Sample records for phosphorus waste output

  1. Preliminary analysis of phosphorus flow in Hue Citadel.

    PubMed

    Anh, T N Q; Harada, H; Fujii, S; Anh, P N; Lieu, P K; Tanaka, S

    2016-01-01

    Characteristics of waste and wastewater management can affect material flows. Our research investigates the management of waste and wastewater in urban areas of developing countries and its effects on phosphorus flow based on a case study in Hue Citadel, Hue, Vietnam. One hundred households were interviewed to gain insight into domestic waste and wastewater management together with secondary data collection. Next, a phosphorus flow model was developed to quantify the phosphorus input and output in the area. The results showed that almost all wastewater generated in Hue Citadel was eventually discharged into water bodies and to the ground/groundwater. This led to most of the phosphorus output flowing into water bodies (41.2 kg P/(ha year)) and ground/groundwater (25.3 kg P/(ha year)). Sewage from the sewer system was the largest source of phosphorus loading into water bodies, while effluent from on-site sanitation systems was responsible for a major portion of phosphorus into the ground/groundwater. This elevated phosphorus loading is a serious issue in considering surface water and groundwater protection.

  2. Watershed nitrogen and phosphorus balance: The upper Potomac River basin

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jaworski, N.A.; Groffman, P.M.; Keller, A.A.

    1992-01-01

    Nitrogen and phosphorus mass balances were estimated for the portion of the Potomac River basin watershed located above Washington, D.C. The total nitrogen (N) balance included seven input source terms, six sinks, and one 'change-in-storage' term, but was simplified to five input terms and three output terms. The phosphorus (P) baance had four input and three output terms. The estimated balances are based on watershed data from seven information sources. Major sources of nitrogen are animal waste and atmospheric deposition. The major sources of phosphorus are animal waste and fertilizer. The major sink for nitrogen is combined denitrification, volatilization, andmore » change-in-storage. The major sink for phosphorus is change-in-storage. River exports of N and P were 17% and 8%, respectively, of the total N and P inputs. Over 60% of the N and P were volatilized or stored. The major input and output terms on the budget are estimated from direct measurements, but the change-in-storage term is calculated by difference. The factors regulating retention and storage processes are discussed and research needs are identified.« less

  3. Nutrient Mass Balance for the Mobile River Basin in Alabama, Georgia, and Mississippi

    NASA Astrophysics Data System (ADS)

    Harned, D. A.; Harvill, J. S.; McMahon, G.

    2001-12-01

    The source and fate of nutrients in the Mobile River drainage basin are important water-quality concerns in Alabama, Georgia, and Mississippi. Land cover in the basin is 74 percent forested, 16 percent agricultural, 2.5 percent developed, and 4 percent wetland. A nutrient mass balance calculated for 18 watersheds in the Mobile River Basin indicates that agricultural non-point nitrogen and phosphorus sources and urban non-point nitrogen sources are the most important factors associated with nutrients in the streams. Nitrogen and phosphorus inputs from atmospheric deposition, crop fertilizer, biological nitrogen fixation, animal waste, and point sources were estimated for each of the 18 drainage basins. Total basin nitrogen inputs ranged from 27 to 93 percent from atmospheric deposition (56 percent mean), 4 to 45 percent from crop fertilizer (25 percent mean), <0.01 to 31 percent from biological nitrogen fixation (8 percent mean), 2 to 14 percent from animal waste (8 percent mean), and 0.2 to 11 percent from point sources (3 percent mean). Total basin phosphorus inputs ranged from 10 to 39 percent from atmospheric deposition (26 percent mean), 7 to 51 percent from crop fertilizer (28 percent mean), 20 to 64 percent from animal waste (41 percent mean), and 0.2 to 11 percent from point sources (3 percent mean). Nutrient outputs for the watersheds were estimated by calculating instream loads and estimating nutrient uptake, or withdrawal, by crops. The difference between the total basin inputs and outputs represents nutrients that are retained or processed within the basin while moving from the point of use to the stream, or in the stream. Nitrogen output, as a percentage of the total basin nitrogen inputs, ranged from 19 to 79 percent for instream loads (35 percent mean) and from 0.01 to 32 percent for crop harvest (10 percent mean). From 53 to 87 percent (75 percent mean) of nitrogen inputs were retained within the 18 basins. Phosphorus output ranged from 9 to 29 percent for instream loads (18 percent mean) and from 0.01 to 23 percent for crop harvest (7 percent mean). The basins retained from 60 to 87 percent (74 percent mean) of phosphorous inputs. Correlation of basin nutrient output loads and concentrations with the basin inputs and correlation of output loads and concentrations with basin land use were tested using the Spearman rank test. The correlation analysis indicated that higher nitrogen concentrations in the streams are associated with urban areas and higher loads are associated with agriculture; high phosphorus output loads and concentrations are associated with agriculture. Higher nutrient loads in agricultural basins are partly an effect of basin size-- larger basins generate larger nutrient loads. Nutrient loads and concentrations showed no significant correlation to point-source inputs. Nitrogen loads were significantly (p<0.05, correlation coefficient >0.5) higher in basins with greater cropland areas. Nitrogen concentrations also increased as residential, commercial, and total urban areas increased. Phosphorus loads were positively correlated with animal-waste inputs, pasture, and total agricultural land. Phosphorus concentrations were highest in basins with the greatest amounts of row-crop agriculture.

  4. Influences of climate and land use on contemporary ...

    EPA Pesticide Factsheets

    Human beings have greatly accelerated nitrogen and phosphorus flows from land to aquatic ecosystems, often resulting in eutrophication, harmful algal blooms, and hypoxia in lakes and coastal waters. Although differences in nitrogen export from watersheds have been clearly linked to a combination of human nitrogen sources and climate in the U.S., relatively less is known about how natural and anthropogenic landscape characteristics mediate losses of phosphorus from watersheds. We quantified major phosphorus inputs (fertilizer, manure, and human waste) and outputs (riverine export, crop harvest and sewage treatment) for 94 watersheds in 2012 across the continental U.S. and examined how climate, hydrology, soil characteristics, and land use influenced phosphorus exports from watersheds to rivers as total phosphorus and dissolved inorganic phosphorus concentrations and yields. We identified regional differences in major input sources as well as the importance of landscape mediating factors, highlighting the importance of both the biophysical and anthropogenic contexts on the relationship between major phosphorus sources and water quality. This study represents the most up-to-date spatially explicit inventory of anthropogenic P inputs and outputs for the conterminous United States. Linking this inventory with losses of phosphorus to waterways is an important step in understanding what policies and practices may be most effective in mitigating water quality problems.

  5. Mayan urbanism: impact on a tropical karst environment.

    PubMed

    Deevey, E S; Rice, D S; Rice, P M; Vaughan, H H; Brenner, M; Flannery, M S

    1979-10-19

    From the first millennium B.C. through the 9th-century A.D. Classic Maya collapse, nonurban populations grew exponentially, doubling every 408 years, in the twin-lake (Yaxha-Sacnab) basin that contained the Classic urban center of Yaxha. Pollen data show that forests were essentially cleared by Early Classic time. Sharply accelerated slopewash and colluviation, amplified in the Yaxha subbasin by urban construction, transferred nutrients plus calcareous, silty clay to both lakes. Except for the urban silt, colluvium appearing as lake sediments has a mean total phosphorus concentration close to that of basin soils. From this fact, from abundance and distribution of soil phosphorus, and from continuing post-Maya influxes (80 to 86 milligrams of phosphorus per square meter each year), which have no other apparent source, we conclude that riparian soils are anthrosols and that the mechanism of long-term phosphorus loading in lakes is mass transport of soil. Per capita deliveries of phosphorus match physiological outputs, approximately 0.5 kilogram of phosphorus per capita per year. Smaller apparent deliveries reflect the nonphosphatic composition of urban silt; larger societal outputs, expressing excess phosphorus from deforestation and from food waste and mortuary disposal, are probable but cannot be evaluated from our data. Eutrophication is not demonstrable and was probably impeded, even in less-impacted lakes, by suspended Maya silt. Environmental strain, the product of accelerating agroengineering demand and sequestering of nutrients in colluvium, developed too slowly to act as a servomechanism, damping population growth, at least until Late Classic time.

  6. Environmental and resource implications of phosphorus recovery from waste activated sludge.

    PubMed

    Sørensen, Birgitte Lilholt; Dall, Ole Leinikka; Habib, Komal

    2015-11-01

    Phosphorus is an essential mineral resource for the growth of crops and thus necessary to feed the ever increasing global population. The essentiality and irreplaceability of phosphorus in food production has raised the concerns regarding the long-term phosphorus availability and the resulting food supply issues in the future. Hence, the recovery of phosphorus from waste activated sludge and other waste streams is getting huge attention as a viable solution to tackle the potential availability issues of phosphorus in the future. This study explores the environmental implications of phosphorus recovery from waste activated sludge in Denmark and further elaborates on the potential availability or scarcity issue of phosphorus today and 2050. Life cycle assessment is used to assess the possibility of phosphorus recovery with little or no environmental impacts compared to the conventional mining. The phosphorus recovery method assessed in this study consists of drying process, and thermal gasification of the waste activated sludge followed by extraction of phosphorus from the ashes. Our results indicate that the environmental impacts of phosphorus recovery in an energy efficient process are comparable to the environmental effects from the re-use of waste activated sludge applied directly on farmland. Moreover, our findings conclude that the general recommendation according to the waste hierarchy, where re-use of the waste sludge on farmland is preferable to material and energy recovery, is wrong in this case. Especially when phosphorus is a critical resource due to its life threatening necessity, lack of substitution options and potential future supply risk originating due to the high level of global supply concentration. Copyright © 2015 Elsevier Ltd. All rights reserved.

  7. 40 CFR 268.34 - Waste specific prohibitions-toxicity characteristic metal wastes.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... characteristic wastes from elemental phosphorus processing; radioactive wastes mixed with EPA Hazardous wastes... identified characteristic wastes from elemental phosphorus processing, radioactive waste mixed with D004-D011...

  8. 40 CFR 268.34 - Waste specific prohibitions-toxicity characteristic metal wastes.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... characteristic wastes from elemental phosphorus processing; radioactive wastes mixed with EPA Hazardous wastes... identified characteristic wastes from elemental phosphorus processing, radioactive waste mixed with D004-D011...

  9. Characterization of phosphorus leaching from phosphate waste rock in the Xiangxi River watershed, Three Gorges Reservoir, China.

    PubMed

    Jiang, Li-Guo; Liang, Bing; Xue, Qiang; Yin, Cheng-Wei

    2016-05-01

    Phosphate mining waste rocks dumped in the Xiangxi River (XXR) bay, which is the largest backwater zone of the Three Gorges Reservoir (TGR), are treated as Type I industry solid wastes by the Chinese government. To evaluate the potential pollution risk of phosphorus leaching from phosphate waste rocks, the phosphorus leaching behaviors of six phosphate waste rock samples with different weathering degrees under both neutral and acidic conditions were investigated using a series of column leaching experiments, following the Method 1314 standard of the US EPA. The results indicate that the phosphorus release mechanism is solubility-controlled. Phosphorus release from waste rocks increases as pH decreases. The phosphorus leaching concentration and cumulative phosphorus released in acidic leaching conditions were found to be one order of magnitude greater than that in neutral leaching conditions. In addition, the phosphorus was released faster during the period when environmental pH turned from weak alkalinity to slight acidity, with this accelerated release period appearing when L/S was in the range of 0.5-2.0 mL/g. In both neutral and acidic conditions, the average values of Total Phosphorus (TP), including orthophosphates, polyphosphates and organic phosphate, leaching concentration exceed the availability by regulatory (0.5 mg/L) in the whole L/S range, suggesting that the phosphate waste rocks stacked within the XXR watershed should be considered as Type II industry solid wastes. Therefore, the phosphate waste rocks deposited within the study area should be considered as phosphorus point pollution sources, which could threaten the adjacent surface-water environment. Copyright © 2016 Elsevier Ltd. All rights reserved.

  10. [Soil and water losses and phosphorus output at the places between ridges in sloping peanut land under different planting modes in Yimeng mountainous area of Shandong Province, East China].

    PubMed

    Li, Jian-Hua; Yu, Xing-Xiu; Liu, Qian-Jin; Wu, Yuan-Zhi

    2012-12-01

    Taking the typical land use type, sloping Arachis hypogaea land, in Yimeng mountainous area of Shandong as study object, an in-situ fixed-point field experiment was conducted to study the characteristics of soil and water losses and phosphorus output at the places between ridges in the sloping land under different planting modes (Arachis hypogaea + Cynodon dactylon, I; A. hypogae + Melilotus officinalis, II; A. hypogaea + Lolium multiflorum, III; A. hypogaea + Trifolium repens, IV; A. hypogaea + blank control, V). Planting grasses at the places between ridges could effectively decrease the soil and water losses. The runoff was 55.1%-61.3% of the control, and decreased in the order of II > I > IV> III. The sediment loss was 3.4% -32.3% of the control, and decreased in the order of IV > II > I > 11. A. hypogaea + L. multiflorum was effective in storing water and retaining sediment. During the early period of planting L. multiflorum, the sediment loss was more affected by rainfall and presented a fluctuated variation, but in late period, the sediment loss decreased continuously and performed more stable, and accordingly, the sediment retention increased continuously. Planting grasses effectively decreased the output of phosphorus, with the decrease of total phosphorus (TP) output being 52.8%-75.3% of the control, and was in the order of I > II > IV > III. As compared with the control, planting grasses decreased 27.5% -67.0% of the output of particle phosphorus (PP), but relatively increased the output of dissolvable phosphorus (DP). A. hypogaea + L. multiflorum had the best effect in decreasing the output of phosphorus, with the outputs of TP and PP being 58.4% and 27.5% of the control, respectively. In the growth period of the vegetations, the losses of different phosphorus forms differed, and the dissolvable inorganic phosphorus was the main form of the output of DP during whole rain season. After the peanut harvested, the output of different phosphorus forms in the first rainfall was much higher than that in the maximum intensity rainfall.

  11. A comparison of drainage basin nutrient inputs with instream nutrient loads for seven rivers in Georgia and Florida, 1986-90

    USGS Publications Warehouse

    Asbury, C.E.; Oaksford, E.T.

    1997-01-01

    Instream nutrient loads of the Altamaha, Suwannee, St. Johns, Satilla, Ogeechee, Withlacoochee, and Ochlockonee River Basins were computed and compared with nutrient inputs for each basin for the period 1986-90. Nutrient constituents that were considered included nitrate, ammonia, organic nitrogen, and total phosphorus. Sources of nutrients considered for this analysis included atmospheric deposition, fertilizer, animal waste, wastewater-treatment plant discharge, and septic discharge. The mean nitrogen input ranged from 2,400 kilograms per year per square kilometer (kg/yr)km2 in the Withlacoochee River Basin to 5,470 (kg/yr)km2 in the Altamaha River Basin. The Satilla and Ochlockonee River Basins also had large amounts of nitrogen input per unit area, totaling 5,430 and 4,920 (kg/yr)km2, respectively.Fertilizer or animal waste, as sources of nitrogen, predominated in all basins. Atmospheric deposition contributed less than one-fourth of the mean total nitrogen input to all basins and was consistently the third largest input in all but the Ogeechee River Basin, where it was the second largest.The mean total phosphorus input ranged from 331 (kg/yr)km2 in the Withlacoochee River Basin to 1,380 (kg/yr)km2 in both the Altamaha and Satilla River Basins. The Ochlockonee River Basin had a phosphorus input of 1,140 (kg/yr)km2.Per unit area, the Suwannee River discharged the highest instream mean total nitrogen and phosphorus loads and also discharged higher instream nitrate loads per unit area than the other six rivers. Phosphorus loads in stream discharge were highest in the Suwannee and Ochlockonee Rivers.The ratio of nutrient outputs to inputs for the seven studied rivers ranged from 4.2 to 14.9 percent, with the St. Johns (14.9 percent) and Suwannee (12.1 percent) Rivers having significantly higher percentages than those from the other basins. The output/input percentages for mean total phosphorus ranged from 1.0 to 7.0 percent, with the St. Johns (6.2 percent) and Suwannee (7.0 percent) Rivers exporting the highest percentage of phosphorus.Although instream nutrient loads constitute only one of the various pathways nutrients may take in leaving a river basin, only a relatively small part of nutrient input to the basin leaves the basin in stream discharge for the major coastal rivers examined in this study. The actual amount of nutrient transported in a river basin depends on the ways in which nutrients are physically handled, geographically distributed, and chemically assimilated within a river basin.

  12. Struvite crystallization

    NASA Technical Reports Server (NTRS)

    Barak, Phillip W. (Inventor); Tabanpour, Menachem E. (Inventor); Meyer, Juliane M. (Inventor); Avila-Segura, Mauricio (Inventor)

    2007-01-01

    The present invention provides a method and apparatus for removing phosphorus from phosphorus containing waste. In one embodiment, the method is preferably carried out by contacting the phosphorus containing waste with a non-cellular membrane and precipitating phosphorus from the waste as struvite. Another aspect of the invention includes a method of removing phosphorus from phosphorus containing sewage comprising filtrates and biosolids. The removal of phosphorus as struvite occurs in two stages as primary and secondary removal. In the primary removal process, the sewage from a dewatering unit is contacted with a first polymeric membrane reactor and the phosphorus is removed as primary struvite. Subsequently Mg is added so as promote struvite formation and the secondary removal process of struvite. In the secondary removal process, the sewage from GBT Filtrate well or Centrifuge Liquor well is contacted with a second monomolecular membrane and the phosphorus is removed as secondary struvite.

  13. Recovery of phosphorus compounds from thermally-processed wastes

    NASA Astrophysics Data System (ADS)

    Czechowska-Kosacka, A.; Pawłowski, L.; Niedbala, G.; Cel, W.

    2018-05-01

    Depletion of phosphorus deposits is one of the most serious global problems, which may soon lead to a crisis in food production. It is estimated that if the current living standard is maintained, the available reserves will be depleted in 130 years. Considering the principle of sustainable development, searching for alternative phosphorus sources is extremely important. The work presented the results of the research on the possibility of utilizing wastes as a source of phosphorus. The studies were conducted on poultry manure. The physicochemical properties of phosporus-rich wastes were determined as well. The fertilizing properties of ashes from poultry manure combustion – obtained from different systems, i.e. caged and barn production. The assimilability of phosphorus from the obtained ashes was determined. Potential applications of phosphorus-rich ashes were proposed as well.

  14. 40 CFR 61.201 - Definitions.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ...) Phosphogypsum is the solid waste byproduct which results from the process of wet acid phosphorus production. (c) Phosphogypsum stacks or stacks are piles of waste resulting from wet acid phosphorus production, including...

  15. 40 CFR 61.201 - Definitions.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ...) Phosphogypsum is the solid waste byproduct which results from the process of wet acid phosphorus production. (c) Phosphogypsum stacks or stacks are piles of waste resulting from wet acid phosphorus production, including...

  16. Energy and phosphorus recovery from black water.

    PubMed

    de Graaff, M S; Temmink, H; Zeeman, G; Buisman, C J N

    2011-01-01

    Source-separated black water (BW) (toilet water) containing 38% of the organic material and 68% of the phosphorus in the total household waste (water) stream including kitchen waste, is a potential source for energy and phosphorus recovery. The energy recovered, in the form of electricity and heat, is more than sufficient for anaerobic treatment, nitrogen removal and phosphorus recovery. The phosphorus balance of an upflow anaerobic sludge blanket reactor treating concentrated BW showed a phosphorus conservation of 61% in the anaerobic effluent. Precipitation of phosphate as struvite from this stream resulted in a recovery of 0.22 kgP/p/y, representing 10% of the artificial phosphorus fertiliser production in the world. The remaining part of the phosphorus ended up in the anaerobic sludge, mainly due to precipitation (39%). Low dilution and a high pH favour the accumulation of phosphorus in the anaerobic sludge and this sludge could be used as a phosphorus-enriched organic fertiliser, provided that it is safe regarding heavy metals, pathogens and micro-pollutants.

  17. Phosphorus recovery as struvite from farm, municipal and industrial waste: Feedstock suitability, methods and pre-treatments.

    PubMed

    Kataki, Sampriti; West, Helen; Clarke, Michèle; Baruah, D C

    2016-03-01

    Global population growth requires intensification of agriculture, for which a sustainable supply of phosphorus (P) is essential. Since natural P reserves are diminishing, recovering P from wastes and residues is an increasingly attractive prospect, particularly as technical and economic potential in the area is growing. In addition to providing phosphorus for agricultural use, precipitation of P from waste residues and effluents lessens their nutrient loading prior to disposal. This paper critically reviews published methods for P recovery from waste streams (municipal, farm and industrial) with emphasis on struvite (MgNH4PO4·6H2O) crystallisation, including pre-treatments to maximise recovery. Based on compositional parameters of a range of wastes, a Feedstock Suitability Index (FSI) was developed as a guide to inform researchers and operators of the relative potential for struvite production from each waste. Copyright © 2016 Elsevier Ltd. All rights reserved.

  18. Nutrient contributions and biogas potential of co-digestion of feedstocks and dairy manure.

    PubMed

    Ma, Guiling; Neibergs, J Shannon; Harrison, Joseph H; Whitefield, Elizabeth M

    2017-06-01

    This study focused on collection of data on nutrient flow and biogas yield at a commercial anaerobic digester managed with dairy manure from a 1000 cow dairy and co-digestion of additional feedstocks. Feedstocks included: blood, fish, paper pulp, out of date beverages and grease trap waste. Mass flow of inputs and outputs, nutrient concentration of inputs and outputs, and biogas yield were obtained. It was determined that manure was the primary source of nutrients to the anaerobic digester when co-digested with feedstocks. The percentage of contribution from manure to the total nutrient inputs for total nitrogen, ammonia-nitrogen, phosphorus and total solids was 46.3%, 67.7%, 32.8% and 23.4%, respectively. On average, manure contributed the greatest amount of total nitrogen and ammonia-nitrogen. Grease trap waste contributed the greatest amount of phosphorus and total solids at approximately 50%. Results demonstrated that a reliable estimate of nutrient inflow could be obtained from the product of the nutrient analyses of a single daily composite of influent subsamples times the total daily flow estimated with an in-line flow meter. This approach to estimate total daily nutrient inflow would be more cost effective than testing and summing the contribution of individual feedstocks. Data collected after liquid-solid separation confirmed that the majority (>75%) of nutrients remain with the liquid effluent portion of the manure stream. It was demonstrated that the ash concentration in solids before and after composting could be used to estimate the mass balance of total solids during the compost process. This data confirms that biogas or methane yield could be accurately measured from the ratio of % volatile solids to % total solids. Copyright © 2017 Elsevier Ltd. All rights reserved.

  19. 40 CFR 61.201 - Definitions.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ...) Phosphogypsum is the solid waste byproduct which results from the process of wet acid phosphorus production. (c) Phosphogypsum stacks or stacks are piles of waste resulting from wet acid phosphorus production, including phosphate mines or other sites that are used for the disposal of phosphogypsum. ...

  20. 40 CFR 61.201 - Definitions.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ...) Phosphogypsum is the solid waste byproduct which results from the process of wet acid phosphorus production. (c) Phosphogypsum stacks or stacks are piles of waste resulting from wet acid phosphorus production, including phosphate mines or other sites that are used for the disposal of phosphogypsum. ...

  1. 40 CFR 61.201 - Definitions.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ...) Phosphogypsum is the solid waste byproduct which results from the process of wet acid phosphorus production. (c) Phosphogypsum stacks or stacks are piles of waste resulting from wet acid phosphorus production, including phosphate mines or other sites that are used for the disposal of phosphogypsum. ...

  2. Long-term accumulation and transport of anthropogenic phosphorus in three river basins

    NASA Astrophysics Data System (ADS)

    Powers, Stephen M.; Bruulsema, Thomas W.; Burt, Tim P.; Chan, Neng Iong; Elser, James J.; Haygarth, Philip M.; Howden, Nicholas J. K.; Jarvie, Helen P.; Lyu, Yang; Peterson, Heidi M.; Sharpley, Andrew N.; Shen, Jianbo; Worrall, Fred; Zhang, Fusuo

    2016-05-01

    Global food production depends on phosphorus. Phosphorus is broadly applied as fertilizer, but excess phosphorus contributes to eutrophication of surface water bodies and coastal ecosystems. Here we present an analysis of phosphorus fluxes in three large river basins, including published data on fertilizer, harvested crops, sewage, food waste and river fluxes. Our analyses reveal that the magnitude of phosphorus accumulation has varied greatly over the past 30-70 years in mixed agricultural-urban landscapes of the Thames Basin, UK, the Yangtze Basin, China, and the rural Maumee Basin, USA. Fluxes of phosphorus in fertilizer, harvested crops, food waste and sewage dominate over the river fluxes. Since the late 1990s, net exports from the Thames and Maumee Basins have exceeded inputs, suggesting net mobilization of the phosphorus pool accumulated in earlier decades. In contrast, the Yangtze Basin has consistently accumulated phosphorus since 1980. Infrastructure modifications such as sewage treatment and dams may explain more recent declines in total phosphorus fluxes from the Thames and Yangtze Rivers. We conclude that human-dominated river basins may undergo a prolonged but finite accumulation phase when phosphorus inputs exceed agricultural demand, and this accumulated phosphorus may continue to mobilize long after inputs decline.

  3. Anthropogenic phosphorus flow analysis of Hefei City, China.

    PubMed

    Li, Sisi; Yuan, Zengwei; Bi, Jun; Wu, Huijun

    2010-11-01

    The substance flow analysis (SFA) method was employed to examine phosphorus flow and its connection to water pollution in the city of Hefei, China, in 2008. As human activity is the driving force of phosphorus flux from the environment to the economy, the study provides a conceptual framework for analyzing an anthropogenic phosphorus cycle that includes four stages: extraction, fabrication and manufacturing, use, and waste management. Estimates of phosphorus flow were based on existing data as well as field research, expert advice, local accounting systems, and literature. The total phosphorus input into Hefei in 2008 reached 7810 tons, mainly as phosphate ore, chemical fertilizer, pesticides, crops and animal products. Approximately 33% of the total phosphorus input left the area, and nearly 20% of that amount was discharged as waste to surface water. Effluent containing excessive fertilizer from farming operations plays an important role in phosphorus overloads onto surface water; the other major emission source is sewage discharge. We also provide suggestions for reducing phosphorus emissions, for example reducing fertilizer use, recycling farming residues, and changing human consumption patterns. Crown Copyright © 2010. Published by Elsevier B.V. All rights reserved.

  4. Water hyacinth (Eichhornia crassipes) waste as an adsorbent for phosphorus removal from swine wastewater.

    PubMed

    Chen, Xi; Chen, Xiuxia; Wan, Xianwei; Weng, Boqi; Huang, Qin

    2010-12-01

    Both live plants and dried straw of water hyacinth were applied to a sequential treatment of swine wastewater for nitrogen and phosphorus reduction. In the facultative tank, the straw behaved as a kind of adsorbent toward phosphorus. Its phosphorus removal rate varied considerably with contact time between the straw and the influent. In the laboratory, the straw displayed a rapid total phosphorus reduction on a KH(2)PO(4) solution. The adsorption efficiency was about 36% upon saturation. At the same time, the water hyacinth straw in the facultative tank enhanced NH(3)-N removal efficiency as well. However, no adsorption was evident. This study demonstrated an economically feasible means to apply water hyacinth phosphorus straw for the swine wastewater treatment. The sequential system employed significantly reduced the land use, as compared to the wastewater stabilization pond treatment, for pollution amelioration of swine waste. 2010 Elsevier Ltd. All rights reserved.

  5. Land Application of Wastes: An Educational Program. Phosphorus Considerations - Module 19, Objectives, and Script.

    ERIC Educational Resources Information Center

    Clarkson, W. W.; And Others

    The treatment of wastewater phosphorus via land application includes both chemical and biological mechanisms. Chemically, phosphorus reacts with iron, aluminum, and calcium compounds in the soil providing efficient removal over a wide range of pH values. Phosphorus is also absorbed by rooted plants which, upon harvest, constitute a further removal…

  6. Recovery of ammonia and production of high-grade phosphates from digester effluents

    USDA-ARS?s Scientific Manuscript database

    Conservation and recovery of nitrogen and phosphorus from animal wastes and municipal effluents is important because of economic and environmental reasons. In this paper we present a novel technology for separation and recovery of ammonia and phosphorus from liquid swine manure. Phosphorus recovery ...

  7. Separation of ammonia and phosphate minerals from wastewater using gas-permeable membranes

    USDA-ARS?s Scientific Manuscript database

    Conservation and recovery of nitrogen and phosphorus from animal wastes and municipal effluents is important because of economic and environmental reasons. In this paper we present a novel technology for separation and recovery of ammonia and phosphorus from liquid swine manure. Phosphorus recovery ...

  8. Phosphorus recovery from wastes

    USDA-ARS?s Scientific Manuscript database

    Phosphorus (P) is an important macro-nutrient essential for all living organisms and phosphate rock is the main raw material for all inorganic P fertilizers. It is expected that there will be a P peak and resulting P fertilizer shortage in near future. In general, phosphorus use efficiency is low a...

  9. Synthesis and application of lignin-based copolymer LSAA on controlling non-point source pollution resulted from surface runoff.

    PubMed

    Liu, Chen; Wu, Guangxia; Mu, Huanzhen; Yuan, Zonghuan; Tang, Lianyi; Lin, Xiangwei

    2008-01-01

    In this article, alkali lignin separated from paper pulp waste was grafted into a novel copolymer LSAA (a copolymer of lignin, starch, acrylamide, and acrylic acid). Its practical application effect and environmental safety were studied. The results of field simulation experiment indicated that the application of LSAA significantly affected the output of the runoff and pollutants. The runoff quantity was decreased by 16.67%-47.00% and the loads of total suspended solids (TSS), chemical oxygen demand (COD), total nitrogen (TN), and total phosphorus (TP) were reduced by 17.78%-62.14%, 26.32%-59.91%, 15.25%-47.42%, and 22.18%-52.78%, respectively. The tests on its environmental safety showed that LSAA did no harm the soil. Compared with polyacrylamide (PAM), a dominant product in this field, LSAA exhibited similar effects and cheap cost. Thus, this study not only created a new product for controlling runoff water quality but also offered a beneficial application for industrial paper waste.

  10. Visualizing Alternative Phosphorus Scenarios for Future Food Security

    PubMed Central

    Neset, Tina-Simone; Cordell, Dana; Mohr, Steve; VanRiper, Froggi; White, Stuart

    2016-01-01

    The impact of global phosphorus scarcity on food security has increasingly been the focus of scientific studies over the past decade. However, systematic analyses of alternative futures for phosphorus supply and demand throughout the food system are still rare and provide limited inclusion of key stakeholders. Addressing global phosphorus scarcity requires an integrated approach exploring potential demand reduction as well as recycling opportunities. This implies recovering phosphorus from multiple sources, such as food waste, manure, and excreta, as well as exploring novel opportunities to reduce the long-term demand for phosphorus in food production such as changing diets. Presently, there is a lack of stakeholder and scientific consensus around priority measures. To therefore enable exploration of multiple pathways and facilitate a stakeholder dialog on the technical, behavioral, and institutional changes required to meet long-term future phosphorus demand, this paper introduces an interactive web-based tool, designed for visualizing global phosphorus scenarios in real time. The interactive global phosphorus scenario tool builds on several demand and supply side measures that can be selected and manipulated interactively by the user. It provides a platform to facilitate stakeholder dialog to plan for a soft landing and identify a suite of concrete priority options, such as investing in agricultural phosphorus use efficiency, or renewable fertilizers derived from phosphorus recovered from wastewater and food waste, to determine how phosphorus demand to meet future food security could be attained on a global scale in 2040 and 2070. This paper presents four example scenarios, including (1) the potential of full recovery of human excreta, (2) the challenge of a potential increase in non-food phosphorus demand, (3) the potential of decreased animal product consumption, and (4) the potential decrease in phosphorus demand from increased efficiency and yield gains in crop and livestock systems. PMID:27840814

  11. Visualizing Alternative Phosphorus Scenarios for Future Food Security.

    PubMed

    Neset, Tina-Simone; Cordell, Dana; Mohr, Steve; VanRiper, Froggi; White, Stuart

    2016-01-01

    The impact of global phosphorus scarcity on food security has increasingly been the focus of scientific studies over the past decade. However, systematic analyses of alternative futures for phosphorus supply and demand throughout the food system are still rare and provide limited inclusion of key stakeholders. Addressing global phosphorus scarcity requires an integrated approach exploring potential demand reduction as well as recycling opportunities. This implies recovering phosphorus from multiple sources, such as food waste, manure, and excreta, as well as exploring novel opportunities to reduce the long-term demand for phosphorus in food production such as changing diets. Presently, there is a lack of stakeholder and scientific consensus around priority measures. To therefore enable exploration of multiple pathways and facilitate a stakeholder dialog on the technical, behavioral, and institutional changes required to meet long-term future phosphorus demand, this paper introduces an interactive web-based tool, designed for visualizing global phosphorus scenarios in real time. The interactive global phosphorus scenario tool builds on several demand and supply side measures that can be selected and manipulated interactively by the user. It provides a platform to facilitate stakeholder dialog to plan for a soft landing and identify a suite of concrete priority options, such as investing in agricultural phosphorus use efficiency, or renewable fertilizers derived from phosphorus recovered from wastewater and food waste, to determine how phosphorus demand to meet future food security could be attained on a global scale in 2040 and 2070. This paper presents four example scenarios, including (1) the potential of full recovery of human excreta, (2) the challenge of a potential increase in non-food phosphorus demand, (3) the potential of decreased animal product consumption, and (4) the potential decrease in phosphorus demand from increased efficiency and yield gains in crop and livestock systems.

  12. Contrasting nitrogen and phosphorus budgets in urban watersheds and implications for managing urban water pollution

    PubMed Central

    Janke, Benjamin D.; Nidzgorski, Daniel A.; Millet, Dylan B.; Baker, Lawrence A.

    2017-01-01

    Managing excess nutrients remains a major obstacle to improving ecosystem service benefits of urban waters. To inform more ecologically based landscape nutrient management, we compared watershed inputs, outputs, and retention for nitrogen (N) and phosphorus (P) in seven subwatersheds of the Mississippi River in St. Paul, Minnesota. Lawn fertilizer and pet waste dominated N and P inputs, respectively, underscoring the importance of household actions in influencing urban watershed nutrient budgets. Watersheds retained only 22% of net P inputs versus 80% of net N inputs (watershed area-weighted averages, where net inputs equal inputs minus biomass removal) despite relatively low P inputs. In contrast to many nonurban watersheds that exhibit high P retention, these urban watersheds have high street density that enhanced transport of P-rich materials from landscapes to stormwater. High P exports in storm drainage networks and yard waste resulted in net P losses in some watersheds. Comparisons of the N/P stoichiometry of net inputs versus storm drain exports implicated denitrification or leaching to groundwater as a likely fate for retained N. Thus, these urban watersheds exported high quantities of N and P, but via contrasting pathways: P was exported primarily via stormwater runoff, contributing to surface water degradation, whereas N losses additionally contribute to groundwater pollution. Consequently, N management and P management require different strategies, with N management focusing on reducing watershed inputs and P management also focusing on reducing P movement from vegetated landscapes to streets and storm drains. PMID:28373560

  13. Ecologising Societal Metabolism and Recycling of Phosphorus At Household and Neighbourhood Level

    NASA Astrophysics Data System (ADS)

    Gumbo, B.; Savenije, H. H. G.

    The pressures of humanity on a fragile water resource base, and the corresponding need for environmental and freshwater protection requires that human excreta and other societal wastes (solid and liquid) be recycled and used as a resource. The Bel- lagio principles underpin the basis for this new approach to environmental sanitation. There are two main concepts emanating from the Bellagio principles, which make the basis of this paper. Firstly, the Household Centred Environmental Sanitation (HCES) puts the household at the focal point of environmental sanitation planning and; sec- ondly, the Circular System of Resource Management (CSRM) that emphasises conser- vation, local recycling and reuse of resources. Recycling of Phosphorus (P) in urban or peri-urban ecological agriculture (without synthetic fertilisers) is used in this paper to assess the feasibility of these concepts. An inventory of annual P-fluxes based on characterisation of input goods, processes, transformation, output fluxes and storage was conducted for a high-density suburb in Harare, Zimbabwe where agriculture is already a major activity. Using systems thinking approach and material flow account- ing two compartments or subsystems are defined to enable accounting and analysis of P-bearing materials. The "household" (consumption/use and excretion/waste) and "agriculture" (soil-plant interaction). With a population of about 100 000 inhabitants, P inflows amount to about 26 600 kg/a and 1 900 kg/a as food/beverages and deter- gents respectively within the "household" subsystem. Storage is taken as negligible, whilst 85

  14. New perspectives for the design of sustainable bioprocesses for phosphorus recovery from waste.

    PubMed

    Tarayre, Cédric; De Clercq, Lies; Charlier, Raphaëlle; Michels, Evi; Meers, Erik; Camargo-Valero, Miller; Delvigne, Frank

    2016-04-01

    Phosphate rock has long been used for the production of phosphorus based chemicals. However, considering the depletion of the reservoirs and the decrease of the quality of phosphate rocks, a potential market is now emerging for the recovery of phosphate from waste and its reuse for different applications. Notably, phosphate recovery from wastewater could be included in a circular economy approach. This review focuses on the use of microbial systems for phosphorus accumulation and recovery, by considering the actual range of analytical techniques available for the monitoring of phosphorus accumulating organisms, as well as the actual biochemical and metabolic engineering toolbox available for the optimization of bioprocesses. In this context, knowledge gathered from process, system and synthetic biology could potentially lead to innovative process design. Copyright © 2016 Elsevier Ltd. All rights reserved.

  15. Study of The Maximum Uptake Capacity on Various Sizes of Electric Arc Furnace Slag in Phosphorus Aqueous Solutions

    NASA Astrophysics Data System (ADS)

    Afnizan, W. M. W.; Hamdan, R.; Othman, N.

    2016-07-01

    The high content of uncontrolled phosphorus concentration in wastewater has emerged as a major problem recently. The excessive amount of phosphorus that is originated from domestic waste, unproper treated waste from septic tanks, as well as agricultural activities have led to the eutrophication problem. Therefore, a laboratory experiment was initiated to evaluate the potential of the Electric Arc Furnace Slag (EAFS), a by-product waste from steel making industry in removing phosphorus concentrations in aqueous solutions. In this work several particle sizes ranging from (9.5-12.4 mm, 12.5-15.9 mm, 16.0-19.9 mm, 20.0-24.9 mm, 25-37.4 mm) with a known weight (20±0.28 g, 40±0.27 g, 60±0.30 g, 80±0.29 g and 100±0.38 g) were used to study the effect of different particle sizes towards phosphorus removal. Each particle size of EAFS was shaken in synthetic phosphorus solutions (10 mg/l, 20 mg/l, 30 mg/l, 40 mg/l and 50 mg/l) at a contact time of 2 hours. Final concentrations of phosphorus were sampled and the measurement was made using WESTCO Discrete Analyzer equipment. Results showed that the highest of the maximum uptake capacity of each EAFS particle size distribution achieved at 0.287, 0.313, 0.266, 0.241 and 0.25 mg/g as particle size range was varied from 9.5-12.4 mm to 25-37.4 mm. In conclusion, the maximum uptake capacity of each EAFS mostly was determined to occur at adsorbent weight of 20 to 40 g in most conditions.

  16. Soil and solid poultry waste nutrient management and water quality.

    PubMed

    Chapman, S L

    1996-07-01

    Concerns about the impacts of nitrogen, phosphorus, and pathogens on surface and ground water quality has forced the poultry industry to implement voluntary waste management guidelines for use by growers. In some states, animal waste guidelines are being enforced by regulatory agencies. Strategies that growers may use to properly dispose of poultry waste include: 1) local land application as a fertilizer; 2) offsite marketing for use as a fertilizer or soil amendment, feed additive, or energy source; and 3) chemical additives that will immobilize nitrogen and phosphorus in the manure or litter. If properly followed, these and other innovative strategies should be adequate to protect surface and ground water quality without adversely affecting the economics of poultry production.

  17. Treatment Technologies for Historical Ponds Containing Elemental Phosphorus - Summary and Evaluation

    EPA Pesticide Factsheets

    This report provides a summary and evaluation on six remediation technologies potentially applicable to treat 16 ponds containing waste contaminated with elemental phosphorus, heavy metals, and radiocnuclides at the Eastern Michaud Flats (EMF) Superfund...

  18. Heated blends of phosphate waste: Microstructure characterization, effects of processing factors and use as a phosphorus source for alfalfa growth.

    PubMed

    Loutou, M; Hajjaji, M; Mansori, M; Favotto, C; Hakkou, R

    2016-07-15

    Microstructure of expandable lightweight aggregates (LWAs), which was composed of phosphate waste (PW), cement kiln dust (CKD) and raw clay (RC) was investigated, and the effects of processing factors (temperature, waste content, soaking time) on their physical properties were quantified by using response surface methodology (RSM). The potential use of LWAs as a phosphorus source was assessed through the use of seeds of alfalfa. It was found that the main minerals of the waste, namely carbonates and fluorapatite, were involved in the formation of labradorite/anorthite and melt respectively. Stability of mullite- the main constituent of CKD- was sensitive to the melt content. The assemblage of the identified phases was discussed based on the CaO-SiO2-Al2O3 phase diagram. The results of RSM showed that the change of compressive strength, firing shrinkage and water absorption of LWAs versus processing factors was well described with a polynomial model and the weights of the effects of the factors increased in the following order: sintering temperature > waste content (in the case of PW-RC) > soaking time. On the other hand, it was found that due to the release of phosphorus by soil-embedded pellets, the growth of alfalfa plants improved, and the rate enhanced in this order: PW-RC > PW-CKD > PW-CKD-RC. The absorbed quantity of phosphorus (0.12%) was still lower than the common uptake amount. Copyright © 2016 Elsevier Ltd. All rights reserved.

  19. Recovery of phosphorus and volatile fatty acids from wastewater and food waste with an iron-flocculation sequencing batch reactor and acidogenic co-fermentation.

    PubMed

    Li, Ruo-Hong; Li, Xiao-Yan

    2017-12-01

    A sequencing batch reactor-based system was developed for enhanced phosphorus (P) removal and recovery from municipal wastewater. The system consists of an iron-dosing SBR for P precipitation and a side-stream anaerobic reactor for sludge co-fermentation with food waste. During co-fermentation, sludge and food waste undergo acidogenesis, releasing phosphates under acidic conditions and producing volatile fatty acids (VFAs) into the supernatant. A few types of typical food waste were investigated for their effectiveness in acidogenesis and related enzymatic activities. The results show that approximately 96.4% of total P in wastewater was retained in activated sludge. Food waste with a high starch content favoured acidogenic fermentation. Around 55.7% of P from wastewater was recovered as vivianite, and around 66% of food waste loading was converted into VFAs. The new integration formed an effective system for wastewater treatment, food waste processing and simultaneous recovery of P and VFAs. Copyright © 2017 Elsevier Ltd. All rights reserved.

  20. Global and regional phosphorus budgets in agricultural systems and their implications for phosphorus-use efficiency

    NASA Astrophysics Data System (ADS)

    Lun, Fei; Liu, Junguo; Ciais, Philippe; Nesme, Thomas; Chang, Jinfeng; Wang, Rong; Goll, Daniel; Sardans, Jordi; Peñuelas, Josep; Obersteiner, Michael

    2018-01-01

    The application of phosphorus (P) fertilizer to agricultural soils increased by 3.2 % annually from 2002 to 2010. We quantified in detail the P inputs and outputs of cropland and pasture and the P fluxes through human and livestock consumers of agricultural products on global, regional, and national scales from 2002 to 2010. Globally, half of the total P inputs into agricultural systems accumulated in agricultural soils during this period, with the rest lost to bodies of water through complex flows. Global P accumulation in agricultural soil increased from 2002 to 2010 despite decreases in 2008 and 2009, and the P accumulation occurred primarily in cropland. Despite the global increase in soil P, 32 % of the world's cropland and 43 % of the pasture had soil P deficits. Increasing soil P deficits were found for African cropland vs. increasing P accumulation in eastern Asia. European and North American pasture had a soil P deficit because the continuous removal of biomass P by grazing exceeded P inputs. International trade played a significant role in P redistribution among countries through the flows of P in fertilizer and food among countries. Based on country-scale budgets and trends we propose policy options to potentially mitigate regional P imbalances in agricultural soils, particularly by optimizing the use of phosphate fertilizer and the recycling of waste P. The trend of the increasing consumption of livestock products will require more P inputs to the agricultural system, implying a low P-use efficiency and aggravating P-stock scarcity in the future. The global and regional phosphorus budgets and their PUEs in agricultural systems are publicly available at https://doi.pangaea.de/10.1594/PANGAEA.875296.

  1. The UK waste input-output table: Linking waste generation to the UK economy.

    PubMed

    Salemdeeb, Ramy; Al-Tabbaa, Abir; Reynolds, Christian

    2016-10-01

    In order to achieve a circular economy, there must be a greater understanding of the links between economic activity and waste generation. This study introduces the first version of the UK waste input-output table that could be used to quantify both direct and indirect waste arisings across the supply chain. The proposed waste input-output table features 21 industrial sectors and 34 waste types and is for the 2010 time-period. Using the waste input-output table, the study results quantitatively confirm that sectors with a long supply chain (i.e. manufacturing and services sectors) have higher indirect waste generation rates compared with industrial primary sectors (e.g. mining and quarrying) and sectors with a shorter supply chain (e.g. construction). Results also reveal that the construction, mining and quarrying sectors have the highest waste generation rates, 742 and 694 tonne per £1m of final demand, respectively. Owing to the aggregated format of the first version of the waste input-output, the model does not address the relationship between waste generation and recycling activities. Therefore, an updated version of the waste input-output table is expected be developed considering this issue. Consequently, the expanded model would lead to a better understanding of waste and resource flows in the supply chain. © The Author(s) 2016.

  2. [Impact of Phosphogypsum Wastes on the Wheat Growth and CO2 Emissions and Evaluation of Economic-environmental Benefit].

    PubMed

    Li, Ji; Wu, Hong-sheng; Gao, Zhi-qiu; Shang, Xiao-xia; Zheng, Pei-hui; Yin, Jin; Kakpa, Didier; Ren, Qian-qi; Faustin, Ogou Katchele; Chen, Su-yun; Xu, Ya; Yao, Tong-yan; Ji, Wei; Qian, Jing-shan; Ma, Shi-jie

    2015-08-01

    Phosphogypsum is a phosphorus chemical waste which has not been managed and reused well, resultantly, causing environmental pollution and land-occupation. Phosphogypsum wastes were used as a soil amendment to assess the effect on wheat growth, yield and CO2 emissions from winter wheat fields. Its economic and environmental benefits were analyzed at the same time. The results showed that wheat yield was increased by 37.71% in the treatment of phosphogypsum of 2 100 kg x hm(-2). Compared with the control treatment, throughout the wheat growing season, CO2 emission was accumulatively reduced by 3% in the treatment of phosphogypsum waste of 1050 kg x hm(-2), while reduced by 8% , 10% , and 6% during the jointing stage, heading date and filling period of wheat, respectively; while CO2 emission was accumulatively reduced by 7% in the treatment of phosphogypsum waste of 2 100 kg x hm(-2) throughout the wheat growing season, as reduced by 11% , 4% , and 12% during the reviving wintering stage, heading date and filling period of wheat, respectively. It was better for CO2 emission reduction in the treatment of a larger amount of phosphogypsum waste. In the case of application of phosphogypsum waste residue within a certain range, the emission intensity of CO2 ( CO2 emissions of per unit of fresh weight or CO2 emissions of per unit of yield) , spike length, fresh weight and yield showed a significantly negative correlation--the longer the ear length, the greater fresh weight and yield and the lower the CO2 emissions intensity. As to the carbon trading, phosphogypsum utilization was of high economic and environmental benefits. Compared with the control, the ratio of input to output changed from 1: 8.3 to 1: 10.7, which in the same situation of investment the output could be increased by 28.92% ; phosphogypsum as a greenhouse gas reducing agent in the wheat field, it could decrease the cost and increase the environmental benefit totally about 290 yuan per unit of ton. The results demonstrated phosphogypsum wastes could obviously decrease the CO2 emission from field soil and had a great potential to control agricultural greenhouse gases. Hopefully it has an important application perspective for the low-carbon, ecological and sustainable agricultural development.

  3. Urban phosphorus sustainability: Systemically incorporating social, ecological, and technological factors into phosphorus flow analysis

    Treesearch

    Genevieve S. Metson; David M. Iwaniec; Lawrence A. Baker; Elena M. Bennett; Daniel L. Childers; Dana Cordell; Nancy B. Grimm; J. Morgan Grove; Daniel A. Nidzgorski; Stuart White

    2015-01-01

    Phosphorus (P) is an essential fertilizer for agricultural production but is also a potent aquatic pollutant. Current P management fails to adequately address both the issue of food security due to P scarcity and P pollution threats to water bodies. As centers of food consumption and waste production, cities transport and store much P and thus provide important...

  4. Electricity generation and in situ phosphate recovery from enhanced biological phosphorus removal sludge by electrodialysis membrane bioreactor.

    PubMed

    Geng, Yi-Kun; Wang, Yunkun; Pan, Xin-Rong; Sheng, Guo-Ping

    2018-01-01

    In this study, a novel electrodialysis membrane bioreactor was used for EBPR sludge treatment for energy and phosphorus resource recovery simultaneously. After 30days stable voltage outputting, the maximum power density reached 0.32W/m 3 . Over 90% of phosphorus in EBPR sludge was released while about 50% of phosphorus was concentrated to 4mmol/L as relatively pure phosphate solution. Nitrogen could be removed from EBPR sludge by desalination and denitrification processes. This study provides an optimized way treating sludge for energy production and in situ phosphorus recovery. Copyright © 2017 Elsevier Ltd. All rights reserved.

  5. Enhancing phosphorus release from waste activated sludge containing ferric or aluminum phosphates by EDTA addition during anaerobic fermentation process.

    PubMed

    Zou, Jinte; Zhang, Lili; Wang, Lin; Li, Yongmei

    2017-03-01

    The effect of ethylene diamine tetraacetic acid (EDTA) addition on phosphorus release from biosolids and phosphate precipitates during anaerobic fermentation was investigated. Meanwhile, the impact of EDTA addition on the anaerobic fermentation process was revealed. The results indicate that EDTA addition significantly enhanced the release of phosphorus from biosolids, ferric phosphate precipitate and aluminum phosphate precipitate during anaerobic fermentation, which is attributed to the complexation of metal ions and damage of cell membrane caused by EDTA. With the optimal EDTA addition of 19.5 mM (0.41 gEDTA/gSS), phosphorus release efficiency from biosolids was 82%, which was much higher than that (40%) without EDTA addition. Meanwhile, with 19.5 mM EDTA addition, almost all the phosphorus in ferric phosphate precipitate was released, while only 57% of phosphorus in aluminum phosphate precipitate was released. This indicates that phosphorus in ferric phosphate precipitate was much easier to be released than that in aluminum phosphate precipitate during anaerobic fermentation of sludge. In addition, proper EDTA addition facilitated the production of soluble total organic carbon and volatile fatty acids, as well as solid reduction during sludge fermentation, although methane production could be inhibited. Therefore, EDTA addition can be used as an alternative method for recovering phosphorus from waste activated sludge containing ferric or aluminum precipitates, as well as recovery of soluble carbon source. Copyright © 2016 Elsevier Ltd. All rights reserved.

  6. Hydrothermal carbonization of food waste for nutrient recovery and reuse.

    PubMed

    Idowu, Ifeolu; Li, Liang; Flora, Joseph R V; Pellechia, Perry J; Darko, Samuel A; Ro, Kyoung S; Berge, Nicole D

    2017-11-01

    Food waste represents a rather large and currently underutilized source of potentially available and reusable nutrients. Laboratory-scale experiments evaluating the hydrothermal carbonization of food wastes collected from restaurants were conducted to understand how changes in feedstock composition and carbonization process conditions influence primary and secondary nutrient fate. Results from this work indicate that at all evaluated reaction times and temperatures, the majority of nitrogen, calcium, and magnesium remain integrated within the solid-phase, while the majority of potassium and sodium reside in the liquid-phase. The fate of phosphorus is dependent on reaction times and temperatures, with solid-phase integration increasing with higher reaction temperature and longer time. A series of leaching experiments to determine potential solid-phase nutrient availability were also conducted and indicate that, at least in the short term, nitrogen release from the solids is small, while almost all of the phosphorus present in the solids produced from carbonizing at 225 and 250°C is released. At a reaction temperature of 275°C, smaller fractions of the solid-phase total phosphorus are released as reaction times increase, likely due to increased solids incorporation. Using these data, it is estimated that up to 0.96% and 2.30% of nitrogen and phosphorus-based fertilizers, respectively, in the US can be replaced by the nutrients integrated within hydrochar and liquid-phases generated from the carbonization of currently landfilled food wastes. Copyright © 2017 Elsevier Ltd. All rights reserved.

  7. Assessing the feasibility of N and P recovery by struvite precipitation from nutrient-rich wastewater: a review.

    PubMed

    Kumar, Ramesh; Pal, Parimal

    2015-11-01

    Literature on recovery of nitrogen and phosphorous from wastewater in the form of value-added struvite fertilizer has been critically reviewed towards the evolution of a sustainable management strategy. Presence of nitrogen and phosphorus is widespread in both domestic as well as industrial wastewater streams such as swine wastewater, landfill leachate, urine waste, dairy manure, coke wastewater, and beverage wastewater. Where these nitrogen and phosphorus compounds cause eutrophication of water bodies and considered as harmful discharges to the environment, they can be turned useful through simple chemical conversion into struvite (MgNH4PO4·6H2O). In extensive studies on wastewater treatment, aspects of recovery of valuable materials remain dispersed. In the present article, almost all relevant aspects of sources of raw materials, chemistry and technology of struvite production, and its detailed characterization have been captured in a systematic and classified way so as to help in planning and designing an integrated scheme of struvite production through conversion of nitrogen and phosphorus components of waste streams. The study will help in formulating a new waste management strategy in this context by shifting focus from removal to recovery of nutrients from waste streams.

  8. The nutrient load from food waste generated onboard ships in the Baltic Sea.

    PubMed

    Wilewska-Bien, Magda; Granhag, Lena; Andersson, Karin

    2016-04-15

    The combination of the sensitive characteristics of the Baltic Sea and the intense maritime traffic makes the marine environment vulnerable to anthropogenic influences. The theoretical scenario calculated in this study shows that the annually generated food waste onboard ships in traffic in the Baltic Sea contains about 182tonnes of nitrogen and 34tonnes of phosphorus. Today, all food waste generated onboard can be legally discharged into the marine environment at a distance of 12NM from the nearest land. The annual load of nitrogen contained in the food waste corresponds to 52% of load of nitrogen from the ship-generated sewage. Future regulations for sewage discharge in the Baltic Sea will require significant reduction of total nitrogen and phosphorus released. The contribution of nutrients from food waste compared to sewage will therefore be relatively larger in the future, if food waste still can be legally discharged. Copyright © 2015 Elsevier Ltd. All rights reserved.

  9. Treatment of synthetic wastewater and hog waste with reduced sludge generation by the multi-environment BioCAST technology.

    PubMed

    Yerushalmi, L; Alimahmoodi, M; Mulligan, C N

    2013-01-01

    Simultaneous removal of carbon, nitrogen and phosphorus was examined along with reduced generation of biological sludge during the treatment of synthetic wastewater and hog waste by the BioCAST technology. This new multi-environment wastewater treatment technology contains both suspended and immobilized microorganisms, and benefits from the presence of aerobic, microaerophilic, anoxic and anaerobic conditions for the biological treatment of wastewater. The influent concentrations during the treatment of synthetic wastewater were 1,300-4,000 mg chemical oxygen demand (COD)/L, 42-115 mg total nitrogen (TN)/L, and 19-40 mg total phosphorus (TP)/L. The removal efficiencies reached 98.9, 98.3 and 94.1%, respectively, for carbon, TN and TP during 225 days of operation. The removal efficiencies of carbon and nitrogen showed a minimal dependence on the nitrogen-to-phosphorus (N/P) ratio, while the phosphorus removal efficiency showed a remarkable dependence on this parameter, increasing from 45 to 94.1% upon the increase of N/P ratio from 3 to 4.5. The increase of TN loading rate had a minimal impact on COD removal rate which remained around 1.7 kg/m(3) d, while it contributed to increased TP removal efficiency. The treatment of hog waste with influent COD, TN and TP concentrations of 960-2,400, 143-235 and 25-57 mg/L, respectively, produced removal efficiencies up to 89.2, 69.2 and 47.6% for the three contaminants, despite the inhibitory effects of this waste towards biological activity. The treatment system produced low biomass yields with average values of 3.7 and 8.2% during the treatment of synthetic wastewater and hog waste, respectively.

  10. Improving Phosphorus Availability in an Acid Soil Using Organic Amendments Produced from Agroindustrial Wastes

    PubMed Central

    Ch'ng, Huck Ywih; Ahmed, Osumanu Haruna; Majid, Nik Muhamad Ab.

    2014-01-01

    In acid soils, soluble inorganic phosphorus is fixed by aluminium and iron. To overcome this problem, acid soils are limed to fix aluminium and iron but this practice is not economical. The practice is also not environmentally friendly. This study was conducted to improve phosphorus availability using organic amendments (biochar and compost produced from chicken litter and pineapple leaves, resp.) to fix aluminium and iron instead of phosphorus. Amending soil with biochar or compost or a mixture of biochar and compost increased total phosphorus, available phosphorus, inorganic phosphorus fractions (soluble inorganic phosphorus, aluminium bound inorganic phosphorus, iron bound inorganic phosphorus, redundant soluble inorganic phosphorus, and calcium bound phosphorus), and organic phosphorus. This was possible because the organic amendments increased soil pH and reduced exchangeable acidity, exchangeable aluminium, and exchangeable iron. The findings suggest that the organic amendments altered soil chemical properties in a way that enhanced the availability of phosphorus in this study. The amendments effectively fixed aluminium and iron instead of phosphorus, thus rendering phosphorus available by keeping the inorganic phosphorus in a bioavailable labile phosphorus pool for a longer period compared with application of Triple Superphosphate without organic amendments. PMID:25032229

  11. Integrative microbial community analysis reveals full-scale enhanced biological phosphorus removal under tropical conditions

    PubMed Central

    Law, Yingyu; Kirkegaard, Rasmus Hansen; Cokro, Angel Anisa; Liu, Xianghui; Arumugam, Krithika; Xie, Chao; Stokholm-Bjerregaard, Mikkel; Drautz-Moses, Daniela I.; Nielsen, Per Halkjær; Wuertz, Stefan; Williams, Rohan B. H.

    2016-01-01

    Management of phosphorus discharge from human waste is essential for the control of eutrophication in surface waters. Enhanced biological phosphorus removal (EBPR) is a sustainable, efficient way of removing phosphorus from waste water without employing chemical precipitation, but is assumed unachievable in tropical temperatures due to conditions that favour glycogen accumulating organisms (GAOs) over polyphosphate accumulating organisms (PAOs). Here, we show these assumptions are unfounded by studying comparative community dynamics in a full-scale plant following systematic perturbation of operational conditions, which modified community abundance, function and physicochemical state. A statistically significant increase in the relative abundance of the PAO Accumulibacter was associated with improved EBPR activity. GAO relative abundance also increased, challenging the assumption of competition. An Accumulibacter bin-genome was identified from a whole community metagenomic survey, and comparative analysis against extant Accumulibacter genomes suggests a close relationship to Type II. Analysis of the associated metatranscriptome data revealed that genes encoding proteins involved in the tricarboxylic acid cycle and glycolysis pathways were highly expressed, consistent with metabolic modelling results. Our findings show that tropical EBPR is indeed possible, highlight the translational potential of studying competition dynamics in full-scale waste water communities and carry implications for plant design in tropical regions. PMID:27193869

  12. Integrative microbial community analysis reveals full-scale enhanced biological phosphorus removal under tropical conditions

    NASA Astrophysics Data System (ADS)

    Law, Yingyu; Kirkegaard, Rasmus Hansen; Cokro, Angel Anisa; Liu, Xianghui; Arumugam, Krithika; Xie, Chao; Stokholm-Bjerregaard, Mikkel; Drautz-Moses, Daniela I.; Nielsen, Per Halkjær; Wuertz, Stefan; Williams, Rohan B. H.

    2016-05-01

    Management of phosphorus discharge from human waste is essential for the control of eutrophication in surface waters. Enhanced biological phosphorus removal (EBPR) is a sustainable, efficient way of removing phosphorus from waste water without employing chemical precipitation, but is assumed unachievable in tropical temperatures due to conditions that favour glycogen accumulating organisms (GAOs) over polyphosphate accumulating organisms (PAOs). Here, we show these assumptions are unfounded by studying comparative community dynamics in a full-scale plant following systematic perturbation of operational conditions, which modified community abundance, function and physicochemical state. A statistically significant increase in the relative abundance of the PAO Accumulibacter was associated with improved EBPR activity. GAO relative abundance also increased, challenging the assumption of competition. An Accumulibacter bin-genome was identified from a whole community metagenomic survey, and comparative analysis against extant Accumulibacter genomes suggests a close relationship to Type II. Analysis of the associated metatranscriptome data revealed that genes encoding proteins involved in the tricarboxylic acid cycle and glycolysis pathways were highly expressed, consistent with metabolic modelling results. Our findings show that tropical EBPR is indeed possible, highlight the translational potential of studying competition dynamics in full-scale waste water communities and carry implications for plant design in tropical regions.

  13. Phosphorus recovery and reuse from waste streams

    USDA-ARS?s Scientific Manuscript database

    Phosphorus (P) is a macronutrient essential for all living organisms. Regrettably, it is a finite resource since phosphate rock (PR) is the main material used for production of P fertilizers. Globally, the demand for quality PR is escalating due to many factors including increasing human population....

  14. Use of solid phosphorus fractionation data to evaluate phosphorus release from waste activated sludge.

    PubMed

    Pokhrel, S P; Milke, M W; Bello-Mendoza, R; Buitrón, G; Thiele, J

    2018-06-01

    Waste activated sludge (WAS) can become an important source of phosphorus (P). P speciation was examined under anaerobic conditions, with different pH (4, 6 and 8) and temperatures (10, 20 and 35 °C). Aqueous P was measured and an extraction protocol was used to find three solid phosphorus fractions. A pH of 4 and a temperature of 35 °C gave a maximum of 51% of total P solubilized in 22 days with 50% of total P solubilized in 7 days. Batch tests indicate that little pH depression is needed to release non-apatite inorganic P (including microbial polyphosphate), while a pH of 4 rather than 6 will release more apatite inorganic P, and that organic P is relatively more difficult to release from WAS. Fractionation analysis of P in WAS can aid in design of more efficient methods for P recovery from WAS. Copyright © 2018 Elsevier Ltd. All rights reserved.

  15. Phosphorus recovery and reuse by pyrolysis: Applications for agriculture and environment.

    PubMed

    Sun, Daquan; Hale, Lauren; Kar, Gourango; Soolanayakanahally, Raju; Adl, Sina

    2018-03-01

    Phosphorus ore extraction for soil fertilization supports the demand of modern agriculture, but extractable resource limitations, due to scarcity, impose a P reuse and recycling research agenda. Here we propose to integrate biochar production (pyrogenic carbon) with municipal and agricultural waste management systems, to recover and reuse phosphorous that would otherwise be lost from the ecological food web. A meta-analysis and available data on total P in biochar indicated that P-enriched feedstocks include animal manure, human excreta, and plant-biomass collected from P-polluted sites. Phosphorus in biochar could participate in P equilibriums in soils and is expected to supply P. The release, sorption and desorption of P by biochar will codetermine the potential of P replenishment by biochar and P loss from biochar-amended soils. Abiotic and biotic factors are expected to affect sorption/desorption of P between biochar and soil aggregates, and P acquisition by plants. Chemical extraction, using acid or alkaline solutions, is considered as a means for P retrieval from high P biochar, especially for biochar with high heavy metal contents. To bridge the gap between academia and practice, this paper proposes future development for phosphorus acclamation by pyrolysis: 1) identification of high-P bio-waste for pyrolysis; 2) retrieval of P by using biochar as soil amendment or by chemical leaching; 3) biochar modification by inorganic nutrients, P solubilizing microorganisms and other organic matter; and 4) compatible pyrolysis equipment fit to the current waste management context, such as households, and waste water treatment plants. Copyright © 2017 Elsevier Ltd. All rights reserved.

  16. Removal of phosphorus from agricultural wastewaters using adsorption media prepared from acid mine drainage sludge

    USGS Publications Warehouse

    Sibrell, Philip L.; Montgomery, Gary A.; Ritenour, Kelsey L.; Tucker, Travis W.

    2009-01-01

    Excess phosphorus in wastewaters promotes eutrophication in receiving waterways. A??cost-effective method for the removal of phosphorus from water would significantly reduce the impact of such wastewaters on the environment. Acid mine drainage sludge is a waste product produced by the neutralization of acid mine drainage, and consists mainly of the same metal hydroxides used in traditional wastewater treatment for the removal of phosphorus. In this paper, we describe a method for the drying and pelletization of acid mine drainage sludge that results in a particulate media, which we have termed Ferroxysorb, for the removal of phosphorus from wastewater in an efficient packed bed contactor. Adsorption capacities are high, and kinetics rapid, such that a contact time of less than 5 min is sufficient for removal of 60-90% of the phosphorus, depending on the feed concentration and time in service. In addition, the adsorption capacity of the Ferroxysorb media was increased dramatically by using two columns in an alternating sequence so that each sludge bed receives alternating rest and adsorption cycles. A stripping procedure based on treatment with dilute sodium hydroxide was also developed that allows for recovery of the P from the media, with the possibility of generating a marketable fertilizer product. These results indicate that acid mine drainage sludges - hitherto thought of as undesirable wastes - can be used to remove phosphorus from wastewater, thus offsetting a portion of acid mine drainage treatment costs while at the same time improving water quality in sensitive watersheds.

  17. Nitrous oxide emissions from soil amended with low-phosphorus broiler litter

    USDA-ARS?s Scientific Manuscript database

    Regions of the United States with a high concentration of poultry farms have soils with excess nitrogen (N) and phosphorus (P) far beyond the agronomic requirement of crops because of recurrent land application of broiler litter. A new waste treatment technology developed by USDA-ARS, called “Quick ...

  18. Innovative bioresource management technologies for recovery of ammonia and phosphorus from livestock and municipal wastes

    USDA-ARS?s Scientific Manuscript database

    The recovery of nutrients from wastes for re-use as concentrated plant fertilizers is a new paradigm in agricultural and municipal waste management. Nutrient pollution has diverse and far-reaching effects on the economy, impacting many sectors that depend on clean water. Treatment technologies have ...

  19. Production and degradation of polyhydroxyalkanoates in waste environment

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lee, S.Y.; Choi, J.

    1999-06-01

    Polyhydroxyalkanoates (PHAs) are energy/carbon storage materials accumulated under unfavorable growth condition in the presence of excess carbon source. PHAs are attracting much attention as substitute for non-degradable petrochemically derived plastics because of their similar material properties to conventional plastics and complete biodegradability under natural environment upon disposal. In this paper, PHA production and degradation in waste environment as well as its role in biological phosphorus removal are reviewed. In biological phosphorus removal process, bacteria accumulating polyphosphate (poly P) uptake carbon substrates and accumulate these as PHA by utilizing energy from breaking down poly P under anaerobic conditions. In the followingmore » aerobic condition, accumulated PHA is utilized for energy generation and for the regeneration of poly P. PHA production from waste has been investigated in order to utilize abundant organic compounds in waste water. Since PHA content and PHA productivity that can be obtained are rather low, PHA production from waste product should be considered as a coupled process for reducing the amount of organic waste. PHAs can be rapidly degraded to completion in municipal anaerobic sludge by various microorganisms.« less

  20. Impacts of Small-Scale Industrialized Swine Farming on Local Soil, Water and Crop Qualities in a Hilly Red Soil Region of Subtropical China

    PubMed Central

    Zhang, Di; Wang, Xingxiang; Zhou, Zhigao

    2017-01-01

    Industrialized small-scale pig farming has been rapidly developed in developing regions such as China and Southeast Asia, but the environmental problems accompanying pig farming have not been fully recognized. This study investigated 168 small-scale pig farms and 29 example pig farms in Yujiang County of China to examine current and potential impacts of pig wastes on soil, water and crop qualities in the hilly red soil region, China. The results indicated that the small-scale pig farms produced considerable annual yields of wastes, with medians of 216, 333 and 773 ton yr−1 per pig farm for manure, urine and washing wastewater, respectively, which has had significant impact on surface water quality. Taking NH4+-N, total nitrogen (TN) or total phosphorus (TP) as a criterion to judge water quality, the proportions of Class III and below Class III waters in the local surface waters were 66.2%, 78.7% and 72.5%. The well water (shallow groundwater) quality near these pig farms met the water quality standards by a wide margin. The annual output of pollutants from pig farms was the most important factor correlated with the nutrients and heavy metals in soils, and the relationship can be described by a linear equation. The impact on croplands was marked by the excessive accumulation of available phosphorus and heavy metals such as Cu and Zn. For crop safety, the over-limit ratio of Zn in vegetable samples reached 60%, other heavy metals in vegetable and rice samples tested met the food safety standard at present. PMID:29211053

  1. Impacts of Small-Scale Industrialized Swine Farming on Local Soil, Water and Crop Qualities in a Hilly Red Soil Region of Subtropical China.

    PubMed

    Zhang, Di; Wang, Xingxiang; Zhou, Zhigao

    2017-12-06

    Industrialized small-scale pig farming has been rapidly developed in developing regions such as China and Southeast Asia, but the environmental problems accompanying pig farming have not been fully recognized. This study investigated 168 small-scale pig farms and 29 example pig farms in Yujiang County of China to examine current and potential impacts of pig wastes on soil, water and crop qualities in the hilly red soil region, China. The results indicated that the small-scale pig farms produced considerable annual yields of wastes, with medians of 216, 333 and 773 ton yr -1 per pig farm for manure, urine and washing wastewater, respectively, which has had significant impact on surface water quality. Taking NH₄⁺-N, total nitrogen (TN) or total phosphorus (TP) as a criterion to judge water quality, the proportions of Class III and below Class III waters in the local surface waters were 66.2%, 78.7% and 72.5%. The well water (shallow groundwater) quality near these pig farms met the water quality standards by a wide margin. The annual output of pollutants from pig farms was the most important factor correlated with the nutrients and heavy metals in soils, and the relationship can be described by a linear equation. The impact on croplands was marked by the excessive accumulation of available phosphorus and heavy metals such as Cu and Zn. For crop safety, the over-limit ratio of Zn in vegetable samples reached 60%, other heavy metals in vegetable and rice samples tested met the food safety standard at present.

  2. Simultaneous recovery of phosphorus and nitrogen from anaerobic digestion effluents in municipal and livestock systems

    USDA-ARS?s Scientific Manuscript database

    Conservation and recovery of nitrogen (N) and phosphorus (P) from animal wastes is important in agriculture because of the high cost of commercial fertilizers and for environmental reasons. The objective of this work was to develop new technology for simultaneous N and P recovery suitable for anaero...

  3. Extraction of ammonium and phosphorus from swine manure digestate and their recovery in purified forms

    USDA-ARS?s Scientific Manuscript database

    Conservation and recovery of nitrogen (N) and phosphorus (P) from animal wastes is important in agriculture because of the high cost of commercial fertilizers and for environmental reasons. The objective of this work was to develop new technology for simultaneous N and P recovery suitable for anaero...

  4. Nitrogen, phosphorus, calcium, and magnesium applied individually or as a slow release or controlled release fertilizer increase growth

    USDA-ARS?s Scientific Manuscript database

    The U.S. Environmental Protection Agency (USEPA) has restricted concentrated animal feeding operation(CAFO) release of waste products into U.S. waters. These waste products must be disposed of using best management practices. Most of the waste is spread on cropland, but some operations have found ot...

  5. Liming Poultry Manures to Kill Pathogens and Decrease Soluble Phosphorus

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Maguire,R.; Hesterberg, D.; Gernat, A.

    2006-01-01

    Received for publication September 9, 2005. Stabilizing phosphorus (P) in poultry waste to reduce P losses from manured soils is important to protect surface waters, while pathogens in manures are an emerging issue. This study was conducted to evaluate CaO and Ca(OH){sub 2} for killing manure bacterial populations (pathogens) and stabilizing P in poultry wastes and to investigate the influence on soils following amendment with the treated wastes. Layer manure and broiler litter varying in moisture content were treated with CaO and Ca(OH){sub 2} at rates of 2.5, 5, 10, and 15% by weight. All treated wastes were analyzed formore » microbial plate counts, pH, and water-soluble phosphorus (WSP), while a few selected layer manures were analyzed by phosphorus X-ray absorption near edge structure (XANES). A loamy sand and a silt loam were amended with broiler litter and layer manure treated with CaO at rates of 0, 2.5, 5, 10, and 15% and soil WSP and pH were measured at times 1, 8, and 29 d. Liming reduced bacterial populations, with greater rates of lime leading to greater reductions; for example 10% CaO applied to 20% solids broiler litter reduced the plate counts from 793 000 to 6500 mL{sup -1}. Liming also reduced the WSP in the manures by over 90% in all cases where at least 10% CaO was added. Liming the manures also reduced WSP in soils immediately following application and raised soil pH. The liming process used successfully reduced plate counts and concerns about P losses in runoff following land application of these limed products due to decreased WSP.« less

  6. Liming poultry manures to decrease soluble phosphorus and suppress the bacteria population.

    PubMed

    Maguire, R O; Hesterberg, D; Gernat, A; Anderson, K; Wineland, M; Grimes, J

    2006-01-01

    Stabilizing phosphorus (P) in poultry waste to reduce P losses from manured soils is important to protect surface waters, while pathogens in manures are an emerging issue. This study was conducted to evaluate CaO and Ca(OH)2 for killing manure bacterial populations (pathogens) and stabilizing P in poultry wastes and to investigate the influence on soils following amendment with the treated wastes. Layer manure and broiler litter varying in moisture content were treated with CaO and Ca(OH)2 at rates of 2.5, 5, 10, and 15% by weight. All treated wastes were analyzed for microbial plate counts, pH, and water-soluble phosphorus (WSP), while a few selected layer manures were analyzed by phosphorus X-ray absorption near edge structure (XANES). A loamy sand and a silt loam were amended with broiler litter and layer manure treated with CaO at rates of 0, 2.5, 5, 10, and 15% and soil WSP and pH were measured at times 1, 8, and 29 d. Liming reduced bacterial populations, with greater rates of lime leading to greater reductions; for example 10% CaO applied to 20% solids broiler litter reduced the plate counts from 793,000 to 6500 mL-1. Liming also reduced the WSP in the manures by over 90% in all cases where at least 10% CaO was added. Liming the manures also reduced WSP in soils immediately following application and raised soil pH. The liming process used successfully reduced plate counts and concerns about P losses in runoff following land application of these limed products due to decreased WSP.

  7. Effect of the time of application of phosphorus fertilizer on yield and quality parameters of melon crop amended with winery waste compost.

    NASA Astrophysics Data System (ADS)

    Requejo Mariscal, María Isabel; Cartagena, María Carmen; Villena Gordo, Raquel; Arce Martínez, Augusto; Ribas Elcorobarrutia, Francisco; Jesús Cabello Cabello, María; Castellanos Serrano, María Teresa

    2016-04-01

    In Spain, drip irrigation systems are widely used for horticultural crop production. In drip irrigation systems, emitter clogging has been identified as one of the most important concerns. Clogging is closely related to the quality of the irrigation water and the structure of the emitter flow path, and occurs as a result of multiple physical, biological and chemical factors. So, the use of acid fertilizers (e.g. phosphoric acid) in these systems is common to avoid the emitter clogging. Moreover, in this country the use of exhausted grape marc compost as source of nutrients and organic matter has been identified as a good management option of soil fertility, especially in grape-growing areas with a large generation of wastes from the wine and distillery industries. The purpose of this work was to study the effect of the time of application of phosphorus fertilizer with fertirrigation in a melon crop amended with winery waste compost on yield and quality parameters. During two years, the melon crop was grown under field conditions and beside the control treatment, three doses of compost were applied: 6.7, 13.3 and 20.0 t ha-1. All the compost treatments received 120 kg ha-1 of phosphorus fertilizer (phosphoric acid) for the season varying the time of application: The first year phosphorus application started after male and female flowering, and the second year the application started before flowering. Yield and quality parameters were evaluated to assess the suitability of these practices. Acknowledgements: This project has been supported by INIA-RTA2010-00110-C03. Keywords: Phosphorus fertilizer, exhausted grape marc compost, melon crop, yield and quality parameters.

  8. Recovery of agricultural nutrients from biorefineries.

    PubMed

    Carey, Daniel E; Yang, Yu; McNamara, Patrick J; Mayer, Brooke K

    2016-09-01

    This review lays the foundation for why nutrient recovery must be a key consideration in design and operation of biorefineries and comprehensively reviews technologies that can be used to recover an array of nitrogen, phosphorus, and/or potassium-rich products of relevance to agricultural applications. Recovery of these products using combinations of physical, chemical, and biological operations will promote sustainability at biorefineries by converting low-value biomass (particularly waste material) into a portfolio of higher-value products. These products can include a natural partnering of traditional biorefinery outputs such as biofuels and chemicals together with nutrient-rich fertilizers. Nutrient recovery not only adds an additional marketable biorefinery product, but also avoids the negative consequences of eutrophication, and helps to close anthropogenic nutrient cycles, thereby providing an alternative to current unsustainable approaches to fertilizer production, which are energy-intensive and reliant on nonrenewable natural resource extraction. Copyright © 2016 Elsevier Ltd. All rights reserved.

  9. Nitrogen mineralization and nitrous oxide emissions in a sandy soil amended with low-phosphorus broiler litter

    USDA-ARS?s Scientific Manuscript database

    Recurrent land application of broiler litter in regions with a high concentration of poultry farms result in soils with phosphorus (P) far beyond the agronomic requirement of crops. A new waste treatment technology developed by USDA-ARS, called “Quick Wash”, chemically extracts and recovers P from b...

  10. Biological nutrients removal from the supernatant originating from the anaerobic digestion of the organic fraction of municipal solid waste.

    PubMed

    Malamis, S; Katsou, E; Di Fabio, S; Bolzonella, D; Fatone, F

    2014-09-01

    This study critically evaluates the biological processes and techniques applied to remove nitrogen and phosphorus from the anaerobic supernatant produced from the treatment of the organic fraction of municipal solid waste (OFMSW) and from its co-digestion with other biodegradable organic waste (BOW) streams. The wide application of anaerobic digestion for the treatment of several organic waste streams results in the production of high quantities of anaerobic effluents. Such effluents are characterized by high nutrient content, because organic and particulate nitrogen and phosphorus are hydrolyzed in the anaerobic digestion process. Consequently, adequate post-treatment is required in order to comply with the existing land application and discharge legislation in the European Union countries. This may include physicochemical and biological processes, with the latter being more advantageous due to their lower cost. Nitrogen removal is accomplished through the conventional nitrification/denitrification, nitritation/denitritation and the complete autotrophic nitrogen removal process; the latter is accomplished by nitritation coupled with the anoxic ammonium oxidation process. As anaerobic digestion effluents are characterized by low COD/TKN ratio, conventional denitrification/nitrification is not an attractive option; short-cut nitrogen removal processes are more promising. Both suspended and attached growth processes have been employed to treat the anaerobic supernatant. Specifically, the sequencing batch reactor, the membrane bioreactor, the conventional activated sludge and the moving bed biofilm reactor processes have been investigated. Physicochemical phosphorus removal via struvite precipitation has been extensively examined. Enhanced biological phosphorus removal from the anaerobic supernatant can take place through the sequencing anaerobic/aerobic process. More recently, denitrifying phosphorus removal via nitrite or nitrate has been explored. The removal of phosphorus from the anaerobic supernatant of OFMSW is an interesting research topic that has not yet been explored. At the moment, standardization in the design of facilities that treat anaerobic supernatant produced from the treatment of OFMSW is still under development. To move toward this direction, it is first necessary to assess the performance of alternative treatment options. It study concentrates existing data regarding the characteristics of the anaerobic supernatant produced from the treatment of OFMSW and from their co-digestion with other BOW. This provides data documenting the effect of the anaerobic digestion operating conditions on the supernatant quality and critically evaluates alternative options for the post-treatment of the liquid fraction produced from the anaerobic digestion process.

  11. Evaluation of phosphorus and nitrogen balances as an indicator for the impact of agriculture on environment a comparison of case studies from Poland and the Mississippi US

    USDA-ARS?s Scientific Manuscript database

    The objective of the research was to quantify the changes of nitrogen (N) and phosphorus (P) balances in Poland and Mississippi (MS). Nutrient balances were calculated as difference between input and output in the agricultural system according to Organisation for Economic Cooperation and Development...

  12. Understanding of polyhydroxybutyrate production under carbon and phosphorus-limited growth conditions in non-axenic continuous culture.

    PubMed

    Cavaillé, Laëtitia; Albuquerque, Maria; Grousseau, Estelle; Lepeuple, Anne-Sophie; Uribelarrea, Jean-Louis; Hernandez-Raquet, Guillermina; Paul, Etienne

    2016-02-01

    In a waste into resource strategy, a selection of polyhydroxybutyrate (PHB)-accumulating organisms from activated sludge was achieved in an open continuous culture under acetic acid and phosphorus limitation. Once the microbial population was selected at a dilution rate (D), an increase in phosphorus limitation degree was applied in order to study the intracellular phosphorus plasticity of selected bacteria and the resulting capacity to produce PHB. Whatever D, all selected populations were able to produce PHB. At a D, the phosphorus availability determined the phosphorus-cell content which in turn fixed the amount of cell. All the remaining carbon was thus directed toward PHB. By decreasing D, microorganisms adapted more easily to higher phosphorus limitation leading to higher PHB content. A one-stage continuous reactor operated at D=0.023h(-)(1) gave reliable high PHB productivity with PHB content up to 80%. A two-stage reactor could ensure better productivity while allowing tuning product quality. Copyright © 2015 Elsevier Ltd. All rights reserved.

  13. Designing an agricultural vegetative waste-management system under uncertain prices of treatment-technology output products.

    PubMed

    Broitman, D; Raviv, O; Ayalon, O; Kan, I

    2018-05-01

    Setting up a sustainable agricultural vegetative waste-management system is a challenging investment task, particularly when markets for output products of waste-treatment technologies are not well established. We conduct an economic analysis of possible investments in treatment technologies of agricultural vegetative waste, while accounting for fluctuating output prices. Under a risk-neutral approach, we find the range of output-product prices within which each considered technology becomes most profitable, using average final prices as the exclusive factor. Under a risk-averse perspective, we rank the treatment technologies based on their computed certainty-equivalent profits as functions of the coefficient of variation of the technologies' output prices. We find the ranking of treatment technologies based on average prices to be robust to output-price fluctuations provided that the coefficient of variation of the output prices is below about 0.4, that is, approximately twice as high as that of well-established recycled-material markets such as glass, paper and plastic. We discuss some policy implications that arise from our analysis regarding vegetative waste management and its associated risks. Copyright © 2018 Elsevier Ltd. All rights reserved.

  14. Enhanced biological phosphorus removal with different carbon sources.

    PubMed

    Shen, Nan; Zhou, Yan

    2016-06-01

    Enhanced biological phosphorus removal (EBPR) process is one of the most economical and sustainable methods for phosphorus removal from wastewater. However, the performance of EBPR can be affected by available carbon sources types in the wastewater that may induce different functional microbial communities in the process. Glycogen accumulating organisms (GAOs) and polyphosphate accumulating organisms (PAOs) are commonly found by coexisting in the EBPR process. Predominance of GAO population may lead to EBPR failure due to the competition on carbon source with PAO without contributing phosphorus removal. Carbon sources indeed play an important role in alteration of PAOs and GAOs in EBPR processes. Various types of carbon sources have been investigated for EBPR performance. Certain carbon sources tend to enrich specific groups of GAOs and/or PAOs. This review summarizes the types of carbon sources applied in EBPR systems and highlights the roles of these carbon sources in PAO and GAO competition. Both single (e.g., acetate, propionate, glucose, ethanol, and amino acid) and complex carbon sources (e.g., yeast extract, peptone, and mixed carbon sources) are discussed in this review. Meanwhile, the environmental friendly and economical carbon sources that are derived from waste materials, such as crude glycerol and wasted sludge, are also discussed and compared.

  15. Life cycle assessment modelling of waste-to-energy incineration in Spain and Portugal.

    PubMed

    Margallo, M; Aldaco, R; Irabien, A; Carrillo, V; Fischer, M; Bala, A; Fullana, P

    2014-06-01

    In recent years, waste management systems have been evaluated using a life cycle assessment (LCA) approach. A main shortcoming of prior studies was the focus on a mixture of waste with different characteristics. The estimation of emissions and consumptions associated with each waste fraction in these studies presented allocation problems. Waste-to-energy (WTE) incineration is a clear example in which municipal solid waste (MSW), comprising many types of materials, is processed to produce several outputs. This paper investigates an approach to better understand incineration processes in Spain and Portugal by applying a multi-input/output allocation model. The application of this model enabled predictions of WTE inputs and outputs, including the consumption of ancillary materials and combustibles, air emissions, solid wastes, and the energy produced during the combustion of each waste fraction. © The Author(s) 2014.

  16. Electron Doping of Ultrathin Black Phosphorus with Cu Adatoms.

    PubMed

    Koenig, Steven P; Doganov, Rostislav A; Seixas, Leandro; Carvalho, Alexandra; Tan, Jun You; Watanabe, Kenji; Taniguchi, Takashi; Yakovlev, Nikolai; Castro Neto, Antonio H; Özyilmaz, Barbaros

    2016-04-13

    Few-layer black phosphorus is a monatomic two-dimensional crystal with a direct band gap that has high carrier mobility for both holes and electrons. Similarly to other layered atomic crystals, like graphene or layered transition metal dichalcogenides, the transport behavior of few-layer black phosphorus is sensitive to surface impurities, adsorbates, and adatoms. Here we study the effect of Cu adatoms onto few-layer black phosphorus by characterizing few-layer black phosphorus field effect devices and by performing first-principles calculations. We find that the addition of Cu adatoms can be used to controllably n-dope few layer black phosphorus, thereby lowering the threshold voltage for n-type conduction without degrading the transport properties. We demonstrate a scalable 2D material-based complementary inverter which utilizes a boron nitride gate dielectric, a graphite gate, and a single bP crystal for both the p- and n-channels. The inverter operates at matched input and output voltages, exhibits a gain of 46, and does not require different contact metals or local electrostatic gating.

  17. Femtosecond solid-state laser based on a few-layered black phosphorus saturable absorber.

    PubMed

    Su, Xiancui; Wang, Yiran; Zhang, Baitao; Zhao, Ruwei; Yang, Kejian; He, Jingliang; Hu, Qiangqiang; Jia, Zhitai; Tao, Xutang

    2016-05-01

    In this Letter, a high-quality, few-layered black phosphorus (BP) saturable absorber (SA) was fabricated successfully, and a femtosecond solid-state laser modulated by BP-SA was experimentally demonstrated for the first time, to the best of our knowledge. Pulses as short as 272 fs were achieved with an average output power of 0.82 W, corresponding to the pulse energy of 6.48 nJ and peak power of 23.8 MW. So far, these represent the shortest pulse duration and highest output power ever obtained with a BP-based mode-locked solid-state laser. The results indicate the promising potential of few-layered BP-SA for applications in solid-state femtosecond mode-locked lasers.

  18. Laboratory and in-situ reductions of soluble phosphorus in swine waste slurries.

    PubMed

    Burns, R T; Moody, L B; Walker, F R; Raman

    2001-11-01

    Laboratory and field experiments were conducted using magnesium chloride (MgCl2) to force the precipitation of struvite (MgNH4PO4 x 6H2O) and reduce the concentration of soluble phosphorus (SP) in swine waste. In laboratory experiments, reductions of SP of 76% (572 to 135 mg P l(-1)) were observed in raw swine manure after addition of magnesium chloride (MgCl2) at a rate calculated to provide a 1.6:1 molar ratio of magnesium (Mg) to total phosphorus. Adjusting the pH of the treated manure to pH 9.0 with sodium hydroxide (NaOH) increased SP reduction to 91% (572 to 50 mg P l(-1)). X-ray diffraction of the precipitate recovered from swine waste slurry treated only with MgCl2 confirmed the presence ofstruvite. The molar N:P:Mg ratio of the recovered precipitate was 1:1.95:0.24, suggesting that compounds in addition to struvite were formed. In a field experiment conducted in a swine manure holding pond, a 90% reduction in SP concentration was observed in approximately 140,000 l of swine manure slurry treated before land application with 2,000 l MgCl2 (64% solution) at ambient slurry temperatures ranging from 5 to 10 degrees C.

  19. Aluminum phosphate ceramics for waste storage

    DOEpatents

    Wagh, Arun; Maloney, Martin D

    2014-06-03

    The present disclosure describes solid waste forms and methods of processing waste. In one particular implementation, the invention provides a method of processing waste that may be particularly suitable for processing hazardous waste. In this method, a waste component is combined with an aluminum oxide and an acidic phosphate component in a slurry. A molar ratio of aluminum to phosphorus in the slurry is greater than one. Water in the slurry may be evaporated while mixing the slurry at a temperature of about 140-200.degree. C. The mixed slurry may be allowed to cure into a solid waste form. This solid waste form includes an anhydrous aluminum phosphate with at least a residual portion of the waste component bound therein.

  20. Biochar as phosphorus transporter to support the closure of the phosphorus cycle

    NASA Astrophysics Data System (ADS)

    Soja, Gerhard; Jagerhofer, Reinhard; Fristak, Vladimir; Pfeifer, Christoph

    2017-04-01

    Waste materials rich in phosphorus could partly substitute rock phosphate-based mineral fertilizers. As rock phosphate is listed as critical raw material, measures for increasing the recovery rate of phosphorus and for closing the phosphorus cycle are required. However, direct use of the waste materials as fertilizers are frequently not possible because of legal constraints, adverse side effects because of co-occurring contaminants or hygienic concerns. So this study had the objective to test the appropriateness of carbonizing P-rich residues that can be used as secondary P resources for producing P fertilizers. The resulting biochar or hydrochar products should be tested for the bioavailability of P for plant uptake. Feedstock materials tested as secondary P resources were chicken manure, animal bone flour, sewage sludge, and digestates. These materials were either pyrolyzed at different temperatures, partly with different chemical modifications, or hydrothermally carbonized. The biochar and hydrochar products were analyzed for their total and available P concentrations, and the plant bioavailability was determined with a standardized plant growth test with rye (Neubauer-test). The results showed that biochar produced from a mixture of chicken manure and saw dust was equivalent to a standard phosphate fertilizer (superphosphate) with respect to P available for plant uptake. For most materials, a pyrolysis temperature of 400 °C was slightly more beneficial for P availability than 500 °C. Pyrolytic carbonization mostly was more supportive for plant growth than hydrothermal carbonization of the tested feedstocks. For some feedstocks the addition of sodium carbonate improved the P uptake of the plants without affecting the biomass production. The results show that P-rich waste materials used as secondary resources for carbonization can effectively contribute to increased P recovery, savings in the use of mineral phosphate fertilizers and reduced P loads to non-target ecosystems. Additionally, other benefits of biochar application to agricultural soils like carbon sequestration or improvements of physical soil characteristics may supplement the fertilizer effect of P-enriched biochars or hydrochars.

  1. PLANNING AND ASSESSMENT MEASURES TO UPDATING RESOURCES RECYCLING EQUIPMENTS IN COLLABORATION WITH SEWAGE TREATMENT PLANTS AND WASTE INCINERATION PLANTS

    NASA Astrophysics Data System (ADS)

    Nakakubo, Toyohiko; Tokai, Akihiro; Ohno, Koichi

    This study aims to assess two biomass utilization policies: the integration of food waste treatment in a sewerage treatment plant with an anaerobic digestion tank, and the pruned branch usage as heat source for drying sludge. We focused on two points in our analysis that the impact of the increase of dewatered sludge on sludge treatment processes after digestion and the improvement of the efficiency of waste power generation plants. A developed model was applied to the case study in Kobe city and evaluated the impact until 2030 by four indicators: energy consumption, greenhouse gas (GHG) emission, phosphorus-recovery, and cost. The results showed that case 3-C, which introducing the combined sludge and food waste digestion system, pyrolysis gasification with gas engine and wood-chip boiler, could supply additional 452 TJ/y of energy, recovery 93 t-P/y of phosphorus, and reduce 38 kt-CO2eq./y of GHG while shrinking the cost by 88 million yen/y compared to business as usual types-update case.

  2. Nano-rod Ca-decorated sludge derived carbon for removal of phosphorus.

    PubMed

    Kong, Lingjun; Han, Meina; Shih, Kaimin; Su, Minhua; Diao, Zenghui; Long, Jianyou; Chen, Diyun; Hou, Li'an; Peng, Yan

    2018-02-01

    Recovering phosphorus (P) from waste streams takes the unique advantage in simultaneously addressing the crisis of eutrophication and the shortage of P resource. A novel calcium decorated sludge carbon (Ca-SC) was developed from dyeing industry wastewater treatment sludge by decorating calcium (Ca) to effectively adsorb phosphorus from solution. The X-ray diffraction (XRD) and Fourier transform infrared (FTIR) techniques were used to characterize the Ca-SCs, followed by isotherm and kinetic sorption experiments. A preferred design with CaCO 3 to sludge mass ratio of 1:2 was found to have a sorption capacity of 116.82 mg/g for phosphorus. This work reveals the crucial role of well-dispersed nano-rod calcium on the Ca-SC surface for the sorption of phosphorus. Moreover, the decoration of nano-rod calcium was found to further promote the uptake of phosphorus through the formation of hydroxylapatite (Ca 5 (PO 4 ) 3 (OH)). Thus, the development of decorated Ca-SC for sorption of phosphorus is very important in solving the P pollution and resource loss. Copyright © 2017 Elsevier Ltd. All rights reserved.

  3. Effect of Chicken Bone Meal as Phosphorus Supplement on Blood Metabolites in Fattening Lambs

    NASA Astrophysics Data System (ADS)

    Pujiastuti, A.; Muktiani, A.

    2018-02-01

    The aim of this study was to evaluate the effect of chicken bone meal (CBM) as phosphorus supplementon blood metabolites in fattening lambs. The experiment used 16 of 12 months old local male lambs with initial body weight 27.01 ± 1.51 kg. The experiment used a complete randomized design with 4 treatments and 4 replications. The treatments were T0 (basal ration = native grass + soybean curd waste), T1 (basal ration + 0.49% P Dicalcium phosphate), T2 (basal ration + 0.70% P CBM), T3 (basal ration + 1.39 % P CBM). The results indicated that CBM as phosphorus supplement was significantly different (P<0,05) on P intake, phosphorus and glucose serum and did not different significantly on dry matter intake and alkaline phosphatase activity. In conclusion, CBM is one of requirement organic phosphorus supplement which can be applied on ruminants.

  4. Isolation and Characterization of Phosphate-Solubilizing Bacteria from Mushroom Residues and their Effect on Tomato Plant Growth Promotion.

    PubMed

    Zhang, Jian; Wang, Peng Cheng; Fang, Ling; Zhang, Qi-An; Yan, Cong Sheng; Chen, Jing Yi

    2017-03-30

    Phosphorus is a major essential macronutrient for plant growth, and most of the phosphorus in soil remains in insoluble form. Highly efficient phosphate-solubilizing bacteria can be used to increase phosphorus in the plant rhizosphere. In this study, 13 isolates were obtained from waste mushroom residues, which were composed of cotton seed hulls, corn cob, biogas residues, and wood flour. NBRIP solid medium was used for isolation according to the dissolved phosphorus halo. Eight isolates produced indole acetic acid (61.5%), and six isolates produced siderophores (46.2%). Three highest phosphate-dissolving bacterial isolates, namely, M01, M04, and M11, were evaluated for their beneficial effects on the early growth of tomato plants (Solanum lycopersicum L. Wanza 15). Strains M01, M04, and M11 significantly increased the shoot dry weight by 30.5%, 32.6%, and 26.2%, and root dry weight by 27.1%, 33.1%, and 25.6%, respectively. Based on 16S rRNA gene sequence comparisons and phylogenetic positions, strains M01 and M04 belonged to the genus Acinetobacter, and strain M11 belonged to the genus Ochrobactrum. The findings suggest that waste mushroom residues are a potential resource of plant growth-promoting bacteria exhibiting satisfactory phosphate-solubilizing for sustainable agriculture.

  5. Corps of Engineers Land Treatment of Wastewater Research Program, An Annotated Bibliography.

    DTIC Science & Technology

    1983-04-01

    engineering) Waste treatment Waste water 4 20. ABST14ACT (Eacabsue an reverse oh It necwwey mad tdertlfy by block number) *This bibliography contains...1982) Distribution of phosphorus in soils irri ated with municipal waste- water effluent: A 5-year study. Journal of Environmental Quality, vol. 11...vol. 44, p. 383-394. The removal of seeded coliphage f2 and indigenous enteroviruses from primary and secondary wastewaters applied by spray

  6. Distributed and dynamic modelling of hydrology, phosphorus and ecology in the Hampshire Avon and Blashford Lakes: evaluating alternative strategies to meet WFD standards.

    PubMed

    Whitehead, P G; Jin, L; Crossman, J; Comber, S; Johnes, P J; Daldorph, P; Flynn, N; Collins, A L; Butterfield, D; Mistry, R; Bardon, R; Pope, L; Willows, R

    2014-05-15

    The issues of diffuse and point source phosphorus (P) pollution in the Hampshire Avon and Blashford Lakes are explored using a catchment model of the river system. A multibranch, process based, dynamic water quality model (INCA-P) has been applied to the whole river system to simulate water fluxes, total phosphorus (TP) and soluble reactive phosphorus (SRP) concentrations and ecology. The model has been used to assess impacts of both agricultural runoff and point sources from waste water treatment plants (WWTPs) on water quality. The results show that agriculture contributes approximately 40% of the phosphorus load and point sources the other 60% of the load in this catchment. A set of scenarios have been investigated to assess the impacts of alternative phosphorus reduction strategies and it is shown that a combined strategy of agricultural phosphorus reduction through either fertiliser reductions or better phosphorus management together with improved treatment at WWTPs would reduce the SRP concentrations in the river to acceptable levels to meet the EU Water Framework Directive (WFD) requirements. A seasonal strategy for WWTP phosphorus reductions would achieve significant benefits at reduced cost. Copyright © 2014 Elsevier B.V. All rights reserved.

  7. Kinetics of phosphorus and potassium release from rock phosphate and waste mica enriched compost and their effect on yield and nutrient uptake by wheat (Triticum aestivum).

    PubMed

    Nishanth, D; Biswas, D R

    2008-06-01

    An attempt was made to study the efficient use of rice straw and indigenous source of phosphorus and potassium in crop production through composting technology. Various enriched composts were prepared using rice straw, rock phosphate (RP), waste mica and bioinoculant (Aspergillus awamori) and kinetics of release of phosphorus and potassium from enriched composts and their effect on yield and nutrient uptake by wheat (Triticum aestivum) were carried out. Results showed sharp increases in release in water-soluble P and K from all the composts at 8th to 12th day of leaching, thereafter, it decreased gradually. Maximum release of water-soluble P and K were obtained in ordinary compost than enriched composts during the initial stages of leaching, but their differences narrowed down at latter stages. Data in pot experiments revealed that enriched composts performed poorly than diammonium phosphate during initial stages of crop growth, but they out yielded at the latter stages, particularly at maturity stage, as evident from their higher yield, uptake, nutrient recoveries and fertility status of P and K in soils. Moreover, enriched composts prepared with RP and waste mica along with A. awamori resulted in significantly higher biomass yield, uptake and recoveries of P and K as well as available P and K in soils than composts prepared without inoculant. Results indicated that enriched compost could be an alternate technology for the efficient management of rice straw, low-grade RP and waste mica in crop production, which could help to reduce the reliance on costly chemical fertilizers.

  8. 77 FR 58315 - Hazardous Waste Management System; Identification and Listing of Hazardous Waste; Final Exclusion

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-09-20

    ... E (Phosphorus), and 1613B (Dioxins and Furans). The laboratory Quality Assurance Plan (Attachment 2... fine sand layer that underlies the North Landfarm but overlies a clay liner. Within said sand layer are... Quality Objectives are to demonstrate that samples of the ExxonMobil North Landfarm underflow water are...

  9. Phosphorus removal by electric arc furnace steel slag adsorption

    NASA Astrophysics Data System (ADS)

    Lim, J. W.; Lee, K. F.; Chong, Thomas S. Y.; Abdullah, L. C.; Razak, M. A.; Tezara, C.

    2017-10-01

    As to overcome the eutrophication in lakes and reservoirs which is resulted from excessive input of phosphorus due to rapid urbanization or uncontrolled agricultural activities, Electric Arc Furnace steel slag (EAFS), a steelmaking by-product, in which the disposal of this industrial waste considered economically unfavourable yet it’s physical and chemical properties exhibits high potential to be great P adsorbent. The objective of this study was to identify most suitable mathematical model in description of adsorption by using traditional batch experiment and to investigate the effect on Phosphorus removal efficiency and Phosphorus removal capacity by EAFS adsorption through variation of parameters such as pH, size of slag and initial concentration of Phosphorus. Result demonstrated that, Langmuir is suitable in describing Phosphorus removal mechanisms with the Maximum Adsorption Capacity, Q m of 0.166 mg/g and Langmuir Constant, KL of 0.03519 L/mg. As for effect studies, smaller size of adsorbent shows higher percentage (up to 37.8%) of Phosphorus removal compared to the larger size. Besides that, the experiment indicated a more acidic environment is favourable for Phosphorus removal and the amount of Phosphorus adsorbed at pH 3.0 was the highest. In addition, the adsorption capacity increases steadily as the initial Phosphorus concentration increases but it remained steady at 100mg P/L. Eventually, this study serves as better understanding on preliminary studies of P removal mechanisms by EAFS.

  10. Potential Application of Biohydrogen Production Liquid Waste as Phosphate Solubilizing Agent-A Study Using Soybean Plants.

    PubMed

    Sarma, Saurabh Jyoti; Brar, Satinder Kaur; LeBihan, Yann; Buelna, Gerardo

    2016-03-01

    With CO2 free emission and a gravimetric energy density higher than gasoline, diesel, biodiesel, and bioethanol, biohydrogen is a promising green renewable energy carrier. During fermentative hydrogen production, 60-70 % of the feedstock is converted to different by-products, dominated by organic acids. In the present investigation, a simple approach for value addition of hydrogen production liquid waste (HPLW) containing these compounds has been demonstrated. In soil, organic acids produced by phosphate solubilizing bacteria chelate the cations of insoluble inorganic phosphates (e.g., Ca3 (PO4)2) and make the phosphorus available to the plants. Organic acid-rich HPLW, therefore, has been evaluated as soil phosphate solubilizer. Application of HPLW as soil phosphate solubilizer was found to improve the phosphorus uptake of soybean plants by 2.18- to 2.74-folds. Additionally, 33-100 % increase in seed germination rate was also observed. Therefore, HPLW has the potential to be an alternative for phosphate solubilizing biofertilizers available in the market. Moreover, the strategy can be useful for phytoremediation of phosphorus-rich soil.

  11. Dual Paraneoplastic Syndromes: Small Cell Lung Carcinoma-related Oncogenic Osteomalacia, and Syndrome of Inappropriate Antidiuretic Hormone Secretion: Report of a Case and Review of the Literature

    PubMed Central

    Ng, Roland CK

    2011-01-01

    Acquired isolated renal phosphate wasting associated with a tumor, known as oncogenic osteomalacia or tumor-induced osteomalacia, is a rare paraneoplastic syndrome caused by overproduction of fibroblast growth factor 23. Oncogenic osteomalacia is usually associated with benign mesenchymal tumors. Syndrome of inappropriate antidiuretic hormone secretion (SIADH), on the other hand, is a common paraneoplastic syndrome caused by small cell carcinoma (SCC). Concomitant oncogenic osteomalacia and SIADH associated with SCC is very rare with only 4 other cases reported in the literature. The authors report a case of small cell lung cancer (SCLC)-related renal wasting hypophosphatemia and concurrent SIADH, and review the literature reporting 9 other cases of SCC associated with oncogenic osteomalacia. Almost half of reported cases of renal phosphate wasting associated with SCC concomitantly presented with SIADH. These cases had initial serum phosphorus level lower and survival periods shorter than those without SIADH. This rare combination of a dual paraneoplastic syndrome and low serum phosphorus may be a poor prognostic sign. In addition, both renal phosphate wasting and SIADH usually occur in a short period of time before identification of SCC. Therefore, renal wasting hypophosphatemia with concomitant SIADH/hyponatremia should prompt a search for SCC rather than a benign mesenchymal tumor. PMID:21886301

  12. Dual paraneoplastic syndromes: small cell lung carcinoma-related oncogenic osteomalacia, and syndrome of inappropriate antidiuretic hormone secretion: report of a case and review of the literature.

    PubMed

    Tantisattamo, Ekamol; Ng, Roland C K

    2011-07-01

    Acquired isolated renal phosphate wasting associated with a tumor, known as oncogenic osteomalacia or tumor-induced osteomalacia, is a rare paraneoplastic syndrome caused by overproduction of fibroblast growth factor 23. Oncogenic osteomalacia is usually associated with benign mesenchymal tumors. Syndrome of inappropriate antidiuretic hormone secretion (SIADH), on the other hand, is a common paraneoplastic syndrome caused by small cell carcinoma (SCC). Concomitant oncogenic osteomalacia and SIADH associated with SCC is very rare with only 4 other cases reported in the literature. The authors report a case of small cell lung cancer (SCLC)-related renal wasting hypophosphatemia and concurrent SIADH, and review the literature reporting 9 other cases of SCC associated with oncogenic osteomalacia. Almost half of reported cases of renal phosphate wasting associated with SCC concomitantly presented with SIADH. These cases had initial serum phosphorus level lower and survival periods shorter than those without SIADH. This rare combination of a dual paraneoplastic syndrome and low serum phosphorus may be a poor prognostic sign. In addition, both renal phosphate wasting and SIADH usually occur in a short period of time before identification of SCC. Therefore, renal wasting hypophosphatemia with concomitant SIADH/hyponatremia should prompt a search for SCC rather than a benign mesenchymal tumor.

  13. Eutrophication study at the Panjiakou-Daheiting Reservoir system, northern Hebei Province, People's Republic of China: Chlorophyll-a model and sources of phosphorus and nitrogen

    USGS Publications Warehouse

    Domagalski, Joseph L.; Lin, Chao; Luo, Yang; Kang, Jie; Wang, Shaoming; Brown, Larry R.; Munn, Mark D.

    2007-01-01

    Concentrations, loads, and sources of nitrate and total phosphorus were investigated at the Panjiakou and Daheiting Reservoir system in northern Hebei Province, People's Republic of China. The Luan He River is the primary source of water to these reservoirs, and the upstream watershed has a mix of land uses including agriculture, forest, and one large urban center. The reservoirs have a primary use for storage of drinking water and partially supply Tianjin City with its annual needs. Secondary uses include flood control and aqua culture (fish cages). The response of the reservoir system from phosphorus input, with respect to chlorophyll-a production from algae, was fitted to a model of normalized phosphorus loading that regresses the average summer-time chlorophyll-a concentration to the average annual phosphorus concentration of the reservoir. Comparison of the normalized phosphorus loading and chlorophyll-a response of this system to other reservoirs throughout the world indicate a level of eutrophication that will require up to an approximate 5–10-fold decrease in annual phosphorus load to bring the system to a more acceptable level of algal productivity. Isotopes of nitrogen and oxygen in dissolved nitrate were measured from the headwater streams and at various locations along the major rivers that provide the majority of water to these reservoirs. Those isotopic measurements indicate that the sources of nitrate change from natural background in the rivers to animal manure and septic waste upstream of the reservoir. Although the isotopic measurements suggest that animal and septic wastes are a primary source of nutrients, measurements of the molar ratio of nitrogen to phosphorus are more indicative of row-cropping practices. Options for reduction of nutrient loads include changing the management practices of the aqua culture, installation of new sewage treatment systems in the large urbanized area of the upper watershed, and agricultural management practices that would reduce the loading of nutrients and soil erosion from that land use.

  14. Recovery of nitrogen and phosphorus from alkaline fermentation liquid of waste activated sludge and application of the fermentation liquid to promote biological municipal wastewater treatment.

    PubMed

    Tong, Juan; Chen, Yinguang

    2009-07-01

    In previous publications we reported that by controlling the pH at 10.0 the accumulation of short-chain fatty acids (SCFA) during waste activated sludge (WAS) fermentation was remarkably improved [Yuan, H., Chen, Y., Zhang, H., Jiang, S., Zhou, Q., Gu, G., 2006. Improved bioproduction of short-chain fatty acids (SCFAs) from excess sludge under alkaline conditions. Environ. Sci. Technol. 40, 2025-2029], but significant ammonium nitrogen (NH(4)-N) and soluble ortho-phosphorus (SOP) were released [Chen, Y., Jiang, S., Yuan, H., Zhou, Q., Gu, G., 2007. Hydrolysis and acidification of waste activated sludge at different pHs. Water Res. 41, 683-689]. This paper investigated the simultaneous recovery of NH(4)-N and SOP from WAS alkaline fermentation liquid and the application of the fermentation liquid as an additional carbon source for municipal wastewater biological nitrogen and phosphorus removal. The central composite design (CCD) of the response surface methodology (RSM) was employed to optimize and model the simultaneous NH(4)-N and SOP recovery from WAS alkaline fermentation liquid. Under the optimum conditions, the predicted and experimental recovery efficiency was respectively 73.4 and 75.7% with NH(4)-N, and 82.0 and 83.2% with SOP, which suggested that the developed models described the experiments well. After NH(4)-N and SOP recovery, the alkaline fermentation liquid was added to municipal wastewater, and the influence of volume ratio of fermentation liquid to municipal wastewater (FL/MW) on biological nitrogen and phosphorus removal was investigated. The addition of fermentation liquid didn't significantly affect nitrification. Both SOP and total nitrogen (TN) removal were increased with fermentation liquid, but there was no significant increase at FL/MW greater than 1/35. Compared to the blank test, the removal efficiency of SOP and TN at FL/MW=1/35 was improved from 44.0 to 92.9%, and 63.3 to 83.2%, respectively. The enhancement of phosphorus and nitrogen removal was mainly attributed to the increase of influent SCFA, or rather, the increase of intracellular polyhydroxyalkanoates (PHA) which served as the carbon and energy sources for denitrification and phosphorus uptake. The addition of alkaline fermentation liquid to municipal wastewater, however, increased the effluent COD, which was caused mainly by the increase of influent humic acid, not protein or carbohydrate.

  15. Evaluating the efficiency of carbon utilisation via bioenergetics between biological aerobic and denitrifying phosphorus removal systems

    PubMed Central

    Jin, Zhan; He, Yin; Xu, Xuan; Zheng, Xiang-yong

    2017-01-01

    There are two biological systems available for removing phosphorus from waste water, conventional phosphorus removal (CPR) and denitrifying phosphorus removal (DPR) systems, and each is characterized by the type of sludge used in the process. In this study, we compared the characteristics associated with the efficiency of carbon utilization between CPR and DPR sludge using acetate as a carbon source. For DPR sludge, the heat emitted during the phosphorus release and phosphorus uptake processes were 45.79 kJ/mol e- and 84.09 kJ/mol e-, respectively. These values were about 2 fold higher than the corresponding values obtained for CPR sludge, suggesting that much of the energy obtained from the carbon source was emitted as heat. Further study revealed a smaller microbial mass within the DPR sludge compared to CPR sludge, as shown by a lower sludge yield coefficient (0.05 gVSS/g COD versus 0.36 gVSS/g COD), a result that was due to the lower energy capturing efficiency of DPR sludge according to bioenergetic analysis. Although the efficiency of anoxic phosphorus removal was only 39% the efficiency of aerobic phosphorus removal, the consumption of carbon by DPR sludge was reduced by 27.8% compared to CPR sludge through the coupling of denitrification with dephosphatation. PMID:29065157

  16. From wastewater to fertilisers--Technical overview and critical review of European legislation governing phosphorus recycling.

    PubMed

    Hukari, Sirja; Hermann, Ludwig; Nättorp, Anders

    2016-01-15

    The present paper is based on an analysis of the EU legislation regulating phosphorus recovery and recycling from wastewater stream, in particular as fertiliser. To recover phosphorus, operators need to deal with market regulations, health and environment protection laws. Often, several permits and lengthy authorisation processes for both installation (e.g. environmental impact assessment) and the recovered phosphorus (e.g. End-of-Waste, REACH) are required. Exemptions to certain registration processes for recoverers are in place but rarely applied. National solutions are often needed. Emerging recovery and recycling sectors are affected by legislation in different ways: Wastewater treatment plants are obliged to remove phosphorus but may also recover it in low quantities for operational reasons. Permit processes allowing recovery and recycling operations next to water purification should thus be rationalised. In contrast, the fertiliser industry relies on legal quality requirements, ensuring their market reputation. For start-ups, raw-material sourcing and related legislation will be the key. Phosphorus recycling is governed by fragmented decision-making in regional administrations. Active regulatory support, such as recycling obligation or subsidies, is lacking. Legislation harmonisation, inclusion of recycled phosphorus in existing fertiliser regulations and support of new operators would speed up market penetration of novel technologies, reduce phosphorus losses and safeguard European quality standards.

  17. Valorization of phosphogypsum waste as asphaltic bitumen modifier.

    PubMed

    Cuadri, A A; Navarro, F J; García-Morales, M; Bolívar, J P

    2014-08-30

    The accumulation of phosphogypsum waste from the fertilizer industries, which remain in regulated stacks occupying considerable land resources, is causing significant environment problems worldwide. In that sense, the scientific community is being pressured to find alternative ways for their disposal. In this research, we propose a novel application for phosphogypsum waste, as a modifier of bitumen for flexible road pavements. Viscous flow tests carried out on bitumen modified with a phosphogypsum waste and doped with sulfuric acid demonstrated an extraordinary increase in viscosity, at 60°C, when compared to a counterpart sample which had been modified with gypsum, the main component of phosphogypsum. Similarly, a significant improvement in the viscoelastic response of the resulting material at high temperatures was also found. FTIR (Fourier transform infrared spectroscopy) scans provided evidences of the existence of chemical reactions involving phosphorus, as revealed by a new absorption band from 1060 to 1180cm(-1), related to COP vibrations. This result points at phosphorus contained in the phosphogypsum impurities to be the actual "modifying" substance. Furthermore, no COP band was observed in the absence of sulfuric acid, which seems to be the "promoting" agent of this type of bond. Copyright © 2014 Elsevier B.V. All rights reserved.

  18. Estimates of Nitrogen, Phosphorus, Biochemical Oxygen Demand, and Fecal Coliforms Entering the Environment Due to Inadequate Sanitation Treatment Technologies in 108 Low and Middle Income Countries.

    PubMed

    Fuhrmeister, Erica R; Schwab, Kellogg J; Julian, Timothy R

    2015-10-06

    Understanding the excretion and treatment of human waste (feces and urine) in low and middle income countries (LMICs) is necessary to design appropriate waste management strategies. However, excretion and treatment are often difficult to quantify due to decentralization of excreta management. We address this gap by developing a mechanistic, stochastic model to characterize phosphorus, nitrogen, biochemical oxygen demand (BOD), and fecal coliform pollution from human excreta for 108 LMICs. The model estimates excretion and treatment given three scenarios: (1) use of existing sanitation systems, (2) use of World Health Organization-defined "improved sanitation", and (3) use of best available technologies. Our model estimates that more than 10(9) kg/yr each of phosphorus, nitrogen and BOD are produced. Of this, 22(19-27)%, 11(7-15)%, 17(10-23)%, and 35 (23-47)% (mean and 95% range) BOD, nitrogen, phosphorus, and fecal coliforms, respectively, are removed by existing sanitation systems. Our model estimates that upgrading to "improved sanitation" increases mean removal slightly to between 17 and 53%. Under the best available technology scenario, only approximately 60-80% of pollutants are treated. To reduce impact of nutrient and microbial pollution on human and environmental health, improvements in both access to adequate sanitation and sanitation treatment efficiency are needed.

  19. Enhanced phosphorus removal from wastewater by growing deep-sea bacterium combined with basic oxygen furnace slag.

    PubMed

    Zhou, Weizhi; Huang, Zhaosong; Sun, Cuiping; Zhao, Haixia; Zhang, Yuzhong

    2016-08-01

    As one solid waste with potential for phosphorus removal, application of slags in water treatment merits attention. But it was inhibited greatly by alkaline solution (pH>9.5) and cemented clogging generated. To give one solution, phosphorus removal was investigated by combining deep-sea bacterium Alteromonas 522-1 and basic oxygen furnace slag (BOFS). Results showed that by the combination, not only higher phosphorous removal efficiency (>90%) but also neutral solution pH of 7.8-8.0 were achieved at wide ranges of initial solution pH value of 5.0-9.0, phosphorus concentration of 5-30mg/L, salinity of 0.5-3.5%, and temperature of 15-35°C. Moreover, sedimentary property was also improved with lower amount of sludge production and alleviated BOFS cementation with increased porosity and enlarged particle size. These results provided a promising strategy for the phosphorus recovery with slags in large-scale wastewater treatment. Copyright © 2016 Elsevier Ltd. All rights reserved.

  20. The Sources and Solutions: Wastewater

    EPA Pesticide Factsheets

    Wastewater treatment plants process water from homes and businesses, which contains nitrogen and phosphorus from human waste, food and certain soaps and detergents, and they can be a major source of nutrient pollution.

  1. The influence of wine-distillery waste compost on nitrogen and phosphorus dynamics and uptake by a melon crop in a shallow calcareous soil

    NASA Astrophysics Data System (ADS)

    Requejo, M. I.; Villena, R.; Ribas, F.; Castellanos, M. T.; Cabello, M. J.; Arce, A.; Cartagena, M. C.

    2012-04-01

    In Mediterranean countries, the large quantity of organic wastes generated by the winery industry constitutes a serious environmental concern, due to its low pH and high content of phenolic compounds. This is accompanied by a seasonal production that makes their management difficult. Winery wastes are characterized by high organic matter contents, low electrical conductivity values and notable contents in macronutrients, so their use as organic amendments is a good management option for improving soil fertility. However, a composting treatment is necessary to convert these organic wastes into more stable, hygienic and humic-rich materials. The aim of this work was to evaluate the effects of the application of exhausted grape marc compost (composed of dealcoholized pulp, skins and stems) as fertilizer in soil nitrogen and phosphorus availability and uptake by a melon crop (Cucumis melo L.). This experiment was carried out from May to September 2011 in Ciudad Real (Spain). This area was designated "vulnerable zone" by the "Nitrates Directive" 91/676/CEE. The soil was a shallow sandy-loam (Alfisol Xeralf Petrocalcic Palexeralfs) with a depth of 0.60 m and a discontinuous petrocalcic horizon between 0.60 and 0.70 m, slightly basic (pH 7.9), poor in organic matter (0.20%), rich in potassium (407 ppm) and with a medium level of phosphorus (19.4 ppm). The experiment had a randomised complete block design, with four treatments consisted of four compost doses: 0 (D0), 6.7 (D1), 13.3 (D2) and 20 T compost ha-1 (D3), in order to determine the optimum dose to ensure nutrient demand, maximizing yield and minimizing nutrient losses. Acknowledgements This project has been supported by INIA-RTA2010-00110-C03-01.

  2. Phosphorus runoff from waste water treatment biosolids and poultry litter applied to agricultural soils.

    PubMed

    White, John W; Coale, Frank J; Sims, J Thomas; Shober, Amy L

    2010-01-01

    Differences in the properties of organic phosphorus (P) sources, particularly those that undergo treatment to reduce soluble P, can affect soil P solubility and P transport in surface runoff. This 2-yr field study investigated soil P solubility and runoff P losses from two agricultural soils in the Mid-Atlantic region after land application of biosolids derived from different waste water treatment processes and poultry litter. Phosphorus speciation in the biosolids and poultry litter differed due to treatment processes and significantly altered soil P solubility and dissolved reactive P (DRP) and bioavailable P (FeO-P) concentrations in surface runoff. Runoff total P (TP) concentrations were closely related to sediment transport. Initial runoff DRP and FeO-P concentrations varied among the different biosolids and poultry litter applied. Over time, as sediment transport declined and DRP concentrations became an increasingly important component of runoff FeO-P and TP, total runoff P was more strongly influenced by the type of biosolids applied. Throughout the study, application of lime-stabilized biosolids and poultry litter increased concentrations of soil-soluble P, readily desorbable P, and soil P saturation, resulting in increased DRP and FeO-P concentrations in runoff. Land application of biosolids generated from waste water treatment processes that used amendments to reduce P solubility (e.g., FeCl(3)) did not increase soil P saturation and reduced the potential for DRP and FeO-P transport in surface runoff. These results illustrate the importance of waste water treatment plant process and determination of specific P source coefficients to account for differential P availability among organic P sources.

  3. Analysis of Phosphorus Flows through Minnesota's Twin Cities Urban Food-Shed: Three Scenarios for Improving Nutrient Efficiency

    NASA Astrophysics Data System (ADS)

    Peterson, H. M.; Baker, L. A.

    2012-12-01

    Phosphorus (P) is a non-renewable resource, essential for agriculture and human food production. Although it is being depleted globally, urban P use is inefficient and contributes to water resources degradation, particularly accelerated eutrophication of receiving waters. A paradox in the P cycle is that although P enters the system through fertilizer application to agricultural land or livestock manure production in rural areas, the resulting food produced is consumed within urban households. Dietary food consumption is the largest P input to, and output from, Twin Cities Metropolitan Area (TCMA), Minnesota, households. This 7-county area has a population of 2.9 million (2010), which is over half of the State's population. Human food accounts for 41% of the P input to and 46% of the P output from the TCMA; only about 1% of the P in food waste is recycled. Expanding on previous work by the Twin Cities Household Ecosystem Project (TCHEP), this P flow analysis aims to quantify nutrient inputs required throughout the agricultural system to produce the amount of food consumed by TCMA households, while examining P use efficiency by summarizing the extent of leakage (waste), storage, and reuse throughout these systems. Food corresponding to a minimum of 80% of the total dietary P-input for TCMA households can be produced entirely within Minnesota's agricultural system, hence our "food-shed" is more-or-less directly connected to urban consumers. The top food products which contribute the largest input of dietary P are milk, cheese, wheat flour, beef, chicken, caloric sweeteners and pork. Mapping out an agricultural footprint which can support this urban ecosystem enables P use to be conceptualized through a circular economy model, in this case with Minnesota as the food-shed boundary. Using state-level data, augmented with intensive interview data collected from local livestock and food production experts, a detailed P balance was developed for each major animal and cropping system within the food-shed. P use efficiencies for these systems include: corn (1.14), hog (0.47), dairy (0.36), and beef (0.20). We will present three scenarios to illustrate how upstream and downstream changes alter the urban food-shed P balance. The first scenario examines upstream (food processing) waste management to identify nutrient recycling inefficiencies between agricultural and urban systems. The second scenario focuses on quantifying how altering consumer choices, such as converting to a more vegetable-based diet, shifts the P balance within the food-shed. The final scenario seeks to improve P use efficiency within the urban ecosystem to reduce downstream transfer. This research will contribute to the understanding of how human diets within a concentrated urban ecosystem impact an entire systems P balance. The potential for increasing P use efficiency and identifying barriers and opportunities to improve P use efficiency will be discussed.

  4. Food Waste Composting Study from Makanan Ringan Mas

    NASA Astrophysics Data System (ADS)

    Kadir, A. A.; Ismail, S. N. M.; Jamaludin, S. N.

    2016-07-01

    The poor management of municipal solid waste in Malaysia has worsened over the years especially on food waste. Food waste represents almost 60% of the total municipal solid waste disposed in the landfill. Composting is one of low cost alternative method to dispose the food waste. This study is conducted to compost the food waste generation in Makanan Ringan Mas, which is a medium scale industry in Parit Kuari Darat due to the lack knowledge and exposure of food waste recycling practice. The aim of this study is to identify the physical and chemical parameters of composting food waste from Makanan Ringan Mas. The physical parameters were tested for temperature and pH value and the chemical parameter are Nitrogen, Phosphorus and Potassium. In this study, backyard composting was conducted with 6 reactors. Tapioca peel was used as fermentation liquid and soil and coconut grated were used as the fermentation bed. Backyard composting was conducted with six reactors. The overall results from the study showed that the temperature of the reactors were within the range which are from 30° to 50°C. The result of this study revealed that all the reactors which contain processed food waste tend to produce pH value within the range of 5 to 6 which can be categorized as slightly acidic. Meanwhile, the reactors which contained raw food waste tend to produce pH value within the range of 7 to 8 which can be categorized as neutral. The highest NPK obtained is from Reactor B that process only raw food waste. The average value of Nitrogen is 48540 mg/L, Phosphorus is 410 mg/L and Potassium is 1550 mg/L. From the comparison with common chemical fertilizer, it shows that NPK value from the composting are much lower than NPK of the common chemical fertilizer. However, comparison with NPK of organic fertilizer shown only slightly difference value in NPK.

  5. ENGINEERING BULLETIN: CONSTRUCTED WETLANDS TREATMENT

    EPA Science Inventory

    Constructed wetlands have been demonstrated effective in removing organic, metal, and nutrient elements including nitrogen and phosphorus from municipal wastewaters, mine drainage, industrial effluents, and agricultural runoff. The technology is waste stream-specific, requiring...

  6. Obtaining of granular fertilizers based on ashes from combustion of waste residues and ground bones using phosphorous solubilization by bacteria Bacillus megaterium.

    PubMed

    Rolewicz, M; Rusek, P; Borowik, K

    2018-06-15

    The article presents research results on obtaining phosphorus granulated fertilizers on the basis of microbiologically activated sewage sludge ashes, ground bones and dried blood from meat industry. Granulation tests were carried out using a laboratory pan granulator as well as on an experimental pilot plant. The aim of the studies was to select the proper composition of the mixture of raw materials and binding agents to obtain granulated fertilizers from waste materials such as MSSA and MBM and bacteria lyophilisate. Obtained fertilizer samples were subjected to physical tests (granulation tests etc.) and quality assessment. The tests confirmed that it was possible to produce granulated phosphate fertilizers using the Bacillus megaterium for solubilization of phosphorus in a simple process. Copyright © 2017 Elsevier Ltd. All rights reserved.

  7. Modelling of Two-Stage Methane Digestion With Pretreatment of Biomass

    NASA Astrophysics Data System (ADS)

    Dychko, A.; Remez, N.; Opolinskyi, I.; Kraychuk, S.; Ostapchuk, N.; Yevtieieva, L.

    2018-04-01

    Systems of anaerobic digestion should be used for processing of organic waste. Managing the process of anaerobic recycling of organic waste requires reliable predicting of biogas production. Development of mathematical model of process of organic waste digestion allows determining the rate of biogas output at the two-stage process of anaerobic digestion considering the first stage. Verification of Konto's model, based on the studied anaerobic processing of organic waste, is implemented. The dependencies of biogas output and its rate from time are set and may be used to predict the process of anaerobic processing of organic waste.

  8. Sewage sludge ash (SSA) from large and small incineration plants as a potential source of phosphorus - Polish case study.

    PubMed

    Smol, Marzena; Kulczycka, Joanna; Kowalski, Zygmunt

    2016-12-15

    The aim of this research is to present the possibility of using the sewage sludge ash (SSA) generated in incineration plants as a secondary source of phosphorus (P). The importance of issues related to P recovery from waste materials results from European Union (UE) legislation, which indicated phosphorus as a critical raw material (CRM). Due to the risks of a shortage of supply and its impact on the economy, which is greater than other raw materials, the proper management of phosphorus resources is required in order to achieve global P security. Based on available databases and literature, an analysis of the potential use of SSA for P-recovery in Poland was conducted. Currently, approx. 43,000 Mg/year of SSA is produced in large and small incineration plants and according to in the Polish National Waste Management Plan 2014 (NWMP) further steady growth is predicted. This indicates a great potential to recycle phosphorus from SSA and to reintroduce it again into the value chain as a component of fertilisers which can be applied directly on fields. The amount of SSA generated in installations, both large and small, varies and this contributes to the fact that new and different P recovery technology solutions must be developed and put into use in the years to come (e.g. mobile/stationary P recovery installations). The creation of a database focused on the collection and sharing of data about the amount of P recovered in EU and Polish installations is identified as a helpful tool in the development of an efficient P management model for Poland. Copyright © 2016 Elsevier Ltd. All rights reserved.

  9. The Utilization of Banana Peel in the Fermentation Liquid in Food Waste Composting

    NASA Astrophysics Data System (ADS)

    Kadir, A. A.; Rahman, N. A.; Azhari, N. W.

    2016-07-01

    Municipal solid waste in Malaysia contains a high amount of organic matters, particularly food waste. Food waste represents almost 60% from the total municipal solid waste disposed in the landfill. Food waste can be converted into useful materials such as compost. However, source separation of food waste for recycling is not commonly practiced in Malaysia due to various constraints. These constraints include low awareness among the waste generators and low demand of the products produced from the food waste such as composts. Composting is one of the alternatives that can be used in food waste disposal from Makanan Ringan Mas. The aim of the study is to convert food waste generated from Makanan Ringan Mas which is a medium sale industry located at Parit Kuari Darat, Batu Pahat by using composting method. The parameters which include temperature, pH value, NPK (Nitrogen, Phosphorus, Potassium) values has been examined. Banana peel is being used as the fermentation liquid whilst soil and coconut husk were used as the composting medium. Based on the results during the composting process, most of the pH value in each reactor is above 5 and approximately at neutral. This shown that the microbial respiration in the well controlled composting reactor was inhibited and had approached the mature phase. On the other hand, during the period of composting, the overall temperature range from 25 °C to 47 °C which shown the active phase for composting will occoured. As for NPK content Nitrogen value range is 35325 mg/L to 78775 mg/L, Phosphorus, 195.83 mg/L to 471 mg/L and potassium is 422.3 mg/L to 2046 mg/L which is sufficient to use for agricultural purpose. The comparison was made with available organic compost in the market and only showed slightly difference. Nevertheless, in comparison with common fertilizer, the NPK value of organic compost are considerably very low.

  10. [Output characteristics of rainfall runoff phosphorus pollution from a typical small watershed in Yimeng mountainous area].

    PubMed

    Yu, Xing-xiu; Li, Zhen-wei; Liu, Qian-jin; Jing, Guang-hua

    2012-08-01

    Relationships between phosphorus pollutant concentrations and precipitation-runoff were analyzed by monitoring pollutant losses at outlets of the Menglianggu watershed in 2010. A typical small watershed was selected to examine the runoff and quality parameters such as total phosphorus (TP), particle phosphorus (PP), dissolve phosphorus (DP) and dissolve inorganic phosphorus (DIP) in rainfall-runoff of 10 rainfall events. Precipitation was above 2 mm for all the 10 rainfall events. The results showed that the peak of phosphorus concentrations occurred before the peak of water flows, whereas change processes of the phosphorus fluxes were consistent with that of the water flows and the phosphorus flux also have a strong linear relationship with the water flows. The minimums of the phosphorus concentrations in every 10 natural rainfall events have small differences with each other, but the maximum and EMCs of the phosphorus concentrations have significant differences with each rainfall event. This was mainly influenced by the precipitation, maximum rainfall intensity and mean rainfall intensity (EMCs) and was less influenced by rainfall duration. DP and TP were mainly composed of DIP and PP, respectively. There were no significant correlations between DIP/DP dynamic changes and rainfall characteristics, whereas significant correlations between PP/TP dynamic changes and maximum rainfall intensity were detected. The production of DIP, DP, AND TP were mainly influenced by the direct runoff (DR) and base flow (BF). The EMCs of DIP, DP, TP and the variations of DIP/DP were all found to have significant polynomial relationships with DR/TR., but the dynamic changes of PP/ TP and the EMCS of PP were less influenced by the DR/TR.

  11. Modelling phosphorus uptake in microalgae.

    PubMed

    Singh, Dipali; Nedbal, Ladislav; Ebenhöh, Oliver

    2018-04-17

    Phosphorus (P) is an essential non-renewable nutrient that frequently limits plant growth. It is the foundation of modern agriculture and, to a large extent, demand for P is met from phosphate rock deposits which are limited and becoming increasingly scarce. Adding an extra stroke to this already desolate picture is the fact that a high percentage of P, through agricultural runoff and waste, makes its way into rivers and oceans leading to eutrophication and collapse of ecosystems. Therefore, there is a critical need to practise P recovery from waste and establish a circular economy applicable to P resources. The potential of microalgae to uptake large quantities of P and use of this P enriched algal biomass as biofertiliser has been regarded as a promising way to redirect P from wastewater to the field. This also makes the study of molecular mechanisms underlying P uptake and storage in microalgae of great interest. In the present paper, we review phosphate models, which express the growth rate as a function of intra- and extracellular phosphorus content for better understanding of phosphate uptake and dynamics of phosphate pools. © 2018 The Author(s). Published by Portland Press Limited on behalf of the Biochemical Society.

  12. Hybrid life-cycle assessment (LCA) of CO2 emission with management alternatives for household food wastes in Japan.

    PubMed

    Inaba, Rokuta; Nansai, Keisuke; Fujii, Minoru; Hashimoto, Seiji

    2010-06-01

    In this study, we conducted a hybrid life-cycle assessment (LCA) to evaluate reductions in CO(2) emissions by food waste biogasification of household food wastes in Japan. Two alternative scenarios were examined. In one alternative (Ref), all combustible municipal solid wastes (MSWs), including food waste, are incinerated. In the other (Bio), food waste is biogasified, while the other combustible wastes are incinerated. An inventory analysis of energy and material flow in the MSW management system was conducted. Subsequently, the inventory data were summarized into an input-output format, and a make-use input-output framework was applied. Furthermore, a production equilibrium model was established using a matrix representing the input- output relationship of energy and materials among the processes and sectors. Several levels of power generation efficiency from incineration were applied as a sensitivity analysis. The hybrid LCA indicated that the difference between the Bio and Ref scenarios, from the perspective of CO( 2) emissions, is relatively small. However, a 13-14% reduction of CO(2) emissions of the total waste management sector in Japan may be achieved by improving the efficiency of power generation from incineration from 10% to 25%.

  13. Phosphorus and E. coli in the Fanno and Bronson Creek subbasins of the Tualatin River basin, Oregon, during summer low-flow conditions, 1996

    USGS Publications Warehouse

    McCarthy, Kathleen A.

    2000-01-01

    As part of an ongoing cooperative study between the Unified Sewerage Agency of Washington County, Oregon, and the U.S. Geological Survey, phosphorus and Escherichia coli (E. coli) concentrations were measured in the Fanno and Bronson Creek subbasins of the Tualatin River Basin during September 1996. Data were collected at 19 main-stem and 22 tributary sites in the Fanno Creek subbasin, and at 14 main-stem and 4 tributary sites in the Bronson Creek subbasin. These data provided the following information on summer base-flow conditions in the subbasins. Concentrations of total phosphorus at 70% of the sites sampled in the Fanno Creek subbasin were between 0.1 and 0.2 mg/L (milligrams per liter), very near the estimated background level of 0.14 mg/L attributed to ground-water base flow. These data indicate that ground-water discharge could account for the phosphorus measured at most sites in this subbasin.Concentrations of phosphorus at all but one of the sites sampled in the Bronson Creek subbasin were also between 0.1 and 0.2 mg/L, indicating that ground-water discharge could account for the phosphorus measured at most sites in this subbasin.A few sites in the Fanno Creek subbasin had phosphorus concentrations above background levels, indicating a source other than ground water. Some of these sites- Pendleton Creek and the tributary near Gemini, for example-were probably affected by the decomposition of avian waste materials and the release of phosphorus from bottom sediments in nearby ponds.Concentrations of E. coli--an indicator of fecal contamination and the potential presence of bacterial pathogens-exceeded the current single-sample criterion for recreational contact in freshwater (406 organisms/100 mL [organisms per 100 milliliters]) at 70% of the sites sampled in the Fanno Creek subbasin.Concentrations of E. coli in the Bronson Creek subbasin exceeded the single-sample criterion at one-third of the sites sampled.Most occurrences of elevated E. coli levels were probably due to sources such as domestic pet and wildlife waste, failing septic systems, or improperly managed hobby farms. The data did not indicate any large breaks in sewer lines or other large-scale sources of bacterial contamination to surface water in either subbasin during this low-flow period.

  14. Capturing the lost phosphorus.

    PubMed

    Rittmann, Bruce E; Mayer, Brooke; Westerhoff, Paul; Edwards, Mark

    2011-08-01

    Minable phosphorus (P) reserves are being depleted and will need to be replaced by recovering P that currently is lost from the agricultural system, causing water-quality problems. The largest two flows of lost P are in agricultural runoff and erosion (∼46% of mined P globally) and animal wastes (∼40%). These flows are quite distinct. Runoff has a very high volumetric flow rate, but a low P concentration; animal wastes have low flow rates, but a high P concentration together with a high concentration of organic material. Recovering the lost P in animal wastes is technically and economically more tractable, and it is the focus for this review of promising P-capture technologies. P capture requires that organic P be transformed into inorganic P (phosphate). For high-strength animal wastes, P release can be accomplished in tandem with anaerobic treatment that converts the energy value in the organic matter to CH(4), H(2), or electricity. Once present as phosphate, the P can be captured in a reusable form by four approaches. Most well developed is precipitation as magnesium or calcium solids. Less developed, but promising are adsorption to iron-based adsorbents, ion exchange to phosphate-selective solids, and uptake by photosynthetic microorganisms or P-selective proteins. Copyright © 2011 Elsevier Ltd. All rights reserved.

  15. Waste activated sludge hydrolysis and acidification: A comparison between sodium hydroxide and steel slag addition.

    PubMed

    Zhang, Ying; Zhang, Chaojie; Zhang, Xuan; Feng, Leiyu; Li, Yongmei; Zhou, Qi

    2016-10-01

    Alkaline treatment with steel slag and NaOH addition were investigated under different pH conditions for the fermentation of waste activated sludge. Better performance was achieved in steel slag addition scenarios for both sludge hydrolysis and acidification. More solubilization of organic matters and much production of higher VFA (volatile fatty acid) in a shorter time can be achieved at pH10 when adjusted by steel slag. Higher enzyme activities were also observed in steel slag addition scenarios under the same pH conditions. Phosphorus concentration in the supernatant increased with fermentation time and pH in NaOH addition scenarios, while in contrast most phosphorus was released and captured by steel slag simultaneously in steel slag addition scenarios. These results suggest that steel slag can be used as a substitute for NaOH in sludge alkaline treatment. Copyright © 2016. Published by Elsevier B.V.

  16. Development, Testing, and Sensitivity and Uncertainty Analyses of a Transport and Reaction Simulation Engine (TaRSE) for Spatially Distributed Modeling of Phosphorus in South Florida Peat Marsh Wetlands

    USGS Publications Warehouse

    Jawitz, James W.; Munoz-Carpena, Rafael; Muller, Stuart; Grace, Kevin A.; James, Andrew I.

    2008-01-01

    Alterations to the predevelopment delivery of water and nutrients into the Everglades of southern Florida have been occurring for nearly a century. Major regional drainage projects, large-scale agricultural development, and changes to the hydrology of the Kissimmee River-Lake Okeechobee watershed have resulted in substantial phosphorus transport increases by surface waters. Excess phosphorus has accumulated in the soils of northern Everglades marshes to levels that have impaired the natural resources of the region. Regulations now limit the amount of phosphorous that enters the Everglades through an extensive network of water-control structures. This study involved the development and application of water-quality modeling components that may be applied to existing hydrologic models of southern Florida to evaluate the effects of different management scenarios. The result of this work is a spatially distributed water-quality model for phosphorus transport and cycling in wetlands. The model solves the advection-dispersion equation on an unstructured triangular mesh and incorporates a wide range of user-selectable mechanisms for phosphorus uptake and release parameters. In general, the phosphorus model contains transfers between stores; examples of stores that can be included are soil, water column (solutes), pore water, macrophytes, suspended solids (plankton), and biofilm. Examples of transfers are growth, senescence, settling, diffusion, and so forth, described with first order, second order, and Monod types of transformations. Local water depths and velocities are determined from an existing two-dimensional, overland-flow hydrologic model. The South Florida Water Management District Regional Simulation Model was used in this study. The model is applied to three case studies: intact cores of wetland soils with water, outdoor mesocosoms, and a large constructed wetland; namely, Cell 4 of Stormwater Treatment Area 1 West (STA-1W Cell 4). Different levels of complexity in the phosphorus cycling mechanisms were simulated in these case studies using different combinations of phosphorus reaction equations. Changes in water column phosphorus concentrations observed under the controlled conditions of laboratory incubations, and mesocosm studies were reproduced with model simulations. Short-term phosphorus flux rates and changes in phosphorus storages were within the range of values reported in the literature, whereas unknown rate constants were used to calibrate the model output. In STA-1W Cell 4, the dominant mechanism for phosphorus flow and transport is overland flow. Over many life cycles of the biological components, however, soils accrue and become enriched in phosphorus. Inflow total phosphorus concentrations and flow rates for the period between 1995 and 2000 were used to simulate Cell 4 phosphorus removal, outflow concentrations, and soil phosphorus enrichment over time. This full-scale application of the model successfully incorporated parameter values derived from the literature and short-term experiments, and reproduced the observed long-term outflow phosphorus concentrations and increased soil phosphorus storage within the system. A global sensitivity and uncertainty analysis of the model was performed using modern techniques such as a qualitative screening tool (Morris method) and the quantitative, variance-based, Fourier Amplitude Sensitivity Test (FAST) method. These techniques allowed an in-depth exploration of the effect of model complexity and flow velocity on model outputs. Three increasingly complex levels of possible application to southern Florida were studied corresponding to a simple soil pore-water and surface-water system (level 1), the addition of plankton (level 2), and of macrophytes (level 3). In the analysis for each complexity level, three surface-water velocities were considered that each correspond to residence times for the selected area (1-kilometer long) of 2, 10, and 20

  17. Phosphorus contents and availability of technogenic substrates for soil construction

    NASA Astrophysics Data System (ADS)

    Nehls, Thomas; Lydia, Paetsch; Sarah, Rokia; Schwartz, Christophe; Wessolek, Gerd

    2014-05-01

    Urban areas lack of green and of soil substrates to support this green. A great variety of solid waste materials can be seen as technogenic substances (TS) for the construction of soil-similar plant substrates. Biomass production in the city and the use of waste materials as nutrient sources can help to close regional nutrient cycles. The most important waste materials have been studied for their phosphorus contents, availabilities and diffusion rates in the rhizosphere by combining their analyzed chemical and physical properties. Compost, concrete, green wastes, paper mill sludge, street-sweepings, mix of rubble, bricks, track ballasts and charcoal have (i) been analyzed their P release properties (HF extraction, Olsen-P, adsorption isotherms); (ii) the physical properties (water retention function, saturated hydraulic conductivity) were analyzed at 80 % of the proctor density; (iii) The P availability of the TMs to the roots were simulated for different pressure heads (pF = 1.3, 1.8 and 3.0) using HYDRUS 1-D. We compared the results for TS with these for agricultural soils. Ptot varies from 710 to 21 000 mg kg-1 for bricks and compost, while POlsen varies from 19 to 1 090 mg kg-1 for charcoal and green wastes. The diffusion rates of TSs (pF = 1.3) are up to 10 times higher compared to those of soils, with green wastes showing highest and bricks the lowest P diffusion rates. We conclude that the investigated TS are appropriate for construction of soil similar planting substrates because of their P delivery potential and their favourable physical properties.

  18. Oxidation and waste-to-energy output of aluminium waste packaging during incineration: A laboratory study.

    PubMed

    López, Félix A; Román, Carlos Pérez; García-Díaz, Irene; Alguacil, Francisco J

    2015-09-01

    This work reports the oxidation behaviour and waste-to-energy output of different semi-rigid and flexible aluminium packagings when incinerated at 850°C in an air atmosphere enriched with 6% oxygen, in the laboratory setting. The physical properties of the different packagings were determined, including their metallic aluminium contents. The ash contents of their combustion products were determined according to standard BS ISO 1171:2010. The net calorific value, the required energy, and the calorific gain associated with each packaging type were determined following standard BS EN 13431:2004. Packagings with an aluminium lamina thickness of >50μm did not fully oxidise. During incineration, the weight-for-weight waste-to-energy output of the packagings with thick aluminium lamina was lower than that of packagings with thin lamina. The calorific gain depended on the degree of oxidation of the metallic aluminium, but was greater than zero for all the packagings studied. Waste aluminium may therefore be said to act as an energy source in municipal solid waste incineration systems. Copyright © 2015 Elsevier Ltd. All rights reserved.

  19. Soil chemistry and phosphorus retention capacity of North Carolina coastal plain swamps receiving sewage effluent

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Richardson, C.J.; Walbridge, M.R.; Burns, A.

    1988-11-01

    Several hundred freshwater swamps in North Carolina currently receive municipal waste-water inputs. In the study researchers examined three Coastal Plain wetlands to (1) characterize their soil chemical properties, (2) determine short-term and long-term effects of effluent additions on soil chemistry, (3) estimate the phosphorus sorption capacities of these swamp soils and determine the relationship between P sorption capacity and soil chemistry, and (4) develop a predictive index to evaluate the P sorption potentials of other N.C. Coastal Plain swamps.

  20. Replace, reuse, recycle: improving the sustainable use of phosphorus by plants.

    PubMed

    Baker, Alison; Ceasar, S Antony; Palmer, Antony J; Paterson, Jaimie B; Qi, Wanjun; Muench, Stephen P; Baldwin, Stephen A

    2015-06-01

    The 'phosphorus problem' has recently received strong interest with two distinct strands of importance. The first is that too much phosphorus (P) is entering into waste water, creating a significant economic and ecological problem. Secondly, while agricultural demand for phosphate fertilizer is increasing to maintain crop yields, rock phosphate reserves are rapidly declining. Unravelling the mechanisms by which plants sense, respond to, and acquire phosphate can address both problems, allowing the development of crop plants that are more efficient at acquiring and using limited amounts of phosphate while at the same time improving the potential of plants and other photosynthetic organisms for nutrient recapture and recycling from waste water. In this review, we attempt to synthesize these important but often disparate parts of the debate in a holistic fashion, since solutions to such a complex problem require integrated and multidisciplinary approaches that address both P supply and demand. Rapid progress has been made recently in our understanding of local and systemic signalling mechanisms for phosphate, and of expression and regulation of membrane proteins that take phosphate up from the environment and transport it within the plant. We discuss the current state of understanding of such mechanisms involved in sensing and responding to phosphate stress. We also discuss approaches to improve the P-use efficiency of crop plants and future direction for sustainable use of P, including use of photosynthetic organisms for recapture of P from waste waters. © The Author 2015. Published by Oxford University Press on behalf of the Society for Experimental Biology. All rights reserved. For permissions, please email: journals.permissions@oup.com.

  1. Peak phosphorus - peak food? The need to close the phosphorus cycle.

    PubMed

    Rhodes, Christopher J

    2013-01-01

    The peak in the world production of phosphorus has been predicted to occur in 2033, based on world reserves of rock phosphate (URR) reckoned at around 24,000 million tonnes (Mt), with around 18,000 Mt remaining. This figure was reckoned-up to 71,000 Mt, by the USGS, in 2012, but a production maximum during the present century is still highly probable. There are complex issues over what the demand will be for phosphorus in the future, as measured against a rising population (from 7 billion to over 9 billion in 2050), and a greater per capita demand for fertiliser to grow more grain, in part to feed animals and meet a rising demand for meat by a human species that is not merely more populous but more affluent. As a counterweight to this, we may expect that greater efficiencies in the use of phosphorus - including recycling from farms and of human and animal waste - will reduce the per capita demand for phosphate rock. The unseen game changer is peak oil, since phosphate is mined and recovered using machinery powered by liquid fuels refined from crude oil. Hence, peak oil and peak phosphorus might appear as conjoined twins. There is no unequivocal case that we can afford to ignore the likelihood of a supply-demand gap for phosphorus occurring sometime this century, and it would be perilous to do so.

  2. Quantitative Conversion of Phytate to Inorganic Phosphorus in Soybean Seeds Expressing a Bacterial Phytase1[OA

    PubMed Central

    Bilyeu, Kristin D.; Zeng, Peiyu; Coello, Patricia; Zhang, Zhanyuan J.; Krishnan, Hari B.; Bailey, April; Beuselinck, Paul R.; Polacco, Joe C.

    2008-01-01

    Phytic acid (PA) contains the major portion of the phosphorus in the soybean (Glycine max) seed and chelates divalent cations. During germination, both minerals and phosphate are released upon phytase-catalyzed degradation of PA. We generated a soybean line (CAPPA) in which an Escherichia coli periplasmic phytase, the product of the appA gene, was expressed in the cytoplasm of developing cotyledons. CAPPA exhibited high levels of phytase expression, ≥90% reduction in seed PA, and concomitant increases in total free phosphate. These traits were stable, and, although resulted in a trend for reduced emergence and a statistically significant reduction in germination rates, had no effect on the number of seeds per plant or seed weight. Because phytate is not digested by monogastric animals, untreated soymeal does not provide monogastrics with sufficient phosphorus and minerals, and PA in the waste stream leads to phosphorus runoff. The expression of a cytoplasmic phytase in the CAPPA line therefore improves phosphorus availability and surpasses gains achieved by other reported transgenic and mutational strategies by combining in seeds both high phytase expression and significant increases in available phosphorus. Thus, in addition to its value as a high-phosphate meal source, soymeal from CAPPA could be used to convert PA of admixed meals, such as cornmeal, directly to utilizable inorganic phosphorus. PMID:18162589

  3. Summary of Surface-Water Quality Data from the Illinois River Basin in Northeast Oklahoma, 1970-2007

    USGS Publications Warehouse

    Andrews, William J.; Becker, Mark F.; Smith, S. Jerrod; Tortorelli, Robert L.

    2009-01-01

    The quality of streams in the Illinois River Basin of northeastern Oklahoma is potentially threatened by increased quantities of wastes discharged from increasing human populations, grazing of about 160,000 cattle, and confined animal feeding operations raising about 20 million chickens. Increasing numbers of humans and livestock in the basin contribute nutrients and bacteria to surface water and groundwater, causing greater than the typical concentrations of those constituents for this region. Consequences of increasing contributions of these substances can include increased algal growth (eutrophication) in streams and lakes; impairment of habitat for native aquatic animals, including desirable game fish species; impairment of drinking-water quality by sediments, turbidity, taste-and-odor causing chemicals, toxic algal compounds, and bacteria; and reduction in the aesthetic quality of the streams. The U.S. Geological Survey, in cooperation with the Oklahoma Scenic Rivers Commission, prepared this report to summarize the surface-water-quality data collected by the U.S. Geological Survey at five long-term surface-water-quality monitoring sites. The data summarized include major ions, nutrients, sediment, and fecal-indicator bacteria from the Illinois River Basin in Oklahoma for 1970 through 2007. General water chemistry, concentrations of nitrogen and phosphorus compounds, chlorophyll-a (an indicator of algal biomass), fecal-indicator bacteria counts, and sediment concentrations were similar among the five long-term monitoring sites in the Illinois River Basin in northeast Oklahoma. Most water samples were phosphorus-limited, meaning that they contained a smaller proportion of phosphorus, relative to nitrogen, than typically occurs in algal tissues. Greater degrees of nitrogen limitation occurred at three of the five sites which were sampled back to the 1970s, probably due to use of detergents containing greater concentrations of phosphorus than in subsequent periods. Concentrations of nitrogen, phosphorus, and sediment, and counts of bacteria generally increased with streamflow at the five sites, probably due to runoff from the land surface and re-suspension of streambed sediments. Phosphorus concentrations typically exceeded the Oklahoma standard of 0.037 milligrams per liter for Scenic Rivers. Concentrations of chlorophyll-a in phytoplankton in water samples collected at the five sites were not well correlated with streamflow, nor to concentrations of the nutrients nitrogen and phosphorus, probably because much of the algae growing in these streams are periphyton attached to streambed cobbles and other debris, rather than phytoplankton in the water column. Sediment concentrations correlated with phosphorus concentrations in water samples collected at the sites, probably due to sorption of phosphorus to soil particles and streambed sediments and runoff of soils and animal wastes at the land surface and resuspension of streambed sediments and phosphorus during wet, high-flow periods. Fecal coliform bacteria counts at the five sites sometimes exceeded the Oklahoma Primary Body Contact Standard of 400 colonies per 100 milliliters when streamflows were greater than 1000 cubic feet per second. Ultimately, Lake Tenkiller, an important ecological and economic resource for the region, receives the compounds that runoff the land surface or seep to local streams from groundwater in the basin. Because of eutrophication from increased nutrient loading, Lake Tenkiller is listed for impairment by diminished dissolved oxygen concentrations, phosphorus, and chlorophyll-a by the State of Oklahoma in evaluation of surface-water quality required by section 303d of the Clean Water Act. Stored phosphorus in soils and streambed and lakebed sediments may continue to provide phosphorus to local streams and lakes for decades to come. Steps are being made to reduce local sources of phosphorus, including upgrades in capacity and effective

  4. Possible future effects of large-scale algae cultivation for biofuels on coastal eutrophication in Europe.

    PubMed

    Blaas, Harry; Kroeze, Carolien

    2014-10-15

    Biodiesel is increasingly considered as an alternative for fossil diesel. Biodiesel can be produced from rapeseed, palm, sunflower, soybean and algae. In this study, the consequences of large-scale production of biodiesel from micro-algae for eutrophication in four large European seas are analysed. To this end, scenarios for the year 2050 are analysed, assuming that in the 27 countries of the European Union fossil diesel will be replaced by biodiesel from algae. Estimates are made for the required fertiliser inputs to algae parks, and how this may increase concentrations of nitrogen and phosphorus in coastal waters, potentially leading to eutrophication. The Global NEWS (Nutrient Export from WaterSheds) model has been used to estimate the transport of nitrogen and phosphorus to the European coastal waters. The results indicate that the amount of nitrogen and phosphorus in the coastal waters may increase considerably in the future as a result of large-scale production of algae for the production of biodiesel, even in scenarios assuming effective waste water treatment and recycling of waste water in algae production. To ensure sustainable production of biodiesel from micro-algae, it is important to develop cultivation systems with low nutrient losses to the environment. Copyright © 2014 Elsevier B.V. All rights reserved.

  5. Large-scale Watershed Modeling: NHDPlus Resolution with Achievable Conservation Scenarios in the Western Lake Erie Basin

    NASA Astrophysics Data System (ADS)

    Yen, H.; White, M. J.; Arnold, J. G.; Keitzer, S. C.; Johnson, M. V. V.; Atwood, J. D.; Daggupati, P.; Herbert, M. E.; Sowa, S. P.; Ludsin, S.; Robertson, D. M.; Srinivasan, R.; Rewa, C. A.

    2016-12-01

    By the substantial improvement of computer technology, large-scale watershed modeling has become practically feasible in conducting detailed investigations of hydrologic, sediment, and nutrient processes. In the Western Lake Erie Basin (WLEB), water quality issues caused by anthropogenic activities are not just interesting research subjects but, have implications related to human health and welfare, as well as ecological integrity, resistance, and resilience. In this study, the Soil and Water Assessment Tool (SWAT) and the finest resolution stream network, NHDPlus, were implemented on the WLEB to examine the interactions between achievable conservation scenarios with corresponding additional projected costs. During the calibration/validation processes, both hard (temporal) and soft (non-temporal) data were used to ensure the modeling outputs are coherent with actual watershed behavior. The results showed that widespread adoption of conservation practices intended to provide erosion control could deliver average reductions of sediment and nutrients without additional nutrient management changes. On the other hand, responses of nitrate (NO3) and dissolved inorganic phosphorus (DIP) dynamics may be different than responses of total nitrogen and total phosphorus dynamics under the same conservation practice. Model results also implied that fewer financial resources are required to achieve conservation goals if the goal is to achieve reductions in targeted watershed outputs (ex. NO3 or DIP) rather than aggregated outputs (ex. total nitrogen or total phosphorus). In addition, it was found that the model's capacity to simulate seasonal effects and responses to changing conservation adoption on a seasonal basis could provide a useful index to help alleviate additional cost through temporal targeting of conservation practices. Scientists, engineers, and stakeholders can take advantage of the work performed in this study as essential information while conducting policy making processes in the future.

  6. Phosphorus transformations in plant-based and bio-waste materials induced by pyrolysis.

    PubMed

    Robinson, James Stephen; Baumann, Karen; Hu, Yongfeng; Hagemann, Philipp; Kebelmann, Lutz; Leinweber, Peter

    2018-01-01

    Strategies are needed to increase the sustainability of phosphorus (P) fertiliser management in agriculture. This paper reports on the potential of pyrolysis treatment to recycle P from renewable materials previously regarded as wastes. The study used K-edge X-ray absorption near-edge structure (XANES) spectroscopy to examine chemical forms of P in the waste feedstock materials and corresponding biochars (pyrolysis at 480-500 °C) of four ligno-cellulosic, plant-based residues and five relatively P-rich livestock and water-treatment by-products, to acquire information on changes in potential P fertiliser value. Pyrolysis enriched P in the biochars by factors of 1.3-4.3, thus offering wide-ranging P fertiliser potential. XANES spectroscopy revealed hydroxyapatite (HAP) as one of the dominant chemical P compounds in the feedstocks, ranging from 14% (rice husks) to 98% (animal bone) of total P. For most materials, pyrolysis increased the proportion of HAP, and pyrophosphates were generated in several cases. These alterations possibly lead to diversity in the P solubility characteristics of the biochars if used as soil amendments; this is an important property of environmentally sound P fertilisers.

  7. Cu retention in an acid soil amended with perlite winery waste.

    PubMed

    Rodríguez-Salgado, Isabel; Pérez-Rodríguez, Paula; Gómez-Armesto, Antía; Nóvoa-Muñoz, Juan Carlos; Arias-Estévez, Manuel; Fernández-Calviño, David

    2016-02-01

    The effect of perlite waste from a winery on general soil characteristics and Cu adsorption was assessed. The studied soil was amended with different perlite waste concentrations corresponding to 10, 20, 40 and 80 Mg ha(-1). General soil characteristics and Cu adsorption and desorption curves were determined after different incubation times (from 1 day to 8 months). The addition of perlite waste to the soil increased the amounts of organic matter as well as soil nutrients such as phosphorus and potassium, and these increments were stable with time. An increase in Cu adsorption capacity was also detected in the perlite waste-amended soils. The effect of perlite waste addition to the soil had special relevance on its Cu adsorption capacity at low coverage concentrations and on the energy of the soil-Cu bonds.

  8. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tricaud, Christophe; Ernst, Timothy C.; Zigan, James A.

    The disclosure provides a waste heat recovery system with a system and method for calculation of the net output torque from the waste heat recovery system. The calculation uses inputs from existing pressure and speed sensors to create a virtual pump torque sensor and a virtual expander torque sensor, and uses these sensors to provide an accurate net torque output from the WHR system.

  9. Solid recovered fuel: An experiment on classification and potential applications.

    PubMed

    Bessi, C; Lombardi, L; Meoni, R; Canovai, A; Corti, A

    2016-01-01

    The residual urban waste of Prato district (Italy) is characterized by a high calorific value that would make it suitable for direct combustion in waste-to-energy plants. Since the area of central Italy lacks this kind of plant, residual municipal waste is quite often allocated to mechanical treatment plants in order to recover recyclable materials (such as metals) and energy content, sending the dry fractions to waste-to-energy plants outside the region. With the previous Italian legislation concerning Refuse Derived Fuels, only the dry stream produced as output by the study case plant, considered in this study, could be allocated to energy recovery, while the other output flows were landfilled. The most recent Italian regulation, introduced a new classification for the fuel streams recovered from waste following the criteria of the European standard (EN 15359:2011), defining the Solid Recovered Fuel (SRF). In this framework, the aim of this study was to check whether the different streams produced as output by the study case plant could be classified as SRF. For this reason, a sampling and analysis campaign was carried out with the purpose of characterizing every single output stream that can be obtained from the study case mechanical treatment plant, when operating it in different ways. The results showed that all the output flows from the study case mechanical treatment plant were classified as SRF, although with a wide quality range. In particular, few streams, of rather poor quality, could be fed to waste-to-energy plants, compatibly with the plant feeding systems. Other streams, with very high quality, were suitable for non-dedicated facilities, such as cement plants or power plants, as a substitute for coal. The implementation of the new legislation has hence the potential for a significant reduction of landfilling, contributing to lowering the overall environmental impact by avoiding the direct impacts of landfilling and by exploiting the beneficial effects of energy recovery from waste. Copyright © 2015 Elsevier Ltd. All rights reserved.

  10. Full-scale phosphorus recovery from digested waste water sludge in Belgium - part I: technical achievements and challenges.

    PubMed

    Marchi, A; Geerts, S; Weemaes, M; Schiettecatte, W; Wim, S; Vanhoof, C; Christine, V

    2015-01-01

    To date, phosphorus recovery as struvite in wastewater treatment plants has been mainly implemented on water phases resulting from dewatering processes of the sludge line. However, it is possible to recover struvite directly from sludge phases. Besides minimising the return loads of phosphorus from the sludge line to the water line, placing such a process within the sludge line is claimed to offer advantages such as a higher recovery potential, enhanced dewaterability of the treated sludge, and reduced speed of scaling in pipes and dewatering devices. In the wastewater treatment plant at Leuven (Belgium), a full-scale struvite recovery process from digested sludge has been tested for 1 year. Several monitoring campaigns and experiments provided indications of the efficiency of the process for recovery. The load of phosphorus from the sludge line returning to the water line as centrate accounted for 15% of the P-load of the plant in the reference situation. Data indicated that the process divides this phosphorus load by two. An improved dewaterability of 1.5% of dry solids content was achieved, provided a proper tuning of the installation. Quality analyses showed that the formed struvite was quite pure.

  11. Socio-hydrological approach to the evaluation of global fertilizer substitution by sustainable struvite precipitants from wastewater

    NASA Astrophysics Data System (ADS)

    Kok, Dirk-Jan; Pande, Saket; Renata Cordeiro Ortigara, Angela; Savenije, Hubert; Uhlenbrook, Stefan

    2017-04-01

    Phosphorus is an element necessary for the development of organic tissue as it forms a key, structural component of DNA and RNA. Currently, much of this unrenewable resource is being wasted to the ocean through the discharge of untreated or partially treated wastewater from urban areas and livestock industries. Analysing the potential phosphorus production of these two sectors in possibly meeting the partial demand of the agricultural sector, will be an important tool in tackling both phosphorus depletion from natural sources as well as phosphorus pollution of water sources . In this study, a global overview is provided where a selection of P-production nodes and P-consumption nodes have been determined using global spatial data. Distances, investment costs and associated carbon footprints are then considered in modelling a simple, alternative trade network of struvite precipitant, phosphorus flows. The network is then optimized to maximum trade flow after which an international, free-market P-commodity price is determined. Carrot-stick policy measures such as subsidies and carbon taxes are evaluated in their benefits to supporting sustainable phosphorus consumption over the non-sustainable counterpart. Preliminary results have revealed that there exists a total anthropogenic production potential of 3.3 MtP for 2005. Very crudely, but in accordance to results by Milhelcic et al. (2011) who reported 22%, approximately 20% of the reported global fertilizer consumption could then be satisfied by recovering urban phosphorus. Phosphorus recovery from wastewater for secondary utilization will prove an important step in creating sustainable communities through closed circle economic development. It is also a step towards prolonging our phosphate rock reserves, granting more time to revise our current phosphorus throughput cycle before the depletion of the remaining reserves.

  12. Phosphorus cycling in Montreal's food and urban agriculture systems.

    PubMed

    Metson, Geneviève S; Bennett, Elena M

    2015-01-01

    Cities are a key system in anthropogenic phosphorus (P) cycling because they concentrate both P demand and waste production. Urban agriculture (UA) has been proposed as a means to improve P management by recycling cities' P-rich waste back into local food production. However, we have a limited understanding of the role UA currently plays in the P cycle of cities or its potential to recycle local P waste. Using existing data combined with surveys of local UA practitioners, we quantified the role of UA in the P cycle of Montreal, Canada to explore the potential for UA to recycle local P waste. We also used existing data to complete a substance flow analysis of P flows in the overall food system of Montreal. In 2012, Montreal imported 3.5 Gg of P in food, of which 2.63 Gg ultimately accumulated in landfills, 0.36 Gg were discharged to local waters, and only 0.09 Gg were recycled through composting. We found that UA is only a small sub-system in the overall P cycle of the city, contributing just 0.44% of the P consumed as food in the city. However, within the UA system, the rate of recycling is high: 73% of inputs applied to soil were from recycled sources. While a Quebec mandate to recycle 100% of all organic waste by 2020 might increase the role of UA in P recycling, the area of land in UA is too small to accommodate all P waste produced on the island. UA may, however, be a valuable pathway to improve urban P sustainability by acting as an activity that changes residents' relationship to, and understanding of, the food system and increases their acceptance of composting.

  13. Sequencing biological acidification of waste-activated sludge aiming to optimize phosphorus dissolution and recovery.

    PubMed

    Guilayn, Felipe; Braak, Etienne; Piveteau, Simon; Daumer, Marie-Line

    2017-06-01

    Phosphorus (P) recovery in wastewater treatment plants (WWTP) as pure crystals such as struvite (MgNH 4 PO 4 .6H 2 O), potassium struvite (KMgPO 4 .6H 2 O) and calcium phosphates (e.g. Ca 3 (PO 4 ) 2 ) is an already feasible technique that permits the production of green and marketable fertilizers and the reduction of operational costs. Commercial crystallizers can recovery more than 90% of soluble P. However, most of the P in WWTP sludge is unavailable for the processes (not dissolved). P solubilization and separation are thus the limiting steps in P-crystallization. With an innovative two-step sequencing acidification strategy, the current study has aimed to improve biological P solubilization on waste-activated sludge (WAS) from a full-scale plant. In the first step (P-release), low charges of organic waste were used as co-substrates of WAS pre-fermentation, seeking to produce volatile fatty acids to feed the P-release by Polyphosphate-accumulating organisms, while keeping its optimal metabolic pH (6-7). In this phase, milk serum, WWTP grease, urban organic waste and collective restaurant waste were individually applied as co-substrates. In the second step (P-dissolution), pH 4 was aimed at as it allows the dissolution of the most common precipitated species of P. Biological acidification was performed by white sugar addition, as a carbohydrate-rich organic waste model, which was compared to chemical acidification by HCl (12M) addition. With short retention times (48-96 h) and without inoculum application, all experiences succeeded on P solubilization (37-55% of soluble P), principally when carbohydrate-rich co-substrates were applied. Concentrations from 270 to 450 mg [Formula: see text] were achieved. [Formula: see text].

  14. Magnitude of anthropogenic phosphorus storage in the agricultural production and the waste management systems at the regional and country scales.

    PubMed

    Chowdhury, Rubel Biswas; Chakraborty, Priyanka

    2016-08-01

    Based on a systematic review of 17 recent substance flow analyses of phosphorus (P) at the regional and country scales, this study presents an assessment of the magnitude of anthropogenic P storage in the agricultural production and the waste management systems to identify the potential for minimizing unnecessary P storage to reduce the input of P as mineral fertilizer and the loss of P. The assessment indicates that in case of all (6) P flow analyses at the regional scale, the combined mass of annual P storage in the agricultural production and the waste management systems is greater than 50 % of the mass of annual P inflow as mineral fertilizer in the agricultural production system, while this is close to or more than 100 % in case of half of these analyses. At the country scale, in case of the majority (7 out of 11) of analyses, the combined mass of annual P storage in the agricultural production and the waste management systems has been found to be roughly equivalent or greater than 100 % of the mass of annual P inflow as mineral fertilizer in the agricultural production system, while it ranged from 30 to 60 % in the remaining analyses. A simple scenario analysis has revealed that the annual storage of P in this manner over 100 years could result in the accumulation of a massive amount of P in the agricultural production and the waste management systems at both the regional and country scales. This study suggests that sustainable P management initiatives at the regional and country scales should put more emphasis on minimizing unwanted P storage in the agricultural production and the waste management systems.

  15. Phosphorus Cycling in Montreal’s Food and Urban Agriculture Systems

    PubMed Central

    Metson, Geneviève S.; Bennett, Elena M.

    2015-01-01

    Cities are a key system in anthropogenic phosphorus (P) cycling because they concentrate both P demand and waste production. Urban agriculture (UA) has been proposed as a means to improve P management by recycling cities’ P-rich waste back into local food production. However, we have a limited understanding of the role UA currently plays in the P cycle of cities or its potential to recycle local P waste. Using existing data combined with surveys of local UA practitioners, we quantified the role of UA in the P cycle of Montreal, Canada to explore the potential for UA to recycle local P waste. We also used existing data to complete a substance flow analysis of P flows in the overall food system of Montreal. In 2012, Montreal imported 3.5 Gg of P in food, of which 2.63 Gg ultimately accumulated in landfills, 0.36 Gg were discharged to local waters, and only 0.09 Gg were recycled through composting. We found that UA is only a small sub-system in the overall P cycle of the city, contributing just 0.44% of the P consumed as food in the city. However, within the UA system, the rate of recycling is high: 73% of inputs applied to soil were from recycled sources. While a Quebec mandate to recycle 100% of all organic waste by 2020 might increase the role of UA in P recycling, the area of land in UA is too small to accommodate all P waste produced on the island. UA may, however, be a valuable pathway to improve urban P sustainability by acting as an activity that changes residents’ relationship to, and understanding of, the food system and increases their acceptance of composting. PMID:25826256

  16. Sewage sludge as a fuel and raw material for phosphorus recovery: Combined process of gasification and P extraction.

    PubMed

    Gorazda, K; Tarko, B; Werle, S; Wzorek, Z

    2018-03-01

    Increasing problems associated with sewage sludge disposal are observed nowadays. As the thermal conversion of sewage sludge (combustion, co-combustion, gasification and pyrolysis) appears to be the most promising alternative for its management, the solid residues left after gasification were examined. The present study evaluates the potential of this waste as an alternative phosphorus source in the context of phosphorus recovery. The obtained solid gasification residues were characterised (chemical and phase composition, thermal properties, surface properties and technological parameters used for phosphorus raw materials) and compared to commercial phosphate raw materials. It was revealed that gasification residue is a valuable source of phosphorus and microelements, comparable to sewage sludge ash (SSA) considered nowadays as secondary phosphorus raw materials. Chemical properties as well as technological parameters characteristic for natural phosphate ores are different. Solid gasification residue was leached with mineral acids (phosphoric and nitric) according to the patented method of phosphorus recovery - PolFerAsh, developed by Cracow University of Technology. It was revealed that phosphorus can be selectively leached from solid gasification residue with high efficiency (73-82%); moreover, most of the iron and heavy metals stay in the solid phase due to the low concentration of acids and proper solid to liquid phase ratio. The obtained leachates are valuable products that can be considered for the production of fertilisers. Combining the gasification process with nutrient recovery provides the opportunity for more environmentally efficient technologies driven by sustainable development rules. Copyright © 2017 Elsevier Ltd. All rights reserved.

  17. Dairy manure biochar as a phosphorus fertilizer

    USDA-ARS?s Scientific Manuscript database

    Future manure management practices will need to remove large amounts of organic waste as well as harness energy to generate value-added products. Manures can be processed using thermochemical conversion technologies to generate a solid product called biochar. Dairy manure biochars contain sufficient...

  18. Osteopetrosis, hypophosphatemia, and phosphaturia in a young man: a case presentation and differential diagnosis.

    PubMed

    Mitri, Zahi; Tangpricha, Vin

    2012-01-01

    We report the case of a 30-year-old African-American male with osteopetrosis and hypophosphatemia, presenting with diffuse myalgias. Laboratory evaluation performed revealed a low serum phosphorus level with urinary phosphate wasting, low calcium, and 25-hydroxyvitamin D concentrations, as well as elevated alkaline phosphatase. Skull and pelvic radiographs revealed high bone density consistent with high bone mass found on bone mineral density reports. PHEX gene mutation analysis was negative. Patient was started on calcium and phosphorus replacement, and he clinically improved. This paper will review the different subtypes of osteopetrosis, and the evaluation of hypophosphatemia.

  19. Results of a program to control phosphorus discharges from dairy operations in south-central Florida, USA

    NASA Astrophysics Data System (ADS)

    Havens, Karl E.; Flaig, Eric G.; James, R. Thomas; Lostal, Sergio; Muszick, Dera

    1996-07-01

    During 1987 1992, a mandatory program to control phosphorus discharges was implemented at dairy operations located to the north of Lake Okeechobee, Florida, USA. Thirty of 48 dairies participated in this program and implemented best management practices (BMPs), which included the construction of intensive animal waste management systems. Eighteen dairies closed their milkproducing operations under a government-funded buyout program. In this paper, we compare trends in runoff total phosphorus (TP) concentrations among the dairies that remained active and implemented BMPs. A central feature of the dairy waste management system is the high intensity area (HIA), defined as the milking barn and adjacent vegetation-free land, encircled by a drainage ditch and dike. Animal waste from the HIA is diverted into anaerobic lagoons and storage ponds, from which water is periodically removed and used for irrigation of field crops. The impacts of BMP construction on runoff TP concentrations were immediate and, in most cases, dramatic. Average TP concentrations declined significantly ( P < 0.001), from 9.0 to 1.2 mg TP liter-1 at dairies in one basin (Lower Kissimmee River), and from 2.6 to 1.0 mg TP liter-1 in another (Taylor Creek/Nubbin Slough). Some sites experienced greater declines in TP than others. To elucidate possible causes for the difference in response, a multivariate statistical model was utilized. Independent variables included soil pH, soil drainage characteristics, spodic horizon depth, and the areas of different BMP components (pasture, HIA, spray fields). The analysis significantly separated dairies with the highest and lowest runoff TP concentrations. Lowest TP occurred at dairies having particular soil characteristic (shallow spodic horizon) and certain BMP features (large HIA and small heard pastures).

  20. Limnological Investigations: Lake Koocanusa, Montana. Part 4. Factors Controlling Primary Productivity.

    DTIC Science & Technology

    1982-06-01

    meant that the reservoir’s phytoplankton comunity spent much of its time below it during reservoir filling. The phytoplanktonic 52 light environment...Handbook No. 12. Oxford: Blackwell Scientific Publications. Vollenweider, R. A. (1975) Input-output models, with special reference to the phosphorus

  1. Application of modified export coefficient method on the load estimation of non-point source nitrogen and phosphorus pollution of soil and water loss in semiarid regions.

    PubMed

    Wu, Lei; Gao, Jian-en; Ma, Xiao-yi; Li, Dan

    2015-07-01

    Chinese Loess Plateau is considered as one of the most serious soil loss regions in the world, its annual sediment output accounts for 90 % of the total sediment loads of the Yellow River, and most of the Loess Plateau has a very typical characteristic of "soil and water flow together", and water flow in this area performs with a high sand content. Serious soil loss results in nitrogen and phosphorus loss of soil. Special processes of water and soil in the Loess Plateau lead to the loss mechanisms of water, sediment, nitrogen, and phosphorus are different from each other, which are greatly different from other areas of China. In this study, the modified export coefficient method considering the rainfall erosivity factor was proposed to simulate and evaluate non-point source (NPS) nitrogen and phosphorus loss load caused by soil and water loss in the Yanhe River basin of the hilly and gully area, Loess Plateau. The results indicate that (1) compared with the traditional export coefficient method, annual differences of NPS total nitrogen (TN) and total phosphorus (TP) load after considering the rainfall erosivity factor are obvious; it is more in line with the general law of NPS pollution formation in a watershed, and it can reflect the annual variability of NPS pollution more accurately. (2) Under the traditional and modified conditions, annual changes of NPS TN and TP load in four counties (districts) took on the similar trends from 1999 to 2008; the load emission intensity not only is closely related to rainfall intensity but also to the regional distribution of land use and other pollution sources. (3) The output structure, source composition, and contribution rate of NPS pollution load under the modified method are basically the same with the traditional method. The average output structure of TN from land use and rural life is about 66.5 and 17.1 %, the TP is about 53.8 and 32.7 %; the maximum source composition of TN (59 %) is farmland; the maximum source composition of TP (38.1 %) is rural life; the maximum contribution rates of TN and TP in Baota district are 36.26 and 39.26 %, respectively. Results may provide data support for NPS pollution prevention and control in the loess hilly and gully region and also provide scientific reference for the protection of ecological environment of the Loess Plateau in northern Shaanxi.

  2. Chemical Characterization of Phosphorus in Soils Amended with Biosolids and DWTRs

    USDA-ARS?s Scientific Manuscript database

    The concept of co-application of biosolids and drinking water treatment residues (DWTRs) represents an environmentally sustainable and economically sound strategy for the management of municipal solid wastes. This study demonstrated the effectiveness of reducing water-soluble P in biosolids-amended ...

  3. Waste activated sludge fermentation: effect of solids retention time and biomass concentration.

    PubMed

    Yuan, Q; Sparling, R; Oleszkiewicz, J A

    2009-12-01

    Laboratory scale, room temperature, semi-continuous reactors were set-up to investigate the effect of solids retention time (SRT, equal to HRT hydraulic retention time) and biomass concentration on generation of volatile fatty acids (VFA) from the non-methanogenic fermentation of waste activated sludge (WAS) originating from an enhanced biological phosphorus removal process. It was found that VFA yields increased with SRT. At the longest SRT (10d), improved biomass degradation resulted in the highest soluble to total COD ratio and the highest VFA yield from the influent COD (0.14g VFA-COD/g TCOD). It was also observed that under the same SRT, VFA yields increased when the biomass concentration decreased. At a 10d SRT the VFA yield increased by 46%, when the biomass concentration decreased from 13g/L to 4.8g/L. Relatively high nutrient release was observed during fermentation. The average phosphorus release was 17.3mg PO(4)-P/g TCOD and nitrogen release was 25.8mg NH(4)-N/g TCOD.

  4. Changes of parameters during composting of bio-waste collected over four seasons.

    PubMed

    Hanc, Ales; Ochecova, Pavla; Vasak, Filip

    2017-07-01

    This study investigated the evolution of several main parameters during the composting of separately collected household bio-waste originating from urban settlements (U-bio-waste) and family houses (F-bio-waste) from four climate seasons. When comparing both types of composts, U-bio-waste compost contained a higher amount of nutrients, however F-bio-waste compost was characterized by greater yield, greater availability of phosphorus and magnesium, and faster stability. In terms of seasons, compost from bio-waste collected in spring contained the highest amount of nutrients, reflecting the high content of nutrients in plant feedstock. Dissolved organic carbon and pH in U- and F-bio-waste compost, respectively, frequently showed close relationships with other parameters. The seasonal variations of most of the parameters in the composts were found to be lower compared to the variations observed in the feedstocks. The greatest seasonal variation was found in nitrate nitrogen, which is the reason for the more frequent analysis of this parameter.

  5. An international waste convention: measures for achieving sustainable development.

    PubMed

    Meyers, Gary D; McLeod, Glen; Anbarci, Melanie A

    2006-12-01

    Waste is a by-product of economic growth. Consequently, economic growth presents challenges for sustainable resource management and development because continued economic growth implies continued growth in waste outputs. Poor management of waste results in the inappropriate depletion of natural resources and potentially adverse effects on the environment, health and the economy. It is unsustainable. This paper begins by outlining the magnitude of and the current response to the growth in the quantity of waste outputs. This is followed by a consideration of why the international response to date, including the Rio Declaration and Agenda 21, fails to address the issue adequately. The paper concludes with a discussion on why and how an international treaty or other measure could advance sustainable development by providing an appropriate framework within which to address the problem.

  6. The input and output management of solid waste using DEA models: A case study at Jengka, Pahang

    NASA Astrophysics Data System (ADS)

    Mohamed, Siti Rosiah; Ghazali, Nur Fadzrina Mohd; Mohd, Ainun Hafizah

    2017-08-01

    Data Envelopment Analysis (DEA) as a tool for obtaining performance indices has been used extensively in several of organizations sector. The ways to improve the efficiency of Decision Making Units (DMUs) is impractical because some of inputs and outputs are uncontrollable and in certain situation its produce weak efficiency which often reflect the impact for operating environment. Based on the data from Alam Flora Sdn. Bhd Jengka, the researcher wants to determine the efficiency of solid waste management (SWM) in town Jengka Pahang using CCRI and CCRO model of DEA and duality formulation with vector average input and output. Three input variables (length collection in meter, frequency time per week in hour and number of garbage truck) and 2 outputs variables (frequency collection and the total solid waste collection in kilogram) are analyzed. As a conclusion, it shows only three roads from 23 roads are efficient that achieve efficiency score 1. Meanwhile, 20 other roads are in an inefficient management.

  7. Is bigger better? An empirical analysis of waste management in New South Wales

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Carvalho, Pedro, E-mail: pedrotcc@gmail.com; CESUR – Center for Urban and Regional Systems, Instituto Superior Técnico, University of Lisboa, Av. Rovisco Pais, 1049-001 Lisbon; Marques, Rui Cunha, E-mail: rui.marques@tecnico.ulisboa.pt

    Highlights: • We search for the most efficient cost structure for NSW household waste services. • We found that larger services are no longer efficient. • We found an optimal size for the range 12,000–20,000 inhabitants. • We found significant economies of output density for household waste collection. • We found economies of scope in joint provision of unsorted and recycling services. - Abstract: Across the world, rising demand for municipal solid waste services has seen an ongoing increase in the costs of providing these services. Moreover, municipal waste services have typically been provided through natural or legal monopolies, wheremore » few incentives exist to reduce costs. It is thus vital to examine empirically the cost structure of these services in order to develop effective public policies which can make these services more cost efficient. Accordingly, this paper considers economies of size and economies of output density in the municipal waste collection sector in the New South Wales (NSW) local government system in an effort to identify the optimal size of utilities from the perspective of cost efficiency. Our results show that – as presently constituted – NSW municipal waste services are not efficient in terms of costs, thereby demonstrating that ‘bigger is not better.’ The optimal size of waste utilities is estimated to fall in the range 12,000–20,000 inhabitants. However, significant economies of output density for unsorted (residual) municipal waste collection and recycling waste collection were found, which means it is advantageous to increase the amount of waste collected, but maintaining constant the number of customers and the intervention area.« less

  8. The ManureEcoMine pilot installation: advanced integration of technologies for the management of organics and nutrients in livestock waste.

    PubMed

    Pintucci, Cristina; Carballa, Marta; Varga, Sam; Sarli, Jimena; Peng, Lai; Bousek, Johannes; Pedizzi, Chiara; Ruscalleda, Maël; Tarragó, Elena; Prat, Delphine; Colica, Giovanni; Picavet, Merijn; Colsen, Joop; Benito, Oscar; Balaguer, Marilos; Puig, Sebastià; Lema, Juan M; Colprim, Jesús; Fuchs, Werner; Vlaeminck, Siegfried E

    2017-03-01

    Manure represents an exquisite mining opportunity for nutrient recovery (nitrogen and phosphorus), and for their reuse as renewable fertilisers. The ManureEcoMine proposes an integrated approach of technologies, operated in a pilot-scale installation treating swine manure (83.7%) and Ecofrit ® (16.3%), a mix of vegetable residues. Thermophilic anaerobic digestion was performed for 150 days, the final organic loading rate was 4.6 kgCOD m -3 d -1 , with a biogas production rate of 1.4 Nm 3 m -3 d -1 . The digester was coupled to an ammonia side-stream stripping column and a scrubbing unit for free ammonia inhibition reduction in the digester, and nitrogen recovery as ammonium sulphate. The stripped digestate was recirculated daily in the digester for 15 days (68% of the digester volume), increasing the gas production rate by 27%. Following a decanter centrifuge, the digestate liquid fraction was treated with an ultrafiltration membrane. The filtrate was fed into a struvite reactor, with a phosphorus recovery efficiency of 83% (as orthophosphate). Acidification of digestate could increment the soluble orthophosphate concentration up to four times, enhancing phosphorus enrichment in the liquid fraction and its recovery via struvite. A synergistic combination of manure processing steps was demonstrated to be technologically feasible to upgrade livestock waste into refined, concentrated fertilisers.

  9. Water quality in the proposed Prosperity Reservoir area, Center Creek Basin, Missouri

    USGS Publications Warehouse

    Barks, James H.; Berkas, Wayne R.

    1979-01-01

    Water in Center Creek basin, Mo., upstream from the proposed Prosperity Reservoir damsite is a calcium bicarbonate type that is moderately mineralized, hard, and slightly alkaline. Ammonia and organic nitrogen, phosphorus, total organic carbon, chemical oxygen demand, and bacteria increased considerably during storm runoff, probably due to livestock wastes. Nitrogen and phosphorus concentrations are probably high enough to cause the proposed lake to be eutrophic. Minor-element concentrations were at or near normal levels in Center and Jones Creeks. The only pesticides detected were 0.01 micrograms per liter of 2, 4, 5-T in one base-flow sample and 0.02 to 0.04 micrograms per liter of 2, 4, 5-T and 2, 4-D in all storm-runoff samples. Fecal coliform and fecal streptococcus densities ranged from 2 to 650 and 2 to 550 colonies per 100 milliliters, respectively, during base flow , but were 17,000 to 45,000 and 27,000 to 70,000 colonies per 100 milliliters, respectively, during storm runoff. Water in Center Creek about 2.5 miles downstream from the proposed damsite is similar in quality to that upstream from the damsite except for higher concentrations of sodium, sulfate, chloride, fluoride, nitrogen, and phosphorus. These higher concentrations are caused by fertilizer industry wastes that enter Center Creek about 1.0 mile downstream from the proposed damsite. (Woodard-USGS).

  10. Comparing urban solid waste recycling from the viewpoint of urban metabolism based on physical input-output model: A case of Suzhou in China.

    PubMed

    Liang, Sai; Zhang, Tianzhu

    2012-01-01

    Investigating impacts of urban solid waste recycling on urban metabolism contributes to sustainable urban solid waste management and urban sustainability. Using a physical input-output model and scenario analysis, urban metabolism of Suzhou in 2015 is predicted and impacts of four categories of solid waste recycling on urban metabolism are illustrated: scrap tire recycling, food waste recycling, fly ash recycling and sludge recycling. Sludge recycling has positive effects on reducing all material flows. Thus, sludge recycling for biogas is regarded as an accepted method. Moreover, technical levels of scrap tire recycling and food waste recycling should be improved to produce positive effects on reducing more material flows. Fly ash recycling for cement production has negative effects on reducing all material flows except solid wastes. Thus, other fly ash utilization methods should be exploited. In addition, the utilization and treatment of secondary wastes from food waste recycling and sludge recycling should be concerned. Copyright © 2011 Elsevier Ltd. All rights reserved.

  11. Direct and indirect generation of waste in the Spanish paper industry.

    PubMed

    Ruiz Peñalver, Soraya María; Rodríguez Molina, Mercedes; Camacho Ballesta, José Antonio

    2014-01-01

    The paper industry has a relatively high degree of reliance on suppliers when compared to other industries. Exploring the role of the paper industry in terms of consumption of intermediate inputs from other industries may help to understand how the production of paper does not only generate waste by itself but also affects the amount of waste generated by other industries. The product Life Cycle Assessment (LCA) is a useful analytical tool to examine and assess environmental impacts over the entire life cycle of a product "from cradle to grave" but it is costly and time intensive. In contrast, Economic Input Output Life Cycle Assessment Models (IO-LCA) that combine LCA with Input-Output analysis (IO) are more accurate and less expensive, as they employ publicly available data. This paper represents one of the first Spanish studies aimed at estimating the waste generated in the production of paper by applying IO-LCA. One of the major benefits is the derivation of the contribution of direct and indirect suppliers to the paper industry. The results obtained show that there was no direct relationship between the impact on output and the impact on waste generation exerted by the paper industry. The major contributors to waste generation were the mining industry and the forestry industry. Copyright © 2013 Elsevier Ltd. All rights reserved.

  12. Evaluation of geotextile filtration applying coagulant and flocculant amendments for aquaculture biosolids dewatering and phosphorus removal

    USDA-ARS?s Scientific Manuscript database

    Wastes contained in the microscreen backwash discharged from intensive recirculating aquaculture systems were removed and dewatered in simple geotextile bag filters. Three chemical coagulation aids, (aluminum sulfate (alum), ferric chloride, and calcium hydroxide (hydrated lime)), were tested in com...

  13. Pilot-scale incineration of wastes with high content of chlorinated and non-halogenated organophosphorus flame retardants used as alternatives for PBDEs.

    PubMed

    Matsukami, Hidenori; Kose, Tomohiro; Watanabe, Mafumi; Takigami, Hidetaka

    2014-09-15

    Chlorinated and non-halogenated organophosphorus flame retardants (OPFRs) including tris(2-chloroisopropyl) phosphate (TCIPP), diethylene glycol bis(di(2-chloroisopropyl) phosphate) (DEG-BDCIPP), triphenyl phosphate (TPHP), and bisphenol A bis(diphenyl phosphate) (BPA-BDPP) have been used increasingly as alternatives to polybrominated diphenyl ethers and other brominated flame retardants. For this study, five batches of incineration experiments of wastes containing approximately 1% of TCIPP, DEG-BDCIPP, TPHP, and BPA-BDPP were conducted using a pilot-scale incinerator. Destruction and emission behaviors of OPFRs were investigated along with the effects on behaviors of unintentional persistent organic pollutants (POPs) such as polychlorinated dibenzo-p-dioxins (PCDDs), polychlorinated dibenzofurans (PCDFs), dioxin-like polychlorinated biphenyls (dl-PCBs), hexachlorobenzene (HCB), pentachlorobenzene (PeCB), and pentachlorophenol (PCP). Incineration conditions were chosen according to current regulations for waste incinerators in Japan and UNEP. The OPFRs in the input materials were mainly destroyed in the primary combustion with destruction efficiencies greater than 99.999%. Concentrations of the OPFRs in the exhaust gases and ash were, respectively, <0.01-0.048 μg m(-3) and <0.5-68 μg kg(-1). Almost all of the total phosphorus in the input materials was partitioned into the ash, but less into final exit gases, indicating negligible emissions of volatile phosphorus compounds during incineration. Inputs of chlorinated OPFRs did not affect the formation markedly. Destruction and emission behaviors of unintentional POPs were investigated. Emissions of such POPs in exhaust gases and the ash were lower than the Japanese and international standards. Results show that even in wastes with high contents of chlorinated and non-halogenated OPFRs, waste incineration by the current regulations for the waste incinerators can control environmental emissions of OPFRs and unintentional POPs. Incineration is regarded as a best available technology (BAT) for waste management systems. Copyright © 2014 Elsevier B.V. All rights reserved.

  14. Performance of Nitrogen and Phosphorus Removal in Petrochemical Wastewater by Zeolited Fly Ash

    NASA Astrophysics Data System (ADS)

    Li, Zheng; Gu, Guizhou; Ji, Shenghao

    2018-05-01

    The zeolitized fly ash was synthesized by alkali melt hydrothermal method. The cation exchange capacity of zeolitized fly ash was far greater than the raw material fly ash. The main component was NaP1 zeolite (Na6Al6Si10O32·12H2O), followed by mullite, and a small amount of heterozygous crystals. The effect of synthetic zeolite dosage, pH value, adsorption time and reaction temperature on the effect of nitrogen and phosphorus removal in petrochemical wastewater were investigated. The results showed that when the zeolitized fly ash dosage was 9 g/L, the petrochemical wastewater pH value was 6∼8, adsorption time was 30 min and the reaction temperature was 30°C, the synthetic zeolite had the best effect on the removal of TN and TP in petrochemical wastewater, and the removal was 65.5%, 91.4% respectively. Besides, the concentrations of TN and TP in the effluent were 11.04 mg/L, 0.31 mg/L respectively. The concentrations met the sewage discharge standard in petrochemical industry of "Liaoning sewage comprehensive discharge standard" (DB21 1627-2008). This study was to realize the comprehensive utilization of solid waste and achieve the purpose of waste and waste.

  15. Enhancing e-waste estimates: Improving data quality by multivariate Input–Output Analysis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Feng, E-mail: fwang@unu.edu; Design for Sustainability Lab, Faculty of Industrial Design Engineering, Delft University of Technology, Landbergstraat 15, 2628CE Delft; Huisman, Jaco

    2013-11-15

    Highlights: • A multivariate Input–Output Analysis method for e-waste estimates is proposed. • Applying multivariate analysis to consolidate data can enhance e-waste estimates. • We examine the influence of model selection and data quality on e-waste estimates. • Datasets of all e-waste related variables in a Dutch case study have been provided. • Accurate modeling of time-variant lifespan distributions is critical for estimate. - Abstract: Waste electrical and electronic equipment (or e-waste) is one of the fastest growing waste streams, which encompasses a wide and increasing spectrum of products. Accurate estimation of e-waste generation is difficult, mainly due to lackmore » of high quality data referred to market and socio-economic dynamics. This paper addresses how to enhance e-waste estimates by providing techniques to increase data quality. An advanced, flexible and multivariate Input–Output Analysis (IOA) method is proposed. It links all three pillars in IOA (product sales, stock and lifespan profiles) to construct mathematical relationships between various data points. By applying this method, the data consolidation steps can generate more accurate time-series datasets from available data pool. This can consequently increase the reliability of e-waste estimates compared to the approach without data processing. A case study in the Netherlands is used to apply the advanced IOA model. As a result, for the first time ever, complete datasets of all three variables for estimating all types of e-waste have been obtained. The result of this study also demonstrates significant disparity between various estimation models, arising from the use of data under different conditions. It shows the importance of applying multivariate approach and multiple sources to improve data quality for modelling, specifically using appropriate time-varying lifespan parameters. Following the case study, a roadmap with a procedural guideline is provided to enhance e-waste estimation studies.« less

  16. CO2-assisted phosphorus extraction from poultry litter and selective recovery of struvite and potassium struvite.

    PubMed

    Shashvatt, Utsav; Benoit, Josh; Aris, Hannah; Blaney, Lee

    2018-06-18

    Phosphorus recovery from industrialized poultry operations is necessary to ensure sustainable waste management and resource consumption. To realize these goals, an innovative, two-stage process chemistry has been developed to extract nutrients from poultry litter and recover value-added products. Over 75% phosphorus extraction was achieved by bubbling carbon dioxide into poultry litter slurries and adding strong acid to reach pH 4.5-5.5. After separating the nutrient-deficient poultry litter solids and the nutrient-rich liquid, the extract pH was increased through aeration and strong base addition. Over 95% of the extracted phosphorus was recovered as solid precipitate at pH 8.5-9.0. High-purity struvite and potassium struvite products were selectively recovered through pH control, introduction of a calcium-complexing agent, and addition of magnesium chloride. The nitrogen-to-phosphorus-to-potassium (NPK) ratio of the recovered solids was controlled through aeration and pH adjustment. Precipitation at pH 8.5-9.0 and 10.5-11.0 resulted in NPK ratios of 2.0:1.0:0.1 and 0.9:1.0:0.2, respectively. The process effluent was effectively recycled as makeup water for the subsequent batch of poultry litter, thereby decreasing water consumption and increasing overall nutrient recovery. Sequencing batch operation yielded greater than 70% phosphorus recovery within a 45-min process, demonstrating the potential for this technology to alleviate nutrient pollution in agricultural settings and generate an alternative supply of phosphorus fertilizers. Copyright © 2018. Published by Elsevier Ltd.

  17. Wide electrochemical window of supercapacitors from coffee bean-derived phosphorus-rich carbons.

    PubMed

    Huang, Congcong; Sun, Ting; Hulicova-Jurcakova, Denisa

    2013-12-01

    Phosphorus-rich carbons (PCs) were prepared by phosphoric acid activation of waste coffee grounds in different impregnation ratios. PCs were characterized by nitrogen and carbon dioxide adsorption and X-ray photoelectron spectroscopy. The results indicate that the activation step not only creates a porous structure, but also introduces various phosphorus and oxygen functional groups to the surface of carbons. As evidenced by cyclic voltammetry, galvanostatic charge/discharge, and wide potential window tests, a supercapacitor constructed from PC-2 (impregnation ratio of 2), with the highest phosphorus content, can operate very stably in 1 M H2 SO4 at 1.5 V with only 18 % degradation after 10 000 cycles at a current density of 5 A g(-1) . Due to the wide electrochemical window, a supercapacitor assembled with PC-2 has a high energy density of 15 Wh kg(-1) at a power density of 75 W kg(-1) . The possibility of widening the potential window above the theoretical potential for the decomposition of water is attributed to reversible electrochemical hydrogen storage in narrow micropores and the positive effect of phosphorus-rich functional groups, particularly the polyphosphates on the carbon surface. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. Soil Fungi and Macrofauna in the Neotropics

    Treesearch

    Yiqing Li; Grizelle Gonzalez

    2008-01-01

    Decomposition is a critical ecosystem function that decomposes dead organic materials, removes wastes, recycles nutrients and renews soils fertility. In natural ecosystems most nitrogen (N) and phosphorus (P) required for plant growth are supplied through the decomposition of detritus, relying therefore on the activities of soil microbes and microfauna. Decomposition...

  19. Influence of Land use on Phosphorus Concentrations in Southeastern US Piedmont Headwater

    EPA Science Inventory

    The South Fork Broad River (SFBR) watershed on the Georgia piedmont is impacted by extensive poultry and cattle production and rapid human population growth. Organic wastes produced by poultry and beef production are generally applied to pastures for disposal at a rate selected t...

  20. Developmement of second-generation Environmentally Superior Technology for treatment of swine manure in the USA

    USDA-ARS?s Scientific Manuscript database

    New swine waste management systems in North Carolina need to meet high performance standards of an environmentally superior technology (EST) regarding nitrogen, phosphorus, heavy metals, pathogens, ammonia and odor emissions, and remain affordable and simple to operate. The objective of this study w...

  1. Phosphorus recovery from anaerobic swine lagoon sludge using the quick wash process

    USDA-ARS?s Scientific Manuscript database

    Long term accumulation of sludge in anaerobic swine lagoons reduces its storage volume and ability to treat waste. Usually, excess accumulation of lagoon sludge is removed using pumping dredges. The dredged sludge is then land applied at agronomic rates according to its nutrient content. The accumul...

  2. Phosphorus recovery from anaerobic swine lagoon sludge using the quick wash process

    USDA-ARS?s Scientific Manuscript database

    Long term and significant accumulation of sludge in anaerobic swine lagoons reduces its storage volume and ability to treat waste. Usually, excess accumulation of lagoon sludge is removed by dredging. The dredged sludge is then land applied at agronomic rates according to its nutrient content. Becau...

  3. Comparisons of four categories of waste recycling in China's paper industry based on physical input-output life-cycle assessment model.

    PubMed

    Liang, Sai; Zhang, Tianzhu; Xu, Yijian

    2012-03-01

    Waste recycling for paper production is an important component of waste management. This study constructs a physical input-output life-cycle assessment (PIO-LCA) model. The PIO-LCA model is used to investigate environmental impacts of four categories of waste recycling in China's paper industry: crop straws, bagasse, textile wastes and scrap paper. Crop straw recycling and wood utilization for paper production have small total intensity of environmental impacts. Moreover, environmental impacts reduction of crop straw recycling and wood utilization benefits the most from technology development. Thus, using crop straws and wood (including wood wastes) for paper production should be promoted. Technology development has small effects on environmental impacts reduction of bagasse recycling, textile waste recycling and scrap paper recycling. In addition, bagasse recycling and textile waste recycling have big total intensity of environmental impacts. Thus, the development of bagasse recycling and textile waste recycling should be properly limited. Other pathways for reusing bagasse and textile wastes should be explored and evaluated. Moreover, imports of scrap paper should be encouraged to reduce large indirect impacts of scrap paper recycling on domestic environment. Copyright © 2011 Elsevier Ltd. All rights reserved.

  4. Solid wastes integrated management in Rio de Janeiro: input-output analysis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pimenteira, C.A.P.; Carpio, L.G.T.; Rosa, L.P.

    2005-07-01

    This paper analyzes the socioeconomic aspects of solid waste management in Rio de Janeiro. An 'input-output' methodology was used to examine how the secondary product resulting from recycling is re-introduced into the productive process. A comparative profile was developed from the state of recycling and the various other aspects of solid waste management, both from the perspective of its economic feasibility and from the social aspects involved. This was done analyzing the greenhouse gas emissions and the decreased energy consumption. The effects of re-introducing recycled raw materials into the matrix and the ensuing reduction of the demand for virgin rawmore » materials was based on the input-output matrix for the State of Rio de Janeiro. This paper also analyzes the energy savings obtained from recycling and measures the avoided emissions of greenhouse gases.« less

  5. Impact of co-digestion on existing salt and nutrient mass balances for a full-scale dairy energy project.

    PubMed

    Camarillo, Mary Kay; Stringfellow, William T; Spier, Chelsea L; Hanlon, Jeremy S; Domen, Jeremy K

    2013-10-15

    Anaerobic digestion of manure and other agricultural waste streams with subsequent energy production can result in more sustainable dairy operations; however, importation of digester feedstocks onto dairy farms alters previously established carbon, nutrient, and salinity mass balances. Salt and nutrient mass balance must be maintained to avoid groundwater contamination and salination. To better understand salt and nutrient contributions of imported methane-producing substrates, a mass balance for a full-scale dairy biomass energy project was developed for solids, carbon, nitrogen, sulfur, phosphorus, chloride, and potassium. Digester feedstocks, consisting of thickened manure flush-water slurry, screened manure solids, sudan grass silage, and feed-waste, were tracked separately in the mass balance. The error in mass balance closure for most elements was less than 5%. Manure contributed 69.2% of influent dry matter while contributing 77.7% of nitrogen, 90.9% of sulfur, and 73.4% of phosphorus. Sudan grass silage contributed high quantities of chloride and potassium, 33.3% and 43.4%, respectively, relative to the dry matter contribution of 22.3%. Five potential off-site co-digestates (egg waste, grape pomace, milk waste, pasta waste, whey wastewater) were evaluated for anaerobic digestion based on salt and nutrient content in addition to bio-methane potential. Egg waste and wine grape pomace appeared the most promising co-digestates due to their high methane potentials relative to bulk volume. Increasing power production from the current rate of 369 kW to the design value of 710 kW would require co-digestion with either 26800 L d(-1) egg waste or 60900 kg d(-1) grape pomace. However, importation of egg waste would more than double nitrogen loading, resulting in an increase of 172% above the baseline while co-digestion with grape pomace would increase potassium by 279%. Careful selection of imported co-digestates and management of digester effluent is required to manage salt and nutrient mass loadings and reduce groundwater impacts. Copyright © 2013 Elsevier Ltd. All rights reserved.

  6. Characterization of a polyhydroxyalkanoate obtained from pineapple peel waste using Ralsthonia eutropha.

    PubMed

    Vega-Castro, Oscar; Contreras-Calderon, Jose; León, Emilson; Segura, Almir; Arias, Mario; Pérez, León; Sobral, Paulo J A

    2016-08-10

    Agro-industrial waste can be the production source of biopolymers such as polyhydroxyalkanoates. The aim of this study was to produce and characterize Polyhydroxyalkanoates produced from pineapple peel waste fermentation processes. The methodology includes different pineapple peel waste fermentation conditions. The produced biopolymer was characterized using FTIR, GC-MS and NMR. The best fermentation condition for biopolymer production was obtained using pH 9, Carbon/Nitrogen 11, carbon/phosphorus 6 and fermentation time of 60h. FTIR analyzes showed PHB group characteristics, such as OH, CH and CO. In addition, GC-MS showed two monomers with 4 and 8 carbons, referred to PHB and PHBHV. H(1) NMR analysis showed 0.88-0.97 and 5.27ppm signals, corresponding to CH3 and CH, respectively. In conclusion, polyhydroxyalkanoate production from pineapple peels waste is an alternative for the treatment of waste generated in Colombia's fruit industry. Copyright © 2016 Elsevier B.V. All rights reserved.

  7. Technical and economic feasibility of a solar-bio-powered waste utilization and treatment system in Central America.

    PubMed

    Aguilar Alvarez, Ronald Esteban; Bustamante Roman, Mauricio; Kirk, Dana; Miranda Chavarria, Jose Alberto; Baudrit, Daniel; Aguilar Pereira, Jose Francisco; Rodriguez Montero, Werner; Reinhold, Dawn; Liao, Wei

    2016-12-15

    The purpose of this study was to implement and evaluate a pilot-scale and closed-loop system that synergistically combines solar thermal collector, anaerobic digester, and constructed treatment wetland to simultaneously treat and utilize organic wastes. The system utilizes 863 kg of mixed animal and food wastes to generate 263 MJ renewable energy, produced 28 kg nitrogen and phosphorus fertilizer, and reclaimed 550 kg water per day. The net revenue considering electricity and fertilizer was $2436 annually. The payback period for the system is estimated to be 17.8 years for a relatively dilute waste stream (i.e., 2% total solids). The implemented system has successfully demonstrated a self-efficient and flexible waste utilization and treatment system. It creates a win-win solution to satisfy the energy needs of the community and address environmental concerns of organic wastes disposal in the region. Copyright © 2016 Elsevier Ltd. All rights reserved.

  8. Assessment of pollutants sequestration in flowing waters using Red Mud

    USDA-ARS?s Scientific Manuscript database

    Red Mud, a waste product of bauxite refinement, has already been reported as a non-conventional adsorbent of heavy metals and some other important nutrients, such as phosphorus. Its use has been explored since it is a low cost solid adsorbent with a strong binding capacity. Although there were equil...

  9. Long-term effects of compost and cover crops on soil phosphorus in two California agroecosystems

    USDA-ARS?s Scientific Manuscript database

    Inefficient P use in agriculture results in soil P accumulation and losses to surrounding ecosystems, highlighting the need to reduce external inputs and use them more efficiently. Composts reduce the need for mineral fertilizers by recycling P from wastes at the regional scale, whereas cover crops ...

  10. Performance evaluation of restaurant food waste and biowaste to biogas pilot projects in China and implications for national policy.

    PubMed

    De Clercq, Djavan; Wen, Zongguo; Fan, Fei

    2017-03-15

    The objective of this research was to conduct a performance evaluation of three food waste/biowaste-to-biogas pilot projects across 7 scenarios in China based on multi-criteria decision analysis (MCDA) methodology. The projects ranked included a food waste-biogas project in Beijing, a food waste-biogas project in Suzhou and a co-digestion project producing biomethane in Hainan. The projects were ranked from best to worst based on technical, economic and environmental criteria under the MCDA framework. The results demonstrated that some projects are encountering operational problems. Based on these findings, six national policy recommendations were provided: (1) shift away from capital investment subsidies to performance-based subsidies; (2) re-design feed in tariffs; (3) promote bio-methane and project clustering; (4) improve collection efficiency by incentivizing FW producers to direct waste to biogas projects; (5) incentivize biogas projects to produce multiple outputs; (6) incentivize food waste-based projects to co-digest food waste with other substrates for higher gas output. Copyright © 2016 Elsevier Ltd. All rights reserved.

  11. Ca(2+) and OH(-) release of ceramsites containing anorthite and gehlenite prepared from waste lime mud.

    PubMed

    Qin, Juan; Yang, Chuanmeng; Cui, Chong; Huang, Jiantao; Hussain, Ahmad; Ma, Hailong

    2016-09-01

    Lime mud is a kind of solid waste in the papermaking industry, which has been a source of serious environmental pollution. Ceramsites containing anorthite and gehlenite were prepared from lime mud and fly ash through the solid state reaction method at 1050°C. The objective of this study was to explore the efficiency of Ca(2+) and OH(-) release and assess the phosphorus and copper ion removal performance of the ceramsites via batch experiments, X-ray diffraction (XRD) and scanning electron microscopy (SEM). The results show that Ca(2+) and OH(-) were released from the ceramsites due to the dissolution of anorthite, gehlenite and available lime. It is also concluded that gehlenite had stronger capacity for Ca(2+) and OH(-) release compared with anorthite. The Ca(2+) release could be fit well by the Avrami kinetic model. Increases of porosity, dosage and temperature were associated with increases in the concentrations of Ca(2+) and OH(-) released. Under different conditions, the ceramsites could maintain aqueous solutions in alkaline conditions (pH=9.3-10.9) and the release of Ca(2+) was not affected. The removal rates of phosphorus and copper ions were as high as 96.88% and 96.81%, respectively. The final pH values of both phosphorus and copper ions solutions changed slightly. The reuse of lime mud in the form of ceramsites is an effective strategy. Copyright © 2016. Published by Elsevier B.V.

  12. Transferring of components and energy output in industrial sewage sludge disposal by thermal pretreatment and two-phase anaerobic process.

    PubMed

    Yang, Xiaoyi; Wang, Xin; Wang, Lei

    2010-04-01

    For a better sewage sludge disposal and more efficient energy reclamation, transforming of components and energy in sludge by thermal and WAO pretreatment followed by two-phase anaerobic UASB process were studied in the pilot scale. Biogas outputs and the qualities and quantities of the effluent and solid residue were compared with a traditional anaerobic sludge digestion. Sludge components, including carbon, nitrogen, phosphorus, sulphur, were observed and mass balances were discussed throughout the process. The input and output energy balance was also studied. Results showed different trait to compare with biogas outputs in terms of COD added and raw sludge added. Pretreatment improved the transformation of carbon substances into biogas production with higher carbon removal and higher VSS removal. Comparing the energy obtained from biogas production with energy inputs required for pretreatment, energy output in the whole process decreased with higher pretreatment temperature. Copyright 2009 Elsevier Ltd. All rights reserved.

  13. Flow analysis techniques for phosphorus: an overview.

    PubMed

    Estela, José Manuel; Cerdà, Víctor

    2005-04-15

    A bibliographical review on the implementation and the results obtained in the use of different flow analytical techniques for the determination of phosphorus is carried out. The sources, occurrence and importance of phosphorus together with several aspects regarding the analysis and terminology used in the determination of this element are briefly described. A classification as well as a brief description of the basis, advantages and disadvantages of the different existing flow techniques, namely; segmented flow analysis (SFA), flow injection analysis (FIA), sequential injection analysis (SIA), all injection analysis (AIA), batch injection analysis (BIA), multicommutated FIA (MCFIA), multisyringe FIA (MSFIA) and multipumped FIA (MPFIA) is also carried out. The most relevant manuscripts regarding the analysis of phosphorus by means of flow techniques are herein classified according to the detection instrumental technique used with the aim to facilitate their study and obtain an overall scope. Finally, the analytical characteristics of numerous flow-methods reported in the literature are provided in the form of a table and their applicability to samples with different matrixes, namely water samples (marine, river, estuarine, waste, industrial, drinking, etc.), soils leachates, plant leaves, toothpaste, detergents, foodstuffs (wine, orange juice, milk), biological samples, sugars, fertilizer, hydroponic solutions, soils extracts and cyanobacterial biofilms are tabulated.

  14. Manure derived biochar can successfully replace phosphate rock amendment in peatland restoration.

    PubMed

    Pouliot, Rémy; Hugron, Sandrine; Rochefort, Line; Godbout, Stéphane; Palacios, Joahnn H; Groeneveld, Elisabeth; Jarry, Isabelle

    2015-07-01

    Phosphate rock fertilization is commonly used in peatland restoration to promote the growth of Polytrichum strictum, a nurse plant which aids the establishment of Sphagnum mosses. The present study tested whether 1) phosphorus fertilization facilitates the germination of P. strictum spores and 2) biochar derived from local pig manure can replace imported phosphate rock currently used in peatland restoration. Various doses of biochar were compared to phosphate rock to test its effect directly on P. strictum stem regeneration (in Petri dishes in a growth chamber) and in a simulation of peatland restoration with the moss layer transfer technique (in mesocoms in a greenhouse). Phosphorus fertilization promoted the germination of P. strictum spores as well as vegetative stem development. Biochar can effectively replace phosphate rock in peatland restoration giving a new waste management option for rural regions with phosphorus surpluses. As more available phosphorus was present in biochar, an addition of only 3-9 g m(-2) of pig manure biochar is recommended during the peatland restoration process, which is less than the standard dose of phosphate rock (15 g m(-2)). Copyright © 2015 Elsevier Ltd. All rights reserved.

  15. Comparison study of phosphorus adsorption on different waste solids: Fly ash, red mud and ferric-alum water treatment residues.

    PubMed

    Wang, Ying; Yu, Yange; Li, Haiyan; Shen, Chanchan

    2016-12-01

    The adsorption of phosphorus (P) onto three industrial solid wastes (fly ash, red mud and ferric-alum water treatment residual (FAR)) and their modified materials was studied systematically via batch experiments. Compared with two natural adsorbents (zeolite and diatomite), three solid wastes possessed a higher adsorption capacity for P because of the higher Fe, Al and Ca contents. After modification (i.e., the fly ash and red mud modified by FeCl 3 and FARs modified by HCl), the adsorption capacity increased, especially for the modified red mud, where more Fe bonded P was observed. The P adsorption kinetics can be satisfactorily fitted using the pseudo-second-order model. The Langmuir model can describe well the P adsorption on all of the samples in our study. pH and dissolved organic matter (DOM) are two important factors for P adsorption. Under neutral conditions, the maximum adsorption amount on the modified materials was observed. With the deviation from pH7, the adsorption amount decreased, which resulted from the change of P species in water and surface charges of the adsorbents. The DOM in water can promote P adsorption, which may be due to the promotion effects of humic-Fe(Al) complexes and the pH buffer function exceeds the depression of competitive adsorption. Copyright © 2016. Published by Elsevier B.V.

  16. Solid Waste Information Management System (SWIMS). Data summary, fiscal year 1980

    NASA Astrophysics Data System (ADS)

    Batchelder, H. M.

    1981-05-01

    The solid waste information management system (SWIMS) maintains computerized records on a master data base. It provides a comprehensive system for cataloging and assembling data into output reports. The SWIMS data base contains information on the transuranic (TRU) and low level waste (LLW) generated, buried, or stored.

  17. Time evolution of the general characteristics and Cu retention capacity in an acid soil amended with a bentonite winery waste.

    PubMed

    Fernández-Calviño, David; Rodríguez-Salgado, Isabel; Pérez-Rodríguez, Paula; Nóvoa-Muñoz, Juan Carlos; Arias-Estévez, Manuel

    2015-03-01

    The effect of bentonite waste added to a "poor" soil on its general characteristic and copper adsorption capacity was assessed. The soil was amended with different bentonite waste concentrations (0, 10, 20, 40 and 80 Mg ha(-1)) in laboratory pots, and different times of incubation of samples were tested (one day and one, four and eight months). The addition of bentonite waste increased the pH, organic matter content and phosphorus and potassium concentrations in the soil, being stable for P and K, whereas the organic matter decreased with time. Additionally, the copper sorption capacity of the soil and the energy of the Cu bonds increased with bentonite waste additions. However, the use of this type of waste in soil presented important drawbacks for waste dosages higher than 20 Mg ha(-1), such as an excessive increase of the soil pH and an increase of copper in the soil solution. Copyright © 2014 Elsevier Ltd. All rights reserved.

  18. Calculation Package for the Analysis of Performance of Cells 1-6, with Underdrain, of the Environmental Management Waste Management Facility Oak Ridge, Tennessee

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gonzales D.

    2010-03-30

    This calculation package presents the results of an assessment of the performance of the 6 cell design of the Environmental Management Waste Management Facility (EMWMF). The calculations show that the new cell 6 design at the EMWMF meets the current WAC requirement. QA/QC steps were taken to verify the input/output data for the risk model and data transfer from modeling output files to tables and calculation.

  19. Potentials for win-win alliances among animal agriculture and forest products industries: application of the principles of industrial ecology and sustainable development.

    PubMed

    Cowling, Ellis B; Furiness, Carl S

    2005-12-01

    Commercial forests in many parts of the world are deficient in nitrogen and phosphorus. These nutrient-deficient forests often exist in close proximity to large animal feeding operations, meat processing and other food, textile, or other biomass-processing plants, and municipal waste treatment facilities. Many of these facilities produce large surpluses of nitrogen, phosphorus, and organic matter as gaseous ammonia, urea, uric acid, phosphorus compounds, bacterial sludges, and partially treated municipal wastewaters. These co-existing and substantial nutrient deficiencies and surpluses offer ready-made opportunities for discovery, demonstration, and commercial development of science-based, technology-facilitated, environmentally sound, economically viable, and socially acceptable "win-win alliances" among these major industries based on the principles of industrial ecology and sustainable development. The major challenge is to discover practical means to capture the surplus nutrients and put them to work in forest stands from which value-added products can be produced and sold at a profit.

  20. Metabolic Factors Affecting Enhanced Phosphorus Uptake by Activated Sludge

    PubMed Central

    Boughton, William H.; Gottfried, Richard J.; Sinclair, Norval A.; Yall, Irving

    1971-01-01

    Activated sludges obtained from the Rilling Road plant located at San Antonio, Tex., and from the Hyperion treatment plant located at Los Angeles, Calif., have the ability to remove all of the orthophosphate normally present in Tucson sewage within 3 hr after being added to the waste water. Phosphorus removal was independent of externally supplied sources of energy and ions, since orthophosphate and 32P radioactivity were readily removed from tap water, glass-distilled water, and deionized water. Phosphorus uptake by Rilling sludge in the laboratory appears to be wholly biological, as it has an optimum pH range (7.7 to 9.7) and an optimum temperature range (24 to 37 C). It was inhibited by HgCl2, iodoacetic acid, p-chloromercuribenzoic acid, NaN3, and 2, 4-dinitrophenol (compounds that affect bacterial membrane permeability, sulfhydryl enzymes, and adenosine triphosphate synthesis). Uptake was inhibited by 1% NaCl but was not affected by 10−3m ethylenediaminetetraacetic acid disodium salt (a chelating agent for many metallic ions). PMID:5002140

  1. Comparing urban solid waste recycling from the viewpoint of urban metabolism based on physical input-output model: A case of Suzhou in China

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liang Sai, E-mail: liangsai09@gmail.com; Zhang Tianzhu, E-mail: zhangtz@mail.tsinghua.edu.cn

    Highlights: Black-Right-Pointing-Pointer Impacts of solid waste recycling on Suzhou's urban metabolism in 2015 are analyzed. Black-Right-Pointing-Pointer Sludge recycling for biogas is regarded as an accepted method. Black-Right-Pointing-Pointer Technical levels of reusing scrap tires and food wastes should be improved. Black-Right-Pointing-Pointer Other fly ash utilization methods should be exploited. Black-Right-Pointing-Pointer Secondary wastes from reusing food wastes and sludge should be concerned. - Abstract: Investigating impacts of urban solid waste recycling on urban metabolism contributes to sustainable urban solid waste management and urban sustainability. Using a physical input-output model and scenario analysis, urban metabolism of Suzhou in 2015 is predicted and impactsmore » of four categories of solid waste recycling on urban metabolism are illustrated: scrap tire recycling, food waste recycling, fly ash recycling and sludge recycling. Sludge recycling has positive effects on reducing all material flows. Thus, sludge recycling for biogas is regarded as an accepted method. Moreover, technical levels of scrap tire recycling and food waste recycling should be improved to produce positive effects on reducing more material flows. Fly ash recycling for cement production has negative effects on reducing all material flows except solid wastes. Thus, other fly ash utilization methods should be exploited. In addition, the utilization and treatment of secondary wastes from food waste recycling and sludge recycling should be concerned.« less

  2. Separating and stabilizing phosphate from high-level radioactive waste: process development and spectroscopic monitoring.

    PubMed

    Lumetta, Gregg J; Braley, Jenifer C; Peterson, James M; Bryan, Samuel A; Levitskaia, Tatiana G

    2012-06-05

    Removing phosphate from alkaline high-level waste sludges at the Department of Energy's Hanford Site in Washington State is necessary to increase the waste loading in the borosilicate glass waste form that will be used to immobilize the highly radioactive fraction of these wastes. We are developing a process which first leaches phosphate from the high-level waste solids with aqueous sodium hydroxide, and then isolates the phosphate by precipitation with calcium oxide. Tests with actual tank waste confirmed that this process is an effective method of phosphate removal from the sludge and offers an additional option for managing the phosphorus in the Hanford tank waste solids. The presence of vibrationally active species, such as nitrate and phosphate ions, in the tank waste processing streams makes the phosphate removal process an ideal candidate for monitoring by Raman or infrared spectroscopic means. As a proof-of-principle demonstration, Raman and Fourier transform infrared (FTIR) spectra were acquired for all phases during a test of the process with actual tank waste. Quantitative determination of phosphate, nitrate, and sulfate in the liquid phases was achieved by Raman spectroscopy, demonstrating the applicability of Raman spectroscopy for the monitoring of these species in the tank waste process streams.

  3. Effect of Topology Structure on the Output Performance of an Automobile Exhaust Thermoelectric Generator

    NASA Astrophysics Data System (ADS)

    Fang, W.; Quan, S. H.; Xie, C. J.; Ran, B.; Li, X. L.; Wang, L.; Jiao, Y. T.; Xu, T. W.

    2017-05-01

    The majority of the thermal energy released in an automotive internal combustion cycle is exhausted as waste heat through the tail pipe. This paper describes an automobile exhaust thermoelectric generator (AETEG), designed to recycle automobile waste heat. A model of the output characteristics of each thermoelectric device was established by testing their open circuit voltage and internal resistance, and combining the output characteristics. To better describe the relationship, the physical model was transformed into a topological model. The connection matrix was used to describe the relationship between any two thermoelectric devices in the topological structure. Different topological structures produced different power outputs; their output power was maximised by using an iterative algorithm to optimize the series-parallel electrical topology structure. The experimental results have shown that the output power of the optimal topology structure increases by 18.18% and 29.35% versus that of a pure in-series or parallel topology, respectively, and by 10.08% versus a manually defined structure (based on user experience). The thermoelectric conversion device increased energy efficiency by 40% when compared with a traditional car.

  4. Closing the phosphorus cycle in a food system: insights from a modelling exercise.

    PubMed

    van Kernebeek, H R J; Oosting, S J; van Ittersum, M K; Ripoll-Bosch, R; de Boer, I J M

    2018-05-21

    Mineral phosphorus (P) used to fertilise crops is derived from phosphate rock, which is a finite resource. Preventing and recycling mineral P waste in the food system, therefore, are essential to sustain future food security and long-term availability of mineral P. The aim of our modelling exercise was to assess the potential of preventing and recycling P waste in a food system, in order to reduce the dependency on phosphate rock. To this end, we modelled a hypothetical food system designed to produce sufficient food for a fixed population with a minimum input requirement of mineral P. This model included representative crop and animal production systems, and was parameterised using data from the Netherlands. We assumed no import or export of feed and food. We furthermore assumed small P soil losses and no net P accumulation in soils, which is typical for northwest European conditions. We first assessed the minimum P requirement in a baseline situation, that is 42% of crop waste is recycled, and humans derived 60% of their dietary protein from animals (PA). Results showed that about 60% of the P waste in this food system resulted from wasting P in human excreta. We subsequently evaluated P input for alternative situations to assess the (combined) effect of: (1) preventing waste of crop and animal products, (2) fully recycling waste of crop products, (3) fully recycling waste of animal products and (4) fully recycling human excreta and industrial processing water. Recycling of human excreta showed most potential to reduce P waste from the food system, followed by prevention and finally recycling of agricultural waste. Fully recycling P could reduce mineral P input by 90%. Finally, for each situation, we studied the impact of consumption of PA in the human diet from 0% to 80%. The optimal amount of animal protein in the diet depended on whether P waste from animal products was prevented or fully recycled: if it was, then a small amount of animal protein in the human diet resulted in the most sustainable use of P; but if it was not, then the most sustainable use of P would result from a complete absence of animal protein in the human diet. Our results apply to our hypothetical situation. The principles included in our model however, also hold for food systems with, for example, different climatic and soil conditions, farming practices, representative types of crops and animals and population densities.

  5. Exploration of Antecedents of Environmentally Responsible Behavior by Stakeholders in Grand Lake Watershed

    ERIC Educational Resources Information Center

    Holmes, Teri S.

    2013-01-01

    Grand Lake O' the Cherokees in Oklahoma is one of two lakes in the State of Oklahoma that allows private ownership and development of the shoreline. This has created water quality issues attributed to phosphorus levels in effluent waste water from septic systems and municipal water treatment facilities, as well as nutrient and sediment…

  6. What's in your Douglas-fir bark?

    Treesearch

    M. Gabriela Buamscha; James E. Altland

    2008-01-01

    Douglas-fir bark is a common waste product of forest industry, and has potential use as a substrate in container nurseries. Douglas-fir bark (DFB) is strongly acidic and contains amounts of phosphorus, potassium, iron, copper and manganese within or above the levels recommended for growing container crops. As the pH of DFB decreases, electrical conductivity and amounts...

  7. Effects of soil and precipitation dataset resolution on SWAT2005 sediment and total phosphorus simulation accuracy and outputs

    USDA-ARS?s Scientific Manuscript database

    The Fort Cobb Reservoir, which is within the Fort Cobb Reservoir Experimental watershed (FCREW) in Oklahoma, is on the Oklahoma 303(d) list (list of water bodies that do not meet the water quality standards as given in the Clean Water Act) based on sedimentation and trophic level of the lake associa...

  8. [Shmakovka narzan mineral water in the treatment of chronic pyelonephritis in children].

    PubMed

    Olofinskiĭ, L A; Alekseeva, I L

    1990-01-01

    The impact of "Pasechnyĭ" spa of the Shmakovka health resort on the circadian urinary output, renal excretion of magnesium, calcium, nonorganic phosphorus, oxalates, uric acid, phospholipids, acido- and ammoniogenases, daily fluctuations of urinary pH was studied for the first time in 65 children with chronic pyelonephritis. In the presence of spa treatment the authors revealed a 75-100 per cent increase in the circadian urinary output, urinary excretion of magnesium, uric acid, ammonia, titrated acids, a decrease in the levels of calcium, oxalates, nonorganic phosphorus and acidification of the urine at 9 o'clock in the morning mainly in children with primary pyelonephritis and at 9 and 6 o'clock in the morning in patients with concurrent uricosuria. Other parameters were not significantly different from those in the controls. Acidification of the urine in the presence of high uricosuria resulted in crystalluria of urates and oxalates in 26.31 per cent of patients with the concurrent urate diathesis. The water of Shmakovka mineral springs is recommended for patients with primary pyelonephritis, phosphaturia and calcium oxalate crystalluria with alkaline reaction of the urine and unjustified for those who suffered from urate diathesis.

  9. Evaluation of total phosphorus mass balance in the lower Boise River and selected tributaries, southwestern Idaho

    USGS Publications Warehouse

    Etheridge, Alexandra B.

    2013-01-01

    he U.S. Geological Survey (USGS), in cooperation with Idaho Department of Environmental Quality, developed spreadsheet mass-balance models for total phosphorus using results from three synoptic sampling periods conducted in the lower Boise River watershed during August and October 2012, and March 2013. The modeling reach spanned 46.4 river miles (RM) along the Boise River from Veteran’s Memorial Parkway in Boise, Idaho (RM 50.2), to Parma, Idaho (RM 3.8). The USGS collected water-quality samples and measured streamflow at 14 main-stem Boise River sites, two Boise River north channel sites, two sites on the Snake River upstream and downstream of its confluence with the Boise River, and 17 tributary and return-flow sites. Additional samples were collected from treated effluent at six wastewater treatment plants and two fish hatcheries. The Idaho Department of Water Resources quantified diversion flows in the modeling reach. Total phosphorus mass-balance models were useful tools for evaluating sources of phosphorus in the Boise River during each sampling period. The timing of synoptic sampling allowed the USGS to evaluate phosphorus inputs to and outputs from the Boise River during irrigation season, shortly after irrigation ended, and soon before irrigation resumed. Results from the synoptic sampling periods showed important differences in surface-water and groundwater distribution and phosphorus loading. In late August 2012, substantial streamflow gains to the Boise River occurred from Middleton (RM 31.4) downstream to Parma (RM 3.8). Mass-balance model results indicated that point and nonpoint sources (including groundwater) contributed phosphorus loads to the Boise River during irrigation season. Groundwater exchange within the Boise River in October 2012 and March 2013 was not as considerable as that measured in August 2012. However, groundwater discharge to agricultural tributaries and drains during non-irrigation season was a large source of discharge and phosphorus in the lower Boise River in October 2012 and March 2013. Model results indicate that point sources represent the largest contribution of phosphorus to the Boise River year round, but that reductions in point and nonpoint source phosphorus loads may be necessary to achieve seasonal total phosphorus concentration targets at Parma (RM 3.8) from May 1 through September 30, as set by the 2004 Snake River-Hells Canyon Total Maximum Daily Load document. The mass-balance models do not account for biological or depositional instream processes, but are useful indicators of locations where appreciable phosphorus uptake or release by aquatic plants may occur.

  10. Comparisons of four categories of waste recycling in China's paper industry based on physical input-output life-cycle assessment model

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liang Sai; Zhang, Tianzhu, E-mail: zhangtz@mail.tsinghua.edu.cn; Xu Yijian

    Highlights: Black-Right-Pointing-Pointer Using crop straws and wood wastes for paper production should be promoted. Black-Right-Pointing-Pointer Bagasse and textile waste recycling should be properly limited. Black-Right-Pointing-Pointer Imports of scrap paper should be encouraged. Black-Right-Pointing-Pointer Sensitivity analysis, uncertainties and policy implications are discussed. - Abstract: Waste recycling for paper production is an important component of waste management. This study constructs a physical input-output life-cycle assessment (PIO-LCA) model. The PIO-LCA model is used to investigate environmental impacts of four categories of waste recycling in China's paper industry: crop straws, bagasse, textile wastes and scrap paper. Crop straw recycling and wood utilization for papermore » production have small total intensity of environmental impacts. Moreover, environmental impacts reduction of crop straw recycling and wood utilization benefits the most from technology development. Thus, using crop straws and wood (including wood wastes) for paper production should be promoted. Technology development has small effects on environmental impacts reduction of bagasse recycling, textile waste recycling and scrap paper recycling. In addition, bagasse recycling and textile waste recycling have big total intensity of environmental impacts. Thus, the development of bagasse recycling and textile waste recycling should be properly limited. Other pathways for reusing bagasse and textile wastes should be explored and evaluated. Moreover, imports of scrap paper should be encouraged to reduce large indirect impacts of scrap paper recycling on domestic environment.« less

  11. Residues from the thermal conversion of waste from the meat industry as a source of valuable macro- and micronutrients.

    PubMed

    Staroń, Paweł; Kowalski, Zygmunt; Staroń, Anita; Seidlerová, Jana; Banach, Marcin

    2016-03-01

    The increased consumption of meat (including poultry) observed over the last decade has led to the intensification of its production. With the production increase, the amount of generated waste also increases. Appropriate disposal of waste from the meat industry will significantly reduce the amount of such waste and its negative impact on the environment. The paper presents a method for the thermal neutralisation of feathers, poultry litter and meat and bone meal (MBM). Waste incineration was carried out in a stationary electric furnace, at a temperature varying in the range of 600-900°C. The resulting ashes were characterised by a high percentage of phosphorus (30-170 g/kg ash), calcium (20-360 g/kg ash) and other valuable macro- and micronutrients like copper, iron, manganese and zinc. The ashes produced during the thermal treatment are safe in terms of sanitary and can be used as additives enriching the fertilisers and soil improvers. Copyright © 2016 Elsevier Ltd. All rights reserved.

  12. Flow analysis of metals in a municipal solid waste management system.

    PubMed

    Jung, C H; Matsuto, T; Tanaka, N

    2006-01-01

    This study aimed to identify the metal flow in a municipal solid waste (MSW) management system. Outputs of a resource recovery facility, refuse derived fuel (RDF) production facility, carbonization facility, plastics liquefaction facility, composting facility, and bio-gasification facility were analyzed for metal content and leaching concentration. In terms of metal content, bulky and incombustible waste had the highest values. Char from a carbonization facility, which treats household waste, had a higher metal content than MSW incinerator bottom ash. A leaching test revealed that Cd and Pb in char and Pb in RDF production residue exceeded the Japanese regulatory criteria for landfilling, so special attention should be paid to final disposal of these substances. By multiplying metal content and the generation rate of outputs, the metal content of input waste to each facility was estimated. For most metals except Cr, the total contribution ratio of paper/textile/plastics, bulky waste, and incombustible waste was over 80%. Approximately 30% of Cr originated from plastic packaging. Finally, several MSW management scenarios showed that most metals are transferred to landfills and the leaching potential of metals to the environment is quite small.

  13. Flow analysis of metals in a municipal solid waste management system

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jung, C.H.; Matsuto, T.; Tanaka, N.

    2006-07-01

    This study aimed to identify the metal flow in a municipal solid waste (MSW) management system. Outputs of a resource recovery facility, refuse derived fuel (RDF) production facility, carbonization facility, plastics liquefaction facility, composting facility, and bio-gasification facility were analyzed for metal content and leaching concentration. In terms of metal content, bulky and incombustible waste had the highest values. Char from a carbonization facility, which treats household waste, had a higher metal content than MSW incinerator bottom ash. A leaching test revealed that Cd and Pb in char and Pb in RDF production residue exceeded the Japanese regulatory criteria formore » landfilling, so special attention should be paid to final disposal of these substances. By multiplying metal content and the generation rate of outputs, the metal content of input waste to each facility was estimated. For most metals except Cr, the total contribution ratio of paper/textile/plastics, bulky waste, and incombustible waste was over 80%. Approximately 30% of Cr originated from plastic packaging. Finally, several MSW management scenarios showed that most metals are transferred to landfills and the leaching potential of metals to the environment is quite small.« less

  14. Economic analysis of electronic waste recycling: modeling the cost and revenue of a materials recovery facility in California.

    PubMed

    Kang, Hai-Yong; Schoenung, Julie M

    2006-03-01

    The objectives of this study are to identify the various techniques used for treating electronic waste (e-waste) at material recovery facilities (MRFs) in the state of California and to investigate the costs and revenue drivers for these techniques. The economics of a representative e-waste MRF are evaluated by using technical cost modeling (TCM). MRFs are a critical element in the infrastructure being developed within the e-waste recycling industry. At an MRF, collected e-waste can become marketable output products including resalable systems/components and recyclable materials such as plastics, metals, and glass. TCM has two main constituents, inputs and outputs. Inputs are process-related and economic variables, which are directly specified in each model. Inputs can be divided into two parts: inputs for cost estimation and for revenue estimation. Outputs are the results of modeling and consist of costs and revenues, distributed by unit operation, cost element, and revenue source. The results of the present analysis indicate that the largest cost driver for the operation of the defined California e-waste MRF is the materials cost (37% of total cost), which includes the cost to outsource the recycling of the cathode ray tubes (CRTs) (dollar 0.33/kg); the second largest cost driver is labor cost (28% of total cost without accounting for overhead). The other cost drivers are transportation, building, and equipment costs. The most costly unit operation is cathode ray tube glass recycling, and the next are sorting, collecting, and dismantling. The largest revenue source is the fee charged to the customer; metal recovery is the second largest revenue source.

  15. Successful Treatment of Tumor-Induced Osteomalacia due to an Intracranial Tumor by Fractionated Stereotactic Radiotherapy

    PubMed Central

    Trepp-Carrasco, Alejandro G.; Thompson, Robert; Recker, Robert R.; Chong, William H.; Collins, Michael T.

    2013-01-01

    Context: Tumor-induced osteomalacia (TIO) is a rare paraneoplastic syndrome, characterized by tumor secretion of fibroblast growth factor-23 (FGF23) causing hypophosphatemia due to renal phosphate wasting. TIO is usually caused by small, benign, difficult-to-localize, mesenchymal tumors. Although surgery with wide excision of tumor borders is considered the “gold standard” for definitive therapy, it can be associated with considerable morbidity depending on the location. To date, radiation therapy has not been considered as an effective treatment modality in TIO. Objective: A 67-year-old female presented with multiple nontraumatic fractures, progressive bone pain, and muscle weakness for 4 years. She was found to have biochemical evidence of urinary phosphate wasting with low serum phosphorus, low-normal serum calcium, normal 25-hydroxyvitamin D and 1,25-dihydroxyvitamin D, and high serum FGF23 levels. TIO was diagnosed. Selective venous sampling for FGF23 confirmed that a 1.7-cm left frontal mass, radiographically similar to a meningioma, was the causative tumor. She declined surgery due to fear of complications and instead underwent fractionated stereotactic radiotherapy for 6 weeks. Results: In less than 4 years after radiation therapy, she was successfully weaned off phosphorus and calcitriol, starting from 2 g of oral phosphorus daily and 1 μg of calcitriol daily. Her symptoms have resolved, and she has not had any new fractures. Conclusions: Stereotactic radiotherapy was an effective treatment modality for TIO in our patient. Fractionated stereotactic radiation therapy represents an alternative to surgery for patients with TIO who are not surgical candidates or who decline surgery. PMID:24014621

  16. Successful treatment of tumor-induced osteomalacia due to an intracranial tumor by fractionated stereotactic radiotherapy.

    PubMed

    Tarasova, Valentina D; Trepp-Carrasco, Alejandro G; Thompson, Robert; Recker, Robert R; Chong, William H; Collins, Michael T; Armas, Laura A G

    2013-11-01

    Tumor-induced osteomalacia (TIO) is a rare paraneoplastic syndrome, characterized by tumor secretion of fibroblast growth factor-23 (FGF23) causing hypophosphatemia due to renal phosphate wasting. TIO is usually caused by small, benign, difficult-to-localize, mesenchymal tumors. Although surgery with wide excision of tumor borders is considered the "gold standard" for definitive therapy, it can be associated with considerable morbidity depending on the location. To date, radiation therapy has not been considered as an effective treatment modality in TIO. A 67-year-old female presented with multiple nontraumatic fractures, progressive bone pain, and muscle weakness for 4 years. She was found to have biochemical evidence of urinary phosphate wasting with low serum phosphorus, low-normal serum calcium, normal 25-hydroxyvitamin D and 1,25-dihydroxyvitamin D, and high serum FGF23 levels. TIO was diagnosed. Selective venous sampling for FGF23 confirmed that a 1.7-cm left frontal mass, radiographically similar to a meningioma, was the causative tumor. She declined surgery due to fear of complications and instead underwent fractionated stereotactic radiotherapy for 6 weeks. In less than 4 years after radiation therapy, she was successfully weaned off phosphorus and calcitriol, starting from 2 g of oral phosphorus daily and 1 μg of calcitriol daily. Her symptoms have resolved, and she has not had any new fractures. Stereotactic radiotherapy was an effective treatment modality for TIO in our patient. Fractionated stereotactic radiation therapy represents an alternative to surgery for patients with TIO who are not surgical candidates or who decline surgery.

  17. Impacts of soil conditioners and water table management on phosphorus loss in tile drainage from a clay loam soil.

    PubMed

    Zhang, T Q; Tan, C S; Zheng, Z M; Welacky, T W; Reynolds, W D

    2015-03-01

    Adoption of waste-derived soil conditioners and refined water management can improve soil physical quality and crop productivity of fine-textured soils. However, the impacts of these practices on water quality must be assessed to ensure environmental sustainability. We conducted a study to determine phosphorus (P) loss in tile drainage as affected by two types of soil conditioners (yard waste compost and swine manure compost) and water table management (free drainage and controlled drainage with subirrigation) in a clay loam soil under corn-soybean rotation in a 4-yr period from 1999 to 2003. Tile drainage flows were monitored and sampled on a year-round continuous basis using on-site auto-sampling systems. Water samples were analyzed for dissolved reactive P (DRP), particulate P (PP), and total P (TP). Substantially greater concentrations and losses of DRP, PP, and TP occurred with swine manure compost than with control and yard waste compost regardless of water table management. Compared with free drainage, controlled drainage with subirrigation was an effective way to reduce annual and cumulative losses of DRP, PP, and TP in tile drainage through reductions in flow volume and P concentration with control and yard waste compost but not with swine manure compost. Both DRP and TP concentrations in tile drainage were well above the water quality guideline for P, affirming that subsurface loss of P from fine-textured soils can be one critical source for freshwater eutrophication. Swine manure compost applied as a soil conditioner must be optimized by taking water quality impacts into consideration. Copyright © by the American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America, Inc.

  18. Hair from different ethnic groups vary in elemental composition and nitrogen and phosphorus mineralisation in soil.

    PubMed

    Malepfane, N M; Muchaonyerwa, P

    2017-02-01

    Disposal of hair wastes at landfills causes nitrate leaching to ground water, and use of the waste as fertiliser could be a viable option. This study was to determine elemental composition of major hair types in South Africa and their nitrogen (N) and phosphorus (P) release in soil. Wastes of African, White and Indian hair were obtained from local salons and analysed for carbon (C), N and sulphur (S) with the Leco CNS analyzer, and P, bases, aluminium (Al) and micronutrients, with the ICP. We also conducted an incubation study to determine changes in mineral N and P in soil. Hair wastes were added to soil at increasing rates based on N, incubated at 25 °C with destructive sampling after 0, 28, 56 and 84 days and pH, ammonium-N, nitrate-N and extractable P measured. All data were subjected to analysis of variance. Indian and White hair had higher N than African. White hair had higher C and lower potassium (K) than those of other types. The Fe levels in hair were in the order White > African > Indian, whilst those of Al were African > Indian > White. African hair had higher calcium (Ca), manganese (Mn), zinc (Zn) and cobalt (Co) than the other types. Ammonium-N and nitrate-N releases were in the order: Indian > African > White, especially at higher rates. Ammonium-N increased in the first 28 days and declined thereafter, when nitrate-N increased and pH decreased. The findings implied that hair types differ in elemental composition and nitrogen release in soil, with implications on pollution and soil fertility.

  19. Utilization of industrial dairy waste as microalgae cultivation medium : a potential study for sustainable energy resources

    NASA Astrophysics Data System (ADS)

    Nurmayani, S.; Sugiarti, Y.; Putra, R. H.

    2016-04-01

    Microalgae is one of biodiesel resources and call as third generation biofuel. Biodiesel is one alternative energy that being developed. So study about resource of biodiesel need a development, for the example is development the basic material such as microalgae. In this paper we explain the potential use of dairy waste from industry as a cultivation medium of microalgae for biodiesel production. Dairy waste from dairy industry contains 34.98% protein, 4.42% lactose, 9.77% fiber, 11.04% fat, 2.33% calcium, 1.05% phosfor, and 0.4 % magnesium, meaning that the dairy waste from dairy industry has a relatively high nutrient content and complete from a source of carbon, nitrogen and phosphorus as macro nutrients. The method in this paper is literature review to resulting a new conclusion about the potency of waste water from dairy industry as microalgae cultivation medium. Based on the study, the dairy waste from dairy industry has potency to be used as cultivation medium of Botryococcus braunii in the production of biodiesel, replacing the conventional cultivation medium.

  20. Feasibility analysis of wastewater and solid waste systems for application in Indonesia.

    PubMed

    Kerstens, S M; Leusbrock, I; Zeeman, G

    2015-10-15

    Indonesia is one of many developing countries with a backlog in achieving targets for the implementation of wastewater and solid waste collection, treatment and recovery systems. Therefore a technical and financial feasibility analysis of these systems was performed using Indonesia as an example. COD, BOD, nitrogen, phosphorus and pathogen removal efficiencies, energy requirements, sludge production, land use and resource recovery potential (phosphorus, energy, duckweed, compost, water) for on-site, community based and off-site wastewater systems were determined. Solid waste systems (conventional, centralized and decentralized resource recovery) were analyzed according to land requirement, compost and energy production and recovery of plastic and paper. In the financial analysis, investments, operational costs & benefits and Total Lifecycle Costs (TLC) of all investigated options were compared. Technical performance and TLC were used to guide system selection for implementation in different residential settings. An analysis was undertaken to determine the effect of price variations of recoverable resources and land prices on TLC. A 10-fold increase in land prices for land intensive wastewater systems resulted in a 5 times higher TLC, whereas a 4-fold increase in the recovered resource selling price resulted in maximum 1.3 times higher TLC. For solid waste, these impacts were reversed - land price and resource selling price variations resulted in a maximum difference in TLC of 1.8 and 4 respectively. Technical and financial performance analysis can support decision makers in system selection and anticipate the impact of price variations on long-term operation. The technical analysis was based on published results of international research and the approach can be applied for other tropical, developing countries. All costs were converted to per capita unit costs and can be updated to assess other countries' estimated costs and benefits. Consequently, the approach can be used to guide wastewater and solid waste system planning in developing countries. Copyright © 2015 Elsevier B.V. All rights reserved.

  1. Forty-year trends in the flux and concentration of phosphorus in British rivers

    NASA Astrophysics Data System (ADS)

    Civan, Aylin; Worrall, Fred; Jarvie, Helen P.; Howden, Nicholas J. K.; Burt, Tim P.

    2018-03-01

    Given the importance of phosphorus (P) in the eutrophication of natural waters, this study considered the long-term time series of total phosphorus (TP) and total reactive phosphorus (TRP) in British rivers from 1974 to 2012. The approach included not only trend analysis of fluxes and concentrations but also change point analysis. TP and TRP concentrations and fluxes in British rivers have declined since the mid-1980s. Over the last decade of the record the majority of individual sites did show significant downward trends in TP and TRP concentrations but, in 28% of cases for TRP concentration and 14% of cases for TP concentration, the decadal trend was a significant increase. Out of 230 sites, 136 showed a significant step decrease in TRP concentration; no sites showed a significant step increase. The modal year for the step changes for both TRP concentration and flux was 1997. Step changes are likely associated with improvements made at sewage treatment works to comply with the Urban Waste Water Treatment Directive (91/271/EEC). The decrease in TRP concentration due to the step change were in the range of 0.68% and 89% with a geometric mean of 22%, with the rest of the decrease accounted by long-term, persistent downward trend.

  2. Effect of various types of thermochemical processing of sewage sludges on phosphorus speciation, solubility, and fertilization performance.

    PubMed

    Steckenmesser, Daniel; Vogel, Christian; Adam, Christian; Steffens, Diedrich

    2017-04-01

    Sewage sludge has one of the highest phosphorus (P) recovery potentials of all waste materials. Therefore, P-recycling from sewage sludge could contribute to closing the P-cycle. Recently, various thermal processes for P-recovery have been developed, but there is still a demand for information on the effect of different process parameters (e.g. additives and temperature) on P-speciation and especially on the fertilization performance. In the present study, two common methods (low-temperature conversion at 400-500°C and thermochemical treatment at 950°C) were investigated and combined to produce highly bioavailable P-fertilizers from two different types of sewage sludge based on chemical phosphorus precipitation (Chem-P) and enhanced biological phosphorus removal (Bio-P). The results of P-fractionation, X-ray diffraction analysis, and pot experiments with maize showed that Bio-P sludges attain high P-plant-availability after treatment at low temperatures (400°C). In contrast, Chem-P sludges can adequately be treated at higher temperatures under reductive conditions with sodium additives to form highly bioavailable calcium-sodium-phosphate. Additionally, also highly heavy-metal contaminated sludges can be thermochemically treated at high temperatures to achieve the legal requirements for fertilizers. Copyright © 2017 Elsevier Ltd. All rights reserved.

  3. Kidney and Phosphate Metabolism

    PubMed Central

    2008-01-01

    The serum phosphorus level is maintained through a complex interplay between intestinal absorption, exchange intracellular and bone storage pools, and renal tubular reabsorption. The kidney plays a major role in regulation of phosphorus homeostasis by renal tubular reabsorption. Type IIa and type IIc Na+/Pi transporters are important renal Na+-dependent inorganic phosphate (Pi) transporters, which are expressed in the brush border membrane of proximal tubular cells. Both are regulated by dietary Pi intake, vitamin D, fibroblast growth factor 23 (FGF23) and parathyroid hormone. The expression of type IIa Na+/Pi transporter result from hypophosphatemia quickly. However, type IIc appears to act more slowly. Physiological and pathophysiological alteration in renal Pi reabsorption are related to altered brush border membrane expression/content of the type II Na+/Pi cotransporter. Many studies of genetic and acquired renal phosphate wasting disorders have led to the identification of novel genes. Two novel Pi regulating genes, PHEX and FGF23, play a role in the pathophysiology of genetic and acquired renal phosphate wasting disorders and studies are underway to define their mechanism on renal Pi regulation. In recent studies, sodium-hydrogen exchanger regulatory factor 1 (NHERF1) is reported as another new regulator for Pi reabsorption mechanism. PMID:24459526

  4. The Phosphate Binder Ferric Citrate and Mineral Metabolism and Inflammatory Markers in Maintenance Dialysis Patients: Results From Prespecified Analyses of a Randomized Clinical Trial

    PubMed Central

    Van Buren, Peter N.; Lewis, Julia B.; Dwyer, Jamie P.; Greene, Tom; Middleton, John; Sika, Mohammed; Umanath, Kausik; Abraham, Josephine D.; Arfeen, Shahabul S.; Bowline, Isai G.; Chernin, Gil; Fadem, Stephen Z.; Goral, Simin; Koury, Mark; Sinsakul, Marvin V.; Weiner, Daniel E.

    2016-01-01

    Background Phosphate binders are the cornerstone of hyperphosphatemia management in dialysis patients. Ferric citrate is an iron-based oral phosphate binder that effectively lowers serum phosphorus levels. Study Design 52-week, open-label, phase 3, randomized, controlled trial for safety-profile assessment. Setting & Participants Maintenance dialysis patients with serum phosphorus levels ≥6.0 mg/dL after washout of prior phosphate binders. Intervention 2:1 randomization to ferric citrate or active control (sevelamer carbonate and/or calcium acetate). Outcomes Changes in mineral bone disease, protein-energy wasting/inflammation, and occurrence of adverse events after 1 year. Measurements Serum calcium, intact parathyroid hormone, phosphorus, aluminum, white blood cell count, percentage of lymphocytes, serum urea nitrogen, and bicarbonate. Results There were 292 participants randomly assigned to ferric citrate, and 149, to active control. Groups were well matched. For mean changes from baseline, phosphorus levels decreased similarly in the ferric citrate and active control groups (−2.04 ± 1.99 [SD] vs −2.18 ± 2.25 mg/dL, respectively; P = 0.9); serum calcium levels increased similarly in the ferric citrate and active control groups (0.22 ± 0.90 vs 0.31 ± 0.95 mg/dL; P = 0.2). Hypercalcemia occurred in 4 participants receiving calcium acetate. Parathyroid hormone levels decreased similarly in the ferric citrate and active control groups (−167.1 ± 399.8 vs −152.7 ± 392.1 pg/mL; P = 0.8). Serum albumin, bicarbonate, serum urea nitrogen, white blood cell count and percentage of lymphocytes, and aluminum values were similar between ferric citrate and active control. Total and low-density lipoprotein cholesterol levels were lower in participants receiving sevelamer than those receiving ferric citrate and calcium acetate. Fewer participants randomly assigned to ferric citrate had serious adverse events compared with active control. Limitations Open-label study, few peritoneal dialysis patients. Conclusions Ferric citrate was associated with similar phosphorus control compared to active control, with similar effects on markers of bone and mineral metabolism in dialysis patients. There was no evidence of protein-energy wasting/inflammation or aluminum toxicity, and fewer participants randomly assigned to ferric citrate had serious adverse events. Ferric citrate is an effective phosphate binder with a safety profile comparable to sevelamer and calcium acetate. PMID:25958079

  5. Biological phosphorus removal in an extended ASM2 model: Roles of extracellular polymeric substances and kinetic modeling.

    PubMed

    Yang, Shan-Shan; Pang, Ji-Wei; Guo, Wan-Qian; Yang, Xiao-Yin; Wu, Zhong-Yang; Ren, Nan-Qi; Zhao, Zhi-Qing

    2017-05-01

    This paper presents the results of an extended ASM2 model for the modeling and calibration of the role of extracellular polymeric substances (EPS) in phosphorus (P) removal in an anaerobic-aerobic process. In this extended ASM2 model, two new components, the bound EPS (X EPS ) and the soluble EPS (S EPS ), are introduced. Compared with the ASM2, 7.71, 8.53, and 9.28% decreases in polyphosphate (polyP) were observed in the extended ASM2 in three sequencing batch reactors feeding with different COD/P ratios, indicating that 7.71-9.28% of P in the liquid was adsorbed by EPS. Sensitive analysis indicated that, five parameters were the significant influential parameters and had been chosen for further model calibration by using the least square method to simulate by MATLAB. This extended ASM2 has been successfully established to simulate the output variables and provides a useful reference for the mathematic simulations of the role of EPS in biological phosphorus removal process. Copyright © 2017. Published by Elsevier Ltd.

  6. Potential utilization of guar gum industrial waste in vermicompost production.

    PubMed

    Suthar, Surendra

    2006-12-01

    Recycling of guar gum industrial waste through vermitechnology was studied under laboratory conditions by using composting earthworm Perionyx excavatus (Perrier). Three different combination of guar gum industrial waste namely guar gum industrial waste:cow dung:saw dust in 40:30:30 ratio (T1), guar gum industrial waste:cow dung:saw dust in 60:20:20 ratio (T2), and guar gum industrial waste:cow dung:saw dust in 75:15:10 ratio (T3) were used for vermicomposting experiments. Chemical changes during vermicomposting were measured and comparatively T2 showed great increase (from its initial level) for total N (25.4%), phosphorus (72.8%) and potassium (20.9%) than the other treatments. T2 also showed higher vermicomposting coefficient (VC), higher mean biomass for P. excavatus (146.68 mg) and higher cocoon production (about 21.9% and 645.5% more than the T1 and T3, respectively). Maximum earthworm mortality during vermicomposting was recorded with T3 treatment while zero mortality was recorded for T2 treatment after 150 days. Overall, T2 treatment appeared to be an ideal combination for enhancing maximum biopotential of earthworms to management guar gum industrial waste as well as for earthworm biomass and cocoon production.

  7. True phosphorus digestibility and the endogenous phosphorus outputs associated with brown rice for weanling pigs measured by the simple linear regression analysis technique.

    PubMed

    Yang, H; Li, A K; Yin, Y L; Li, T J; Wang, Z R; Wu, G; Huang, R L; Kong, X F; Yang, C B; Kang, P; Deng, J; Wang, S X; Tan, B E; Hu, Q; Xing, F F; Wu, X; He, Q H; Yao, K; Liu, Z J; Tang, Z R; Yin, F G; Deng, Z Y; Xie, M Y; Fan, M Z

    2007-03-01

    The objectives of this study were to determine true phosphorus (P) digestibility, degradability of phytate-P complex and the endogenous P outputs associated with brown rice feeding in weanling pigs by using the simple linear regression analysis technique. Six barrows with an average initial body weight of 12.5 kg were fitted with a T-cannula and fed six diets according to a 6 × 6 Latin-square design. Six maize starch-based diets, containing six levels of P at 0.80, 1.36, 1.93, 2.49, 3.04, and 3.61 g/kg per kg dry-matter (DM) intake (DMI), were formulated with brown rice. Each experimental period lasted 10 days. After a 7-day adaptation, all faecal samples were collected on days 8 and 9. Ileal digesta samples were collected for a total of 24 h on day 10. The apparent ileal and faecal P digestibility values of brown rice were affected ( P < 0.01) by the P contents in the assay diets. The apparent ileal and faecal P digestibility values increased from - 48.0 to 36.7% and from - 35.6 to 40.0%, respectively, as P content increased from 0.80 to 3.61 g/kg DMI. Linear relationships ( P < 0.05), expressed as g/kg DMI, between the apparent ileal and faecal digestible P and dietary levels of P, suggested that true P digestibility and the endogenous P outputs associated with brown rice feeding could be determined by using the simple regression analysis technique. There were no differences ( P>0.05) in true P digestibility values (57.7 ± 5.4 v. 58.2 ± 5.9%), phytate P degradability (76.4 ± 6.7 v. 79.0 ± 4.4%) and the endogenous P outputs (0.812 ± 0..096 v. 0.725 ± 0.083 g/kg DMI) between the ileal and the faecal levels. The endogenous faecal P output represented 14 and 25% of the National Research Council (1998) recommended daily total and available P requirements in the weanling pig, respectively. About 58% of the total P in brown rice could be digested and absorbed by the weanling pig. Our results suggest that the large intestine of the weanling pigs does not play a significant role in the digestion of P in brown rice. Diet formulation on the basis of total or apparent P digestibility with brown rice may lead to P overfeeding and excessive P excretion in pigs.

  8. Source apportionment of nitrogen and phosphorus from non-point source pollution in Nansi Lake Basin, China.

    PubMed

    Zhang, Bao-Lei; Cui, Bo-Hao; Zhang, Shu-Min; Wu, Quan-Yuan; Yao, Lei

    2018-05-03

    Nitrogen (N) and phosphorus (P) from non-point source (NPS) pollution in Nansi Lake Basin greatly influenced the water quality of Nansi Lake, which is the determinant factor for the success of East Route of South-North Water Transfer Project in China. This research improved Johnes export coefficient model (ECM) by developing a method to determine the export coefficients of different land use types based on the hydrological and water quality data. Taking NPS total nitrogen (TN) and total phosphorus (TP) as the study objects, this study estimated the contributions of different pollution sources and analyzed their spatial distributions based on the improved ECM. The results underlined that the method for obtaining output coefficients of land use types using hydrology and water quality data is feasible and accurate, and is suitable for the study of NPS pollution at large-scale basins. The average output structure of NPS TN from land use, rural breeding and rural life is 33.6, 25.9, and 40.5%, and the NPS TP is 31.6, 43.7, and 24.7%, respectively. Especially, dry land was the main land use source for both NPS TN and TP pollution, with the contributed proportions of 81.3 and 81.8% respectively. The counties of Zaozhuang, Tengzhou, Caoxian, Yuncheng, and Shanxian had higher contribution rates and the counties of Dingtao, Juancheng, and Caoxian had the higher load intensities for both NPS TN and TP pollution. The results of this study allowed for an improvement in the understanding of the pollution source contribution and enabled researchers and planners to focus on the most important sources and regions of NPS pollution.

  9. Recovery of ammonia in digestates of calf manure through a struvite precipitation process using unconventional reagents.

    PubMed

    Siciliano, A; De Rosa, S

    2014-01-01

    Land spreading of digestates causes the discharge of large quantities of nutrients into the environment, which contributes to eutrophication and depletion of dissolved oxygen in water bodies. For the removal of ammonia nitrogen, there is increasing interest in the chemical precipitation of struvite, which is a mineral that can be reused as a slow-release fertilizer. However, this process is an expensive treatment of digestate because large amounts of magnesium and phosphorus reagents are required. In this paper, a struvite precipitation-based process is proposed for an efficient recovery of digestate nutrients using low-cost reagents. In particular, seawater bittern, a by-product of marine salt manufacturing and bone meal, a by-product of the thermal treatment of meat waste, have been used as low-cost sources of magnesium and phosphorus, respectively. Once the operating conditions are defined, the process enables the removal of more than 90% ammonia load, the almost complete recovery of magnesium and phosphorus and the production of a potentially valuable precipitate containing struvite crystals.

  10. Kinetics of growth and lipids accumulation in Chlorella vulgaris during batch heterotrophic cultivation: Effect of different nutrient limitation strategies.

    PubMed

    Sakarika, Myrsini; Kornaros, Michael

    2017-11-01

    The present study aimed at: (1) determining the effect of sulfur addition on biomass growth and (2) assessing the effect of sulfur, phosphorus and nitrogen limitation on lipid accumulation by C. vulgaris SAG 211-11b. The sulfur cellular content was more than two-fold higher under nitrogen and phosphorus limitation (0.52% and 0.54%ww -1 , respectively) compared to sulfur requirements (0.20%ww -1 ) under sulfur limiting conditions. The nitrogen needs are significantly lower (2.81-3.35%ww -1 ) when compared to other microalgae and become 23% lower under nitrogen or phosphorus limitation. The microalga exhibited substrate inhibition above 30gL -1 initial glucose concentration. Sulfur limitation had the most significant effect on lipid accumulation, resulting in maximum total lipid content of 53.43±3.93%gg DW -1 . In addition to enhancing lipid productivity, adopting the optimal nutrient limitation strategy can result in cost savings by avoiding unnecessary nutrient additions and eliminate the environmental burden due to wasted resources. Copyright © 2017 Elsevier Ltd. All rights reserved.

  11. Landfill Leachate Treatment by Electrocoagulation and Fiber Filtration.

    PubMed

    Li, Runwei; Wang, Boya; Owete, Owete; Dertien, Joe; Lin, Chen; Ahmad, Hafiz; Chen, Gang

    2017-11-01

      Landfilling is widely adopted as one of the most economical processes for solid waste disposal. At the same time, landfill leachate is also a great environmental concern owing to its complex composition and high concentrations of contaminants. This research investigated electrocoagulation and fiber filtration for the treatment of landfill leachate. Besides electrical current (i.e., current density) and reaction time, pH played a very important role in arsenic and phosphorus removal by electrocoagulation. The combination of electrocoagulation with fiber filtration achieved a 94% chemical oxygen demand (COD), 87% arsenic, 96% iron, and 86% phosphorus removal. During electrocoagulation, the micro-particles that could not be settled by gravity were removed by the first stage of fiber filtration. Organic contaminants in the leachate were further removed by biodegradation in the second stage of fiber biofiltration.

  12. Life Cycle Assessment of Mixed Municipal Solid Waste: Multi-input versus multi-output perspective.

    PubMed

    Fiorentino, G; Ripa, M; Protano, G; Hornsby, C; Ulgiati, S

    2015-12-01

    This paper analyses four strategies for managing the Mixed Municipal Solid Waste (MMSW) in terms of their environmental impacts and potential advantages by means of Life Cycle Assessment (LCA) methodology. To this aim, both a multi-input and a multi-output approach are applied to evaluate the effect of these perspectives on selected impact categories. The analyzed management options include direct landfilling with energy recovery (S-1), Mechanical-Biological Treatment (MBT) followed by Waste-to-Energy (WtE) conversion (S-2), a combination of an innovative MBT/MARSS (Material Advanced Recovery Sustainable Systems) process and landfill disposal (S-3), and finally a combination of the MBT/MARSS process with WtE conversion (S-4). The MARSS technology, developed within an European LIFE PLUS framework and currently implemented at pilot plant scale, is an innovative MBT plant having the main goal to yield a Renewable Refined Biomass Fuel (RRBF) to be used for combined heat and power production (CHP) under the regulations enforced for biomass-based plants instead of Waste-to-Energy systems, for increased environmental performance. The four scenarios are characterized by different resource investment for plant and infrastructure construction and different quantities of matter, heat and electricity recovery and recycling. Results, calculated per unit mass of waste treated and per unit exergy delivered, under both multi-input and multi-output LCA perspectives, point out improved performance for scenarios characterized by increased matter and energy recovery. Although none of the investigated scenarios is capable to provide the best performance in all the analyzed impact categories, the scenario S-4 shows the best LCA results in the human toxicity and freshwater eutrophication categories, i.e. the ones with highest impacts in all waste management processes. Copyright © 2015 Elsevier Ltd. All rights reserved.

  13. Walleye Sander vitreus performance, water quality, and waste production in replicated recirculation aquaculture systems when feeding a low phosphorus diet without fishmeal versus a traditional fishmeal-based diet

    USDA-ARS?s Scientific Manuscript database

    Walleye Sander vitreus is a popular sport- and food-fish in areas surrounding the Great Lakes. Walleye are mainly provided as food-fish by limited capture fisheries, but have potential for profitable production to market-size in recirculation aquaculture systems (RAS). Walleye are piscivorous with a...

  14. Enhancing e-waste estimates: improving data quality by multivariate Input-Output Analysis.

    PubMed

    Wang, Feng; Huisman, Jaco; Stevels, Ab; Baldé, Cornelis Peter

    2013-11-01

    Waste electrical and electronic equipment (or e-waste) is one of the fastest growing waste streams, which encompasses a wide and increasing spectrum of products. Accurate estimation of e-waste generation is difficult, mainly due to lack of high quality data referred to market and socio-economic dynamics. This paper addresses how to enhance e-waste estimates by providing techniques to increase data quality. An advanced, flexible and multivariate Input-Output Analysis (IOA) method is proposed. It links all three pillars in IOA (product sales, stock and lifespan profiles) to construct mathematical relationships between various data points. By applying this method, the data consolidation steps can generate more accurate time-series datasets from available data pool. This can consequently increase the reliability of e-waste estimates compared to the approach without data processing. A case study in the Netherlands is used to apply the advanced IOA model. As a result, for the first time ever, complete datasets of all three variables for estimating all types of e-waste have been obtained. The result of this study also demonstrates significant disparity between various estimation models, arising from the use of data under different conditions. It shows the importance of applying multivariate approach and multiple sources to improve data quality for modelling, specifically using appropriate time-varying lifespan parameters. Following the case study, a roadmap with a procedural guideline is provided to enhance e-waste estimation studies. Copyright © 2013 Elsevier Ltd. All rights reserved.

  15. Investigation of potentially toxic heavy metals in different organic wastes used to fertilize market garden crops.

    PubMed

    Tella, M; Doelsch, E; Letourmy, P; Chataing, S; Cuoq, F; Bravin, M N; Saint Macary, H

    2013-01-01

    The benefits of using organic waste as fertilizer and soil amendment should be assessed together with the environmental impacts due to the possible presence of heavy metals (HMs). This study involved analysing major element and HM contents in raw and size-fractionated organic wastes (17 sewage sludges and composts) from developed and developing countries. The overall HM concentration pattern showed an asymmetric distribution due to the presence of some wastes with extremely high concentrations. HM concentrations were correlated with the size of cities or farms where the wastes had been produced, and HM were differentiated with respect to their origins (geogenic: Cr-Ni; anthropogenic agricultural and urban: Cu-Zn; anthropogenic urban: Cd-Pb). Size fractionation highlighted Cd, Cu, Zn and Pb accumulation in fine size fractions, while Cr and Ni were accumulated in the coarsest. HM associations with major elements revealed inorganic (Al, Fe, etc.) bearing phases for Cr and Ni, and sulfur or phosphorus species for Cd, Cu Pb and Zn. Copyright © 2012 Elsevier Ltd. All rights reserved.

  16. The Effect of paper mill waste and sewage sludge amendments on soil organic matter

    NASA Astrophysics Data System (ADS)

    Méndez, Ana; Barriga, Sandra; Guerrero, Francisca; Gascó, Gabriel

    2013-04-01

    In general, Mediterranean soils have low organic matter content, due to the climate characteristics of this region and inadequate land management. Traditionally, organic wastes such as manure are used as amendment in order to improve the soil quality, increasing soil fertility by the accumulation of nitrogen, phosphorus and other plant nutrients in the soil. In the last decade, other anthropogenic organic wastes such as sewage sludge or paper waste materials have been studied as soil amendments to improve physical, chemical and biological properties of soils. The objective of the present work was to study the influence of waste from a paper mill and sewage sludge amendments on soil organic matter. For this reason, soil organic matter evolution was studied using thermogravimetric analysis (TGA), the derivative (dTG) and differential thermal analysis (DTA). Thermal analytical techniques have the advantage of using full samples without pre-treatments and have been extensively used to study the evolution of organic matter in soils, to evaluate composting process or to study the evolution of organic matter of growing media.

  17. Harvest and utilization of chemical energy in wastes by microbial fuel cells.

    PubMed

    Sun, Min; Zhai, Lin-Feng; Li, Wen-Wei; Yu, Han-Qing

    2016-05-21

    Organic wastes are now increasingly viewed as a resource of energy that can be harvested by suitable biotechnologies. One promising technology is microbial fuel cells (MFC), which can generate electricity from the degradation of organic pollutants. While the environmental benefits of MFC in waste treatment have been recognized, their potential as an energy producer is not fully understood. Although progresses in material and engineering have greatly improved the power output from MFC, how to efficiently utilize the MFC's energy in real-world scenario remains a challenge. In this review, fundamental understandings on the energy-generating capacity of MFC from real waste treatment are provided and the challenges and opportunities are discussed. The limiting factors restricting the energy output and impairing the long-term reliability of MFC are also analyzed. Several energy storage and in situ utilization strategies for the management of MFC's energy are proposed, and future research needs for real-world application of this approach are explored.

  18. Mass, energy and material balances of SRF production process. Part 2: SRF produced from construction and demolition waste.

    PubMed

    Nasrullah, Muhammad; Vainikka, Pasi; Hannula, Janne; Hurme, Markku; Kärki, Janne

    2014-11-01

    In this work, the fraction of construction and demolition waste (C&D waste) complicated and economically not feasible to sort out for recycling purposes is used to produce solid recovered fuel (SRF) through mechanical treatment (MT). The paper presents the mass, energy and material balances of this SRF production process. All the process streams (input and output) produced in MT waste sorting plant to produce SRF from C&D waste are sampled and treated according to CEN standard methods for SRF. Proximate and ultimate analysis of these streams is performed and their composition is determined. Based on this analysis and composition of process streams their mass, energy and material balances are established for SRF production process. By mass balance means the overall mass flow of input waste material stream in the various output streams and material balances mean the mass flow of components of input waste material stream (such as paper and cardboard, wood, plastic (soft), plastic (hard), textile and rubber) in the various output streams of SRF production process. The results from mass balance of SRF production process showed that of the total input C&D waste material to MT waste sorting plant, 44% was recovered in the form of SRF, 5% as ferrous metal, 1% as non-ferrous metal, and 28% was sorted out as fine fraction, 18% as reject material and 4% as heavy fraction. The energy balance of this SRF production process showed that of the total input energy content of C&D waste material to MT waste sorting plant, 74% was recovered in the form of SRF, 16% belonged to the reject material and rest 10% belonged to the streams of fine fraction and heavy fraction. From the material balances of this process, mass fractions of plastic (soft), paper and cardboard, wood and plastic (hard) recovered in the SRF stream were 84%, 82%, 72% and 68% respectively of their input masses to MT plant. A high mass fraction of plastic (PVC) and rubber material was found in the reject material stream. Streams of heavy fraction and fine fraction mainly contained non-combustible material (such as stone/rock, sand particles and gypsum material). Copyright © 2014 Elsevier Ltd. All rights reserved.

  19. THE WASTE REDUCTION (WAR) ALGORITHM: ENVIRONMENTAL IMPACTS, ENERGY CONSUMPTION, AND ENGINEERING ECONOMICS

    EPA Science Inventory

    A general theory known as the Waste Reduction (WAR) Algorithm has been developed to describe the flow and the generation of potential environmental impact through a chemical process. The theory defines indexes that characterize the generation and the output of potential environm...

  20. Green residues from Bangkok green space for renewable energy recovery, phosphorus recycling and greenhouse gases emission reduction.

    PubMed

    Thitanuwat, Bussarakam; Polprasert, Chongchin; Englande, Andrew J

    2017-03-01

    Effective ways to integrate human life quality, environmental pollution mitigation and efficient waste management strategies are becoming a crisis challenge for sustainable urban development. The aims of this study are: (1) to evaluate and recommend an optimum Urban Green Space (UGS) area for the Bangkok Metropolitan Administration (BMA); and (2) to quantify potential renewable resources including electricity generation and potential nutrient recovery from generated ash. Green House Gases (GHGs) emissions from the management of Green Residues (GR) produced in a recommended UGS expansion are estimated and compared with those from the existing BMA waste management practice. Results obtained from this study indicate that an increase in UGS from its current 2.02% to 22.4% of the BMA urban area is recommended. This optimum value is primarily due to the area needed as living space for its population. At this scale, GR produced of about 334kt·y -1 may be used to generate electricity at the rate of 206GWh·y -1 by employing incineration technology. Additionally, instead of going to landfill, phosphorus (P) contained in the ash of 1077 t P·y -1 could be recovered to produce P fertilizer to be recycled for agricultural cultivation. Income earned from selling these products is found to offset all of the operational cost of the proposed GR management methodology itself plus 7% of the cost of BMA's Municipal Solid Waste (MSW) operations. About 70% of the current GHGs emission may be reduced based on incineration simulation. Copyright © 2016 Elsevier Ltd. All rights reserved.

  1. Characterization of derived natural hydroxyapatite (HAp) obtained from different types of tilapia fish bones and scales

    NASA Astrophysics Data System (ADS)

    Fara, A. N. K. A.; Abdullah, H. Z.

    2015-07-01

    Hydroxyapatite, (HAp), Ca10(PO4)6(OH)2, is recognised as a biomaterial that is widely used for bone implant due to its chemical and structural similarity to the mineral components in human bone and enamel. The elements of HAp are primarily composed of calcium and phosphorus molar ratio of calcium to phosphorous is 1.67 capable to promote bone in-growth into prosthetic implant. Enormous amounts of by-product waste produced from fish factories generated an undesirable environmental impact. Thus, this study was conducted to obtain natural biological HAp from different types of tilapia fish bones and scales from fishery waste. Therefore, fish bones and scales can be as cheap source to produce biological HAp for medical applications. For this purpose, fish bones and scales of tilapia fish were boiled at 100°C to remove adhering meat and other impurities. Later, fish bones and scales were separated into several groups and subjected to different calcination temperatures of 800° C and 900° C for 3h respectively. Afterward, all calcined samples were crushed to form a fine powder. The XRD result revealed the presence of derived Hapfrom the samples powder and were identical with standard Hap. Thermo Gravimetric Analysis was carried out to show the thermal stability of the HAp powder from different types of fish bones and scales. SEM results show porous structure appeared in calcined samples compared to raw samples. The findings are the promising alternative to produce calcium and phosphorus from fishery wastes that beneficial to medical applications.

  2. Removing Chlorides From Metallurgical-Grade Silicon

    NASA Technical Reports Server (NTRS)

    Breneman, W. C.; Coleman, L. M.

    1982-01-01

    Process for making low-cost silicon for solar cells is further improved. Silane product recycled to feed stripper column converts some of heavy impurities to volatile ones that pass off at top of column with light wastes. Impurities--chlorides of arsenic, phosphorus, and boron-would otherwise be carried to subsequent distillations where they would be difficult to remove. Since only a small amount of silane is recycled, silicon production efficiency remains high.

  3. Recycling of mixed wastes using Quantum-CEP{trademark}

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sameski, B.

    1997-02-01

    The author describes the process that M4 Environmental Management, Inc., is commercializing for the treatment of mixed wastes. He summarizes the types of wastes which the process can be applied to, the products which come out of the process, and examples of various waste streams which have been processed. The process is presently licensed to treat mixed wastes and the company has in place contracts for such services. The process uses a molten metal bath to catalyze reactions which break the incoming products down to an atomic level, and allow different process steams to be tapped at the output end.

  4. Total Value of Phosphorus Recovery.

    PubMed

    Mayer, Brooke K; Baker, Lawrence A; Boyer, Treavor H; Drechsel, Pay; Gifford, Mac; Hanjra, Munir A; Parameswaran, Prathap; Stoltzfus, Jared; Westerhoff, Paul; Rittmann, Bruce E

    2016-07-05

    Phosphorus (P) is a critical, geographically concentrated, nonrenewable resource necessary to support global food production. In excess (e.g., due to runoff or wastewater discharges), P is also a primary cause of eutrophication. To reconcile the simultaneous shortage and overabundance of P, lost P flows must be recovered and reused, alongside improvements in P-use efficiency. While this motivation is increasingly being recognized, little P recovery is practiced today, as recovered P generally cannot compete with the relatively low cost of mined P. Therefore, P is often captured to prevent its release into the environment without beneficial recovery and reuse. However, additional incentives for P recovery emerge when accounting for the total value of P recovery. This article provides a comprehensive overview of the range of benefits of recovering P from waste streams, i.e., the total value of recovering P. This approach accounts for P products, as well as other assets that are associated with P and can be recovered in parallel, such as energy, nitrogen, metals and minerals, and water. Additionally, P recovery provides valuable services to society and the environment by protecting and improving environmental quality, enhancing efficiency of waste treatment facilities, and improving food security and social equity. The needs to make P recovery a reality are also discussed, including business models, bottlenecks, and policy and education strategies.

  5. An examination of the treatment of iron-dosed waste activated sludge by anaerobic digestion.

    PubMed

    Johnson, D K; Carliell-Marquet, C M; Forster, C F

    2003-08-01

    Anaerobic digestion is an important sludge treatment process enabling stabilisation of the organic fraction of sewage sludge prior to land application. Any practice which might retard the anaerobic digestion process will jeopardize the stability of the resulting digested sludge. This paper reports on an investigation into the relative digestibility of iron-dosed waste activated sludge (WAS) from a sewage treatment works (STW) with chemical phosphorus removal (CPR), in comparison to WAS from a works without phosphorus removal. Two laboratory scale anaerobic digesters (51) were fed initially with non iron-dosed WAS (Works M) at a solids retention time of 19 days. After 2 months the iron-dosed CPR sludge (Works R) was introduced into the second digester, resulting in a 32% decrease in biogas production and an increase in the methane content of the biogas from an average of 74% to 81%. Pre-treatment of the CPR sludge with sodium sulphide and shear, both alone and in combination, caused the gas production to deteriorate further. Pre-acidification and pre-treatment with EDTA did result in an enhanced gas production but it was still not comparable with that of the digester being fed with non-iron-dosed sludge. The daily gas production was found to be linearly related to the amount of bound iron in the sludge.

  6. [Pilot-scale cultivation of Spirulina plantensis with digested piggery wastewater ].

    PubMed

    Guo, Qing-qing; Liu, Rui; Luo, Jin-fei; Wang, Gen-rong; Chen, Lii-jun; Liu, Xiao

    2014-09-01

    The swine waste pretreated with coagulation sedimentation was used for the outdoor pilot-scale cultivation of Spirulina platensis isolated from digested piggery wastewater (DPW) in a raceway pond. The growth of S. platensis and removal of nitrogen/ phosphorus were studied, moreover, the conversion efficiency of total nitrogen (TN) or total phosphorus (TP) from DPW to S. platensis was calculated. On this basis, the existing problems and countermeasures during outdoor pilot-scale culture were analyzed and summarized combined with the laboratory research. We conducted 6 batches culture experiments, only 3 of which could reach the S. platensis harvest requirements (D560 >0. 8). Meanwhile, the 3 successful batches achieved removal of COD, ammonia nitrogen, TN, TP with corresponding 28. 6% -48. 5% , 0.4% -48. 5% , 41. 8% -48. 6% , 14. 3% -94. 5% , and the conversion efficiency of TN or TP from DPW to S. platensis reached 12. 1% -98. 5% , 21.2% -83.7% , respectively. High concentration of ammonia nitrogen and insect attack of remaining egg hatching in the pretreated swine waste were the main factors to cause the slow-growing of the 3 batches of S. platensis. Therefore, it is highly necessary for the removal of ammonia nitrogen with biological treatment technology and insect eggs with membrane to achieve a stable high productivity.

  7. 40 CFR 60.58b - Compliance and performance testing.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... is combusting fossil fuel or other nonmunicipal solid waste fuel, and no municipal solid waste is... performance compliance tests. (i) The fuel factor equation in Method 3B shall be used to determine the... monitoring particulate matter emissions discharged to the atmosphere and record the output of the system. The...

  8. PROPOSED PROCESS FOR MANAGEMENT OF TEXTILE WASTE FROM REDESIGNED SECONDHAND CLOTHING PRODUCTION IN HAITI: NO-WASTE, RECYCLING AND REPURPOSING

    EPA Science Inventory

    Outputs of this project include a “redesign matrix” created by apparel design faculty members and graduate students and a “biodegradable/recyclable fabric matrix” created by both fiber science and apparel design students and faculty – both with...

  9. Investigation and analysis of medical waste generation in Enshi area of Hubei Province, China

    NASA Astrophysics Data System (ADS)

    Dengchao, Jin; Hongjun, Teng; Zhenbo, Bao; Yang, Li

    2017-03-01

    Based on medical waste collecting data of Enshi medical waste disposal center. The generation of medical waste and its change trend in Enshi area were both studied. The influencing factors and changing rules of medical waste generation were also analyzed. It can be found that the amount of medical waste in Enshi area is increasing year by year, the average annual growth rate of about 6.14% between 2011-2014. It was also found that the output of medical wastes varied regularity by seasons. February was the lowest month for medical waste, March and July were the peak months. By statistical analysis, average annual medical waste production per 10000 people was 4.5 ton and per bed average annual production was 133.58 kg.

  10. An integrated approach to energy recovery from biomass and waste: Anaerobic digestion-gasification-water treatment.

    PubMed

    Milani, M; Montorsi, L; Stefani, M

    2014-07-01

    The article investigates the performance of an integrated system for the energy recovery from biomass and waste based on anaerobic digestion, gasification and water treatment. In the proposed system, the organic fraction of waste of the digestible biomass is fed into an anaerobic digester, while a part of the combustible fraction of the municipal solid waste is gasified. Thus, the obtained biogas and syngas are used as a fuel for running a cogeneration system based on an internal combustion engine to produce electric and thermal power. The waste water produced by the integrated plant is recovered by means of both forward and inverse osmosis. The different processes, as well as the main components of the system, are modelled by means of a lumped and distributed parameter approach and the main outputs of the integrated plant such as the electric and thermal power and the amount of purified water are calculated. Finally, the implementation of the proposed system is evaluated for urban areas with a different number of inhabitants and the relating performance is estimated in terms of the main outputs of the system. © The Author(s) 2014.

  11. Factors affecting phosphorus transport at a conventionally-farmed site in Lancaster County, Pennsylvania, 1992-95

    USGS Publications Warehouse

    Galeone, Daniel G.

    1996-01-01

    The U.S. Geological Survey and the Bureau of Land and Water Conservation of the Pennsylvania Department of Environmental Protection conducted a cooperative study to determine the effects of manure application and antecedent soil-phosphorus concentrations on the transport of phosphorus from the soil of a typical farm site in Lancaster County, Pa., from September 1992 to March 1995. The relation between concentrations of soil phosphorus and phosphorus transport needs to be identified because excessive phosphorus concentrations in surface-water bodies promote eutrophication.The objective of the study was to quantify and determine the significance of chemical, physical, and hydrologic factors that affected phosphorus transport. Three study plots less than 1 acre in size were tilled and planted in silage corn. Phosphorus in the form of liquid swine and dairy manure was injected to a depth of 6-8 inches on two of the three study plots in May 1993 and May 1994. Plot 1 received no inputs of phosphorus from manure while plots 2 and 3 received an average of 56 and 126 kilograms of phosphorus per acre, respectively, from the two manure applications. No other fertilizer was applied to any of the study plots. From March 30, 1993, through December 31, 1993, and March 10, 1994, through August 31, 1994 (the study period), phosphorus and selected cations were measured in precipitation, manure, soil, surface runoff, subsurface flow (at 18 inches below land surface), and corn plants before harvest. All storm events that yielded surface runoff and subsurface flow were sampled. Surface runoff was analyzed for dissolved (filtered through a 0.45-micron filter) and total concentrations. Subsurface flow was only analyzed for dissolved constituents. Laboratory soil-flask experiments and geochemical modeling were conducted to determine the maximum phosphate retention capacity of sampled soils after manure applications and primary mineralogic controls in the soils that affect phosphate equilibrium processes.Physical characteristics, such as particle-size distributions in soil, the suspended sediment and particle-size distribution in surface runoff, and surface topography, were quantified. Hydrologic characteristics, such as precipitation intensity and duration, volumes of surface runoff, and infiltration rates of soil, were also monitored during the study period. Volumes of surface runoff differed by plot.Volumes of surface runoff measured during the study period from plots 1 (0.43 acres), 2 (0.23 acres), and 3 (0.28 acres) were 350,000, 350,000, and 750,000 liters per acre, respectively. About 90 percent of the volume of surface runoff occurred after October 1993 because of the lack of intense precipitation from March 30, 1993, through November 30, 1993. For any one precipitation amount, volumes of surface runoff increased with an increase in the maximum intensity of precipitation and decreased with an increase in storm duration. The significantly higher volume of surface runoff for plot 3 relative to plots 1 and 2 was probably caused by lower infiltration rates on plot 3.Soil concentrations of plant-available phosphorus (PAP) for each study plot were high (31-60 parts per million) to excessive (greater than 60 parts per million) for each depth interval (0-6, 6-12, and 12- 24 inches) and sampling period except for some samples collected at depths of 12-24 inches. The high levels of PAP before manure applications made it difficult to detect any changes in the concentration of soil PAP caused by manure applications. Manure applications to the study area prior to this study resulted in relatively high concentrations of soil PAP; however, the manure applications to plot 3 during the study period did cause an increase in the soil concentration of PAP after the second manure application. The percentages of total phosphorus in plant-available and inorganic forms were about 5 and 80 percent, respectively, in the 0-24--inch depth interval of soil on the study plots. Concentrations of total phosphorus on sand, silt, and clay particles from soil were 700, 1,000, and 3,400 parts per million, respectively. About 70 percent of the total mass of phosphorus in soil to a depth of 24 inches was associated with silt and clay particles.Soil-flask experiments indicated that soils from the study plots were not saturated with respect to phosphorus. Soils had the capacity to retain 694 to 1,160 milligrams of phosphorus per kilogram of soil. The measured retention capacity probably exceeded the actual retention capacity of soil because laboratory conditions optimized the contact time between soil and test solutions.Geochemical modeling indicated that the primary mineralogical controls on the concentration of dissolved phosphorus in surface runoff and subsurface flow were aluminum and iron oxides and strengite (if it exists). Aluminum and iron oxides bind phosphate in solution and strengite is an iron-phosphate mineral. The mineralization of organic phosphorus into dissolved inorganic forms could also supply phosphorus to surface runoff and subsurface flow.Phosphorus inputs to the plots during the study period were from precipitation and manure. Phosphorus inputs from precipitation were negligible. The loads of phosphorus to the plots from manure applications in May 1993 and May 1994 were 112 and 251 kilograms per acre for plots 2 and 3, respectively; about 60 percent of the load occurred in 1994.Phosphorus outputs in surface runoff differed between study plots. The cumulative yields of total phosphorus during the study period for plots 1, 2, and 3 were 1.12, 1.24, and 1.69 kilograms per acre, respectively. Differences between plots were primarily evident for dissolved yields of phosphorus. The percentage of the total phosphorus output in surface runoff that was in the dissolved phase varied from 6 percent for plot 1 to 26 percent for plot 3.The cumulative yields of dissolved phosphorus from plots 2 and 3 were 135 and 500 percent greater, respectively, than the dissolved yield from plot 1. Even though volumes of surface runoff were different on the plots, the primary cause of the difference between plots in the yield of dissolved phosphorus in surface runoff was differences in the concentration of dissolved phosphorus. After the second manure application, concentrations of dissolved phosphorus in surface runoff on plots 2 and 3 were significantly higher than the concentration for plot 1.An increase in the concentration of dissolved phosphorus in subsurface flow from plots 2 and 3 was measured after manure applications. The mean concentrations of dissolved phosphorus in subsurface flow after the first manure application were 0.29, 0.57, and 1.45 milligrams per liter of phosphorus for plots 1, 2, and 3, respectively.The loss of dissolved phosphorus in surface runoff was related to the soil concentration of PAP. The model relating dissolved phosphorus in surface runoff to soil PAP indicated that concentrations of dissolved phosphorus in surface runoff would exceed 0.1 milligram per liter if soil concentrations of PAP exceeded 9 parts per million; this PAP concentration was exceeded by each study plot. Over 50 percent of the variation of dissolved phosphorus in surface runoff was explained by soil concentrations of PAP in the 0-6-inch depth interval.The loss of suspended phosphorus in surface runoff was primarily affected by the particle-size distribution of suspended sediment in surface runoff. Surface runoff was enriched with fines relative to the soil matrix. Generally, over 90 percent of sediment in runoff was comprised of silt and clay particles; only 50-60 percent of particle sizes from the intact soil matrix were in the silt- to clay-size range. Concentrations of suspended phosphorus in surface runoff were not significantly related to soil concentrations of total phosphorus in the 0-6-inch depth interval.Concentrations of dissolved phosphorus in subsurface flow were also related to soil concentrations of PAP. The relation indicated that dissolved concentrations of phosphorus in subsurface flow would exceed 0.1 milligram per liter if soil concentrations of PAP in the 0-6-inch depth interval of soil were greater than 49 parts per million; this PAP concentration was exceeded by each study plot.The significant relation of high concentrations of dissolved phosphorus in water to soil concentrations of PAP indicated that soils with comparable concentrations of soil PAP would be potential sources of dissolved phosphorus to surface water and subsurface water tables. The percentage of the total phosphorus lost from a system in the dissolved form increased as soil concentrations of PAP increased. This indicates that best-management practices to reduce phosphorus losses from this system not only need to target suspended forms of phosphorus but also dissolved forms. Practices aimed at reducing the loss of dissolved phosphorus from the system increase in importance with an increase in soil concentrations of PAP.

  12. Characterisation of Phosphate Accumulating Organisms and Techniques for Polyphosphate Detection: A Review

    PubMed Central

    Tarayre, Cédric; Nguyen, Huu-Thanh; Brognaux, Alison; Delepierre, Anissa; De Clercq, Lies; Charlier, Raphaëlle; Michels, Evi; Meers, Erik; Delvigne, Frank

    2016-01-01

    Phosphate minerals have long been used for the production of phosphorus-based chemicals used in many economic sectors. However, these resources are not renewable and the natural phosphate stocks are decreasing. In this context, the research of new phosphate sources has become necessary. Many types of wastes contain non-negligible phosphate concentrations, such as wastewater. In wastewater treatment plants, phosphorus is eliminated by physicochemical and/or biological techniques. In this latter case, a specific microbiota, phosphate accumulating organisms (PAOs), accumulates phosphate as polyphosphate. This molecule can be considered as an alternative phosphate source, and is directly extracted from wastewater generated by human activities. This review focuses on the techniques which can be applied to enrich and try to isolate these PAOs, and to detect the presence of polyphosphate in microbial cells. PMID:27258275

  13. Breakdown of food waste by anaerobic fermentation and non-oxygen producing photosynthesis using a photosynthetic bacterium.

    PubMed

    Mekjinda, N; Ritchie, R J

    2015-01-01

    Large volumes of food waste are produced by restaurants, hotels, etc generating problems in its collection, processing and disposal. Disposal as garbage increases the organic matter in landfills and leachates. The photosynthetic bacterium Rhodopseudomonas palustris (CGA 009) easily broke down food waste. R. palustris produces H2 under anaerobic conditions and digests a very wide range of organic compounds. R. palustris reduced BOD by ≈70% and COD by ≈33%, starch, ammonia, nitrate, was removed but had little effect on reducing sugar or the total phosphorus, lipid, protein, total solid in a 7-day incubation. R. palustris produced a maximum of 80ml H2/g COD/day. A two-stage anaerobic digestion using yeast as the first stage, followed by a R. palustris digestion was tested but production of H2 was low. Copyright © 2014 Elsevier Ltd. All rights reserved.

  14. Material Utilization of Organic Residues.

    PubMed

    Peinemann, Jan Christoph; Pleissner, Daniel

    2018-02-01

    Each year, 1.3 billion tons of food waste is generated globally. This waste traces back to industrial and agricultural producers, bakeries, restaurants, and households. Furthermore, lignocellulosic materials, including grass clippings, leaves, bushes, shrubs, and woods, appear in large amounts. Depending on the region, organic waste is either composted, burned directly, or converted into biogas. All of the options set aside the fact that organic residues are valuable resources containing carbohydrates, lipids, proteins, and phosphorus. Firstly, it is clear that avoidance of organic residues is imperative. However, the residues that accumulate nonetheless should be utilized by material means before energy production is targeted. This review presents different processes for the microbial utilization of organic residues towards compounds that are of great importance for the bioeconomy. The focus thereby is on the challenges coming along with downstream processing when the utilization of organic residues is carried out decentralized. Furthermore, a future process for producing lactic acid from organic residues is sketched.

  15. Technical evaluation of a tank-connected food waste disposer system for biogas production and nutrient recovery.

    PubMed

    Davidsson, Å; Bernstad Saraiva, A; Magnusson, N; Bissmont, M

    2017-07-01

    In this study, a tank-connected food waste disposer system with the objective to optimise biogas production and nutrient recovery from food waste in Malmö was evaluated. The project investigated the source-separation ratio of food waste through waste composition analyses, determined the potential biogas production in ground food waste, analysed the organic matter content and the limiting components in ground food waste and analysed outlet samples to calculate food waste losses from the separation tank. It can be concluded that the tank-connected food waste disposer system in Malmö can be used for energy recovery and optimisation of biogas production. The organic content of the collected waste is very high and contains a lot of energy rich fat and protein, and the methane potential is high. The results showed that approximately 38% of the food waste dry matter is collected in the tank. The remaining food waste is either found in residual waste (34% of the dry matter) or passes the tank and goes through the outlet to the sewer (28%). The relatively high dry matter content in the collected fraction (3-5% DM) indicates that the separation tank can thicken the waste substantially. The potential for nutrient recovery is rather limited considering the tank content. Only small fractions of the phosphorus (15%) and nitrogen (21%) are recyclable by the collected waste in the tank. The quality of the outlet indicates a satisfactory separation of particulate organic matter and fat. The organic content and nutrients, which are in dissolved form, cannot be retained in the tank and are rather led to the sewage via the outlet. Copyright © 2017 Elsevier Ltd. All rights reserved.

  16. Investigations into the fire hazard of a composite made from aerated concrete and crushed expanded polystyrene waste

    NASA Astrophysics Data System (ADS)

    Kligys, M.; Laukaitis, A.; Sinica, M.; Sezemanas, G.; Dranseika, N.

    2008-03-01

    The study deals with experimental investigations into the fire hazard of a composite of density 150-350 kg/m3 made of aerated concrete and crushed expanded polystyrene waste. The results of fire tests showed that a single-flame source of low heat output (0.07 kW) did not influence the origination and spread of flame on the surface of test specimens, regardless their density. Upon exposing the specimens to a single burning item of moderate heat output (30.0 kW), during the first 600 s of exposure, neither flaming particles nor droplets originated, nor a lateral flame spread on the long specimen wing was observed. In the case of high heat output (112 kW), the specimens of densities 150 and 250 kg/m3 started to burn, but those of density 150 kg/m3, in addition, lost their integrity.

  17. Closing the Phosphorus Loop by Recovering Phosphorus From Waste Streams With Layered Double Hydroxide Nanocomposites and Converting the Product into an Efficient Fertilizer

    NASA Astrophysics Data System (ADS)

    Yan, H.; Shih, K.

    2015-12-01

    Phosphorus (P) recovery has been frequently discussed in recent decades due to the uncertain availability and uneven distribution of global phosphate rock reserves. Sorption technology is increasingly considered as a reliable, efficient and environmentally friendly P removal method from aqueous solution. In this study, a series of Mg-Al-based layered double hydroxide nanocomposites and their corresponding calcined products were fabricated and applied as phosphate adsorbents. The prepared samples were with average size at ~50 nm and self-assembled into larger particles in irregular shapes. The results of batch adsorption experiments demonstrated that calcination significantly enhanced the adsorption ability of LDHs for phosphorus, and the maximum adsorption capacity of calcined Mg-Al-LDH was as high as 100.7 mg-P/g. Furthermore, incorporation of Zr4+ and La3+ into LDH materials increases the sorption selectivity as well as sorption amount of phosphorus in LDHs, which was confirmed by experiments operated in synthetic human urine. For the first time ammonia (NH4OH) and potassium hydroxide (KOH) solutions were employed to desorb the P-loaded LDH. Identification of solids derived from two eluting solutions showed that struvite (MgNH4PO4•6H2O, MAP) was precipitated in ammonia solution while most phosphate was desorbed into liquid phase in KOH system without crystallization of potassium struvite (MgKPO4•6H2O) due to its higher solubility. Quantitative X-ray diffraction technique was used to determine struvite contents in obtained solids and the results revealed that ~ 30% of adsorbed P was transferred into struvite form in the sample extracted by 0.5M NH4OH. Leaching tests suggested that the phosphorus releasing kinetics of ammonia treated LDH was comparable to that of pure struvite product, indicating that postsorption Mg-Al-LDH desorbed with ammonia could serve as a slow-releasing fertilizer in agriculture (see Figure 1).

  18. Conversion of Wastes to Bioelectricity, Bioethanol, and Fertilizer.

    PubMed

    Khan, Abdul Majeed; Hussain, Muhammad Shoukat

    2017-08-01

      This research article presents production of bioelectricity, bioethanol, and fertilizer from different industrial wastewaters supplemented with waste fruit and vegetables. Bioelectricity was generated from wastewater through the development of different microbial fuel cells (MFCs). It was observed that the voltage was increased in series combination, whereas current was increased in parallel combinations. The series combination of four units of single-chamber and eight units of double-chamber MFCs produced the power output of 5.43 mW and 4.08 mW, respectively, which is sufficient to light up the light emitting diode (LED). Power output was increased by the addition of waste fruit and vegetables. The leftover filtrates of MFCs were used for the production of bioethanol using Saccharomyces cerevisiae, while residues were used as fertilizer to check the growth of okra plant. The result showed that minor amount of bioethanol is produced from different samples, which was confirmed by the preparation of ethylbenzoate derivative.

  19. Oxygen isotopes as a tracer of phosphate sources and cycling in aquatic systems (Invited)

    NASA Astrophysics Data System (ADS)

    Young, M. B.; Kendall, C.; Paytan, A.

    2013-12-01

    The oxygen isotopic composition of phosphate can provide valuable information about sources and processes affecting phosphorus as it moves through hydrologic systems. Applications of this technique in soil and water have become more common in recent years due to improvements in extraction methods and instrument capabilities, and studies in multiple aquatic environments have demonstrated that some phosphorus sources may have distinct isotopic compositions within a given system. Under normal environmental conditions, the oxygen-phosphorus bonds in dissolved inorganic phosphate (DIP) can only be broken by enzymatic activity. Biological cycling of DIP will bring the phosphate oxygen into a temperature-dependent equilibrium with the surrounding water, overprinting any existing isotopic source signals. However, studies conducted in a wide range of estuarine, freshwater, and groundwater systems have found that the phosphate oxygen is often out of biological equilibrium with the water, suggesting that it is common for at least a partial isotopic source signal to be retained in aquatic systems. Oxygen isotope analysis on various potential phosphate sources such as synthetic and organic fertilizers, animal waste, detergents, and septic/wastewater treatment plant effluents show that these sources span a wide range of isotopic compositions, and although there is considerable overlap between the source groups, sources may be isotopically distinct within a given study area. Recent soil studies have shown that isotopic analysis of phosphate oxygen is also useful for understanding microbial cycling across different phosphorus pools, and may provide insights into controls on phosphorus leaching. Combining stable isotope information from soil and water studies will greatly improve our understanding of complex phosphate cycling, and the increasing use of this isotopic technique across different environments will provide new information regarding anthropogenic phosphate inputs and controls on biological cycling within hydrologic systems.

  20. Uranium bioprecipitation mediated by yeasts utilizing organic phosphorus substrates.

    PubMed

    Liang, Xinjin; Csetenyi, Laszlo; Gadd, Geoffrey Michael

    2016-06-01

    In this research, we have demonstrated the ability of several yeast species to mediate U(VI) biomineralization through uranium phosphate biomineral formation when utilizing an organic source of phosphorus (glycerol 2-phosphate disodium salt hydrate (C3H7Na2O6P·xH2O (G2P)) or phytic acid sodium salt hydrate (C6H18O24P6·xNa(+)·yH2O (PyA))) in the presence of soluble UO2(NO3)2. The formation of meta-ankoleite (K2(UO2)2(PO4)2·6(H2O)), chernikovite ((H3O)2(UO2)2(PO4)2·6(H2O)), bassetite (Fe(++)(UO2)2(PO4)2·8(H2O)), and uramphite ((NH4)(UO2)(PO4)·3(H2O)) on cell surfaces was confirmed by X-ray diffraction in yeasts grown in a defined liquid medium amended with uranium and an organic phosphorus source, as well as in yeasts pre-grown in organic phosphorus-containing media and then subsequently exposed to UO2(NO3)2. The resulting minerals depended on the yeast species as well as physico-chemical conditions. The results obtained in this study demonstrate that phosphatase-mediated uranium biomineralization can occur in yeasts supplied with an organic phosphate substrate as sole source of phosphorus. Further understanding of yeast interactions with uranium may be relevant to development of potential treatment methods for uranium waste and utilization of organic phosphate sources and for prediction of microbial impacts on the fate of uranium in the environment.

  1. Nutrient removal and starch production through cultivation of Wolffia arrhiza.

    PubMed

    Fujita, M; Mori, K; Kodera, T

    1999-01-01

    Wolffia arrhiza, a small weed found mostly in tropical and subtropical water environments, exhibits a high growth rate and consequently absorbs large amounts of nitrogen and phosphorus. Its vegetative frond contains 40% protein on a dry weight basis and its turion, which is the dormant form, has a similar starch content. The applicability of this weed to nutrient removal from secondary-treated waste water combined with starch resource production was evaluated. The nitrogen and phosphorus removal capabilities of the vegetative frond and the optimal conditions for inducing of the formation of turions from harvested biomass of vegetative fronds for the production of starch were investigated using artificial nutrient solutions. The vegetative frond showed high contents of nitrogen (6-7% of the total dry weight) and phosphorus (1-2% of the total dry weight). The nutrient removal rates of the vegetative frond were estimated to be 126 mg-N/m(2)/d and 38 mg-P/m(2)/d under a continuous flow condition. For turion formation from the vegetative fronds, a low nutrient concentration and a high plant density were most effective. Under the optimum conditions, the starch production rate was estimated to be 6 g-starch/m(2) (nutrient removal tank)/d.

  2. Foliar nitrogen, phosphorus and potassium content in trees in environmentally toxic plastic industry area.

    PubMed

    Sett, Rupnarayan; Soni, Bhawna

    2013-04-01

    In plants, nitrogen deficiency causes stunted growth and chlorosis or yellowing of the leaves due to decreased levels of chlorophyll, while excess nitrogen uptake may cause dark green overly vigorous foliage which may have increased susceptibility to disease and insect attacks. Phosphorus is an important nutrient in crop production, since many soils in their native state do not have sufficient available phosphorus to maximize crop yield. Potassium deficiency may cause necrosis or interveinal chlorosis. Plastics are synthetic or semi-synthetic moldable organic solids that are organic polymers of high molecular mass, most commonly derived from petrochemicals; these polymers are based on chains of carbon atoms alone or with oxygen, sulfur, or nitrogen. Plastic is a non- biodegradable major toxic pollutant. It pollutes earth and leads to air pollution and water pollution. Merely there is any safe way to dispose the hazardous plastic wastes. The study was targeted to estimate foliar level of NPK content of three plant species, viz. Cassia tora (Herb), Ailanthus excelsa (Tree) and Dalbergia sissoo (Tree) from polluted areas associated to polythene-industries as well as control areas having least pollution, where all the parameters were found to be higher than the control experiments.

  3. RDT&E Laboratory Capacity Utilization and Productivity Measurement Methods for Financial Decision-Making within DON.

    DTIC Science & Technology

    1998-06-01

    process or plant can complete using a 24-hour, seven-day operation with zero waste , i.e., the maximum output capability, allowing no adjustment for...models: • Resource Effectiveness Model: > Analyzes economic impact of capacity management decisions > Assumes that " zero waste " is the goal > Supports

  4. Abatement of waste gases and water during the processes of semiconductor fabrication.

    PubMed

    Wen, Rui-mei; Liang, Jun-wu

    2002-10-01

    The purpose of this article is to examine the methods and equipment for abating waste gases and water produced during the manufacture of semiconductor materials and devices. Three separating methods and equipment are used to control three different groups of electronic wastes. The first group includes arsine and phosphine emitted during the processes of semiconductor materials manufacture. The abatement procedure for this group of pollutants consists of adding iodates, cupric and manganese salts to a multiple shower tower (MST) structure. The second group includes pollutants containing arsenic, phosphorus, HF, HCl, NO2, and SO3 emitted during the manufacture of semiconductor materials and devices. The abatement procedure involves mixing oxidants and bases in an oval column with a separator in the middle. The third group consists of the ions of As, P and heavy metals contained in the waste water. The abatement procedure includes adding CaCO3 and ferric salts in a flocculation-sedimentation compact device equipment. Test results showed that all waste gases and water after the abatement procedures presented in this article passed the discharge standards set by the State Environmental Protection Administration of China.

  5. The influence of sawmill wood wastes on the distribution and population of macroinvertebrates at Benin River, Niger Delta area, Nigeria.

    PubMed

    Arimoro, Francis O; Osakwe, Emeka I

    2006-05-01

    The impact of sawmill wood wastes on the distribution of benthic macroinvertebrates at the Sapele section of Benin River, Niger Delta, Nigeria, was investigated from March 2005 to August 2005. A total of 434 individuals were collected by kick-sampling method, representing 21 taxa of benthic macroinvertebrates. Three stations, 1, 2, and 3, were selected from upstream of the site, receiving wood wastes discharge, the impacted site and its down stream, respectively. Among the water quality variables, conductivity, dissolved oxygen, biochemical oxigen demand (BOD(5)), nitrate-nitrogen, phosphate-phosphorus, transparency, and alkalinity were significantly different (P<0.05) among the stations. Orthogonal comparison by Duncan's multiple range test showed that station 2 (the impacted site) was the cause of the difference. More sensitive species such as Ephemeroptera or Plecoptera were completely absent from station 2, the impacted site. Species abundance was similar in station 1 and 3, indicating that the wood wastes must have adversely affected the distribution of these macroinvertebrates, especially the intolerant species. The wood waste discharge not only altered the water chemistry, but also stimulated the abundance of less-sensitive macroinvertebrate species.

  6. Recovery of essential nutrients from municipal solid waste – Impact of waste management infrastructure and governance aspects

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zabaleta, Imanol, E-mail: imanol.zabaleta@eawag.ch; Rodic, Ljiljana, E-mail: ljiljana.rodic@gmail.com

    Every year 120–140 million tonnes of bio-waste are generated in Europe, most of which is landfilled, incinerated or stabilized and used as covering material in landfill operation. None of these practices enables the recovery of essential nutrients such as phosphorus (P) and nitrogen (N), which are in great demand for agricultural production. Recovery of these nutrients is a matter of international concern considering the non-renewable nature of P sources and the energy intensive production process required for the synthesis of N fertilizers. The objective of this research is to understand the relation between the municipal solid waste management (MSWM) system,more » both its the physical components and governance aspects, and the recovery of nutrients in Vitoria-Gasteiz (Basque Country) as a benchmark for European medium-size cities. The analysis shows that the existing physical infrastructure and facilities for bio-waste have high potential for nutrient recovery, 49% for N and 83% for P contained in bio-waste. However, governance aspects of the MSWM system such as legislation and user inclusivity play an important role and decrease the actual nutrient recovery to 3.4% and 7.4% for N and P respectively.« less

  7. Bioelectricity from kitchen and bamboo waste in a microbial fuel cell.

    PubMed

    Moqsud, M Azizul; Omine, Kiyoshi; Yasufuku, Noriyuki; Bushra, Quazi S; Hyodo, Masayuki; Nakata, Yukio

    2014-02-01

    This study evaluated bioelectricity generation by using kitchen garbage (KG) and bamboo waste (BW) as a solid waste management option by a microbial fuel cell (MFC) method. The nutrient content [nitrogen, phosphorus and potassium (NPK)] of the by-products of bioelectricity were also analyzed and assessed for their potential use as a soil amendment. A one-chamber MFC was used for bioelectricity generation in laboratory experiments using both KG and BW. A data-logger recorded voltage every 20 mins at a constant room temperature of 25°C over 45 days. The trend of voltage generation was different for the two organic wastes. In the case of KG, the voltage at the initial stage (0-5 days) increased rapidly and then gradually to a peak of 620 mV. In contrast, the voltage increased gradually to a peak of 540 mV in the case of BW. The by-products of bioelectricity can be used as soil conditioner as its NPK content was in the range of soil conditioner mentioned in other literature. Thus, the MFC has emerged as an efficient and eco-friendly solution for organic waste management, especially in developing and technologically less sophisticated countries, and can provide green and safe electricity from organic waste.

  8. Recovery of essential nutrients from municipal solid waste--Impact of waste management infrastructure and governance aspects.

    PubMed

    Zabaleta, Imanol; Rodic, Ljiljana

    2015-10-01

    Every year 120-140 million tonnes of bio-waste are generated in Europe, most of which is landfilled, incinerated or stabilized and used as covering material in landfill operation. None of these practices enables the recovery of essential nutrients such as phosphorus (P) and nitrogen (N), which are in great demand for agricultural production. Recovery of these nutrients is a matter of international concern considering the non-renewable nature of P sources and the energy intensive production process required for the synthesis of N fertilizers. The objective of this research is to understand the relation between the municipal solid waste management (MSWM) system, both its the physical components and governance aspects, and the recovery of nutrients in Vitoria-Gasteiz (Basque Country) as a benchmark for European medium-size cities. The analysis shows that the existing physical infrastructure and facilities for bio-waste have high potential for nutrient recovery, 49% for N and 83% for P contained in bio-waste. However, governance aspects of the MSWM system such as legislation and user inclusivity play an important role and decrease the actual nutrient recovery to 3.4% and 7.4% for N and P respectively. Copyright © 2015 Elsevier Ltd. All rights reserved.

  9. Waste heat driven absorption refrigeration process and system

    DOEpatents

    Wilkinson, William H.

    1982-01-01

    Absorption cycle refrigeration processes and systems are provided which are driven by the sensible waste heat available from industrial processes and other sources. Systems are disclosed which provide a chilled water output which can be used for comfort conditioning or the like which utilize heat from sensible waste heat sources at temperatures of less than 170.degree. F. Countercurrent flow equipment is also provided to increase the efficiency of the systems and increase the utilization of available heat.

  10. Anaerobic treatment as a core technology for energy, nutrients and water recovery from source-separated domestic waste(water).

    PubMed

    Zeeman, Grietje; Kujawa, Katarzyna; de Mes, Titia; Hernandez, Lucia; de Graaff, Marthe; Abu-Ghunmi, Lina; Mels, Adriaan; Meulman, Brendo; Temmink, Hardy; Buisman, Cees; van Lier, Jules; Lettinga, Gatze

    2008-01-01

    Based on results of pilot scale research with source-separated black water (BW) and grey water (GW), a new sanitation concept is proposed. BW and GW are both treated in a UASB (-septic tank) for recovery of CH4 gas. Kitchen waste is added to the anaerobic BW treatment for doubling the biogas production. Post-treatment of the effluent is providing recovery of phosphorus and removal of remaining COD and nitrogen. The total energy saving of the new sanitation concept amounts to 200 MJ/year in comparison with conventional sanitation, moreover 0.14 kg P/p/year and 90 litres of potential reusable water are produced. (c) IWA Publishing 2008.

  11. Water-quality assessment of the Ozark Plateaus study unit, Arkansas, Kansas, Missouri, and Oklahoma; nutrients, bacteria, organic carbon, and suspended sediment in surface water, 1993-95

    USGS Publications Warehouse

    Davis, Jerri V.; Bell, Richard W.

    1998-01-01

    Nutrient, bacteria, organic carbon, and suspended- sediment samples were collected from 1993-95 at 43 surface-water-quality sampling sites within the Ozark Plateaus National Water- Quality Assessment Program study unit. Most surface-water-quality sites have small or medium drainage basins, near-homogenous land uses (primarily agricultural or forest), and are located predominantly in the Springfield and Salem Plateaus. The water-quality data were analyzed using selected descriptive and statistical methods to determine factors affecting occurrence in streams in the study unit. Nitrogen and phosphorus fertilizer use increased in the Ozark Plateaus study unit for the period 1965-85, but the application rates are well below the national median. Fertilizer use differed substantially among the major river basins and physiographic areas in the study unit. Livestock and poultry waste is a major source of nutrient loading in parts of the study unit. The quantity of nitrogen and phosphorus from livestock and poultry wastes differed substantially among the river basins of the study unit's sampling network. Eighty six municipal sewage-treatment plants in the study unit have effluents of 0.5 million gallons per day or more (for the years 1985-91). Statistically significant differences existed in surface-water quality that can be attributed to land use, physiography, and drainage basin size. Dissolved nitrite plus nitrate, total phosphorus, fecal coliform bacteria, and dissolved organic carbon concentrations generally were larger at sites associated with agricultural basins than at sites associated with forested basins. A large difference in dissolved nitrite plus nitrate concentrations occurred between streams draining basins with agricultural land use in the Springfield and Salem Plateaus. Streams draining both small and medium agricultural basins in the Springfield Plateau had much larger concentrations than their counterparts in the Salem Plateau. Drainage basin size was not a significant factor in affecting total phosphorus, fecal coliform bacteria, or dissolved organic carbon concentrations. Suspended-sediment concentrations generally were small and indicative of the clear water in streams in the Ozark Plateaus. A comparison of the dissolved nitrite plus nitrate, total phosphorus, and fecal coliform data collected at the fixed and synoptic sites indicates that generally the data for streams draining basins of similar physiography, land-use setting, and drainage basin size group together. Many of the variations are most likely the result of differences in percent agricultural land use between the sites being compared or are discharge related. The relation of dissolved nitrite plus nitrate, total phosphorus, and fecal coliform concentration to percent agricultural land use has a strong positive 2 Water-Quality Assessment-Nutrients, Bacteria, Organic Carbon, and Suspended Sediment in Surface Water, 1993-95 correlation, with percent agricultural land use accounting for between 42 and 60 percent of the variation in the observed concentrations.

  12. Agricultural land use and water quality in the upper St. Joseph River basin, Michigan

    USGS Publications Warehouse

    Cummings, T. Ray

    1978-01-01

    Land use in the upper St. Joseph River basin of south-central Michigan is primarily agricultural. In the 144-square-mile area, the chemical and physical characteristics of water are determined by the climate and soils, as well as by land conservation practices. Municipal waste discharges affect water quality at some locations, as do the larger lakes and ponds. Data indicate that mean discharge from the basin is 135 cubic feet per second. About half this flow is contributed to the St. Joseph River by three major tributaries: Beebe Creek (36 cubic feet per second); Sand Creek (24 cubic feet per second); and Soap Creek (13 cubic feet per second). Runoff from 21 drainage areas delineated for the investigation ranged from 0.22 to 4.07 cubic feet per second per square mile; both the higher and lower values are largely the result of naturally occurring inter- and intrabasin transfers of water.Suspended-sediment concentrations are low throughout the basin, rarely exceeding 100 milligrams per liter. Mean concentrations at four daily sampling stations on the major tributaries and on the St. Joseph River ranged from 9.7 milligrams per liter to 38 milligrams per liter. The maximum sediment yield was 182 pounds per acre per year. Deposition of sediment in five of the 21 areas resulted in a net loss of sediment transported, and thus “negative” yields.Nitrogen and phosphorus concentrations do not vary greatly from site to site. Mean concentrations of total nitrogen at downstream sites on Beebe, Sand, and Soap Creeks, and on the St. Joseph River ranged from 1.5 to 1.8 milligrams per liter. About 90 percent of all nitrogen, and 66 percent of all phosphorus, is transported in solution. Land used principally for agriculture has a mean total nitrogen yield of 4.9 pounds per acre per year and a mean total phosphorus yield of 0.13 pounds per year. A comparison of total nitrogen and total phosphorus yields with type of agricultural use showed few relationships; nitrogen yield, however, seems to decrease as the percentage of land in row crop and small grain increases. A relation between amount of fertilizer applied to land and the amount in streams could not be demonstrated.Only about 6 percent of the total nitrogen and about 1 percent of the total phosphorus added to the land in animal wastes, in precipitation, and applied as fertilizer, is transported from the basin by the St. Joseph River at Clarendon. Estimates also suggest that almost three times as much nitrogen, and twice as much phosphorus, fall in precipitation on the basin as is transported from the basin by runoff. In general, land conservation practices of the past seem to have been effective in minimizing erosion and leaching of soils in the basin.

  13. Soil fertility and plant diversity enhance microbial performance in metal-polluted soils.

    PubMed

    Stefanowicz, Anna M; Kapusta, Paweł; Szarek-Łukaszewska, Grażyna; Grodzińska, Krystyna; Niklińska, Maria; Vogt, Rolf D

    2012-11-15

    This study examined the effects of soil physicochemical properties (including heavy metal pollution) and vegetation parameters on soil basal respiration, microbial biomass, and the activity and functional richness of culturable soil bacteria and fungi. In a zinc and lead mining area (S Poland), 49 sites were selected to represent all common plant communities and comprise the area's diverse soil types. Numerous variables describing habitat properties were reduced by PCA to 7 independent factors, mainly representing subsoil type (metal-rich mining waste vs. sand), soil fertility (exchangeable Ca, Mg and K, total C and N, organic C), plant species richness, phosphorus content, water-soluble heavy metals (Zn, Cd and Pb), clay content and plant functional diversity (based on graminoids, legumes and non-leguminous forbs). Multiple regression analysis including these factors explained much of the variation in most microbial parameters; in the case of microbial respiration and biomass, it was 86% and 71%, respectively. The activity of soil microbes was positively affected mainly by soil fertility and, apparently, by the presence of mining waste in the subsoil. The mining waste contained vast amounts of trace metals (total Zn, Cd and Pb), but it promoted microbial performance due to its inherently high content of macronutrients (total Ca, Mg, K and C). Plant species richness had a relatively strong positive effect on all microbial parameters, except for the fungal component. In contrast, plant functional diversity was practically negligible in its effect on microbes. Other explanatory variables had only a minor positive effect (clay content) or no significant influence (phosphorus content) on microbial communities. The main conclusion from this study is that high nutrient availability and plant species richness positively affected the soil microbes and that this apparently counteracted the toxic effects of metal contamination. Copyright © 2012 Elsevier B.V. All rights reserved.

  14. Parathyroid hormone-related protein (PTHrP) as a causative factor of cancer-associated wasting: possible involvement of PTHrP in the repression of locomotor activity in rats bearing human tumor xenografts.

    PubMed

    Onuma, Etsuro; Tsunenari, Toshiaki; Saito, Hidemi; Sato, Koh; Yamada-Okabe, Hisafumi; Ogata, Etsuro

    2005-09-01

    Nude rats bearing the LC-6-JCK human lung cancer xenograft displayed cancer-associated wasting syndrome in addition to humoral hypercalcemia of malignancy. In these rats, not only PTHrP but also several other human proinflammatory cytokines, such as IL-6, leukemia-inducing factor, IL-8, IL-5 and IL-11, were secreted to the bloodstream. Proinflammatory cytokines induce acute-phase reactions, as evidenced by a decrease of serum albumin and an increase in alpha1-acid glycoprotein. Tumor resection abolished the production of proinflammatory cytokines and improved acute-phase reactions, whereas anti-PTHrP antibody affected neither proinflammatory cytokine production nor acute-phase reactions. Nevertheless, tumor resection and administration of anti-PTHrP antibody similarly and markedly attenuated not only hypercalcemia but also loss of fat, muscle and body weight. Body weight gain by anti-PTHrP antibody was associated with increased food consumption; increased body weight from anti-PTHrP antibody was observed when animals were freely fed but not when they were given the same feeding as those that received only vehicle. Furthermore, nude rats bearing LC-6-JCK showed reduced locomotor activity, less eating and drinking and low blood phosphorus; and anti-PTHrP antibody restored them. Although alendronate, a bisphosphonate drug, decreased blood calcium, it affected neither locomotor activity nor serum phosphorus level. These results indicate that PTHrP represses physical activity and energy metabolism independently of hypercalcemia and proinflammatory cytokine actions and that deregulation of such physiologic activities and functions by PTHrP is at least in part involved in PTHrP-induced wasting syndrome.

  15. Adaptation of aeronautical engines to high altitude flying

    NASA Technical Reports Server (NTRS)

    Kutzbach, K

    1923-01-01

    Issues and techniques relative to the adaptation of aircraft engines to high altitude flight are discussed. Covered here are the limits of engine output, modifications and characteristics of high altitude engines, the influence of air density on the proportions of fuel mixtures, methods of varying the proportions of fuel mixtures, the automatic prevention of fuel waste, and the design and application of air pressure regulators to high altitude flying. Summary: 1. Limits of engine output. 2. High altitude engines. 3. Influence of air density on proportions of mixture. 4. Methods of varying proportions of mixture. 5. Automatic prevention of fuel waste. 6. Design and application of air pressure regulators to high altitude flying.

  16. Influence of lime and struvite on microbial community succession and odour emission during food waste composting.

    PubMed

    Wang, Xuan; Selvam, Ammaiyappan; Lau, Sam S S; Wong, Jonathan W C

    2018-01-01

    Lime addition as well as formation of struvite through the addition of magnesium and phosphorus salts provide good pH buffering and may reduce odour emission. This study investigated the odour emission during food waste composting under the influence of lime addition, and struvite formation. Composting was performed in 20-L reactors for 56days using artificial food waste mixed with sawdust at 1.2:1 (w/w dry basis). VFA was one of the most important odours during food waste composting. However, during thermophilic phase, ammonia is responsible for max odour index in the exhaust gas. Trapping ammonia through struvite formation significantly reduced the maximum odour unit of ammonia from 3.0×10 4 to 1.8×10 4 . The generation and accumulation of acetic acid and butyric acid led to the acidic conditions. The addition of phosphate salts in treatment with struvite formation improved the variation of total bacteria, which in turn increased the organic decomposition. Copyright © 2017 Elsevier Ltd. All rights reserved.

  17. Conversion of stranded waste-stream carbon and nutrients into value-added products via metabolically coupled binary heterotroph-photoautotroph system.

    PubMed

    Bohutskyi, Pavlo; Kucek, Leo A; Hill, Eric; Pinchuk, Grigoriy E; Mundree, Sagadevan G; Beliaev, Alexander S

    2018-07-01

    Growth of heterotrophic bacterium Bacillus subtilis was metabolically coupled with the photosynthetic activity of an astaxanthin-producing alga Haematococcus pluvialis for conversion of starch-containing waste stream into carotenoid-enriched biomass. The H. pluvialis accounted for 63% of the produced co-culture biomass of 2.2 g/L. Importantly, the binary system requires neither exogenous supply of gaseous substrates nor application of energy-intensive mass transfer technologies due to in-situ exchange in CO 2 and O 2 . The maximum reduction in COD, total nitrogen and phosphorus reached 65%, 55% and 30%, respectively. Conducted techno-economic assessment suggested that the astaxanthin-rich biomass may potentially offset the costs of waste treatment, and, with specific productivity enhancements (induction of astaxanthin to 2% and increase H. pluvialis fraction to 80%), provide and additional revenue stream. The outcome of this study demonstrates a successful proof-of-principle for conversion of waste carbon and nutrients into value-added products through metabolic coupling of heterotrophic and phototrophic metabolisms. Copyright © 2018. Published by Elsevier Ltd.

  18. Amelioration and degradation of pressmud and bagasse wastes using vermitechnology.

    PubMed

    Bhat, Sartaj Ahmad; Singh, Jaswinder; Vig, Adarsh Pal

    2017-11-01

    This study evaluated the amelioration of pressmud (PM) and bagasse (BG) wastes by the vermiremediation process. The wastes were spiked with cattle dung (CD) in different concentrations to find out the best proportion supporting maximum earthworm growth and nutrients availability. The highest growth rate was observed in PMBG 50 (282.2mg/d/worm) feed mixture. Response surface design of earthworm growth parameters enumerated best concentration of wastes in CD with maximum value of 21.81% for earthworm number, 30.86% for earthworm weight, 27.09% for cocoons, 29.71% for hatchlings and 34.0% for hatchlings weight. Vermicomposting enhanced nutrient parameters like pH (6-8%), total kjeldahl nitrogen (19-48%), total phosphorus (9-67%), total calcium (13-111%), while decrease in total organic carbon (14-32%), electrical conductivity (21-30%), C:N ratio (36-51%), total potassium (9-19%) and total sodium (3-21%). Heavy metals in the final products were found to be under safe limits. SEM micrographs were more fragmented which indicated maturity and stability. Copyright © 2017 Elsevier Ltd. All rights reserved.

  19. Thermo-tolerant phosphate-solubilizing microbes for multi-functional biofertilizer preparation.

    PubMed

    Chang, Cheng-Hsiung; Yang, Shang-Shyng

    2009-02-01

    In order to prepare the multi-functional biofertilizer, thermo-tolerant phosphate-solubilizing microbes including bacteria, actinomycetes, and fungi were isolated from different compost plants and biofertilizers. Except Streptomycesthermophilus J57 which lacked pectinase, all isolates possessed amylase, CMCase, chitinase, pectinase, protease, lipase, and nitrogenase activities. All isolates could solubilize calcium phosphate and Israel rock phosphate; various isolates could solubilize aluminum phosphate, iron phosphate, and hydroxyapatite. During composting, biofertilizers inoculated with the tested microbes had a significantly higher temperature, ash content, pH, total nitrogen, soluble phosphorus content, and germination rate than non-inoculated biofertilizer; total organic carbon and carbon-to-nitrogen ratio showed the opposite pattern. Adding these microbes can shorten the period of maturity, improve the quality, increase the soluble phosphorus content, and enhance the populations of phosphate-solubilizing and proteolytic microbes in biofertilizers. Therefore, inoculating thermo-tolerant phosphate-solubilizing microbes into agricultural and animal wastes represents a practical strategy for preparing multi-functional biofertilizer.

  20. [Incremental approach to hemodialysis: twice a week, or once weekly hemodialysis combined with low-protein low-phosphorus diet?].

    PubMed

    Bolasco, Piergiorgio; Caria, Stefania; Egidi, Maria Francesca; Cupisti, Adamasco

    2015-01-01

    The start of dialysis treatment is a critical step in the care management of chronic renal failure patients. When hemodialysis is performed three times a week, rapid loss of kidney function and of urine volume output generally occur and this represents an unfavorable prognostic factor. Instead, reducing frequency of hemodialysis sessions, as well as peritoneal dialysis, can contribute to a lesser decrease of residual renal function. Unfortunately, the existing protocols for an incremental hemodialysis approach are not particularly common and they are generally limited to a twice a week hemodialysis schedule. In addition to clinical and economic reasons, an incremental approach to ESRD also contributes to better social and psychological adaptation by the patients to the dramatic change in living conditions linked to the maintenance dialysis treatment. In patients who have attitude for low-protein nutritional therapy, a once weekly dialysis schedule combined with low-protein, low-phosphorus, normal to high energy diet in the remaining six days of the week can be implemented in selected patients. In our experience, this kind of program produced important clinical results and reduction in costs and hospitalization. When compared with a three times a week dialysis schedule, a greater protection of residual renal function and of urine volume output, lower increase in 2 microglobulin, better control of phosphorus and less consumption of phosphate binders and erythropoietin were observed. Careful clinical monitoring and nutrition is essential for the safety and optimization of infrequent hemodialysis. Long-term follow-up analysis shows favorable effects on the overall survival. Furthermore, twice a week hemodialysis is not the only option for an incremental approach of dialysis commencing. In patients who have a good attitude for low-protein nutritional therapy, its arrangement with a program of once weekly dialysis represents a real and effective alternative.

  1. Integration of Waste Valorization for Sustainable Production of Chemicals and Materials via Algal Cultivation.

    PubMed

    Chen, Yong; Sun, Li-Ping; Liu, Zhi-Hui; Martin, Greg; Sun, Zheng

    2017-11-27

    Managing waste is an increasing problem globally. Microalgae have the potential to help remove contaminants from a range of waste streams and convert them into useful biomass. This article presents a critical review of recent technological developments in the production of chemicals and other materials from microalgae grown using different types of waste. A range of novel approaches are examined for efficiently capturing CO 2 in flue gas via photosynthetic microalgal cultivation. Strategies for using microalgae to assimilate nitrogen, organic carbon, phosphorus, and metal ions from wastewater are considered in relation to modes of production. Generally, more economical open cultivation systems such as raceway ponds are better suited for waste conversion than more expensive closed photobioreactor systems, which might have use for higher-value products. The effect of cultivation methods and the properties of the waste streams on the composition the microalgal biomass is discussed relative to its utilization. Possibilities include the production of biodiesel via lipid extraction, biocrude from hydrothermal liquefaction, and bioethanol or biogas from microbial conversion. Microalgal biomass produced from wastes may also find use in higher-value applications including protein feeds or for the production of bioactive compounds such as astaxanthin or omega-3 fatty acids. However, for some waste streams, further consideration of how to manage potential microbial and chemical contaminants is needed for food or health applications. The use of microalgae for waste valorization holds promise. Widespread implementation of the available technologies will likely follow from further improvements to reduce costs, as well as the increasing pressure to effectively manage waste.

  2. Streamflow and water quality of the Grand Calumet River, Lake County, Indiana, and Cook County, Illinois, October 1984

    USGS Publications Warehouse

    Crawford, Charles G.; Wangsness, David J.

    1987-01-01

    A diel (24-hour) water-quality survey was done to investigate the sources of dry-weather waste inputs attributable to other than permitted point-source effluent and to evaluate the waste-load assimilative capacity of the Grand Calumet River, Lake County, Indiana, and Cook County, Illinois, in October 1984. Flow in the Grand Calumet River consists almost entirely of municipal and industrial effluents which comprised more than 90% of the 500 cu ft/sec flow observed at the confluence of the East Branch Grand Calumet River and the Indiana Harbor Ship Canal during the study. At the time of the study, virtually all of the flow in the West Branch Grand Calumet River was municipal effluent. Diel variations in streamflow of as much as 300 cu ft/sec were observed in the East Branch near the ship canal. The diel variation diminished at the upstream sampling sites in the East Branch. In the West Branch, the diel variation in flow was quite drastic; complete reversals of flow were observed at sampling stations near the ship canal. Average dissolved-oxygen concentrations at stations in the East Branch ranged from 5.7 to 8.2 mg/L and at stations in the West Branch from 0.8 to 6.6 mg/L. Concentrations of dissolved solids, suspended solids, biochemical-oxygen demand, ammonia, nitrite, nitrate, and phosphorus were substantially higher in the West Branch than in the East Branch. In the East Branch, only the Indiana Stream Pollution Control Board water-quality standards for total phosphorus and phenol were exceeded. In the West Branch, water-quality standards for total ammonia, chloride, cyanide, dissolved solids, fluoride, total phosphorus, mercury, and phenol were exceeded and dissolved oxygen was less than the minimum allowable. Three areas of significant differences between cumulative effluent and instream chemical-mass discharges were identified in the East Branch and one in the West Branch. The presence of unidentified waste inputs in the East Branch were indicated by differences in the chemical-mass discharges at three sites. Elevated suspended solids, biochemical-oxygen demand, and ammonia chemical-mass discharges at Columbia Avenue indicated the presence of a source of what may have been untreated sewage to the West Branch during the survey. (Author 's abstract)

  3. A procedure to estimate proximate analysis of mixed organic wastes.

    PubMed

    Zaher, U; Buffiere, P; Steyer, J P; Chen, S

    2009-04-01

    In waste materials, proximate analysis measuring the total concentration of carbohydrate, protein, and lipid contents from solid wastes is challenging, as a result of the heterogeneous and solid nature of wastes. This paper presents a new procedure that was developed to estimate such complex chemical composition of the waste using conventional practical measurements, such as chemical oxygen demand (COD) and total organic carbon. The procedure is based on mass balance of macronutrient elements (carbon, hydrogen, nitrogen, oxygen, and phosphorus [CHNOP]) (i.e., elemental continuity), in addition to the balance of COD and charge intensity that are applied in mathematical modeling of biological processes. Knowing the composition of such a complex substrate is crucial to study solid waste anaerobic degradation. The procedure was formulated to generate the detailed input required for the International Water Association (London, United Kingdom) Anaerobic Digestion Model number 1 (IWA-ADM1). The complex particulate composition estimated by the procedure was validated with several types of food wastes and animal manures. To make proximate analysis feasible for validation, the wastes were classified into 19 types to allow accurate extraction and proximate analysis. The estimated carbohydrates, proteins, lipids, and inerts concentrations were highly correlated to the proximate analysis; correlation coefficients were 0.94, 0.88, 0.99, and 0.96, respectively. For most of the wastes, carbohydrate was the highest fraction and was estimated accurately by the procedure over an extended range with high linearity. For wastes that are rich in protein and fiber, the procedure was even more consistent compared with the proximate analysis. The new procedure can be used for waste characterization in solid waste treatment design and optimization.

  4. Waste minimisation in a hard chromiun plating Small Medium Enterprise (SME).

    PubMed

    Viguri, J R; Andrés, A; Irabien, A

    2002-01-01

    The high potential of waste stream minimisation in the metal finishing sector justifies specific studies of Small and Medium Enterprises (SME). In this work, the minimisation options of the wastes generated in a hard chromium plating activity have been analysed. The study has been performed in a small job shop company, which works in batch mode with big pieces. A process flowsheet after connecting the unit operations and determining the process inputs (raw and secondary materials) and outputs (waste streams) has been carried out. The main properties, quantity and current management of the waste streams have been shown. The obvious lack of information has been identified and finally the waste minimisation options that could be adopted by the company have been recorded.

  5. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Martinez-Guerra, Edith; Gude, Veera Gnaneswar, E-mail: gude@cee.msstate.edu

    Highlights: • Pulse sonication effect on transesterification of waste vegetable oil was studied. • Effects of ethanol, methanol, and alcohol mixtures on FAMEs yield were evaluated. • Effect of ultrasonic intensity, power density, and its output rates were evaluated. • Alcohol mixtures resulted in higher biodiesel yields due to better solubility. - Abstract: This study reports on the effects of direct pulse sonication and the type of alcohol (methanol and ethanol) on the transesterification reaction of waste vegetable oil without any external heating or mechanical mixing. Biodiesel yields and optimum process conditions for the transesterification reaction involving ethanol, methanol, andmore » ethanol–methanol mixtures were evaluated. The effects of ultrasonic power densities (by varying sample volumes), power output rates (in W), and ultrasonic intensities (by varying the reactor size) were studied for transesterification reaction with ethanol, methanol and ethanol–methanol (50%-50%) mixtures. The optimum process conditions for ethanol or methanol based transesterification reaction of waste vegetable oil were determined as: 9:1 alcohol to oil ratio, 1% wt. catalyst amount, 1–2 min reaction time at a power output rate between 75 and 150 W. It was shown that the transesterification reactions using ethanol–methanol mixtures resulted in biodiesel yields as high as >99% at lower power density and ultrasound intensity when compared to ethanol or methanol based transesterification reactions.« less

  6. Removal of algal blooms from freshwater by the coagulation-magnetic separation method.

    PubMed

    Liu, Dan; Wang, Peng; Wei, Guanran; Dong, Wenbo; Hui, Franck

    2013-01-01

    This research investigated the feasibility of changing waste into useful materials for water treatment and proposed a coagulation-magnetic separation technique. This technique was rapid and highly effective for clearing up harmful algal blooms in freshwater and mitigating lake eutrophication. A magnetic coagulant was synthesized by compounding acid-modified fly ash with magnetite (Fe(3)O(4)). Its removal effects on algal cells and dissolved organics in water were studied. After mixing, coagulation, and magnetic separation, the flocs obtained from the magnet surface were examined by SEM. Treated samples were withdrawn for the content determination of chlorophyll-a, turbidity, chemical oxygen demand (COD), total nitrogen, and total phosphorus. More than 99 % of algal cells were removed within 5 min after the addition of magnetic coagulant at optimal loadings (200 mg L(-1)). The removal efficiencies of COD, total nitrogen, and phosphorus were 93, 91, and 94 %, respectively. The mechanism of algal removal explored preliminarily showed that the magnetic coagulant played multiple roles in mesoporous adsorption, netting and bridging, as well as high magnetic responsiveness to a magnetic field. The magnetic-coagulation separation method can rapidly and effectively remove algae from water bodies and greatly mitigate eutrophication of freshwater using a new magnetic coagulant. The method has good performance, is low cost, can turn waste into something valuable, and provides reference and directions for future pilot and production scale-ups.

  7. Pyrolysis and co-composting of municipal organic waste in Bangladesh: A quantitative estimate of recyclable nutrients, greenhouse gas emissions, and economic benefits.

    PubMed

    Mia, Shamim; Uddin, Md Ektear; Kader, Md Abdul; Ahsan, Amimul; Mannan, M A; Hossain, Mohammad Monjur; Solaiman, Zakaria M

    2018-05-01

    Waste causes environmental pollution and greenhouse gas (GHG) emissions when it is not managed sustainably. In Bangladesh, municipal organic waste (MOW) is partially collected and landfilled. Thus, it causes deterioration of the environment urging a recycle-oriented waste management system. In this study, we propose a waste management system through pyrolysis of selective MOW for biochar production and composting of the remainder with biochar as an additive. We estimated the carbon (C), nitrogen (N), phosphorus (P) and potassium (K) recycling potentials in the new techniques of waste management. Waste generation of a city was calculated using population density and per capita waste generation rate (PWGR). Two indicators of economic development, i.e., gross domestic product (GDP) and per capita gross national income (GNI) were used to adopt PWGR with a projected contribution of 5-20% to waste generation. The projected PWGR was then validated with a survey. The waste generation from urban areas of Bangladesh in 2016 was estimated between 15,507 and 15,888 t day -1 with a large share (∼75%) of organic waste. Adoption of the proposed system could produce 3936 t day -1 biochar blended compost with an annual return of US $210 million in 2016 while it could reduce GHG emission substantially (-503 CO 2 e t -1 municipal waste). Moreover, the proposed system would able to recover ∼46%, 54%, 54% and 61% of total C, N, P and K content in the initial waste, respectively. We also provide a projection of waste generation and nutrient recycling potentials for the year 2035. The proposed method could be a self-sustaining policy option for waste management as it would generate ∼US$51 from each tonne of waste. Moreover, a significant amount of nutrients can be recycled to agriculture while contributing to the reduction in environmental pollution and GHG emission. Copyright © 2018 Elsevier Ltd. All rights reserved.

  8. Comparison of vermicompost characteristics produced from sewage sludge of wood and paper industry and household solid wastes.

    PubMed

    Amouei, A I; Yousefi, Z; Khosravi, T

    2017-01-01

    The aim of this study was to determine the potential of produced compost from the sludge of wastewater treatment plant using earthworms and compare it with the vermicompost produced from household solid waste. In the current study, three treatments with the same conditions in terms of organic wastes type were prepared to produce vermicompost from household solid waste and sewage sludges using earthworms. The standard methods were used to determine the physical and chemical parameters in the different produced vermicomposts. The mean of C/N in the household solid waste, raw biological and chemical sludges was 32, 22.5, and 26.5, respectively. These levels were 16.5, 14.5, and 15 in the vermicomposts. The mean of nitrogen and phosphorus percentages in the vermicompost of solid waste, biological and chemical sludges was 2.2%, 2.6%, 2.3% and 0.72%, 0.54%, and 0.56%, respectively. The mean percentages of organic matters in the initial substrates and vermicomposts of solid waste, biological and chemical sludges were 97.2%, 90%, 80.5% and 65.8%, 67.8% and 63% respectively. The concentrations of heavy metals decreased in all vermicomposts. The EC levels in solid waste, biological and chemical sludges were 1459, 1041, and 1487 μs/cm, respectively. These levels were 544, 385 and 635 μs/cm in the produced compost. Eisenia fetida can convert household solid waste, and biological and chemical sludges produced from wastewater treatment plant into a high-quality and acceptable compost.

  9. Potential use of the organic fraction of municipal solid waste in anaerobic co-digestion with wastewater in submerged anaerobic membrane technology.

    PubMed

    Moñino, P; Jiménez, E; Barat, R; Aguado, D; Seco, A; Ferrer, J

    2016-10-01

    Food waste was characterized for its potential use as substrate for anaerobic co-digestion in a submerged anaerobic membrane bioreactor pilot plant that treats urban wastewater (WW). 90% of the particles had sizes under 0.5mm after grinding the food waste in a commercial food waste disposer. COD, nitrogen and phosphorus concentrations were 100, 2 and 20 times higher in food waste than their average concentrations in WW, but the relative flow contribution of both streams made COD the only pollutant that increased significantly when both substrates were mixed. As sulphate concentration in food waste was in the same range as WW, co-digestion of both substrates would increase the COD/SO4-S ratio and favour methanogenic activity in anaerobic treatments. The average methane potential of the food waste was 421±15mLCH4g(-1)VS, achieving 73% anaerobic biodegradability. The anaerobic co-digestion of food waste with WW is expected to increase methane production 2.9-fold. The settleable solids tests and the particle size distribution analyses confirmed that both treatment lines of a conventional WWTP (water and sludge lines) would be clearly impacted by the incorporation of food waste into its influent. Anaerobic processes are therefore preferred over their aerobic counterparts due to their ability to valorise the high COD content to produce biogas (a renewable energy) instead of increasing the energetic costs associated with the aeration process for aerobic COD oxidation. Copyright © 2016 Elsevier Ltd. All rights reserved.

  10. [Control of Soil Nutrient Loss of Typical Reforestation Patterns Along the Three Gorges Reservoir Area].

    PubMed

    Wu, Dong; Huang, Zhi-lin; Xiao, Wen-fa; Zeng, Li-xiong

    2015-10-01

    Annual soil nutrient loss characteristics on typical reforestation patterns in watershed along the Three Gorges Reservoir Area were studied based on runoff plot experiment. Runoff and sediment nutrition content from May to October 2014 of typical reforestation patterns including garden plot (tea garden), forest land (Chinese chestnut) and the original slope farmland were determined and then analyzed. The results showed that: (1) After the Returning Farmland to Forest Project the quantity of annual soil nutrient (nitrogen and phosphorus, the sum of them in sediment and runoff) loss decreased. The output of total nitrogen (TN) was in the order of slope farmland (2 444.27 g x hm(-2)) > tea garden (998.70 g x hm(-2)) > Chinese chestnut forest (532.61 g x hm(-2)), and for total phosphorus (TP) loss was slope farmland (1 690.48 g x hm(-2)) > tea garden (488.06 g x hm(-2)) > Chinese chestnut forest (129.00 g x hm(-2)) . Compared with slope farmland, the load of TN and TP output of reforestation patterns decreased 68.68% and 81.75%, respectively. (2) Compared with slope farmland, available nitrogen loss decreased in reforestation patterns. Total nitrate nitrogen (NO3(-)-N) loss ranked in the order of slope farmland (113.79 g x hm(-2)) > tea garden (73.75 g x hm(-2)) > Chinese chestnut forest (56.06 g x hm(-2)) The largest amount of ammonium nitrogen (NH4(+)-N) was found in tea garden (69.34 g x hm(-2)), then in farmland (52.45 g x hm(-2)), and the least in Chinese chestnut forest (47.23 g x hm(-2)). (3) The main route of NO3(-)-N and NH4(+)-N loss was both through runoff, the quantity of NO3(-)-N and NH4(+)-N output in which accounted for 91.4% and 92.2% of the total, respectively. The quantity of TN and TP in sediment accounted for 86.6% and 98.4% of the total. TN and TP loss showed an extremely significant correlation with sediments, which showed that sediment output was the main approach of TN and TP loss.

  11. Life cycle assessment of biohydrogen and biomethane production and utilisation as a vehicle fuel.

    PubMed

    Patterson, Tim; Esteves, Sandra; Dinsdale, Richard; Guwy, Alan; Maddy, Jon

    2013-03-01

    Environmental burdens for the production and utilisation of biomethane vehicle fuel or a biohydrogen/biomethane blend produced from food waste or wheat feed, based on data from two different laboratory experiments, have been compared. For food waste treated by batch processes the two stage system gave high hydrogen yields (84.2l H2kg(-1) VS added) but a lower overall energy output than the single stage system. Reduction in environmental burdens compared with diesel was achieved, supported by the diversion of waste from landfill. For wheat feed, the semi continuously fed two stage process gave low hydrogen yields (7.5l H2kg(-1) VS added) but higher overall energy output. The process delivers reduction in fossil fuel burdens, and improvements in process efficiencies will lead to reduction in CO2 burdens compared with diesel. The study highlights the importance of understanding and optimising biofuel production parameters according to the feedstock utilised. Copyright © 2013 Elsevier Ltd. All rights reserved.

  12. The Arab world's contribution to solid waste literature: a bibliometric analysis.

    PubMed

    Zyoud, Sa'ed H; Al-Jabi, Samah W; Sweileh, Waleed M; Al-Khalil, Suleiman; Zyoud, Shaher H; Sawalha, Ansam F; Awang, Rahmat

    2015-01-01

    Environmental and health-related effects of solid waste material are considered worldwide problems. The aim of this study was to assess the volume and impact of Arab scientific output published in journals indexed in the Science Citation Index (SCI) on solid waste. We included all the documents within the SCI whose topic was solid waste from all previous years up to 31 December 2012. In this bibliometric analysis we sought to evaluate research that originated from Arab countries in the field of solid waste, as well as its relative growth rate, collaborative measures, productivity at the institutional level, and the most prolific journals. A total of 382 (2.35 % of the overall global research output in the field of solid waste) documents were retrieved from the Arab countries. The annual number of documents published in the past three decades (1982-2012) indicated that research productivity demonstrated a noticeable rise during the last decade. The highest number of articles associated with solid waste was that of Egypt (22.8 %), followed by Tunisia (19.6), and Jordan (13.4 %). the total number of citations over the analysed years at the date of data collection was 4,097, with an average of 10.7 citations per document. The h-index of the citing articles was 31. Environmental science was the most researched topic, represented by 175 (45.8 %) articles. Waste Management was the top active journal. The study recognized 139 (36.4 %) documents from collaborations with 25 non-Arab countries. Arab authors mainly collaborated with countries in Europe (22.5 %), especially France, followed by countries in the Americas (9.4 %), especially the USA. The most productive institution was the American University of Beirut, Lebanon, with 6.3 % of total publications. Despite the expected increase in solid waste production from Arab world, research activity about solid waste is still low. Governments must invest more in solid waste research to avoid future unexpected problems. Finally, since solid waste is a multidisciplinary science, research teams in engineering, health, toxicology, environment, geology and others must be formulated to produce research in solid waste from different scientific aspects.

  13. Rotary drum composting of vegetable waste and tree leaves.

    PubMed

    Kalamdhad, Ajay S; Singh, Yatish K; Ali, Muntjeer; Khwairakpam, Meena; Kazmi, A A

    2009-12-01

    High rate composting studies on institutional waste, i.e. vegetable wastes, tree leaves, etc., were conducted on a demonstration-scale (3.5 m(3)) rotary drum composter by evaluating changes in some physico-chemical and biological parameters. During composting, higher temperature (60-70 degrees C) at inlet zone and (50-60 degrees C) at middle zone were achieved which resulted in high degradation in the drum. As a result, all parameters including TOC, C/N ratio, CO(2) evolution and coliforms were decreased significantly within few days of composting. Within a week period, quality compost with total nitrogen (2.6%) and final total phosphorus (6 g/kg) was achieved; but relatively higher final values of fecal coliforms and CO(2) evolution, suggested further maturation. Thus, two conventional composting methods namely windrow (M1) and vermicomposting (M2) tried for maturation of primary stabilized compost. By examining these methods, it was suggested that M2 was found suitable in delivering fine grained, better quality matured compost within 20 days of maturation period.

  14. Human waste: An underestimated source of nutrient pollution in coastal seas of Bangladesh, India and Pakistan.

    PubMed

    Amin, Md Nurul; Kroeze, Carolien; Strokal, Maryna

    2017-05-15

    Many people practice open defecation in south Asia. As a result, lot of human waste containing nutrients such as nitrogen (N) and phosphorus (P) enter rivers. Rivers transport these nutrients to coastal waters, resulting in marine pollution. This source of nutrient pollution is, however, ignored in many nutrient models. We quantify nutrient export by large rivers to coastal seas of Bangladesh, India and Pakistan, and the associated eutrophication potential in 2000 and 2050. Our new estimates for N and P inputs from human waste are one to two orders of magnitude higher than earlier model calculations. This leads to higher river export of nutrients to coastal seas, increasing the risk of coastal eutrophication potential (ICEP). The newly calculated future ICEP, for instance, Godavori river is 3 times higher than according to earlier studies. Our modeling approach is simple and transparent and can easily be applied to other data-poor basins. Copyright © 2017 Elsevier Ltd. All rights reserved.

  15. Preliminary evaluation of evaluation of the efficiency of aircraft liquid waste treatment using resolvable sanitizing liquid: a case study in Changchun.

    PubMed

    Xu, Jianling; Yang, Jiaqi; Zhao, Nan; Sheng, Lianxi; Zhao, Yuanhui; Tang, Zhanhui

    2011-12-01

    The physical, chemical, and biological indices of aircraft liquid wastes collected from multiple airplanes at Longjia Airport, Changchun, China were measured according to "Integrated Wastewater Discharge Standard," evaluating treatment efficiency of resolvable sanitizing liquid. The results indicate that, after being treated by the resolvable sanitizing liquid, the indices of all first-class pollutants met the requirements of the standard, while among the second-class pollutants, the suspension content, biochemical oxygen demand after 5 days, and chemical oxygen demand as well as the contents of amino nitrogen, total phosphorus, anionic surfactants, total copper, absorbable organic halogen, and phenolic compounds did not reach the discharge standard. Particularly, the level of fecal coliform bacteria in the aircraft liquid wastes can meet the standard specification by adding more than 1 mL/L resolvable sanitizing liquid. The aircraft wastewater treated by resolvable sanitizing liquid cannot be directly discharged back into the environment as well as urban drainage systems.

  16. Chesapeake Bay nutrient pollution: contribution from the land application of sewage sludge in Virginia.

    PubMed

    Land, Lynton S

    2012-11-01

    Human health concerns and the dissemination of anthropogenic substances with unknown consequences are the reasons most often given why disposal of municipal sewage sludge in landfills or using the organic waste as biofuel is preferable to land application. But no "fertilizer" causes more nitrogen pollution than sludge when applied according to Virginia law. Poultry litter is the only other "fertilizer" that causes more phosphorus pollution than sludge. Cost savings by the few farmers in Virginia who use sludge are far less than the costs of the nitrogen pollution they cause. A ban on the land application of all forms of animal waste is very cost-effective and would reduce Chesapeake Bay nutrient pollution by 25%. Copyright © 2012 Elsevier Ltd. All rights reserved.

  17. Biochar produced from biosolids using a single-mode microwave: Characterisation and its potential for phosphorus removal.

    PubMed

    Antunes, Elsa; Schumann, James; Brodie, Graham; Jacob, Mohan V; Schneider, Philip A

    2017-07-01

    The amount of biosolids increases every year, and social and environmental concerns are also rising due to heavy metals and pathogen contamination. Even though biosolids are considered as a waste material, they could be used as a precursor in several applications, especially in agriculture due to the presence of essential nutrients. Microwave assisted pyrolysis (MWAP) is a promising technology to safely manage biosolids, while producing value-added products, such as biochar, that can be used to improve soil fertility. This study examined the impact of pyrolysis temperature between 300 °C and 800 °C on the chemical and physical properties of biochar obtained from biosolids via MWAP. Preliminary phosphorus adsorption tests were carried out with the biochar produced from biosolids. This research demonstrated that pyrolysis temperature affects biochar specific surface area, ash and volatiles content, but does not impact heavily on the pH, chemical composition and crystalline phases of the resultant biochar. Biochar yield decreases as the pyrolysis temperature increases. Phosphorus adsorption capacity of biochar was approximately around 15 mg/g of biochar. Biochar resulting from MWAP is a potential candidate for land application with an important role in water and nutrient retention, due to the high surface area. Copyright © 2017 Elsevier Ltd. All rights reserved.

  18. E-Waste Driven Pollution in Pakistan: The First Evidence of Environmental and Human Exposure to Flame Retardants (FRs) in Karachi City.

    PubMed

    Iqbal, Mehreen; Syed, Jabir Hussain; Breivik, Knut; Chaudhry, Muhammad Jamshed Iqbal; Li, Jun; Zhang, Gan; Malik, Riffat Naseem

    2017-12-05

    Informal e-waste recycling activities have been shown to be a major emitter of organic flame retardants (FRs), contributing to both environmental and human exposure to laborers at e-waste recycling sites in some West African countries, as well as in China and India. The main objective of this study was to determine the levels of selected organic FRs in both air and soil samples collected from areas with intensive informal e-waste recycling activities in Karachi, Pakistan. Dechlorane Plus (DP) and "novel" brominated flame retardants (NBFRs) were often detected in high concentrations in soils, while phosphorus-based FRs (OPFRs) dominated atmospheric samples. Among individual substances and substance groups, decabromodiphenyl ether (BDE-209) (726 ng/g), decabromodiphenyl ethane (DBDPE) (551 ng/g), 1,2-bis(2,4,6-tribromophenoxy) ethane (BTBPE) (362 ng/g), and triphenyl-phosphate (∑TPP) (296 ng/g) were found to be prevalent in soils, while OPFR congeners (5903-24986 ng/m 3 ) were prevalent in air. The two major e-waste recycling areas (Shershah and Lyari) were highly contaminated with FRs, suggesting informal e-waste recycling activities as a major emission source of FRs in the environment in Karachi City. However, the hazards associated with exposure to PM 2.5 appear to exceed those attributed to exposure to selected FRs via inhalation and soil ingestion.

  19. Ecological effects of soil properties and metal concentrations on the composition and diversity of microbial communities associated with land use patterns in an electronic waste recycling region.

    PubMed

    Wu, Wencheng; Dong, Changxun; Wu, Jiahui; Liu, Xiaowen; Wu, Yingxin; Chen, Xianbin; Yu, Shixiao

    2017-12-01

    Soil microbes play vital roles in ecosystem functions, and soil microbial communities may be strongly structured by land use patterns associated with electronic waste (e-waste) recycling activities, which can increase the heavy metal concentration in soils. In this study, a suite of soils from five land use types (paddy field, vegetable field, dry field, forest field, and e-waste recycling site) were collected in Longtang Town, Guangdong Province, South China. Soil physicochemical properties and heavy metal concentrations were measured, and the indigenous microbial assemblages were profiled using 16S rRNA high-throughput sequencing and clone library analyses. The results showed that mercury concentration was positively correlated with both Faith's PD and Chao1 estimates, suggesting that the soil microbial alpha diversity was predominantly regulated by mercury. In addition, redundancy analysis indicated that available phosphorus, soil moisture, and mercury were the three major drivers affecting the microbial assemblages. Overall, the microbial composition was determined primarily by land use patterns, and this study provides a novel insight on the composition and diversity of microbial communities in soils associated with e-waste recycling activities. Copyright © 2017 Elsevier B.V. All rights reserved.

  20. Physicochemical properties, nutritional value and techno-functional properties of goldenberry (Physalis peruviana) waste powder concise title: Composition of goldenberry juice waste.

    PubMed

    Mokhtar, Sayed M; Swailam, Hesham M; Embaby, Hassan El-Sayed

    2018-05-15

    Goldenberry waste powder, contained 5.87% moisture, 15.89% protein, 13.72% fat, 3.52% ash, 16.74% dietary fiber and 61% carbohydrates. Potassium (560 mg/100 g) was the predominant element followed by sodium (170 mg/100 g) and phosphorus (130 mg/100 g). Amino acid analysis gave high levels of cystine/methionine, histidine and tyrosine/phenylalanine. Goldenberry waste powder had good levels of the techno-functional properties including water absorption index, swelling index, foaming capacity and stability (3.38 g/g, 5.24 ml/g, 4.09 and 72.0%, respectively). Fatty acids profile showed that linoleic acid was the predominant fatty acid followed by oleic, palmitic and stearic acids. Iodine value (109.5 g/100 g of oil), acid value (2.36 mg KOH/g of oil), saponification value (183.8 mg KOH/g of oil), peroxide value (8.2 meq/kg of oil) and refractive index (1.4735) were comparable to those of soybean and sunflower oils. Goldenberry waste oil exhibited absorbance in the UV range at 100-400 nm. Copyright © 2017 Elsevier Ltd. All rights reserved.

  1. Generic waste management requirements for a controlled ecological life support system /CELSS/

    NASA Technical Reports Server (NTRS)

    Hoshizaki, T.; Hansen, B. D., III

    1981-01-01

    Regenerative life support systems for future space missions will require closure of the waste-food loop. Each mission application will generate specific requirements for the waste management system. However, there are generic input and output requirements that can be identified when a probable scenario is chosen. This paper discusses the generic requirements when higher plants are chosen as the primary food source. Attention is focused on the quality and quantity of nutrients necessary for culturing higher plants. The types of wastes to be processed are also discussed. In addition, requirements generated by growing plants on three different substrates are presented. This work suggests that the mineral composition of waste materials may require minimal adjustment to satisfy the plant requirements.

  2. Evaluation and comparison of alternative designs for water/solid-waste processing systems for spacecraft

    NASA Technical Reports Server (NTRS)

    Spurlock, J. M.

    1975-01-01

    Promising candidate designs currently being considered for the management of spacecraft solid waste and waste-water materials were assessed. The candidate processes were: (1) the radioisotope thermal energy evaporation/incinerator process; (2) the dry incineration process; and (3) the wet oxidation process. The types of spacecraft waste materials that were included in the base-line computational input to the candidate systems were feces, urine residues, trash and waste-water concentrates. The performance characteristics and system requirements for each candidate process to handle this input and produce the specified acceptable output (i.e., potable water, a storable dry ash, and vapor phase products that can be handled by a spacecraft atmosphere control system) were estimated and compared. Recommendations are presented.

  3. Using a chemical equilibrium model to predict amendments required to precipitate phosphorus as struvite in liquid swine manure.

    PubMed

    Celen, Ipek; Buchanan, John R; Burns, Robert T; Robinson, R Bruce; Raman, D Raj

    2007-04-01

    Precipitation of phosphate minerals from liquid swine manure is an established means of reducing the orthophosphate (OP) concentration. This project investigated the usefulness of a chemical equilibrium model, Visual Minteq, for prescribing the amendments needed to maximize struvite precipitation from liquid swine manure and thus reduce the OP phosphorus concentration. The actual concentrations of Mg(2+), Ca(2+), K(+), OP, NH(4)(+), alkalinity and pH from a liquid swine manure system were used as inputs to the model. The model was modified to remove species with extremely low formation rates, because they would not significantly precipitate in the reaction occurring in a short retention-time process such as those envisioned for swine manure struvite-formation reactors. Using the model's output, a series of 19-L reactors were used to verify the results. Verification results demonstrated that Visual Minteq can be used to pre-determine the concentration of amendments required to maximize struvite recovery.

  4. Novel transgenic pigs with enhanced growth and reduced environmental impact

    PubMed Central

    Yang, Huaqiang; Liu, Dewu; Cai, Gengyuan; Li, Guoling; Mo, Jianxin; Wang, Dehua; Zhong, Cuili; Wang, Haoqiang; Sun, Yue; Shi, Junsong; Zheng, Enqin; Meng, Fanming; Zhang, Mao; He, Xiaoyan; Zhou, Rong; Zhang, Jian; Huang, Miaorong; Zhang, Ran; Li, Ning; Fan, Mingzhe; Yang, Jinzeng

    2018-01-01

    In pig production, inefficient feed digestion causes excessive nutrients such as phosphorus and nitrogen to be released to the environment. To address the issue of environmental emissions, we established transgenic pigs harboring a single-copy quad-cistronic transgene and simultaneously expressing three microbial enzymes, β-glucanase, xylanase, and phytase in the salivary glands. All the transgenic enzymes were successfully expressed, and the digestion of non-starch polysaccharides (NSPs) and phytate in the feedstuff was enhanced. Fecal nitrogen and phosphorus outputs in the transgenic pigs were reduced by 23.2–45.8%, and growth rate improved by 23.0% (gilts) and 24.4% (boars) compared with that of age-matched wild-type littermates under the same dietary treatment. The transgenic pigs showed an 11.5–14.5% improvement in feed conversion rate compared with the wild-type pigs. These findings indicate that the transgenic pigs are promising resources for improving feed efficiency and reducing environmental impact. PMID:29784082

  5. Laboratory simulations of PH3 photolysis in the atmospheres of Jupiter and Saturn

    NASA Technical Reports Server (NTRS)

    Ferris, J. P.; Khwaja, H.

    1985-01-01

    The effects of pressure, temperature, light wavelength and intensity, and components of the atmosphere of the Jovian planets on the photolysis of PH3 were experimentally studied. The products of the photolysis, P2H4 and red phosphorus, exhibited little variation when the irradiation experiments were performed under conditions prevalent in Jupiter's atmosphere. No quenching of PH2 radicals by the levels of hydrocarbons present in the Jovian atmosphere was noted. The high partial pressure of hydrogen present on Jupiter should have no effect on the course of the photolysis. The low temperatures on Jupiter and Saturn may result in some condensation of P2H4, but P2H4 had sufficient vapor pressure in the experimental studies at 157 K to be slowly converted to red phosphorus. The products of PH3 photolysis were the same whether a 147, 184.9, or 206.2 nm monochromatic light source or a xenon lamp with a broad spectral output was used.

  6. Rechargeable lithium battery for use in applications requiring a low to high power output

    DOEpatents

    Bates, John B.

    1996-01-01

    Rechargeable lithium batteries which employ characteristics of thin-film batteries can be used to satisfy power requirements within a relatively broad range. Thin-film battery cells utilizing a film of anode material, a film of cathode material and an electrolyte of an amorphorus lithium phosphorus oxynitride can be connected in series or parallel relationship for the purpose of withdrawing electrical power simultaneously from the cells. In addition, such battery cells which employ a lithium intercalation compound as its cathode material can be connected in a manner suitable for supplying power for the operation of an electric vehicle. Still further, by incorporating within the battery cell a relatively thick cathode of a lithium intercalation compound, a relatively thick anode of lithium and an electrolyte film of lithium phosphorus oxynitride, the battery cell is rendered capable of supplying power for any of a number of consumer products, such as a laptop computer or a cellular telephone.

  7. Rechargeable lithium battery for use in applications requiring a low to high power output

    DOEpatents

    Bates, John B.

    1997-01-01

    Rechargeable lithium batteries which employ characteristics of thin-film batteries can be used to satisfy power requirements within a relatively broad range. Thin-film battery cells utilizing a film of anode material, a film of cathode material and an electrolyte of an amorphous lithium phosphorus oxynitride can be connected in series or parallel relationship for the purpose of withdrawing electrical power simultaneously from the cells. In addition, such battery cells which employ a lithium intercalation compound as its cathode material can be connected in a manner suitable for supplying power for the operation of an electric vehicle. Still further, by incorporating within the battery cell a relatively thick cathode of a lithium intercalation compound, a relatively thick anode of lithium and an electrolyte film of lithium phosphorus oxynitride, the battery cell is rendered capable of supplying power for any of a number of consumer products, such as a laptop computer or a cellular telephone.

  8. Black phosphorus as a saturable absorber for generating mode-locked fiber laser in normal dispersion regime

    NASA Astrophysics Data System (ADS)

    Latiff, A. A.; Rusdi, M. F. M.; Hisyam, M. B.; Ahmad, H.; Harun, S. W.

    2016-11-01

    This paper reports a few-layer black phosphorus (BP) as a saturable absorber (SA) or phase-locker in generating modelocked pulses from a double-clad ytterbium-doped fiber laser (YDFL). We mechanically exfoliated the BP flakes from BP crystal through a scotch tape, and repeatedly press until the flakes thin and spread homogenously. Then, a piece of BP tape was inserted in the cavity between two fiber connectors end facet. Under 810 mW to 1320 mW pump power, stable mode-locked operation at 1085 nm with a repetition rate of 13.4 MHz is successfully achieved in normal dispersion regime. Before mode-locked operation disappears above maximum pump, the output power and pulse energy is about 80 mW and 6 nJ, respectively. This mode-locked laser produces peak power of 0.74 kW. Our work may validates BP SA as a phase-locker related to two-dimensional nanomaterials and pulsed generation in normal dispersion regime.

  9. Recent advances in yeast cell-surface display technologies for waste biorefineries.

    PubMed

    Liu, Zhuo; Ho, Shih-Hsin; Hasunuma, Tomohisa; Chang, Jo-Shu; Ren, Nan-Qi; Kondo, Akihiko

    2016-09-01

    Waste biorefinery aims to maximize the output of value-added products from various artificial/agricultural wastes by using integrated bioprocesses. To make waste biorefinery economically feasible, it is thus necessary to develop a low-cost, environment-friendly technique to perform simultaneous biodegradation and bioconversion of waste materials. Cell-surface display engineering is a novel, cost-effective technique that can auto-immobilize proteins on the cell exterior of microorganisms, and has been applied for use with waste biofinery. Through tethering different enzymes (e.g., cellulase, lipase, and protease) or metal-binding peptides on cell surfaces, various yeast strains can effectively produce biofuels and biochemicals from sugar/protein-rich waste materials, catalyze waste oils into biodiesels, or retrieve heavy metals from wastewater. This review critically summarizes recent applications of yeast cell-surface display on various types of waste biorefineries, highlighting its potential and future challenges with regard to commercializing this technology. Copyright © 2016 Elsevier Ltd. All rights reserved.

  10. Influence of calcium and phosphorus feeding on markers of bone metabolism in transition cows.

    PubMed

    Moreira, V R; Zeringue, L K; Williams, C C; Leonardi, C; McCormick, M E

    2009-10-01

    A study was carried out to verify the effect of Ca and P levels on production, digestibility, and serum bone metabolism biomarkers in dairy cows. Fifty-two nonlactating multiparous cows (>or=3 lactations) were confined in a free-stall barn approximately 20 d before calving. A standard close-up diet was fed to cows once daily until d 2 postpartum. Cows were randomly assigned to 1 of 4 dietary treatments arranged in a 2 x 2 factorial approach averaging 0.64% Ca for high Ca (HCa), 0.46% Ca for low Ca (LCa), 0.47% P for high P (HP), and 0.38% P for low P (LP) on a dry matter basis. Experimental diets were fed twice daily from 3 d in milk (DIM) until 31 DIM. Intake and milk yield were recorded daily. Milk samples were collected on d 28, 29, and 30 postpartum for components analyses. Blood samples were drawn 10 d before expected calving, at calving, and at 15 and 30 DIM for serum analyses of osteocalcin, a biomarker of bone accretion, and pyridinoline, a biomarker of bone resorption. Total fecal collection was conducted when cows in a block averaged 20 DIM. Intake and production traits were not significantly affected by any of the dietary treatments. Cows averaged nearly 21 kg/d dry matter intake and 44 kg/d milk yield from 6 to 31 DIM. There were no significant differences across treatments in body weight or body condition score loss. Phosphorus intake, P fecal output, P digestibility, and P apparent absorption were affected by dietary P content. Calcium intake was higher with HCa, but Ca fecal output, digestibility, and apparent absorption showed an interaction between dietary Ca and dietary P. Calcium fecal output was 100.6 g/d for cows fed HCaHP, intermediate for cows on the HCaLP diet (89 g/d), and similar among cows fed the 2 LCa diets (70 g/d with LCaHP and 75 with LCaLP). There was no significant effect of Ca or P on osteocalcin measurements. Pyridinoline concentrations were affected by dietary Ca levels and tended to have a significant dietary Ca x dietary P interaction. Phosphorus apparent digestibility occurred independently of dietary Ca levels. Results of this study suggest that more bone was mobilized in cows fed LCa diets, but excess dietary P caused greater and prolonged bone mobilization regardless of dietary Ca content.

  11. Long-term trends in nutrient budgets of the western Dutch Wadden Sea (1976-2012)

    NASA Astrophysics Data System (ADS)

    Jung, A. S.; Brinkman, A. G.; Folmer, E. O.; Herman, P. M. J.; van der Veer, H. W.; Philippart, C. J. M.

    2017-09-01

    Long-term field observations of nitrogen [N] and phosphorus [P] concentrations were used to construct nutrient budgets for the western Dutch Wadden Sea between 1976 and 2012. Nutrients come into the western Dutch Wadden Sea via river runoff, through exchange with the coastal zone of the North Sea, neighbouring tidal basins and through atmospheric deposition (for N). The highest concentrations in phosphorus and nitrogen were observed in the mid-1980s. Improved phosphorus removal at waste water treatment plants, management of fertilization in agriculture and removal of phosphates from detergents led to reduced riverine nutrient inputs and, consequently, reduced nutrient concentrations in the Wadden Sea. The budgets suggest that the period of the initial net import of phosphorus and nitrogen switched to a net export in 1981 for nitrogen and in 1992 for phosphorus. Such different behaviour in nutrient budgets during the rise and fall of external nutrient concentrations may be the result of different sediment-water exchange dynamics for P and N. It is hypothesized that during the period of increasing eutrophication (1976-1981) P, and to a lesser degree N, were stored in sediments as organic and inorganic nutrients. In the following period (1981-1992) external nutrient concentrations (especially in the North Sea) decreased, but P concentrations in the Wadden Sea remained high due to prolonged sediment release, whilst denitrification removed substantial amounts of N. From 1992 onwards, P and N budgets were closed by net loss, most probably because P stores were then depleted and denitrification continued. Under the present conditions (lower rates of sediment import and depleted P stores), nutrient concentrations in this area are expected to be more strongly influenced by wind-driven exchange with the North Sea and precipitation-driven discharge from Lake IJssel. This implies that the consequences of climate change will be more important, than during the 1970s and 1980s.

  12. Windrow co-composting of natural casings waste with sheep manure and dead leaves.

    PubMed

    Makan, Abdelhadi

    2015-08-01

    After studying the waste management opportunities in small and medium companies of natural casings, composting has proved more viable and cost effective solution for the valorization of these types of waste, but its feasibility depends on the final product value. This paper investigated a pilot scale program for the windrow co-composting of natural casings waste with sheep manure and dead leaves incorporation. Processing, characterization and application of the final compost were described and the final compost was analyzed for pathogens, metals, nutrients, maturity, and agronomic parameters. The results showed that all test result levels were below the limits specified in the EPA regulations published in Title 40, Section 503, of the Code of Federal Regulations (40 CFR 503). Moreover, the agronomic value tests which include nutrients, organic matter, pH, electrical conductivity, etc. showed that the compost had high organic-matter content and low salt content, all of which indicate good compost characteristics. The ratio of nitrogen (N), phosphorus (P), and potassium (K), or NPK ratio, was measured at 1.6-0.9-0.7. Reported units are consistent with those found on fertilizer formulations. Copyright © 2015 Elsevier Ltd. All rights reserved.

  13. Potential for nutrient recovery and biogas production from blackwater, food waste and greywater in urban source control systems.

    PubMed

    Kjerstadius, H; Haghighatafshar, S; Davidsson, Å

    2015-01-01

    In the last decades, the focus on waste and wastewater treatment systems has shifted towards increased recovery of energy and nutrients. Separation of urban food waste (FW) and domestic wastewaters using source control systems could aid this increase; however, their effect on overall sustainability is unknown. To obtain indicators for sustainability assessments, five urban systems for collection, transport, treatment and nutrient recovery from blackwater, greywater and FW were investigated using data from implementations in Sweden or northern Europe. The systems were evaluated against their potential for biogas production and nutrient recovery by the use of mass balances for organic material, nutrients and metals over the system components. The resulting indicators are presented in units suitable for use in future sustainability studies or life-cycle assessment of urban waste and wastewater systems. The indicators show that source control systems have the potential to increase biogas production by more than 70% compared with a conventional system and give a high recovery of phosphorus and nitrogen as biofertilizer. The total potential increase in gross energy equivalence for source control systems was 20-100%; the greatest increase shown is for vacuum-based systems.

  14. A two-stage DEA approach for environmental efficiency measurement.

    PubMed

    Song, Malin; Wang, Shuhong; Liu, Wei

    2014-05-01

    The slacks-based measure (SBM) model based on the constant returns to scale has achieved some good results in addressing the undesirable outputs, such as waste water and water gas, in measuring environmental efficiency. However, the traditional SBM model cannot deal with the scenario in which desirable outputs are constant. Based on the axiomatic theory of productivity, this paper carries out a systematic research on the SBM model considering undesirable outputs, and further expands the SBM model from the perspective of network analysis. The new model can not only perform efficiency evaluation considering undesirable outputs, but also calculate desirable and undesirable outputs separately. The latter advantage successfully solves the "dependence" problem of outputs, that is, we can not increase the desirable outputs without producing any undesirable outputs. The following illustration shows that the efficiency values obtained by two-stage approach are smaller than those obtained by the traditional SBM model. Our approach provides a more profound analysis on how to improve environmental efficiency of the decision making units.

  15. Brominated flame retardant emissions from the open burning of five plastic wastes and implications for environmental exposure in China.

    PubMed

    Ni, Hong-Gang; Lu, Shao-You; Mo, Ting; Zeng, Hui

    2016-07-01

    Based on the most widely used plastics in China, five plastic wastes were selected for investigation of brominated flame retardant (BFR) emission behaviors during open burning. Considerable variations were observed in the emission factors (EF) of polybrominated diphenyl ethers (PBDEs) and hexabromocyclododecanes (HBCDs) from the combustion of different plastic wastes. Distribution of BFR output mass showed that ΣPBDE was emitted mainly by the airborne particle (51%), followed by residual ash (44%) and the gas phase (5.1%); these values for ΣHBCD were 62%, 24%, and 14%, respectively. A lack of mass balance after the burning of the plastic wastes for some congeners (output/input mass ratios>1) suggested that formation and survival exceeded PBDE decomposition during the burns. However, that was not the case for HBCD. A comparison with literature data showed that the open burning of plastic waste is major source of PBDE compared to regulated combustion activities. Even for state-of-the-art waste incinerators equipped with sophisticated complex air pollution control technologies, BFRs are released on a small scale to the environment. According to our estimate, ΣPBDE release to the air and land from municipal solid waste (MSW) incineration plants in China in 2015 were 105 kg/year and 7124 kg/year. These data for ΣHBCD were 25.5 and 71.7 kg/year, respectively. Considering the fact that a growing number of cities in China are switching to incineration as the preferred method for MSW treatment, our estimate is especially important. This study provides the first data on the environmental exposure of BFRs emitted from MSW incineration in China. Copyright © 2016 Elsevier Ltd. All rights reserved.

  16. Using quantum theory to simplify input-output processes

    NASA Astrophysics Data System (ADS)

    Thompson, Jayne; Garner, Andrew J. P.; Vedral, Vlatko; Gu, Mile

    2017-02-01

    All natural things process and transform information. They receive environmental information as input, and transform it into appropriate output responses. Much of science is dedicated to building models of such systems-algorithmic abstractions of their input-output behavior that allow us to simulate how such systems can behave in the future, conditioned on what has transpired in the past. Here, we show that classical models cannot avoid inefficiency-storing past information that is unnecessary for correct future simulation. We construct quantum models that mitigate this waste, whenever it is physically possible to do so. This suggests that the complexity of general input-output processes depends fundamentally on what sort of information theory we use to describe them.

  17. Influence of climate on landscape characteristics in safety assessments of repositories for radioactive wastes.

    PubMed

    Becker, J K; Lindborg, T; Thorne, M C

    2014-12-01

    In safety assessments of repositories for radioactive wastes, large spatial and temporal scales have to be considered when developing an approach to risk calculations. A wide range of different types of information may be required. Local to the site of interest, temperature and precipitation data may be used to determine the erosional regime (which may also be conditioned by the vegetation characteristics adopted, based both on climatic and other considerations). However, geomorphological changes may be governed by regional rather than local considerations, e.g. alteration of river base levels, river capture and drainage network reorganisation, or the progression of an ice sheet or valley glacier across the site. The regional climate is in turn governed by the global climate. In this work, a commentary is presented on the types of climate models that can be used to develop projections of climate change for use in post-closure radiological impact assessments of geological repositories for radioactive wastes. These models include both Atmosphere-Ocean General Circulation Models and Earth Models of Intermediate Complexity. The relevant outputs available from these models are identified and consideration is given to how these outputs may be used to inform projections of landscape development. Issues of spatial and temporal downscaling of climate model outputs to meet the requirements of local-scale landscape development modelling are also addressed. An example is given of how climate change and landscape development influence the radiological impact of radionuclides potentially released from the deep geological disposal facility for spent nuclear fuel that SKB (the Swedish Nuclear Fuel and Waste Management Company) proposes to construct at Forsmark, Sweden. Copyright © 2014 Elsevier Ltd. All rights reserved.

  18. Calculating the pre-consumer waste footprint: A screening study of 10 selected products.

    PubMed

    Laurenti, Rafael; Moberg, Åsa; Stenmarck, Åsa

    2017-01-01

    Knowledge about the total waste generated by the production of consumer goods can help raise awareness among policy-makers, producers and consumers of the benefits of closing loops in a future circular economy, avoiding unnecessary production and production steps and associated generation of large amounts of waste. In strict life cycle assessment practice, information on waste outputs from intermediate industrial processes of material and energy transformation is translated into and declared as potential environmental impacts, which are often not reported in the final results. In this study, a procedure to extract available intermediate data and perform a systematic pre-consumer waste footprint analysis was developed. The pre-consumer waste footprint concept was tested to analyse 10 generic products, which provided some novel and interesting results for the different product categories and identified a number of challenges that need to be resolved in development of the waste footprint concept. These challenges include standardised data declaration on waste in life cycle assessment, with a separation into waste categories illustrating the implicit environmental and scale of significance of waste types and quantities (e.g. hazardous waste, inert waste, waste for recycling/incineration) and establishment of a common definition of waste throughout sectors and nations.

  19. Sorption of chromium with struvite during phosphorus recovery.

    PubMed

    Rouff, Ashaki A

    2012-11-20

    Struvite (MgNH(4)PO(4)·6H(2)O; MAP) precipitation is a viable means of phosphorus (P) recovery from animal and human wastes. The behavior of metal contaminants such as chromium (Cr) during struvite precipitation, however, requires consideration. Here the influence of both Cr concentration and oxidation state on sorption is assessed. The Cr content of struvite precipitated in the presence of 1-100 μM Cr as Cr(III) (22.3-3030.1 mg/kg) was higher than that of solids from Cr(VI) (4.5-5.1 mg/kg) solutions. For 1-20 μM Cr(III) solids, scanning electron microscopy (SEM) revealed etch pit formation on struvite crystal surfaces, indicative of a surface interaction. The formation of an adsorbate was confirmed by X-ray absorption fine structure spectroscopy (XAFS). At initial concentrations ≥20 μM Cr(III), XAFS confirmed the formation of a Cr(OH)(3)·nH(2)O(am) precipitate. Fourier transform infrared (FT-IR) spectroscopy revealed that both Cr(III) and Cr(VI) sorption resulted in distortion of the PO(4)(3-) tetrahedra in the mineral structure. This, combined with SEM results revealed that even at low sorbed concentrations, the Cr impurity can affect the mineral surface and structure. Thus, the initial Cr concentration and oxidation state in wastes targeted for P recovery will dictate the final Cr content, the mechanism of sorption, and impact on the struvite structure.

  20. Recycling slaughterhouse waste into fertilizer: how do pyrolysis temperature and biomass additions affect phosphorus availability and chemistry?

    PubMed

    Zwetsloot, Marie J; Lehmann, Johannes; Solomon, Dawit

    2015-01-01

    Pyrolysis of slaughterhouse waste could promote more sustainable phosphorus (P) usage through the development of alternative P fertilizers. This study investigated how pyrolysis temperature (220, 350, 550 and 750 °C), rendering before pyrolysis, and wood or corn biomass additions affect P chemistry in bone char, plant availability, and its potential as P fertilizer. Linear combination fitting of synchrotron-based X-ray absorption near edge structure spectra demonstrated that higher pyrolysis temperatures decreased the fit with organic P references, but increased the fit with a hydroxyapatite (HA) reference, used as an indicator of high calcium phosphate (CaP) crystallinity. The fit to the HA reference increased from 0% to 69% in bone with meat residue and from 20% to 95% in rendered bone. Biomass additions to the bone with meat residue reduced the fit to the HA reference by 83% for wood and 95% for corn, and additions to rendered bone by 37% for wood. No detectable aromatic P forms were generated by pyrolysis. High CaP crystallinity was correlated with low water-extractable P, but high formic acid-extractable P indicative of high plant availability. Bone char supplied available P which was only 24% lower than Triple Superphosphate fertilizer and two- to five-fold higher than rock phosphate. Pyrolysis temperature and biomass additions can be used to design P fertilizer characteristics of bone char through changing CaP crystallinity that optimize P availability to plants. © 2014 Society of Chemical Industry.

  1. Nutrients recovery from anaerobic digestate of agro-waste: Techno-economic assessment of full scale applications.

    PubMed

    Bolzonella, D; Fatone, F; Gottardo, M; Frison, N

    2018-06-15

    The sustainable production of fertilizers, especially those based on phosphorus, will be one of the challenges of this century. Organic wastes produced by the agriculture, urban and industrial sectors are rich in nutrients which can be conveniently recovered and used as fertilizers. In this study five full scale systems for the recovery of nutrients from anaerobic digestate produced in farm-scale plants were studied. Monitored technologies were: drying with acidic recovery, stripping with acidic recovery and membrane separation. Results showed good performances in terms of nutrients recovery with average yields always over 50% for both nitrogen and phosphorus. The techno-economic assessment showed how the specificity of the monitored systems played a major role: in particular, membranes were able to produce a stream of virtually pure water (up to 50% of the treated digestate) reducing the digestate volume, while drying, because of the limitation on recoverable heat, could treat only a limited portion (lower than 50%) of produced digestate while stripping suffered some problems because of the presence of suspended solids in the liquid fraction treated. Specific capital and operational costs for the three systems were comparable ranging between 5.40 and 6.97 € per m 3 of digestate treated and followed the order stripping > drying > membranes. Costs determined in this study were similar to those observed in other European experiences reported in literature. Copyright © 2017 Elsevier Ltd. All rights reserved.

  2. The Impact of Input and Output Prices on The Household Economic Behavior of Rice-Livestock Integrated Farming System (Rlifs) and Non Rlifs Farmers

    NASA Astrophysics Data System (ADS)

    Lindawati, L.; Kusnadi, N.; Kuntjoro, S. U.; Swastika, D. K. S.

    2018-02-01

    Integrated farming system is a system that emphasized linkages and synergism of farming units waste utilization. The objective of the study was to analyze the impact of input and output prices on both Rice Livestock Integrated Farming System (RLIFS) and non RLIFS farmers. The study used econometric model in the form of a simultaneous equations system consisted of 36 equations (18 behavior and 18 identity equations). The impact of changes in some variables was obtained through simulation of input and output prices on simultaneous equations. The results showed that the price increasing of the seed, SP-36, urea, medication/vitamins, manure, bran, straw had negative impact on production of the rice, cow, manure, bran, straw and household income. The decrease in the rice and cow production, production input usage, allocation of family labor, rice and cow business income was greater in RLIFS than non RLIFS farmers. The impact of rising rice and cow cattle prices in the two groups of farmers was not too much different because (1) farming waste wasn’t used effectively (2) manure and straw had small proportion of production costs. The increase of input and output price didn’t have impact on production costs and household expenditures on RLIFS.

  3. Catchment Models and Management Tools for diffuse Contaminants (Sediment, Phosphorus and Pesticides): DIFFUSE Project

    NASA Astrophysics Data System (ADS)

    Mockler, Eva; Reaney, Simeon; Mellander, Per-Erik; Wade, Andrew; Collins, Adrian; Arheimer, Berit; Bruen, Michael

    2017-04-01

    The agricultural sector is the most common suspected source of nutrient pollution in Irish rivers. However, it is also often the most difficult source to characterise due to its predominantly diffuse nature. Particulate phosphorus in surface water and dissolved phosphorus in groundwater are of particular concern in Irish water bodies. Hence the further development of models and indices to assess diffuse sources of contaminants are required for use by the Irish Environmental Protection Agency (EPA) to provide support for river basin planning. Understanding connectivity in the landscape is a vital component of characterising the source-pathway-receptor relationships for water-borne contaminants, and hence is a priority in this research. The DIFFUSE Project will focus on connectivity modelling and incorporation of connectivity into sediment, nutrient and pesticide risk mapping. The Irish approach to understanding and managing natural water bodies has developed substantially in recent years assisted by outputs from multiple research projects, including modelling and analysis tools developed during the Pathways and CatchmentTools projects. These include the Pollution Impact Potential (PIP) maps, which are an example of research output that is used by the EPA to support catchment management. The PIP maps integrate an understanding of the pollution pressures and mobilisation pathways and, using the source-pathways-receptor model, provide a scientific basis for evaluation of mitigation measures. These maps indicate the potential risk posed by nitrate and phosphate from diffuse agricultural sources to surface and groundwater receptors and delineate critical source areas (CSAs) as a means of facilitating the targeting of mitigation measures. Building on this previous research, the DIFFUSE Project will develop revised and new catchment managements tools focused on connectivity, sediment, phosphorus and pesticides. The DIFFUSE project will strive to identify the state-of-the-art methods and models that are most applicable to Irish conditions and management challenges. All styles of modelling considered useful for water resources management are relevant to this project and a balance of technical sophistication, data availability and operational practicalities is the ultimate goal. Achievement of this objective will be measured by comparing the performance of the new models developed in the project with models used in other countries. The models and tools developed in the course of the project will be evaluated by comparison with Irish catchment data and with other state-of-the-art models in a model-inter-comparison workshop which will be open to other models and the wider research community.

  4. Effect of organic acids production and bacterial community on the possible mechanism of phosphorus solubilization during composting with enriched phosphate-solubilizing bacteria inoculation.

    PubMed

    Wei, Yuquan; Zhao, Yue; Shi, Mingzi; Cao, Zhenyu; Lu, Qian; Yang, Tianxue; Fan, Yuying; Wei, Zimin

    2018-01-01

    Enriched phosphate-solubilizing bacteria (PSB) agent were acquired by domesticated cultivation, and inoculated into kitchen waste composting in different stages. The effect of different treatments on organic acids production, tricalcium phosphate (TCP) solubilization and their relationship with bacterial community were investigated during composting. Our results pointed out that inoculation affected pH, total acidity and the production of oxalic, lactic, citric, succinic, acetic and formic acids. We also found a strong advantage in the solubilization of TCP and phosphorus (P) availability for PSB inoculation especially in the cooling stage. Redundancy analysis and structural equation models demonstrated inoculation by different methods changed the correlation of the bacterial community composition with P fractions as well as organic acids, and strengthened the cooperative function related to P transformation among species during composting. Finally, we proposed a possible mechanism of P solubilization with enriched PSB inoculation, which was induced by bacterial community and organic acids production. Copyright © 2017 Elsevier Ltd. All rights reserved.

  5. Effects of glucose on the performance of enhanced biological phosphorus removal activated sludge enriched with acetate.

    PubMed

    Gebremariam, Seyoum Yami; Beutel, Marc W; Christian, David; Hess, Thomas F

    2012-10-01

    The effects of glucose on enhanced biological phosphorus removal (EBPR) activated sludge enriched with acetate was investigated using sequencing batch reactors. A glucose/acetate mixture was serially added to the test reactor in ratios of 25/75%, 50/50%, and 75/25% and the EBPR activity was compared to the control reactor fed with 100% acetate. P removal increased at a statistically significant level to a near-complete in the test reactor when the mixture increased to 50/50%. However, EBPR deteriorated when the glucose/acetate mixture increased to 75/25% in the test reactor and when the control reactor abruptly switched to 100% glucose. These results, in contrast to the EBPR conventional wisdom, suggest that the addition of glucose at moderate levels in wastewaters does not impede and may enhance EBPR, and that glucose waste products should be explored as an economical sustainable alternative when COD enhancement of EBPR is needed. Copyright © 2012 Elsevier Ltd. All rights reserved.

  6. An optimized regulating method for composting phosphorus fractions transformation based on biochar addition and phosphate-solubilizing bacteria inoculation.

    PubMed

    Wei, Yuquan; Zhao, Yue; Wang, Huan; Lu, Qian; Cao, Zhenyu; Cui, Hongyang; Zhu, Longji; Wei, Zimin

    2016-12-01

    The study was conducted to investigate the influence of biochar and/or phosphate-solubilizing bacteria (PSB) inoculants on microbial biomass, bacterial community composition and phosphorus (P) fractions during kitchen waste composting amended with rock phosphate (RP). There were distinct differences in the physic-chemical parameters, the proportion of P fractions and bacterial diversity in different treatments. The contribution of available P fractions increased during composting especially in the treatment with the addition of PSB and biochar. Redundancy analysis showed that bacterial compositions were significantly influenced by P content, inoculation and biochar. Variance partitioning further showed that synergy of inoculated PSB and indigenous bacterial communities and the joint effect between biochar and bacteria explained the largest two proportion of the variation in P fractions. Therefore, the combined application of PSB and biochar to improve the inoculation effect and an optimized regulating method were suggested based on the distribution of P fractions. Copyright © 2016 Elsevier Ltd. All rights reserved.

  7. Leaching behavior of total organic carbon, nitrogen, and phosphorus from banana peel.

    PubMed

    Jiang, Ruixue; Sun, Shujuan; Xu, Yan; Qiu, Xiudong; Yang, Jili; Li, Xiaochen

    2015-01-01

    The leaching behavior of organic carbon and nutrient compounds from banana peel (BP) was investigated in batch assays with respect to particle size, contact time, pH value, and temperature. The granularity, contact time, pH, and temperature caused no significant effects on the leaching of total phosphorus (TP) from the BP. The maximum leached total nitrogen (TN) content was found at pH 5.0 and 90 minutes, while no significant effects were caused by the granularity and temperature. The maximum leached total organic carbon (TOC) content was found by using a powder of 40 mesh, 150 minutes and at pH 6.0, while the temperature had no effect on the TOC leaching. The proportions of the TN, TP, and TOC contents leached from the dried BP ranged from 33.6% to 40.9%, 60.4% to 72.7%, and 8.2% to 9.9%, respectively, indicating that BP could be a potential pollution source for surface and ground water if discharged as domestic waste or reutilized without pretreatment.

  8. Stewardship to tackle global phosphorus inefficiency: The case of Europe.

    PubMed

    Withers, Paul J A; van Dijk, Kimo C; Neset, Tina-Simone S; Nesme, Thomas; Oenema, Oene; Rubæk, Gitte H; Schoumans, Oscar F; Smit, Bert; Pellerin, Sylvain

    2015-03-01

    The inefficient use of phosphorus (P) in the food chain is a threat to the global aquatic environment and the health and well-being of citizens, and it is depleting an essential finite natural resource critical for future food security and ecosystem function. We outline a strategic framework of 5R stewardship (Re-align P inputs, Reduce P losses, Recycle P in bioresources, Recover P in wastes, and Redefine P in food systems) to help identify and deliver a range of integrated, cost-effective, and feasible technological innovations to improve P use efficiency in society and reduce Europe's dependence on P imports. Their combined adoption facilitated by interactive policies, co-operation between upstream and downstream stakeholders (researchers, investors, producers, distributors, and consumers), and more harmonized approaches to P accounting would maximize the resource and environmental benefits and help deliver a more competitive, circular, and sustainable European economy. The case of Europe provides a blueprint for global P stewardship.

  9. Seasonal changes in chemical and mineralogical composition of sewage sludge incineration residues and their potential for metallic elements and valuable components recovery

    NASA Astrophysics Data System (ADS)

    Kasina, Monika; Kowalski, Piotr R.; Michalik, Marek

    2017-04-01

    Increasing energy needs, the implementation of the circular economy principles and rising environmental awareness caused that waste management is becoming a major social and economic issue. The EU Member States have committed to a significant reduction in the amount of waste produced and landfilled and to use their inherent energy and raw materials potential. One of the most reasonable option to fulfil these commitments is waste incineration. The aim of the waste incineration is to reduce their volume and toxicity by disinfection and detoxification at high temperatures. Thermal process and reduction of volume allows the recovery of minerals and metallic elements from residues as well as the energy production (waste-to-energy strategy) during incineration. As a result of waste incineration a variety of solid residues (bottom ash, fly ash, air pollution control residues) and technological waste (gas waste, wastewater) are produced. The goal of this study is to characterize fly ash and air pollution control (APC) residues formed as a result of municipal sewage sludge incineration in terms of their chemical and mineral composition and their extractive potential. Residues were sampled quarterly to study their seasonal changes in composition. The fly ash was a Si-P-C-Fe-Al dominated material, whereas the APC residues composition was dominated by Na-rich soluble phases. The removal of soluble phase ( 98% of the material) from the APC residues by dissolution in deionised water caused significant mass reduction and concentration of non-soluble elements. The main mineral phases in fly ash were quartz, hematite, Fe-PO4, whitlockite and feldspar, while in APC thenardite, and in lower amount calcite, apatite and quartz were present. The chemical composition of fly ash was practically invariable in different seasons, but significant differences were observed in APC residues. The lowest concentrations of all elements and the highest TOC content were measured in the samples collected in the spring 2016. The highest concentrations for most of the elements were measured in summer 2016 except for the Ca, Sn, Zn, Cd, Sb, and Ag which concentrations were the highest in the winter time 2015. Even though the seasonal changes in metallic and/or potentially valuable elements concentrations are visible their overall content is low. In addition they are dispersed within crystalline and amorphous phase, therefore it seems to be inappropriate to consider this material as a source of valuable elements. Due to high phosphorus content in the fly ash, equal to the low grade phosphorus ore, both in the form of phosphate minerals as well as dispersed within minerals can be treated as a potential source of this critical raw material. Acknowledgment: The study was supported by Polish National Science Centre. NCN grant No UMO-2014/15/B/ST10/04171

  10. Simulation of dissolved nutrient export from the Dongjiang river basin with a grid-based NEWS model

    NASA Astrophysics Data System (ADS)

    Rong, Qiangqiang; Su, Meirong; Yang, Zhifeng; Cai, Yanpeng; Yue, Wencong; Dang, Zhi

    2018-06-01

    In this research, a grid-based NEWS model was proposed through coupling the geographic information system (GIS) with the Global NEWS model framework. The model was then applied to the Dongjiang River basin to simulate the dissolved nutrient export from this area. The model results showed that the total amounts of the dissolved nitrogen and phosphorus exported from the Dongjiang River basin were approximately 27154.87 and 1389.33 t, respectively. 90 % of the two loads were inorganic forms (i.e. dissolved inorganic nitrogen and phosphorus, DIN and DIP). Also, the nutrient export loads did not evenly distributed in the basin. The main stream watershed of the Dongjiang River basin has the largest DIN and DIP export loads, while the largest dissolved organic nitrogen and phosphorus (DON and DOP) loads were observed in the middle and upper stream watersheds of the basin, respectively. As for the nutrient exported from each subbasin, different sources had different influences on the output of each nutrient form. For the DIN load in each subbasin, fertilization application, atmospheric deposition and biological fixation were the three main contributors, while eluviation was the most important source for DON. In terms of DIP load, fertilizer application and breeding wastewater were the main contributors, while eluviation and fertilizer application were the two main sources for DOP.

  11. Development of Thermophysical Hydrocarbon Wastes Pyrolysis Model (in the Case of Wood)

    NASA Astrophysics Data System (ADS)

    Shantarin, V. D.; Zemenkova, M. Yu; Zemenkov, Yu D.

    2016-10-01

    The article is devoted to solving environmental problems in the operation in oil and gas industry objects. Reduction of environmental damage by pollution with hydrocarbons can be achieved by disposing oil-contaminated hydrocarbon wastes, using high-temperature pyrolysis process. Authors proposed a recycling method by which in the output there generates the maximum amount of syngas, which, in its turn, is an expensive resource

  12. [Industrial waste as indicator of population size: possible utilization in mountain resort tourist stations?].

    PubMed

    Olive, F; Rey, S; Zmirou, D

    1998-09-01

    Epidemiological studies, conducted in touristic resorts, often face the difficulty of assessing the size of the referent population. Recently, some population size indicators, have been tested. Among them, the amount of municipal waste seems to be easy and readily accessible. The purpose of the study is to describe how this indicator can be used in touristic mountain resorts. Four touristic resorts were chosen in Isère departement (France): Alpe d'Huez, Deux Alpes, Chamrousse, plateau du Vercors. The evolution of municipal waste over several years was used to compute an individual output level for residents and for tourists. This waste indicator was compared with data on tourists reservations in hotels in the resorts. We found a good fit during touristic seasons in three resorts (Spearman test). For the last one (Chamrousse), the correlation rate was low. We think that the type of tourism is different in this resort with many non residents. This indicator is reliable but needs further validation by sample surveys across several sites and several types of lodging. We propose to estimate the size of the referent population, based on an individual output of 1 kg per person and per day for residents and 0.5 kg per person per day for tourists.

  13. Model input and output files for the simulation of time of arrival of landfill leachate at the water table, Municipal Solid Waste Landfill Facility, U.S. Army Air Defense Artillery Center and Fort Bliss, El Paso County, Texas

    USGS Publications Warehouse

    Abeyta, Cynthia G.; Frenzel, Peter F.

    1999-01-01

    This report contains listings of model input and output files for the simulation of the time of arrival of landfill leachate at the water table from the Municipal Solid Waste Landfill Facility (MSWLF), about 10 miles northeast of downtown El Paso, Texas. This simulation was done by the U.S. Geological Survey in cooperation with the U.S. Department of the Army, U.S. Army Air Defense Artillery Center and Fort Bliss, El Paso, Texas. The U.S. Environmental Protection Agency-developed Hydrologic Evaluation of Landfill Performance (HELP) and Multimedia Exposure Assessment (MULTIMED) computer models were used to simulate the production of leachate by a landfill and transport of landfill leachate to the water table. Model input data files used with and output files generated by the HELP and MULTIMED models are provided in ASCII format on a 3.5-inch 1.44-megabyte IBM-PC compatible floppy disk.

  14. Comparison of high-solids to liquid anaerobic co-digestion of food waste and green waste.

    PubMed

    Chen, Xiang; Yan, Wei; Sheng, Kuichuan; Sanati, Mehri

    2014-02-01

    Co-digestion of food waste and green waste was conducted with six feedstock mixing ratios to evaluate biogas production. Increasing the food waste percentage in the feedstock resulted in an increased methane yield, while shorter retention time was achieved by increasing the green waste percentage. Food waste/green waste ratio of 40:60 was determined as preferred ratio for optimal biogas production. About 90% of methane yield was obtained after 24.5 days of digestion, with total methane yield of 272.1 mL/g VS. Based the preferred ratio, effect of total solids (TS) content on co-digestion of food waste and green waste was evaluated over a TS range of 5-25%. Results showed that methane yields from high-solids anaerobic digestion (15-20% TS) were higher than the output of liquid anaerobic digestion (5-10% TS), while methanogenesis was inhibited by further increasing the TS content to 25%. The inhibition may be caused by organic overloading and excess ammonia. Copyright © 2013 Elsevier Ltd. All rights reserved.

  15. Management of marine cage aquaculture. Environmental carrying capacity method based on dry feed conversion rate.

    PubMed

    Cai, Huiwen; Sun, Yinglan

    2007-11-01

    Marine cage aquaculture produces a large amount of waste that is released directly into the environment. To effectively manage the mariculture environment, it is important to determine the carrying capacity of an aquaculture area. In many Asian countries trash fish is dominantly used in marine cage aquaculture, which contains more water than pellet feed. The traditional nutrient loading analysis is for pellet feed not for trash fish feed. So, a more critical analysis is necessary in trash fish feed culturing areas. Corresponding to FCR (feed conversion rate), dry feed conversion rate (DFCR) was used to analyze the nutrient loadings from marine cage aquaculture where trash fish is used. Based on the hydrodynamic model and the mass transport model in Xiangshan Harbor, the relationship between the water quality and the waste discharged from cage aquaculture has been determined. The environmental carrying capacity of the aquaculture sea area was calculated by applying the models noted above. Nitrogen and phosphorus are the water quality parameters considered in this study. The simulated results show that the maximum nitrogen and phosphorus concentrations were 0.216 mg/L and 0.039 mg/L, respectively. In most of the sea area, the nutrient concentrations were higher than the water quality standard. The calculated environmental carrying capacity of nitrogen and phosphorus in Xiangshan Harbor were 1,107.37 t/yr and 134.35 t/yr, respectively. The waste generated from cage culturing in 2000 has already exceeded the environmental carrying capacity. Unconsumed feed has been identified as the most important origin of all pollutants in cage culturing systems. It suggests the importance of increasing the feed utilization and improving the feed composition on the basis of nutrient requirement. For the sustainable development of the aquaculture industry, it is an effective management measure to keep the stocking density and pollution loadings below the environmental carrying capacity. The DFCR-based nutrient loadings analysis indicates, in trash fish feed culturing areas, that it is more critical and has been proved to be a valuable loading calculation method. The modeling approach for Xiangshan Harbor presented in this paper is a cost-effective method for assessing the environmental impact and determining the capacity. Carrying capacity information can give scientific suggestions for the sustainable management of aquaculture environments. It has been proved that numerical models were convenient tools to predict the environmental carrying capacity. The development of models coupled with dynamic and aquaculture ecology is a requirement of further research. Such models can also be useful in monitoring the ecological impacts caused by mariculture activities.

  16. 30 CFR 206.460 - Transportation allowances-general.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... washing allowance and the transportation allowance reduce the value for royalty purposes to zero. (c)(1... quantity of clean coal output and the rejected waste material. The transportation allowance shall be...

  17. Effects of soda-lime-silica waste glass on mullite formation kinetics and micro-structures development in vitreous ceramics.

    PubMed

    Marinoni, Nicoletta; D'Alessio, Daniela; Diella, Valeria; Pavese, Alessandro; Francescon, Ferdinando

    2013-07-30

    The effects of soda-lime waste glass, from the recovery of bottle glass cullet, in partial replacement of Na-feldspar for sanitary-ware ceramic production are discussed. Attention is paid to the mullite growth kinetics and to the macroscopic properties of the final output, the latter ones depending on the developed micro-structures and vitrification grade. Measurements have been performed by in situ high temperature X-ray powder diffraction, scanning electron microscopy, thermal dilatometry, water absorption and mechanical testing. Glass substituting feldspar from 30 to 50 wt% allows one (i) to accelerate the mullite growth reaction kinetics, and (ii) to achieve macroscopic features of the ceramic output that comply with the latest technical requirements. The introduction of waste glass leads to (i) a general saving of fuel and reduction of the CO2-emissions during the firing stage, (ii) a preservation of mineral resources in terms of feldspars, and (iii) an efficient management of the bottle glass refuse by readdressing a part of it in the sanitary-ware manufacturing. Copyright © 2013 Elsevier Ltd. All rights reserved.

  18. Transesterification of waste vegetable oil under pulse sonication using ethanol, methanol and ethanol-methanol mixtures.

    PubMed

    Martinez-Guerra, Edith; Gude, Veera Gnaneswar

    2014-12-01

    This study reports on the effects of direct pulse sonication and the type of alcohol (methanol and ethanol) on the transesterification reaction of waste vegetable oil without any external heating or mechanical mixing. Biodiesel yields and optimum process conditions for the transesterification reaction involving ethanol, methanol, and ethanol-methanol mixtures were evaluated. The effects of ultrasonic power densities (by varying sample volumes), power output rates (in W), and ultrasonic intensities (by varying the reactor size) were studied for transesterification reaction with ethanol, methanol and ethanol-methanol (50%-50%) mixtures. The optimum process conditions for ethanol or methanol based transesterification reaction of waste vegetable oil were determined as: 9:1 alcohol to oil ratio, 1% wt. catalyst amount, 1-2 min reaction time at a power output rate between 75 and 150 W. It was shown that the transesterification reactions using ethanol-methanol mixtures resulted in biodiesel yields as high as >99% at lower power density and ultrasound intensity when compared to ethanol or methanol based transesterification reactions. Copyright © 2014 Elsevier Ltd. All rights reserved.

  19. Environmental impact of emissions from incineration plants in comparison to typical heating systems

    NASA Astrophysics Data System (ADS)

    Wielgosiński, Grzegorz; Namiecińska, Olga; Czerwińska, Justyna

    2018-01-01

    In recent years, five modern municipal waste incineration plants have been built in Poland. Next ones are being constructed and at the same time building of several others is being considered. Despite positive experience with the operation of the existing installations, each project of building a new incinerator raises a lot of emotions and social protests. The main argument against construction of an incineration plant is the emission of pollutants. The work compares emissions from municipal waste incineration plants with those from typical heating plants: in the first part, for comparison large heating plants equipped with pulverized coal-fired boilers (OP-140), stoker-fired boilers (three OR-32 boilers) or gas blocks with heat output of about 100 MW have been selected, while the second part compares WR-10 and WR-25 stoker-fired boilers most popular in our heating industry with thermal treatment systems for municipal waste or refuse-derived-fuel (RDF) with similar heat output. Both absolute emission and impact - immission of pollutants in vicinity of the plant were analyzed.

  20. Long-term trends of phosphorus concentrations in an artificial lake: Socio-economic and climate drivers.

    PubMed

    Vystavna, Yuliya; Hejzlar, Josef; Kopáček, Jiří

    2017-01-01

    European freshwater ecosystems have undergone significant human-induced and environmentally-driven variations in nutrient export from catchments throughout the past five decades, mainly in connection with changes in land-use, agricultural practice, waste water production and treatment, and climatic conditions. We analysed the relations among concentration of total phosphorus (TP) in the Slapy Reservoir (a middle reservoir of the Vltava River Cascade, Czechia), and socio-economic and climatic factors from 1963 to 2015. The study was based on a time series analysis, using conventional statistical tools, and the identification of breaking points, using a segmented regression. Results indicated clear long-term trends and seasonal patterns of TP, with annual average TP increasing up until 1991 and decreasing from 1992 to 2015. Trends in annual, winter and spring average TP concentrations reflected a shift in development of sewerage and sanitary infrastructure, agricultural application of fertilizers, and livestock production in the early 1990s that was associated with changes from the planned to the market economy. No trends were observed for average TP in autumn. The summer average TP has fluctuated with increased amplitude since 1991 in connection with recent climate warming, changes in thermal stratification stability, increased water flow irregularities, and short-circuiting of TP-rich inflow during high flow events. The climate-change-induced processes confound the generally declining trend in lake-water TP concentration and can result in eutrophication despite decreased phosphorus loads from the catchment. Our findings indicate the need of further reduction of phosphorus sources to meet ecological quality standards of the EU Water Framework Directive because the climate change may lead to a greater susceptibility of the aquatic ecosystem to the supply of nutrients.

  1. Microwave digestion-assisted HFO/biochar adsorption to recover phosphorus from swine manure.

    PubMed

    Zhang, Tao; Xu, Haoyu; Li, Huanhuan; He, Xinyue; Shi, Yuanji; Kruse, Andrea

    2018-04-15

    A sustainable management option for dealing with waste straw is to pyrolyze it to create biochar, which can then be used as a sorbent in pollution treatments, such as the recovery of phosphorus (P) from swine manure. However, the inability to directly capture soluble organic P (OP) and sparingly soluble P and the low selectivity of biochar remain key issues in this process. To overcome these, we investigated a microwave (MW) digestion pretreatment with a HFO/biochar adsorption process. The MW digestion-assisted treatment showed good performance for the solubilization of OP and sparingly soluble P. Optimized conditions (temperature=348K, time=45min, H 2 O 2 =3mL/30mL, HCl=0.13%) achieved an inorganic phosphorus (IP) release ratio of 83.98% and a total phosphorus (TP) release ratio of 91.83%. The P adsorption on the HFO/biochar was confirmed to follow pseudo-second-order kinetics, indicating that the P adsorption process was mainly controlled by chemical processes. The Freundlich model offered the best fit to the experimental data. The maximum amount of P adsorbed on HFO/biochar was in the range of 51.71-56.15mg/g. Thermodynamic calculations showed that the P adsorption process was exothermic, spontaneous, and increased the disorder in the system. Saturated adsorbed HFO/biochar was able to continually release P and was most suitable for use in an alkaline soil. The amount of P released from saturated adsorbed HFO/biochar reached 8.16mg/g after five interval extractions. A P mass balance indicated that 8.76% of the TP was available after the solubilization, capture, and recovery processes. Copyright © 2017 Elsevier B.V. All rights reserved.

  2. Kinetics and capacities of phosphorus sorption to tertiary stage wastewater alum solids, and process implications for achieving low-level phosphorus effluents.

    PubMed

    Maher, Chris; Neethling, J B; Murthy, Sudhir; Pagilla, Krishna

    2015-11-15

    The role of adsorption and/or complexation in removal of reactive or unreactive effluent phosphorus by already formed chemical precipitates or complexes has been investigated. Potential operational efficiency gains resulting from age of chemically precipitated tertiary alum sludge and the recycle of sludge to the process stream was undertaken at the Iowa Hill Water Reclamation Facility which employs the DensaDeg(®) process (IDI, Richmond, VA) for tertiary chemical P removal to achieve a filtered final effluent total phosphorus concentration of <30 μg/L. The effect of sludge solids age was found to be insignificant over the solids retention time (SRT) of 2-8 days, indicating that the solids were unaffected by the aging effects of decreasing porosity and surface acidity. The bulk of solids inventory was retained in the clarifier blanket, providing no advantage in P removal from increased solids inventory at higher SRTs. When solids recycle was redirected from the traditional location of the flocculation reactor to a point just prior to chemical addition in the chemical mixing reactor, lower effluent soluble P concentrations at lower molar doses of aluminum were achieved. At laboratory scale, the "spent" or "waste" chemical alum sludge from P removal showed high capacity and rapid kinetics for P sorption from real wastewater effluents. Saturation concentrations were in the range of 8-29 mg soluble reactive P/g solids. Higher saturation concentrations were found at higher temperatures. Alum sludge produced without a coagulant aid polymer had a much higher capacity for P sorption than polymer containing alum sludge. The adsorption reaction reached equilibrium in less than 10 min with 50% or greater removal within the first minute. Copyright © 2015 Elsevier Ltd. All rights reserved.

  3. Evaluating the performance and intellectual structure of construction and demolition waste research during 2000-2016.

    PubMed

    Liu, Yanli; Sun, Tiantian; Yang, Lie

    2017-08-01

    Construction and demolition (C&D) waste diminishes scarce land resources and endangers human health and the surrounding environment. Quantitative and visualized analysis was conducted to evaluate worldwide scientific research output on C&D waste from 2000 to 2016. The related information of 857 publications was collected from SCI-Expanded database and statistically analyzed. The number of documents about C&D waste presented a general growth during the last 17 years. Construction and Building Materials publication ranked first in the most productive journals. China and Spain acted as dominated roles comparing to other countries, and Hong Kong Polytechnic University was the institution with the largest amount of C&D waste research. Recycled aggregates, sustainable C&D waste management, and the rewarding program and commerce system were the hottest topics during 2000-2016 and in the near future according to the intellectual structure analysis.

  4. [Effects of superphosphate addition on NH3 and greenhouse gas emissions during vegetable waste composting].

    PubMed

    Yang, Yan; Sun, Qin-ping; Li, Ni; Liu, Chun-sheng; Li, Ji-jin; Liu, Ben-sheng; Zou, Guo-yuan

    2015-01-01

    To study the effects of superphosphate (SP) on the NH, and greenhouse gas emissions, vegetable waste composting was performed for 27 days using 6 different treatments. In addition to the controls, five vegetable waste mixtures (0.77 m3 each) were treated with different amounts of the SP additive, namely, 5%, 10%, 15%, 20% and 25%. The ammonia volatilization loss and greenhouse gas emissions were measured during composting. Results indicated that the SP additive significantly decreased the ammonia volatilization and greenhouse gas emissions during vegetable waste composting. The additive reduced the total NH3 emission by 4.0% to 16.7%. The total greenhouse gas emissions (CO2-eq) of all treatments with SP additives were decreased by 10.2% to 20.8%, as compared with the controls. The NH3 emission during vegetable waste composting had the highest contribution to the greenhouse effect caused by the four different gases. The amount of NH3 (CO2-eq) from each treatment ranged from 59.90 kg . t-1 to 81.58 kg . t-1; NH3(CO2-eq) accounted for 69% to 77% of the total emissions from the four gases. Therefore, SP is a cost-effective phosphorus-based fertilizer that can be used as an additive during vegetable waste composting to reduce the NH3 and greenhouse gas emissions as well as to improve the value of compost as a fertilizer.

  5. Comparison of low-cost and engineered materials for phosphorus removal from organic-rich surface water.

    PubMed

    Boyer, Treavor H; Persaud, Amar; Banerjee, Poulomi; Palomino, Pedro

    2011-10-15

    Excess phosphorus (P) in lakes and rivers remains a major water quality problem on a global scale. As a result, new materials and innovative approaches to P remediation are required. Natural materials and waste byproduct materials from industrial processes have the potential to be effective materials for P removal from surface water. Advantages of natural and waste byproduct materials include their low-cost, abundant supply, and minimal preparation, especially compared with engineered materials, such as ion exchange resins and polymeric adsorbents. As a result, natural and waste byproduct materials are commonly referred to as low-cost materials. Despite the potential advantages of low-cost materials, there are critical gaps in knowledge that are preventing their effective use. In particular, there are limited data on the performance of low-cost materials in surface waters that have high concentrations of natural organic matter (NOM), and there are no systematic studies that track the changes in water chemistry following treatment with low-cost materials or compare their performance with engineered materials. Accordingly, the goal of this work was to evaluate and compare the effectiveness of low-cost and engineered materials for P removal from NOM-rich surface water. Seven low-cost materials and three engineered materials were evaluated using jar tests and mini-column experiments. The test water was a surface water that had a total P concentration of 132-250 μg P/L and a total organic carbon concentration of 15-32 mg C/L. Alum sludge, a byproduct of drinking water treatment, and a hybrid anion exchange resin loaded with nanosize iron oxide were the best performing materials in terms of selective P removal in the presence of NOM and minimum undesirable secondary changes to the water chemistry. Copyright © 2011 Elsevier Ltd. All rights reserved.

  6. Nutrient recovery from swine waste and protein biomass production using duckweed ponds (Landoltia punctata): southern Brazil.

    PubMed

    Mohedano, R A; Velho, V F; Costa, R H R; Hofmann, S M; Belli Filho, P

    2012-01-01

    Brazil is one of the most important countries in pork production worldwide, ranking third. This activity has an important role in the national economic scenario. However, the fast growth of this activity has caused major environmental impacts, especially in developing countries. The large amount of nitrogen and phosphorus compounds found in pig manure has caused ecological imbalances, with eutrophication of major river basins in the producing regions. Moreover, much of the pig production in developing countries occurs on small farms, and therefore causes diffuse pollution. Therefore, duckweed pond have been successfully used in the swine waste polishing, generating further a biomass with high protein content. The present study evaluated the efficiency of two full scale duckweed ponds for the polishing of a small pig farm effluent, biomass yield and crude protein (CP) content. Duckweed pond series received the effluent from a biodigester-storage pond, with a flow rate of 1 m(3)/day (chemical oxygen demand rate = 186 kg/ha day) produced by 300 animals. After 1 year a great improvement of effluent quality was observed, with removal of 96% of total Kjeldahl nitrogen (TKN) and 89% of total phosphorus (TP), on average. Nitrogen removal rate is one of the highest ever found (4.4 g TKN/m(2) day). Also, the dissolved oxygen rose from 0.0 to 3.0 mg/L. The two ponds produced together over 13 tons of fresh biomass (90.5% moisture), with 35% of CP content, which represents a productivity of 24 tonsCP/ha year. Due to the high rate of nutrient removal, and also the high protein biomass production, duckweed ponds revealed, under the presented conditions, a great potential for the polishing and valorization of swine waste. Nevertheless, this technology should be better exploited to improve the sustainability of small pig farms in order to minimize the impacts of this activity on the environment.

  7. Food, Feed, or Fuel? Phosphorus Flows Embodied in US Agricultural Production and Trade

    NASA Astrophysics Data System (ADS)

    MacDonald, G.; Bennett, E.; Carpenter, S.

    2012-12-01

    Agricultural phosphorus (P) use is integral to sustainable food production and water quality regulation. Globalization of agricultural systems, changing diets, and increasing biofuel production pose new challenges for managing non-renewable P reserves, particularly in key agricultural producing regions such as the US. We used a detailed model of the US agricultural system to assess the quantity of mineral P fertilizers used to produce food crops, livestock, and biofuels relative to the P ultimately consumed in domestic diets. We also quantified linkages in fertilizer use between the US and its trading partners globally via agricultural trade. Feed and livestock production drove by far the largest demand for P fertilizers in the US (56% of all P use for domestic and imported products). Of the total mineral P inputs to US domestic agriculture in 2007 (1905 Gg P), 28% were retained in agricultural soils as surplus P, 40% were lost through processing and waste prior to consumption in human diets, while 10% were diverted directly to biofuel production. One quarter of P fertilizer in the US was required to produce exports, particularly major food and feed crops (corn, soybean, and wheat) that drove a large net P flux out of the country (338 Gg P) with strongly crop-specific effects on soil P imbalances nationally. However, US meat consumption involved considerable reliance on P fertilizer use in other countries to produce red meat imports linked primarily to soil P surpluses abroad. We show that changes in domestic farm management and consumer waste could together reduce the P fertilizer needed to produce food consumed in the US by half, which is comparable to the P fertilizer reduction attainable by cutting domestic meat consumption (44%). More effective distribution of P use for major crops nationally and greater recycling of all agricultural wastes is critical to using US phosphate rock reserves as efficiently as possible while maintaining export-oriented agriculture.

  8. Low-carbon building assessment and multi-scale input-output analysis

    NASA Astrophysics Data System (ADS)

    Chen, G. Q.; Chen, H.; Chen, Z. M.; Zhang, Bo; Shao, L.; Guo, S.; Zhou, S. Y.; Jiang, M. M.

    2011-01-01

    Presented as a low-carbon building evaluation framework in this paper are detailed carbon emission account procedures for the life cycle of buildings in terms of nine stages as building construction, fitment, outdoor facility construction, transportation, operation, waste treatment, property management, demolition, and disposal for buildings, supported by integrated carbon intensity databases based on multi-scale input-output analysis, essential for low-carbon planning, procurement and supply chain design, and logistics management.

  9. Phytate degradation by fungi and bacteria that inhabit sawdust and coffee residue composts.

    PubMed

    Fathallh Eida, Mohamed; Nagaoka, Toshinori; Wasaki, Jun; Kouno, Kenji

    2013-01-01

    Phytate is the primary source of organic phosphorus, but it cannot be directly utilized by plants and is strongly adsorbed by the soil, reducing bioavailability. Composting is a process used to improve the bioavailability of phytate in organic wastes through degradation by microorganisms. In this study, we aimed to investigate the phytate-degrading ability of fungi and bacteria that inhabit sawdust compost and coffee residue compost, and their contribution to the composting process. In the plate assay, the fungi that formed clear zones around their colonies belonged to the genera Mucor, Penicillium, Galactomyces, Coniochaeta, Aspergillus, and Fusarium, while the bacteria belonged to the genera Pseudomonas, Enterobacter, Chitinophaga, and Rahnella. Eight fungal isolates (genera Mucor, Penicillium, Galactomyces, and Coniochaeta) and four bacterial isolates (genera Pseudomonas, Enterobacter, and Rahnella) were selected to evaluate phytase activity in their liquid culture and their ability to degrade phytate in organic materials composed of mushroom media residue and rice bran. The selected fungi degraded phytate in organic materials to varying degrees. Penicillium isolates showed the highest degradation ability and Coniochaeta isolate exhibited relatively high degradation ability. The clear zone diameters of these fungal isolates displayed significantly positive and negative correlations with inorganic and phytate phosphorus contents in the organic materials after incubation, respectively; however, none of the selected bacteria reduced phytate phosphorus in organic materials. It is therefore possible that fungi are major contributors to phytate degradation during composting.

  10. Expression of an Aspergillus niger Phytase Gene (phyA) in Saccharomyces cerevisiae

    PubMed Central

    Han, Yanming; Wilson, David B.; Lei, Xin gen

    1999-01-01

    Phytase improves the bioavailability of phytate phosphorus in plant foods to humans and animals and reduces phosphorus pollution of animal waste. Our objectives were to express an Aspergillus niger phytase gene (phyA) in Saccharomyces cerevisiae and to determine the effects of glycosylation on the phytase’s activity and thermostability. A 1.4-kb DNA fragment containing the coding region of the phyA gene was inserted into the expression vector pYES2 and was expressed in S. cerevisiae as an active, extracellular phytase. The yield of total extracellular phytase activity was affected by the signal peptide and the medium composition. The expressed phytase had two pH optima (2 to 2.5 and 5 to 5.5) and a temperature optimum between 55 and 60°C, and it cross-reacted with a rabbit polyclonal antibody against the wild-type enzyme. Due to the heavy glycosylation, the expressed phytase had a molecular size of approximately 120 kDa and appeared to be more thermostable than the commercial enzyme. Deglycosylation of the phytase resulted in losses of 9% of its activity and 40% of its thermostability. The recombinant phytase was effective in hydrolyzing phytate phosphorus from corn or soybean meal in vitro. In conclusion, the phyA gene was expressed as an active, extracellular phytase in S. cerevisiae, and its thermostability was affected by glycosylation. PMID:10223979

  11. Mechanism of Phosphorus Removal from Hanford Tank Sludge by Caustic Leaching

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lumetta, Gregg J.

    Two experiments were conducted to explore the mechanism by which phosphorus is removed from Hanford tank sludge by caustic leaching. In the first experiment, a series of phosphate salts were treated with 3 M NaOH under conditions prototypic of the actual leaching process to be performed in the Waste Treatment and Immobilization Plant (WTP). The phosphates used were aluminum phosphate, bismuth phosphate, chromium(III) phosphate, and β-tri-calcium phosphate; all of these phases have previously been determined to exist in Hanford tank sludge. The leachate solution was sampled at selected time intervals and analyzed for the specific metal ion involved (Al, Bi,more » Ca, or Cr) and for P (total and as phosphate). The solids remaining after completion of the caustic leaching step were analyzed to determine the reaction product. In the second experiment, the dependence of P removal from bismuth phosphate was examined as a function of the hydroxide ion concentration. It was anticipated that a plot of log[phosphate] versus log[hydroxide] would provide insight into the phosphorus-removal mechanism. This report describes the test activities outlined in Section 6.3.2.1, Preliminary Investigation of Phosphate Dissolution, in Test Plan TP-RPP-WTP-467, Rev.1. The objectives, success criteria, and test conditions of Section 6.3.2.1 are summarized here.« less

  12. Modification of chemical properties, Cu fractionation and enzymatic activities in an acid vineyard soil amended with winery wastes: A field study.

    PubMed

    Rodríguez-Salgado, Isabel; Pérez-Rodríguez, Paula; Gómez-Armesto, Antía; Díaz-Raviña, Montserrat; Nóvoa-Muñoz, Juan Carlos; Arias-Estévez, Manuel; Fernández-Calviño, David

    2017-11-01

    The effects of adding two winery wastes, perlite waste (PW) and bentonite waste (BW), to an acid vineyard soil were assessed using some chemical and biological soil properties in a field study that lasted 18 months. The addition of PW (up to 81 Mg ha -1 ) had neither significant nor permanent effects on soil characteristics such as the pH, organic matter content or nutrient concentrations, the amounts of copper or zinc, or the electrical conductivity. Moreover, no persistent negative effects were found on the enzymatic activities after PW application. In contrast, soil that was amended with up to 71 Mg BW ha -1 showed increases in its soil pH values, exchangeable potassium and water soluble potassium and phosphorus contents. In addition, it caused significant increases in the electrical conductivity and water-soluble Cu. In addition, the phosphomonoesterase enzymatic activity decreased significantly (up to 28%) in response to the amendment with 71 Mg BW ha -1 . These results showed that adding BW and PW to the soil may be a good agronomic practice for recycling these types of wastes. However, in the case of PW, its use as a soil amendment must be performed with caution to control its possible harmful effects. Copyright © 2017 Elsevier Ltd. All rights reserved.

  13. Changes in Olsen Phosphorus Concentration and Its Response to Phosphorus Balance in Black Soils under Different Long-Term Fertilization Patterns

    PubMed Central

    Zhan, Xiaoying; Zhang, Li; Zhou, Baoku; Zhu, Ping; Zhang, Shuxiang; Xu, Minggang

    2015-01-01

    The Olsen phosphorus (P) concentration of a soil is a key index that can be used to evaluate the P supply capacity of the soil and to estimate the optimal P fertilization rate. A study of the relationship between the soil Olsen P concentration and the P balance (P input minus P output) and their variations among different fertilization patterns will help to provide useful information for proper management of P fertilization. In this paper, the two investigated long-term experiments were established on black soils in the northeast region of China. Six fertilization treatments were selected: (1) unfertilized (CK); (2) nitrogen only (N); (3) nitrogen and potassium (NK); (4) nitrogen and phosphorus (NP); (5) nitrogen, phosphorus, and potassium (NPK); and (6) nitrogen, phosphorus, potassium and manure (NPKM). The results showed that the average Olsen P concentrations in the black soils at Gongzhuling and Harbin (16- and 31-year study periods, respectively), decreased by 0.49 and 0.56 mg kg-1 a-1, respectively, without P addition and increased by 3.17 and 1.78 mg kg-1 a-1, respectively, with P fertilization. The changes in soil Olsen P concentrations were significantly (P<0.05) correlated with the P balances at both sites except for the NP and NPK treatments at Gongzhuling. Under an average deficit of 100 kg ha-1 P, the soil Olsen P concentration at both sites decreased by 1.36~3.35 mg kg-1 in the treatments without P addition and increased by 4.80~16.04 mg kg-1 in the treatments with 100 kg ha-1 of P accumulation. In addition, the changes in Olsen P concentrations in the soil with 100 kg ha-1of P balance were significantly correlated with the P activation coefficient (PAC, percentage of Olsen P to total P, r=0.99, P<0.01) and soil organic matter content (r=0.91, P<0.01). A low pH was related to large changes of Olsen P by 1 kg ha-1 of P balance. These results indicated that soil organic matter and pH have important effects on the change in soil Olsen P by 1 kg ha-1 of P balance. PMID:26177293

  14. Changes in Olsen Phosphorus Concentration and Its Response to Phosphorus Balance in Black Soils under Different Long-Term Fertilization Patterns.

    PubMed

    Zhan, Xiaoying; Zhang, Li; Zhou, Baoku; Zhu, Ping; Zhang, Shuxiang; Xu, Minggang

    2015-01-01

    The Olsen phosphorus (P) concentration of a soil is a key index that can be used to evaluate the P supply capacity of the soil and to estimate the optimal P fertilization rate. A study of the relationship between the soil Olsen P concentration and the P balance (P input minus P output) and their variations among different fertilization patterns will help to provide useful information for proper management of P fertilization. In this paper, the two investigated long-term experiments were established on black soils in the northeast region of China. Six fertilization treatments were selected: (1) unfertilized (CK); (2) nitrogen only (N); (3) nitrogen and potassium (NK); (4) nitrogen and phosphorus (NP); (5) nitrogen, phosphorus, and potassium (NPK); and (6) nitrogen, phosphorus, potassium and manure (NPKM). The results showed that the average Olsen P concentrations in the black soils at Gongzhuling and Harbin (16- and 31-year study periods, respectively), decreased by 0.49 and 0.56 mg kg-1 a-1, respectively, without P addition and increased by 3.17 and 1.78 mg kg-1 a-1, respectively, with P fertilization. The changes in soil Olsen P concentrations were significantly (P<0.05) correlated with the P balances at both sites except for the NP and NPK treatments at Gongzhuling. Under an average deficit of 100 kg ha-1 P, the soil Olsen P concentration at both sites decreased by 1.36~3.35 mg kg-1 in the treatments without P addition and increased by 4.80~16.04 mg kg-1 in the treatments with 100 kg ha-1 of P accumulation. In addition, the changes in Olsen P concentrations in the soil with 100 kg ha-1of P balance were significantly correlated with the P activation coefficient (PAC, percentage of Olsen P to total P, r=0.99, P<0.01) and soil organic matter content (r=0.91, P<0.01). A low pH was related to large changes of Olsen P by 1 kg ha-1 of P balance. These results indicated that soil organic matter and pH have important effects on the change in soil Olsen P by 1 kg ha-1 of P balance.

  15. Estimation of building-related construction and demolition waste in Shanghai.

    PubMed

    Ding, Tao; Xiao, Jianzhuang

    2014-11-01

    One methodology is proposed to estimate the quantification and composition of building-related construction and demolition (C&D) waste in a fast developing region like Shanghai, PR China. The varieties of structure types and building waste intensities due to the requirement of progressive building design and structure codes in different decades are considered in this regional C&D waste estimation study. It is concluded that approximately 13.71 million tons of C&D waste was generated in 2012 in Shanghai, of which more than 80% of this C&D waste was concrete, bricks and blocks. Analysis from this study can be applied to facilitate C&D waste governors and researchers the duty of formulating precise policies and specifications. As a matter of fact, at least a half of the enormous amount of C&D waste could be recycled if implementing proper recycling technologies and measures. The appropriate managements would be economically and environmentally beneficial to Shanghai where the per capita per year output of C&D waste has been as high as 842 kg in 2010. Copyright © 2014 Elsevier Ltd. All rights reserved.

  16. Tertiary Excess of Fibroblast Growth Factor 23 and Hypophosphatemia Following Kidney Transplantation

    PubMed Central

    Seeherunvong, Wacharee; Wolf, Myles

    2010-01-01

    Hypophosphatemia due to inappropriate urinary phosphate wasting is a frequent metabolic complication of the early period following kidney transplantation. Although previously considered to be caused by tertiary hyperparathyroidism, recent evidence suggests a primary role for persistently elevated circulating levels of the phosphorus-regulating hormone, fibroblast growth factors 23 (FGF23). In the setting of a healthy renal allograft, markedly increased FGF23 levels from the dialysis period induce renal phosphate wasting and inhibition of calcitriol production, which contribute to hypophosphatemia. While such tertiary FGF23 excess and resultant hypophosphatemia typically abates within the first few weeks to months post-transplant, some recipients manifest persistent renal phosphate wasting. Furthermore, increased FGF23 levels have been associated with increased risk of kidney disease progression, cardiovascular disease and death outside of the transplant setting. Whether tertiary FGF23 excess is associated with adverse transplant outcomes is unknown. In this article, we review the physiology of FGF23, summarize its relationship with hypophosphatemia after kidney transplantation, and speculate on its potential impact on long term outcomes of renal allograft recipients. PMID:20946192

  17. Concentrations, and estimated loads and yields of nutrients and suspended sediment in the Little River basin, Kentucky, 2003-04

    USGS Publications Warehouse

    Crain, Angela S.

    2006-01-01

    Nutrients, primarily nitrogen and phosphorus compounds, naturally occur but also are applied to land in the form of commercial fertilizers and livestock waste to enhance plant growth. Concentrations, estimated loads and yields, and sources of nitrite plus nitrate, total phosphorus, and orthophosphate were evaluated in streams of the Little River Basin to assist the Commonwealth of Kentucky in developing 'total maximum daily loads' (TMDLs) for streams in the basin. The Little River Basin encompasses about 600 square miles in Christian and Trigg Counties, and a portion of Caldwell County in western Kentucky. Water samples were collected in streams in the Little River Basin during 2003-04 as part of a study conducted in cooperation with the Kentucky Department of Agriculture. A total of 92 water samples were collected at four fixed-network sites from March through November 2003 and from February through November 2004. An additional 20 samples were collected at five synoptic-network sites during the same period. Median concentrations of nitrogen, phosphorus, and suspended sediment varied spatially and seasonally. Concentrations of nitrogen were higher in the spring (March-May) after fertilizer application and runoff. The highest concentration of nitrite plus nitrate-5.7 milligrams per liter (mg/L)-was detected at the South Fork Little River site. The Sinking Fork near Cadiz site had the highest median concentration of nitrite plus nitrate (4.6 mg/L). The North Fork Little River site and the Little River near Cadiz site had higher concentrations of orthophosphate in the fall and lower concentrations in the spring. Concentrations of orthophosphate remained high during the summer (June-August) at the North Fork Little River site possibly because of the contribution of wastewater effluent to streamflow. Fifty-eight percent of the concentrations of total phosphorus at the nine sites exceeded the U.S. Environmental Protection Agency recommended maximum concentration limit of 0.1 mg/L. Concentrations of suspended sediment were highest in the spring during runoff and lowest in the fall. The highest concentration of suspended sediment (1,020 mg/L) was observed at the Sinking Fork near Cadiz site. The median concentration of suspended sediment for all sites sampled was 12 mg/L. A nonparameteric statistical test (Wilcoxson rank-sum) showed that the median concentrations of suspended sediment were not different among any of the fixed-network sites. The Little River near Cadiz site contributed larger estimated mean annual loads of nitrite plus nitrate (2,500,000 pounds per year (lb/yr)) and total phosphorus (160,000 lb/yr) than the other three fixed-network sites. Of the two main upstream tributaries from the Little River near Cadiz site, the North Fork Little River was the greatest contributor of total phosphorus to the study area with an estimated mean annual load of 107,000 lb/yr or about 64 percent of the total estimated mean annual load at the Little River near Cadiz site. The other main upstream tributary, South Fork Little River, had an estimated mean annual load of total phosphorus that was about 20 percent of the mean annual load at the Little River near Cadiz site. Estimated loads of suspended sediment were largest at the Little River near Cadiz site, where the estimated mean annual load for 2003-04 was about 84,000,000 lb/yr. The North Fork Little River contributed an estimated 36 percent of the mean annual load of suspended sediment at the Little River near Cadiz site, while the South Fork Little River contributed an estimated 18 percent of the mean annual load at the Little River near Cadiz site. The North Fork Little River site had the largest estimated mean annual yield of total phosphorus (1,600 pounds per year per square mile (lb/yr/mi2)) and orthophosphate (1,100 lb/yr/mi2). A principal source of phosphorus for the North Fork Little River is discharge from wastewater-treatment facilities. The largest estimated mean annual yield of nitrite plus nitrate was observed at the South Fork Little River site. The North Fork Little River site had the largest estimated mean annual yield of suspended sediment (450,000 lb/yr/mi2). Inputs of nitrogen and phosphorus to streams from point and nonpoint sources were estimated for the Little River Basin. Commercial fertilizer and livestock-waste applications on row crops are a principal source of nutrients for most of the Little River Basin. Sources of nutrients in the urban areas of the basin mainly are from effluent discharge from wastewater-treatment facilities and fertilizer applications to lawns and golf courses.

  18. Estimation of true phosphorus digestibility and endogenous phosphorus loss in growing pigs fed conventional and low-phytate soybean meals.

    PubMed

    Dilger, R N; Adeola, O

    2006-03-01

    This study reevaluated the method of regressing of total P output against dietary P intake to simultaneously estimate true P digestibility and endogenous P loss in growing pigs fed either conventional or low-phytate soybean meal (SBM). Four isocaloric diets were formulated to contain increasing concentrations of each type of SBM (8 diets total), and therefore contained increasing concentrations of dietary P. Dietary P and Ca concentrations were deficient because they were supplied solely by SBM, and Ca:total P ratios were less than 1:1. Sixteen barrows (initial BW 17.7 +/- 1.8 kg) were surgically fitted with a simple T-cannula at the distal ileum, randomly assigned to metabolism crates, and fed the experimental diets in a replicated 8 x 8 Latin square design. Feed was provided at 90 g/kg of BW(0.75) and fed in 2 equally sized meals at 0800 and 2000, with diets containing Cr sesquioxide (3 g/kg) as an indigestible marker. As the P concentration increased from 0.9 to 3.9 g/kg of DM, the apparent prececal P digestibility increased for conventional SBM (P < 0.05), but no relationship was observed for low-phytate SBM. The output of total P [mg/(kg of BW(0.75).d)], either prececal or total tract, exhibited a linear relationship (P < 0.01) with increasing P intake. However, a quadratic response (P = 0.02) was also detected for total tract P output from pigs fed low-phytate SBM. True P digestibility was not different between prececal and total tract collection sites (P > 0.10), but was greater (P < 0.01) for low-phytate SBM (62.6%) compared with conventional SBM (44.5%). Endogenous P estimates were not different between the SBM varieties and averaged 4.83 mg/(kg of BW(0.75).d). However, endogenous P estimates were highly variable between individual animals and, therefore, were not significantly different from zero. In this study, estimates of endogenous P loss from pigs were relatively low compared with previously reported values, and evidence of nonlinearity in P output was observed. These results suggest that the difference in true P digestibility between conventional SBM and low-phytate SBM is influenced by dietary phytate content when growing pigs are fed P-deficient diets.

  19. Frequent Questions about the Delisting Risk Assessment Software (DRAS)

    EPA Pesticide Factsheets

    Frequent technical questions such Surface Impoundment Requires Corrections, How Do I Assess Toxicity Characteristic Leaching Procedure (TCLP) or Leachability in a Liquid Waste Sample?, Aggregate Hazard Index and Cancer Risk Output Table Correction.

  20. Mass, energy and material balances of SRF production process. Part 1: SRF produced from commercial and industrial waste.

    PubMed

    Nasrullah, Muhammad; Vainikka, Pasi; Hannula, Janne; Hurme, Markku; Kärki, Janne

    2014-08-01

    This paper presents the mass, energy and material balances of a solid recovered fuel (SRF) production process. The SRF is produced from commercial and industrial waste (C&IW) through mechanical treatment (MT). In this work various streams of material produced in SRF production process are analyzed for their proximate and ultimate analysis. Based on this analysis and composition of process streams their mass, energy and material balances are established for SRF production process. Here mass balance describes the overall mass flow of input waste material in the various output streams, whereas material balance describes the mass flow of components of input waste stream (such as paper and cardboard, wood, plastic (soft), plastic (hard), textile and rubber) in the various output streams of SRF production process. A commercial scale experimental campaign was conducted on an MT waste sorting plant to produce SRF from C&IW. All the process streams (input and output) produced in this MT plant were sampled and treated according to the CEN standard methods for SRF: EN 15442 and EN 15443. The results from the mass balance of SRF production process showed that of the total input C&IW material to MT waste sorting plant, 62% was recovered in the form of SRF, 4% as ferrous metal, 1% as non-ferrous metal and 21% was sorted out as reject material, 11.6% as fine fraction, and 0.4% as heavy fraction. The energy flow balance in various process streams of this SRF production process showed that of the total input energy content of C&IW to MT plant, 75% energy was recovered in the form of SRF, 20% belonged to the reject material stream and rest 5% belonged with the streams of fine fraction and heavy fraction. In the material balances, mass fractions of plastic (soft), plastic (hard), paper and cardboard and wood recovered in the SRF stream were 88%, 70%, 72% and 60% respectively of their input masses to MT plant. A high mass fraction of plastic (PVC), rubber material and non-combustibles (such as stone/rock and glass particles), was found in the reject material stream. Copyright © 2014 Elsevier Ltd. All rights reserved.

  1. Risk of Leaching in Soils Amended by Compost and Digestate from Municipal Solid Waste

    PubMed Central

    Tarquis, Ana M.; Cartagena, M. Carmen

    2014-01-01

    New European directives have proposed the direct application of compost and digestate produced from municipal solid wastes as organic matter sources in agricultural soils. Therefore information about phosphorus leaching from these residues when they are applied to the soil is increasingly important. Leaching experiments were conducted to determine the P mobility in compost and digestate mixtures, supplying equivalent amounts to 100 kg P ha−1 to three different types of soils. The tests were performed in accordance with CEN/TS 14405:2004 analyzing the maximum dissolved reactive P and the kinetic rate in the leachate. P biowaste fractionation indicated that digestate has a higher level of available P than compost has. In contrast, P losses in leaching experiments with soil-compost mixtures were higher than in soil-digestate mixtures. For both wastes, there was no correlation between dissolved reactive P lost and the water soluble P. The interaction between soil and biowaste, the long experimentation time, and the volume of leachate obtained caused the waste's wettability to become an influential parameter in P leaching behavior. The overall conclusion is that kinetic data analysis provides valuable information concerning the sorption mechanism that can be used for predicting the large-scale behavior of soil systems. PMID:25003139

  2. Latest consensus and update on protein-energy wasting in chronic kidney disease.

    PubMed

    Obi, Yoshitsugu; Qader, Hemn; Kovesdy, Csaba P; Kalantar-Zadeh, Kamyar

    2015-05-01

    Protein-energy wasting (PEW) is a state of metabolic and nutritional derangements in chronic disease states including chronic kidney disease (CKD). Cumulative evidence suggests that PEW, muscle wasting and cachexia are common and strongly associated with mortality in CKD, which is reviewed here. The malnutrition-inflammation score (KALANTAR Score) is among the comprehensive and outcome-predicting nutritional scoring tools. The association of obesity with poor outcomes is attenuated across more advanced CKD stages and eventually reverses in the form of obesity paradox. Frailty is closely associated with PEW, muscle wasting and cachexia. Muscle loss shows stronger associations with unfavorable outcomes than fat loss. Adequate energy supplementation combined with low-protein diet for the management of CKD may prevent the development of PEW and can improve adherence to low-protein diet, but dietary protein requirement may increase with aging and is higher under dialysis therapy. Phosphorus burden may lead to poor outcomes. The target serum bicarbonate concentration is normal range and at least 23 mEq/l for nondialysis-dependent and dialysis-dependent CKD patients, respectively. A benefit of exercise is suggested but not yet conclusively proven. Prevention and treatment of PEW should involve individualized and integrated approaches to modulate identified risk factors and contributing comorbidities.

  3. Assessing the effect of biodegradable and degradable plastics on the composting of green wastes and compost quality.

    PubMed

    Unmar, G; Mohee, R

    2008-10-01

    An assessment of the effect of the composting potential of Mater-Bi biodegradable plastic with green wastes, noted by GBIO, and degradable plastic (PDQ-H additive) with green wastes, noted by GDEG, was carried out in a lagged two-compartment compost reactor. The composting time was determined until constant mass of the composting substrates was reached. The green wastes composting process was used as control (G). After one week of composting, the biodegradable plastics disappeared completely, while 2% of the original degradable plastic still remained after about 8 weeks of composting. A net reduction in volatile solids contents of 61.8%, 56.5% and 53.2% were obtained for G, GBIO and GDEG, respectively. Compost quality was assessed in terms of nitrogen, potassium and phosphorus contents, which were found to be highest for GBIO compost. From the phytotoxicity test, it has been observed that a diluted extract of GBIO compost has produced the longest length of radicle. From the respiration test, no significant difference in the amount of carbon dioxide released by the composting of GDEG and G was observed. This study showed that the quality of the compost is not affected by the presence of the biodegradable and degradable plastics in the raw materials.

  4. Anaerobic digestion of slaughterhouse waste with UF-membrane separation and recycling of permeate after free ammonia stripping.

    PubMed

    Siegrist, H; Hunziker, W; Hofer, H

    2005-01-01

    Anaerobic digestion can adapt to free ammonia to a certain extent. During the anaerobic digestion of slaughterhouse waste, however, an ammonia concentration of up to 15 g Nl(-1) can be reached in the sludge liquid and this will even inhibit adapted sludge. To lower this concentration, a fraction of the digester liquid must therefore be continuously separated from the digested sludge and the free ammonia stripped before the liquid is recycled to the digester. A mesophilic laboratory digester was successfully operated with an ammonium concentration of 4-5g l(-1) and a pH of 8.0-8.4. After free ammonia stripping, the excess liquid was treated in a laboratory SBR for nitrogen and phosphorus removal before being added to the receiving water. The effluent had no toxic effect on daphnia and algae.

  5. Characterisation of medical-waste sterilisation-plant wastewater and a preliminary study of coagulation-flocculation treatment options.

    PubMed

    Ozkan, O; Mihçiokur, H; Azgin, S T; Ozdemir, O

    2010-01-01

    Wastewater from a medical-waste sterilisation plant (MWSP) contains unique pollutants and requires on-site treatment to prevent contamination of the municipal sewage system and receiving water bodies. Therefore, to meet the prescribed discharge standards and comply with the legal regulations, pre-treatment must be applied to MWSP wastewater. In this study, the capabilities of coagulation-flocculation processes were investigated for MWSP wastewater treatment. Processes using ferric chloride, ferrous sulfate and aluminium sulfate as coagulants were characterised. During the coagulation experiments, seven different coagulant dosages and four different pH values were evaluated to determine the optimum coagulant dosage and pH value. The highest removal efficiency of chemical oxygen demand (COD) was obtained using 300 mg/L of ferric chloride at pH 10. A COD removal of about 60% as well as considerable reductions in the amounts of suspended solids, nitrogen and phosphorus were realised.

  6. Comparison of multi-enzyme and thermophilic bacteria on the hydrolysis of mariculture organic waste (MOW).

    PubMed

    Guo, Liang; Sun, Mei; Zong, Yan; Zhao, Yangguo; Gao, Mengchun; She, Zonglian

    2016-01-01

    Mariculture organic waste (MOW) is rich in organic matter, which is a potential energy resource for anaerobic digestion. In order to enhance the anaerobic fermentation, the MOW was hydrolyzed by multi-enzyme and thermophilic bacteria. It was advantageous for soluble chemical oxygen demand (SCOD) release at MOW concentrations of 6 and 10 g/L with multi-enzyme and thermophilic bacteria pretreatments. For multi-enzyme, the hydrolysis was not obvious at substrate concentrations of 1 and 3 g/L, and the protein and carbohydrate increased with hydrolysis time at substrate concentrations of 6 and 10 g/L. For thermophilic bacteria, the carbohydrate was first released at 2-4 h and then consumed, and the protein increased with hydrolysis time. The optimal enzyme hydrolysis for MOW was determined by measuring the changes of SCOD, protein, carbohydrate, ammonia and total phosphorus, and comparing with acid and alkaline pretreatments.

  7. Thermoelectric System Absorbing Waste Heat from a Steel Ladle

    NASA Astrophysics Data System (ADS)

    Lu, Baiyi; Meng, Xiangning; Zhu, Miaoyong; Suzuki, Ryosuke O.

    2018-06-01

    China's iron and steel industry has made great progress in energy savings and emission reductions with the application of many waste heat recovery technologies. However, most of the medium and low temperature waste heat and radiant waste heat has not been effectively utilized. This paper proposes a thermoelectric system that generates electricity by absorbing the radiant heat from the surface of steel ladles in a steel plant. The thermoelectric behavior of modules in this system is analyzed by a numerical simulation method. The effects of external resistance and module structure on thermoelectric performance are also discussed in the temperature range of the wall surface of a steel ladle. The results show that the wall temperature has a significant influence on the thermoelectric behavior of the module, so its uniformity and stability should be considered in practical application. The ratio of the optimum external resistance to the internal resistance of the thermoelectric module is in the range of 1.6-2.0, which indicates the importance of external load optimization for a given thermoelectric system. In addition, the output power and the conversion efficiency of the module can be significantly improved by increasing the length of the thermoelectric legs and adopting a double-layer structure. Finally, through the optimization of external resistance and structure, the power output can reach 83-304 W/m2. This system is shown to be a promising approach for energy recovery.

  8. Thermoelectric System Absorbing Waste Heat from a Steel Ladle

    NASA Astrophysics Data System (ADS)

    Lu, Baiyi; Meng, Xiangning; Zhu, Miaoyong; Suzuki, Ryosuke O.

    2018-01-01

    China's iron and steel industry has made great progress in energy savings and emission reductions with the application of many waste heat recovery technologies. However, most of the medium and low temperature waste heat and radiant waste heat has not been effectively utilized. This paper proposes a thermoelectric system that generates electricity by absorbing the radiant heat from the surface of steel ladles in a steel plant. The thermoelectric behavior of modules in this system is analyzed by a numerical simulation method. The effects of external resistance and module structure on thermoelectric performance are also discussed in the temperature range of the wall surface of a steel ladle. The results show that the wall temperature has a significant influence on the thermoelectric behavior of the module, so its uniformity and stability should be considered in practical application. The ratio of the optimum external resistance to the internal resistance of the thermoelectric module is in the range of 1.6-2.0, which indicates the importance of external load optimization for a given thermoelectric system. In addition, the output power and the conversion efficiency of the module can be significantly improved by increasing the length of the thermoelectric legs and adopting a double-layer structure. Finally, through the optimization of external resistance and structure, the power output can reach 83-304 W/m2. This system is shown to be a promising approach for energy recovery.

  9. Assessing nutrient flows in septic tanks by eliciting expert judgement: a promising method in the context of developing countries.

    PubMed

    Montangero, Agnes; Belevi, Hasan

    2007-03-01

    Simple models based on the physical and biochemical processes occurring in septic tanks, pit and urine diversion latrines were developed to determine the nutrient flows in these systems. Nitrogen and phosphorus separation in different output materials from these on-site sanitation installations were thus determined. Moreover, nutrient separation in septic tanks was also assessed through literature values and by eliciting expert judgement. Use of formal expert elicitation technique proved to be effective, particularly in the context of developing countries where data is often scarce but expert judgement readily available. In Vietnam, only 5-14% and 11-27% of the nitrogen and phosphorus input, respectively, are removed from septic tanks with the faecal sludge. The remaining fraction leaves the tank via the liquid effluent. Unlike septic tanks, urine diversion latrines allow to immobilize most of the nutrients either in form of stored urine or dehydrated faecal matter. These latrines thus contribute to reducing the nutrient load in the environment and lowering consumption of energy and non-renewable resources for fertiliser production.

  10. Further Studies on the Effect of SiN x Refractive Index and Emitter Sheet Resistance on Potential-Induced Degradation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Oh, Jaewon; Dauksher, Bill; Bowden, Stuart

    We present the impacts of silicon nitride (SiNx) antireflection coating refractive index and emitter sheet resistance on potential-induced degradation of the shunting type (PID-s). Previously, it has been shown that the cell becomes more PID-s-susceptible as the refractive index decreases or the emitter sheet resistance increases. To verify the effect of refractive index on PID-s, we fabricated cells with varying SiN x refractive index (1.87, 1.94, 2.05) on typical p-type base solar cells with ~60 Ω/sq emitters. However, none of these cells showed output power degradation, regardless of the refractive index. Further investigation of the emitter showed that the PID-smore » was suppressed at ~60 Ω/sq due to the extremely high surface phosphorus concentration (6 x 10 21 cm -3), as measured by secondary ion mass spectrometry. Furthermore, PID-s was observed on cells possessing a high emitter sheet resistance (~80 Ω/sq). In conclusion, the emitter surface phosphorus concentration plays an important role in determining PID-s susceptibility.« less

  11. Further Studies on the Effect of SiN x Refractive Index and Emitter Sheet Resistance on Potential-Induced Degradation

    DOE PAGES

    Oh, Jaewon; Dauksher, Bill; Bowden, Stuart; ...

    2017-01-11

    We present the impacts of silicon nitride (SiNx) antireflection coating refractive index and emitter sheet resistance on potential-induced degradation of the shunting type (PID-s). Previously, it has been shown that the cell becomes more PID-s-susceptible as the refractive index decreases or the emitter sheet resistance increases. To verify the effect of refractive index on PID-s, we fabricated cells with varying SiN x refractive index (1.87, 1.94, 2.05) on typical p-type base solar cells with ~60 Ω/sq emitters. However, none of these cells showed output power degradation, regardless of the refractive index. Further investigation of the emitter showed that the PID-smore » was suppressed at ~60 Ω/sq due to the extremely high surface phosphorus concentration (6 x 10 21 cm -3), as measured by secondary ion mass spectrometry. Furthermore, PID-s was observed on cells possessing a high emitter sheet resistance (~80 Ω/sq). In conclusion, the emitter surface phosphorus concentration plays an important role in determining PID-s susceptibility.« less

  12. Estimation of particulate nutrient load using turbidity meter.

    PubMed

    Yamamoto, K; Suetsugi, T

    2006-01-01

    The "Nutrient Load Hysteresis Coefficient" was proposed to evaluate the hysteresis of the nutrient loads to flow rate quantitatively. This could classify the runoff patterns of nutrient load into 15 patterns. Linear relationships between the turbidity and the concentrations of particulate nutrients were observed. It was clarified that the linearity was caused by the influence of the particle size on turbidity output and accumulation of nutrients on smaller particles (diameter < 23 microm). The L-Q-Turb method, which is a new method for the estimation of runoff loads of nutrients using a regression curve between the turbidity and the concentrations of particulate nutrients, was developed. This method could raise the precision of the estimation of nutrient loads even if they had strong hysteresis to flow rate. For example, as for the runoff load of total phosphorus load on flood events in a total of eight cases, the averaged error of estimation of total phosphorus load by the L-Q-Turb method was 11%, whereas the averaged estimation error by the regression curve between flow rate and nutrient load was 28%.

  13. Conjunctive and mineralization impact of municipal solid waste compost and inorganic fertilizer on lysimeter and pot studies.

    PubMed

    Khalid, Iqbal; Nadeem, Amana; Ahmed, Rauf; Husnain, Anwer

    2014-01-01

    Objectives of the present study were to investigate the physico-chemical properties of municipal solid waste (MSW)-enriched compost and its effect on nutrient mineralization and subsequent plant growth. The enrichment of MSW compost by inorganic salts enhanced the humification rate and reduced the carbon nitrogen (C/N) ratio in less time than control compost. The chemical properties of compost, C/N ratio, humic acid, fulvic acid, degree of polymerization and humification index revealed the significant correlation amid properties. A laboratory-scale experiment evaluated the conjunctive effect of MSW compost and inorganic fertilizer on tomato plants in a pot experiment. In the pot experiment five treatments, Inorganic fertilizer (T1), enriched compost (T2), enriched compost 80% + 20% inorganic fertilizer (T3), enriched compost 60% + 40% inorganic fertilizer (T4) were defined including control (Ts), applied at the rate of 110 kg-N/ha and results revealed that all treatments significantly enhanced horticultural production of tomato plant; however T4 was most effectual as compared with control, T1, T2 and T3. Augmentation in organic matter and available phosphorus (P) potassium (K) and nitrogen (N) were also observed in compost treatments. The leachability and phytoavailability of phosphorus (P), potassium (K) and nitrogen (N) from sandy soil, amended with enriched, control compost and inorganic fertilizer at rates of 200, 400 and 600 kg-N/ha were evaluated in a lysimeter study. Results illustrated that concentration of mineral nitrogen was elevated in the leachate of inorganic fertilizer than enriched and control composts; therefore compost fortifies soil with utmost nutrients for plants' growth.

  14. Towards Rational Decision-Making in Secondary Education.

    ERIC Educational Resources Information Center

    Cohn, Elchanan

    Without a conscious effort to achieve optimum resource allocation, there is a real danger that educational resources may be wasted. This document uses input-output analysis to develop a model for rational decision-making in secondary education. (LLR)

  15. Numerical Modeling of Thermal-Hydrology in the Near Field of a Generic High-Level Waste Repository

    NASA Astrophysics Data System (ADS)

    Matteo, E. N.; Hadgu, T.; Park, H.

    2016-12-01

    Disposal in a deep geologic repository is one of the preferred option for long term isolation of high-level nuclear waste. Coupled thermal-hydrologic processes induced by decay heat from the radioactive waste may impact fluid flow and the associated migration of radionuclides. This study looked at the effects of those processes in simulations of thermal-hydrology for the emplacement of U. S. Department of Energy managed high-level waste and spent nuclear fuel. Most of the high-level waste sources have lower thermal output which would reduce the impact of thermal propagation. In order to quantify the thermal limits this study concentrated on the higher thermal output sources and on spent nuclear fuel. The study assumed a generic nuclear waste repository at 500 m depth. For the modeling a representative domain was selected representing a portion of the repository layout in order to conduct a detailed thermal analysis. A highly refined unstructured mesh was utilized with refinements near heat sources and at intersections of different materials. Simulations looked at different values for properties of components of the engineered barrier system (i.e. buffer, disturbed rock zone and the host rock). The simulations also looked at the effects of different durations of surface aging of the waste to reduce thermal perturbations. The PFLOTRAN code (Hammond et al., 2014) was used for the simulations. Modeling results for the different options are reported and include temperature and fluid flow profiles in the near field at different simulation times. References:G. E. Hammond, P.C. Lichtner and R.T. Mills, "Evaluating the Performance of Parallel Subsurface Simulators: An Illustrative Example with PFLOTRAN", Water Resources Research, 50, doi:10.1002/2012WR013483 (2014). Sandia National Laboratories is a multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin Company, for the United States Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000. SAND2016-7510 A

  16. Nutrient mass balance and trends, Mobile River Basin, Alabama, Georgia, and Mississippi

    USGS Publications Warehouse

    Harned, D.A.; Atkins, J.B.; Harvill, J.S.

    2004-01-01

    A nutrient mass balance - accounting for nutrient inputs from atmospheric deposition, fertilizer, crop nitrogen fixation, and point source effluents; and nutrient outputs, including crop harvest and storage - was calculated for 18 subbasins in the Mobile River Basin, and trends (1970 to 1997) were evaluated as part of the U.S. Geological Survey National Water Quality Assessment (NAWQA) Program. Agricultural nonpoint nitrogen and phosphorus sources and urban nonpoint nitrogen sources are the most important factors associated with nutrients in this system. More than 30 percent of nitrogen yield in two basins and phosphorus yield in eight basins can be attributed to urban point source nutrient inputs. The total nitrogen yield (1.3 tons per square mile per year) for the Tombigbee River, which drains a greater percentage of agricultural (row crop) land use, was larger than the total nitrogen yield (0.99 tons per square mile per year) for the Alabama River. Decreasing trends of total nitrogen concentrations in the Tombigbee and Alabama Rivers indicate that a reduction occurred from 1975 to 1997 in the nitrogen contributions to Mobile Bay from the Mobile River. Nitrogen concentrations also decreased (1980 to 1995) in the Black Warrior River, one of the major tributaries to the Tombigbee River. Total phosphorus concentrations increased from 1970 to 1996 at three urban influenced sites on the Etowah River in Georgia. Multiple regression analysis indicates a distinct association between water quality in the streams of the Mobile River drainage basin and agricultural activities in the basin.

  17. High-performance bio-piezoelectric nanogenerator made with fish scale

    NASA Astrophysics Data System (ADS)

    Ghosh, Sujoy Kumar; Mandal, Dipankar

    2016-09-01

    Energy harvesting performance of an efficient flexible bio-piezoelectric nanogenerator (BPNG) is demonstrated, where "bio-waste" transparent fish scale (FSC), composed of self-assembled and ordered collagen nano-fibrils, serves as a self-poled piezoelectric active component, exhibiting intrinsic piezoelectric strength of -5.0 pC/N. The dipolar orientation (˜19%) of the self-polarized FSC collagen is confirmed by the angular dependent near edge X-ray absorption fine structure spectroscopy. The BPNG is able to scavenge several types of ambient mechanical energies such as body movements, machine and sound vibrations, and wind flow which are abundant in living environment. Furthermore, as a power source, it generates the output voltage of 4 V, the short circuit current of 1.5 μA, and the maximum output power density of 1.14 μW/cm2 under repeated compressive normal stress of 0.17 MPa. In addition, serially integrated four BPNGs are able to produce enhanced output voltage of 14 V that turn on more than 50 blue light emitting diodes instantly, proving its essentiality as a sustainable green power source for next generation self-powered implantable medical devices as well as for personal portable electronics with reduced e-waste elements.

  18. Artificial neural network based modelling approach for municipal solid waste gasification in a fluidized bed reactor.

    PubMed

    Pandey, Daya Shankar; Das, Saptarshi; Pan, Indranil; Leahy, James J; Kwapinski, Witold

    2016-12-01

    In this paper, multi-layer feed forward neural networks are used to predict the lower heating value of gas (LHV), lower heating value of gasification products including tars and entrained char (LHV p ) and syngas yield during gasification of municipal solid waste (MSW) during gasification in a fluidized bed reactor. These artificial neural networks (ANNs) with different architectures are trained using the Levenberg-Marquardt (LM) back-propagation algorithm and a cross validation is also performed to ensure that the results generalise to other unseen datasets. A rigorous study is carried out on optimally choosing the number of hidden layers, number of neurons in the hidden layer and activation function in a network using multiple Monte Carlo runs. Nine input and three output parameters are used to train and test various neural network architectures in both multiple output and single output prediction paradigms using the available experimental datasets. The model selection procedure is carried out to ascertain the best network architecture in terms of predictive accuracy. The simulation results show that the ANN based methodology is a viable alternative which can be used to predict the performance of a fluidized bed gasifier. Copyright © 2016 Elsevier Ltd. All rights reserved.

  19. The major components of particles emitted during recycling of waste printed circuit boards in a typical e-waste workshop of South China

    NASA Astrophysics Data System (ADS)

    Bi, Xinhui; Simoneit, Bernd R. T.; Wang, ZhenZhen; Wang, Xinming; Sheng, Guoying; Fu, Jiamo

    2010-11-01

    Electronic waste from across the world is dismantled and disposed of in China. The low-tech recycling methods have caused severe air pollution. Air particle samples from a typical workshop of South China engaged in recycling waste printed circuit boards have been analyzed with respect to chemical constituents. This is the first report on the chemical composition of particulate matter (PM) emitted in an e-waste recycling workshop of South China. The results show that the composition of PM from this recycling process was totally different from other emission sources. Organic matter comprised 46.7-51.6% of the PM. The major organic constituents were organophosphates consisting mainly of triphenyl phosphate (TPP) and its methyl substituted compounds, methyl esters of hexadecanoic and octadecanoic acids, levoglucosan and bisphenol A. TPP and bisphenol A were present at 1-5 orders of magnitude higher than in other indoor and outdoor environments throughout the world, which implies that they might be used as potential markers for e-waste recycling. The elemental carbon, inorganic elements and ions had a minor contribution to the PM (<5% each). The inorganic elements were dominated by phosphorus and followed by crustal elements and metal elements Pb, Zn, Sn, and lesser Cu, Sb, Mn, Ni, Ba and Cd. The recycling of printed circuit boards was demonstrated as an important contributor of heavy metal contamination, particularly Cd, Pb and Ni, to the local environment. These findings suggest that this recycling method represents a strong source of PM associated with pollutants to the ambient atmosphere of an e-waste recycling locale.

  20. Co-digestion of agricultural and municipal waste to produce energy and soil amendment.

    PubMed

    Macias-Corral, Maritza A; Samani, Zohrab A; Hanson, Adrian T; Funk, Paul A

    2017-09-01

    In agriculture, manure and cotton gin waste are major environmental liabilities. Likewise, grass is an important organic component of municipal waste. These wastes were combined and used as substrates in a two-phase, pilot-scale anaerobic digester to evaluate the potential for biogas (methane) production, waste minimisation, and the digestate value as soil amendment. The anaerobic digestion process did not show signs of inhibition. Biogas production increased during the first 2 weeks of operation, when chemical oxygen demand and volatile fatty acid concentrations and the organic loading rate to the system were high. Chemical oxygen demand from the anaerobic columns remained relatively steady after the first week of operation, even at high organic loading rates. The experiment lasted about 1 month and produced 96.5 m 3 of biogas (68 m 3 of CH 4 ) per tonne of waste. In terms of chemical oxygen demand to methane conversion efficiency, the system generated 62% of the theoretical methane production; the chemical oxygen demand/volatile solids degradation rate was 62%, compared with the theoretical 66%. The results showed that co-digestion and subsequent digestate composting resulted in about 60% and 75% mass and volume reductions, respectively. Digestate analysis showed that it can be used as a high nutrient content soil amendment. The digestate met Class A faecal coliform standards (highest quality) established in the United States for biosolids. Digestion and subsequent composting concentrated the digestate nitrogen, phosphorus, and potassium content by 37%, 24%, and 317%, respectively. Multi-substrate co-digestion is a practical alternative for agricultural waste management, minimisation of landfill disposal, and it also results in the production of valuable products.

  1. Comparison of the co-gasification of sewage sludge and food wastes and cost-benefit analysis of gasification- and incineration-based waste treatment schemes.

    PubMed

    You, Siming; Wang, Wei; Dai, Yanjun; Tong, Yen Wah; Wang, Chi-Hwa

    2016-10-01

    The compositions of food wastes and their co-gasification producer gas were compared with the existing data of sewage sludge. Results showed that food wastes are more favorable than sewage sludge for co-gasification based on residue generation and energy output. Two decentralized gasification-based schemes were proposed to dispose of the sewage sludge and food wastes in Singapore. Monte Carlo simulation-based cost-benefit analysis was conducted to compare the proposed schemes with the existing incineration-based scheme. It was found that the gasification-based schemes are financially superior to the incineration-based scheme based on the data of net present value (NPV), benefit-cost ratio (BCR), and internal rate of return (IRR). Sensitivity analysis was conducted to suggest effective measures to improve the economics of the schemes. Copyright © 2016 Elsevier Ltd. All rights reserved.

  2. Designing testing service at baristand industri Medan’s liquid waste laboratory

    NASA Astrophysics Data System (ADS)

    Kusumawaty, Dewi; Napitupulu, Humala L.; Sembiring, Meilita T.

    2018-03-01

    Baristand Industri Medan is a technical implementation unit under the Industrial and Research and Development Agency, the Ministry of Industry. One of the services often used in Baristand Industri Medan is liquid waste testing service. The company set the standard of service is nine working days for testing services. At 2015, 89.66% on testing services liquid waste does not meet the specified standard of services company because of many samples accumulated. The purpose of this research is designing online services to schedule the coming the liquid waste sample. The method used is designing an information system that consists of model design, output design, input design, database design and technology design. The results of designing information system of testing liquid waste online consist of three pages are pages to the customer, the recipient samples and laboratory. From the simulation results with scheduled samples, then the standard services a minimum of nine working days can be reached.

  3. Biochar Preparation from Simulated Municipal Solid Waste Employing Low Temperature Carbonization Process

    NASA Astrophysics Data System (ADS)

    Areeprasert, C.; Leelachaikul, P.; Jangkobpattana, G.; Phumprasop, K.; Kiattiwat, T.

    2018-02-01

    This paper presents an investigation on carbonization process of simulated municipal solid waste (MSW). Simulated MSW consists of a representative of food residue (68%), plastic waste (20%), paper (8%), and textile (4%). Laboratory-scale carbonization was performed in this study using a vertical-type pyrolyzer varying carbonization temperature (300, 350, 400, and 450 °C) and heating rate (5, 10, 15, and 20 °C/min). Appearance of the biochar product was in black and the volume was significantly reduced. Low carbonization temperature (300 °C) might not completely decompose plastic materials in MSW. Results showed that the carbonization at the temperature of 400 °C with the heating rate of 5 °C/min was the optimal condition. The yield of biochar from the optimal process was 50.6% with the heating value of 26.85 MJ/kg. Energy input of the process was attributed to water evaporation and the decomposition of plastics and paper. Energy output of the process was highest at the optimal condition. Energy output and input ratio was around 1.3-1.7 showing the feasibility of the carbonization process in all heating rate condition.

  4. Pre-incubation in soil improves the nitrogen fertiliser value of hair waste.

    PubMed

    Malepfane, N M; Muchaonyerwa, P

    2018-01-25

    Global generation of human hair waste and its disposal at landfills could contribute to the leaching of nitrates into ground water. High concentrations of nitrogen (N) and other elements suggest that the waste could be a source of plant nutrients and differences in ethnic hair types could affect nutrient release and fertiliser value. The objective of this study was to determine the effects of hair type, as an N source, and pre-incubation time on dry-matter yield, nutrient uptake by spinach (Spinacia oleracea L.) and residual soil nutrients. Salons in Pietermaritzburg provided bulk African and Caucasian hair waste, without distinguishing age, sex, health status or livelihood of the individuals. The hair waste was analysed for elemental composition. A pot experiment was set up under glasshouse conditions. The hair waste was incorporated (400 kg N ha -1 ) into a loamy oxisol and pre-incubated for 0, 28, 56 and 84 days before planting spinach. Potassium (K) and phosphorus (P) were corrected to the same level for all treatments. Spinach seedlings were then cultivated for 6 weeks. Shoot dry-matter and the uptake of all nutrients, except P, were increased by the pre-incubation of hair. African hair pre-incubated for 28 days resulted in greater dry-matter, N, K, Mn and S uptake than Caucasian hair. Increasing pre-incubation resulted in a decline in the residual soil pH and exchangeable K. The findings suggested that pre-incubation improves the N fertiliser value of hair and that African hair has greater value than Caucasian hair when pre-incubated for a short period.

  5. A step by step selection method for the location and the size of a waste-to-energy facility targeting the maximum output energy and minimization of gate fee.

    PubMed

    Kyriakis, Efstathios; Psomopoulos, Constantinos; Kokkotis, Panagiotis; Bourtsalas, Athanasios; Themelis, Nikolaos

    2017-06-23

    This study attempts the development of an algorithm in order to present a step by step selection method for the location and the size of a waste-to-energy facility targeting the maximum output energy, also considering the basic obstacle which is in many cases, the gate fee. Various parameters identified and evaluated in order to formulate the proposed decision making method in the form of an algorithm. The principle simulation input is the amount of municipal solid wastes (MSW) available for incineration and along with its net calorific value are the most important factors for the feasibility of the plant. Moreover, the research is focused both on the parameters that could increase the energy production and those that affect the R1 energy efficiency factor. Estimation of the final gate fee is achieved through the economic analysis of the entire project by investigating both expenses and revenues which are expected according to the selected site and outputs of the facility. In this point, a number of commonly revenue methods were included in the algorithm. The developed algorithm has been validated using three case studies in Greece-Athens, Thessaloniki, and Central Greece, where the cities of Larisa and Volos have been selected for the application of the proposed decision making tool. These case studies were selected based on a previous publication made by two of the authors, in which these areas where examined. Results reveal that the development of a «solid» methodological approach in selecting the site and the size of waste-to-energy (WtE) facility can be feasible. However, the maximization of the energy efficiency factor R1 requires high utilization factors while the minimization of the final gate fee requires high R1 and high metals recovery from the bottom ash as well as economic exploitation of recovered raw materials if any.

  6. Non-equilibrium radiation nuclear reactor

    NASA Technical Reports Server (NTRS)

    Thom, K.; Schneider, R. T. (Inventor)

    1978-01-01

    An externally moderated thermal nuclear reactor is disclosed which is designed to provide output power in the form of electromagnetic radiation. The reactor is a gaseous fueled nuclear cavity reactor device which can operate over wide ranges of temperature and pressure, and which includes the capability of processing and recycling waste products such as long-lived transuranium actinides. The primary output of the device may be in the form of coherent radiation, so that the reactor may be utilized as a self-critical nuclear pumped laser.

  7. Independent Power Generation in a Modern Electrical Substation Based on Thermoelectric Technology

    NASA Astrophysics Data System (ADS)

    Li, Z. M.; Zhao, Y. Q.; Liu, W.; Wei, B.; Qiu, M.; Lai, X. K.

    2017-05-01

    Because of many types of electrical equipment with high power in substations, the potentiality of energy conservation is quite large. From this viewpoint, thermoelectric materials may be chosen to produce electrical energy using the waste heat produced in substations. Hence, a thermoelectric generation system which can recycle the waste heat from electric transformers was proposed to improve the energy efficiency and reduce the burden of the oil cooling system. An experimental prototype was fabricated to perform the experiment and to verify the feasibility. The experimental results showed that the output power could achieve 16 W from waste heat of 900 W, and that the power conversion efficiency was approximately 1.8%. Therefore, power generation is feasible by using the waste heat from the transformers based on thermoelectric technology.

  8. Modelling the nitrogen loadings from large yellow croaker (Larimichthys crocea) cage aquaculture.

    PubMed

    Cai, Huiwen; Ross, Lindsay G; Telfer, Trevor C; Wu, Changwen; Zhu, Aiyi; Zhao, Sheng; Xu, Meiying

    2016-04-01

    Large yellow croaker (LYC) cage farming is a rapidly developing industry in the coastal areas of the East China Sea. However, little is known about the environmental nutrient loadings resulting from the current aquaculture practices for this species. In this study, a nitrogenous waste model was developed for LYC based on thermal growth and bioenergetic theories. The growth model produced a good fit with the measured data of the growth trajectory of the fish. The total, dissolved and particulate nitrogen outputs were estimated to be 133, 51 and 82 kg N tonne(-1) of fish production, respectively, with daily dissolved and particulate nitrogen outputs varying from 69 to 104 and 106 to 181 mg N fish(-1), respectively, during the 2012 operational cycle. Greater than 80 % of the nitrogen input from feed was predicted to be lost to the environment, resulting in low nitrogen retention (<20 %) in the fish tissues. Ammonia contributed the greatest proportion (>85 %) of the dissolved nitrogen generated from cage farming. This nitrogen loading assessment model is the first to address nitrogenous output from LYC farming and could be a valuable tool to examine the effects of management and feeding practices on waste from cage farming. The application of this model could help improve the scientific understanding of offshore fish farming systems. Furthermore, the model predicts that a 63 % reduction in nitrogenous waste production could be achieved by switching from the use of trash fish for feed to the use of pelleted feed.

  9. A comparison of the environmental impact of Jersey compared with Holstein milk for cheese production.

    PubMed

    Capper, J L; Cady, R A

    2012-01-01

    The objective of this study was to compare the environmental impact of Jersey or Holstein milk production sufficient to yield 500,000 t of cheese (equivalent cheese yield) both with and without recombinant bovine somatotropin use. The deterministic model used 2009 DairyMetrics (Dairy Records Management Systems, Raleigh, NC) population data for milk yield and composition (Jersey: 20.9 kg/d, 4.8% fat, 3.7% protein; Holstein: 29.1 kg/d, 3.8% fat, 3.1% protein), age at first calving, calving interval, and culling rate. Each population contained lactating and dry cows, bulls, and herd replacements for which rations were formulated according to DairyPro (Agricultural Modeling and Training Systems, Cornell, Ithaca, NY) at breed-appropriate body weights (BW), with mature cows weighing 454 kg (Jersey) or 680 kg (Holstein). Resource inputs included feedstuffs, water, land, fertilizers, and fossil fuels. Waste outputs included manure and greenhouse gas emissions. Cheese yield (kg) was calculated according to the Van Slyke equation. A yield of 500,000 t of cheese required 4.94 billion kg of Holstein milk compared with 3.99 billion kg of Jersey milk-a direct consequence of differences in milk nutrient density (fat and protein contents) between the 2 populations. The reduced daily milk yield of Jersey cows increased the population size required to supply sufficient milk for the required cheese yield, but the differential in BW between the Jersey and Holstein breeds reduced the body mass of the Jersey population by 125×10(3) t. Consequently, the population energy requirement was reduced by 7,177×10(6) MJ, water use by 252×10(9) L, and cropland use by 97.5×10(3) ha per 500,000 t of cheese yield. Nitrogen and phosphorus excretion were reduced by 17,234 and 1,492 t, respectively, through the use of Jersey milk to yield 500,000 t of Cheddar cheese. The carbon footprint was reduced by 1,662×10(3) t of CO(2)-equivalents per 500,000 t of cheese in Jersey cows compared with Holsteins. Use of recombinant bovine somatotropin reduced resource use and waste output in supplemented populations, with decreases in carbon footprint equivalent to 10.0% (Jersey) and 7.5% (Holstein) compared with nonsupplemented populations. The interaction between milk nutrient density and BW demonstrated by the Jersey population overcame the reduced daily milk yield, thus reducing resource use and environmental impact. This reduction was achieved through 2 mechanisms: diluting population maintenance overhead through improved milk nutrient density and reducing maintenance overhead through a reduction in productive and nonproductive body mass within the population. Copyright © 2012 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  10. Carbon materials derived from waste tires as high-performance anodes in microbial fuel cells.

    PubMed

    Chen, Wei; Feng, Huajun; Shen, Dongsheng; Jia, Yufeng; Li, Na; Ying, Xianbin; Chen, Ting; Zhou, Yuyang; Guo, Jiayun; Zhou, Mengjiao

    2018-03-15

    In this study, carbonized waste tires were directly used as a high-performance anode material in microbial fuel cells (MFCs). The effect of the pyrolysis temperature used for waste tire carbonization on the current output performance was investigated to determine the optimal pyrolysis temperature. Thermal gravimetric analysis/differential scanning calorimetry showed that tire carbonization started at 200°C and ended at about 500°C; the weight loss was about 64%. When used in an MFC, the electrode obtained from waste tires carbonized at 800°C gave a current density of 23.1±1.4Am -2 , which is much higher than that achieved with traditional graphite felt anodes (5.5±0.1Am -2 ). The results of this study will be useful in optimizing the design of carbonized waste tire anodes for enhancing MFC performances and will alleviate the environmental problems caused by waste tires. Copyright © 2017 Elsevier B.V. All rights reserved.

  11. Environmental aspects of the anaerobic digestion of the organic fraction of municipal solid wastes and of solid agricultural wastes.

    PubMed

    Edelmann, W; Baier, U; Engeli, H

    2005-01-01

    In order to obtain more detailed information for better decision making in future biogenic waste treatment, different processes to treat biogenic wastes in plants with a treatment capacity of 10,000 tons of organic household wastes per year as well as agricultural codigestion plants were compared by life cycle assessments (LCA). With the tool EcoIndicator, anaerobic digestion is shown to be advantageous as compared to composting, incineration or a combination of digestion and composting, mainly because of a better energy balance. The management of the liquid manure in agricultural codigestion of organic solid wastes causes increased gaseous emissions, which have negative effects on the LCA, however. It is recommended to cover the slurry pit and to use an improved manure management in order to compensate for the additional gaseous emissions. In the LCAs, the quality of the digester output could only be taken into account to a small extent; the reasons are discussed.

  12. Remote-handled/special case TRU waste characterization summary

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Detamore, J.A.

    1984-03-30

    TRU wastes are those (other than high level waste) contaminated with specified quantities of certain alpha-emitting radionuclides of long half-life and high specific radiotoxicity. TRU waste is defined as /sup 226/Ra isotopic sources and those other materials that, without regard to source or form, are contaminated with transuranic elements with half-lives greater than 20 years, and have TRU alpha contamination greater than 100 nCi/g. RH TRU waste has high beta and gamma radiation levels, up to 30,000 R/hr, and thermal output may be a few hundred watts per container. The radiation levels in most of this remotely handled (RH) TRUmore » waste, however, are below 100 R/hr. Remote-handled wastes are stored at Los Alamos, Hanford, Oak Ridge, and the Idaho National Engineering Laboratory. This report presents a site by site discussion of RH waste handling, placement, and container data. This is followed by a series of data tables that were compiled in the TRU Waste Systems Office. These tables are a compendium of data that are the most up to date and accurate data available today. 10 tables.« less

  13. Optimization of waste combinations during in-vessel composting of agricultural waste.

    PubMed

    Varma, V Sudharsan; Kalamdhad, Ajay S; Kumar, Bimlesh

    2017-01-01

    In-vessel composting of agricultural waste is a well-described approach for stabilization of compost within a short time period. Although composting studies have shown the different combinations of waste materials for producing good quality compost, studies of the particular ratio of the waste materials in the mix are still limited. In the present study, composting was conducted with a combination of vegetable waste, cow dung, sawdust and dry leaves using a 550 L rotary drum composter. Application of a radial basis functional neural network was used to simulate the composting process. The model utilizes physico-chemical parameters with different waste materials as input variables and three output variables: volatile solids, soluble biochemical oxygen demand and carbon dioxide evolution. For the selected model, the coefficient of determination reached the high value of 0.997. The complicated interaction of agricultural waste components during composting makes it a nonlinear problem so it is difficult to find the optimal waste combinations for producing quality compost. Optimization of a trained radial basis functional model has yielded the optimal proportion as 62 kg, 17 kg and 9 kg for vegetable waste, cow dung and sawdust, respectively. The results showed that the predictive radial basis functional model described for drum composting of agricultural waste was well suited for organic matter degradation and can be successfully applied.

  14. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Metin, E.; Eroeztuerk, A.; Neyim, C

    This paper provides a general overview of solid waste data and management practices employed in Turkey during the last decade. Municipal solid waste statistics and management practices including waste recovery and recycling initiatives have been evaluated. Detailed data on solid waste management practices including collection, recovery and disposal, together with the results of cost analyses, have been presented. Based on these evaluations basic cost estimations on collection and sorting of recyclable solid waste in Turkey have been provided. The results indicate that the household solid waste generation in Turkey, per capita, is around 0.6 kg/year, whereas municipal solid waste generationmore » is close to 1 kg/year. The major constituents of municipal solid waste are organic in nature and approximately 1/4 of municipal solid waste is recyclable. Separate collection programmes for recyclable household waste by more than 60 municipalities, continuing in excess of 3 years, demonstrate solid evidence for public acceptance and continuing support from the citizens. Opinion polls indicate that more than 80% of the population in the project regions is ready and willing to participate in separate collection programmes. The analysis of output data of the Material Recovery Facilities shows that, although paper, including cardboard, is the main constituent, the composition of recyclable waste varies strongly by the source or the type of collection point.« less

  15. Conflict between internal combustion engine and thermoelectric generator during waste heat recovery in cars

    NASA Astrophysics Data System (ADS)

    Korzhuev, M. A.

    2011-02-01

    It is shown that an internal combustion engine and a thermoelectric generator (TEG) arranged on the exhaust pipe of this engine come into the conflict of thermal machines that is related to using the same energy resource. The conflict grows with increasing useful electric power W e of the TEG, which leads to the limitation of both the maximum TEG output power ( W {e/max}) and the possibility of waste heat recovery in cars.

  16. Membrane thickening aerobic digestion processes.

    PubMed

    Woo, Bryen

    2014-01-01

    Sludge management accounts for approximately 60% of the total wastewater treatment plant expenditure and laws for sludge disposal are becoming increasingly stringent, therefore much consideration is required when designing a solids handling process. A membrane thickening aerobic digestion process integrates a controlled aerobic digestion process with pre-thickening waste activated sludge using membrane technology. This process typically features an anoxic tank, an aerated membrane thickener operating in loop with a first-stage digester followed by second-stage digestion. Membrane thickening aerobic digestion processes can handle sludge from any liquid treatment process and is best for facilities obligated to meet low total phosphorus and nitrogen discharge limits. Membrane thickening aerobic digestion processes offer many advantages including: producing a reusable quality permeate with minimal levels of total phosphorus and nitrogen that can be recycled to the head works of a plant, protecting the performance of a biological nutrient removal liquid treatment process without requiring chemical addition, providing reliable thickening up to 4% solids concentration without the use of polymers or attention to decanting, increasing sludge storage capacities in existing tanks, minimizing the footprint of new tanks, reducing disposal costs, and providing Class B stabilization.

  17. Reconnaissance of water-quality characteristics of streams in the City of Charlotte and Mecklenburg County, North Carolina

    USGS Publications Warehouse

    Eddins, W.H.; Crawford, J.K.

    1984-01-01

    In 1979-81, water samples were collected from 119 sites on streams throughout the City of Charlotte and Mecklenburg County, North Carolina, and were analyzed for specific conductance, dissolved chloride, hardness, pH, total alkalinity, total phosphorus, trace elements, arsenic, cadmium, chromium, copper, iron, lead, manganese, mercury, silver, and zinc and biological measures including dissolved oxygen, biochemical oxygen demand, fecal coliform bacteria, and fecal streptococcus bacteria. Sampling was conducted during both low flow (base flow) and high flow. Several water-quality measures including pH, total arsenic, total cadmium, total chromium, total copper, total iron, total lead, total manganese, total mercury, total silver, total zinc, dissolved oxygen, and fecal coliform bacteria at times exceeded North Carolina water-quality standards in various streams. Runoff from non-point sources appears to contribute more to the deterioration of streams in Charlotte and Mecklenburg County than point-source effluents. Urban and industrial areas contribute various trace elements. Residential and rural areas and municipal waste-water treatment plants contribute high amounts of phosphorus.

  18. Potential utilization of bagasse as feed material for earthworm Eisenia fetida and production of vermicompost.

    PubMed

    Bhat, Sartaj Ahmad; Singh, Jaswinder; Vig, Adarsh Pal

    2015-01-01

    In the present work bagasse (B) i.e waste of the sugar industry, was fed to Eisenia fetida with cattle dung (CD) support as feed material at various ratios (waste: CD) of 0:100 (B0), 25:75 (B25), 50:50 (B50), 75:25 (B75) and 100:0 (B100) on dry weight basis. Co-composting with cattle dung helped to improve their acceptability for E. fetida and also improved physico-chemical characteristics. Best appropriate ratio for survival, maximum growth and population buildup of E. fetida was determined by observing population buildup, growth rate, biomass, mortality and cocoon formation. Minimum mortality and highest population size of worms was observed in 50:50 (B50) ratio. Increasing concentrations of wastes significantly affected the growth and reproduction of worms. Nutrients like nitrogen, phosphorus and sodium increased from pre-vermicompost to post-vermicompost, while organic carbon, and C:N ratio decreased in all the end products of post-vermicomposting. Heavy metals decreased significantly from initial except zinc, iron and manganese which increased significantly. Scanning electron microscopy (SEM) was used to recognize the changes in texture in the pre and post-vermicomposted samples. The post-vermicomposted ratios in the presence of earthworms validate more surface changes that prove to be good manure. The results observed from the present study indicated that the earthworm E. fetida was able to change bagasse waste into nutrient-rich manure and thus play a major role in industrial waste management.

  19. Pilot-scale experiment on anaerobic bioreactor landfills in China.

    PubMed

    Jiang, Jianguo; Yang, Guodong; Deng, Zhou; Huang, Yunfeng; Huang, Zhonglin; Feng, Xiangming; Zhou, Shengyong; Zhang, Chaoping

    2007-01-01

    Developing countries have begun to investigate bioreactor landfills for municipal solid waste management. This paper describes the impacts of leachate recirculation and recirculation loadings on waste stabilization, landfill gas (LFG) generation and leachate characteristics. Four simulated anaerobic columns, R1-R4, were each filled with about 30 tons of waste and recirculated weekly with 1.6, 0.8 and 0.2m(3) leachate and 0.1m(3) tap water. The results indicated that the chemical oxygen demand (COD) half-time of leachate from R1 was about 180 days, which was 8-14 weeks shorter than that of R2-R4. A large amount of LFG was first produced in R1, and its generation rate was positively correlated to the COD or volatile fatty acid concentrations of influent leachates after the 30th week. By the 50th week of recirculation, the waste in R1 was more stabilized, with 931.2 kg COD or 175.6 kg total organic carbon released and with the highest landfill gas production. However, this contributed mainly to washout by leachate, which also resulted in the reduction of LFG generation potential and accumulation of ammonia and/or phosphorus in the early stage. Therefore, the regimes of leachate recirculation should be adjusted to the phases of waste stabilization to enhance efficiency of energy recovery. Integrated with the strategy of in situ leachate management, extra pre-treatment or post-treatment methods to remove the nutrients are recommended.

  20. Study of Material Used in Nanotechnology for the Recycling of Industrial Waste Water

    NASA Astrophysics Data System (ADS)

    Larbi, L.; Fertikh, N.; Toubal, A.

    The objective of our study is to recycle the industrial waste water of a industrial Complex after treatment by the bioprocess MBR (membrane bioreactor). In order to apply this bioprocess, the water quality in question was first of all studied. To characterize this industrial waste water, a series of physicochemical analysis was carried out according to standardized directives and methods. Following-up the water quality to meet the regulatory requirements with rejection of this industrial waste water, a study was done thanks to the permanently monitoring of the following relevant parameters(P): the flow, the potential of hydrogen (pH), the total suspended solids(TSS), the turbidity (Turb), the chemical oxygen demand (COD),the biochemical oxygen demand (BOD), the Kjeldahl total nitrogen (KTN) and ammonia (NH4+), the total phosphorus (Ptot), the fluorine (F), the oils (O), the fats (F) and the phenols (Ph). According to collected information, it was established the sampling rates to which the quality control was done, the selected analytical methods were validated by the control charts and the analysis test number was determined by the Cochran test. The results of the quality control show that some rejected water contents are not in the Algerian standards, but, in our case, the objective is the preoccupation for a standard setting of these industrial water parameters so as to recycle it. The process adopted by MBR for waste water treatment is being studied, first in the development of the experimental characterizing of the reactor and the selected membrane.

  1. Assessment of Food Waste Prevention and Recycling Strategies Using a Multilayer Systems Approach.

    PubMed

    Hamilton, Helen A; Peverill, M Samantha; Müller, Daniel B; Brattebø, Helge

    2015-12-15

    Food waste (FW) generates large upstream and downstream emissions to the environment and unnecessarily consumes natural resources, potentially affecting future food security. The ecological impacts of FW can be addressed by the upstream strategies of FW prevention or by downstream strategies of FW recycling, including energy and nutrient recovery. While FW recycling is often prioritized in practice, the ecological implications of the two strategies remain poorly understood from a quantitative systems perspective. Here, we develop a multilayer systems framework and scenarios to quantify the implications of food waste strategies on national biomass, energy, and phosphorus (P) cycles, using Norway as a case study. We found that (i) avoidable food waste in Norway accounts for 17% of sold food; (ii) 10% of the avoidable food waste occurs at the consumption stage, while industry and retailers account for only 7%; (iii) the theoretical potential for systems-wide net process energy savings is 16% for FW prevention and 8% for FW recycling; (iv) the theoretical potential for systems-wide P savings is 21% for FW prevention and 9% for FW recycling; (v) while FW recycling results in exclusively domestic nutrient and energy savings, FW prevention leads to domestic and international savings due to large food imports; (vi) most effective is a combination of prevention and recycling, however, FW prevention reduces the potential for FW recycling and therefore needs to be prioritized to avoid potential overcapacities for FW recycling.

  2. Windrow co-composting of natural casings waste with sheep manure and dead leaves

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Makan, Abdelhadi, E-mail: abdelhadi.makan@gmail.com

    Highlights: • Waste management opportunities in small and medium companies were highlighted. • Pilot scale program for windrow co-composting of natural casings was investigated. • Compost preparation, characterization and application phases were discussed. • Natural casings co-composting has proved more viable and cost effective solution. - Abstract: After studying the waste management opportunities in small and medium companies of natural casings, composting has proved more viable and cost effective solution for the valorization of these types of waste, but its feasibility depends on the final product value. This paper investigated a pilot scale program for the windrow co-composting of naturalmore » casings waste with sheep manure and dead leaves incorporation. Processing, characterization and application of the final compost were described and the final compost was analyzed for pathogens, metals, nutrients, maturity, and agronomic parameters. The results showed that all test result levels were below the limits specified in the EPA regulations published in Title 40, Section 503, of the Code of Federal Regulations (40 CFR 503). Moreover, the agronomic value tests which include nutrients, organic matter, pH, electrical conductivity, etc. showed that the compost had high organic-matter content and low salt content, all of which indicate good compost characteristics. The ratio of nitrogen (N), phosphorus (P), and potassium (K), or NPK ratio, was measured at 1.6–0.9–0.7. Reported units are consistent with those found on fertilizer formulations.« less

  3. Phytate Degradation by Fungi and Bacteria that Inhabit Sawdust and Coffee Residue Composts

    PubMed Central

    Eida, Mohamed Fathallh; Nagaoka, Toshinori; Wasaki, Jun; Kouno, Kenji

    2013-01-01

    Phytate is the primary source of organic phosphorus, but it cannot be directly utilized by plants and is strongly adsorbed by the soil, reducing bioavailability. Composting is a process used to improve the bioavailability of phytate in organic wastes through degradation by microorganisms. In this study, we aimed to investigate the phytate-degrading ability of fungi and bacteria that inhabit sawdust compost and coffee residue compost, and their contribution to the composting process. In the plate assay, the fungi that formed clear zones around their colonies belonged to the genera Mucor, Penicillium, Galactomyces, Coniochaeta, Aspergillus, and Fusarium, while the bacteria belonged to the genera Pseudomonas, Enterobacter, Chitinophaga, and Rahnella. Eight fungal isolates (genera Mucor, Penicillium, Galactomyces, and Coniochaeta) and four bacterial isolates (genera Pseudomonas, Enterobacter, and Rahnella) were selected to evaluate phytase activity in their liquid culture and their ability to degrade phytate in organic materials composed of mushroom media residue and rice bran. The selected fungi degraded phytate in organic materials to varying degrees. Penicillium isolates showed the highest degradation ability and Coniochaeta isolate exhibited relatively high degradation ability. The clear zone diameters of these fungal isolates displayed significantly positive and negative correlations with inorganic and phytate phosphorus contents in the organic materials after incubation, respectively; however, none of the selected bacteria reduced phytate phosphorus in organic materials. It is therefore possible that fungi are major contributors to phytate degradation during composting. PMID:23100024

  4. Geotechnical Containment Alternatives for Industrial Waste Basin F, Rocky Mountain Arsenal, Denver, Colorado. A quantitative Evaluation

    DTIC Science & Technology

    1979-09-01

    RMA have included the production of GB nerve gas, lewisite, mustard gas, arsenic chloride, anticrop agents , and chlorine - gas, as well as the...fabrication if munitions containing white phosphorus and chemical warfare agents . The demilitarization of GB munitions and mustard-filled munitions and the...i , i iSndy S BLUE of .4 I i i lly G BLOE -GRE ii 0 ir i Grntl C - -- - I WHITE Sh__ O ickeft dit SL ML B~d~ 0 20 40 60 80 too Ovd’ted o LL IOU,O

  5. A dynamic model for organic waste management in Quebec (D-MOWIQ) as a tool to review environmental, societal and economic perspectives of a waste management policy.

    PubMed

    Hénault-Ethier, Louise; Martin, Jean-Philippe; Housset, Johann

    2017-08-01

    A dynamic systems model of organic waste management for the province of Quebec, Canada, was built. Six distinct modules taking into account social, economical and environmental issues and perspectives were included. Five scenarios were designed and tested to identify the potential consequences of different governmental and demographic combinations of decisions over time. Among these scenarios, one examines Quebec's organic waste management policy (2011-2015), while the other scenarios represent business as usual or emphasize ecology, economy or social benefits in the decision-making process. Model outputs suggest that the current governmental policy should yield favorable environmental benefits, energy production and waste valorization. The projections stemming from the current policy action plan approach the benefits gained by another scenario emphasizing the environmental aspects in the decision-making process. As expected, without the current policy and action plan in place, or business as usual, little improvements are expected in waste management compared to current trends, and strictly emphasizing economic imperatives does not favor sustainable organic waste management. Copyright © 2017. Published by Elsevier Ltd.

  6. Test Plan: WIPP bin-scale CH TRU waste tests

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Molecke, M.A.

    1990-08-01

    This WIPP Bin-Scale CH TRU Waste Test program described herein will provide relevant composition and kinetic rate data on gas generation and consumption resulting from TRU waste degradation, as impacted by synergistic interactions due to multiple degradation modes, waste form preparation, long-term repository environmental effects, engineered barrier materials, and, possibly, engineered modifications to be developed. Similar data on waste-brine leachate compositions and potentially hazardous volatile organic compounds released by the wastes will also be provided. The quantitative data output from these tests and associated technical expertise are required by the WIPP Performance Assessment (PA) program studies, and for the scientificmore » benefit of the overall WIPP project. This Test Plan describes the necessary scientific and technical aspects, justifications, and rational for successfully initiating and conducting the WIPP Bin-Scale CH TRU Waste Test program. This Test Plan is the controlling scientific design definition and overall requirements document for this WIPP in situ test, as defined by Sandia National Laboratories (SNL), scientific advisor to the US Department of Energy, WIPP Project Office (DOE/WPO). 55 refs., 16 figs., 19 tabs.« less

  7. Nutrient excretion, phosphorus characterization, and phosphorus solubility in excreta from broiler chicks fed diets containing graded levels of wheat distillers grains with solubles.

    PubMed

    Leytem, A B; Kwanyuen, P; Thacker, P

    2008-12-01

    Increased interest in ethanol production in North America has led to increased production of distillers dried grains with solubles (DDGS), the majority of which are fed to livestock. To determine the impact of including wheat DDGS in broiler diets on nutrient excretion and P characterization and solubility, 125 one-day-old male broiler chicks were fed wheat- and soybean meal-based diets containing 0, 5, 10, 15, or 20% wheat DDGS. There were 5 replicate pens per treatment, with 5 birds per pen arranged in a randomized block design. Apparent retention of both N and P were determined by using the indicator method. Nutrients excreted per kilogram of DM intake were also calculated. Characterization of excreta P was determined by (31)P-solution nuclear magnetic resonance spectroscopy, and water-soluble P (WSP) was determined by extraction of excreta with deionized water. The apparent retention of both N (P < 0.001) and P (P < 0.008) decreased linearly with increasing inclusion rates of DDGS from 0 to 20%. The nutrient output per kilogram of DM intake increased linearly with increased DDGS inclusion rate for N (P < 0.04), P (P < 0.0001), and WSP (P < 0.0003). As the inclusion rate of DDGS increased, the P concentration in excreta increased (P < 0.008), whereas excreta phytate P concentrations decreased (P < 0.01), which led to an increase in WSP and the fraction of total P that was soluble. Because the inclusion of DDGS in poultry diets increased N and P output, as well as the solubility of P excreted, care should be taken when including high levels of DDGS in poultry diets, because increases in N and P excretion are a concern from an environmental standpoint.

  8. A recycling index for food and health security: urban Taipei.

    PubMed

    Huang, Susana Tzy-Ying

    2010-01-01

    The modern food system has evolved into one with highly inefficient activities, producing waste at each step of the food pathway from growing to consumption and disposal. The present challenge is to improve recyclability in the food system as a fundamental need for food and health security. This paper develops a methodological approach for a Food Recycling Index (FRI) as a tool to assess recyclability in the food system, to identify opportunities to reduce waste production and environmental contamination, and to provide a self-assessment tool for participants in the food system. The urban Taipei framework was used to evaluate resource and nutrient flow within the food consumption and waste management processes of the food system. A stepwise approach for a FRI is described: (1) identification of the major inputs and outputs in the food chain; (2) classification of inputs and outputs into modules (energy, water, nutrients, and contaminants); (3) assignment of semi-quantitative scores for each module and food system process using a matrix; (4) assessment for recycling status and recyclability potential; (5) conversion of scores into sub-indices; (6) derivation of an aggregate FRI. A FRI of 1.24 was obtained on the basis of data for kitchen waste management in Taipei, a score which encompasses absolute and relative values for a comprehensive interpretation. It is apparent that a FRI could evolve into a broader ecosystem concept with health relevance. Community end-users and policy planners can adopt this approach to improve food and health security.

  9. [Decreasing the Output of Biomedical Waste in the Intensive Care Unit].

    PubMed

    Shen, Ming-Yi; Chang, Chun-Chu; Li, Mung-Yeng; Lin, Jui-Hsiang

    2017-10-01

    Advancing healthcare technologies have increased the use of disposable supplies that are made with PVC (polyvinyl chloride). Furthermore, biomedical effluents are steadily increasing due to severe patient treatment requirements in intensive care units. If these biomedical wastes are not properly managed and disposed, they will cause great harm to the environment and to public health. The statistics from an intensive care unit at one medical center in northern Taiwan show that the per-person biomedical effluents produced in 2014 increased 8.51% over 2013 levels. The main reasons for this increase included the low accuracy of classification of the contents of biomedical effluent collection buckets and of personnel effluents in the intensive care unit and the generally poor selection and designation of appropriate containers. Improvement measures were implemented in order to decrease the per-day weight of biomedical effluents by 10% per person (-0.22 kg/person/day). The project team developed various strategies, including creating classification-related slogans and posting promotional posters, holding education and training using actual case studies, establishing an "environmental protection pioneer" team, and promoting the use of appropriate containers. The implementation of the project decreased the per-day weight of biomedical effluents by 13.2% per person. Implementation of the project effectively reduced the per-person daily output of biological wastes and improved the waste separation behavior of healthcare personnel in the unit, giving patients and their families a better healthcare environment and helping advance the cause of environmental protection worldwide.

  10. Validation of a Waste Heat Recovery Model for a 1kW PEM Fuel Cell using Thermoelectric Generator

    NASA Astrophysics Data System (ADS)

    Saufi Sulaiman, M.; Mohamed, W. A. N. W.; Singh, B.; Fitrie Ghazali, M.

    2017-08-01

    Fuel cell is a device that generates electricity through electrochemical reaction between hydrogen and oxygen. A major by-product of the exothermic reaction is waste heat. The recovery of this waste heat has been subject to research on order to improve the overall energy utilization. However, nearly all of the studies concentrate on high temperature fuel cells using advanced thermodynamic cycles due to the high quality of waste heat. The method, characteristics and challenges in harvesting waste heat from a low temperature fuel cell using a direct energy conversion device is explored in this publication. A heat recovery system for an open cathode 1kW Proton Exchange Membrane fuel cell (PEM FC) was developed using a single unit of thermoelectric generator (TEG) attached to a heat pipe. Power output of the fuel cell was varied to obtain the performance of TEG at different stack temperatures. Natural and forced convections modes of cooling were applied to the TEG cold side. This is to simulate the conditions of a mini fuel cell vehicle at rest and in motion. The experimental results were analysed and a mathematical model based on the thermal circuit analogy was developed and compared. Forced convection mode resulted in higher temperature difference, output voltage and maximum power which are 3.3°C, 33.5 mV, and 113.96mW respectively. The heat recovery system for 1 kW Proton Exchange Membrane fuel cell (PEM FC) using single TEG was successfully established and improved the electrical production of fuel cell. Moreover, the experimental results obtained was in a good agreement with theoretical results.

  11. On the causal links between health indicator, output, combustible renewables and waste consumption, rail transport, and CO2 emissions: the case of Tunisia.

    PubMed

    Ben Jebli, Mehdi

    2016-08-01

    This study employs the autoregressive distributed lag (ARDL) approach and Granger causality test to investigate the short- and long-run relationships between health indicator, real GDP, combustible renewables and waste consumption, rail transport, and carbon dioxide (CO2) emissions for the case of Tunisia, spanning the period of 1990-2011. The empirical findings suggest that the Fisher statistic of the Wald test confirm the existence of a long-run relationship between the variables. Moreover, the long-run estimated elasticities of the ARDL model provide that output and combustible renewables and waste consumption have a positive and statistically significant impact on health situation, while CO2 emissions and rail transport both contribute to the decrease of health indicator. Granger causality results affirm that, in the short-run, there is a unidirectional causality running from real GDP to health, a unidirectional causality from health to combustible renewables and waste consumption, and a unidirectional causality from all variables to CO2 emissions. In the long-run, all the computed error correction terms are significant and confirm the existence of long-run association among the variables. Our recommendations for the Tunisian policymakers are as follows: (i) exploiting wastes and renewable fuels can be a good strategy to eliminate pollution caused by emissions and subsequently improve health quality, (ii) the use of renewable energy as a main source for national rail transport is an effective strategy for public health, (iii) renewable energy investment projects are beneficial plans for the country as this contributes to the growth of its own economy and reduce energy dependence, and (iii) more renewable energy consumption leads not only to decrease pollution but also to stimulate health situation because of the increase of doctors and nurses numbers.

  12. Improved thermoelectric power output from multilayered polyethylenimine doped carbon nanotube based organic composites

    NASA Astrophysics Data System (ADS)

    Hewitt, Corey A.; Montgomery, David S.; Barbalace, Ryan L.; Carlson, Rowland D.; Carroll, David L.

    2014-05-01

    By appropriately selecting the carbon nanotube type and n-type dopant for the conduction layers in a multilayered carbon nanotube composite, the total device thermoelectric power output can be increased significantly. The particular materials chosen in this study were raw single walled carbon nanotubes for the p-type layers and polyethylenimine doped single walled carbon nanotubes for the n-type layers. The combination of these two conduction layers leads to a single thermocouple Seebeck coefficient of 96 ± 4 μVK-1, which is 6.3 times higher than that previously reported. This improved Seebeck coefficient leads to a total power output of 14.7 nW per thermocouple at the maximum temperature difference of 50 K, which is 44 times the power output per thermocouple for the previously reported results. Ultimately, these thermoelectric power output improvements help to increase the potential use of these lightweight, flexible, and durable organic multilayered carbon nanotube based thermoelectric modules in low powered electronics applications, where waste heat is available.

  13. ERA: Adverse Consequences

    ERIC Educational Resources Information Center

    Martin, Brian

    2011-01-01

    Excellence in Research for Australia has a number of limitations: inputs are counted as outputs, time is wasted, disciplinary research is favoured and public engagement is discouraged. Most importantly, by focusing on measurement and emphasising competition, ERA may actually undermine the cooperation and intrinsic motivation that underpin research…

  14. Electroless nickel – phosphorus coating on crab shell particles and its characterization

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Arulvel, S., E-mail: gs.arulvel.research@gmail.com; Elayaperumal, A.; Jagatheeshwaran, M.S.

    Being hydrophilic material, crab shell particles have only a limited number of applications. It is, therefore, necessary to modify the surface of the crab shell particles. To make them useful ever for the applications, the main theme we proposed in this article is to utilize crab shell particles (CSP) with the core coated with nickel phosphorus (NiP) as a shell using the electroless coating process. For dealing with serious environmental problems, utilization of waste bio-shells is always an important factor to be considered. Chelating ability of crab shell particles eliminates the surface activation in this work proceeding to the coatingmore » process. The functional group, phase structure, microstructure, chemical composition and thermal analysis of CSP and NiP/CSP were characterized using Fourier transform infra-red spectroscopy (FTIR), x-ray diffraction analyzer (XRD), scanning electron microscope (SEM), energy-dispersive x-ray spectroscopy (EDS), and thermogravimetric analysis (TGA). The combination of an amorphous and crystalline structure was exhibited by CSP and NiP/CSP. NiP/CSP has shown a better thermal stability when compared to uncoated CSP. Stability test, adsorption test, and conductivity test were conducted for the study of adsorption behavior and conductivity of the particles. CSP presented a hydrophilic property in contrast to hydrophobic NiP/CSP. NiP/CSP presented a conductivity of about 44% greater compared to the CSP without any fluctuations. - Highlights: • Utilization of crab shell waste is focused on. • NiP coating on crab shell particle is fabricated using electroless process. • Thermal analysis, stability test, adsorption test and conductivity test were done. • Organic matrix of crab shell particle favors the coating process. • Results demonstrate the characterization of CSP core – NiP shell structure.« less

  15. Quasi-dynamic Material Flow Analysis applied to the Austrian Phosphorus cycle

    NASA Astrophysics Data System (ADS)

    Zoboli, Ottavia; Rechberger, Helmut

    2013-04-01

    Phosphorus (P) is one of the key elements that sustain life on earth and that allow achieving the current high levels of food production worldwide. It is a non-renewable resource, without any existing substitute. Because of its current dissipative use by mankind and to its very slow geochemical cycle, this resource is rapidly depleting and it is strongly connected to the problem of ensuring food security. Moreover P is also associated to important environmental problems. Its extraction often generates hazardous wastes, while its accumulation in water bodies can lead to eutrophication, with consequent severe ecological damages. It is therefore necessary to analyze and understand in detail the system of P, in regard to its use and management, to identify the processes that should be targeted in order to reduce the overall consumption of this resource. This work aims at establishing a generic quasi-dynamic model, which describes the Austrian P-budget and which allows investigating the trends of P use in the past, but also selected future scenarios. Given the importance of P throughout the whole anthropogenic metabolism, the model is based on a comprehensive system that encompasses several economic sectors, from agriculture and animal husbandry to industry, consumption and waste and wastewater treatment. Furthermore it includes the hydrosphere, to assess the losses of P into water bodies, due to the importance of eutrophication problems. The methodology applied is Material Flow Analysis (MFA), which is a systemic approach to assess and balance the stocks and flows of a material within a system defined in space and time. Moreover the model is integrated in the software STAN, a freeware tailor-made for MFA. Particular attention is paid to the characteristics and the quality of the data, in order to include data uncertainty and error propagation in the dynamic balance.

  16. Analysis, Evaluation and Measures to Reduce Environmental Risk within Watershed Areas of the Eastern Zauralye District Lakes

    NASA Astrophysics Data System (ADS)

    Rasskasova, N. S.; Bobylev, A. V.; Malaev, A. V.

    2017-11-01

    The authors have performed an analysis for the use of watershed areas of the lakes of the Eastern Zauralye district (the territory to the east of Ural) for national economic purposes. The analysis gave a possibility to assess the impact of watersheds depending on the applied technologies on the dump of various runoff into the reservoir waters. The watershed areas of all lakes have been found to be actively used as pastures, farmland and recreational resources. Some of the main sources of solid and liquid industrial waste are cattle farms and agricultural land using outdated equipment and technologies. The study of 26 km of the watershed line areas showed that pollutants (household garbage, fuels and lubricants) and organic substances (phosphorus and nitrogen) got into the waters of the reservoirs. The maximum runoff of solid and liquid waste into the waters of the lakes happens in summer which leads to increased concentrations of organic substances, an increase in productivity of alga and higher aquatic flora determining the degree of eutrophication and trophy in the reservoirs. The average annual trophic status of TSI lakes of the Eastern Zauralye district is 56 which corresponds to the typical phase of eutrophy. The reduced transparency of lakes is also the evidence of an increase in biological productivity of reservoirs, their eutrophication and, as a result, the water quality deterioration. The intensive eutrophication of reservoirs, in its turn, most significantly affects the concentration of the ammonium form of nitrogen, total phosphorus and total nitrogen, increase in pH and deterioration of oxygen condition. The authors have developed various activities to reduce a technogenic risk in the watershed areas of the lakes in the Eastern Zauralye district which can be applied to other areas using the analogy method.

  17. Water treatment residual (WTR)-coated wood mulch for alleviation of toxic metals and phosphorus from polluted urban stormwater runoff.

    PubMed

    Soleimanifar, Hanieh; Deng, Yang; Wu, Laying; Sarkar, Dibyendu

    2016-07-01

    Aluminum-based water treatment residual (WTR)-coated wood mulches were synthesized and tested for removal of heavy metals and phosphorus (P) in synthetic urban stormwater. WTRs are an industrial waste produced from coagulation in water treatment facilities, primarily composed of amorphous aluminum or iron hydroxides. Batch tests showed that the composite filter media could effectively adsorb 97% lead (Pb), 76% zinc (Zn), 81% copper (Cu) and 97% P from the synthetic stormwater (Pb = 100 μg/L, Zn = 800 μg/L, Cu = 100 μg/L, P = 2.30 mg/L, and pH = 7.0) within 120 min, due to the presence of aluminum hydroxides as an active adsorbent. The adsorption was a 2(nd)-order reaction with respect toward each pollutant. Column tests demonstrated that the WTR-coated mulches considerably alleviated the select pollutants under a continuous-flow condition over the entire filtration period. The effluent Pb, Zn, Cu, and P varied at 0.5-8.9%, 33.4-46.7%, 45.8-55.8%, and 6.4-51.9% of their respective initial concentrations with the increasing bed volume from 0 to 50. Synthetic precipitation leaching procedure (SPLP) and toxicity characteristic leaching procedure (TCLP) tests indicated that leached contaminants were all below the U.S. criteria, suggesting that the release of undesired chemicals under rainfall or landfilling conditions is not a concern during application. This study demonstrates that the WTR-coated mulches are a new, low-cost, and effective filter media for urban stormwater treatment. Equally important, this study provides a sustainable approach to beneficially reuse an industrial waste for environmental pollution control. Copyright © 2016 Elsevier Ltd. All rights reserved.

  18. 40 CFR 116.4 - Designation of hazardous substances.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 7664382 Orthophosphoric acid Phosphorus 7723140 Black phosphorus, red phosphorus, white phosphorus, yellow phosphorus Phosphorus oxychloride 10025873 Phosphoryl chloride, phosphorus chloride Phosphorus pentasulfide 1314803 Phosphoric sulfide, thiophosphoric anhydride, phosphorus persulfide Phosphorus trichloride 7719122...

  19. 40 CFR 116.4 - Designation of hazardous substances.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 7664382 Orthophosphoric acid Phosphorus 7723140 Black phosphorus, red phosphorus, white phosphorus, yellow phosphorus Phosphorus oxychloride 10025873 Phosphoryl chloride, phosphorus chloride Phosphorus pentasulfide 1314803 Phosphoric sulfide, thiophosphoric anhydride, phosphorus persulfide Phosphorus trichloride 7719122...

  20. Monitoring/characterization of stickies contaminants coming from a papermaking plant--Toward an innovative exploitation of the screen rejects to levulinic acid.

    PubMed

    Licursi, Domenico; Antonetti, Claudia; Martinelli, Marco; Ribechini, Erika; Zanaboni, Marco; Raspolli Galletti, Anna Maria

    2016-03-01

    Recycled paper needs a lot of mechanical/chemical treatments for its re-use in the papermaking process. Some of these ones produce considerable rejected waste fractions, such as "screen rejects", which include both cellulose fibers and non-fibrous organic contaminants, or "stickies", these last representing a shortcoming both for the papermaking process and for the quality of the final product. Instead, the accepted fractions coming from these unit operations become progressively poorer in contaminants and richer in cellulose. Here, input and output streams coming from mechanical screening systems of a papermaking plant using recycled paper for cardboard production were sampled and analyzed directly and after solvent extraction, thus confirming the abundant presence of styrene-butadiene rubber (SBR) and ethylene vinyl acetate (EVA) copolymers in the output rejected stream and cellulose in the output accepted one. Despite some significant drawbacks, the "screen reject" fraction could be traditionally used as fuel for energy recovery within the paper mill, in agreement with the integrated recycled paper mill approach. The waste, which still contains a cellulose fraction, can be also exploited by means of the hydrothermal route to give levulinic acid, a platform chemical of very high value added. Copyright © 2016 Elsevier Ltd. All rights reserved.

  1. Thermodynamic analysis of performance improvement by reheat on the CO2 transcritical power cycle

    NASA Astrophysics Data System (ADS)

    Tuo, Hanfei

    2012-06-01

    The CO2 transcritical rankine power cycle has been widely investigated recently, because of its better temperature glide matching between sensible heat source and working fluid in vapor generator, and its desirable qualities, such as moderate critical point, little environment impact and low cost. A reheat CO2 transcritical power cycle with two stage expansion is presented to improve baseline cycle performance in this paper. Energy and exergy analysis are carried out to investigate effects of important parameters on cycle performance. The main results show that reheat cycle performance is sensitive to the variation of medium pressures and the optimum medium pressures exist for maximizing work output and thermal efficiency, respectively. Reheat cycle is compared to baseline cycle under the same conditions. More significant improvements by reheat are obtained at lower turbine inlet temperatures and larger high cycle pressure. Work output improvement is much higher than thermal efficiency improvement, because extra waste heat is required to reheat CO2. Based on second law analysis, exergy efficiency of reheat cycle is also higher than that of baseline cycle, because more useful work is converted from waste heat. Reheat with two stage expansion has great potential to improve thermal efficiency and especially net work output of a CO2 transcritical power cycle using a low-grade heat source.

  2. Employing response surface methodology (RSM) to improve methane production from cotton stalk.

    PubMed

    Zhang, Han; Khalid, Habiba; Li, Wanwu; He, Yanfeng; Liu, Guangqing; Chen, Chang

    2018-03-01

    China is the largest cotton producer with the cotton output accounting for 25% of the total world's cotton production. A large quantity of cotton stalk (CS) waste is generated which is burned and causes environmental and ecological problems. This study investigated the anaerobic digestibility of CS by focusing on improving the methane yield by applying central composite design of response surface methodology (RSM). The purpose of this study was to determine the best level of factors to optimize the desired output of methane production from CS. Thus, it was necessary to describe the relationship of many individual variables with one or more response values for the effective utilization of CS. The influences of feed to inoculum (F/I) ratio and organic loading (OL) on methane production were investigated. Results showed that the experimental methane yield (EMY) and volatile solid (VS) removal were calculated to be 70.22 mL/gVS and 14.33% at F/I ratio of 0.79 and organic loading of 25.61 gVS/L, respectively. Characteristics of final effluent showed that the anaerobic system was stable. This research laid a foundation for future application of CS to alleviate the problems of waste pollution and energy output.

  3. Technical Feasibility Evaluation on The Use of A Peltier Thermoelectric Module to Recover Automobile Exhaust Heat

    NASA Astrophysics Data System (ADS)

    Sugiartha, N.; Sastra Negara, P.

    2018-01-01

    A thermoelectric module composes of integrated p-n semiconductors as hot and cold side junctions and uses Seebeck effect between them to function as a thermoelectric generator (TEG) to directly convert heat into electrical power. Exhaust heat from engines as otherwise wasted to the atmosphere is one of the heat sources freely available to drive the TEG. This paper evaluates technical feasibility on the use of a Peltier thermoelectric module for energy recovery application of such kind of waste heat. An experimental apparatus has been setup to simulate real conditions of automobile engine exhaust piping system. It includes a square section aluminium ducting, an aluminium fin heat sink and a TEC1 12706 thermoelectric module. A heater and a cooling fan are employed to simulate hot exhaust gas and ambient air flows, respectively. Electrical loading is controlled by resistors. Dependent variables measured during the test are cold and hot side temperatures, open and loaded circuit output voltages and electrical current. The test results revealed a promising application of the Peltier thermoelectric module for the engine exhaust heat recovery, though the loaded output power produced and loaded output voltage are still far lower than the commercially thermoelectric module originally purposed for the TEG application.

  4. Biorefining of precious metals from wastes: an answer to manufacturing of cheap nanocatalysts for fuel cells and power generation via an integrated biorefinery?

    PubMed

    Yong, Ping; Mikheenko, Iryna P; Deplanche, Kevin; Redwood, Mark D; Macaskie, Lynne E

    2010-12-01

    Bio-manufacturing of nano-scale palladium was achieved via enzymatically-mediated deposition of Pd from solution using Desulfovibrio desulfuricans, Escherichia coli and Cupriavidus metallidurans. Dried 'Bio-Pd' materials were sintered, applied onto carbon papers and tested as anodes in a proton exchange membrane (PEM) fuel cell for power production. At a Pd(0) loading of 25% by mass the fuel cell power using Bio-Pd( D. desulfuricans ) (positive control) and Bio-Pd( E. coli ) (negative control) was ~140 and ~30 mW respectively. Bio-Pd( C. metallidurans ) was intermediate between these with a power output of ~60 mW. An engineered strain of E. coli (IC007) was previously reported to give a Bio-Pd that was >3-fold more active than Bio-Pd of the parent E. coli MC4100 (i.e. a power output of >110 mW). Using this strain, a mixed metallic catalyst was manufactured from an industrial processing waste. This 'Bio-precious metal' ('Bio-PM') gave ~68% of the power output as commercial Pd(0) and ~50% of that of Bio-Pd( D. desulfuricans ) when used as fuel cell anodic material. The results are discussed in relation to integrated bioprocessing for clean energy.

  5. Material Flow Analysis as a Tool to improve Waste Management Systems: The Case of Austria.

    PubMed

    Allesch, Astrid; Brunner, Paul H

    2017-01-03

    This paper demonstrates the power of material flow analysis (MFA) for designing waste management (WM) systems and for supporting decisions with regards to given environmental and resource goals. Based on a comprehensive case study of a nationwide WM-system, advantages and drawbacks of a mass balance approach are discussed. Using the software STAN, a material flow system comprising all relevant inputs, stocks and outputs of wastes, products, residues, and emissions is established and quantified. Material balances on the level of goods and selected substances (C, Cd, Cr, Cu, Fe, Hg, N, Ni, P, Pb, Zn) are developed to characterize this WM-system. The MFA results serve well as a base for further assessments. Based on given goals, stakeholders engaged in this study selected the following seven criteria for evaluating their WM-system: (i) waste input into the system, (ii) export of waste (iii) gaseous emissions from waste treatment plants, (iv) long-term gaseous and liquid emissions from landfills, (v) waste being recycled, (vi) waste for energy recovery, (vii) total waste landfilled. By scenario analysis, strengths and weaknesses of different measures were identified. The results reveal the benefits of a mass balance approach due to redundancy, data consistency, and transparency for optimization, design, and decision making in WM.

  6. Analysing the production and treatment of solid waste using a national accounting framework.

    PubMed

    Delahaye, Roel; Hoekstra, Rutger; Nootenboom, Leslie

    2011-07-01

    Our knowledge of the relationship between the economy and the environment has increased significantly over recent decades. One of the areas in which this is most apparent is the area of environmental accounting, where environmental data is presented according to national accounting principles. These accounts provide consistent, complete and detailed information for understanding environmental-economic interdependencies. One of the modules of these accounts is the waste accounts which record the origin and destination of waste materials. The first part of this paper discusses the Dutch waste accounts and their relation with economic indicators. In the second part a number of applications, which are based on the input-output model, are applied to these accounts. This section includes a novel structural decomposition analysis which quantifies the underlying driving forces of changes in total waste and landfilled waste between 1995 and 2004. The results show that the total amount of waste is mainly driven by economic growth (positive effect) and the direct export of waste (negative effect). The models also show that the construction sector has played a very important part in the reduction of waste. Furthermore, the decrease in the amount of landfilled waste, which is caused by Dutch regulations, has led to a large shift towards recycling and to a lesser degree incineration. Finally, the calculations for the 'environmental trade balance' for waste show that the waste-contents of exports exceed that of imports. This paper shows that the waste accounts have many analytical and policy-relevant applications.

  7. Physical-chemical treatment of wastes: a way to close turnover of elements in LSS

    NASA Astrophysics Data System (ADS)

    Kudenko, Yu A.; Gribovskaya, I. V.; Zolotukhin, I. G.

    2000-05-01

    "Man-plants-physical-chemical unit" system designed for space stations or terrestrial ecohabitats to close steady-state mineral, water and gas exchange is proposed. The physical-chemical unit is to mineralize all inedible plant wastes and physiological human wastes (feces, urine, gray water) by electromagnetically activated hydrogen peroxide in an oxidation reactor. The final product is a mineralized solution containing all elements balanced for plants' requirements. The solution has been successfully used in experiments to grow wheat, beans and radish. The solution was reusable: the evaporated moisture was replenished by the phytotron condensate. Sodium salination of plants was precluded by evaporating reactor-mineralized urine to sodium saturation concentration to crystallize out NaCl which can be used as food for the crew. The remaining mineralized product was brought back for nutrition of plants. The gas composition of the reactor comprises O 2, N 2, CO 2, NH 3, H 2. At the reactor's output hydrogen and oxygen were catalyzed into water, NH 3 was converted in a water trap into NH 4 and used for nutrition of plants. A special accessory at the reactor's output may produce hydrogen peroxide from intrasystem water and gas which makes possible to close gas loops between LSS components.

  8. Hydrogen and sulfur recovery from hydrogen sulfide wastes

    DOEpatents

    Harkness, J.B.L.; Gorski, A.J.; Daniels, E.J.

    1993-05-18

    A process is described for generating hydrogen and elemental sulfur from hydrogen sulfide waste in which the hydrogen sulfide is [dis]associated under plasma conditions and a portion of the hydrogen output is used in a catalytic reduction unit to convert sulfur-containing impurities to hydrogen sulfide for recycle, the process also including the addition of an ionizing gas such as argon to initiate the plasma reaction at lower energy, a preheater for the input to the reactor and an internal adjustable choke in the reactor for enhanced coupling with the microwave energy input.

  9. Hydrogen and sulfur recovery from hydrogen sulfide wastes

    DOEpatents

    Harkness, John B. L.; Gorski, Anthony J.; Daniels, Edward J.

    1993-01-01

    A process for generating hydrogen and elemental sulfur from hydrogen sulfide waste in which the hydrogen sulfide is associated under plasma conditions and a portion of the hydrogen output is used in a catalytic reduction unit to convert sulfur-containing impurities to hydrogen sulfide for recycle, the process also including the addition of an ionizing gas such as argon to initiate the plasma reaction at lower energy, a preheater for the input to the reactor and an internal adjustable choke in the reactor for enhanced coupling with the microwave energy input.

  10. BROAD-BASED ENVIRONMENTAL LIFE CYCLE ASSESSMENT

    EPA Science Inventory

    Pollution prevention through Life Cycle Assessment (LCA) is a departure from evaluating waste management options that look mainly at single issues such as recyclability or reduced toxicity. An LCA is a snapshot in time of inputs and outputs. It can be used as an objective technic...

  11. Parametric Optimization of Thermoelectric Generators for Waste Heat Recovery

    NASA Astrophysics Data System (ADS)

    Huang, Shouyuan; Xu, Xianfan

    2016-10-01

    This paper presents a methodology for design optimization of thermoelectric-based waste heat recovery systems called thermoelectric generators (TEGs). The aim is to maximize the power output from thermoelectrics which are used as add-on modules to an existing gas-phase heat exchanger, without negative impacts, e.g., maintaining a minimum heat dissipation rate from the hot side. A numerical model is proposed for TEG coupled heat transfer and electrical power output. This finite-volume-based model simulates different types of heat exchangers, i.e., counter-flow and cross-flow, for TEGs. Multiple-filled skutterudites and bismuth-telluride-based thermoelectric modules (TEMs) are applied, respectively, in higher and lower temperature regions. The response surface methodology is implemented to determine the optimized TEG size along and across the flow direction and the height of thermoelectric couple legs, and to analyze their covariance and relative sensitivity. A genetic algorithm is employed to verify the globality of the optimum. The presented method will be generally useful for optimizing heat-exchanger-based TEG performance.

  12. Optimal Number of Thermoelectric Couples in a Heat Pipe Assisted Thermoelectric Generator for Waste Heat Recovery

    NASA Astrophysics Data System (ADS)

    Liu, Tongjun; Wang, Tongcai; Luan, Weiling; Cao, Qimin

    2017-05-01

    Waste heat recovery through thermoelectric generators is a promising way to improve energy conversion efficiency. This paper proposes a type of heat pipe assisted thermoelectric generator (HP-TEG) system. The expandable evaporator and condenser surface of the heat pipe facilitates the intensive assembly of thermoelectric (TE) modules to compose a compact device. Compared with a conventional layer structure thermoelectric generator, this system is feasible for the installment of more TE couples, thus increasing power output. To investigate the performance of the HP-TEG and the optimal number of TE couples, a theoretical model was presented and verified by experiment results. Further theoretical analysis results showed the performance of the HP-TEG could be further improved by optimizing the parameters, including the inlet air temperature, the thermal resistance of the heating section, and thermal resistance of the cooling structure. Moreover, applying a proper number of TE couples is important to acquire the best power output performance.

  13. X-ray dual energy spectral parameter optimization for bone Calcium/Phosphorus mass ratio estimation

    NASA Astrophysics Data System (ADS)

    Sotiropoulou, P. I.; Fountos, G. P.; Martini, N. D.; Koukou, V. N.; Michail, C. M.; Valais, I. G.; Kandarakis, I. S.; Nikiforidis, G. C.

    2015-09-01

    Calcium (Ca) and Phosphorus (P) bone mass ratio has been identified as an important, yet underutilized, risk factor in osteoporosis diagnosis. The purpose of this simulation study is to investigate the use of effective or mean mass attenuation coefficient in Ca/P mass ratio estimation with the use of a dual-energy method. The investigation was based on the minimization of the accuracy of Ca/P ratio, with respect to the Coefficient of Variation of the ratio. Different set-ups were examined, based on the K-edge filtering technique and single X-ray exposure. The modified X-ray output was attenuated by various Ca/P mass ratios resulting in nine calibration points, while keeping constant the total bone thickness. The simulated data were obtained considering a photon counting energy discriminating detector. The standard deviation of the residuals was used to compare and evaluate the accuracy between the different dual energy set-ups. The optimum mass attenuation coefficient for the Ca/P mass ratio estimation was the effective coefficient in all the examined set-ups. The variation of the residuals between the different set-ups was not significant.

  14. Effects of a Cattail Wetland on Water Quality of Irondequoit Creek near Rochester, New York

    USGS Publications Warehouse

    Coon, William F.; Bernard, John M.; Seischab, Franz K.

    2000-01-01

    A 6-year (1990-96) study of the Ellison Park wetland, a 423-acre, predominantly cattail (Typha glauca) marsh in Monroe County, N.Y., was conducted to document the effect that this wetland has on the water quality of Irondequoit Creek, which flows through it. Irondequoit Creek drains 151 square miles of mostly urban and suburban land and is the main tributary to Irondequoit Bay on Lake Ontario. The wetland was a sink for total phosphorus and total suspended solids (28 and 47 percent removal efficiencies, respectively, over the 6-year study period). Sedimentation and vegetative filtration appear to be the primary mechanisms for the decrease in loads of these constituents. Total nitrogen loads were decreased slightly by the wetland; removal efficiencies for ammonia-plus-organic nitrogen and nitrate-plus-nitrite were 6 and 3 percent, respectively. The proportions of total phosphorus and total nitrogen constituents were altered by the wetland. Orthophosphate and ammonia nitrogen were generated within the wetland and represented 12 percent of the total phosphorus output load and 1.8 percent of total nitrogen output load, respectively. Conservative chemicals, such as chloride and sulfate, were littleaffected by the wetland. Concentrations of zinc, lead, and cadmium showed statistically significant decreases, which are attributed to sedimentation and filtration of sediment and organic matter to which these elements adsorb.Sediment samples from open-water depositional areas in the wetland contained high concentrations of (1) trace metals, including barium, manganese, strontium, zinc (each of which exceeded 200 parts per million), as well as chromium, copper, lead, and vanadium, and (2) some polycyclic aromatic hydrocarbons. Persistent organochlorine pesticides, such as chlordane, dieldrin, DDT and its degradation products (DDD and DDE), and polychlorinated biphenyls (PCB's), also were detected, but concentrations of these compounds were within the ranges often found in depositional environments in highly urbanized areas.Cattail shoots attained a maximum height of 350 centimeters, a density of more than 30 shoots per square meter, and total biomass of more than 5,600 grams per square meter (46 percent of which was in above-ground tissues during the growing season). Nitrogen and potassium were three times more abundant in above-ground tissues (2.4 and 1.5 percent by dry weight, respectively) than in below-ground tissues (0.8 and 0.5 percent, respectively). Concentrations of phosphorus, molybdenum, and manganese in above-ground tissues were similar to those in below-ground tissues, but the concentrations of all other constituents were considerably higher in below-ground tissues. Concentrations of several elements exceeded those typically found in natural wetlands; these included manganese (417 ppm, parts per million) and sodium (3,600 ppm) in above-ground tissues, and aluminum (1,540 ppm), iron (15,400 ppm), manganese (433 ppm), and sodium (10,000 ppm) in below-ground tissues.Large quantities of nutrients are assimilated by wetland vegetation during the growing season, but neither tissue production nor microbial metabolic processes appeared to play a significant role in the observed patterns of surface-water chemical input-to-output relations on a seasonal basis. Presumably, internal cycling of nutrients sequestered in the sediments and detritus, combined with a summer increase in microbially mediated chemical transformations, obscured the effects of vegetative assimilation during the summer on surface-water chemical loads. Additionally, the natural confinement of most flows within the banks of Irondequoit Creek, which resulted in passage of stormwater through the wetland with little dispersion or detention in the cattail and backwater areas, diminished the capability of the wetland to improve water quality. Additional factors that probably affected the chemical-removal efficiency of the wetland included chemical inflow loading rates, storage and release mechanisms of the sediments (sedimentation, adsorption, filtration, precipitaton, dissolution, and resuspension), and accretion and burial of organic matter.Measurements of chlorophyll_a concentrations, and calculations of potential phosphorus concentrations, since the 1970’s indicate an improvement in the trophic state of Irondequoit Bay. Estimated average annual loads (1990-96) of selected constituents entering Irondequoit Bay indicate that, since 1980, the loads of all major forms of nitrogen have decreased, chloride loads have increased, and sulfate loads have changed little. Inputs of total phosphorus and suspended solids to the wetland have increased since 1980, possibly as a result of increased erosion by stormflows from an increasingly developed watershed. The wetland decreases the loads of these constituents, but the trends of these loads entering Irondequoit Bay cannot be reliably defined because the removal efficiencies during the two earlier study periods (1980–81 and 1984–88) are known.

  15. Vermicomposting of sugar industry waste (press mud) mixed with cow dung employing an epigeic earthworm Eisenia fetida.

    PubMed

    Sangwan, P; Kaushik, C P; Garg, V K

    2010-01-01

    In India, millions of tons of press mud (PM) are generated by sugar mills every year. This paper reports the potential of vermitechnology to convert sugar industry waste PM mixed with cow dung (CD) into vermicompost, employing an epigeic earthworm Eisenia fetida. A total of six different reactors were established having different ratios of PM and CD including one control (CD only). The growth and fecundity of E. fetida was monitored for 13 weeks. Maximum growth was recorded in 100% CD, but earthworms grew and reproduced favourably up to 1:1 PM and CD feed composition. However, greater percentages of PM in different reactors significantly affected the growth and fecundity of worms. Vermicomposting resulted in a decrease in carbon concentration and an increase in nitrogen, phosphorus and calcium concentrations of the vermicompost. Investigations indicated that vermicomposting could be an alternative technology for the management of PM into useful fertilizing material, if mixed at maximum 50% with CD.

  16. Using cow dung and spent coffee grounds to enhance the two-stage co-composting of green waste.

    PubMed

    Zhang, Lu; Sun, Xiangyang

    2017-12-01

    The objective of this study was to determine the effects of cow dung (CD) (at 0%, 20%, and 35%) and/or spent coffee grounds (SCGs) (at 0%, 30%, and 45%) as amendments in the two-stage co-composting of green waste (GW); the percentages refer to grams of amendment per 100g of GW based on dry weights. The combined addition of CD and SCGs improved the conditions during co-composting and the quality of the compost product in terms of composting temperature; particle-size distribution; mechanical properties; nitrogen changes; low-molecular weight compounds; humic substances; the degradation of lignin, cellulose, and hemicellulose; enzyme activities; the contents of total Kjeldahl nitrogen, total phosphorus, and total potassium; and the toxicity to germinating seeds. The combined addition of 20% CD and 45% SCGs to GW resulted in the production of the highest quality compost product and did so in only 21days. Copyright © 2017 Elsevier Ltd. All rights reserved.

  17. Dual inoculation with an Aarbuscular Mycorrhizal fungus and Rhizobium to facilitate the growth of alfalfa on coal mine substrates

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wu, F.Y.; Bi, Y.L.; Wong, M.H.

    2009-07-01

    A pot experiment was conducted to investigate the effects of Glomus mosseae and Rhizobium on Medicago sativa grown on three types of coal mine substrates, namely a mixture of coal wastes and sands (CS), coal wastes and fly ash (CF), and fly ash (FA). Inoculation with Rhizobium alone did not result in any growth response but G. mosseae alone displayed a significant effect on plant growth. G. mosseae markedly increased the survival rate of M. sativa in CS substrate. In CF and FA substrates the respective oven dry weights of M. sativa inoculated with G. mosseae were 1.8 and 5.1more » times higher than those without inoculation. Based on nitrogen (N), phosphorus (P) and potassium (K) uptake and legume growth, the results also show that dual inoculation in CS and CF substrates elicited a synergistic effect. This indicates that inoculation with arbuscular mycorrhizal (AM) fungi may be a promising approach for revegetation of coal mine substrates.« less

  18. Influence of heavy natural radioactive nuclides introduced in soil with labelled fertilizers and ameliorants on cytogenetic effects in plants

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Arkhipov, N.P.; Bazylev, V.V.; Bobrikova, E.T.

    1985-05-01

    The effect of heavy natural radioactive nuclides (STYU, STSTh, SSWRa, S Po, and S Pb) in labeled fertilizers and ameliorants on the number of meiotic chromosome aberrations was studied in field experiments on the major crop plants, wheat, barley and corn. The mining and use of coal and oil and the processing of raw materials in the production of rare and nonferrous metals produce high quantities of wastes with an elevated content of natural radionuclides. One possible way for technogenically altering the natural radiation background of soil is the active utilization of phosphorus fertilizers in agriculture, and also the use,more » as fertilizers and ameliorants of wastes from nonferrous metallurgy, of the ash from heat and power plants and various intermediates from the chemical industry. The authors conclude that the introduction of labeled ammophos, nitrophos and phosphogypsum, which raised the soil background concentration of the specified elements, produced an increase in the number of cells with meiotic chromosome aberrations.« less

  19. Effects of treatment time and temperature on the DC corona pretreatment performance of waste activated sludge

    NASA Astrophysics Data System (ADS)

    Yu, GAO; Ning, ZHAO; Yongdi, DENG; Minghang, WANG; Boxue, DU

    2018-02-01

    In order to improve the anaerobic digestion efficiency of waste activated sludge (WAS), a pretreatment procedure should be carried out so as to disrupt the microbial cell structure, thus releasing intracellular organic matters. In this paper, a corona discharge triggered by a DC voltage was employed to pre-treat WAS for various time periods under different temperatures. The magnitude of the DC voltage was 4 kV at both negative and positive polarities. The changes in the soluble chemical oxygen demand, phosphorus and nitrogen content, and pH value within the WAS were utilized to estimate the pretreatment performance of the DC corona. It was found that with increasing treatment time, the pretreatment efficiency tends to be reduced. With increased temperature, the pretreatment efficiency appears to be better. It is suggested that the oxidative species and the active particles generated in the corona discharge play an important role in disrupting the microbial cell structure, which is dependent upon the treatment time and the temperature.

  20. Circular economy of plastic packaging: Current practice and perspectives in Austria.

    PubMed

    Van Eygen, Emile; Laner, David; Fellner, Johann

    2018-02-01

    Plastics, especially from packaging, have gained increasing attention in waste management, driving many policy initiatives to improve the circularity of these materials in the economy to increase resource efficiency. In this context, the EU has proposed increasing targets to encourage the recycling of (plastic) packaging. To accurately calculate the recycling rates, detailed information on the flows of plastic packaging is needed. Therefore, the aim of this paper is to quantitatively and qualitatively investigate the waste management system for plastic packaging in Austria in 2013 using material flow analysis, taking into account the used product types and the polymer composition. The results show that 300,000 ± 3% t/a (35 kg/cap·a) of waste plastic packaging were produced, mainly composed of large and small films and small hollow bodies, including PET bottles. Correspondingly, the polymer composition of the waste stream was dominated by LDPE (46% ± 6%), PET (19% ± 4%) and PP (14% ± 6%). 58% ± 3% was collected separately, and regarding the final treatment, 26% ± 7% of the total waste stream was recovered as re-granulates, whereas the rest was thermally recovered in waste-to-energy plants (40% ± 3%) and the cement industry (33% ± 6%). The targets set by the EU and Austria were reached comfortably, although to reach the proposed future target major technological steps regarding collection and sorting will be needed. However, the current calculation point of the targets, i.e. on the input side of the recycling plant, is not deemed to be fully in line with the overall objective of the circular economy, namely to keep materials in the economy and prevent losses. It is therefore recommended that the targets be calculated with respect to the actual output of the recycling process, provided that the quality of the output products is maintained, to accurately assess the performance of the waste management system. Copyright © 2017 Elsevier Ltd. All rights reserved.

  1. Use of phosphorus-sorbing materials to remove phosphate from greenhouse wastewater.

    PubMed

    Dunets, C Siobhan; Zheng, Youbin; Dixon, Mike

    2015-01-01

    High phosphate content in wastewater is currently a major issue faced by the North American greenhouse industry. Phosphate-sorbing material filters could provide a means of removing phosphate from wastewater prior to discharge to the environment, but the characterization of economically viable materials and specific recommendations for greenhouse wastewater are not available. Batch and column experiments were used to examine the capacity of two calcium-based waste materials, basic oxygen furnace slag and a concrete waste material, to remove phosphate from greenhouse nutrient solution at varied operating conditions. Material columns operating at a hydraulic retention time (HRT) of 3 h consistently removed >99% of influent phosphate at a concentration of 60 mg/L over repeated applications and demonstrated high phosphate retention capacity (PRC) of 8.8 and 5.1 g P/kg for slag and concrete waste, respectively. Both materials also provided some removal of the micronutrients Fe, Mn and Zn. Increasing HRT to 24 h increased P retention capacity of slag to >10.5 g P/kg but did not improve retention by concrete waste. Decreasing influent phosphate concentration to 20 mg/L decreased PRC to 1.64 g P/kg in concrete waste columns, suggesting fluctuations in greenhouse wastewater composition will affect filter performance. The pH of filter effluent was closely correlated to final P concentration and can likely be used to monitor treatment effectiveness. This study demonstrated that calcium-based materials are promising for the removal of phosphate from greenhouse wastewater, and worthy of further research on scaling up the application to a full-sized system.

  2. The stoichiometry of nutrient release by terrestrial herbivores and its ecosystem consequences

    NASA Astrophysics Data System (ADS)

    Sitters, Judith; Bakker, Elisabeth S.; Veldhuis, Michiel P.; Veen, G. F.; Olde Venterink, Harry; Vanni, Michael J.

    2017-04-01

    It is widely recognized that the release of nutrients by herbivores via their waste products strongly impacts nutrient availability for autotrophs. The ratios of nitrogen (N) and phosphorus (P) recycled through herbivore release (i.e., waste N:P) are mainly determined by the stoichiometric composition of the herbivore’s food (food N:P) and its body nutrient content (body N:P). Waste N:P can in turn impact autotroph nutrient limitation and productivity. Herbivore-driven nutrient recycling based on stoichiometric principles is dominated by theoretical and experimental research in freshwater systems, in particular interactions between algae and invertebrate herbivores. In terrestrial ecosystems, the impact of herbivores on nutrient cycling and availability is often limited to studying carbon (C ):N and C:P ratios, while the role of terrestrial herbivores in mediating N:P ratios is also likely to influence herbivore-driven nutrient recycling. In this review, we use rules and predictions on the stoichiometry of nutrient release originating from algal-based aquatic systems to identify the factors that determine the stoichiometry of nutrient release by herbivores. We then explore how these rules can be used to understand the stoichiometry of nutrient release by terrestrial herbivores, ranging from invertebrates to mammals, and its impact on plant nutrient limitation and productivity. Future studies should focus on measuring both N and P when investigating herbivore-driven nutrient recycling in terrestrial ecosystems, while also taking the form of waste product (urine or feces) and other pathways by which herbivores change nutrients into account, to be able to quantify the impact of waste stoichiometry on plant communities.

  3. Life cycle assessment of urban waste management: Energy performances and environmental impacts. The case of Rome, Italy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cherubini, Francesco; Bargigli, Silvia; Ulgiati, Sergio

    2008-12-15

    Landfilling is nowadays the most common practice of waste management in Italy in spite of enforced regulations aimed at increasing waste pre-sorting as well as energy and material recovery. In this work we analyse selected alternative scenarios aimed at minimizing the unused material fraction to be delivered to the landfill. The methodological framework of the analysis is the life cycle assessment, in a multi-method form developed by our research team. The approach was applied to the case of municipal solid waste (MSW) management in Rome, with a special focus on energy and material balance, including global and local scale airbornemore » emissions. Results, provided in the form of indices and indicators of efficiency, effectiveness and environmental impacts, point out landfill activities as the worst waste management strategy at a global scale. On the other hand, the investigated waste treatments with energy and material recovery allow important benefits of greenhouse gas emission reduction (among others) but are still affected by non-negligible local emissions. Furthermore, waste treatments leading to energy recovery provide an energy output that, in the best case, is able to meet 15% of the Rome electricity consumption.« less

  4. Life cycle assessment of urban waste management: energy performances and environmental impacts. The case of Rome, Italy.

    PubMed

    Cherubini, Francesco; Bargigli, Silvia; Ulgiati, Sergio

    2008-12-01

    Landfilling is nowadays the most common practice of waste management in Italy in spite of enforced regulations aimed at increasing waste pre-sorting as well as energy and material recovery. In this work we analyse selected alternative scenarios aimed at minimizing the unused material fraction to be delivered to the landfill. The methodological framework of the analysis is the life cycle assessment, in a multi-method form developed by our research team. The approach was applied to the case of municipal solid waste (MSW) management in Rome, with a special focus on energy and material balance, including global and local scale airborne emissions. Results, provided in the form of indices and indicators of efficiency, effectiveness and environmental impacts, point out landfill activities as the worst waste management strategy at a global scale. On the other hand, the investigated waste treatments with energy and material recovery allow important benefits of greenhouse gas emission reduction (among others) but are still affected by non-negligible local emissions. Furthermore, waste treatments leading to energy recovery provide an energy output that, in the best case, is able to meet 15% of the Rome electricity consumption.

  5. Water quality characterization and mathematical modeling of dissolved oxygen in the East and West Ponds, Jamaica Bay Wildlife Refuge.

    PubMed

    Maillacheruvu, Krishnanand; Roy, D; Tanacredi, J

    2003-09-01

    The current study was undertaken to characterize the East and West Ponds and develop a mathematical model of the effects of nutrient and BOD loading on dissolved oxygen (DO) concentrations in these ponds. The model predicted that both ponds will recover adequately given the average expected range of nutrient and BOD loading due to waste from surface runoff and migratory birds. The predicted dissolved oxygen levels in both ponds were greater than 5.0 mg/L, and were supported by DO levels in the field which were typically above 5.0 mg/L during the period of this study. The model predicted a steady-state NBOD concentration of 12.0-14.0 mg/L in the East Pond, compared to an average measured value of 3.73 mg/L in 1994 and an average measured value of 12.51 mg/L in a 1996-97 study. The model predicted that the NBOD concentration in the West Pond would be under 3.0 mg/L compared to the average measured values of 7.50 mg/L in 1997, and 8.51 mg/L in 1994. The model predicted that phosphorus (as PO4(3-)) concentration in the East Pond will approach 4.2 mg/L in 4 months, compared to measured average value of 2.01 mg/L in a 1994 study. The model predicted that phosphorus concentration in the West Pond will approach 1.00 mg/L, compared to a measured average phosphorus (as PO4(3-)) concentration of 1.57 mg/L in a 1994 study.

  6. Bacterially mediated removal of phosphorus and cycling of nitrate and sulfate in the waste stream of a "zero-discharge" recirculating mariculture system.

    PubMed

    Krom, M D; Ben David, A; Ingall, E D; Benning, L G; Clerici, S; Bottrell, S; Davies, C; Potts, N J; Mortimer, R J G; van Rijn, J

    2014-06-01

    Simultaneous removal of nitrogen and phosphorus by microbial biofilters has been used in a variety of water treatment systems including treatment systems in aquaculture. In this study, phosphorus, nitrate and sulfate cycling in the anaerobic loop of a zero-discharge, recirculating mariculture system was investigated using detailed geochemical measurements in the sludge layer of the digestion basin. High concentrations of nitrate and sulfate, circulating in the overlying water (∼15 mM), were removed by microbial respiration in the sludge resulting in a sulfide accumulation of up to 3 mM. Modelling of the observed S and O isotopic ratios in the surface sludge suggested that, with time, major respiration processes shifted from heterotrophic nitrate and sulfate reduction to autotrophic nitrate reduction. The much higher inorganic P content of the sludge relative to the fish feces is attributed to conversion of organic P to authigenic apatite. This conclusion is supported by: (a) X-ray diffraction analyses, which pointed to an accumulation of a calcium phosphate mineral phase that was different from P phases found in the feces, (b) the calculation that the pore waters of the sludge were highly oversaturated with respect to hydroxyapatite (saturation index = 4.87) and (c) there was a decrease in phosphate (and in the Ca/Na molar ratio) in the pore waters simultaneous with an increase in ammonia showing there had to be an additional P removal process at the same time as the heterotrophic breakdown of organic matter. Copyright © 2014 Elsevier Ltd. All rights reserved.

  7. Operating aerobic wastewater treatment at very short sludge ages enables treatment and energy recovery through anaerobic sludge digestion.

    PubMed

    Ge, Huoqing; Batstone, Damien J; Keller, Jurg

    2013-11-01

    Conventional abattoir wastewater treatment processes for carbon and nutrient removal are typically designed and operated with a long sludge retention time (SRT) of 10-20 days, with a relatively high energy demand and physical footprint. The process also generates a considerable amount of waste activated sludge that is not easily degradable due to the long SRT. In this study, an innovative high-rate sequencing batch reactor (SBR) based wastewater treatment process with short SRT and hydraulic retention time (HRT) is developed and characterised. The high-rate SBR process was shown to be most effective with SRT of 2-3 days and HRT of 0.5-1 day, achieving >80% reduction in chemical oxygen demand (COD) and phosphorus and approximately 55% nitrogen removal. A majority of carbon removal (70-80%) was achieved by biomass assimilation and/or accumulation, rather than oxidation. Anaerobic degradability of the sludge generated in the high-rate SBR process was strongly linked to SRT, with measured degradability extent being 85% (2 days SRT), 73% (3 days), and 63% (4 days), but it was not influenced by digestion temperature. However, the rate of degradation for 3 and 4 days SRT sludge was increased by 45% at thermophilic conditions compared to mesophilic conditions. Overall, the treatment process provides a very compact and energy efficient treatment option for highly degradable wastewaters such as meat and food processing, with a substantial space reduction by using smaller reactors and a considerable net energy output through the reduced aerobic oxidation and concurrent increased methane production potential through the efficient sludge digestion. Copyright © 2013 Elsevier Ltd. All rights reserved.

  8. Municipal solid waste system analysis through energy consumption and return approach.

    PubMed

    Tomić, Tihomir; Schneider, Daniel Rolph

    2017-12-01

    Inappropriate waste management and poor resource efficiency are two of the biggest problems which European Union is trying to solve through Landfill Directive, Waste Framework Directive and Circular Economy Package by increasing recycling and reuse and reducing waste disposal. In order to meet set goals, new European Union member states must quickly change national legislature and implement appropriate solutions. In the circumstances of strong EU resource and energy dependence, decision makers need to analyse which of the considered waste management systems leads to higher overall benefits ie. which is more sustainable. The main problem in this kind of analysis is a wide range of possible technologies and the difference in inputs and outputs. Sustainability of these systems is analysed through single-score LCA based assessment, using primary energy used to produce materials and energy vectors as a common measure. To ensure reliable results, interoperability between different data sources and material flows of waste and its components are monitored. Tracking external and internal material, and energy flows enable modelling of mutual interactions between different facilities. Resulting PERI, primary energy return based index, is used for comparison of different waste management scenarios. Results show that time and legislation dependent changes have great influence on decision making related to waste management and interconnected systems. Copyright © 2017 Elsevier Ltd. All rights reserved.

  9. Evaluating environmental impacts of alternative construction waste management approaches using supply-chain-linked life-cycle analysis.

    PubMed

    Kucukvar, Murat; Egilmez, Gokhan; Tatari, Omer

    2014-06-01

    Waste management in construction is critical for the sustainable treatment of building-related construction and demolition (C&D) waste materials, and recycling of these wastes has been considered as one of the best strategies in minimization of C&D debris. However, recycling of C&D materials may not always be a feasible strategy for every waste type and therefore recycling and other waste treatment strategies should be supported by robust decision-making models. With the aim of assessing the net carbon, energy, and water footprints of C&D recycling and other waste management alternatives, a comprehensive economic input-output-based hybrid life-cycle assessment model is developed by tracing all of the economy-wide supply-chain impacts of three waste management strategies: recycling, landfilling, and incineration. Analysis results showed that only the recycling of construction materials provided positive environmental footprint savings in terms of carbon, energy, and water footprints. Incineration is a better option as a secondary strategy after recycling for water and energy footprint categories, whereas landfilling is found to be as slightly better strategy when carbon footprint is considered as the main focus of comparison. In terms of construction materials' environmental footprint, nonferrous metals are found to have a significant environmental footprint reduction potential if recycled. © The Author(s) 2014.

  10. Eco-efficient waste glass recycling: Integrated waste management and green product development through LCA.

    PubMed

    Blengini, Gian Andrea; Busto, Mirko; Fantoni, Moris; Fino, Debora

    2012-05-01

    As part of the EU Life + NOVEDI project, a new eco-efficient recycling route has been implemented to maximise resources and energy recovery from post-consumer waste glass, through integrated waste management and industrial production. Life cycle assessment (LCA) has been used to identify engineering solutions to sustainability during the development of green building products. The new process and the related LCA are framed within a meaningful case of industrial symbiosis, where multiple waste streams are utilised in a multi-output industrial process. The input is a mix of rejected waste glass from conventional container glass recycling and waste special glass such as monitor glass, bulbs and glass fibres. The green building product is a recycled foam glass (RFG) to be used in high efficiency thermally insulating and lightweight concrete. The environmental gains have been contrasted against induced impacts and improvements have been proposed. Recovered co-products, such as glass fragments/powders, plastics and metals, correspond to environmental gains that are higher than those related to landfill avoidance, whereas the latter is cancelled due to increased transportation distances. In accordance to an eco-efficiency principle, it has been highlighted that recourse to highly energy intensive recycling should be limited to waste that cannot be closed-loop recycled. Copyright © 2011 Elsevier Ltd. All rights reserved.

  11. Patterns of waste generation: A gradient boosting model for short-term waste prediction in New York City.

    PubMed

    Johnson, Nicholas E; Ianiuk, Olga; Cazap, Daniel; Liu, Linglan; Starobin, Daniel; Dobler, Gregory; Ghandehari, Masoud

    2017-04-01

    Historical municipal solid waste (MSW) collection data supplied by the New York City Department of Sanitation (DSNY) was used in conjunction with other datasets related to New York City to forecast municipal solid waste generation across the city. Spatiotemporal tonnage data from the DSNY was combined with external data sets, including the Longitudinal Employer Household Dynamics data, the American Community Survey, the New York City Department of Finance's Primary Land Use and Tax Lot Output data, and historical weather data to build a Gradient Boosting Regression Model. The model was trained on historical data from 2005 to 2011 and validation was performed both temporally and spatially. With this model, we are able to accurately (R2>0.88) forecast weekly MSW generation tonnages for each of the 232 geographic sections in NYC across three waste streams of refuse, paper and metal/glass/plastic. Importantly, the model identifies regularity of urban waste generation and is also able to capture very short timescale fluctuations associated to holidays, special events, seasonal variations, and weather related events. This research shows New York City's waste generation trends and the importance of comprehensive data collection (especially weather patterns) in order to accurately predict waste generation. Copyright © 2017. Published by Elsevier Ltd.

  12. TRIPLICATE SODIUM IODIDE GAMMA RAY MONITORS FOR THE SMALL COLUMN ION EXCHANGE PROGRAM

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Couture, A.

    2011-09-20

    This technical report contains recommendations from the Analytical Development (AD) organization of the Savannah River National Laboratory (SRNL) for a system of triplicate Sodium Iodide (NaI) detectors to be used to monitor Cesium-137 ({sup 137}Cs) content of the Decontaminated Salt Solution (DSS) output of the Small Column Ion Exchange (SCIX) process. These detectors need to be gain stabilized with respect to temperature shifts since they will be installed on top of Tank 41 at the Savannah River Site (SRS). This will be accomplished using NaI crystals doped with the alpha-emitting isotope, Americium-241({sup 241}Am). Two energy regions of the detector outputmore » will be monitored using single-channel analyzers (SCAs), the {sup 137}Cs full-energy {gamma}-ray peak and the {sup 241}Am alpha peak. The count rate in the gamma peak region will be proportional to the {sup 137}Cs content in the DSS output. The constant rate of alpha decay in the NaI crystal will be monitored and used as feedback to adjust the high voltage supply to the detector in response to temperature variation. An analysis of theoretical {sup 137}Cs breakthrough curves was used to estimate the gamma activity expected in the DSS output during a single iteration of the process. Count rates arising from the DSS and background sources were predicted using Microshield modeling software. The current plan for shielding the detectors within an enclosure with four-inch thick steel walls should allow the detectors to operate with the sensitivity required to perform these measurements. Calibration, testing, and maintenance requirements for the detector system are outlined as well. The purpose of SCIX is to remove and concentrate high-level radioisotopes from SRS salt waste resulting in two waste streams. The concentrated high-level waste containing {sup 137}Cs will be sent to the Defense Waste Processing Facility (DWPF) for vitrification and the low-level DSS will be sent to the Saltstone Production Facility (SPF) to be incorporated into grout.« less

  13. Fertilizer potential of liquid and solid effluent from thermophilic anaerobic digestion of poultry waste.

    PubMed

    Liedl, B E; Bombardiere, J; Chaffield, J M

    2006-01-01

    Thermophilic anaerobic treatment of poultry litter produces an effluent stream of digested materials that can be separated into solid and liquid fractions for use as a crop fertilizer. The majority of the phosphorus is partitioned into the solid fraction while the majority of the nitrogen is present in the liquid fraction in the form of ammonium. These materials were tested over six years as an alternative fertilizer for the production of vegetable, fruit, and grassland crops. Application of the solids as a field crop fertilizer for vegetables and blueberries resulted in lower yields than the other fertilizer treatments, but an increase in soil phosphorus over a four-year period. Application of the digested liquids on grass and vegetable plots resulted in similar or superior yields to plots treated with commercially available nitrogen fertilizers. Hydroponic production of lettuce using liquid effluent was comparable to a commercial hydroponic fertilizer regime; however, the effluent treatment for hydroponic tomato production required supplementation and conversion of ammonium to nitrate. While not a total fertilizer solution, our research shows the effectiveness of digested effluent as part of a nutrient management program which could turn a livestock residuals problem into a crop nutrient resource.

  14. Wastewater treatment--adsorption of organic micropollutants on activated HTC-carbon derived from sewage sludge.

    PubMed

    Kirschhöfer, Frank; Sahin, Olga; Becker, Gero C; Meffert, Florian; Nusser, Michael; Anderer, Gilbert; Kusche, Stepan; Klaeusli, Thomas; Kruse, Andrea; Brenner-Weiss, Gerald

    2016-01-01

    Organic micropollutants (MPs), in particular xenobiotics and their transformation products, have been detected in the aquatic environment and the main sources of these MPs are wastewater treatment plants. Therefore, an additional cleaning step is necessary. The use of activated carbon (AC) is one approach to providing this additional cleaning. Industrial AC derived from different carbonaceous materials is predominantly produced in low-income countries by polluting processes. In contrast, AC derived from sewage sludge by hydrothermal carbonization (HTC) is a regional and sustainable alternative, based on waste material. Our experiments demonstrate that the HTC-AC from sewage sludge was able to remove most of the applied MPs. In fact more than 50% of sulfamethoxazole, diclofenac and bezafibrate were removed from artificial water samples. With the same approach carbamazepine was eliminated to nearly 70% and atrazine more than 80%. In addition a pre-treated (phosphorus-reduced) HTC-AC was able to eliminate 80% of carbamazepine and diclofenac. Atrazine, sulfamethoxazole and bezafibrate were removed to more than 90%. Experiments using real wastewater samples with high organic content (11.1 g m(-3)) succeeded in proving the adsorption capability of phosphorus-reduced HTC-AC.

  15. Removal of lead and phosphate ions from aqueous solutions by organo-smectite.

    PubMed

    Bajda, Tomasz; Szala, Barbara; Solecka, Urszula

    2015-01-01

    Smectite has been modified using hexadecyltrimethyl ammonium bromide in an amount of double cationic exchange capacity. This alteration makes it possible to use organo-smectite as a sorbent to remove anionic forms. The experiment consisted of the interchangeable sorption of phosphate(V) and lead(II) by organo-smectite. Research was carried out with varying pH (2-5) and various concentrations (0.1-5 mmol/L). Organo-smectite with previously adsorbed lead ions removed more phosphate than the untreated organo-smectite. Experimental data show that lead is more likely to absorb on the organo-smectite than on the organo-smectite with previously adsorbed phosphate ions. It follows that the most effective use of the organo-smectite is through the sorption of first - Pb cations and then PO4 anions. With an increasing concentration of Pb(II) or P(V), the sorption efficiency increases. The maximum sorption efficiency of lead and phosphate ions is observed at pH 5. This enables the removal of harmful lead and phosphorus compounds from waste water and immobilizes them on the sorbent's surface. The alternating reactions of lead and phosphorus ions result in the crystallization of brompyromorphite Pb5(PO4)3Br.

  16. Sustainable solutions for solid waste management in Southeast Asian countries.

    PubMed

    Ngoc, Uyen Nguyen; Schnitzer, Hans

    2009-06-01

    Human activities generate waste and the amounts tend to increase as the demand for quality of life increases. Today's rate in the Southeast Asian Nations (ASEANs) is alarming, posing a challenge to governments regarding environmental pollution in the recent years. The expectation is that eventually waste treatment and waste prevention approaches will develop towards sustainable waste management solutions. This expectation is for instance reflected in the term 'zero emission systems'. The concept of zero emissions can be applied successfully with today's technical possibilities in the agro-based processing industry. First, the state-of-the-art of waste management in Southeast Asian countries will be outlined in this paper, followed by waste generation rates, sources, and composition, as well as future trends of waste. Further on, solutions for solid waste management will be reviewed in the discussions of sustainable waste management. The paper emphasizes the concept of waste prevention through utilization of all wastes as process inputs, leading to the possibility of creating an ecosystem in a loop of materials. Also, a case study, focusing on the citrus processing industry, is displayed to illustrate the application of the aggregated material input-output model in a widespread processing industry in ASEAN. The model can be shown as a closed cluster, which permits an identification of opportunities for reducing environmental impacts at the process level in the food processing industry. Throughout the discussion in this paper, the utilization of renewable energy and economic aspects are considered to adapt to environmental and economic issues and the aim of eco-efficiency. Additionally, the opportunities and constraints of waste management will be discussed.

  17. Building Enterprise Transition Plans Through the Development of Collapsing Design Structure Matrices

    DTIC Science & Technology

    2015-09-17

    processes from the earliest input to the final output to evaluate where change is needed to reduce costs, reduce waste, and improve the flow of information...from) integrating a large complex enterprise? • How should firms/enterprises evaluate systems prior to integration? What are some valid taxonomies

  18. Cerebral Salt-Wasting Associated with the Guillain-Barre Syndrome

    DTIC Science & Technology

    1965-07-01

    their pa- water retention increases the glomerular filtra- tient was infused into a patient with diabetes tion rate and suppresses the secretion of al... insipidus and produced a transient decrease in dosterone, either of which might lead to free water clearance and a rise in urine increased sodium output

  19. MEMS-Based Waste Vibrational Energy Harvesters

    DTIC Science & Technology

    2013-06-01

    7 1. Lead Zirconium Titanate ( PZT ) .........................................................7 2. Aluminum...Laboratory PiezoMUMPS Piezoelectric Multi-User MEMS Processes PZT Lead Zirconate Titanate SEM Scanning Electron Microscopy SiO2 Silicon...titanate ( PZT ) possess high 4 coupling between the electrical and mechanical domains [11]. The output voltage, V, is related to the z-component

  20. FROM GARBAGE TO GOURMET: SUSTAINABLE WASTE PREVENTION AND MUSHROOM CULTIVATION FROM USED COFFEE GROUNDS

    EPA Science Inventory

    The expected outputs of the project will include: 1) compost, 2) mushrooms for demonstration 3) report and website documenting recommendations for gourmet mushroom cultivation and results of the pilot study, and 4) tri-fold displays. The expected outcomes of the project wil...

  1. The Prevalence of Phosphorus Containing Food Additives in Top Selling Foods in Grocery Stores

    PubMed Central

    León, Janeen B.; Sullivan, Catherine M.; Sehgal, Ashwini R.

    2013-01-01

    Objective To determine the prevalence of phosphorus-containing food additives in best selling processed grocery products and to compare the phosphorus content of a subset of top selling foods with and without phosphorus additives. Design The labels of 2394 best selling branded grocery products in northeast Ohio were reviewed for phosphorus additives. The top 5 best selling products containing phosphorus additives from each food category were matched with similar products without phosphorus additives and analyzed for phosphorus content. Four days of sample meals consisting of foods with and without phosphorus additives were created and daily phosphorus and pricing differentials were computed. Setting Northeast Ohio Main outcome measures Presence of phosphorus-containing food additives, phosphorus content Results 44% of the best selling grocery items contained phosphorus additives. The additives were particularly common in prepared frozen foods (72%), dry food mixes (70%), packaged meat (65%), bread & baked goods (57%), soup (54%), and yogurt (51%) categories. Phosphorus additive containing foods averaged 67 mg phosphorus/100 gm more than matched non-additive containing foods (p=.03). Sample meals comprised mostly of phosphorus additive-containing foods had 736 mg more phosphorus per day compared to meals consisting of only additive-free foods. Phosphorus additive-free meals cost an average of $2.00 more per day. Conclusion Phosphorus additives are common in best selling processed groceries and contribute significantly to their phosphorus content. Moreover, phosphorus additive foods are less costly than phosphorus additive-free foods. As a result, persons with chronic kidney disease may purchase these popular low-cost groceries and unknowingly increase their intake of highly bioavailable phosphorus. PMID:23402914

  2. Improved thermoelectric power output from multilayered polyethylenimine doped carbon nanotube based organic composites

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hewitt, Corey A.; Montgomery, David S.; Barbalace, Ryan L.

    2014-05-14

    By appropriately selecting the carbon nanotube type and n-type dopant for the conduction layers in a multilayered carbon nanotube composite, the total device thermoelectric power output can be increased significantly. The particular materials chosen in this study were raw single walled carbon nanotubes for the p-type layers and polyethylenimine doped single walled carbon nanotubes for the n-type layers. The combination of these two conduction layers leads to a single thermocouple Seebeck coefficient of 96 ± 4 μVK{sup −1}, which is 6.3 times higher than that previously reported. This improved Seebeck coefficient leads to a total power output of 14.7 nW permore » thermocouple at the maximum temperature difference of 50 K, which is 44 times the power output per thermocouple for the previously reported results. Ultimately, these thermoelectric power output improvements help to increase the potential use of these lightweight, flexible, and durable organic multilayered carbon nanotube based thermoelectric modules in low powered electronics applications, where waste heat is available.« less

  3. Conversion of stranded waste-stream carbon and nutrients into value-added products via metabolically coupled binary heterotroph-photoautotroph system

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bohutskyi, Pavlo; Kucek, Leo A.; Hill, Eric

    Metabolic flexibility and robustness of phototroph- heterotroph co-cultures provide a flexible binary engineering platform for a variety of biotechnological and environmental applications. Here, we metabolically coupled a heterotrophic bacterium Bacillus subtilis with astaxanthin producing alga Haematococcus pluvialis and successfully applied this binary co-culture for conversion of the starch-rich waste stream into valuable astaxanthin-rich biomass. Importantly, the implemented system required less mass transfer of CO2 and O2 due to in-situ exchange between heterotroph and phototroph, which can contribute to reduction in energy consumption for wastewater treatment. In addition, the maximum reduction in chemical oxygen demand, total nitrogen and phosphorus reached 65%,more » 55% and 30%, respectively. The preliminary economic analysis indicated that realization of produced biomass with 0.8% astaxanthin content may generate annual revenues of $3.2M (baseline scenario) from treatment of wastewater (1,090 m3/day) from a potato processing plant. Moreover, the revenues may be increased up to $18.2M for optimized scenario with astaxanthin content in algae of 2%. This work demonstrates a successful proof-of-principle for conversion of waste carbon and nutrients into targeted value-added products through metabolic connection of heterotrophic and phototrophic organisms. Utilization of heterotrophic-algal binary cultures opens new perspectives for designing highly-efficient production processes for feedstock biomass production as well as allows utilization of variety of organic agricultural, chemical, or municipal wastes.« less

  4. Performance of temperature-phased anaerobic digestion (TPAD) system treating dairy cattle wastes.

    PubMed

    Sung, Shihwu; Santha, Harikishan

    2003-04-01

    The performance of temperature-phased anaerobic digestion (TPAD) system in the stabilization of dairy cattle wastes at high solids concentrations has never been evaluated, though the process has been established as a feasible alternative to conventional mesophilic processes for the treatment of municipal wastewater sludges. In this study, the TPAD system operating at a retention time of 14 days was subjected to varying total solids (TS) concentrations (3.46-14.54%) of dairy cattle wastes. At TS concentrations lower than 12.20%, corresponding to system volatile solids (VS) loadings in the range of 1.87-5.82 g VS/L/day, the system achieved an average VS removal of 40.2%. The maximum VS destruction of 42.6% was achieved at a TS concentration of 10.35%. Methane recovery from the wastes was consistently within 0.21-0.22 L/g VS fed. There was a drop in the system performance with respect to VS removal and methane recovery at TS concentrations higher than 10.35%. volatile fatty acid/alkalinity ratios less than 0.35 in the thermophilic reactor and 0.10 in the mesophilic reactor were found favorable for stable operation of the system. For the entire range of TS concentrations, the indicator organism counts in the biosolids were within the limits specified by USEPA in 40 CFR Part 503 regulations for Class A designation. After digestion, nearly 80-85% of total phosphorus was associated with the biosolids. Copyright 2002 Elsevier Science Ltd.

  5. Stormwater run-off and pollutant transport related to the activities carried out in a modern waste management park.

    PubMed

    Marques, M; Hogland, W

    2001-02-01

    Stormwater run-off from twelve different areas and roads has been characterized in a modern waste disposal site, where several waste management activities are carried out. Using nonparametric statistics, medians and confidence intervals of the medians, 22 stormwater quality parameters were calculated. Suspended solids, chemical oxygen demand, biochemical oxygen demand, total nitrogen and total phosphorus, as well as run-off from several areas, showed measured values above standard limits for discharge into recipient waters--even higher than those of leachate from covered landfill cells. Of the heavy metals analyzed, copper, zinc and nickel were the most prevalent, being detected in every sample. Higher concentrations of metals such as zinc, nickel, cobalt, iron and cadmium were found in run-off from composting areas, compared to areas containing stored and exposed scrap metal. This suggests that factors other than the total amount of exposed material affect the concentration of metals in run-off, such as binding to organic compounds and hydrological transport efficiency. The pollutants transported by stormwater represent a significant environmental threat, comparable to leachate. Careful design, monitoring and maintenance of stormwater run-off drainage systems and infiltration elements are needed if infiltration is to be used as an on-site treatment strategy.

  6. Zero valent iron significantly enhances methane production from waste activated sludge by improving biochemical methane potential rather than hydrolysis rate.

    PubMed

    Liu, Yiwen; Wang, Qilin; Zhang, Yaobin; Ni, Bing-Jie

    2015-02-05

    Anaerobic digestion has been widely applied for waste activated sludge (WAS) treatment. However, methane production from anaerobic digestion of WAS is usually limited by the slow hydrolysis rate and/or poor biochemical methane potential of WAS. This work systematically studied the effects of three different types of zero valent iron (i.e., iron powder, clean scrap and rusty scrap) on methane production from WAS in anaerobic digestion, by using both experimental and mathematical approaches. The results demonstrated that both the clean and the rusty iron scrap were more effective than the iron powder for improving methane production from WAS. Model-based analysis showed that ZVI addition significantly enhanced methane production from WAS through improving the biochemical methane potential of WAS rather than its hydrolysis rate. Economic analysis indicated that the ZVI-based technology for enhancing methane production from WAS is economically attractive, particularly considering that iron scrap can be freely acquired from industrial waste. Based on these results, the ZVI-based anaerobic digestion process of this work could be easily integrated with the conventional chemical phosphorus removal process in wastewater treatment plant to form a cost-effective and environment-friendly approach, enabling maximum resource recovery/reuse while achieving enhanced methane production in wastewater treatment system.

  7. Zero Valent Iron Significantly Enhances Methane Production from Waste Activated Sludge by Improving Biochemical Methane Potential Rather Than Hydrolysis Rate

    PubMed Central

    Liu, Yiwen; Wang, Qilin; Zhang, Yaobin; Ni, Bing-Jie

    2015-01-01

    Anaerobic digestion has been widely applied for waste activated sludge (WAS) treatment. However, methane production from anaerobic digestion of WAS is usually limited by the slow hydrolysis rate and/or poor biochemical methane potential of WAS. This work systematically studied the effects of three different types of zero valent iron (i.e., iron powder, clean scrap and rusty scrap) on methane production from WAS in anaerobic digestion, by using both experimental and mathematical approaches. The results demonstrated that both the clean and the rusty iron scrap were more effective than the iron powder for improving methane production from WAS. Model-based analysis showed that ZVI addition significantly enhanced methane production from WAS through improving the biochemical methane potential of WAS rather than its hydrolysis rate. Economic analysis indicated that the ZVI-based technology for enhancing methane production from WAS is economically attractive, particularly considering that iron scrap can be freely acquired from industrial waste. Based on these results, the ZVI-based anaerobic digestion process of this work could be easily integrated with the conventional chemical phosphorus removal process in wastewater treatment plant to form a cost-effective and environment-friendly approach, enabling maximum resource recovery/reuse while achieving enhanced methane production in wastewater treatment system. PMID:25652244

  8. Zero Valent Iron Significantly Enhances Methane Production from Waste Activated Sludge by Improving Biochemical Methane Potential Rather Than Hydrolysis Rate

    NASA Astrophysics Data System (ADS)

    Liu, Yiwen; Wang, Qilin; Zhang, Yaobin; Ni, Bing-Jie

    2015-02-01

    Anaerobic digestion has been widely applied for waste activated sludge (WAS) treatment. However, methane production from anaerobic digestion of WAS is usually limited by the slow hydrolysis rate and/or poor biochemical methane potential of WAS. This work systematically studied the effects of three different types of zero valent iron (i.e., iron powder, clean scrap and rusty scrap) on methane production from WAS in anaerobic digestion, by using both experimental and mathematical approaches. The results demonstrated that both the clean and the rusty iron scrap were more effective than the iron powder for improving methane production from WAS. Model-based analysis showed that ZVI addition significantly enhanced methane production from WAS through improving the biochemical methane potential of WAS rather than its hydrolysis rate. Economic analysis indicated that the ZVI-based technology for enhancing methane production from WAS is economically attractive, particularly considering that iron scrap can be freely acquired from industrial waste. Based on these results, the ZVI-based anaerobic digestion process of this work could be easily integrated with the conventional chemical phosphorus removal process in wastewater treatment plant to form a cost-effective and environment-friendly approach, enabling maximum resource recovery/reuse while achieving enhanced methane production in wastewater treatment system.

  9. Effects of season on ecological processes in extensive earthen tilapia ponds in Southeastern Brazil.

    PubMed

    Favaro, E G P; Sipaúba-Tavares, L H; Milstein, A

    2015-11-01

    In Southeastern Brazil tilapia culture is conducted in extensive and semi-intensive flow-through earthen ponds, being water availability and flow management different in the rainy and dry seasons. In this region lettuce wastes are a potential cheap input for tilapia culture. This study examined the ecological processes developing during the rainy and dry seasons in three extensive flow-through earthen tilapia ponds fertilized with lettuce wastes. Water quality, plankton and sediment parameters were sampled monthly during a year. Factor analysis was used to identify the ecological processes occurring within the ponds and to construct a conceptual graphic model of the pond ecosystem functioning during the rainy and dry seasons. Processes related to nitrogen cycling presented differences between both seasons while processes related to phosphorus cycling did not. Ecological differences among ponds were due to effects of wind protection by surrounding vegetation, organic loading entering, tilapia density and its grazing pressure on zooplankton. Differences in tilapia growth among ponds were related to stocking density and ecological process affecting tilapia food availability and intraspecific competition. Lettuce wastes addition into the ponds did not produce negative effects, thus this practice may be considered a disposal option and a low-cost input source for tilapia, at least at the amounts applied in this study.

  10. The slag original from the process of sewage sludge incineration selected properties characteristic

    NASA Astrophysics Data System (ADS)

    Głowacka, Anna; Rucińska, Teresa; Kiper, Justyna

    2017-11-01

    This work characterizes the physical and chemical properties of slag from combustion of municipal sewage sludge in "Pomorzany" waste treatment plant in Szczecin. The technology of sludge management is based on drying the sludge in low-temperature belt driers, to a content level of at least 90%, dry mass., and then burning in a grate boiler with mobile grate. The research of the slag resulting from combustion of municipal sewage sludge was conducted using reference methods, presenting images from a scanning electron microscope. The tested waste contained from 16.300 to 23.150% P2O5 completely soluble in strong acids, pH 8.03, mineral substance 98.73% dry mass. The content of heavy metals did not exceed the permissible amount specified in the Regulation of the Minister of Agriculture and Rural Development of 18 June 2008 on the implementation of certain provisions of the Act on fertilizers and fertilization (Journal of Laws of 2008 No. 119, item. 765). The screening trials showed that 48.4% are fractions of 630 µm-1.25 mm. The results show that the waste code 19 01 12 may be used as: alternative source of phosphorus for direct application to soil treatment, for production of organic - mineral fertilizers and as construction aggregate for production of concrete mortars.

  11. Beneficial reuse of precast concrete industry sludge to produce alkaline stabilized biosolids.

    PubMed

    Gowda, C; Seth, R; Biswas, N

    2008-01-01

    The precast concrete industry generates waste called concrete sludge during routine mixer tank washing. It is highly alkaline and hazardous, and typically disposed of by landfilling. This study examined the stabilization of municipal sewage sludge using concrete sludge as an alkaline agent. Sewage sludge was amended with 10 to 40% of concrete sludge by wet weight, and 10 and 20% of lime by dry weight of the sludge mix. Mixes containing 30 and 40% of concrete sludge with 20% lime fulfilled the primary requirements of Category 1 and 2 (Canada) biosolids of maintaining a pH of 12 for at least 72 hours. The heavy metals were below Category 1 regulatory limits. The 40% concrete sludge mix was incubated at 52 degrees C for 12 of the 72 hours to achieve the Category 1 and 2 regulations of less than 1000 fecal coliform/g solids. The nutrient content of the biosolids was 8.2, 10 and 0.6 g/kg of nitrogen, phosphorus and potassium respectively. It can be used as a top soil or augmented with potassium for use as fertilizer. The study demonstrates that concrete sludge waste can be beneficially reused to produce biosolids, providing a long-term sustainable waste management solution for the concrete industry.

  12. Temperature influence on water transport in hardened cement pastes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Drouet, Emeline; Poyet, Stéphane, E-mail: stephane.poyet@cea.fr; Torrenti, Jean-Michel

    2015-10-15

    Describing water transport in concrete is an important issue for the durability assessment of radioactive waste management reinforced concrete structures. Due to the waste thermal output such structures would be submitted to moderate temperatures (up to 80 °C). We have then studied the influence of temperature on water transport within hardened cement pastes of four different formulations. Using a simplified approach (describing only the permeation of liquid water) we characterized the properties needed to describe water transport (up to 80 °C) using dedicated experiments. For each hardened cement paste the results are presented and discussed.

  13. Algae Biofuels Co-Location Assessment Tool for Canada

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    2011-11-29

    The Algae Biofuels Co-Location Assessment Tool for Canada uses chemical stoichiometry to estimate Nitrogen, Phosphorous, and Carbon atom availability from waste water and carbon dioxide emissions streams, and requirements for those same elements to produce a unit of algae. This information is then combined to find limiting nutrient information and estimate potential productivity associated with waste water and carbon dioxide sources. Output is visualized in terms of distributions or spatial locations. Distances are calculated between points of interest in the model using the great circle distance equation, and the smallest distances found by an exhaustive search and sort algorithm.

  14. An assessment of the current municipal solid waste management system in Lahore, Pakistan.

    PubMed

    Masood, Maryam; Barlow, Claire Y; Wilson, David C

    2014-09-01

    The current status of solid waste management in Lahore, a metropolitan city of Pakistan, is reviewed in this article using an existing approach, the UN-Habitat city profile. This involves a systematic quantitative and qualitative assessment of physical components and governance features of the current waste management system. A material flow diagram (MFD) is developed, which allows visualisation of the current waste management system with all related inputs and outputs. This study shows that in the current system, waste collection and transportation is the main focus, however the collection coverage is only about 68%. There is no controlled or even semi-controlled waste disposal facility in Lahore. There is no official recycling system in the city. It is estimated that currently ~27% of waste by weight is being recycled through the informal sector. Making use of the organic content of the waste, a composting facility is operative in the city, producing 47,230 tonnes year(-1) of organic compost. Lahore does not perform very well in governance features. Inclusivity of users and providers of the waste management system is low in the city, as not all stakeholders are consulted in the decision making processes. Waste management costs US$20 per tonne of waste, where the main focus is only on waste collection, and the current user fees are much lower than the actual costs. This study recommends that recycling should be promoted by increasing public awareness and integrating the informal sector to make the current system sustainable and financially viable. © The Author(s) 2014.

  15. The prevalence of phosphorus-containing food additives in top-selling foods in grocery stores.

    PubMed

    León, Janeen B; Sullivan, Catherine M; Sehgal, Ashwini R

    2013-07-01

    The objective of this study was to determine the prevalence of phosphorus-containing food additives in best-selling processed grocery products and to compare the phosphorus content of a subset of top-selling foods with and without phosphorus additives. The labels of 2394 best-selling branded grocery products in northeast Ohio were reviewed for phosphorus additives. The top 5 best-selling products containing phosphorus additives from each food category were matched with similar products without phosphorus additives and analyzed for phosphorus content. Four days of sample meals consisting of foods with and without phosphorus additives were created, and daily phosphorus and pricing differentials were computed. Presence of phosphorus-containing food additives, phosphorus content. Forty-four percent of the best-selling grocery items contained phosphorus additives. The additives were particularly common in prepared frozen foods (72%), dry food mixes (70%), packaged meat (65%), bread and baked goods (57%), soup (54%), and yogurt (51%) categories. Phosphorus additive-containing foods averaged 67 mg phosphorus/100 g more than matched nonadditive-containing foods (P = .03). Sample meals comprised mostly of phosphorus additive-containing foods had 736 mg more phosphorus per day compared with meals consisting of only additive-free foods. Phosphorus additive-free meals cost an average of $2.00 more per day. Phosphorus additives are common in best-selling processed groceries and contribute significantly to their phosphorus content. Moreover, phosphorus additive foods are less costly than phosphorus additive-free foods. As a result, persons with chronic kidney disease may purchase these popular low-cost groceries and unknowingly increase their intake of highly bioavailable phosphorus. Copyright © 2013 National Kidney Foundation, Inc. Published by Elsevier Inc. All rights reserved.

  16. 49 CFR 172.330 - Tank cars and multi-unit tank car tanks.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... Hydrogen peroxide and peroxyacetic acid mixtures Nitric acid (other than red fuming) Phosphorus, amorphous Phosphorus, white dry or Phosphorus, white, under water or Phosphorus white, in solution, or Phosphorus, yellow dry or Phosphorus, yellow, under water or Phosphorus, yellow, in solution Phosphorus white, molten...

  17. 49 CFR 172.330 - Tank cars and multi-unit tank car tanks.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... Hydrogen peroxide and peroxyacetic acid mixtures Nitric acid (other than red fuming) Phosphorus, amorphous Phosphorus, white dry or Phosphorus, white, under water or Phosphorus white, in solution, or Phosphorus, yellow dry or Phosphorus, yellow, under water or Phosphorus, yellow, in solution Phosphorus white, molten...

  18. Ecological scenarios analyzed and evaluated by a shallow lake model.

    PubMed

    Kardaetz, Sascha; Strube, Torsten; Brüggemann, Rainer; Nützmann, Gunnar

    2008-07-01

    We applied the complex ecosystem model EMMO, which was adopted to the shallow lake Müggelsee (Germany), in order to evaluate a large set of ecological scenarios. By means of EMMO, 33 scenarios and 17 indicators were defined to characterize their effects on the lake ecosystem. The indicators were based on model outputs of EMMO and can be separated into biological indicators, such as chlorophyll-a and cyanobacteria, and hydro-chemical indicators, such as phosphorus. The question to be solved was, what is the ranking of the scenarios based on their characterization by these 17 indicators? And how can we handle high quantities of complex data within evaluation procedures? The scenario evaluation was performed by partial order theory which, however, did not provide a clear result. By subsequently applying the hierarchical cluster analysis (complete linkage) it was possible to reduce the data matrix to indicator and scenario representatives. Even though this step implies losses of information, it simplifies the application of partial order theory and the post processing by METEOR. METEOR is derived from partial order theory and allows the stepwise aggregation of indicators, which subsequently leads to a distinct and clear decision. In the final evaluation result the best scenario was the one which defines a minimum nutrient input and no phosphorus release from the sediment while the worst scenario is characterized by a maximum nutrient input and extensive phosphorus release from the sediment. The reasonable and comprehensive results show that the combination of partial order, cluster analysis and METEOR can handle big amounts of data in a very clear and transparent way, and therefore is ideal in the context of complex ecosystem models, like that we applied.

  19. Simulating soil phosphorus dynamics for a phosphorus loss quantification tool.

    PubMed

    Vadas, Peter A; Joern, Brad C; Moore, Philip A

    2012-01-01

    Pollution of fresh waters by agricultural phosphorus (P) is a water quality concern. Because soils can contribute significantly to P loss in runoff, it is important to assess how management affects soil P status over time, which is often done with models. Our objective was to describe and validate soil P dynamics in the Annual P Loss Estimator (APLE) model. APLE is a user-friendly spreadsheet model that simulates P loss in runoff and soil P dynamics over 10 yr for a given set of runoff, erosion, and management conditions. For soil P dynamics, APLE simulates two layers in the topsoil, each with three inorganic P pools and one organic P pool. It simulates P additions to soil from manure and fertilizer, distribution among pools, mixing between layers due to tillage and bioturbation, leaching between and out of layers, crop P removal, and loss by surface runoff and erosion. We used soil P data from 25 published studies to validate APLE's soil P processes. Our results show that APLE reliably simulated soil P dynamics for a wide range of soil properties, soil depths, P application sources and rates, durations, soil P contents, and management practices. We validated APLE specifically for situations where soil P was increasing from excessive P inputs, where soil P was decreasing due to greater outputs than inputs, and where soil P stratification occurred in no-till and pasture soils. Successful simulations demonstrate APLE's potential to be applied to major management scenarios related to soil P loss in runoff and erosion. Copyright © by the American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America, Inc.

  20. Evaluation of normal yellow dent corn and high available phosphorus corn in combination with reduced dietary phosphorus and phytase supplementation for broilers grown to market weights in litter pens.

    PubMed

    Yan, F; Kersey, J H; Fritts, C A; Waldroup, P W; Stilborn, H L; Crum, R C; Rice, D W; Raboy, V

    2000-09-01

    A study was conducted to determine the extent fecal P levels could be reduced while maintaining performance. Various strategies were employed including the use of a high available phosphorus hybrid of corn (HAPC), supplementation with phytase enzyme, and reduced dietary P levels. The use of HAPC resulted in a 50% reduction in phytate-bound dietary P as compared with a normal yellow dent corn (YDC) diet. Dietary nonphytate P was maintained at either NRC (1994) recommendations for appropriate age periods or reduced by 0.075 or 0.15%. Portions of the diets were supplemented with 1,000 units of phytase/kg. Male chicks of a commercial strain were grown to 56 d on the test diets. Broilers fed diets with HAPC had BW, feed conversion, livability, and tibia ash that were equal to or superior to those fed diets with YDC with considerably reduced fecal P content at any dietary level of nonphytate P. Phytase supplementation enabled birds to maintain live performance at lower levels of nonphytate P, further reducing the fecal P output. One of the greatest contributions of phytase was a reduction in mortality at the lower levels of nonphytate P. Dietary P levels could be reduced by 0.075% under NRC (1994) recommendations without adversely affecting live performance; a reduction of 0.15% in conjunction with phytase supplementation maintained BW, feed conversion, and livability but reduced tibia ash. The extent to which dietary P levels can be reduced over the entire feeding program is subject to further research.

  1. Emissions from small-scale energy production using co-combustion of biofuel and the dry fraction of household waste.

    PubMed

    Hedman, Björn; Burvall, Jan; Nilsson, Calle; Marklund, Stellan

    2005-01-01

    In sparsely populated rural areas, recycling of household waste might not always be the most environmentally advantageous solution due to the total amount of transport involved. In this study, an alternative approach to recycling has been tested using efficient small-scale biofuel boilers for co-combustion of biofuel and high-energy waste. The dry combustible fraction of source-sorted household waste was mixed with the energy crop reed canary-grass (Phalaris Arundinacea L.), and combusted in both a 5-kW pilot scale reactor and a biofuel boiler with 140-180 kW output capacity, in the form of pellets and briquettes, respectively. The chlorine content of the waste fraction was 0.2%, most of which originated from plastics. The HCl emissions exceeded levels stipulated in new EU-directives, but levels of equal magnitude were also generated from combustion of the pure biofuel. Addition of waste to the biofuel did not give any apparent increase in emissions of organic compounds. Dioxin levels were close to stipulated limits. With further refinement of combustion equipment, small-scale co-combustion systems have the potential to comply with emission regulations.

  2. Energy Efficiency of Biogas Produced from Different Biomass Sources

    NASA Astrophysics Data System (ADS)

    Begum, Shahida; Nazri, A. H.

    2013-06-01

    Malaysia has different sources of biomass like palm oil waste, agricultural waste, cow dung, sewage waste and landfill sites, which can be used to produce biogas and as a source of energy. Depending on the type of biomass, the biogas produced can have different calorific value. At the same time the energy, being used to produce biogas is dependent on transportation distance, means of transportation, conversion techniques and for handling of raw materials and digested residues. An energy systems analysis approach based on literature is applied to calculate the energy efficiency of biogas produced from biomass. Basically, the methodology is comprised of collecting data, proposing locations and estimating the energy input needed to produce biogas and output obtained from the generated biogas. The study showed that palm oil and municipal solid waste is two potential sources of biomass. The energy efficiency of biogas produced from palm oil residues and municipal solid wastes is 1.70 and 3.33 respectively. Municipal solid wastes have the higher energy efficiency due to less transportation distance and electricity consumption. Despite the inherent uncertainties in the calculations, it can be concluded that the energy potential to use biomass for biogas production is a promising alternative.

  3. The synthesis of nanostructured SiC from waste plastics and silicon powder

    NASA Astrophysics Data System (ADS)

    Ju, Zhicheng; Xu, Liqiang; Pang, Qiaolian; Xing, Zheng; Ma, Xiaojian; Qian, Yitai

    2009-09-01

    Waste plastics constitute a growing environmental problem. Therefore, the treatment of waste plastics should be considered. Here we synthesize 3C-SiC nanomaterials coexisting with amorphous graphite particles utilizing waste plastics and Si powder at 350-500 °C in a stainless steel autoclave. 3C-SiC could be finally obtained after refluxing with aqueous HClO4 (70 wt%) at 180 °C. X-ray powder diffraction patterns indicate that the product is 3C-SiC with the calculated lattice constant a = 4.36 Å. Transmission electron microscopy (TEM) images show that the SiC samples presented two morphologies: hexagonal platelets prepared by the waste detergent bottles or beverage bottles and nanowires prepared by waste plastic bags respectively. The corresponding selected area electron diffraction (SAED) pattern indicates that either the entire hexagonal platelet or the nanowire is single crystalline. High-resolution TEM shows the planar surfaces of the SiC platelet correspond to {111} planes; the lateral surfaces are {110} planes and the preferential growth direction of the nanowires is along [111]. The output of SiC was ~39% based on the amount of Si powder.

  4. Demolition waste generation for development of a regional management chain model.

    PubMed

    Bernardo, Miguel; Gomes, Marta Castilho; de Brito, Jorge

    2016-03-01

    Even though construction and demolition waste (CDW) is the bulkiest waste stream, its estimation and composition in specific regions still faces major difficulties. Therefore new methods are required especially when it comes to make predictions limited to small areas, such as counties. This paper proposes one such method, which makes use of data collected from real demolition works and statistical information on the geographical area under study. Based on a correlation analysis between the demolition waste estimates and indicators such as population density, buildings ageing index, buildings density and land occupation type, relationships are established that can be used to determine demolition waste outputs in a given area. The derived models are presented and explained. This methodology is independent from the specific region with which it is exemplified (the Lisbon Metropolitan Area) and can therefore be applied to any region of the world, from the country to the county level. Generation of demolition waste data at the county level is the basis of the design of a systemic model for CDW management in a region. Future developments proposed include a mixed-integer linear programming formulation of such recycling network. Copyright © 2016 Elsevier Ltd. All rights reserved.

  5. Impacts of manure application on SWAT model outputs in the Xiangxi River watershed

    NASA Astrophysics Data System (ADS)

    Liu, Ruimin; Wang, Qingrui; Xu, Fei; Men, Cong; Guo, Lijia

    2017-12-01

    SWAT (Soil and Water Assessment Tool) model has been widely used to simulate agricultural non-point source (ANPS) pollution; however, the impacts of livestock manure application on SWAT model outputs have not been well studied. The objective of this study was to investigate the environmental effects of livestock manure application based on the SWAT model in the Xiangxi River watershed, which is one of the largest tributaries of the Three Gorges Reservoir in China. Three newly-built manure databases (NB) were created and applied to different subbasins based on the actual livestock manure discharging amount. The calibration and validation values of SWAT model outputs obtained from the NB manure application and the original mixed (OM) manure were compared. The study results are as follows: (1) The livestock industry of Xingshan County developed quickly between 2005 and 2015. The downstream of the Xiangxi River (Huangliang, Shuiyuesi and Xiakou) had the largest livestock amount, and largely accounted for manure, total nitrogen (TN) and total phosphorus (TP) production (>50%). (2) The NB manure application resulted in less phosphorus pollution (1686.35 kg for ORGP and 31.70 kg for MINP) than the OM manure application. Compared with the upstream, the downstream was influenced more by the manure application. (3) The SWAT results obtained from the NB manure had a better calibration and validation values than those from the OM manure. For ORGP, R2 and NSE values were 0.77 and 0.65 for the NB manure calibration; and the same values for the OM manure were 0.72 and 0.61, respectively. For MINP, R2 values were 0.65 and 0.62 for the NB manure and the OM manure, and the NSE values were 0.60 and 0.58, respectively. The results indicated that the built-in fertilizer database in SWAT has its limitation because it is set up for the simulation in the USA. Thus, when livestock manure is considered in a SWAT simulation, a newly built fertilizer database needs to be set up to represent the localized condition more accurately. The conclusions of this study would be instructive for livestock pollution simulations, and favorable for non-point source pollution prevention at the watershed scale.

  6. Ceramic ware waste as coarse aggregate for structural concrete production.

    PubMed

    García-González, Julia; Rodríguez-Robles, Desirée; Juan-Valdés, Andrés; Morán-Del Pozo, Julia M; Guerra-Romero, M Ignacio

    2015-01-01

    The manufacture of any kind of product inevitably entails the production of waste. The quantity of waste generated by the ceramic industry, a very important sector in Spain, is between 5% and 8% of the final output and it is therefore necessary to find an effective waste recovery method. The aim of the study reported in the present article was to seek a sustainable means of managing waste from the ceramic industry through the incorporation of this type of waste in the total replacement of conventional aggregate (gravel) used in structural concrete. Having verified that the recycled ceramic aggregates met all the technical requirements imposed by current Spanish legislation, established in the Code on Structural Concrete (EHE-08), then it is prepared a control concrete mix and the recycled concrete mix using 100% recycled ceramic aggregate instead of coarse natural aggregate. The concretes obtained were subjected to the appropriate tests in order to conduct a comparison of their mechanical properties. The results show that the concretes made using ceramic sanitary ware aggregate possessed the same mechanical properties as those made with conventional aggregate. It is therefore possible to conclude that the reuse of recycled ceramic aggregate to produce recycled concrete is a feasible alternative for the sustainable management of this waste.

  7. Independent Review of Elemental Phosphorus Remediation at the Eastern Michaud Flats FMC Operable Unit near Pocatello, Idaho

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Martino, L. E.; Jerden, J. J.; Kimmell, T. A.

    2016-01-01

    If, despite risks to workers and these potential impacts, stakeholders decide that P4 wastes need to be excavated and treated, the Review Team determined that a number of the ETTs examined warrant further consideration for the treatment of P4 waste that has been characterized (for example, P4 waste present in the historical ponds). Nevertheless, concerns about the health and safety of site investigation workers using then-available investigation approaches prevented the collection of subsurface samples containing P4 from large areas of the site (e.g., the railroad swale, the vadose zone beneath the Furnace Building, and the abandoned railcars), As a result,more » the contaminant CSM in those particular areas was not refined enough to allow the Review Team to draw conclusions about using some of the ETTs to treat P4 waste in those areas. The readiness of an ETT for implementation varies depending on many factors, including stakeholder input, permitting, and remedial action construction requirements. Technologies that could be ready for use in the near term (within 1 year) include the following: mechanical excavation, containment technologies, off-site incineration, and drying and mechanical mixing under a tent structure. Technologies that could be ready for use in the mid-term (1 to 2 years) include cutter suction dredging, thermal-hydraulic dredging, and underground pipeline cleaning technologies. Technologies requiring a longer lead time (2 to 5 years) include on-site incineration, a land disposal restriction waste treatment system, an Albright & Wilson batch mud still, post-treatment on-site disposal, and post-treatment off-site disposal.« less

  8. 40 CFR 422.20 - Applicability; description of the phosphorus consuming subcategory.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... phosphorus consuming subcategory. 422.20 Section 422.20 Protection of Environment ENVIRONMENTAL PROTECTION... Phosphorus Consuming Subcategory § 422.20 Applicability; description of the phosphorus consuming subcategory... manufacture of phosphoric acid, phosphorus pentoxide, phosphorus pentasulfide, phosphorus trichloride, and...

  9. 40 CFR 422.20 - Applicability; description of the phosphorus consuming subcategory.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... phosphorus consuming subcategory. 422.20 Section 422.20 Protection of Environment ENVIRONMENTAL PROTECTION... Phosphorus Consuming Subcategory § 422.20 Applicability; description of the phosphorus consuming subcategory... manufacture of phosphoric acid, phosphorus pentoxide, phosphorus pentasulfide, phosphorus trichloride, and...

  10. Sustainable solutions for solid waste management in Southeast Asian countries

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Uyen Nguyen Ngoc; Schnitzer, Hans

    2009-06-15

    Human activities generate waste and the amounts tend to increase as the demand for quality of life increases. Today's rate in the Southeast Asian Nations (ASEANs) is alarming, posing a challenge to governments regarding environmental pollution in the recent years. The expectation is that eventually waste treatment and waste prevention approaches will develop towards sustainable waste management solutions. This expectation is for instance reflected in the term 'zero emission systems'. The concept of zero emissions can be applied successfully with today's technical possibilities in the agro-based processing industry. First, the state-of-the-art of waste management in Southeast Asian countries will bemore » outlined in this paper, followed by waste generation rates, sources, and composition, as well as future trends of waste. Further on, solutions for solid waste management will be reviewed in the discussions of sustainable waste management. The paper emphasizes the concept of waste prevention through utilization of all wastes as process inputs, leading to the possibility of creating an ecosystem in a loop of materials. Also, a case study, focusing on the citrus processing industry, is displayed to illustrate the application of the aggregated material input-output model in a widespread processing industry in ASEAN. The model can be shown as a closed cluster, which permits an identification of opportunities for reducing environmental impacts at the process level in the food processing industry. Throughout the discussion in this paper, the utilization of renewable energy and economic aspects are considered to adapt to environmental and economic issues and the aim of eco-efficiency. Additionally, the opportunities and constraints of waste management will be discussed.« less

  11. Developing a monitoring and evaluation framework to integrate and formalize the informal waste and recycling sector: the case of the Philippine National Framework Plan.

    PubMed

    Serrona, Kevin Roy B; Yu, Jeongsoo; Aguinaldo, Emelita; Florece, Leonardo M

    2014-09-01

    The Philippines has been making inroads in solid waste management with the enactment and implementation of the Republic Act 9003 or the Ecological Waste Management Act of 2000. Said legislation has had tremendous influence in terms of how the national and local government units confront the challenges of waste management in urban and rural areas using the reduce, reuse, recycle and recovery framework or 4Rs. One of the sectors needing assistance is the informal waste sector whose aspiration is legal recognition of their rank and integration of their waste recovery activities in mainstream waste management. To realize this, the Philippine National Solid Waste Management Commission initiated the formulation of the National Framework Plan for the Informal Waste Sector, which stipulates approaches, strategies and methodologies to concretely involve the said sector in different spheres of local waste management, such as collection, recycling and disposal. What needs to be fleshed out is the monitoring and evaluation component in order to gauge qualitative and quantitative achievements vis-a-vis the Framework Plan. In the process of providing an enabling environment for the informal waste sector, progress has to be monitored and verified qualitatively and quantitatively and measured against activities, outputs, objectives and goals. Using the Framework Plan as the reference, this article developed monitoring and evaluation indicators using the logical framework approach in project management. The primary objective is to institutionalize monitoring and evaluation, not just in informal waste sector plans, but in any waste management initiatives to ensure that envisaged goals are achieved. © The Author(s) 2014.

  12. Seedling growth responses to phosphorus reflect adult distribution patterns of tropical trees.

    PubMed

    Zalamea, Paul-Camilo; Turner, Benjamin L; Winter, Klaus; Jones, F Andrew; Sarmiento, Carolina; Dalling, James W

    2016-10-01

    Soils influence tropical forest composition at regional scales. In Panama, data on tree communities and underlying soils indicate that species frequently show distributional associations to soil phosphorus. To understand how these associations arise, we combined a pot experiment to measure seedling responses of 15 pioneer species to phosphorus addition with an analysis of the phylogenetic structure of phosphorus associations of the entire tree community. Growth responses of pioneers to phosphorus addition revealed a clear tradeoff: species from high-phosphorus sites grew fastest in the phosphorus-addition treatment, while species from low-phosphorus sites grew fastest in the low-phosphorus treatment. Traits associated with growth performance remain unclear: biomass allocation, phosphatase activity and phosphorus-use efficiency did not correlate with phosphorus associations; however, phosphatase activity was most strongly down-regulated in response to phosphorus addition in species from high-phosphorus sites. Phylogenetic analysis indicated that pioneers occur more frequently in clades where phosphorus associations are overdispersed as compared with the overall tree community, suggesting that selection on phosphorus acquisition and use may be strongest for pioneer species with high phosphorus demand. Our results show that phosphorus-dependent growth rates provide an additional explanation for the regional distribution of tree species in Panama, and possibly elsewhere. © 2016 The Authors. New Phytologist © 2016 New Phytologist Trust.

  13. Microbial desalination cell for enhanced biodegradation of waste engine oil using a novel bacterial strain Bacillus subtilis moh3.

    PubMed

    Sabina, K; Fayidh, Mohammed A; Archana, G; Sivarajan, M; Babuskin, S; Babu, P Azhagu Saravana; Radha, K Krishnan; Sukumar, M

    2014-01-01

    Microbial desalination cell (MDC) is a bioelectrochemical system developed recently from microbial fuel cells (MFCs), for producing green energy from organic wastes along with desalination of saltwater. MDC is proved to be a better performer than MFC in terms of power output and chemical oxygen demand removal, with desalination as an additional feature. This study investigates the application potential of MDC for integrated biodegradation of waste engine oil. This study showed, for the first time, that waste engine oil could be used as an organic substrate in MDC, achieving biodegradation of engine oil along with considerable desalination and power production. Utilization of these wastes in MDC can protect the environment from waste engine oil contamination. Indigenous oil-degrading bacteria were isolated and identified from engine oil contaminated sludge. Degradation of waste engine oil by these novel isolates was studied in batch cultures and optimized the growth conditions. The same cultures when used in MDC, gave enhanced biodegradation (70.1 +/- 0.5%) along with desalination (68.3 +/- 0.6%) and power production (3.1 +/- 0.3 mW/m2). Fourier transform-infrared spectroscopy and gas chromatography-mass spectrometry analyses were performed to characterize the degradation metabolites in the anolyte of MDC which clearly indicated the biodegradation of long chain, branched and cyclic hydrocarbons present in waste engine oil.

  14. Environmental assessment of waste incineration in a life-cycle-perspective (EASEWASTE).

    PubMed

    Riber, Christian; Bhander, Gurbakhash S; Christensen, Thomas H

    2008-02-01

    A model for life-cycle assessment of waste incinerators is described and applied to a case study for illustrative purposes. As life-cycle thinking becomes more integrated into waste management, quantitative tools for assessing waste management technologies are needed. The presented model is a module in the life-cycle assessment model EASEWASTE. The module accounts for all uses of materials and energy and credits the incinerator for electricity and heat recovered. The energy recovered is defined by the user as a percentage of the energy produced, calculated on the lower heating value of the wet waste incinerated. Emissions are either process-specific (related to the amount of waste incinerated) or input-specific (related to the composition of the waste incinerated), while mass transfer to solid outputs are governed by transfer coefficients specified by the user. The waste input is defined by 48 material fractions and their chemical composition. The model was used to quantify the environmental performance of the incineration plant in Aarhus, Denmark before and after its upgrading in terms of improved flue gas cleaning and energy recovery. It demonstrated its usefulness in identifying the various processes and substances that contributed to environmental loadings as well as to environmental savings. The model was instrumental in demonstrating the importance of the energy recovery system not only for electricity but also heat from the incinerator.

  15. The dynamic interaction between combustible renewables and waste consumption and international tourism: the case of Tunisia.

    PubMed

    Ben Jebli, Mehdi; Ben Youssef, Slim; Apergis, Nicholas

    2015-08-01

    This paper employs the autoregressive distributed lag (ARDL) bounds methodological approach to investigate the relationship between economic growth, combustible renewables and waste consumption, carbon dioxide (CO2) emissions, and international tourism for the case of Tunisia spanning the period 1990-2010. The results from the Fisher statistic of both the Wald test and the Johansen test confirm the presence of a long-run relationship among the variables under investigation. The stability of estimated parameters has been tested, while Granger causality tests recommend a short-run unidirectional causality running from economic growth and combustible renewables and waste consumption to CO2 emissions, a bidirectional causality between economic growth and combustible renewables and waste consumption and unidirectional causality running from economic growth and combustible renewables and waste consumption to international tourism. In the long-run, the error correction terms confirm the presence of bidirectional causality relationships between economic growth, CO2 emissions, combustible renewables and waste consumption, and international tourism. Our long-run estimates show that combustible renewables and waste consumption increases international tourism, and both renewables and waste consumption and international tourism increase CO2 emissions and output. We recommend that (i) Tunisia should use more combustible renewables and waste energy as this eliminates wastes from touristic zones and increases the number of tourist arrivals, leading to economic growth, and (ii) a fraction of this economic growth generated by the increase in combustible renewables and waste consumption should be invested in clean renewable energy production (i.e., solar, wind, geothermal) and energy efficiency projects.

  16. P losses in soil columns amended with compost and digestate from municipal solid wastes

    NASA Astrophysics Data System (ADS)

    García-Albacete, Marta; Cartagena, M. Carmen

    2013-04-01

    Sludge's, manures and compost applied to agricultural soils in high quantities and long-term application to increase crop productivity, result in accumulation of soil phosphorous (P). Soluble P is directly available to algae (Sonzogni et al., 1982) and thus particularly relevant to water quality degradation. Transport of P from agricultural soils to surface waters has been linked to eutrophication in fresh water and estuaries (Sharpley and Lemunyon, 1998). Almost 50% of stored water in Spain is degraded by eutrophication processes that cause the proliferation of algae and other organisms and a decrease in oxygen content (Environmental Profile of Spain 2005). Fertilizers and biodegradable wastes application rates in agriculture are based on nitrogen requirements. This results in a P supply that is in excess of crops needs since the ratio of P to N in waste use to be greater than required by plants (Smith, 1995). While surface runoff is an important pathway of phosphorus losses from agricultural lands, significant losses can also occur via leaching thought soils. Leaching tests are important for assessing the risk of release of potential pollutants from biodegradable wastes into groundwater or surface water. Percolation tests also get information about the interaction of organic waste with soils. The study was conducted according to the percolation leaching test CEN/TS 14405 "Characterization of waste-Leaching behavior test- Up-flow percolation test" with three different soils mixed with organic wastes from msw (compost and digestato) and an inorganic fertilizer (NaH2PO4). Each soil was amended with the P sources at rates of 100 kg P ha-1. Leachates were collected and analyzed for each column for dissolved reactive P by inductively coupled plasma atomic emission spectroscopy (ICP) following USEPA Method 3050A digestion (USEPA, 1995). The fact that P sorption capacity (Xmax, PSI) of the soils was determined using Langmuiŕs isotherms and the P forms from organic wastes were extensively characterized allows leaching data could be interpreted on the basis of P-sources chemical properties.

  17. Re-examining the phosphorus-protein dilemma: Does phosphorus restriction compromise protein status?

    PubMed Central

    St-Jules, David E; Woolf, Kathleen; Pompeii, Mary-Lou; Kalantar-Zadeh, Kamyar; Sevick, Mary Ann

    2015-01-01

    Dietary phosphorus restriction is recommended to help control hyperphosphatemia in hemodialysis (HD) patients, but many high-phosphorus foods are important sources of protein. In this review, we examine whether restricting dietary phosphorus compromises protein status in HD patients. Although dietary phosphorus and protein are highly correlated, phosphorus intakes can range up to 600 mg/day for a given energy and protein intake level. Further, the collinearity of phosphorus and protein may be biased because the phosphorus burden of food depends on: (1) the presence of phosphate additives; (2) food preparation method; and (3) bioavailability of phosphorus; which are often unaccounted for in nutrition assessments. Ultimately, we argue that clinically relevant reductions in phosphorus intake can be made without limiting protein intake by avoiding phosphate additives in processed foods, using wet cooking methods such as boiling, and if needed, substituting high-phosphorus foods for nutritionally-equivalent foods that are lower in bioavailable phosphorus. PMID:26873260

  18. Bioextraction potential of seaweed in Denmark - An instrument for circular nutrient management.

    PubMed

    Seghetta, Michele; Tørring, Ditte; Bruhn, Annette; Thomsen, Marianne

    2016-09-01

    The aim of the study is to assess the efficacy of seaweed for circular nutrient management to reduce eutrophication levels in the aquatic environment. We performed a comparative Life Cycle Assessment (LCA) of two reference waste management systems treating seaweed as biowaste, i.e. landfill disposal and combustion, and an alternative scenario using the seaweed Saccharina latissima as a resource for biobased fertilizer production. Life Cycle Impact Assessment (LCIA) methods were improved by using a cradle-to-cradle approach, quantifying fate factors for nitrogen and phosphorus loss from fertilized agriculture to the aquatic environment. We also differentiated between nitrogen- and phosphorus-limited marine water to improve the traditional freshwater impact category, making this indicator suitable for decision support in relation to coastal water management schemes. Offshore cultivation of Saccharina latissima with an average productivity of 150Mg/km(2) in Danish waters in 2014 was applied to a cultivation scenario of 208km(2). The bioresource scenario performs better than conventional biowaste management systems, delivering a net reduction in aquatic eutrophication levels of 32.29kgNeq. and 16.58kgPO4(3-)eq. per Mg (dry weight) of seaweed, quantified by the ReCiPe and CML impact assessment methods, respectively. Seaweed cultivation, harvest and reuse of excess nutrients from the aquatic environment is a promising approach for sustainable resource cycling in a future regenerative economy that exploits manmade emissions as a resource for closed loop biobased production while significantly reducing eutrophication levels in 3 out of 7 Danish river basin districts. We obtained at least 10% bioextraction of phosphorus manmade emissions (10%, 89% and >100%) and contributed significantly to local nitrogen reduction goals according to the Water Framework Directive (23%, 78% and >100% of the target). Copyright © 2016 Elsevier B.V. All rights reserved.

  19. Influence of solid dairy manure and compost with and without alum on survival of indicator bacteria in soil and on potato.

    PubMed

    Entry, James A; Leytem, April B; Verwey, Sheryl

    2005-11-01

    We measured Escherichia coli, Enterococcus spp. and fecal coliform numbers in soil and on fresh potato skins after addition of solid dairy manure and dairy compost with and without alum (Al(2)(SO(4))(3)) treatment 1, 7, 14, 28, 179 and 297 days after application. The addition of dairy compost or solid dairy manure at rates to meet crop phosphorus uptake did not consistently increase E. coli and Enterococcus spp. and fecal coliform bacteria in the soil. We did not detect E. coli in any soil sample after the first sampling day. Seven, 14, 28, 179 and 297 days after solid dairy waste and compost and alum were applied to soil, alum did not consistently affect Enterococcus spp. and fecal coliform bacteria in the soil. We did not detect E. coli in any soil, fresh potato skin or potato wash-water at 214 days after dairy manure or compost application regardless of alum treatment. Dairy compost or solid dairy manure application to soil at rates to meet crop phosphorus uptake did not consistently increase Enterococcus spp. and fecal coliform numbers in bulk soil. Solid dairy manure application to soil at rates to meet crop phosphorus uptake, increased Enterococcus spp. and fecal coliform numbers in potato rhizosphere soil. However, fresh potato skins had higher Enterococcus spp. and fecal coliform numbers when solid dairy manure was added to soil compared to compost, N and P inorganic fertilizer and N fertilizer treatments. We did not find any E. coli, Enterococcus or total coliform bacteria on the exterior of the tuber, within the peel or within a whole baked potato after microwave cooking for 5 min.

  20. Output-Orientated Data Envelopment Analysis for Measuring Recycling Efficiency: An Application at Italian Regional Level

    ERIC Educational Resources Information Center

    Crociata, Alessandro; Mattoscio, Nicola

    2016-01-01

    Pro-environmental behaviours associated with reducing, reusing and recycling have become increasingly matters of public policy concern. However, the existing literature on waste management rarely considers the cultural factors associated with predictors and enablers of recycling behaviours, nor has it deeply explored the relation between cultural…

  1. Air and water cooled modulator

    DOEpatents

    Birx, Daniel L.; Arnold, Phillip A.; Ball, Don G.; Cook, Edward G.

    1995-01-01

    A compact high power magnetic compression apparatus and method for delivering high voltage pulses of short duration at a high repetition rate and high peak power output which does not require the use of environmentally unacceptable fluids such as chlorofluorocarbons either as a dielectric or as a coolant, and which discharges very little waste heat into the surrounding air. A first magnetic switch has cooling channels formed therethrough to facilitate the removal of excess heat. The first magnetic switch is mounted on a printed circuit board. A pulse transformer comprised of a plurality of discrete electrically insulated and magnetically coupled units is also mounted on said printed board and is electrically coupled to the first magnetic switch. The pulse transformer also has cooling means attached thereto for removing heat from the pulse transformer. A second magnetic switch also having cooling means for removing excess heat is electrically coupled to the pulse transformer. Thus, the present invention is able to provide high voltage pulses of short duration at a high repetition rate and high peak power output without the use of environmentally unacceptable fluids and without discharging significant waste heat into the surrounding air.

  2. CH4 emission and recovery from municipal solid waste in China.

    PubMed

    Xu, Xin-Hua; Yang, Yue-Ping; Wang, Da-Hui

    2003-01-01

    Methane ( CH4) is an important greenhouse gas and a major environmental pollutant, second only to carbon dioxide (CO2) in its contribution to potential global warming. In many cases, methane emission from landfills otherwise emitted to the atmosphere can be removed and utilized, or significantly reduced in quantity by using coat-effective management methods. The gas can also be used as a residential, commercial, or industrial fuel. Therefore, emission reduction strategies have the potential to become low cost, or even profitable. The annual growth rate of Municipal Solid Waste (MSW) output in China is 6.24%, with the highest levels found in South China, Southwest China and East China. Cities and towns are developing quickly in these regions. MSW output was only 76.36 Mt in 1991 and increased to 109.82 Mt in 1997, registering an average increase of 43.8% . In China, methane emission from landfills also increased from 5.88 Mt in 1991 to 8.46 Mt in 1997; so the recovery of methane from landfills is a profitable project.

  3. High-Performance Silicon-Germanium-Based Thermoelectric Modules for Gas Exhaust Energy Scavenging

    NASA Astrophysics Data System (ADS)

    Romanjek, K.; Vesin, S.; Aixala, L.; Baffie, T.; Bernard-Granger, G.; Dufourcq, J.

    2015-06-01

    Some of the energy used in transportation and industry is lost as heat, often at high-temperatures, during conversion processes. Thermoelectricity enables direct conversion of heat into electricity, and is an alternative to the waste-heat-recovery technology currently used, for example turbines and other types of thermodynamic cycling. The performance of thermoelectric (TE) materials and modules has improved continuously in recent decades. In the high-temperature range ( T hot side > 500°C), silicon-germanium (SiGe) alloys are among the best TE materials reported in the literature. These materials are based on non-toxic elements. The Thermoelectrics Laboratory at CEA (Commissariat à l'Energie Atomique et aux Energies Alternatives) has synthesized n and p-type SiGe pellets, manufactured TE modules, and integrated these into thermoelectric generators (TEG) which were tested on a dedicated bench with hot air as the source of heat. SiGe TE samples of diameter 60 mm were created by spark-plasma sintering. For n-type SiGe doped with phosphorus the peak thermoelectric figure of merit reached ZT = 1.0 at 700°C whereas for p-type SiGe doped with boron the peak was ZT = 0.75 at 700°C. Thus, state-of-the-art conversion efficiency was obtained while also achieving higher production throughput capacity than for competing processes. A standard deviation <4% in the electrical resistance of batches of ten pellets of both types was indicative of high reproducibility. A silver-paste-based brazing technique was used to assemble the TE elements into modules. This assembly technique afforded low and repeatable electrical contact resistance (<3 nΩ m2). A test bench was developed for measuring the performance of TE modules at high temperatures (up to 600°C), and thirty 20 mm × 20 mm TE modules were produced and tested. The results revealed the performance was reproducible, with power output reaching 1.9 ± 0.2 W for a 370 degree temperature difference. When the temperature difference was increased to 500°C, electrical power output increased to >3.6 W. An air-water heat exchanger was developed and 30 TE modules were clamped and connected electrically. The TEG was tested under vacuum on a hot-air test bench. The measured output power was 45 W for an air flow of 16 g/s at 750°C. The hot surface of the TE module reached 550°C under these conditions. Silicon-germanium TE modules can survive such temperatures, in contrast with commercial modules based on bismuth telluride, which are limited to 400°C.

  4. 15 CFR 770.2 - Item interpretations.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ...) (C.A.S. #10025-87-3) Phosphorus oxychloride Phosphonyl trichloride Phosphoric chloride Phosphoric trichloride Phosphoroxychloride Phosphoroxytrichloride Phosphorus chloride oxide Phosphorus monoxide trichloride Phosphorus oxide trichloride Phosphorus oxytrichloride Phosphorus trichloride oxide Phosphoryl...

  5. 15 CFR 770.2 - Item interpretations.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ...) (C.A.S. #10025-87-3) Phosphorus oxychloride Phosphonyl trichloride Phosphoric chloride Phosphoric trichloride Phosphoroxychloride Phosphoroxytrichloride Phosphorus chloride oxide Phosphorus monoxide trichloride Phosphorus oxide trichloride Phosphorus oxytrichloride Phosphorus trichloride oxide Phosphoryl...

  6. Effect of dietary phosphorus on the growth and body components of juvenile Synechogobius hasta

    NASA Astrophysics Data System (ADS)

    Luo, Zhi; Li, Xiaodong; Gong, Shiyuan; Xi, Wenqiu; Li, Yali

    2009-03-01

    The effect of dietary phosphorus on the growth and body components of juvenile Synechogobius hasta was determined. Different percentages of dietary phosphorus (0.63, 0.77, 0.93, 1.06, 1.22 and 1.36) were tested by feeding the fish (body weight, 15.81 g ± 0.32 g; 20 individuals each group; 3 groups each percentage) at a surplus of 5%-10% above satiation for 35 d. Dietary phosphorus did not significantly affect the specific growth rate, feed intake, feed conversion ratio and protein efficiency rate. Nitrogen retention was found to be the highest in fish fed the diet containing 1.06% of phosphorus; however, this was not significantly different from other diets. Fish fed the diet containing 0.93% of phosphorus showed the highest phosphorus retention; similar phosphorus retention rates were found in fish fed the diets containing 0.77% and 1.06% of phosphorus. Fish fed the diet containing the highest percentage of dietary phosphorus were found to contain the least whole body lipid, lower than fish fed other diets ( P<0.05). The protein content increased from 18.59% to 19.55% (although not significant) with the decrease of body lipid content ( P>0.05). The contents of the whole body ash, whole body phosphorus and vertebrae phosphorus increased with dietary phosphorus percentage up to 1.06 ( P<0.05), reaching a plateau after that. Dietary phosphorus did not significantly influence the muscle components (protein, lipid and moisture). Condition factor and hepatosomatic index were the highest in fish fed the diet containing 0.63% of dietary phosphorus; however, this was not significantly different from those of other diets. The second-order polynomial regression of phosphorus retention against dietary phosphorus identified a breakpoint at 0.88% of dietary phosphorus. However, the dietary requirement of phosphorus for maintaining maximum phosphorus storage determined by broken-line analysis of the contents of whole body phosphorus, and ash and vertebrae phosphorus was 1.06% of the diet.

  7. Estimation of true phosphorus digestibility and endogenous phosphorus loss in growing chicks fed conventional and low-phytate soybean meals.

    PubMed

    Dilger, R N; Adeola, O

    2006-04-01

    This study evaluated regression of total P output against dietary P intake to simultaneously estimate endogenous P loss and true P utilization in broiler chicks. Soybean meal (SBM) served as the model ingredient, and a comparison was made between conventional and low-phytate SBM varieties. These feedstuffs were chosen to minimize nutritive differences to dietary phytate content. Low-phytate SBM contained 57% less phytate than conventional SBM. Four isocaloric diets were formulated to contain graded levels of each soybean meal (8 diets total); therefore, the diets also contained graded levels of dietary P. Chromium sesquioxide was included in diets as an indigestible marker, and free access to experimental diets was provided to 288 male broiler chicks from 15 to 22 d posthatch. The experiment was arranged as a randomized complete block design with 6 blocks of 8 cages (6 birds per cage) and similar initial BW across dietary treatments. As P intake ranged from 0.9 to 3.9 g/ kg of DM, apparent prececal P digestibilities increased (linear and quadratic, P < 0.01) for conventional SBM and low-phytate SBM. Increasing linear relationships (P < 0.01) were observed for total P output (mg/kg of DM intake) with graded P intake, regardless of SBM variety. True P retention was greater (P < 0.01) for low-phytate SBM (76.9%) than for conventional SBM (59.8%). Endogenous P estimates were not different between soybean meals (P > 0.10), and an overall estimate of 235 mg of P/ kg of DM intake was observed. This study concluded 1) the regression approach may be applicable in the estimation of endogenous P loss in broiler chicks and 2) the difference in P utilization between conventional and low-phytate soybean meals is influenced by dietary phytate content when broiler chicks are fed P-deficient diets.

  8. Electricity generation from food wastes and characteristics of organic matters in microbial fuel cell.

    PubMed

    Li, Hui; Tian, Yu; Zuo, Wei; Zhang, Jun; Pan, Xiaoyue; Li, Lipin; Su, Xinying

    2016-04-01

    The microbial fuel cell (MFC) was evaluated as an alternative way to recover electricity from canteen based food waste. Characteristics of the organics in food waste before and after the MFC treatment were analyzed to investigate how the organic matters were biodegraded and transformed during the MFC treatment. A maximum power density of 5.6W/m(3) and an average output voltage of 0.51V were obtained. During the MFC operation, the hydrophilic and acidic fractions were more readily degraded, compared to the neutral fractions. Additionally, aromatic compounds in the hydrophilic fraction were more preferentially removed than non-aromatic compounds. The MFC could easily remove the tryptophan protein-like substances in all fractions and aromatic proteins in hydrophilic and hydrophobic neutral fractions. Additionally, the hydrophobic amide-1 proteins and aliphatic components were readily hydrolyzed and biodegraded in the MFC. These findings may facilitate the pretreatment and posttreatment choices for MFC system fed with food waste. Copyright © 2016 Elsevier Ltd. All rights reserved.

  9. Influence of nitrogen and phosphorus sources on mycorrhizal lettuces under organic farming

    NASA Astrophysics Data System (ADS)

    Scotti, Riccardo; Seguel, Alex; Cornejo, Pablo; Rao, Maria A.; Borie, Fernando

    2010-05-01

    Arbuscular mycorrhizal fungi (AMF) develop symbiotic associations with plants roots. These associations are very common in the natural environment and can provide a range of benefits to the host plant. AMF improve nutrition, enhance resistance to soil-borne pests and disease, increase resistance to drought and tolerance to heavy metals, and contribute to a better soil structure. However, agricultural intensive managements, such as the use of mineral fertilizes, pesticides, mouldboard tillage, monocultures and use of non-mycorrhizal crops, are detrimental to AMF. As a consequence, agroecosystems are impoverished in AMF and may not provide the full range of benefits to the crop. Organic farming systems may be less unfavourable to AMF because they exclude the use of water-soluble fertilisers and most pesticides, and generally they plan diverse crop rotations. The AMF develop the most common type of symbiosis in nature: about 90% of the plants are mycorrhizal and many agricultural crops are mycorrhizal. One of more mycorrhizal crops is lettuce, that is very widespread in intensive agricultural under greenhouse. Therefore, cultivated lettuce is know to be responsive to mycorrhizal colonization which can reach 80% of root length and contribute to phosphorus and nitrogen absorption by this plant specie. For this work four different lettuce cultivars (Romana, Milanesa, Grande Lagos and Escarola) were used to study mycorrhization under organic agricultural system, supplying compost from agricultural waste (1 kg m-2) as background fertilization for all plots, red guano as phosphorus source (75 U ha-1 and 150 U ha-1 of P2O5), lupine flour as nitrogen source (75 and 150 U/ha of N) and a combination of both. Lettuce plants were cultivated under greenhouse and after two months of growing, plants were harvested and dried and fresh weight of lettuce roots and shoots were evaluated. The number of spores, percentage of colonization, total mycelium and glomalin content were also evaluated as mycorrhizal parameters. The results showed a different response to mycorrhization of the four lettuce Cvs. In general, mycorrhized lettuce plants had a better response to lower level of nitrogen and phosphorus sources.

  10. Comparison of the organic waste management systems in the Danish-German border region using life cycle assessment (LCA).

    PubMed

    Jensen, Morten Bang; Møller, Jacob; Scheutz, Charlotte

    2016-03-01

    This study assessed the management of the organic household waste in the Danish-German border region and points out major differences between the systems and their potential effects on the environment using life cycle assessment (LCA). The treatment of organic waste from households in the Danish-German border region is very different on each side of the border; the Danish region only uses incineration for the treatment of organic household waste while the German region includes combined biogas production and composting, mechanical and biological treatment (MBT) and incineration. Data on all parts of the organic waste treatment was collected including waste composition data and data from treatment facilities and their respective energy systems. Based on that the organic waste management systems in the border region were modelled using the EASETECH waste management LCA-model. The main output is a life cycle assessment showing large differences in the environmental performance of the two different regions with the Danish region performing better in 10 out of 14 impact categories. Furthermore, the importance of the substituted district heating systems was investigated showing an impact up to 34% of the entire system for one impact category and showing large difference between each heating system substituted, e.g. in "Global Warming" the impact was from -16 to -1.1 milli person equivalent/tonne treated waste from substitution of centralised hard coal and decentralised natural gas, respectively. Copyright © 2016 Elsevier Ltd. All rights reserved.

  11. Polarization and Thickness Dependent Absorption Properties of Black Phosphorus: New Saturable Absorber for Ultrafast Pulse Generation

    PubMed Central

    Li, Diao; Jussila, Henri; Karvonen, Lasse; Ye, Guojun; Lipsanen, Harri; Chen, Xianhui; Sun, Zhipei

    2015-01-01

    Black phosphorus (BP) has recently been rediscovered as a new and interesting two-dimensional material due to its unique electronic and optical properties. Here, we study the linear and nonlinear optical properties of BP flakes. We observe that both the linear and nonlinear optical properties are anisotropic and can be tuned by the film thickness in BP, completely different from other typical two-dimensional layered materials (e.g., graphene and the most studied transition metal dichalcogenides). We then use the nonlinear optical properties of BP for ultrafast (pulse duration down to ~786 fs in mode-locking) and large-energy (pulse energy up to >18 nJ in Q-switching) pulse generation in fiber lasers at the near-infrared telecommunication band ~1.5 μm. We observe that the output of our BP based pulsed lasers is linearly polarized (with a degree-of-polarization ~98% in mode-locking, >99% in Q-switching, respectively) due to the anisotropic optical property of BP. Our results underscore the relatively large optical nonlinearity of BP with unique polarization and thickness dependence, and its potential for polarized optical pulse generation, paving the way to BP based nonlinear and ultrafast photonic applications (e.g., ultrafast all-optical polarization switches/modulators, frequency converters etc.). PMID:26514090

  12. A modeling study examining the impact of nutrient boundaries ...

    EPA Pesticide Factsheets

    A mass balance eutrophication model, Gulf of Mexico Dissolved Oxygen Model (GoMDOM), has been developed and applied to describe nitrogen, phosphorus and primary production in the Louisiana shelf of the Gulf of Mexico. Features of this model include bi-directional boundary exchanges, an empirical site-specific light attenuation equation, estimates of 56 river loads and atmospheric loads. The model was calibrated for 2006 by comparing model output to observations in zones that represent different locations in the Gulf. The model exhibited reasonable skill in simulating the phosphorus and nitrogen field data and primary production observations. The model was applied to generate a nitrogen mass balance estimate, to perform sensitivity analysis to compare the importance of the nutrient boundary concentrations versus the river loads on nutrient concentrations and primary production within the shelf, and to provide insight into the relative importance of different limitation factors on primary production. The mass budget showed the importance of the rivers as the major external nitrogen source while the atmospheric load contributed approximately 2% of the total external load. Sensitivity analysis showed the importance of accurate estimates of boundary nitrogen concentrations on the nitrogen levels on the shelf, especially at regions further away from the river influences. The boundary nitrogen concentrations impacted primary production less than nitrogen concent

  13. Estimation of nitrogen and phosphorus flows in livestock production in Dianchi Lake basin, China.

    PubMed

    Anzai, Hiroki; Wang, Lin; Oishi, Kazato; Irbis, Chagan; Li, Kunzhi; Kumagai, Hajime; Inamura, Tatsuya; Hirooka, Hiroyuki

    2016-01-01

    We assessed the nitrogen (N) and phosphorus (P) flows in intensified livestock production systems by investigating nutrient budgets and cycling in the basin of Dianchi Lake, one of the most eutrophic lakes in China. We conducted field surveys based on feed samplings and interviews of livestock farmers. The N and P in local and external feeds, animal body retentions, animal products and excretions were calculated at the individual level for dairy cattle, fattening pigs, breeding sows, broilers and laying hens. The N and P flows in the total livestock production system in the area were estimated by multiplying the individual N and P budgets by the number of animals. For the dairy and fattening pig productions, N and P supplied from local crops or by-products accounted for large parts of the inputs. For the other livestock categories, most of the N and P inputs depended on external resources. The N and P outputs through animal manure into the cropland were 287 and 66 kg/ha/year, respectively, which were higher than the N and P inputs into the livestock production systems from the cropland. The N and P loads from manure should be reduced for the establishment of sustainable agricultural production systems. © 2015 Japanese Society of Animal Science.

  14. The importance of considering shifts in seasonal changes in discharges when predicting future phosphorus loads in streams

    USGS Publications Warehouse

    LaBeau, Meredith B.; Mayer, Alex S.; Griffis, Veronica; Watkins, David Jr.; Robertson, Dale M.; Gyawali, Rabi

    2015-01-01

    In this work, we hypothesize that phosphorus (P) concentrations in streams vary seasonally and with streamflow and that it is important to incorporate this variation when predicting changes in P loading associated with climate change. Our study area includes 14 watersheds with a range of land uses throughout the U.S. Great Lakes Basin. We develop annual seasonal load-discharge regression models for each watershed and apply these models with simulated discharges generated for future climate scenarios to simulate future P loading patterns for two periods: 2046–2065 and 2081–2100. We utilize output from the Coupled Model Intercomparison Project phase 3 downscaled climate change projections that are input into the Large Basin Runoff Model to generate future discharge scenarios, which are in turn used as inputs to the seasonal P load regression models. In almost all cases, the seasonal load-discharge models match observed loads better than the annual models. Results using the seasonal models show that the concurrence of nonlinearity in the load-discharge model and changes in high discharges in the spring months leads to the most significant changes in P loading for selected tributaries under future climate projections. These results emphasize the importance of using seasonal models to understand the effects of future climate change on nutrient loads.

  15. A Phosphorus Phthalocyanine Formulation with Intense Absorbance at 1000 nm for Deep Optical Imaging

    PubMed Central

    Zhou, Yang; Wang, Depeng; Zhang, Yumiao; Chitgupi, Upendra; Geng, Jumin; Wang, Yuehang; Zhang, Yuzhen; Cook, Timothy R.; Xia, Jun; Lovell, Jonathan F.

    2016-01-01

    Although photoacoustic computed tomography (PACT) operates with high spatial resolution in biological tissues deeper than other optical modalities, light scattering is a limiting factor. The use of longer near infrared wavelengths reduces scattering. Recently, the rational design of a stable phosphorus phthalocyanine (P-Pc) with a long wavelength absorption band beyond 1000 nm has been reported. Here, we show that when dissolved in liquid surfactants, P-Pc can give rise to formulations with absorbance of greater than 1000 (calculated for a 1 cm path length) at wavelengths beyond 1000 nm. Using the broadly accessible Nd:YAG pulse laser emission output of 1064 nm, P-Pc could be imaged through 11.6 cm of chicken breast with PACT. P-Pc accumulated passively in tumors following intravenous injection in mice as observed by PACT. Following oral administration, P-Pc passed through the intestine harmlessly, and PACT could be used to non-invasively observe intestine function. When the contrast agent placed under the arm of a healthy adult human, a PACT transducer on the top of the arm could readily detect P-Pc through the entire 5 cm limb. Thus, the approach of using contrast media with extreme absorption at 1064 nm readily enables high quality optical imaging in vitro and in vivo in humans at exceptional depths. PMID:27022416

  16. [Research advances in mechanism of high phosphorus use efficiency of plants].

    PubMed

    Ma, Xiangqing; Liang, Xia

    2004-04-01

    Phosphorus deficiency is one of the main factors influencing agricultural and forestry productions. Fertilization and soil improvement are the major measures to meet the demand of phosphorus for crops in traditional agriculture and forestry management. Recently, the plants with high phosphorus use efficiency have been discovered to replace the traditional measures to improve phosphorus use efficiency of crops. This paper reviewed the research advances in the morphological, physiological and genetics mechanisms of plants with high phosphorus use efficiency. There were three mechanisms for the plants with high phosphorus use efficiency to grow under phosphorus stress: (1) under low phosphorus stress, the root morphology would change (root system grew fast, root axes became small, the number and density of lateral root increased) and more photosynthesis products would transport from the crown to the root, (2) under low phosphorus stress, plant root exudation increased, mycorrhizae invaded into root system, the feature of root absorption kinetics changed, and the internal phosphorus cycling of plant reinforced to tolerate phosphorus deficiency, and (3) under long selection stress of low phosphorus, some plants would form the genetic properties of phosphorus nutrition that could exploit the hardly soluble phosphorus in the soil.

  17. Innovative Method for Separating Phosphorus and Iron from High-Phosphorus Oolitic Hematite by Iron Nugget Process

    NASA Astrophysics Data System (ADS)

    Han, Hongliang; Duan, Dongping; Wang, Xing; Chen, Siming

    2014-10-01

    This study puts forward a new method to separate phosphorus and iron from high-phosphorus oolitic hematite through iron nuggets process. Firstly, the physical, chemical, and microscopic characteristics of high-phosphorus oolitic hematite are investigated. Then, the reaction mechanisms of high-phosphorus hematite together with feasibility to separating phosphorus and iron by iron nugget process are discussed. Meanwhile, the experiments of high-phosphorus hematite used in rotary hearth furnace iron nugget processes are studied as well. The results indicate that the iron nugget process is a feasible and efficient method for iron and phosphorus separation of high-phosphorus oolitic hematite. The phosphorus content in iron nuggets is relatively low. Through the optimization of process parameters, the lowest of phosphorus in iron nuggets is 0.22 pct, the dephosphorization rate is above 86 pct, and the recovery of Fe is above 85 pct by the iron nugget process. This study aims to provide a theoretical and technical basis for economical and rational use of high-phosphorus oolitic hematite.

  18. Reexamining the Phosphorus-Protein Dilemma: Does Phosphorus Restriction Compromise Protein Status?

    PubMed

    St-Jules, David E; Woolf, Kathleen; Pompeii, Mary Lou; Kalantar-Zadeh, Kamyar; Sevick, Mary Ann

    2016-05-01

    Dietary phosphorus restriction is recommended to help control hyperphosphatemia in hemodialysis patients, but many high-phosphorus foods are important sources of protein. In this review, we examine whether restricting dietary phosphorus compromises protein status in hemodialysis patients. Although dietary phosphorus and protein are highly correlated, phosphorus intakes can range up to 600 mg/day for a given energy and protein intake level. Furthermore, the collinearity of phosphorus and protein may be biased because the phosphorus burden of food depends on: (1) the presence of phosphate additives, (2) food preparation method, and (3) bioavailability of phosphorus, which are often unaccounted for in nutrition assessments. Ultimately, we argue that clinically relevant reductions in phosphorus intake can be made without limiting protein intake by avoiding phosphate additives in processed foods, using wet cooking methods such as boiling, and if needed, substituting high-phosphorus foods for nutritionally equivalent foods that are lower in bioavailable phosphorus. Copyright © 2016 National Kidney Foundation, Inc. Published by Elsevier Inc. All rights reserved.

  19. Eco-efficient waste glass recycling: Integrated waste management and green product development through LCA

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Blengini, Gian Andrea, E-mail: blengini@polito.it; CNR-IGAG, Institute of Environmental Geology and Geo-Engineering, Corso Duca degli Abruzzi 24, 10129 Turin; Busto, Mirko, E-mail: mirko.busto@polito.it

    Highlights: Black-Right-Pointing-Pointer A new eco-efficient recycling route for post-consumer waste glass was implemented. Black-Right-Pointing-Pointer Integrated waste management and industrial production are crucial to green products. Black-Right-Pointing-Pointer Most of the waste glass rejects are sent back to the glass industry. Black-Right-Pointing-Pointer Recovered co-products give more environmental gains than does avoided landfill. Black-Right-Pointing-Pointer Energy intensive recycling must be limited to waste that cannot be closed-loop recycled. - Abstract: As part of the EU Life + NOVEDI project, a new eco-efficient recycling route has been implemented to maximise resources and energy recovery from post-consumer waste glass, through integrated waste management and industrial production.more » Life cycle assessment (LCA) has been used to identify engineering solutions to sustainability during the development of green building products. The new process and the related LCA are framed within a meaningful case of industrial symbiosis, where multiple waste streams are utilised in a multi-output industrial process. The input is a mix of rejected waste glass from conventional container glass recycling and waste special glass such as monitor glass, bulbs and glass fibres. The green building product is a recycled foam glass (RFG) to be used in high efficiency thermally insulating and lightweight concrete. The environmental gains have been contrasted against induced impacts and improvements have been proposed. Recovered co-products, such as glass fragments/powders, plastics and metals, correspond to environmental gains that are higher than those related to landfill avoidance, whereas the latter is cancelled due to increased transportation distances. In accordance to an eco-efficiency principle, it has been highlighted that recourse to highly energy intensive recycling should be limited to waste that cannot be closed-loop recycled.« less

  20. Self-consolidating concretes containing waste PET bottles as sand replacement

    NASA Astrophysics Data System (ADS)

    Khalid, Faisal Sheikh; Azmi, Nurul Bazilah; Mazenan, Puteri Natasya; Shahidan, Shahiron; Othman, Nor hazurina; Guntor, Nickholas Anting Anak

    2018-02-01

    This study evaluates the effect of self-consolidating concrete (SCC) containing waste polyethylene terephthalate (PET) granules on the fresh, mechanical and water absorption properties. Fine aggregates were replaced from 0% to 8% by PET granules. The fresh properties of SCC containing PET granules were determined using slump flow and V-funnel flow time tests. The compressive and splitting tensile strength were evaluated. The results indicated that utilization of waste PET granules in production of SCC could be an effective way for recycling purpose. The maximum amount of PET replacement should be limited to 5%. Exceeding 5% of PET content may result in an increase of V-funnel flow time to overpass the limiting value, decrease in strength. The production of high performance SCC containing 5% PET granules satisfies all the requirements for SCC with satisfactory outputs.

Top