Science.gov

Sample records for phosphorus potassium calcium

  1. Nitrogen, phosphorus, potassium, calcium, magnesium, and zinc in southeastern USA harvested flax

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Flax (Linum usitatissimum L.) is a winter crop in the Southeast USA that has potential in double cropping systems. This research was conducted to provide estimates of nitrogen (N), phosphorus (P), potassium (K), calcium (Ca), magnesium (Mg), and zinc (Zn) removal in the harvested portions of the cro...

  2. Effect of excess dietary sodium, potassium, calcium and phosphorus on excreta moisture of laying hens.

    PubMed

    Smith, A; Rose, S P; Wells, R G; Pirgozliev, V

    2000-12-01

    1. Four experiments were conducted to investigate the effects of dietary concentrations of sodium, potassium, calcium or phosphate on the water intake and excreta moisture of laying hens. A fifth experiment examined the effect on these variables of increasing amounts of 2 different sodium salts (chloride or bicarbonate) and the interactions with 2 levels of dietary phosphorus. 2. All experiments involved individually caged laying hens fed on diets varying in 1 or 2 minerals in replacement for washed sand. The experimental diets contained mineral concentrations that either met or exceeded the expected requirement of the hens. The diets were given for a 7 or 8 d feeding period and food and water intakes were measured and excreta were collected for the last 48 h of each feeding period. These data were corrected for evaporative water loss to the environment during the collection period. 3. Increasing dietary concentrations of sodium, potassium or phosphorus gave linear increases (P<0.001) in the water intake of the laying hens and linear increases (P<0.01) in the moisture content of their excreta. Each 1 g/kg increase in dietary mineral increased the moisture content of the excreta by 9.04 (+/- 1.57), 11.95 (+/- 2.02) and 5.59 (+/- 0.31) g/kg (+/- standard error) for sodium, potassium and phosphorus, respectively. Increasing concentrations of dietary calcium did not significantly affect the water intakes or excreta moisture levels of the laying hens. 4. The fifth experiment showed that, although there was a sodium x phosphorus interaction (P<0.05), the effects of the 2 mineral additions were approximately additive. There were no significant differences (P>0.05) in water intakes or excreta moisture contents due to the 2 different sodium salts (chloride or bicarbonate).

  3. Potassium/energy and phosphorus/calcium ratios reflect the quality of nutrition.

    PubMed

    Yoshita, K; Nakagawa, H; Tabata, M; Morikawa, Y; Nishijo, M; Senma, M; Miura, K; Ishizaki, M; Kido, T; Kawano, S

    1994-02-01

    A nutritional survey and questionnaire regarding dietary habits were administered to 649 men ranging in age from 35 to 64 years receiving a one-day health screening examination. First, comparisons of nutrient intake based on the nutrient rate of the Recommended Dietary Allowances for Japanese (RDA), and the total score on the questionnaire regarding dietary habits according to the RDA rates of total energy and calcium (Ca) were investigated. Then, the comparisons of intake of food groups, intake of nutrients and the total score on the questionnaire regarding dietary habits according to potassium/energy (K/E) ratio and phosphorus/calcium (P/Ca) ratio were determined. Last, differences between comparisons with the nutrient rates of RDA and comparisons with K/E ratio and P/Ca ratio were investigated. The following results were obtained: 1. Even in the group with RDA rates of total energy or Ca of > or = 90% and < or = 110% the RDA rates of some other nutrients were out-side the appropriate range. 2. In the group with high K/E ratios, as compared to the group with low ratios, the intake of potatoes, pulses, fruits, green/yellow vegetables, other vegetables, soy sauce, other beverages, fish/shellfish, and milk products showed high values, while cereals and fats/oils showed low values. For this reason, in the former group as compared to the latter, the intake and RDA total energy rate showed low values whereas the intake and RDA rates of nutrients such as Ca, Fe, and vitamin A were low. 3. In the group with high P/Ca ratios, as compared to the group with low ratios, the intake of beer and meats showed high values while that of pulses, green/yellow vegetables, and milk products showed low values. For this reason, in the former group as compared to the other groups, despite the fact that the intake and RDA total energy rate tended to be higher, the intake of nutrients such as Ca, P, K, and vitamin A showed lower values. 4. The RDA rates of all of the nutrients of group

  4. Dietary Intake Ratios of Calcium-to-Phosphorus and Sodium-to-Potassium Are Associated with Serum Lipid Levels in Healthy Korean Adults.

    PubMed

    Bu, So-Young; Kang, Myung-Hwa; Kim, Eun-Jin; Choi, Mi-Kyeong

    2012-06-01

    The purpose of this study was to identify food sources for major minerals such as calcium (Ca), phosphorus (P), sodium (Na) and potassium (K), and to evaluate the relationship between dietary intake of these minerals and serum lipids in healthy Korean adults. A total of 132 healthy men and women completed a physical examination and dietary record and provided blood samples for lipid profile analysis. Results showed the following daily average mineral intakes: 373.4 mg of calcium, 806.0 mg of phosphorous, 3685.8 mg of sodium, and 1938.3 mg of potassium. The calcium-to-phosphorus and sodium-to-potassium ratio was about 0.5 and 2.0, respectively. The primary sources for each mineral were: vegetables (24.9%) and fishes (19.0%) for calcium, grains (31.4%) for phosphorus, seasonings (41.6%) and vegetables (27.0%) for sodium, and vegetables (30.6%) and grains (18.5%) for potassium. The correlation analysis, which has been adjusted for age, gender, total food consumption, and energy intake, showed significantly positive correlations between Ca/P and serum HDL cholesterol levels, between Na intake and the level of serum total cholesterol, and between Na/K and the level of serum cholesterol and LDL cholesterol. Our data indicates that the level of mineral consumption partially contributes to serum lipid profiles and that a diet consisting of a low Ca/P ratio and a high Na/K ratio may have negative impacts on lipid metabolism.

  5. Genetic control and transgressive segregation of zinc, iron, potassium, phosphorus, calcium, and sodium accumulation in cowpea (Vigna unguiculata) seeds.

    PubMed

    Fernandes Santos, C A; Boiteux, L S

    2015-01-16

    Cowpea crop, through combining a range of essential minerals with high quality proteins, plays an important role in providing nutritional security to human population living in semi-arid regions. Studies on genetics of biofortification with essential minerals are still quite scarce, and the major objective of the present study was to provide genetic information on development of cowpea cultivars with high seed mineral contents. Genetic parameters heritability and minimum number of genes were estimated for seed accumulation of zinc (Zn), iron (Fe), calcium (Ca), phosphorus (P), potassium (K), and sodium (Na). Generation mean and variance analyses were conducted using contrasting parental lines, F₁, F₂, and backcross populations derived from IT97K-1042-3 x BRS Tapaihum and IT97K-1042-3 x Canapu crosses. High narrow-sense heritability (h²) values were found for accumulation of Fe (65-86%), P (74-77%), and K (77-88%), whereas moderate h(2) values were observed for accumulation of Ca (41-56%), Zn (51-83%), and Na (50-55%) in seeds. Significant additive genetic effects as well as parental mean effects were detected in both crosses for all minerals, whereas epistasis was important genetic component in Zn content. The minimum number of genes controlling the accumulation of minerals ranged from two (K) to 11 (P). Transgressive segregation was observed in F2 populations of both crosses for all minerals analyzed. The results suggest that, although under either oligogenic or polygenic control, the seed content of these six minerals in cowpea can be improved via standard breeding methods largely used for self-pollinated crops.

  6. Nitrogen, phosphorus, potassium, calcium and magnesium release from two compressed fertilizers: column experiments

    NASA Astrophysics Data System (ADS)

    Fernández-Sanjurjo, M. J.; Alvarez-Rodríguez, E.; Núñez-Delgado, A.; Fernández-Marcos, M. L.; Romar-Gasalla, A.

    2014-12-01

    The objective of this work was to study nutrients release from two compressed nitrogen-potassium-phosphorous (NPK) fertilizers. In the Lourizán Forest Center, tablet-type controlled-release fertilizers (CRF) were prepared by compressing various mixtures of fertilizers without covers or binders. We used soil columns (50 cm long and 7.3 cm inner diameter) that were filled with soil from the surface layer (0-20 cm) of an A horizon corresponding to a Cambic Umbrisol. Tablets of two slow-release NPK fertilizers (11-18-11 or 8-8-16) were placed into the soil (within the first 3 cm), and then water was percolated through the columns in a saturated regime for 80 days. Percolates were analyzed for N, P, K+, Ca2+ and Mg2+. These elements were also determined in soil and fertilizer tablets at the end of the trials. Nutrient concentrations were high in the first leachates and reached a steady state when 1426 mm of water had been percolated, which is equivalent to approximately 1.5 years of rainfall in this geographic area. In the whole trial, both tablets lost more than 80% of their initial N, P and K contents. However, K+, Ca2+ and Mg2+ were the most leached, whereas N and P were lost in leachates to a lesser extent. Nutrient release was slower from the tablet with a composition of 8-8-16 than from the 11-18-11 fertilizer. In view of that, the 8-8-16 tablet can be considered more adequate for crops with a nutrient demand sustained over time. At the end of the trial, the effects of these fertilizers on soil chemical parameters were still evident, with a significant increase of pH, available Ca2+, Mg2+, K+, P and effective cation exchange capacity (eCEC) in the fertilized columns, as well as a significant decrease in exchangeable Al3+, reaching values < 0.08 cmol (+) kg-1.

  7. Nutrient effects on the calcium economy: emphasizing the potassium controversy.

    PubMed

    Rafferty, Karen; Heaney, Robert P

    2008-01-01

    The calcium economy is a dynamic state influenced by fluxes in dietary calcium intake, intestinal calcium absorption, and renal calcium conservation. The relationship of selected bone-related nutrients to these calcium fluxes exhibits both constructive and destructive interactions that affect the overall state of calcium balance. The basis of the calcium requirement and the impact of vitamin D, protein, phosphorus, sodium, and caffeine on the calcium economy are reviewed. Against this background, emerging data on potassium are presented. Data from balance studies of healthy white women at midlife were reviewed to assess the effect of diet potassium on the calcium economy under steady-state conditions. Potassium was inversely associated with both urinary calcium excretion and intestinal calcium absorption, yielding no significant net change in calcium balance. In the population reported on here, dairy, meat, and cereal grains together contributed 56%, and fruits and vegetables 44%, of total dietary potassium. To the extent that fruit and vegetable potassium is a surrogate for high bicarbonate, this cohort did not have a dietary intake pattern allowing for measurement or interpretation of the potential effect of a high-bicarbonate-containing diet on long-term steady-state calcium balance. Potassium itself is uniformly well absorbed regardless of the dietary source. Mean 24-h urinary potassium averaged 92% of dietary intake. According to nationwide food consumption surveys, milk is the number 1 single food source of potassium in all age groups in the United States.

  8. Major Minerals - Calcium, Magnesium, Phosphorus

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Calcium, magnesium and phosphorus are essential elements critically important for the function of the musculoskeletal system, including the formation and transduction of energy and the maintenance of healthy bone. The major calcium concern for physically active healthy middle-aged adults is to consu...

  9. Calcium Activation of Mougeotia Potassium Channels 1

    PubMed Central

    Lew, Roger R.; Serlin, Bruce S.; Schauf, Charles L.; Stockton, Marsha E.

    1990-01-01

    Phytochrome mediates chloroplast movement in the alga Mougeotia, possibly via changes in cytosolic calcium. It is known to regulate a calcium-activated potassium channel in the algal plasma membrane. As part of a characterization of the potassium channel, we examined the properties of calcium activation. The calcium ionophore A23187 activates the channel at external [Ca2+] as low as 20 micromolar. However, external [Ca2+] is not required for activation of the channel by photoactivated phytochrome. Furthermore, when an inhibitor of calcium release from internal stores, 8-(diethylamino)-octyl-3,4,5-trimethoxybenzoate, hydrochloride (TMB-8), is present, red light no longer stimulates channel activity. We conclude that phytochrome activates the plasma membrane potassium channel by releasing calcium from intracellular calcium vesicles; the elevated cytosolic calcium then stimulates channel activity by an unknown mechanism. In the presence of TMB-8, red light does induce chloroplast rotation; thus, potassium channel activation may not be coupled to chloroplast rotation. PMID:16667356

  10. Method development for the determination of calcium, copper, magnesium, manganese, iron, potassium, phosphorus and zinc in different types of breads by microwave induced plasma-atomic emission spectrometry.

    PubMed

    Ozbek, Nil; Akman, Suleyman

    2016-06-01

    A novel method was developed for the determination of calcium, magnesium, potassium, iron, copper, zinc, and manganese and phosphorous in various kinds of breads samples sold in Turkey by microwave plasma-atomic emission spectrometry (MIP-AES). Breads were dried at 100 °C for one day, ground thoroughly and then digested using nitric acid/hydrogen per oxide (3:1). The analytes in certified reference wheat flour and maize flour samples were determined in the uncertainty limits of the certified values as well as the analytes added to the mixture of ground bread and acid mixture prior to digestion were recovered quantitatively (>90%). Therefore, all determinations were made by linear calibration technique using aqueous standards. The LOD values for Ca, Cu, Fe, K, Mg, Mn, P and Zn were 13.1, 0.28, 4.47, 118, 1.10, 0.41, 7550 and 3.00 ng mL(-1), respectively. No spectral interference was detected at the working wavelengths of the analytes.

  11. Determination of calcium, copper, iron, magnesium, manganese, potassium, phosphorus, sodium, and zinc in fortified food products by microwave digestion and inductively coupled plasma-optical emission spectrometry: single-laboratory validation and ring trial.

    PubMed

    Poitevin, Eric

    2012-01-01

    A single-laboratory validation (SLV) and a ring trial (RT) were undertaken to determine nine nutritional elements in food products by inductively coupled plasma-optical emission spectrometry in order to modernize AOAC Official Method 984.27. The improvements involved extension of the scope to all food matrixes (including infant formula), optimized microwave digestion, selected analytical lines, internal standardization, and ion buffering. Simultaneous determination of nine elements (calcium, copper, iron, potassium, magnesium, manganese, sodium, phosphorus, and zinc) was made in food products. Sample digestion was performed through wet digestion of food samples by microwave technology with either closed- or open-vessel systems. Validation was performed to characterize the method for selectivity, sensitivity, linearity, accuracy, precision, recovery, ruggedness, and uncertainty. The robustness and efficiency of this method was proven through a successful RT using experienced independent food industry laboratories. Performance characteristics are reported for 13 certified and in-house reference materials, populating the AOAC triangle food sectors, which fulfilled AOAC criteria and recommendations for accuracy (trueness, recovery, and z-scores) and precision (repeatability and reproducibility RSD, and HorRat values) regarding SLVs and RTs. This multielemental method is cost-efficient, time-saving, accurate, and fit-for-purpose according to ISO 17025 Norm and AOAC acceptability criteria, and is proposed as an extended updated version of AOAC Official Method 984.27 for fortified food products, including infant formula.

  12. Calcium, magnesium, and potassium in food

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The biochemical and physiological functions and consequences of deficient intakes, which show the nutritional importance of calcium, magnesium and potassium for humans, are reviewed. The dietary recommendations and food sources for these essential mineral elements for humans are presented. Factors t...

  13. Osteophagia provide giraffes with phosphorus and calcium?

    PubMed

    Bredin, I P; Skinner, J D; Mitchell, G

    2008-03-01

    The daily requirement for calcium and phosphorus by giraffes to sustain the growth and maintenance of their skeletons is large. The source of sufficient calcium is browse. The source of necessary phosphorus is obscure, but it could be osteophagia, a frequently observed behaviour in giraffes. We have assessed whether bone ingested as a result of osteophagia can be digested in the rumen. Bone samples from cancellous (cervical vertebrae) and dense bones (metacarpal shaft) were immersed in the rumens of five sheep, for a period of up to 30 days, and the effect compared to immersion in distilled water and in artificial saliva for 30 days. Distilled water had no effect on the bones. Dense bone samples were softened by exposure to the saliva and rumen fluid, but did not lose either calcium or phosphorus. In saliva and rumen fluid the cancellous bone samples also softened, and their mass and volume decreased as a result of exposure to saliva, but in neither fluid did they lose significant amounts of calcium and phosphorus. We conclude that although saliva and rumen fluid can soften ingested bones, there is an insignificant digestion of bones in the rumen.

  14. [Intravenous drop of calcium gluconate for phosphorus burns].

    PubMed

    Hu, A J

    1993-07-01

    20 patients with phosphor burn (TBSA 2%-75%) were cured by i.v. drop of calcium gluconate combined with other therapies including eschar conservation. Our experimental data showed that dogs with burn by spreading 85% phosphoric acid and napalm locally increased the level of plasma phosphorus and pathological damages to the heart, lung, kidney and etc were similar to those previously reported phosphorus burns. Intravenous drop of calcium gluconate after phosphate burn reduced the level of plasma phosphorus to normal rapidly and lessened the visceral damages. We consider that i.v. drop of calcium gluconate can accelerate the elimination of phosphorus, and prevent phosphorus poisoning after phosphorus burns.

  15. Intestinal absorption of calcium and phosphorus

    SciTech Connect

    Wasserman, R.H.

    1981-01-01

    The intestinal absorption of calcium and phosphorus has received considerable attention in recent years. The evidence has clearly indicated that calcium is absorbed by two processes: active transport and diffusion. Vitamin D appears to affect both processes, and has a significant effect at the brush border of the intestinal cell. Several proposed models to account for the transmural movement of calcium are discussed. The active transport of phosphate is under the control of vitamin D and is located at the brush border region of the intestinal cell. This transport system, like several others, appears to be sodium-dependent and inhibited by ouabain. In-transit phosphate does not mix with the cellular phosphate pool. Emphasized in the presentation is current knowledge of the transport mechanisms and macromolecular changes that potentially account for the stimulatory effect of vitamin D on calcium and phosphate transport.

  16. Soil phosphorus and potassium estimation by reflectance spectroscopy

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Visible and near infrared (VNIR) diffuse reflectance spectroscopy has potential in site-specific measurement of soil properties. However, previous studies have reported VNIR estimates of plant available soil phosphorus (P) and potassium (K) to be of variable accuracy. In this study, we used a databa...

  17. Factors affecting soil phosphorus and potassium estimation by reflectance spectroscopy

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Visible and near infrared (VNIR) diffuse reflectance spectroscopy has potential in site-specific measurement of soil properties. However, previous studies have reported VNIR estimates of plant available soil phosphorus (P) and potassium (K) to be of variable accuracy. In this study, we used a databa...

  18. Ascorbic acid, calcium, phosphorus and magnesium intake variations: effects on calcium, phosphorus and magnesium utilization by human adults

    SciTech Connect

    Kies, C.; Brennan, M.A.; Parks, S.K.; Stauffer, D.J.; Wang, H.Y.; Young, S.F.; Fox, H.M.

    1986-03-01

    The objective of the study was to determine the effects of feeding two levels of ascorbic acid, calcium, phosphorus, magnesium and ascorbic acid on the apparent utilization of calcium, phosphorus and magnesium by healthy, human adult subjects. During 4 randomly-arranged experimental periods of 7 days each, a laboratory-controlled diet alone or with supplements of ascorbic acid, dicalcium phosphate or magnesium oxide was fed to the 18 subjects. Results indicated that ascorbic acid supplementation tended to reduce urinary phosphorus loss and to slightly increase fecal phosphorus loss so that overall phosphorus balances became more positive. Conversely, under these conditions, urinary calcium losses were little affected but fecal calcium losses were increased resulting in an overall decrease in calcium balance with ascorbic acid supplementation. Ascorbic acid supplementation resulted in decreased urine and fecal losses of magnesium and more positive magnesium balances. Magnesium supplementation resulted in more positive calcium and phosphorus balances as did calcium phosphate supplementation on magnesium balance.

  19. Calcium and phosphorus solubility in neonatal intravenous feeding solutions.

    PubMed Central

    MacMahon, P; Mayne, P D; Blair, M; Pope, C; Kovar, I Z

    1990-01-01

    The limited solubility of calcium and phosphorus in standard parenteral nutrition formulations has restricted the ability to provide sufficient minerals to preterm infants to prevent substrate deficient metabolic bone disease. We determined the solubility limits of calcium and phosphorus in a total of 160 formulations under carefully controlled conditions. By increasing the concentrations of dextrose, amino acids, and by using Addiphos instead of 8.7% dipotassium hydrogen phosphate as the phosphorus source, higher concentrations of both calcium and phosphorus were held in solution. This should permit the delivery of increased concentrations of these minerals at rates which approximate fetal accretion. PMID:2110803

  20. Calcium and phosphorus change of the Apollo 17 crew members.

    PubMed

    Rambaut, P C; Leach, C S; Johnson, P C

    1975-01-01

    In association with the 12.6-day lunar flight of Apollo 17, calcium and phosphorus intake and excretion were determined for the crew members before and during the mission. The study showed increased urinary and fecal phosphorus and increased fecal calcium during weightlessness. The calculated mean calcium "loss" for the three crew members was 0.2 percent of estimated total body calcium and phosphorus "loss" was 0.7 percent of estimated total body phosphorus. The ratio of phosphorus lost compared to calcium indicated a reduction in both bone and soft tissue. These changes may be attributed not only to the hypogravia of the lunar and circumlunar environment, but possibly also to disturbances in gastrointestinal absorption.

  1. Simultaneous recovery of phosphorus and potassium as magnesium potassium phosphate from synthetic sewage sludge effluent.

    PubMed

    Nakao, Satoshi; Nishio, Takayuki; Kanjo, Yoshinori

    2016-12-11

    Bench-scale experiments were performed to investigate simultaneous recovery of phosphorus and potassium from synthetic sewage sludge effluent as crystals of magnesium potassium phosphate (MPP or struvite-(K), MgKPO4·6H2O). The optimal pH of MPP formation was 11.5. A phosphorus level of at least 3 mM and K:P molar ratio over 3 were necessary to form MPP, which showed higher content rate of phosphorus and potassium in precipitate. MPP crystallization was confirmed by analysing the precipitates using a scanning electron microscope-energy dispersive X-ray spectroscopy (SEM-EDX) apparatus and an X-ray Diffractometer (XRD). Inhibition of MPP crystallization by iron and aluminium was confirmed by precipitation experiments and SEM-EDX analysis. Potassium ratio against magnesium in precipitate decreased for iron concentrations greater than over 0.2 mM and aluminium concentrations over 0.05 mM.

  2. Calcium and phosphorus requirements of bobwhite quail chicks

    USGS Publications Warehouse

    Nestler, R.B.; DeWitt, J.B.; Derby, J.V.; Moschler, M.

    1948-01-01

    Four experiments involving 873 bob-white quail (Colinus virginianus) chicks were conducted at the Patuxent Research Refuge, Laurel, Maryland. A comparison was made of calcium: phosphorus ratios of 1:1, 15:1, 1%: 1, 2:1, 2+:1,and 2%: 1in diets with phosphorus levels of 0.52, 0.75, 1.00, and 1.25 percent. The results indicate that the optimum level of phosphorus for growth is in the neighborhood of 0.75 per cent, and that of calcium is about 1.00 per cent, making a ratio of 1 1/3: 1....Although the greatest efficiency of feed utilization occurred on the phosphorus level of 0.52 per cent, the liveweight and bone-ash of the birds at the end of ten weeks were significantly lower than they were on the levels of 0.75 and 1.00 per cent, phosphorus. Bone-ash of birds on a Ca: P ratio of 1:1was significantly lower than that on any of the other five ratios, regardless of phosphorus level....There was a significant reverse correlation between the Ca: P ratio of the diet and the storage of vitamin A in the liver. Storage was especially low on the ratio of 2 2/3: 1....The low and high levels of calcium and phosphorus considered in these studies are abnormal, the low level especially being hard to obtain with common feedstuffs, if the protein requirements of the birds are met. Nevertheless, even on such levels, results were not disastrous. The growth of quail in the wild happens during a season when the birds have access to the minerals of the soil and in the abundant animal matter (mostly insects), as well as to minerals in plant material. Therefore, seemingly, calcium and phosphorus need not be critical nutrients for growing quail in the wild.

  3. Calcium and phosphorus requirements of breeding bobwhite quail

    USGS Publications Warehouse

    DeWitt, J.B.; Nestler, R.B.; Derby, J.V.

    1949-01-01

    In the course of studies designed to determine the calcium and phosphorus requirements of breeding bobwhite quail, it was found that best results were obtained when the Ca/P ratio in the diet was approximately 2.3:1. Variations in the Ca/P ratio produced significant differences in results when the level of phosphorus in the diet was 0.75%, but the differences were less marked when the level of phosphorus was increased to 1.00%. Although diets containing 0.75% phosphorus and 1.8% calcium appeared adequate for reproduction, as judged by the criteria of the maintenance of satisfactory condition in the breeders, egg production, fertility, hatchability and survival of offspring during the first 5 days after hatching, it was found that the winter mortality of the offspring of birds fed such a diet was much greater than that occurring in the offspring of birds fed on diets containing 1.00 or 1.25% phosphorus. It is concluded that breeding bobwhite quail require diets furnishing approximately 1.00% phosphorus and 2.3% calcium.

  4. Quantitative changes of calcium, phosphorus, and magnesium in common iliac arteries with aging.

    PubMed

    Tohno, S; Tohno, Y; Moriwake, Y; Azuma, C; Ohnishi, Y; Minami, T

    2001-01-01

    To elucidate the mechanism of element accumulations in the arteries with aging, the authors investigated the mass ratios among calcium, phosphorus, and magnesium in the common iliac arteries by inductively coupled plasma-atomic emission spectrometry. The subjects consisted of 16 men and 8 women, ranging in age from 65 to 93 yr. It was found that there were extremely significant correlations between calcium and phosphorus contents, between calcium and magnesium contents, and between phosphorus and magnesium contents in the common iliac arteries. In regard to the mass ratio, although the mass ratio of calcium to phosphorus was almost constant, the mass ratios of magnesium to calcium and phosphorus were different at early and advanced stages of the accumulation of calcium and phosphorus. It was found that both the mass ratios of magnesium to calcium and phosphorus were higher at an early stage of the accumulation of calcium and phosphorus in the arteries than at an advanced stage of the accumulation.

  5. Potassium citrate decreases urine calcium excretion in patients with hypocitraturic calcium oxalate nephrolithiasis.

    PubMed

    Song, Yan; Hernandez, Natalia; Shoag, Jonathan; Goldfarb, David S; Eisner, Brian H

    2016-04-01

    Two previous studies (<10 patients each) have demonstrated that alkali therapy may reduce urine calcium excretion in patients with calcium oxalate nephrolithiasis. The hypothesized mechanisms are (1) a decrease in bone turnover due to systemic alkalinization by the medications; (2) binding of calcium by citrate in the gastrointestinal tract; (3) direct effects on TRPV5 activity in the distal tubule. We performed a retrospective review of patients on potassium citrate therapy to evaluate the effects of this medication on urinary calcium excretion. A retrospective review was performed of a metabolic stone database at a tertiary care academic hospital. Patients were identified with a history of calcium oxalate nephrolithiasis and hypocitraturia who were on potassium citrate therapy for a minimum of 3 months. 24-h urine composition was assessed prior to the initiation of potassium citrate therapy and after 3 months of therapy. Patients received 30-60 mEq potassium citrate by mouth daily. Inclusion criterion was a change in urine potassium of 20 mEq/day or greater, which suggests compliance with potassium citrate therapy. Paired t test was used to compare therapeutic effect. Twenty-two patients were evaluated. Mean age was 58.8 years (SD 14.0), mean BMI was 29.6 kg/m(2) (SD 5.9), and gender prevalence was 36.4% female:63.6% male. Mean pre-treatment 24-h urine values were as follows: citrate 280.0 mg/day, potassium 58.7 mEq/day, calcium 216.0 mg/day, pH 5.87. Potassium citrate therapy was associated with statistically significant changes in each of these parameters-citrate increased to 548.4 mg/day (p < 0.0001), potassium increased to 94.1 mEq/day (p < 0.0001), calcium decreased to 156.5 mg/day (p = 0.04), pH increased to 6.47 (p = 0.001). Urine sodium excretion was not different pre- and post-therapy (175 mEq/day pre-therapy versus 201 mEq/day post-therapy, p = NS). Urinary calcium excretion decreased by a mean of 60 mg/day on potassium citrate therapy-a nearly 30

  6. Disorders of calcium, phosphorus, and magnesium metabolism in the neonate

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Approximately 98% of the calcium, 80% of the phosphorus, and 65% of the magnesium in the body are in the skeleton. These elements, often referred to as the "bone minerals" are also constituents of the intracellular and extracellular spaces. The metabolism of these bone minerals and mineralization of...

  7. Calcium acetate versus calcium carbonate as phosphorus binders in patients on chronic haemodialysis: a controlled study.

    PubMed

    Ring, T; Nielsen, C; Andersen, S P; Behrens, J K; Sodemann, B; Kornerup, H J

    1993-01-01

    The first reported double-blind cross-over comparison between the phosphorus binders calcium carbonate and calcium acetate was undertaken in 15 stable patients on chronic maintenance haemodialysis. Detailed registration of diet and analysis of the protein catabolic rate suggested an unchanged phosphorus intake during the study. It was found that predialytic serum phosphate concentration was significantly decreased by 0.11 mmol/l (0.34 mg/dl) (P = 0.021, 95% confidence limits 0.02-0.21 mmol/l; 0.06-0.65 mg/dl) during calcium acetate treatment. The calcium phosphate product was insignificantly decreased during treatment with calcium acetate whereas we could not exclude the possibility that calcium concentration had increased.

  8. Oral calcium carbonate affects calcium but not phosphorus balance in stage 3-4 chronic kidney disease.

    PubMed

    Hill, Kathleen M; Martin, Berdine R; Wastney, Meryl E; McCabe, George P; Moe, Sharon M; Weaver, Connie M; Peacock, Munro

    2013-05-01

    Patients with chronic kidney disease (CKD) are given calcium carbonate to bind dietary phosphorus, reduce phosphorus retention, and prevent negative calcium balance; however, data are limited on calcium and phosphorus balance during CKD to support this. Here, we studied eight patients with stage 3 or 4 CKD (mean estimated glomerular filtration rate 36 ml/min) who received a controlled diet with or without a calcium carbonate supplement (1500 mg/day calcium) during two 3-week balance periods in a randomized placebo-controlled cross-over design. All feces and urine were collected during weeks 2 and 3 of each balance period and fasting blood, and urine was collected at baseline and at the end of each week. Calcium kinetics were determined using oral and intravenous (45)calcium. Patients were found to be in neutral calcium and phosphorus balance while on the placebo. Calcium carbonate supplementation produced positive calcium balance, did not affect phosphorus balance, and produced only a modest reduction in urine phosphorus excretion compared with placebo. Calcium kinetics demonstrated positive net bone balance but less than overall calcium balance, suggesting soft-tissue deposition. Fasting blood and urine biochemistries of calcium and phosphate homeostasis were unaffected by calcium carbonate. Thus, the positive calcium balance produced by calcium carbonate treatment within 3 weeks cautions against its use as a phosphate binder in patients with stage 3 or 4 CKD, if these findings can be extrapolated to long-term therapy.

  9. Technology for recovery of phosphorus from animal wastewater through calcium phosphate precipitation

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A wastewater treatment process was developed for removal of phosphorus from livestock wastewater. The phosphorus is recovered as calcium phosphate with addition of only small quantities of liquid lime. The process is based on the distinct chemical equilibrium between phosphorus and calcium ions when...

  10. Calcium effect on the metabolic pathway of phosphorus accumulating organisms in enhanced biological phosphorus removal systems.

    PubMed

    Zhang, Hai-Ling; Sheng, Guo-Ping; Fang, Wei; Wang, Yong-Peng; Fang, Cai-Yun; Shao, Li-Min; Yu, Han-Qing

    2015-11-01

    Phosphorus accumulating organisms (PAOs) have been found to act as glycogen-accumulating organisms (GAOs) under certain conditions, thus, the deterioration in the performance of enhanced biological phosphorus removal systems is not always attributed to the proliferation of GAOs. In this work, the effects of calcium on the metabolic pathway of PAOs were explored. It was found that when the influent Ca(2+) concentration was elevated, the tendency and extent of extracellular calcium phosphate precipitation increased, and the intracellular inert Ca-bound polyphosphate was synthesized, while the microbial population remained almost unchanged. The changes in the ratios of phosphorus released/acetate uptaken, the glycogen degraded/acetate uptaken and the poly-β-hydroxyalkanoates synthesized/acetate uptaken during the anaerobic period confirm that, as the influent Ca(2+) concentration was increased, the polyphosphate-accumulating metabolism was partially shifted to the glycogen-accumulating metabolism. At an influent Ca(2+) around 50 mg/L, in addition to the extracellular calcium phosphate precipitation, the intracellular inert Ca-bound polyphosphate synthesis might also be involved in the metabolic change of PAOs. The results of the present work would be beneficial to better understand the biochemical metabolism of PAOs in enhanced biological phosphorus removal systems.

  11. Acute effects of calcium carbonate, calcium citrate and potassium citrate on markers of calcium and bone metabolism in young women.

    PubMed

    Karp, Heini J; Ketola, Maarit E; Lamberg-Allardt, Christel J E

    2009-11-01

    Both K and Ca supplementation may have beneficial effects on bone through separate mechanisms. K in the form of citrate or bicarbonate affects bone by neutralising the acid load caused by a high protein intake or a low intake of alkalising foods, i.e. fruits and vegetables. Ca is known to decrease serum parathyroid hormone (S-PTH) concentration and bone resorption. We compared the effects of calcium carbonate, calcium citrate and potassium citrate on markers of Ca and bone metabolism in young women. Twelve healthy women aged 22-30 years were randomised into four controlled 24 h study sessions, each subject serving as her own control. At the beginning of each session, subjects received a single dose of calcium carbonate, calcium citrate, potassium citrate or a placebo in randomised order. The diet during each session was identical, containing 300 mg Ca. Both the calcium carbonate and calcium citrate supplement contained 1000 mg Ca; the potassium citrate supplement contained 2250 mg K. Markers of Ca and bone metabolism were followed. Potassium citrate decreased the bone resorption marker (N-terminal telopeptide of type I collagen) and increased Ca retention relative to the control session. Both Ca supplements decreased S-PTH concentration. Ca supplements also decreased bone resorption relative to the control session, but this was significant only for calcium carbonate. No differences in bone formation marker (bone-specific alkaline phosphatase) were seen among the study sessions. The results suggest that potassium citrate has a positive effect on the resorption marker despite low Ca intake. Both Ca supplements were absorbed well and decreased S-PTH efficiently.

  12. Evaluating topsoil depth effects on phosphorus and potassium nutrient dynamics of grain and switchgrass production systems

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Understanding the effects of fertilizer addition and crop removal on long-term change in soil test phosphorus (STP) and soil test potassium (STK) is crucial for maximizing the use of grower inputs on claypan soils. Due to variable nutrient supply from subsoils and variable crop removal across fields...

  13. Nitrogen, phosphorus, and potassium effects on biomass yield and flavonoid content of American Skullcap (Scutellaria Lateriflora)

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Information on optimum dosage of nitrogen (N), phosphorus (P) and potassium (K) fertilizer for high dry matter yield and flavonoid yield of American Skullcap is lacking. Greenhouse experiments were conducted to determine the effects of N, P and K fertilizer on biomass yield and flavonoid content of...

  14. Effect of Phosphorus, Potassium, and Chloride Nutrition on Cold Tolerance of Winter Canola (Brassica napus L.)

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A field experiment was conducted to determine whether fertility treatments improve cold hardiness of canola (Brassica napus L.). Measurements of chlorophyll fluorescence and overwinter survival of field-grown canola were used to evaluate the effect of chloride (Cl), potassium (K), and phosphorus (P)...

  15. Potassium and Phosphorus Have No Effects on Severity of Charcoal Rot of Soybean

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The effects of potassium (K) and phosphorus (P) fertilizers on charcoal rot of soybean [Glycine max (L.) Merr.] are unknown. Therefore, the severity of charcoal rot was studied at five levels of K (0, 37, 75, 111 and 149 kg K ha-1) and a level that was equal to the recommended fertilizer applicatio...

  16. Potassium and Phosphorus effects on disease severity of charcoal rot of soybean

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The effects of potassium (K) and phosphorus (P) fertilizers on charcoal rot of soybean [Glycine max (L.) Merr.] are unknown. Therefore, the severity of charcoal rot was studied at five levels of K (0, 37, 75, 111 and 149 kg K ha-1) and a level that was equal to the recommended fertilizer applicatio...

  17. Stability and broad-sense heritability of mineral content in potato: potassium and phosphorus

    Technology Transfer Automated Retrieval System (TEKTRAN)

    In the study of nutritional variability in potato it is desirable to know the present range of expression and genetic potential for increase. Potato breeding lines and varieties in two separate trials were evaluated for potassium and phosphorus content by wet ashing and Inductively Coupled Argon Pl...

  18. Calcium-activated potassium conductance noise in snail neurons.

    PubMed

    Westerfield, M; Lux, H D

    1982-11-01

    Current fluctuations were measured in small, 3-6 micrometers-diameter patches of soma membrane in bursting neurons of the snail, Helix pomatia. The fluctuations dramatically increased in magnitude with depolarization of the membrane potential under voltage clamp conditions. Two components of conductance noise were identified in the power spectra calculated from the membrane currents. One component had a corner frequency which increased with depolarization. This component was blocked by intracellular injection of TEA and was relatively insensitive to extracellular calcium levels (as long as the total number of effective divalent cations remained constant). It was identified as fluctuations of the voltage-dependent component of delayed outward current. The second component of conductance noise had a corner frequency which decreased with depolarization. It was relatively unaffected by TEA injection and was reversibly blocked by substitution of extracellular calcium with magnesium, cobalt, or nickel. This second component of noise was identified as fluctuations of the calcium-dependent potassium current. The results suggest that the two components of delayed outward current are conducted through physically distinct channels.

  19. Calcium-dependent potassium current in barnacle photoreceptor.

    PubMed

    Bolsover, S R

    1981-12-01

    When barnacle lateral eye photoreceptors are depolarized to membrane potentials of 0 to +50 mV in the dark, the plot of outward current through the cell membrane against time has two distinct maxima. The first maximum occurs 5-10 ms after the depolarization began. The current then decays to a minimum at approximately 500 ms after the onset of depolarization, and then increases to a second maximum 4-6 s after the depolarization began. If depolarization is maintained, the current again decays to reach a steady value approximately 1 min after depolarization began. The increase in current to the maximum at 4-6s from the minimum at approximately 500 ms is termed the "late current." It is maximum for depolarizations to around +25 mV and is reduced in amplitude at more positive potentials. It is not observed when the membrane is depolarized to potentials more positive than +60 mV. The late current is inhibited by external cobaltous ion and external tetraethylammonium ion, and shows a requirement for external calcium ion. When the calcium-sequestering agent EGTA is injected, the late current is abolished. Illumination of a cell under voltage clamp reduces the amplitude of the late current recorded subsequently in the dark. On the basis of the voltage dependence and pharmacology of the late current, it is proposed that the current is a calcium-dependent potassium current.

  20. Evidence for a distinct light-induced calcium-dependent potassium current in Hermissenda crassicornis.

    PubMed

    Blackwell, K T

    2000-01-01

    A model of phototransduction is developed as a first step toward a model for investigating the critical interaction of light and turbulence stimuli within the type B photoreceptor of Hermissenda crassicronis. The model includes equations describing phototransduction, release of calcium from intracellular stores, and other calcium regulatory mechanisms, as well as equations describing ligand-gating of a rhabdomeric sodium current. The model is used to determine the sources of calcium in the soma, whether calcium or IP3 is a plausible ligand of the light-induced sodium current, and whether the light-induced potassium current is equivalent to the calcium-dependent potassium current activated by light-induced calcium release. Simulations show that the early light-induced calcium elevation is due to influx through voltage-dependent channels, whereas the later calcium elevation is due to release from intracellular stores. Simulations suggest that the ligand of the fast, light-induced sodium current is IP3 but that there is a smaller, prolonged component of the light-induced sodium current that is activated by calcium. In the model, the calcium-dependent potassium current, located in the soma, is activated only slightly by light-induced calcium elevation, leading to the prediction that a calcium-dependent potassium current, active at resting potential, is located in the rhabdomere and is responsible for the light-induced potassium current.

  1. Oxidative Stress and Maxi Calcium-Activated Potassium (BK) Channels

    PubMed Central

    Hermann, Anton; Sitdikova, Guzel F.; Weiger, Thomas M.

    2015-01-01

    All cells contain ion channels in their outer (plasma) and inner (organelle) membranes. Ion channels, similar to other proteins, are targets of oxidative impact, which modulates ion fluxes across membranes. Subsequently, these ion currents affect electrical excitability, such as action potential discharge (in neurons, muscle, and receptor cells), alteration of the membrane resting potential, synaptic transmission, hormone secretion, muscle contraction or coordination of the cell cycle. In this chapter we summarize effects of oxidative stress and redox mechanisms on some ion channels, in particular on maxi calcium-activated potassium (BK) channels which play an outstanding role in a plethora of physiological and pathophysiological functions in almost all cells and tissues. We first elaborate on some general features of ion channel structure and function and then summarize effects of oxidative alterations of ion channels and their functional consequences. PMID:26287261

  2. Oxidative Stress and Maxi Calcium-Activated Potassium (BK) Channels.

    PubMed

    Hermann, Anton; Sitdikova, Guzel F; Weiger, Thomas M

    2015-08-17

    All cells contain ion channels in their outer (plasma) and inner (organelle) membranes. Ion channels, similar to other proteins, are targets of oxidative impact, which modulates ion fluxes across membranes. Subsequently, these ion currents affect electrical excitability, such as action potential discharge (in neurons, muscle, and receptor cells), alteration of the membrane resting potential, synaptic transmission, hormone secretion, muscle contraction or coordination of the cell cycle. In this chapter we summarize effects of oxidative stress and redox mechanisms on some ion channels, in particular on maxi calcium-activated potassium (BK) channels which play an outstanding role in a plethora of physiological and pathophysiological functions in almost all cells and tissues. We first elaborate on some general features of ion channel structure and function and then summarize effects of oxidative alterations of ion channels and their functional consequences.

  3. Effect of phosphorus and calcium on zinc metabolism in man

    SciTech Connect

    Spencer, H.; Kramer, L.; Lesniak, M.; Norris, C.; Coffey, J.

    1981-06-01

    The effect of phosphorus on zinc metabolism was studied in adult men receiving different calcium intakes ranging from 200 to 2000 mg/day. The diet and urinary and fecal excretions were analyzed for Zn, P and Ca. Metabolic balances of these elements were determined for several weeks in each study phase. In control studies the dietary intake was 800 mg/day and in the experimental studies it was increased to 2000 mg/day by adding sodium glycerophosphate to the constant diet. The dietary Zn intake averaged 14.5 mg/day in the different studies. These studies have shown that increasing the P intake by a factor of 2.5, from 800 to 2000 mg/day, did not affect urinary or fecal Zn excretions nor the Zn balance. Similar results were obtained on increasing the Ca intake from 200 to 2000 mg/day.

  4. Studies on the phosphorus requirement and proper calcium/phosphorus ratio in the diet of the black sea bream ( Sparus macrocephalus)

    NASA Astrophysics Data System (ADS)

    Liu, Jingke; Li, Maotang; Wang, Keling; Wang, Xincheng; Liu, Jianking

    1993-06-01

    An expriment on the phosphorus requirement and the proper Ca/P ratio in the diet of the black sea bream using the phosphorus gradient method (with casein as basic diet, sodium dihydrogen phosphate as source of phosphorus, and calcium lactate as source of calcium) showed that growth was greatly affected by the diet's phosphorus content and Ca/P ratio. Inadequate phosphorus in the diet resulted in slow growth and poor food conversion ratio (FCR). Analyses of the fish body showed it contained a high level of lipid but a low level of moisture, ash, calcium and phosphorus. The optimal values of phosphorus and Ca/P ratio in the black sea bream diet are 0.68% and 1∶2 respectively. Phosphorus in excess of this optimum value resulted in slow growth or even death. The results of this experiment clearly indicated that phosphorus is the principal mineral additive affecting black sea bream growth.

  5. Calcium phosphate granulation in anaerobic treatment of black water: a new approach to phosphorus recovery.

    PubMed

    Tervahauta, Taina; van der Weijden, Renata D; Flemming, Roberta L; Hernández Leal, Lucía; Zeeman, Grietje; Buisman, Cees J N

    2014-01-01

    Recovery of phosphorus from wastewater as calcium phosphate could diminish the need for mining of scarce phosphate rock resources. This study introduces a novel approach to phosphorus recovery by precipitation of calcium phosphate granules in anaerobic treatment of black water. The granules formed in the Upflow Anaerobic Sludge Blanket (UASB) reactor at lab- and demonstration-scale were analyzed for chemical composition and mineralogy by Inductively Coupled Plasma-Atomic Emission Spectroscopy (ICP-AES), Electron microprobe (EMP), Fourier transform infrared spectroscopy (FTIR), Raman spectroscopy and micro X-ray Diffraction (XRD). The granules had a diameter of 1-2 mm, organic content of 33 wt%, and phosphorus content of 11-13 wt%. Three calcium phosphate phases were identified in the granules: hydroxyapatite, calcium phosphate hydrate and carbonated hydroxyapatite. Without any addition of chemicals, 7 gP/person/year can be recovered with the calcium phosphate granules, representing 2% of the incoming phosphorus in the UASB reactor. As the heavy metal content was lower compared to other phosphorus recovery products, phosphate rock and phosphorus fertilizer, the calcium phosphate granules could be considered as a new phosphorus product.

  6. Calcium and phosphorus intake and prostate cancer risk: a 24-y follow-up study123

    PubMed Central

    Shui, Irene M; Mucci, Lorelei A; Giovannucci, Edward

    2015-01-01

    Background: High calcium intake has been associated with an increased risk of advanced-stage and high-grade prostate cancer. Several studies have found a positive association between phosphorus intake and prostate cancer risk. Objective: We investigated the joint association between calcium and phosphorus and risk of prostate cancer in the Health Professionals Follow-Up Study, with a focus on lethal and high-grade disease. Design: In total, 47,885 men in the cohort reported diet data in 1986 and every 4 y thereafter. From 1986 to 2010, 5861 cases of prostate cancer were identified, including 789 lethal cancers (fatal or metastatic). We used Cox proportional hazards models to assess the association between calcium and phosphorus intake and prostate cancer, with adjustment for potential confounding. Results: Calcium intakes >2000 mg/d were associated with greater risk of total prostate cancer and lethal and high-grade cancers. These associations were attenuated and no longer statistically significant when phosphorus intake was adjusted for. Phosphorus intake was associated with greater risk of total, lethal, and high-grade cancers, independent of calcium and intakes of red meat, white meat, dairy, and fish. In latency analysis, calcium and phosphorus had independent effects for different time periods between exposure and diagnosis. Calcium intake was associated with an increased risk of advanced-stage and high-grade disease 12–16 y after exposure, whereas high phosphorus was associated with increased risk of advanced-stage and high-grade disease 0–8 y after exposure. Conclusions: Phosphorus is independently associated with risk of lethal and high-grade prostate cancer. Calcium may not have a strong independent effect on prostate cancer risk except with long latency periods. PMID:25527761

  7. Impact of calcium-activated potassium channels on NMDA spikes in cortical layer 5 pyramidal neurons

    PubMed Central

    Bock, Tobias

    2016-01-01

    Active electrical events play an important role in shaping signal processing in dendrites. As these events are usually associated with an increase in intracellular calcium, they are likely to be under the control of calcium-activated potassium channels. Here, we investigate the impact of calcium-activated potassium channels on N-methyl-d-aspartate (NMDA) receptor-dependent spikes, or NMDA spikes, evoked by glutamate iontophoresis onto basal dendrites of cortical layer 5 pyramidal neurons. We found that small-conductance calcium-activated potassium channels (SK channels) act to reduce NMDA spike amplitude but at the same time, also decrease the iontophoretic current required for their generation. This SK-mediated decrease in NMDA spike threshold was dependent on R-type voltage-gated calcium channels and indicates a counterintuitive, excitatory effect of SK channels on NMDA spike generation, whereas the capacity of SK channels to suppress NMDA spike amplitude is in line with the expected inhibitory action of potassium channels on dendritic excitability. Large-conductance calcium-activated potassium channels had no significant impact on NMDA spikes, indicating that these channels are either absent from basal dendrites or not activated by NMDA spikes. These experiments reveal complex and opposing interactions among NMDA receptors, SK channels, and voltage-gated calcium channels in basal dendrites of cortical layer 5 pyramidal neurons during NMDA spike generation, which are likely to play an important role in regulating the way these neurons integrate the thousands of synaptic inputs they receive. PMID:26936985

  8. Releasing phosphorus from calcium for struvite fertilizer production from anaerobically digested dairy effluent.

    PubMed

    Zhang, Tianxi; Bowers, Keith E; Harrison, Joseph H; Chen, Shulin

    2010-01-01

    Being a non-renewable resource and a source of potential water pollution, phosphorus could be recovered from animal manure in the form of struvite (MgNH4PO4.6H2O) to be used as a slow-release fertilizer. It was found recently that the majority of phosphorus in anaerobically digested dairy effluent is tied up in a fine suspended calcium-phosphate solid, thus becoming unavailable for struvite formation. Acidification and use of a chelating agent were investigated for converting the calcium-associated phosphorus in the digested effluent to dissolved phosphate ions, so that struvite can be produced. The results demonstrated that the phosphorus in the effluent was released into the solution by lowering the pH. In addition, the phosphorus concentration in the solution increased significantly with increased ethylenediaminetetraacetic acid (EDTA) concentration, as EDTA has a high stability constant with calcium. Most of the phosphorus (91%) was released into the solution after adding EDTA. Further, the freed phosphorus ion precipitated out as struvite provided that sufficient magnesium ions (Mg2+) were present in the solution. Furthermore, the phase structure of the solid precipitate obtained from the EDTA treatment matched well with standard struvite, based on the data from X-ray diffraction analysis. These results provide methods for altering the forms of phosphorus for the design and application of phosphorus-removal technologies for dairy wastewater management.

  9. Analysis of potassium and calcium imaging to assay the function of opioid receptors.

    PubMed

    Spahn, Viola; Nockemann, Dinah; Machelska, Halina

    2015-01-01

    As the activation of opioid receptors leads to the modulation of potassium and calcium channels, the ion imaging represents an attractive method to analyze the function of the receptors. Here, we describe the imaging of potassium using the FluxOR™ potassium ion channel assay, and of calcium using Fura-2 acetoxymethyl ester. Specifically, we (1) characterize the activation of the G-protein-coupled inwardly rectifying potassium 2 channel by agonists of μ- and δ-opioid receptors with the aid of the FluxOR™ assay in cultured mouse dorsal root ganglion neurons, and (2) describe calcium imaging protocols to measure capsaicin-induced transient receptor potential vanilloid 1 channel activity during opioid withdrawal in transfected human embryonic kidney 293 cells.

  10. Treatment of cows with milk fever using intravenous and oral calcium and phosphorus.

    PubMed

    Braun, U; Blatter, M; Büchi, R; Hässig, M

    2012-09-01

    Fifteen cows with milk fever were treated with 500ml of 40 % calcium borogluconate (group A) administered intravenously. Fifteen other cows with milk fever received the same treatment, supplemented with 500ml of 10 % sodium phosphate administered intravenously, and 80g calcium as calcium lactate and 70g inorganic phosphorus as sodium phosphate administered orally in drinking water. The cows were monitored and blood samples collected for 3 days to measure the concentrations of total and ionized calcium, inorganic phosphorus and magnesium and the activity of creatine kinase. The two groups did not differ significantly with respect to the course of the disease. In each group 14 cows were cured. A rapid and significant increase in serum calcium concentration from the hypo- to the hypercalcaemic range occurred in both groups within 10min of the start of treatment, followed by a slow and steady decrease to the hypocalcaemic range. Calcium lactate did not prevent the calcium concentration from returning to the hypocalcaemic range, and the calcium profiles of the two groups did not differ significantly. As expected, treatment had little effect on the concentration of inorganic phosphorus in group A. In group B, treatment caused a rapid increase in the concentration of inorganic phosphorus to a maximum 20min after the start of treatment. This was followed by a slow decrease in the phosphorus concentration to the normophosphataemic range. Our findings confirmed that combined intravenous and oral administration of sodium phosphate in cows with periparturient paresis attributable to hypocalcaemia and hypophosphataemia results in a rapid and sustained increase in serum phosphorus, but not in serum calcium concentration. This modified therapy did not improve the success rate of milk fever treatment and further studies are needed to improve treatment of periparturient paresis.

  11. Interactions between calcium and phosphorus in the regulation of the production of fibroblast growth factor 23 in vivo

    PubMed Central

    Quinn, Stephen J.; Thomsen, Alex R. B.; Pang, Jian L.; Kantham, Lakshmi; Bräuner-Osborne, Hans; Pollak, Martin; Goltzman, David

    2013-01-01

    Calcium and phosphorus homeostasis are highly interrelated and share common regulatory hormones, including FGF23. However, little is known about calcium's role in the regulation of FGF23. We sought to investigate the regulatory roles of calcium and phosphorus in FGF23 production using genetic mouse models with targeted inactivation of PTH (PTH KO) or both PTH and the calcium-sensing receptor (CaSR; PTH-CaSR DKO). In wild-type, PTH KO, and PTH-CaSR DKO mice, elevation of either serum calcium or phosphorus by intraperitoneal injection increased serum FGF23 levels. In PTH KO and PTH-CaSR DKO mice, however, increases in serum phosphorus by dietary manipulation were accompanied by severe hypocalcemia, which appeared to blunt stimulation of FGF23 release. Increases in dietary phosphorus in PTH-CaSR DKO mice markedly decreased serum 1,25-dihydroxyvitamin D3 [1,25(OH)2D3] despite no change in FGF23, suggesting direct regulation of 1,25(OH)2D3 synthesis by serum phosphorus. Calcium-mediated increases in serum FGF23 required a threshold level of serum phosphorus of about 5 mg/dl. Analogously, phosphorus-elicited increases in FGF23 were markedly blunted if serum calcium was less than 8 mg/dl. The best correlation between calcium and phosphorus and serum FGF23 was found between FGF23 and the calcium × phosphorus product. Since calcium stimulated FGF23 production in the PTH-CaSR DKO mice, this effect cannot be mediated by the full-length CaSR. Thus the regulation of FGF23 by both calcium and phosphorus appears to be fundamentally important in coordinating the serum levels of both mineral ions and ensuring that the calcium × phosphorus product remains within a physiological range. PMID:23233539

  12. Shaker and Shal Mediate Transient Calcium-Independent Potassium Current in a Drosophila Flight Motoneuron

    PubMed Central

    Duch, Carsten

    2009-01-01

    Ionic currents underlie the firing patterns, excitability, and synaptic integration of neurons. Despite complete sequence information in multiple species, our knowledge about ion channel function in central neurons remains incomplete. This study analyzes the potassium currents of an identified Drosophila flight motoneuron, MN5, in situ. MN5 exhibits four different potassium currents, two fast-activating transient ones and two sustained ones, one of each is calcium activated. Pharmacological and genetic manipulations unravel the specific contributions of Shaker and Shal to the calcium independent transient A-type potassium currents. α-dendrotoxin (Shaker specific) and phrixotoxin-2 (Shal specific) block different portions of the transient calcium independent A-type potassium current. Following targeted expression of a Shaker dominant negative transgene in MN5, the remaining A-type potassium current is α-dendrotoxin insensitive. In Shal RNAi knock down the remaining A-type potassium current is phrixotoxin-2 insensitive. Additionally, barium blocks calcium-activated potassium currents but also a large portion of phrixotoxin-2-sensitive A-type currents. Targeted knock down of Shaker or Shal channels each cause identical reduction in total potassium current amplitude as acute application of α-dendrotoxin or phrixotoxin-2, respectively. This shows that the knock downs do not cause upregulation of potassium channels underlying other A-type channels during development. Immunocytochemistry and targeted expression of modified GFP-tagged Shaker channels with intact targeting sequence in MN5 indicate predominant axonal localization. These data can now be used to investigate the roles of Shaker and Shal for motoneuron intrinsic properties, synaptic integration, and spiking output during behavior by targeted genetic manipulations. PMID:19828724

  13. A large-conductance calcium-activated potassium channel in potato (Solanum tuberosum) tuber mitochondria.

    PubMed

    Koszela-Piotrowska, Izabela; Matkovic, Karolina; Szewczyk, Adam; Jarmuszkiewicz, Wieslawa

    2009-11-11

    In the present study, we describe the existence of a novel potassium channel in the plant [potato (Solanum tuberosum) tuber] mitochondrial inner membrane. We found that substances known to modulate large-conductance calcium-activated potassium channel activity influenced the bioenergetics of potato tuber mitochondria. In isolated mitochondria, Ca2+ and NS1619 {1,3-dihydro-1-[2-hydroxy-5-(trifluoromethyl)phenyl]-5-(trifluoromethyl)-2H-ben-zimidazole-2-one; a potassium channel opener} were found to depolarize the mitochondrial membrane potential and to stimulate resting respiration. These effects were blocked by iberiotoxin (a potassium channel inhibitor) in a potassium-dependent manner. Additionally, the electrophysiological properties of the large-conductance potassium channel present in the potato tuber inner mitochondrial membrane are described in a reconstituted system, using planar lipid bilayers. After incorporation in 50/450 mM KCl gradient solutions, we recorded large-conductance potassium channel activity with conductance from 502+/-15 to 615+/-12 pS. The probability of channel opening was increased by Ca2+ and reduced by iberiotoxin. Immunological analysis with antibodies raised against the mammalian plasma-membrane large-conductance Ca2+-dependent K+ channel identified a pore-forming alpha subunit and an auxiliary beta2 subunit of the channel in potato tuber mitochondrial inner membrane. These results suggest that a large-conductance calcium-activated potassium channel similar to that of mammalian mitochondria is present in potato tuber mitochondria.

  14. The effect of dietary calcium and phosphorus supplementation in zeolite a treated dry cows on periparturient calcium and phosphorus homeostasis.

    PubMed

    Thilsing, T; Larsen, T; Jørgensen, R J; Houe, H

    2007-03-01

    Previous studies have proved the possibility of preventing parturient hypocalcaemia by zeolite A supplementation during the dry period, and a recent in vitro study has indicated a marked calcium (Ca) as well as phosphorus (P) binding effect of zeolite A in rumen fluid solutions. Because of the connection between the Ca and P homeostatic systems, the preventive effect against parturient hypocalcaemia may arise from zeolite induced decreased availability of dietary Ca as well as P. In the present study, the expected Ca and P binding capacity was challenged by feeding high and low levels of dietary Ca and/or P to zeolite A treated dry cows. Twenty-one pregnant dry cows were assigned to four experimental groups receiving a dry cow ration unsupplemented or supplemented with extra Ca and/or P. During the last 2 weeks of the dry period all cows additionally received 600 g of zeolite A per day. A high level of dietary P prepartum significantly decreased the plasma Ca concentration before as well as immediately after calving (day 0-3). Conversely, the plasma inorganic phosphate concentration was higher among these cows than among cows receiving no supplemental P. The prepartum dietary Ca level significantly affected the serum 1,25-dihydroxyvitamin D concentration during zeolite supplementation, whereas the periparturient plasma Ca concentration was apparently not affected by the dietary Ca level. During zeolite A supplementation plasma parathyroid hormone was significantly higher among cows receiving additional P. The urinary deoxypyridinoline/creatinine ratio was not affected by the prepartal dietary Ca or P level. Serum aluminium (Al) was significantly higher during zeolite A supplementation than during the preceding period, indicating partial destruction of the zeolite in the intestinal tract with subsequent release and absorption of Al. It is suggested that the effect of prepartum zeolite supplementation on the periparturient Ca homeostasis depends on the level of Ca as

  15. Osteopenic disease in growing pigs: diagnostic methods using serum and urine calcium and phosphorus values, parathoromone assay, and bone analysis.

    PubMed

    Hagemoser, W A; Goff, J P; Sanderson, T P; Haynes, J S

    2000-11-01

    This research was performed to evaluate the utility of several serum and urine parameters as well as bone ash and plasma parathormone assay to diagnose and monitor diet-related osteopenia in growing pigs. Five diets were tested as follows: calcium-deficient, phosphorus-replete; moderate-deficiency of calcium and phosphorus; marked deficiency of calcium and phosphorus; calcium replete, phosphorus deficient; and vitamin D deficient. Parameters monitored included serum calcium and phosphorus as well as ratios of urine calcium to creatinine, phosphorus to creatinine, calcium to phosphorus, and percent fractional excretions of calcium and phosphorus. Plasma parathormone (PTH) levels were monitored in 2 of 3 experiments. Osteopenic bone differences at necropsy were evaluated by bone density, percent ash, ash per milliliter bone, calcium per milliliter bone, and phosphorus per milliliter bone. Marked change in urine mineral parameters, especially the calcium-to-phosphorus ratio, typically occurred within 1 to 2 days of treatment and preceded significant change in serum mineral or plasma PTH by 2 to 3 weeks. When monitored, plasma PTH levels were elevated following treatment, which confirms the hyperparathyroid state induced by the test diets. Significant differences in bone mineralization between control and treatment diets at necropsy were generally observed. The results of this study indicate that the analysis of urine minerals offers an early, noninvasive technique to investigate diet-associated osteopenic disease in growing pigs, which can be supported further by bone mineral analysis at postmortem using techniques herein described. Several urine mineral reference intervals for application to field investigations are included. Research into application of similar techniques to evaluate calcium and phosphorus homeostasis in pigs of all ages, including gestating and lactating gilts and sows, appears warranted.

  16. The relationship between habitual dietary phosphorus and calcium intake, and bone mineral density in young Japanese women: a cross-sectional study.

    PubMed

    Ito, Sanae; Ishida, Hiromi; Uenishi, Kazuhiro; Murakami, Kentaro; Sasaki, Satoshi

    2011-01-01

    Phosphorus and calcium are essential for bone health. There is a concern that a low calcium/phosphorus intake ratio resulting from low calcium intake coupled with high phosphorus intake may have a negative effect on bone mineral status, especially in Western countries. The objective of this study was to examine cross-sectionally the influence of habitual phosphorus and calcium intake and the calcium/phosphorus intake ratio on the bone mineral density (BMD) in 441 young Japanese women (aged 18-22) whose calcium/phosphorus intake ratio was assumed to be lower than young Western women. We also ascertained the relationship between dietary intake and serum or urinary measurements of phosphorus and calcium. Parathyroid hormone (PTH) and 25-hydroxy vitamin D (25(OH)D) were also examined for 214 of the 441 subjects. Phosphorus and calcium intake and the calcium/phosphorus intake ratio had significant positive correlations with urinary phosphorus. Calcium intake and the calcium/phosphorus intake ratio independently had positive and significant associations with BMD in the distal radius adjusted for postmenarcheal age, body mass index, and physical activity. There were no significant associations with BMD in the lumbar spine and femoral neck. These results indicate that in young Japanese women, phosphorus intake did not have a significantly negative effect on bone mineral density, and calcium intake and calcium/phosphorus intake ratio had a small but significant association only in a site-specific manner with BMD.

  17. [Applying local neural network and visible/near-infrared spectroscopy to estimating available nitrogen, phosphorus and potassium in soil].

    PubMed

    Wu, Qian; Yang, Yu-hong; Xu, Zhao-li; Jin, Yan; Guo, Yan; Lao, Cai-lian

    2014-08-01

    To establish the quantitative relationship between soil spectrum and the concentration of available nitrogen, phosphorus and potassium in soil, the critical procedures of a new analysis method were examined, involving spectral preprocessing, wavebands selection and adoption of regression methods. As a result, a soil spectral analysis model was built using VIS/NIRS bands, with multiplicative scatter correction and first-derivative for spectral preprocessing, and local nonlinear regression method (Local regression method of BP neural network). The coefficients of correlation between the chemically determined and the modeled available nitrogen, phosphorus and potassium for predicted samples were 0.90, 0.82 and 0.94, respectively. It is proved that the prediction of local regression method of BP neural network has better accuracy and stability than that of global regression methods. In addition, the estimation accuracy of soil available nitrogen, phosphorus and potassium was increased by 40.63%, 28.64% and 28.64%, respectively. Thus, the quantitative analysis model established by the local regression method of BP neural network could be used to estimate the concentration of available nitrogen, phosphorus and potassium rapidly. It is innovative for using local nonlinear method to improve the stability and reliability of the soil spectrum model for nutrient diagnosis, which provides technical support for dynamic monitoring and process control for the soil nutrient under different growth stages of field-growing crops.

  18. Effect of gutta-percha solvents on calcium and phosphorus levels of cut human dentin.

    PubMed

    Kaufman, D; Mor, C; Stabholz, A; Rotstein, I

    1997-10-01

    Fresh intact human teeth were cut and treated with 3 commonly used gutta-percha solvents: chloroform, xylene, and Endosolv-E. Treatment consisted of embedding the specimens of each group for 15 or 30 min in the test solution. After each time interval, the specimens were rinsed, dried, and prepared for surface energy dispersive spectrometric analysis. The calcium and phosphorus levels in each specimen were recorded and the differences between the test groups were statistically analyzed. The changes in the calcium and phosphorus levels following treatment with the gutta-percha solvents were minimal and statistically nonsignificant.

  19. Root cortical aerenchyma enhances the growth of maize on soils with suboptimal availability of nitrogen, phosphorus, and potassium.

    PubMed

    Postma, Johannes Auke; Lynch, Jonathan Paul

    2011-07-01

    Root cortical aerenchyma (RCA) is induced by hypoxia, drought, and several nutrient deficiencies. Previous research showed that RCA formation reduces the respiration and nutrient content of root tissue. We used SimRoot, a functional-structural model, to provide quantitative support for the hypothesis that RCA formation is a useful adaptation to suboptimal availability of phosphorus, nitrogen, and potassium by reducing the metabolic costs of soil exploration in maize (Zea mays). RCA increased the growth of simulated 40-d-old maize plants up to 55%, 54%, or 72% on low nitrogen, phosphorus, or potassium soil, respectively, and reduced critical fertility levels by 13%, 12%, or 7%, respectively. The greater utility of RCA on low-potassium soils is associated with the fact that root growth in potassium-deficient plants was more carbon limited than in phosphorus- and nitrogen-deficient plants. In contrast to potassium-deficient plants, phosphorus- and nitrogen-deficient plants allocate more carbon to the root system as the deficiency develops. The utility of RCA also depended on other root phenes and environmental factors. On low-phosphorus soils (7.5 μM), the utility of RCA was 2.9 times greater in plants with increased lateral branching density than in plants with normal branching. On low-nitrate soils, the utility of RCA formation was 56% greater in coarser soils with high nitrate leaching. Large genetic variation in RCA formation and the utility of RCA for a range of stresses position RCA as an interesting crop-breeding target for enhanced soil resource acquisition.

  20. Foliar nitrogen, phosphorus and potassium content in trees in environmentally toxic plastic industry area.

    PubMed

    Sett, Rupnarayan; Soni, Bhawna

    2013-04-01

    In plants, nitrogen deficiency causes stunted growth and chlorosis or yellowing of the leaves due to decreased levels of chlorophyll, while excess nitrogen uptake may cause dark green overly vigorous foliage which may have increased susceptibility to disease and insect attacks. Phosphorus is an important nutrient in crop production, since many soils in their native state do not have sufficient available phosphorus to maximize crop yield. Potassium deficiency may cause necrosis or interveinal chlorosis. Plastics are synthetic or semi-synthetic moldable organic solids that are organic polymers of high molecular mass, most commonly derived from petrochemicals; these polymers are based on chains of carbon atoms alone or with oxygen, sulfur, or nitrogen. Plastic is a non- biodegradable major toxic pollutant. It pollutes earth and leads to air pollution and water pollution. Merely there is any safe way to dispose the hazardous plastic wastes. The study was targeted to estimate foliar level of NPK content of three plant species, viz. Cassia tora (Herb), Ailanthus excelsa (Tree) and Dalbergia sissoo (Tree) from polluted areas associated to polythene-industries as well as control areas having least pollution, where all the parameters were found to be higher than the control experiments.

  1. Does Potassium Citrate Medical Therapy Increase the Risk of Calcium Phosphate Stone Formation?

    NASA Astrophysics Data System (ADS)

    Leitao, Victor; Haleblian, George E.; Robinson, Marnie R.; Pierre, Sean A.; Sur, Roger L.; Preminger, Glenn M.

    2007-04-01

    Potassium citrate has been extensively used in the treatment of recurrent nephrolithiasis. Recent evidence suggests that it may contribute to increasing urinary pH and, as such, increase the risk of calcium phosphate stone formation. We performed a retrospective review of our patients to further investigate this phenomenon.

  2. Calcium and Potassium Channels in Experimental Subarachnoid Hemorrhage and Transient Global Ischemia

    PubMed Central

    Kamp, Marcel A.; Dibué, Maxine; Schneider, Toni; Steiger, Hans-Jakob; Hänggi, Daniel

    2012-01-01

    Healthy cerebrovascular myocytes express members of several different ion channel families which regulate resting membrane potential, vascular diameter, and vascular tone and are involved in cerebral autoregulation. In animal models, in response to subarachnoid blood, a dynamic transition of ion channel expression and function is initiated, with acute and long-term effects differing from each other. Initial hypoperfusion after exposure of cerebral vessels to oxyhemoglobin correlates with a suppression of voltage-gated potassium channel activity, whereas delayed cerebral vasospasm involves changes in other potassium channel and voltage-gated calcium channels expression and function. Furthermore, expression patterns and function of ion channels appear to differ between main and small peripheral vessels, which may be key in understanding mechanisms behind subarachnoid hemorrhage-induced vasospasm. Here, changes in calcium and potassium channel expression and function in animal models of subarachnoid hemorrhage and transient global ischemia are systematically reviewed and their clinical significance discussed. PMID:23251831

  3. Calcium glycerophosphate as a source of calcium and phosphorus in total parenteral nutrition solutions.

    PubMed

    Draper, H H; Yuen, D E; Whyte, R K

    1991-01-01

    Calcium glycerophosphate (CaGP) was tested as an alternative to calcium gluconate (CaGluc) and potassium mono- and dibasic phosphate (KPhos) as a source of Ca and P in total parenteral nutrition (TPN) solutions for piglets. Four-day-old piglets were infused for 7 days with a TPN solution that provided either 4.2 mmol Ca and 2.1 mmol P/kg/24 h as CaGluc and KPhos (the maximum quantities that can be provided using these sources), or 15.0 mmol Ca and 15.0 mmol P/kg/24 h as CaGP. Ca and P retentions were more than six times greater (p less than 0.01) in the piglets receiving CaGP (14.5 +/- 0.2 vs 2.2 +/- 0.3 mmol Ca/kg/24 h and 13.3 +/- 0.4 vs 2.4 +/- 0.1 mmol P/kg/24 h) (Mean +/- SEM). The ratio of Ca to fat-free dry weight, an indicator of bone mineralization, was significantly higher (p less than 0.05) in the humerus (174.8 +/- 2.2 vs 147.2 +/- 6.7) and femur (158.3 +/- 4.8 vs 130.1 +/- 7.8) in the CaGP group. This study showed that CaGP is efficiently used as a source of Ca and P in TPN solutions for piglets. The results suggest that the use of CaGP as the source of Ca and P in TPN solutions may prevent the development of the undermineralized bone seen in low-birth weight infants nourished intravenously.

  4. Phosphorus digestibility response of broiler chickens to dietary calcium-to-phosphorus ratios.

    PubMed

    Liu, J B; Chen, D W; Adeola, O

    2013-06-01

    This study was conducted to evaluate the true digestibility of P in soybean meal (SBM) for broiler chickens fed diets with different dietary calcium-to-phosphorus ratios (Ca:P) using the regression method. The experiment used a 4 × 3 factorial arrangement with 12 diets formulated to contain combinations of 4 levels of dietary Ca:P: 0.8, 1.2, 1.6, or 2.0 and 3 levels of SBM: 31.0, 44.0, or 57.0%. A total of 576 male Ross 708 broilers were allocated to 12 dietary treatments with 8 cages (6 birds per cage) per treatment from d 15 to 22 posthatching, and the BW between groups were similar. Chromic dioxide was used as an indigestible marker to calculate P digestibility and retention. The results showed that BW gain and feed efficiency were increased (linear, P < 0.01), and prececal DM digestibility and DM retention were decreased (linear, P < 0.01) with graded SBM in diets for each Ca:P. Decreasing linear (P < 0.01) relationships were observed for apparent prececal P digestibility and total tract P retention with increased dietary SBM levels. The prececal and excreta P output increased (linear, P < 0.01; quadratic, P < 0.05) as increasing levels of SBM were added to the experimental diets. True prececal P digestibility in SBM was greater (P < 0.05) for birds fed a diet with Ca:P of 0.8 compared with those fed higher Ca:P, but there was no difference among the Ca:P ratios between 1.2 and 2.0. However, the total tract retention of P from SBM was not affected by Ca:P between 0.8 and 2.0. In conclusion, results of the present experiment demonstrated that prececal digestibility of P in SBM was not affected by Ca:P ratio between 1.2 and 2.0; and there was no difference in total tract retention of P from SBM among the Ca:P ratios between 0.8 and 2.0 in broiler chickens.

  5. Potassium, calcium, and magnesium intakes and risk of stroke in women.

    PubMed

    Larsson, Susanna C; Virtamo, Jarmo; Wolk, Alicja

    2011-07-01

    The authors examined the association between dietary potassium, calcium, and magnesium intakes and the incidence of stroke among 34,670 women 49-83 years of age in the Swedish Mammography Cohort who completed a food frequency questionnaire in 1997. The authors used Cox proportional hazards regression models to estimate relative risks and 95% confidence intervals. During a mean follow-up of 10.4 years (1998-2008), 1,680 stroke events were ascertained, including 1,310 cerebral infarctions, 154 intracerebral hemorrhages, 79 subarachnoid hemorrhages, and 137 unspecified strokes. There was no overall association between potassium, calcium, or magnesium intake and the risk of any stroke or cerebral infarction. However, among women with a history of hypertension, potassium intake was inversely associated with risk of all types of stroke (for highest vs. lowest quintile, adjusted relative risk = 0.64, 95% confidence interval (CI): 0.45, 0.92) and cerebral infarction (corresponding adjusted relative risk = 0.56, 95% CI: 0.38, 0.84), and magnesium intake was inversely associated with risk of cerebral infarction (corresponding adjusted relative risk = 0.63, 95% CI: 0.42, 0.93). Calcium intake was positively associated with risk of intracerebral hemorrhage (for highest vs. lowest tertile, adjusted relative risk = 2.04, 95% CI: 1.24, 3.35). These findings suggest that potassium and magnesium intakes are inversely associated with the risk of cerebral infarction among hypertensive women.

  6. Endoplasmic reticulum potassium-hydrogen exchanger and small conductance calcium-activated potassium channel activities are essential for ER calcium uptake in neurons and cardiomyocytes.

    PubMed

    Kuum, Malle; Veksler, Vladimir; Liiv, Joanna; Ventura-Clapier, Renee; Kaasik, Allen

    2012-02-01

    Calcium pumping into the endoplasmic reticulum (ER) lumen is thought to be coupled to a countertransport of protons through sarcoplasmic/endoplasmic reticulum calcium ATPase (SERCA) and the members of the ClC family of chloride channels. However, pH in the ER lumen remains neutral, which suggests a mechanism responsible for proton re-entry. We studied whether cation-proton exchangers could act as routes for such a re-entry. ER Ca(2+) uptake was measured in permeabilized immortalized hypothalamic neurons, primary rat cortical neurons and mouse cardiac fibers. Replacement of K(+) in the uptake solution with Na(+) or tetraethylammonium led to a strong inhibition of Ca(2+) uptake in neurons and cardiomyocytes. Furthermore, inhibitors of the potassium-proton exchanger (quinine or propranolol) but not of the sodium-proton exchanger reduced ER Ca(2+) uptake by 56-82%. Externally added nigericin, a potassium-proton exchanger, attenuated the inhibitory effect of propranolol. Inhibitors of small conductance calcium-sensitive K(+) (SK(Ca)) channels (UCL 1684, dequalinium) blocked the uptake of Ca(2+) by the ER in all preparations by 48-94%, whereas inhibitors of other K(+) channels (IK(Ca), BK(Ca) and K(ATP)) had no effect. Fluorescence microscopy and western blot analysis revealed the presence of both SK(Ca) channels and the potassium-proton exchanger leucine zipper-EF-hand-containing transmembrane protein 1 (LETM1) in ER in situ and in the purified ER fraction. The data obtained demonstrate that SK(Ca) channels and LETM1 reside in the ER membrane and that their activity is essential for ER Ca(2+) uptake.

  7. Why and how to implement sodium, potassium, calcium, and magnesium changes in food items and diets?

    PubMed

    Karppanen, H; Karppanen, P; Mervaala, E

    2005-12-01

    The present average sodium intakes, approximately 3000-4500 mg/day in various industrialised populations, are very high, that is, 2-3-fold in comparison with the current Dietary Reference Intake (DRI) of 1500 mg. The sodium intakes markedly exceed even the level of 2500 mg, which has been recently given as the maximum level of daily intake that is likely to pose no risk of adverse effects on blood pressure or otherwise. By contrast, the present average potassium, calcium, and magnesium intakes are remarkably lower than the recommended intake levels (DRI). In USA, for example, the average intake of these mineral nutrients is only 35-50% of the recommended intakes. There is convincing evidence, which indicates that this imbalance, that is, the high intake of sodium on one hand and the low intakes of potassium, calcium, and magnesium on the other hand, produce and maintain elevated blood pressure in a big proportion of the population. Decreased intakes of sodium alone, and increased intakes of potassium, calcium, and magnesium each alone decrease elevated blood pressure. A combination of all these factors, that is, decrease of sodium, and increase of potassium, calcium, and magnesium intakes, which are characteristic of the so-called Dietary Approaches to Stop Hypertension diets, has an excellent blood pressure lowering effect. For the prevention and basic treatment of elevated blood pressure, various methods to decrease the intake of sodium and to increase the intakes of potassium, calcium, and magnesium should be comprehensively applied in the communities. The so-called 'functional food/nutraceutical/food-ceutical' approach, which corrects the mineral nutrient composition of extensively used processed foods, is likely to be particularly effective in producing immediate beneficial effects. The European Union and various governments should promote the availability and use of such healthier food compositions by tax reductions and other policies, which make the

  8. Effect of Vermicompost Alone and Its Combination with Recommended Dose of Fertilizers on Available Nitrogen, Phosphorus, Potassium in Rice Field.

    PubMed

    Shwetha, S; Narayana, J

    2014-01-01

    Rice variety KMP101 was treated with both organic and inorganic manure. The field and experimental studies were conducted, before applying organic and inorganic manures.The values obtained for available nitrogen, phosphorous and potassium were 360 kg/ha, 12 kg/ha and 166 kg/ha respectively. After treatment and harvest there was a gradual increase in available nitrogen, phosphorus and potassium ranging between 335-415, 14 -23 and 173- 235 kg/ha respectively among the treatments. Applying 15 t of vermicompost /ha and 10 t of vermicompost /ha and recommended dose of fertilizer showed a greater availability of nitrogen and phosphorus. It is revealed that after addition of organics into the soil year-wise, the soil became more stable. Also, the biological activity increased in the soil and was influenced to maintain the available nitrogen in the soil. Therefore, it is evident that vermicompost significantly increases the availability of available nutrients.

  9. Calcium channels responsible for potassium-induced transmitter release at rat cerebellar synapses.

    PubMed Central

    Momiyama, A; Takahashi, T

    1994-01-01

    The effects of calcium channel blockers on potassium-induced transmitter release were studied in thin slices of cerebellum from neonatal rats using whole-cell patch clamp methods. Miniature inhibitory postsynaptic currents (mIPSCs) mediated by gamma-aminobutyric acid (GABA) were recorded from deep cerebellar nuclear neurones in the presence of tetrodotoxin. The frequency of mIPSCs was reproducibly increased by a brief application of high-potassium solution. In the presence of the L-type Ca2+ channel blocker nicardipine (10 microM), the potassium-induced increase in mIPSC frequency was suppressed by 49%. Neither the mean amplitude nor the time course of mIPSCs was affected by the blocker. The N-type Ca2+ channel blocker omega-conotoxin GVIA (omega-CgTX, 3 microM) had no effect on the frequency of potassium-induced mIPSCs. The P-type Ca2+ channel blocker omega-Aga-IVA (200 nM) suppressed the potassium-induced increase in mIPSC frequency by 83% without affecting the mean amplitude or time course of mIPSCs. Comparing these data with previous studies of neurally evoked transmission, it is concluded that the Ca2+ channel subtypes responsible for potassium-induced transmitter release may be different from those mediating fast synaptic transmission. PMID:7913967

  10. [Vertical distribution patterns of nitrogen, phosphorus, and potassium in Chinese pine forest soils developed from different parent materials in Songshan Mountain Nature Reserve, Beijing of China].

    PubMed

    Gou, Li-hui; Sun, Zhao-di; Nie, Li-shui; Luo, Pan-pan; Wu, Ji-Gui; Xu, Wu-de

    2013-04-01

    Taking the soils developed from two kinds of parent materials (granite and limestone) under Pinus tabulaeformis forest at the same altitude in Songshan Mountain Nature Reserve of Beijing as test objects, this paper studied the vertical distribution patterns of soil total nitrogen, available phosphorus, and available potassium. The soil developed from granite had the total nitrogen, available phosphorus, and available potassium contents being 1.61-2. 35 g kg-1, 5. 84-10.74 mg kg- 1, and 39.33-93.66 mg kg-1, while that developed from limestone had the total nitrogen, available phosphorus, and available potassium contents being 1. 69 -2. 36 g kg-1, 4.45-8.57 mg . kg-1, and 60.66-124.00 mg kg-1, respectively. The total nitrogen, available phosphorus, and available potassium contents in the two soils were the highest in 0-10 cm layer, decreased with increasing depth, and had significant differences between different layers, showing that the soil total nitrogen, available phosphorus, and available potassium had a strong tendency to accumulate in surface layer. Such a tendency was more obvious for the soil developed from limestone. The paired t-test for the two soils indicated that the total nitrogen content in different layers had no significant difference, whereas the available phosphorus content in 0-10 cm layer and the available potassium content in 10-20 cm layer differed significantly.

  11. Nitrogen, Phosphorus, and Potassium Flows through the Manure Management Chain in China.

    PubMed

    Bai, Zhaohai; Ma, Lin; Jin, Shuqin; Ma, Wenqi; Velthof, Gerard L; Oenema, Oene; Liu, Ling; Chadwick, David; Zhang, Fusuo

    2016-12-20

    The largest livestock production and greatest fertilizer use in the world occurs in China. However, quantification of the nutrient flows through the manure management chain and their interactions with management-related measures is lacking. Herein, we present a detailed analysis of the nutrient flows and losses in the "feed intake-excretion-housing-storage-treatment-application" manure chain, while considering differences among livestock production systems. We estimated the environmental loss from the manure chain in 2010 to be up to 78% of the excreted nitrogen and over 50% of the excreted phosphorus and potassium. The greatest losses occurred from housing and storage stages through NH3 emissions (39% of total nitrogen losses) and direct discharge of manure into water bodies or landfill (30-73% of total nutrient losses). There are large differences among animal production systems, where the landless system has the lowest manure recycling. Scenario analyses for the year 2020 suggest that significant reductions of fertilizer use (27-100%) and nutrient losses (27-56%) can be achieved through a combination of prohibiting manure discharge, improving manure collection and storages infrastructures, and improving manure application to cropland. We recommend that current policies and subsidies targeted at the fertilizer industry should shift to reduce the costs of manure storage, transport, and application.

  12. Calcium-Activated Potassium Channels at Nodes of Ranvier Secure Axonal Spike Propagation.

    PubMed

    Gründemann, Jan; Clark, Beverley A

    2015-09-22

    Functional connectivity between brain regions relies on long-range signaling by myelinated axons. This is secured by saltatory action potential propagation that depends fundamentally on sodium channel availability at nodes of Ranvier. Although various potassium channel types have been anatomically localized to myelinated axons in the brain, direct evidence for their functional recruitment in maintaining node excitability is scarce. Cerebellar Purkinje cells provide continuous input to their targets in the cerebellar nuclei, reliably transmitting axonal spikes over a wide range of rates, requiring a constantly available pool of nodal sodium channels. We show that the recruitment of calcium-activated potassium channels (IK, K(Ca)3.1) by local, activity-dependent calcium (Ca(2+)) influx at nodes of Ranvier via a T-type voltage-gated Ca(2+) current provides a powerful mechanism that likely opposes depolarizing block at the nodes and is thus pivotal to securing continuous axonal spike propagation in spontaneously firing Purkinje cells.

  13. Calcium-Activated Potassium Channels at Nodes of Ranvier Secure Axonal Spike Propagation

    PubMed Central

    Gründemann, Jan; Clark, Beverley A.

    2015-01-01

    Summary Functional connectivity between brain regions relies on long-range signaling by myelinated axons. This is secured by saltatory action potential propagation that depends fundamentally on sodium channel availability at nodes of Ranvier. Although various potassium channel types have been anatomically localized to myelinated axons in the brain, direct evidence for their functional recruitment in maintaining node excitability is scarce. Cerebellar Purkinje cells provide continuous input to their targets in the cerebellar nuclei, reliably transmitting axonal spikes over a wide range of rates, requiring a constantly available pool of nodal sodium channels. We show that the recruitment of calcium-activated potassium channels (IK, KCa3.1) by local, activity-dependent calcium (Ca2+) influx at nodes of Ranvier via a T-type voltage-gated Ca2+ current provides a powerful mechanism that likely opposes depolarizing block at the nodes and is thus pivotal to securing continuous axonal spike propagation in spontaneously firing Purkinje cells. PMID:26344775

  14. Effects of phytase supplementation on calcium and phosphorus output, production traits and mechanical stability of the tibia in broiler chickens.

    PubMed

    Vetési, M; Mézes, M; Baskay, G; Gelencsér, E

    1998-01-01

    A feeding trial was performed using 4 x 60 day-old chickens (Ross 208 cockerels) raised up to 42 days of age to determine whether exogenous phytase addition increases phosphorus utilisation by broiler chickens, and to assess its effects on some production traits as well as on the ash content and mechanical stability of the tibia. The chickens' feed consisted of maize, wheat, soybean meal, fish meal, yeast, and fat powder. The basic feed was supplemented with inorganic phosphorus in groups A and B. In groups C and D, the amount of the inorganic phosphorus supplement (DCP) was decreased by 50%, at the same calcium/phosphorus ratio. The 50% reduction of inorganic phosphorus supplementation represents a 20% decrease of total phosphorus. To the diets of groups B and D a phytase enzyme preparation (Phytase Novo CT) was added. The calculated exogenous phytase activity was 600 FYT/kg feed. The decrease of inorganic phosphorus did not cause significant differences in the daily weight gain but lowered the feed conversion rate by 10%. Calcium and phosphorus excretion decreased by 18% and 15%, and the breaking strength of the tibia was also lower. Phytase supplementation of the feed at a lower rate of inorganic phosphorus supplementation did not cause changes in the body weight gain but improved the feed conversion rate by 5.6%. Phosphorus and calcium output decreased by 21% and 11%, respectively, but chemical composition and mechanical stability of the tibia were unaltered.

  15. Calcium uptake in rat liver mitochondria accompanied by activation of ATP-dependent potassium channel.

    PubMed

    Akopova, O V; Nosar, V I; Mankovskaya, I N; Sagach, V F

    2008-10-01

    The influence of potassium ions on calcium uptake in rat liver mitochondria is studied. It is shown that an increase in K+ and Ca2+ concentrations in the incubation medium leads to a decrease in calcium uptake in mitochondria together with a simultaneous increase in potassium uptake due to the potential-dependent transport of K+ in the mitochondrial matrix. Both effects are more pronounced in the presence of an ATP-dependent K+-channel (K+(ATP)-channel) opener, diazoxide (Dz). Activation of the K+(ATP)-channel by Dz alters the functional state of mitochondria and leads to an increase in the respiration rate in state 2 and a decrease in the oxygen uptake and the rate of ATP synthesis in state 3. The effect of Dz on oxygen consumption in state 3 is mimicked by valinomycin, but it is opposite to that of the classical protonophore uncoupler CCCP. It is concluded that the potential-dependent uptake of potassium is closely coupled to calcium transport and is an important parameter of energy coupling responsible for complex changes in oxygen consumption and Ca2+-transport properties of mitochondria.

  16. Effect of potassium and calcium loading on healthy subjects under hypokinesia and physical exercise with fluid and salt supplements

    NASA Astrophysics Data System (ADS)

    Zorbas, Yan G.; Naexu, Konstantin A.; Federenko, Youri F.

    1995-08-01

    The objective of this investigation was to determine the acute responses to the electrolyte challenges under hypokinesia and physical exercise (PE) of different intensities with fluid and salt supplementation (FSS). The studies were performed on 12 physically healthy male volunteers aged 19-24 years under 364 days of hypokinesia (decreased number of steps per day) with a set of PE with FSS. The volunteers were divided into two equal groups. The first group was subjected to a set of intensive PE and the second group was submitted to a set of moderate PE. Both groups of subjects consumed daily water and salt supplements that aimed to increase the body hydration level. For simulation of the hypokinetic effect all subjects were kept under an average of 3000 steps per day. Functional tests with a potassium chloride (KCl) and calcium lactate (Cal) load were performed during the hypokinetic period of 364 days and the 60-day prehypokinetic period that served as control, while both groups of subjects consumed daily calcium and potassium supplements. The concentration of electrolyte and hormone levels in the blood and their excretion rate in urine were determined. Renal excretion of calcium and potassium and the blood concentration thereof increased markedly in both groups of subjects. With the potassium chloride load tests the increased potassium excretion was accompanied by higher aldosterone and insulin blood levels, and with the calcium lactate load tests the increased calcium excretion was accompanied by a decreased parathyroid content in the blood. FSS and PE, regardless of intensity, failed to attenuate calcium and potassium losses. Additional intake of KCl and Cal also failed to normalize potassium and calcium abnormalities. It was concluded that during the KCl and Cal loading tests, the increased losses of potassium and calcium in the hypokinetic subjects were due to the inability of their bodies to retain these electrolytes, and that electrolyte abnormalities could

  17. SLO BK Potassium Channels Couple Gap Junctions to Inhibition of Calcium Signaling in Olfactory Neuron Diversification

    PubMed Central

    Schumacher, Jennifer A.; Wang, Xiaohong; Merrill, Sean A.; Millington, Grethel; Bayne, Brittany; Jorgensen, Erik M.; Chuang, Chiou-Fen

    2016-01-01

    The C. elegans AWC olfactory neuron pair communicates to specify asymmetric subtypes AWCOFF and AWCON in a stochastic manner. Intercellular communication between AWC and other neurons in a transient NSY-5 gap junction network antagonizes voltage-activated calcium channels, UNC-2 (CaV2) and EGL-19 (CaV1), in the AWCON cell, but how calcium signaling is downregulated by NSY-5 is only partly understood. Here, we show that voltage- and calcium-activated SLO BK potassium channels mediate gap junction signaling to inhibit calcium pathways for asymmetric AWC differentiation. Activation of vertebrate SLO-1 channels causes transient membrane hyperpolarization, which makes it an important negative feedback system for calcium entry through voltage-activated calcium channels. Consistent with the physiological roles of SLO-1, our genetic results suggest that slo-1 BK channels act downstream of NSY-5 gap junctions to inhibit calcium channel-mediated signaling in the specification of AWCON. We also show for the first time that slo-2 BK channels are important for AWC asymmetry and act redundantly with slo-1 to inhibit calcium signaling. In addition, nsy-5-dependent asymmetric expression of slo-1 and slo-2 in the AWCON neuron is necessary and sufficient for AWC asymmetry. SLO-1 and SLO-2 localize close to UNC-2 and EGL-19 in AWC, suggesting a role of possible functional coupling between SLO BK channels and voltage-activated calcium channels in AWC asymmetry. Furthermore, slo-1 and slo-2 regulate the localization of synaptic markers, UNC-2 and RAB-3, in AWC neurons to control AWC asymmetry. We also identify the requirement of bkip-1, which encodes a previously identified auxiliary subunit of SLO-1, for slo-1 and slo-2 function in AWC asymmetry. Together, these results provide an unprecedented molecular link between gap junctions and calcium pathways for terminal differentiation of olfactory neurons. PMID:26771544

  18. Non-destructive Measurement of Calcium and Potassium in Apple and Pear Using Handheld X-ray Fluorescence.

    PubMed

    Kalcsits, Lee A

    2016-01-01

    Calcium and potassium are essential for cell signaling, ion homeostasis and cell wall strength in plants. Unlike nutrients such as nitrogen and potassium, calcium is immobile in plants. Localized calcium deficiencies result in agricultural losses; particularly for fleshy horticultural crops in which elemental imbalances in fruit contribute to the development of physiological disorders such as bitter pit in apple and cork spot in pear. Currently, elemental analysis of plant tissue is destructive, time consuming and costly. This is a limitation for nutrition studies related to calcium in plants. Handheld portable x-ray fluorescence (XRF) can be used to non-destructively measure elemental concentrations. The main objective was to test if handheld XRF can be used for semi-quantitative calcium and potassium analysis of in-tact apple and pear. Semi-quantitative measurements for individual fruit were compared to results obtained from traditional lab analysis. Here, we observed significant correlations between handheld XRF measurements of calcium and potassium and concentrations determined using MP-AES lab analysis. Pearson correlation coefficients ranged from 0.73 and 0.97. Furthermore, measuring apple and pear using handheld XRF identified spatial variability in calcium and potassium concentrations on the surface of individual fruit. This variability may contribute to the development of localized nutritional imbalances. This highlights the importance of understanding spatial and temporal variability in elemental concentrations in plant tissue. Handheld XRF is a relatively high-throughput approach for measuring calcium and potassium in plant tissue. It can be used in conjunction with traditional lab analysis to better understand spatial and temporal patterns in calcium and potassium uptake and distribution within an organ, plant or across the landscape.

  19. Non-destructive Measurement of Calcium and Potassium in Apple and Pear Using Handheld X-ray Fluorescence

    PubMed Central

    Kalcsits, Lee A.

    2016-01-01

    Calcium and potassium are essential for cell signaling, ion homeostasis and cell wall strength in plants. Unlike nutrients such as nitrogen and potassium, calcium is immobile in plants. Localized calcium deficiencies result in agricultural losses; particularly for fleshy horticultural crops in which elemental imbalances in fruit contribute to the development of physiological disorders such as bitter pit in apple and cork spot in pear. Currently, elemental analysis of plant tissue is destructive, time consuming and costly. This is a limitation for nutrition studies related to calcium in plants. Handheld portable x-ray fluorescence (XRF) can be used to non-destructively measure elemental concentrations. The main objective was to test if handheld XRF can be used for semi-quantitative calcium and potassium analysis of in-tact apple and pear. Semi-quantitative measurements for individual fruit were compared to results obtained from traditional lab analysis. Here, we observed significant correlations between handheld XRF measurements of calcium and potassium and concentrations determined using MP-AES lab analysis. Pearson correlation coefficients ranged from 0.73 and 0.97. Furthermore, measuring apple and pear using handheld XRF identified spatial variability in calcium and potassium concentrations on the surface of individual fruit. This variability may contribute to the development of localized nutritional imbalances. This highlights the importance of understanding spatial and temporal variability in elemental concentrations in plant tissue. Handheld XRF is a relatively high-throughput approach for measuring calcium and potassium in plant tissue. It can be used in conjunction with traditional lab analysis to better understand spatial and temporal patterns in calcium and potassium uptake and distribution within an organ, plant or across the landscape. PMID:27092160

  20. Vitamin D3 and its metabolites have no role in calcium and phosphorus metabolism in Tilapia mossambica.

    PubMed

    Rao, D S; Raghuramulu, N

    1999-01-01

    The physiological function of vitamin D in fishes still remains uncertain. Earlier we observed no relationship between vitamin D3 content of several freshwater fishes and their calcemic/phosphatemic status and bone mineral content. In the present study the effects of vitamin D3 and its metabolites, 25-hydroxy vitamin D3 (25-OH-D3) and 1,25-dihydroxy vitamin D3 [1,25-(OH)2D3], administration on serum calcium-phosphorus levels, intestinal calcium absorption, whole-body calcium-phosphorus uptake, and gill calcium binding protein (CaBP) activity in the freshwater fish, Tilapia mossambica (Tilapia) was examined. It was observed that vitamin D3 and its metabolites could alter neither serum calcium-phosphorus levels nor intestinal calcium absorption and gill CaBP activity in fish at various doses. Further, the whole-body uptake of labelled calcium and phosphorus was also unaffected by vitamin D3/1,25-(OH)2D3 at different levels and/or at various lengths of time. Thus these studies indicate that unlike in terrestrial vertebrates, vitamin D3 or its metabolites are not needed for calcium-phosphorus homeostasis in fish.

  1. Uncorrected and Albumin-Corrected Calcium, Phosphorus, and Mortality in Patients Undergoing Maintenance Dialysis.

    PubMed

    Rivara, Matthew B; Ravel, Vanessa; Kalantar-Zadeh, Kamyar; Streja, Elani; Lau, Wei Ling; Nissenson, Allen R; Kestenbaum, Bryan; de Boer, Ian H; Himmelfarb, Jonathan; Mehrotra, Rajnish

    2015-07-01

    Uncorrected serum calcium concentration is the first mineral metabolism metric planned for use as a quality measure in the United States ESRD population. Few studies in patients undergoing either peritoneal dialysis (PD) or hemodialysis (HD) have assessed the association of uncorrected serum calcium concentration with clinical outcomes. We obtained data from 129,076 patients on dialysis (PD, 10,066; HD, 119,010) treated in DaVita, Inc. facilities between July 1, 2001, and June 30, 2006. After adjustment for potential confounders, uncorrected serum calcium <8.5 and ≥10.2 mg/dl were associated with excess mortality in patients on PD or HD (comparison group uncorrected calcium 9.0 to <9.5 mg/dl). Additional adjustment for serum albumin concentration substantially attenuated the all-cause mortality hazard ratios (HRs) associated with uncorrected calcium <8.5 mg/dl (HR, 1.29; 95% confidence interval [95% CI], 1.16 to 1.44 for PD; HR, 1.17; 95% CI, 1.13 to 1.20 for HD) and amplified the HRs associated with calcium ≥10.2 mg/dl (HR, 1.65; 95% CI, 1.42 to 1.91 for PD; HR, 1.59; 95% CI, 1.53 to 1.65 for HD). Albumin-corrected calcium ≥10.2 mg/dl and serum phosphorus ≥6.4 mg/dl were also associated with increased risk for death, irrespective of dialysis modality. In summary, in a large nationally representative cohort of patients on dialysis, abnormalities in markers of mineral metabolism, particularly high concentrations of serum calcium and phosphorus, were associated with increased mortality risk. Additional studies are needed to investigate whether control of hypercalcemia and hyperphosphatemia in patients undergoing dialysis results in improved clinical outcomes.

  2. [Contents of calcium and phosphorus in the diet of youth from Warsaw elementary schools].

    PubMed

    Chwojnowska, Zofia; Charzewska, Jadwiga; Chabros, Elzbieta; Wajszczyk, Bozena; Rogalska-Niedswieds, Małgorzata; Jarosz, Barbara

    2002-01-01

    The purpose of this study was an assessment average daily intake of calcium and phosphorus by prepubertal adolescents (aged 11 and 12) during monitoring their diets in last 10 years. In 1989-1999 years, it was investigated 767 randomly selected girls and 817 boys, aged 11 and 12 in Warsaw. Information on dietary intake was obtained by 24-hour recall method, always spring, having representation of weekdays and weekends. Among environmental factors, nutrition, and particularly calcium intake is assumed to influence whether the genetically determined maximal peak bone mass is reached. However, near half of examined prepubertal adolescents have intake less than 600 mg calcium per day. It was also observed low calcium to phosphorus ratio in diets and stated Ca:P < 0.25 among 10% diet in different groups of girls and boys. Consequently, due to consider the activity educational efforts directed to prepubertal adolescent with reference to means realization of calcium RDA in daily diet through increase milk and dairy products consumption.

  3. Effect of processing methods on the calcium, phosphorus, and phytic acid contents and nutritive utilization of chickpea (Cicer arietinum L.).

    PubMed

    Nestares, T; Barrionuevo, M; Urbano, G; López-Frías, M

    1999-07-01

    The effect of chickpea (Cicer arietinum L.) processing methods on the nutritive utilization of calcium and phosphorus and on phytic acid, a seed component that affects mineral utilization, was studied. Chemical and biological methods were used for nutritional determinations in growing rats. The digestive utilization of calcium from raw chickpea was adequate for growing rats; however, processing resulted in a slight decrease. The metabolic utilization of chickpea calcium was low because of the low rates of net absorption. This was reflected in the decreased calcium levels in longissimus dorsi muscle in the absence of mobilization of calcium from the femur. Soaking in acid solution followed by cooking decreased phytic acid content, suggesting that processing made part of the phytic acid phosphorus available. The absorbed phosphorus was greater than the nonphytic phosphorus supplied by the diet. The digestive utilization of phosphorus was similar in processed and raw chickpeas, despite the loss of soluble anion as a result of processing. These results may indicate the contribution of phosphorus in the form of inositol hexaphosphate-phosphorus.

  4. Effect of calcium phosphate and vitamin D3 supplementation on bone remodelling and metabolism of calcium, phosphorus, magnesium and iron

    PubMed Central

    2014-01-01

    Background The aim of the present study was to determine the effect of calcium phosphate and/or vitamin D3 on bone and mineral metabolism. Methods Sixty omnivorous healthy subjects participated in the double-blind, placebo-controlled parallel designed study. Supplements were tricalcium phosphate (CaP) and cholecalciferol (vitamin D3). At the beginning of the study (baseline), all subjects documented their normal nutritional habits in a dietary record for three successive days. After baseline, subjects were allocated to three intervention groups: CaP (additional 1 g calcium/d), vitamin D3 (additional 10 μg/d) and CaP + vitamin D3. In the first two weeks, all groups consumed placebo bread, and afterwards, for eight weeks, the test bread according to the intervention group. In the last week of each study period (baseline, placebo, after four and eight weeks of intervention), a faecal (three days) and a urine (24 h) collection and a fasting blood sampling took place. Calcium, phosphorus, magnesium and iron were determined in faeces, urine and blood. Bone formation and resorption markers were analysed in blood and urine. Results After four and eight weeks, CaP and CaP + vitamin D3 supplementations increased faecal excretion of calcium and phosphorus significantly compared to placebo. Due to the vitamin D3 supplementations (vitamin D3, CaP + vitamin D3), the plasma 25-(OH)D concentration significantly increased after eight weeks compared to placebo. The additional application of CaP led to a significant increase of the 25-(OH)D concentration already after four weeks. Bone resorption and bone formation markers were not influenced by any intervention. Conclusions Supplementation with daily 10 μg vitamin D3 significantly increases plasma 25-(OH)D concentration. The combination with daily 1 g calcium (as CaP) has a further increasing effect on the 25-(OH)D concentration. Both CaP alone and in combination with vitamin D3 have no beneficial effect on bone

  5. Assay of calcium borogluconate veterinary medicines for calcium gluconate, boric acid, phosphorus, and magnesium by using inductively coupled plasma emission spectrometry

    SciTech Connect

    Lyons, D.J.; Spann, K.P.

    1985-03-01

    An inductively coupled plasma spectrometric method is described for the determination of 4 elements (Ca, B, P, and Mg) in calcium borogluconate veterinary medicines. Samples are diluted, acidified, and sprayed directly into the plasma. Reproducibility relative confidence intervals for a single sample assay are +/- 1.4% (calcium), +/- 1.8% (boron), +/- 2.6% (phosphorus), and +/- 1.4% (magnesium). The total element concentrations for each of 4 elements compared favorably with concentrations determined by alternative methods. Formulation estimates of levels of calcium gluconate, boric acid, phosphorus, and magnesium salts can be made from the analytical data.

  6. A point mutation of the alpha 2-adrenoceptor that blocks coupling to potassium but not calcium currents.

    PubMed

    Surprenant, A; Horstman, D A; Akbarali, H; Limbird, L E

    1992-08-14

    The alpha 2A-adrenergic receptor (adrenoceptor) was stably expressed in AtT20 mouse pituitary tumor cells; adrenoceptor agonists inhibited adenylyl cyclase, inhibited voltage-dependent calcium currents, and increased inwardly rectifying potassium currents. An aspartic acid residue (Asp79) highly conserved among guanine nucleotide-binding protein (G protein)-coupled receptors was mutated to asparagine; in cells transfected with the mutant alpha 2-receptor, agonists inhibited adenylyl cyclase and calcium currents but did not increase potassium currents. Because distinct G proteins appear to couple adrenoceptors to potassium and calcium currents, the present findings suggest that the mutant alpha 2-adrenoceptor cannot achieve the conformation necessary to activate G proteins that mediate potassium channel activation.

  7. [Calcium pros and cons significance and risk of phosphorus supplementation. The risk of dietary phosphorus intake].

    PubMed

    Ohi, Akiko; Nomura, Kengo; Miyamoto, Ken-ichi

    2011-12-01

    Dietary intake of phosphorus (Pi) is an important determinant of Pi balance in patients who have chronic kidney disease (CKD) and a reduced GFR. High dietary Pi burden may promote vascular calcification and cardiovascular events. Recently, Ohnishi and Razzaque suggest that phosphate toxicity accelerates the mammalian aging process and that reducing the phosphate burden can delay the aging (FASEB J 24, 3562, 2010) . Dietary Pi is derived largely from foods with high protein content or food additives. Accurate information on the Pi content of foods is needed to achieve a low Pi intake and effectively manage CKD and the aging. In this review, we discuss the risk of dietary Pi intake in CKD and the aging.

  8. Greater effect of dietary potassium tripolyphosphate than of potassium dihydrogenphosphate on the nephrocalcinosis and proximal tubular function in female rats from the intake of a high-phosphorus diet.

    PubMed

    Matsuzaki, H; Masuyama, R; Uehara, M; Nakamura, K; Suzuki, K

    2001-04-01

    We examined whether a difference in potassium dihydrogenphosphate (KH2PO4) and potassium tripolyphosphate (K5P3O10) as dietary phosphorus sources could differentially effect the nephrocalcinosis and proximal tubular function in female rats. Rats were fed on a diet containing KH2PO4 or K5P3O10, at the normal phosphorus level (normal phosphorus diet) or at a high phosphorus level (high-phosphorus diet) for 21 d. Nephrocalcinosis, as confirmed by a histological examination, was apparent in all rats fed on the high-phosphorus diet, and this condition was more severe in those rats fed on K5P3O10 than in those fed on KH2PO4. As indicators of the proximal tubular function, the N-acetyl-beta-D-glucosaminidase activity in urine and the urinary beta2-microglobulin excretion were significantly increased in those rats fed on the high-phosphorus diet containing K5P3O10. These results indicate that the intake of a high-phosphorus diet, more strongly influenced the nephrocalcinosis and proximal tubular function when K5P3O10 rather than KH2PO4 was used as the dietary phosphorus source.

  9. In vitro evaluation of calcium and phosphorus concentrations in enamel submitted to an in-office bleaching gel treatment containing calcium.

    PubMed

    Basting, Roberta Tarkany; Antunes, Edina Veloso Goncalves; Turssi, Cecilia Pedroso; do Amaral, Flavia Lucisano Botelho; Franca, Fabiana Mantovani Gomes; Florio, Flavia Martao

    2015-01-01

    The aim of this in vitro study was to evaluate the calcium and phosphorus concentrations in enamel surfaces before, during, and after treatment with in-office 35% hydrogen peroxide bleaching agents with 2% calcium gluconate (WCa) or without calcium gluconate (W). Twenty sound human third molars were divided into 2 groups of 10. The bleaching agents were applied to the tooth surfaces in accordance with the manufacturer's instructions: WCa, 40 minutes per day at 3 sessions with 7-day intervals; W, 3 × 15 minutes per day at 3 sessions with 7-day intervals. Enamel microbiopsies were performed prior to the bleaching treatment, immediately after each bleaching session (first, second, and third applications), and 7 and 14 days following the last bleaching treatment. The concentration levels of calcium and phosphorus in the microbiopsy specimens were recorded spectrophotometrically. There was a statistically significant decrease in the calcium concentration 7 days after the last bleaching treatment, but there was a recovery to baseline values at 14 days, regardless of the bleaching agent used (WCa and W). When W was used, there was no difference in the phosphorus concentration over time. The phosphorus concentration in the WCa group decreased after the third application, showing a significant difference from the W group at this time. However, an increase in the phosphorus concentration was observed in the posttreatment period, and no significant differences were observed between values at baseline and those at 14 days posttreatment. The in-office bleaching gel containing 2% calcium gluconate did not affect the calcium and phosphorus concentrations in enamel as compared to a calcium-free bleaching agent.

  10. Polynomial dual energy inverse functions for bone Calcium/Phosphorus ratio determination and experimental evaluation.

    PubMed

    Sotiropoulou, P; Fountos, G; Martini, N; Koukou, V; Michail, C; Kandarakis, I; Nikiforidis, G

    2016-12-01

    An X-ray dual energy (XRDE) method was examined, using polynomial nonlinear approximation of inverse functions for the determination of the bone Calcium-to-Phosphorus (Ca/P) mass ratio. Inverse fitting functions with the least-squares estimation were used, to determine calcium and phosphate thicknesses. The method was verified by measuring test bone phantoms with a dedicated dual energy system and compared with previously published dual energy data. The accuracy in the determination of the calcium and phosphate thicknesses improved with the polynomial nonlinear inverse function method, introduced in this work, (ranged from 1.4% to 6.2%), compared to the corresponding linear inverse function method (ranged from 1.4% to 19.5%).

  11. Modelling biological and chemically induced precipitation of calcium phosphate in enhanced biological phosphorus removal systems.

    PubMed

    Barat, R; Montoya, T; Seco, A; Ferrer, J

    2011-06-01

    The biologically induced precipitation processes can be important in wastewater treatment, in particular treating raw wastewater with high calcium concentration combined with Enhanced Biological Phosphorus Removal. Currently, there is little information and experience in modelling jointly biological and chemical processes. This paper presents a calcium phosphate precipitation model and its inclusion in the Activated Sludge Model No 2d (ASM2d). The proposed precipitation model considers that aqueous phase reactions quickly achieve the chemical equilibrium and that aqueous-solid change is kinetically governed. The model was calibrated using data from four experiments in a Sequencing Batch Reactor (SBR) operated for EBPR and finally validated with two experiments. The precipitation model proposed was able to reproduce the dynamics of amorphous calcium phosphate (ACP) formation and later crystallization to hydroxyapatite (HAP) under different scenarios. The model successfully characterised the EBPR performance of the SBR, including the biological, physical and chemical processes.

  12. Development of voltage-dependent calcium, sodium, and potassium currents in Xenopus spinal neurons.

    PubMed

    O'Dowd, D K; Ribera, A B; Spitzer, N C

    1988-03-01

    Action potentials of embryonic nerve and muscle cells often have a different ionic dependence and longer duration than those of mature cells. The action potential of spinal cord neurons from Xenopus laevis exhibits a prominent calcium component at early stages of development that diminishes with age as the impulse becomes principally sodium dependent. Whole-cell voltage-clamp analysis has been undertaken to characterize the changes in membrane currents during development of these neurons in culture. Four voltage-dependent currents of cells were identified and examined during the first day in vitro, when most of the change in the action potential occurs. There are no changes in the peak density of the calcium current (ICa), its voltage dependence, or time to half-maximal activation; a small increase in inactivation is apparent. The major change in sodium current (INa) is a 2-fold increase in its density. In addition, more subtle changes in the kinetics of the macroscopic sodium current were noted. The peak density of voltage-dependent potassium current (IKv) increases 3-fold, and this current becomes activated almost twice as fast. No changes were noted in the extent of its inactivation. The calcium-dependent potassium current (IKc) consists of an inactivating and a sustained component. The former increases 2-fold in peak current density, and the latter increases similarly at less depolarized voltages. The changes in these currents contribute to the decrease in duration and the change in ionic dependence of the impulse.

  13. Distinct developmental changes in the distribution of calcium, phosphorus and sulphur during fetal growth-plate development

    PubMed Central

    van Donkelaar, C C; Janssen, X J A; de Jong, A M

    2007-01-01

    Gradients in the concentrations of free phosphate (Pi) and calcium (Ca) exist in fully developed growth zones of long bones and ribs, with the highest concentrations closest to the site of mineralization. As high concentrations of Pi and Ca induce chondrocyte maturation and apoptosis, it has been hypothesized that Ca and Pi drive chondrocyte differentiation in growth plates. This study aimed to determine whether gradients in the important spectral elements phosphorus (P), Ca and sulphur (S) are already present in early stages of development, or whether they gradually develop with maturation of the growth zone. We quantified the concentration profiles of Ca, P, S, chloride and potassium at four different stages of early development of the distal growth plates of the porcine femurs, using particle-induced X-ray emission and forward- and backward-scattering spectrometry with a nuclear microprobe. A Ca concentration gradient towards the mineralized area and a stepwise increase in S was found to develop slowly with tissue maturation. The increase in S co-localizes with the onset of proliferation. A P gradient was not detected in the earliest developmental stages. High Ca levels, which may induce chondrocyte maturation, are present near the mineralization front. As total P concentrations do not correspond with former free Pi measurements, we hypothesize that the increase of free Pi towards the bone-forming site results from enzymatic cleavage of bound phosphate. PMID:17261139

  14. Are low intakes of calcium and potassium important causes of cardiovascular disease?

    PubMed

    McCarron, D A; Reusser, M E

    2001-06-01

    Inadequate levels of calcium and potassium intake have long been associated with higher blood pressures. Epidemiologic data have suggested these associations and many clinical trials have indicated causal relationships. However, the intervention data are plagued with inconsistent study designs, populations, and results, and there remain many questions regarding dietary recommendations of these nutrients for cardiovascular health. Until recently, nutrition research focused on single-nutrient interventions, generally with disparate results. Recognizing that nutrients are not consumed individually but as combined constituents of a varied diet, efforts in this area have shifted to the role of the overall diet, or dietary patterns, in blood pressure and cardiovascular disease. The suggestions of epidemiologic surveys nearly two decades ago that the total diet has a greater influence on cardiovascular health than do specific components, are now being borne out by randomized controlled trials demonstrating this effect. From these dietary pattern studies, it has become increasingly clear that it is not merely excesses of single nutrients but also deficiencies of multiple nutrients in combination, such as calcium and potassium, that have the greatest dietary effects on cardiovascular health. Several risk factors for cardiovascular disease have now been shown to be reduced with diets that meet the current recommended dietary guidelines, ie, that provide appropriate levels of vitamins, minerals, fiber, and macronutrients. In addition, new data indicate that regular consumption of these diets is associated with decreased mortality. Adequate intake of minerals such as calcium and potassium-specifically derived from foods, where they coexist with other essential nutrients-contributes to cardiovascular as well as overall health.

  15. Large-conductance calcium-activated potassium current modulates excitability in isolated canine intracardiac neurons

    PubMed Central

    Pérez, Guillermo J.; Desai, Mayurika; Anderson, Seth

    2013-01-01

    We studied principal neurons from canine intracardiac (IC) ganglia to determine whether large-conductance calcium-activated potassium (BK) channels play a role in their excitability. We performed whole cell recordings in voltage- and current-clamp modes to measure ion currents and changes in membrane potential from isolated canine IC neurons. Whole cell currents from these neurons showed fast- and slow-activated outward components. Both current components decreased in the absence of calcium and following 1–2 mM tetraethylammonium (TEA) or paxilline. These results suggest that BK channels underlie these current components. Single-channel analysis showed that BK channels from IC neurons do not inactivate in a time-dependent manner, suggesting that the dynamic of the decay of the fast current component is akin to that of intracellular calcium. Immunohistochemical studies showed that BK channels and type 2 ryanodine receptors are coexpressed in IC principal neurons. We tested whether BK current activation in these neurons occurred via a calcium-induced calcium release mechanism. We found that the outward currents of these neurons were not affected by the calcium depletion of intracellular stores with 10 mM caffeine and 10 μM cyclopiazonic acid. Thus, in canine intracardiac neurons, BK currents are directly activated by calcium influx. Membrane potential changes elicited by long (400 ms) current injections showed a tonic firing response that was decreased by TEA or paxilline. These data strongly suggest that the BK current present in canine intracardiac neurons regulates action potential activity and could increase these neurons excitability. PMID:23195072

  16. Molecular heterogeneity of large-conductance calcium-activated potassium channels in canine intracardiac ganglia.

    PubMed

    Selga, Elisabet; Pérez-Serra, Alexandra; Moreno-Asso, Alba; Anderson, Seth; Thomas, Kristen; Desai, Mayurika; Brugada, Ramon; Pérez, Guillermo J; Scornik, Fabiana S

    2013-01-01

    Large conductance calcium-activated potassium (BK) channels are widely expressed in the nervous system. We have recently shown that principal neurons from canine intracardiac ganglia (ICG) express a paxilline- and TEA-sensitive BK current, which increases neuronal excitability. In the present work, we further explore the molecular constituents of the BK current in canine ICG. We found that the β1 and β4 regulatory subunits are expressed in ICG. Single channel voltage-dependence at different calcium concentrations suggested that association of the BKα with a particular β subunit was not enough to explain the channel activity in this tissue. Indeed, we detected the presence of several splice variants of the BKα subunit. In conclusion, BK channels in canine ICG may result from the arrangement of different BKα splice variants, plus accessory β subunits. The particular combinations expressed in canine IC neurons likely rule the excitatory role of BK current in this tissue.

  17. What aspect of dietary modification in broilers controls litter water-soluble phosphorus: dietary phosphorus, phytase, or calcium?

    PubMed

    Leytem, A B; Plumstead, P W; Maguire, R O; Kwanyuen, P; Brake, J

    2007-01-01

    Environmental concerns about phosphorus (P) losses from animal agriculture have led to interest in dietary strategies to reduce the concentration and solubility of P in manures and litters. To address the effects of dietary available phosphorus (AvP), calcium (Ca), and phytase on P excretion in broilers, 18 dietary treatments were applied in a randomized complete block design to each of four replicate pens of 28 broilers from 18 to 42 d of age. Treatments consisted of three levels of AvP (3.5, 3.0, and 2.5 g kg(-1)) combined with three levels of Ca (8.0, 6.9, and 5.7 g kg(-1)) and two levels of phytase (0 and 600 phytase units [FTU]). Phytase was added at the expense of 1.0 g kg(-1) P from dicalcium phosphate. Fresh litter was collected from pens when the broilers were 41 d of age and analyzed for total P, soluble P, and phytate P as well as P composition by (31)P nuclear magnetic resonance (NMR) spectroscopy. Results indicated that the inclusion of phytase at the expense of inorganic P or reductions in AvP decreased litter total P by 28 to 43%. Litter water-soluble P (WSP) decreased by up to 73% with an increasing dietary Ca/AvP ratio, irrespective of phytase addition. The ratio of WSP/total P in litter decreased as the dietary Ca/AvP ratio increased and was greater in the phytase-amended diets. This study indicated that while feeding reduced AvP diets with phytase decreased litter total P, the ratio of Ca/AvP in the diet was primarily responsible for effects on WSP. This is important from an environmental perspective as the amount of WSP in litter could be related to potential for off-site P losses following land application of litter.

  18. Magnesium, Potassium and Phosphorus in Available Forms in Luvisols in the Vicinity of Głogów Copper Smelter

    NASA Astrophysics Data System (ADS)

    Jaworska, H.; Dąbkowska-Naskręt, H.; Różański, S.

    2016-02-01

    Region near Głogów is characterized as industrial—agricultural area, intensively used. Presented study was undertaken to estimate the impact of agricultural land use and the vicinity of Głogów copper smelter on the contents of available forms of magnesium, phosphorus and potassium in selected profiles of Luvisols. The following analysis were performed: soil particle-size distribution, pH, organic carbon contents, CaCO3 contents. The contents of available forms of phosphorus and potassium were determined by Egner- Riehm method and that of magnesium using Schachtschabel's method. The results of the study showed that the contents of available P is medium (III class of abundance), very low in K (V class) and for available Mg very low (V class) to medium for surface horizons and very high (I class of abundance) in other soil horizons. The soils, in spite of the elevated copper content in humus horizons, according to IUNG, were classified as uncontaminated soils, therefore, can be used in plant production for all types of crops.

  19. Activation of protein kinase C inhibits calcium-activated potassium channels in rat pituitary tumour cells.

    PubMed Central

    Shipston, M J; Armstrong, D L

    1996-01-01

    1. The regulation of large-conductance, calcium- and voltage-dependent potassium (BK) channels by protein kinase C (PKC) was investigated in clonal rat anterior pituitary cells (GH4C1), which were voltage clamped at -40 mV in a physiological potassium gradient through amphotericin-perforated patches. 2. Maximal activation of PKC by 100 nM phorbol 12, 13-dibutyrate (PdBu) almost completely inhibited the voltage-activated outward current through BK channels. In contrast PdBu had no significant effect on the residual outward current after block of BK channels with 2 mM TEA or 30 nM charybdotoxin. In single-channel recordings from cell-attached patches, PdBu reduced the open probability of BK channels more than eightfold with no significant effect on mean open lifetime or unitary conductance. 3. The effects of PdBu on BK channels were not mimicked by the 4 alpha-isomer, which does not activate PKC, and were blocked almost completely by 25 microM chelerythrine, a specific, noncompetitive PKC inhibitor. 4. PdBu had no significant effect on the amplitude of the pharmacologically isolated, high voltage-activated calcium current. 5. Inhibition of BK channel activity by PKC provides the first molecular mechanism linking hormonal activation of phospholipase C to sustained excitability in pituitary cells. PMID:8799890

  20. On the effect of the injection of potassium phosphate in vivo inducing the precipitation of serum calcium with inorganic phosphate

    PubMed Central

    Soares, Alcimar B; Ticianeli, José G; Soares, Letícia B M; Amaro, George

    2013-01-01

    High concentrations of inorganic phosphate (Pi) resulted from the hydrolysis of ATP is strongly associated to the weakness of the contractile mechanism of muscles due to its attractiveness to calcium. The majority of the experiments to study such effect are conducted in vitro. This work investigates the effects of different concentrations of Pi, induced by the injection of potassium phosphate in live animals, in the precipitation with serum calcium and the generation of calcium phosphate composites. The experiments were also designed to find out the ideal amount of potassium phosphate to induce an effective reaction. Potassium phosphate was injected in Wistar rats, randomly separated and distributed into seven groups. Group I was injected with 0.5 ml of saline solution (control) and groups II through VII were injected with 0.5, 1.5, 2.5, 5.0, 7.5 and 10.0 mg/kg of potassium phosphate, respectively. Blood collected from the inferior vena cava was submitted to biochemical analyses to measure the concentrations of calcium, Pi, urea and creatinine. The results showed that Pi, induced by the injection of potassium phosphate in live animals, causes precipitation with serum calcium, with statistically significant differences between the control and the treatment groups for doses up to 5.0 mg/kg. No statistically significant differences were found between the different doses and the concentration of urea and creatinine in the plasma. We conclude that potassium phosphate can be used to induce serum calcium precipitation in-vivo, with minor effects on other physiological variables, and the ideal dose to do so is 5.0 mg/kg. PMID:24379908

  1. Phytate phosphorus hydrolysis in broilers in response to dietary phytase, calcium, and phosphorus concentrations.

    PubMed

    Manangi, M K; Coon, C N

    2008-08-01

    Three 5-d bioassays were conducted to investigate the microbial phytase effect on apparent phytate phosphorus (PP) hydrolysis by 21-d-old broilers using corn-soybean meal basal diets. In Experiment 1, broilers fed corn-soy basal diet [0.7% Ca, 0.4% total P (TP), and 0.12% nonphytate P (NPP)] with 0, 250, 500, 750, 1,000, 1,500, 2,000, and 5,000 FTU of phytase/kg diet produced PP hydrolysis (%) of 43.12, 68.12, 74.7, 85.02, 85.25 92.77, 96.91, and 99.45, respectively. In Experiment 2, broilers fed corn-soy basal (0.5% Ca and 0.17% PP) without added phytase and 0.08, 0.13, 0.18, 0.23, 0.28, 0.33, 0.38, and 0.45% NPP had PP hydrolysis (%) of 8.5, 27.6, 26.4, 28.9, 26.3, 17.1, 21.0, and 27.7, respectively. Broilers fed the same 0.5% Ca basal and NPP concentrations with 1,000 FTU of phytase/kg of diet increased (P < 0.05) PP hydrolysis (%) to 80.9, 75.9, 73.5, 72.2, 68.4, 71.6, 58.3, and 62.5, respectively. Experiment 3 was conducted in the same way as Experiment 2 but Ca was maintained at 0.9% for all diets. Phytate P hydrolysis (%) without addition of phytase in 0.08, 0.13, 0.18, 0.23, 0.28, 0.33, 0.38, and 0.45% NPP-fed groups was 49.2, 19.6, 16.0, 8.0, 9.4, 2.1, 4.0, and 4.2, respectively. The addition of phytase increased (P < 0.05) PP hydrolysis (%) to 85.3, 76.1, 70.0, 76.1, 62.6, 68.6, 67.4, and 63.7, respectively. In conclusion, these studies indicated near-complete hydrolysis (99.45%) of PP at greater dietary phytase (5,000 FTU/kg) supplementation, but maximum TP retention was obtained with only 1,000 FTU of added phytase. Maximum PP hydrolysis occurred for broilers fed diets with 1,000 FTU added phytase when the diets contained the lowest concentration (0.08%) of dietary NPP with either 0.5 or 0.9% dietary Ca concentrations. These data also suggest that broilers fed 0.9% dietary Ca have a greater P physiological threshold before a loss in retention compared with broilers fed lower (0.5%) dietary Ca concentrations with no dietary phytase supplementation.

  2. Nitric Oxide Regulates Neuronal Activity via Calcium-Activated Potassium Channels

    PubMed Central

    Zhong, Lei Ray; Estes, Stephen; Artinian, Liana; Rehder, Vincent

    2013-01-01

    Nitric oxide (NO) is an unconventional membrane-permeable messenger molecule that has been shown to play various roles in the nervous system. How NO modulates ion channels to affect neuronal functions is not well understood. In gastropods, NO has been implicated in regulating the feeding motor program. The buccal motoneuron, B19, of the freshwater pond snail Helisoma trivolvis is active during the hyper-retraction phase of the feeding motor program and is located in the vicinity of NO-producing neurons in the buccal ganglion. Here, we asked whether B19 neurons might serve as direct targets of NO signaling. Previous work established NO as a key regulator of growth cone motility and neuronal excitability in another buccal neuron involved in feeding, the B5 neuron. This raised the question whether NO might modulate the electrical activity and neuronal excitability of B19 neurons as well, and if so whether NO acted on the same or a different set of ion channels in both neurons. To study specific responses of NO on B19 neurons and to eliminate indirect effects contributed by other cells, the majority of experiments were performed on single cultured B19 neurons. Addition of NO donors caused a prolonged depolarization of the membrane potential and an increase in neuronal excitability. The effects of NO could mainly be attributed to the inhibition of two types of calcium-activated potassium channels, apamin-sensitive and iberiotoxin-sensitive potassium channels. NO was found to also cause a depolarization in B19 neurons in situ, but only after NO synthase activity in buccal ganglia had been blocked. The results suggest that NO acts as a critical modulator of neuronal excitability in B19 neurons, and that calcium-activated potassium channels may serve as a common target of NO in neurons. PMID:24236040

  3. Potassium nutrition of ectomycorrhizal Pinus pinaster: overexpression of the Hebeloma cylindrosporum HcTrk1 transporter affects the translocation of both K(+) and phosphorus in the host plant.

    PubMed

    Garcia, Kevin; Delteil, Amandine; Conéjéro, Geneviève; Becquer, Adeline; Plassard, Claude; Sentenac, Hervé; Zimmermann, Sabine

    2014-02-01

    Mycorrhizal associations are known to improve the hydro-mineral nutrition of their host plants. However, the importance of mycorrhizal symbiosis for plant potassium nutrition has so far been poorly studied. We therefore investigated the impact of the ectomycorrhizal fungus Hebeloma cylindrosporum on the potassium nutrition of Pinus pinaster and examined the involvement of the fungal potassium transporter HcTrk1. HcTrk1 transcripts and proteins were localized in ectomycorrhizas using in situ hybridization and EGFP translational fusion constructs. Importantly, an overexpression strategy was performed on a H. cylindrosporum endogenous gene in order to dissect the role of this transporter. The potassium nutrition of mycorrhizal pine plants was significantly improved under potassium-limiting conditions. Fungal strains overexpressing HcTrk1 reduced the translocation of potassium and phosphorus from the roots to the shoots of inoculated plants in mycorrhizal experiments. Furthermore, expression of HcTrk1 and the phosphate transporter HcPT1.1 were reciprocally linked to the external inorganic phosphate and potassium availability. The development of these approaches provides a deeper insight into the role of ectomycorrhizal symbiosis on host plant K(+) nutrition and in particular, the K(+) transporter HcTrk1. The work augments our knowledge of the link between potassium and phosphorus nutrition via the mycorrhizal pathway.

  4. Control of spontaneous firing patterns by the selective coupling of calcium currents to calcium-activated potassium currents in striatal cholinergic interneurons.

    PubMed

    Goldberg, Joshua A; Wilson, Charles J

    2005-11-02

    The spontaneous firing patterns of striatal cholinergic interneurons are sculpted by potassium currents that give rise to prominent afterhyperpolarizations (AHPs). Large-conductance calcium-activated potassium (BK) channel currents contribute to action potential (AP) repolarization; small-conductance calcium-activated potassium channel currents generate an apamin-sensitive medium AHP (mAHP) after each AP; and bursts of APs generate long-lasting slow AHPs (sAHPs) attributable to apamin-insensitive currents. Because all these currents are calcium dependent, we conducted voltage- and current-clamp whole-cell recordings while pharmacologically manipulating calcium channels of the plasma membrane and intracellular stores to determine what sources of calcium activate the currents underlying AP repolarization and the AHPs. The Cav2.2 (N-type) blocker omega-conotoxin GVIA (1 microM) was the only blocker that significantly reduced the mAHP, and it induced a transition to rhythmic bursting in one-third of the cells tested. Cav1 (L-type) blockers (10 microM dihydropyridines) were the only ones that significantly reduced the sAHP. When applied to cells induced to burst with apamin, dihydropyridines reduced the sAHPs and abolished bursting. Depletion of intracellular stores with 10 mM caffeine also significantly reduced the sAHP current and reversibly regularized firing. Application of 1 microM omega-conotoxin MVIIC (a Cav2.1/2.2 blocker) broadened APs but had a negligible effect on APs in cells in which BK channels were already blocked by submillimolar tetraethylammonium chloride, indicating that Cav2.1 (Q-type) channels provide the calcium to activate BK channels that repolarize the AP. Thus, calcium currents are selectively coupled to the calcium-dependent potassium currents underlying the AHPs, thereby creating mechanisms for control of the spontaneous firing patterns of these neurons.

  5. Ryanodine modification of cardiac muscle responses to potassium-free solutions. Evidence for inhibition of sarcoplasmic reticulum calcium release

    PubMed Central

    1983-01-01

    To test whether ryanodine blocks the release of calcium from the sarcoplasmic reticulum in cardiac muscle, we examined its effects on the aftercontractions and transient depolarizations or transient inward currents developed by guinea pig papillary muscles and voltage-clamped calf cardiac Purkinje fibers in potassium-free solutions. Ryanodine (0.1-1.0 microM) abolished or prevented aftercontractions and transient depolarizations by the papillary muscles without affecting any of the other sequelae of potassium removal. In the presence of 4.7 mM potassium and at a stimulation rate of 1 Hz, ryanodine had only a small variable effect on papillary muscle force development and action potential characteristics. In calf Purkinje fibers, ryanodine (1 nM-1 microM) completely blocked the aftercontractions and transient inward currents without altering the steady state current-voltage relationship. Ryanodine also abolished the twitch in potassium-free solutions, but it enhanced the tonic force during depolarizing voltage- clamp steps. This latter effect was dependent on the combination of ryanodine and potassium-free solutions. The slow inward current was not blocked by 1 microM ryanodine, but ryanodine did appear to abolish an outward current that remained in the presence of 0.5 mM 4- aminopyridine. Our observations are consistent with the hypothesis that ryanodine, by inhibiting the release of calcium from the sarcoplasmic reticulum, prevents the oscillations in intracellular calcium that activate the transient inward currents and aftercontractions associated with calcium overload states. PMID:6631403

  6. Elemental stoichiometry indicates predominant influence of potassium and phosphorus limitation on arbuscular mycorrhizal symbiosis in acidic soil at high altitude.

    PubMed

    Khan, Mohammad Haneef; Meghvansi, Mukesh K; Gupta, Rajeev; Veer, Vijay

    2015-09-15

    The functioning of high-altitude agro-ecosystems is constrained by the harsh environmental conditions, such as low temperatures, acidic soil, and low nutrient supply. It is therefore imperative to investigate the site-specific ecological stoichiometry with respect to AM symbiosis in order to maximize the arbuscular mycorrhizal (AM) benefits for the plants in such ecosystems. Here, we assess the elemental stoichiometry of four Capsicum genotypes grown on acidic soil at high altitude in Arunachal Pradesh, India. Further, we try to identify the predominant resource limitations influencing the symbioses of different Capsicum genotypes with the AM fungi. Foliar and soil elemental stoichiometric relations of Capsicum genotypes were evaluated with arbuscular mycorrhizal (AM) colonization and occurrence under field conditions. AM fungal diversity in rhizosphere, was estimated through PCR-DGGE profiling. Results demonstrated that the symbiotic interaction of various Capsicum genotypes with the AM fungi in acidic soil was not prominent in the study site as evident from the low range of root colonization (21-43.67%). In addition, despite the rich availability of carbon in plant leaves as well as in soil, the carbon-for-phosphorus trade between AMF and plants appeared to be limited. Our results provide strong evidences of predominant influence of the potassium-limitation, in addition to phosphorus-limitation, on AM symbiosis with Capsicum in acidic soil at high altitude. We also conclude that the potassium should be considered in addition to carbon, nitrogen, and phosphorus in further studies investigating the stoichiometric relationships with the AMF symbioses in high altitude agro-ecosystems.

  7. Effect of a 30-day isolation stress on calcium, phosphorus and other excretory products in an unrestrained chimpanzee.

    NASA Technical Reports Server (NTRS)

    Sabbot, I. M.; Mcnew, J. J.; Hoshizaki, T.; Sedgwick, C. J.; Adey, W. R.

    1972-01-01

    An unrestrained chimpanzee was studied in an isolation chamber and in his home cage environment. The study consisted of 49 urine collection days (14 days pre-, 5 days post- and 30 days of isolation), and then of 10 days in the home cage. Dietary intake, urine and fecal data were obtained. The effect of isolation on various excretory parameters was studied. Urine samples were analyzed for volume, osmolarity, creatinine, creatine, urea-N, 17-hydroxy corticosteroids, VMA, calcium and inorganic phosphorus. One way analyses of variance performed on the urinary excretion parameters showed all except creatinine excretion to vary significantly during periods of the study. The changes observed in calcium and phosphorus were highly significant. The data suggests that the calcium to phosphorus excretion ratio might serve as a physiological stress indicator of Selye's adaptation syndrome (period of resistance).

  8. [Calcium absorption by the rat from various milks in relation to their total phosphorus and lactose contents].

    PubMed

    Fournier, P; Dupuis, Y; Fournier, A

    1976-01-01

    The absorption of calcium corresponds to a strictly determined mechanism inhibited by phosphates and activited by carbohydrates. We investigate in what extent the absorption of milk calcium from various species has the same proceeding. 4 months old rats are given orally solutions of CaCl2 alone or in combination with sodium dihydrogen phosphate or lactose or these both compounds. We compare calcium absorption of these solutions to that of milk from woman, cow or sow, or to dilutions of these two latter milks. All these fluids are dosed so that they correspond each other by their respective content in total calcium, total phosphorus and lactose. Each solution contains 45Ca. Blood samples 1,30, 4, 6 and 24 hours after ingestion allow establishing the variations of plasma radioactivity. Rats are sacrified after 24 hours. In certain cases, samples from digestive tube contents and feces provide a coefficient of calcium absorption. The osseous retention is obtained from femur radioactivity. In breif, we may consider that milks from cow and sow provide calcium the absorption of which is settled after their respective content of total phosphorus and lactose. Opposed effects of these inhibitors and activators of calcium absorption compensate so that calcium from these milks is just a little better utilized by adult rat than calcium from an isocalcic solution of CaCl2. Calcium from woman milk, rich in carbohydrates, poor in total phosphorus is better absorbed than that from the two latters, however less than we might expect from its high lactose content. We may wonder that calcium utilization from cow milk is as moderate as that of a solution of CaCl2. But skeleton mineralization which may be fulfilled by milk is made better because of that: it is not chloride but calcium phosphate which ensures this mineralization, a phosphate which alone would impair this mineralization without the compensative role of lactose.

  9. Relationship between dietary sodium, potassium, and calcium, anthropometric indexes, and blood pressure in young and middle aged Korean adults.

    PubMed

    Park, Juyeon; Lee, Jung-Sug; Kim, Jeongseon

    2010-04-01

    Epidemiological evidence of the effects of dietary sodium, calcium, and potassium, and anthropometric indexes on blood pressure is still inconsistent. To investigate the relationship between dietary factors or anthropometric indexes and hypertension risk, we examined the association of systolic and diastolic blood pressure (SBP and DBP) with sodium, calcium, and potassium intakes and anthropometric indexes in 19~49-year-olds using data from Korean National Health and Nutrition Examination Survey (KNHANES) III. Total of 2,761 young and middle aged adults (574 aged 19~29 years and 2,187 aged 30~49 years) were selected from KNHANES III. General information, nutritional status, and anthropometric data were compared between two age groups (19~29 years old and 30~49 years old). The relevance of blood pressure and risk factors such as age, sex, body mass index (BMI), weight, waist circumference, and the intakes of sodium, potassium, and calcium was determined by multiple regression analysis. Multiple regression models showed that waist circumference, weight, and BMI were positively associated with SBP and DBP in both age groups. Sodium and potassium intakes were not associated with either SBP or DBP. Among 30~49-year-olds, calcium was inversely associated with both SBP and DBP (P = 0.012 and 0.010, respectively). Our findings suggest that encouraging calcium consumption and weight control may play an important role in the primary prevention and management of hypertension in early adulthood.

  10. Analysis of the effects of calcium or magnesium on voltage-clamp currents in perfused squid axons bathed in solutions of high potassium.

    PubMed

    Rojas, E; Taylor, R E; Atwater, I; Bezanilla, F

    1969-10-01

    Isolated axons from the squid, Dosidicus gigas, were internally perfused with potassium fluoride solutions. Membrane currents were measured following step changes of membrane potential in a voltage-clamp arrangement with external isosmotic solution changes in the order: potassium-free artificial seawater; potassium chloride; potassium chloride containing 10, 25, 40 or 50, mM calcium or magnesium; and potassium-free artificial seawater. The following results suggest that the currents measured under voltage clamp with potassium outside and inside can be separated into two components and that one of them, the predominant one, is carried through the potassium system. (a) Outward currents in isosmotic potassium were strongly and reversibly reduced by tetraethylammonium chloride. (b) Without calcium or magnesium a progressive increase in the nontime-dependent component of the currents (leakage) occurred. (c) The restoration of calcium or magnesium within 15-30 min decreases this leakage. (d) With 50 mM divalent ions the steady-state current-voltage curve was nonlinear with negative resistance as observed in intact axons in isosmotic potassium. (e) The time-dependent components of the membrane currents were not clearly affected by calcium or magnesium. These results show a strong dependence of the leakage currents on external calcium or magnesium concentration but provide no support for the involvement of calcium or magnesium in the kinetics of the potassium system.

  11. [Comparative study of the urinary excretion of boron, calcium, magnesium and phosphorus in postmenopausal women with and without osteoporosis].

    PubMed

    José Ramón, Vielma; Mora Mora, Marylú; Marino Alarcón, Oscar; Hernández, Gladys; Josefina Linares, Ledy; Urdaneta Romero, Haideé; Arévalo González, Evelia

    2012-03-01

    In order to compare the possible relationship between urinary concentrations of boron, calcium, magnesium and phosphorus in serum and urine of postmenopausal women with and without osteoporosis, we selected 45 postmenopausal women over 47 years of age, divided into two groups: group I clinically healthy postmenopausal women and group II postmenopausal women with osteoporosis, without chronic kidney and hepatic diseases or diabetes mellitus. We determined the boron (B), phosphorus (P), total calcium (Ca) and total magnesium (Mg) in the urine of two hours, by atomic emission spectroscopy with induction-coupled plasma (ICPA-ES). Total calcium and total magnesium in serum were determined by atomic flame absorption spectroscopy (FAAS) and inorganic phosphorus in serum, and creatinine in serum and urine, by molecular absorption spectrometry. The preliminary results suggest the existence of a significant difference (p < 0.05) in boron and phosphorus concentrations in the urine of two hours between the groups. The model of linear regression analysis used showed a relationship between urinary concentrations of boron/creatinine index and calcium/ creatinine, magnesium/creatinine and phosphorus/creatinine indexes in the urine of postmenopausal women with osteoporosis.

  12. The Journal of Nutrition, Volume 106, 1976: Decreased absorption of calcium, magnesium, zinc and phosphorus by humans due to increased fiber and phosphorus consumption as wheat bread.

    PubMed

    Reinhold, J G; Faradji, B; Abadi, P; Ismail-Beigi, F

    1991-07-01

    During a 20 day period of high fiber consumption in the form of bread made partly from wheaten wholemeal, two men developed negative balances of calcium, magnesium, zinc and phosphorus due to increased fecal excretion of each element. The fecal losses correlated closely with fecal dry matter and phosphorus. Fecal dry matter, in turn, was directly proportional to fecal fiber excretion. Balances of nitrogen remained positive. Mineral elements were well-utilized by the same subjects during a 20 day period of white bread consumption.

  13. Responses in calcium and phosphorus metabolism and hepatic lipid deposition among estrogenized chicks fed various dietary ingredients.

    PubMed

    Bolden, S L; Jensen, L S; Takahashi, K

    1984-03-01

    The purpose of this study was to determine whether diet composition would influence calcium and phosphorus metabolism in chicks administered estrogen. At 1 day of age, broiler chicks were fed either a corn-soybean meal diet (CS), or an isoenergetic and isonitrogenous diet containing 5% fish meal, 5% alfalfa meal and 10% torula yeast (FAY). At 21 days equivalent numbers were implanted with one of two lengths of Silastic tubing containing estradiol dipropionate, while the remaining birds served as nonimplanted controls. Significant increases were observed in liver weight, liver lipid, plasma total calcium and inorganic phosphate in chicks that were implanted, while concomitant declines were seen in body weight. Implanted chicks fed the CS diet had significantly higher liver weight, liver lipid, plasma phosphorus and plasma calcium and lower tibial bone ash than those fed the FAY diet. Furthermore, liver lipid values were very highly correlated with plasma phosphorus and calcium. In an identical study with slower growing White Leghorn chicks, the same trends were observed but were less well defined. These data show that the inclusion of certain ingredients into corn-soybean diets balanced for the major nutrients affects the response of chicks to estrogenization. Liver lipid deposition, calcium and phosphorus metabolism are all subject to diet and estrogen interactions.

  14. Metabolomic profiling from leaves and roots of tomato (Solanum lycopersicum L.) plants grown under nitrogen, phosphorus or potassium-deficient condition

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Nitrogen (N), phosphorus (P) and potassium (K) are essential macronutrients that are required in large quantities by growing plants. Deficiency of N, P or K can strongly affect metabolites in plant tissues. However, specific metabolic network responses to nutrient deficiencies are not well-defined. ...

  15. Simultaneous removal of phosphorus and potassium from synthetic urine through the precipitation of magnesium potassium phosphate hexahydrate.

    PubMed

    Xu, Kangning; Wang, Chengwen; Liu, Haiyan; Qian, Yi

    2011-06-01

    This study investigated the simultaneous removal of P and K from synthetic urine through the precipitation of magnesium potassium phosphate hexahydrate (MPP, MgKPO(4)·6H(2)O) in bench-scale experiments. Results show that the removal efficiencies of P and K are mainly determined by the solution pH and the molar ratio of Mg:K:P. Co-precipitation of struvite-type compounds, i.e., magnesium ammonium phosphate hexahydrate (MAP, MgNH(4)PO(4)·6H(2)O), magnesium sodium phosphate heptahydrate (MSP, MgNaPO(4)·7H(2)O), and MPP, was confirmed by analysis of the solid precipitates using a Scanning Electron Microscope/Energy Dispersive X-ray Apparatus and an X-ray Diffractometer. The co-precipitation significantly influenced the removal of K. As much ammonium as possible should be removed prior to MPP precipitation because MAP had higher tendency to form than MPP. The inevitable co-precipitation of MPP and MSP resulted in the addition of more MgCl(2)·6H(2)O and Na(2)HPO(4)·12H(2)O to obtain the high removal of K. In total, the removal efficiencies of P and K were 77% and 98%, respectively, in the absence of ammonium when pH was 10 and the molar ratio of Mg:K:P was 2:1:2. The results indicate that the MPP precipitation is an efficient method for the simultaneous removal of P and K to yield multi-nutrient products.

  16. [Concentrations of calcium, magnesium, sodium and potassium in human milk and infant formulas].

    PubMed

    Rodríguez Rodríguez, E M; Sanz Alaejos, M; Díaz Romero, C

    2002-12-01

    Concentrations of calcium, magnesium, sodium and potassium were determined in 55 samples of mature human milk from Canary women and 5 samples of powdered infant formula. According to the literature our data fell within the normal intervals described for each kind of milk. The mean concentration of Ca, Mg, Na y K of powdered infant formula was higher than those concentrations found in the human milks. Significant differences among the concentrations of Ca, Mg and Na for the milks of the considered mothers were observed. Only the Ca intakes for infants fed with human milk were lower than those requirements recommended by the Food and Nutrition Board (1989). However, the infants fed with powdered infant formula had an adequate intake of all the studied metals. A progressive decrease of the Na, K and Ca concentrations with the lactation stage was observed. Maternal age, parity and sex of the newborns did not affect the metal concentrations significantly.

  17. Histamine potentiates neuronal excitation by blocking a calcium-dependent potassium conductance.

    PubMed

    Haas, H L

    1984-04-01

    Histaminergic neurones send their axons to the whole forebrain. The diffuse projection is consistent with a modulatory role of these pathways. In hippocampal slices from rats a mechanism for this modulation is described, on pyramidal neurones of the CA 1 area: Strong excitations induced by intracellular current injection, ionophoretic administration of glutamate or synaptic stimulation normally restrict themselves by the activation of the calcium-dependent potassium current (gK(Ca) ). This current causes a long lasting afterhyperpolarization and an accommodation of firing. Their block by histamine and impromidine (reversed by metiamide and cimetidine) leads to a profound potentiation of excitatory signals. It is suggested that HA, through H2 receptors, accelerates the removal of intracellular free Ca++ ions.

  18. [The influence of calcium and phosphorus intake on bone mineral density in young women].

    PubMed

    Basabe Tuero, Beatriz; Mena Valverde, María Carmen; Faci Vega, Marta; Aparicio Vizuete, Aranzazu; López Sobaler, Ana María; Ortega Anta, Rosa María

    2004-06-01

    The threat of osteoporosis in later life means that the bone mass women achieve during their youth is important. Eighty seven women aged 18-35 y from the Madrid region were studied to determine the relationship between their calcium, phosphorus and milk product intakes and bone mineral density (BMD). Intakes of these items were moniroed using a three day food intake record. BMD was measured by double photonic densitometry of the lumbar region, hip and right forearm. Mean calcium intake (802.1+/-258.7 mg/day) was less than that recommended for 45% of women. A linear, positive correlation was seen between calcium intake and BMD at the hip (r=0.23) and greater trochanter (r=0.24) (p<0.05). Women whose calcium intake was >1000 mg/day had greater hip BMDs than those whose intake was below this level (0.97+/-0.11 g/cm2 compared to 0.90+/-0.10 g/cm2). Similar results were seen for the femur head and greater trochanter in subjects whose Ca/P ratio was >0.74 (50th percentile). In addition, an intake of more than two rations of milk per day was optimum for achieving adequate bone mass in different areas of the hip. These results show that greater calcium consumption and a Ca/P ratio of >0.74 are associated with better BMD values in young women, and that milk is the lactic product best associated with good bone health.

  19. Serum 25-Hydroxyvitamin D, Calcium, Phosphorus, and Electrocardiographic QT Interval Duration: Findings from NHANES III and ARIC

    PubMed Central

    Zhang, Yiyi; Post, Wendy S.; Dalal, Darshan; Bansal, Sandeep; Blasco-Colmenares, Elena; Jan De Beur, Suzanne; Alonso, Alvaro; Soliman, Elsayed Z.; Whitsel, Eric A.; Brugada, Ramón; Tomaselli, Gordon F.

    2011-01-01

    Context: Disturbances in 25-hydroxyvitamin D, calcium, and phosphorus concentrations have been associated with increased risks of total and cardiovascular mortality. It is possible that changes in electrocardiographic QT interval duration may mediate these effects, but the association of 25-hydroxyvitamin D, phosphorus, and calcium concentrations with QT interval duration has not been evaluated in general population samples. Objective: The objective of the study was to evaluate the association of 25-hydroxyvitamin D, phosphorus, and calcium concentrations with QT interval duration in two large samples of the U.S. general population. Design: This study included cross-sectional analyses the Third National Health and Nutrition Survey (NHANES III) and the Atherosclerosis Risk in Communities (ARIC) study. Setting: The study was conducted in the general community. Patients or Other Participants: Patients included 7,312 men and women from NHANES III and 14,825 men and women from the ARIC study. Interventions: Serum 25-hydroxyvitamin D, total and ionized calcium, and inorganic phosphorus were measured in NHANES III, and serum total calcium and inorganic phosphorus were measured in ARIC. Main Outcome Measure: QT interval duration was obtained from standard 12-lead electrocardiograms. Results: In NHANES III, the multivariate adjusted differences in average QT interval duration comparing the highest vs. the lowest quartiles of serum total calcium, ionized calcium, and phosphorus were −3.6 msec (−5.8 to −1.3; P for trend = 0.005), −5.4 msec (−7.4 to −3.5; P for trend <0.001), and 3.9 msec (2.0–5.9; P for trend <0.001), respectively. The corresponding differences in ARIC were −3.1 msec (−4.3 to −2.0; P for trend <0.001), −2.9 msec (−3.8 to −1.9; P for trend <0.001), and 2.3 msec (1.3–3.3; P for trend <0.001). No association was found between 25-hydroxyvitamin D concentrations and QT interval duration. Conclusions: In two large samples of the general

  20. Effect of potassium depletion on urinary stone risk factors in Wistar rats.

    PubMed

    Yachantha, Chatchai; Hossain, Rayhan Zubair; Yamakawa, Kenichi; Sugaya, Kimio; Tosukhowong, Piyaratana; Ogawa, Yoshihide; Saito, Seiichi

    2009-12-01

    Various studies have suggested that potassium depletion leads to acidosis and hypocitraturia. In Northeastern Thailand, for example, mild hypokalemia and mild hyperoxaluria are observed in most stone formers. However, there are limited reports about the direct link between potassium depletion and the formation of urinary stones, most of which are calcium oxalate stones. Therefore, we studied the direct effect of potassium depletion on the risk factors for calcium oxalate stone formation. Seventy-two rats were fed a control diet or a potassium-deficient diet for 1, 2, or 3 weeks (n = 12 per group). Twenty-four-hour urine collection was done for the measurement of potassium, calcium, oxalate, glycolate, citrate, phosphorus, and magnesium. Lactate dehydrogenase activity was also measured in order to assess renal tubular damage, and kidneys were harvested for histological examination. Furthermore, urinary supersaturation of calcium oxalate was calculated. With potassium depletion, the urinary concentrations of potassium, citrate, magnesium, and phosphorus decreased rapidly. There was no detectable renal damage, renal calcium deposition, and no significant increase of urinary oxalate or calcium. However, the urinary supersaturation index of calcium oxalate increased significantly in rats with potassium depletion. These findings indicate that potassium deficiency may increase the risk of stone formation through enhanced supersaturation.

  1. Effects of various diets on the calcium and phosphorus composition of mealworms (Tenebrio molitor larvae) and superworms (Zophobas morio larvae).

    PubMed

    Latney, La'Toya V; Toddes, Barbara D; Wyre, Nicole R; Brown, Dorothy C; Michel, Kathryn E; Briscoe, Johanna A

    2017-02-01

    OBJECTIVE To evaluate whether the nutritive quality of Tenebrio molitor larvae and Zophobas morio larvae, which are commonly cultured as live food sources, is influenced by 4 commercially available diets used as nutritional substrates; identify which diet best improved calcium content of larvae; and identify the feeding time interval that assured the highest calcium intake by larvae. ANIMALS 2,000 Zophobas morio larvae (ie, superworms) and 7,500 Tenebrio molitor larvae (ie, mealworms). PROCEDURES Larvae were placed in control and diet treatment groups for 2-, 7-, and 10-day intervals. Treatment diets were as follows: wheat millings, avian hand feeding formula, organic avian mash diet, and a high-calcium cricket feed. Control groups received water only. After treatment, larvae were flash-frozen live with liquid nitrogen in preparation for complete proximate and mineral analyses. Analyses for the 2-day treatment group were performed in triplicate. RESULTS The nutrient composition of the high-calcium cricket feed groups had significant changes in calcium content, phosphorus content, and metabolizable energy at the 2-day interval, compared with other treatment groups, for both mealworms and superworms. Calcium content and calcium-to-phosphorus ratios for larvae in the high-calcium cricket feed group were the highest among the diet treatments for all treatment intervals and for both larval species. CONCLUSIONS AND CLINICAL RELEVANCE A 2-day interval with the high-calcium cricket feed achieved a larval nutrient composition sufficient to meet National Research Council dietary calcium recommendations for nonlactating rats. Mealworm calcium composition reached 2,420 g/1,000 kcal at 48 hours, and superworm calcium composition reached 2,070g/1,000 kcal at 48 hours. These findings may enable pet owners, veterinarians, insect breeders, and zoo curators to optimize nutritive content of larvae fed to insectivorous animals.

  2. Effect of broiler litter ash and flue gas desulfurization gypsum on yield, calcium and phosphorus uptake by peanut

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Peanut (Arachis hyogaea) is an important oil seed crop that is grown as a principle source of edible oil and vegetable protein. Over 1.6 million acres of peanuts were planted in the United States during 2012. Peanuts require large amounts of Calcium (Ca) and Phosphorus (P). In 2010, over 10 milli...

  3. Evaluation of calcium, phosphorus, and selected trace mineral status in commercially available dry foods formulated for dogs

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Objective – To evaluate the mineral content including calcium, phosphorus, zinc, iron, copper, manganese, and selenium of canine commercial pet foods and compare them to current AAFCO recommendations for adult maintenance. Design - Descriptive study. Sample – Forty-five over the counter dry canine p...

  4. Complex voltage-dependent behavior of single unliganded calcium-sensitive potassium channels.

    PubMed Central

    Talukder, G; Aldrich, R W

    2000-01-01

    study and characterization of unliganded openings is of central significance for the elucidation of gating mechanisms for allosteric ligand-gated ion channels. Unliganded openings have been reported for many channel types, but their low open probability can make it difficult to study their kinetics in detail. Because the large conductance calcium-activated potassium channel mSlo is sensitive to both intracellular calcium and to membrane potential, we have been able to obtain stable unliganded single-channel recordings of mSlo with relatively high opening probability. We have found that the single-channel gating behavior of mSlo is complex, with multiple open and closed states, even when no ligand is present. Our results rule out a Monod-Wyman-Changeux allosteric mechanism with a central voltage-dependent concerted step, and they support the existence of quaternary states with less than the full number of voltage sensors activated, as has been suggested by previous work involving measurements of gating currents. PMID:10653789

  5. Osteoclast spreading kinetics are correlated with an oscillatory activation of a calcium-dependent potassium current.

    PubMed

    Espinosa, Leon; Paret, Laurent; Ojeda, Carlos; Tourneur, Yves; Delmas, Pierre D; Chenu, Chantal

    2002-10-01

    Cell movement and spreading involve calcium-dependent processes and ionic channel activation. During bone resorption, osteoclasts alternate between spread, motile and resorptive phases. We investigated whether the electrical membrane properties of osteoclasts were linked to their membrane morphological changes. Rabbit osteoclasts were recorded by time-lapse videomicroscopy performed simultaneously with patch-clamp whole cell and single channel recordings. Original image analysis methods were developed and used to demonstrate for the first time an oscillatory activation of a spontaneous membrane current in osteoclasts, which is directly correlated to the membrane movement rate. This current was identified as a calcium-dependent potassium current (IK(Ca)) that is sensitive to both charybdotoxin and apamin and was generated by a channel with unitary conductance of approximately 25+/-2 pS. Blockade of this current also decreased osteoclast spreading and inhibited bone resorption in vitro, demonstrating a physiological role for this current in osteoclast activity. These results establish for the first time a temporal correlation between lamellipodia formation kinetics and spontaneous peaks of IK(Ca), which are both involved in the control of osteoclast spreading and bone resorption.

  6. Relationships between phenology and the remobilization of nitrogen, phosphorus and potassium in branches of eight Mediterranean evergreens.

    PubMed

    Milla, R; Castro-Díez, P; Maestro-Martínez, M; Montserrat-Martí, G

    2005-10-01

    Few studies have examined the effects of plant growth on nutrient remobilization in phenologically contrasting species. Here we evaluated the consequences of above-ground seasonality of growth and leaf shedding on the remobilization of nutrients from branches in eight evergreen Mediterranean phanaerophytes that differ widely in phenology. Vegetative growth, flower bud formation, flowering, fruiting, leaf shedding, and the variations in nitrogen (N), phosphorus (P) and potassium (K) pools in branches throughout the year were monitored in each species. Nitrogen and P remobilization occurred in summer, after vegetative growth and synchronously with leaf shedding. Despite the time-lag between growth and remobilization, the branches that invested more nutrients in vegetative growth also remobilized more nutrients from their old organs. Potassium remobilization peaked in the climatically harshest periods, and appears to be related to osmotic requirements. We conclude that N and P remobilization occurs mainly associated with leaf senescence, which might be triggered by factors such as the replenishment of nutrient reserves in woody organs, the hormonal relations between new and old leaves, or the constraints that summer drought poses on the amount of leaf area per branch in summer.

  7. Nutritional geometry of calcium and phosphorus nutrition in broiler chicks. The effect of different dietary calcium and phosphorus concentrations and ratios on nutrient digestibility.

    PubMed

    Wilkinson, S J; Bradbury, E J; Thomson, P C; Bedford, M R; Cowieson, A J

    2014-07-01

    A total of 600 Ross 308-day-old male broiler chicks were used in a 28 day digestibility study to investigate the interaction between dietary calcium (Ca) and non-phytate phosphorus (nPP) on the digestibility of minerals and amino acids. Diets were formulated to be nutritionally adequate except for Ca and nPP. Fifteen mash diets based on corn and soya bean meal with varying concentrations of Ca (6.4 to 12.0 g/kg) and nPP (2.4 to 7.0 g/kg) were used. Diets were clustered around total densities of Ca and nPP of 12, 13.5 or 15.0 (g/kg) and within each density, a range of five Ca : nPP ratios (1.14 : 1, 1.5 : 1, 2.0 : 1, 2.75 : 1 and 4.0 : 1) were fed. Birds had free access to feed and water throughout the study. At day 28, birds were euthanised for the determination of apparent ileal mineral and amino acid digestibility. Data were modelled in R version 2.15 using a linear mixed-effects model and interrogation of the data was performed by fitting a low order polynomial function. At high Ca concentrations, increasing nPP led to an increase in the apparent digestibility of minerals. Apparent ileal digestibility of phosphorus (P) was enhanced with increasing dietary nPP up to 5.5 g/kg beyond which no improvements were found. Maximal Ca digestibility was found in diets with >8.0 g/kg Ca with concomitant low concentrations of nPP. Diets with a broader Ca : nPP ratio improved the digestibility of Ca but were deleterious to the digestibility of P. In this study, apparent digestibility of amino acids was broadly unaffected by dietary Ca and nPP concentrations. However, interactions between Ca and nPP were observed for the digestibility of glutamine, tyrosine and methionine (all P<0.001). Nitrogen digestibility showed discrete optima around 10.0 and 5.0 g/kg nPP and Na digestibility was maximised around 8 to 9.0 g/kg Ca and 4.5 to 5.4 g/kg nPP. These data show that the ratio of Ca : nPP is more influential to mineral digestibility than the absolute dietary concentration of each

  8. Expression of the Sodium/Calcium/Potassium Exchanger, NCKX4, in Ameloblasts

    PubMed Central

    Hu, Ping; Lacruz, Rodrigo S.; Smith, Charles E.; Smith, Susan M.; Kurtz, Ira; Paine, Michael L.

    2012-01-01

    Transcellular calcium transport is an essential activity in mineralized tissue formation, including dental hard tissues. In many organ systems, this activity is regulated by membrane-bound sodium/calcium (Na+/Ca2+) exchangers, which include the NCX and NCKX [sodium/calcium-potassium (Na+/Ca2+-K+ ) exchanger] proteins. During enamel maturation, when crystals expand in thickness, Ca2+ requirements vastly increase but exactly how Ca2+ traffics through ameloblasts remains uncertain. Previous studies have shown that several NCX proteins are expressed in ameloblasts, although no significant shifts in expression were observed during maturation which pointed to the possible identification of other Ca2+ membrane transporters. NCKX proteins are encoded by members of the solute carrier gene family, Slc24a, which include 6 different proteins (NCKX1–6). NCKX are bidirectional electrogenic transporters regulating Ca2+ transport in and out of cells dependent on the transmembrane ion gradient. In this study we show that all NCKX mRNAs are expressed in dental tissues. Real-time PCR indicates that of all the members of the NCKX group, NCKX4 is the most highly expressed gene transcript during the late stages of amelogenesis. In situ hybridization and immunolocalization analyses clearly establish that in the enamel organ, NCKX4 is expressed primarily by ameloblasts during the maturation stage. Further, during the mid-late maturation stages of amelogenesis, the expression of NCKX4 in ameloblasts is most prominent at the apical poles and at the lateral membranes proximal to the apical ends. These data suggest that NCKX4 might be an important regulator of Ca2+ transport during amelogenesis. PMID:22677781

  9. The effect of intravenous magnesium hypophosphite in calcium borogluconate solution on the serum concentration of inorganic phosphorus in healthy cows.

    PubMed

    Braun, U; Jehle, W

    2007-03-01

    The goal of this study was to determine the effect of intravenous (IV) administration of phosphite on the serum concentration of inorganic phosphorus in cows. Twelve clinically healthy cows were divided into four groups of three. All cows received 600 mL of a 40% calcium borogluconate solution; three cows each received this as a rapid (20 min) IV infusion with and without 6% magnesium hypophosphite, and three other cows each received this as a slow IV infusion (8 h) with and without 6% magnesium hypophosphite. Samples of blood were collected for the determination of serum concentrations of calcium, inorganic phosphorus and magnesium before and 10, 20, 40, 60 and 90 min and 2, 3, 4, 5, 6, 7, 8, 24, 48 and 72 h after the start of treatment. The concentration of calcium increased after treatment in all cows but the increase was most rapid in cows that received the rapid infusion. In cows that received the rapid IV infusion containing magnesium hypophosphite, the mean concentration of inorganic phosphorus decreased significantly 3-4 h after treatment compared with initial serum levels. The serum concentration of inorganic phosphorus did not change significantly in cows that received the rapid IV solution without magnesium hypophosphite or the slow IV infusion with or without magnesium hypophosphite. The serum concentration of magnesium increased after treatment in all cows receiving magnesium hypophosphite but remained unchanged in the others. The rapid infusion of calcium borogluconate without magnesium hypophosphite made all three cows anorexic and hypercalcaemic and the slow infusion made 1/3 anorexic. It is concluded that the IV administration of a calcium solution containing magnesium hypophosphite does not increase the serum concentration of inorganic phosphorus.

  10. Contribution of presynaptic calcium-activated potassium currents to transmitter release regulation in cultured Xenopus nerve-muscle synapses.

    PubMed

    Pattillo, J M; Yazejian, B; DiGregorio, D A; Vergara, J L; Grinnell, A D; Meriney, S D

    2001-01-01

    Using Xenopus nerve-muscle co-cultures, we have examined the contribution of calcium-activated potassium (K(Ca)) channels to the regulation of transmitter release evoked by single action potentials. The presynaptic varicosities that form on muscle cells in these cultures were studied directly using patch-clamp recording techniques. In these developing synapses, blockade of K(Ca) channels with iberiotoxin or charybdotoxin decreased transmitter release by an average of 35%. This effect would be expected to be caused by changes in the late phases of action potential repolarization. We hypothesize that these changes are due to a reduction in the driving force for calcium that is normally enhanced by the local hyperpolarization at the active zone caused by potassium current through the K(Ca) channels that co-localize with calcium channels. In support of this hypothesis, we have shown that when action potential waveforms were used as voltage-clamp commands to elicit calcium current in varicosities, peak calcium current was reduced only when these waveforms were broadened beginning when action potential repolarization was 20% complete. In contrast to peak calcium current, total calcium influx was consistently increased following action potential broadening. A model, based on previously reported properties of ion channels, faithfully reproduced predicted effects on action potential repolarization and calcium currents. From these data, we suggest that the large-conductance K(Ca) channels expressed at presynaptic varicosities regulate transmitter release magnitude during single action potentials by altering the rate of action potential repolarization, and thus the magnitude of peak calcium current.

  11. Magnolol and honokiol regulate the calcium-activated potassium channels signaling pathway in Enterotoxigenic Escherichia coli-induced diarrhea mice.

    PubMed

    Deng, Yanli; Han, Xuefeng; Tang, Shaoxun; Xiao, Wenjun; Tan, Zhiliang; Zhou, Chuanshe; Wang, Min; Kang, Jinghe

    2015-05-15

    To explore the regulatory mechanisms of magnolol and honokiol on calcium-activated potassium channels signaling pathway in Enterotoxigenic Escherichia coli (ETEC)-induced diarrhea mice, the concentrations of serum chloride ion (Cl(-)), sodium ion (Na(+)), potassium ion (K(+)) and calcium ion (Ca(2+)) were measured. Additionally, the mRNA expressions of calmodulin 1 (CaM), calcium/calmodulin-dependent protein kinase II alpha subunit (CaMKIIα) and beta subunit (CaMKIIβ), ryanodine receptor 1, inositol 1,4,5-trisphosphate receptors (IP3 receptors), protein kinases C (PKC), potassium intermediate/small conductance calcium-activated channels (SK) and potassium large conductance calcium-activated channels(BK)were determined. A diarrhea mouse model was established using ETEC suspensions (3.29×10(9)CFU/ml) at a dosage of 0.02ml/g live body weight (BW). Magnolol or honokiol was intragastrically administered at dosages of 100 (M100 or H100), 300 (M300 or H300) and 500 (M500 or H500) mg/kg BW according to a 3×3 factorial arrangement. Magnolol and honokiol increased the Cl(-) and K(+) concentrations, further, upregulated the CaM, BKα1 and BKβ3 mRNA levels but downregulated the IP3 receptors 1, PKC, SK1, SK2, SK3, SK4 and BKβ4 mRNA expressions. Magnolol and honokiol did not alter the CaMKIIα, CaMKIIβ, ryanodine receptor 1, IP3 receptor 2, IP3 receptor 3, BKβ1 and BKβ2 mRNA expressions. These results clarify that magnolol and honokiol, acting through Ca(2+) channel blockade, inhibit the activation of IP3 receptor 1 to regulate the IP3-Ca(2+) store release, activate CaM to inhibit SK channels, and effectively suppress PKC kinases to promote BKα1 and BKβ3 channels opening and BKβ4 channel closing, which modulates the intestinal ion secretion.

  12. Meta-analysis of phosphorus utilization by growing pigs: effect of dietary phosphorus, calcium and exogenous phytase.

    PubMed

    Létourneau-Montminy, M P; Jondreville, C; Sauvant, D; Narcy, A

    2012-10-01

    Optimizing phosphorus (P) utilization in pigs requires improving our capacity to predict the amount of P absorbed and retained, with the main modulating factors taken into account, as well as precisely determining the P requirements of the animals. Given the large amount of published data on P utilization in pigs, a meta-analysis was performed to quantify the impact of the different dietary P forms, calcium (Ca) and exogenous phytases on the digestive and metabolic utilization criteria for dietary P in growing pigs. Accordingly, the amount of phytate P (PP) leading to digestible P (g/kg) was estimated to be 21%, compared with 73% for non-phytate P (NPP) from plant ingredients and 80% for NPP from mineral and animal ingredients (P < 0.001). The increase in total digestible dietary P following the addition of microbial phytase (PhytM) from Aspergillus niger (P < 0.001) was curvilinear and about two times higher than the increase following the addition of plant phytase, which leads to a linear response (P < 0.001). The response of digestible P to PhytM also depends on the amount of substrate, PP (PhytM(2) × PP, P < 0.001). The digestibility of dietary P decreased with dietary Ca concentration (P < 0.01) independently of phytase but increased with body weight (BW, P < 0.05). Although total digestible dietary P increased linearly with total NPP concentration (P < 0.001), retained P (g/kg), average daily gain (ADG, g/day) and average daily feed intake (ADFI, g/day) increased curvilinearly (P < 0.001). Interestingly, whereas dietary Ca negatively affected P digestibility, the effect of dietary Ca on retained P, ADG and ADFI depended on total dietary NPP (NPP × Ca, P < 0.01, P < 0.05 and P < 0.01, respectively). Increasing dietary Ca reduced retained P, ADG and ADFI at low NPP levels, but at higher NPP concentrations it had no effect on ADG and ADFI despite a positive effect on retained P. Although the curvilinear effect of PhytM on digestible P increased with PP (P < 0

  13. Calcium sensor kinase activates potassium uptake systems in gland cells of Venus flytraps.

    PubMed

    Scherzer, Sönke; Böhm, Jennifer; Krol, Elzbieta; Shabala, Lana; Kreuzer, Ines; Larisch, Christina; Bemm, Felix; Al-Rasheid, Khaled A S; Shabala, Sergey; Rennenberg, Heinz; Neher, Erwin; Hedrich, Rainer

    2015-06-09

    The Darwin plant Dionaea muscipula is able to grow on mineral-poor soil, because it gains essential nutrients from captured animal prey. Given that no nutrients remain in the trap when it opens after the consumption of an animal meal, we here asked the question of how Dionaea sequesters prey-derived potassium. We show that prey capture triggers expression of a K(+) uptake system in the Venus flytrap. In search of K(+) transporters endowed with adequate properties for this role, we screened a Dionaea expressed sequence tag (EST) database and identified DmKT1 and DmHAK5 as candidates. On insect and touch hormone stimulation, the number of transcripts of these transporters increased in flytraps. After cRNA injection of K(+)-transporter genes into Xenopus oocytes, however, both putative K(+) transporters remained silent. Assuming that calcium sensor kinases are regulating Arabidopsis K(+) transporter 1 (AKT1), we coexpressed the putative K(+) transporters with a large set of kinases and identified the CBL9-CIPK23 pair as the major activating complex for both transporters in Dionaea K(+) uptake. DmKT1 was found to be a K(+)-selective channel of voltage-dependent high capacity and low affinity, whereas DmHAK5 was identified as the first, to our knowledge, proton-driven, high-affinity potassium transporter with weak selectivity. When the Venus flytrap is processing its prey, the gland cell membrane potential is maintained around -120 mV, and the apoplast is acidified to pH 3. These conditions in the green stomach formed by the closed flytrap allow DmKT1 and DmHAK5 to acquire prey-derived K(+), reducing its concentration from millimolar levels down to trace levels.

  14. Calcium sensor kinase activates potassium uptake systems in gland cells of Venus flytraps

    PubMed Central

    Scherzer, Sönke; Böhm, Jennifer; Krol, Elzbieta; Shabala, Lana; Kreuzer, Ines; Larisch, Christina; Bemm, Felix; Al-Rasheid, Khaled A. S.; Shabala, Sergey; Rennenberg, Heinz; Neher, Erwin; Hedrich, Rainer

    2015-01-01

    The Darwin plant Dionaea muscipula is able to grow on mineral-poor soil, because it gains essential nutrients from captured animal prey. Given that no nutrients remain in the trap when it opens after the consumption of an animal meal, we here asked the question of how Dionaea sequesters prey-derived potassium. We show that prey capture triggers expression of a K+ uptake system in the Venus flytrap. In search of K+ transporters endowed with adequate properties for this role, we screened a Dionaea expressed sequence tag (EST) database and identified DmKT1 and DmHAK5 as candidates. On insect and touch hormone stimulation, the number of transcripts of these transporters increased in flytraps. After cRNA injection of K+-transporter genes into Xenopus oocytes, however, both putative K+ transporters remained silent. Assuming that calcium sensor kinases are regulating Arabidopsis K+ transporter 1 (AKT1), we coexpressed the putative K+ transporters with a large set of kinases and identified the CBL9-CIPK23 pair as the major activating complex for both transporters in Dionaea K+ uptake. DmKT1 was found to be a K+-selective channel of voltage-dependent high capacity and low affinity, whereas DmHAK5 was identified as the first, to our knowledge, proton-driven, high-affinity potassium transporter with weak selectivity. When the Venus flytrap is processing its prey, the gland cell membrane potential is maintained around −120 mV, and the apoplast is acidified to pH 3. These conditions in the green stomach formed by the closed flytrap allow DmKT1 and DmHAK5 to acquire prey-derived K+, reducing its concentration from millimolar levels down to trace levels. PMID:25997445

  15. Effects of thymol on calcium and potassium currents in canine and human ventricular cardiomyocytes.

    PubMed

    Magyar, János; Szentandrássy, Norbert; Bányász, Tamás; Fülöp, László; Varró, András; Nánási, Péter P

    2002-05-01

    1. Concentration-dependent effects of thymol (1 - 1000 microM) was studied on action potential configuration and ionic currents in isolated canine ventricular cardiomyocytes using conventional microelectrode and patch clamp techniques. 2. Low concentration of thymol (10 microM) removed the notch of the action potential, whereas high concentrations (100 microM or higher) caused an additional shortening of action potential duration accompanied by progressive depression of plateau and reduction of V(max). 3. In the canine cells L-type Ca current (I(Ca)) was decreased by thymol in a concentration-dependent manner (EC(50): 158+/-7 microM, Hill coeff.: 2.96+/-0.43). In addition, thymol (50 - 250 microM) accelerated the inactivation of I(Ca), increased the time constant of recovery from inactivation, shifted the steady-state inactivation curve of I(Ca) leftwards, but voltage dependence of activation remained unaltered. Qualitatively similar results were obtained with thymol in ventricular myocytes isolated from healthy human hearts. 4. Thymol displayed concentration-dependent suppressive effects on potassium currents: the transient outward current, I(to) (EC(50): 60.6+/-11.4 microM, Hill coeff.: 1.03+/-0.11), the rapid component of the delayed rectifier, I(Kr) (EC(50): 63.4+/-6.1 microM, Hill coeff.: 1.29+/-0.15), and the slow component of the delayed rectifier, I(Ks) (EC(50): 202+/-11 microM, Hill coeff.: 0.72+/-0.14), however, K channel kinetics were not much altered by thymol. These effects on Ca and K currents developed rapidly (within 0.5 min) and were readily reversible. 5. In conclusion, thymol suppressed cardiac ionic channels in a concentration-dependent manner, however, both drug-sensitivities as well as the mechanism of action seems to be different when blocking calcium and potassium channels.

  16. Novel technique for phosphorus recovery from aqueous solutions using amorphous calcium silicate hydrates (A-CSHs).

    PubMed

    Okano, Kenji; Uemoto, Masahide; Kagami, Jumpei; Miura, Keiichi; Aketo, Tsuyoshi; Toda, Masaya; Honda, Kohsuke; Ohtake, Hisao

    2013-05-01

    A novel technique for phosphorus (P) recovery from aqueous solutions was developed using amorphous calcium silicate hydrates (A-CSHs). A-CSHs, which have a high Ca/Si molar ratio of 2.0 or greater, could be synthesized using unlimitedly available, inexpensive materials such as siliceous shale and calcium hydroxide. A-CSHs showed high performance for P recovery from an anaerobic sludge digestion liquor (ASDL) and the synthetic model liquor (s-ASDL) containing 89 mg PO4-P/L. After 20 min mixing, 1.5 g/L A-CSHs could remove approximately 69 and 73% PO4-P from ASDL and s-ASDL, respectively. By contrast, autoclaved lightweight concrete particles, which contained crystalline calcium silicate hydrates as a principal component, removed only 10 and 6% PO4-P from ASDL and s-ASDL, respectively, under the same experimental conditions. When A-CSHs were washed with deionized water to remove free Ca(OH)2, P removability was significantly improved (up to 82%) despite the reduction in the amount of Ca(2+) released. Unlike in the case of Ca(OH)2, no significant carbonate inhibition was observed with P removal by A-CSHs. Moreover, P removed by A-CSHs showed better settleability, filterability, and dewaterability than P precipitated with conventional CaCl2 and Ca(OH)2. The present study demonstrated that A-CSHs have great potential as a novel, beneficial material for P recovery and recycling.

  17. Phosphorus-Based Alloy Materials for Advanced Potassium-Ion Battery Anode.

    PubMed

    Zhang, Wenchao; Mao, Jianfeng; Li, Sean; Chen, Zhixin; Guo, Zaiping

    2017-03-08

    Potassium-ion batteries (PIBs) are interesting as one of the alternative metal-ion battery systems to lithium-ion batteries (LIBs) due to the abundance and low cost of potassium. We have herein investigated Sn4P3/C composite as a novel anode material for PIBs. The electrode delivered a reversible capacity of 384.8 mA h g(-1) at 50 mA g(-1) and a good rate capability of 221.9 mA h g(-1), even at 1 A g(-1). Its electrochemical performance is better than any anode material reported so far for PIBs. It was also found that the Sn4P3/C electrode displays a discharge potential plateau of 0.1 V in PIBs, slightly higher than for sodium-ion batteries (SIBs) (0.01 V), and well above the plating potential of metal. This diminishes the formation of dendrites during cycling, and thus Sn4P3 is a relatively safe anode material, especially for application in large-scale energy storage, where large amounts of electrode materials are used. Furthermore, a possible reaction mechanism of the Sn4P3/C composite as PIB anode is proposed. This work may open up a new avenue for further development of alloy-based anodes with high capacity and long cycle life for PIBs.

  18. Fear conditioning suppresses large-conductance calcium-activated potassium channels in lateral amygdala neurons.

    PubMed

    Sun, P; Zhang, Q; Zhang, Y; Wang, F; Wang, L; Yamamoto, R; Sugai, T; Kato, N

    2015-01-01

    It was previously shown that depression-like behavior is accompanied with suppression of the large-conductance calcium activated potassium (BK) channel in cingulate cortex pyramidal cells. To test whether BK channels are also involved in fear conditioning, we studied neuronal properties of amygdala principal cells in fear conditioned mice. After behavior, we made brain slices containing the amygdala, the structure critically relevant to fear memory. The resting membrane potential in lateral amygdala (LA) neurons obtained from fear conditioned mice (FC group) was more depolarized than in neurons from naïve controls. The frequencies of spikes evoked by current injections were higher in neurons from FC mice, demonstrating that excitability of LA neurons was elevated by fear conditioning. The depolarization in neurons from FC mice was shown to depend on BK channels by using the BK channel blocker charybdotoxin. Suppression of BK channels in LA neurons from the FC group was further confirmed on the basis of the spike width, since BK channels affect the descending phase of spikes. Spikes were broader in the FC group than those in the naïve control in a manner dependent on BK channels. Consistently, quantitative real-time PCR revealed a decreased expression of BK channel mRNA. The present findings suggest that emotional disorder manifested in the forms of fear conditioning is accompanied with BK channel suppression in the amygdala, the brain structure critical to this emotional disorder.

  19. Molecular mechanism underlying β1 regulation in voltage- and calcium-activated potassium (BK) channels.

    PubMed

    Castillo, Karen; Contreras, Gustavo F; Pupo, Amaury; Torres, Yolima P; Neely, Alan; González, Carlos; Latorre, Ramon

    2015-04-14

    Being activated by depolarizing voltages and increases in cytoplasmic Ca(2+), voltage- and calcium-activated potassium (BK) channels and their modulatory β-subunits are able to dampen or stop excitatory stimuli in a wide range of cellular types, including both neuronal and nonneuronal tissues. Minimal alterations in BK channel function may contribute to the pathophysiology of several diseases, including hypertension, asthma, cancer, epilepsy, and diabetes. Several gating processes, allosterically coupled to each other, control BK channel activity and are potential targets for regulation by auxiliary β-subunits that are expressed together with the α (BK)-subunit in almost every tissue type where they are found. By measuring gating currents in BK channels coexpressed with chimeras between β1 and β3 or β2 auxiliary subunits, we were able to identify that the cytoplasmic regions of β1 are responsible for the modulation of the voltage sensors. In addition, we narrowed down the structural determinants to the N terminus of β1, which contains two lysine residues (i.e., K3 and K4), which upon substitution virtually abolished the effects of β1 on charge movement. The mechanism by which K3 and K4 stabilize the voltage sensor is not electrostatic but specific, and the α (BK)-residues involved remain to be identified. This is the first report, to our knowledge, where the regulatory effects of the β1-subunit have been clearly assigned to a particular segment, with two pivotal amino acids being responsible for this modulation.

  20. Conductivity dispersion in supercooled calcium potassium nitrate: caged ionic motion viewed as part of standard behaviour.

    PubMed

    Funke, Klaus; Singh, Prabhakar; Banhatti, Radha Dilip

    2007-11-07

    Conductivity spectra of ionic materials with disordered structures are usually thought to consist of several parts, i.e., the DC conductivity, a power-law component, a nearly-constant-loss feature (if identified) and the (far-)infrared conductivity caused by vibrational motion. Such a decomposition may, however, easily lead to a misinterpretation of the underlying dynamics. Here, we discuss broad-band conductivity data of the supercooled glass-forming melt calcium potassium nitrate, of composition 0.4 Ca(NO(3))(2).0.6 KNO(3), often abbreviated as CKN. Data have been taken at frequencies up to the far infrared. We show that the frequency-dependent conductivity is very well reproduced by a superposition of only two components. One of them is due to vibrations, the other is caused by displacements of the mobile ions. The latter component, which does not follow a power law, is described in terms of a physical model called the MIGRATION concept. This model treatment has been found to apply in many solid electrolytes as well and is, therefore, considered to provide a "standard" formulation of the ion dynamics. The gradual transition from a correlated forward-backward ("caged") ionic motion to a stepwise translational motion may be regarded as the main feature of the MIGRATION concept.

  1. Safety assessment of (-)-hydroxycitric acid and Super CitriMax, a novel calcium/potassium salt.

    PubMed

    Soni, M G; Burdock, G A; Preuss, H G; Stohs, S J; Ohia, S E; Bagchi, D

    2004-09-01

    (-)-Hydroxycitric acid (HCA) is a principle constituent (10-30%) of the dried fruit rind of Garcinia cambogia, a plant native to Southeastern Asia. The dried rind has been used for centuries throughout Southeast Asia as a food preservative, flavoring agent and carminative. Extensive experimental studies show that HCA inhibits fat synthesis and reduces food intake. The objective of this review is to systematically review the available safety/toxicity literature on HCA to determine its safety in-use. The primary mechanism of action of HCA appears to be related to its ability to act as a competitive inhibitor of the enzyme ATP-citrate lyase, which catalyzes the conversion of citrate and coenzyme A to oxaloacetate and acetyl coenzyme A (acetyl-CoA), primary building blocks of fatty acid and cholesterol synthesis. Super CitriMax, a novel calcium/potassium-HCA extract (HCA-SX), is considerably more soluble and bioavailable than calcium-based HCA ingredients. Acute oral toxicity studies in animals demonstrate that CitriMax (50% HCA as calcium salt) has a low acute oral toxicity. In a subchronic study in rats, the gavage administration of HCA-SX at doses up to 2500 mg/kg/day for a period of 90 days caused a significant decrease in body weight and reduction in feed consumption without any adverse effects. The structure, mechanism of action, long history of use of HCA and other toxicity studies indicate that HCA-SX is unlikely to cause reproductive or developmental effects. HCA-SX was not mutagenic in the presence or absence of metabolic activation in Ames genotoxicity assays in strains TA98 and TA102. HCA-SX-induced increases in number of revertants in other strains (TA100 and TA1535 in the absence of metabolic activation and in strain TA1537 in the presence of metabolic activation) but these were not considered as biologically indicative of a mutagenic effect. In several, placebo-controlled, double-blind trials employing up to 2800 mg/day HCA, no treatment-related adverse

  2. Different effects of endothelin-1 on calcium and potassium currents in canine ventricular cells.

    PubMed

    Bányász, T; Magyar, J; Körtvély, A; Szigeti, G; Szigligeti, P; Papp, Z; Mohácsi, A; Kovács, L; Nánási, P P

    2001-04-01

    Effects of endothelin-1 (ET-1) on the L-type calcium current (ICa) and delayed rectifier potassium current (IK) were studied in isolated canine ventricular cardiomyocytes using the whole-cell configuration of the patch-clamp technique. ET-1 (8 nM) was applied in three experimental arrangements: untreated cells, in the presence of 50 nM isoproterenol, and in the presence of 250 microM 8-bromo-cAMP. In untreated cells, ET-1 significantly decreased the peak amplitude of ICa by 32.3+/-4.8% at +5 mV (P<0.05) without changing activation or inactivation characteristics of ICa. ET-1 had no effect on the amplitude of IK, Ito (transient outward current) or IK1 (inward rectifier K current) in untreated cells; however, the time course of recovery from inactivation of Ito was significantly increased by ET-1 (from 26.5+/-4.6 ms to 59.5+/- 1.8 ms, P < 0.05). Amplitude and time course of intracellular calcium transients, recorded in voltage-clamped cells previously loaded with the fluorescent calcium indicator dye Fura-2, were not affected by ET-1. ET-1 had no effect on force of contraction in canine ventricular trabeculae. Isoproterenol increased the amplitude of ICa to 263+/-29% of control. ET-1 reduced ICa also in isoproterenol-treated cells by 17.8+/-2% (P<0.05); this inhibition was significantly less than obtained in untreated cells. IK was increased by isoproterenol to 213+/-18% of control. This effect of isoproterenol on IK was reduced by 31.8+/-4.8% if the cells were pretreated with ET-1. Similarly, in isoproterenol-treated cells ET-1 decreased IK by 16.2+/-1.5% (P<0.05). Maximal activation of protein kinase A (PKA) was achieved by application of 8-bromo-cAMP in the pipette solution. In the presence of 8-bromo-cAMP ET-1 failed to alter ICa or IK It was concluded that differences in effects of ET-1 on ICa and IK may be related to differences in cAMP sensitivity of the currents.

  3. Calcium and Phosphorus Regulatory Hormones and Risk of Incident Symptomatic Kidney Stones

    PubMed Central

    Hoofnagle, Andrew N.; Curhan, Gary C.

    2015-01-01

    Background and objectives Calcium and phosphorus regulatory hormones may contribute to the pathogenesis of calcium nephrolithiasis. However, there has been no prospective study to date of plasma hormone levels and risk of kidney stones. This study aimed to examine independent associations between plasma levels of 1,25-dihydroxyvitamin D (1,25[OH]2D), 25-hydroxyvitamin D, 24,25-dihydroxyvitamin D, fibroblast growth factor 23 (FGF23), parathyroid hormone, calcium, phosphate, and creatinine and the subsequent risk of incident kidney stones. Design, setting, participants, & measurements This study was a prospective, nested case-control study of men in the Health Professionals Follow-Up Study who were free of diagnosed nephrolithiasis at blood draw. During 12 years of follow-up, 356 men developed an incident symptomatic kidney stone. Using risk set sampling, controls were selected in a 2:1 ratio (n=712 controls) and matched for age, race, and year, month, and time of day of blood collection. Results Baseline plasma levels of 25-hydroxyvitamin D, 24,25-dihydroxyvitamin D, parathyroid hormone, calcium, phosphate, and creatinine were similar in cases and controls. Mean 1,25(OH)2D and median FGF23 levels were higher in cases than controls but differences were small and statistically nonsignificant (45.7 versus 44.2 pg/ml, P=0.07 for 1,25[OH]2D; 47.6 versus 45.1 pg/ml, P=0.08 for FGF23). However, after adjusting for body mass index, diet, plasma factors, and other covariates, the odds ratios of incident symptomatic kidney stones in the highest compared with lowest quartiles were 1.73 (95% confidence interval, 1.11 to 2.71; P for trend 0.01) for 1,25(OH)2D and 1.45 (95% confidence interval, 0.96 to 2.19; P for trend 0.03) for FGF23. There were no significant associations between other plasma factors and kidney stone risk. Conclusions Higher plasma 1,25(OH)2D, even in ranges considered normal, is independently associated with higher risk of symptomatic kidney stones. Although

  4. Dietary potassium intake is beneficial to bone health in a low calcium intake population: the Korean National Health and Nutrition Examination Survey (KNHANES) (2008-2011).

    PubMed

    Kong, S H; Kim, J H; Hong, A R; Lee, J H; Kim, S W; Shin, C S

    2017-01-16

    Dietary potassium may neutralize acid load and reduce calcium loss from the bone, leading to beneficial effect on bone mineral density. In this nationwide Korean population study, dietary potassium intake was associated with improved bone mineral density in older men and postmenopausal women.

  5. The combined effects of ionizing radiation and weightlessness on calcium and phosphorus content in the mineral fraction of the calcified tissues in the rat skeleton

    NASA Technical Reports Server (NTRS)

    Prokhonchukov, A. A.; Komissarova, N. A.; Kolesnik, A. G.; Novikov, L. L.

    1980-01-01

    Phosphorus and calcium content in the ash from skeletal bones (ribs, scapula, vertebra, and crus) of 30 rats exposed to ionizing radiation (800 rads) on the flight of the Kosmos 690 biosatellite was studied. A 10 percent decrease in ash content coefficient and 29 percent decrease in phosphorus content was found immediately after the flight, and a 9 percent decrease in phosphorus content persisted after 26 days of readaptation to terrestrial conditions.

  6. Tibial bone mineral distribution as influenced by calcium, phosphorus, and vitamin D feeding levels in the growing turkey

    NASA Technical Reports Server (NTRS)

    Spurrell, F. A.; Brenes, J.; Waibel, P.

    1974-01-01

    Roentgen signs, subperiosteal, endosteal, and trabecular bone growth are evaluated in turkeys fed phosphorus at the 0.5, 0.56, 0.68, 0.90, and 2.70 percent levels. Calcium levels of 0.30, 0.40, 0.60, 1.2, and 3.60 percent were also tested. Vitamin D levels of 0, 100, 300, 900 and 27,000 I.U. per day were likewise evaluated. Roentgen signs, bone mineral as measured by T-125 gamma ray absorption, and bone mineral growth patterns as shown by radiograph area projection are correlated with calcium, phosphorus, and vitamin D feeding levels. Differences in bone growth at the various feeding levels were observed which were not reflected by differences in other studied parameters.

  7. Effect of radiation processing on in vitro protein digestibility and availability of calcium, phosphorus and iron of peanut

    NASA Astrophysics Data System (ADS)

    Hassan, Amro B.; Diab, Eiman E.; Mahmoud, Nagat S.; Elagib, Randa A. A.; Rushdi, Mohamed A. H.; Osman, Gammaa A. M.

    2013-10-01

    The effect of gamma irradiation of two peanut cultivars (Sodari and Madani) on protein content, in vitro protein digestibility and availability of calcium, phosphorus and iron was determined. Seeds were treated with gamma irradiation at dose levels of 1.0, 1.5 and 2.0 kGy. Total protein in seeds was not changed significantly by irradiation. However, the in vitro protein digestibility was decreased for both cultivars. In addition, the irradiation also caused an increment on the available calcium, phosphorus and iron for both cultivars. Moreover, radiation processing caused an increment on tannin content of the seeds especially at the dose 2 kGy for both cultivars. Regarding these results, irradiation treatment of peanut up to 2 kGy can be used as an effective alternative method to chemical treatments for insect disinfestation and microbial disinfection.

  8. Calcium, magnesium, and phosphorus metabolism, and parathyroid-calcitonin function during prolonged exposure to elevated CO2 concentrations on submarines.

    PubMed

    Messier, A A; Heyder, E; Braithwaite, W R; McCluggage, C; Peck, A; Schaefer, K E

    1979-01-01

    Studies of calcium and phosphorus metabolism and acid-base balance were carried out on three Fleet Ballistic Missile (FBM) submarines during prolonged exposure to elevated concentrations of CO2. The average CO2 concentration in the submarine atmosphere during patrols ranged from 0.85% to 1% CO2. In the three studies, in which 9--15 subjects participated, the urinary excretion of calcium and phosphate fell during the first three weeks to a level commensurate with a decrease in plasma calcium and increase in phosphorus. In the fourth week of one patrol, a marked increase was found in urinary calcium excretion, associated with a rise in blood PCO2 and bicarbonate. Urinary calcium excretion decreased again during the 5th to 8th week, with a secondary decrease in blood pH and plasma calcium. During the third patrol, the time course of acid-base changes corresponded well with that found during the second patrol. There was a trend toward an increase in plasma calcium between the fourth and fifth week commensurate with the transient rise in pH and bicarbonate. Plasma parathyroid and calcitonin hormone activities were measured in two patrols and no significant changes were found. Hydroxyproline excretion decreased in the three-week study and remained unchanged in the second patrol, which lasted 57 days. It is suggested that during prolonged exposure to low levels of CO2 (up to 1% CO2), calcium metabolism is controlled by the uptake and release of CO2 in the bones. The resulting phases in bone buffering, rather than renal regulation, determine acid-base balance.

  9. Control of Spontaneous Firing Patterns by the Selective Coupling of Calcium Currents to Calcium Activated Potassium Currents in Striatal Cholinergic Interneurons

    PubMed Central

    Goldberg, Joshua A.; Wilson, Charles J.

    2005-01-01

    The spontaneous firing patterns of striatal cholinergic interneurons are sculpted by potassium currents that give rise to prominent afterhyperpolarizations (AHPs): BK currents contribute to action potential (AP) repolarization; SK currents generate an apamin-sensitive medium AHP (mAHP) following each AP; and bursts of APs generate long-lasting slow AHPs (sAHPs) due to apamin-insensitive currents. As all these currents are calcium-dependent, we conducted voltage- and current-clamp whole-cell recordings while pharmacologically manipulating calcium channels of the plasma membrane and intracellular stores to determine what sources of calcium activate the currents underlying AP repolarization and the AHPs. The Cav2.2 (N type) blocker, omega-conotoxin GVIA (1 μM), was the only blocker that significantly reduced the mAHP, and it induced a transition to rhythmic bursting in a third of the cells tested. Cav1 (L type) blockers (10 μM dihydropyridines) were the only ones that significantly reduced the sAHP. When applied to cells induced to burst with apamin, dihydropyridines reduced the sAHPs and abolished bursting. Depletion of intracellular stores with 10 mM caffeine also significantly reduced the sAHP current, and reversibly regularized firing. Application of 1 μM omega-conotoxin MVIIC (a Cav2.1/2.2 blocker) broadened APs, but had a negligible effect on APs in cells whose BK channels were already blocked by submillimolar tetraethylammonium chloride, indicating that Cav2.1 (Q type) channels provide the calcium to activate BK channels that repolarize the AP. Thus, calcium currents are selectively coupled to the calcium-dependent potassium currents underlying the AHPs thereby creating mechanisms for control of these neurons’ spontaneous firing patterns. PMID:16267230

  10. Potassium, phosphorus, or nitrogen limit root allocation, tree growth, or litter production in a lowland tropical forest.

    PubMed

    Wright, S Joseph; Yavitt, Joseph B; Wurzburger, Nina; Turner, Benjamin L; Tanner, Edmund V J; Sayer, Emma J; Santiago, Louis S; Kaspari, Michael; Hedin, Lars O; Harms, Kyle E; Garcia, Milton N; Corre, Marife D

    2011-08-01

    We maintained a factorial nitrogen (N), phosphorus (P), and potassium (K) addition experiment for 11 years in a humid lowland forest growing on a relatively fertile soil in Panama to evaluate potential nutrient limitation of tree growth rates, fine-litter production, and fine-root biomass. We replicated the eight factorial treatments four times using 32 plots of 40 x 40 m each. The addition of K was associated with significant decreases in stand-level fine-root biomass and, in a companion study of seedlings, decreases in allocation to roots and increases in height growth rates. The addition of K and N together was associated with significant increases in growth rates of saplings and poles (1-10 cm in diameter at breast height) and a further marginally significant decrease in stand-level fine-root biomass. The addition of P was associated with a marginally significant (P = 0.058) increase in fine-litter production that was consistent across all litter fractions. Our experiment provides evidence that N, P, and K all limit forest plants growing on a relatively fertile soil in the lowland tropics, with the strongest evidence for limitation by K among seedlings, saplings, and poles.

  11. The slow calcium-dependent potassium current in a myenteric neurone of the guinea-pig ileum.

    PubMed

    Hirst, G D; Johnson, S M; van Helden, D F

    1985-04-01

    Experiments were performed in current-clamped and voltage-clamped after-hyperpolarizing (AH) neurones of the guinea-pig myenteric plexus to examine the properties of the potassium conductance (gK, Ca) underlying the slow calcium-activated after-hyperpolarization (VK, Ca). The action potential plateau lengthened by the addition of tetraethylammonium chloride (TEA) to the bathing medium was compared to VK, Ca. Results were consistent with enhanced calcium entry causing an increase of VK, Ca. 4-Aminopyridine (4-AP) directly reduced VK, Ca. Voltage-clamp data of gK, Ca were well fitted by a process with a delay (approximately equal to 60 ms) followed by exponential activation (time constant approximately equal to 300 ms) and inactivation (time constant approximately equal to 2 s). The presence of a small, much slower inactivating process was noted. Values for time constants were similar to those reported by Morita, North & Tokimasa (1982) and North & Tokimasa (1983) where gK, Ca was measured during VK, Ca subsequent to action potential stimulation. The relation between gK, Ca (or the calcium-activated potassium current IK, Ca) and estimated calcium influx resulting from short-duration calcium currents elicited at various voltages was compared. Both the integral of the calcium current and gK, Ca showed a similar dependence on the depolarizations used to elicit IK, Ca except there was a positive shift of about 4 mV for the gK, Ca curve. This shift was attributed to a requirement for calcium ions to prime the gK, Ca mechanism. An inward ion charge movement of about 8 pC was required before significant activation of gK, Ca occurred. After the 'priming' condition had been established, the sensitivity of gK, Ca to inward calcium current measured at the resting potential was about 500 pS/pC of inward charge. Large calcium entry obtained by prolonged calcium currents caused saturation of the peak amplitude of IK, Ca and initiated currents with slower time to peak amplitude and

  12. Comparison of calcium and phosphorus excretion with bone density changes during restraint in immature Macaca nemestrina primates.

    NASA Technical Reports Server (NTRS)

    Hoffman, R. A.; Hood, W. N.; Mack, P. B.

    1972-01-01

    Calcium and phosphorus balance data on Macaca nemestrina monkeys during immobilization are presented and correlated with X-ray bone densitometry findings. A positive mineral balance was maintained during the immobilized period. A reduced bone density was observed in most skeletal sites examined with increased density observed in epiphyseal regions. Migration of mineral from one site to another is suggested as a possible explanation for the findings.

  13. Nitrogen, phosphorus, potassium, calcium and magnesium release from two compressed fertilizers: column experiments

    NASA Astrophysics Data System (ADS)

    Fernández-Sanjurjo, M. J.; Alvarez-Rodríguez, E.; Núñez-Delgado, A.; Fernández-Marcos, M. L.; Romar-Gasalla, A.

    2014-07-01

    We used soil columns to study nutrients release from two compressed NPK fertilizers. The columns were filled with soil material from the surface horizon of a granitic soil. Tablets of two slow-release NPK fertilizers (11-18-11 or 8-8-16) were placed into the soil, and then water was percolated through the columns in a saturated regime. Percolates were analyzed for N, P, K, Ca and Mg. These nutrients were also determined in soil and fertilizer tablets at the end of the trials. Nutrient concentrations were high in the first percolates, reaching a steady state when 1426 mm water have percolated, which is equivalent to approximately 1.5 years of rainfall in the geographic area. In the whole trial, both tablets lost more than 80% of their initial N, P and K contents. However, K, Ca and Mg were the most leached, whereas N and P were lost in leachates to a lesser extent. Nutrient release was slower from the tablet with composition 8-8-16 than from the 11-18-11 fertilizer. In view of that, the 8-8-16 tablet can be considered more adequate for crops with a nutrient demand sustained over time. At the end of the trial, the effects of these fertilizers on soil chemical parameters were still evident.

  14. Influence of micellar calcium and phosphorus on rennet coagulation properties of cows milk.

    PubMed

    Malacarne, Massimo; Franceschi, Piero; Formaggioni, Paolo; Sandri, Sandro; Mariani, Primo; Summer, Andrea

    2014-05-01

    The main requirement for milk processed in most cheese typologies is its rennet coagulation ability. Despite the increasing number of studies, the causes for abnormal coagulation of milk are not fully understood. The aim of this study was to ascertain relationships between milk characteristics and its rennet coagulation ability, focusing on the influence of calcium (Ca) and phosphorus (P). Ca and P are essential constituents of the micelles. Micellar P can be present as part of colloidal calcium phosphate (inorganic-P) or covalently bound to caseins as phosphate groups (casein-P). Eighty one herd milk samples (SCC<400 000 cell/ml) were classified as Optimal (8), Suboptimal (39) Poor (29) and Non-coagulating milk (5), according to their rennet coagulation parameters as assessed by lactodynamographic test. Samples were analysed for their chemical composition (basic composition, protein fractions, minerals and salt equilibria), physicochemical parameters (pH and titratable acidity) and rheological properties. Optimal milk was characterised by the highest contents of major constituents, protein fractions and minerals, lowest content of chloride and highest values of titratable acidity. Non-coagulating milk was characterised by the highest values of pH and the lowest of titratable acidity. At micellar level, Optimal milk showed the highest values of colloidal Ca, casein-P and colloidal Mg (g/100 g casein), while Non-coagulating milk showed the lowest values. Interestingly, there was no statistical difference regarding the content of colloidal inorganic-P (g/100 g casein) between Optimal and Non-coagulating milks. Overall, high mineralisation of the micelle (expressed as g inorganic-P/100 g casein) positively affect its rennetability. However, excessive mineralisation could lead to a reduction of the phosphate groups (g casein-P/100 g casein) available for curd formation.

  15. Influence of calcium, magnesium, or potassium ions on the formation and stability of emulsions prepared using highly hydrolyzed whey proteins.

    PubMed

    Ramkumar, C; Singh, H; Munro, P A; Singh, A M

    2000-05-01

    Oil-in-water emulsions (4 wt % soy oil) containing 4 wt % whey protein hydrolysate (WPH) (27% degree of hydrolysis) and different levels of calcium, magnesium, or potassium chloride were prepared in a two-stage homogenizer. Other emulsions containing 4 wt % WPH but including 0.35 wt % hydroxylated lecithin and different levels of the above minerals were similarly prepared. The formation and stability of these emulsions were determined by measuring oil droplet size distributions using laser light scattering and by confocal scanning laser microscopy and a gravity creaming test. Both lecithin-free and lecithin-containing emulsions showed no change in droplet size distributions with increasing concentration of potassium in the range 0-37.5 mM. In contrast, the diameter of emulsion droplets increased with increasing calcium or magnesium concentration >12.5 mM. Emulsions containing hydroxylated lecithin were more sensitive to the addition of calcium or magnesium than the lecithin-free emulsions. Storage of emulsions at 20 degrees C for 24 h further increased the diameter of droplets and resulted in extensive creaming in emulsions containing >25 mM calcium or magnesium. It appears that both flocculation and coalescence processes were involved in the destabilization of emulsions induced by the addition of divalent cations.

  16. Effects of thymol on calcium and potassium currents in canine and human ventricular cardiomyocytes

    PubMed Central

    Magyar, János; Szentandrássy, Norbert; Bányász, Tamás; Fülöp, László; Varró, András; Nánási, Péter P

    2002-01-01

    Concentration-dependent effects of thymol (1–1000 μM) was studied on action potential configuration and ionic currents in isolated canine ventricular cardiomyocytes using conventional microelectrode and patch clamp techniques.Low concentration of thymol (10 μM) removed the notch of the action potential, whereas high concentrations (100 μM or higher) caused an additional shortening of action potential duration accompanied by progressive depression of plateau and reduction of Vmax.In the canine cells L-type Ca current (ICa) was decreased by thymol in a concentration-dependent manner (EC50: 158±7 μM, Hill coeff.: 2.96±0.43). In addition, thymol (50–250 μM) accelerated the inactivation of ICa, increased the time constant of recovery from inactivation, shifted the steady-state inactivation curve of ICa leftwards, but voltage dependence of activation remained unaltered. Qualitatively similar results were obtained with thymol in ventricular myocytes isolated from healthy human hearts.Thymol displayed concentration-dependent suppressive effects on potassium currents: the transient outward current, Ito (EC50: 60.6±11.4 μM, Hill coeff.: 1.03±0.11), the rapid component of the delayed rectifier, IKr (EC50: 63.4±6.1 μM, Hill coeff.: 1.29±0.15), and the slow component of the delayed rectifier, IKs (EC50: 202±11 μM, Hill coeff.: 0.72±0.14), however, K channel kinetics were not much altered by thymol. These effects on Ca and K currents developed rapidly (within 0.5 min) and were readily reversible.In conclusion, thymol suppressed cardiac ionic channels in a concentration-dependent manner, however, both drug-sensitivities as well as the mechanism of action seems to be different when blocking calcium and potassium channels. PMID:12010783

  17. A flow-system comparison of the reactivities of calcium superoxide and potassium superoxide with carbon dioxide and water vapor

    NASA Technical Reports Server (NTRS)

    Wood, P. C.; Ballou, E. V.; Spitze, L. A.; Wydeven, T.

    1982-01-01

    A single pass flow system was used to test the reactivity of calcium superoxide with respiratory gases and the performance was compared to that of potassium superoxide. The KO2 system is used by coal miners as a self-contained unit in rescue operations. Particular attention was given to the reactivity with carbon dioxide and water vapor at different temperatures and partial pressures of oxygen, carbon dioxide, and water vapor. The calcium superoxide beds were found to absorb CO2 and H2O vapor, releasing O2. The KO2 bed, however, released O2 at twice the rate of CO2 absorption at 37 C. It is concluded that the calcium superoxide material is not a suitable replacement for the KO2 bed, although Ca(O2)2 may be added to the KO2 bed to enhance the CO2 absorption.

  18. The homogeneous effect of calcium ionophore A23187 on potassium loss in human foetal red cell populations.

    PubMed

    Serrani, R E; Gioia, I A; Corchs, J L

    1995-01-01

    A "pulse like" increase of cytoplasmic calcium concentration, which is proportional to ionophore concentration, is induced in red cells by exposure to A23187. Different Ca2+ levels are attained depending on cellular calcium buffering power and/or primary active calcium transport activation. We examined the effect of A23187 concentration of potassium loss in neonatal (nRC) as well as in adult red cells (aRC). The increase in ionophore concentration produced an "all- or -none" recruitment in adult cells and a "gradual" one in neonatal red cells. The "gradual" response observed in nRC would suggest that the "all or none" character of the response is not present in red cells during the foetal stages of haematopoiesis.

  19. X-ray dual energy spectral parameter optimization for bone Calcium/Phosphorus mass ratio estimation

    NASA Astrophysics Data System (ADS)

    Sotiropoulou, P. I.; Fountos, G. P.; Martini, N. D.; Koukou, V. N.; Michail, C. M.; Valais, I. G.; Kandarakis, I. S.; Nikiforidis, G. C.

    2015-09-01

    Calcium (Ca) and Phosphorus (P) bone mass ratio has been identified as an important, yet underutilized, risk factor in osteoporosis diagnosis. The purpose of this simulation study is to investigate the use of effective or mean mass attenuation coefficient in Ca/P mass ratio estimation with the use of a dual-energy method. The investigation was based on the minimization of the accuracy of Ca/P ratio, with respect to the Coefficient of Variation of the ratio. Different set-ups were examined, based on the K-edge filtering technique and single X-ray exposure. The modified X-ray output was attenuated by various Ca/P mass ratios resulting in nine calibration points, while keeping constant the total bone thickness. The simulated data were obtained considering a photon counting energy discriminating detector. The standard deviation of the residuals was used to compare and evaluate the accuracy between the different dual energy set-ups. The optimum mass attenuation coefficient for the Ca/P mass ratio estimation was the effective coefficient in all the examined set-ups. The variation of the residuals between the different set-ups was not significant.

  20. True manganese absorption in chicks as affected by dietary excesses of calcium and phosphorus

    SciTech Connect

    Wedekind, K.J.; Titgemeyer, E.C.; Twardock, A.R.; Baker, D.H. )

    1991-03-15

    Two balance studies with growing chicks were conducted to evaluate the effects of excess calcium (Ca) or excess phosphorus (P) on endogenous fecal manganese (Mn) excretion and true Mn absorption determined using an isotope-dilution technique. Supplements were added to a corn-soybean meal diet containing 1% Ca, 0.7% P and 37 mg/kg Mn. In Exp. 1, supplemental Ca levels of 0, 0.5 and 1.0% from feedgrade limestone were compared. True absorption of Mn was not affected by Ca level and averaged 2.8% for birds fed the Mn-unsupplemented diet. In Exp. 2, a 2 x 3 factorial arrangement of treatments included: 100 and 1,000 mg/kg supplemental Mn and 0, 0.4 and 0.8% added P supplied by dicalcium phosphate. Excess P decreased true absorption of Mn. In birds fed 100 mg/kg supplemental Mn, absorption of Mn decreased 22% as excess P increased from 0 to 0.8%, whereas in birds fed 1,000 mg/kg supplemental Mn, Mn absorption decreased 58% as a result of 0.8% P supplementation. These results confirm that excess Ca has little effect while excess P has a marked effect on gut absorption of Mn.

  1. Association of dietary calcium, phosphorus, and magnesium intake with caries status among schoolchildren.

    PubMed

    Lin, Han-Shan; Lin, Jia-Rong; Hu, Suh-Woan; Kuo, Hsiao-Ching; Yang, Yi-Hsin

    2014-04-01

    The aim of this study was to investigate the associations between caries experience and daily intake of calcium (Ca), phosphorus (P), magnesium (Mg), and Ca/P ratio. A total of 2248 schoolchildren were recruited based on a population-based survey. Each participant received a dental examination and questionnaire interviews about the 24-hour dietary recalls and food frequency. The daily intake of Ca, P, Mg, and Ca/P ratio were inversely associated with primary caries index, but only the Ca/P ratio remained significant after adjusting for potential confounders. According to the Taiwanese Dietary Reference Intakes, the Ca/P ratio was related to both caries in primary teeth (odds ratio = 0.52, p = 0.02) and in permanent teeth (odds ratio = 0.59, p = 0.02). The daily intakes of Ca/P ratio remained an important factor for caries after considering potential confounding factors.

  2. Effect of fiber and phytate source and of calcium and phosphorus level on phytate hydrolysis in the chick.

    PubMed

    Ballam, G C; Nelson, T S; Kirby, L K

    1984-02-01

    Broiler chicks were fed a corn-soybean meal diet or a corn-soybean meal diet containing either 15% rice bran, 15% wheat bran, 15% alfalfa meal, 10% cellulose, or 10% cottonseed hulls. All diets contained 3190 kcal/kg of metabolizable energy, 22.8% protein, and either 1.0% calcium and .5% nonphytate phosphorus (Pnp) or .85% calcium and .42% Pnp. The diets were fed for 3 weeks at which time a digestion trial was conducted to determine the amount of phytate hydrolyzed. Chicks consuming diets containing the lower levels of calcium and Pnp hydrolyzed more phytate than those fed the higher levels of calcium and Pnp except when the diet contained rice bran. Less phytate was hydrolyzed in the rice bran diet at the lower calcium and Pnp levels. Phytate hydrolysis was not affected by wheat bran but was reduced by cottonseed hulls. At the lower levels of calcium and Pnp, alfalfa meal and cellulose significantly increased phytate hydrolysis by chicks. The hydrolysis of phytate was influenced more by calcium and by source than by fiber or by level of phytate fed.

  3. Involvement of Potassium Channels and Calcium-Independent Mechanisms in Hydrogen Sulfide-Induced Relaxation of Rat Mesenteric Small Arteries.

    PubMed

    Hedegaard, Elise R; Gouliaev, Anja; Winther, Anna K; Arcanjo, Daniel D R; Aalling, Mathilde; Renaltan, Nirthika S; Wood, Mark E; Whiteman, Matthew; Skovgaard, Nini; Simonsen, Ulf

    2016-01-01

    Endogenous hydrogen sulfide (H2S) is involved in the regulation of vascular tone. We hypothesized that the lowering of calcium and opening of potassium (K) channels as well as calcium-independent mechanisms are involved in H2S-induced relaxation in rat mesenteric small arteries. Amperometric recordings revealed that free [H2S] after addition to closed tubes of sodium hydrosulfide (NaHS), Na2S, and GYY4137 [P-(4-methoxyphenyl)-P-4-morpholinyl-phosphinodithioic acid] were, respectively, 14%, 17%, and 1% of added amount. The compounds caused equipotent relaxations in isometric myographs, but based on the measured free [H2S], GYY4137 caused more relaxation in relation to released free H2S than NaHS and Na2S in rat mesenteric small arteries. Simultaneous measurements of [H2S] and tension showed that 15 µM of free H2S caused 61% relaxation in superior mesenteric arteries. Simultaneous measurements of smooth muscle calcium and tension revealed that NaHS lowered calcium and caused relaxation of NE-contracted arteries, while high extracellular potassium reduced NaHS relaxation without corresponding calcium changes. In NE-contracted arteries, NaHS (1 mM) lowered the phosphorylation of myosin light chain, while phosphorylation of myosin phosphatase target subunit 1 remained unchanged. Protein kinase A and G, inhibitors of guanylate cyclase, failed to reduce NaHS relaxation, whereas blockers of voltage-gated KV7 channels inhibited NaHS relaxation, and blockers of mitochondrial complex I and III abolished NaHS relaxation. Our findings suggest that low micromolar concentrations of free H2S open K channels followed by lowering of smooth muscle calcium, and by another mechanism involving mitochondrial complex I and III leads to uncoupling of force, and hence vasodilation.

  4. Distribution of High-Conductance Calcium-Activated Potassium Channels in Rat Vestibular Epithelia

    PubMed Central

    Schweizer, Felix E.; Savin, David; Luu, Cindy; Sultemeier, David R.; Hoffman, Larry F.

    2011-01-01

    Voltage- and calcium-activated potassium channels (BK) are important regulators of neuronal excitability. BK channels seem to be crucial for frequency tuning in nonmammalian vestibular and auditory hair cells. However, there are a paucity of data concerning BK expression in mammalian vestibular hair cells. We therefore investigated the localization of BK channels in mammalian vestibular hair cells, specifically in rat vestibular neuroepithelia. We find that only a subset of hair cells in the utricle and the crista ampullaris express BK channels. BK-positive hair cells are located mainly in the medial striolar region of the utricle, where they constitute at most 12% of hair cells, and in the central zone of the horizontal crista. A majority of BK-positive hair cells are encapsulated by a calretinin-positive calyx defining them as type I cells. The remainder are either type I cells encapsulated by a calretinin-negative calyx or type II hair cells. Surprisingly, the number of BK-positive hair cells in the utricle peaks in juvenile rats and declines in early adulthood. BK channels were not found in vestibular afferent dendrites or somata. Our data indicate that BK channel expression in the mammalian vestibular system differs from the expression pattern in the mammalian auditory and the nonmammalian vestibular system. The molecular diversity of vestibular hair cells indicates a functional diversity that has not yet been fully characterized. The predominance of BK-positive hair cells within the medial striola of juvenile animals suggests that they contribute to a scheme of highly lateralized coding of linear head movements during late development. PMID:19731297

  5. Calcium activated potassium channel expression during human iPS cell-derived neurogenesis.

    PubMed

    Linta, Leonhard; Boeckers, Tobias M; Kleger, Alexander; Liebau, Stefan

    2013-07-01

    The family of calcium activated potassium channels of low and intermediate conductance, known as SK channels, consists of four members (SK1-4). These channels are widely expressed throughout the organism and involved in various cellular processes, such as the afterhyperpolarization in excitable cells but also in differentiation processes of various tissues. To date, the role of SK channels in developmental processes has been merely a marginal focus of investigation, although it is well accepted that cell differentiation and maturation affect the expression patterns of certain ion channels. Recently, several studies from our laboratory delineated the influence of SK channel expression and their respective activity on cytoskeletal reorganization in neural and pluripotent stem cells and regulation of cell fate determination toward the cardiac lineage in human and mouse pluripotent stem cells. Herein, we have now analyzed SK channel expression patterns and distribution at various stages of human induced pluripotent stem cell-derived neurogenesis particularly focusing on undifferentiated iPS cells, neural progenitors and mature neurons. All family members could be detected starting at the iPS cell level and were differentially expressed during the subsequent maturation process. Intriguingly, we found obvious discrepancies between mRNA and protein expression pointing toward a complex regulatory mechanism. Inhibition of SK channels with either apamin or clotrimazol did not have any significant effects on the speed or amount of neurogenesis in vitro. The abundance and specific regulation of SK channel expression during iPS cell differentiation indicates distinct roles of these ion channels not only for the cardiac but also for neuronal cell differentiation and in vitro neurogenesis.

  6. Potassium current kinetics in bursting secretory neurons: effects of intracellular calcium.

    PubMed

    Martínez, J J; Onetti, C G; García, E; Hernández, S

    1991-11-01

    1. The kinetics of delayed rectifier (IK) and transient potassium (IA) currents and their modification by intracellular calcium ions in bursting X-organ neurons of the crayfish were studied with whole-cell patch-clamp technique. Activation and inactivation kinetics were analyzed according to Hodgkin and Huxley-type equations. 2. IK activates with sigmoidal time course at membrane potentials more positive than -38.4 +/- 3.5 (SD) mV (n = 5), and does not inactivate. The conductance through delayed rectifier channels (gK) is described by the equation gK = GKn2. 3. IA activates at membrane potentials close to the resting potential (-52.2 +/- 4.3 mV, n = 5) and, after a peak, inactivates completely. The conductance through A-channels (gA) can be described by the product of independent activation and inactivation parameters: gA = GAa4b. Both activation and inactivation processes are voltage and time dependent. 4. Steady-state activation of IK and IA as well as inactivation of IA can be described by Boltzmann distributions for single particles with valencies of 2.55 +/- 0.01 (n = 5), 1.60 +/- 0.25 (n = 5), and 3.87 +/- 0.39 (n = 3), respectively. 5. Increasing [Ca2+]i, we observed the following: 1) a considerable inactivation of IK during test pulses, 2) an increase of maximal conductance for IA, 3) a reduction of the valency of IA inactivation gating particle (from 3.87 to 2.27), 4) a reduction of the inactivation time constants of IA, and 5) a shift of the inactivation steady-state curve to more positive membrane potentials.(ABSTRACT TRUNCATED AT 250 WORDS)

  7. Effect of calcium and potassium on antioxidant system of Vicia faba L. Under cadmium stress.

    PubMed

    Siddiqui, Manzer H; Al-Whaibi, Mohamed H; Sakran, Ahmed M; Basalah, Mohammed O; Ali, Hayssam M

    2012-01-01

    Cadmium (Cd) in soil poses a major threat to plant growth and productivity. In the present experiment, we studied the effect of calcium (Ca(2+)) and/or potassium (K(+)) on the antioxidant system, accumulation of proline (Pro), malondialdehyde (MDA), and content of photosynthetic pigments, cadmium (Cd) and nutrients, i.e., Ca(2+) and K(+) in leaf of Vicia faba L. (cv. TARA) under Cd stress. Plants grown in the presence of Cd exhibited reduced growth traits [root length (RL) plant(-1), shoot length (SL) plant(-1), root fresh weight (RFW) plant(-1), shoot fresh weight (SFW) plant(-1), root dry weight (RDW) plant(-1) and shoot dry weight (SDW) plant(-1)] and concentration of Ca(2+), K(+), Chlorophyll (Chl) a and Chl b content, except content of MDA, Cd and (Pro). The antioxidant enzymes [peroxidase (POD) and superoxide dismutase (SOD)] slightly increased as compared to control under Cd stress. However, a significant improvement was observed in all growth traits and content of Ca(2+), K(+), Chl a, Chl b, Pro and activity of antioxidant enzymes catalase (CAT), POD and SOD in plants subjected to Ca(2+) and/or K(+). The maximum alleviating effect was recorded in the plants grown in medium containing Ca(2+) and K(+) together. This study indicates that the application of Ca(2+) and/or K(+) had a significant and synergistic effect on plant growth. Also, application of Ca(2+) and/or K(+) was highly effective against the toxicity of Cd by improving activity of antioxidant enzymes and solute that led to the enhanced plant growth of faba bean plants.

  8. Tubocurarine blocks a calcium-dependent potassium current in rat tumoral pituitary cells.

    PubMed

    Vacher, P; Vacher, A M; Mollard, P

    1998-04-30

    We investigated the effects of potassium channel inhibitors on electrical activity, membrane ionic currents, intracellular calcium concentration ([Ca2+]i) and hormone release in GH3/B6 cells (a line of pituitary origin). Patch-clamp recordings show a two-component after hyperpolarization (AHP) following each action potential (current clamp) or a two-component tail current (voltage-clamp). Both components can be blocked by inhibiting Ca2+ influx. Application of D-tubocurarine (dTc) (20-500 microM) reversibly suppressed the slowly decaying Ca2+-activated K+ tail current (I AHPs) in a concentration-dependent manner. On the other hand, low doses of tetraethylammonium ions (TEA+) only blocked the rapidly decaying voltage- and Ca2+-activated K+ tail current (I AHPf). Therefore, GH3/B6 cells exhibit at least two quite distinct Ca2+-dependent K+ currents, which differ in size, voltage- and Ca2+-sensitivity, kinetics and pharmacology. These two currents also play quite separate roles in shaping the action potential. d-tubocurarine increased spontaneous Ca2+ action potential firing, whereas TEA increased action potential duration. Thus, both agents stimulated Ca2+ entry. I AHPs is activated by a transient increase in [Ca2+]i such as a thyrotrophin releasing hormone-induced Ca2+ mobilization. All the K+ channel inhibitors we tested: TEA, apamin, dTC and charybdotoxin, stimulated prolactin and growth hormone release in GH3/B6 cells. Our results show that I AHPs is a good sensor for subplasmalemmal Ca2+ and that dTc is a good pharmacological tool for studying this current.

  9. Dietary phosphorus affects the growth of larval Manduca sexta.

    PubMed

    Perkins, Marc C; Woods, H Arthur; Harrison, Jon F; Elser, James J

    2004-03-01

    Although phosphorus has long been considered an important factor in the growth of diverse biota such as bacteria, algae, and zooplankton, insect nutrition has classically focused on dietary protein and energy content. However, research in elemental stoichiometry has suggested that primary producer biomass has similar N:P ratios in aquatic and terrestrial systems, and phosphorus-rich herbivores in freshwater systems frequently face phosphorus-limited nutritional conditions. Therefore, herbivorous insects should also be prone to phosphorus limitation. We tested this prediction by rearing Manduca sexta larvae on artificial and natural (Datura wrightii leaves) diets containing varying levels of phosphorus (approximately 0.20, 0.55, or 1.2% phosphorus by dry weight). For both artificial and natural diets, increased dietary phosphorus significantly increased growth rates and body phosphorus contents, and shortened the time to the final instar molt. Caterpillars did not consistently exhibit compensatory feeding for phosphorus on either type of diet. The growth and body phosphorus responses were not explicable by changes in amounts of potassium or calcium, which co-varied with phosphorus in the diets. Concentrations of phosphorus in D. wrightii leaves collected in the field varied over a range in which leaf phosphorus is predicted to affect M. sexta's growth rates. These results suggest that natural variation in dietary phosphorus is likely to affect the growth rate and population dynamics of M. sexta, and perhaps larval insects more generally.

  10. Microalgal bacterial flocs treating paper mill effluent: A sunlight-based approach for removing carbon, nitrogen, phosphorus, and calcium.

    PubMed

    Van Den Hende, Sofie; Rodrigues, André; Hamaekers, Helen; Sonnenholzner, Stanislaus; Vervaeren, Han; Boon, Nico

    2017-04-03

    Treatment of upflow anaerobic sludge blanket (UASB) effluent from a paper mill in aerated activated sludge reactors involves high aeration costs. Moreover, this calcium-rich effluent leads to problematic scale formation. Therefore, a novel strategy for the aerobic treatment of paper mill UASB effluent in microalgal bacterial floc sequencing batch reactors (MaB-floc SBRs) is proposed, in which oxygen is provided via photosynthesis, and calcium is removed via bio-mineralization. Based on the results of batch experiments in the course of this study, a MaB-floc SBR was operated at an initial neutral pH. This SBR removed 58±21% organic carbon, 27±8% inorganic carbon, 77±5% nitrogen, 73±2% phosphorus, and 27±11% calcium. MaB-flocs contained 10±3% calcium, including biologically-influenced calcite crystals. The removal of calcium and inorganic carbon by MaB-flocs significantly decreased when inhibiting extracellular carbonic anhydrase (CA), an enzyme that catalyses the hydration and dehydration of CO2. This study demonstrates the potential of MaB-floc SBRs for the alternative treatment of calcium-rich paper mill effluent, and highlights the importance of extracellular CA in this treatment process.

  11. Bradykinin modulates potassium and calcium currents in neuroblastoma hybrid cells via different pertussis toxin-insensitive pathways.

    PubMed

    Wilk-Blaszczak, M A; Gutowski, S; Sternweis, P C; Belardetti, F

    1994-01-01

    In NG108-15 cells, bradykinin (BK) activates a potassium current (IK,BK) and inhibits the voltage-dependent calcium current (ICa,V). BK also stimulates a phosphatidylinositol-specific phospholipase C (PI-PLC). The subsequent release of inositol 1,4,5-trisphosphate and increase in intracellular calcium contribute to IK,BK, through activation of a calcium-dependent potassium current. In membranes from these cells, stimulation of PI-PLC by BK is mediated by Gq and/or G11, two homologous, pertussis toxin-insensitive G proteins. Here, we have investigated the role of Gq/11 in the electrical responses to BK. GTP gamma S mimicked and occluded both actions of BK, and both effects were insensitive to pertussis toxin. Perfusion of an anti-Gq/11 alpha antibody into the pipette suppressed IK,BK, but not the inhibition of ICa,V by BK. Thus, BK couples to IK,BK via Gq/11, but coupling to ICa,V is most likely via a different, pertussis toxin-insensitive G protein.

  12. Effects of variations in dietary calcium and phosphorus supply on plasma and bone osteocalcin concentrations and bone mineralization in growing pigs.

    PubMed

    Nicodemo, M L; Scott, D; Buchan, W; Duncan, A; Robins, S P

    1998-09-01

    Growing pigs were fed diets supplying 45% (low), 70% (intermediate) and 100% (high) recommended dietary allowances of calcium (the Ca:P ratio was kept constant), but otherwise adequate in nutrients. The effects of varying calcium and phosphorus intakes on bone and plasma osteocalcin were monitored. Mineral content of the diet did not affect feed conversion and live weight gain. Plasma phosphorus concentrations decreased significantly in pigs fed a low mineral diet compared with those fed the high mineral diet, but there were no changes in plasma calcium and osteocalcin concentrations. Bones from the low mineral group had marked reductions in dry matter, calcium and phosphorus contents, as well as increased collagen, pyridinoline and deoxypyridinoline concentrations: osteocalcin concentrations in bone were unaffected by treatment. The results showed no direct link between osteocalcin and the degree of bone mineralization.

  13. Interactive effects of dietary calcium, phosphorus and copper on performance and liver stores of pigs.

    PubMed

    Prince, T J; Hays, V W; Cromwell, G L

    1984-02-01

    Three experiments involving 304 pigs were conducted to determine the related effects of copper (Cu), calcium (Ca) and phosphorus (P) on the performance and liver Cu stores of growing-finishing pigs. Rate and efficiency of gain were improved by the addition of 250 ppm of Cu to the diets. Improvements in rate of gain averaged 6.6% (652 vs 696 g/d) to 60.5 kg body weight and 1.7% (713 vs 725 g/d) to 94.5 kg body weight. Feed:gain ratio was improved by 1.4% to 60.5 kg and 1.6% to 94.5 kg body weight when Cu was added to the diet. Increasing the dietary Ca and P levels from .65% Ca and .55% P to 1.2% Ca and .86 or 1.0% P resulted in increased (P less than .01) growth rate to 60 and 95 kg (649 vs 699 g/d and 700 vs 737 g/d, respectively), but feed efficiency was not affected (2.86 vs 2.84 and 3.18 vs 3.17 kg feed/kg gain, respectively.) Feeding the higher Ca and P levels resulted in increased liver Cu levels in pigs fed 250 ppm Cu (189 vs 323 ppm), but Ca and P did not affect liver Cu of pigs fed low Cu diets (29 vs 28 ppm). When dietary Ca and P were varied independently, the high Ca level increased liver Cu, but P had little effect on liver Cu. Increasing the dietary P level partially alleviated the effect of Ca on liver Cu.

  14. Effects of natural organic matter on calcium and phosphorus co-precipitation.

    PubMed

    Sindelar, Hugo R; Brown, Mark T; Boyer, Treavor H

    2015-11-01

    Phosphorus (P), calcium (Ca) and natural organic matter (NOM) naturally occur in all aquatic ecosystems. However, excessive P loads can cause eutrophic or hyper-eutrophic conditions in these waters. As a result, P regulation is important for these impaired aquatic systems, and Ca-P co-precipitation is a vital mechanism of natural P removal in many alkaline systems, such as the Florida Everglades. The interaction of P, Ca, and NOM is also an important factor in lime softening and corrosion control, both critical processes of drinking water treatment. Determining the role of NOM in Ca-P co-precipitation is important for identifying mechanisms that may limit P removal in both natural and engineered systems. The main goal of this research is to assess the role of NOM in inhibiting Ca and P co-precipitation by: (1) measuring how Ca, NOM, and P concentrations affect NOM's potential inhibition of co-precipitation; (2) determining the effect of pH; and (3) evaluating the precipitated solids. Results showed that Ca-P co-precipitation occurs at pH 9.5 in the presence of high natural organic matter (NOM) (≈30 mg L(-1)). The supersaturation of calcite overcomes the inhibitory effect of NOM seen at lower pH values. Higher initial P concentrations lead to both higher P precipitation rates and densities of P on the calcite surface. The maximum surface density of co-precipitated P on the precipitated calcite surface increases with increasing NOM levels, suggesting that NOM does prevent the co-precipitation of Ca and P.

  15. Efficacy of a novel calcium/potassium salt of (-)-hydroxycitric acid in weight control.

    PubMed

    Preuss, H G; Garis, R I; Bramble, J D; Bagchi, D; Bagchi, M; Rao, C V S; Satyanarayana, S

    2005-01-01

    The weight-loss efficacy of a novel, water-soluble, calcium-potassium salt of (-)-hydroxycitric acid (HCA-SX) was re-examined in 90 obese subjects (BMI: 30-50.8 kg/m2). We combined data from two previously reported randomized, double-blind, placebo-controlled clinical studies in order to achieve a better statistical evaluation based on a larger population. This re-examination of data also allowed us to reflect more intensely on various aspects of weight loss studies. Subjects were randomly divided into three groups: group A received a daily dose of HCA-SX 4, 667 mg (providing 2,800 mg HCA per day); group B was given a daily dose of a combination of HCA-SX 4,667 mg, niacin-bound chromium (NBC) 4 mg (providing 400 microg elemental chromium), and Gymnema sylvestre extract (GSE) 400 mg (providing 100 mg gymnemic acid); and group C received a placebo in three equally divided doses 30-60 min before each meal. All subjects were provided a 2,000 kcal diet/day and participated in a supervised walking program for 30 min/day, 5 days/week. Eighty-two subjects completed the study. At the end of 8 weeks, in group A, both body weight and BMI decreased by 5.4%, low-density lipoprotein and triglycerides levels were reduced by 12.9% and 6.9%, respectively, while high-density lipoprotein levels increased by 8.9%, serum leptin levels decreased by 38%, serotonin levels increased by 44.5% and urinary excretion of fat metabolites increased by 32-109%. Group B demonstrated similar beneficial changes, but generally to a greater extent. No significant adverse effects were observed. The combined results confirm that HCA-SX and, to a greater degree, the combination of HCA-SX plus NBC and GSE reduce body weight and BMI, suppress appetite, improve blood lipid profiles, increase serum leptin and serotonin levels and increase fat oxidation more than placebo. We conclude that dosage levels, timing of administration, subject compliance and bioavailability of HCA-SX significantly affect results and

  16. Developmental mapping of small-conductance calcium-activated potassium channel expression in the rat nervous system.

    PubMed

    Gymnopoulos, Marco; Cingolani, Lorenzo A; Pedarzani, Paola; Stocker, Martin

    2014-04-01

    Early electrical activity and calcium influx regulate crucial aspects of neuronal development. Small-conductance calcium-activated potassium (SK) channels regulate action potential firing and shape calcium influx through feedback regulation in mature neurons. These functions, observed in the adult nervous system, make them ideal candidates to regulate activity- and calcium-dependent processes in neurodevelopment. However, to date little is known about the onset of expression and regions expressing SK channel subunits in the embryonic and postnatal development of the central nervous system (CNS). To allow studies on the contribution of SK channels to different phases of development of single neurons and networks, we have performed a detailed in situ hybridization mapping study, providing comprehensive distribution profiles of all three SK subunits (SK1, SK2, and SK3) in the rat CNS during embryonic and postnatal development. SK channel transcripts are expressed at early stages of prenatal CNS development. The three SK channel subunits display different developmental expression gradients in distinct CNS regions, with time points of expression and up- or downregulation that can be associated with a range of diverse developmental events. Their early expression in embryonic development suggests an involvement of SK channels in the regulation of developmental processes. Additionally, this study shows how the postnatal ontogenetic patterns lead to the adult expression map for each SK channel subunit and how their coexpression in the same regions or neurons varies throughout development.

  17. Influence of dietary calcium, phosphorus, zinc and sodium phytate level on cataract incidence, growth and histopathology in juvenile chinook salmon (Oncorhynchus tshawytscha).

    PubMed

    Richardson, N L; Higgs, D A; Beames, R M; McBride, J R

    1985-05-01

    To determine the influence of wide variations in dietary levels of calcium, zinc and phytic acid (as sodium phytate) on growth and cataract incidence, juvenile chinook salmon held at 10-11 degrees C were fed daily to satiation for 105 d one of nine purified diets containing one of three levels (grams/kilogram) of calcium (averaged 4.8, 17.7, 50.2), zinc (averaged 0.05, 0.15, 0.39) and phytic acid (1.62, 6.46, 25.8). Diets were formulated to have a calcium-phosphorus ratio of close to unity when considering phosphorus sources other than sodium phytate. High dietary phytic acid concentration (25.8 g/kg) depressed chinook salmon growth, food and protein conversion [protein efficiency ratio (PER)] and thyroid function, increased mortality, promoted cataract formation (zinc at 0.05 g/kg) and induced anomalies in pyloric cecal structure. Calcium at 51 g/kg (or phosphorus) exacerbated the effects of high dietary phytate and low dietary zinc on cataract incidence. Moreover, high dietary levels of calcium (48-51 g/kg) coupled with phosphorus significantly impaired the growth and appetite of low phytic acid (1.62 g/kg) groups and led to nephrocalcinosis in low and high phytic acid groups. Plasma zinc levels were directly related to dietary zinc concentration and inversely related to dietary phytic acid level. Calcium (51 g/kg) and/or phosphorus reduced zinc bioavailability when the diet concurrently contained 0.05 g zinc and 25.8 g of phytic acid per kilogram. It is concluded that zinc is essential for normal eye development in juvenile chinook salmon. Further, zinc deficiency could not be induced in chinook salmon fed diets with high ratios of calcium (or phosphorus) to zinc alone. This required the simultaneous presence of a strong mineral (zinc)-binding agent.

  18. An evaluation of in vitro intestinal absorption of iron, calcium and potassium in chickens receiving gold nanoparticles.

    PubMed

    Sembratowicz, I; Ognik, K; Stępniowska, A

    2016-08-01

    This study evaluated the effect of oral administration of colloidal gold nanoparticles on accumulation of gold in the small intestine and intestinal absorption of iron, calcium and potassium under in vitro conditions. The gold nanoparticles are non-ionic, nanocrystalline, chemically pure particles 5 nm in size, produced in a physical process. In total, 126 one day-old Ross 308 chicks were assigned to 7 experimental groups of 18 birds each (3 replications of 6 individuals each). The control group (G-C) did not receive gold nanoparticles. Groups: Au-5(7), Au-10(7) and Au-15(7) received gold nanoparticles in their drinking water in the amounts of 5 mg l(-1) for group Au-5(7), 10 mg l(-1) for group Au-10(7) and 15 mg l(-1) for group Au-15(7) in 8-14, 22-28 and 36-42 d of life. The birds in groups Au-5(3), Au-10(3) and Au-15(3) received gold nanoparticles in the same amounts, but only in 8-10, 22-24 and 36-38 d of life. The study revealed that nanogold supplied via ingestion leads to dose- and time-dependent accumulation of gold in the intestinal walls. Nanogold present in the jejunum has a negative impact on the absorption of calcium, iron and potassium under in vitro conditions.

  19. Potassium Bicarbonate Supplementation Lowers Bone Turnover and Calcium Excretion in Older Men and Women: A Randomized Dose-Finding Trial

    PubMed Central

    Dawson-Hughes, Bess; Harris, Susan S; Palermo, Nancy J; Gilhooly, Cheryl H; Shea, M Kyla; Fielding, Roger A; Ceglia, Lisa

    2016-01-01

    The acid load accompanying modern diets may have adverse effects on bone and muscle metabolism. Treatment with alkaline salts of potassium can neutralize the acid load, but the optimal amount of alkali is not established. Our objective was to determine the effectiveness of two doses of potassium bicarbonate (KHCO3) compared with placebo on biochemical markers of bone turnover, and calcium and nitrogen (N) excretion. In this double-blind, randomized, placebo-controlled study, 244 men and women age 50 years and older were randomized to placebo or 1 mmol/kg or 1.5 mmol/kg of KHCO3 daily for 3 months; 233 completed the study. The primary outcomes were changes in 24-hour urinary N-telopeptide (NTX) and N; changes in these measures were compared across the treatment groups. Exploratory outcomes included 24-hour urinary calcium excretion, serum amino-terminal propeptide of type I procollagen (P1NP), and muscle strength and function assessments. The median administered doses in the low-dose and high-dose groups were 81 mmol/day and 122 mmol/day, respectively. When compared with placebo, urinary NTX declined significantly in the low-dose group (p =0.012, after adjustment for baseline NTX, gender, and change in urine creatinine) and serum P1NP declined significantly in the low-dose group (p =0.004, adjusted for baseline P1NP and gender). Urinary calcium declined significantly in both KHCO3 groups versus placebo (p < 0.001, adjusted for baseline urinary calcium, gender, and changes in urine creatinine and calcium intake). There was no significant effect of either dose of KHCO3 on urinary N excretion or on the physical strength and function measures. KHCO3 has favorable effects on bone turnover and calcium excretion and the lower dose appears to be the more effective dose. Long-term trials to assess the effect of alkali on bone mass and fracture risk are needed. PMID:25990255

  20. Insights into Broilers' Gut Microbiota Fed with Phosphorus, Calcium, and Phytase Supplemented Diets

    PubMed Central

    Borda-Molina, Daniel; Vital, Marius; Sommerfeld, Vera; Rodehutscord, Markus; Camarinha-Silva, Amélia

    2016-01-01

    Phytase supplementation in broiler diets is a common practice to improve phosphorus (P) availability and to reduce P loss by excretion. An enhanced P availability, and its concomitant supplementation with calcium (Ca), can affect the structure of the microbial community in the digestive tract of broiler chickens. Here, we aim to distinguish the effects of mineral P, Ca, and phytase on the composition of microbial communities present in the content and the mucosa layer of the gastrointestinal tract (GIT) of broiler chickens. Significant differences were observed between digesta and mucosa samples for the GIT sections studied (p = 0.001). The analyses of 56 individual birds showed a high microbial composition variability within the replicates of the same diet. The average similarity within replicates of digesta and mucosa samples across all diets ranged from 29 to 82% in crop, 19–49% in ileum, and 17–39% in caeca. Broilers fed with a diet only supplemented with Ca had the lowest body weight gain and feed conversion values while diets supplemented with P showed the best performance results. An effect of each diet on crop mucosa samples was observed, however, similar results were not obtained from digesta samples. Microbial communities colonizing the ileum mucosa samples were affected by P supplementation. Caeca-derived samples showed the highest microbial diversity when compared to the other GIT sections and the most prominent phylotypes were related to genus Faecalibacterium and Pseudoflavonifractor, known for their influence on gut health and as butyrate producers. Lower microbial diversity in crop digesta was linked to lower growth performance of birds fed with a diet only supplemented with Ca. Each diet affected microbial communities within individual sections, however, no diet showed a comprehensive effect across all GIT sections, which can primarily be attributed to the great variability among replicates. The substantial community differences between digesta

  1. Association between pruritus and serum concentrations of parathormone, calcium and phosphorus in hemodialysis patients.

    PubMed

    Tajbakhsh, Ramin; Joshaghani, Hamid Reza; Bayzayi, Faranak; Haddad, Mahboobeh; Qorbani, Mostafa

    2013-07-01

    Chronic renal disorders have a progressive course in most cases, and finally result in end-stage renal disease (ESRD). Hemodialysis (HD) is one of the mainstays in the treatment of these patients. Disturbance in calcium (Ca) and phosphorus (P) metabolism and alteration of serum levels of parathormone (PTH) are observed in these patients. One of the most common cutaneous manifestations in patients on HD is pruritus. The aim of this study is to evaluate the association between pruritus and serum concentrations of Ca, P and PTH in patients with chronic renal disease. This analytic, descriptive, cross-sectional study was performed on 120 patients on HD at the Fifth-Azar Hospital in Gorgan, Iran, in 2010. Information related to the patients, including age, gender, pruritus, time of pruritus and duration on dialysis, was extracted from questionnaires. Serum concentrations of intact PTH, Ca and P were measured. Data were analyzed by the chi-square test and SPSS-16 software. A P-value less than 0.05 was considered statistically significant. Among the 120 study patients, 50% were male and the mean age (±SD) was 49 ± 12.3 years. Sixty percent of the patients had pruritus, of whom 33.3% had PTH levels above the normal range. Among the 40% of the patients who did not have pruritus, 39.6% had PTH levels higher than the normal levels. The mean serum Ca and P levels were 8.44 ± 1.65 mg/dL and 5.48 ± 1.81 mg/dL, respectively. The mean (±SD) Ca-P product was 55.46 ± 47.16 and the mean PTH concentration was 274.34 ± 286.53 pg/mL. No significant association was found between pruritus and age, sex, serum PTH and P levels as well as Ca-P product. However, the association between serum Ca levels and pruritus was significant (P = 0.03). Our study showed that most patients with pruritus had serum Ca levels in the abnormal range (lower or higher), and there was no significant correlation between serum iPTH level and pruritis. Thus, good control of serum Ca levels is important to

  2. [Dependences of 137Cs and 90Sr concentration ratios in fish on the potassium and calcium concentrations in the freshwater reservoirs].

    PubMed

    Khomutinin, Iu V; Kashparov, V A; Kuz'menko, A V

    2011-01-01

    Activities of 137Cs and 90Sr, concentrations of the potassium and calcium ions in water and accumulation of the radionuclides in the organisms of various freshwater fish have been measured in the stagnant and semistagnant water reservoirs of Ukraine contaminated as a result of the Chernobyl accident. On the basis of the numerous experimental data for different regions the statistical parameters were derived describing the dependencies of the 137Cs and 90Sr concentration ratios in the muscle tissue of various fish species on the potassium and calcium concentrations in water, respectively.

  3. Exploring time of death from potassium, sodium, chloride, glucose & calcium analysis of postmortem synovial fluid in semi arid climate.

    PubMed

    Siddhamsetty, Arun K; Verma, Satish K; Kohli, Anil; Verma, Aditi; Puri, Dinesh; Singh, Archana

    2014-11-01

    Estimation of time of death (TOD) with fair accuracy from postmortem changes still remains an important but difficult task to be performed by every autopsy surgeon under different climatic conditions. The environment plays an important role in the process of decomposition and thereby affecting the levels of electrolytes and other biochemical parameters in the postmortem samples. Since, there is limited information available on the levels of these biochemical parameters from semi arid environment, the present study was aimed to explore time of death by analyzing electrolyte, glucose and calcium levels of postmortem synovial fluid collected from samples under such climatic conditions. The synovial fluid samples from two hundred and ten bodies brought to University College of Medical Sciences and associated Guru Teg Bahadur Hospital Delhi for medico-legal postmortem examination, during the period of November 2010 to April 2012, were analyzed for potassium, sodium, chloride, glucose and calcium. Univariate regression analysis of electrolyte concentrations of synovial fluid showed significant positive relationship between time of death and potassium (r = 0.840, p = 0.000). However, there was negative relationship between time of death and sodium (r = -0.175, p = 0.011) & glucose (r = -0.427, p = 0.000) and no significant relationship was found between time of death and calcium (r = 0.099, p = 0.152) & chloride (r = 0.082, p = 0.24) among the samples analyzed.

  4. Single-channel properties of BK-type calcium-activated potassium channels at a cholinergic presynaptic nerve terminal

    PubMed Central

    Sun, Xiao-Ping; Schlichter, Lyanne C; Stanley, Elis F

    1999-01-01

    A high-conductance calcium-activated potassium channel (BK KCa) was characterized at a cholinergic presynaptic nerve terminal using the calyx synapse isolated from the chick ciliary ganglion.The channel had a conductance of 210 pS in a 150 mM:150 mM K+ gradient, was highly selective for K+ over Na+, and was sensitive to block by external charybdotoxin or tetraethylammonium (TEA) and by internal Ba2+. At +60 mV it was activated by cytoplasmic calcium [Ca2+]i with a Kd of ≈0.5 μM and a Hill coefficient of ≈2.0. At 10 μM [Ca2+]i the channel was 50 % activated (V½) at -8.0 mV with a voltage dependence (Boltzmann slope-factor) of 32.7 mV. The V½ values hyperpolarized with an increase in [Ca2+]i while the slope factors decreased. There were no overt differences in conductance or [Ca2+]i sensitivity between BK channels from the transmitter release face and the non-release face.Open and closed times were fitted by two and three exponentials, respectively. The slow time constants were strongly affected by both [Ca2+]i and membrane potential changes.In cell-attached patch recordings BK channel opening was enhanced by a prepulse permissive for calcium influx through the patch, suggesting that the channel can be activated by calcium ion influx through neighbouring calcium channels.The properties of the presynaptic BK channel are well suited for rapid activation during the presynaptic depolarization and Ca2+ influx that are associated with transmitter release. This channel may play an important role in terminating release by rapid repolarization of the action potential. PMID:10420003

  5. Effect of gutta-percha solvents at different temperatures on the calcium, phosphorus and magnesium levels of human root dentin.

    PubMed

    Doğan, H; Taşman, F; Cehreli, Z C

    2001-08-01

    The aim of this study in vitro investigation was to evaluate the alterations caused by warmed gutta-percha solvents on the calcium, phosphorus and magnesium levels of root dentin. Extracted human anterior teeth, whose crowns and apical root thirds had been removed were used as root dentin specimens. The roots were sectioned longitudinally into two segments, cleaned and dried. Segments were divided into 12 groups (n=12). In 6 groups, the specimens received treatment with the following solvents at room temperature (22 degrees C): Chloroform, xylene, eucalyptol, orange oil, halothane and saline (control). Within each group, the specimens were further subgrouped into two to be incubated (100% humidity at 37 degrees C) for 5 and 10 min, respectively, following treatment with the solvents. The remaining six groups were treated with the same solvents which had been previously warmed to body temperature (37 degrees C) and received the same experimental procedures. The levels of calcium, phosphorus and magnesium in each specimen were analysed using energy dispersive spectrometric microanalysis. Statistical analysis of the readings showed that neither warming of the solvents nor prolonged incubation (treatment) time was capable of altering the histochemical composition of cut root dentin surfaces.

  6. Three-year growth response of young Douglas-fir to nitrogen, calcium, phosphorus, and blended fertilizers in Oregon and Washington

    USGS Publications Warehouse

    Mainwaring, Douglas B.; Maguire, Douglas A.; Perakis, Steven S.

    2014-01-01

    Studies of nutrient limitation in Douglas-fir forests of the Pacific Northwest focus predominantly on nitrogen, yet many stands demonstrate negligible or even negative growth response to nitrogen fertilization. To understand what nutrients other than nitrogen may limit forest productivity in this region, we tested six fertilizer treatments for their ability to increase stem volume growth response of dominant and co-dominant trees in young Douglas-fir plantations across a range of foliar and soil chemistry in western Oregon and Washington. We evaluated responses to single applications of urea, lime, calcium chloride, or monosodium phosphate at 16 sites, and to two site-specific nutrients blends at 12 of these sites. Across sites, the average stem volume growth increased marginally with urea, lime, and phosphorus fertilization. Fertilization responses generally aligned with plant and soil indicators of nutrient limitation. Response to nitrogen addition was greatest on soils with low total nitrogen and high exchangeable calcium concentrations. Responses to lime and calcium chloride additions were greatest at sites with low foliar calcium and low soil pH. Response to phosphorus addition was greatest on sites with low foliar phosphorus and high soil pH. Blended fertilizers yielded only marginal growth increases at one site, with no consistent effect across sites. Overall, our results highlight that calcium and phosphorus can be important growth limiting nutrients on specific sites in nitrogen-rich Douglas-fir forests of the Pacific Northwest.

  7. Conservation of body calcium by increased dietary intake of potassium: A potential measure to reduce the osteoporosis process during prolonged exposure to microgravity

    NASA Technical Reports Server (NTRS)

    Nechay, Bohdan R.

    1989-01-01

    During the 1988 NASA Summer Faculty Fellowship Program, it was proposed that the loss of skeletal calcium upon prolonged exposure to microgravity could be explained, in part, by a renal maladjustment characterized by an increased urinary excretion of calcium. It was theorized that because the conservation of body fluids and electrolytes depends upon the energy of adenosine triphosphate and enzymes that control the use of its energy for renal ion transport, an induction of renal sodium and potassium-dependent adenosine triphosphatase (Na + K ATPase) by oral loading with potassium would increase the reabsorption of sodium directly and that of calcium indirectly, leading to improved hydration and to reduced calcium loss. Preliminary studies showed the following. Rats drinking water containing 0.2 M potassium chloride for six to 13 days excreted in urine 22 muEq of calcium and 135 muEq of sodium per 100 grams of body weight per day. The corresponding values for control rats drinking tap water were 43 muEq and 269 muEq respectively. Renal Na + K ATPase activity in potassium loaded rats was higher than in controls. Thus, oral potassium loading resulted in increased Na + K ATPase activity and diminished urinary excretion of calcium and of sodium as predicted by the hypothesis. An extension of these studies to humans has the potential of resulting in development of harmless, non-invasive, drug-free, convenient measures to reduce bone loss and other electrolyte and fluid problems in space travelers exposed to prolonged periods of microgravity.

  8. Effects of a novel bacterial phytase expressed in Aspergillus Oryzae on digestibility of calcium and phosphorus in diets fed to weanling or growing pigs.

    PubMed

    Almeida, Ferdinando Nielsen; Sulabo, Rommel Casilda; Stein, Hans Henrik

    2013-03-05

    In 2 experiments, 48 weanling (initial BW: 13.5 ± 2.4 kg, Exp. 1) and 24 growing pigs (initial BW: 36.2 ± 4.0 kg, Exp. 2) were used to determine effects of a novel bacterial 6-phytase expressed in Aspergillus oryzae on the apparent total tract digestibility (ATTD) of phosphorus and calcium in corn-soybean meal diets fed to weanling and growing pigs. In Exp. 1 and 2, pigs were randomly allotted to 6 dietary treatments using a randomized complete block design and a balanced 2 period changeover design, respectively. In both experiments, 6 diets were formulated. The positive control diet was a corn-soybean meal diet with added inorganic phosphorus (Exp. 1: 0.42 and 0.86% standardized total tract digestible phosphorus and total calcium, respectively; Exp. 2: 0.32 and 0.79% standardized total tract digestible phosphorus and total calcium, respectively). A negative control diet and 4 diets with the novel phytase (Ronozyme HiPhos, DSM Nutritional Products Inc., Parsippany, NJ) added to the negative control diet at levels of 500, 1,000, 2,000, and 4,000 phytase units (FYT)/kg were also formulated. In Exp. 1, the ATTD of phosphorus was greater (P < 0.01) for the positive control diet (60.5%) than for the negative control diet (40.5%), but increased (linear and quadratic, P < 0.01) as phytase was added to the negative control diet (40.5% vs. 61.6%, 65.1%, 68.7%, and 68.0%). The breakpoint for the ATTD of phosphorus (68.4%) was reached at a phytase inclusion level of 1,016 FYT/kg. In Exp. 2, the ATTD of phosphorus was greater (P < 0.01) for the positive control diet (59.4%) than for the negative control diet (39.8%) and increased (linear and quadratic, P < 0.01) as phytase was added to the negative control diet (39.8% vs. 58.1%, 65.4%, 69.1%, and 72.8%). The breakpoint for the ATTD of phosphorus (69.1%) was reached at a phytase inclusion level of 801 FYT/kg. In conclusion, the novel bacterial 6-phytase improved the ATTD of phosphorus and calcium in

  9. [Dependence of the phosphorus and calcium metabolism of infants in the 1st year of life on the qualitative makeup of the food rations].

    PubMed

    Ott, V D; Mel'nik, A L

    1977-01-01

    An important role of balanced nutrition with the use of new milk "vitalakt" in preventing upsets of the phosphorus-calcium metabolism in nurslings is shown. A significant part played by poly-unsaturated fatty acids, against the background of moderate protein loads (up to 3.0-4.0 g per kg of the child's body weight per day) in upholding the calcium homeostasis is suggested.

  10. A calcium-dependent potassium current is increased by a single-gene mutation in Paramecium.

    PubMed

    Hennessey, T M; Kung, C

    1987-01-01

    The membrane currents of wild type Paramecium tetraurelia and the behavioral mutant teaA were analyzed under voltage clamp. The teaA mutant was shown to have a greatly increased outward current which was blocked completely by the combined use of internally delivered Cs+ and external TEA+. This, along with previous work (Satow, Y., Kung, C., 1976, J. Exp. Biol. 65:51-63) identified this as a K+ current. It was further found to be a calcium-activated K+ current since this increased outward K+ current cannot be elicited when the internal calcium is buffered with injected EGTA. The mutation pwB, which blocks the inward calcium current, also blocks this increased outward K+ current in teaA. This shows that this mutant current is activated by calcium through the normal depolarization-sensitive calcium channel. While tail current decay kinetic analysis showed that the apparent inactivation rates for this calcium-dependent K+ current are the same for mutant and wild type, the teaA current activates extremely rapidly. It is fully activated within 2 msec. This early activation of such a large outward current causes a characteristic reduction in the amplitude of the action potential of the teaA mutant. The teaA mutation had no effect on any of the other electrophysiological parameters examined. The phenotype of the teaA mutant is therefore a general decrease in responsiveness to depolarizing stimuli because of a rapidly activating calcium-dependent K+ current which prematurely repolarizes the action potential.

  11. Dendrochemical patterns of calcium, zinc, and potassium related to internal factors detected by energy dispersive X-ray fluorescence (EDXRF)

    USGS Publications Warehouse

    Smith, Kevin T.; Balouet, Jean Christophe; Shortle, Walter C.; Chalot, Michel; Beaujard, François; Grudd, Håkan; Vroblesky, Don A.; Burkem, Joel G.

    2014-01-01

    Energy dispersive X-ray fluorescence (EDXRF) provides highly sensitive and precise spatial resolution of cation content in individual annual growth rings in trees. The sensitivity and precision have prompted successful applications to forensic dendrochemistry and the timing of environmental releases of contaminants. These applications have highlighted the need to distinguish dendrochemical effects of internal processes from environmental contamination. Calcium, potassium, and zinc are three marker cations that illustrate the influence of these processes. We found changes in cation chemistry in tree rings potentially due to biomineralization, development of cracks or checks, heartwood/sapwood differentiation, intra-annual processes, and compartmentalization of infection. Distinguishing internal from external processes that affect dendrochemistry will enhance the value of EDXRF for both physiological and forensic investigations.

  12. Block by a putative antiarrhythmic agent of a calcium-dependent potassium channel in cultured hippocampal neurons.

    PubMed

    McLarnon, J G

    1990-05-04

    The actions of a new, putative antiarrhythmic drug, KC-8851 on single channel currents in hippocampal CA1 neurons have been studied. A calcium-dependent potassium current IK(Ca) was activated in the cultured neurons when a solution containing 140 mM K+ and 0.2 mM Ca2+ was applied to inside-out patches. Addition of the compound KC-8851, at concentrations between 1-50 microM, resulted in significant, dose-dependent, decreases in the mean open times of the K channel. The onward (blocking) rate constant was determined from a simple channel blockade scheme and was 5 x 10(7) M-1s-1; this rate constant was not dependent on voltage. Addition of KC-8851 to the solution bath with outside-out patches also caused significant decreases in the mean open times of the IK(Ca) channel consistent with channel blockade by the drug.

  13. Large-conductance calcium-activated potassium channels in purkinje cell plasma membranes are clustered at sites of hypolemmal microdomains.

    PubMed

    Kaufmann, Walter A; Ferraguti, Francesco; Fukazawa, Yugo; Kasugai, Yu; Shigemoto, Ryuichi; Laake, Petter; Sexton, Joseph A; Ruth, Peter; Wietzorrek, Georg; Knaus, Hans-Günther; Storm, Johan F; Ottersen, Ole Petter

    2009-07-10

    Calcium-activated potassium channels have been shown to be critically involved in neuronal function, but an elucidation of their detailed roles awaits identification of the microdomains where they are located. This study was undertaken to unravel the precise subcellular distribution of the large-conductance calcium-activated potassium channels (called BK, KCa1.1, or Slo1) in the somatodendritic compartment of cerebellar Purkinje cells by means of postembedding immunogold cytochemistry and SDS-digested freeze-fracture replica labeling (SDS-FRL). We found BK channels to be unevenly distributed over the Purkinje cell plasma membrane. At distal dendritic compartments, BK channels were scattered over the plasma membrane of dendritic shafts and spines but absent from postsynaptic densities. At the soma and proximal dendrites, BK channels formed two distinct pools. One pool was scattered over the plasma membrane, whereas the other pool was clustered in plasma membrane domains overlying subsurface cisterns. The labeling density ratio of clustered to scattered channels was about 60:1, established in SDS-FRL. Subsurface cisterns, also called hypolemmal cisterns, are subcompartments of the endoplasmic reticulum likely representing calciosomes that unload and refill Ca2+ independently. Purkinje cell subsurface cisterns are enriched in inositol 1,4,5-triphosphate receptors that mediate the effects of several neurotransmitters, hormones, and growth factors by releasing Ca2+ into the cytosol, generating local Ca2+ sparks. Such increases in cytosolic [Ca2+] may be sufficient for BK channel activation. Clustered BK channels in the plasma membrane may thus participate in building a functional unit (plasmerosome) with the underlying calciosome that contributes significantly to local signaling in Purkinje cells.

  14. Downregulation of Purkinje Cell Activity by Modulators of Small Conductance Calcium-Activated Potassium Channels In Rat Cerebellum

    PubMed Central

    Karelina, T. V.; Stepanenko, Yu. D.; Abushik, P. A.; Sibarov, D. A.; Antonov, S. M.

    2016-01-01

    Small-conductance calcium-activated potassium channels (SK channels) are widely expressed in CNS tissues. Their functions, however, have not been well studied. Participation of SK channels in Purkinje cell (PC) pacemaker activity has been studied predominantly in vitro. Here we studied for the first time the effects of SK channel activation by NS309 or CyPPA on the PC simple spike frequency in vivo in adult (3 – 6 months) and aged (22 – 28 months) rats using extracellular microelectrode recordings. Both pharmacological agents caused a statistically significant decrease in the PC simple spike frequency. The maximum value of the decrease in the simple spike frequency did not depend on age, whereas a statistically significant inhibition of the spike frequency was achieved faster in aged animals than in adult ones. In experiments on cultured neurons PCs were identified by the expression of calbindin as the PC-specific marker. Registration of transmembrane currents in cerebellar neurons revealed the direct action of NS309 and CyPPA on the SK channels of PC consisted in the enhancement of outward potassium currents and action potential after-hyperpolarization. Thus, SK channel activators can compensate for age-related changes of the autorhythmic functions of the cerebellum. PMID:28050270

  15. Measuring calcium, potassium, and nitrate in plant nutrient solutions using ion-selective electrodes in hydroponic greenhouse of some vegetables.

    PubMed

    Vardar, Gökay; Altıkatoğlu, Melda; Ortaç, Deniz; Cemek, Mustafa; Işıldak, İbrahim

    2015-01-01

    Generally, the life cycle of plants depends on the uptake of essential nutrients in a balanced manner and on toxic elements being under a certain concentration. Lack of control of nutrient levels in nutrient solution can result in reduced plant growth and undesired conditions such as blossom-end rot. In this study, sensitivity and selectivity tests for various polyvinylchloride (PVC)-based ion-selective membranes were conducted to identify those suitable for measuring typical concentration ranges of macronutrients, that is, NO(3-), K(+), and Ca(2+), in hydroponic solutions. The sensitivity and selectivity of PVC-membrane-based ion-selective sensors prepared with tetradodecylammoniumnitrate for NO(3-), valinomycin for K(+), and Ca ionophore IV for Ca(2+) were found to be satisfactory for measuring NO(3-), K(+), and Ca(2+) ions in nutrient solutions over typical ranges of hydroponic concentrations. Potassium, calcium, and nitrate levels that were utilized by cucumber and tomato seedlings in the greenhouse were different. The findings show that tomato plants consumed less amounts of nitrate than cucumber plants over the first 2 months of their growth. We also found that the potassium intake was higher than other nutritional elements tested for all plants.

  16. Effect of broiler litter ash and flue gas desulfurization gypsum on yield, calcium, phosphorus, copper, iron, manganese and zinc uptake by peanut

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Peanut (Arachis hyogaea) is an important oil seed crop that is grown as a principle source of edible oil and vegetable protein. Over 1.6 million acres of peanuts were planted in the United States during 2012. Peanuts require large amounts of calcium (Ca) and phosphorus (P). In 2010, over 10 milli...

  17. Comparative evaluation of a dentifrice containing calcium sodium phosphosilicate to a dentifrice containing potassium nitrate for dentinal hypersensitivity: A clinical study

    PubMed Central

    Satyapal, Tanya; Mali, Rohini; Mali, Amita; Patil, Vishakha

    2014-01-01

    Background: Calcium sodium phosphosilicate is a recently introduced desensitizing agent which acts by occluding the dentinal tubules and also resists acid decalcification. This study was designed to assess the efficacy of a new toothpaste containing 5% calcium sodium phosphosilicate for the treatment of dentinal hypersensitivity and also compare it with 5% potassium nitrate. Materials and Methods: Sixty patients with the chief complaint of dentinal hypersensitivity were enrolled and randomly divided into two groups. The visual analog scale (VAS) scores were taken for water and air stimuli at baseline, 3 weeks after usage of the respective toothpaste, and 3 weeks after discontinuation of the respective toothpaste. Results: Both the groups showed reduction in hypersensitivity scores at 3 weeks and 6 weeks for air stimulus and cold water. The calcium sodium phosphosilicate group, however, showed significantly reduction in hypersensitivity compared to the potassium nitrate group at any time point for both measures of hypersensitivity. Conclusion: The 5% calcium sodium phosphosilicate group showed immense reduction in dentinal hypersensitivity symptoms. The 5% calcium sodium phosphosilicate showed prolonged effects even after discontinuation as compared to 5% potassium nitrate, due to its dentinal tubular occlusion property. PMID:25425819

  18. Phosphorus in diet

    MedlinePlus

    Phosphorus is so readily available in the food supply so deficiency is rare. Excessively high levels of phosphorus in the blood, although rare, can combine with calcium to form deposits in soft tissues such ...

  19. Calcium-activated potassium channels in cultured human endothelial cells are not directly modulated by nitric oxide.

    PubMed

    Haburcák, M; Wei, L; Viana, F; Prenen, J; Droogmans, G; Nilius, B

    1997-04-01

    Nitric oxide has been proposed to directly activated large conductance Ca(2+)-dependent K+ channels (BKCa) [Bolotina V.M., Najibi S., Palacino J.J., Pagano P.J., Cohen R.A. Nitric oxide directly activates calcium-dependent potassium channels in vascular smooth muscle. Nature 1994; 368: 850-853]. The nitric oxide (NO) donor S-nitrosocysteine (SNOC) was used to evaluate a possible direct modulation of BKCa by NO in EAhy926 (EA cells), a cultured human umbilical vein derived endothelial cell line, using the whole-cell, cell-attached and inside-out configuration of the patch-clamp technique, together with simultaneous amperometric measurement of NO and the concentration of free intracellular calcium [Ca2+]i. BKCa channels with a large conductance of approximately 190 pS, voltage-dependent activation and a reversal potential close to -80 mV have been identified in EA cells. Exposure of EA cells in the experimental chamber to 1 mM SNOC delivered approximately 5 microM NO, as recorded by an amperometric probe in situ. SNOC produced a modest increases in [Ca2+]i that was insufficient to activate BKCa channels. NO alone neither activated BKCa channels directly nor modulated preactivated BKCa channels in EA cells. These results do not support a direct modulatory effect of NO on large conductance BKCa channels in cultured endothelial cells.

  20. Volumes from which calcium and phosphorus X-rays arise in electron probe emission microanalysis of bone: Monte Carlo simulation.

    PubMed

    Howell, P G T; Boyde, A

    2003-06-01

    Monte Carlo simulations of trajectories for electrons with initial energy of 10 keV through 30 keV were used to map the 3D location of characteristic x-ray photon production for the elements C, P, and Ca until the electrons either escaped as backscattered electrons (BSE) or had insignificant energy. The x-ray production volumes for phosphorus slightly exceed those for calcium, but both greatly exceed the volume through which BSE travel prior to leaving the sample. The x-ray volumes are roughly hemispherical in shape, and the oblate spheroid from which BSE derive occupies only the upper third to half the volume of x-ray generation. Energy-dispersive x-ray emission microanalysis (EDX) may not be secure as a method for the quantitation of BSE images of bone in the scanning electron microscope (SEM). Ca:P elemental ratios from EDX analyses may also be imperfect.

  1. Effect of capsaicin and analogues on potassium and calcium currents and vanilloid receptors in Xenopus embryo spinal neurones.

    PubMed Central

    Kuenzi, F. M.; Dale, N.

    1996-01-01

    1. The potassium current in embryo spinal neurones of Xenopus consists of at least two kinetically distinct components with overlapping voltage-dependencies of activation. We investigated whether capsaicin might specifically block these components in acutely dissociated neurones from stage 37/38 embryos by use of standard patch clamp techniques. 2. Capsaicin caused a time-dependent block of both the slow and fast components of the potassium current. The concentration-dependence was described by the Hill equation with a KD of 21 microM and a coefficient of 1.5 (n = 9-11 at each concentration). Differences between the observed and fitted values were not significant at the 5% level (chi(2) = 2.80, 6 degrees of freedom). 3. Capsaicin did not affect the time course or voltage-sensitivity of activation, but the steady-state block was voltage-dependent. The block could be relieved by hyperpolarization, and the rate of the removal of block was voltage- and time-dependent. The time constant for the blocking reaction was also voltage-dependent for voltage steps below +30 mV, but above this level it was voltage-independent. These results suggest that capsaicin blocks potassium channels by an open channel mechanism. 4. Other derivatives of vanillin, such as capsazepine, resiniferatoxin, and piperine also blocked potassium channels. Capsazepine and resiniferatoxin caused a greater block than similar concentrations of capsaicin, and in the case of capsazepine, the block was also clearly time-dependent. 5. Capsaicin and capsazepine also blocked calcium currents in a time-dependent manner. Fitting the Hill equation to the averaged data gave a KD of 43.5 microM, and a coefficient of 1.35 (n = 11 at each concentration). The fitted values were not significantly different from the observed means at the 5% level (chi(2) = 12.1, 6 degrees of freedom). 6. Six out of 29 Rohon-Beard sensory neurones responded to capsaicin with an inward current that appeared to be similar to the capsaicin

  2. Dioxins, furans, biphenyls, arsenic, thorium and uranium in natural and anthropogenic sources of phosphorus and calcium used in agriculture.

    PubMed

    Avelar, A C; Ferreira, W M; Pemberthy, D; Abad, E; Amaral, M A

    2016-05-01

    The aim of this study was to assess the presence of dioxins, furans and biphenyls, and the inorganic contaminants such as arsenic (As), thorium (Th) and uranium (U) in three main products used in Agriculture in Brazil: feed grade dicalcium phosphate, calcined bovine bone meal and calcitic limestone. The first two are anthropogenic sources of phosphorus and calcium, while calcitic limestone is a natural unprocessed mineral. Regarding to dioxin-like substances, all samples analyzed exhibited dioxins (PCDD) and furans (PCDF) and dioxin-like polychlorinated biphenyls (dl-PCBs) concentrations below limit of detection (LOD). In general, achieved is in accordance with regulation in Brazil where is established a maximum limit in limestone used in the citric pulp production (0.50pg WHO-TEQ g(-1)). In addition, reported data revealed very low levels for limestone in comparison with similar materials reported by European legislation. As result for toxic metals, achieved data were obtained using Instrumental Neutron Activation Analysis (INAA). On one hand, limestone sample exhibits the largest arsenic concentration. On another hand, dicalcium phosphate exhibited the largest uranium concentration, which represents a standard in animal nutrition. Therefore, it is phosphorus source in the animal feed industry can be a goal of concern in the feed field.

  3. Incorporation of phosphorus guest ions in the calcium silicate phases of Portland cement from 31P MAS NMR spectroscopy.

    PubMed

    Poulsen, Søren L; Jakobsen, Hans J; Skibsted, Jørgen

    2010-06-21

    Portland cements may contain small quantities of phosphorus (typically below 0.5 wt % P(2)O(5)), originating from either the raw materials or alternative sources of fuel used to heat the cement kilns. This work reports the first (31)P MAS NMR study of anhydrous and hydrated Portland cements that focuses on the phase and site preferences of the (PO(4))(3-) guest ions in the main clinker phases and hydration products. The observed (31)P chemical shifts (10 to -2 ppm), the (31)P chemical shift anisotropy, and the resemblance of the lineshapes in the (31)P and (29)Si MAS NMR spectra strongly suggest that (PO(4))(3-) units are incorporated in the calcium silicate phases, alite (Ca(3)SiO(5)) and belite (Ca(2)SiO(4)), by substitution for (SiO(4))(4-) tetrahedra. This assignment is further supported by a determination of the spin-lattice relaxation times for (31)P in alite and belite, which exhibit the same ratio as observed for the corresponding (29)Si relaxation times. From simulations of the intensities, observed in inversion-recovery spectra for a white Portland cement, it is deduced that 1.3% and 2.1% of the Si sites in alite and belite, respectively, are replaced by phosphorus. Charge balance may potentially be achieved to some extent by a coupled substitution mechanism where Ca(2+) is replaced by Fe(3+) ions, which may account for the interaction of the (31)P spins with paramagnetic Fe(3+) ions as observed for the ordinary Portland cements. A minor fraction of phosphorus may also be present in the separate phase Ca(3)(PO(4))(2), as indicated by the observation of a narrow resonance at delta((31)P) = 3.0 ppm for two of the studied cements. (31)P{(1)H} CP/MAS NMR spectra following the hydration of a white Portland cement show that the resonances from the hydrous phosphate species fall in the same spectral range as observed for (PO(4))(3-) incorporated in alite. This similarity and the absence of a large (31)P chemical shift ansitropy indicate that the hydrous (PO(4

  4. Calcium nitrate addition to control the internal load of phosphorus from sediments of a tropical eutrophic reservoir: microcosm experiments.

    PubMed

    Yamada, T M; Sueitt, A P E; Beraldo, D A S; Botta, C M R; Fadini, P S; Nascimento, M R L; Faria, B M; Mozeto, A A

    2012-12-01

    The main objective of this study was to perform laboratory experiments on calcium nitrate addition to sediments of a tropical eutrophic urban reservoir (Ibirité reservoir, SE Brazil) to immobilize the reactive soluble phosphorus (RSP) and to evaluate possible geochemical changes and toxic effects caused by this treatment. Reductions of 75 and 89% in the concentration of RSP were observed in the water column and interstitial water, respectively, after 145 days of nitrate addition. The nitrate application increased the rate of autotrophic denitrification, causing a consumption of 98% of the added nitrate and oxidation of 99% of the acid volatile sulfide. As a consequence, there were increases in the sulfate and iron (II) concentrations in the sediment interstitial water and water column, as well as changes in the copper speciation in the sediments. Toxicity tests initially indicated that the high concentrations of nitrate and nitrite in the sediment interstitial water (up to 2300 mg L(-1) and 260 mg L(-1), respectively) were the major cause of mortality of Ceriodaphnia silvestrii and Chironomus xanthus. However, at the end of the experiment, the sediment toxicity was completely removed and a reduction in the 48 h-EC50 of the water was also observed. Based on these results we can say that calcium nitrate treatment proved to be a valuable tool in remediation of eutrophic aquatic ecosystems leading to conditions that can support a great diversity of organisms after a restoration period.

  5. Cholinergic modulation of large-conductance calcium-activated potassium channels regulates synaptic strength and spine calcium in cartwheel cells of the dorsal cochlear nucleus.

    PubMed

    He, Shan; Wang, Ya-Xian; Petralia, Ronald S; Brenowitz, Stephan D

    2014-04-09

    Acetylcholine is a neuromodulatory transmitter that controls synaptic plasticity and sensory processing in many brain regions. The dorsal cochlear nucleus (DCN) is an auditory brainstem nucleus that integrates auditory signals from the cochlea with multisensory inputs from several brainstem nuclei and receives prominent cholinergic projections. In the auditory periphery, cholinergic modulation serves a neuroprotective function, reducing cochlear output under high sound levels. However, the role of cholinergic signaling in the DCN is less understood. Here we examine postsynaptic mechanisms of cholinergic modulation at glutamatergic synapses formed by parallel fiber axons onto cartwheel cells (CWCs) in the apical DCN circuit from mouse brainstem slice using calcium (Ca) imaging combined with two-photon laser glutamate uncaging onto CWC spines. Activation of muscarinic acetylcholine receptors (mAChRs) significantly increased the amplitude of both uncaging-evoked EPSPs (uEPSPs) and spine Ca transients. Our results demonstrate that mAChRs in CWC spines act by suppressing large-conductance calcium-activated potassium (BK) channels, and this effect is mediated through the cAMP/protein kinase A signaling pathway. Blocking BK channels relieves voltage-dependent magnesium block of NMDA receptors, thereby enhancing uEPSPs and spine Ca transients. Finally, we demonstrate that mAChR activation inhibits L-type Ca channels and thus may contribute to the suppression of BK channels by mAChRs. In summary, we demonstrate a novel role for BK channels in regulating glutamatergic transmission and show that this mechanism is under modulatory control of mAChRs.

  6. Cholinergic Modulation of Large-Conductance Calcium-Activated Potassium Channels Regulates Synaptic Strength and Spine Calcium in Cartwheel Cells of the Dorsal Cochlear Nucleus

    PubMed Central

    He, Shan; Wang, Ya-Xian; Petralia, Ronald S.

    2014-01-01

    Acetylcholine is a neuromodulatory transmitter that controls synaptic plasticity and sensory processing in many brain regions. The dorsal cochlear nucleus (DCN) is an auditory brainstem nucleus that integrates auditory signals from the cochlea with multisensory inputs from several brainstem nuclei and receives prominent cholinergic projections. In the auditory periphery, cholinergic modulation serves a neuroprotective function, reducing cochlear output under high sound levels. However, the role of cholinergic signaling in the DCN is less understood. Here we examine postsynaptic mechanisms of cholinergic modulation at glutamatergic synapses formed by parallel fiber axons onto cartwheel cells (CWCs) in the apical DCN circuit from mouse brainstem slice using calcium (Ca) imaging combined with two-photon laser glutamate uncaging onto CWC spines. Activation of muscarinic acetylcholine receptors (mAChRs) significantly increased the amplitude of both uncaging-evoked EPSPs (uEPSPs) and spine Ca transients. Our results demonstrate that mAChRs in CWC spines act by suppressing large-conductance calcium-activated potassium (BK) channels, and this effect is mediated through the cAMP/protein kinase A signaling pathway. Blocking BK channels relieves voltage-dependent magnesium block of NMDA receptors, thereby enhancing uEPSPs and spine Ca transients. Finally, we demonstrate that mAChR activation inhibits L-type Ca channels and thus may contribute to the suppression of BK channels by mAChRs. In summary, we demonstrate a novel role for BK channels in regulating glutamatergic transmission and show that this mechanism is under modulatory control of mAChRs. PMID:24719104

  7. Diffusion of sodium, potassium, calcium, manganese, and radon in tuff and clinoptilolite under leaching

    NASA Astrophysics Data System (ADS)

    Dikii, N. P.; Dovbnya, A. N.; Lyashko, Yu. V.; Medvedev, D. V.; Medvedeva, E. P.; Uvarov, V. L.; Achkasov, K. V.

    2011-07-01

    Nuclear physics methods are used to determine the diffusion coefficients of Na, Ca, Mn, K, and 222Rn in clinoptilolite (Sokirnitsa occurrence, Ukraine) and in natural tuff (Yucca Mountain, Nevada, United States) and in tuff irradiated by γ-quanta ( E max = 23 MeV) to a dose of 107 Gy at a leaching temperature of 37°C. The diffusion coefficients of sodium and potassium in clinoptilolite are found to differ considerably: 4 × 10-17 and 2 × 10-20 m2/s, respectively. This indicates the influence of aquacomplexes on the cation transfer. The diffusion coefficient of radon in these materials is determined: in clinoptilolite it equals 2.5 × 10-12 m2/s.

  8. Role of Calcium-activated Potassium Channels in Atrial Fibrillation Pathophysiology and Therapy

    PubMed Central

    Diness, Jonas G.; Bentzen, Bo H.; Sørensen, Ulrik S.

    2015-01-01

    Abstract: Small-conductance Ca2+-activated potassium (SK) channels are relative newcomers within the field of cardiac electrophysiology. In recent years, an increased focus has been given to these channels because they might constitute a relatively atrial-selective target. This review will give a general introduction to SK channels followed by their proposed function in the heart under normal and pathophysiological conditions. It is revealed how antiarrhythmic effects can be obtained by SK channel inhibition in a number of species in situations of atrial fibrillation. On the contrary, the beneficial effects of SK channel inhibition in situations of heart failure are questionable and still needs investigation. The understanding of cardiac SK channels is rapidly increasing these years, and it is hoped that this will clarify whether SK channel inhibition has potential as a new anti–atrial fibrillation principle. PMID:25830485

  9. Gain control of synaptic response function in cerebellar nuclear neurons by a calcium activated potassium conductance

    PubMed Central

    Feng, Steven Si; Lin, Risa; Gauck, Volker; Jaeger, Dieter

    2013-01-01

    Small conductance Ca2+ activated potassium (SK) current provides an important modulator of excitatory synaptic transmission, which undergoes plastic regulation via multiple mechanisms. We examined whether inhibitory input processing is also dependent on SK current in the cerebellar nuclei (CN), where inhibition provides the only route of information transfer from the cerebellar cortical Purkinje cells. We employed dynamic clamping in conjunction with computer simulations to address this question. We found that SK current plays a critical role in the inhibitory synaptic control of spiking output. Specifically, regulation of SK current density resulted in a gain control of spiking output, such that low SK current promoted large output signaling for large inhibitory cell input fluctuations due to Purkinje cell synchronization. In contrast, smaller non-synchronized Purkinje cell input fluctuations were not amplified. Regulation of SK density in the CN therefore would likely lead to important consequences for the transmission of synchronized Purkinje cell activity to the motor system. PMID:23605187

  10. Effect of crude protein and phosphorus level on growth performance, bone mineralisation and phosphorus, calcium and nitrogen utilisation in grower-finisher pigs.

    PubMed

    Varley, Patrick F; Flynn, Bernie; Callan, James J; O'Doherty, John V

    2011-04-01

    Two experiments in a 2 x 2 factorial arrangement were conducted to evaluate the effect of crude protein (CP) (130 vs. 200 g/kg) and phosphorus (P) (4.0 vs. 6.0 g total P/kg) level in a phytase supplemented diet (500 FTU [phytase units]/kg) in grower-finisher pigs. Owing to the design of the experiment, as dietary P level increased, there was also an increase in dietary calcium (Ca) level in order to maintain a dietary Ca to P ratio of 1.6:1. In Experiment 1, four diets were fed to 56 pigs (n = 14, initial body weight [BW] 36.7 +/- 4.2 kg) to investigate the interaction between CP and P on growth performance, bone mineralisation and digesta pH. Experiment 2 consisted of 16 entire male pigs (n = 4; offered identical diets to that offered in Experiment 1) for the determination of total tract apparent digestibility and nitrogen (N), P and Ca utilisation. There was an interaction between CP and P level on bone ash, bone P and bone Ca concentrations (p < 0.05). Pigs offered low CP-low P diets had a higher bone ash, P and Ca concentrations than pigs offered high CP-low P diets. However, there was no effect of CP level at high P levels on bone ash, P and Ca concentrations. Pigs offered low P diets had a lower ileal pH compared with pigs offered high P diets (p < 0.05). In conclusion, offering pigs a high CP-low P, phytase-supplemented diet resulted in a decrease in bone mineralisation.

  11. In utero physiology: role in nutrient delivery and fetal development for calcium, phosphorus, and vitamin D

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Only limited aspects of the transfer of calcium across the placenta to the fetus are known. Clinical outcome studies suggest that bone mineral mass in newborn infants is related to maternal size and dairy intake. Available data indicate that vitamin D deficiency may also limit in utero fetal bone mi...

  12. Inactivation of a high conductance calcium dependent potassium current in rat hippocampal neurons.

    PubMed

    McLarnon, J G

    1995-06-23

    Inactivating, high conductance BK-type currents have been recorded from inside-out patches (internal and external K+ of 140 mM and 5 mM, respectively), obtained from cultured rat hippocampal neurons. The presence of prominent inactivation, not normally associated with BK channel activity, was dependent on two factors: a depolarizing step to 0 mV from a holding level of -80 mV and internal calcium at a concentration of 0.7 microM. Without the prior conditioning step to a negative potential, unitary currents were not evident at 0 mV; in addition, such currents were not elicited with the stimulus protocol if the internal Ca2+ was reduced to a level of 0.3 microM. Concomitant with current inactivation was the finding of a delayed activation of BK currents following the depolarizing step. Higher internal calcium, at 100 microM, led to persistent and sustained channel activity at 0 mV which was not dependent on a prior step to -80 mV. These results may be relevant to the complex nature of the repolarizing neuronal current Ic which is the macroscopic analogue of the unitary BK current.

  13. Molecular Information of charybdotoxin blockade in the large conductance calcium-activated potassium channel.

    PubMed

    Qiu, Su; Yi, Hong; Liu, Hui; Cao, Zhijian; Wu, Yingliang; Li, Wenxin

    2009-07-01

    The scorpion toxin, charybdotoxin (ChTX), is the first identified peptide inhibitor for the large-conductance Ca2+ and voltage-dependent K+ (BK) channel, and the chemical information of the interaction between ChTX and BK channel remains unclear today. Using combined computational methods, we obtained a ChTX-BK complex structure model, which correlated well with the mutagenesis data. In this complex, ChTX mainly used its beta-sheet domains to associate the BK channel with a conserved pore-blocking Lys27. Another crucial Tyr36 residue of ChTX lied over the loop connecting selectivity filter and S6 helix of BK channel, forming a hydrogen bond with Gly291 of BK channel. Besides, the unique turret region of BK channel was found to be far away from bound ChTX, which could explain the fact that many BK channel blockers show less selectivity over Kv channels. Together, all these information is helpful to reveal the diverse interactions between scorpion toxins and potassium channels and can accelerate the molecular engineering of specific inhibitor design.

  14. Role of calcium and potassium channels in effects of hydrogen sulfide on frog myocardial contractility.

    PubMed

    Sitdikova, G F; Khaertdinov, N N; Zefirov, A L

    2011-06-01

    The effects of sodium hydrosulfide NaHS, a donor of hydrogen sulfide H2S, on the force of muscle contraction were examined on isolated myocardial strips from frog ventricles. NaHS decreased the amplitude of muscle contractions in a dose-dependent manner under normal conditions and during inhibition of Ca channels with nifedipine. In contrast, under conditions of blockade of ATP-dependent potassium channels with glibenclamide, NaHS exerted a positive inotropic effect from the first minute of application. Neither blockade, nor activation of ATP-dependent K-channels with glibenclamide modulated the negative inotropic effect of NaHS. Inhibition of K-channels with tetraethylammonium (TEA) (3, 5, 10 mM) or 4-aminopyridine increased the amplitude of myocardial contractions. Preliminary application of 4-aminopyridine or TEA (3 mM) did not eliminate NaHS-induced negative inotropic effect, although higher TEA concentrations (5 or 10 mM) prevented it. The data indicate that the targets of H(2)S in frog myocardium are ATP-dependent, Ca-activated, and voltage-dependent K-channels.

  15. Cyclic AMP enhances calcium-dependent potassium current in Aplysia neurons.

    PubMed

    Ewald, D; Eckert, R

    1983-12-01

    The effect on the Ca-dependent potassium current, IK(Ca), of procedures that increase intracellular cAMP levels was studied in Aplysia neurons using three different pharmacological approaches. Exposure to cAMP analogues which were either resistant to or protected from phosphodiesterase hydrolysis caused an increase in IK(Ca) from 30 to 50% in 10 min. The degree of reversibility of this effect varied from complete with db cAMP to very little with pcpt cAMP. Exposure to cholera toxin, which stimulates the synthesis of endogenous cAMP, increased IK(Ca) 25% in 10 min and the effect was not reversible. Both approaches were effective in all seven neuron types studied. Application of serotonin plus phosphodiesterase inhibitor caused an increase in IK(Ca) in neuron R15 but not in the other neuron types. Application of pentylene tetrazole (PTZ) led to a decrease in IK(Ca). It is proposed that elevation of cyclic AMP mediates an increased sensitivity of the IK(Ca) channel to Ca ions.

  16. Physicochemical changes in dry-cured hams salted with potassium, calcium and magnesium chloride as a partial replacement for sodium chloride.

    PubMed

    Aliño, M; Grau, R; Toldrá, F; Barat, J M

    2010-10-01

    The reduction of added sodium chloride in dry-cured ham has been proposed to reduce dietary sodium intake in Mediterranean countries. The effect of substituting sodium chloride with potassium chloride, calcium chloride and magnesium chloride on some physicochemical characteristics of dry-cured ham during processing was evaluated. The results showed that hams salted with a mixture of sodium and potassium chloride registered higher salt concentrations and lower water contents and thus, needed less time to reach the required weight loss at the end of the process. The opposite effect was observed when calcium and magnesium chloride were added to the salt mixture. The observed differences in the texture and colour parameters were mainly due to differences in water and salt content.

  17. Sources of activator calcium for potassium- and serotonin-induced constriction of isolated bovine cerebral arteries

    SciTech Connect

    Not Available

    1986-03-01

    Previous in vitro studies with the calcium channel blockers (CCB) indirectly suggest that K/sup +/ and serotonin (5HT) constrict bovine middle cerebral arteries (BMCA) by promoting the influx of extracellular calcium (Ca) through CCB-sensitive channels. In this study, the authors directly determined the sources of activator Ca for K/sup +/- and 5HT-induced constriction of BMCA, using radiolabelled /sup 4/)2%Ca and /sup 3/H-sorbitol. EGTA-resistant Ca uptake, an estimate of Ca influx into vascular smooth muscle, was determined by exposure to Ca-deficient 2 mM EGTA solutions at 1/sup 0/C. The total Ca content of BMCA was 4.4 nmole/mg (wet wt.) after equilibration at 37/sup 0/C. The total exchangeable Ca content was 1.64 nmole/mg after 1 hr of /sup 45/Ca loading; the Ca content of the extracellular water was 0.30 nmole/mg, as estimated from the /sup 3/H-sorbitol space (0.25 ul/mg). The EGTA-resistant Ca uptake at 1 hr was 134 pmole/mg. K/sup +/ and 5HT significantly increased EGTA-resistant Ca uptake during 5 min of /sup 45/Ca loading; for K/sup +/, Ca uptake increased from 71 to 202 pmole/mg, and for 5HT, from 65 to 102 pmole/mg. Verapamil (10/sup -5/ M) or nifedipine (3.3 x 10/sup -7/ M) significantly blocked the increase in EGTA-resistant Ca uptake induced by K/sup +/ or 5HT. These results provide direct evidence that K/sup +/ or 5HT may constrict BMCA by promoting the influx of extracellular Ca through CCB-sensitive channels.

  18. Duration differences of corticostriatal responses in striatal projection neurons depend on calcium activated potassium currents

    PubMed Central

    Arias-García, Mario A.; Tapia, Dagoberto; Flores-Barrera, Edén; Pérez-Ortega, Jesús E.; Bargas, José; Galarraga, Elvira

    2013-01-01

    The firing of striatal projection neurons (SPNs) exhibits afterhyperpolarizing potentials (AHPs) that determine discharge frequency. They are in part generated by Ca2+-activated K+-currents involving BK and SK components. It has previously been shown that suprathreshold corticostriatal responses are more prolonged and evoke more action potentials in direct pathway SPNs (dSPNs) than in indirect pathway SPNs (iSPNs). In contrast, iSPNs generate dendritic autoregenerative responses. Using whole cell recordings in brain slices, we asked whether the participation of Ca2+-activated K+-currents plays a role in these responses. Secondly, we asked if these currents may explain some differences in synaptic integration between dSPNs and iSPNs. Neurons obtained from BAC D1 and D2 GFP mice were recorded. We used charybdotoxin and apamin to block BK and SK channels, respectively. Both antagonists increased the depolarization and delayed the repolarization of suprathreshold corticostriatal responses in both neuron classes. We also used NS 1619 and NS 309 (CyPPA), to enhance BK and SK channels, respectively. Current enhancers hyperpolarized and accelerated the repolarization of corticostriatal responses in both neuron classes. Nevertheless, these drugs made evident that the contribution of Ca2+-activated K+-currents was different in dSPNs as compared to iSPNs: in dSPNs their activation was slower as though calcium took a diffusion delay to activate them. In contrast, their activation was fast and then sustained in iSPNs as though calcium flux activates them at the moment of entry. The blockade of Ca2+-activated K+-currents made iSPNs to look as dSPNs. Conversely, their enhancement made dSPNs to look as iSPNs. It is concluded that Ca2+-activated K+-currents are a main intrinsic determinant causing the differences in synaptic integration between corticostriatal polysynaptic responses between dSPNs and iSPNs. PMID:24109439

  19. Sequential acquisition of cacophony calcium currents, sodium channels and voltage-dependent potassium currents affects spike shape and dendrite growth during postembryonic maturation of an identified Drosophila motoneuron.

    PubMed

    Ryglewski, Stefanie; Kilo, Lukas; Duch, Carsten

    2014-05-01

    During metamorphosis the CNS undergoes profound changes to accommodate the switch from larval to adult behaviors. In Drosophila and other holometabolous insects, adult neurons differentiate either from respecified larval neurons, newly born neurons, or are born embryonically but remain developmentally arrested until differentiation during pupal life. This study addresses the latter in the identified Drosophila flight motoneuron 5. In situ patch-clamp recordings, intracellular dye fills and immunocytochemistry address the interplay between dendritic shape, excitability and ionic current development. During pupal life, changes in excitability and spike shape correspond to a stereotyped, progressive appearance of voltage-gated ion channels. High-voltage-activated calcium current is the first current to appear at pupal stage P4, prior to the onset of dendrite growth. This is followed by voltage-gated sodium as well as transient potassium channel expression, when first dendrites grow, and sodium-dependent action potentials can be evoked by somatic current injection. Sustained potassium current appears later than transient potassium current. During the early stages of rapid dendritic growth, sodium-dependent action potentials are broadened by a calcium component. Narrowing of spike shape coincides with sequential increases in transient and sustained potassium currents during stages when dendritic growth ceases. Targeted RNAi knockdown of pupal calcium current significantly reduces dendritic growth. These data indicate that the stereotyped sequential acquisition of different voltage-gated ion channels affects spike shape and excitability such that activity-dependent calcium influx serves as a partner of genetic programs during critical stages of motoneuron dendrite growth.

  20. Steroid hormone regulation of the voltage-gated, calcium-activated potassium channel expression in developing muscular and neural systems.

    PubMed

    Garrison, Sheldon L; Witten, Jane L

    2010-11-01

    A precise organization of gene expression is required for developing neural and muscular systems. Steroid hormones can control the expression of genes that are critical for development. In this study we test the hypothesis that the steroid hormone ecdysone regulates gene expression of the voltage-gated calcium-activated potassium ion channel, Slowpoke or KCNMA1. Late in adult development of the tobacco hawkmoth Manduca sexta, slowpoke (msslo) levels increased contributing to the maturation of the dorsal longitudinal flight muscles (DLMs) and CNS. We show that critical components of ecdysteroid gene regulation were present during upreglation of msslo in late adult DLM and CNS development. Ecdysteroid receptor complex heterodimeric partner proteins, the ecdysteroid receptor (EcR) and ultraspiracle (USP), and the ecdysone-induced early gene, msE75B, were expressed at key developmental time points, suggesting that ecdysteroids direct aspects of gene expression in the DLMs during these late developmental stages. We provide evidence that ecdysteroids suppress msslo transcription in the DLMs; when titers decline msslo transcript levels increase. These results are consistent with msslo being a downstream gene in an ecdysteroid-mediated gene cascade during DLM development. We also show that the ecdysteroids regulate msslo transcript levels in the developing CNS. These results will contribute to our understanding of how the spatiotemporal regulation of slowpoke transcription contributes to tailoring cell excitability to the differing physiological and behavioral demands during development.

  1. External copper inhibits the activity of the large-conductance calcium- and voltage-sensitive potassium channel from skeletal muscle.

    PubMed

    Morera, F J; Wolff, D; Vergara, C

    2003-03-01

    We have characterized the effect of external copper on the gating properties of the large-conductance calcium- and voltage-sensitive potassium channel from skeletal muscle, incorporated into artificial bilayers. The effect of Cu2+ was evaluated as changes in the gating kinetic properties of the channel after the addition of this ion. We found that, from concentrations of 20 microM and up, copper induced a concentration- and time-dependent decrease in channel open probability. The inhibition of channel activity by Cu2+ could not be reversed by washing or by addition of the copper chelator, bathocuproinedisulfonic acid. However, channel activity was appreciably restored by the sulfhydryl reducing agent dithiothreitol. The effect of copper was specific since other transition metal divalent cations such as Ni2+, Zn2+ or Cd2+ did not affect BK(Ca) channel activity in the same concentration range. These results suggest that external Cu2+-induced inhibition of channel activity was due to direct or indirect oxidation of key amino-acid sulfhydryl groups that might have a role in channel gating.

  2. The calcium-activated potassium channel KCa3.1 is an important modulator of hepatic injury.

    PubMed

    Sevelsted Møller, Linda; Fialla, Annette Dam; Schierwagen, Robert; Biagini, Matteo; Liedtke, Christian; Laleman, Wim; Klein, Sabine; Reul, Winfried; Koch Hansen, Lars; Rabjerg, Maj; Singh, Vikrant; Surra, Joaquin; Osada, Jesus; Reinehr, Roland; de Muckadell, Ove B Schaffalitzky; Köhler, Ralf; Trebicka, Jonel

    2016-06-29

    The calcium-activated potassium channel KCa3.1 controls different cellular processes such as proliferation and volume homeostasis. We investigated the role of KCa3.1 in experimental and human liver fibrosis. KCa3.1 gene expression was investigated in healthy and injured human and rodent liver. Effect of genetic depletion and pharmacological inhibition of KCa3.1 was evaluated in mice during carbon tetrachloride induced hepatic fibrogenesis. Transcription, protein expression and localisation of KCa3.1 was analysed by reverse transcription polymerase chain reaction, Western blot and immunohistochemistry. Hemodynamic effects of KCa3.1 inhibition were investigated in bile duct-ligated and carbon tetrachloride intoxicated rats. In vitro experiments were performed in rat hepatic stellate cells and hepatocytes. KCa3.1 expression was increased in rodent and human liver fibrosis and was predominantly observed in the hepatocytes. Inhibition of KCa3.1 aggravated liver fibrosis during carbon tetrachloride challenge but did not change hemodynamic parameters in portal hypertensive rats. In vitro, KCa3.1 inhibition leads to increased hepatocyte apoptosis and DNA damage, whereas proliferation of hepatic stellate cells was stimulated by KCa3.1 inhibition. Our data identifies KCa3.1 channels as important modulators in hepatocellular homeostasis. In contrast to previous studies in vitro and other tissues this channel appears to be anti-fibrotic and protective during liver injury.

  3. The calcium-activated potassium channel KCa3.1 is an important modulator of hepatic injury

    PubMed Central

    Sevelsted Møller, Linda; Fialla, Annette Dam; Schierwagen, Robert; Biagini, Matteo; Liedtke, Christian; Laleman, Wim; Klein, Sabine; Reul, Winfried; Koch Hansen, Lars; Rabjerg, Maj; Singh, Vikrant; Surra, Joaquin; Osada, Jesus; Reinehr, Roland; de Muckadell, Ove B. Schaffalitzky; Köhler, Ralf; Trebicka, Jonel

    2016-01-01

    The calcium-activated potassium channel KCa3.1 controls different cellular processes such as proliferation and volume homeostasis. We investigated the role of KCa3.1 in experimental and human liver fibrosis. KCa3.1 gene expression was investigated in healthy and injured human and rodent liver. Effect of genetic depletion and pharmacological inhibition of KCa3.1 was evaluated in mice during carbon tetrachloride induced hepatic fibrogenesis. Transcription, protein expression and localisation of KCa3.1 was analysed by reverse transcription polymerase chain reaction, Western blot and immunohistochemistry. Hemodynamic effects of KCa3.1 inhibition were investigated in bile duct-ligated and carbon tetrachloride intoxicated rats. In vitro experiments were performed in rat hepatic stellate cells and hepatocytes. KCa3.1 expression was increased in rodent and human liver fibrosis and was predominantly observed in the hepatocytes. Inhibition of KCa3.1 aggravated liver fibrosis during carbon tetrachloride challenge but did not change hemodynamic parameters in portal hypertensive rats. In vitro, KCa3.1 inhibition leads to increased hepatocyte apoptosis and DNA damage, whereas proliferation of hepatic stellate cells was stimulated by KCa3.1 inhibition. Our data identifies KCa3.1 channels as important modulators in hepatocellular homeostasis. In contrast to previous studies in vitro and other tissues this channel appears to be anti-fibrotic and protective during liver injury. PMID:27354175

  4. Individual effects of sodium, potassium, calcium, and magnesium chloride salts on Lactobacillus pentosus and Saccharomyces cerevisiae growth.

    PubMed

    Bautista-Gallego, J; Arroyo-López, F N; Durán-Quintana, M C; Garrido-Fernandez, A

    2008-07-01

    A quantitative investigation on the individual effects of sodium (NaCl), potassium (KCl), calcium (CaCl2), and magnesium (MgCl2) chloride salts against Lactobacillus pentosus and Saccharomyces cerevisiae, two representative microorganisms of table olives and other fermented vegetables, was carried out. In order to assess their potential activities, both the kinetic growth parameters and dose-response profiles in synthetic media (deMan Rogosa Sharpe broth medium and yeast-malt-peptone-glucose broth medium, respectively) were obtained and analyzed. Microbial growth was monitored via optical density measurements as a function of contact time in the presence of progressive chloride salt concentrations. Relative maximum specific growth rate and lag-phase period were modeled as a function of the chloride salt concentrations. Moreover, for each salt and microorganism tested, the noninhibitory concentrations and the MICs were estimated and compared. All chloride salts exerted a significant antimicrobial effect on the growth cycle; particularly, CaCl2 showed a similar effect to NaCl, while KCl and MgCl2 were progressively less inhibitory. Microbial susceptibility and resistance were found to be nonlinearly dose related.

  5. Stabilization/solidification of mercury-contaminated waste ash using calcium sodium phosphate (CNP) and magnesium potassium phosphate (MKP) processes.

    PubMed

    Cho, Jae Han; Eom, Yujin; Lee, Tai Gyu

    2014-08-15

    This study examined the stabilization and solidification (S/S) of mercury (Hg)-contaminated waste ash generated from an industrial waste incinerator using chemically bonded phosphate ceramic (CBPC) technology. A magnesium potassium phosphate (MKP; MgKPO4 · 6H2O) ceramic, fabricated from MgO and KH2PO4, and a calcium sodium phosphate (CNP; CaNaPO4) ceramic, fabricated from CaO and Na2HPO4, were used as solidification binders in the CBPC process, and Na2S or FeS was added to each solidification binder to stabilize the Hg-contaminated waste ash. The S/S processes were conducted under various operating conditions (based on the solidification binder and stabilization reagent, stabilization reagent dosage, and waste loading ratio), and the performance characteristics of the S/S sample under each operating condition were compared, including the Hg leaching value and compressive strength. The Hg leaching value of untreated Hg-contaminated waste ash was 231.3 μg/L, whereas the S/S samples treated using the MKP and CNP processes exhibited Hg leaching values below the universal treatment standard (UTS) limit (25 μg/L). Although the compressive strengths of the S/S samples decreased as the sulfide dosage and waste loading ratio were increased, most of the S/S samples fabricated by the MKP and CNP processes exhibited good mechanical properties.

  6. Structure and properties of the sodium, potassium and calcium salts of 2-(2,3-dimethylphenyl)aminobenzoic acid

    NASA Astrophysics Data System (ADS)

    Kruszynski, Rafal; Trzesowska-Kruszynska, Agata; Majewski, Piotr; Łukaszewicz, Ewa; Majewska, Kamila; Sierański, Tomasz; Lewiński, Bartłomiej

    2010-04-01

    The mefenamic acid sodium, potassium, and calcium salts with general formulae [Na(mef)(H 2O) 2] n· nH 2O, [K(mef)(H 2O)] n and [Ca(mef) 2(H 2O) 2] n· nH 2O have been synthesised, studied by X-ray crystallography, 1H and 13C NMR and IR spectroscopy. The complex salts are air stable and soluble in water. During heating the Na and K complexes melt in the complexed water and next recrystallise in anhydrous form. In the solid state all salts create one-dimensional coordination polymers. The central atoms are five, six and seven coordinated, respectively, for Na, K and Ca complexes. In all structures exist O sbnd H⋯O, N sbnd H⋯O and C sbnd H⋯O hydrogen bonds. The vibrational analysis has been carried out for mefenamic acid and its three coordination polymer compounds on the basis of experimental results as well as quantum mechanical calculations. The theoretical and experimental vibrational frequencies are similar and reveal characteristic vibrations for all IR active oscillators. In the IR spectra of salts exist strong bands at ca. 1365 and 1600 cm -1 typical for carboxylate groups.

  7. Stimulation of beta-adrenoceptors inhibits calcium-dependent potassium-channels in mouse macrophages

    SciTech Connect

    Rosati, C.; Hannaert, P.; Dausse, J.P.; Braquet, P.; Garay, R.

    1986-12-01

    K/sup +/ efflux in mouse macrophages exhibited a rate constant (k/sub k/) of 0.67 +/- 0.04 (h)/sup -1/. This was strongly stimulated by increasing concentrations of the Ca/sup 2 +/ ionophore A23187 up to a maximal value of 4.01 +/- 0.25 (h)/sup -1/ with an IC/sub 50/ of 7.6 +/- 1.9 ..mu..M. Similar results were obtained with the Ca/sup 2 +/ ionophore ionomycin. Binding experiments with /sup 3/H-dihydroalprenolol revealed a high density of beta-adrenergic receptors with apparent dissociation constant of 2.03 +/- 0.06 nM. Isoproterenol at a concentration of 10/sup -6/ -10/sup -5/ M induced a two- to threefold stimulation of endogenous levels of cyclic AMP (cAMP). A23187-stimulated K/sup +/ efflux was partially inhibited by (i) stimulation of adenylate cyclase with isoproterenol, forskolin or, PGE/sub 1/; (ii) exogenous cAMP; and (iii) inhibition of phosphodiesterase with MIX (1-methyl-3-isobutylxanthine). Maximal inhibition of K/sup +/ efflux was obtained by simultaneous addition of isoproterenol and MIX. In dose-response curves, the isoproterenol-sensitive K/sup +/ efflux was half-maximally inhibited (IC/sub 50/) with 2-5 x 10/sup -10/ M of isoproterenol concentration. Propranolol was able to completely block the effect of isoproterenol, with an IC/sub 50/ of about 1-2 x 10/sup -7/ M. Isoproterenol and MIX did not inhibit A23187-stimulated K/sup +/ efflux in an incubation medium where NaCl was replaced by sucrose (or choline), suggesting the involvement of an Na/sup +/:Ca/sup 2 +/ exchange mechanism. The results show that stimulation of beta-adrenoceptors in mouse macrophages counter balances the opening of K/sup +/ channels induced by the calcium ionophore A23187. This likely reflects a decrease in cytoslic free calcium content via a cAMP-mediated stimulation of Na/sup +/:Ca/sup 2 +/ exchange.

  8. Effects of dietary addition of vitamins C and D3 on growth and calcium and phosphorus content of pond-cultured channel catfish

    USGS Publications Warehouse

    Launer, C.A.; Tiemeier, O.W.; Deyoe, C.W.

    1978-01-01

    Fingerling channel catfish, Ictalurus punctatus, were fed one of three diets: one deficient in vitamin C (ascorbic acid), one deficient in vitamin D3 (cholecalciferol), or one containing both vitamins. Semimonthly from May to September and monthly from September to February, calcium and phosphorus were determined in eviscerated bodies and fat-free skeletons by neutron activation analysis. Body weight gains, survival rate, and feed conversion rates were determined for the May to September period. Fish on the three diet regimens showed no significant difference in weight gain, feed conversion, or survival. Interactions between sampling date and diet indicated no correlation between vitamin C or D3 and the calcium and phosphorus in eviscerated bodies and fat-free skeletons of the fish.

  9. Functional coupling of TRPV4 cationic channel and large conductance, calcium-dependent potassium channel in human bronchial epithelial cell lines.

    PubMed

    Fernández-Fernández, José M; Andrade, Yaniré N; Arniges, Maite; Fernandes, Jacqueline; Plata, Cristina; Rubio-Moscardo, Francisca; Vázquez, Esther; Valverde, Miguel A

    2008-10-01

    Calcium-dependent potassium channels are implicated in electrolyte transport, cell volume regulation and mechanical responses in epithelia, although the pathways for calcium entry and their coupling to the activation of potassium channels are not fully understood. We now show molecular evidence for the presence of TRPV4, a calcium permeable channel sensitive to osmotic and mechanical stress, and its functional coupling to the large conductance calcium-dependent potassium channel (BK(Ca)) in a human bronchial epithelial cell line (HBE). Reverse transcriptase polymerase chain reaction, intracellular calcium imaging and whole-cell patch-clamp experiments using HBE cells demonstrated the presence of TRPV4 messenger and Ca(2+) entry, and outwardly rectifying cationic currents elicited by the TRPV4 specific activator 4alpha-phorbol 12,13-didecanoate (4alphaPDD). Cell-attached and whole-cell patch-clamp of HBE cells exposed to 4alphaPDD, and hypotonic and high-viscosity solutions (related to mechanical stress) revealed the activation of BK(Ca) channels subsequent to extracellular Ca(2+) influx via TRPV4, an effect lost upon antisense-mediated knock-down of TRPV4. Further analysis of BK(Ca) modulation after TRPV4 activation showed that the Ca(2+) signal can be generated away from the BK(Ca) location at the plasma membrane, and it is not mediated by intracellular Ca(2+) release via ryanodine receptors. Finally, we have shown that, unlike the reported disengagement of TRPV4 and BK(Ca) in response to hypotonic solutions, cystic fibrosis bronchial epithelial cells (CFBE) preserve the functional coupling of TRPV4 and BK(Ca) in response to high-viscous solutions.

  10. Vitamin D Level Between Calcium-Phosphorus Homeostasis and Immune System: New Perspective in Osteoporosis.

    PubMed

    Bellavia, Daniele; Costa, Viviana; De Luca, Angela; Maglio, Melania; Pagani, Stefania; Fini, Milena; Giavaresi, Gianluca

    2016-10-13

    Vitamin D is a key molecule in calcium and phosphate homeostasis; however, increasing evidence has recently shown that it also plays a crucial role in the immune system, both innate and adaptive. A deregulation of vitamin D levels, due also to mutations and polymorphisms in the genes of the vitamin D pathway, determines severe alterations in the homeostasis of the organism, resulting in a higher risk of onset of some diseases, including osteoporosis. This review gives an overview of the influence of vitamin D levels on the pathogenesis of osteoporosis, between bone homeostasis and immune system.

  11. Calcium

    MedlinePlus

    ... You'll also find calcium in broccoli and dark green, leafy vegetables (especially collard and turnip greens, ... can enjoy good sources of calcium such as dark green, leafy vegetables, broccoli, chickpeas, and calcium-fortified ...

  12. Bioefficacy of a novel calcium-potassium salt of (-)-hydroxycitric acid.

    PubMed

    Downs, Bernard W; Bagchi, Manashi; Subbaraju, Gottumukkala V; Shara, Michael A; Preuss, Harry G; Bagchi, Debasis

    2005-11-11

    Obesity is associated with cardiovascular disease, diabetes and certain forms of cancer. Popular strategies on weight loss often fail to address many key factors such as fat mass, muscle density, bone density, water mass, their inter-relationships and impact on energy production, body composition, and overall health and well-being. (-)-Hydroxycitric acid (HCA), a natural plant extract from the dried fruit rind of Garcinia cambogia, has been reported to promote body fat loss in humans without stimulating the central nervous system. The level of effectiveness of G. cambogia extract is typically attributed solely to HCA. However, other components by their presence or absence may significantly contribute to its therapeutic effectiveness. Typically, HCA used in dietary weight loss supplement is bound to calcium, which results in a poorly soluble (<50%) and less bioavailable form. Conversely, the structural characteristics of a novel Ca2+/K+ bound (-)-HCA salt (HCA-SX or Super CitriMax) make it completely water soluble as well as bioavailable. An efficacious dosage of HCA-SX (4500 mg/day t.i.d.) provides a good source of Ca2+ (495 mg, 49.5% of RDI) and K+ (720 mg, 15% of RDI). Ca2+ ions are involved in weight management by increasing lipid metabolism, enhancing thermogenesis, and increasing bone density. K+, on the other hand, increases energy, reduces hypertension, increases muscle strength and regulates arrhythmias. Both Ca and K act as buffers in pH homeostasis. HCA-SX has been shown to increase serotonin availability, reduce appetite, increase fat oxidation, improve blood lipid levels, reduce body weight, and modulate a number of obesity regulatory genes without affecting the mitochondrial and nuclear proteins required for normal biochemical and physiological functions.

  13. Potassium permeability activated by intracellular calcium ion concentration in the pancreatic beta-cell.

    PubMed Central

    Atwater, I; Dawson, C M; Ribalet, B; Rojas, E

    1979-01-01

    1. Membrane potentials and input resistance were measured in beta-cells from mouse pancreatic islets of Langerhans in a study designed to assess the role of a K permeability specifically blocked by quinine or quinidine and activated by intracellular calcium ion concentration ([Ca2+])i-activated PK). 2. Addition of 100 microM-quinine to the perifusion medium resulted in a 10--30 mV depolarization of the membrane and an increase in the input resistance of ca. 4.10(7) omega. 3. In the absence of glucose, 100 microM-quinine induced electrical activity. 4. In the presence of glucose, 100 microM-quinine abolished the burst pattern of electrical activity and very much reduced the graded response of spike frequency normally seen with different concentrations of glucose. 5. Addition of mitochondrial inhibitors, KCN, NaN3, DNP, CCCP, FCCP, to the perifusion medium containing glucose rapidly hyperpolarized the beta-cell membrane, inducing a concomitant decrease in input resistance. 6. In the presence of glucose, these mitochondrial inhibitors reversibly blocked electrical activity; upon removal of the inhibitor, recovery of electrical activity followed a biphasic pattern. 7. The effects of mitochondrial inhibitors were partially reversed by 100 microM-quinine. 8. It is proposed that the membrane potential of the beta-cell in the absence of glucose is predominantly controlled by the [Ca2+]i-activated PK. It is further suggested that this permeability to K controls the level for glucose stimulation and leads to the generation of the burst pattern. PMID:381636

  14. [Parathyroidectomy in end-stage renal disease: perioperative management of calcium-phosphorus balance].

    PubMed

    Vallée, M; Lalumière, G; Déziel, C; Quérin, S; Madore, F

    2007-01-01

    The management of metabolic problems following parathyroidectomy in end stage renal disease remains poorly defined. Hypocalcemia is a common and serious complication in the post-operative period. The objective of the present study was to develop a protocol for the management of patients during the immediate perioperative period based on the best available data from the literature, and to verify its effectiveness and safety in three patients on chronic hemodialysis. A patient management protocol was developed based on data reported in the literature and was subsequently tested on three chronic dialysis patients suffering from tertiary hyperparathyroidism with an indication of parathyroidectomy. According to the literature, the risk of hypocalcemia following parathyroidectomy can be decreased by tight surveillance of calcium levels and preventive administration of calcium and vitamin D analogue to patients at high risk of hypocalcemia. By applying this protocol, profound hypocalcemia was avoided and the immediate post-operative period was uneventful in the three patients under study. In summary, the proposed protocol is safe and effective for the peri-parathyroidectomy management of patients on chronic hemodialysis.

  15. No independent, but an interactive, role of calcium-activated potassium channels in human cutaneous active vasodilation.

    PubMed

    Brunt, Vienna E; Fujii, Naoto; Minson, Christopher T

    2013-11-01

    In human cutaneous microvasculature, endothelium-derived hyperpolarizing factors (EDHFs) account for a large portion of vasodilation associated with local stimuli. Thus we sought to determine the role of EDHFs in active vasodilation (AVD) to passive heating in two protocols. Whole body heating was achieved using water-perfused suits (core temperature increase of 0.8-1.0°C), and skin blood flow was measured using laser-Doppler flowmetry. In the first protocol, four sites were perfused continuously via microdialysis with: 1) control; 2) tetraethylammonium (TEA) to block calcium-activated potassium (KCa) channels, and thus the actions of EDHFs; 3) N-nitro-l-arginine methyl ester (l-NAME) to inhibit nitric oxide synthase (NOS); and 4) TEA + l-NAME (n = 8). Data are presented as percent maximal cutaneous vascular conductance (CVC). TEA had no effect on AVD (CVC during heated plateau: control 57.4 ± 4.9% vs. TEA 63.2 ± 5.2%, P = 0.27), indicating EDHFs are not obligatory. l-NAME attenuated plateau CVC to 33.7 ± 5.4% (P < 0.01 vs. control); while TEA + l-NAME augmented plateau CVC compared with l-NAME alone (49.7 ± 5.3%, P = 0.02). From these data, it appears combined blockade of EDHFs and NOS necessitates dilation through other means, possibly through inward rectifier (KIR) and/or ATP-sensitive (KATP) potassium channels. To test this second hypothesis, we measured AVD at the following sites (n = 8): 1) control, 2) l-NAME, 3) l-NAME + TEA, and 4) l-NAME + TEA + barium chloride (BaCl2; KIR and KATP blocker). The addition of BaCl2 to l-NAME + TEA reduced plateau CVC to 32.7 ± 6.6% (P = 0.02 vs. l-NAME + TEA), which did not differ from the l-NAME site. These data combined demonstrate a complex interplay between vasodilatory pathways, with cross-talk between NO, KCa channels, and KIR and/or KATP channels.

  16. Action of niflumic acid on evoked and spontaneous calcium-activated chloride and potassium currents in smooth muscle cells from rabbit portal vein.

    PubMed Central

    Hogg, R. C.; Wang, Q.; Large, W. A.

    1994-01-01

    1. The action of niflumic acid was studied on spontaneous and evoked calcium-activated chloride (ICl(Ca)) and potassium (IK(Ca)) currents in rabbit isolated portal vein cells. 2. With the nystatin perforated patch technique in potassium-containing solutions at a holding potential of -77 mV (the potassium equilibrium potential), niflumic acid produced a concentration-dependent inhibition of spontaneous transient inward current (STIC, calcium-activated chloride current) amplitude. The concentration to reduce the STIC amplitude by 50% (IC50) was 3.6 x 10(-6) M. 3. At -77 mV holding potential, niflumic acid converted the STIC decay from a single exponential to 2 exponential components. In niflumic acid the fast component of decay was faster, and the slow component was slower than the control decay time constant. Increasing the concentration of niflumic acid enhanced the decay rate of the fast component and reduced the decay rate of the slow component. 4. The effect of niflumic acid on STIC amplitude was voltage-dependent and at -50 and +50 mV the IC50 values were 2.3 x 10(-6) M and 1.1 x 10(-6) M respectively (cf. 3.6 x 10(-6) M at -77 mV). 5. In K-free solutions at potentials of -50 mV and +50 mV, niflumic acid did not induce a dual exponential STIC decay but just increased the decay time constant at both potentials in a concentration-dependent manner. 6. Niflumic acid, in concentrations up to 5 x 10(-5) M, had no effect on spontaneous calcium-activated potassium currents.(ABSTRACT TRUNCATED AT 250 WORDS) PMID:7921628

  17. Calcium, phosphorus and protein levels as factors in the distribution of the pheasant

    USGS Publications Warehouse

    Dale, F.H.; DeWitt, J.B.

    1958-01-01

    Summary of work on pheasant nutrition conducted since 1949 at the Patuxent Research Refuge. Pheasant chicks fed experimental diets failed to develop normally on protein levels of 15 and 18%. With 22% protein they grew at a reduced rate as compared to those on 28%. Protein level of the reproductive diet was shown to be important; low production of eggs and young resulted from levels below 25%. Calcium was found to be even more critical than protein level for reproduction; birds on a winter diet that furnished 145 mg./kg. per day had poor reproductive success the following spring. About 600 mg./kg. of Ca per day was necessary in the reproduction diet. Birds on an intermediate level of Ca (about 0.5% of diet) showed evidence of cumulative deficiency. It was concluded that pheasants receiving levels of Ca no higher than 0.5% in nature might display 'straggling failure' such as has been observed in several midwestern areas.

  18. Angiotensin II modulates mouse skeletal muscle resting conductance to chloride and potassium ions and calcium homeostasis via the AT1 receptor and NADPH oxidase.

    PubMed

    Cozzoli, Anna; Liantonio, Antonella; Conte, Elena; Cannone, Maria; Massari, Ada Maria; Giustino, Arcangela; Scaramuzzi, Antonia; Pierno, Sabata; Mantuano, Paola; Capogrosso, Roberta Francesca; Camerino, Giulia Maria; De Luca, Annamaria

    2014-10-01

    Angiotensin II (ANG II) plays a role in muscle wasting and remodeling; however, little evidence shows its direct effects on specific muscle functions. We presently investigated the acute in vitro effects of ANG II on resting ionic conductance and calcium homeostasis of mouse extensor digitorum longus (EDL) muscle fibers, based on previous findings that in vivo inhibition of ANG II counteracts the impairment of macroscopic ClC-1 chloride channel conductance (gCl) in the mdx mouse model of muscular dystrophy. By means of intracellular microelectrode recordings we found that ANG II reduced gCl in the nanomolar range and in a concentration-dependent manner (EC50 = 0.06 μM) meanwhile increasing potassium conductance (gK). Both effects were inhibited by the ANG II receptors type 1 (AT1)-receptor antagonist losartan and the protein kinase C inhibitor chelerythrine; no antagonism was observed with the AT2 antagonist PD123,319. The scavenger of reactive oxygen species (ROS) N-acetyl cysteine and the NADPH-oxidase (NOX) inhibitor apocynin also antagonized ANG II effects on resting ionic conductances; the ANG II-dependent gK increase was blocked by iberiotoxin, an inhibitor of calcium-activated potassium channels. ANG II also lowered the threshold for myofiber and muscle contraction. Both ANG II and the AT1 agonist L162,313 increased the intracellular calcium transients, measured by fura-2, with a two-step pattern. These latter effects were not observed in the presence of losartan and of the phospholipase C inhibitor U73122 and the in absence of extracellular calcium, disclosing a Gq-mediated calcium entry mechanism. The data show for the first time that the AT1-mediated ANG II pathway, also involving NOX and ROS, directly modulates ion channels and calcium homeostasis in adult myofibers.

  19. Angiotensin II modulates mouse skeletal muscle resting conductance to chloride and potassium ions and calcium homeostasis via the AT1 receptor and NADPH oxidase

    PubMed Central

    Cozzoli, Anna; Liantonio, Antonella; Conte, Elena; Cannone, Maria; Massari, Ada Maria; Giustino, Arcangela; Scaramuzzi, Antonia; Pierno, Sabata; Mantuano, Paola; Capogrosso, Roberta Francesca; Camerino, Giulia Maria

    2014-01-01

    Angiotensin II (ANG II) plays a role in muscle wasting and remodeling; however, little evidence shows its direct effects on specific muscle functions. We presently investigated the acute in vitro effects of ANG II on resting ionic conductance and calcium homeostasis of mouse extensor digitorum longus (EDL) muscle fibers, based on previous findings that in vivo inhibition of ANG II counteracts the impairment of macroscopic ClC-1 chloride channel conductance (gCl) in the mdx mouse model of muscular dystrophy. By means of intracellular microelectrode recordings we found that ANG II reduced gCl in the nanomolar range and in a concentration-dependent manner (EC50 = 0.06 μM) meanwhile increasing potassium conductance (gK). Both effects were inhibited by the ANG II receptors type 1 (AT1)-receptor antagonist losartan and the protein kinase C inhibitor chelerythrine; no antagonism was observed with the AT2 antagonist PD123,319. The scavenger of reactive oxygen species (ROS) N-acetyl cysteine and the NADPH-oxidase (NOX) inhibitor apocynin also antagonized ANG II effects on resting ionic conductances; the ANG II-dependent gK increase was blocked by iberiotoxin, an inhibitor of calcium-activated potassium channels. ANG II also lowered the threshold for myofiber and muscle contraction. Both ANG II and the AT1 agonist L162,313 increased the intracellular calcium transients, measured by fura-2, with a two-step pattern. These latter effects were not observed in the presence of losartan and of the phospholipase C inhibitor U73122 and the in absence of extracellular calcium, disclosing a Gq-mediated calcium entry mechanism. The data show for the first time that the AT1-mediated ANG II pathway, also involving NOX and ROS, directly modulates ion channels and calcium homeostasis in adult myofibers. PMID:25080489

  20. Inhibition of vascular calcification by block of intermediate conductance calcium-activated potassium channels with TRAM-34.

    PubMed

    Freise, Christian; Querfeld, Uwe

    2014-07-01

    Vascular calcifications are a hallmark of advanced cardiovascular disease in patients with chronic kidney disease. A key event is the transition of contractile vascular smooth muscle cells (VSMC) into an osteoblast-like phenotype, promoting a coordinated process of vascular remodeling resembling bone mineralization. Intermediate-conductance calcium-activated potassium channels (KCa3.1) are expressed in various tissues including VSMC. Aiming for novel therapeutic targets in vascular calcification, we here studied effects of KCa3.1-inhibition on VSMC calcification by the specific KCa3.1 inhibitor TRAM-34. Calcification in the murine VSMC cell line MOVAS-1 and primary rat VSMC was induced by calcification medium (CM) containing elevated levels of PO4(3-) and Ca(2+). Cell signaling, calcification markers, and release of nitric oxide and alkaline phosphatase were assessed by luciferase reporter plasmids, RT-PCR and specific enzymatic assays, respectively. KCa3.1 gene silencing was achieved by siRNA experiments. TRAM-34 at 10nmol/l, decreased CM-induced calcification and induced NO release of VSMC accompanied by decreased TGF-β signaling. The CM-induced mRNA expressions of osterix, osteocalcin, matrix-metalloproteinases (MMP)-2/-9 were reduced by TRAM-34 while osteopontin expression was increased. Further, TRAM-34 attenuated the CM- and TNF-α-induced activation of NF-κB and reduced the release of MMP-2/-9 by VSMC. Finally, TRAM-34 abrogated CM-induced apoptosis and KCa3.1 gene silencing protected VSMC from CM-induced onset of calcification. In summary, TRAM-34 interferes with calcification relevant signaling of NF-κB and TGF-β thereby blocking the phenotypic transition/calcification of VSMC. We conclude that the results provide a rationale for further studies regarding a possible therapeutic role of KCa3.1 inhibition by TRAM-34 or other inhibitors in vascular calcification.

  1. Chronic fluoxetine treatment increases NO bioavailability and calcium-sensitive potassium channels activation in rat mesenteric resistance arteries.

    PubMed

    Pereira, Camila A; Ferreira, Nathanne S; Mestriner, Fabiola L; Antunes-Rodrigues, José; Evora, Paulo R B; Resstel, Leonardo B M; Carneiro, Fernando S; Tostes, Rita C

    2015-10-15

    Fluoxetine, a selective serotonin reuptake inhibitor (SSRI), has effects beyond its antidepressant properties, altering, e.g., mechanisms involved in blood pressure and vasomotor tone control. Although many studies have addressed the acute impact of fluoxetine on the cardiovascular system, there is a paucity of information on the chronic vascular effects of this SSRI. We tested the hypothesis that chronic fluoxetine treatment enhances the vascular reactivity to vasodilator stimuli by increasing nitric oxide (NO) signaling and activation of potassium (K+) channels. Wistar rats were divided into two groups: (I) vehicle (water for 21 days) or (II) chronic fluoxetine (10 mg/kg/day in the drinking water for 21 days). Fluoxetine treatment increased endothelium-dependent and independent vasorelaxation (analyzed by mesenteric resistance arteries reactivity) as well as constitutive NO synthase (NOS) activity, phosphorylation of eNOS at Serine1177 and NO production, determined by western blot and fluorescence. On the other hand, fluoxetine treatment did not alter vascular expression of neuronal and inducible NOS or guanylyl cyclase (GC). Arteries from fluoxetine-treated rats exhibited increased relaxation to pinacidil. Increased acetylcholine vasorelaxation was abolished by a calcium-activated K+ channel (KCa) blocker, but not by an inhibitor of KATP channels. On the other hand, vascular responses to Bay 41-2272 and 8-bromo-cGMP were similar between the groups. In conclusion, chronic fluoxetine treatment increases endothelium-dependent and independent relaxation of mesenteric resistance arteries by mechanisms that involve increased eNOS activity, NO generation, and KCa channels activation. These effects may contribute to the cardiovascular effects associated with chronic fluoxetine treatment.

  2. CNTF-Treated Astrocyte Conditioned Medium Enhances Large-Conductance Calcium-Activated Potassium Channel Activity in Rat Cortical Neurons.

    PubMed

    Sun, Meiqun; Liu, Hongli; Xu, Huanbai; Wang, Hongtao; Wang, Xiaojing

    2016-08-01

    Seizure activity is linked to astrocyte activation as well as dysfunctional cortical neuron excitability produced from changes in calcium-activated potassium (KCa) channel function. Ciliary neurotrophic factor-treated astrocyte conditioned medium (CNTF-ACM) can be used to investigate the peripheral effects of activated astrocytes upon cortical neurons. However, CNTF-ACM's effect upon KCa channel activity in cultured cortical neurons has not yet been investigated. Whole-cell patch clamp recordings were performed in rat cortical neurons to evaluate CNTF-ACM's effects upon charybdotoxin-sensitive large-conductance KCa (BK) channel currents and apamin-sensitive small-conductance KCa (SK) channel current. Biotinylation and RT-PCR were applied to assess CNTF-ACM's effects upon the protein and mRNA expression, respectively, of the SK channel subunits SK2 and SK3 and the BK channel subunits BKα1 and BKβ3. An anti-fibroblast growth factor-2 (FGF-2) monoclonal neutralizing antibody was used to assess the effects of the FGF-2 component of CNTF-ACM. CNTF-ACM significantly increased KCa channel current density, which was predominantly attributable to gains in BK channel activity (p < 0.05). CNTF-ACM produced a significant increase in BKα1 and BKβ3 expression (p < 0.05) but had no significant effect upon SK2 or SK3 expression (p > 0.05). Blocking FGF-2 produced significant reductions in KCa channel current density (p > 0.05) as well as BKα1 and BKβ3 expression in CNTF-ACM-treated neurons (p > 0.05). CNTF-ACM significantly enhances BK channel activity in rat cortical neurons and that FGF-2 is partially responsible for these effects. CNTF-induced astrocyte activation results in secretion of neuroactive factors which may affect neuronal excitability and resultant seizure activity in mammalian cortical neurons.

  3. Palmitoylation of the β4-Subunit Regulates Surface Expression of Large Conductance Calcium-activated Potassium Channel Splice Variants*

    PubMed Central

    Chen, Lie; Bi, Danlei; Tian, Lijun; McClafferty, Heather; Steeb, Franziska; Ruth, Peter; Knaus, Hans Guenther; Shipston, Michael J.

    2013-01-01

    Regulatory β-subunits of large conductance calcium- and voltage-activated potassium (BK) channels play an important role in generating functional diversity and control of cell surface expression of the pore forming α-subunits. However, in contrast to α-subunits, the role of reversible post-translational modification of intracellular residues on β-subunit function is largely unknown. Here we demonstrate that the human β4-subunit is S-acylated (palmitoylated) on a juxtamembrane cysteine residue (Cys-193) in the intracellular C terminus of the regulatory β-subunit. β4-Subunit palmitoylation is important for cell surface expression and endoplasmic reticulum (ER) exit of the β4-subunit alone. Importantly, palmitoylated β4-subunits promote the ER exit and surface expression of the pore-forming α-subunit, whereas β4-subunits that cannot be palmitoylated do not increase ER exit or surface expression of α-subunits. Strikingly, however, this palmitoylation- and β4-dependent enhancement of α-subunit surface expression was only observed in α-subunits that contain a putative trafficking motif (… REVEDEC) at the very C terminus of the α-subunit. Engineering this trafficking motif to other C-terminal α-subunit splice variants results in α-subunits with reduced surface expression that can be rescued by palmitoylated, but not depalmitoylated, β4-subunits. Our data reveal a novel mechanism by which palmitoylated β4-subunit controls surface expression of BK channels through masking of a trafficking motif in the C terminus of the α-subunit. As palmitoylation is dynamic, this mechanism would allow precise control of specific splice variants to the cell surface. Our data provide new insights into how complex interplay between the repertoire of post-transcriptional and post-translational mechanisms controls cell surface expression of BK channels. PMID:23504458

  4. Emergence of Two-Dimensional Massless Dirac Fermions, Chiral Pseudospins, and Berry's Phase in Potassium Doped Few-Layer Black Phosphorus.

    PubMed

    Baik, Seung Su; Kim, Keun Su; Yi, Yeonjin; Choi, Hyoung Joon

    2015-12-09

    Thin flakes of black phosphorus (BP) are a two-dimensional (2D) semiconductor whose energy gap is predicted being sensitive to the number of layers and external perturbations. Very recently, it was found that a simple method of potassium (K) doping on the surface of BP closes its band gap completely, producing a Dirac semimetal state with a linear band dispersion in the armchair direction and a quadratic one in the zigzag direction. Here, based on first-principles density functional calculations, we predict that, beyond the critical K density of the gap closure, 2D massless Dirac Fermions (i.e., Dirac cones) emerge in K-doped few-layer BP, with linear band dispersions in all momentum directions, and the electronic states around Dirac points have chiral pseudospins and Berry's phase. These features are robust with respect to the spin-orbit interaction and may lead to graphene-like electronic transport properties with greater flexibility for potential device applications.

  5. [Dynamics of litter decomposition and phosphorus and potassium release in Jinggang Mountain region of Jiangxi Province, China].

    PubMed

    Li, Hait-tao; Yu, Gui-rui; Li, Jia-yong; Liang, Tao; Chen, Yong-rui

    2007-02-01

    By using litter bag method, a 2-year experiment was made to study the dynamics of litter decomposition and phosphorous and potassium release of Castanopsis eyrei-dominated evergreen broad-leaved forest (EBF), Pinus taiwanensis, Cyclobalanopsis nubium and Castanopsisfabri coniferous and broad-leaved mixed forest (CBF) , and Rhododendron simiarum-dominated mountainous dwarf forest (MDF) in Jinggang Mountain region of Jiangxi Province, China. In each forest, litter bags were placed on soil surface (aboveground treatment, AG) and at the depth of 10 cm (below-ground treatment, BG). An inverse exponential relationship was found between litter decay rate and time for each of the three forests. The average value of the litter mass loss of AG and BG was 50.6% for EBF, 41. 7% for CBF, and 40. 13% for MDF by the end of first year, and 60.95% for EBF, 57. 06% for CBF, and 56. 60% for MDF by the end of second year, indicating that the litter decomposition of the forests was faster in first year than in second year. The annual litter loss decreased in the order of EBF > CBF > MDF, and that of AG was significantly higher than that of BG in first year but no significant difference was found in second year. According to the model simulation by Olson' s exponential function, it might take 6. 8-9. 9 years to reach 95% of decay (t095) for the forests investigated, compared with 8-17 years for warm temperate forests and 2 -8 years for south subtropical forests. The t0.95 value of the three test forests increased in the order of EBF < CBF < MDF. A net phospbhorus (P) immobilization was observed in the process of litter decomposition, with the intensity decreased in the order of MDF > CBF > EBF, which was related to the initial P content and C/P ratio of the litter. As for potassium ( K) , it was net release in most cases. By the end of the experiment, the release rate of P had little difference between AG and BG, while that of K was significantly higher in AG than in BG.

  6. Response of broiler chickens to different levels of calcium, non-phytate phosphorus and phytase.

    PubMed

    Akter, M; Graham, H; Iji, P A

    2016-12-01

    1. Five hundred and seventy six-d old Ross 308 broiler chicks (6 cages per diet, 8 birds per cage in 3 × 2 × 2 factorial arrangement) were fed on maize-soybean meal-based diets containing three concentrations of Ca (6, 8 or 10 g/kg), two concentrations of non-phytate phosphorus (NPP) (3 or 4 g/kg) and two levels of exogenous microbial phytase (0 or 500 FTU/kg) from d 0 to 35. 2. Body weight (BW), feed intake (FI) and mortality records were collected. Two birds per replicate were killed at 24 d of age to obtain tibia samples. 3. Increasing Ca level significantly reduced the FI and body weight gain (BWG) between hatch and 10 and 24 d, especially with the phytase-supplemented diets. However, phytase supplementation of the diet containing 4 g NPP/kg improved the FI and BWG at d 10 and 24. At d 24, phytase supplementation improved feed conversion ratio (FCR) of birds that consumed diets containing high NPP. The overall FCR was better in birds offered the phytase-supplemented, medium-Ca diet. 4. There was a significant reduction in length, width and breaking strength of the tibia bone in birds fed on a diet with high Ca and low NPP. Phytase supplementation improved the tibia ash content and bone breaking strength of chicks fed on the diet containing 8 and 4 g/kg Ca and NPP, respectively. The Ca content of the tibia bone was low in birds fed on diets with 6 and 4 g/kg Ca and NPP, respectively, but this was counteracted by phytase supplementation. 5. Birds fed on diets with 4 g/kg NPP had the best carcass percentage and parts yield. Phytase supplementation to high-Ca diets significantly reduced the carcass yield of birds. 6. These results confirmed the detrimental effect of high dietary Ca on phytase activity and subsequent growth and bone development of birds, especially when NPP is in short supply.

  7. Activation of nicotinic acetylcholine receptors enhances a slow calcium-dependent potassium conductance and reduces the firing of stratum oriens interneurons.

    PubMed

    Griguoli, Marilena; Scuri, Rossana; Ragozzino, Davide; Cherubini, Enrico

    2009-09-01

    A large variety of distinct locally connected GABAergic cells are present in the hippocampus. By releasing GABA into principal cells and interneurons, they exert a powerful control on neuronal excitability and are responsible for network oscillations crucial for information processing in the brain. Here, whole-cell patch clamp recordings in current and voltage clamp mode were used to study the functional role of nicotinic acetylcholine receptors (nAChRs) on the firing properties of stratum oriens interneurons in hippocampal slices from transgenic mice expressing enhanced green fluorescent protein in a subpopulation of GABAergic cells containing somatostatin (GIN mice). Unexpectedly, activation of nAChRs by nicotine or endogenously released acetylcholine strongly enhanced spike frequency adaptation. This effect was blocked by apamin, suggesting the involvement of small calcium-dependent potassium channels (SK channels). Nicotine-induced reduction in firing frequency was dependent on intracellular calcium rise through calcium-permeable nAChRs and voltage-dependent calcium channels activated by the depolarizing action of nicotine. Calcium imaging experiments directly showed that nicotine effects on firing rate were correlated with large increases in intracellular calcium. Furthermore, blocking ryanodine receptors with ryanodine or sarcoplasmic-endoplasmic reticulum calcium ATPase with thapsygargin or cyclopiazonic acid fully prevented the effects of nicotine, suggesting that mobilization of calcium from the internal stores contributed to the observed effects. By regulating cell firing, cholinergic signalling through nAChRs would be instrumental for fine-tuning the output of stratum oriens interneurons and correlated activity at the network level.

  8. Seasonal patterns of nitrogen, phosphorus, potassium, calcium and magnesium in the leaves of the Massachusetts cranberry. [Vaccinium macrocarpon

    SciTech Connect

    DeMoranville, C.J.; Deubert, K.H.

    1986-01-01

    Leaf samples from cranberry plants in Wareham, MA, were collected during the 1980-82 growing seasons and analyzed for N, P, K, Ca and Mg. The seasonal patterns which emerged allowed the proposal of normal ranges for the elements and optimum times for sampling. The foliar nutrient levels obtained were compared to those for cranberries grown in other areas as well as to those for crops which are grown under similar conditions.

  9. Comparative effects of three phytases on the phosphorus and calcium use in the weaned piglet.

    PubMed

    Guggenbuhl, P; Wache, Y; Simoes Nunes, C; Fru, F

    2012-12-01

    The addition of phytase to swine diets has generally increased P digestibility and consequently reduced fecal excretion of P. The comparative effects on P and Ca digestibility of dietary inclusion of 5 different phytases were evaluated in the weaned piglet. RONOZYME HiPhos is a microbial 6-phytase produced by synthetic genes, mimicking a gene from Citrobacter braakii, and was compared to the Escherichia coli-derived phytases Phyzyme and OptiPhos. In total, 112 weaned piglets (28 d old) were allocated to 8 equal groups of 14 animals. Pigs were fed for 29 d a vegetable-based diet without addition of mineral P [Co(-)] or this diet supplemented with 12 g/kg feed of CaHPO(4) [Co(+)] or with HiPhos at 1000 units/kg (H1000) or 1500 units/kg (H1500), Phyzyme at 500 units/kg (P500) or 750 units/kg (P750), or OptiPhos at 500 units/kg (O500) or 750 units/kg (O750). All phytases reduced (P < 0.05) fecal P concentration and excretion and increased (P < 0.05) P digestibility and apparent P absorption. The digestible P equivalences of H1000, H1500, P500, P750, O500, and O750 were 0.94, 1.50, 0.67, 0.92, 0.58, and 1.11 g of full available P/kg of feed, respectively. Calcium digestibility was increased (P < 0.05) and Ca excretion reduced (P < 0.05) by the phytases. The 3 phytase preparations increased digestibility and apparent absorption of P and Ca in weaned piglets fed a diet containing P exclusively from plant origin.

  10. Phytase effects on the efficiency of utilisation and blood concentrations of phosphorus and calcium in Pekin ducks.

    PubMed

    Rodehutscord, M; Hempel, R; Wendt, P

    2006-06-01

    1. The objective was to study the effects of a supplementation of a 6-phytase derived from the Peniophora lycii gene in the White Pekin duck. 2. In two balance studies, low-phosphorus (P) diets consisting mainly of maize, solvent extracted soybean meal and solvent extracted sunflower meal were supplemented with phytase up to concentrations of 1500 U/kg (Study 1) or 2000 U/kg (Study 2). Each diet (phytase level) was fed to 8 to 10 individually penned ducks. The intake and excretion of each animal was measured for 5 consecutive days when ducks were in their third week of life. Responses were described by nonlinear regression. 3. Although the basal diets from the two studies were similar in ingredient composition, efficiencies of P utilisation (P accretion/P intake x 100) for the unsupplemented basal diets were 39% in Study 1 and 30% in Study 2. Phytase supplementation significantly improved P utilisation up to levels of about 55% in both studies. A plateau in P utilisation with an increase in phytase supplementation was achieved in Study 2, but not in Study 1. The enzyme was more efficient in Study 2 than in Study 1 at low rates of supplementation. Utilisation of calcium (Ca) was significantly improved by phytase supplementation. Accretions of P and Ca increased at a constant ratio. 4. In a 5-week growth study, diets with an intentionally marginal P level were used. Diets were fed either unsupplemented or supplemented with 1000 or 10,000 U/kg of phytase. Eight pens of 10 sex-separated ducks each (4 pens per sex) were allocated to each dietary treatment. 5. Phytase significantly improved the growth of ducks of both sexes between d 1 and 21, but not between d 22 and 35. Feed conversion rate was not affected by treatment. Blood serum phosphate concentrations, but not calcium, were significantly increased by phytase supplementation. Blood concentrations of creatinine, aspartate aminotransferase and lactate dehydrogenase remained unaffected while alanine aminotransferase

  11. Combined effect of Nitrogen, Phosphorus and Potassium fertilizers on the contents of glucosinolates in rocket salad (Eruca sativa Mill.).

    PubMed

    Chun, Jin-Hyuk; Kim, Silbia; Arasu, Mariadhas Valan; Al-Dhabi, Naif Abdullah; Chung, Doug Young; Kim, Sun-Ju

    2017-02-01

    Nitrogen (N), phosphorous (P) and potassium (K) are the most limiting factors in crop production. N often affects the amino acid composition of protein and in turn its nutritional quality. In Brassica plants, abundant supply of N fertilizer decreases the relative proportion of glucosinolates (GSLs), thus reducing the biological and medical values of the vegetables. Hence effort was made to evaluate the influence of different proportions of nutrient solutions containing N-P-K on the GSL profiles of rocket salad (Eruca sativa Mill.). Fifteen desulpho-(DS) GSLs were isolated and identified using liquid chromatography-mass spectrometry (LC/MS) analysis. Rocket salad plants supplied with lesser amount of N, P or higher concentrations of K showed a typical improvement in total GSL contents. In contrast, total GSL levels were less at higher N supply. Furthermore, with N concentrations above 5 mM and K concentrations less than 2.5 mM, the GSL amounts were on average 13.51 and 13.75 μmol/g dry weight (DW), respectively. Aliphatic GSLs predominated in all concentrations of NPK while indolyl GSLs made up marginally less amount of the total compositions. Five and 2 mM N and P possessed much higher levels of several types of aliphatic GSLs than other concentrations, including glucoerucin, glucoraphanin and dimeric 4-mercaptobutyl GSL. From this perspective, it is contended that supply of less N results in enhancing the metabolic pathway for the synthesis of GSLs in rocket salad.

  12. Potassium bicarbonate supplementation lowers bone turnover and calcium excretion in older men and women a randomized dose-finding trial

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The acid load accompanying modern diets may have adverse effects on bone and muscle metabolism. Treatment with alkaline salts of potassium can neutralize the acid load, but the optimal amount of alkali is not established. Our objective was to determine the effectiveness of two doses of potassium bic...

  13. Effects of Benzoic Acid and Dietary Calcium:Phosphorus Ratio on Performance and Mineral Metabolism of Weanling Pigs

    PubMed Central

    Gutzwiller, A.; Schlegel, P.; Guggisberg, D.; Stoll, P.

    2014-01-01

    In a 2×2 factorial experiment the hypotheses tested were that the metabolic acid load caused by benzoic acid (BA) added to the feed affects bone mineralization of weanling pigs, and that a wide dietary calcium (Ca) to phosphorus (P) ratio in phytase-supplemented feeds with a marginal P concentration has a positive effect on bone mineralization. The four experimental diets, which contained 0.4% P and were supplemented with 1,000 FTU phytase/kg, contained either 5 g BA/kg or no BA and either 0.77% Ca or 0.57% Ca. The 68 four-week-old Large White pigs were fed the experimental diets ad libitum for six weeks and were then slaughtered. Benzoic acid increased feed intake (p = 0.009) and growth rate (p = 0.051), but did not influence the feed conversion ratio (p>0.10). Benzoic acid decreased the pH of the urine (p = 0.031), but did not affect breaking strength and mineralization of the tibia (p>0.10). The wide Ca:P ratio decreased feed intake (p = 0.034) and growth rate (p = 0.007) and impaired feed the conversion ratio (p = 0.027), but increased the mineral concentration in the fat-free DM of the tibia (p = 0.013) without influencing its breaking strength (p>0.10). The observed positive effect of the wide Ca:P ratio on bone mineralization may be attributed, at least in part, to the impaired feed conversion ratio, i.e. to the higher feed intake and consequently to the higher mineral intake per kg BW gain. The negative impact on animal performance of the wide dietary Ca:P ratio outweighs its potentially positive effect on bone mineralization, precluding its implementation under practical feeding conditions. PMID:25049984

  14. Mucosa-Associated Bacterial Microbiome of the Gastrointestinal Tract of Weaned Pigs and Dynamics Linked to Dietary Calcium-Phosphorus

    PubMed Central

    Mann, Evelyne; Schmitz-Esser, Stephan; Zebeli, Qendrim; Wagner, Martin; Ritzmann, Mathias; Metzler-Zebeli, Barbara U.

    2014-01-01

    Dietary composition largely influences pig’s gastrointestinal microbiota and represents a useful prophylactic tool against enteric disturbances in young pigs. Despite the importance for host-microbe interactions and bacterial colonization, dietary responses of the mucosa-associated bacterial communities are less well investigated. In the present study, we characterized the mucosa-associated bacterial communities at the Pars non-glandularis of the stomach, ileum and colon, and identified shifts in these communities in response to different dietary calcium-phosphorus (Ca-P) contents (100% versus 190% of the Ca and P requirements) in combination with two basal diets (wheat-barley- or corn-based) in weaned pigs. Pyrosequencing of 16S rRNA genes from 93 mucosal samples yielded 447,849 sequences, clustering into 997 operational taxonomic units (OTUs) at 97% similarity level. OTUs were assigned to 198 genera belonging to 14 different phyla. Correlation-based networks revealed strong interactions among OTUs at the various gastrointestinal sites. Our data describe a previously not reported high diversity and species richness at the Pars non-glandularis of the stomach in weaned pigs. Moreover, high versus adequate Ca-P content significantly promoted Lactobacillus by 14.9% units (1.4 fold change) at the gastric Pars non-glandularis (P = 0.035). Discriminant analysis revealed dynamic changes in OTU composition in response to dietary cereals and Ca-P contents at all gastrointestinal sites which were less distinguishable at higher taxonomic levels. Overall, this study revealed a distinct mucosa-associated bacterial community at the different gut sites, and a strong effect of high Ca-P diets on the gastric community, thereby markedly expanding our comprehension on mucosa-associated microbiota and their diet-related dynamics in weaned pigs. PMID:24466298

  15. Concentration of dietary calcium supplied by calcium carbonate does not affect the apparent total tract digestibility of calcium, but decreases digestibility of phosphorus by growing pigs.

    PubMed

    Stein, H H; Adeola, O; Cromwell, G L; Kim, S W; Mahan, D C; Miller, P S

    2011-07-01

    A regional experiment was conducted to test the hypothesis that the concentration of dietary Ca does not affect the digestibility of Ca or P in diets fed to growing pigs. Six diets based on corn, potato protein isolate, cornstarch, and soybean oil were formulated. All diets also contained monosodium phosphate, crystalline AA, salt, and a vitamin-micromineral premix. The only difference among the diets was that varying concentrations of calcium carbonate were used to create diets containing 0.33, 0.46, 0.51, 0.67, 0.92, and 1.04% Ca. All diets contained between 0.40 and 0.43% P. Six universities participated in the experiment and each university contributed 2 replicates to the experiment for a total of 12 replicates (initial BW: 23.1 ± 4.4 kg). Pigs were placed in metabolism cages that allowed total, but separate, collection of feces and urine from the pigs. Pigs within each replicate were randomly allotted to the 6 diets and fed experimental diets for 14 d with urine and feces being collected over a 5-d period. Diets, feces, and urine samples were analyzed for Ca and P, and the daily balance, the apparent total tract digestibility (ATTD), and the retention of Ca and P were calculated. Results indicated that intake, fecal excretion, and urinary excretion of Ca increased (linear, P<0.05) as dietary Ca concentration increased. The daily intake of P was not affected by the dietary concentration of Ca, but fecal excretion of P increased (linear, P<0.05) as dietary Ca concentrations increased. In contrast, urinary P output was decreased (linear, P<0.05) as dietary Ca increased. The retention of Ca increased (linear, P<0.05) from 1.73 to 4.60 g/d, whereas the retention of P decreased (linear, P<0.05) from 1.98 to 1.77 g/d as dietary Ca concentrations increased. However, if calculated as a percentage of intake, both Ca and P retention were decreased (linear, P<0.05) as dietary Ca concentration increased (from 55.4 to 46.1% and from 48.4 to 43.5%, respectively). The ATTD

  16. Functional Characterization and Determination of the Physiological Role of a Calcium-Dependent Potassium Channel from Cyanobacteria1[C][W

    PubMed Central

    Checchetto, Vanessa; Formentin, Elide; Carraretto, Luca; Segalla, Anna; Giacometti, Giorgio Mario; Szabo, Ildiko; Bergantino, Elisabetta

    2013-01-01

    Despite the important achievement of the high-resolution structures of several prokaryotic channels, current understanding of their physiological roles in bacteria themselves is still far from complete. We have identified a putative two transmembrane domain-containing channel, SynCaK, in the genome of the freshwater cyanobacterium Synechocystis sp. PCC 6803, a model photosynthetic organism. SynCaK displays significant sequence homology to MthK, a calcium-dependent potassium channel isolated from Methanobacterium thermoautotrophicum. Expression of SynCaK in fusion with enhanced GFP in mammalian Chinese hamster ovary cells’ plasma membrane gave rise to a calcium-activated, potassium-selective activity in patch clamp experiments. In cyanobacteria, Western blotting of isolated membrane fractions located SynCaK mainly to the plasma membrane. To understand its physiological function, a SynCaK-deficient mutant of Synechocystis sp. PCC 6803, ΔSynCaK, has been obtained. Although the potassium content in the mutant organisms was comparable to that observed in the wild type, ΔSynCaK was characterized by a depolarized resting membrane potential, as determined by a potential-sensitive fluorescent probe. Growth of the mutant under various conditions revealed that lack of SynCaK does not impair growth under osmotic or salt stress and that SynCaK is not involved in the regulation of photosynthesis. Instead, its lack conferred an increased resistance to the heavy metal zinc, an environmental pollutant. A similar result was obtained using barium, a general potassium channel inhibitor that also caused depolarization. Our findings thus indicate that SynCaK is a functional channel and identify the physiological consequences of its deletion in cyanobacteria. PMID:23640756

  17. ATP-sensitive Potassium Channels and L-type Calcium Channels are Involved in Morphine-induced Hyperalgesia after Nociceptive Sensitization in Mice

    PubMed Central

    Ahmadi, Shamseddin; Azarian, Shaho; Ebrahimi, Sayede Shohre; Rezayof, Ameneh

    2014-01-01

    Introduction We investigated the role of ATP-sensitive potassium channels and L-type calcium channels in morphine-induced hyperalgesia after nociceptive sensitization. Methods We used a hotplate apparatus to assess pain behavior in male NMRI mice. Nociceptive sensitization was induced by three days injection of morphine and five days of drug free. On day 9 of the schedule, pain behavior test was performed for evaluating the effects of morphine by itself and along with nimodipine, a blocker of L-type calcium channels and diazoxide, an opener of ATP-sensitive potassium channels. All drugs were injected through an intraperitoneal route. Results The results showed that morphine (7.5, 10 and 15 mg/kg) induced analgesia in normal mice, which was prevented by naloxone (1 mg/kg). After nociceptive sensitization, analgesic effect of morphine (10 and 15 mg/kg) was significantly decreased in sensitized mice. The results showed that nimodipine (2.5, 5, 10 and 20 mg/kg) had no significant effect on pain behavior test in either normal or sensitized mice. However, nimodipine (20 mg/ kg) along with morphine (10 and 15 mg/kg) caused more decrease in morphine analgesia in sensitized mice. Furthermore, diazoxide by itself (0.25, 1, 5 and 20 mg/kg) had also no significant effect on pain behavior in both normal and sensitized mice, but at dose of 20 mg/kg along with morphine (10 and 15 mg/kg) decreased analgesic effect of morphine in sensitized mice. Discussion It can be concluded that potassium and calcium channels have some roles in decrease of analgesic effect of morphine after nociceptive sensitization induced by pretreatment of morphine. PMID:25337379

  18. [The characteristics and oxidative modulation of large-conductance calcium-activated potassium channels in guinea-pig colon smooth muscle cells.].

    PubMed

    Huang, Wei-Feng; Ouyang, Shou; Zhang, Hui

    2009-06-25

    To investigate the characteristics of large-conductance calcium-activated potassium channels (BK(Ca)) and the effect of hydrogen peroxide (H2O2) on BK(Ca) in guinea-pig proximal colon smooth muscle cells, single smooth muscle cells of guinea-pig colon were enzymatically isolated in low calcium solution containing papain (3 mg/mL), DTT (2 mg/mL), and bovine serum albumin (BSA, 2 mg/mL). Tissues were incubated at 36 degrees C in enzyme solution for 15 min and were then suspended in enzyme-free low calcium solution. Inside-out single channel recording technique was used to record BK(Ca) current. The intracellular (bath) and microelectrode solution both contained symmetrical high potassium. The BK(Ca) in guinea-pig colon smooth muscle cell possesses: 1) voltage-dependence, 2) high selectivity for potassium ion, 3) large conductance (223.7 pS+/-9.2 pS), 4) dependence of [Ca(2+)](i). Intracellular application of H2O2 decreased the open probability (P(o)) of BK(Ca) at low concentration (

  19. Calcium-activated potassium channels in the luminal membrane of Amphiuma diluting segment: voltage-dependent block by intracellular Na+ upon depolarisation.

    PubMed

    Kawahara, K; Hunter, M; Giebisch, G

    1990-06-01

    Calcium-activated potassium channels in the luminal membrane of Amphiuma diluting segment were studied using the patch-clamp technique in both the cell-attached and inside-out configurations. The open probability (Po) of the channel is sensitive to both membrane potential and cytoplasmic calcium activity; depolarizing potentials and high calcium concentrations leading to an increased Po. In the cell-attached condition, channel openings were observed between pipette potentials of -100 and -240 mV. As the driving force for potassium exit from the cell into the pipette is increased the single channel currents show a biphasic response. First, the currents increase as expected; however, the single channel currents diminish in magnitude at pipette potentials more negative than -120 mV. We propose that this reduction is due to rapid blockade of the potassium channel by intracellular sodium. This proposal is supported by two facts: (a) using inside-out patches it was possible to reduce the single channel currents in a concentration- and voltage-dependent manner, similar to that observed in the cell-attached condition, by raising the sodium concentration of the fluid bathing the cytoplasmic face of the patch; (b) pretreatment of tubules with the loop-acting diuretic furosemide (10(-5) M), an agent known to decrease the intracellular sodium activity, caused an attenuation of the reduction in single channel current seen under control conditions. Given the very low Po of the channels at the resting membrane potential and the sensitivity of the channels to intracellular sodium, it is unlikely that blockade of these channels by intracellular sodium would lead to a physiological regulation of the apical K conductance.

  20. Role of calcium-activated potassium channels in the regulation of basal and agonist-elevated tones in isolated conduit arteries. Short communication.

    PubMed

    Pataricza, J; Márton, Z; Hegedus, Z; Krassói, Irén; Kun, A; Varró, A; Papp, J Gy

    2004-01-01

    Functional role of calcium-activated potassium (KCa) channels on the basal and agonist-elevated arterial tones was investigated in isolated rabbit aorta, porcine and canine coronary arteries as well as in human internal mammary artery. The vascular tones enhanced by contractile agents were increased further by preincubation of these conduit blood vessels with selective (charybdotoxin or iberiotoxin) or nonselective (tetraethylammonium) inhibitors of KCa channels. The basal tone (without an agonist) was increased only in the canine coronary artery. The results indicate a feed-back regulatory role of KCa channels counteracting the vasospasm of conduit arteries.

  1. Changes in phytates and HCl extractability of calcium, phosphorus, and iron of soaked, dehulled, cooked, and sprouted pigeon pea cultivar (UPAS-120).

    PubMed

    Duhan, A; Khetarpaul, N; Bishnoi, S

    2002-01-01

    UPAS-120, a high yielding and early maturing variety of pigeon peas released by the Department of Plant Breeding, CCS Haryana Agricultural University, Hisar contained a significant amount of phytic acid, i.e. 886 mg/100 g. When it was subjected to various domestic processing and cooking methods viz. soaking (6, 12, 18 h), dehulling, ordinary as well as pressure cooking and germination (24, 36 and 48 h), a drastic decrease in level of phytic acid with a remarkable increase in the HCl-extractability of mono, divalent, and trivalent ions, like calcium, phosphorus, and iron occurred. Germination (48 h) was found to be the best method for decreasing the phytic acid content, i.e. 35 to 39 percent less than the control and significantly (p < 0.05) increasing the non-phytate phosphorus and HCl-extractable phosphorus. Pressure cooking of soaked-dehulled pigeon pea also rendered equally good results. The calcium, phosphorus, and iron contents of pigeon pea seeds were 197.3, 473.1, and 9.91 mg/100 g, respectively; some losses varying from 3 to 9 percent were noticed when the legume was subjected to soaking, cooking, and germination but the maximum losses, i.e. 23 percent, occurred when the seeds were dehulled. However, HCl-extractability of Ca, P, and Fe improved to a significant extent when the pigeon pea seeds were soaked, soaked-dehulled, cooked and sprouted which may have been due to decrease in the phytate content followed by processing and cooking. The significant negative correlations between the phytic acid and HCl-extractability of minerals of processed pigeon pea strengthens these findings.

  2. Transcriptional activities of methanogens and methanotrophs vary with methane emission flux in rice soils under chronic nutrient constraints of phosphorus and potassium

    NASA Astrophysics Data System (ADS)

    Sheng, Rong; Chen, Anlei; Zhang, Miaomiao; Whiteley, Andrew S.; Kumaresan, Deepak; Wei, Wenxue

    2016-12-01

    Nutrient status in soil is crucial for the growth and development of plants which indirectly or directly affect the ecophysiological functions of resident soil microorganisms. Soil methanogens and methanotrophs can be affected by soil nutrient availabilities and plant growth, which in turn modulate methane (CH4) emissions. Here, we assessed whether deficits in soil-available phosphorus (P) and potassium (K) modulated the activities of methanogens and methanotrophs in a long-term (20 year) experimental system involving limitation in either one or both nutrients. Results showed that a large amount of CH4 was emitted from paddy soil at rice tillering stage (flooding) while CH4 flux was minimum at ripening stage (drying). Compared to soils amended with NPK fertiliser treatment, the soils without P input significantly reduced methane flux rates, whereas those without K input did not. Under P limitation, methanotroph transcript copy number significantly increased in tandem with a decrease in methanogen transcript abundance, suggesting that P-deficiency-induced changes in soil physio-chemical properties, in tandem with rice plant growth, might constrain the activity of methanogens, whereas the methanotrophs might be adaptive to this soil environment. In contrast, lower transcript abundance of both methanogen and methanotrophs were observed in K-deficient soils. Assessments of community structures based upon transcripts indicated that soils deficient in P induced greater shifts in the active methanotrophic community than K-deficient soils, while similar community structures of active methanogens were observed in both treatments. These results suggested that the population dynamics of methanogens and methanotrophs could vary along with the changes in plant growth states and soil properties induced by nutrient deficiency.

  3. Acute effect of 3β-hidroxihop-22(29)ene on insulin secretion is mediated by GLP-1, potassium and calcium channels for the glucose homeostasis.

    PubMed

    Castro, Allisson Jhonatan Gomes; Cazarolli, Luisa Helena; de Carvalho, Francieli Kanumfre; da Luz, Gabrielle; Altenhofen, Delsi; dos Santos, Adair Roberto Soares; Pizzolatti, Moacir Geraldo; Silva, Fátima Regina Mena Barreto

    2015-06-01

    The effect of 3β-hidroxihop-22(29)ene (3-BHO) on insulin and glucagon-like peptide 1 (GLP-1) secretion as well as the mechanism of action of the compound in pancreatic islet on glucose homeostasis was investigated. The data from in vivo treatment show that 3-BHO significantly reduces the hyperglycemia by increasing the insulin and GLP-1 secretion, as well as by accumulating hepatic glycogen in hyperglycemic rats. In rat pancreatic β-cell, 3-BHO stimulates the glucose uptake, insulin vesicles translocation to the plasma membrane and thus the insulin secretion through the involvement of potassium channels (ATP- and Ca(2+)-dependent K(+) channels) and calcium channels (L-type voltage-dependent calcium channels (L-VDCC)). Furthermore, this study also provides evidence for a crosstalk between intracellular high calcium concentration, PKA and PKC in the signal transduction of 3-BHO to stimulate insulin secretion. In conclusion, 3-BHO diminishes glycaemia, stimulates GLP-1 secretion and potentiates insulin secretion and increase hepatic glycogen content. Moreover, this triterpene modulates calcium influx characterizing ATP-K(+), Ca(2+)-K(+) and L-VDCC channels-dependent pathways as well as PKA and PKC activity in pancreatic islets underlying the signaling of 3-BHO for the secretory activity and contribution on glucose homeostasis.

  4. Derangements of potassium.

    PubMed

    Medford-Davis, Laura; Rafique, Zubaid

    2014-05-01

    Changes in potassium elimination, primarily due to the renal and GI systems, and shifting potassium between the intracellular and extracellular spaces cause potassium derangement. Symptoms are vague, but can be cardiac, musculoskeletal, or gastrointestinal. There are no absolute guidelines for when to treat, but it is generally recommended when the patient is symptomatic or has ECG changes. Treatment of hyperkalemia includes cardiac membrane stabilization with IV calcium, insulin and beta-antagonists to push potassium intracellularly, and dialysis. Neither sodium bicarbonate nor kayexelate are recommended. Treatment of symptomatic hypokalemia consists of PO or IV repletion with potassium chloride and magnesium sulfate.

  5. Intakes of vegetables and related nutrients such as vitamin B complex, potassium, and calcium, are negatively correlated with risk of stroke in Korea

    PubMed Central

    2010-01-01

    Consumption of vegetables and fruits is associated with a reduced risk of stroke, but it is unclear whether their protective effects are due to antioxidant vitamins or folate and metabolically related B vitamins. The purpose of the study was to test the hypothesis that intake of fruits and vegetables, which are major sources of antioxidant and vitamin B complex vitamins, reduces the risk of stroke. Cases consisted of patients diagnosed with first event of stroke (n = 69). Controls (n = 69) were age-, sex-, and body mass index-matched to cases. Multivariable-adjusted regression analysis showed that subjects who ate four to six servings of vegetable per day had a 32% reduction in the risk of stroke, and those with more than six servings per day had a reduction of 69% after adjusting for age, sex, BMI, and family history of stroke. Intakes of total fat, plant fat, calcium, potassium, vitamin B1, vitamin B2, vitamin B6, niacin, and folate were significantly and negatively associated with the risk of stroke. Although the trend was not significant, stroke risk was reduced in the second quartile (1.21-2.66 servings per week) of fish intake. However, intake of fruits (average daily intake of 1.0 serving) and antioxidant vitamins such as carotene, vitamin C, and vitamin E was not associated with the risk of stroke. In conclusion, our observational study suggests that intake of fat and vegetables, rich sources of vitamin B complex, calcium, and potassium may protect against stroke. PMID:20827346

  6. Calcium-activated potassium channel SK1 is widely expressed in the peripheral nervous system and sensory organs of adult zebrafish.

    PubMed

    Cabo, R; Zichichi, R; Viña, E; Guerrera, M C; Vázquez, G; García-Suárez, O; Vega, J A; Germanà, A

    2013-10-25

    Sensory cells contain ion channels involved in the organ-specific transduction mechanisms that convert different types of stimuli into electric energy. Here we focus on small-conductance calcium-activated potassium channel 1 (SK1) which plays an important role in all excitable cells acting as feedback regulators in after-hyperpolarization. This study was undertaken to analyze the pattern of expression of SK1 in the zebrafish peripheral nervous system and sensory organs using RT-PRC, Westernblot and immunohistochemistry. Expression of SK1 mRNA was observed at all developmental stages analyzed (from 10 to 100 days post fertilization, dpf), and the antibody used identified a protein with a molecular weight of 70kDa, at 100dpf (regarded to be adult). Cell expressing SK1 in adult animals were neurons of dorsal root and cranial nerve sensory ganglia, sympathetic neurons, sensory cells in neuromasts of the lateral line system and taste buds, crypt olfactory neurons and photoreceptors. Present results report for the first time the expression and the distribution of SK1 in the peripheral nervous system and sensory organs of adult zebrafish, and may contribute to set zebrafish as an interesting experimental model for calcium-activated potassium channels research. Moreover these findings are of potential interest because the potential role of SK as targets for the treatment of neurological diseases and sensory disorders.

  7. Pilot study of bioaccumulation and distribution of cesium, potassium, sodium and calcium in king oyster mushroom (Pleurotus eryngii) grown under controlled conditions.

    PubMed

    Bystrzejewska-Piotrowska, Grazyna; Pianka, Dariusz; Bazała, Michał A; Steborowski, Romuald; Manjón, José L; Urban, Pawel L

    2008-01-01

    This pilot study presents preliminary results on interrelations between alkali and alkaline earth elements during their transfer to mycelium and fruitbodies of saprophytic fungi. The accumulation and distribution of four elements (cesium, potassium, sodium, and calcium) was evaluated in king oyster mushroom (Pleurotus eryngii) cultivated under controlled conditions. Elemental composition of caps, stipes, and the substrate was analyzed by atomic absorption/emission spectroscopy to evaluate discrimination, concentration, and transfer factors. The transfer factors determined for all the investigated elements were different and can be put in the following order: Cs > K > Na > Ca. There has been a higher accumulation of cesium in caps than in stipes. Distribution of cesium in fruitbodies depended on the presence of other ions in the substrate. The addition of Ca2+ limited the transport of cesium and potassium from stipes to caps. Sodium and calcium were mainly accumulated in the stipes. In a control experiment, without supplementation with K+, Na+, and Ca2+, approximately 62% of the cesium present in the substrate was extracted by mycelium and transported to the fruitbodies. Possible applications of fruiting saprophytic fungi in bioremediation are discussed.

  8. Action of niflumic acid on evoked and spontaneous calcium-activated chloride and potassium currents in smooth muscle cells from rabbit portal vein.

    PubMed

    Hogg, R C; Wang, Q; Large, W A

    1994-07-01

    1. The action of niflumic acid was studied on spontaneous and evoked calcium-activated chloride (ICl(Ca)) and potassium (IK(Ca)) currents in rabbit isolated portal vein cells. 2. With the nystatin perforated patch technique in potassium-containing solutions at a holding potential of -77 mV (the potassium equilibrium potential), niflumic acid produced a concentration-dependent inhibition of spontaneous transient inward current (STIC, calcium-activated chloride current) amplitude. The concentration to reduce the STIC amplitude by 50% (IC50) was 3.6 x 10(-6) M. 3. At -77 mV holding potential, niflumic acid converted the STIC decay from a single exponential to 2 exponential components. In niflumic acid the fast component of decay was faster, and the slow component was slower than the control decay time constant. Increasing the concentration of niflumic acid enhanced the decay rate of the fast component and reduced the decay rate of the slow component. 4. The effect of niflumic acid on STIC amplitude was voltage-dependent and at -50 and +50 mV the IC50 values were 2.3 x 10(-6) M and 1.1 x 10(-6) M respectively (cf. 3.6 x 10(-6) M at -77 mV). 5. In K-free solutions at potentials of -50 mV and +50 mV, niflumic acid did not induce a dual exponential STIC decay but just increased the decay time constant at both potentials in a concentration-dependent manner. 6. Niflumic acid, in concentrations up to 5 x 10(-5) M, had no effect on spontaneous calcium-activated potassium currents. 7. Niflumic acid inhibited noradrenaline- and caffeine-evoked IO(Ca) with an ICM50 of 6.6 x 10-6 M, i.e.was less potent against evoked currents compared to spontaneous currents. In contrast niflumic acid(2 x 10-6 M-5 x 105 M) increased noradrenaline- and caffeine-induced IK(ca).8. The results are discussed with respect to the mechanism of block of ICl(Ca) by niflumic acid and its suitability as a pharmacological tool for assessing the role of Ic(ca) in physiological mechanisms.

  9. Reference intervals of plasma calcium, phosphorus, and magnesium for African grey parrots (Psittacus erithacus) and Hispaniolan parrots (Amazona ventralis).

    PubMed

    de Carvalho, Fernanda M; Gaunt, Stephen D; Kearney, Michael T; Rich, Gregory A; Tully, Thomas N

    2009-12-01

    Calcium (Ca), phosphorus (P), and magnesium (Mg) are important elements for body homeostasis in several diseases associated with imbalances in the plasma concentration of these ions. This is the first published report of reference intervals for Mg in association with Ca and P levels for psittacine species. One milliliter of blood was collected from 26 Hispaniolan parrots (Amazona ventralis) and 24 African grey parrots (Psittacus erithacus). The plasma concentrations of Ca, P, and Mg were determined for each sample. Statistical analyses were performed including all data (analysis 1) and after exclusion of the subjects with Ca > or = 14.00 mg/dl (3.5 mmol) (analysis 2). The data from analysis 1 have a narrower interval than that observed in analysis 2. Following the normality test (Shapiro-Wilk, alpha = 0.05), the univariate and mean procedures were run. For the reference intervals, the lower and upper values were used, after elimination of the outliers calculated by Blom scores from the ranked variables. The analysis 1 references for the Hispaniolans were Ca = 8.80-10.40 mg/dl (2.20-2.60 mmol/L), P = 1.80-4.40 mg/dl (0.58-1.42 mmol/L), Mg = 1.80-3.10 mg/dl (0.74-1.27 mmol/L), and Ca:P ratio = 2.62-5.39; for the African greys analysis 1 references were Ca = 8.20-20.20 mg/dl (2.05-5.05 mmol/L), P = 2.50-5.90 mg/dl (0.81-1.91 mmol/L), Mg = 2.10-3.40 mg/dl (0.82-1.4 mmol/L), and Ca:P ratio = 1.81-3.77. The analysis 2 references for the Hispaniolans were Ca = 8.80-10.30 mg/dl (2.20-2.58 mmol/L), P = 1.80-3.80 mg/dl (0.58-1.23 mmol/L), Mg = 1.90-3.00 mg/dl (0.82-1.07 mmol/L), Ca:P ratio = 2.62-5.39; for the African greys analysis 2 references were Ca = 1.07 mmol/L), Ca:P ratio = 1.67-3.50. The results of this study are important for evaluating Mg concentrations in relation to the Ca and P parameters in psittacines. This information will be particularly helpful for veterinarians evaluating the hypocalcemic syndrome in African grey parrots and other disease processes

  10. Nutritional geometry of calcium and phosphorus nutrition in broiler chicks. Growth performance, skeletal health and intake arrays.

    PubMed

    Bradbury, E J; Wilkinson, S J; Cronin, G M; Thomson, P C; Bedford, M R; Cowieson, A J

    2014-07-01

    The interaction between calcium (Ca) and non-phytate phosphorus (nPP) in broiler nutrition and skeletal health is highly complex with many factors influencing their digestion, absorption and utilisation. The use of an investigative model such as the geometric framework allows a graphical approach to explore these complex interactions. A total of 600 Ross 308-day-old male broiler chicks were allocated to one of 15 dietary treatments with five replicates and eight birds per replicate. Dietary treatments were formulated to one of three total densities of total Ca+nPP; high (15 g/kg), medium (13.5 g/kg) and low (12 g/kg) and at each density there were five different ratios of Ca : nPP (4, 2.75, 2.1, 1.5 and 1.14 : 1). Weekly performance data was collected and at the end of the experiment birds were individually weighed and the right leg removed for tibia ash analysis. Skeletal health was assessed using the latency to lie (LTL) at day 27. At low Ca and high nPP as well as high Ca and low nPP diets, birds had reduced feed intake, BW gain, poorer feed efficiency and lower tibia ash, resulting in a significant interaction between dietary Ca and nPP (P<0.05). LTL times were negatively influenced by diets having either a broad ratio (high Ca, low nPP) or too narrow a ratio (low Ca, high nPP) indicating that shorter LTL times may be influenced by the ratio of Ca : nPP rather than absolute concentrations of either mineral. The calculated intake arrays show that broilers more closely regulate Ca intake than nPP intake. Broilers are willing to over consume nPP to defend a Ca intake target more so than they are willing to over consume Ca to defend an nPP target. Overall dietary nPP was more influential on performance metrics, however, from the data it may appear that birds prioritise Ca intake over nPP and broadly ate to meet this requirement. As broilers are more willing to eat to a Ca intake target rather than an nPP intake target, this emphasises the importance of formulating

  11. Consequences of phosphorus interactions with calcium, phytase, and cholecalciferol on zootechnical performance and mineral retention in broiler chickens.

    PubMed

    Delezie, E; Maertens, L; Huyghebaert, G

    2012-10-01

    The objective was to determine the effect of calcium (Ca), total phosphorus (Ptot), cholecalciferol, and phytase level in the diet on the performance, tibia ash percentage, and Ca and P retention in broilers until slaughter age. Broilers were randomly assigned to 12 treatments, each with 6 replicates, comprising 3 diets differing in Ca and P level: 1) normal Ca and Ptot level (NN); 2) normal Ca and low Ptot level (NL), 3) low Ca and Ptot level (LL). Broilers were also given 2 levels of cholecalciferol and 2 levels of phytase. The normal levels of Ca and Ptot for the starter, grower, and finisher phases were 0.90, 0.82, 0.74% and 0.67, 0.62, 0.57%, respectively. The low Ca and Ptot levels for the 3 phases were 0.67, 0.60, 0.52% and 0.57, 0.51, 0.46%, respectively. Broilers of the NL treatment obtained the lowest BW, whereas BW of the NN and LL groups were comparable. Cholecalciferol significantly affected the BW, with differences up to 2.6 and 1.2% for the starter and grower phases, respectively. The highest cholecalciferol effect was found in combination with the NN treatment. The percentage of retained Ca increased from 33% to 41% and 48% when the imbalanced diet was replaced by the NN and LL balanced diets, respectively. P release from phytate was 64 and 67% for the NL and LL diets, respectively. Phytase and cholecalciferol had significantly favorable effects on retention values but these effects were dependent on Ca and Ptot levels and their ratio. In conclusion, both diets with the balanced Ca/Ptot ratio resulted in the best performance, highest tibia ash percentage and P release from phytate. A reduction of the Aviagen (2009) recommended P requirements by 25 to 30% and Ca by 15 to 20% over the various phases did not negatively affect performance, bone development, and improved Ca and Ptot retention. The effects of supplementing cholecalciferol and phytase were additive but not significant and no synergism between both was present.

  12. Effect of dietary boron on growth performance, calcium and phosphorus metabolism, and bone mechanical properties in growing barrows.

    PubMed

    Armstrong, T A; Spears, J W

    2001-12-01

    An experiment was conducted to evaluate the effects of dietary boron (B) on growth performance, bone mechanical properties, and calcium (Ca) and phosphorus (P) metabolism in pigs. Thirty-six barrows were weaned at approximately 21 d of age and randomly assigned to receive one of three dietary treatments. Treatments consisted of 1) low-B basal diet (control), 2) basal + 5 mg B/kg diet, and 3) basal + 15 mg B/kg diet. Boron was supplemented as sodium borate. Barrows remained on their respective experimental diets throughout the nursery (35 d) and growing (30 d) phases of production. Blood samples were obtained from each barrow at the end of each phase. Following the 30-d growing period, eight barrows per treatment were transferred to stainless steel metabolism crates. Barrows had an adjustment period of 7 d, followed by a 7-d total collection of urine and feces. All barrows were fed at 90% of the previous ad libitum grower intake of the control animals during the adjustment and collection periods. At the end of the 7-d collection period, barrows were killed and femurs and fibulas were harvested for the assessment of bone mechanical properties. During the nursery phase, ADG and ADFI were increased (P < 0.05) by B supplementation. Boron did not affect (P = 0.34) feed efficiency during the nursery phase. During the growing phase, ADG and ADFI were increased (P < 0.05) by B supplementation. Boron did not affect (P = 0.97) feed efficiency during the growing phase. Boron did not affect (P = 0.44) bone ash percentage, but B supplementation increased (P < 0.05) bone ash P. Ultimate shear force of the fibula was increased (P < 0.05) in barrows supplemented with 15 mg B/kg diet compared to barrows fed diets supplemented with 5 mg B/kg diet. Apparent absorption and retention of Ca and P were not affected (P > 0.05) by dietary B. These data indicate that B supplementation to pigs can increase growth and bone strength without greatly affecting Ca and P metabolism.

  13. The immunomodulatory effect of vitamin D in chickens is dose-dependent and influenced by calcium and phosphorus levels.

    PubMed

    Rodriguez-Lecompte, J C; Yitbarek, A; Cuperus, T; Echeverry, H; van Dijk, A

    2016-11-01

    Vitamin D requirement is estimated to be higher than recommended values for the first two weeks of a broiler chicken's life, and is heavily dependent on the concentrations of Ca and P in the diet. There are data indicating the beneficial effect of higher vitamin D levels on performance and overall health of the chickens. However, data on the role of higher vitamin D levels on the innate immune response of chickens are limited. Therefore, in the current study, we examined the effect of higher doses of vitamin D supplementation on the innate immune response in broiler chickens receiving optimal or calcium (Ca) and phosphorus (P) deficient diets. Three hundred Ross-308 male broiler chicks were randomly allocated into 60 cages with 5 birds per cage in a 3 × 2 factorial design with three levels of vitamin D and two levels of Ca/P with each experimental diet fed to 10 cages (10 replicates). Quantitative reverse transcription PCR (n = 5) was used to assess Toll-like receptor (TLR2b and 4), cytokine/chemokine (IL-12, IFN-γ, IL-10, IL-4, IL-13, IL-18, CxCLi2) and cathelicidin (CATH1, CATHB1, CATH3) transcription levels in peripheral blood mononuclear cells (PBMCs), spleen, and bursa of Fabricius. Vitamin D supplementation of the Ca and P deficient diet considerably augmented transcription of TLR2b, TLR4, CATH1, and CATHB1 and predominantly Th2 cytokines in spleen. Supplementation of the control diet with vitamin D downregulated TLR4 transcription, and dose-dependently increased CATH1, CATHB1, Th1, and Th2 cytokine transcription (Th2>Th1). All diets downregulated CATH3 transcription. In conclusion, vitamin D or its derivative 25-OH-D3 both have a robust immunomodulatory property with a more favorable Th2 response, while at the same time enhancing observed Th2 cytokine responses under both optimal and lower Ca and P inclusion levels in the diets of broiler chickens.

  14. Impact of season and sex on calcium and phosphorus content in the meat of roach (Rutilus rutilus L.) from the Brda River (Poland, Bydgoszcz).

    PubMed

    Stanek, Magdalena; Janicki, Bogdan

    2011-01-01

    The aim of this work was to compare the concentrations of calcium and phosphorus and Ca/P ratio in the meat of females and males of the roach (Rutilus rutilus L.) caught from the Brda River. The study involved 40 roach individuals caught in fall and spring (10 females and 10 males from each season). The muscle samples for analyses were taken from the large side muscle of the fish body above the lateral line. Ca concentrations were determined by atomic absorption spectrophotometry; P content was analyzed by the colorimetric method. Calcium concentration in the meat of analysed roach was higher in samples collected from fish caught in spring and equaled 1.82 g kg(-1) in females and 1.93 g kg(-1) in males. Values for individuals from autumn amounted to 0.83 and 1.10 g kg(-1), respectively. Statistically significant differences in calcium content were detected between individuals caught in different seasons, but samples taken from females and males caught within one season did not differ substantially. The mean value of P in the meat of analysed roach caught in spring was higher than in fish from autumn, and it was respectively 2.24 g kg(-1) in females and 2.30 g kg(-1) in males from spring, and 1.89 g kg(-1) in the tissue of females and 2.01 g kg(-1) in males in fish from autumn. The ratio of calcium to phosphorus in the meat of analysed wild roach ranged from 0.43:1 to 0.82:1. A negative and statistically significant correlation between Ca and P concentrations was found in the meat and the body length of analysed roach from the Brda River.

  15. Would calcium or potassium channels be responsible for cardiac arrest produced by adenosine and ATP in the right atria of Wistar rats?

    PubMed

    Camara, Henrique; Rodrigues, Juliano Quintella Dantas; Alves, Gabriel Andrade; da Silva Junior, Edilson Dantas; Caricati-Neto, Afonso; Garcia, Antônio G; Jurkiewicz, Aron

    2015-12-05

    Autonomic nerves release ATP, which is processed into adenosine in the synaptic cleft. Adenosine and ATP exert a negative chronotropic effect in the heart. This study aims to evaluate adenosine and P2 receptors and cellular signalling in cardiac arrest produced by purines in the heart. Right atria of adult Wistar rats were used to evaluate the effects of adenosine, ATP and CPA (an adenosine A1 receptor agonist), in the presence and absence of DPCPX, an adenosine A1 receptor antagonist. Effects of adenosine A2 and A3 receptors agonists and antagonists were also investigated. Finally, involvement of calcium and potassium channels in these responses was assessed using BayK 8644 and 4-Aminopyridine. Cumulative concentration-effect curves of adenosine and CPA resulted in a negative chronotropic effect culminating in cardiac arrest at 1000μM (adenosine) and 1µM (CPA). Furthermore, ATP produced a negative chronotropic effect at 1-300µM and cardiac arrest at 1000μM in the right atrium. ATPγS (a non-hydrolysable analogue of ATP) reduced chronotropism only. The effects of adenosine, CPA and ATP were inhibited by DPCPX, a selective adenosine A1 receptor antagonist. The selective adenosine A2 and A3 receptors antagonists did not alter the chronotropic response of adenosine. 4-Aminopyridine, a blocker of potassium channels at 10mM, prevented the cardiac arrest produced by adenosine and ATP, while BayK 8644, activator of calcium channels, did not prevent cardiac arrest. Adenosine A1 receptor activation by adenosine and ATP produces cardiac arrest in the right atrium of Wistar rats predominantly through activation of potassium channels.

  16. High potassium level

    MedlinePlus

    ... symptoms. Tests that may be ordered include: Electrocardiogram (ECG) Potassium level Your provider will likely check your ... have danger signs, such as changes in an ECG . Emergency treatment may include: Calcium given into your ...

  17. The relationship between calcium, phosphorus, and sodium intake, race, and blood pressure in children with renal insufficiency: a report of the Growth Failure in Children with Renal Diseases (GFRD) Study.

    PubMed

    Trachtman, H; Chan, J C; Boyle, R; Farina, D; Baluarte, H J; Chinchilli, V M; Dresner, I G; Feld, L G

    1995-07-01

    Nutritional data compiled during the Growth Failure in Children with Renal Diseases Clinical Trial were analyzed to determine the relationship between the dietary intake of divalent minerals and sodium, nutritional status, and serum calcium, phosphorus, and parathyroid hormone (PTH) concentrations and blood pressure in black versus white children. One hundred eighteen patients are included in this report; 25 were black (21%) and 93 were white (79%). Although more of the blacks were male, the age distribution, midarm circumference, midarm muscle circumference, blood pressure, and serum calcium, phosphorus, and PTH concentrations were comparable in the two groups. Phosphorus intake was within the recommended daily allowance in both groups; in contrast, calcium intake was inadequate in all patients: 81% of the recommended daily allowance in whites, and 74% in blacks. Sixteen children were noted to be hypertensive during the observation period; six patients were receiving a variety of antihypertensive medications, including diuretics in two children. Linear regression analysis revealed that systolic and diastolic blood pressures were directly related to calcium and phosphorus intake in black patients. In white children, only dietary phosphorus intake and diastolic blood pressure were directly related. There was no relationship between sodium intake or GFR and blood pressure in the white or black children. PTH levels were directly correlated with systolic and diastolic blood pressure in all children. The correlations between PTH and blood pressure were stronger in white versus black patients.(ABSTRACT TRUNCATED AT 250 WORDS)

  18. Effect of different soaking solutions on nutritive utilization of minerals (calcium, phosphorus, and magnesium) from cooked beans (Phaseolus vulgaris L.) in growing rats.

    PubMed

    Nestares, Teresa; Barrionuevo, Mercedes; López-Frías, Magdalena; Vidal, Concepción; Urbano, Gloria

    2003-01-15

    The effects of the commonly used processing techniques of soaking (at different pH values) and cooking on the digestive and nutritive utilization of calcium, phosphorus, and magnesium from common beans (Phaseolus vulgaris L.) were studied. Before the cooking step, the beans were soaked in solutions of acid (2.6 and 5.3) or basic (8.4) pH. Chemical and biological methods were used to determine nutritional parameters in growing rats, and the fiber content of the beans was established. As the pH of the soaking solution increased, so did mineral absorption and the apparent digestibility coefficient, which reached suitable values for growing rats, due to the reduced losses of soluble minerals and the increased food intake. Metabolic utilization also improved with increased pH of the soaking solution, although the values were, in general, low as a result of urinary losses under the experimental conditions. For the experimental period of 10 days, the femur and the muscle seem to be good metabolic indicators for calcium, but not for phosphorus or magnesium. The increased amount of cellulose in the soaked seed did not have a negative effect on the digestive utilization of minerals.

  19. Effects of protamine sulphate on spontaneous and calcium-induced contractile activity in the rat uterus are potassium channels-mediated.

    PubMed

    Orescanin-Dusić, Zorana; Milovanović, Slobodan; Radojicić, Ratko; Nikolić-Kokić, Aleksandra; Appiah, Isabella; Slavić, Marija; Cutura, Nedo; Trbojević, Stevan; Spasić, Mihajlo; Blagojević, Dusko

    2009-01-01

    Protamine sulphate (PS) effect on spontaneous and calcium-induced rhythmic contractions of isolated virgin rat uteri was studied. PS caused dose-dependent relaxation of both types of contractions (two-way ANOVA, significant dose effects). Pretreatment with NG-nitro-L-arginine methyl ester (L-NAME; 10(-5) mol/l), methylene blue (MB; 0.9 x 10(-6) mol/l) or propranolol (1.7 x 10(-5) mol/l) enhanced PS-mediated uterine muscle relaxation of spontaneous contractions. Dosedependent relaxation of spontaneous active isolated rat uterus with PS was lower in uteri pretreated with single dose of tetraethylammonium (TEA; 6 x 10(-3) mol/l), glibenclamide (2 x 10(-6) mol/l) and 4-aminopyridine (4-AP; 10(-3) mol/l). Calcium-induced activity of the isolated rat uterus pretreated with the same concentration of L-NAME, MB, or propranolol modified the kinetic of PS-induced relaxation without changes in EC(50) values. Pre-treatment with glibenclamide, TEA and 4-AP significantly reduce PS relaxing effect of calcium-induced activity and according to EC(50) values the order of magnitude was glibenclamide > TEA > 4-AP. PS is mixture of polyamines and may activate different signal-transduction pathways. Our results cleary demonstrate that in uterine smooth muscle PS act dominantly through potassium chanels and marginaly through beta-adrenergic receptos or nitric oxide-dependent pathways.

  20. Intermediate-conductance calcium-activated potassium channel KCa3.1 and chloride channel modulate chemokine ligand (CCL19/CCL21)-induced migration of dendritic cells.

    PubMed

    Shao, Zhifei; Gaurav, Rohit; Agrawal, Devendra K

    2015-07-01

    The role of ion channels is largely unknown in chemokine-induced migration in nonexcitable cells such as dendritic cells (DCs). Here, we examined the role of intermediate-conductance calcium-activated potassium channel (KCa3.1) and chloride channel (CLC3) in lymphatic chemokine-induced migration of DCs. The amplitude and kinetics of chemokine ligand (CCL19/CCL21)-induced Ca(2+) influx were associated with chemokine receptor 7 expression levels, extracellular-free Ca(2+) and Cl(-), and independent of extracellular K(+). Chemokines (CCL19 and CCL21) and KCa3.1 activator (1-ethyl-1,3-dihydro-2H-benzimidazol-2-one) induced plasma membrane hyperpolarization and K(+) efflux, which was blocked by 1-[(2-chlorophenyl)diphenylmethyl]-1H-pyrazole, suggesting that KCa3.1 carried larger conductance than the inward calcium release-activated calcium channel. Blockade of KCa3.1, low Cl(-) in the medium, and low dose of 4,4'-diisothiocyano-2,2'-stilbenedisulfonic acid (DIDS) impaired CCL19/CCL21-induced Ca(2+) influx, cell volume change, and DC migration. High doses of DIDS completely blocked DC migration possibly by significantly disrupting mitochondrial membrane potential. In conclusion, KCa3.1 and CLC3 are critical in human DC migration by synergistically regulating membrane potential, chemokine-induced Ca(2+) influx, and cell volume.

  1. Measuring metal and phosphorus speciation in P-rich anaerobic digesters.

    PubMed

    Carliell-Marquet, C M; Wheatley, A D

    2002-01-01

    High concentrations of soluble orthophosphate, magnesium and potassium are released during anaerobic digestion of biological phosphorus removal (BPR) sludge. This research was undertaken to investigate the effects of phosphorus enrichment on digester performance, metal and phosphorus speciation. High concentrations of soluble PO4-P (> 250 mg/l) were found to have a retarding effect on anaerobic digestion, reducing the rate of volatile solids digestion and methane production in comparison to control digesters. This was found to be reversible after a period of time, which was related to the amount of PO4-P added to the digesters, higher concentrations of PO4-P requiring more time for digester recovery. Addition of magnesium and potassium to the digesters, together with PO4-P, reduced the inhibitory effect of phosphorus enrichment but these digesters still showed lower rates of volatile solids digestion and methane production in comparison to the control digesters. Phosphorus enrichment resulted in extensive precipitation of calcium, magnesium and manganese, markedly reducing the soluble and easily available fractions of these metals. Other trace metals such as copper, zinc, chromium, nickel and cobalt actually showed increased levels of solubility as a result of phosphorus enrichment. This was thought to be caused by high levels of soluble organic carbon in the phosphorus-rich anaerobic digesters, which acted as organic ligands for metal complexation.

  2. Potassium bicarbonate attenuates the urinary nitrogen excretion that accompanies an increase in dietary protein and may promote calcium absorption

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Protein is an essential component of muscle and bone. However, the acidic byproducts of protein metabolism may have a negative impact on the musculoskeletal system particularly in older individuals with declining renal function. We sought to determine whether adding an alkaline salt, potassium bicar...

  3. Calcium, Magnesium, and Phosphorus Metabolism, and Parathyroid- Calcitonin Function during Prolonged Exposure to Elevated CO2 Concentrations on Submarines

    DTIC Science & Technology

    1975-12-01

    blood Pco * and bicarbonate. Urinary calcium excretion decreased again during the 5th to 8th week, with a secondary decrease in blood pH and plasma...analyzed in the laboratory. *P =s 0.05. CALCIUM METABOLISM DURING SUBMARINE PATROL S61 three weeks of exposure, followed by a secondary increase in Pco ...G. Nichols, Jr., and R. H. Wasserman, Eds. Some implications in cellular mechanisms for calcium transfer and homeostasis . Academic Press, New York

  4. Calcium

    MedlinePlus

    ... milligrams) of calcium each day. Get it from: Dairy products. Low-fat milk, yogurt, cheese, and cottage ... lactase that helps digest the sugar (lactose) in dairy products, and may have gas, bloating, cramps, or ...

  5. Nutrient intake and urine composition in calcium oxalate stone-forming dogs: comparison with healthy dogs and impact of dietary modification.

    PubMed

    Stevenson, Abigail E; Blackburn, Judith M; Markwell, Peter J; Robertson, William G

    2004-01-01

    Nutrient intake and urine composition were analyzed in calcium oxalate (CaOx)stone-forming and healthy control dogs to identify factors that contribute to CaOx urolithiasis. Stone-forming dogs had significantly lower intake of sodium, calcium, potassium, and phosphorus and significantly higher urinary calcium and oxalate concentrations, calcium excretion, and CaOx relative supersaturation (RSS). Feeding a diet used in the treatment of canine lower urinary tract disease for 1 month was associated with increased intake of moisture, sodium, and fat; reduced intake of potassium and calcium; and decreased urinary calcium and oxalate concentrations, calcium excretion, and CaOx RSS. No clinical signs of disease recurrence were observed in the stone-forming dogs when the diet was fed for an additional 11 months. The results suggest that hypercalciuria and hyperoxaluria contribute to the formation of CaOx uroliths in dogs and show that dietary modifications can alter this process.

  6. Selective positive modulator of calcium-activated potassium channels exerts beneficial effects in a mouse model of spinocerebellar ataxia type 2.

    PubMed

    Kasumu, Adebimpe W; Hougaard, Charlotte; Rode, Frederik; Jacobsen, Thomas A; Sabatier, Jean Marc; Eriksen, Birgitte L; Strøbæk, Dorte; Liang, Xia; Egorova, Polina; Vorontsova, Dasha; Christophersen, Palle; Rønn, Lars Christian B; Bezprozvanny, Ilya

    2012-10-26

    Spinocerebellar ataxia type 2 (SCA2) is a neurodegenerative disorder caused by a polyglutamine expansion within the Ataxin-2 (Atxn2) protein. Purkinje cells (PC) of the cerebellum fire irregularly and eventually die in SCA2. We show here that the type 2 small conductance calcium-activated potassium channel (SK2) play a key role in control of normal PC activity. Using cerebellar slices from transgenic SCA2 mice we demonstrate that SK channel modulators restore regular pacemaker activity of SCA2 PCs. Furthermore, we also show that oral delivery of a more selective positive modulator of SK2/3 channels (NS13001) alleviates behavioral and neuropathological phenotypes of aging SCA2 transgenic mice. We conclude that SK2 channels constitute a therapeutic target for SCA2 treatment and that the developed selective SK2/3 modulator NS13001 holds promise as a potential therapeutic agent for treatment of SCA2 and possibly other cerebellar ataxias.

  7. Determination of ammonium, calcium, magnesium, potassium and sodium in drinking waters by capillary zone electrophoresis on a column-coupling chip.

    PubMed

    Masár, Marián; Sydes, Daniel; Luc, Milan; Kaniansky, Dusan; Kuss, Heinz-Martin

    2009-08-21

    This work deals with simultaneous determination of ammonium, calcium, magnesium, sodium and potassium in drinking waters by capillary zone electrophoresis (CZE) on a column-coupling (CC) chip with suppressed hydrodynamic and electroosmotic transports. CZE separations were carried out in a propionate background electrolyte at a low pH (3.2) containing 18-crown-6-ether (18-crown-6) to reach a complete resolution of the cations. In addition, triethylenetetramine (TETA) coated the inner wall surface of the chip channels. The concentration limits of detection (cLOD) for the studied cations ranged from 4.9 to 11.5 microg/l concentrations using a 900 nl volume of the sample injection channel. 93-106% recoveries of the cations in drinking waters indicate a good predisposition of the present method to provide accurate analytical results.

  8. Role of calcium-activated potassium channels in the genesis of 3,4-diaminopyridine-induced periodic contractions in isolated canine coronary artery smooth muscles.

    PubMed

    Uchida, Yasumi; Maezawa, Yuko; Maezawa, Yoshiro; Uchida, Yasuto; Nakamura, Fumitaka

    2011-09-01

    We found that 3,4-diaminopyridine (3,4-DAP), a voltage-gated potassium channel (K(V)) inhibitor, elicits pH-sensitive periodic contractions (PCs) of coronary smooth muscles. Underlying mechanisms of PCs, however, remained to be elucidated. The present study was performed to examine the roles of ion channels in the genesis of PCs. To determine the electromechanical changes of smooth muscles, isolated coronary arterial rings from beagles were suspended in organ chambers filled with Krebs-Henseleit solution, and 10(-2) M 3,4-DAP was added to elicit PCs. 3,4-DAP caused periodic spike-and-plateau depolarization accompanied by contraction. PCs were not produced when the CaCl(2) concentration in the chamber was ≤ 0.3 × 10(-3) or ≥ 10(-2) M. PCs were eliminated by a CaCl(2) concentration ≥ 5 × 10(-3) M or by lowering pH below 7.20 with HCl and recovered by the addition of iberiotoxin or charybdotoxin, which inhibit large-conductance calcium-activated potassium channels (K(Ca)), or by elevating pH above 7.35 with NaOH. PCs, as well as the spike-and-plateau depolarization, were eliminated by nifedipine, which inhibits L-type voltage-gated calcium channels (Ca(V)). Influx of Ca(2+) through L-type Ca(V), which was opened because closing of K(Ca), secondary to 3,4-DAP-induced closing of K(V), resulted in contraction; the intracellular Ca(2+) increased by this influx opened K(Ca), leading to closure of Ca(V) and consequent cessation of Ca(2+) influx with resultant relaxation. These processes were repeated spontaneously to cause PCs. H(+) and OH(-) were considered to act as the opener and closer of K(Ca), respectively.

  9. SLC24A5 encodes a trans-Golgi network protein with potassium-dependent sodium-calcium exchange activity that regulates human epidermal melanogenesis.

    PubMed

    Ginger, Rebecca S; Askew, Sarah E; Ogborne, Richard M; Wilson, Stephen; Ferdinando, Dudley; Dadd, Tony; Smith, Adrian M; Kazi, Shubana; Szerencsei, Robert T; Winkfein, Robert J; Schnetkamp, Paul P M; Green, Martin R

    2008-02-29

    A non-synonymous single nucleotide polymorphism in the human SLC24A5 gene is associated with natural human skin color variation. Multiple sequence alignments predict that this gene encodes a member of the potassium-dependent sodium-calcium exchanger family denoted NCKX5. In cultured human epidermal melanocytes we show using affinity-purified antisera that native human NCKX5 runs as a triplet of approximately 43 kDa on SDS-PAGE and is partially localized to the trans-Golgi network. Removal of the NCKX5 protein through small interfering RNA-mediated knockdown disrupts melanogenesis in human and murine melanocytes, causing a significant reduction in melanin pigment production. Using a heterologous expression system, we confirm for the first time that NCKX5 possesses the predicted exchanger activity. Site-directed mutagenesis of NCKX5 and NCKX2 in this system reveals that the non-synonymous single nucleotide polymorphism in SLC24A5 alters a residue that is important for NCKX5 and NCKX2 activity. We suggest that NCKX5 directly regulates human epidermal melanogenesis and natural skin color through its intracellular potassium-dependent exchanger activity.

  10. What We Eat In America, NHANES 2005-2006, usual nutrient intakes from food and water compared to 1997 Dietary Reference Intakes for vitamin D, calcium, phosphorus, and magnesium

    Technology Transfer Automated Retrieval System (TEKTRAN)

    This report presents national estimates of usual nutrient intake distributions from food and water for vitamin D, calcium, phosphorus, and magnesium and compares those estimates to the Dietary Reference Intakes published by the Institute of Medicine in 1997. Estimates are based on data from 8,437 in...

  11. Availability of phosphorus from selected inorganic phosphate to juvenile abalone, Haliotis discus hannai ino.

    NASA Astrophysics Data System (ADS)

    Bei-Ping, Tan; Kang-Sen, Mai; Wei, Xu

    2002-06-01

    The availability of phosphorus to juvenile abalone, Haliotis discus hannai from primary, secondary and tertiary calcium phosphate, primary sodium or potassium phosphate separately or in combination was determined in a 120-day feeding trial. Seven semi-purified diets were formulated to contain relatively constant dietary phosphorus, ranging from 0.78%-0.82%. The concentrations of dietary phosphorus were presumed to be slightly below the requirement for abalone. A brown alga, Laminaria japonica, was used as a control diet. Abalone juveniles of silimar size (average weight 1.18 g; average shell length 18.74 mm) were distributed in a single-pass, flow-through system using a completely randomized design with eight treatments and three replicates each treatment. The survival ranged from 71.1% to 81.1%, and was not significantly (P>0.05) related to dietary treatment. However, the weight gain rate (41.72%-65.02%), daily increment in shell length (36.87-55.07 μm) and muscle RNA-DNA ratio (3.44-4.69) were significantly (P<0.05) affected by dietary treatment. Soft body alkaline phosphatase activity (10.9-19.8 U/g wet tissue) and carcass levels of lipid (7.71%-9.33%) and protein (46.68%-49.35%) were significantly (P<0.05) responsive to available phosphorus of the diets. Dietary treatment had significant effect (P<0.05) on concentrations of phosphorus in the whole body (WB) and soft body (SB). Apparent digestibility coefficients (45%-97%) of phosphorus were also significantly (P<0.05) different between dietary treatments. The results indicated that among these inorganic compounds, primary calcium, potassium and sodium phosphates separately or in combination could be utilized effectively by juvenile abalone as dietary phosphorus sources (availability ranging from 87%-97%). However, secondary and tertiary calcium phosphates were found to be low in availability, the values being 45% and 77%, repectively.

  12. Absorption of calcium, magnesium, phosphorus, iron and zinc in growing male rats fed diets containing either phytate-free soybean protein or soybean protein isolate or casein.

    PubMed

    Kamao, M; Tsugawa, N; Nakagawa, K; Kawamoto, Y; Fukui, K; Takamatsu, K; Kuwata, G; Imai, M; Okano, T

    2000-02-01

    The effect of dietary phytate-free soybean protein (PFS) on intestinal mineral absorption and retention was examined in growing male rats using a three-day mineral balance technique. The rats were fed diets containing PFS, soybean protein isolate (SPI) or casein at a 20% level for 5 wk. Total calcium (Ca), magnesium (Mg), phosphorus (P), iron (Fe) and zinc (Zn) contents in diets were adjusted to 0.35, 0.05, 0.7, 0.0035 and 0.003%, respectively, by supplementation of the diet with their salts. Mineral absorption and retention ratios in rats fed the PFS diet were significantly higher than those in rats fed either the SPI or casein diet. These results suggest that PFS may be a promising dietary protein source for improving the mineral bioavailability in humans.

  13. Quantitative Localization of Cav2.1 (P/Q-Type) Voltage-Dependent Calcium Channels in Purkinje Cells: Somatodendritic Gradient and Distinct Somatic Coclustering with Calcium-Activated Potassium Channels

    PubMed Central

    Indriati, Dwi Wahyu; Kamasawa, Naomi; Matsui, Ko; Meredith, Andrea L.; Watanabe, Masahiko; Shigemoto, Ryuichi

    2014-01-01

    P/Q-type voltage-dependent calcium channels play key roles in transmitter release, integration of dendritic signals, generation of dendritic spikes, and gene expression. High intracellular calcium concentration transient produced by these channels is restricted to tens to hundreds of nanometers from the channels. Therefore, precise localization of these channels along the plasma membrane was long sought to decipher how each neuronal cell function is controlled. Here, we analyzed the distribution of Cav2.1 subunit of the P/Q-type channel using highly sensitive SDS-digested freeze-fracture replica labeling in the rat cerebellar Purkinje cells. The labeling efficiency was such that the number of immunogold particles in each parallel fiber active zone was comparable to that of functional channels calculated from previous reports. Two distinct patterns of Cav2.1 distribution, scattered and clustered, were found in Purkinje cells. The scattered Cav2.1 had a somatodendritic gradient with the density of immunogold particles increasing 2.5-fold from soma to distal dendrites. The other population with 74-fold higher density than the scattered particles was found within clusters of intramembrane particles on the P-face of soma and primary dendrites. Both populations of Cav2.1 were found as early as P3 and increased in the second postnatal week to a mature level. Using double immunogold labeling, we found that virtually all of the Cav2.1 clusters were colocalized with two types of calcium-activated potassium channels, BK and SK2, with the nearest neighbor distance of ~40 nm. Calcium nanodomain created by the opening of Cav2.1 channels likely activates the two channels that limit the extent of depolarization. PMID:23426693

  14. Phosphorus and potassium losses by runoff under three oats residue treatments in two no-tillage variants on a Southbrazilian Typic Hapludox

    NASA Astrophysics Data System (ADS)

    Do Amaral, André J.; Bertol, Ildegardis; Cogo, Neroli P.; Barbosa, Fabrício T.; Vidal Vázquez, Eva; Paz Ferreiro, Jorge

    2010-05-01

    rates of 1, 1 -2, and 1 -4, respectively. Phosphorus and potassium levels in runoff water showed a similar trend than water losses, so that they decreased as the crop residue rate decreased. In our conditions the value of P and K losses varied between 0.31 and 12.08 US ha-1. We concluded that the state of the soil surface under NT, which depends on the operations during sowing and on the rate of addition of previous crop residue, influence total water losses as well as P and K contents. In turn differences in P and K losses have a bearing on financial aspects of nutrient application. Acknowledgement: This work was supported by Spanish Ministry of Education (Project CGL2005-08219-C02).

  15. Structural and nano-mechanical properties of Calcium Silicate Hydrate (C-S-H) formed from alite hydration in the presence of sodium and potassium hydroxide

    SciTech Connect

    Mendoza, Oscar; Giraldo, Carolina; Camargo, Sergio S.

    2015-08-15

    This research evaluates the effect of sodium and potassium hydroxide on the structure and nano-mechanical properties of Calcium Silicate Hydrate (C-S-H) formed from the hydration of pure alite. Monoclinic (MIII) alite was synthesized and hydrated, using water-to-alite ratios of 0.5 and 0.6 and additions of 10% NaOH and KOH by weight of alite. Based on results of X-ray diffraction, isothermal calorimetry, thermogravimetric analysis, Nuclear Magnetic Resonance and nanoindentation, two different effects of the alkaline hydroxides on the hydration reaction of alite, both at early and later ages, can be identified: (i) a differentiated hydration process, attributed to an enhancement in calcium hydroxide (CH) precipitation and a stimulation of the C-S-H nuclei; and (ii) an increase in the elastic modulus of the C-S-H aggregations, attributed to an electrostatic attraction between positive charges from the alkaline cations and negative charges from the C-S-H structure.

  16. Calcium, potassium, iron, copper and zinc concentrations in the white and gray matter of the cerebellum and corpus callosum in brain of four genetic mouse strains

    NASA Astrophysics Data System (ADS)

    Sergeant, C.; Vesvres, M. H.; Devès, G.; Guillou, F.

    2005-04-01

    In the central nervous system, metallic cations are involved in oligodendrocyte maturation and myelinogenesis. Moreover, the metallic cations have been associated with pathogenesis, particularly multiple sclerosis and malignant gliomas. The brain is vulnerable to either a deficit or an excess of available trace elements. Relationship between trace metals and myelinogenesis is important in understanding a severe human pathology : the multiple sclerosis, which remains without efficient treatment. One approach to understand this disease has used mutant or transgenic mice presenting myelin deficiency or excess. But to date, the concentration of trace metals and mineral elements in white and gray matter areas in wild type brain is unknown. The aim of this study is to establish the reference concentrations of trace metals (iron, copper and zinc) and minerals (potassium and calcium) in the white and gray matter of the mouse cerebellum and corpus callosum. The brains of four different genetic mouse strains (C57Black6/SJL, C57Black6/D2, SJL and C3H) were analyzed. The freeze-dried samples were prepared to allow PIXE (Proton-induced X-ray emission) and RBS (Rutherford backscattering spectrometry) analyses with the nuclear microprobe in Bordeaux. The results obtained give the first reference values. Furthermore, one species out of the fours testes exhibited differences in calcium, iron and zinc concentrations in the white matter.

  17. Physico-chemical and sensory properties of reduced-fat mortadella prepared with blends of calcium, magnesium and potassium chloride as partial substitutes for sodium chloride.

    PubMed

    Horita, C N; Morgano, M A; Celeghini, R M S; Pollonio, M A R

    2011-12-01

    Blends of calcium, magnesium and potassium chloride were used to partially replace sodium chloride (50-75%) in reduced-fat mortadella formulations. The presence of calcium chloride reduced the emulsion stability, cooking yield, elasticity and cohesiveness and increased hardness; however, it yielded the best sensory acceptance when 50% NaCl was replaced by 25% CaCl(2) and 25% KCl. There was no effect of the salt substitutes on mortadella color, appearance and aroma. All salt combinations studied showed stable lipid oxidation during its shelf life. The use of a blend with 1% NaCl, 0.5% KCl and 0.5% MgCl(2) resulted in the best emulsion stability, but the worst scores for flavor. This study suggests that it is possible to reduce the sodium chloride concentration by 50% in reduced-fat mortadella using the studied salt combinations with necessary adjustments to optimize the sensory properties (MgCl(2) 25%; KCl 25%) or emulsion stability (CaCl(2) 25%; KCl 25%).

  18. Potassium-induced contraction in the lamb proximal urethra: Involvement of norepinephrine and different calcium entry pathways

    SciTech Connect

    Garcia-Pascual, A.; Costa, G.; Isla, M.; Jimenez, E.; Garcia-Sacristan, A. )

    1991-01-01

    The purpose of this work was to investigate the mechanisms involved in the peculiar biphasic response of the lamb urethral smooth muscle to high K+ solutions. The relative amplitude of the phasic and tonic components of the contraction and its reproducibility were dependent on the concentration of K+ used. Only concentrations higher than 80 mM (i.e., 120 mM) showed a tonic component greater in amplitude than the phasic one and manifested a tachyphylactic effect. Phentolamine (10(-6) M), prazosin (10(-6) M) and chemical denervation with 6-hydroxydopamine significantly inhibited the tonic component of the K+ (120 mM)-induced contraction, modifying its morphology. Reproducible contractions to K+ (120 mM) could be obtained in the presence of prazosin (10(-6) M) or cocaine (10(-6) M). The preparations were also shown to accumulate (3H)noradrenaline and release it upon depolarization with K+ (60 and 120 mM). Calcium removal inhibited the K+ (120 mM)-induced contraction. After addition of calcium (0.5-5 mM) the contractile activity was restored. Nifedipine (10(-6) M) and verapamil (10(-6) M) but not sodium nitroprusside (10(-6) M) significantly blocked the contractile response for calcium as well as the phasic component of the K+ contraction in calcium-containing medium. In preparations treated with prazosin (10(-6) M) the tonic component of the K+ (120 mM) contraction was more sensitive to nifedipine and removal of extracellular calcium than the phasic one.

  19. Beneficial effect of pollen and/or propolis on the metabolism of iron, calcium, phosphorus, and magnesium in rats with nutritional ferropenic anemia.

    PubMed

    Haro, A; López-Aliaga, I; Lisbona, F; Barrionuevo, M; Alférez, M J; Campos, M S

    2000-11-01

    There has been considerable debate regarding the nutritional benefits of pollen and the propolis produced by bees, although most contributions have lacked scientific soundness. This paper describes the possible beneficial effect of their use in pharmacological products in cases of anemic syndrome. We studied the effect of these two natural products on the digestive utilization of iron, calcium, phosphorus, and magnesium, using control rats and rats with nutritional ferropenic anemia. The addition of these products to the diet produced a positive effect on weight gain; this fact could constitute a scientific basis for the application of pollen and propolis as fortifiers. They improve the digestive utilization of iron and the regeneration efficiency of hemoglobin, especially during recovery from an anemic syndrome. They also have a positive effect on phosphocalcic metabolism and maintain an appropiate level of magnesium metabolism. Furthermore, in iron-deficient rats, these natural products palliate, to a large extent, the adverse effects of iron deficiency on calcium and magnesium metabolism as a result of the improvement in the digestive utilization of these minerals.

  20. Bone mass changes in vivo during the entire reproductive cycle in rats feeding different dietary calcium and calcium/phosphorus ratio content.

    PubMed

    Zeni, S; Weisstaub, A; Di Gregorio, S; Ronanre De Ferrer, P; Portela, M L de

    2003-12-01

    The purpose of this study was to quantify in vivo the impact of different dietary Ca contents on the maternal total skeleton and skeletal sub-areas in adult rats during pregnancy and lactation, using DXA. Twenty-four female Wistar rats (approximately 5 months old) were mated and divided into three groups (n = 8) and fed one of the following diets, varying only in Ca content (LCD: 0.14%, NCD: 0.6% or HCD: 1.2%). Pups were adjusted to 8-9 per dam. Maternal ionic calcium and in vivo bone mineral density (BMD) were measured at the beginning, after delivery and after weaning. Regardless of the diet, ionized calcium decreased from onset to weaning ( P < 0.05). At weaning, bone mass decreased 7.3% in NCD, 15% in LCD and 10.5% in HCD from initial values. Total skeleton, whole and proximal tibia and spine BMDs only decreased at delivery in the LCD group ( P < 0.05) but, irrespective of the diet, at weaning, they were lower compared to delivery and initial values ( P < 0.05). LCD group presented the lowest BMD in the proximal tibia and spine regions ( P < 0.05). At birth, pups did not present differences, however, at weaning, LCD pups reached the lowest body weight ( P < 0.05), NCD presented the highest body Ca content ( P < 0.05) and there were no differences between LCD and HCD. This in vivo study showed that regardless of the dietary calcium content, the maternal skeleton is slightly affected by pregnancy but severely affected by lactation. However, the degree of such response appears to depend not only on dietary Ca content but also on dietary Ca/P molar ratio.

  1. JMV5656, A Novel Derivative of TLQP-21, Triggers the Activation of a Calcium-Dependent Potassium Outward Current in Microglial Cells.

    PubMed

    Rivolta, Ilaria; Binda, Anna; Molteni, Laura; Rizzi, Laura; Bresciani, Elena; Possenti, Roberta; Fehrentz, Jean-Alain; Verdié, Pascal; Martinez, Jean; Omeljaniuk, Robert J; Locatelli, Vittorio; Torsello, Antonio

    2017-01-01

    TLQP-21 (TLQPPASSRRRHFHHALPPAR) is a multifunctional peptide that is involved in the control of physiological functions, including feeding, reproduction, stress responsiveness, and general homeostasis. Despite the huge interest in TLQP-21 biological activity, very little is known about its intracellular mechanisms of action. In microglial cells, TLQP-21 stimulates increases of intracellular Ca(2+) that may activate functions, including proliferation, migration, phagocytosis and production of inflammatory molecules. Our aim was to investigate whether JMV5656 (RRRHFHHALPPAR), a novel short analogue of TLQP-21, stimulates intracellular Ca(2+) in the N9 microglia cells, and whether this Ca(2+) elevation is coupled with the activation Ca(2+)-sensitive K(+) channels. TLQP-21 and JMV5656 induced a sharp, dose-dependent increment in intracellular calcium. In 77% of cells, JMV5656 also caused an increase in the total outward currents, which was blunted by TEA (tetraethyl ammonium chloride), a non-selective blocker of voltage-dependent and Ca(2+)-activated potassium (K(+)) channels. Moreover, the effects of ion channel blockers charybdotoxin and iberiotoxin, suggested that multiple calcium-activated K(+) channel types drove the outward current stimulated by JMV5656. Additionally, inhibition of JMV5656-stimulated outward currents by NS6180 (4-[[3-(trifluoromethyl)phenyl]methyl]-2H-1,4 benzothiazin-3(4H)-one) and TRAM-34 (triarylmethane-34), indicated that KCa3.1 channels are involved in this JMV5656 mechanisms of action. In summary, we demonstrate that, in N9 microglia cells, the interaction of JMV5656 with the TLQP-21 receptors induced an increase in intracellular Ca(2+), and, following extracellular Ca(2+) entry, the opening of KCa3.1 channels.

  2. JMV5656, A Novel Derivative of TLQP-21, Triggers the Activation of a Calcium-Dependent Potassium Outward Current in Microglial Cells

    PubMed Central

    Rivolta, Ilaria; Binda, Anna; Molteni, Laura; Rizzi, Laura; Bresciani, Elena; Possenti, Roberta; Fehrentz, Jean-Alain; Verdié, Pascal; Martinez, Jean; Omeljaniuk, Robert J.; Locatelli, Vittorio; Torsello, Antonio

    2017-01-01

    TLQP-21 (TLQPPASSRRRHFHHALPPAR) is a multifunctional peptide that is involved in the control of physiological functions, including feeding, reproduction, stress responsiveness, and general homeostasis. Despite the huge interest in TLQP-21 biological activity, very little is known about its intracellular mechanisms of action. In microglial cells, TLQP-21 stimulates increases of intracellular Ca2+ that may activate functions, including proliferation, migration, phagocytosis and production of inflammatory molecules. Our aim was to investigate whether JMV5656 (RRRHFHHALPPAR), a novel short analogue of TLQP-21, stimulates intracellular Ca2+ in the N9 microglia cells, and whether this Ca2+ elevation is coupled with the activation Ca2+-sensitive K+ channels. TLQP-21 and JMV5656 induced a sharp, dose-dependent increment in intracellular calcium. In 77% of cells, JMV5656 also caused an increase in the total outward currents, which was blunted by TEA (tetraethyl ammonium chloride), a non-selective blocker of voltage-dependent and Ca2+-activated potassium (K+) channels. Moreover, the effects of ion channel blockers charybdotoxin and iberiotoxin, suggested that multiple calcium-activated K+ channel types drove the outward current stimulated by JMV5656. Additionally, inhibition of JMV5656-stimulated outward currents by NS6180 (4-[[3-(trifluoromethyl)phenyl]methyl]-2H-1,4 benzothiazin-3(4H)-one) and TRAM-34 (triarylmethane-34), indicated that KCa3.1 channels are involved in this JMV5656 mechanisms of action. In summary, we demonstrate that, in N9 microglia cells, the interaction of JMV5656 with the TLQP-21 receptors induced an increase in intracellular Ca2+, and, following extracellular Ca2+ entry, the opening of KCa3.1 channels. PMID:28280458

  3. Identification of ether à go-go and calcium-activated potassium channels in human melanoma cells.

    PubMed

    Meyer, R; Schönherr, R; Gavrilova-Ruch, O; Wohlrab, W; Heinemann, S H

    1999-09-15

    Ion channels and intracellular Ca2+ are thought to be involved in cell proliferation and may play a role in tumor development. We therefore characterized Ca(2+)-regulated potassium channels in the human melanoma cell lines IGR1, IPC298, and IGR39 using electrophysiological and molecular biological methods. All cell lines expressed outwardly rectifying K+ channels. Rapidly activating delayed rectifier channels were detected in IGR39 cells. The activation kinetics of voltage-gated K+ channels in IRG1 and IPC298 cells displayed characteristics of ether à go-go (eag) channels as they were much slower and depended both on the holding potential and on extracellular Mg2+. In addition, they could be blocked by physiological concentrations of intracellular Ca2+. In accordance with these electrophysiological results, analysis of mRNA revealed the expression of a gene coding for h-eag1 channels in IGR1 and IPC298 cells, but not in IGR39 cells. At elevated Ca2+ concentrations various types of Ca(2+)-activated K+ channels with single-channel characteristics similar to IK and SK channels were detected in IGR1 cells. The whole-cell Ca(2+)-activated K+ currents were not voltage dependent, insensitive for 100 nm apamin and 200 microm d-tubocurarine, but were blocked by charybdotoxin (100 nm) and clotrimazole (50 nm). Analysis of mRNA revealed the expression of hSK1, hSK2, and hIK channels in IGR1 cells.

  4. Vasorelaxant Action of the Chloroform Fraction of Orthosiphon stamineus via NO/cGMP Pathway, Potassium and Calcium Channels.

    PubMed

    Yam, Mun Fei; Tan, Chu Shan; Ahmad, Mariam; Ruan, Shibao

    2016-01-01

    Orthosiphon stamineus Benth. (Lamiaceae) is an important plant in traditional folk medicine that is used to treat hypertension and kidney stones. In humans, this plant has been tested as an addition regiment for antihypertensive treatment. Among the treatments for hypertension, O. stamineus had been to have diuretic and vasorelaxant effects in animal models. There is still very little information regarding the vasorelaxant effect of O. stamineus. Therefore, the present study was designed to investigate the vasorelaxant activity and mechanism of action of the fractions of O. stamineus. The vasorelaxant activity and the underlying mechanisms of the chloroform fraction of the 50% methanolic extract of O. stamineus (CF) was evaluated on thoracic aortic rings isolated from Sprague Dawley rats. CF caused relaxation of the aortic ring pre-contracted with phenylephrine in the presence and absence of endothelium, and pre-contracted with potassium chloride in endothelium-intact aortic ring. In the presence of endothelium, both indomethacin (a nonselective cyclooxygenase inhibitor) and [Formula: see text]-[1,2,4]Oxadiazolo[4,3-[Formula: see text

  5. Fast activating voltage- and calcium-dependent potassium (BK) conductance promotes bursting in pituitary cells: a dynamic clamp study

    PubMed Central

    Tabak, Joël; Tomaiuolo, Maurizio; Gonzalez-Iglesias, Arturo E.; Milescu, Lorin S.; Bertram, Richard

    2011-01-01

    The electrical activity pattern of endocrine pituitary cells regulates their basal secretion level. Rat somatotrophs and lactotrophs exhibit spontaneous bursting and have high basal levels of hormone secretion, while gonadotrophs exhibit spontaneous spiking and have low basal hormone secretion. It has been proposed that the difference in electrical activity between bursting somatotrophs and spiking gonadotrophs is due to the presence of large conductance potassium (BK) channels on somatotrophs but not on gonadotrophs. This is one example where the role of an ion channel type may be clearly established. We demonstrate here that BK channels indeed promote bursting activity in pituitary cells. Blocking BK channels in bursting lacto-somatotroph GH4C1 cells changes their firing activity to spiking, while further adding an artificial BK conductance via dynamic clamp restores bursting. Importantly, this burst-promoting effect requires a relatively fast BK activation/deactivation, as predicted by computational models. We also show that adding a fast activating BK conductance to spiking gonadotrophs converts the activity of these cells to bursting. Together, our results suggest that differences in BK channel expression may underlie the differences in electrical activity and basal hormone secretion levels among pituitary cell types and that the rapid rate of BK channel activation is key to its role in burst promotion. PMID:22090511

  6. Regulatory mechanisms and the role of calcium and potassium channels controlling supercontractile crop muscles in adult Phormia regina.

    PubMed

    Solari, Paolo; Stoffolano, John G; Fitzpatrick, Joanna; Gelperin, Alan; Thomson, Alan; Talani, Giuseppe; Sanna, Enrico; Liscia, Anna

    2013-09-01

    Bioassays and electrophysiological recordings were conducted in the adult blowfly Phormia regina to provide new insights into the regulatory mechanisms governing the crop filling and emptying processes of the supercontractile crop muscles. The cibarial pump drives ingestion. Simultaneous multisite extracellular recordings show that crop lobe (P5) distension during ingestion of a 4.7 μl sugar meal does not require muscle activity by any of the other pumps of the system. Conversely, pumping of fluids toward the anterior of the crop system during crop emptying is brought about by active muscle contraction, in the form of a highly coordinated peristaltic wave starting from P5 and progressively propagating to P6, P4 and P3 pumps, with P5 contracting with a frequency about 3.4 times higher than the other pumps. The crop contraction rate is also modulated by hemolymph-borne factors such as sugars, through ligand recognition at a presumptive receptor site rather than by an osmotic effect, as assessed by both behavioural and electrophysiological experiments. In this respect, sugars of equal osmolarity produce different effects, glucose being inhibitory and mannose ineffective for crop muscles, while trehalose enhances crop activity. Finally, voltage and current clamp experiments show that the muscle action potentials (mAPs) at the P4 pump are sustained by a serotonin-sensitive calcium conductance. Serotonin enhances calcium entry into the muscle cells and this could lead, as an indirect modulatory effect, to activation of a Ca(2+)-activated K(+) conductance (IK(Ca)), which sustains the following mAP repolarization phase in such a way that further mAPs can be generated early and the frequency consequently increased.

  7. Changes in Biochemical Parameters of the Calcium-Phosphorus Homeostasis in Relation to Nutritional Intake in Very-Low-Birth-Weight Infants.

    PubMed

    Christmann, Viola; Gradussen, Charlotte J W; Körnmann, Michelle N; Roeleveld, Nel; van Goudoever, Johannes B; van Heijst, Arno F J

    2016-11-29

    Preterm infants are at significant risk to develop reduced bone mineralization based on inadequate supply of calcium and phosphorus (Ca-P). Biochemical parameters can be used to evaluate the nutritional intake. The direct effect of nutritional intake on changes in biochemical parameters has not been studied. Our objective was to evaluate the effect of Ca-P supplementation on biochemical markers as serum (s)/urinary (u) Ca and P; alkaline phosphatase (ALP); tubular reabsorption of P (TrP); and urinary ratios for Ca/creatinin (creat) and P/creatinin in Very-Low-Birth-Weight infants on Postnatal Days 1, 3, 5, 7, 10, and 14. This observational study compared two groups with High (n = 30) and Low (n = 40) intake of Ca-P. Birth weight: median (IRQ) 948 (772-1225) vs. 939 (776-1163) grams; and gestational age: 28.2 (26.5-29.6) vs. 27.8 (26.1-29.4) weeks. Daily median concentrations of biochemical parameter were not different between the groups but linear regression mixed model analyses showed that Ca intake increased the uCa and TrP (p = 0.04) and decreased ALP (p = 0.00). Phosphorus intake increased sP, uP and uP/creat ratio and ALP (p ≤ 0.02) and caused decrease in TrP (p = 0.00). Protein intake decreased sP (p = 0.000), while low gestational age and male gender increased renal excretion of P (p < 0.03). Standardized repeated measurements showed that biochemical parameters were affected by nutritional intake, gestational age and gender.

  8. Mechanistic analysis for time-dependent effects of cinacalcet on serum calcium, phosphorus, and parathyroid hormone levels in 5/6 nephrectomized rats

    PubMed Central

    Wu-Wong, J Ruth; Nakane, Masaki; Chen, Yung-wu; Mizobuchi, Masahide

    2013-01-01

    This study investigates the time-dependent effects of cinacalcet on serum calcium, phosphorus, and parathyroid hormone (PTH) levels in 5/6 nephrectomized (NX) rats with experimental chronic renal insufficiency. In this study, 5/6 NX male, Sprague–Dawley rats were treated with vehicle or cinacalcet (10 mg/kg, oral, 1× daily). On Day 0 (before treatment), Day 12 and 13 after treatment (to approximate the clinical practice), and also at 0, 1, 4, 8, 16, and 24 hours after the last dosing, blood was collected for analysis. After 12 or 13 days of cinacalcet treatment, modest changes were observed in serum Ca and phosphorus (Pi), while PTH decreased by >45% to Sham levels (152 ± 15 pg/mL). Detailed mapping found that cinacalcet caused a significant time-dependent decrease in serum Ca following dosing, reaching a lowest point at 8 hours (decrease by 20% to 8.43 ± 0.37 mg/dL), and then returning to normal at 24 hours. Cinacalcet also caused a significant increase in serum Pi levels (by 18%). To investigate the potential mechanism of action, a broad approach was taken by testing cinacalcet in a panel of 77 protein-binding assays. Cinacalcet interacted with several channels, transporters, and neurotransmitter receptors, some of which are involved in brain and heart, and may impact Ca homeostasis. Cinacalcet dose-dependently increased brain natriuretic peptide (BNP) mRNA expression by 48% in cardiomyocytes, but had no significant effects on left ventricular hypertrophy and cardiac function. The results suggest that cinacalcet's hypocalcemic effect may be due to its nonspecific interaction with other receptors in brain and heart. PMID:24303131

  9. Changes in Biochemical Parameters of the Calcium-Phosphorus Homeostasis in Relation to Nutritional Intake in Very-Low-Birth-Weight Infants

    PubMed Central

    Christmann, Viola; Gradussen, Charlotte J. W.; Körnmann, Michelle N.; Roeleveld, Nel; van Goudoever, Johannes B.; van Heijst, Arno F. J.

    2016-01-01

    Preterm infants are at significant risk to develop reduced bone mineralization based on inadequate supply of calcium and phosphorus (Ca-P). Biochemical parameters can be used to evaluate the nutritional intake. The direct effect of nutritional intake on changes in biochemical parameters has not been studied. Our objective was to evaluate the effect of Ca-P supplementation on biochemical markers as serum (s)/urinary (u) Ca and P; alkaline phosphatase (ALP); tubular reabsorption of P (TrP); and urinary ratios for Ca/creatinin (creat) and P/creatinin in Very-Low-Birth-Weight infants on Postnatal Days 1, 3, 5, 7, 10, and 14. This observational study compared two groups with High (n = 30) and Low (n = 40) intake of Ca-P. Birth weight: median (IRQ) 948 (772–1225) vs. 939 (776–1163) grams; and gestational age: 28.2 (26.5–29.6) vs. 27.8 (26.1–29.4) weeks. Daily median concentrations of biochemical parameter were not different between the groups but linear regression mixed model analyses showed that Ca intake increased the uCa and TrP (p = 0.04) and decreased ALP (p = 0.00). Phosphorus intake increased sP, uP and uP/creat ratio and ALP (p ≤ 0.02) and caused decrease in TrP (p = 0.00). Protein intake decreased sP (p = 0.000), while low gestational age and male gender increased renal excretion of P (p < 0.03). Standardized repeated measurements showed that biochemical parameters were affected by nutritional intake, gestational age and gender. PMID:27916815

  10. The effect of zeolite A supplementation in the dry period on periparturient calcium, phosphorus, and magnesium homeostasis.

    PubMed

    Thilsing-Hansen, T; Jørgensen, R J; Enemark, J M D; Larsen, T

    2002-07-01

    One potential way of preventing parturient hypocalcemia in the dairy cow is to feed dry cow rations very low in calcium (<20 g/d); but, because it is difficult to formulate rations sufficiently low in calcium, this principle has been almost abandoned. Recent studies have shown, however, that it is possible to prevent milk fever, as well as subclinical hypocalcemia, by supplementing the dry cow ration with sodium aluminium silicate (zeolite A), which has the capacity to bind calcium. The aim of this study was to further evaluate the effect, if any, of such supplementation on other blood constituents, feed intake, and milk production in the subsequent lactation. A total of 31 pregnant dry cows about to enter their third or later lactation were assigned as experimental or control cows according to parity and expected date of calving. The experimental cows received 1.4 kg of zeolite pellets per d (0.7 kg of pure zeolite A) for the last 2 wk of pregnancy. Blood samples were drawn from all cows 1 wk before the expected date of calving, at calving, at d 1 and 2 after calving, and 1 wk after calving. Additionally, a urine sample was drawn 1 wk before the expected date of calving. Zeolite supplementation significantly increased the plasma calcium level on the day of calving, whereas plasma magnesium as well as inorganic phosphate was suppressed. Serum 1,25(OH)2D was significantly increased 1 wk before the expected date of calving among the experimental cows, whereas there was no difference in the urinary excretion of the bone metabolite deoxypyridinoline between the two groups. Feed intake was decreased among the zeolite-treated cows during the last 2 wk of pregnancy. No effect was observed on milk yield, milk fat, and milk protein in the subsequent lactation. The mechanisms and interactions involved in zeolite supplementation are discussed in relation to the observed improvement in parturient calcium homeostasis and to the observed depression in blood magnesium and

  11. Calcium- and voltage-gated potassium (BK) channel activators in the 5β-cholanic acid-3α-ol analogue series with modifications in the lateral chain.

    PubMed

    Bukiya, Anna N; Patil, Shivaputra A; Li, Wei; Miller, Duane D; Dopico, Alex M

    2012-10-01

    Large conductance, calcium- and voltage-gated potassium (BK) channels regulate various physiological processes and represent an attractive target for drug discovery. Numerous BK channel activators are available. However, these agents usually interact with the ubiquitously distributed channel-forming subunit and thus cannot selectively target a particular tissue. We performed a structure-activity relationship study of lithocholic acid (LCA), a cholane that activates BK channels via the accessory BK β1 subunit. The latter protein is highly abundant in smooth muscle but scarce in most other tissues. Modifications to the LCA lateral chain length and functional group yielded two novel smooth muscle BK channel activators in which the substituent at C24 has a small volume and a net negative charge. Our data provide detailed structural information that will be useful to advance a pharmacophore in search of β1 subunit-selective BK channel activators. These compounds are expected to evoke smooth muscle relaxation, which would be beneficial in the pharmacotherapy of prevalent human disorders associated with increased smooth muscle contraction, such as systemic hypertension, cerebral or coronary vasospasm, bronchial asthma, bladder hyperactivity, and erectile dysfunction.

  12. Wenxin Keli attenuates ischemia-induced ventricular arrhythmias in rats: Involvement of L‑type calcium and transient outward potassium currents.

    PubMed

    Wang, Xi; Wang, Xin; Gu, Yongwei; Wang, Teng; Huang, Congxin

    2013-02-01

    Wenxin Keli is the first state‑sanctioned traditional Chinese medicine (TCM)-based antiarrhythmic drug. The present study aimed to examine whether long‑term treatment with Wenxin Keli reduces ischemia‑induced ventricular arrhythmias in rats in vivo, and if so, which mechanisms are involved. Male rats were treated with either saline (control group) or Wenxin Keli for 3 weeks and were subjected to myocardial ischemia for 30 min with assessment of the resulting ventricular arrhythmias. The L‑type calcium current (ICa,L) and transient outward potassium current (Ito) were measured by the patch clamp technique in normal rat cardiac ventricular myocytes. During the 30‑min ischemia, Wenxin Keli significantly reduced the incidence of ventricular fibrillation (VF) (P<0.05). The number of ventricular tachycardia (VT)+VF episodes and the severity of arrhythmias were significantly reduced by Wenxin Keli administration compared to the control group (P<0.05). In addition, Wenxin Keli inhibited ICa,L and Ito in a concentration‑dependent manner. These results suggest that long‑term treatment with Wenxin Keli may attenuate ischemia‑induced ventricular arrhythmias in rats and that ICa,L and Ito may be involved in this attenuation.

  13. Alcohol tolerance in large-conductance, calcium-activated potassium channels of CNS terminals is intrinsic and includes two components: decreased ethanol potentiation and decreased channel density.

    PubMed

    Pietrzykowski, Andrzej Z; Martin, Gilles E; Puig, Sylvie I; Knott, Thomas K; Lemos, Jose R; Treistman, Steven N

    2004-09-22

    Tolerance is an important element of drug addiction and provides a model for understanding neuronal plasticity. The hypothalamic-neurohypophysial system (HNS) is an established preparation in which to study the actions of alcohol. Acute application of alcohol to the rat neurohypophysis potentiates large-conductance calcium-sensitive potassium channels (BK), contributing to inhibition of hormone secretion. A cultured HNS explant from adult rat was used to explore the molecular mechanisms of BK tolerance after prolonged alcohol exposure. Ethanol tolerance was intrinsic to the HNS and consisted of: (1) decreased BK potentiation by ethanol, complete within 12 min of exposure, and (2) decreased current density, which was not complete until 24 hr after exposure, indicating that the two components of tolerance represent distinct processes. Single-channel properties were not affected by chronic exposure, suggesting that decreased current density resulted from downregulation of functional channels in the membrane. Indeed, we observed decreased immunolabeling against the BK alpha-subunit on the surface of tolerant terminals. Analysis using confocal microscopy revealed a reduction of BK channel clustering, likely associated with the internalization of the channel.

  14. Combined effects of potassium lactate and calcium ascorbate as sodium chloride substitutes on the physicochemical and sensory characteristics of low-sodium frankfurter sausage.

    PubMed

    Choi, Y M; Jung, K C; Jo, H M; Nam, K W; Choe, J H; Rhee, M S; Kim, B C

    2014-01-01

    The purpose of this study was to evaluate the combined effects of sodium chloride (NaCl) substitutes, including potassium lactate (K-lactate) and calcium ascorbate (Ca-ascorbate), on the physicochemical and sensory characteristics of low-sodium frankfurter sausage (1.2% content of NaCl). Sausages produced with 40% substitution of NaCl with combined K-lactate and Ca-ascorbate showed a higher value of lightness (P<0.001) than sausages containing 2.0% content of NaCl (control). However, the sensory panels were unable to distinguish a difference in color intensity between the control and treatment groups. Frankfurter sausages produced with 30% K-lactate and 10% Ca-ascorbate exhibited similar water-holding capacity, textural properties, and organoleptic characteristics (P>0.05) when compared to control sausages. Thus, the use of these salt mixtures is a good way to reduce the NaCl content in meat products while maintaining the quality of meat products. These results may be useful in developing low-sodium meat products.

  15. Dopamine midbrain neurons in health and Parkinson's disease: emerging roles of voltage-gated calcium channels and ATP-sensitive potassium channels.

    PubMed

    Dragicevic, E; Schiemann, J; Liss, B

    2015-01-22

    Dopamine (DA) releasing midbrain neurons are essential for multiple brain functions, such as voluntary movement, working memory, emotion and cognition. DA midbrain neurons within the substantia nigra (SN) and the ventral tegmental area (VTA) exhibit a variety of distinct axonal projections and cellular properties, and are differentially affected in diseases like schizophrenia, attention deficit hyperactivity disorder, and Parkinson's disease (PD). Apart from having diverse functions in health and disease states, DA midbrain neurons display distinct electrical activity patterns, crucial for DA release. These activity patterns are generated and modulated by specific sets of ion channels. Recently, two ion channels have been identified, not only contributing to these activity patterns and to functional properties of DA midbrain neurons, but also seem to render SN DA neurons particularly vulnerable to degeneration in PD and its animal models: L-type calcium channels (LTCCs) and ATP-sensitive potassium channels (K-ATPs). In this review, we focus on the emerging physiological and pathophysiological roles of these two ion channels (and their complex interplay with other ion channels), particularly in highly vulnerable SN DA neurons, as selective degeneration of these neurons causes the major motor symptoms of PD.

  16. Dietary phosphorus requirement of channel catfish.

    PubMed

    Wilson, R P; Robinson, E H; Gatlin, D M; Poe, W E

    1982-06-01

    Two experiments were conducted to reevaluate the dietary phosphorus requirement of fingerling channel catfish. Basal diets containing either casein with supplemental inorganic phosphorus and 0.5% total calcium or egg albumin with supplemental inorganic phosphorus and 0.75% total calcium yielded similar requirement data. Eleven-week growth, feed efficiency, serum phosphorus, bone ash, bone calcium and bon phosphorus data indicate that 0.33% apparent available dietary phosphorus is adequate for maximum growth and bone mineralization. Based on these data and previous findings, we would suggest a value of 0.4% apparent available phosphorus be used in formulating catfish feeds. The apparent availability of phosphorus from soybean meal, as determined by the chromic oxide indicator method, was 29% for channel catfish.

  17. Is there an association between elevated or low serum levels of phosphorus, parathyroid hormone, and calcium and mortality in patients with end stage renal disease? A meta-analysis

    PubMed Central

    2013-01-01

    Background Biochemical markers of altered mineral metabolism have been associated with increased mortality in end stage renal disease patients. Several studies have demonstrated non-linear (U-shaped or J-shaped) associations between these minerals and mortality, though many researchers have assumed linear relationships in their statistical modeling. This analysis synthesizes the non-linear relationships across studies. Methods We updated a prior systematic review through 2010. Studies included adults receiving dialysis and reported categorical data for calcium, phosphorus, and/or parathyroid hormone (PTH) together with all-cause mortality. We performed 2 separate meta-analyses to compare higher-than-referent levels vs referent and lower-than-referent levels vs referent levels. Results A literature review showed that when a linear relationship between the minerals and mortality was assumed, the estimated associations were more likely to be smaller or non-significant compared to non-linear models. In the meta-analyses, higher-than-referent levels of phosphorus (4 studies, RR = 1.20, 95% CI = 1.15-1.25), calcium (3 studies, RR = 1.10, 95% CI = 1.05-1.14), and PTH (5 studies, RR = 1.11, 95% CI = 1.07-1.16) were significantly associated with increased mortality. Although no significant associations between relatively low phosphorus or PTH and mortality were observed, a protective effect was observed for lower-than-referent calcium (RR = 0.86, 95% CI = 0.83-0.89). Conclusions Higher-than-referent levels of PTH, calcium, and phosphorus in dialysis patients were associated with increased mortality risk in a selection of observational studies suitable for meta-analysis of non-linear relationships. Findings were less consistent for lower-than-referent values. Future analyses should incorporate the non-linear relationships between the minerals and mortality to obtain accurate effect estimates. PMID:23594621

  18. Oxygen-induced tension in the sheep ductus arteriosus: effects of gestation on potassium and calcium channel regulation

    PubMed Central

    Waleh, Nahid; Reese, Jeff; Kajino, Hiroki; Roman, Christine; Seidner, Steven; McCurnin, Donald; Clyman, Ronald I.

    2009-01-01

    Compared with the full term ductus arteriosus, the premature ductus is less likely to constrict when exposed to postnatal oxygen concentrations. We used isolated fetal sheep ductus arteriosus (pretreated with inhibitors of prostaglandin and nitric oxide production) to determine if changes in K+- and CaL-channel activity could account for the developmental differences in oxygen-induced tension. In the mature ductus, KV-channels appear to be the only K+-channels that oppose ductus tension. Oxygen concentrations between (2 and 15%) inhibit KV-channel activity, which increases the CaL-channel-mediated increase in tension. Low oxygen concentrations have a direct inhibitory effect on CaL-channel activity in the immature ductus; this is not the case in the mature ductus. In the immature ductus, 3 different K+-channel activities (KV, KCa, and KATP) oppose ductus tension and contribute to its decreased tone. Oxygen inhibits the activities of all 3 K+-channels. The inhibitory effects of the 3 K+-channel activities decline with advancing gestation. The decline in K+-channel activity is not due to decreased K+-channel expression. Super-physiologic oxygen concentrations (≥30% O2) constrict the ductus by utilizing calcium dependent pathways that are independent of K+- and CaL-channel activities. Super-physiologic oxygen concentrations eliminate the difference in tensions between the 2 age groups. PMID:19092721

  19. Cannabinoid receptor type 1 activation by arachidonylcyclopropylamide in rat aortic rings causes vasorelaxation involving calcium-activated potassium channel subunit alpha-1 and calcium channel, voltage-dependent, L type, alpha 1C subunit.

    PubMed

    Sánchez-Pastor, E; Andrade, F; Sánchez-Pastor, J M; Elizalde, A; Huerta, M; Virgen-Ortiz, A; Trujillo, X; Rodríguez-Hernández, A

    2014-04-15

    Cannabinoids are key regulators of vascular tone, some of the mechanisms involved include the activation of cannabinoid receptor types 1 and 2 (CB); the transient receptor potential cation channel, subfamily V, member 1 (TRPV1); and non-(CB(1))/non-CB2 receptors. Here, we used the potent, selective CB(1) agonist arachidonylcyclopropylamide (ACPA) to elucidate the mechanism underlying vascular tone regulation. Immunohistochemistry and confocal microscopy revealed that CB(1) was expressed in smooth muscle and endothelial cells in rat aorta. We performed isometric tension recordings in aortic rings that had been pre-contracted with phenylephrine. In these conditions, ACPA caused vasorelaxation in an endothelium-independent manner. To confirm that the effect of ACPA was mediated by CB(1) receptor, we repeated the experiment after blocking these receptors with a selective antagonist, AM281. In these conditions, ACPA did not cause vasorelaxation. We explored the role of K(+) channels in the effect of ACPA by applying high-K(+) solution to induce contraction in aortic rings. In these conditions, the ACPA-induced vasorelaxation was about half that observed with phenylephrine-induced contraction. Thus, K(+) channels were involved in the ACPA effect. Furthermore, the vasorelaxation effect was similarly reduced when we specifically blocked calcium-activated potassium channel subunit alpha-1 (KCa1.1) (MaxiK; BKCa) prior to adding ACPA. Finally, ACPA-induced vasorelaxation was also diminished when we specifically blocked the calcium channel, voltage-dependent, L type, alpha 1C subunit (Ca(v)1.2). These results showed that ACPA activation of CB(1) in smooth muscle caused vasorelaxation of aortic rings through a mechanism involving the activation of K(Ca)1.1 and the inhibition of Ca(v)1.2.

  20. Emissions of alkaline elements calcium, magnesium, potassium, and sodium from open sources in the contiguous United States

    SciTech Connect

    Gillette, D.A. ); Stensland, G.J.; Williams, A.L.; Barnard, W.; Gatz, D. ); Sinclair, P.C. ); Johnson, T.C. )

    1992-12-01

    Models of dust emissions by wind erosion (including winds associated with regional activity as well as dust devils) and vehicular disturbances of unpaved roads were developed, calibrated, and used to estimate alkaline dust emissions from elemental soil and road composition data. Emissions from tillage of soils were estimated form the work of previous researchers. The area of maximum dust production by all of those sources is the area of the old Dust Bowl' of the 1930s (the panhandles of Texas and Oklahoma, eastern New Mexico and Colorado, and western Kansas). The areas of maximum alkaline dust production are the arid southwest, the Dust Bowl,' and the midwestern-mideastern states from Iowa to Pennsylvania. Our calculations show that calcium is the dominant alkaline element produced by open sources' (sources too great in extent to be controlled by enclosure or ducting). Although the largest dust mass source is wind erosion (by winds associated with regional activity and convective activity), the largest producer of the alkaline component is road dust because the abundance of alkaline materials in road coverings (which include crushed limestone) is significantly higher than for soils. Comparing the above estimated sources of alkaline material with inventories of SO[sub 2] and NO[sub x] emissions by previous investigators gives the rough approximation that alkaline emission rates are of the order of the SO[sub 2] + NO[sub x] emissions in the western United States and that they are much smaller than SO[sub 2] + NO[sub x] in the eastern United States. This approximation is substantiated by data on Ca/(SO[sub 4] + NO[sub 3]) for wet deposition for National Atmospheric Deposition Program sites. 53 refs., 9 figs., 2 tabs.

  1. Potassium Counts.

    ERIC Educational Resources Information Center

    Gipps, John

    1995-01-01

    Presents an activity to determine whether the radioactivity of a pure potassium salt is directly proportional to the amount of potassium in it and whether this could be used as a method of analysis for potassium in a solid. (MKR)

  2. Protective effect of pretreatment with the calcium antagonist anipamil on the ischemic-reperfused rat myocardium: a phosphorus-31 nuclear magnetic resonance study

    SciTech Connect

    Kirkels, J.H.; Ruigrok, T.J.; Van Echteld, C.J.; Meijler, F.L.

    1988-05-01

    To assess whether the prophylactic administration of anipamil, a new calcium antagonist, protects the heart against the effects of ischemia and reperfusion, rats were injected intraperitoneally twice daily for 5 days with 5 mg/kg body weight of this drug. The heart was then isolated and perfused by the Langendorff technique. Phosphorus-31 nuclear magnetic resonance spectroscopy was used to monitor myocardial energy metabolism and intracellular pH during control perfusion and 30 min of total ischemia (37/sup 0/C), followed by 30 min of reperfusion. Pretreatment with anipamil altered neither left ventricular developed pressure under normoxic conditions nor the rate and extent of depletion of adenosine triphosphate (ATP) and creatine phosphate during ischemia. Intracellular acidification, however, was attenuated. On reperfusion, hearts from anipamil-pretreated animals recovered significantly better than untreated hearts with respect to replenishment of ATP and creatine phosphate stores, restitution of low levels of intracellular inorganic phosphate and recovery of left ventricular function and coronary flow. Intracellular pH recovered rapidly to preischemic levels, whereas in untreated hearts a complex intracellular inorganic phosphate peak indicated the existence of areas of different pH within the myocardium. It is concluded that anipamil pretreatment protects the heart against some of the deleterious effects of ischemia and reperfusion. Because this protection occurred in the absence of a negative inotropic effect during normoxia, it cannot be attributed to an energy-sparing effect during ischemia. Therefore, alternative mechanisms of action are to be considered.

  3. Acid precipitation and food quality: Inhibition of growth and survival in black ducks and mallards by dietary aluminum, calcium and phosphorus

    USGS Publications Warehouse

    Robbins, C.S.

    1990-01-01

    In areas impacted by acid precipitation, water chemistry of acidic ponds and streams often changes, resulting in increased mobilization of aluminum and decreased concentration of calcium carbonate. Aluminum binds with phosphorus and inhibits its uptake by organisms. Thus, invertebrate food organisms used by waterfowl may have inadequate Ca and P or elevated Al for normal growth and development. Acid rain and its effects may be one of the factors negatively impacting American black ducks (Anas rubripes) in eastern North America. One-day old mallards (A. platyrhynchos) and black ducks were placed on one of three Ca:P regimens: low:low (LL), normal:normal (NN), and low:high (LH) with each regimen divided further into three or four Al levels for 10 weeks. Forty-five % of the black ducks died on nine different diets whereas only 28% of the mallards died on three different diets. Mortality was significantly related to diet in both species. Growth rates for body weight, culmens, wings, and tarsi of both species on control diets exceeded those on many treatment diets but the differences were less apparent for mallards than for black ducks. Differences among treatments were due to both Ca:P and Al levels.

  4. THE INFLUENCE OF ULTRAVIOLET-B RADIATION ON THE GROWTH OF MARABOU STORK (LEPTOPTILOS CRUMENIFERUS) NESTLINGS IN RELATION TO PLASMA CALCIUM, PHOSPHORUS, AND VITAMIN D3 CONCENTRATIONS.

    PubMed

    Schaftenaar, Willem; van Leeuwen, Johannes P T M

    2015-12-01

    In order to prevent metabolic bone disease in growing captive-bred marabou storks (Leptoptilos crumeniferus), three hatchlings were exposed twice a day for 30 min each time to ultraviolet-B (UVB) radiation. During their first 35 days of life, body weights were monitored weekly, and blood was collected to determine total calcium, phosphorus, 25(OH) cholecalciferol, and 1.25(OH)₂cholecalciferol plasma levels. Data were compared with those obtained from two marabou stork nestlings that were raised before, without being exposed to UVB. These two birds developed metabolic bone disease, while the UVB-exposed birds developed into healthy adult animals. Plasma chemistry data obtained in this study demonstrate that nestling marabou storks produce vitamin D₃under the influence of UVB radiation. The absence of clinical metabolic bone disease in the nestlings that received UVB compared to the nestlings that were raised with the same diet without UVB radiation and that developed MBD demonstrates the importance of UVB radiation for normal development in this species.

  5. Effect of various domestic processing and cooking methods on phytic acid and HCl-extractability of calcium, phosphorus and iron of pigeon pea.

    PubMed

    Duhan, A; Khetarpaul, N; Bishnoi, S

    1999-01-01

    Manak, the high yielding cultivator of pigeon pea (Cajanus cajan) released by (International Crop Research Institute for Semi-Arid Tropics) ICRISAT, India was subjected to various domestic processing and cooking methods viz., soaking (6, 12 and 18 h, 30 degrees C), soaking and dehulling, ordinary cooking, pressure cooking and germination (24, 36 and 48 h, 30 degrees C). The unprocessed seeds of this variety contained considerable amounts of phytic acid i.e. 917 mg per 100 g. This antinutrient was reduced significantly (P < 0.05) to varying extents (4-37%) in the processed samples. Except soaking and dehulling, the remaining processing and cooking methods did not lower the contents of total calcium, phosphorus and iron. That HCl-extractability of these dietary essential minerals, an index of their bioavailability, enhanced significantly when the pigeon pea seeds were processed and cooked, may be due to reduction in phytate content, which is known to chelate the minerals. A significant and negative correlation between the phytic acid and HCl-extractability of minerals further strengthens our findings.

  6. Reported Dietary Intake, Disparity between the Reported Consumption and the Level Needed for Adequacy and Food Sources of Calcium, Phosphorus, Magnesium and Vitamin D in the Spanish Population: Findings from the ANIBES Study †.

    PubMed

    Olza, Josune; Aranceta-Bartrina, Javier; González-Gross, Marcela; Ortega, Rosa M; Serra-Majem, Lluis; Varela-Moreiras, Gregorio; Gil, Ángel

    2017-02-21

    Calcium, phosphorus, magnesium and vitamin D have important biological roles in the body, especially in bone metabolism. We aimed to study the reported intake, the disparity between the reported consumption and the level needed for adequacy and food sources of these four nutrients in the Spanish population. We assessed the reported intake for both, general population and plausible reporters. Results were extracted from the ANIBES survey, n = 2009. Three-day dietary reported intake data were obtained and misreporting was assessed according to the European Food Safety Authority (EFSA). Mean ± SEM (range) total reported consumption of calcium, phosphorus, magnesium, and vitamin D for the whole population were 698 ± 7 mg/day (71-2551 mg/day), 1176 ± 8 mg/day, (331-4429 mg/day), 222 ± 2 mg/day (73-782 mg/day), and 4.4 ± 0.1 µg/day (0.0-74.2 µg/day), respectively. In the whole group, 76% and 66%; 79% and 72%; and 94% and 93% of the population had reported intakes below 80% of the national and European recommended daily intakes for calcium, magnesium and vitamin D, respectively; these percentages were over 40% when the plausible reporters were analysed separately. The main food sources were milk and dairy products for calcium and phosphorus, cereals and grains for magnesium and fish for vitamin D. In conclusion, there is an important percentage of the Spanish ANIBES population not meeting the recommended intakes for calcium, magnesium and vitamin D.

  7. Reported Dietary Intake, Disparity between the Reported Consumption and the Level Needed for Adequacy and Food Sources of Calcium, Phosphorus, Magnesium and Vitamin D in the Spanish Population: Findings from the ANIBES Study †

    PubMed Central

    Olza, Josune; Aranceta-Bartrina, Javier; González-Gross, Marcela; Ortega, Rosa M.; Serra-Majem, Lluis; Varela-Moreiras, Gregorio; Gil, Ángel

    2017-01-01

    Calcium, phosphorus, magnesium and vitamin D have important biological roles in the body, especially in bone metabolism. We aimed to study the reported intake, the disparity between the reported consumption and the level needed for adequacy and food sources of these four nutrients in the Spanish population. We assessed the reported intake for both, general population and plausible reporters. Results were extracted from the ANIBES survey, n = 2009. Three-day dietary reported intake data were obtained and misreporting was assessed according to the European Food Safety Authority (EFSA). Mean ± SEM (range) total reported consumption of calcium, phosphorus, magnesium, and vitamin D for the whole population were 698 ± 7 mg/day (71–2551 mg/day), 1176 ± 8 mg/day, (331–4429 mg/day), 222 ± 2 mg/day (73–782 mg/day), and 4.4 ± 0.1 µg/day (0.0–74.2 µg/day), respectively. In the whole group, 76% and 66%; 79% and 72%; and 94% and 93% of the population had reported intakes below 80% of the national and European recommended daily intakes for calcium, magnesium and vitamin D, respectively; these percentages were over 40% when the plausible reporters were analysed separately. The main food sources were milk and dairy products for calcium and phosphorus, cereals and grains for magnesium and fish for vitamin D. In conclusion, there is an important percentage of the Spanish ANIBES population not meeting the recommended intakes for calcium, magnesium and vitamin D. PMID:28230782

  8. Effect of reduced dietary calcium concentration and phytase supplementation on calcium and phosphorus utilization in weanling pigs with modified mineral status.

    PubMed

    Létourneau-Montminy, M P; Narcy, A; Magnin, M; Sauvant, D; Bernier, J F; Pomar, C; Jondreville, C

    2010-05-01

    The present study was conducted to assess the effect of 2 dietary Ca concentrations on P and Ca digestive and metabolic utilization in weanling pigs fed diets providing practical concentrations of P, with or without phytase. The responses of pigs fed diets adequate or moderately deficient in Ca and P postweaning were compared. A total of 60 pigs weaned at 28 d of age were used. Two groups of 30 pigs with differing mineral status resulted from a 10-d depletion period, during which the animals received depletion diets (DD) that consisted of corn-soybean meal with either 1.42% Ca and 0.80% P (DD+) or 0.67% Ca and 0.43% P (DD-), designed to achieve the same Ca:digestible P ratio. At the end of the depletion period, a plasma sample was taken from each pig and 12 pigs (6 from each group) were slaughtered for bone assessment to establish the baseline mineral status. The animals fed the DD- diet had signs of P deficiency with reduced plasma P (13%; P < 0.01) and femur ash concentration (8%; P < 0.05), and increased plasma Ca (9%; P < 0.05) and alkaline phosphatase activity (31%; P < 0.01). For the subsequent 25-d period, the remaining 24 pigs from each group were fed 1 of 4 repletion diets: 1) 0.56% P, 1.06% Ca; 2) 0.56% P, 0.67% Ca; 3) diet 1 + 1,000 phytase units (FTU) of Natuphos phytase/kg; and 4) diet 2 + 1,000 FTU of Natuphos phytase/kg. Total feces and urine were collected from d 5 to 11, and a blood sample was taken from each pig at d 11 and 25. The initial moderate P deficiency (DD-) stimulated Ca absorption (5%; P < 0.01), irrespective of the repletion diet, and stimulated P absorption (5%; DD x phytase, P < 0.05), only when the diets contained phytase. At the end of the repletion period, because of these compensatory phenomena, the depleted pigs achieved full recovery of femur DM and ash weight when they received phytase, whereas ash concentration tended to remain reduced by 3% (P = 0.08). Phosphorus digestibility was improved in the diets supplemented with

  9. Fructose 1,6-bisphosphate trisodium salt as a new phosphorus source for the rapid microwave synthesis of porous calcium-phosphate microspheres and their application in drug delivery.

    PubMed

    Qi, Chao; Zhu, Ying-Jie; Chen, Feng

    2013-01-01

    Calcium phosphates (CPs), as the major inorganic component of biological hard tissues, have been investigated for applications as biomaterials owing to their excellent biocompatibility. However, the traditional synthetic CPs are usually prepared from inorganic phosphorus and calcium sources. Herein, we report a new strategy for the synthesis of a variety of calcium-phosphate nanostructures, including porous amorphous calcium phosphate (ACP) microspheres, hydroxyapatite (HAP) nanorods, and ACP/HAP composite microspheres, by using fructose 1,6-bisphosphate trisodium salt (FBP) as an organic phosphorus source in aqueous solution in a rapid microwave-assisted hydrothermal reaction. The important role of FBP and the effect of the experimental conditions on the formation and evolution of the CPs nanostructures were investigated. The crystal phase and composition of the as-prepared products were characterized by powder X-ray diffraction (XRD), FTIR spectroscopy, and thermogravimetric (TGA) analysis and the morphologies of the products were characterized by SEM and TEM. This method is facile, rapid, surfactant-free, and environmentally friendly. The as-prepared porous ACP microspheres have a relatively high drug-loading capacity and good sustained drug-release behavior; thus, they are promising for applications in drug delivery.

  10. Calcium-calmodulin-dependent kinase II modulates Kv4.2 channel expression and upregulates neuronal A-type potassium currents.

    PubMed

    Varga, Andrew W; Yuan, Li-Lian; Anderson, Anne E; Schrader, Laura A; Wu, Gang-Yi; Gatchel, Jennifer R; Johnston, Daniel; Sweatt, J David

    2004-04-07

    Calcium-calmodulin-dependent kinase II (CaMKII) has a long history of involvement in synaptic plasticity, yet little focus has been given to potassium channels as CaMKII targets despite their importance in repolarizing EPSPs and action potentials and regulating neuronal membrane excitability. We now show that Kv4.2 acts as a substrate for CaMKII in vitro and have identified CaMKII phosphorylation sites as Ser438 and Ser459. To test whether CaMKII phosphorylation of Kv4.2 affects channel biophysics, we expressed wild-type or mutant Kv4.2 and the K(+) channel interacting protein, KChIP3, with or without a constitutively active form of CaMKII in Xenopus oocytes and measured the voltage dependence of activation and inactivation in each of these conditions. CaMKII phosphorylation had no effect on channel biophysical properties. However, we found that levels of Kv4.2 protein are increased with CaMKII phosphorylation in transfected COS cells, an effect attributable to direct channel phosphorylation based on site-directed mutagenesis studies. We also obtained corroborating physiological data showing increased surface A-type channel expression as revealed by increases in peak K(+) current amplitudes with CaMKII phosphorylation. Furthermore, endogenous A-currents in hippocampal pyramidal neurons were increased in amplitude after introduction of constitutively active CaMKII, which results in a decrease in neuronal excitability in response to current injections. Thus CaMKII can directly modulate neuronal excitability by increasing cell-surface expression of A-type K(+) channels.

  11. Small Conductance Calcium-Activated Potassium Current is Activated During Hypokalemia and Masks Short Term Cardiac Memory Induced by Ventricular Pacing

    PubMed Central

    Chan, Yi-Hsin; Tsai, Wei-Chung; Ko, Jum-Suk; Yin, Dechun; Chang, Po-Cheng; Rubart, Michael; Weiss, James N.; Everett, Thomas; Lin, Shien-Fong; Chen, Peng-Sheng

    2015-01-01

    Background Hypokalemia increases the vulnerability to ventricular fibrillation (VF). We hypothesize that the apamin-sensitive small conductance calcium-activated potassium current (IKAS) is activated during hypokalemia and that IKAS blockade is proarrhythmic. Methods and Results Optical mapping was performed in 23 Langendorff perfused rabbit ventricles with atrioventricular block and either right ventricular (RV) or left ventricular (LV) pacing during normokalemia or hypokalemia. Apamin prolonged the action potential duration (APD) measured to 80% repolarization (APD80) by 26 ms [95% confidence interval, CI, 14–37] during normokalemia and by 54 ms [CI, 40 to 68] during hypokalemia (P=0.01) at 1000 ms pacing cycle length (PCL). In hypokalemic ventricles, apamin increased the maximal slope of APD restitution, the PCL threshold of APD alternans, the PCL for wavebreak induction and the area of spatially discordant APD alternans. Apamin significantly facilitated the induction of sustained VF (from 3/9 hearts to 9/9 hearts, P=0.009). Short term cardiac memory was assessed by the slope of APD80 versus activation time. The slope increased from 0.01 [CI, −0.09 to 0.12] at baseline to 0.34 [CI, 0.23 to 0.44] after apamin (P<0.001) during RV pacing, and from 0.07 [CI, −0.05 to 0.20] to 0.54 [CI, 0.06 to 1.03] after apamin infusion (P=0.045) during LV pacing. Patch-clamp studies confirmed increased IKASin isolated rabbit ventricular myocytes during hypokalemia (P=0.038). Conclusions Hypokalemia activates IKAS to shorten APD and maintain repolarization reserve at late activation sites during ventricular pacing. IKAS blockade prominently lengthens the APD at late activation sites and facilitates VF induction. PMID:26362634

  12. Inactivation of Endothelial Small/Intermediate Conductance of Calcium-Activated Potassium Channels Contributes to Coronary Arteriolar Dysfunction in Diabetic Patients

    PubMed Central

    Liu, Yuhong; Xie, An; Singh, Arun K; Ehsan, Afshin; Choudhary, Gaurav; Dudley, Samuel; Sellke, Frank W; Feng, Jun

    2015-01-01

    Background Diabetes is associated with coronary arteriolar endothelial dysfunction. We investigated the role of the small/intermediate (SKCa/IKCa) conductance of calcium-activated potassium channels in diabetes-related endothelial dysfunction. Methods and Results Coronary arterioles (80 to 150 μm in diameter) were dissected from discarded right atrial tissues of diabetic (glycosylated hemoglobin = 9.6±0.25) and nondiabetic patients (glycosylated hemoglobin 5.4±0.12) during coronary artery bypass graft surgery (n=8/group). In-vitro relaxation response of precontracted arterioles was examined in the presence of the selective SKCa/IKCa activator NS309 and other vasodilatory agents. The channel density and membrane potential of diabetic and nondiabetic endothelial cells was measured by using the whole cell patch-clamp technique. The protein expression and distribution of the SKCa/IKCa in the human myocardium and coronary arterioles was examined by Western blotting and immunohistochemistry. Our results indicate that diabetes significantly reduced the coronary arteriolar response to the SKCa/IKCa activator NS309 compared to the respective responses of nondiabetic vessels (P<0.05 versus nondiabetes). The relaxation response of diabetic arterioles to NS309 was prevented by denudation of endothelium (P=0.001 versus endothelium-intact). Diabetes significantly decreased endothelial SKCa/IKCa currents and hyperpolarization induced by the SKCa/IKCa activator NS309 as compared with that of nondiabetics. There were no significant differences in the expression and distribution of SKCa/IKCa proteins in the coronary microvessels. Conclusions Diabetes is associated with inactivation of endothelial SKCa/IKCa channels, which may contribute to endothelial dysfunction in diabetic patients. PMID:26304940

  13. Intermediate-Conductance-Ca2-Activated K Channel Intermediate-Conductance Calcium-Activated Potassium Channel (IKCa1) is Upregulated and Promotes Cell Proliferation in Cervical Cancer

    PubMed Central

    Liu, Ling; Zhan, Ping; Nie, Dan; Fan, Lingye; Lin, Hairui; Gao, Lanyang; Mao, Xiguang

    2017-01-01

    Background Accumulating data point to intermediate-conductance calcium-activated potassium channel (IKCa1) as a key player in controlling cell cycle progression and proliferation of human cancer cells. However, the role that IKCa1 plays in the growth of human cervical cancer cells is largely unexplored. Material/Methods In this study, Western blot analysis, immunohistochemical staining, and RT-PCR were first used for IKCa1protein and gene expression assays in cervical cancer tissues and HeLa cells. Then, IKCa1 channel blocker and siRNA were employed to inhibit the functionality of IKCa1 and downregulate gene expression in HeLa cells, respectively. After these treatments, we examined the level of cell proliferation by MTT method and measured IKCa1 currents by conventional whole-cell patch clamp technique. Cell apoptosis was assessed using the Annexin V-FITC/Propidium Iodide (PI) double-staining apoptosis detection kit. Results We demonstrated that IKCa1 mRNA and protein are preferentially expressed in cervical cancer tissues and HeLa cells. We also showed that the IKCa1 channel blocker, clotrimazole, and IKCa1 channel siRNA can be used to suppress cervical cancer cell proliferation and decrease IKCa1 channel current. IKCa1 downregulation by specific siRNAs induced a significant increase in the proportion of apoptotic cells in HeLa cells. Conclusions IKCa1 is overexpressed in cervical cancer tissues, and IKCa1 upregulation in cervical cancer cell linea enhances cell proliferation, partly by reducing the proportion of apoptotic cells. PMID:28280257

  14. Differential regulation of action potential firing in adult murine thalamocortical neurons by Kv3.2, Kv1, and SK potassium and N-type calcium channels

    PubMed Central

    Kasten, Michael R; Rudy, Bernardo; Anderson, Matthew P

    2007-01-01

    Sensory signals of widely differing dynamic range and intensity are transformed into a common firing rate code by thalamocortical neurons. While a great deal is known about the ionic currents, far less is known about the specific channel subtypes regulating thalamic firing rates. We hypothesized that different K+ and Ca2+ channel subtypes control different stimulus–response curve properties. To define the channels, we measured firing rate while pharmacologically or genetically modulating specific channel subtypes. Inhibiting Kv3.2 K+ channels strongly suppressed maximum firing rate by impairing membrane potential repolarization, while playing no role in the firing response to threshold stimuli. By contrast, inhibiting Kv1 channels with α-dendrotoxin or maurotoxin strongly increased firing rates to threshold stimuli by reducing the membrane potential where action potentials fire (Vth). Inhibiting SK Ca2+-activated K+ channels with apamin robustly increased gain (slope of the stimulus–response curve) and maximum firing rate, with minimum effects on threshold responses. Inhibiting N-type Ca2+ channels with ω-conotoxin GVIA or ω-conotoxin MVIIC partially mimicked apamin, while inhibiting L-type and P/Q-type Ca2+ channels had small or no effects. EPSC-like current injections closely mimicked the results from tonic currents. Our results show that Kv3.2, Kv1, SK potassium and N-type calcium channels strongly regulate thalamic relay neuron sensory transmission and that each channel subtype controls a different stimulus–response curve property. Differential regulation of threshold, gain and maximum firing rate may help vary the stimulus–response properties across and within thalamic nuclei, normalize responses to diverse sensory inputs, and underlie sensory perception disorders. PMID:17761775

  15. In vitro evaluation of limestone, dicalcium phosphate, and phytase on calcium and phosphorus solubility of corn and soybean meal.

    PubMed

    Walk, C L; Bedford, M R; McElroy, A P

    2012-03-01

    A series of in vitro trials was conducted to evaluate the influence of limestone, dicalcium phosphate, phytase, and the digestion phase on Ca and P solubility. Experimental samples were arranged as a 2 × 2 × 2 × 2 factorial and contained corn (experiment 1) or soybean meal (experiment 2) plus limestone, dicalcium phosphate, phytase, and all combinations. Calcium and available P in the samples were maintained at 1.0% with limestone and 0.45% with dicalcium phosphate, respectively. Phytase was added to the samples at 1,000 FTU/kg. Samples were exposed to a 2-step in vitro digestion assay to simulate the gastric and the small intestinal (SI) phases of digestion. In experiment 1, dicalcium phosphate improved (P ≤ 0.05) P solubility in the gastric phase, which did not change in the SI phase, except when phytase was supplemented, which reduced (P ≤ 0.05) P solubility in the SI phase. The small amount of Ca present in corn is highly soluble, but limestone, dicalcium phosphate, or phytase reduced (P ≤ 0.05) Ca solubility in the gastric phase. Solubility was further reduced (P ≤ 0.05) in the SI phase in the presence of limestone. In experiment 2, P was more soluble (P ≤ 0.05) in the presence of limestone, dicalcium phosphate, or phytase in the gastric phase and compared with P solubility in the SI phase. Calcium solubility was reduced (P ≤ 0.05) in the SI phase compared with the gastric phase, except when dicalcium phosphate or limestone was supplemented. In conclusion, P and Ca solubility were influenced by the change in pH between the gastric and SI phases, differences in diet composition, and the Ca:P ratio. Limestone, dicalcium phosphate, and phytase increased P solubility in the gastric phase and reduced P solubility in the SI phase. Phytase had more of an effect on P and Ca solubility in soybean meal than in corn, and this is possibly a result of the high amount of phytate in soybean meal.

  16. Efficiency of microbial phytase supplementation in diets formulated with different calcium:phosphorus ratios, supplied to broilers from 22 to 33 days old.

    PubMed

    Naves, L de P; Rodrigues, P B; Teixeira, L do V; de Oliveira, E C; Saldanha, M M; Alvarenga, R R; Corrêa, A D; Lima, R R

    2015-02-01

    An experiment was conducted with broilers from 22 to 33 days of age to evaluate the efficiency of six microbial phytases supplemented in diets (1500 FTU/kg) that were formulated with three different calcium:available phosphorus (Ca:P(avail)) ratios (4.5:1.0, 6.0:1.0 and 7.5:1.0). A positive control diet without phytase was formulated with a Ca:P(avail) ratio of 7.5:3.4 to meet the nutritional requirements of the broilers. The P and ash contents of the tibia, magnesium in the plasma, performance, balance and retention of phytate phosphorus (P(phyt)), intake of total P and nitrogen (N), nitrogen-corrected apparent metabolizable energy and apparent digestibility of dry matter of the diets were not influenced (p > 0.05) by the type of phytase or the dietary Ca:P(avail) ratio. However, there was an interaction (p < 0.05) between the phytase type and the Ca:P(avail) ratio for the retention coefficients of total P, Ca and N. Phytase B resulted in the highest Ca deposition in the tibia (p < 0.01). Phytases D, E and F reduced the Ca concentrations in the tibia (p < 0.01) and plasma (p < 0.05). Phytase D increased the P level in the plasma and decreased the total P excretion (p < 0.01). Phytases E and F increased Ca excretion, while phytase A reduced it (p < 0.01). Regardless of the phytase type, increasing the dietary Ca:P(avail) ratio reduced (p < 0.05) the plasma P concentration and the excretion of total P and N and, conversely, increased (p < 0.05) the plasma concentration, intake and excretion of Ca. For the rearing period evaluated, it is possible to reduce the P(avail) of the diet to 1.0 g/kg when Ca is maintained at 7.5 g/kg, and the diet is supplemented with 1500 FTU of phytase A, C, D or E/kg. This diet allows the maintenance of performance and adequate bone mineralization, and it improves the Ca, total P and P(phyt) utilization in addition to reducing the excretion of N and P into the environment.

  17. In vitro versus in situ evaluation of the effect of phytase supplementation on calcium and phosphorus solubility in soya bean and rapeseed meal broiler diets.

    PubMed

    Morgan, N K; Walk, C L; Bedford, M R; Burton, E J

    2014-01-01

    1. In vitro assays provide a rapid and economical tool to evaluate dietary effects, but have limitations. In this study, the effect of phytase supplementation on solubility, and presumed availability, of calcium (Ca) and phosphorus (P) in soya bean meal (SBM) and rapeseed meal (RSM) based diets were evaluated both in situ and by a two-step in vitro digestion assay that simulated the gastric and small intestine (SI) phases of digestion. 2. Comparison of the in vitro findings to in situ findings was used to evaluate the in vitro assay. Ross 308 broilers (n = 192) were fed on one of 6 SBM or RSM diets supplemented with 0, 500 or 5000 FTU/kg phytase from 0 to 28 d post hatch. The 6 diets and raw SBM and RSM were exposed to a two-step in vitro assay. Ca and P solubility and pH in the gizzard and jejunal digesta and in the gastric and SI phase of in vitro digestion were measured. 3. Both in vitro and in situ analyses detected that Ca solubility was lowest when diets were supplemented with 500 FTU/kg phytase, compared to the control diets and diets supplemented with 5000 FTU/kg phytase. Phosphorus solubility increased with increasing phytase level. Both methods also identified that mineral solubility plateaus in the gastric phase. 4. Overall relationship of the two methods was strong for both determination of gastric phase Ca and P solubility (r = 0.96 and 0.92, respectively) and also SI phase Ca and P solubility (r = 0.71 and 0.82, respectively). However, mineral solubility and pH were higher when measured in vitro than in situ, and the in situ assay identified an interaction among the effects of phase, protein source and phytase inclusion level on Ca solubility that the in vitro assay did not detect. 5. This two-step in vitro assay successfully predicted phytase efficacy, but to determine detailed response effects in the animal, in situ data is still required.

  18. Linking ileal digestible phosphorus and bone mineralization in broiler chickens fed diets supplemented with phytase and highly soluble calcium.

    PubMed

    Adeola, O; Walk, C L

    2013-08-01

    The objectives of this study were to determine the ileal digestibility of P in potassium phosphate, phytase-related ileal digestible P release, bone-mineralization-based ileal digestible P equivalency of phytase, and phytase-related efficiency of ileal digestible P utilization for bone mineralization in broiler chickens at 2 dietary concentrations of highly soluble Ca (HSC). Birds were sorted by BW at d 15 posthatch and assigned to 8 cages per diet with 8 birds per cage. Twelve diets were arranged in a 2 × 6 factorial of HSC at 5 or 6 g/kg and P supply treatment at 6 levels consisting of 4 added P levels (P from KH2PO4 added at 0, 0.7, 1.4, or 2.1 g/kg of diet) or 2 added phytase levels (500 or 1,000 phytase units). On d 24 posthatch, ileal digesta were collected for ileal P digestibility (IPD) determination and the left tibia was collected from the 4 heaviest birds in each cage for bone ash determination. Weight gain, G:F, and tibia ash were higher (P < 0.05) at 5 than at 6 g of HSC/kg. Added P from KH2PO4 or added phytase linearly increased (P < 0.001) weight gain, G:F, tibia ash, and IPD. The IPD of KH2PO4 derived from multiple linear regressions of digestible on total P intake for the diets without added phytase showed a reduction (P < 0.05) from 89.5 to 84.5% with increased HSC from 5 to 6 g/kg. Polynomial regressions of digestible P intake on phytase intake indicated that 1,000 units of added phytase released 1.701 or 1.561 g of digestible P in diets containing 5 or 6 g of added HSC/kg, respectively. Polynomial regressions of tibia ash on digestible P or phytase intake in diets containing 5 or 6 g of added HSC/kg at 1,000 phytase units gave digestible P equivalency of 1.487 or 1.448 g, respectively. Thus, phytase-related efficiency of ileal digestible P utilization for bone mineralization was 87.4 and 92.8% in diets containing 5 or 6 g of added HSC/kg, respectively.

  19. Calcium sources and their interaction with the different levels of non-phytate phosphorus affect performance and bone mineralization in broiler chickens.

    PubMed

    Hamdi, M; Solà-Oriol, D; Davin, R; Perez, J F

    2015-09-01

    An experiment was conducted to evaluate the influence of different Ca sources (limestone, Ca chloride, and Lipocal, a fat-encapsulated tricalcium phosphate, TCP) in conjunction with 4 dietary levels of non-phytate P (NPP) on performance, ileal digestibility of Ca and P, and bone mineralization in broiler chickens. Calcium sources were also evaluated in vitro to measure acid-binding capacity (ABC) and Ca solubility at different pH values. Ca chloride showed the highest solubility of Ca, with TCP showing the highest ABC. Ross male broiler-chicks were sorted by BW at 1 d post-hatch and assigned to 5 cages per diet with 5 birds per cage. Twelve diets were arranged in a 3×4 factorial of the 3 Ca sources and 4 levels of NPP (0.3%, 0.35%, 0.4% or 0.45%) consisting of 4 added P levels (Ca(H2PO4)2) with a high dose of phytase (1,150 U/kg) in all diets. On d 14 post-hatch, 3 birds were euthanized, and ileal digesta and the right tibia were collected to determine ileal Ca and P digestibility and bone mineralization, respectively. Feed intake (FI) and weight gain (WG) on d 14 was higher (P<0.01) with TCP and limestone than with Ca chloride. Added P increased the tibia weight and tibia ash content in chicks fed TCP up to 0.4% NPP and limestone up to 0.35% NPP. Calcium ileal digestibility was higher (P<0.01) with Ca chloride (73.7%) than with limestone (67.1%) or TCP (66.8%), which increased (P<0.05) with added levels of P from monocalcium phosphate. Phosphorus ileal digestibility was not affected by the Ca source and increased (P<0.001) with added levels of NPP. It can be concluded that starting broilers responded better to low-soluble Ca sources compared to high-soluble sources. A level of 0.35%-0.40% NPP with a high dose of phytase (1,150 U/kg) in diets including limestone or TCP is sufficient to guarantee performance and bone formation for broiler chickens from d 0 to d 14.

  20. Effects of dietary boron and phytase supplementation on growth performance and mineral profile of broiler chickens fed on diets adequate or deficient in calcium and phosphorus.

    PubMed

    Çinar, M; Küçükyilmaz, K; Bozkurt, M; Çatli, A U; Bintaş, E; Akşit, H; Konak, R; Yamaner, Ç; Seyrek, K

    2015-01-01

    1. Two experiments were designed to determine the effect of dietary boron (B) in broiler chickens. In Experiment 1, a 2 × 4 factorial arrangement of treatments was used to investigate the effect of dietary calcium (Ca) and available phosphorus (aP) (adequate or deficient) and supplemental B (0, 20, 40, and 60 mg/kg diet). In Experiment 2, B, at 20 mg/kg, and phytase (PHY) (500 FTU/kg diet) were incorporated into a basal diet deficient in Ca and aP, either alone or in combination. 2. The parameters that were measured were growth performance indices, serum biochemical activity as well as ash and mineral (i.e. Ca, P, Mg, Fe, Cu and Zn) content of tibia, breast muscle and liver. 3. Results indicated that both supplemental B and dietary Ca and aP had marginal effects on performance indices of chickens grown for 42 d. 4. There were positive correlations (linear effect) between B concentrations of serum, bone, breast muscle and liver and the amount of B consumed. 5. Serum T3 and T4 activities increased linearly with higher B supplementation. 6. Increasing supplemental B had significant implications on breast muscle and liver mineral composition. Lowering dietary Ca and aP level increased Cu content in liver and both Fe and Zn retention in breast muscle. Tibia ash content and mineral composition did not respond to dietary modifications with either Ca-aP or B. 7. The results also suggested that dietary contents of Ca and aP do not affect the response to B regarding tissue mineral profile. Dietary combination with B and PHY did not create a synergism with regard to growth performance and bioavailability of the minerals.

  1. Changing Dietary Calcium-Phosphorus Level and Cereal Source Selectively Alters Abundance of Bacteria and Metabolites in the Upper Gastrointestinal Tracts of Weaned Pigs

    PubMed Central

    Mann, Evelyne; Schmitz-Esser, Stephan; Wagner, Martin; Ritzmann, Mathias; Zebeli, Qendrim

    2013-01-01

    Several dietary ingredients may affect the bacterial community structure and metabolism in the porcine gut and may therefore influence animals' health and performance. This study investigated the effects of cereal source and calcium-phosphorus (CaP) level in the diet on bacterial microbiota and metabolites, nutrient intake, and gut environment in weaned pigs. Pigs (n = 8/treatment) were fed wheat-barley- or corn-based diets with an adequate or high CaP level for 14 days. Effects on microbiota in the stomach, ileum, and midcolon were assessed using quantitative PCR. Data showed that Enterobacteriaceae, Campylobacter spp., and Helicobacter spp., which all contain highly immune reactive lipopolysaccharide (LPS), were abundant at all gut sites. Diet effects on bacteria and metabolites were moderate and occurred mainly in the upper gut, whereas no effects on bacteria, fermentation products, and LPS could be observed in the colon. Differences in carbohydrate intake with corn versus wheat-barley diets selectively stimulated Bifidobacterium in the stomach and ileum. There was a growth advantage for a few bacterial groups in the stomach and ileum of pigs fed the high versus adequate CaP level (i.e., gastric Enterobacteriaceae and ileal Enterococcus, Bacteroides-Prevotella-Porphyromonas, and Campylobacter). Interestingly, gastrointestinal pH was not affected by dietary CaP level. The present findings demonstrate the stability of the bacterial community and gut environment toward dietary changes even in young pigs. The results on stimulation of gastric and ileal Bifidobacterium by corn diets may be employed in nutritional strategies to support gut health after weaning. PMID:24038702

  2. In vitro binding capacity of zeolite A to calcium, phosphorus and magnesium in rumen fluid as influenced by changes in pH.

    PubMed

    Thilsing, T; Jørgensen, R J; Poulsen, H D

    2006-03-01

    An in vitro experiment was designed to mimic the transport of ingested zeolite A in the forestomachs and proximal part of the small intestine so as to evaluate the binding capacity of zeolite A to Ca, P and Mg as influenced by changes in pH. This was done by incubation of rumen fluid solutions with and without zeolite, as well as varying the content of Ca and/or P. The pH was lowered by addition of HCl so as to mimic abomasal conditions, followed by subsequent HCO3- addition to mimic small intestinal pH. Rumen fluid samples were taken at strategic time points in the experiment. All samples were centrifuged and the supernatant analysed for Ca, P and Mg as indicators of the amount of unbound mineral. The addition of zeolite to rumen fluid solutions reduced the amount of supernatant Ca and Mg at rumen pH, whereas the level of P was not reduced. After adding HCl, a large proportion of the zeolite-bound Ca and Mg was released, increasing supernatant Ca and Mg levels; whereas, HCl addition led to a profound drop in supernatant P in zeolite samples, indicating binding of P. A low level of supernatant P was maintained after HCO3- addition. Neutralization by HCO3- led to a zeolite-induced drop in supernatant Ca and Mg. The reduction in supernatant Ca observed in the present study concurs well with the theoretical rationale of prepartum zeolite supplementation in milk fever prevention. Furthermore, the apparent binding of P by the zeolite may also contribute because of the connection between the calcium and phosphorus homeostasis. The zeolite-induced reduction in supernatant Mg indicates that zeolite supplementation should probably be avoided in Mg-deficient herds unless Mg supplementation is initiated.

  3. The Daily Consumption of Cola Can Determine Hypocalcemia: A Case Report of Postsurgical Hypoparathyroidism-Related Hypocalcemia Refractory to Supplemental Therapy with High Doses of Oral Calcium

    PubMed Central

    Guarnotta, Valentina; Riela, Serena; Massaro, Marina; Bonventre, Sebastiano; Inviati, Angela; Ciresi, Alessandro; Pizzolanti, Giuseppe; Benvenga, Salvatore; Giordano, Carla

    2017-01-01

    The consumption of soft drinks is a crucial factor in determining persistent hypocalcemia. The aim of the study is to evaluate the biochemical mechanisms inducing hypocalcemia in a female patient with usual high consumption of cola drink and persistent hypocalcemia, who failed to respond to high doses of calcium and calcitriol supplementation. At baseline and after pentagastrin injection, gastric secretion (Gs) and duodenal secretion (Ds) samples were collected and calcium and total phosphorus (Ptot) concentrations were evaluated. At the same time, blood calcium, Ptot, sodium, potassium, chloride, magnesium concentrations, and vitamin D were sampled. After intake of cola (1 L) over 180 min, Gs and Ds and blood were collected and characterized in order to analyze the amount of calcium and Ptot or sodium, potassium, magnesium, and chloride ions, respectively. A strong pH decrease was observed after cola intake with an increase in phosphorus concentration. Consequently, a decrease in calcium concentration in Gs and Ds was observed. A decrease in calcium concentration was also observed in blood. In conclusion, we confirm that in patients with postsurgical hypoparathyroidism, the intake of large amounts of cola containing high amounts of phosphoric acid reduces calcium absorption efficiency despite the high doses of calcium therapy. PMID:28184212

  4. Physiology of Calcium and Phosphate Metabolism: 1980 Refresher Course, Syllabus.

    ERIC Educational Resources Information Center

    Knox, Franklyn G., Ed.

    1980-01-01

    This syllabus reviews information concerning calcium and phosphate regulation. Topics of interest include the following: calcium metabolism, phosphorus metabolism, bone, parathyroid hormone, calcitonin, and vitamin D. (CS)

  5. Stimulation of large-conductance calcium-activated potassium channels inhibits neurogenic contraction of human bladder from patients with urinary symptoms and reverses acetic acid-induced bladder hyperactivity in rats.

    PubMed

    La Fuente, José M; Fernández, Argentina; Cuevas, Pedro; González-Corrochano, Rocío; Chen, Mao Xiang; Angulo, Javier

    2014-07-15

    We have analysed the effects of large-conductance calcium-activated potassium channel (BK) stimulation on neurogenic and myogenic contraction of human bladder from healthy subjects and patients with urinary symptoms and evaluated the efficacy of activating BK to relief bladder hyperactivity in rats. Bladder specimens were obtained from organ donors and from men with benign prostatic hyperplasia (BPH). Contractions elicited by electrical field stimulation (EFS) and carbachol (CCh) were evaluated in isolated bladder strips. in vivo cystometric recordings were obtained in anesthetized rats under control and acetic acid-induced hyperactive conditions. Neurogenic contractions of human bladder were potentiated by blockade of BK and small-conductance calcium-activated potassium channels (SK) but were unaffected by the blockade of intermediate calcium-activated potassium channels (IK). EFS-induced contractions were inhibited by BK stimulation with NS-8 or NS1619 or by SK/IK stimulation with NS309 (3µM). CCh-induced contractions were not modified by blockade or stimulation of BK, IK or SK. The anti-cholinergic agent, oxybutynin (0.3µM) inhibited either neurogenic or CCh-induced contractions. Neurogenic contractions of bladders from BPH patients were less sensitive to BK inhibition and more sensitive to BK activation than healthy bladders. The BK activator, NS-8 (5mg/kg; i.v.), reversed bladder hyperactivity induced by acetic acid in rats, while oxybutynin was ineffective. NS-8 did not significantly impact blood pressure or heart rate. BK stimulation specifically inhibits neurogenic contractions in patients with urinary symptoms and relieves bladder hyperactivity in vivo without compromising bladder contractile capacity or cardiovascular safety, supporting its potential therapeutic use for relieving bladder overactivity.

  6. Biomarkers of Prostatic Cancer: An Attempt to Categorize Patients into Prostatic Carcinoma, Benign Prostatic Hyperplasia, or Prostatitis Based on Serum Prostate Specific Antigen, Prostatic Acid Phosphatase, Calcium, and Phosphorus

    PubMed Central

    Sarwar, Shahana; Nyamath, Parveen; Ishaq, Mohammed

    2017-01-01

    Prostatitis, BPH, and P.Ca are the most frequent pathologies of the prostate gland that are responsible for morbidity in men. Raised levels of PSA are seen in different pathological conditions involving the prostate. PAP levels are altered in inflammatory or infectious or abnormal growth of the prostate tissue. Serum calcium and phosphorus levels were also found to be altered in prostate cancer and BPH. The present study was carried out to study the levels of PSA, PAP, calcium, and phosphorus in serum of patients with Prostatitis, BPH, or P.Ca and also to evaluate the relationship between them. Males in the age group of 50–85 years with LUTS disease symptoms and with PSA levels more than 4 ng/mL were included. A total of 114 patients were analyzed including 30 controls. Prostatitis in 35.7% of cases, BPH in 35.7% of the cases, and P.Ca in 28.57% of the cases were observed. Thus, the nonmalignant cases constitute a majority. PSA, a marker specific for prostatic conditions, was significantly high in all the diseases compared to controls. A rise in serum PSA and PAP indicates prostatitis or, in combination with these two tests, decreased serum calcium shows advanced disease. PMID:28168057

  7. Biomarkers of Prostatic Cancer: An Attempt to Categorize Patients into Prostatic Carcinoma, Benign Prostatic Hyperplasia, or Prostatitis Based on Serum Prostate Specific Antigen, Prostatic Acid Phosphatase, Calcium, and Phosphorus.

    PubMed

    Sarwar, Shahana; Adil, Mohammed Abdul Majid; Nyamath, Parveen; Ishaq, Mohammed

    2017-01-01

    Prostatitis, BPH, and P.Ca are the most frequent pathologies of the prostate gland that are responsible for morbidity in men. Raised levels of PSA are seen in different pathological conditions involving the prostate. PAP levels are altered in inflammatory or infectious or abnormal growth of the prostate tissue. Serum calcium and phosphorus levels were also found to be altered in prostate cancer and BPH. The present study was carried out to study the levels of PSA, PAP, calcium, and phosphorus in serum of patients with Prostatitis, BPH, or P.Ca and also to evaluate the relationship between them. Males in the age group of 50-85 years with LUTS disease symptoms and with PSA levels more than 4 ng/mL were included. A total of 114 patients were analyzed including 30 controls. Prostatitis in 35.7% of cases, BPH in 35.7% of the cases, and P.Ca in 28.57% of the cases were observed. Thus, the nonmalignant cases constitute a majority. PSA, a marker specific for prostatic conditions, was significantly high in all the diseases compared to controls. A rise in serum PSA and PAP indicates prostatitis or, in combination with these two tests, decreased serum calcium shows advanced disease.

  8. Calcium and Potassium Supplementation Enhanced Growth, Osmolyte Secondary Metabolite Production, and Enzymatic Antioxidant Machinery in Cadmium-Exposed Chickpea (Cicer arietinum L.)

    PubMed Central

    Ahmad, Parvaiz; Abdel Latef, Arafat A.; Abd_Allah, Elsayed F.; Hashem, Abeer; Sarwat, Maryam; Anjum, Naser A.; Gucel, Salih

    2016-01-01

    This work examined the role of exogenously applied calcium (Ca; 50 mM) and potassium (K; 10 mM) (alone and in combination) in alleviating the negative effects of cadmium (Cd; 200 μM) on growth, biochemical attributes, secondary metabolites and yield of chickpea (Cicer arietinum L.). Cd stress significantly decreased the length and weight (fresh and dry) of shoot and root and yield attributes in terms of number of pods and seed yield (vs. control). Exhibition of decreases in chlorophyll (Chl) a, Chl b, and total Chl was also observed with Cd-exposure when compared to control. However, Cd-exposure led to an increase in the content of carotenoids. In contrast, the exogenous application of Ca and K individually as well as in combination minimized the extent of Cd-impact on previous traits. C. arietinum seedlings subjected to Cd treatment exhibited increased contents of organic solute (proline, Pro) and total protein; whereas, Ca and K-supplementation further enhanced the Pro and total protein content. Additionally, compared to control, Cd-exposure also caused elevation in the contents of oxidative stress markers (hydrogen peroxidase, H2O2; malondialdehyde, MDA) and in the activity of antioxidant defense enzymes (superoxide dismutase, SOD; catalase, CAT; ascorbate peroxidase, APX; glutathione reductase, GR). Ca, K, and Ca + K supplementation caused further enhancements in the activity of these enzymes but significantly decreased contents of H2O2 and MDA, also that of Cd accumulation in shoot and root. The contents of total phenol, flavonoid and mineral elements (S, Mn, Mg, Ca and K) that were also suppressed in Cd stressed plants in both shoot and root were restored to appreciable levels with Ca- and K-supplementation. However, the combination of Ca + K supplementation was more effective in bringing the positive response as compared to individual effect of Ca and K on Cd-exposed C. arietinum. Overall, this investigation suggests that application of Ca and/or K can

  9. Potassium test

    MedlinePlus

    ... this page: //medlineplus.gov/ency/article/003484.htm Potassium test To use the sharing features on this ... enable JavaScript. This test measures the amount of potassium in the fluid portion (serum) of the blood. ...

  10. Potassium Iodide

    MedlinePlus

    ... gland.Potassium iodide can protect you from the effects of radioactive iodine that may be released during ... increase the risk that you may experience side effects.The dose of potassium iodide you should take ...

  11. Comparison of effect of high intake of magnesium with high intake of phosphorus and potassium on urolithiasis in goats fed with cottonseed meal diet.

    PubMed

    Wang, Jin-Yong; Sun, Wei-Dong; Wang, Xiao-Long

    2009-08-01

    The effect of high intake of Mg on urolithiasis was compared with high intake of P and K in goats being fed with a cottonseed meal and rice straw diet. Eighteen wether goats were randomly allocated into group A, B and C evenly and fed with cottonseed meal and rice straw diet for three months. From day 60 onwards, KH(2)PO(4) and K(2)HPO(4) were provided via drinking water to goats in group B to increase the intake of P, K, and MgO to goats in group C to increase the intake of Mg. Blood and urine samples were collected to analyze the concentration of P, K, Mg and Ca, and the activity product (AP) of potassium magnesium phosphate (MKP) in urine was also calculated. The composition of calculi and urinary sedimentary crystals were examined by chemical qualitative analysis, X-ray diffraction, X-ray energy dispersive spectrometry and Fourier transform infrared spectroscopy. The results showed that the incidence of urolithiasis in group C (6/6) was higher than that in group A (1/6) and B (1/6) (P<0.05). The calculi were mainly composed of magnesium ammonium phosphate (MAP) and partly composed of MKP. MKP presented in crystals of different phases in this experiment. The high intake of Mg contributed to a significant increase of plasma Mg, but additional P, K did not cause a further increase of plasma P, K. Urine P, K, Mg and Ca and AP of MKP in group C decreased significantly after the onset of urolithiasis. In conclusion, high intake of Mg was more important in inducing struvite calculi compared with high intake of K and P in goats under these feeding conditions. Cottonseed meal and rice straw with additional Mg is a good dietary model for inducing struvite calculi in castrated goats.

  12. EFFECTS OF pH AND OF VARIOUS CONCENTRATIONS OF SODIUM, POTASSIUM, AND CALCIUM CHLORIDE ON MUSCULAR ACTIVITY OF THE ISOLATED CROP OF PERIPLANETA AMERICANA (ORTHOPTERA)

    PubMed Central

    Griffiths, James T.; Tauber, Oscar E.

    1943-01-01

    1. Twenty-five solutions which contained KCl (0.0, 0.2, 0.4, 0.6, and 0.8 gm. per liter), in combination with CaCl2 (0.0, 0.2, 0.4, 0.6, and 0.8 gm. per liter), 10.0 gm. of NaCl, and 0.2 gm. of NaHCO3 per liter of solution were tested in order to determine satisfactory KCl/CaCl2 ratios in an insect physiological salt mixture for the maintenance of muscular activity by the isolated crop of the American roach. Satisfactory activity products (0.390 to 0.549) were obtained in seven mixtures with KCl/CaCl2 ratios of 0.2/0.2, 0.4/0.4, 0.6/0.6, 0.8/0.8, 0.2/0.4, 0.4/0.6, and 0.6/0.8, expressed as gram per liter. These ratios lie between 0.50 and 1.00. In solutions which contained calcium, but no potassium, approximately 50 per cent of the crops exhibited an initial tone increase and were arrested in rigor. See Fig. 2. In solutions which contained potassium, but no calcium, all crops showed an initial loss of tone and arrest in relaxation. See Fig. 2. 2. Seven KCl/CaCl2 ratios (see paragraph 1 above) were tested with eight NaCl concentrations (1.0, 1.2, 1.3, 1.4, 1.5, 1.6, 1.7, and 1.8 per cent) at a pH of 8.0. In these mixtures, the ones with KCl/CaCl2 ratios of less than 1.0 produced higher activity products than those with ratios equal to 1.00. The highest average activity product (0.849) was obtained in the solutions with 0.2 gm. of KCl and 0.4 gm. of CaCl2 per liter. 3. Four KCl/CaCl2 ratios (0.2/0.2, 0.4/0.4, 0.2/0.4, and 0.4/0.6 gm. per liter) were tested with 1.4, 1.5, and 1.6 per cent NaCl at a pH of 7.5. When analyzed with data from comparable solutions at a pH of 8.0, it was found that 1.4 per cent NaCl afforded an optimum environment for isolated crop activity. 4. Effects of hydrogen and hydroxyl ion concentrations were studied at pH values of 6.8, 7.5, 8.0, and 8.9. The highest average activity product, 1.011, was produced at a pH of about 8.0. 5. A satisfactory physiological salt solution for the isolated foregut of the American roach, Periplaneta americana

  13. Effect of dietary Garcinia cambogia extract on serum essential minerals (calcium, phosphorus, magnesium) and trace elements (iron, copper, zinc) in rats fed with high-lipid diet.

    PubMed

    Gürsel, Feraye Esen; Ateş, Atila; Bilal, Tanay; Altiner, Ayşen

    2012-09-01

    The aim of the study was to investigate the effect of Garcinia cambogia extract on serum calcium (Ca), phosphorus (P), magnesium (Mg), iron (Fe), zinc (Zn) and copper (Cu) concentrations in rats fed with the normal or the high-lipid and -cholesterol diet. Thirty 1-year-old female Sprague-Dawley rats (pathogen-free), weighing an average of 229 g, were randomly assigned to three experimental groups of ten animals each. Diets and tap water were given ad libitum for 75 days. Group 1 (control group) was fed with basal diet (2 % liquid vegetable oil, 0 % cholesterol), while the diets of groups 2 and 3 contained vegetable oil (2 % liquid vegetable oil and 5 % hydrogenated vegetable oil) and cholesterol (3 %) in high levels. 4,5 % G. cambogia extract containing 65 % HCA was added to the diet of group 3 as from day 45. Blood samples were withdrawn on days 0, 45 and 75. Serum mineral levels were analyzed using standard enzymatic colorimetric methods with a spectrophotometer. All significant differences were p<0.05. Serum Ca levels were not significantly different between all groups on days 45 and 75. Serum P level was significantly higher in the group fed with high-lipid diet and G. cambogia extract than in the control group on day 45. Serum Mg level was significantly higher in group 2 than in the control group on day 45. Serum Fe levels were significantly lower in the control group than in the other groups on days 45 and 75. Serum Zn level of the group fed with high-lipid diet and G. cambogia extract was significantly higher than in the control group on day 75. Serum Cu levels were significantly higher in group 2 than in the control group, and in group 3 than in group 2 on day 75. In conclusion, a diet containing the high fat amounts may lead to the increase in circular levels of some minerals due to the short-chain fatty acid production lowering the luminal pH which increases mineral solubility, or serving as a fuel for mucosal cells and stimulating cell proliferation in

  14. Influence of the dosing frequency of parathyroid hormone-(1-38) on its anabolic effect in bone and on the balance of calcium, phosphorus and magnesium.

    PubMed

    Riond, J L; Goliat-von Fischer, I; Küffer, B; Toromanoff, A; Forrer, R

    1998-06-01

    The effect of the frequency of administration of synthetic human parathyroid hormone fragment 1-38 [hPTH-(1-38)] on bone formation and on the balance of calcium, phosphorus, and magnesium was investigated in 32 9-week-old female Sprague-Dawley rats, using a randomly complete block design. Rats received subcutaneously during 14 days either the vehicle solution once a day or 50 micrograms hPTH-(1-38)/kg BW once a day at 8:00 a.m., twice a day at 8:00 a.m. and 5:00 p.m. or three times a day at 8:00 a.m., 0:30 p.m., and 5:00 p.m. The balance study was performed during the last 48 h of the hPTH-(1-38) treatment schedule after which femora, tibiae, and lumbar vertebrae were removed for the determination of the dry weight, volume, and contents of Ca, P, Mg, hydroxyproline, and DNA. PTH treatment was associated with a significant increase of the apparent intestinal absorption of Ca, P, and Mg. Mean urinary Ca excretion augmented with the increase of the frequency of dosing. Urinary Ca excretion correlated negatively with the Ca apparent intestinal absorption and with the Ca content of the tibiae in the 2 groups with the highest frequency of dosing. The mean Ca, P, and Mg balances, the mean contents of bone Ca, P, and Mg and the mean bone dry weights were significantly increased with PTH treatment. In contrast to the mean volume of tibiae which was not affected by the PTH administration, the mean volume of the fifth lumbar vertebrae increased with the treatment. With the 2 times and 3 times daily treatments, mean hydroxyproline concentrations in the femora were significantly higher than the control values. An increase of the mean hydroxyproline content of the third lumbar vertebrae was evidenced with the 1 time and 2 times daily treatment, but the mean of the highest frequency of dosing was not different from that of the control group. The DNA content of femoral and of the fourth lumbar vertebrae significantly decreased with the frequency of dosing.

  15. Influence of diet, phytase, and incubation time on calcium and phosphorus solubility in the gastric and small intestinal phase of an in vitro digestion assay.

    PubMed

    Walk, C L; Bedford, M R; McElroy, A P

    2012-09-01

    To determine the influence of incubation time, diet, and particle size on Ca and P solubility in vitro, experimental diets were formulated to contain 0.89% Ca and 0.40% available P (positive control; PC) or 0.76% Ca and 0.27% available P (negative control; NC). The PC was supplemented with 0 or 1,000 phytase units (FTU) of microbial phytase/kg and the NC with 0, 1,000, or 5,000 FTU/kg diet of microbial phytase for a total of 5 experimental diets. In Exp. 1, diets were exposed to simulated gastric digestion containing HCl and pepsin for 42 min, or a small intestinal digestion phase containing NaHCO(3) and pancreatin for 60 min. In Exp. 2, diets were ground to pass a 1- or 2-mm screen and exposed to gastric digestion for 5, 10, or 20 min. Phosphorus and Ca solubility were similarly influenced by diet and digestion phase (Exp. 1), and there was no interaction. Phytase supplementation improved (P < 0.001) Ca and P solubility in both the PC and NC diets (Exp. 1) and increased P (P < 0.001) and Ca (P < 0.001) solubility in the gastric phase of the in vitro digestion model (Exp. 2). Phytase continued to release P in the gastric test over time, which resulted in a diet × time interaction (P < 0.05). Calcium solubility reached an asymptote at 5 min and both Ca and P solubility was reduced (P < 0.05) in diets ground to pass a 2 mm screen compared with diets ground to pass a 1-mm screen. In addition, P and Ca solubility did not change over time in diets not supplemented with phytase. In conclusion, phytase or particle size altered the kinetics of Ca and P release in a non-parallel fashion, which may be associated with the precipitation of Ca with phytate and the sequential dephosphorylation of phytate by a microbial 6-phytase. In the presence of phytase, considerable Ca and P hydrolysis occurred within 5 min of a simulated gastric digestion. However, the solubility of Ca and P reached a plateau in the gastric phase of digestion and no further improvements in solubility are

  16. Effect of inulin and oligofructose on performance and bone characteristics of broiler chickens fed on diets with different concentrations of calcium and phosphorus.

    PubMed

    Swiatkiewicz, S; Koreleski, J; Arczewska-Włoek, A

    2011-08-01

    1. In a 6-week experiment with broilers, the effect of diet supplementation, using prebiotic fructans, on the performance and biomechanical and geometrical parameters of the tibia and femur bones was evaluated. 2. A total of 240, 1-d-old, Ross 308 chickens were randomly assigned to 1 of 6 treatments, each comprising 5 replicate cages, with 8 birds (4 male and 4 female) per cage. A 2 x 3 factorial arrangement was employed, with two dietary concentrations of calcium and available phosphorus (standard: 9 x 4/9 x 2 g Ca/kg and 4 x 3/4 x 0 g P available/kg; or reduced: 8 x 3/8 x 1 g Ca/kg and 3 x 7/3 x 5 g P available/kg, for the starter/finisher feeding phases, respectively), and with three diets supplemented by selected prebiotics (none; inulin, 7 x 0 g/kg; oligofructose, 7 x 0 g/kg). 3. The concentration of Ca and available P in the diet had no effect on performance parameters at 21 and 42 d of age. At 42 d, reducing the dietary concentrations of Ca and P significantly decreased such biomechanical parameters of bones as tibia stiffness (by 9 x 2%); and femur breaking strength (by 5 x 8%) and stiffness (by 5 x 1%). The diet with a lower concentration of Ca and P negatively affected such geometrical parameter of the tibia as the cross section area, but had no effect on cortex thickness, or bone weight and length. 4. At 21 or 42 d of age, broilers fed on diets supplemented with inulin or oligofructose displayed a performance similar to those fed on the unsupplemented diet. The prebiotics under study also had no statistically significant effects on the biomechanical and geometrical parameters of either bone. There were no significant Ca and P concentration x prebiotics interaction effects, on either performance parameters or on bone quality indices. 5. It was thus concluded that inulin and oligofructose do not improve the performance and bone quality of broilers, either when fed on diets with a standard concentration of Ca and available P, or with reduced concentrations

  17. Availability of phosphorus from selected inorganic phosphate to juvenile abalone, Haliotis discus hannai ino.

    NASA Astrophysics Data System (ADS)

    Tan, Bei-Ping; Mai, Kang-Sen; Xu, Wei

    2002-06-01

    The availability of phosphorus to juvenile abalone, Haliotis discus hannai from primary, secondary and tertiary calcium phosphate, primary sodium or potassium phosphate separately or in combination was determined in a 120-day feeding trial. Seven semi-purified diets were formulated to contain relatively constant dietary phosphorus, ranging from 0.78% 0.82%. The concentrations of dietary phosphorus were presumed to be slightly below the requirement for abalone. A brown alga, Laminaria japonica, was used as a control diet. Abalone juveniles of silimar size (average weight 1.18 g; average shell length 18.74 mm) were distributed in a single-pass, flow-through system using a completely randomized design with eight treatments and three replicates each treatment. The survival ranged from 71.1% to 81.1%, and was not significantly (P>0.05) related to dietary treatment. However, the weight gain rate (41.72% 65.02%), daily increment in shell length (36.87 55.07 μm) and muscle RNA-DNA ratio (3.44 4.69) were significantly (P<0.05) affected by dietary treatment. Soft body alkaline phosphatase activity (10.9 19.8 U/g wet tissue) and carcass levels of lipid (7.71% 9.33%) and protein (46.68% 49.35%) were significantly (P<0.05) responsive to available phosphorus of the diets. Dietary treatment had significant effect (P<0.05) on concentrations of phosphorus in the whole body (WB) and soft body (SB). Apparent digestibility coefficients (45% 97%) of phosphorus were also significantly (P<0.05) different between dietary treatments. The results indicated that among these inorganic compounds, primary calcium, potassium and sodium phosphates separately or in combination could be utilized effectively by juvenile abalone as dietary phosphorus sources (availability ranging from 87% 97%). However, secondary and tertiary calcium phosphates were found to be low in availability, the values being 45% and 77%, repectively.

  18. Possible site of calcium regulation in rat exocrine pancreas cells: an X-ray microanalytical study

    SciTech Connect

    Roos, N.

    1988-03-01

    We analysed four subcellular compartments in rat exocrine pancreas cells, zymogen granules, cytoplasm surrounding the zymogen granules, mitochondria and cytoplasm in the basal part of the cells for sodium, magnesium, phosphorus, sulfur, chlorine, potassium and calcium content, using ultrathin frozen-dried cryosections. The highest concentrations of calcium were measured in the zymogen granules and the surrounding apical part of the cell containing Golgi apparatus, smooth endoplasmic reticulum and condensing vacuoles. Calcium concentrations in the basal part of the cells (mostly rough endoplasmic reticulum) were 60% lower than in the apical part of the cells. The lowest calcium concentrations were measured in mitochondria. The results suggest that other subcellular compartments than the rough endoplasmic reticulum and mitochondria might be involved in the intracellular Ca2+ regulation.

  19. Potassium physiology.

    PubMed

    Thier, S O

    1986-04-25

    Potassium is the most abundant exchangeable cation in the body. It exists predominantly in the intracellular fluid at concentrations of 140 to 150 meq/liter and in the extracellular fluid at concentrations of 3.5 to 5 meq/liter. The maintenance of the serum potassium concentration is a complex bodily function and results from the balance between intake, excretion, and distribution between intracellular and extracellular space. Ingested potassium is virtually completely absorbed from and minimally excreted through the intestine under nonpathologic circumstances. Renal excretion of potassium, which is the major chronic protective mechanism against abnormalities in potassium balance, depends on filtration, reabsorption, and a highly regulated distal nephron secretory process. Factors regulating potassium secretion include prior potassium intake, intracellular potassium, delivery of sodium chloride and poorly reabsorbable anions to the distal nephron, the urine flow rate, hormones such as aldosterone and beta-catecholamines, and the integrity of the renal tubular cell. The maintenance of distribution between the inside and outside of cells depends on the integrity of the cell membrane and its pumps, osmolality, pH, and the hormones insulin, aldosterone, beta 2-catecholamines, alpha-catecholamines, and prostaglandins. Both distribution across cell membranes and/or renal excretion of potassium may be altered by pharmacologic agents such as diuretics, alpha- and beta-catechol antagonists and agonists, depolarizing agents, and digitalis. Problems with hypokalemia and hyperkalemia can be analyzed on the basis of potassium physiology and pharmacology; proper treatment depends on an accurate analysis.

  20. Indicators: Phosphorus

    EPA Pesticide Factsheets

    Phosphorus, like nitrogen, is a critical nutrient required for all life. Phosphate (PO4), which plays major roles in the formation of DNA, cellular energy, and cell membranes (and plant cell walls). Too much phosphorus can create water quality problems.

  1. Requirement for digestible calcium by eleven- to twenty-five-kilogram pigs as determined by growth performance, bone ash concentration, calcium and phosphorus balances, and expression of genes involved in transport of calcium in intestinal and kidney cells.

    PubMed

    González-Vega, J C; Liu, Y; McCann, J C; Walk, C L; Loor, J J; Stein, H H

    2016-08-01

    Two experiments were conducted to determine the requirement for standardized total tract digestible (STTD) Ca by 11- to 25-kg pigs based on growth performance, bone ash, or Ca and P retention and to determine the effect of dietary Ca on expression of genes related to Ca transport in the jejunum and kidneys. Six diets were formulated to contain 0.36% STTD P and 0.32, 0.40, 0.48, 0.56, 0.64, or 0.72% STTD Ca by including increasing quantities of calcium carbonate in the diets at the expense of cornstarch. Two additional diets contained 0.72% STTD Ca and 0.33% or 0.40% STTD P to determine if 0.36% STTD P had negative effects on the Ca requirement. The same batch of all diets was used in both experiments. In Exp. 1, 256 pigs (11.39 ± 1.21 kg initial BW) were randomly allotted to the 8 diets with 4 pigs per pen and 8 replicate pens per diet in a randomized complete block design. On the last day of the experiment, 1 pig from each pen was euthanized and the right femur and intestine and kidney samples were collected. Results indicated that ADG and G:F started to decline (linear and quadratic, < 0.05) at 0.54 and 0.50% STTD Ca, respectively. In contrast, bone ash increased (quadratic, < 0.05) as dietary Ca increased and reached a plateau indicating that the requirement for STTD Ca to maximize bone ash was 0.48%. Bone ash, but not ADG or G:F, increased (linear, < 0.01) as STTD increased in the diets. The mRNA expression of genes related to transcellular Ca transport decreased (linear, < 0.01) in the jejunum and in kidneys (linear and quadratic, < 0.01) as dietary Ca increased. In Exp. 2, 80 pigs (13.12 ± 1.79 kg initial BW) were placed in metabolism crates and randomly allotted to the 8 diets with 10 replicate pigs per diet in a randomized complete block design. Fecal and urine samples were collected using the marker-to-marker approach. Results indicated that the requirement for STTD Ca to maximize Ca and P retention (g/d) was 0.60 and 0.49%, respectively. In conclusion

  2. Final amended report on the safety assessment of Ammonium Thioglycolate, Butyl Thioglycolate, Calcium Thioglycolate, Ethanolamine Thioglycolate, Ethyl Thioglycolate, Glyceryl Thioglycolate, Isooctyl Thioglycolate, Isopropyl Thioglycolate, Magnesium Thioglycolate, Methyl Thioglycolate, Potassium Thioglycolate, Sodium Thioglycolate, and Thioglycolic Acid.

    PubMed

    Burnett, Christina L; Bergfeld, Wilma F; Belsito, Donald V; Klaassen, Curtis D; Marks, James G; Shank, Ronald C; Slaga, Thomas J; Snyder, Paul W; Andersen, F Alan

    2009-01-01

    This safety assessment includes Ammonium and Glyceryl Thioglycolate and Thioglycolic Acid Butyl, Calcium, Ethanolamine, Ethyl, Isooctyl, Isopropyl, Magnesium, Methyl, Potassium, and Sodium Thioglycolate, as used in cosmetics. Thioglycolates penetrate skin and distribute to the kidneys, lungs, small intestine, and spleen; excretion is primarily in urine. Thioglycolates were slightly toxic in rat acute oral toxicity studies. Thioglycolates are minimal to severe ocular irritants. Thioglycolates can be skin irritants in animal and in vitro tests, and can be sensitizers. A no-observable-adverse-effect level for reproductive and developmental toxicity of 100 mg/kg per day was determined using rats. Thioglycolates were not mutagenic, and there was no evidence of carcinogenicity. Thioglycolates were skin irritants in some clinical tests. Clinically significant adverse reactions to these ingredients used in depilatories are not commonly seen, suggesting current products are formulated to be practically nonirritating under conditions of recommended use. Formulators should take steps necessary to assure that current practices are followed.

  3. Effects of broiler litter ash, layer manure ash and calcium phosphate on corn, wheat and soybean growth, phosphorus and arsenic uptake

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Poultry litter is being incinerated in order to reduce excess litter and to increase the percentage of renewable fuel used to generate electricity. Ash from incinerated litter has been effective in increasing crop growth. However, there is no current literature comparing phosphorus availability fr...

  4. Development of a method based on inductively coupled plasma-dynamic reaction cell-mass spectrometry for the simultaneous determination of phosphorus, calcium and strontium in bone and dental tissue

    NASA Astrophysics Data System (ADS)

    De Muynck, David; Vanhaecke, Frank

    2009-05-01

    A method, based on the use of a quadrupole-based inductively coupled plasma-mass spectrometry instrument equipped with a quadrupole-based collision/reaction cell (dynamic reaction cell, DRC), was developed for the simultaneous determination of phosphorus, calcium and strontium in bone and dental (enamel and dentine) tissue. The use of NH 3, introduced at a gas flow rate of 0.8 mL min - 1 in the dynamic reaction cell, combined with a rejection parameter q (RPq) setting of 0.65, allows interference-free determination of calcium via its low-abundant isotopes 42Ca, 43Ca and 44Ca, and of strontium via its isotopes 86Sr and 88Sr that are freed from overlap due to the occurrence of ArCa + and/or Ca 2+ ions. Also the determination of phosphorus ( 31P, mono-isotopic) was shown to be achievable using the same dynamic reaction cell operating conditions. The bone certified reference materials NIST SRM 1400 Bone Ash and NIST SRM 1486 Bone Meal were used for validation of the measurement protocol that was shown capable of providing accurate and reproducible results. Detection limits of P, Ca and Sr in dental tissue digests were established as 3 µg L - 1 for P, 2 µg L - 1 for Ca and 0.2 µg L - 1 for Sr. This method can be used to simultaneously (i) evaluate the impact of diagenesis on the elemental and isotopic composition of buried skeletal tissue via its Ca/P ratio and (ii) determine its Sr concentration. The measurement protocol was demonstrated as fit-for-purpose by the analysis of a set of teeth of archaeological interest for their Ca/P ratio and Sr concentration.

  5. Effect of NH4-N/P and Ca/P molar ratios on the reactive crystallization of calcium phosphates for phosphorus recovery from wastewater

    NASA Astrophysics Data System (ADS)

    Vasenko, Liubov; Qu, Haiyan

    2017-02-01

    In this work, the effects of operational parameters, initial phosphorus concentration and molar ratios of Ca/P and NH4-N/P (further in the text N/P), on the nature and purity of precipitated phosphorus products have been investigated in an artificial system that mimics the supernatant in wastewater treatment plants. Metastable zone width was determined for two target phosphorus products: DCPD (dicalcium phosphate dihydrate) and HAp (hydroxyapatite) in the range of pH 4.5 - 7. HAp crystallizes at final pH higher than 6.3 while DCPD crystallizes at the final pH in between 4.7 and 5.7. At the final pH 5.7 - 6.3 and at pH lower than 4.7 the mixtures of DCPD and HAp were obtained. It was observed that N/P ratio affects not only the metastable zone width but also the kinetics of crystal growth for both DCPD and HAp: the higher the N/P ratio, the lower is the growth rate for both P-products. Investigation of the effect of Ca/P and N/P ratios on the nucleation and crystal growth of DCPD in batch crystallization experiment was performed. It showed that at high supersaturation level, crystals with larger median size can be obtained at higher N/P ratio despite the negative effects of N/P ratio on the growth rate of the crystals.

  6. Effects of potassium chloride and potassium bicarbonate on endothelial function, cardiovascular risk factors, and bone turnover in mild hypertensives.

    PubMed

    He, Feng J; Marciniak, Maciej; Carney, Christine; Markandu, Nirmala D; Anand, Vidya; Fraser, William D; Dalton, R Neil; Kaski, Juan C; MacGregor, Graham A

    2010-03-01

    To determine the effects of potassium supplementation on endothelial function, cardiovascular risk factors, and bone turnover and to compare potassium chloride with potassium bicarbonate, we carried out a 12-week randomized, double-blind, placebo-controlled crossover trial in 42 individuals with untreated mildly raised blood pressure. Urinary potassium was 77+/-16, 122+/-25, and 125+/-27 mmol/24 hours after 4 weeks on placebo, potassium chloride, and potassium bicarbonate, respectively. There were no significant differences in office blood pressure among the 3 treatment periods, and only 24-hour and daytime systolic blood pressures were slightly lower with potassium chloride. Compared with placebo, both potassium chloride and potassium bicarbonate significantly improved endothelial function as measured by brachial artery flow-mediated dilatation, increased arterial compliance as assessed by carotid-femoral pulse wave velocity, decreased left ventricular mass, and improved left ventricular diastolic function. There was no significant difference between the 2 potassium salts in these measurements. The study also showed that potassium chloride reduced 24-hour urinary albumin and albumin:creatinine ratio, and potassium bicarbonate decreased 24-hour urinary calcium, calcium:creatinine ratio, and plasma C-terminal cross-linking telopeptide of type 1 collagen significantly. These results demonstrated that an increase in potassium intake had beneficial effects on the cardiovascular system, and potassium bicarbonate may improve bone health. Importantly, these effects were found in individuals who already had a relatively low-salt and high-potassium intake.

  7. [Bone and Nutrition. A novel function of phosphorus].

    PubMed

    Taketani, Yutaka; Imi, Yukiko; Abuduli, Maerjianghan

    2015-07-01

    Phosphorus is an essential nutrient for bone formation by forming hydroxyapatite with calcium. Simultaneously, phosphorus is also a component of high energy bond of ATP, nucleic acids, and phospholipids. Recent studies have demonstrated that excess or lack of dietary phosphorus intake may cause vascular dysfunction, cardiac hypertrophy, and impaired glucose tolerance. Here, we introduce recent findings about the effects of high or low dietary phosphorus intake on several organs except for bone.

  8. Potassium cyanide

    Integrated Risk Information System (IRIS)

    Jump to main content . Integrated Risk Information System Recent Additions | Contact Us Search : All EPA IRIS • You are here : EPA Home • Research • Environmental Assessment • IRIS • IRIS Summaries Redirect Page As of September 28 , 2010 , the assessment summary for potassium cyanide is included in

  9. Potassium in diet

    MedlinePlus

    ... the diet; Hypokalemia - potassium in the diet; Chronic kidney disease - potassium in diet; Kidney failure - potassium in diet ... are also excellent sources of potassium. People with kidney problems, especially those on dialysis, should not eat ...

  10. Effects of Sodium Chloride, Potassium Chloride and Calcium Chloride on the Formation of α-Dicarbonyl Compounds, Furfurals and Development of Browning in Cookies during Baking.

    PubMed

    Kocadağlı, Tolgahan; Gökmen, Vural

    2016-10-02

    Effect of NaCl, KCl, CaCl2, NaHCO3, and NH4HCO3 on the formation of glucosone, 1-deoxyglucosone, 3-deoxyglucosone, glyoxal, methylglyoxal, diacetyl, 5-hydroxymethyl-2-furfural, 2-furfural and browning were investigated in cookies. Presence of 1.5% NaCl, 1% KCl, and 1% CaCl2 on flour basis had no effect on α-dicarbonyl compounds, except 1-deoxyglucosone increased in the presence of KCl and CaCl2. The increase in 5-hydroxymethyl-2-furfural formation in the presence of NaCl, KCl, and CaCl2 did not relate to 3-deoxyglucosone formation and pH changes. NaCl, KCl, and CaCl2 increased browning in cookies. Model reaction systems indicated that NaCl, KCl, and CaCl2 enhance browning by increasing furfurals in caramelization. NaCl, KCl, and CaCl2 decreased browning intensity in heated glucose-glycine system. Usage of CaCl2 in cookies may considerably increase furfurals but not α-dicarbonyl compounds. Sodium reduction can be obtained by replacement with potassium without sacrificing the desired consequences of caramelization in sugar rich bakeries.

  11. Potassium Disorders: Hypokalemia and Hyperkalemia.

    PubMed

    Viera, Anthony J; Wouk, Noah

    2015-09-15

    Hypokalemia and hyperkalemia are common electrolyte disorders caused by changes in potassium intake, altered excretion, or transcellular shifts. Diuretic use and gastrointestinal losses are common causes of hypokalemia, whereas kidney disease, hyperglycemia, and medication use are common causes of hyperkalemia. When severe, potassium disorders can lead to life-threatening cardiac conduction disturbances and neuromuscular dysfunction. Therefore, a first priority is determining the need for urgent treatment through a combination of history, physical examination, laboratory, and electrocardiography findings. Indications for urgent treatment include severe or symptomatic hypokalemia or hyperkalemia; abrupt changes in potassium levels; electrocardiography changes; or the presence of certain comorbid conditions. Hypokalemia is treated with oral or intravenous potassium. To prevent cardiac conduction disturbances, intravenous calcium is administered to patients with hyperkalemic electrocardiography changes. Insulin, usually with concomitant glucose, and albuterol are preferred to lower serum potassium levels in the acute setting; sodium polystyrene sulfonate is reserved for subacute treatment. For both disorders, it is important to consider potential causes of transcellular shifts because patients are at increased risk of rebound potassium disturbances.

  12. [Mechanisms of phosphorus and calcium homeostatic disorders in the development of cardiovascular events in patients with chronic renal diseases. The role of fibroblast growth factor 23 and Klotho].

    PubMed

    Milovanova, L Iu; Kozlovskaia, L V; Milovanov, Iu S; Bobkova, I N; Dobrosmyslov, I A

    2010-01-01

    The paper deals with the analysis of studies of the role of the bone morphogenetic proteins fibroblast growth factor 23 (FGF-23) and Klothno in the development of vascular wall calcification in chronic renal disease (CRD). FGF-23 is shown to be an important phosphaturic hormone that inhibits hypercalcemic and hyperphosphatemic effects of elevated serum vitamin D concentrations. There is evidence that there is an association between high serum FGF-23 levels and vascular wall calcification irrespective of the content of phosphorus and parathyroid hormone. Most authors regard FGF-23 as a potential uremic toxin in patients with end-stage CRD. There are data that support the renoprotective value of the morphogenetic protein Klotho whose expression in CRD is decreased.

  13. High pressure synthesis and crystal structure of a ternary superconductor Ca{sub 2}Al{sub 3}Si{sub 4} containing layer structured calcium sub-network isomorphous with black phosphorus

    SciTech Connect

    Tanaka, Masashi; Zhang, Shuai; Tanaka, Yuki; Inumaru, Kei; Yamanaka, Shoji

    2013-02-15

    The Zintl compound CaAl{sub 2}Si{sub 2} is peritectically decomposed to a mixture of Ca{sub 2}Al{sub 3}Si{sub 4} and aluminum metal at temperatures above 600 Degree-Sign C under a pressure of 5 GPa. The new ternary compound Ca{sub 2}Al{sub 3}Sl{sub 4} crystalizes with the space group Cmc2{sub 1} and the lattice parameters a=5.8846(8), b=14.973(1), and c=7.7966(5) A. The structure is composed of aluminum silicide framework [Al{sub 3}Si{sub 4}] and layer structured [Ca{sub 2}] network interpenetrating with each other. The electron probe microanalysis (EPMA) shows the formation of solid solutions Ca{sub 2}Al{sub 3-x}Si{sub 4+x} (x<0.6). The layer structured [Ca{sub 2}] sub-network is isomorphous with black phosphorus. The new ternary compound shows superconductivity with a transition temperature (T{sub c}) of 6.4 K. The band structure calculation suggests that the superconductivity should occur through the conduction bands mainly composed of 3p orbitals of the aluminum silicide framework. - Graphical abstract: A new ternary superconductor Ca{sub 2}Al{sub 3}Si{sub 4} has been prepared under high pressure and high temperature conditions, which includes layer structured calcium sub-network isomorphous with black phosphorus. Highlights: Black-Right-Pointing-Pointer A typical Zintl compound CaAl{sub 2}Si{sub 2} melts congruently at ambient pressure. Black-Right-Pointing-Pointer Under high pressure CaAl{sub 2}Si{sub 2} decomposes to Ca{sub 2}Al{sub 3}Si{sub 4} and Al at {approx}600 Degree-Sign C. Black-Right-Pointing-Pointer Ca{sub 2}Al{sub 3}Si{sub 4} contains Ca sub-network isomorphous with black phosphorus. Black-Right-Pointing-Pointer Ca{sub 2}Al{sub 3}Si{sub 4} shows superconductivity with a transition temperature of 6.4 K.

  14. Effects of tocainide and lidocaine on the transmembrane action potentials as related to external potassium and calcium concentrations in guinea-pig papillary muscles.

    PubMed

    Oshita, S; Sada, H; Kojima, M; Ban, T

    1980-10-01

    Effects of lidocaine and tocainide on transmembrane potentials were studied in isolated guinea-pig papillary muscles, superfused with modified Tyrode's solution containing either 5.4, 2.7, 10.0 or 8.1 mmol/l potassium concentration, [K]0. The last solution applied contained either 1.8 (normal [Ca]0) or 7.2 mmol/l [Ca]0 (high [Ca]0. The concentrations of lidocaine and tocainide used were 18.5, 36.9 and 73.9 mumol/l and 43.7, 87.5 and 174.9 mumol/l in 5.4 mmol/l [K]0 solution and 36.9 and 87.5 mumol/l in the other solutions, respectively. At the driving rate of 1 Hz in 5.4 mmol/l "K]0 solution, both drugs produced dose-dependently a reduction of maximum rate of rise of action potential (Vmax), together with a prolongation of the relative refractory period. Vmax decreased progressively as the driving rate was increased from 1 Hz (for lidocaine) and from 0.25 Hz (for tocainide) to 5 Hz. This action was accentuated dose-dependently. A slow component (time constant tau = 232 ms for lidocaine, 281--303 ms for tocainide) and slower component (tau = 2.1--3.8 s for tocainide) of the recovery (reactivation) of Vmax were observed in premature responses at 0.25 Hz and in the first response after interruption of the basic driving rate at 1 Hz. All these effects were accentuated with rising [K]0 and attenuated in the high [Ca]0 solution. Both drugs abbreviated the action potential duration at 50% (APD50) and 90% (APD90) levels at 5.4, 8.1 and 10.0 mmol/l [K]0 but not at 2.7 mmol/l [K]0 nor a high [Ca]0 at 1 Hz. These [K]0-dependent effects of lidocaine on Vmax were successfully simulated by the model proposed by Hondeghem and Katzung (1977), with a slight change in parameter values. The mode of interaction of lidocaine with sodium channels in the open, closed and rested states was deduced from these results.

  15. The Effects of Dietary Phosphorus on the Growth Performance and Phosphorus Excretion of Dairy Heifers.

    PubMed

    Zhang, B; Wang, C; Wei, Z H; Sun, H Z; Xu, G Z; Liu, J X; Liu, H Y

    2016-07-01

    The objective of this study was to investigate the effects of reducing dietary phosphorus (P) on the frame size, udder traits, blood parameters and nutrient digestibility coefficient in 8- to 10-month-old Holstein heifers. Forty-five heifers were divided into 15 blocks according to the mo of age and were randomly assigned one of three dietary treatments: 0.26% (low P [LP]), 0.36% (medium P [MP]), or 0.42% (high P [HP]) (dry matter basis). Samples were collected at the wk 1, 4, 8. The results show that low dietary P had no effect on body measurement. The blood P concentration decreased with decreasing dietary P (p<0.05), while the blood calcium content of LP was higher than that of the MP and HP groups (p<0.05), though still in the normal range. The serum contents of alkalinephosphatase, potassium, and magnesium were similar among the treatments. No differences were found in all nutrients' apparent digestibility coefficients with varied dietary P. However, with P diet decreased from HP to LP, the total fecal P and urine P concentration declined significantly, as did fecal water soluble P (p<0.05). In conclusion, reducing the dietary P from 0.42% to 0.26% did not negatively affect the heifers' growth performance but did significantly lessen manure P excretion into the environment.

  16. The importance of potassium in managing hypertension.

    PubMed

    Houston, Mark C

    2011-08-01

    Dietary potassium intake has been demonstrated to significantly lower blood pressure (BP) in a dose-responsive manner in both hypertensive and nonhypertensive patients in observational studies, clinical trials, and several meta-analyses. In hypertensive patients, the linear dose-response relationship is a 1.0 mm Hg reduction in systolic BP and a 0.52 mm Hg reduction in diastolic BP per 0.6 g per day increase in dietary potassium intake that is independent of baseline potassium deficiency. The average reduction in BP with 4.7 g (120 mmol) of dietary potassium per day is 8.0/4.1 mm Hg, depending race and on the relative intakes of other minerals such as sodium, magnesium, and calcium. If the dietary sodium chloride intake is high, there is a greater BP reduction with an increased intake of dietary potassium. Blacks have a greater decrease in BP than Caucasians with an equal potassium intake. Potassium-induced reduction in BP significantly lowers the incidence of stroke (cerebrovascular accident, CVA), coronary heart disease, myocardial infarction, and other cardiovascular events. However, potassium also reduces the risk of CVA independent of BP reductions. Increasing consumption of potassium to 4.7 g per day predicts lower event rates for future cardiovascular disease, with estimated decreases of 8% to 15% in CVA and 6% to 11% in myocardial infarction.

  17. The addition of a Buttiauxella sp. phytase to lactating sow diets deficient in phosphorus and calcium reduces weight loss and improves nutrient digestibility.

    PubMed

    Wealleans, A L; Bold, R M; Dersjant-Li, Y; Awati, A

    2015-11-01

    Improving the efficiency of P use by pigs is especially important for lactating sows, whose metabolic requirements for P and Ca are high. The effect of a sp. phytase on lactating sow performance and nutrient digestibility was investigated using the combined data set for 6 studies. Treatments included a nutritionally adequate positive control diet (PC), a negative control diet (NC; with an average reduction of 0.16% available phosphorous and 0.15% Ca vs. PC), and NC supplemented with a sp. phytase at 250, 500, 1,000 or 2,000 phytase unit (FTU)/kg, respectively. Phosphorus and Ca deficiency in the NC resulted in significantly higher BW loss compared with the PC. All phytase treatments maintained BW loss at the same level as the PC. Increasing doses of phytase significantly ( < 0.05) reduced sow BW loss and increased energy intake, with improvements most apparent in sows older than parity 5. The positive effects on BW and energy intake were not observed in first-parity sows. This may be a consequence of fewer first parity sows in the data set. The apparent total tract digestibility of DM, OM, and CP were not affected by phytase supplementation. Digestible P and Ca were significantly improved (linear, < 0.0001; quadratic, < 0.0001) by increasing the dose of phytase supplementation. Significantly lower apparent total tract digestibility of energy, Ca, and P was found in the NC treatment vs. the PC treatment, whereas no significant differences were found between phytase treatment and the PC treatment. In conclusion, phytase supplementation at a level of 250 FTU/kg can replace 0.16% available phosphorous and 0.15% Ca; however, increasing the phytase dose can further reduce BW loss in sows fed P- and Ca- deficient diets.

  18. Spectrophotometric determination of phosphorus acid

    SciTech Connect

    Domin, A.V.; Domina, N.G.; Zakharov, Yu.A.; Shechkov, G.T.

    1987-03-01

    A number of procedures have been proposed to determine phosphorus acid and its salts, the phosphites, in the presence of hypophosphorus acid and its salts, the hypophosphites. Among these procedures, iodometric back-titration has produced the most reliable results. In this paper, the authors propose an improved iodometric determination of phosphorus acid that enables the sensitivity to be increased by at least two orders of magnitude. The essence of this improvement is that excess iodine that did not react with phosphite ion is determined not volumetrically but spectrophotometrically. To eliminate the effect of iodine ion that is liberated when iodine reacts with phosphite ion on the optical density of the solution, a 200-fold excess of potassium iodide is added before the photometric measurement. The working iodine solution is prepared by diluting 10 m of 0.025 N iodine titrant and 50 ml of phosphate buffer, pH 6.7-7.2, to 1 liter with distilled water in a coulometric flask. To construct the calibration curve, 5, 10, 15, 20, and 25 ml, respectively of working iodine solution, and 10 ml of 2% aqueous potassium iodide are placed into five 100-ml volumetric flasks, and the solutions are made up to volume with water. After 10 min the photometric measurements are carried out at 380 nm using curvets and the reference solution is obtained by diluting 10 ml of 2% aqueous potassium iodide to 100 ml with distilled water.

  19. White phosphorus

    Integrated Risk Information System (IRIS)

    White phosphorus ; CASRN 7723 - 14 - 0 Human health assessment information on a chemical substance is included in the IRIS database only after a comprehensive review of toxicity data , as outlined in the IRIS assessment development process . Sections I ( Health Hazard Assessments for Noncarcinogenic

  20. Both Phosphorus Fertilizers and Indigenous Bacteria Enhance Arsenic Release into Groundwater in Arsenic-Contaminated Aquifers.

    PubMed

    Lin, Tzu-Yu; Wei, Chia-Cheng; Huang, Chi-Wei; Chang, Chun-Han; Hsu, Fu-Lan; Liao, Vivian Hsiu-Chuan

    2016-03-23

    Arsenic (As) is a human carcinogen, and arsenic contamination in groundwater is a worldwide public health concern. Arsenic-affected areas are found in many places but are reported mostly in agricultural farmlands, yet the interaction of fertilizers, microorganisms, and arsenic mobilization in arsenic-contaminated aquifers remains uncharacterized. This study investigates the effects of fertilizers and bacteria on the mobilization of arsenic in two arsenic-contaminated aquifers. We performed microcosm experiments using arsenic-contaminated sediments and amended with inorganic nitrogenous or phosphorus fertilizers for 1 and 4 months under aerobic and anaerobic conditions. The results show that microcosms amended with 100 mg/L phosphorus fertilizers (dipotassium phosphate), but not nitrogenous fertilizers (ammonium sulfate), significantly increase aqueous As(III) release in arsenic-contaminated sediments under anaerobic condition. We also show that concentrations of iron, manganese, potassium, sodium, calcium, and magnesium are increased in the aqueous phase and that the addition of dipotassium phosphate causes a further increase in aqueous iron, potassium, and sodium, suggesting that multiple metal elements may take part in the arsenic release process. Furthermore, microbial analysis indicates that the dominant microbial phylum is shifted from α-proteobacteria to β- and γ-proteobacteria when the As(III) is increased and phosphate is added in the aquifer. Our results provide evidence that both phosphorus fertilizers and microorganisms can mediate the release of arsenic to groundwater in arsenic-contaminated sediments under anaerobic condition. Our study suggests that agricultural activity such as the use of fertilizers and monitoring phosphate concentration in groundwater should be taken into consideration for the management of arsenic in groundwater.

  1. Dietary calcium, phosphorus, and phytase effects on bird performance, intestinal morphology, mineral digestibility, and bone ash during a natural necrotic enteritis episode.

    PubMed

    Paiva, Diego; Walk, Carrie; McElroy, Audrey

    2014-11-01

    The objective of this study was to evaluate the effects of dietary Ca, P, and phytase on performance, intestinal morphology, bone ash, and Ca and P digestibility during a necrotic enteritis (NE) outbreak. The 35-d trial was designed as a 2 × 2 × 2 factorial, which included 2 Ca levels (0.6 and 0.9%), 2 P levels (0.3 and 0.45%), and 2 levels of phytase [0 and 1,000 phytase units (FTU)/kg]. Birds were placed on litter from a previous flock that exhibited clinical signs of NE. Birds and feed were weighed on d 12, 19, and 35, and BW gain, feed intake, and feed conversion were calculated. Mortality was recorded daily, and gastrointestinal pH was measured. Tibias and ileal digesta were also collected. Birds began exhibiting clinical signs of NE on d 9, and NE-associated mortality persisted until d 26. Dietary Ca supplemented at 0.9% or inclusion of 1,000 FTU/kg of phytase significantly increased mortality compared with 0.6% Ca or 0 FTU/kg of phytase, respectively. From d 0 to 12, birds fed 0.9% Ca and 0.45% available P with phytase had greater BW gain compared with birds fed 0.6% Ca, 0.45% available P, and phytase. From d 0 to 19, birds fed diets with 0.9% Ca and 0.3% available P had decreased feed intake and improved feed conversion compared with birds fed 0.9% Ca and 0.45% available P. Calcium at 0.9% increased gizzard (d 19) and jejunum (d 12) pH. Phytase supplementation significantly increased Ca digestibility regardless of Ca and P levels of the diets. In addition, diets containing 0.6% Ca and 1,000 FTU/kg of phytase resulted in a significant increase in P digestibility. The results suggest that dietary Ca level may influence NE-associated mortality. In addition, bird performance was affected by interactions of Ca, P, and phytase during the exposure to Clostridium perfringens and the subsequent NE outbreak. Results showed improvements in bird performance when birds were fed 0.6% Ca and 0.3% P in diets supplemented with phytase, which was likely consequent to the

  2. Physicochemical action of potassium-magnesium citrate in nephrolithiasis

    NASA Technical Reports Server (NTRS)

    Pak, C. Y.; Koenig, K.; Khan, R.; Haynes, S.; Padalino, P.

    1992-01-01

    Effect of potassium-magnesium citrate on urinary biochemistry and crystallization of stone-forming salts was compared with that of potassium citrate at same dose of potassium in five normal subjects and five patients with calcium nephrolithiasis. Compared to the placebo phase, urinary pH rose significantly from 6.06 +/- 0.27 to 6.48 +/- 0.36 (mean +/- SD, p less than 0.0167) during treatment with potassium citrate (50 mEq/day for 7 days) and to 6.68 +/- 0.31 during therapy with potassium-magnesium citrate (containing 49 mEq K, 24.5 mEq Mg, and 73.5 mEq citrate per day). Urinary pH was significantly higher during potassium-magnesium citrate than during potassium citrate therapy. Thus, the amount of undissociated uric acid declined from 118 +/- 61 mg/day during the placebo phase to 68 +/- 54 mg/day during potassium citrate treatment and, more prominently, to 41 +/- 46 mg/day during potassium-magnesium citrate therapy. Urinary magnesium rose significantly from 102 +/- 25 to 146 +/- 37 mg/day during potassium-magnesium citrate therapy but not during potassium citrate therapy. Urinary citrate rose more prominently during potassium-magnesium citrate therapy (to 1027 +/- 478 mg/day from 638 +/- 252 mg/day) than during potassium citrate treatment (to 932 +/- 297 mg/day). Consequently, urinary saturation (activity product) of calcium oxalate declined significantly (from 1.49 x 10(-8) to 1.03 x 10(-8) M2) during potassium-magnesium citrate therapy and marginally (to 1.14 x 10(-8) M2) during potassium citrate therapy.(ABSTRACT TRUNCATED AT 250 WORDS).

  3. Land Application of Wastes: An Educational Program. Phosphorus Considerations - Module 19, Objectives, and Script.

    ERIC Educational Resources Information Center

    Clarkson, W. W.; And Others

    The treatment of wastewater phosphorus via land application includes both chemical and biological mechanisms. Chemically, phosphorus reacts with iron, aluminum, and calcium compounds in the soil providing efficient removal over a wide range of pH values. Phosphorus is also absorbed by rooted plants which, upon harvest, constitute a further removal…

  4. [Phosphorus intake and osteoporosis].

    PubMed

    Omi, N; Ezawa, I

    2001-10-01

    Phosphorus (P) is one of the most important nutrients for bone metabolism, such as calcium. In general, P intake is usually adequate in our daily diet, and there is a risk of over-consumption from processed food. On the other hand, Ca intake is not always adequate from the Japanese daily diet. When Ca/P is taken from the daily diet at a level of 0.5 - 2.0, the P intake level dose not affect intestinal Ca absorption. Therefore, it is important not only to pay attention to preventing the over-consumption of P, but also to obtain a sufficient intake of Ca. For the prevention of osteoporosis, it is important to consume sufficient Ca and to maintain and appropriate Ca/P balance from diet.

  5. Patient education for phosphorus management in chronic kidney disease

    PubMed Central

    Kalantar-Zadeh, Kamyar

    2013-01-01

    Objectives: This review explores the challenges and solutions in educating patients with chronic kidney disease (CKD) to lower serum phosphorus while avoiding protein insufficiency and hypercalcemia. Methods: A literature search including terms “hyperphosphatemia,” “patient education,” “food fatigue,” “hypercalcemia,” and “phosphorus–protein ratio” was undertaken using PubMed. Results: Hyperphosphatemia is a strong predictor of mortality in advanced CKD and is remediated via diet, phosphorus binders, and dialysis. Dietary counseling should encourage the consumption of foods with the least amount of inorganic or absorbable phosphorus, low phosphorus-to-protein ratios, and adequate protein content, and discourage excessive calcium intake in high-risk patients. Emerging educational initiatives include food labeling using a “traffic light” scheme, motivational interviewing techniques, and the Phosphate Education Program – whereby patients no longer have to memorize the phosphorus content of each individual food component, but only a “phosphorus unit” value for a limited number of food groups. Phosphorus binders are associated with a clear survival advantage in CKD patients, overcome the limitations associated with dietary phosphorus restriction, and permit a more flexible approach to achieving normalization of phosphorus levels. Conclusion: Patient education on phosphorus and calcium management can improve concordance and adherence and empower patients to collaborate actively for optimal control of mineral metabolism. PMID:23667310

  6. Calcium supplements

    MedlinePlus

    ... TYPES OF CALCIUM SUPPLEMENTS Forms of calcium include: Calcium carbonate: Over-the-counter (OTC) antacid products, such as Tums and Rolaids, contain calcium carbonate. These sources of calcium do not cost much. ...

  7. Improving phosphorus availability in an acid soil using organic amendments produced from agroindustrial wastes.

    PubMed

    Ch'ng, Huck Ywih; Ahmed, Osumanu Haruna; Majid, Nik Muhamad Ab

    2014-01-01

    In acid soils, soluble inorganic phosphorus is fixed by aluminium and iron. To overcome this problem, acid soils are limed to fix aluminium and iron but this practice is not economical. The practice is also not environmentally friendly. This study was conducted to improve phosphorus availability using organic amendments (biochar and compost produced from chicken litter and pineapple leaves, resp.) to fix aluminium and iron instead of phosphorus. Amending soil with biochar or compost or a mixture of biochar and compost increased total phosphorus, available phosphorus, inorganic phosphorus fractions (soluble inorganic phosphorus, aluminium bound inorganic phosphorus, iron bound inorganic phosphorus, redundant soluble inorganic phosphorus, and calcium bound phosphorus), and organic phosphorus. This was possible because the organic amendments increased soil pH and reduced exchangeable acidity, exchangeable aluminium, and exchangeable iron. The findings suggest that the organic amendments altered soil chemical properties in a way that enhanced the availability of phosphorus in this study. The amendments effectively fixed aluminium and iron instead of phosphorus, thus rendering phosphorus available by keeping the inorganic phosphorus in a bioavailable labile phosphorus pool for a longer period compared with application of Triple Superphosphate without organic amendments.

  8. Improving Phosphorus Availability in an Acid Soil Using Organic Amendments Produced from Agroindustrial Wastes

    PubMed Central

    Ch'ng, Huck Ywih; Ahmed, Osumanu Haruna; Majid, Nik Muhamad Ab.

    2014-01-01

    In acid soils, soluble inorganic phosphorus is fixed by aluminium and iron. To overcome this problem, acid soils are limed to fix aluminium and iron but this practice is not economical. The practice is also not environmentally friendly. This study was conducted to improve phosphorus availability using organic amendments (biochar and compost produced from chicken litter and pineapple leaves, resp.) to fix aluminium and iron instead of phosphorus. Amending soil with biochar or compost or a mixture of biochar and compost increased total phosphorus, available phosphorus, inorganic phosphorus fractions (soluble inorganic phosphorus, aluminium bound inorganic phosphorus, iron bound inorganic phosphorus, redundant soluble inorganic phosphorus, and calcium bound phosphorus), and organic phosphorus. This was possible because the organic amendments increased soil pH and reduced exchangeable acidity, exchangeable aluminium, and exchangeable iron. The findings suggest that the organic amendments altered soil chemical properties in a way that enhanced the availability of phosphorus in this study. The amendments effectively fixed aluminium and iron instead of phosphorus, thus rendering phosphorus available by keeping the inorganic phosphorus in a bioavailable labile phosphorus pool for a longer period compared with application of Triple Superphosphate without organic amendments. PMID:25032229

  9. Production of Low-Phosphorus Molten Iron from High-Phosphorus Oolitic Hematite Using Biomass Char

    NASA Astrophysics Data System (ADS)

    Tang, Huiqing; Qi, Tengfei; Qin, Yanqi

    2015-09-01

    In this study, an energy-saving and environmentally friendly method to produce low-phosphorus molten iron from high-phosphorus oolitic hematite was experimentally investigated and theoretically analyzed. The results indicate that biomass char is a suitable reducing agent for the proposed method. In the direct reduction stage, the ore-char briquette reached a metallization degree of 80-82% and a residual carbon content of 0.1-0.3 mass%. Under the optimized condition, phosphorus remained in the gangue as calcium phosphate. In the melting separation stage, phosphorus content ([%P]) in molten iron could be controlled by introducing a Na2CO3 additive, and the phosphorus behavior could be predicted using ion molecular coexistence theory. Molten iron with [%P] less than 0.3 mass% was obtained from the metallic briquettes with the aforementioned quality by introducing 2-4% Na2CO3 and the iron recovery rate was 75-78%.

  10. Facilitation of calcium-dependent potassium current.

    PubMed

    Thompson, S H

    1994-12-01

    The activation of Ca-dependent K+ current, Ic, was studied in macropatches on the cell bodies of molluscan neurons. When a depolarizing voltage-clamp pulse was applied repeatedly, Ic facilitated in a manner that resembled the facilitation of synaptic transmitter release. Facilitation was characterized by an increase in Ic amplitude, a progressive increase in instantaneous outward current, and a decrease in utilization time. Experiments were done to investigate the mechanism responsible for Ic facilitation. Facilitation was reduced by microinjection of an exogenous Ca2+ buffer into the cytoplasm, indicating that facilitation is a Ca(2+)-dependent process. It was also reduced at elevated temperatures. Conversely, facilitation was greatly potentiated by blocking the Na/Ca exchange mechanism. It is concluded that the facilitation of Ca-dependent K+ current results from the accumulation of Ca2+ at the inner face of the membrane during the repeated activation of Ca2+ channels by depolarization. The Ca2+ indicator fluo-3 was used in fluorescence imaging experiments to measure changes in [Ca]i near the cell membrane during repeated depolarizing pulses and the interpretation of these results was aided by numerical simulations of Ca2+ accumulation, diffusion, and buffering in the peripheral cytoplasm. These experiments showed that the time course of Ic facilitation matches the time course of Ca2+ accumulation at the membrane. It was found that the strength of Ic facilitation varies among patches on the same neuron, suggesting that the accumulation of Ca2+ is not uniform along the inner surface of the membrane and that gradients in [Ca]i develop and are maintained during trains of depolarizing pulses. Potential mechanisms that may lead to local differences in Ca2+ accumulation and Ic facilitation are discussed.

  11. Characterization of phosphorus in organisms at sub-micron resolution using X-ray fluorescence spectromicroscopy.

    SciTech Connect

    Diaz, J.; Ingall, E; Vogt, S; Paterson, D; DeJonge, M; Rao, C; Brandes, J

    2009-01-01

    X-ray spectromicroscopy (combined X-ray spectroscopy and microscopy) is uniquely capable of determining sub-micron scale elemental content and chemical speciation in minimally-prepared particulate samples. The high spatial resolutions achievable with this technique have enabled the close examination of important microscale processes relevant to the cycling of biogeochemically important elements. Here, we demonstrate the value of X-ray microscopy to environmental and biological research by examining the phosphorus and metal chemistry of complete individual cells from the algal genera Chlamydomonas sp. and Chlorella sp. X-ray analysis revealed that both genera store substantial intracellular phosphorus as distinct, heterogeneously distributed granules whose X-ray fluorescence spectra are consistent with that of polyphosphate. Polyphosphate inclusions ranged in size from 0.3-1.4 {micro}m in diameter and exhibited a nonspecies-specific average phosphorus concentration of 6.87 {+-} 1.86 {micro}g cm{sup -2}, which was significantly higher than the average concentration of phosphorus measured in the total cell, at 3.14 {+-} 0.98 {micro}g cm{sup -2} (95% confidence). Polyphosphate was consistently associated with calcium and iron, exhibiting average P:cation molar ratios of 8.31 {+-} 2.00 and 108 {+-} 34, respectively (95% confidence). In some cells, polyphosphate was also associated with potassium, zinc, manganese, and titanium. Based on our results, X-ray spectromicroscopy can provide high-resolution elemental data on minimally prepared, unsectioned cells that are unattainable through alternative microscopic methods and conventional bulk chemical techniques currently available in many fields of marine chemistry.

  12. Calcium handling in Sparus auratus: effects of water and dietary calcium levels on mineral composition, cortisol and PTHrP levels.

    PubMed

    Abbink, Wout; Bevelander, Gideon S; Rotllant, Josep; Canario, Adelino V M; Flik, Gert

    2004-11-01

    Juvenile gilthead sea bream (Sparus auratus L.; 10-40 g body mass) were acclimatized in the laboratory to full strength (34 per thousand) or dilute (2.5 per thousand) seawater and fed normal, calcium-sufficient or calcium-deficient diet for nine weeks. Mean growth rate, whole-body calcium and phosphorus content and accumulation rates were determined, as well as plasma levels of ionic and total calcium, cortisol and parathyroid hormone related protein (PTHrP; a hypercalcemic hormone in fish). When confronted with limited calcium access (low salinity and calcium-deficient diet), sea bream show growth arrest. Both plasma cortisol and PTHrP increase when calcium is limited in water or diet, and a positive relationship was found between plasma PTHrP and plasma ionic calcium (R(2)=0.29, N=18, P<0.05). Furthermore, a strong correlation was found between net calcium and phosphorus accumulation (R(2)=0.92, N=16, P<0.01) and between body mass and whole-body calcium (R(2)=0.84, N=25, P<0.01) and phosphorus (R(2)=0.88, N=24, P<0.01) content. Phosphorus accumulation is strongly calcium dependent, as phosphorus accumulation decreases in parallel to calcium accumulation when the diet is calcium deficient but phosphorus sufficient. We conclude that PTHrP and cortisol are involved in the regulation of the hydromineral balance of these fish, with growth-related calcium accumulation as an important target.

  13. Intracellular mediators of potassium-induced aldosterone secretion

    SciTech Connect

    Ganguly, A.; Chiou, S.; Davis, J.S. )

    1990-01-01

    We have investigated the intracellular messengers of potassium in eliciting aldosterone secretion in calf adrenal glomerulosa cells since there were unresolved issues relating to the role of phosphoinositides, cAMP and protein kinases. We observed no evidence of hydrolysis of phosphatidylinositol 4,5-bisphosphate (PIP{sub 2}) in {sup 3}H-inositol labeled alf adrenal cells or increase of cAMP in response to potassium. Addition of calcium channel blocker, nitrendipine after stimulating adrenal glomerulosa cells with potassium, markedly inhibited aldosterone secretion. A calmodulin inhibitor (W-7) produced greater reduction of aldosterone secretion than an inhibitor of protein kinase C (H-7). These results suggest that a rise in cytosolic free calcium concentration through voltage-dependent calcium channel and calmodulin are the critical determinants of aldosterone secretion stimulated by potassium.

  14. Phosphorus Regulation in Chronic Kidney Disease

    PubMed Central

    Suki, Wadi N.; Moore, Linda W.

    2016-01-01

    Serum phosphorus levels stay relatively constant through the influence of multiple factors—such as parathyroid hormone, fibroblast growth factor 23, and vitamin D—on the kidney, bone, and digestive system. Whereas normal serum phosphorus ranges between 3 mg/dL to 4.5 mg/dL, large cross-sectional studies have shown that even people with normal kidney function are sometimes found to have levels ranging between 1.6 mg/dL and 6.2 mg/dL. While this may partially be due to diet and the factors mentioned above, total understanding of these atypical ranges of serum phosphorus remains uncertain. Risks for bone disease are high in people aged 50 and older, and this group comprises a large proportion of people who also have chronic kidney disease. Consuming diets low in calcium and high in phosphorus, especially foods with phosphate additives, further exacerbates bone turnover. Existing bone disease increases the risk for high serum phosphorus, and higher serum phosphorus has been associated with increased adverse events and cardiovascular-related mortality both in people with chronic kidney disease and in those with no evidence of disease. Once kidney function has deteriorated to end-stage disease (Stage 5), maintaining normal serum phosphorus requires dietary restrictions, phosphate-binding medications, and dialysis. Even so, normal serum phosphorus remains elusive in many patients with Stage 5 kidney disease, and researchers are testing novel targets that may inhibit intestinal transport of phosphorus to achieve better phosphate control. Protecting and monitoring bone health should also aid in controlling serum phosphorus as kidney disease advances. PMID:28298956

  15. Phosphorus Regulation in Chronic Kidney Disease.

    PubMed

    Suki, Wadi N; Moore, Linda W

    2016-01-01

    Serum phosphorus levels stay relatively constant through the influence of multiple factors-such as parathyroid hormone, fibroblast growth factor 23, and vitamin D-on the kidney, bone, and digestive system. Whereas normal serum phosphorus ranges between 3 mg/dL to 4.5 mg/dL, large cross-sectional studies have shown that even people with normal kidney function are sometimes found to have levels ranging between 1.6 mg/dL and 6.2 mg/dL. While this may partially be due to diet and the factors mentioned above, total understanding of these atypical ranges of serum phosphorus remains uncertain. Risks for bone disease are high in people aged 50 and older, and this group comprises a large proportion of people who also have chronic kidney disease. Consuming diets low in calcium and high in phosphorus, especially foods with phosphate additives, further exacerbates bone turnover. Existing bone disease increases the risk for high serum phosphorus, and higher serum phosphorus has been associated with increased adverse events and cardiovascular-related mortality both in people with chronic kidney disease and in those with no evidence of disease. Once kidney function has deteriorated to end-stage disease (Stage 5), maintaining normal serum phosphorus requires dietary restrictions, phosphate-binding medications, and dialysis. Even so, normal serum phosphorus remains elusive in many patients with Stage 5 kidney disease, and researchers are testing novel targets that may inhibit intestinal transport of phosphorus to achieve better phosphate control. Protecting and monitoring bone health should also aid in controlling serum phosphorus as kidney disease advances.

  16. Impacts of dietary calcium, phytate, and nonphytate phosphorus concentrations in the presence or absence of phytase on inositol hexakisphosphate (IP6) degradation in different segments of broilers digestive tract.

    PubMed

    Li, W; Angel, R; Kim, S-W; Brady, K; Yu, S; Plumstead, P W

    2016-03-01

    A total of 1,440 straight-run Heritage 56M × fast-feathering Cobb 500F broiler birds were fed from 11 to 13 d of age to determine the impacts of calcium (Ca), phytate phosphorus (PP), nonphytate P (NPP) and phytase concentrations on the myo-inositol hexakisphosphate (IP6) flow through the different parts of gastrointestinal tract (GIT). The experiment was a 2×2×2×3 randomized block design with 2 Ca (0.7 and 1.0%), 2 PP (0.23 and 0.34%), 2 nPP (0.28 and 0.45%) and 3 phytase (0-, 500-, and 1,000-phytase unit (FTU)/kg) concentrations. The experiment was replicated twice (block) with 3 replicates per treatment (TRT) of 10 birds per block. Concentration of IP6 in crop, proventriculus (PROV) plus (+) gizzard (GIZ) and distal ileum digesta as well as the ileal IP6 disappearance was determined at 13 d of age. In crop, higher IP6 concentration was seen with increased Ca (P < 0.05). Despite the interaction between PP and phytase, higher dietary PP led to greater IP6 concentration (P < 0.05). Similar main effects of PP and phytase were also seen in Prov+Giz and ileum (P < 0.05) without interactions. Interaction between Ca and nPP on IP6 concentration was seen in Prov+Giz (P < 0.05). Decreased ileal IP6 disappearance was found at higher Ca (62.3% at 0.7% Ca vs. 57.5% at 1.0% Ca; P < 0.05). In general, adding phytase improved IP6 degradation but the degree of impact was dependent on nPP and PP (P < 0.05). In conclusion, phytase inclusion significantly reduced IP6 concentration and IP6 disappearance in distal ileum regardless of GIT segments or diet composition, but impacts of dietary Ca, nPP, and PP differed depending on GIT segment examined.

  17. Impacts of dietary calcium, phytate, and nonphytate phosphorus concentrations in the presence or absence of phytase on inositol hexakisphosphate (IP6) degradation in different segments of broilers digestive tract

    PubMed Central

    Li, W.; Angel, R.; Kim, S.-W.; Brady, K.; Yu, S.; Plumstead, P. W.

    2016-01-01

    A total of 1,440 straight-run Heritage 56M × fast-feathering Cobb 500F broiler birds were fed from 11 to 13 d of age to determine the impacts of calcium (Ca), phytate phosphorus (PP), nonphytate P (nPP) and phytase concentrations on the myo-inositol hexakisphosphate (IP6) flow through the different parts of gastrointestinal tract (GIT). The experiment was a 2×2×2×3 randomized block design with 2 Ca (0.7 and 1.0%), 2 PP (0.23 and 0.34%), 2 nPP (0.28 and 0.45%) and 3 phytase (0-, 500-, and 1,000-phytase unit (FTU)/kg) concentrations. The experiment was replicated twice (block) with 3 replicates per treatment (Trt) of 10 birds per block. Concentration of IP6 in crop, proventriculus (Prov) plus (+) gizzard (Giz) and distal ileum digesta as well as the ileal IP6 disappearance was determined at 13 d of age. In crop, higher IP6 concentration was seen with increased Ca (P < 0.05). Despite the interaction between PP and phytase, higher dietary PP led to greater IP6 concentration (P < 0.05). Similar main effects of PP and phytase were also seen in Prov+Giz and ileum (P < 0.05) without interactions. Interaction between Ca and nPP on IP6 concentration was seen in Prov+Giz (P < 0.05). Decreased ileal IP6 disappearance was found at higher Ca (62.3% at 0.7% Ca vs. 57.5% at 1.0% Ca; P < 0.05). In general, adding phytase improved IP6 degradation but the degree of impact was dependent on nPP and PP (P < 0.05). In conclusion, phytase inclusion significantly reduced IP6 concentration and IP6 disappearance in distal ileum regardless of GIT segments or diet composition, but impacts of dietary Ca, nPP, and PP differed depending on GIT segment examined. PMID:26740131

  18. Calcium- and Phosphorus-Supplemented Diet Increases Bone Mass after Short-Term Exercise and Increases Bone Mass and Structural Strength after Long-Term Exercise in Adult Mice.

    PubMed

    Friedman, Michael A; Bailey, Alyssa M; Rondon, Matthew J; McNerny, Erin M; Sahar, Nadder D; Kohn, David H

    2016-01-01

    Exercise has long-lasting benefits to bone health that may help prevent fractures by increasing bone mass, bone strength, and tissue quality. Long-term exercise of 6-12 weeks in rodents increases bone mass and bone strength. However, in growing mice, a short-term exercise program of 3 weeks can limit increases in bone mass and structural strength, compared to non-exercised controls. Short-term exercise can, however, increase tissue strength, suggesting that exercise may create competition for minerals that favors initially improving tissue-level properties over structural-level properties. It was therefore hypothesized that adding calcium and phosphorus supplements to the diet may prevent decreases in bone mass and structural strength during a short-term exercise program, while leading to greater bone mass and structural strength than exercise alone after a long-term exercise program. A short-term exercise experiment was done for 3 weeks, and a long-term exercise experiment was done for 8 weeks. For each experiment, male 16-week old C57BL/6 mice were assigned to 4 weight-matched groups-exercise and non-exercise groups fed a control or mineral-supplemented diet. Exercise consisted of treadmill running at 12 m/min, 30 min/day for 7 days/week. After 3 weeks, exercised mice fed the supplemented diet had significantly increased tibial tissue mineral content (TMC) and cross-sectional area over exercised mice fed the control diet. After 8 weeks, tibial TMC, cross-sectional area, yield force, and ultimate force were greater from the combined treatments than from either exercise or supplemented diet alone. Serum markers of bone formation (PINP) and resorption (CTX) were both decreased by exercise on day 2. In exercised mice, day 2 PINP was significantly positively correlated with day 2 serum Ca, a correlation that was weaker and negative in non-exercised mice. Increasing dietary mineral consumption during an exercise program increases bone mass after 3 weeks and increases

  19. Assessing the health impact of phosphorus in the food supply: issues and considerations.

    PubMed

    Calvo, Mona S; Moshfegh, Alanna J; Tucker, Katherine L

    2014-01-01

    The Western dietary pattern of intake common to many Americans is high in fat, refined carbohydrates, sodium, and phosphorus, all of which are associated with processed food consumption and higher risk of life-threatening chronic diseases. In this review, we focus on the available information on current phosphorus intake with this Western dietary pattern, and new knowledge of how the disruption of phosphorus homeostasis can occur when intake of phosphorus far exceeds nutrient needs and calcium intake is limited. Elevation of extracellular phosphorus, even when phosphorus intake is seemingly modest, but excessive relative to need and calcium intake, may disrupt the endocrine regulation of phosphorus balance in healthy individuals, as it is known to do in renal disease. This elevation in serum phosphate, whether episodic or chronically sustained, may trigger the secretion of regulatory hormones, whose actions can damage tissue, leading to the development of cardiovascular disease, renal impairment, and bone loss. Therefore, we assessed the health impact of excess phosphorus intake in the context of specific issues that reflect changes over time in the U.S. food supply and patterns of intake. Important issues include food processing and food preferences, the need to evaluate phosphorus intake in relation to calcium intake and phosphorus bioavailability, the accuracy of various approaches used to assess phosphorus intake, and the difficulties encountered in evaluating the relations of phosphorus intake to chronic disease markers or incident disease.

  20. Rapid and portable electrochemical quantification of phosphorus.

    PubMed

    Kolliopoulos, Athanasios V; Kampouris, Dimitrios K; Banks, Craig E

    2015-04-21

    Phosphorus is one of the key indicators of eutrophication levels in natural waters where it exists mainly as dissolved phosphorus. Various analytical protocols exist to provide an offsite analysis, and a point of site analysis is required. The current standard method recommended by the Environmental Protection Agency (EPA) for the detection of total phosphorus is colorimetric and based upon the color of a phosphomolybdate complex formed as a result of the reaction between orthophosphates and molybdates ions where ascorbic acid and antimony potassium tartrate are added and serve as reducing agents. Prior to the measurements, all forms of phosphorus are converted into orthophosphates via sample digestion (heating and acidifying). The work presented here details an electrochemical adaptation of this EPA recommended colorimetric approach for the measurement of dissolved phosphorus in water samples using screen-printed graphite macroelectrodes for the first time. This novel indirect electrochemical sensing protocol allows the determination of orthophosphates over the range from 0.5 to 20 μg L(-1) in ideal pH 1 solutions utilizing cyclic voltammetry with a limit of detection (3σ) found to correspond to 0.3 μg L(-1) of phosphorus. The reaction time and influence of foreign ions (potential interferents) upon this electroanalytical protocol was also investigated, where it was found that a reaction time of 5 min, which is essential in the standard colorimetric approach, is not required in the new proposed electrochemically adapted protocol. The proposed electrochemical method was independently validated through the quantification of orthophosphates and total dissolved phosphorus in polluted water samples (canal water samples) with ion chromatography and ICP-OES, respectively. This novel electrochemical protocol exhibits advantages over the established EPA recommended colorimetric determination for total phosphorus with lower detection limits and shorter experimental times

  1. Impact of Fish Farming on Phosphorus in Reservoir Sediments.

    PubMed

    Jia, Binyang; Tang, Ya; Tian, Liyan; Franz, Leander; Alewell, Christine; Huang, Jen-How

    2015-11-18

    Fish farming has seriously influenced the aquatic environment in Sancha reservoir in SW China since 1985 and has been strongly restricted since 2005. Thus, phosphorus speciation in a sediment core dated between 1945 and 2010 at cm-resolution and in surface sediments from Sancha reservoir may allow us track how fish farming impacts phosphorus dynamics in lake sediments. Fish farming shifts the major binding forms of phosphorus in sediments from organic to residual phosphorus, which mostly originated from fish feed. Sorption to metal oxides and association with organic matters are important mechanisms for phosphorus immobilisation with low fish farming activities, whereas calcium-bound phosphorous had an essential contribution to sediment phosphorus increases under intensive fish framing. Notwithstanding the shifting, the aforementioned phosphorus fractions are usually inert in the lake environment, therefore changing phosphorus mobility little. The use of fish feed and water-purification reagents, the most important additives for fish farming, introduce not only phosphorus but also large amounts of sand-sized minerals such as quartz into the lake, to which phosphorus weakly sorbs. The sand-sized minerals as additional sorbents increase the pool of easily mobilisable phosphorus in sediments, which will slow down the recovery of reservoir water due to its rapid re-mobilisation.

  2. Impact of Fish Farming on Phosphorus in Reservoir Sediments

    PubMed Central

    Jia, Binyang; Tang, Ya; Tian, Liyan; Franz, Leander; Alewell, Christine; Huang, Jen-How

    2015-01-01

    Fish farming has seriously influenced the aquatic environment in Sancha reservoir in SW China since 1985 and has been strongly restricted since 2005. Thus, phosphorus speciation in a sediment core dated between 1945 and 2010 at cm-resolution and in surface sediments from Sancha reservoir may allow us track how fish farming impacts phosphorus dynamics in lake sediments. Fish farming shifts the major binding forms of phosphorus in sediments from organic to residual phosphorus, which mostly originated from fish feed. Sorption to metal oxides and association with organic matters are important mechanisms for phosphorus immobilisation with low fish farming activities, whereas calcium-bound phosphorous had an essential contribution to sediment phosphorus increases under intensive fish framing. Notwithstanding the shifting, the aforementioned phosphorus fractions are usually inert in the lake environment, therefore changing phosphorus mobility little. The use of fish feed and water-purification reagents, the most important additives for fish farming, introduce not only phosphorus but also large amounts of sand-sized minerals such as quartz into the lake, to which phosphorus weakly sorbs. The sand-sized minerals as additional sorbents increase the pool of easily mobilisable phosphorus in sediments, which will slow down the recovery of reservoir water due to its rapid re-mobilisation. PMID:26577441

  3. Impact of Fish Farming on Phosphorus in Reservoir Sediments

    NASA Astrophysics Data System (ADS)

    Jia, Binyang; Tang, Ya; Tian, Liyan; Franz, Leander; Alewell, Christine; Huang, Jen-How

    2015-11-01

    Fish farming has seriously influenced the aquatic environment in Sancha reservoir in SW China since 1985 and has been strongly restricted since 2005. Thus, phosphorus speciation in a sediment core dated between 1945 and 2010 at cm-resolution and in surface sediments from Sancha reservoir may allow us track how fish farming impacts phosphorus dynamics in lake sediments. Fish farming shifts the major binding forms of phosphorus in sediments from organic to residual phosphorus, which mostly originated from fish feed. Sorption to metal oxides and association with organic matters are important mechanisms for phosphorus immobilisation with low fish farming activities, whereas calcium-bound phosphorous had an essential contribution to sediment phosphorus increases under intensive fish framing. Notwithstanding the shifting, the aforementioned phosphorus fractions are usually inert in the lake environment, therefore changing phosphorus mobility little. The use of fish feed and water-purification reagents, the most important additives for fish farming, introduce not only phosphorus but also large amounts of sand-sized minerals such as quartz into the lake, to which phosphorus weakly sorbs. The sand-sized minerals as additional sorbents increase the pool of easily mobilisable phosphorus in sediments, which will slow down the recovery of reservoir water due to its rapid re-mobilisation.

  4. Phosphorus vertical migration in aquic brown soil and light chernozem under different phosphorous application rate: a soil column leaching experiment.

    PubMed

    Zhao, Muqiu; Chen, Xin; Shi, Yi; Zhou, Quanlai; Lu, Caiyan

    2009-01-01

    A soil column leaching experiment was conducted to study the vertical migration of phosphorus in aquic brown soil and light chernozem under different phosphorus fertilization rates. The results showed that total dissolved phosphorus concentration in the leachates from the two soils was nearly the same, but dissolved inorganic phosphorus concentration was obviously different. In all fertilization treatments, aquic brown soil had a higher content of phosphorus in calcium chloride extracts compared with light chernozem. But Olsen phosphorus content was higher at the soil depth beneath 0-20 cm, and increased with increasing phosphorus application rate.

  5. Barium as a potential indicator of phosphorus in agricultural runoff.

    PubMed

    Ahlgren, Joakim; Djodjic, Faruk; Wallin, Mats

    2012-01-01

    In many catchments, anthropogenic input of contaminants, and in particular phosphorus (P), into surface water is a mixture of agricultural and sewage runoff. Knowledge about the relative contribution from each of these sources is vital for mitigation of major environmental problems such as eutrophication. In this study, we investigated whether the distribution of trace elements in surface waters can be used to trace the contamination source. Water from three groups of streams was investigated: streams influenced only by agricultural runoff, streams influenced mainly by sewage runoff, and reference streams. Samples were collected at different flow regimes and times of year and analyzed for 62 elements using ICP-MS. Our results show that there are significant differences between the anthropogenic sources affecting the streams in terms of total element composition and individual elements, indicating that the method has the potential to trace anthropogenic impact on surface waters. The elements that show significant differences between sources are strontium (p < 0.001), calcium (p < 0.004), potassium (p < 0.001), magnesium (p < 0.001), boron (p < 0.001), rhodium (p = 0.001), and barium (p < 0.001). According to this study, barium shows the greatest potential as a tracer for an individual source of anthropogenic input to surface waters. We observed a strong relationship between barium and total P in the investigated samples (R(2) = 0.78), which could potentially be used to apportion anthropogenic sources of P and thereby facilitate targeting of mitigation practices.

  6. Potassium currents in isolated CA1 neurons of the rat after kindling epileptogenesis.

    PubMed

    Vreugdenhil, M; Wadman, W J

    1995-06-01

    Daily tetanic stimulation of the Schaffer collaterals generates an epileptogenic focus in area CA1 of the rat hippocampus, ultimately leading to generalized tonic-clonic convulsions (kindling). Potassium currents were measured under voltage-clamp conditions in pyramidal neurons, acutely dissociated from the focus of fully kindled rats, one day and six weeks after the last generalized seizure. Their amplitude, kinetics, voltage dependence and calcium dependence were compared with controls. With Ca2+ influx blocked by 0.5 mM Ni2+, the sustained current (delayed rectifier) and the transient current (A-current) were not different after kindling. Calcium influx evoked an additional fast transient current component. This transient calcium-dependent current component was increased by 154%, but only immediately after the seizure. A second, slow calcium-dependent potassium current component was dependent on the intracellular calcium level, set by the pipette as well as on calcium influx. The peak amplitude of this slow calcium-dependent current was under optimal calcium conditions not different after kindling, but we found indications that either calcium homeostasis or the calcium sensitivity of the potassium channels was affected by the kindling process. In contrast to the previously described enhancement of calcium current, kindling epileptogenesis did not change the total potassium current amplitude. The minor changes that were observed can be related either to changes in calcium current or to changes in intracellular calcium homeostasis.

  7. Uptake of phosphorus by filamentous bacteria and the role of cation on polyphosphates composition.

    PubMed

    Machnicka, A; Suschka, J; Wiatowski, M

    2008-01-01

    Many microorganisms have the ability to store phosphorus as polyphosphates in volutin granules. The aim of the research was to characterise the phosphorus sequestered by filamentous microorganisms present in the foam. Also the importance of required cations like potassium and magnesium in the process of phosphorus uptake by filamentous microorganisms was examined. Electron microscopy and energy dispersive X - ray analysis were used to define the composition of polyphosphate granules in filamentous bacteria.

  8. Improved Synthesis Of Potassium Beta' '-Alumina

    NASA Technical Reports Server (NTRS)

    Williams, Roger M.; Jeffries-Nakamura, Barbara; Ryan, Margaret A.; O'Connor, Dennis E.; Kisor, Adam; Underwood, Mark

    1996-01-01

    Improved formulations of precursor materials synthesize nearly-phase-pure potassium beta' '-alumina solid electrolyte (K-BASE) powder. Materials are microhomogeneous powders (or, alternatively, gels) containing K(+,) Mg(2+), and Al(3+). K-BASE powder produced used in potassium-working-fluid alkali-metal thermal-to-electric conversion (K-AMTEC), in which heat-input and heat-rejection temperatures lower than sodium-working-fluid AMTEC (Na-AMTEC). Additional potential use lies in purification of pottassium by removal of sodium and calcium.

  9. Dietary phosphorus, serum phosphorus, and cardiovascular disease.

    PubMed

    Menon, Madhav C; Ix, Joachim H

    2013-10-01

    Recent epidemiologic studies have linked higher serum phosphorus concentrations to cardiovascular disease (CVD) events and mortality. This association has been identified in the general population and in those with chronic kidney disease (CKD). The risk of adverse outcomes appears to begin with phosphorus concentrations within the upper limit of the normal reference range. Multiple experimental studies have suggested pathogenetic mechanisms that involve direct and indirect effects of high phosphorus concentrations to explain these associations. Drawing from these observations, guideline-forming agencies have recommended that serum phosphorus concentrations be maintained within the normal reference range in patients with CKD and that dietary phosphorus restriction or use of intestinal phosphate binders should be considered to achieve this goal. However, outside the dialysis population, the links between dietary phosphorus intake and serum phosphorus concentrations, and dietary phosphorus intake and CVD events, are uncertain. With specific reference to the nondialysis populations, this review discusses the available data linking dietary phosphorus intake with serum phosphorus concentrations and CVD events.

  10. Management of natural and added dietary phosphorus burden in kidney disease.

    PubMed

    Cupisti, Adamasco; Kalantar-Zadeh, Kamyar

    2013-03-01

    Phosphorus retention occurs from higher dietary phosphorus intake relative to its renal excretion or dialysis removal. In the gastrointestinal tract the naturally existing organic phosphorus is only partially (∼60%) absorbable; however, this absorption varies widely and is lower for plant-based phosphorus including phytate (<40%) and higher for foods enhanced with inorganic phosphorus-containing preservatives (>80%). The latter phosphorus often remains unrecognized by patients and health care professionals, even though it is widely used in contemporary diets, in particular, low-cost foods. In a nonenhanced mixed diet, digestible phosphorus correlates closely with total protein content, making protein-rich foods a main source of natural phosphorus. Phosphorus burden is limited more appropriately in predialysis patients who are on a low-protein diet (∼0.6 g/kg/d), whereas dialysis patients who require higher protein intake (∼1.2 g/kg/d) are subject to a higher dietary phosphorus load. An effective and patient-friendly approach to reduce phosphorus intake without depriving patients of adequate proteins is to educate patients to avoid foods with high phosphorus relative to protein such as egg yolk and those with high amounts of phosphorus-based preservatives such as certain soft drinks and enhanced cheese and meat. Phosphorus rich foods should be prepared by boiling, which reduces phosphorus as well as sodium and potassium content, or by other types of cooking-induced demineralization. The dose of phosphorus-binding therapy should be adjusted separately for the amount and absorbability of phosphorus in each meal. Dietician counseling to address the emerging aspects of dietary phosphorus management is instrumental for achieving a reduction of phosphorus load.

  11. Is phosphorus intake that exceeds dietary requirements a risk factor in bone health?

    PubMed

    Calvo, Mona S; Tucker, Katherine L

    2013-10-01

    Phosphorus intake in excess of the nutrient needs of healthy adults is thought to disrupt hormonal regulation of phosphorus (P), calcium (Ca), and vitamin D, contributing to impaired peak bone mass, bone resorption, and greater risk of fracture. Elevation of extracellular phosphorus due to excessive intake is thought to be the main stimulus disrupting phosphorus homeostasis in healthy individuals, as it is in renal disease even when intake is modest. If high serum phosphorus is the critical link to the effect of high phosphorus intake on bone health, the issue could be addressed through epidemiologic or dietary studies. However, several confounding factors, including problems estimating accurate phosphorus intake, the influence of a low dietary Ca:P ratio, the acidic nature of phosphorus, the rapid rate of absorption and greater phosphorus bioavailability from processed food such as cola drinks, and circadian fluctuation in serum phosphorus, make this question difficult to address using conventional study designs. These confounding factors are considered in this review, exploring whether phosphorus intake exceeding nutrient needs in healthy individuals disrupts phosphorus regulation and negatively affects bone accretion or loss. Specific attention is given to phosphorus intake from processed foods rich in phosphorus additives, which significantly contribute to phosphorus intake.

  12. Drug-induced abnormalities of potassium metabolism.

    PubMed

    Kokot, Franciszek; Hyla-Klekot, Lidia

    2008-01-01

    Pharmacotherapy has progressed rapidly over the last 20 years with the result that general practioners more and more often use drugs which may influence potassium metabolism at the kidney or gastrointestinal level, or the transmembrane transport of potassium at the cellular level. Potassium abnormalities may result in life-theatening clinical conditions. Hypokalemia is most frequently caused by renal loss of this electrolyte (thiazide, thiazide-like and loop diuretics, glucocorticoids) and the gastrointestinal tract (laxatives, diarrhea, vomiting, external fistula), and may be the result of an increased intracellular potassium influx induced by sympathicomimetics used mostly by patients with asthma, or by insulin overdosage in diabetic subjects. The leading symptoms of hypokalemia are skeletal and smooth muscle weakness and cardiac arrhythmias. Hyperkalemia may be caused by acute or end-stage renal failure, impaired tubular excretion of potassium (blockers of the renin-angiotensin-aldosterone system, nonsteroidal anti-inflammatory drugs, cyclosporine, antifungal drugs, potassium sparing diuretics), acidemia, and severe cellular injury (tumor lysis syndrome). Hyperkalemia may be the cause of severe injury of both skeletal and smooth muscle cells. The specific treatment counteracting hyperkalemia is a bolus injection of calcium salts and, when necessary, hemodialysis.

  13. Effects of extracellular potassium diffusion on electrically coupled neuron networks

    NASA Astrophysics Data System (ADS)

    Wu, Xing-Xing; Shuai, Jianwei

    2015-02-01

    Potassium accumulation and diffusion during neuronal epileptiform activity have been observed experimentally, and potassium lateral diffusion has been suggested to play an important role in nonsynaptic neuron networks. We adopt a hippocampal CA1 pyramidal neuron network in a zero-calcium condition to better understand the influence of extracellular potassium dynamics on the stimulus-induced activity. The potassium concentration in the interstitial space for each neuron is regulated by potassium currents, Na+-K+ pumps, glial buffering, and ion diffusion. In addition to potassium diffusion, nearby neurons are also coupled through gap junctions. Our results reveal that the latency of the first spike responding to stimulus monotonically decreases with increasing gap-junction conductance but is insensitive to potassium diffusive coupling. The duration of network oscillations shows a bell-like shape with increasing potassium diffusive coupling at weak gap-junction coupling. For modest electrical coupling, there is an optimal K+ diffusion strength, at which the flow of potassium ions among the network neurons appropriately modulates interstitial potassium concentrations in a degree that provides the most favorable environment for the generation and continuance of the action potential waves in the network.

  14. The renal TRPV4 channel is essential for adaptation to increased dietary potassium.

    PubMed

    Mamenko, Mykola V; Boukelmoune, Nabila; Tomilin, Viktor N; Zaika, Oleg L; Jensen, V Behrana; O'Neil, Roger G; Pochynyuk, Oleh M

    2017-02-07

    To maintain potassium homeostasis, kidneys exert flow-dependent potassium secretion to facilitate kaliuresis in response to elevated dietary potassium intake. This process involves stimulation of calcium-activated large conductance maxi-K (BK) channels in the distal nephron, namely the connecting tubule and the collecting duct. Recent evidence suggests that the TRPV4 channel is a critical determinant of flow-dependent intracellular calcium elevations in these segments of the renal tubule. Here, we demonstrate that elevated dietary potassium intake (five percent potassium) increases renal TRPV4 mRNA and protein levels in an aldosterone-dependent manner and causes redistribution of the channel to the apical plasma membrane in native collecting duct cells. This, in turn, leads to augmented TRPV4-mediated flow-dependent calcium ion responses in freshly isolated split-opened collecting ducts from mice fed the high potassium diet. Genetic TRPV4 ablation greatly diminished BK channel activity in collecting duct cells pointing to a reduced capacity to excrete potassium. Consistently, elevated potassium intake induced hyperkalemia in TRPV4 knockout mice due to deficient renal potassium excretion. Thus, regulation of TRPV4 activity in the distal nephron by dietary potassium is an indispensable component of whole body potassium balance.

  15. Changes in water quality of the River Frome (UK) from 1965 to 2009: is phosphorus mitigation finally working?

    PubMed

    Bowes, M J; Smith, J T; Neal, C; Leach, D V; Scarlett, P M; Wickham, H D; Harman, S A; Armstrong, L K; Davy-Bowker, J; Haft, M; Davies, C E

    2011-08-15

    The water quality of the River Frome, Dorset, southern England, was monitored at weekly intervals from 1965 until 2009. Determinands included phosphorus, nitrogen, silicon, potassium, calcium, sodium, magnesium, pH, alkalinity and temperature. Nitrate-N concentrations increased from an annual average of 2.4 mg l⁻¹ in the mid to late 1960s to 6.0 mg l⁻¹ in 2008-2009, but the rate of increase was beginning to slow. Annual soluble reactive phosphorus (SRP) concentrations increased from 101 μg l⁻¹ in the mid 1960s to a maximum of 190 μg l⁻¹ in 1989. In 2002, there was a step reduction in SRP concentration (average=88 μg l⁻¹ in 2002-2005), with further improvement in 2007-2009 (average=49 μg l⁻¹), due to the introduction of phosphorus stripping at sewage treatment works. Phosphorus and nitrate concentrations showed clear annual cycles, related to the timing of inputs from the catchment, and within-stream bioaccumulation and release. Annual depressions in silicon concentration each spring (due to diatom proliferation) reached a maximum between 1980 and 1991, (the period of maximum SRP concentration) indicating that algal biomass had increased within the river. The timing of these silicon depressions was closely related to temperature. Excess carbon dioxide partial pressures (EpCO₂) of 60 times atmospheric CO₂ were also observed through the winter periods from 1980 to 1992, when phosphorus concentration was greatest, indicating very high respiration rates due to microbial decomposition of this enhanced biomass. Declining phosphorus concentrations since 2002 reduced productivity and algal biomass in the summer, and EpCO₂ through the winter, indicating that sewage treatment improvements had improved riverine ecology. Algal blooms were limited by phosphorus, rather than silicon concentration. The value of long-term water quality data sets is discussed. The data from this monitoring programme are made freely available to the wider science community

  16. Prevention of struvite scaling in digesters combined with phosphorus removal and recovery--the FIX-Phos process.

    PubMed

    Petzet, Sebastian; Cornel, Peter

    2012-03-01

    The fixation of phosphorus (FIX-Phos) combines struvite prevention and phosphorus recovery by the addition of calciumsilicatehydrate (CSH) particles into the anaerobic digester. The CSH fixates phosphorus as calcium phosphate and reduces the phosphorus concentration in the sludge water that allows for control of struvite formation. The phosphorus-containing recovery product can be separated and recovered from the digested sludge. In pilot plant experiments, 21% to 31% of phosphorus contained in digested sludge could be recovered when CSH was added at concentrations of 2 g/L to 3.5 g/L to a mixture of primary sludge and waste activated sludge (WAS) from enhanced biological phosphorus removal. The recovery product contained few heavy metals and a phosphorus content of 18 wt % P2O5, which allows for recycling as fertilizer. The fixation of phosphorus within the digester may increase wastewater sludge dewaterability. The phosphorus recycle stream to the headworks of the wastewater treatment plant is reduced.

  17. Potassium Secondary Batteries.

    PubMed

    Eftekhari, Ali; Jian, Zelang; Ji, Xiulei

    2017-02-08

    Potassium may exhibit advantages over lithium or sodium as a charge carrier in rechargeable batteries. Analogues of Prussian blue can provide millions of cyclic voltammetric cycles in aqueous electrolyte. Potassium intercalation chemistry has recently been demonstrated compatible with both graphite and nongraphitic carbons. In addition to potassium-ion batteries, potassium-O2 (or -air) and potassium-sulfur batteries are emerging. Additionally, aqueous potassium-ion batteries also exhibit high reversibility and long cycling life. Because of potentially low cost, availability of basic materials, and intriguing electrochemical behaviors, this new class of secondary batteries is attracting much attention. This mini-review summarizes the current status, opportunities, and future challenges of potassium secondary batteries.

  18. Removal of uranium and priority pollutant metals from Fernald Environmental Management Project wastewater utilizing potassium ferrate

    SciTech Connect

    Hampshire, L.H. . Fernald Environmental Management Project); Potts, M.E. )

    1992-01-30

    A side-by-side treatment comparison between calcium hydroxide and TRU/Clear {reg sign} 4'', a potassium ferrate based wastewater treatment chemical, was performed in a process wastewater and stormwater treatment facility. Results from the full-scale plant testing demonstrated that potassium ferrate could achieve the same treatment levels as calcium hydroxide while generating 55% less sludge than the calcium hydroxide treatment. The testing also showed that utilization of potassium ferrate would minimize the volume of sludge generated and assist in the reduction of total waste management costs associated with storage, monitoring, transportation, and final disposition of generated sludge.

  19. Removal of uranium and priority pollutant metals from Fernald Environmental Management Project wastewater utilizing potassium ferrate

    SciTech Connect

    Hampshire, L.H.; Potts, M.E.

    1992-01-30

    A side-by-side treatment comparison between calcium hydroxide and TRU/Clear {reg_sign} ``4``, a potassium ferrate based wastewater treatment chemical, was performed in a process wastewater and stormwater treatment facility. Results from the full-scale plant testing demonstrated that potassium ferrate could achieve the same treatment levels as calcium hydroxide while generating 55% less sludge than the calcium hydroxide treatment. The testing also showed that utilization of potassium ferrate would minimize the volume of sludge generated and assist in the reduction of total waste management costs associated with storage, monitoring, transportation, and final disposition of generated sludge.

  20. Phosphorus management in end-stage renal disease.

    PubMed

    Finn, William F

    2005-01-01

    Chronic kidney disease is an important public health problem, with an increasing number of patients worldwide. One important outcome of renal failure is disordered mineral metabolism, most notably involving calcium and phosphorus balance. Of importance is that increased serum phosphorus levels are associated with increased mortality rates. Despite dietary restrictions, patients receiving dialysis invariably experience hyperphosphatemia and require treatment with phosphate binders. Existing phosphate binders are effective in reducing serum phosphorus levels, but are associated with a number of important disadvantages. Lanthanum carbonate, a new noncalcium, nonaluminum phosphate binder, represents a promising treatment for hyperphosphatemia.

  1. Diagnostic accuracy of salivary creatinine, urea, and potassium levels to assess dialysis need in renal failure patients

    PubMed Central

    Bagalad, Bhavana S.; Mohankumar, K. P.; Madhushankari, G. S.; Donoghue, Mandana; Kuberappa, Puneeth Horatti

    2017-01-01

    Background: The prevalence of chronic renal failure is increasing because of increase in chronic debilitating diseases and progressing age of population. These patients experience accumulation of metabolic byproducts and electrolyte imbalance, which has harmful effects on their health. Timely hemodialysis at regular intervals is a life-saving procedure for these patients. Salivary diagnostics is increasingly used as an alternative to the traditional methods. Thus, the aim of the present study was to determine the diagnostic efficacy of saliva in chronic renal failure patients. Materials and Methods: This case–control study included 82 individuals, of which 41 were chronic renal failure patients and 41 were age- and sex-matched controls. Blood and saliva were collected and centrifuged. Serum and supernatant saliva were used for biochemical analysis. Serum and salivary urea, creatinine, sodium, potassium, calcium, and phosphorus were evaluated and correlated in chronic renal failure patients using unpaired t-test, Pearson's correlation coefficient, diagnostic validity tests, and receiver operative curve. Results: When compared to serum; salivary urea, creatinine, sodium, and potassium showed diagnostic accuracy of 93%, 91%, 73%, and 89%, respectively, based on the findings of study. Conclusion: It can be concluded that salivary investigation is a dependable, noninvasive, noninfectious, simple, and quick method for screening the mineral and metabolite values of high-risk patients and monitoring the renal failure patients.

  2. Activation of protein kinase C inhibits potassium currents in cultured endothelial cells.

    PubMed

    Zhang, H; Weir, B; Daniel, E E

    1995-04-01

    The effect of protein kinase C on potassium channels in cultured endothelial cells was investigated by using whole-cell patch-clamp techniques. Activation of protein kinase C by phorbol 12-myristate 13-acetate (PMA) and phorbol 12,13-dibutyrate (PDBu), but not phorbol 12-monomyristate (PMM), an inactive analogue of phorbol esters, depressed an outward calcium-dependent potassium current. The inhibitory actions of PMA and PDBu could be reversed by the kinase inhibitor H-7. Cyclopiazonic acid, an inhibitor of the sarcoplasmic reticulum calcium pump, and LP-805, a novel vasodilator which also releases endothelium-derived relaxing factors, activated the outward calcium-dependent potassium conductance. PMA and PDBu, but not PMM, reduced the outward conductance induced by cyclopiazonic acid and LP-805. These effects of PMA and PDBu on potassium currents may be mediated either by phosphorylation of ion channels, or by decreasing intracellular calcium concentration.

  3. Skeletal effects of nutrients and nutraceuticals, beyond calcium and vitamin D.

    PubMed

    Nieves, J W

    2013-03-01

    There is a need to understand the role of nutrition, beyond calcium and vitamin D, in the treatment and prevention of osteoporosis in adults. Results regarding soy compounds on bone density and bone turnover are inconclusive perhaps due to differences in dose and composition or in study population characteristics. The skeletal benefit of black cohosh and red clover are unknown. Dehydroepiandrosterone (DHEA) use may benefit elderly individuals with low serum dehydroepiandrosterone-sulfate levels, but even in this group, there are inconsistent benefits to bone density (BMD). Higher fruit and vegetable intakes may relate to higher BMD. The skeletal benefit of flavonoids, carotenoids, omega-3-fatty acids, and vitamins A, C, E and K are limited to observational data or a few clinical trials, in some cases investigating pharmacologic doses. Given limited data, it would be better to get these nutrients from fruits and vegetables. Potassium bicarbonate may improve calcium homeostasis but with little impact on bone loss. High homocysteine may relate to fracture risk, but the skeletal benefit of each B vitamin is unclear. Magnesium supplementation is likely only required in persons with low magnesium levels. Data are very limited for the role of nutritional levels of boron, strontium, silicon and phosphorus in bone health. A nutrient rich diet with adequate fruits and vegetables will generally meet skeletal needs in healthy individuals. For most healthy adults, supplementation with nutrients other than calcium and vitamin D may not be required, except in those with chronic disease and the frail elderly.

  4. 40 CFR 721.2076 - D-Glucuronic acid, polymer with 6-deoxy-L-mannose and D-glucose, acetate, calcium magnesium...

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ...-deoxy-L-mannose and D-glucose, acetate, calcium magnesium potassium sodium salt. 721.2076 Section 721...-Glucuronic acid, polymer with 6-deoxy-L-mannose and D-glucose, acetate, calcium magnesium potassium sodium... potassium sodium salt (PMN P-00-7; CAS No.125005-87-0) is subject to reporting under this section for...

  5. 40 CFR 721.2076 - D-Glucuronic acid, polymer with 6-deoxy-L-mannose and D-glucose, acetate, calcium magnesium...

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ...-deoxy-L-mannose and D-glucose, acetate, calcium magnesium potassium sodium salt. 721.2076 Section 721...-Glucuronic acid, polymer with 6-deoxy-L-mannose and D-glucose, acetate, calcium magnesium potassium sodium... potassium sodium salt (PMN P-00-7; CAS No.125005-87-0) is subject to reporting under this section for...

  6. 40 CFR 721.2076 - D-Glucuronic acid, polymer with 6-deoxy-L-mannose and D-glucose, acetate, calcium magnesium...

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ...-deoxy-L-mannose and D-glucose, acetate, calcium magnesium potassium sodium salt. 721.2076 Section 721...-Glucuronic acid, polymer with 6-deoxy-L-mannose and D-glucose, acetate, calcium magnesium potassium sodium... potassium sodium salt (PMN P-00-7; CAS No.125005-87-0) is subject to reporting under this section for...

  7. Effects of carbon source, phosphorus concentration, and several micronutrients on biomass and geosmin production by Streptomyces halstedii.

    PubMed

    Schrader, K K; Blevins, W T

    2001-04-01

    The effects of various carbon sources, phosphorus concentration, and different concentrations of the micronutrients calcium, cobalt, copper, iron, manganese, potassium, and zinc were determined on biomass dry weight production, geosmin production, and geosmin/biomass (G/B) values for Streptomyces halstedii, a geosmin-producing actinomycete isolated from the sediment of an aquaculture pond. Of the substrates tested, maltose as a sole carbon source promoted maximal growth by S. halstedii while mannitol promoted maximal geosmin production, and galactose yielded the highest G/B values. Fish-food pellets and galactose were poor substrates for growth. Increasing phosphorus concentrations enhanced geosmin production and G/B values. Of the seven micronutrients tested, zinc, iron, and copper had the most profound effects on biomass and geosmin production. Increasing zinc concentrations promoted biomass production while inhibiting geosmin production and G/B values; increasing concentrations of copper and iron inhibited biomass and geosmin production. Increased copper concentrations had the greatest effect in preventing growth and geosmin production by S. halstedii.

  8. Low Potassium (Hypokalemia)

    MedlinePlus

    ... critical to the proper functioning of nerve and muscles cells, particularly heart muscle cells. Normally, your blood potassium level is 3.6 to 5.2 millimoles per liter (mmol/L). A very low potassium level (less than 2.5 ... isolated symptoms such as muscle cramps if you are feeling well in other ...

  9. Potassium food supplement

    NASA Technical Reports Server (NTRS)

    Bourland, C. T.; Huber, C. S.; Rambaut, C.; Heidelbaugh, N. D.

    1973-01-01

    Potassium gluconate is considered best supplementary source for potassium. Gluconate consistently received highest taste rating and was indistinguishable from nonsupplemented samples. No unfavorable side effects were found during use, and none are reported in literature. Gluconate is normal intermediary metabolite that is readily adsorbed and produces no evidence of gastrointestinal ulcerations.

  10. Potassium and health.

    PubMed

    Weaver, Connie M

    2013-05-01

    Potassium was identified as a shortfall nutrient by the Dietary Guidelines for Americans 2010 Advisory Committee. The committee concluded that there was a moderate body of evidence of the association between potassium intake and blood pressure reduction in adults, which in turn influences the risk of stroke and coronary heart disease. Evidence is also accumulating of the protective effect of adequate dietary potassium on age-related bone loss and reduction of kidney stones. These benefits depend on organic anions associated with potassium as occurs in foods such as fruits and vegetables, in contrast to similar blood pressure-lowering benefits of potassium chloride. Benefits to blood pressure and bone health may occur at levels below current recommendations for potassium intake, especially from diet, but dose-response trials are needed to confirm this. Nevertheless, intakes considerably above current levels are needed for optimal health, and studies evaluating small increases in fruit and vegetable intake on bone and heart outcomes for short periods have had disappointing results. In modern societies, Western diets have led to a decrease in potassium intake with reduced consumption of fruits and vegetables with a concomitant increase in sodium consumption through increased consumption of processed foods. Consumption of white vegetables is associated with decreased risk of stroke, possibly related to their high potassium content. Potatoes are the highest source of dietary potassium, but the addition of salt should be limited. Low potassium-to-sodium intake ratios are more strongly related to cardiovascular disease risk than either nutrient alone. This relationship deserves further attention for multiple target tissue endpoints.

  11. Phosphorus poisoning in waterfowl

    USGS Publications Warehouse

    Coburn, D.R.; DeWitt, J.B.; Derby, J.V.; Ediger, E.

    1950-01-01

    Black ducks and mallards were found to be highly susceptible to phosphorus poisoning. 3 mg. of white phosphorus per kg. of body weight given in a single dose resulted in death of a black duck in 6 hours. Pathologic changes in both acute and chronic poisoning were studied. Data are presented showing that diagnosis can be made accurately by chemical analysis of stored tissues in cases of phosphorus poisoning.

  12. Claypan depth effect on soil phosphorus and potassium dynamics

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Understanding the effects of fertilizer addition and crop removal on long-term change in spatially-variable soil test P (STP) and soil test K (STK) is crucial for maximizing the use of grower inputs on claypan soils. Using apparent electrical conductivity (ECa) to estimate topsoil depth (or depth to...

  13. Sewage sludge management for phosphorus recovery as struvite in EBPR wastewater treatment plants.

    PubMed

    Pastor, L; Marti, N; Bouzas, A; Seco, A

    2008-07-01

    The influence of separate and mixed thickening of primary and secondary sludge on struvite recovery was studied. Phosphorus precipitation in the digester was reduced from 13.7 g of phosphorus per kg of treated sludge in the separate thickening experiment to 5.9 in the mixed thickening experiment. This lessening of the uncontrolled precipitation means a reduction of the operational problems and enhances the phosphorus availability for its later crystallization. High phosphorus precipitation and recovery efficiencies were achieved in both crystallization experiments. However, mixed thickening configuration showed a lower percentage of phosphorus precipitated as struvite due to the presence of high calcium concentrations. In spite of this low percentage, the global phosphorus mass balance showed that mixed thickening experiment produces a higher phosphorus recovery as struvite per kg of treated sludge (i.e., 3.6 gP/kg sludge vs. 2.5 gP/kg sludge in separate thickening).

  14. Biogeochemistry: The fate of phosphorus

    NASA Astrophysics Data System (ADS)

    Némery, Julien; Garnier, Josette

    2016-05-01

    Phosphorus is essential for food production, but it is also a key cause of eutrophication. Estimates of phosphorus flux for the past 40-70 years reveal that large river basins can experience phases of phosphorus accumulation and depletion.

  15. A sequential extraction to determine the distribution of phosphorus in the seawater and marine surface sediment.

    PubMed

    Aydin, Isil; Aydin, Firat; Saydut, Abdurrahman; Hamamci, Candan

    2009-09-15

    The distribution of phosphorus species among environmental compartments (e.g., between water and sediment), significantly affects the bioavailability of these species to organisms. The eastern Mediterranean Sea is one of the most extreme oligotrophic oceanic regions on earth in terms of nutrient concentrations and primary productivity. The paper presents the results of inorganic and organic forms in surface sediment and seawater from NE Mediterranean Sea (Burclar Bay, Erdemli, South Anatolia of Turkey) in May 2007. Speciation of phosphorus in seawater and surface sediment using inductively coupled plasma-atomic emission spectrometer (ICP-AES) has been reported here. The method is based on sequential extractions of the seawater and sediment each releasing four forms of inorganic phosphorus: loosely sorbed phosphorus, phosphorus bound to aluminium (P-Al), phosphorus bound to iron (P-Fe) and phosphorus bound to calcium (P-Ca). The most abundant form of inorganic phosphorus in the seawater and surface sediment is calcium-bound phosphorus. Relative abundances of the remaining phosphorus forms in sediment follow the order: P-Al>P-Fe>loosely bound-P and in seawater follow the order P-Fe>P-Al>loosely bound-P.

  16. Sodium and Potassium Intake of Urban Dwellers: Nothing Changed in Yazd, Iran

    PubMed Central

    Mirzaei, Masoud; Namayandeh, Mahdieh; GharahiGhehi, Neda

    2014-01-01

    To assess the daily salt intake of people aged 20-74 years based on the 24-hour urinary sodium excretion in urban population of Yazd, a population-based cross-sectional study was conducted. This is a substudy of Yazd Healthy Heart Project in Iran. From 2004 to 2005, two thousand people of the urban population of Yazd city, aged 20-74 years, were enrolled in the main study. Overall, 219 volunteer participants of 20-70 years were enrolled in this substudy. Sample frame was the household numbers according to the database of Yazd City Health Services. Calcium, phosphorus, sodium, potassium, and creatinine were measured in the urine samples collected from the participants over a 24-hour period. Sodium content in urine over 24 hours was 171.7±82.9 mmol/day in males and 127.8±56.1 mmol/day in females (p<0.0001) while potassium content was 49.4±23.2 mmol/day in males and 41.5±25.1 mmol/day in females (p=0.2). Estimated average daily salt (NaCl) intake was 10.0±4.8 g/day in males and 7.5±3.3 g/day in females (p<0.0001). Only one participant had the ideal Na/K ratio of less than one. Na/K ratios greater than one and less than two were seen in 11.3% (n=24), and a ratio equal to or greater than 2 was observed in 82.3% (n=118) of the participants. The average Na/K ratio was 3.69±1.58. Unlike many developed countries where sodium intake declined over the past few decades, the daily sodium intake in Yazd is high, and daily potassium intake is low. This is similar to what was observed four decades ago in an area not far from Yazd. Efforts must be directed towards health promotion interventions to increase public awareness to reduce sodium intake and increase potassium intake. PMID:24847600

  17. Potassium targets from KI

    NASA Astrophysics Data System (ADS)

    Sletten, G.

    1982-09-01

    Targets of potassium iodide (KI) on thin carbon backings have been prepared. Potassium isotopes are supplied as chlorides, and the chlorine is, in certain experiments, an unwanted contaminant. Target peeparation involves conversion of KCl to KI and subsequent vacuum evaporation of the iodide. Targets of both 39K and 41K in the thickness range of 60 to 100 μg/cm 2 of potassium have been prepared. These targets contain less than 0.5 μg/cm 2 of chlorine impurity and are stable in α-beams of 25 MeV.

  18. Glacial atmospheric phosphorus deposition

    NASA Astrophysics Data System (ADS)

    Kjær, Helle Astrid; Dallmayr, Remi; Gabrieli, Jacopo; Goto-Azuma, Kumiko; Hirabayashi, Motohiro; Svensson, Anders; Vallelonga, Paul

    2016-04-01

    Phosphorus in the atmosphere is poorly studied and thus not much is known about atmospheric phosphorus and phosphate transport and deposition changes over time, though it is well known that phosphorus can be a source of long-range nutrient transport, e.g. Saharan dust transported to the tropical forests of Brazil. In glacial times it has been speculated that transport of phosphorus from exposed shelves would increase the ocean productivity by wash out. However whether the exposed shelf would also increase the atmospheric load to more remote places has not been investigated. Polar ice cores offer a unique opportunity to study the atmospheric transport of aerosols on various timescales, from glacial-interglacial periods to recent anthropogenic influences. We have for the first time determined the atmospheric transport of phosphorus to the Arctic by means of ice core analysis. Both total and dissolved reactive phosphorus were measured to investigate current and past atmospheric transport of phosphorus to the Arctic. Results show that glacial cold stadials had increased atmospheric total phosphorus mass loads of 70 times higher than in the past century, while DRP was only increased by a factor of 14. In the recent period we find evidence of a phosphorus increase over the past 50 yrs in ice cores close to human occupation likely correlated to forest fires. References: Kjær, Helle Astrid, et al. "Continuous flow analysis method for determination of dissolved reactive phosphorus in ice cores." Environmental science & technology 47.21 (2013): 12325-12332. Kjær, Helle Astrid, et al. "Greenland ice cores constrain glacial atmospheric fluxes of phosphorus." Journal of Geophysical Research: Atmospheres120.20 (2015).

  19. Dendritic potassium channels in hippocampal pyramidal neurons

    PubMed Central

    Johnston, Daniel; Hoffman, Dax A; Magee, Jeffrey C; Poolos, Nicholas P; Watanabe, Shigeo; Colbert, Costa M; Migliore, Michele

    2000-01-01

    Potassium channels located in the dendrites of hippocampal CA1 pyramidal neurons control the shape and amplitude of back-propagating action potentials, the amplitude of excitatory postsynaptic potentials and dendritic excitability. Non-uniform gradients in the distribution of potassium channels in the dendrites make the dendritic electrical properties markedly different from those found in the soma. For example, the influence of a fast, calcium-dependent potassium current on action potential repolarization is progressively reduced in the first 150 μm of the apical dendrites, so that action potentials recorded farther than 200 μm from the soma have no fast after-hyperpolarization and are wider than those in the soma. The peak amplitude of back-propagating action potentials is also progressively reduced in the dendrites because of the increasing density of a transient potassium channel with distance from the soma. The activation of this channel can be reduced by the activity of a number of protein kinases as well as by prior depolarization. The depolarization from excitatory postsynaptic potentials (EPSPs) can inactivate these A-type K+ channels and thus lead to an increase in the amplitude of dendritic action potentials, provided the EPSP and the action potentials occur within the appropriate time window. This time window could be in the order of 15 ms and may play a role in long-term potentiation induced by pairing EPSPs and back-propagating action potentials. PMID:10811726

  20. Dialysate and serum potassium in hemodialysis.

    PubMed

    Hung, Adriana M; Hakim, Raymond M

    2015-07-01

    Most patients with end-stage renal disease depend on intermittent hemodialysis to maintain levels of serum potassium and other electrolytes within a normal range. However, one of the challenges has been the safety of using a low-potassium dialysate to achieve that goal, given the concern about the effects that rapid and/or large changes in serum potassium concentrations may have on cardiac electrophysiology and arrhythmia. Additionally, in this patient population, there is a high prevalence of structural cardiac changes and ischemic heart disease, making them even more susceptible to acute arrhythmogenic triggers. This concern is highlighted by the knowledge that about two-thirds of all cardiac deaths in dialysis are due to sudden cardiac death and that sudden cardiac death accounts for 25% of the overall death for end-stage renal disease. Developing new approaches and practice standards for potassium removal during dialysis, as well as understanding other modifiable triggers of sudden cardiac death, such as other electrolyte components of the dialysate (magnesium and calcium), rapid ultrafiltration rates, and safety of a number of medications (ie, drugs that prolong the QT interval or use of digoxin), are critical in order to decrease the unacceptably high cardiac mortality experienced by hemodialysis-dependent patients.

  1. Dendritic potassium channels in hippocampal pyramidal neurons.

    PubMed

    Johnston, D; Hoffman, D A; Magee, J C; Poolos, N P; Watanabe, S; Colbert, C M; Migliore, M

    2000-05-15

    Potassium channels located in the dendrites of hippocampal CA1 pyramidal neurons control the shape and amplitude of back-propagating action potentials, the amplitude of excitatory postsynaptic potentials and dendritic excitability. Non-uniform gradients in the distribution of potassium channels in the dendrites make the dendritic electrical properties markedly different from those found in the soma. For example, the influence of a fast, calcium-dependent potassium current on action potential repolarization is progressively reduced in the first 150 micrometer of the apical dendrites, so that action potentials recorded farther than 200 micrometer from the soma have no fast after-hyperpolarization and are wider than those in the soma. The peak amplitude of back-propagating action potentials is also progressively reduced in the dendrites because of the increasing density of a transient potassium channel with distance from the soma. The activation of this channel can be reduced by the activity of a number of protein kinases as well as by prior depolarization. The depolarization from excitatory postsynaptic potentials (EPSPs) can inactivate these A-type K+ channels and thus lead to an increase in the amplitude of dendritic action potentials, provided the EPSP and the action potentials occur within the appropriate time window. This time window could be in the order of 15 ms and may play a role in long-term potentiation induced by pairing EPSPs and back-propagating action potentials.

  2. Phosphorus recovery from wastes

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Phosphorus (P) is an important macro-nutrient essential for all living organisms and phosphate rock is the main raw material for all inorganic P fertilizers. It is expected that there will be a P peak and resulting P fertilizer shortage in near future. In general, phosphorus use efficiency is low a...

  3. Black Phosphorus Terahertz Photodetectors.

    PubMed

    Viti, Leonardo; Hu, Jin; Coquillat, Dominique; Knap, Wojciech; Tredicucci, Alessandro; Politano, Antonio; Vitiello, Miriam Serena

    2015-10-07

    The first room-temperature terahertz (THz)-frequency nanodetector exploiting a 10 nm thick flake of exfoliated crystalline black phosphorus as an active channel of a field-effect transistor, is devised. By engineering and embedding planar THz antennas for efficient light harvesting, the first technological demonstration of a phosphorus-based active THz device is described.

  4. Black phosphorus gas sensors.

    PubMed

    Abbas, Ahmad N; Liu, Bilu; Chen, Liang; Ma, Yuqiang; Cong, Sen; Aroonyadet, Noppadol; Köpf, Marianne; Nilges, Tom; Zhou, Chongwu

    2015-05-26

    The utilization of black phosphorus and its monolayer (phosphorene) and few-layers in field-effect transistors has attracted a lot of attention to this elemental two-dimensional material. Various studies on optimization of black phosphorus field-effect transistors, PN junctions, photodetectors, and other applications have been demonstrated. Although chemical sensing based on black phosphorus devices was theoretically predicted, there is still no experimental verification of such an important study of this material. In this article, we report on chemical sensing of nitrogen dioxide (NO2) using field-effect transistors based on multilayer black phosphorus. Black phosphorus sensors exhibited increased conduction upon NO2 exposure and excellent sensitivity for detection of NO2 down to 5 ppb. Moreover, when the multilayer black phosphorus field-effect transistor was exposed to NO2 concentrations of 5, 10, 20, and 40 ppb, its relative conduction change followed the Langmuir isotherm for molecules adsorbed on a surface. Additionally, on the basis of an exponential conductance change, the rate constants for adsorption and desorption of NO2 on black phosphorus were extracted for different NO2 concentrations, and they were in the range of 130-840 s. These results shed light on important electronic and sensing characteristics of black phosphorus, which can be utilized in future studies and applications.

  5. Ameliorative effects of vanillin on potassium bromate induces bone and blood disorders in vivo.

    PubMed

    Ben Saad, H; Ben Amara, I; Krayem, N; Boudawara, T; Kallel, C; Zeghal, K M; Hakim, A

    2015-11-08

    The objective of this study was to investigate the propensity of potassium bromate (KBrO3) to induce oxidative stress in blood and bone of adult mice and its possible attenuation by vanillin. Our results demonstrated, after KBrO3 treatment, a decrease of red blood cells and hemoglobin and a significant increase of white blood cell. A decrease in plasma levels of folic acid, vitamin B12 and iron was also noted. Interestingly, an increase of lipid peroxidation, hydroperoxides, hydrogen peroxide, advanced oxidation protein products and protein carbonyl levels in erythrocytes and bone was observed, while superoxide dismutase, catalase and glutathione peroxidase activities and glutathione, non-protein thiol and vitamin C levels were decreased. KBrO3 treatment resulted in blood and bone DNA fragmentation, a hallmark of genotoxicity-KBrO3-induced, with reduction of DNA levels. Calcium and phosphorus levels showed a decrease in the bone and an increase in the plasma after KBrO3 treatment. These biochemical alterations were accompanied by histological changes in the blood smear and bone tissue. Treatment with vanillin improved the histopathological, hematotoxic and genotoxic effects induced by KBrO3. The results showed, for the first time, that the vanillin possesses a potent protective effect against the oxidative stress and genotoxicity in bone and blood of KBrO3-treated mice.

  6. Potassium carbonate poisoning

    MedlinePlus

    ... is a white powder used to make soap, glass, and other items. This article discusses poisoning from ... Potassium carbonate is found in: Glass Some dishwasher soaps Some ... that is used in fertilizers) Some home permanent-wave solutions ...

  7. Potassium urine test

    MedlinePlus

    ... be due to: Certain medicines, including beta blockers, lithium, trimethoprim, potassium-sparing diuretics, or nonsteroidal anti-inflammatory ... Diabetic ketoacidosis Hyperaldosteronism - primary and secondary Medullary cystic kidney disease Review Date 8/29/2015 Updated by: Laura ...

  8. [Effects of different potassium fertilizer application periods on the yield and quality of Fuji apple].

    PubMed

    Lu, Yong-li; Yang, Xian-long; Li, Ru; Li, Shui-li; Tong, Yan-an

    2015-04-01

    In order to ascertain the effects of potassium fertilizer application periods on apple production, we conducted a field experiment and analyzed the differences in apple yield, fruit quality, potassium fertilizer use efficiency, and nutrient concentrations in leaves and fruits among treatments with differences in timing of potassium application. The results indicated that, compared with no potassium-applied treatment (CK), all potassium fertilizer application treatments significantly increased the apple yield by 4.3%-33.2%, meanwhile, it also obviously improved the fruit quality. In comparison with the application of 100% potassium fertilizer as a base, the application of 50% or 100% of potassium fertilizer at the fruit enlargement stage (the remaining 50% applied as a base or after flowering) significantly increased the apple yield by 20.5% - 27.7% and improved the fruit quality. Compared with the application 100% potassium fertilizer at the stage of fruit enlargement, the evenly split application as base flowering stage and at the fruit enlargement: stage not only contributed to a higher yield, better quality and higher potassium use efficiency, but also maintained a relatively stable potassium concentration level in leaves. However, the split potassium fertilizer application at the flowering and fruit enlargement stages resulted in the significant decrease in concentration of calcium in fruit, which would be negative to fruit quality. In conclusion, our research suggested that evenly split application of potassium fertilizer as a base and at the fruit enlargement stage was the suitable period for apple production in Fuji apple orchards in this region.

  9. Marine polyphosphate : a key player in geologic phosphorus sequestration.

    SciTech Connect

    Diaz, J.; Ingall, E.; Benitez-Nelson, C.; Paterson, D.; de Jonge, M.; McNulty, I.; Brandes, J.; X-Ray Science Division; Georgia Inst. of Tech.; Univ. of South Carolina; Skidaway Inst. of Oceanography

    2008-05-01

    The in situ or authigenic formation of calcium phosphate minerals in marine sediments is a major sink for the vital nutrient phosphorus. However, because typical sediment chemistry is not kinetically conducive to the precipitation of these minerals, the mechanism behind their formation has remained a fundamental mystery. Here, we present evidence from high-sensitivity x-ray and electrodialysis techniques to describe a mechanism by which abundant diatom-derived polyphosphates play a critical role in the formation of calcium phosphate minerals in marine sediments. This mechanism can explain the puzzlingly dispersed distribution of calcium phosphate minerals observed in marine sediments worldwide.

  10. Marine Polyphosphate: A Key Player in Geologic Phosphorus Sequestration

    SciTech Connect

    Diaz, J.; Ingall, E; Benitez-Nelson, C; Paterson, D; de Jonge, M; McNulty , I; Brandes , J

    2008-01-01

    The in situ or authigenic formation of calcium phosphate minerals in marine sediments is a major sink for the vital nutrient phosphorus. However, because typical sediment chemistry is not kinetically conducive to the precipitation of these minerals, the mechanism behind their formation has remained a fundamental mystery. Here, we present evidence from high-sensitivity x-ray and electrodialysis techniques to describe a mechanism by which abundant diatom-derived polyphosphates play a critical role in the formation of calcium phosphate minerals in marine sediments. This mechanism can explain the puzzlingly dispersed distribution of calcium phosphate minerals observed in marine sediments worldwide.

  11. Calcium - urine

    MedlinePlus

    ... into the urine, which causes calcium kidney stones Sarcoidosis Taking too much calcium Too much production of ... Milk-alkali syndrome Proximal renal tubular acidosis Rickets Sarcoidosis Vitamin D Review Date 5/3/2015 Updated ...

  12. Active dendrites, potassium channels and synaptic plasticity.

    PubMed Central

    Johnston, Daniel; Christie, Brian R; Frick, Andreas; Gray, Richard; Hoffman, Dax A; Schexnayder, Lalania K; Watanabe, Shigeo; Yuan, Li-Lian

    2003-01-01

    The dendrites of CA1 pyramidal neurons in the hippocampus express numerous types of voltage-gated ion channel, but the distributions or densities of many of these channels are very non-uniform. Sodium channels in the dendrites are responsible for action potential (AP) propagation from the axon into the dendrites (back-propagation); calcium channels are responsible for local changes in dendritic calcium concentrations following back-propagating APs and synaptic potentials; and potassium channels help regulate overall dendritic excitability. Several lines of evidence are presented here to suggest that back-propagating APs, when coincident with excitatory synaptic input, can lead to the induction of either long-term depression (LTD) or long-term potentiation (LTP). The induction of LTD or LTP is correlated with the magnitude of the rise in intracellular calcium. When brief bursts of synaptic potentials are paired with postsynaptic APs in a theta-burst pairing paradigm, the induction of LTP is dependent on the invasion of the AP into the dendritic tree. The amplitude of the AP in the dendrites is dependent, in part, on the activity of a transient, A-type potassium channel that is expressed at high density in the dendrites and correlates with the induction of the LTP. Furthermore, during the expression phase of the LTP, there are local changes in dendritic excitability that may result from modulation of the functioning of this transient potassium channel. The results support the view that the active properties of dendrites play important roles in synaptic integration and synaptic plasticity of these neurons. PMID:12740112

  13. Increasing dietary phosphorus intake from food additives: potential for negative impact on bone health.

    PubMed

    Takeda, Eiji; Yamamoto, Hironori; Yamanaka-Okumura, Hisami; Taketani, Yutaka

    2014-01-01

    It is important to consider whether habitual high phosphorus intake adversely affects bone health, because phosphorus intake has been increasing, whereas calcium intake has been decreasing in dietary patterns. A higher total habitual dietary phosphorus intake has been associated with higher serum parathyroid hormone (PTH) and lower serum calcium concentrations in healthy individuals. Higher serum PTH concentrations have been shown in those who consume foods with phosphorus additives. These findings suggest that long-term dietary phosphorus loads and long-term hyperphosphatemia may have important negative effects on bone health. In contrast, PTH concentrations did not increase as a result of high dietary phosphorus intake when phosphorus was provided with adequate amounts of calcium. Intake of foods with a ratio of calcium to phosphorus close to that found in dairy products led to positive effects on bone health. Several randomized controlled trials have shown positive relations between dairy intake and bone mineral density. In our loading test with a low-calcium, high-phosphorus lunch provided to healthy young men, serum PTH concentrations showed peaks at 1 and 6 h, and serum fibroblast growth factor 23 (FGF23) concentrations increased significantly at 8 h after the meal. In contrast, the high-calcium, high-phosphorus meal suppressed the second PTH and FGF23 elevations until 8 h after the meal. This implies that adequate dietary calcium intake is needed to overcome the interfering effects of high phosphorus intake on PTH and FGF23 secretion. FGF23 acts on the parathyroid gland to decrease PTH mRNA and PTH secretion in rats with normal kidney function. However, increased serum FGF23 is an early alteration of mineral metabolism in chronic kidney disease, causing secondary hyperthyroidism, and implying resistance of the parathyroid gland to the action of FGF23 in chronic kidney disease. These findings suggest that long-term high-phosphorus diets may impair bone health

  14. Phosphorus removal from anaerobically digested swine wastewater through struvite precipitation.

    PubMed

    Jordaan, E M; Ackerman, J; Cicek, N

    2010-01-01

    Phosphorus removal from agricultural wastewater streams is an important aspect of managing surface water quality, due to the contribution of phosphorus to eutrophication. Removal of phosphorus through struvite precipitation allows for its recovery as a potential fertilizer, and by determining the best conditions for struvite precipitation the removal process can be optimized. The effects of pH, Mg:P ratio, and time on struvite precipitation from anaerobically digested swine manure effluent were investigated. Effluent with Mg:P ratios from 1.0:1 to 1.6:1 were adjusted to pH values between 7.5 and 9.5 and left to equilibrate for 24 h. Results indicate that phosphorus removal increased with increasing pH and Mg:P ratio; the maximum phosphorus removal achieved was 80% at pH 9.0 and a Mg:P ratio of 1.6:1. The purest struvite precipitate was found at pH 7.5, with calcium carbonate and struvite precipitating at higher pH values. A continuously stirred batch of centrate was adjusted to pH 8.4 to determine the struvite formation rate constant. The rate constant was found to be 1.55 h(-1), with 17% phosphorus removal during the first 20 min. The results indicate that struvite precipitation could be a viable method of phosphorus removal from anaerobically digested swine manure.

  15. Interactions between calcium precipitation and the polyphosphate-accumulating bacteria metabolism.

    PubMed

    Barat, R; Montoya, T; Borrás, L; Ferrer, J; Seco, A

    2008-07-01

    A sequencing batch reactor that is operated for biological phosphorus removal has been operated under different influent calcium concentrations to study the precipitation process and the possible effects of phosphorus precipitation in the biological phosphorus removal process. Four experiments were carried out under different influent calcium concentrations ranging from 10 to 90 g Ca m(-3). The experimental results and the equilibrium study, which are based on the saturation index calculation, confirm that the process controlling the calcium behaviour is the calcium phosphate precipitation. This precipitation takes place at two stages: initially, precipitation of the amorphous calcium phosphate, and later crystallization of hydroxyapatite. Also the accumulation of phosphorus precipitated was observed when the influent calcium concentration was increased. In all the experiments, the influent wastewater ratio P/COD was kept constant. It has been observed that, at high calcium concentration, the ratio between phosphate release and acetate uptake (P(rel)/Ac(uptake)) decreases. Changes in the polyphosphate-accumulating organism (PAO) population and in the glycogen-accumulating organism (GAO) population during the experimental period were ruled out by means of fluorescence in situ hybridization. These results could suggest that PAO are able to change their metabolic pathways based on external conditions, such as influent calcium concentration. The accumulation of phosphorus precipitated as calcium phosphate at high influent calcium concentration throughout the experimental period confirmed that phosphate precipitation is a process that can affect the PAO metabolism.

  16. Phosphorus supply per capita from food in Japan between 1960 and 1995.

    PubMed

    Takeda, Eiji; Sakamoto, Kyoko; Yokota, Kimi; Shinohara, Maiko; Taketani, Yutaka; Morita, Kyoko; Yamamoto, Hironori; Miyamoto, Ken-ichi; Shibayama, Mitsuo

    2002-04-01

    The awareness of phosphorus intake is important because hyperphosphatemia and hypophosphatemia both impair bone metabolism. Phosphorus consumption from food was obtained from values in the Food Balance Sheet (PBS) of Japan from 1960 to 1995. The amounts of phosphorus calculated from the FBS increased gradually from 1,243 mg/d in 1960 to 1,332 mg/d in 1975 and to 1,421 mg/d in 1995. This is explained by the increased consumption of cow's milk and milk products, meat, and chicken eggs. The main foods supplying phosphorus in 1995 were cereals, milk and milk products, fishes and shellfishes, and vegetables; their contributions were 24.4, 15.8, 14.2, and 10.9%, respectively. The phosphorus-to-calcium ratio calculated from the FBS was 3.51 in 1960, which decreased to 2.89 in 1975 and 2.44 in 1995. Therefore total phosphorus consumption in 1995 was presumably more than 1,500 mg/d when imported food containing phosphorus and the consumption of phosphorus-containing food additives in Japan are also considered. These findings suggest that the phosphorus consumption estimated from the FBS is increasing and that more attention should be paid to the maintenance of healthy bones in Japan, where the average amount of calcium intake is less than 600 mg/d.

  17. Glycerophosphate as a phosphorus source in a defined medium for Pichia pastoris fermentation.

    PubMed

    Zhang, Wenhui; Sinha, Jayanta; Meagher, Michael M

    2006-08-01

    Pichia pastoris has emerged as a commercially important yeast for the production of a vast majority of recombinant therapeutic proteins and vaccines. The organism can be grown to very high cell densities using a defined basal salts media (BSM). However, BSM contains bi-cation or tri-cation phosphate, which precipitates out of the medium at pH above 5.5, although the optimal fermentation pH of most recombinant protein fermentation varies between 5.5 and 7.0. In this article, the application of glycerophosphates was investigated as a substitute phosphate source in an effort to eliminate precipitation. The solubility of BSM containing sodium or potassium glycerophosphates was examined before and after autoclaving at various pHs. Sodium glycerophosphate was found stable at autoclave temperature but formed complexes with coexisting magnesium and calcium ions that were insoluble above pH 7.0. Medium where sodium glycerophosphate was autoclaved separately and then added to the growth medium did not produce any precipitate up to pH 10.5. The performance of P. pastoris fermentations expressing alpha-galactosidase and ovine interferon-tau using a glycerolphosphate-based medium was found to be comparable to a conventional BSM. The results from this work demonstrate that sodium glycerophosphate can be assimilated by the P. pastoris strains and can be employed as a reliable phosphorus source for both cell growth and recombinant protein production.

  18. Sodium–calcium exchangers contribute to the regulation of cytosolic calcium levels in mouse taste cells

    PubMed Central

    Laskowski, Agnieszka I; Medler, Kathryn F

    2009-01-01

    Taste cells use multiple signalling mechanisms to generate unique calcium responses to distinct taste stimuli. Some taste stimuli activate G-protein coupled receptors (GPCRs) that cause calcium release from intracellular stores while other stimuli depolarize taste cells to cause calcium influx through voltage-gated calcium channels (VGCCs). We recently demonstrated that a constitutive calcium influx exists in taste cells that is regulated by mitochondrial calcium transport and that the magnitude of this calcium influx correlates with the signalling mechanisms used by the taste cells. In this study, we used calcium imaging to determine that sodium–calcium exchangers (NCXs) also routinely contribute to the regulation of basal cytosolic calcium and that their relative role correlates with the signalling mechanisms used by the taste cells. RT-PCR analysis revealed that multiple NCXs and sodium–calcium–potassium exchangers (NCKXs) are expressed in taste cells. Thus, a dynamic relationship exists between calcium leak channels and calcium regulatory mechanisms in taste cells that functions to keep cytosolic calcium levels in the appropriate range for cell function. PMID:19581381

  19. Determination of phosphorus in lubricating oils by cool-flame emission spectroscopy.

    PubMed

    Elliott, W N; Heathcote, C; Mostyn, R A

    1972-03-01

    The phosphorus content of lubricating oils is determined by measurement of the emission from the HPO molecular species at 528 nm in a cool hydrogen-nitrogen diffusion flame. The oil is ashed in the presence of potassium hydroxide and an aqueous extract of the melt is treated with ion-exchange resin to remove interferents, before aspiration into the flame. Analytical results are presented on samples containing phosphorus in the range 0.009-0.2%. The precision of the method is +/- 5% at the 0.04% phosphorus level.

  20. Mitochondrial large-conductance potassium channel from Dictyostelium discoideum.

    PubMed

    Laskowski, Michal; Kicinska, Anna; Szewczyk, Adam; Jarmuszkiewicz, Wieslawa

    2015-03-01

    In the present study, we describe the existence of a large-conductance calcium-activated potassium (BKCa) channel in the mitochondria of Dictyostelium discoideum. A single-channel current was recorded in a reconstituted system, using planar lipid bilayers. The large-conductance potassium channel activity of 258±12 pS was recorded in a 50/150 mM KCl gradient solution. The probability of channel opening (the channel activity) was increased by calcium ions and NS1619 (potassium channel opener) and reduced by iberiotoxin (BKCa channel inhibitor). The substances known to modulate BKCa channel activity influenced the bioenergetics of D. discoideum mitochondria. In isolated mitochondria, NS1619 and NS11021 stimulated non-phosphorylating respiration and depolarized membrane potential, indicating the channel activation. These effects were blocked by iberiotoxin and paxilline. Moreover, the activation of the channel resulted in attenuation of superoxide formation, but its inhibition had the opposite effect. Immunological analysis with antibodies raised against mammalian BKCa channel subunits detected a pore-forming α subunit and auxiliary β subunits of the channel in D. discoideum mitochondria. In conclusion, we show for the first time that mitochondria of D. discoideum, a unicellular ameboid protozoon that facultatively forms multicellular structures, contain a large-conductance calcium-activated potassium channel with electrophysiological, biochemical and molecular properties similar to those of the channels previously described in mammalian and plant mitochondria.

  1. Hidden phosphorus in popular beverages.

    PubMed

    Murphy-Gutekunst, Lisa

    2005-01-01

    To maintain normal serum phosphorus levels, dialysis patient education has emphasized adherence with phosphate binder prescription and low phosphorus diet. In addition to the standard advice to avoid dairy products and legumes, education also focused on lower phosphorus protein foods and beverages. To meet the public's demands for more high quality convenience food, food-processing practices have stepped up the use of phosphorus additives. These additives are now found in beverages that were once considered low in phosphorus content.

  2. Neuritin Up-regulates Kv4.2 α-Subunit of Potassium Channel Expression and Affects Neuronal Excitability by Regulating the Calcium-Calcineurin-NFATc4 Signaling Pathway*

    PubMed Central

    Yao, Jin-jing; Zhao, Qian-Ru; Liu, Dong-Dong; Chow, Chi-Wing; Mei, Yan-Ai

    2016-01-01

    Neuritin is an important neurotrophin that regulates neural development, synaptic plasticity, and neuronal survival. Elucidating the downstream molecular signaling is important for potential therapeutic applications of neuritin in neuronal dysfunctions. We previously showed that neuritin up-regulates transient potassium outward current (IA) subunit Kv4.2 expression and increases IA densities, in part by activating the insulin receptor signaling pathway. Molecular mechanisms of neuritin-induced Kv4.2 expression remain elusive. Here, we report that the Ca2+/calcineurin (CaN)/nuclear factor of activated T-cells (NFAT) c4 axis is required for neuritin-induced Kv4.2 transcriptional expression and potentiation of IA densities in cerebellum granule neurons. We found that neuritin elevates intracellular Ca2+ and increases Kv4.2 expression and IA densities; this effect was sensitive to CaN inhibition and was eliminated in Nfatc4−/− mice but not in Nfatc2−/− mice. Stimulation with neuritin significantly increased nuclear accumulation of NFATc4 in cerebellum granule cells and HeLa cells, which expressed IR. Furthermore, NFATc4 was recruited to the Kv4.2 gene promoter loci detected by luciferase reporter and chromatin immunoprecipitation assays. More importantly, data obtained from cortical neurons following adeno-associated virus-mediated overexpression of neuritin indicated that reduced neuronal excitability and increased formation of dendritic spines were abrogated in the Nfatc4−/− mice. Together, these data demonstrate an indispensable role for the CaN/NFATc4 signaling pathway in neuritin-regulated neuronal functions. PMID:27307045

  3. High Temperature Stability of Potassium Beta Alumina

    NASA Technical Reports Server (NTRS)

    Williams, R. M.; Kisor, A.; Ryan, M. A.

    1996-01-01

    None. From Objectives section: Evaluate the stability of potassium beta alumina under potassium AMTEC operating conditions. Evaluate the stability regime in which potassium beta alumina can be fabricated.

  4. Biogeochemistry: Early phosphorus redigested

    NASA Astrophysics Data System (ADS)

    Poulton, Simon W.

    2017-02-01

    Atmospheric oxygen was maintained at low levels throughout huge swathes of Earth's early history. Estimates of phosphorus availability through time suggest that scavenging from anoxic, iron-rich oceans stabilized this low-oxygen world.

  5. Recipe for potassium

    SciTech Connect

    Izutani, Natsuko

    2012-11-12

    I investigate favorable conditions for producing potassium (K). Observations show [K/Fe] > 0 at low metallicities, while zero-metal supernova models show low [K/Fe] (< 0). Theoretically, it is natural that the odd-Z element, potassium decreases with lower metallicity, and thus, the observation should imply new and unknown sites for potassium. In this proceedings, I calculate proton-rich nucleosynthesis with three parameters, the initial Y{sub e} (from 0.51 to 0.60), the initial density {rho}{sub max} (10{sup 7}, 10{sup 8}, and 10{sup 9} [g/cm{sup 3}]), and the e-fold time {tau} for the density (0.01, 0.1, and 1.0 [sec]). Among 90 models I have calculated, only 26 models show [K/Fe] > 0, and they all have {rho}{sub max} = 10{sup 9}[g/cm{sup 3}]. I discuss parameter dependence of [K/Fe].

  6. Potassium Beta-Alumina/Molybdenum/Potassium Electrochemical Cells

    NASA Technical Reports Server (NTRS)

    Williams, R.; Kisor, A.; Ryan, M.; Nakamura, B.; Kikert, S.; O'Connor, D.

    1994-01-01

    potassium alkali metal thermal-to-electric converter (K-AMTEC) cells utilizing potassium beta alumina solid electrolyte (K-BASE) are predicted to have improved properties for thermal to electric conversion at somewhat lower temperatures than sodium AMTEC's.

  7. Errors in potassium balance

    SciTech Connect

    Forbes, G.B.; Lantigua, R.; Amatruda, J.M.; Lockwood, D.H.

    1981-01-01

    Six overweight adult subjects given a low calorie diet containing adequate amounts of nitrogen but subnormal amounts of potassium (K) were observed on the Clinical Research Center for periods of 29 to 40 days. Metabolic balance of potassium was measured together with frequent assays of total body K by /sup 40/K counting. Metabolic K balance underestimated body K losses by 11 to 87% (average 43%): the intersubject variability is such as to preclude the use of a single correction value for unmeasured losses in K balance studies.

  8. Higher Dietary Acidity is Associated with Lower Bone Mineral Density in Postmenopausal Iranian Women, Independent of Dietary Calcium Intake.

    PubMed

    Shariati-Bafghi, Seyedeh-Elaheh; Nosrat-Mirshekarlou, Elaheh; Karamati, Mohsen; Rashidkhani, Bahram

    2014-01-01

    Findings of studies on the link between dietary acid-base balance and bone mass are relatively mixed. We examined the association between dietary acid-base balance and bone mineral density (BMD) in a sample of Iranian women, hypothesizing that a higher dietary acidity would be inversely associated with BMD, even when dietary calcium intake is adequate. In this cross-sectional study, lumbar spine and femoral neck BMDs of 151 postmenopausal women aged 50-85 years were measured using dual-energy x-ray absorptiometry. Dietary intakes were assessed using a validated food frequency questionnaire. Renal net acid excretion (RNAE), an estimate of acid-base balance, was then calculated indirectly from the diet using the formulae of Remer (based on dietary intakes of protein, phosphorus, potassium, and magnesium; RNAERemer) and Frassetto (based on dietary intakes of protein and potassium; RNAEFrassetto), and was energy adjusted by the residual method. After adjusting for potential confounders, multivariable adjusted means of the lumbar spine BMD of women in the highest tertiles of RNAERemer and RNAEFrassetto were significantly lower than those in the lowest tertiles (for RNAERemer: mean difference -0.084 g/cm2; P=0.007 and for RNAEFrassetto: mean difference -0.088 g/cm2; P=0.004). Similar results were observed in a subgroup analysis of subjects with dietary calcium intake of >800 mg/day. In conclusion, a higher RNAE (i. e. more dietary acidity), which is associated with greater intake of acid-generating foods and lower intake of alkali-generating foods, may be involved in deteriorating the bone health of postmenopausal Iranian women, even in the context of adequate dietary calcium intake.

  9. Synthesis of triclinic calcium pyrophosphate crystals.

    PubMed

    Groves, P J; Wilson, R M; Dieppe, P A; Shellis, R P

    2007-07-01

    This paper presents a method for preparing crystals of triclinic calcium pyrophosphate (t-CPPD). A calcium pyrophosphate intermediate is first prepared by reaction of potassium pyrophosphate and calcium chloride. Samples of the intermediate are dissolved in hydrochloric acid and urea added. Upon heating to 95-100 degrees C, hydrolysis of the urea causes the pH to rise and t-CPPD crystallises out. Purity of the product was ascertained by chemical and physical analysis. Where large crystals are required an unstirred system is used, while smaller crystals are produced by stirring the reaction mixture.

  10. The role of calcium in human aging.

    PubMed

    Beto, Judith A

    2015-01-01

    Calcium is an essential nutrient that is necessary for many functions in human health. Calcium is the most abundant mineral in the body with 99% found in teeth and bone. Only 1% is found in serum. The serum calcium level is tightly monitored to remain within normal range by a complex metabolic process. Calcium metabolism involves other nutrients including protein, vitamin D, and phosphorus. Bone formation and maintenance is a lifelong process. Early attention to strong bones in childhood and adulthood will provide more stable bone mass during the aging years. Research has shown that adequate calcium intake can reduce the risk of fractures, osteoporosis, and diabetes in some populations. The dietary requirements of calcium and other collaborative nutrients vary slightly around the world. Lactose intolerance due to lactase deficiency is a common cause of low calcium intake. Strategies will be discussed for addressing this potential barrier to adequate intake. The purpose of this narrative review is a) to examine the role of calcium in human health, b) to compare nutrient requirements for calcium across lifecycle groups and global populations, c) to review relationships between calcium intake, chronic disease risk, and fractures, and d) to discuss strategies to address diet deficiencies and lactose intolerance.

  11. The Role of Calcium in Human Aging

    PubMed Central

    2015-01-01

    Calcium is an essential nutrient that is necessary for many functions in human health. Calcium is the most abundant mineral in the body with 99% found in teeth and bone. Only 1% is found in serum. The serum calcium level is tightly monitored to remain within normal range by a complex metabolic process. Calcium metabolism involves other nutrients including protein, vitamin D, and phosphorus. Bone formation and maintenance is a lifelong process. Early attention to strong bones in childhood and adulthood will provide more stable bone mass during the aging years. Research has shown that adequate calcium intake can reduce the risk of fractures, osteoporosis, and diabetes in some populations. The dietary requirements of calcium and other collaborative nutrients vary slightly around the world. Lactose intolerance due to lactase deficiency is a common cause of low calcium intake. Strategies will be discussed for addressing this potential barrier to adequate intake. The purpose of this narrative review is a) to examine the role of calcium in human health, b) to compare nutrient requirements for calcium across lifecycle groups and global populations, c) to review relationships between calcium intake, chronic disease risk, and fractures, and d) to discuss strategies to address diet deficiencies and lactose intolerance. PMID:25713787

  12. Rethinking early Earth phosphorus geochemistry

    PubMed Central

    Pasek, Matthew A.

    2008-01-01

    Phosphorus is a key biologic element, and a prebiotic pathway leading to its incorporation into biomolecules has been difficult to ascertain. Most potentially prebiotic phosphorylation reactions have relied on orthophosphate as the source of phosphorus. It is suggested here that the geochemistry of phosphorus on the early Earth was instead controlled by reduced oxidation state phosphorus compounds such as phosphite (HPO32−), which are more soluble and reactive than orthophosphates. This reduced oxidation state phosphorus originated from extraterrestrial material that fell during the heavy bombardment period or was produced during impacts, and persisted in the mildly reducing atmosphere. This alternate view of early Earth phosphorus geochemistry provides an unexplored route to the formation of pertinent prebiotic phosphorus compounds, suggests a facile reaction pathway to condensed phosphates, and is consistent with the biochemical usage of reduced oxidation state phosphorus compounds in life today. Possible studies are suggested that may detect reduced oxidation state phosphorus compounds in ancient Archean rocks. PMID:18195373

  13. Penicillin V Potassium Oral

    MedlinePlus

    ... or have ever had kidney or liver disease, allergies, asthma, blood disease, colitis, stomach problems, or hay fever.tell your doctor if you are pregnant, plan to become pregnant, or are breast-feeding. If you become pregnant while taking penicillin V potassium, call your doctor.if you are ...

  14. Potassium silver cyanide

    Integrated Risk Information System (IRIS)

    Jump to main content . Integrated Risk Information System Recent Additions | Contact Us Search : All EPA IRIS • You are here : EPA Home • Research • Environmental Assessment • IRIS • IRIS Summaries Redirect Page As of September 28 , 2010 , the assessment summary for potassium silver cyanide is inclu

  15. Parathyroid and Calcium Status in Patients with Thalassemia

    PubMed Central

    Goyal, Meenu; Abrol, Pankaj

    2010-01-01

    Thirty patients with thalassemia major receiving repeated blood transfusion were studied to see their serum parathyroid hormone (PTH) and calcium status. Serum PTH, serum and 24 h urinary calcium, and serum alkaline phosphatase, phosphorus, and albumin-corrected calcium levels were determined. Half of these patients, in addition to transfusion, were also supplemented with vitamin D (60,000 IU for 10d) and calcium (1500 mg/day for 3 months). Serum PTH, and serum and 24 h urinary calcium concentrations of the patients receiving transfusions were found to be significantly reduced while their serum alkaline phosphatase, phosphorus, and albumin-corrected calcium levels were not significantly altered when compared to the respective mean values for the control group. Vitamin D and calcium supplementation significantly increased their serum PTH and calcium levels. Supplementations also increased urinary excretion of calcium. The results thus suggest that patients with thalassemia have hypoparathyroidism and reduced serum calcium concentrations that in turn were improved with vitamin D and calcium supplementation. PMID:21966110

  16. Differential elution of sodium or potassium dihydrogen- and hydrogenphosphate ions from a sephadex G-15 column with sodium or potassium chloride solution.

    PubMed

    Okada, T K; Miyakoshi, M; Inoue, M; Nakabayashi, Y; Jisaki, F

    2001-04-20

    When a mixed solution of sodium or potassium dihydrogenphosphate and disodium or dipotassium hydrogenphosphate was eluted from a Sephadex G-15 column with either a sodium or potassium chloride solution, the elution profiles of ions showed that the hydrogenphosphate ion was eluted more rapidly than the dihydrogenphosphate ion. When the sample solutions containing potassium dihydrogenphosphate and/or dipotassium hydrogenphosphate, all of which were supplemented with phosphorus-32-labelled potassium dihydrogenphosphate, were eluted with sodium chloride solution, the elution profiles of radioactivity showed that the dihydrogenphosphate ion changed to hydrogenphosphate ion and vice versa, depending on the pH values of the sample solution and the availability of the cation of the eluent during elution for the phosphate ion to pair with.

  17. Chemical removal and recovery of phosphorus from excess sludge in a sewage treatment plant.

    PubMed

    Kato, K; Murotani, N; Matsufuji, H; Saitoh, M; Tashiro, Y

    2006-05-01

    We describe a process for the recovery of phosphorus from excess sludge in a sewage treatment plant that currently uses polyaluminium chloride for chemical phosphorus removal. Instead, we employed alkaline dissolution of excess sludge with calcium phosphate precipitation to recover phosphorus from sewage. The recovery ratio for phosphorus from sewage using the phosphorus recovery system is approximately 50%. In addition, the amount of excess sludge in the phosphorus recovery system is approximately half that of conventional chemical phosphorus removal. Alkaline dissolution of excess sludge resulted in dissolution of aluminium into the supernatant. Furthermore, since dissolved aluminium can be reused as a coagulant, the phosphorus recovery system could be used to economize coagulant consumption. Operation and maintenance costs of the phosphorus recovery system are 25.9 U.S. cents per 1 m3 of sewage compared to 32.0 U.S. cents per 1 m3 of sewage for conventional chemical phosphorus removal, representing a decrease of 20% in the operation and maintenance costs.

  18. Calcium-regulated in vivo protein phosphorylation in Zea mays L. root tips

    NASA Technical Reports Server (NTRS)

    Raghothama, K. G.; Reddy, A. S.; Friedmann, M.; Poovaiah, B. W.

    1987-01-01

    Calcium dependent protein phosphorylation was studied in corn (Zea mays L.) root tips. Prior to in vivo protein phosphorylation experiments, the effect of calcium, ethyleneglycol-bis-(beta-aminoethyl ether)-N-N' -tetraacetic acid (EGTA) and calcium ionophore (A-23187) on phosphorus uptake was studied. Calcium increased phosphorus uptake, whereas EGTA and A-23187 decreased it. Consequently, phosphorus concentration in the media was adjusted so as to attain similar uptake in different treatments. Phosphoproteins were analyzed by two-dimensional gel electrophoresis. Distinct changes in phosphorylation were observed following altered calcium levels. Calcium depletion in root tips with EGTA and A-23187 decreased protein phosphorylation. However, replenishment of calcium following EGTA and ionophore pretreatment enhanced phosphorylation of proteins. Preloading of the root tips with 32P in the presence of EGTA and A-23187 followed by a ten minute calcium treatment, resulted in increased phosphorylation indicating the involvement of calcium, calcium and calmodulin-dependent kinases. Calmodulin antagonist W-7 was effective in inhibiting calcium-promoted phosphorylation. These studies suggest a physiological role for calcium-dependent phosphorylation in calcium-mediated processes in plants.

  19. Effects of Potassium Mineral Fertilization on Potato (Solanum tuberosum L.) Yield on a Chernozem Soil in Hungary

    NASA Astrophysics Data System (ADS)

    László, Márton, ,, Dr.

    2010-05-01

    varieties, estimated at 85-100 t/ha for potato, 75-85 t/ha for beet and 12-15 t/ha for wheat (Evans 1977). These are far higher than the yields commonly obtained in practice. World average yields were only 1/6th of the potential for potato, 1/6th for wheat and 2/5th for sugar beet in 1995. Utilization of the crop The major part of potato production is usually used for human consumption. Human consumption of potatoes however has declined in the industrialised countries as the standard of living has increased. In these countries an increasing proportion of the crop is used for manufacturing products such as crisp, oven-ready chips, dehydrated potato powder. Thus, in Hungary the consumption of potatoes per person decreased from 110 kg in 1951/1960 to 60 kg in 1995, whereas the consumption of processed potatoes increased from 1 to 15 kg/person during this period. Uptake of potassium Potassium is the nutrient taken up by potato in the greatest quantity, it also takes up much nitrogen and appreciable amounts of phosphorus, calcium, magnesium and sulphur (Perrenoud 1993). Maximum uptakes by different varieties in Japan range between 140 and 267 K2O (Kali Kenkyu Kai 1980). In England, potatoes grown on the " blueprint" system and giving the very high yield of 77.7 t/ha took up 450 kg/ha K2O (Anderson and Hewgill 1978). Brazílian experiments with 6 varieties showed the following uptakes (kg/ha): potassium 207-367 (Motta 1976). Removal of potassium by tubers 23 experimental crops in France (Loué 1977), -with a mean yield of 37.3 t/ha tubers removed: 196 kg K2O, respectively. It is equal to 5.3 kg K2O per 1 tonne tuber. Motta Macedo (1976) reports the following removals in kg/ha for 6 varieties grown in Brazíl: K2O: 118-192. In 14 experiments in India (Grewal and Singh 1979) a mean yield of 28.8 t/ha tuber was obtained which removed an average of 91 kg/ha K2O. At very high yield level, nutrient removal in tuber is very high. Anderson and Hewgill (1978) report a yield of 90 t

  20. Transformation of apatite phosphorus and non-apatite inorganic phosphorus during incineration of sewage sludge.

    PubMed

    Li, Rundong; Zhang, Ziheng; Li, Yanlong; Teng, Wenchao; Wang, Weiyun; Yang, Tianhua

    2015-12-01

    The recovery of phosphorus from incinerated sewage sludge ash (SSA) is assumed to be economical. Transformation from non-apatite inorganic phosphorus (NAIP) to apatite phosphorus (AP), which has a higher bioavailability and more extensive industrial applications, was studied at 750-950°C by sewage sludge incineration and model compound incineration with a calcium oxide (CaO) additive. Thermogravimetric differential scanning calorimetry analysis and X-ray diffraction measurements were used to analyze the reactions between NAIP with CaO and crystallized phases in SSA. High temperatures stimulated the volatilization of NAIP instead of AP. Sewage sludge incineration with CaO transformed NAIP into AP, and the percentage of AP from the total phosphorus reached 99% at 950°C. Aluminum phosphate reacted with CaO, forming Ca2P2O7 and Ca3(PO4)2 at 750-950°C. Reactions between iron phosphate and CaO occurred at lower temperatures, forming Ca(PO3)2 before reaching 850°C.

  1. Anomalous distribution of fluoride and phosphorus forms in surface sediments along eastern Egyptian Mediterranean Sea coast.

    PubMed

    El-Said, Ghada F; Khalil, Mona Kh; Draz, Suzanne E O

    2016-07-01

    The study focused on the distribution of fluoride, total phosphorus, and four phosphorus fractions in some sites along the Egyptian Mediterranean Sea coast. The geochemical parameters and textures of 30 surficial sediment samples from six sectors were determined. The sediment's geochemical parameters (total carbonates (TCO3) and total organic carbon (TOC), exchangeable and carbonate-associated phosphorus (Pex), iron- and aluminum-associated phosphorus (POH), calcium-associated phosphate/apatite (PHCl), residual phosphorus (PR), total