phosphorus concentrations from conventionally deficient (1.6 g non-phytate-phosphorus (PNP)/kg) to moderate excess (3.9 g PNP/kg) had little effect on egg and shell production, although there was evidence that plasma Pi concentration, when not influenced strongly by shell formation, reflected dietary phosphorus content. 3. Among birds at each dietary phosphorus concentration there was a negative linear relationship between shell weight of early eggs in the sequence and plasma Pi concentration. The relationship was apparently not affected by dietary phosphorus concentration. 4. Continued feeding of the deficient diet to 61 weeks of age did not have effects on body weight, egg and shell production, other than those associated with age, but plasma Pi and bone measurements indicated marginal phosphorus depletion. 5. In another experiment excessive dietary phosphorus (11.9 g PNP/kg) fed in a cross-over design caused small adverse effects on shell production, increased food intake and body weight and increased plasma Pi content, while there was no relationship between shell weight and plasma Pi concentration. 6. The results are consistent with an indirect effect of plasma phosphorus accumulation on shell formation, probably via an inhibitory effect on skeletal calcium release, in addition to any effect of excess dietary phosphorus on intestinal calcium availability. 7. Phosphorus requirement and status in the laying hen are complicated by the failure to recognise the contribution of digestible phytate-phosphorus to the available phosphorus supply.
Spectrophotometric determination of phosphorus acid
Domin, A.V.; Domina, N.G.; Zakharov, Yu.A.; Shechkov, G.T.
1987-03-01
A number of procedures have been proposed to determine phosphorus acid and its salts, the phosphites, in the presence of hypophosphorus acid and its salts, the hypophosphites. Among these procedures, iodometric back-titration has produced the most reliable results. In this paper, the authors propose an improved iodometric determination of phosphorus acid that enables the sensitivity to be increased by at least two orders of magnitude. The essence of this improvement is that excess iodine that did not react with phosphite ion is determined not volumetrically but spectrophotometrically. To eliminate the effect of iodine ion that is liberated when iodine reacts with phosphite ion on the optical density of the solution, a 200-fold excess of potassium iodide is added before the photometric measurement. The working iodine solution is prepared by diluting 10 m of 0.025 N iodine titrant and 50 ml of phosphate buffer, pH 6.7-7.2, to 1 liter with distilled water in a coulometric flask. To construct the calibration curve, 5, 10, 15, 20, and 25 ml, respectively of working iodine solution, and 10 ml of 2% aqueous potassium iodide are placed into five 100-ml volumetric flasks, and the solutions are made up to volume with water. After 10 min the photometric measurements are carried out at 380 nm using curvets and the reference solution is obtained by diluting 10 ml of 2% aqueous potassium iodide to 100 ml with distilled water.
Phosphorus dynamics in Delavan Lake Inlet, southeastern Wisconsin, 1994
Robertson, D.M.; Field, S.J.; Elder, J.F.; Goddard, G.L.; James, W.F.
1996-01-01
The detailed phosphorus budget indicated that the increase in phosphorus concentrations was caused primarily by elevated pH resulting from increased photosynthetic activity of the macrophytes and a high release of phosphorus from the sediments. The release of phosphorus from the sediments was the largest source of phosphorus to the inlet in the spring and summer of 1994 and in other years of low to near normal runoff; however, in years of high runoff, phosphorus input from the inlet's drainage basin was the largest source of phosphorus. A less-detailed phosphorus budget constructed for the period from February 1993 to September 1994 demonstrated that, over the entire year, runoff from the drainage basin was the dominant source in the phosphorus budget. During April-September 1994, the input of phosphorus from the inlet may especially affect the summer productivity in Delavan Lake because almost 80 percent of the phosphorus loading during this time was in the form of dissolved orthophosphate.
Non-Gaussianity in the foreground-reduced CMB maps
Bernui, A.; Reboucas, M. J.
2010-03-15
A detection or nondetection of primordial non-Gaussianity by using the cosmic microwave background radiation (CMB) data is crucial not only to discriminate inflationary models but also to test alternative scenarios. Non-Gaussianity offers, therefore, a powerful probe of the physics of the primordial Universe. The extraction of primordial non-Gaussianity is a difficult enterprise since several effects of a nonprimordial nature can produce non-Gaussianity. Given the far-reaching consequences of such a non-Gaussianity for our understanding of the physics of the early Universe, it is important to employ a range of different statistical tools to quantify and/or constrain its amount in order to have information that may be helpful for identifying its causes. Moreover, different indicators can in principle provide information about distinct forms of non-Gaussianity that can be present in CMB data. Most of the Gaussianity analyses of CMB data have been performed by using part-sky frequency, where the mask is used to deal with the galactic diffuse foreground emission. However, full-sky map seems to be potentially more appropriate to test for Gaussianity of the CMB data. On the other hand, masks can induce bias in some non-Gaussianity analyses. Here we use two recent large-angle non-Gaussianity indicators, based on skewness and kurtosis of large-angle patches of CMB maps, to examine the question of non-Gaussianity in the available full-sky five-year and seven-year Wilkinson Microwave Anisotropy Probe (WMAP) maps. We show that these full-sky foreground-reduced maps present a significant deviation from Gaussianity of different levels, which vary with the foreground-reducing procedures. We also make a Gaussianity analysis of the foreground-reduced five-year and seven-year WMAP maps with a KQ75 mask, and compare with the similar analysis performed with the corresponding full-sky foreground-reduced maps. This comparison shows a significant reduction in the levels of non-Gaussianity
Phosphorus Regulation in Chronic Kidney Disease
Suki, Wadi N.; Moore, Linda W.
2016-01-01
Serum phosphorus levels stay relatively constant through the influence of multiple factors—such as parathyroid hormone, fibroblast growth factor 23, and vitamin D—on the kidney, bone, and digestive system. Whereas normal serum phosphorus ranges between 3 mg/dL to 4.5 mg/dL, large cross-sectional studies have shown that even people with normal kidney function are sometimes found to have levels ranging between 1.6 mg/dL and 6.2 mg/dL. While this may partially be due to diet and the factors mentioned above, total understanding of these atypical ranges of serum phosphorus remains uncertain. Risks for bone disease are high in people aged 50 and older, and this group comprises a large proportion of people who also have chronic kidney disease. Consuming diets low in calcium and high in phosphorus, especially foods with phosphate additives, further exacerbates bone turnover. Existing bone disease increases the risk for high serum phosphorus, and higher serum phosphorus has been associated with increased adverse events and cardiovascular-related mortality both in people with chronic kidney disease and in those with no evidence of disease. Once kidney function has deteriorated to end-stage disease (Stage 5), maintaining normal serum phosphorus requires dietary restrictions, phosphate-binding medications, and dialysis. Even so, normal serum phosphorus remains elusive in many patients with Stage 5 kidney disease, and researchers are testing novel targets that may inhibit intestinal transport of phosphorus to achieve better phosphate control. Protecting and monitoring bone health should also aid in controlling serum phosphorus as kidney disease advances. PMID:28298956
Phosphorus Regulation in Chronic Kidney Disease.
Suki, Wadi N; Moore, Linda W
2016-01-01
Serum phosphorus levels stay relatively constant through the influence of multiple factors-such as parathyroid hormone, fibroblast growth factor 23, and vitamin D-on the kidney, bone, and digestive system. Whereas normal serum phosphorus ranges between 3 mg/dL to 4.5 mg/dL, large cross-sectional studies have shown that even people with normal kidney function are sometimes found to have levels ranging between 1.6 mg/dL and 6.2 mg/dL. While this may partially be due to diet and the factors mentioned above, total understanding of these atypical ranges of serum phosphorus remains uncertain. Risks for bone disease are high in people aged 50 and older, and this group comprises a large proportion of people who also have chronic kidney disease. Consuming diets low in calcium and high in phosphorus, especially foods with phosphate additives, further exacerbates bone turnover. Existing bone disease increases the risk for high serum phosphorus, and higher serum phosphorus has been associated with increased adverse events and cardiovascular-related mortality both in people with chronic kidney disease and in those with no evidence of disease. Once kidney function has deteriorated to end-stage disease (Stage 5), maintaining normal serum phosphorus requires dietary restrictions, phosphate-binding medications, and dialysis. Even so, normal serum phosphorus remains elusive in many patients with Stage 5 kidney disease, and researchers are testing novel targets that may inhibit intestinal transport of phosphorus to achieve better phosphate control. Protecting and monitoring bone health should also aid in controlling serum phosphorus as kidney disease advances.
Exploring scalar field dynamics with Gaussian processes
Nair, Remya; Jhingan, Sanjay; Jain, Deepak E-mail: sanjay.jhingan@gmail.com
2014-01-01
The origin of the accelerated expansion of the Universe remains an unsolved mystery in Cosmology. In this work we consider a spatially flat Friedmann-Robertson-Walker (FRW) Universe with non-relativistic matter and a single scalar field contributing to the energy density of the Universe. Properties of this scalar field, like potential, kinetic energy, equation of state etc. are reconstructed from Supernovae and BAO data using Gaussian processes. We also reconstruct energy conditions and kinematic variables of expansion, such as the jerk and the slow roll parameter. We find that the reconstructed scalar field variables and the kinematic quantities are consistent with a flat ΛCDM Universe. Further, we find that the null energy condition is satisfied for the redshift range of the Supernovae data considered in the paper, but the strong energy condition is violated.
Length of Inflation and Non-Gaussianity
NASA Astrophysics Data System (ADS)
Hirai, Shiro; Takami, Tomoyuki
Certain inflation models are shown to have large non-Gaussianity in special cases. Namely, slow-roll inflation models with an effective higher derivative interaction, in which the length of inflation is finite and a scalar-matter-dominated period or power inflation is adopted as pre-inflation, are considered. Using Holman and Tolley's formula of the nonlinearity parameter in the flattened triangle configurations f flattened NL, we calculate the value of f flattened NL. The value of f flattened NL is found to be largest (f flattened NL>10) when the inflation length is approximately 60 e-folds, and f flattened NL is found to depend strongly on the length of inflation and the cut-off scale.
IBS for non-gaussian distributions
Fedotov, A.; Sidorin, A.O.; Smirnov, A.V.
2010-09-27
In many situations distribution can significantly deviate from Gaussian which requires accurate treatment of IBS. Our original interest in this problem was motivated by the need to have an accurate description of beam evolution due to IBS while distribution is strongly affected by the external electron cooling force. A variety of models with various degrees of approximation were developed and implemented in BETACOOL in the past to address this topic. A more complete treatment based on the friction coefficient and full 3-D diffusion tensor was introduced in BETACOOL at the end of 2007 under the name 'local IBS model'. Such a model allowed us calculation of IBS for an arbitrary beam distribution. The numerical benchmarking of this local IBS algorithm and its comparison with other models was reported before. In this paper, after briefly describing the model and its limitations, they present its comparison with available experimental data.
Semiconductor band gap localization via Gaussian function
NASA Astrophysics Data System (ADS)
Ullrich, B.; Brown, G. J.; Xi, H.
2012-10-01
To determine the band gap of bulk semiconductors with transmission spectroscopy alone is considered as an extremely difficult task because in the higher energy range, approaching and exceeding the band gap energy, the material is opaque yielding no useful data to be recorded. In this paper, by investigating the transmission of industrial GaSb wafers with a thickness of 500 µm, we demonstrate how these obstacles of transmission spectroscopy can be overcome. The key is the transmission spectrums’ derivative, which coincides with the Gaussian function. This understanding can be used to transfer Beers’ law in an integral form opening the pathway of band gap determinations based on mathematical parameters only. The work also emphasizes the correlation between the thermal band gap variation and Debye temperature.
Primordial non-Gaussianity from G inflation
Kobayashi, Tsutomu; Yamaguchi, Masahide; Yokoyama, Jun'ichi
2011-05-15
We present a comprehensive study of primordial fluctuations generated from G inflation, in which the inflaton Lagrangian is of the form K({phi},X)-G({phi},X){open_square}{phi} with X=-({partial_derivative}{phi}){sup 2}/2. The Lagrangian still gives rise to second-order gravitational and scalar field equations, and thus offers a more generic class of single-field inflation than ever studied, with a richer phenomenology. We compute the power spectrum and the bispectrum, and clarify how the non-Gaussian amplitude depends upon parameters such as the sound speed. In so doing we try to keep as great generality as possible, allowing for non slow-roll and deviation from the exact scale invariance.
Equilateral non-Gaussianity from multifield dynamics
Tolley, Andrew J.; Wyman, Mark
2010-02-15
The distinctive features of single field inflationary models with nonminimal kinetic terms, like Dirac-Born-Infeld and k inflation, can be captured by more familiar multiple-field inflationary systems of the type that typically arise in low-energy supergravity models. At least one heavy field, which we call the gelaton, has an effective potential which depends on the kinetic energy of the inflaton. Integrating out the gelaton gives rise to an effectively single field system for which the speed of sound for the adiabatic fluctuations is reduced, generating potentially observable equilateral non-Gaussianity, while causing negligible isocurvature fluctuations. This mechanism is only active if there is a relatively tight coupling between the gelaton and the inflaton. Requiring that the inflaton-gelaton system remains weakly coupled puts an upper limit on the gelaton mass. This approach gives a potentially UV-completable framework for describing large classes of k-inflationary behavior.
Reversed Airy Gaussian and Airy Gaussian vortex light bullets in harmonic potential
NASA Astrophysics Data System (ADS)
Peng, Xi; Peng, Yulian; Zhang, Liping; Li, Dongdong; Deng, Dongmei
2017-05-01
By solving the normalized dimensionless linear Schrödinger-like equation with harmonic potential analytically, we have studied the spatiotemporal Airy Gaussian (AiG) and Airy Gaussian vortex (AiGV) light bullets. The AiG light bullets are composed of the chirped Airy functions in temporal domain and the AiG functions in spatial domain, while AiGV light bullets are AiG light bullets carrying the vortex. By selecting the negative or positive linear chirp we can obtain decelerating or accelerating light bullets, respectively. Combing effects from harmonic potential with the negative quadratic chirp, we can study reversed light bullets in both spatial and temporal domains.
Bronx River bed sediments phosphorus pool and phosphorus compound identification
NASA Astrophysics Data System (ADS)
Wang, J.; Pant, H. K.
2008-12-01
Phosphorus (P) transport in the Bronx River degraded water quality, decreased oxygen levels, and resulted in bioaccumulation in sediment potentially resulting in eutrophication, algal blooms and oxygen depletion under certain temperature and pH conditions. The anthropogenic P sources are storm water runoff, raw sewage discharge, fertilizer application in lawn, golf course and New York Botanical Garden; manure from the Bronx zoo; combined sewoverflows (CSO's) from parkway and Hunts Point sewage plant; pollutants from East River. This research was conducted in the urban river system in New York City area, in order to control P source, figure out P transport temporal and spatial variations and the impact on water quality; aimed to regulate P application, sharing data with Bronx River Alliance, EPA, DEP and DEC. The sediment characteristics influence the distribution and bioavailbility of P in the Bronx River. The P sequential extraction gave the quantitative analysis of the P pool, quantifying the inorganic and organic P from the sediments. There were different P pool patterns at the 15 sites, and the substantial amount of inorganic P pool indicated that a large amount P is bioavailable. The 31P- NMR (Nuclear Magnetic Resonance Spectroscopy) technology had been used to identify P species in the 15 sites of the Bronx River, which gave a qualitative analysis on phosphorus transport in the river. The P compounds in the Bronx River bed sediments are mostly glycerophophate (GlyP), nucleoside monophosphates (NMP), polynucleotides (PolyN), and few sites showed the small amount of glucose-6-phosphate (G6P), glycerophosphoethanoamine (GPEA), phosphoenopyruvates (PEP), and inosine monophosphate (IMP). The land use spatial and temporal variations influence local water P levels, P distributions, and P compositions.
Development and modification of a Gaussian and non-Gaussian noise exposure system
NASA Astrophysics Data System (ADS)
Schlag, Adam W.
Millions of people across the world currently have noise induced hearing loss, and many are working in conditions with both continuous Gaussian and non-Gaussian noises that could affect their hearing. It was hypothesized that the energy of the noise was the cause of the hearing loss and did not depend on temporal pattern of a noise. This was referred to as the equal energy hypothesis. This hypothesis has been shown to have limitations though. This means that there is a difference in the types of noise a person receives to induce hearing loss and it is necessary to build a system that can easily mimic various conditions to conduct research. This study builds a system that can produce both non-Gaussian impulse/impact noises and continuous Gaussian noise. It was found that the peak sound pressure level of the system could reach well above the needed 120 dB level to represent acoustic trauma and could replicate well above the 85 dB A-weighted sound pressure level to produce conditions of gradual developing hearing loss. The system reached a maximum of 150 dB sound peak pressure level and a maximum of 133 dB A-weighted sound pressure level. Various parameters could easily be adjusted to control the sound, such as the high and low cutoff frequency to center the sound at 4 kHz. The system build can easily be adjusted to create numerous sound conditions and will hopefully be modified and improved in hopes of eventually being used for animal studies to lead to the creation of a method to treat or prevent noise induced hearing loss.
Norms of quantum Gaussian multi-mode channels
NASA Astrophysics Data System (ADS)
Frank, Rupert L.; Lieb, Elliott H.
2017-06-01
We compute the Sp→Sp norm of a general Gaussian gauge-covariant multi-mode channel for any 1 ≤ p < ∞ , where Sp is a Schatten space. As a consequence, we verify the Gaussian optimizer conjecture and the multiplicativity conjecture in these cases.
Optimality of Gaussian attacks in continuous-variable quantum cryptography.
Navascués, Miguel; Grosshans, Frédéric; Acín, Antonio
2006-11-10
We analyze the asymptotic security of the family of Gaussian modulated quantum key distribution protocols for continuous-variables systems. We prove that the Gaussian unitary attack is optimal for all the considered bounds on the key rate when the first and second momenta of the canonical variables involved are known by the honest parties.
Gaussian and mean curvatures for discrete asymptotic nets
NASA Astrophysics Data System (ADS)
Schief, W. K.
2017-04-01
We propose discretisations of Gaussian and mean curvatures of surfaces parametrised in terms of asymptotic coordinates and examine their relevance in the context of integrable discretisations of classical classes of surfaces and their underlying integrable systems. We also record discrete analogues of the classical relation between the Gaussian curvature of hyperbolic surfaces and the torsion of their asymptotic lines.
Degeneracy of energy levels of pseudo-Gaussian oscillators
Iacob, Theodor-Felix; Iacob, Felix; Lute, Marina
2015-12-07
We study the main features of the isotropic radial pseudo-Gaussian oscillators spectral properties. This study is made upon the energy levels degeneracy with respect to orbital angular momentum quantum number. In a previous work [6] we have shown that the pseudo-Gaussian oscillators belong to the class of quasi-exactly solvable models and an exact solution has been found.
A Paper-and-Pencil gcd Algorithm for Gaussian Integers
ERIC Educational Resources Information Center
Szabo, Sandor
2005-01-01
As with natural numbers, a greatest common divisor of two Gaussian (complex) integers "a" and "b" is a Gaussian integer "d" that is a common divisor of both "a" and "b". This article explores an algorithm for such gcds that is easy to do by hand.
When Does the Uncertainty Become Non-Gaussian
NASA Astrophysics Data System (ADS)
Alfriend, K.; Park, I.
2016-09-01
The orbit state covariance is used in the conjunction assessment/probability of collision calculation. It can also be a valuable tool in track association, maneuver detection and sensor tasking. These uses all assume that the uncertainty is Gaussian. Studies have shown that the uncertainty at epoch (time of last observation) is reasonably Gaussian, but the neglected nonlinearities in the covariance propagation eventually result in the uncertainty becoming non-Gaussian. Numerical studies have shown that for space objects in low Earth orbit the covariance remains Gaussian the longest in orbital element space. It has been shown that the covariance remains Gaussian for up to 10 days in orbital element space, but becomes non-Gaussian after 2-3 days in Cartesian coordinates for a typical LEO orbit. The fundamental question is when does it become non-Gaussian and how can one given the orbit state and covariance at epoch determine when it occurs. A tool that an operator could use to compute the approximate time when the when the uncertainty becomes non-Gaussian would be useful This paper addresses the development of such a tool.
Connections between Graphical Gaussian Models and Factor Analysis
ERIC Educational Resources Information Center
Salgueiro, M. Fatima; Smith, Peter W. F.; McDonald, John W.
2010-01-01
Connections between graphical Gaussian models and classical single-factor models are obtained by parameterizing the single-factor model as a graphical Gaussian model. Models are represented by independence graphs, and associations between each manifest variable and the latent factor are measured by factor partial correlations. Power calculations…
Connections between Graphical Gaussian Models and Factor Analysis
ERIC Educational Resources Information Center
Salgueiro, M. Fatima; Smith, Peter W. F.; McDonald, John W.
2010-01-01
Connections between graphical Gaussian models and classical single-factor models are obtained by parameterizing the single-factor model as a graphical Gaussian model. Models are represented by independence graphs, and associations between each manifest variable and the latent factor are measured by factor partial correlations. Power calculations…
Hidden sources of phosphorus: presence of phosphorus-containing additives in processed foods.
Lou-Arnal, Luis M; Arnaudas-Casanova, Laura; Caverni-Muñoz, Alberto; Vercet-Tormo, Antonio; Caramelo-Gutiérrez, Rocío; Munguía-Navarro, Paula; Campos-Gutiérrez, Belén; García-Mena, Mercedes; Moragrera, Belén; Moreno-López, Rosario; Bielsa-Gracia, Sara; Cuberes-Izquierdo, Marta
2014-01-01
An increased consumption of processed foods that include phosphorus-containing additives has led us to propose the following working hypothesis: using phosphate-rich additives that can be easily absorbed in processed foods involves a significant increase in phosphorus in the diet, which may be considered as hidden phosphorus since it is not registered in the food composition tables. The quantity of phosphorus contained in 118 processed products was determined by spectrophotometry and the results were contrasted with the food composition tables of the Higher Education Centre of Nutrition and Diet, those of Morandeira and those of the BEDCA (Spanish Food Composition Database) Network. Food processing frequently involves the use of phosphoric additives. The products whose label contains these additives have higher phosphorus content and higher phosphorus-protein ratio. We observed a discrepancy with the food composition tables in terms of the amount of phosphorus determined in a sizeable proportion of the products. The phosphorus content of prepared refrigerated foods hardly appears in the tables. Product labels provide little information on phosphorus content. We observed a discrepancy in phosphorus content in certain foods with respect to the food composition tables. We should educate our patients on reviewing the additives on the labels and on the limitation of processed foods. There must be health policy actions to deal with the problem: companies should analyse the phosphorus content of their products, display the correct information on their labels and incorporate it into the food composition tables. Incentives could be established to prepare food with a low phosphorus content and alternatives to phosphorus-containing additives.
Noori, Nazanin; Kalantar-Zadeh, Kamyar; Kovesdy, Csaba P; Bross, Rachelle; Benner, Debbie; Kopple, Joel D
2010-04-01
Epidemiologic studies show an association between higher predialysis serum phosphorus and increased death risk in maintenance hemodialysis (MHD) patients. The hypothesis that higher dietary phosphorus intake and higher phosphorus content per gram of dietary protein intake are each associated with increased mortality in MHD patients was examined. Food frequency questionnaires were used to conduct a cohort study to examine the survival predictability of dietary phosphorus and the ratio of phosphorus to protein intake. At the start of the cohort, Cox proportional hazard regression was used in 224 MHD patients, who were followed for up to 5 years (2001 to 2006). Both higher dietary phosphorus intake and a higher dietary phosphorus to protein ratio were associated with significantly increased death hazard ratios (HR) in the unadjusted models and after incremental adjustments for case-mix, diet, serum phosphorus, malnutrition-inflammation complex syndrome, and inflammatory markers. The HR of the highest (compared with lowest) dietary phosphorus intake tertile in the fully adjusted model was 2.37. Across categories of dietary phosphorus to protein ratios of <12, 12 to <14, 14 to <16, and > or =16 mg/g, death HRs were 1.13, 1.00 (reference value), 1.80, and 1.99, respectively. Cubic spline models of the survival analyses showed similar incremental associations. Higher dietary phosphorus intake and higher dietary phosphorus to protein ratios are each associated with increased death risk in MHD patients, even after adjustments for serum phosphorus, phosphate binders and their types, and dietary protein, energy, and potassium intakes.
Noori, Nazanin; Kovesdy, Csaba P.; Bross, Rachelle; Benner, Debbie; Kopple, Joel D.
2010-01-01
Background and objectives: Epidemiologic studies show an association between higher predialysis serum phosphorus and increased death risk in maintenance hemodialysis (MHD) patients. The hypothesis that higher dietary phosphorus intake and higher phosphorus content per gram of dietary protein intake are each associated with increased mortality in MHD patients was examined. Design, setting, participants, & measurements: Food frequency questionnaires were used to conduct a cohort study to examine the survival predictability of dietary phosphorus and the ratio of phosphorus to protein intake. At the start of the cohort, Cox proportional hazard regression was used in 224 MHD patients, who were followed for up to 5 years (2001 to 2006). Results: Both higher dietary phosphorus intake and a higher dietary phosphorus to protein ratio were associated with significantly increased death hazard ratios (HR) in the unadjusted models and after incremental adjustments for case-mix, diet, serum phosphorus, malnutrition-inflammation complex syndrome, and inflammatory markers. The HR of the highest (compared with lowest) dietary phosphorus intake tertile in the fully adjusted model was 2.37. Across categories of dietary phosphorus to protein ratios of <12, 12 to <14, 14 to <16, and ≥16 mg/g, death HRs were 1.13, 1.00 (reference value), 1.80, and 1.99, respectively. Cubic spline models of the survival analyses showed similar incremental associations. Conclusions: Higher dietary phosphorus intake and higher dietary phosphorus to protein ratios are each associated with increased death risk in MHD patients, even after adjustments for serum phosphorus, phosphate binders and their types, and dietary protein, energy, and potassium intakes. PMID:20185606
Larrañaga, Olatz; Romero-Nieto, Carlos; de Cozar Ruano, Abel
2017-09-18
The reaction mechanism associated with the synthesis of phosphorus-based heteropolyaromatic architectures by intramolecular SEAr have been investigated by DFT calculations at the B3LYP-D3/6-311+G(D) level of theory. The purpose of this study is to provide essential information for the future development of improved polycyclic organophosphorus materials. To that end, we have studied the impact of the initial reactant and/or the intermediates' structure into the mechanistic features and energetic profiles of the phosphorus cyclization process. Moreover, we have analysed in detail the reactivity parameters within a conceptual DFT framework and extracted underlying reactivity trends. Thus, our findings provide important insights for a rational design of polycyclic phosphorus compounds. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Note on non-Gaussianities in two-field inflation
NASA Astrophysics Data System (ADS)
Wang, Tower
2010-12-01
Two-field slow-roll inflation is the most conservative modification of a single-field model. The main motivations to study it are its entropic mode and non-Gaussianity. Several years ago, for a two-field model with additive separable potentials, Vernizzi and Wands invented an analytic method to estimate its non-Gaussianities. Later on, Choi et al. applied this method to the model with multiplicative separable potentials. In this note, we design a larger class of models whose non-Gaussianity can be estimated by the same method. Under some simplistic assumptions, roughly these models are unlikely able to generate a large non-Gaussianity. We look over some specific models of this class by scanning the full parameter space, but still no large non-Gaussianity appears in the slow-roll region. These models and scanning techniques would be useful for a future model hunt if observational evidence shows up for two-field inflation.
Multipartite Gaussian steering: Monogamy constraints and quantum cryptography applications
NASA Astrophysics Data System (ADS)
Xiang, Yu; Kogias, Ioannis; Adesso, Gerardo; He, Qiongyi
2017-01-01
We derive laws for the distribution of quantum steering among different parties in multipartite Gaussian states under Gaussian measurements. We prove that a monogamy relation akin to the generalized Coffman-Kundu-Wootters inequality holds quantitatively for a recently introduced measure of Gaussian steering. We then define the residual Gaussian steering, stemming from the monogamy inequality, as an indicator of collective steering-type correlations. For pure three-mode Gaussian states, the residual acts as a quantifier of genuine multipartite steering, and is interpreted operationally in terms of the guaranteed key rate in the task of secure quantum secret sharing. Optimal resource states for the latter protocol are identified, and their possible experimental implementation discussed. Our results pin down the role of multipartite steering for quantum communication.
Distillation and purification of symmetric entangled Gaussian states
Fiurasek, Jaromir
2010-10-15
We propose an entanglement distillation and purification scheme for symmetric two-mode entangled Gaussian states that allows to asymptotically extract a pure entangled Gaussian state from any input entangled symmetric Gaussian state. The proposed scheme is a modified and extended version of the entanglement distillation protocol originally developed by Browne et al. [Phys. Rev. A 67, 062320 (2003)]. A key feature of the present protocol is that it utilizes a two-copy degaussification procedure that involves a Mach-Zehnder interferometer with single-mode non-Gaussian filters inserted in its two arms. The required non-Gaussian filtering operations can be implemented by coherently combining two sequences of single-photon addition and subtraction operations.
Non-ideal boson system in the Gaussian approximation
Tommasini, P.R.; de Toledo Piza, A.F.
1997-01-01
We investigate ground-state and thermal properties of a system of non-relativistic bosons interacting through repulsive, two-body interactions in a self-consistent Gaussian mean-field approximation which consists in writing the variationally determined density operator as the most general Gaussian functional of the quantized field operators. Finite temperature results are obtained in a grand canonical framework. Contact is made with the results of Lee, Yang, and Huang in terms of particular truncations of the Gaussian approximation. The full Gaussian approximation supports a free phase or a thermodynamically unstable phase when contact forces and a standard renormalization scheme are used. When applied to a Hamiltonian with zero range forces interpreted as an effective theory with a high momentum cutoff, the full Gaussian approximation generates a quasi-particle spectrum having an energy gap, in conflict with perturbation theory results. {copyright} 1997 Academic Press, Inc.
Gaussian cloning of coherent states with known phases
Alexanian, Moorad
2006-04-15
The fidelity for cloning coherent states is improved over that provided by optimal Gaussian and non-Gaussian cloners for the subset of coherent states that are prepared with known phases. Gaussian quantum cloning duplicates all coherent states with an optimal fidelity of 2/3. Non-Gaussian cloners give optimal single-clone fidelity for a symmetric 1-to-2 cloner of 0.6826. Coherent states that have known phases can be cloned with a fidelity of 4/5. The latter is realized by a combination of two beam splitters and a four-wave mixer operated in the nonlinear regime, all of which are realized by interaction Hamiltonians that are quadratic in the photon operators. Therefore, the known Gaussian devices for cloning coherent states are extended when cloning coherent states with known phases by considering a nonbalanced beam splitter at the input side of the amplifier.
Pixel-based analysis of FRAP data with a general initial bleaching profile.
Jonasson, J K; Hagman, J; Lorén, N; Bernin, D; Nydén, M; Rudemo, M
2010-08-01
In Jonasson et al. (2008), we presented a new pixel-based maximum likelihood framework for the estimation of diffusion coefficients from data on fluorescence recovery after photobleaching (FRAP) with confocal laser scanning microscopy (CLSM). The main method there, called the Gaussian profile method below, is based on the assumption that the initial intensity profile after photobleaching is approximately Gaussian. In the present paper, we introduce a method, called the Monotone profile method, where the maximum likelihood framework is extended to a general initial bleaching profile only assuming that the profile is a non-decreasing function of the distance to the bleaching centre. The statistical distribution of the image noise is further assumed to be Poisson instead of normal, which should be a more realistic description of the noise in the detector. The new Monotone profile method and the Gaussian profile method are applied to FRAP data on swelling of super absorbent polymers (SAP) in water with a Fluorescein probe. The initial bleaching profile is close to a step function at low degrees of swelling and close to a Gaussian profile at high degrees of swelling. The results obtained from the analysis of the FRAP data are corroborated with NMR diffusometry analysis of SAP with a polyethylene glycol probe having size similar to the Fluorescein. The comparison of the Gaussian and Monotone profile methods is also performed by use of simulated data. It is found that the new Monotone profile method is accurate for all types of initial profiles studied, but it suffers from being computationally slow. The fast Gaussian profile method is sufficiently accurate for most of the profiles studied, but underestimates the diffusion coefficient for profiles close to a step function. We also provide a diagnostic plot, which indicates whether the Gaussian profile method is acceptable or not.
Gaussian intrinsic entanglement: An entanglement quantifier based on secret correlations
NASA Astrophysics Data System (ADS)
Mišta, Ladislav; Tatham, Richard
2015-06-01
Intrinsic entanglement (IE) is a quantity which aims at quantifying bipartite entanglement carried by a quantum state as an optimal amount of the intrinsic information that can be extracted from the state by measurement. We investigate in detail the properties of a Gaussian version of IE, the so-called Gaussian intrinsic entanglement (GIE). We show explicitly how GIE simplifies to the mutual information of a distribution of outcomes of measurements on a conditional state obtained by a measurement on a purifying subsystem of the analyzed state, which is first minimized over all measurements on the purifying subsystem and then maximized over all measurements on the conditional state. By constructing for any separable Gaussian state a purification and a measurement on the purifying subsystem which projects the purification onto a product state, we prove that GIE vanishes on all Gaussian separable states. Via realization of quantum operations by teleportation, we further show that GIE is nonincreasing under Gaussian local trace-preserving operations and classical communication. For pure Gaussian states and a reduction of the continuous-variable GHZ state, we calculate GIE analytically and we show that it is always equal to the Gaussian Rényi-2 entanglement. We also extend the analysis of IE to a non-Gaussian case by deriving an analytical lower bound on IE for a particular form of the non-Gaussian continuous-variable Werner state. Our results indicate that mapping of entanglement onto intrinsic information is capable of transmitting also quantitative properties of entanglement and that this property can be used for introduction of a quantifier of Gaussian entanglement which is a compromise between computable and physically meaningful entanglement quantifiers.
21 CFR 862.1580 - Phosphorus (inorganic) test system.
Code of Federal Regulations, 2010 CFR
2010-04-01
... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Phosphorus (inorganic) test system. 862.1580... Systems § 862.1580 Phosphorus (inorganic) test system. (a) Identification. A phosphorus (inorganic) test system is a device intended to measure inorganic phosphorus in serum, plasma, and urine. Measurements...
21 CFR 862.1580 - Phosphorus (inorganic) test system.
Code of Federal Regulations, 2011 CFR
2011-04-01
... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Phosphorus (inorganic) test system. 862.1580... Systems § 862.1580 Phosphorus (inorganic) test system. (a) Identification. A phosphorus (inorganic) test system is a device intended to measure inorganic phosphorus in serum, plasma, and urine. Measurements...