Science.gov

Sample records for phosphorus-ion implanted synthetic

  1. Implantation of nitrogen, carbon, and phosphorus ions into metals

    SciTech Connect

    Guseva, M.I.; Gordeeva, G.V.

    1987-01-01

    The application of ion implantation for alloying offers a unique opportunity to modify the chemical composition, phase constitution, and microstructure of the surface layers of metals. The authors studied ion implantation of nitrogen and carbon into the surface layers of metallic targets. The phase composition of the implanted layers obtained on the Kh18N10T stainless steel, the refractory molybdenum alloy TsM-6, niobium, and nickel was determined according to the conventional method of recording the x-ray diffraction pattern of the specimens using monochromatic FeK/sub alpha/-radiation on a DRON-2,0 diffractometer. The targets were bombarded at room temperature in an ILU-3 ion accelerator. The implantation of metalloid ions was also conducted with the targets being bombarded with 100-keV phosphorus ions and 40-keV carbon ions.

  2. Effect of phosphorus ion implantation on back gate effect of partially depleted SOI NMOS under total dose radiation

    NASA Astrophysics Data System (ADS)

    Leilei, Li; Xinjie, Zhou; Zongguang, Yu; Qing, Feng

    2015-01-01

    The mechanism of improving the TID radiation hardened ability of partially depleted silicon-on-insulator (SOI) devices by using the back-gate phosphorus ion implantation technology is studied. The electron traps introduced in SiO2 near back SiO2/Si interface by phosphorus ions implantation can offset positive trapped charges near the back-gate interface. The implanted high concentration phosphorus ions can greatly reduce the back-gate effect of a partially depleted SOI NMOS device, and anti-total-dose radiation ability can reach the level of 1 Mrad(Si) for experimental devices.

  3. Understanding and engineering of NiGe/Ge junction formed by phosphorus ion implantation after germanidation

    SciTech Connect

    Oka, Hiroshi Minoura, Yuya; Hosoi, Takuji; Shimura, Takayoshi; Watanabe, Heiji

    2014-08-11

    Modulation of the effective electron Schottky barrier height (eSBH) of NiGe/Ge contacts induced by phosphorus ion implantation after germanide formation was investigated by considering local inhomogeneity in the eSBH. Systematic studies of NiGe/Ge contact devices having various germanide thicknesses and ion implantation areas indicated the threshold dopant concentration at the NiGe/Ge interface required for eSBH modulation and negligible dopant diffusion even at NiGe/Ge interface during drive-in annealing, leading to variation in the eSBH between the bottom and sidewall portions of the NiGe regions. Consequently, this method makes it possible to design source/drain contacts with low-resistivity Ohmic and ideal rectifying characteristics for future Ge-based transistors.

  4. Annihilation kinetics of defects induced by phosphorus ion implantation in silicon

    NASA Astrophysics Data System (ADS)

    Hadjersi, T.

    2001-12-01

    Ion channeling and electrical characterization techniques have been used in order to study the effects of thermal annealing on phosphorus implanted silicon wafers. A low energy thermally activated process (0.15-0.28 eV) is clearly observed after annealing at low temperature (≤500 °C). This electrical activation mechanism is found to be well described by a local relaxation model involving point defect migration. It is shown that in order to achieve a complete electrical activation of the implanted impurities, an annealing must be performed at temperatures higher than 700 °C.

  5. Viscoelastic properties of a synthetic meniscus implant.

    PubMed

    Shemesh, Maoz; Asher, Roy; Zylberberg, Eyal; Guilak, Farshid; Linder-Ganz, Eran; Elsner, Jonathan J

    2014-01-01

    There are significant potential advantages for restoration of meniscal function using a bio-stable synthetic implant that combines long-term durability with a dependable biomechanical performance resembling that of the natural meniscus. A novel meniscus implant made of a compliant polycarbonate-urethane matrix reinforced with high modulus ultrahigh molecular weight polyethylene fibers was designed as a composite structure that mimics the structural elements of the natural medial meniscus. The overall success of such an implant is linked on its capability to replicate the stress distribution in the knee over the long-term. As this function of the device is directly dependent on its mechanical properties, changes to the material due to exposure to the joint environment and repeated loading could have non-trivial influences on the viscoelastic properties of the implant. Thus, the goal of this study was to measure and characterize the strain-rate response, as well as the viscoelastic properties of the implant as measured by creep, stress relaxation, and hysteresis after simulated use, by subjecting the implant to realistic joint loads up to 2 million cycles in a joint-like setting. The meniscus implant behaved as a non-linear viscoelastic material. The implant underwent minimal plastic deformation after 2 million fatigue loading cycles. Under low compressive loads, the implant was fairly flexible, and able to deform relatively easily (E=120-200 kPa). However as the compressive load applied on the implant was increased, the implant became stiffer (E=3.8-5.2 MPa), to resist deformation. The meniscus implant appears well-matched to the viscoelastic properties of the natural meniscus, and importantly, these properties were found to remain stable and minimally affected by potentially degradative and loading conditions associated with long-term use.

  6. [Biodegradable synthetic implant materials : clinical applications and immunological aspects].

    PubMed

    Witte, F; Calliess, T; Windhagen, H

    2008-02-01

    In the last decade biodegradable synthetic implant materials have been established for various clinical applications. Ceramic materials such as calcium phosphate, bioglass and polymers are now routinely used as degradable implants in the clinical practice. Additionally these materials are now also used as coating materials or as microspheres for controlled drug release and belong to a series of examples for applications as scaffolds for tissue engineering. Because immense local concentrations of degradation products are produced during biodegradation, this review deals with the question whether allergic immune reactions, which have been reported for classical metallic and organic implant materials, also play a role in the clinical routine for synthetic biodegradable materials. Furthermore, possible explanatory theories will be developed to clarify the lack of clinical reports on allergy or sensitization to biodegradable synthetic materials.

  7. Influence of nitrogen implantation on thermoluminescence of synthetic quartz

    NASA Astrophysics Data System (ADS)

    Nsengiyumva, S.; Chithambo, M. L.; Pichon, L.

    2014-11-01

    Thermoluminescence (TL) of synthetic quartz exposed to beta irradiation following implantation with 60 keV N+ ions at fluences ranging between 1 × 1014 and 5 × 1015 ions/cm2 is reported. The glow curve measured at 5°C/s typically consists of a prominent peak near 110°C, studied in this work, and minor glow peaks at around 130°C and 190°C. The TL intensity of the main peak increased both with implantation and with fluence of implantation. The dependence of the intensity on heating rate and fluence suggests that the implantation introduces new defects that may possibly act as recombination centres. The increase in TL intensity with the heating rate exhibited by implanted samples has been observed in other luminescence materials. This anti-quenching phenomenon has been described as a competition effect between multiple luminescence pathways in luminescence materials. Kinetic analysis of the main glow peak using the initial rise, various heating rate and glow curve deconvolution methods shows that the activation energy of the main peak is about 0.7 eV with no systematic change due to ion fluence.

  8. Influence of nitrogen implantation on thermoluminescence of synthetic quartz

    NASA Astrophysics Data System (ADS)

    Nsengiyumva, S.; Chithambo, M. L.; Pichon, L.

    2015-01-01

    Thermoluminescence (TL) of synthetic quartz exposed to beta irradiation following implantation with 60 keV N+ ions at fluences ranging between 1 × 1014 and 5 × 1015 ions/cm2 is reported. The glow curve measured at 5°C/s typically consists of a prominent peak near 110°C, studied in this work, and minor glow peaks at around 130°C and 190°C. The TL intensity of the main peak increased both with implantation and with fluence of implantation. The dependence of the intensity on the heating rate and fluence suggests that the implantation introduces new defects that may possibly act as recombination centres. The increase in TL intensity with the heating rate exhibited by implanted samples has been observed in other luminescence materials. This anti-quenching phenomenon has been described as a competition effect between multiple luminescence pathways in luminescence materials. Kinetic analysis of the main glow peak using the initial rise, various heating rate and glow-curve deconvolution methods shows that the activation energy of the main peak is about 0.7 eV with no systematic change due to ion fluence.

  9. Redistribution of nitrogen implanted in the crystals of synthetic diamond

    NASA Astrophysics Data System (ADS)

    Cherepov, E. I.; Tishkovsky, E. G.; Obodnikov, V. I.; Pal'yanov, Ju. N.; Sokol, A. G.; Sobolev, N. V.

    2001-10-01

    The redistribution of nitrogen atoms implanted in synthetic diamond crystals was investigated by secondary ion mass-spectrometry in course of an isothermal annealing program at 1400°C during 1, 5 and 20 h. It was shown that the nitrogen profiles spread at a macroscopic scale, and the broadening is well described in terms of the diffusion movement of impurity atoms. The preliminary estimates of diffusion coefficients were obtained: 2.3×10 -15 cm2/ s for 1 h annealing, 8.5×10 -16 cm2/ s for 5 h annealing and 3.7×10 -16 cm2/ s for 20 h annealing.

  10. iNOS Activity Modulates Inflammation, Angiogenesis, and Tissue Fibrosis in Polyether-Polyurethane Synthetic Implants.

    PubMed

    Cassini-Vieira, Puebla; Araújo, Fernanda Assis; da Costa Dias, Filipi Leles; Russo, Remo Castro; Andrade, Silvia Passos; Teixeira, Mauro Martins; Barcelos, Luciola Silva

    2015-01-01

    There is considerable interest in implantation techniques and scaffolds for tissue engineering and, for safety and biocompatibility reasons, inflammation, angiogenesis, and fibrosis need to be determined. The contribution of inducible nitric oxide synthase (iNOS) in the regulation of the foreign body reaction induced by subcutaneous implantation of a synthetic matrix was never investigated. Here, we examined the role of iNOS in angiogenesis, inflammation, and collagen deposition induced by polyether-polyurethane synthetic implants, using mice with targeted disruption of the iNOS gene (iNOS(-/-)) and wild-type (WT) mice. The hemoglobin content and number of vessels were decreased in the implants of iNOS(-/-) mice compared to WT mice 14 days after implantation. VEGF levels were also reduced in the implants of iNOS(-/-) mice. In contrast, the iNOS(-/-) implants exhibited an increased neutrophil and macrophage infiltration. However, no alterations were observed in levels of CXCL1 and CCL2, chemokines related to neutrophil and macrophage migration, respectively. Furthermore, the implants of iNOS(-/-) mice showed boosted collagen deposition. These data suggest that iNOS activity controls inflammation, angiogenesis, and fibrogenesis in polyether-polyurethane synthetic implants and that lack of iNOS expression increases foreign body reaction to implants in mice.

  11. iNOS Activity Modulates Inflammation, Angiogenesis, and Tissue Fibrosis in Polyether-Polyurethane Synthetic Implants

    PubMed Central

    Cassini-Vieira, Puebla; Araújo, Fernanda Assis; da Costa Dias, Filipi Leles; Russo, Remo Castro; Andrade, Silvia Passos; Teixeira, Mauro Martins; Barcelos, Luciola Silva

    2015-01-01

    There is considerable interest in implantation techniques and scaffolds for tissue engineering and, for safety and biocompatibility reasons, inflammation, angiogenesis, and fibrosis need to be determined. The contribution of inducible nitric oxide synthase (iNOS) in the regulation of the foreign body reaction induced by subcutaneous implantation of a synthetic matrix was never investigated. Here, we examined the role of iNOS in angiogenesis, inflammation, and collagen deposition induced by polyether-polyurethane synthetic implants, using mice with targeted disruption of the iNOS gene (iNOS−/−) and wild-type (WT) mice. The hemoglobin content and number of vessels were decreased in the implants of iNOS−/− mice compared to WT mice 14 days after implantation. VEGF levels were also reduced in the implants of iNOS−/− mice. In contrast, the iNOS−/− implants exhibited an increased neutrophil and macrophage infiltration. However, no alterations were observed in levels of CXCL1 and CCL2, chemokines related to neutrophil and macrophage migration, respectively. Furthermore, the implants of iNOS−/− mice showed boosted collagen deposition. These data suggest that iNOS activity controls inflammation, angiogenesis, and fibrogenesis in polyether-polyurethane synthetic implants and that lack of iNOS expression increases foreign body reaction to implants in mice. PMID:26106257

  12. Long-term Surgical Outcomes of the Multi-purpose Conical Porous Synthetic Orbital Implant

    PubMed Central

    Kang, Min-Ji; Jung, Su-Kyung; Cho, Won-Kyung; Paik, Ji-Sun

    2015-01-01

    Purpose We present clinical results of the use of the multipurpose conical porous synthetic orbital implant (MCOI) in surgical procedures of evisceration, enucleation, and secondary enucleation in ophthalmology patients. Methods A retrospective review was performed of 59 eyes in which conical implants were used, including 36 cases of eviscerations, 11 enucleations, and 9 secondary enucleations. In all of the cases, the follow-up period was greater than six months between 2004 and 2013. The results focus on documenting surgical findings, as well as postoperative complications among patients. Results Superior sulcus deformities were found in six eyes (10.2% of conical implant patients), and two eyes received additional surgical interventions to correct the deformities (3.4%). Blepharoptosis was found in four eyes (6.8%), two of which received upper eyelid blepharoplasty (3.4%). Fornix shortening was reported in only one eye (1.7%). Forty-one eyes had a satisfactory cosmetic appearance after the final prosthetic fitting of conical implants (69.5%). The most frequent postoperative complication was orbital implant exposure, which seemed to occur when the preoperative status of the conjunctiva, Tenon's capsule, and sclera preservation were poor in the eyes of the patients. Conclusions There was a lower incidence of blepharoptosis and fornix shortening with the MCOI in comparison to spherical implants, while the incidence of orbital implant exposure was similar with the MCOI in comparison to other types of orbital implants. In addition, the MCOI may have advantages with respect to postoperative cosmetic outcomes. PMID:26457034

  13. Influence of argon-implantation on conventional and phototransferred thermoluminescence of synthetic quartz

    NASA Astrophysics Data System (ADS)

    Nsengiyumva, S.; Chithambo, M. L.; Pichon, L.

    2016-03-01

    Conventional and phototransferred thermoluminescence of crystalline synthetic quartz implanted with 70 keV Ar ions at fluences in the range 1 × 1014-5 × 1015 ions/cm2 is reported. The glow curves, recorded at 5°C/s from beta-irradiated samples of similar mass, show a prominent peak between 100°C and 120°C. The thermoluminescence intensity of all implanted samples was greater than that of the unimplanted one. The increase in sensitivity is attributed to a corresponding increase in the concentration of point defects, as a result of the implantation, which act as electron traps or recombination centres. Kinetic analysis carried out using the peak shape, whole glow-peak and curve-fitting methods produced values of the activation energy, frequency factor and order of kinetics that are generally independent of implantation fluence. This result suggests that implantation did not necessarily affect the nature of the electron traps. With respect to phototransferred thermoluminescence, it was observed that it only appeared in the sample implanted at the highest fluence of 5 × 1015 ions/cm2. This may be so because the concentration of deep traps produced as a result of implantation at low fluence is too low to give rise to phototransferred thermoluminescence. The intensity of the phototransferred thermoluminescence goes through a peak with illumination time. We attribute this behaviour to the relative concentration of holes at recombination centres and phototransferred electrons at shallow traps.

  14. Determinations of strength of synthetic hydroxyapatite ceramic implants.

    PubMed

    Ono, I; Tateshita, T; Nakajima, T; Ogawa, T

    1998-09-01

    To study the physical strengths of various types of synthetic high porosity hydroxyapatite plates, we constructed samples of a fixed shape, 8 X 25 mm in size, with varying degrees of thickness (3 to 10 mm) and porosity (40, 50, and 60 percent), as well as samples with varying degrees of curvature and samples constructed with computer-aided design-computer-aided manufacturing (CAD-CAM) technology based on a real-size model made with laser lithography from computed tomography data. The strength of the samples was studied with the three-point bending test and crush tests. Studies showed that strength decreases with increasing porosity and increases with increasing thickness. In addition, results of testing plates of varying shapes and degrees of curvature revealed that the effects of these variations were small and that when the width and thickness were held constant, changing the curvature of the entire unit (from a height of 20 to 30 mm) or altering both sides had no remarkable effect on strength. On the other hand, strength testing of plates of various shapes and thicknesses constructed from clinical computed tomography data revealed that minimum optimization of the parameters was achieved when plates had a porosity of about 40 percent and a thickness of about 8 mm.

  15. Synthetic PreImplantation Factor (PIF) prevents fetal loss by modulating LPS induced inflammatory response

    PubMed Central

    Marana, Riccardo; Castellani, Roberta; Ria, Francesco; Veglia, Manuela; Scambia, Giovanni; Surbek, Daniel; Barnea, Eytan

    2017-01-01

    Maternal control of inflammation is essential during pregnancy and an exaggerated response is one of the underlying causes of fetal loss. Inflammatory response is mediated by multiple factors and Toll-like receptors (TLRs) are central. Activation of TLRs results in NALP-3 mediated assembly of apoptosis-associated speck-like protein containing a CARD (ASC) and caspase-1 into the inflammasome and production of pro-inflammatory cytokines IL-1β and IL-18. Given that preventing measures are lacking, we investigated PreImplantation Factor (PIF) as therapeutic option as PIF modulates Inflammation in pregnancy. Additionally, synthetic PIF (PIF analog) protects against multiple immune disorders. We used a LPS induced murine model of fetal loss and synthetic PIF reduced this fetal loss and increased the embryo weight significantly. We detected increased PIF expression in the placentae after LPS insult. The LPS induced serum and placenta cytokines were abolished by synthetic PIF treatment and importantly synthetic PIF modulated key members of inflammasome complex NALP-3, ASC, and caspase-1 as well. In conclusion our results indicate that synthetic PIF protects against LPS induced fetal loss, likely through modulation of inflammatory response especially the inflammasome complex. Given that synthetic PIF is currently tested in autoimmune diseases of non-pregnant subjects (clinicaltrials.gov, NCT02239562), therapeutic approach during pregnancy can be envisioned. PMID:28704412

  16. Synthetic PreImplantation Factor (PIF) prevents fetal loss by modulating LPS induced inflammatory response.

    PubMed

    Di Simone, Nicoletta; Di Nicuolo, Fiorella; Marana, Riccardo; Castellani, Roberta; Ria, Francesco; Veglia, Manuela; Scambia, Giovanni; Surbek, Daniel; Barnea, Eytan; Mueller, Martin

    2017-01-01

    Maternal control of inflammation is essential during pregnancy and an exaggerated response is one of the underlying causes of fetal loss. Inflammatory response is mediated by multiple factors and Toll-like receptors (TLRs) are central. Activation of TLRs results in NALP-3 mediated assembly of apoptosis-associated speck-like protein containing a CARD (ASC) and caspase-1 into the inflammasome and production of pro-inflammatory cytokines IL-1β and IL-18. Given that preventing measures are lacking, we investigated PreImplantation Factor (PIF) as therapeutic option as PIF modulates Inflammation in pregnancy. Additionally, synthetic PIF (PIF analog) protects against multiple immune disorders. We used a LPS induced murine model of fetal loss and synthetic PIF reduced this fetal loss and increased the embryo weight significantly. We detected increased PIF expression in the placentae after LPS insult. The LPS induced serum and placenta cytokines were abolished by synthetic PIF treatment and importantly synthetic PIF modulated key members of inflammasome complex NALP-3, ASC, and caspase-1 as well. In conclusion our results indicate that synthetic PIF protects against LPS induced fetal loss, likely through modulation of inflammatory response especially the inflammasome complex. Given that synthetic PIF is currently tested in autoimmune diseases of non-pregnant subjects (clinicaltrials.gov, NCT02239562), therapeutic approach during pregnancy can be envisioned.

  17. Rate and onset cues can improve cochlear implant synthetic vowel recognition in noise

    PubMed Central

    Mc Laughlin, Myles; Reilly, Richard B.; Zeng, Fan-Gang

    2013-01-01

    Understanding speech-in-noise is difficult for most cochlear implant (CI) users. Speech-in-noise segregation cues are well understood for acoustic hearing but not for electric hearing. This study investigated the effects of stimulation rate and onset delay on synthetic vowel-in-noise recognition in CI subjects. In experiment I, synthetic vowels were presented at 50, 145, or 795 pulse/s and noise at the same three rates, yielding nine combinations. Recognition improved significantly if the noise had a lower rate than the vowel, suggesting that listeners can use temporal gaps in the noise to detect a synthetic vowel. This hypothesis is supported by accurate prediction of synthetic vowel recognition using a temporal integration window model. Using lower rates a similar trend was observed in normal hearing subjects. Experiment II found that for CI subjects, a vowel onset delay improved performance if the noise had a lower or higher rate than the synthetic vowel. These results show that differing rates or onset times can improve synthetic vowel-in-noise recognition, indicating a need to develop speech processing strategies that encode or emphasize these cues. PMID:23464025

  18. Rate and onset cues can improve cochlear implant synthetic vowel recognition in noise.

    PubMed

    Mc Laughlin, Myles; Reilly, Richard B; Zeng, Fan-Gang

    2013-03-01

    Understanding speech-in-noise is difficult for most cochlear implant (CI) users. Speech-in-noise segregation cues are well understood for acoustic hearing but not for electric hearing. This study investigated the effects of stimulation rate and onset delay on synthetic vowel-in-noise recognition in CI subjects. In experiment I, synthetic vowels were presented at 50, 145, or 795 pulse/s and noise at the same three rates, yielding nine combinations. Recognition improved significantly if the noise had a lower rate than the vowel, suggesting that listeners can use temporal gaps in the noise to detect a synthetic vowel. This hypothesis is supported by accurate prediction of synthetic vowel recognition using a temporal integration window model. Using lower rates a similar trend was observed in normal hearing subjects. Experiment II found that for CI subjects, a vowel onset delay improved performance if the noise had a lower or higher rate than the synthetic vowel. These results show that differing rates or onset times can improve synthetic vowel-in-noise recognition, indicating a need to develop speech processing strategies that encode or emphasize these cues.

  19. Implantable synthetic cytokine converter cells with AND-gate logic treat experimental psoriasis.

    PubMed

    Schukur, Lina; Geering, Barbara; Charpin-El Hamri, Ghislaine; Fussenegger, Martin

    2015-12-16

    Psoriasis is a chronic inflammatory skin disease characterized by a relapsing-remitting disease course and correlated with increased expression of proinflammatory cytokines, such as tumor necrosis factor (TNF) and interleukin 22 (IL22). Psoriasis is hard to treat because of the unpredictable and asymptomatic flare-up, which limits handling of skin lesions to symptomatic treatment. Synthetic biology-based gene circuits are uniquely suited for the treatment of diseases with complex dynamics, such as psoriasis, because they can autonomously couple the detection of disease biomarkers with the production of therapeutic proteins. We designed a mammalian cell synthetic cytokine converter that quantifies psoriasis-associated TNF and IL22 levels using serially linked receptor-based synthetic signaling cascades, processes the levels of these proinflammatory cytokines with AND-gate logic, and triggers the corresponding expression of therapeutic levels of the anti-inflammatory/psoriatic cytokines IL4 and IL10, which have been shown to be immunomodulatory in patients. Implants of microencapsulated cytokine converter transgenic designer cells were insensitive to simulated bacterial and viral infections as well as psoriatic-unrelated inflammation. The designer cells specifically prevented the onset of psoriatic flares, stopped acute psoriasis, improved psoriatic skin lesions and restored normal skin-tissue morphology in mice. The antipsoriatic designer cells were equally responsive to blood samples from psoriasis patients, suggesting that the synthetic cytokine converter captures the clinically relevant cytokine range. Implanted designer cells that dynamically interface with the patient's metabolism by detecting specific disease metabolites or biomarkers, processing their blood levels with synthetic circuits in real time, and coordinating immediate production and systemic delivery of protein therapeutics may advance personalized gene- and cell-based therapies. Copyright © 2015

  20. Biological Matrices and Synthetic Meshes Used in Implant-based Breast Reconstruction – a Review of Products Available in Germany

    PubMed Central

    Dieterich, M.; Faridi, A.

    2013-01-01

    While autologous breast reconstruction was considered the procedure of choice for immediate breast reconstruction, there has been a shift towards implant-based breast reconstruction (IBBR) in recent years. The proven safety of silicone breast implants and the development of biological matrices and synthetic meshes have contributed to the growing popularity of this approach. Although these different products are widely used, only limited clinical data are available with regard to breast surgery. The aim of this review was to give an overview of available biological matrices and synthetic meshes and discuss their use in clinical practice. PMID:24771895

  1. Bioglass implant-coating interactions in synthetic physiological fluids with varying degrees of biomimicry.

    PubMed

    Popa, A C; Stan, G E; Husanu, M A; Mercioniu, I; Santos, L F; Fernandes, H R; Ferreira, Jmf

    2017-01-01

    Synthetic physiological fluids are currently used as a first in vitro bioactivity assessment for bone grafts. Our understanding about the interactions taking place at the fluid-implant interface has evolved remarkably during the last decade, and does not comply with the traditional International Organization for Standardization/final draft International Standard 23317 protocol in purely inorganic simulated body fluid. The advances in our knowledge point to the need of a true paradigm shift toward testing physiological fluids with enhanced biomimicry and a better understanding of the materials' structure-dissolution behavior. This will contribute to "upgrade" our vision of entire cascades of events taking place at the implant surfaces upon immersion in the testing media or after implantation. Starting from an osteoinductive bioglass composition with the ability to alleviate the oxidative stress, thin bioglass films with different degrees of polymerization were deposited onto titanium substrates. Their biomineralization activity in simulated body fluid and in a series of new inorganic-organic media with increasing biomimicry that more closely simulated the human intercellular environment was compared. A comprehensive range of advanced characterization tools (scanning electron microscopy; grazing-incidence X-ray diffraction; Fourier-transform infrared, micro-Raman, energy-dispersive, X-ray photoelectron, and surface-enhanced laser desorption/ionization time-of-flight mass spectroscopies; and cytocompatibility assays using mesenchymal stem cells) were used. The information gathered is very useful to biologists, biophysicists, clinicians, and material scientists with special interest in teaching and research. By combining all the analyses, we propose herein a step forward toward establishing an improved unified protocol for testing the bioactivity of implant materials.

  2. Bioglass implant-coating interactions in synthetic physiological fluids with varying degrees of biomimicry

    PubMed Central

    Popa, AC; Stan, GE; Husanu, MA; Mercioniu, I; Santos, LF; Fernandes, HR; Ferreira, JMF

    2017-01-01

    Synthetic physiological fluids are currently used as a first in vitro bioactivity assessment for bone grafts. Our understanding about the interactions taking place at the fluid–implant interface has evolved remarkably during the last decade, and does not comply with the traditional International Organization for Standardization/final draft International Standard 23317 protocol in purely inorganic simulated body fluid. The advances in our knowledge point to the need of a true paradigm shift toward testing physiological fluids with enhanced biomimicry and a better understanding of the materials’ structure-dissolution behavior. This will contribute to “upgrade” our vision of entire cascades of events taking place at the implant surfaces upon immersion in the testing media or after implantation. Starting from an osteoinductive bioglass composition with the ability to alleviate the oxidative stress, thin bioglass films with different degrees of polymerization were deposited onto titanium substrates. Their biomineralization activity in simulated body fluid and in a series of new inorganic–organic media with increasing biomimicry that more closely simulated the human intercellular environment was compared. A comprehensive range of advanced characterization tools (scanning electron microscopy; grazing-incidence X-ray diffraction; Fourier-transform infrared, micro-Raman, energy-dispersive, X-ray photoelectron, and surface-enhanced laser desorption/ionization time-of-flight mass spectroscopies; and cytocompatibility assays using mesenchymal stem cells) were used. The information gathered is very useful to biologists, biophysicists, clinicians, and material scientists with special interest in teaching and research. By combining all the analyses, we propose herein a step forward toward establishing an improved unified protocol for testing the bioactivity of implant materials. PMID:28176941

  3. [The primary stability between manual and robot assisted implantation of hip prostheses: A biomechanical study on synthetic femurs].

    PubMed

    Decking, J; Gerber, A; Kränzlein, J; Meurer, A; Böhm, B; Plitz, W

    2004-01-01

    We investigated the initial stability of cementless stems implanted with robotic milling and conventional manual broaching. Proximally porous structured stems (G2, ESKA-Implants, Luebeck, Germany) were implanted into synthetic femora. In one group, the femoral cavity was prepared by a CT-based robot (CASPAR, URS-Ortho, Germany) with a high-speed milling head. In the other group, femora were rasped manually with broaches. The broaches had 1 mm proximal press-fit, the robotic cavities 1.5 mm. The implants were exposed to 15 000 loading cycles with 1 000 +/- 500 N. The direction of forces on the implant head were chosen to simulate stair climbing. Internal rotation and translation (caudal, dorsal and lateral) of the implants were measured by linear transducers. The robotic group showed significantly less reversible motion regarding translation in caudal, dorsal and lateral directions. The standard deviations of implant motions were smaller in the robotic group. Using robotic preparation of the femur, initial stability was higher and more consistent than with manual broaching, but differences in undersizing of the cavities created in the femur in relation to the implant may have contributed to these differences for the most part. In-vitro-loading experiments focusing on femoral cavities with varying press-fits are recommended before the introduction of new implants or operating procedures.

  4. Quantification of in vitro wear of a synthetic meniscus implant using gravimetric and micro-CT measurements.

    PubMed

    Elsner, Jonathan J; Shemesh, Maoz; Shefy-Peleg, Adaya; Gabet, Yankel; Zylberberg, Eyal; Linder-Ganz, Eran

    2015-09-01

    A synthetic meniscus implant was recently developed for the treatment of patients with mild to moderate osteoarthritis with knee pain associated with medial joint overload. The implant is distinctively different from most orthopedic implants in its pliable construction, and non-anchored design, which enables implantation through a mini-arthrotomy without disruption to the bone, cartilage, and ligaments. Due to these features, it is important to show that the material and design can withstand knee joint conditions. This study evaluated the long-term performance of this device by simulating loading for a total of 5 million gait cycles (Mc), corresponding to approximately five years of service in-vivo. All five implants remained in good condition and did not dislodge from the joint space during the simulation. Mild abrasion was detected by electron microscopy, but µ-CT scans of the implants confirmed that the damage was confined to the superficial surfaces. The average gravimetric wear rate was 14.5 mg/Mc, whereas volumetric changes in reconstructed µ-CT scans point to an average wear rate of 15.76 mm(3)/Mc (18.8 mg/Mc). Particles isolated from the lubricant had average diameter of 15 µm. The wear performance of this polycarbonate-urethane meniscus implant concept under ISO-14243 loading conditions is encouraging. Copyright © 2015 Elsevier Ltd. All rights reserved.

  5. Acromioclavicular joint reconstruction using the LockDown synthetic implant: a study with cadavers.

    PubMed

    Taranu, R; Rushton, P R P; Serrano-Pedraza, I; Holder, L; Wallace, W A; Candal-Couto, J J

    2015-12-01

    Dislocation of the acromioclavicular joint is a relatively common injury and a number of surgical interventions have been described for its treatment. Recently, a synthetic ligament device has become available and been successfully used, however, like other non-native solutions, a compromise must be reached when choosing non-anatomical locations for their placement. This cadaveric study aimed to assess the effect of different clavicular anchorage points for the Lockdown device on the reduction of acromioclavicular joint dislocations, and suggest an optimal location. We also assessed whether further stability is provided using a coracoacromial ligament transfer (a modified Neviaser technique). The acromioclavicular joint was exposed on seven fresh-frozen cadaveric shoulders. The joint was reconstructed using the Lockdown implant using four different clavicular anchorage points and reduction was measured. The coracoacromial ligament was then transferred to the lateral end of the clavicle, and the joint re-assessed. If the Lockdown ligament was secured at the level of the conoid tubercle, the acromioclavicular joint could be reduced anatomically in all cases. If placed medial or 2 cm lateral, the joint was irreducible. If the Lockdown was placed 1 cm lateral to the conoid tubercle, the joint could be reduced with difficulty in four cases. Correct placement of the Lockdown device is crucial to allow anatomical joint reduction. Even when the Lockdown was placed over the conoid tubercle, anterior clavicle displacement remained but this could be controlled using a coracoacromial ligament transfer. ©2015 The British Editorial Society of Bone & Joint Surgery.

  6. Effects on primary stability of three different techniques for implant site preparation in synthetic bone models of different densities.

    PubMed

    Möhlhenrich, S C; Kniha, K; Heussen, N; Hölzle, F; Modabber, A

    2016-11-01

    Preparation of implant sites affect the primary stability of implants that is necessary for osseointegration. We have investigated the effect on the primary stability of implants of three techniques used to prepare the site for implants in synthetic bone models of different densities. A total of 540 implants of varying diameters (3.3 (narrow), 4.1 (standard), and 4.8 (wide) mm) and lengths (8 or 12mm) were inserted into three artificial bone blocks (the density of which decreased from D2, D3, to D4), and we compared conventional, fully-guided, and condensing preparation of the site. After insertion, primary stability was measured using resonance frequency analysis. There were significant differences between conventional and condensing procedures (p <0.0001 in all cases) and between fully-guided and condensing procedures (p<0.01 in all cases), but there were no differences between fully-guided and conventional procedures when short implants were used, with a standard or wide diameter in low-density bone blocks (D3 and D4). In low-density bone blocks (D3 and D4) wide implants (4.8mm) compared with narrow (3.3mm) resulted in significantly better primary stability (p<0.0001 in all cases). Fully-guided preparation of the implant site is associated with increased primary stability, but is not an alternative to bone condensing. Use of longer or wider implants can increase primary stability, but the effect is less pronounced after bone condensing. Copyright © 2016 The British Association of Oral and Maxillofacial Surgeons. Published by Elsevier Ltd. All rights reserved.

  7. Pretreatment of synthetic vascular grafts with heparin before implantation, a simple technique to reduce the risk of thrombosis.

    PubMed

    Gerrah, Rabin; Sunstrom Pa-C, Rachel E; Hohimer, Alan R

    2015-10-01

    Thrombosis of synthetic grafts commonly used in cardiovascular surgery is a major complication. We examined whether pretreatment of the graft with heparin reduces the risk of early thrombosis. A circuit was assembled to compare two pairs of shunts simultaneously in the same animal. The study shunts were pretreated with heparin. After 2 hours of circulation, clot formation was evaluated by image analysis techniques. The pretreated grafts had fewer blood clots adhered to the surface by direct visual inspection. The image analysis showed 5 vs. 39 clots, 0.01% vs. 1.8% clotted area, and 62 vs. 5630 clot pixel area between the treated and non-treated grafts respectively, p < 0.05. Pretreatment of the synthetic graft with heparin prior to implantation reduces the risk of early clot formation. This simple practice might be helpful to prevent initial thrombosis of the graft and later occlusion. © The Author(s) 2014.

  8. Effect of Speaking Rate on Recognition of Synthetic and Natural Speech by Normal-Hearing and Cochlear Implant Listeners

    PubMed Central

    Ji, Caili; Galvin, John J.; Xu, Anting; Fu, Qian-Jie

    2012-01-01

    Objective Most studies have evaluated cochlear implant (CI) performance using “clear” speech materials, which are highly intelligible and well-articulated. CI users may encounter much greater variability in speech patterns in the “real-world,” including synthetic speech. In this study, we measured normal-hearing (NH) and CI listeners’ sentence recognition with multiple talkers and speaking rates, and with naturally produced and synthetic speech. Design NH and CI subjects were asked to recognize naturally produced or synthetic sentences, presented at a slow, normal, or fast speaking rate. Natural speech was produced by one male and one female talker; synthetic speech was generated to simulate a male and female talker. For natural speech, the speaking rate was time-scaled while preserving voice pitch and formant frequency information. For synthetic speech, the speaking rate was adjusted within the speech synthesis engine. NH subjects were tested while listening to unprocessed speech or to an 8-channel acoustic CI simulation. CI subjects were tested while listening with their clinical processors and the recommended microphone sensitivity and volume settings. Results The NH group performed significantly better than the CI simulation group, and the CI simulation group performed significantly better than the CI group. For all subject groups, sentence recognition was significantly better with natural than with synthetic speech. The performance deficit with synthetic speech was relatively small for NH subjects listening to unprocessed speech. However, the performance deficit with synthetic speech was much greater for CI subjects and for CI simulation subjects. There was significant effect of talker gender, with slightly better performance with the female talker for CI subjects and slightly better performance with the male talker for the CI simulations. For all subject groups, sentence recognition was significantly poorer only at the fast rate. CI performance was

  9. A bioabsorbable fixation implant for use in proximal interphalangeal joint (hammer toe) arthrodesis: Biomechanical testing in a synthetic bone substrate.

    PubMed

    Pietrzak, William S; Lessek, Timothy P; Perns, Stephen V

    2006-01-01

    The surgical correction of hammer toe deformity of the lesser toes is one of the most commonly performed forefoot procedures. In general, percutaneous Kirschner wires are used to provide fixation to the resected proximal interphalangeal joint. Although these wires are effective, issues such as pin tract infections as well as difficult postoperative management by patients make alternative fixation methods desirable. This study biomechanically compared a threaded/barbed bioabsorbable fixation implant made of a copolymer of 82% poly-L-lactic acid and 18% polyglycolic acid with a 1.57-mm Kirschner wire using the devices to fix 2 synthetic bone blocks together. Constructs were evaluated by applying a cantilever load, which simulated a plantar force on the middle phalanx. In all cases, the failure mode was bending of the implant, with no devices fracturing. The stiffness (approximately 6-9 N/mm) and peak load (approximately 8-9 N) of the constructs using the 2 systems were equivalent. Accelerated aging at elevated temperature (47 degrees C) in a buffer solution showed that there was no reduction in mechanical properties of the bioabsorbable system after the equivalent of nearly 6 weeks in a simulated in vivo (37 degrees C) environment. These results suggest that the bioabsorbable implant would be a suitable fixation device for the hammer toe procedure.

  10. Acellular dermal matrix compared with synthetic implant material for repair of ventral hernia in the setting of peri-operative Staphylococcus aureus implant contamination: a rabbit model.

    PubMed

    Milburn, Meghan L; Holton, Luther H; Chung, Thomas L; Li, Edward N; Bochicchio, Grant V; Goldberg, Nelson H; Silverman, Ronald P

    2008-08-01

    Implant infection is a common clinical complication of abdominal hernia repair. Our objectives were to determine if acellular dermal matrix (ADM) grafts resisted Staphylococcus aureus infection better (as measured by ability to reduce or clear bacterial counts) than synthetic (polytetrafluoroethylene [PTFE]) mesh when used in abdominal wall reconstruction, and to determine whether vascularization of the implant occurred. We hypothesized that the ability of the ADM grafts to vascularize and allow cellular ingrowth would allow the immune system to clear the infection better in these animals. In New Zealand White rabbits (average weight, 3.0 kg), a full-thickness 3 x 3 cm(2) abdominal defect was created, then repaired with an interpositional implant (ADM, n = 62; PTFE, n = 57). Before skin closure, the epidermal surface of each implant was inoculated with 1 mL of S. aureus at various concentrations (10(4) colony-forming units [CFU]/mL, n = 82; 10(6) CFU/mL, n = 27; 10(9) CFU/mL, n = 10), and the rabbits were harvested at either day 7 or day 21. At day 7, ADM grafts inoculated with 10(4) CFU had lower counts or no bacteria (p = 0.006), fewer adhesions (p = 0.005), and fewer abscesses (p = 0.008) than PTFE grafts. By day 21, more ADM (n = 12) than PTFE (n = 0) grafts were free of bacteria (p = 0.002). Fewer rabbits with ADM grafts formed abscesses (13 vs. 19; p = 0.03). When evaluating the 7- and 21-day 10(4) CFU groups combined, a total of 15 rabbits with ADM cleared the bacteria completely vs. none of those with PTFE grafts (p < 0.001). There was no significant difference in bacterial counts or wound complications at days 7 or 21 between PTFE and ADM implants when inoculated with 10(6) CFU. All rabbits inoculated with 10(9) CFU died of sepsis within 48 h. Herniation did not occur in any of the animals. Our study demonstrates that ADM resists surgical site infection caused by S. aureus in an animal model without compromising the ventral hernia repair. This ability of

  11. Removal Rates of Dental Implants Placed in Conjunction With Autologous Bone and Xenogeneic and Synthetic Alloplastic Materials in Finland Between 1994 and 2012.

    PubMed

    Wolff, Jan; Pyysalo, Mikko; Antalainen, Anna-Kaisa; Sándor, George K; Helminen, Mika

    2015-10-01

    This study aimed to assess the use of bone augmentation materials in Finland from 1994 to 2012 by assessing removal rates of implants placed in combination with autologous bone, xenogeneic grafts, and synthetic alloplastic materials. The National Institute for Health and Welfare in Finland granted permission to access raw data of the Finnish Dental Implant Register for implant augmentation materials and removal rates of implants placed in augmented sites from April 1994 to April 2012. A total of 198,538 implants were placed in Finland between 1994 and 2012 in 110,543 operations. A total of 3318 (1.7%) of the placed implants were removed during the observation period. Augmentations were performed on 20,812 (18.8%) operations during 1994-2012. The removal rates of implants placed at sites augmented with autologous bone were 2.31%, xenogeneic materials 0.91%, and synthetic alloplastic materials 2.80%. The removal rate was 1.87% when no augmentation material was used. The placement of dental implants in conjunction with bone augmentation materials is predictable with a low complication rate.

  12. [Biodegradable synthetic polymers for the design of implantable medical devices: the ligamentoplasty case].

    PubMed

    Garric, Xavier; Nottelet, Benjamin; Pinese, Coline; Leroy, Adrien; Coudane, Jean

    2017-01-01

    The sector of implantable medical devices is a growing sector of health products especially dynamic in the field of research. To improve the management of patients and to meet clinical requirements, researchers are developing new types of medical devices. They use different families of biomaterials presenting various chemical and physical characteristics in order for providing clinicians with health products optimized for biomedical applications. In this article, we aim to show how, starting from a family of biomaterials (degradable polymers), it is possible to design an implantable medical device for the therapeutic management of the failure of anterior cruciate ligament. The main steps leading to the design of a total ligament reinforcement are detailed. They range from the synthesis and characterization of degradable polymer to the shaping of the knitted implant, through the assessment of the study of the impact of sterilization on mechanical properties and checking cytocompatibility.

  13. Mechanical properties of synthetic implants used in the repair of prolapse and urinary incontinence in women: which is the ideal material?

    PubMed

    Cosson, Michel; Debodinance, Philippe; Boukerrou, Malik; Chauvet, M P; Lobry, Pierre; Crépin, Gilles; Ego, Anne

    2003-08-01

    The authors review the literature concerning all types of synthetics implants used in prolapse repair or the treatment of stress urinary incontinence, and analyze the mechanical properties of and the tolerance to the various products used. Various synthetic implants are also studied, including their advantages and disadvantages, as well as outcome following implantation and tolerance by the host, with respect to the type of product and the type of intervention. A review of current implant products demonstrated that the perfect product does not exist at present. The most promising of theses products for applications in transvaginal surgery to restore pelvic function appears to be the synthetic prostheses made predominantly of polypropylene, which offer mechanical properties of durability and elasticity. Their properties of resistance are undisputed, but it remains to be shown whether they are well tolerated when inserted by the vaginal route. The technical modalities for their use are still under evaluation, which should enable a better identification of the respective indications for these products in prolapse repair and treatment of urinary incontinence by the vaginal route.

  14. Synthetic Engineering of Spider Silk Fiber as Implantable Optical Waveguides for Low-Loss Light Guiding.

    PubMed

    Qiao, Xin; Qian, Zhigang; Li, Junjie; Sun, Hongji; Han, Yao; Xia, Xiaoxia; Zhou, Jin; Wang, Chunlan; Wang, Yan; Wang, Changyong

    2017-05-03

    A variety of devices used for biomedical engineering have been fabricated using protein polymer because of their excellent properties, such as strength, toughness, biocompatibility, and biodegradability. In this study, we fabricated an optical waveguide using genetically engineered spider silk protein. This method has two significant advantages: (1) recombinant spider silk optical waveguide exhibits excellent optical and biological properties and (2) biosynthesis of spider silk protein can overcome the limitation to the research on spider silk optical waveguide due to the low yield of natural spider silk. In detail, two kinds of protein-based optical waveguides made from recombinant spider silk protein and regenerative silkworm silk protein were successfully prepared. Results suggested that the recombinant spider silk optical waveguide showed a smoother surface and a higher refractive index when compared with regenerative silkworm silk protein. The optical loss of recombinant spider silk optical waveguide was 0.8 ± 0.1 dB/cm in air and 1.9 ± 0.3 dB/cm in mouse muscles, which were significantly lower than those of regenerative silkworm silk optical waveguide. Moreover, recombinant spider silk optical waveguide can meet the demand to guide and efficiently deliver light through biological tissue. In addition, recombinant spider silk optical waveguide showed low toxicity to cells in vitro and low-level inflammatory reaction with surrounding tissue in vivo. Therefore, recombinant spider silk optical waveguide is a promising implantable device to guide and deliver light with low loss.

  15. Development of an implantable synthetic membrane for the treatment of preterm premature rupture of fetal membranes.

    PubMed

    Roman, Sabiniano; Bullock, Anthony J; Anumba, Dilly O; MacNeil, Sheila

    2016-02-01

    Preterm premature rupture of fetal membranes is a very common condition leading to premature labour of a non viable fetus. Significant morbidities may occur when preterm premature rupture of fetal membranes management is attempted to prolong the pregnancy for fetal maturation. Reducing the rate of loss of amniotic fluid and providing a barrier to bacterial entry may allow the pregnancy to continue to term, avoiding complications. Our aim is to develop a synthetic biocompatible membrane to form a distensible barrier for cervical closure which acts to reduce fluid loss and provide a surface for epithelial ingrowth to help repair the damaged membranes. Therefore, a bilayer membrane was developed using an electrospinning technique of combining two FDA-approved polymers, poly-L-lactic acid (PLA) and polyurethane (Z3) polymer. This was compared to a plain electrospun Z3 membrane. The physical and mechanical properties were assessed using scanning electron microscope images and a BOSE tensiometer, respectively, and compared to native fetal membranes. The performance of the membranes in preventing fluid loss was assessed by measuring their ability to support a column of water. Finally the ability of the membranes to support cell ingrowth was assessed by culturing adipose-derived stem cells on the membranes for two weeks and assessing metabolic activity after 7 and 14 days. The physical properties of the bilayer were similar to that of the native fetal membranes and it was resistant to fluid penetration. This bilayer membrane presented mechanical properties close to those for fetal membranes and showed elastic distention, which may be crucial for progress of the pregnancy. The membrane was also able to retain surgical sutures. In addition, it also supported the attachment and growth of adipose-derived stem cells for two weeks. In conclusion, this membrane may prove a useful approach in the treatment of preterm premature rupture of fetal membranes and now merits further

  16. A preliminary report on the usage of an intracorporal antibiotic cast with synthetic high purity CaSO4 for the treatment of infected penile implant.

    PubMed

    Swords, Kelly; Martinez, Daniel R; Lockhart, Jorge L; Carrion, Rafael

    2013-04-01

    Currently, the surgical treatment of infected penile prostheses is complete removal and either immediate salvage procedure, which carries a significant infection risk, or delayed implantation. With delayed implantation the risk of infection is lower, but the patient loses penile length and width due to corporal fibrosis. We present our experience with the use of a novel temporary synthetic high purity calcium sulfate (SHPCaSO4) component that acts as a "spacer" at the time of removal of an infected prosthesis while providing constant delivery of local antibiotic elution to the infected area. Demonstrate that the use of a novel material, SHPCaSO4, can be an innovative way to bridge the gap between removal of an infected penile implant and delayed reimplantation. Two patients (Patient A and B) presented with pain and erythema and were found to have infected malleable penile prosthesis. Both underwent removal of all infected components, and sent for tissue culture. The SHPCaSO4 was mixed with vancomycin and tobramycin, allowed to set up for 5 minutes, and then injected into the corporal space followed by closure with 2-0 Vicryl sutures. The injected SHPCaSO4 was palpable in the penile shaft both proximally and distally, as an "intracorporal casts." Patients denied pain postoperatively. Delayed implantation occurred at 6 weeks for patient A. This went uneventful and a new three-piece inflatable implant was inserted. Patient B underwent salvage placement of right malleable implant at 15 weeks, and here significant corporal fibrosis was encountered. Patients have had no infection since their delayed implantation (mean follow-up 4 months). Data in reference to SHPCaSO4 shows that this product dissolves in approximately 4-6 weeks. This may account for the difference in the ease of delayed implantation between the two patients. Further investigation is warranted. © 2013 International Society for Sexual Medicine.

  17. Comparison of autogenous tooth bone graft and synthetic bone graft materials used for bone resorption around implants after crestal approach sinus lifting: a retrospective study.

    PubMed

    Kim, Young-Kyun; Lee, Junho; Yun, Ji-Young; Yun, Pil-Young; Um, In-Woong

    2014-10-01

    This retrospective study compares the amount of bone resorption around implants between an autogenous tooth bone graft (AutoBT) and a synthetic bone graft after a bone-added crestally approached sinus lift with simultaneous implant placements. In all, 37 patients participated in this study. Seventeen patients were grouped as group I and underwent an AutoBT-added sinus lift using the crestal approach. The remaining 20 patients were grouped as group II and underwent synthetic bone grafting. Both groups received the implant placements simultaneously. Of the 37 participating patients, only 22 patients were included in the final results: Eleven patients of group I and 11 patients of group II. Before the surgery, the distance from the alveolar crest to the sinus floor was measured using panoramic radiography. After the surgery, the distance was measured again from the neck of the implant thread to the most superior border of the added graft materials. Then, the amount of sinus lift was calculated by comparing the two panoramic radiographs. After a year, a panoramic radiograph was taken to calculate the resorption of the bone graft material from the radiograph that was taken after the surgery. The significance of the resorption amount between the two types of graft materials was statistically analyzed. The bone height was increased to an average of 4.89 mm in group I and 6.22 mm in group II. The analysis of panoramic radiographs 1 year after the surgery showed an average bone resorption of 0.76 mm and 0.53 mm, respectively. However, the degree of lifting (P=0.460) and the amount of bone-grafted material resorption (P=0.570) showed no statistically significant difference. Based on this limited study, AutoBT can be considered a good alternative bone graft to a synthetic bone graft in a bone-added sinus lift, when extraction is necessary prior to the surgery.

  18. Computed tomographic evaluation of alterations of the buccolingual width of the alveolar ridge after immediate implant placement associated with the use of a synthetic bone substitute.

    PubMed

    Assaf, Jamal Hassan; Zanatta, Fabricio Batistin; de Brito, Rui Barbosa; França, Fabiana Mantovani Gomes

    2013-01-01

    To evaluate the alterations of the buccolingual width of the alveolar ridge after immediate implant placement using a fully synthetic biphasic calcium phosphate (BCP) consisting of a mixture of 60% hydroxyapatite and 40% ?-tricalcium phosphate in esthetic regions. The buccolingual widths of the alveolar ridge in 20 extraction sites in 20 patients were assessed using computed tomography. Measurements were performed before and 6 months after extractions and immediate implant placement. In group 1 (11 patients), BCP was in the space between the buccal wall of the alveolar ridge and implant. In group 2 (9 patients), the same evaluations and procedures were performed but without using BCP. The buccolingual dimensions of the alveolar ridge in group 1 (BCP) showed no significant preoperative differences (8.49 ± 1.1 mm) during the 6-month period after surgery (8.82 ± 0.9 mm) (P = .14). In group 2, the differences in buccolingual dimensions of the alveolar ridge were statistically significant (P = .01) with reduction in dimensions from 8.12 ± 0.7 mm during the preoperative period to 7.01 ± 0.4 mm 6-months after surgery. The use of BCP was effective in preserving buccolingual dimensions of alveolar ridges in immediate implant surgeries.

  19. Biocompatibility, cell growth and clinical relevance of synthetic meshes and biological matrixes for internal support in implant-based breast reconstruction.

    PubMed

    Dieterich, Max; Stubert, Johannes; Gerber, Bernd; Reimer, Toralf; Richter, Dagmar-Ulrike

    2015-06-01

    Biological matrixes and synthetic meshes are increasingly used in implant-based breast reconstruction (IBBR). The objective was to test different materials used for internal support in IBBR in regards to biocompatibility and discuss possible limitations in a clinical context. In vitro investigations were performed on four relevant cell lines: Normal Human Dermal Fibroblasts (NHDF), Human White Preadipocytes (HWP), Endothelial cells (HDMEC) and Skeletal muscle cells (SkMC). A titanium-coated polypropylene mesh (TiLOOP Bra), a partially resorbable mesh (SERAGYN BR) and a porcine derived biologic matrix (Strattice) were investigated. Test of cytotoxicity, cell proliferation and oxidative stress was performed. Real-time cell analysis was used to determine adhesion rate. Light- and scanning electron microscopy investigated cell migration. No relevant cytotoxicity was detected for any mesh or matrix. Good cell proliferation was observed in all materials with best results for NHDF and SkMC. For HWP and HDMEC decreased proliferation and adherence to the synthetic meshes and biologic matrix were observed. Real-time cell analysis of fibroblasts incubated with the corresponding material, showed increased impedance for the synthetic meshes. A morphologic cell change was observed within all materials. Scanning electron microscopy showed good cell penetration into the meshes and matrix. The material compositions did not seem to influence the clinical outcome, although the biological matrix was much thicker compared to the synthetic meshes. Biochemical examination showed good biocompatibility for the investigated meshes and matrix. All products seem to have their value in IBBR and can be recommended for IBBR.

  20. Correlation of Hallux Rigidus Grade With Motion, VAS Pain, Intraoperative Cartilage Loss, and Treatment Success for First MTP Joint Arthrodesis and Synthetic Cartilage Implant.

    PubMed

    Baumhauer, Judith F; Singh, Dishan; Glazebrook, Mark; Blundell, Chris M; De Vries, Gwyneth; Le, Ian L D; Nielsen, Dominic; Pedersen, M Elizabeth; Sakellariou, Anthony; Solan, Matthew; Wansbrough, Guy; Younger, Alastair S E; Daniels, Timothy R

    2017-10-01

    Grading systems are used to assess severity of any condition and as an aid in guiding treatment. This study examined the relationship of baseline motion, pain, and observed intraoperative cartilage loss with hallux rigidus grade. A prospective, randomized study examining outcomes of arthrodesis compared to synthetic cartilage implant was performed. Patients underwent preoperative clinical examination, radiographic assessment, hallux rigidus grade assignment, and intraoperative assessment of cartilage loss. Visual analog scale (VAS) score for pain was obtained preoperatively and at 24 months. Correlation was made between active peak dorsiflexion, VAS pain, cartilage loss, and hallux rigidus grade. Fisher's exact test was used to assess grade impact on clinical success ( P < .05). In 202 patients, 59 (29%), 110 (55%), and 33 (16%) were classified as Coughlin grades 2, 3, and 4, respectively. There was no correlation between grade and active peak dorsiflexion (-0.069, P = .327) or VAS pain (-0.078, P = .271). Rank correlations between grade and cartilage loss were significant, but correlations were small. When stratified by grade, composite success rates between the 2 treatments were nearly identical. Irrespective of the grade, positive outcomes were demonstrated for both fusion and synthetic cartilage implant. Clinical symptoms and signs should be used to guide treatment, rather than a grade consisting of radiographic, symptoms, and range of motion factors. Level II, randomized clinical trial.

  1. Soft tissue augmentation in connection to dental implant treatment using a synthetic, porous material--a case series with a 6-month follow-up.

    PubMed

    Friberg, Bertil; Jemt, Torsten

    2012-12-01

    Bony defects/concavities in the aesthetic zone of maxillae may interfere with the results of prosthetic procedures by producing shading superior to the crown. Such regions can be augmented either by bone or soft tissue autografts, allografts, or xenografts. Tissue shrinkage is thus anticipated, and a method to objectively measure the tissue change is valuable. The aim of this study was to evaluate the use of a synthetic, porous material made of polyurethaneurea for buccal soft tissue augmentation in connection with implant placement in the maxillary front region. Further, to measure over time the change in buccal contour using a computerized technique. Ten patients received 12 Artelon® cylinders (5 × 10 mm) in connection to implant placement. Preoperative and postoperative (at 3 and 6 months) study casts were obtained for computer measurements, using the preoperative reference model as a base. The volume created between the surfaces of the reference model and each of the two following superimposed models was measured in cubic millimeter. Differences in volume from pretreatment to 3 and 6 months, respectively, were compared. The clinical observation during follow-up showed normal healing. The increase in mean buccal tissue volume was 50 mm(3) (SD 18) after 3 months and 43 mm(3) (SD 21) after 6 months, measured over a 6 mm × 8 mm area in the maxillary front region, in comparison to before insertion of the cylinder. The reduction from 3 to 6 months was not statistically significant (p = .17). A synthetic, porous material for soft tissue augmentation was tested in connection to implant placement in the aesthetic zone of maxillae. The buccal contour was followed-up for 6 months using a computer volumetric technique on preoperative and postoperative study casts. Measured tissue volume showed an obvious increase during the study period. The material was biologically well received. © 2010 Wiley Periodicals, Inc.

  2. Non-mass-analyzed ion implantation from a solid phosphorus source

    NASA Technical Reports Server (NTRS)

    Spitzer, M. B.; Bunker, S. N.

    1982-01-01

    A phosphorus ion beam, extracted from a Freeman ion source charged with elemental phosphorus, has been investigated for use in solar cell fabrication. Mass spectroscopy of the beam indicates the absence of both minority-carrier lifetime degrading impurities and hydrogen. The ion beam, without mass analysis, was used for ion implantation of solar cells, and performance for all cells was found to be equivalent to mass-analyzed controls.

  3. Non-mass-analyzed ion implantation from a solid phosphorus source

    NASA Technical Reports Server (NTRS)

    Spitzer, M. B.; Bunker, S. N.

    1982-01-01

    A phosphorus ion beam, extracted from a Freeman ion source charged with elemental phosphorus, has been investigated for use in solar cell fabrication. Mass spectroscopy of the beam indicates the absence of both minority-carrier lifetime degrading impurities and hydrogen. The ion beam, without mass analysis, was used for ion implantation of solar cells, and performance for all cells was found to be equivalent to mass-analyzed controls.

  4. Osseointegration of dental implants in 3D-printed synthetic onlay grafts customized according to bone metabolic activity in recipient site.

    PubMed

    Tamimi, Faleh; Torres, Jesus; Al-Abedalla, Khadijeh; Lopez-Cabarcos, Enrique; Alkhraisat, Mohammad H; Bassett, David C; Gbureck, Uwe; Barralet, Jake E

    2014-07-01

    Onlay grafts made of monolithic microporous monetite bioresorbable bioceramics have the capacity to conduct bone augmentation. However, there is heterogeneity in the graft behaviour in vivo that seems to correlate with the host anatomy. In this study, we sought to investigate the metabolic activity of the regenerated bone in monolithic monetite onlays by using positron emission tomography-computed tomography (PET-CT) in rats. This information was used to optimize the design of monetite onlays with different macroporous architecture that were then fabricated using a 3D-printing technique. In vivo, bone augmentation was attempted with these customized onlays in rabbits. PET-CT findings demonstrated that bone metabolism in the calvarial bone showed higher activity in the inferior and lateral areas of the onlays. Histological observations revealed higher bone volume (up to 47%), less heterogeneity and more implant osseointegration (up to 38%) in the augmented bone with the customized monetite onlays. Our results demonstrated for the first time that it is possible to achieve osseointegration of dental implants in bone augmented with 3D-printed synthetic onlays. It was also observed that designing the macropore geometry according to the bone metabolic activity was a key parameter in increasing the volume of bone augmented within monetite onlays. Copyright © 2014 Elsevier Ltd. All rights reserved.

  5. Effect of Blood Component Coatings of Enosseal Implants on Proliferation and Synthetic Activity of Human Osteoblasts and Cytokine Production of Peripheral Blood Mononuclear Cells.

    PubMed

    Himmlova, Lucie; Kubies, Dana; Hulejova, Hana; Bartova, Jirina; Riedel, Tomas; Stikarova, Jana; Suttnar, Jiri; Pesakova, Vlasta

    2016-01-01

    The study monitored in vitro early response of connective tissue cells and immunocompetent cells to enosseal implant materials coated by different blood components (serum, activated plasma, and plasma/platelets) to evaluate human osteoblast proliferation and synthetic activity and inflammatory response presented as a cytokine profile of peripheral blood mononuclear cells (PBMCs) under conditions imitating the situation upon implantation. The cells were cultivated on coated Ti-plasma-sprayed (Ti-PS), Ti-etched (Ti-Etch), Ti-hydroxyapatite (Ti-HA), and ZrO2 surfaces. The plasma/platelets coating supported osteoblast proliferation only on osteoconductive Ti-HA and Ti-Etch whereas activated plasma enhanced proliferation on all surfaces. Differentiation (BAP) and IL-8 production remained unchanged or decreased irrespective of the coating and surface; only the serum and plasma/platelets-coated ZrO2 exhibited higher BAP and IL-8 expression. RANKL production increased on serum and activated plasma coatings. PBMCs produced especially cytokines playing role in inflammatory phase of wound healing, that is, IL-6, GRO-α, GRO, ENA-78, IL-8, GM-CSF, EGF, and MCP-1. Cytokine profiles were comparable for all tested surfaces; only ENA-78, IL-8, GM-CSF, and MCP-1 expression depended on materials and coatings. The activated plasma coating led to uniformed surfaces and represented a favorable treatment especially for bioinert Ti-PS and ZrO2 whereas all coatings had no distinctive effect on bioactive Ti-HA and Ti-Etch.

  6. Estrogens and synthetic androgens in manure slurry from trenbolone acetate/estradiol implanted cattle and in waste-receiving lagoons used for irrigation.

    PubMed

    Khan, Bushra; Lee, Linda S

    2012-11-01

    The increasing size of concentrated animal feeding operations has led to a concomitant increase in the land-application of manure, which has spawned research on the concentrations and environmental risk assessment of natural and synthetic hormones in animal manures. 17β-Trenbolone acetate (TBA) is widely used in the United States for improving daily gains in beef cattle and is often administered in combination with 17β-estradiol (17β-E2). Trenbolone (TB) and E2 isomers and their metabolites were quantified in manure collection pits and lagoon effluent from beef cattle implanted with the commercial anabolic preparation Ravoler-S (containing 140 mg 17β-trenbolone acetate and 28 mg 17β-E2). Manure pit and lagoon effluent samples were collected weekly for 9 weeks post implanting and analyzed using reverse-phase liquid chromatography tandem mass spectrometry. 17α-TB was the most abundant androgen with the highest concentration observed 2 weeks post implant. 17β-TB and trendione peaked at the end of week 2 and 4, respectively. For the estrogens, the highest concentrations for estrone (E1), estriol (E3), and 17α-E2 were observed after week 4, 6, and 8, respectively. 17β-E2 concentrations were the lowest of the estrogens and erratic over time. In lagoon water, which is used for irrigation, 17α-TB and E1 had the highest detected hormone concentrations (1.53 and 1.72 μg L(-1), respectively). Assuming a 1-2 order dilution during transport to surface water, these hormone levels could lead to concentrations in receiving waters that exceed some of the lowest observable effect levels (LOELs) reported for hormones (e.g., 0.01-0.03 μg L(-1)).

  7. Changes in synthetic and natural vowel perception after specific training for congenitally deafened patients using a multichannel cochlear implant.

    PubMed

    Dawson, P W; Clark, G M

    1997-12-01

    The aim was to determine whether the ability to use place-coded vowel formant information could be improved after training in a group of congenitally deafened patients, who showed limited speech perception ability after cochlear implant use ranging from 1 yr 8 mo to 6 yr 11 mo. A further aim was to investigate the relationship between electrode position difference limens and vowel recognition. Three children, one adolescent, and one young adult were assessed with synthesized versions of the words/hid, head, had, hud, hod, hood/containing three formants and with a natural version of these words as well as with a 12-alternative, closed-set task containing monosyllabic words. The change in performance during a nontraining period was compared to the change in performance after 10 training sessions. After training, two children showed significant gains on a number of tests and improvements were consistent with their electrode discrimination ability. Difference limens ranged from one to three electrodes for these patients as well as for two other patients who showed minimal to no improvements. The minimal gains shown by the final patient could be partly explained by poorer apical electrode position difference limen. Significant gains in vowel perception occurred post-training on several assessments for two of the children. This suggests the need for children to continue to have aural rehabilitation for a substantial period after implantation. Minimal improvements, however, occurred for the remaining patients. With the exception of one patient, their poorer performance was not associated with poorer electrode discrimination.

  8. Biomechanical effects of titanium implants with full arch bridge rehabilitation on a synthetic model of the human jaw.

    PubMed

    De Santis, Roberto; Mollica, Francesco; Zarone, Fernando; Ambrosio, Luigi; Nicolais, Luigi

    2007-01-01

    A composite model of the mandible, constituted by an inner polymeric core and a glass fibre reinforced outer shell, has been developed and equipped with six ITI titanium implants and a full gold alloy arch bridge prosthesis. The effects of this oral rehabilitation on the biomechanics of the mandible are investigated through a simulation of the lateral component of the pterygoid muscles. These muscles are involved as the mouth is opened and closed, hence their activity is very frequent. An increase of the mandible stiffness due to the prosthesis is observed; moreover, the coupling of the relatively stiff rehabilitation devices with the natural tissue analogue leads to stress-shielding and stress-concentration in the incisal and molar regions, respectively. Although the amplitude of the force generated by pterygoid muscles is quite small, high strains over the incisal region are measured. A stress-shielding effect, of about 20%, is observed at the symphysis as the full arch bridge prosthesis is fixed on the implants. Therefore, the presence of the prosthesis leads to significant modification of the stress field experienced by the mandible, and this may be relevant in relation to the biomechanics of mandibular bone remodelling.

  9. Nanocrystalline ferroelectric BaTiO3/Pt/fused silica for implants synthetized by pulsed laser deposition method

    NASA Astrophysics Data System (ADS)

    Jelínek, Miroslav; Drahokoupil, Jan; Jurek, Karel; Kocourek, Tomáš; Vaněk, Přemysl

    2017-09-01

    The thin-films of BaTiO3 (BTO)/Pt were prepared to test their potential as coatings for titanium-alloy implants. The nanocrystalline BTO/Pt bi-layers were successfully synthesized using fused silica as substrates. The bi-layers were prepared using KrF excimer laser ablation at substrate temperatures (Ts) ranging from 650 °C to 750 °C. The microstructure and composition of the deposits were investigated by scanning electron microscope, x-ray diffraction and wavelength dispersive x-ray spectroscopy methods. The electrical characterization of the Pt/BTO/Pt capacitors indicated ferroelectric-type response in BTO films containing (40-140) nm-sized grains. The technology, microstructure, and functional response of the layers are presented in detail.

  10. Effect of Blood Component Coatings of Enosseal Implants on Proliferation and Synthetic Activity of Human Osteoblasts and Cytokine Production of Peripheral Blood Mononuclear Cells

    PubMed Central

    Hulejova, Hana; Bartova, Jirina; Riedel, Tomas; Pesakova, Vlasta

    2016-01-01

    The study monitored in vitro early response of connective tissue cells and immunocompetent cells to enosseal implant materials coated by different blood components (serum, activated plasma, and plasma/platelets) to evaluate human osteoblast proliferation and synthetic activity and inflammatory response presented as a cytokine profile of peripheral blood mononuclear cells (PBMCs) under conditions imitating the situation upon implantation. The cells were cultivated on coated Ti-plasma-sprayed (Ti-PS), Ti-etched (Ti-Etch), Ti-hydroxyapatite (Ti-HA), and ZrO2 surfaces. The plasma/platelets coating supported osteoblast proliferation only on osteoconductive Ti-HA and Ti-Etch whereas activated plasma enhanced proliferation on all surfaces. Differentiation (BAP) and IL-8 production remained unchanged or decreased irrespective of the coating and surface; only the serum and plasma/platelets-coated ZrO2 exhibited higher BAP and IL-8 expression. RANKL production increased on serum and activated plasma coatings. PBMCs produced especially cytokines playing role in inflammatory phase of wound healing, that is, IL-6, GRO-α, GRO, ENA-78, IL-8, GM-CSF, EGF, and MCP-1. Cytokine profiles were comparable for all tested surfaces; only ENA-78, IL-8, GM-CSF, and MCP-1 expression depended on materials and coatings. The activated plasma coating led to uniformed surfaces and represented a favorable treatment especially for bioinert Ti-PS and ZrO2 whereas all coatings had no distinctive effect on bioactive Ti-HA and Ti-Etch. PMID:27651560

  11. Raman scattering probe of ion-implanted and pulse laser annealed GaAs

    NASA Astrophysics Data System (ADS)

    Verma, Prabhat; Jain, K. P.; Abbi, S. C.

    1996-04-01

    We report Raman scattering studies of phosphorus-ion-implanted and subsequently pulse laser annealed (PLA) GaAs. The threshold value of implantation fluence for the disappearance of one-phonon modes in the Raman spectrum of ion-implanted GaAs sample is found to be greater than that for the two-phonon modes by an order of magnitude. The phonon correlation length decreases with increasing disorder. The lattice reconstruction process during PLA creates microcrystallites for incomplete annealing, whose sizes can be given by the phonon correlation lengths, and are found to increase with the annealing power density. The intensity ratio of the Raman spectra corresponding to the allowed longitudinal-optical (LO)-phonon mode to the forbidden transverse-optical (TO)-phonon mode, ILO/ITO, is used as a quantitative measure of crystallinity in the implantation and PLA processes. The threshold annealing power density is estimated to be 20 MW/cm2 for 70 keV phosphorus-ion-implanted GaAs at a fluence of 5×1015 ions/cm2. The localized vibrational mode of phosphorus is observed in PLA samples for fluences above 1×1015 ions/cm2.

  12. Prospects of implant with locking plate in fixation of subtrochanteric fracture: experimental demonstration of its potential benefits on synthetic femur model with supportive hierarchical nonlinear hyperelastic finite element analysis

    PubMed Central

    2012-01-01

    Background Effective fixation of fracture requires careful selection of a suitable implant to provide stability and durability. Implant with a feature of locking plate (LP) has been used widely for treating distal fractures in femur because of its favourable clinical outcome, but its potential in fixing proximal fractures in the subtrochancteric region has yet to be explored. Therefore, this comparative study was undertaken to demonstrate the merits of the LP implant in treating the subtrochancteric fracture by comparing its performance limits against those obtained with the more traditional implants; angle blade plate (ABP) and dynamic condylar screw plate (DCSP). Materials and Methods Nine standard composite femurs were acquired, divided into three groups and fixed with LP (n = 3), ABP (n = 3) and DCSP (n = 3). The fracture was modeled by a 20 mm gap created at the subtrochanteric region to experimentally study the biomechanical response of each implant under both static and dynamic axial loading paradigms. To confirm the experimental findings and to understand the critical interactions at the boundaries, the synthetic femur/implant systems were numerically analyzed by constructing hierarchical finite element models with nonlinear hyperelastic properties. The predictions from the analyses were then compared against the experimental measurements to demonstrate the validity of each numeric model, and to characterize the internal load distribution in the femur and load bearing properties of each implant. Results The average measurements indicated that the constructs with ABP, DCPS and LP respectively had overall stiffness values of 70.9, 110.2 and 131.4 N/mm, and exhibited reversible deformations of 12.4, 4.9 and 4.1 mm when the applied dynamic load was 400 N and plastic deformations of 11.3, 2.4 and 1.4 mm when the load was 1000 N. The corresponding peak cyclic loads to failure were 1100, 1167 and 1600 N. The errors between the

  13. Effects of positive ion implantation into antireflection coating of silicon solar cells

    NASA Technical Reports Server (NTRS)

    Middleton, A. E.; Harpster, J. W.; Collis, W. J.; Kim, C. K.

    1971-01-01

    The state of technological development of Si solar cells for highest obtained efficiency and radiation resistance is summarized. The various theoretical analyses of Si solar cells are reviewed. It is shown that factors controlling blue response are carrier diffusion length, surface recombination, impurity concentration profile in surface region, high level of surface impurity concentration (degeneracy), reflection coefficient of oxide, and absorption coefficient of Si. The theory of ion implantation of charge into the oxide antireflection coating is developed and side effects are discussed. The experimental investigations were directed at determining whether the blue response of Si solar cells could be improved by phosphorus ion charges introduced into the oxide antireflection coating.

  14. n{sup +}/p diodes by ion implantation: Dopant, extended defects, and impurity concerns

    SciTech Connect

    Xu, M.; Venables, D.; Christensen, K.N.; Maher, D.M.

    1995-08-01

    The present study is concerned with the formation of defect structures resulting from phosphorus ion implantation into p-type, <100> silicon and with the rearrangement as well as removal of defect structures following high temperature annealing. The problematic interaction of background impurities with extended defects also is included in this study, as are the non-illuminated and illuminated electrical characteristics of n+/p diodes that are fabricated using ion implantation. Wafers and diodes that are fabricated using a phosphorus planar diffusion technique are run in parallel and serve as the controls. In this contribution, preliminary results for the cases of a 50 keV implant followed by an anneal at 900{degrees}C/30 min and a diffusion at 825{degrees}C/60 min are summarized.

  15. Cochlear Implants

    MedlinePlus

    ... Medical Procedures Implants and Prosthetics Cochlear Implants Cochlear Implants Share Tweet Linkedin Pin it More sharing options ... normal ear, ear with hearing loss, and cochlear implant procedure Welcome to the Food and Drug Administration ( ...

  16. Specific features of the current–voltage characteristics of SiO{sub 2}/4H-SiC MIS structures with phosphorus implanted into silicon carbide

    SciTech Connect

    Mikhaylova, A. I. Afanasyev, A. V.; Ilyin, V. A.; Luchinin, V. V.; Sledziewski, T.; Reshanov, S. A.; Schöner, A.; Krieger, M.

    2016-01-15

    The effect of phosphorus implantation into a 4H-SiC epitaxial layer immediately before the thermal growth of a gate insulator in an atmosphere of dry oxygen on the reliability of the gate insulator is studied. It is found that, together with passivating surface states, the introduction of phosphorus ions leads to insignificant weakening of the dielectric breakdown field and to a decrease in the height of the energy barrier between silicon carbide and the insulator, which is due to the presence of phosphorus atoms at the 4H-SiC/SiO{sub 2} interface and in the bulk of silicon dioxide.

  17. Cochlear Implants.

    ERIC Educational Resources Information Center

    Clark, Catherine; Scott, Larry

    This brochure explains what a cochlear implant is, lists the types of individuals with deafness who may be helped by a cochlear implant, describes the process of evaluating people for cochlear implants, discusses the surgical process for implanting the aid, traces the path of sound through the cochlear implant to the brain, notes the costs of…

  18. Cochlear Implants.

    ERIC Educational Resources Information Center

    Clark, Catherine; Scott, Larry

    This brochure explains what a cochlear implant is, lists the types of individuals with deafness who may be helped by a cochlear implant, describes the process of evaluating people for cochlear implants, discusses the surgical process for implanting the aid, traces the path of sound through the cochlear implant to the brain, notes the costs of…

  19. Penile Implants

    MedlinePlus

    Penile Implants Overview By Mayo Clinic Staff Penile implants are devices placed inside the penis to allow men with erectile dysfunction (ED) to get an erection. Penile implants are typically recommended after other treatments for ED ...

  20. Dental Implants.

    PubMed

    Griggs, Jason A

    2017-10-01

    Systematic reviews of literature over the period between 2008 and 2017 are discussed regarding clinical evidence for the factors affecting survival and failure of dental implants. The factors addressed include publication bias, tooth location, insertion torque, collar design, implant-abutment connection design, implant length, implant width, bone augmentation, platform switching, surface roughness, implant coatings, and the use of ceramic materials in the implant body and abutment. Copyright © 2017 Elsevier Inc. All rights reserved.

  1. Synthetic biology

    PubMed Central

    Bower, Adam G; McClintock, Maria K

    2010-01-01

    The field of synthetic biology has made rapid progress in a number of areas including method development, novel applications and community building. In seeking to make biology “engineerable,” synthetic biology is increasing the accessibility of biological research to researchers of all experience levels and backgrounds. One of the underlying strengths of synthetic biology is that it may establish the framework for a rigorous bottom-up approach to studying biology starting at the DNA level. Building upon the existing framework established largely by the Registry of Standard Biological Parts, careful consideration of future goals may lead to integrated multi- scale approaches to biology. Here we describe some of the current challenges that need to be addressed or considered in detail to continue the development of synthetic biology. Specifically, discussion on the areas of elucidating biological principles, computational methods and experimental construction methodologies are presented. PMID:21326830

  2. SYNTHETIC OIL,

    DTIC Science & Technology

    The patent concerns a dicarboxylate-base synthetic oil with antiwear and antioxidation additives. The oil is prepared from the esterification of 2- or 3-methylcyclohexanol and 2-ethylhexanol with adipic acid. (Author)

  3. SYNTHETIC LUBRICANTS

    DTIC Science & Technology

    azelaic , and sebacic acids are the most readily available dibasic acids suitable for ester lubricant production, while the petroleum derived Oxo alcohols...of synthetic lubricants for use at low and high temperatures. The diesters of straight-chain dibasic acids lead the field of esters mutable as...dibasic acid esters in all the characteristics studied so far, and this type of ester therefore represents a promising source of synthetic oil. Mono

  4. Synthetic oils

    NASA Technical Reports Server (NTRS)

    Hatton, R. E.

    1973-01-01

    Synthetic lubricants are discussed by chemical class and their general strengths and weaknesses in terms of lubrication properties are analyzed. Comparative ratings are given for 14 chemical classes and are used as a guide for lubricant selection. The effects of chemical structure on the properties of the lubricant are described with special emphasis on thermal stability. The diversity of synthetic lubricants which is provided by the wide range of properties permits many applications, some of which are reported.

  5. Synthetic oils

    NASA Technical Reports Server (NTRS)

    Hatton, R. E.

    1973-01-01

    Synthetic lubricants are discussed by chemical class and their general strengths and weaknesses in terms of lubrication properties are analyzed. Comparative ratings are given for 14 chemical classes and are used as a guide for lubricant selection. The effects of chemical structure on the properties of the lubricant are described with special emphasis on thermal stability. The diversity of synthetic lubricants which is provided by the wide range of properties permits many applications, some of which are reported.

  6. Synthetic environments

    NASA Astrophysics Data System (ADS)

    Lukes, George E.; Cain, Joel M.

    1996-02-01

    The Advanced Distributed Simulation (ADS) Synthetic Environments Program seeks to create robust virtual worlds from operational terrain and environmental data sources of sufficient fidelity and currency to interact with the real world. While some applications can be met by direct exploitation of standard digital terrain data, more demanding applications -- particularly those support operations 'close to the ground' -- are well-served by emerging capabilities for 'value-adding' by the user working with controlled imagery. For users to rigorously refine and exploit controlled imagery within functionally different workstations they must have a shared framework to allow interoperability within and between these environments in terms of passing image and object coordinates and other information using a variety of validated sensor models. The Synthetic Environments Program is now being expanded to address rapid construction of virtual worlds with research initiatives in digital mapping, softcopy workstations, and cartographic image understanding. The Synthetic Environments Program is also participating in a joint initiative for a sensor model applications programer's interface (API) to ensure that a common controlled imagery exploitation framework is available to all researchers, developers and users. This presentation provides an introduction to ADS and the associated requirements for synthetic environments to support synthetic theaters of war. It provides a technical rationale for exploring applications of image understanding technology to automated cartography in support of ADS and related programs benefitting from automated analysis of mapping, earth resources and reconnaissance imagery. And it provides an overview and status of the joint initiative for a sensor model API.

  7. [Registration procedure for incidents with implants].

    PubMed

    Siebert, H; Stockheim, M; Kienapfel, H; Blömer, W

    2011-09-01

    Incidents involving implants, whether there is a break in the osteosynthesis plate or a synthetic inlay of an endoprosthesis, are incidents with mostly severe repercussions for the patient with immediate and delayed effects for the clinic involved and the manufacturer.

  8. Synthetic foldamers.

    PubMed

    Guichard, Gilles; Huc, Ivan

    2011-06-07

    Foldamers are artificial folded molecular architectures inspired by the structures and functions of biopolymers. This highlight focuses on important developments concerning foldamers produced by chemical synthesis and on the perspectives that these new self-organized molecular scaffolds offer. Progress in the field has led to synthetic objects that resemble small proteins in terms of size and complexity yet that may not contain any α-amino acids. Foldamers have introduced new tools and concepts to develop biologically active substances, synthetic receptors and novel materials.

  9. Synthetic Glycolysis

    SciTech Connect

    Lobo, Raul F

    2010-09-20

    Recently, two groups separately reported what amounts to a synthetic version of glycolysis. The sum of these two reactions is equivalent to what is accomplished in living organisms by glycolysis in terms of the redistribution of oxidation states of the carbon, and is an important step in reproducing using chemical routes that living organisms accomplish daily.

  10. Synthetic Astrobiology

    NASA Technical Reports Server (NTRS)

    Rothschild, Lynn J.

    2015-01-01

    Synthetic biology - the design and construction of new biological parts and systems and the redesign of existing ones for useful purposes - has the potential to transform fields from pharmaceuticals to fuels. Our lab has focused on the potential of synthetic biology to revolutionize all three major parts of astrobiology: Where do we come from? Where are we going? and Are we alone? For the first and third, synthetic biology is allowing us to answer whether the evolutionary narrative that has played out on planet earth is likely to have been unique or universal. For example, in our lab we are re-evolving the biosynthetic pathways of amino acids in order to understand potential capabilities of an early organism with a limited repertoire of amino acids and developing techniques for the recovery of metals from spent electronics on other planetary bodies. In the future synthetic biology will play an increasing role in human activities both on earth, in fields as diverse as human health and the industrial production of novel bio-composites. Beyond earth, we will rely increasingly on biologically-provided life support, as we have throughout our evolutionary history. In order to do this, the field will build on two of the great contributions of astrobiology: studies of the origin of life and life in extreme environments.

  11. Synthetic Astrobiology

    NASA Technical Reports Server (NTRS)

    Rothschild, Lynn J.

    2016-01-01

    Synthetic biology - the design and construction of new biological parts and systems and the redesign of existing ones for useful purposes - has the potential to transform fields from pharmaceuticals to fuels. Our lab has focused on the potential of synthetic biology to revolutionize all three major parts of astrobiology: Where do we come from? Where are we going? and Are we alone? For the first and third, synthetic biology is allowing us to answer whether the evolutionary narrative that has played out on planet earth is likely to have been unique or universal. For example, in our lab we are re-evolving the biosynthetic pathways of amino acids in order to understand potential capabilities of an early organism with a limited repertoire of amino acids and developing techniques for the recovery of metals from spent electronics on other planetary bodies. And what about the limits for life? Can we create organisms that expand the envelope for life? In the future synthetic biology will play an increasing role in human activities both on earth, in fields as diverse as human health and the industrial production of novel bio-composites. Beyond earth, we will rely increasingly on biologically-provided life support, as we have throughout our evolutionary history. In order to do this, the field will build on two of the great contributions of astrobiology: studies of the origin of life and life in extreme environments.

  12. Progestin implants for female contraception.

    PubMed

    Croxatt, Horacio B

    2002-01-01

    Four different implants, in the form of capsules or covered rods, that release one of the synthetic progestins levonorgestrel, etonogestrel, Nestorone, or Elcometrine and nomegestrol acetate were reviewed. Biocompatible polymers or copolymers of polydimethyl/polymethylvinyl-siloxanes or ethylvinylacetate are used to hold the steroid crystals and to control the rate of release. Once inserted under the skin, these implants release the corresponding steroid continuously over prolonged periods, a process that can be readily interrupted by implant removal. During long-term use of the implant, the released steroid circulates in blood at a fairly stable level. The physical characteristics of the implants, including drug contents and rate of release, serum levels of the progestin during use, and the duration of their effective life are described. Total steroid loads vary in the range of 50 mg to 216 mg; average release rates are in the range of 30-100 ug/day, and effective lives from 6 months to 7 years.

  13. Ion sources for energy extremes of ion implantation (invited)

    SciTech Connect

    Hershcovitch, A.; Johnson, B. M.; Batalin, V. A.; Kropachev, G. N.; Kuibeda, R. P.; Kulevoy, T. V.; Kolomiets, A. A.; Pershin, V. I.; Petrenko, S. V.; Rudskoy, I.; Seleznev, D. N.; Bugaev, A. S.; Gushenets, V. I.; Litovko, I. V.; Oks, E. M.; Yushkov, G. Yu.; Masunov, E. S.; Polozov, S. M.; Poole, H. J; Storozhenko, P. A.

    2008-02-15

    For the past four years a joint research and development effort designed to develop steady state, intense ion sources has been in progress with the ultimate goal to develop ion sources and techniques that meet the two energy extreme range needs of meV and hundreads of eV ion implanters. This endeavor has already resulted in record steady state output currents of high charge state of antimony and phosphorus ions: P{sup 2+} [8.6 pmA (particle milliampere)], P{sup 3+} (1.9 pmA), and P{sup 4+} (0.12 pmA) and 16.2, 7.6, 3.3, and 2.2 pmA of Sb{sup 3+}Sb{sup 4+}, Sb{sup 5+}, and Sb{sup 6+} respectively. For low energy ion implantation, our efforts involve molecular ions and a novel plasmaless/gasless deceleration method. To date, 1 emA (electrical milliampere) of positive decaborane ions was extracted at 10 keV and smaller currents of negative decaborane ions were also extracted. Additionally, boron current fraction of over 70% was extracted from a Bernas-Calutron ion source, which represents a factor of 3.5 improvement over currently employed ion sources.

  14. Synthetic multicellularity.

    PubMed

    Maharbiz, Michel M

    2012-12-01

    The ability to synthesize biological constructs on the scale of the organisms we observe unaided is probably one of the more outlandish, yet recurring, dreams humans have had since they began to modify genes. This review brings together recent developments in synthetic biology, cell and developmental biology, computation, and technological development to provide context and direction for the engineering of rudimentary, autonomous multicellular ensembles. Copyright © 2012 Elsevier Ltd. All rights reserved.

  15. Dental Implants.

    PubMed

    Zohrabian, Vahe M; Sonick, Michael; Hwang, Debby; Abrahams, James J

    2015-10-01

    Dental implants restore function to near normal in partially or completely edentulous patients. A root-form implant is the most frequently used type of dental implant today. The basis for dental implants is osseointegration, in which osteoblasts grow and directly integrate with the surface of titanium posts surgically embedded into the jaw. Radiologic assessment is critical in the preoperative evaluation of the dental implant patient, as the exact height, width, and contour of the alveolar ridge must be determined. Moreover, the precise locations of the maxillary sinuses and mandibular canals, as well as their relationships to the site of implant surgery must be ascertained. As such, radiologists must be familiar with implant design and surgical placement, as well as augmentation procedures utilized in those patients with insufficient bone in the maxilla and mandible to support dental implants.

  16. Penile Implants

    MedlinePlus

    ... Three-piece inflatable implants use a fluid-filled reservoir implanted under the abdominal wall, a pump and ... an erection, you pump the fluid from the reservoir into the cylinders. Afterward, you release the valve ...

  17. Synthetic vascular prostheses.

    PubMed

    Struszczyk, Marcin H; Bednarek, Paweł; Raczyński, Krzysztof

    2002-01-01

    Polyethyleneterephthalate (PET), and to a lesser extent Teflon have become the major synthetic grafting material. Unlike nylon, Ivalon, and Vinyon-N which lose their tensile strength after implantation, PET and Teflon remain essentially unchanged even after long periods. TRICOMED S.A. produces the family of the knitted vascular implants Dallon made from PET fibres including: Dallon, Dallon H, Tricogel. Both Dallon and Dallon H are manufactured in a form of double (external and internal) velour surface using multifilament yarn and having optimal graft design (a variety of sizes and lengths). The velour surface gives the surface a velvety, plush texture, which improves tissue in--growth. Moreover, Dallon H is a unique vascular prostheses showing the increase in the blood susceptibility that is useful for 4 times less blood demand during preclotting as compared with standard prosthesis. Tricogel graft is made of thin-wall prostheses sealed with the porcine gelatin that provides intraoperative tightness (without preclotting) and the optimal healing process. Hydrophilic behavior of the graft is observed as an instant moistening of the surface with patient's blood and as sweating. The blood stream does not dissolve nor washes away the gelatin but causes the gelatin film to swell, which makes a better tightness. The work will describe the properties of manmade vascular grafts as well as their applications in the vascular surgery.

  18. Synthetic Cathinones ("Bath Salts")

    MedlinePlus

    ... still unknown about how synthetic cathinones affect the human brain. Researchers do know that synthetic cathinones are chemically ... of the chemicals in synthetic cathinones affect the human brain. Synthetic cathinones can cause: nosebleeds paranoia increased sociability ...

  19. Synthetic wisdom.

    PubMed

    Kitcher, Philip

    2016-11-01

    Wisdom is a special kind of virtue. It is not to be identified with any outstanding cognitive ability-like having a prodigious memory or knowing a lot. Rather it consists in seeing what is most important and most valuable, either within a particular domain or in life as a whole. In the life of a wise person, that insight should be accompanied by traits of character, enabling the person to pursue what is seen as valuable. Viewing wisdom as a capacity for synthetic understanding, I argue for the need for philosophy, even at a time when all of us have much to learn from the sciences.

  20. Orbital implants insertion to improve ocular prostheses motility.

    PubMed

    Goiato, Marcelo Coelho; Haddad, Marcela Filié; dos Santos, Daniela Micheline; Pesqueira, Aldiéris Alves; Ribeiro, Paula do Prado; Moreno, Amália

    2010-05-01

    The objectives of this study were, through a literature review, to point the differences between orbital implants and their advantages and disadvantages, to evaluate prosthesis motility after orbital implants are inserted, and to point the implant wrapping current risks. Sixty-seven articles were reviewed. Enucleation implants can be autoplastics or alloplastics and porous (including natural and synthetic hydroxyapatite [HA]) or nonporous (silicone). Hydroxyapatite is the most related in the literature, but it has disadvantages, too, that is, all orbital implants must be wrapped. Exposure of the porous orbital implant can be repaired using different materials, which include homologous tissue, as well as autogenous graft, xenograft, and synthetic material mesh. The most used materials are HA and porous polyethylene orbital implant. The HA implant is expensive and possibly subject corals to damage, different from porous polyethylene orbital implants. Porous implants show the best prosthesis motility and a minimum rate of implants extrusion. Implant wraps can facilitate smoother entry of the implant into the orbit and allow reattachment of extraocular muscles. They also serve as a barrier between the overlying soft tissue and the rough surface of the implant, protecting implants from exposure or erosion.

  1. Synthetic chloroplasts

    SciTech Connect

    Calvin, M.

    1980-06-01

    The principal function of the chloroplast is to capture solar quanta and to store them in some stable form. We are in the process of trying to construct a totally synthetic system that would simulate some of the reactions of the two photosystems which occur in natural chloroplasts. Toward this end, we have demonstrated a number of the reactions required in separated systems. We have shown that it is possible to transfer electrons across an insulating membrane barrier with a surfactant photosensitizer. Others have shown, and we have confirmed, that it is possible to collect the two electrons necessary for the generation of molecular hydrogen on a heterogeneous catalyst suspended in water and similarly to collect the four holes on another heterogeneous catalyst suspended in water for the generation of molecular oxygen. A synthesis of some of these molecular catalysts for both these purposes is underway, with some partial success. When these partial reactions are assembled in a system, the resulting synthetic chloroplasts will not resemble the natural entity in detailed construction as they will contain no protein.

  2. Synthetic Botany.

    PubMed

    Boehm, Christian R; Pollak, Bernardo; Purswani, Nuri; Patron, Nicola; Haseloff, Jim

    2017-07-05

    Plants are attractive platforms for synthetic biology and metabolic engineering. Plants' modular and plastic body plans, capacity for photosynthesis, extensive secondary metabolism, and agronomic systems for large-scale production make them ideal targets for genetic reprogramming. However, efforts in this area have been constrained by slow growth, long life cycles, the requirement for specialized facilities, a paucity of efficient tools for genetic manipulation, and the complexity of multicellularity. There is a need for better experimental and theoretical frameworks to understand the way genetic networks, cellular populations, and tissue-wide physical processes interact at different scales. We highlight new approaches to the DNA-based manipulation of plants and the use of advanced quantitative imaging techniques in simple plant models such as Marchantia polymorpha. These offer the prospects of improved understanding of plant dynamics and new approaches to rational engineering of plant traits. Copyright © 2017 Cold Spring Harbor Laboratory Press; all rights reserved.

  3. Implantable Microimagers

    PubMed Central

    Ng, David C.; Tokuda, Takashi; Shiosaka, Sadao; Tano, Yasuo; Ohta, Jun

    2008-01-01

    Implantable devices such as cardiac pacemakers, drug-delivery systems, and defibrillators have had a tremendous impact on the quality of live for many disabled people. To date, many devices have been developed for implantation into various parts of the human body. In this paper, we focus on devices implanted in the head. In particular, we describe the technologies necessary to create implantable microimagers. Design, fabrication, and implementation issues are discussed vis-à-vis two examples of implantable microimagers; the retinal prosthesis and in vivo neuro-microimager. Testing of these devices in animals verify the use of the microimagers in the implanted state. We believe that further advancement of these devices will lead to the development of a new method for medical and scientific applications. PMID:27879873

  4. High Productivity Implantation ''PARTIAL IMPLANT''

    SciTech Connect

    Hino, Masayoshi; Miyamoto, Naoki; Sakai, Shigeki; Matsumoto, Takao

    2008-11-03

    The patterned ion implantation 'PARTIAL IMPLANT' has been developed as a productivity improvement tool. The Partial Implant can form several different ion dose areas on the wafer surface by controlling the speed of wafer moving and the stepwise rotation of twist axis. The Partial Implant system contains two implant methods. One method is 'DIVIDE PARTIAL IMPLANT', that is aimed at reducing the consumption of the wafer. The Divide Partial Implant evenly divides dose area on one wafer surface into two or three different dose part. Any dose can be selected in each area. So the consumption of the wafer for experimental implantation can be reduced. The second method is 'RING PARTIAL IMPLANT' that is aimed at improving yield by correcting electrical characteristic of devices. The Ring Partial Implant can form concentric ion dose areas. The dose of wafer external area can be selected to be within plus or minus 30% of dose of wafer central area. So the electrical characteristic of devices can be corrected by controlling dose at edge side on the wafer.

  5. Endodontic implants

    PubMed Central

    Yadav, Rakesh K.; Tikku, A. P.; Chandra, Anil; Wadhwani, K. K.; Ashutosh kr; Singh, Mayank

    2014-01-01

    Endodontic implants were introduced back in 1960. Endodontic implants enjoyed few successes and many failures. Various reasons for failures include improper case selection, improper use of materials and sealers and poor preparation for implants. Proper case selection had given remarkable long-term success. Two different cases are being presented here, which have been treated successfully with endodontic implants and mineral trioxide aggregate Fillapex (Andreaus, Brazil), an MTA based sealer. We suggest that carefully selected cases can give a higher success rate and this method should be considered as one of the treatment modalities. PMID:25298723

  6. Synthetic cornea: biocompatibility and optics

    NASA Astrophysics Data System (ADS)

    Parel, Jean-Marie A.; Kaminski, Stefan; Fernandez, Viviana; Alfonso, E.; Lamar, Peggy; Lacombe, Emmanuel; Duchesne, Bernard; Dubovy, Sander; Manns, Fabrice; Rol, Pascal O.

    2002-06-01

    Purpose. Experimentally find a method to provide a safe surgical technique and an inexpensive and long lasting mesoplant for the restoration of vision in patients with bilateral corneal blindness due to ocular surface and stromal diseases. Methods. Identify the least invasive and the safest surgical technique for synthetic cornea implantation. Identify the most compatible biomaterials and the optimal shape a synthetic cornea must have to last a long time when implanted in vivo. Results. Penetrating procedures were deemed too invasive, time consuming, difficult and prone to long term complications. Therefore a non-penetrating delamination technique with central trephination was developed to preserve the integrity of Descemet's membrane and the anterior segment. Even though this approach limits the number of indications, it is acceptable since the majority of patients only have opacities in the stroma. The prosthesis was designed to fit in the removed tissue plane with its skirt fitted under the delaminated stroma. To improve retention, the trephination wall was made conical with the smallest opening on the anterior surface and a hat-shaped mesoplant was made to fit. The skirt was perforated in its perimeter to allow passage of nutrients and tissues ingrowths. To simplify the fabrication procedure, the haptic and optic were made of the same polymer. The intrastromal biocompatibility of several hydrogels was found superior to current clinically used PMMA and PTFE materials. Monobloc mesoplants made of 4 different materials were implanted in rabbits and followed weekly until extrusion occurred. Some remained optically clear allowing for fundus photography. Conclusions. Hydrogel synthetic corneas can be made to survive for periods longer than 1 year. ArF excimer laser photoablation studies are needed to determine the refractive correction potential of these mesoplants. A pilot FDA clinical trial is needed to assess the mesoplant efficacy and very long-term stability.

  7. Synthetic Astrobiology

    NASA Technical Reports Server (NTRS)

    Rothschild, Lynn J.

    2017-01-01

    "Are we alone?" is one of the primary questions of astrobiology, and whose answer defines our significance in the universe. Unfortunately, this quest is hindered by the fact that we have only one confirmed example of life, that of earth. While this is enormously helpful in helping to define the minimum envelope for life, it strains credulity to imagine that life, if it arose multiple times, has not taken other routes. To help fill this gap, our lab has begun using synthetic biology - the design and construction of new biological parts and systems and the redesign of existing ones for useful purposes - as an enabling technology. One theme, the "Hell Cell" project, focuses on creating artificial extremophiles in order to push the limits for Earth life, and to understand how difficult it is for life to evolve into extreme niches. In another project, we are re-evolving biotic functions using only the most thermodynamically stable amino acids in order to understand potential capabilities of an early organism with a limited repertoire of amino acids.

  8. Synthetic Astrobiology

    NASA Technical Reports Server (NTRS)

    Rothschild, Lynn J.

    2015-01-01

    'Are we alone?' is one of the primary questions of astrobiology, and whose answer defines our significance in the universe. Unfortunately, this quest is hindered by the fact that we have only one confirmed example of life, that of earth. While this is enormously helpful in helping to define the minimum envelope for life, it strains credulity to imagine that life, if it arose multiple times, has not taken other routes. To help fill this gap, our lab has begun using synthetic biology - the design and construction of new biological parts and systems and the redesign of existing ones for useful purposes - as an enabling technology. One theme, the "Hell Cell" project, focuses on creating artificial extremophiles in order to push the limits for Earth life, and to understand how difficult it is for life to evolve into extreme niches. In another project, we are re-evolving biotic functions using only the most thermodynamically stable amino acids in order to understand potential capabilities of an early organism with a limited repertoire of amino acids.

  9. Probing the carrier concentration profiles in phosphorus-implanted germanium using infrared spectroscopic ellipsometry

    SciTech Connect

    D'Costa, Vijay Richard Yeo, Yee-Chia

    2015-02-21

    Spectroscopic ellipsometry with photon energy in the 0.045–0.65 eV range was used to investigate germanium samples implanted with 30 keV phosphorus ions and annealed at 700 °C. The infrared response of implanted layers is dominated by free carrier absorption which is modeled using a Drude oscillator. The carrier concentration profiles were modeled using an error function, and compared with those obtained by electrochemical capacitance-voltage profiling and secondary ion mass spectrometry. In the flat region of the carrier concentration profile, average carrier concentration and mobility of 1.40 × 10{sup 19} cm{sup −3} and 336 cm{sup 2}V{sup −1}s{sup −1}, respectively, were obtained. A phosphorus diffusivity of ∼1.2 × 10{sup −13} cm{sup 2}/s was obtained. The mobility versus carrier concentration relationships obtained for the implanted samples are close to the empirical relationship for bulk Ge.

  10. About Implantable Contraception

    MedlinePlus

    ... TV, Video Games, and the Internet About Implantable Contraception KidsHealth > For Parents > About Implantable Contraception Print A ... How Much Does It Cost? What Is Implantable Contraception? Implantable contraception (often called the birth control implant) ...

  11. Nasal reconstruction using porous polyethylene implants.

    PubMed

    Romo, T; Sclafani, A P; Jacono, A A

    2000-01-01

    Nasal reconstruction presents a significant challenge to the facial plastic surgeon. The dual goals of reconstruction are restoration of the desired aesthetic nasal contour and an improved nasal airway. Autologous cartilage and bone are considered optimal grafting material, but their supply is often limited and harvesting entails additional morbidity. Many synthetic materials have been introduced in nasal reconstruction, but high infection and extrusion rates limited their use. Porous high density polyethylene implants present an alternative to autologous material as they allow for fibrovascular ingrowth, leading to stability of the implant and decreased rates of infection. Herein we describe the use of porous high density polyethylene implants for reconstruction of the platyrrhine nose and in revision rhinoplasty. The use of preformed nasal-dorsal tip and alar batten implants are described, as well as the use of columellar strut and premaxillary plumper implants. We believe that porous high density polyethylene implants provide a safe, desirable alternative in functional and aesthetic nasal reconstruction.

  12. Cochlear implant

    MedlinePlus

    ... bilateral cochlear implantation: a review. Curr Opin Otolaryngol Head Neck Surg . 2007;15(5):315-318. PMID: 17823546. ... BH, Lund V, et al, eds. Cummings Otolaryngology: Head & Neck Surgery . 6th ed. Philadelphia, PA: Elsevier Saunders; 2015: ...

  13. Histrelin Implant

    MedlinePlus

    ... implant (Supprelin LA) is used to treat central precocious puberty (CPP; a condition causing children to enter puberty too soon, resulting in faster than normal bone growth and development of sexual characteristics) in girls ...

  14. Breast Implants

    MedlinePlus

    ... in the United States: saline-filled and silicone gel-filled. Both types have a silicone outer shell. ... them. Provide information on saline-filled and silicone gel-filled breast implants, including data supporting a reasonable ...

  15. Regulatory mechanism for expression of IL1B receptors in the uterine endometrium and effects of IL1B on prostaglandin synthetic enzymes during the implantation period in pigs.

    PubMed

    Seo, Heewon; Choi, Yohan; Shim, Jangsoo; Choi, Youngsok; Ka, Hakhyun

    2012-08-01

    During the implantation period, the porcine conceptus secretes interleukin-1beta (IL1B) that may be involved in the establishment of pregnancy in pigs. However, the regulatory mechanism for IL1B receptor expression and the function of IL1B in the uterine endometrium are not well elucidated. In this study, we determined IL1B receptor expression in the uterine endometrium of pigs during pregnancy. IL1B receptor subtypes, IL1 receptor type I (IL1R1) and IL1 receptor accessory protein (IL1RAP) were expressed in the uterine endometrium with the expression being most abundant on Day 12 of pregnancy primarily in the luminal and glandular epithelial cells. Expression of IL1R1 mRNA increased in response to IL1B in a dose-dependent manner, and expression of IL1RAP mRNA increased in response to both IL1B and estradiol, indicating that expression of endometrial IL1B receptors was regulated cooperatively by IL1B and estrogen of conceptus origin. During the peri-implantation period, the porcine uterine endometrium actively synthesizes and secretes prostaglandins (PGs). IL1B increased expression of PTGS1 and PTGS2 genes that are rate-limiting for PG synthesis in the uterine endometrium. Collectively, the results indicated that IL1B regulates expression of IL1R1 and IL1RAP and stimulates expression of PTGS1 and PTGS2 that are considered to be the most rate-limiting enzymes for endometrial synthesis of PGs during the peri-implantation period of pregnancy in pigs.

  16. Cochlear implants.

    PubMed

    Connell, Sarah S; Balkany, Thomas J

    2006-08-01

    Cochlear implants are cost-effective auditory prostheses that safely provide a high-quality sensation of hearing to adults who are severely or profoundly deaf. In the past 5 years, progress has been made in hardware and software design, candidate selection, surgical techniques, device programming, education and rehabilitation,and, most importantly, outcomes. Cochlear implantation in the elderly is well tolerated and provides marked improvement in auditory performance and psychosocial functioning.

  17. Fibrovascularization of porous polyethylene (Medpor) orbital implant in a rabbit model.

    PubMed

    Jordan, D R; Brownstein, S; Dorey, M; Yuen, V Ho; Gilberg, S

    2004-03-01

    To evaluate the porous polyethylene (Medpor) orbital implant in a rabbit model and compare it with three other currently available porous implants: Bio-Eye coralline hydroxyapatite (HA), FCI(3) synthetic HA, and aluminum oxide (Bioceramic). The porous polyethylene implant was examined macroscopically and microscopically (with scanning electron microscopy). Implantation was performed in 10 adult male New Zealand albino rabbits. Each animal underwent enucleation of the right globe under general halothane gas anesthesia, followed by placement of a 12-mm porous polyethylene implant. In 5 animals, the implant was encased in polyglactin 910 (Vicryl mesh); in the other 5, it was left unwrapped. The implants were moistened in saline before placement. Implant vascularization was evaluated by histopathology at 4, 8, 12, 16, and 24 weeks. The porous polyethylene implant was found to have a smoother exterior surface than the Bio-Eye, FCI(3) synthetic HA, and aluminum oxide implants. Rather than a uniform interconnected porous architecture, there was an extensive system of interconnected channels through the implant, ranging in size from 125 to 1000 microm. On high-power examination there was a more solid, woven appearance without any sign of the microcrystals seen in the other porous implants. One rabbit had a retrobulbar hemorrhage after surgery and was euthanized. All the other rabbits tolerated the implant well, and there were no complications. On histopathologic examination, fibrovascularization gradually increased over time. One implant was completely vascularized at 12 weeks, and both implants harvested at 16 weeks were completely vascularized. The implant harvested at 24 weeks showed only partial vascularization (14%). The porous polyethylene orbital implant represents an alternative implant for use after enucleation or evisceration or for secondary implantation. In our rabbit model, the porous polyethylene implant was well tolerated without complication. Complete

  18. Contraceptive implants.

    PubMed

    McDonald-Mosley, Raegan; Burke, Anne E

    2010-03-01

    Implantable contraception has been extensively used worldwide. Implants are one of the most effective and reversible methods of contraception available. These devices may be particularly appropriate for certain populations of women, including women who cannot use estrogen-containing contraception. Implants are safe for use by women with many chronic medical problems. The newest implant, Implanon (Organon International, Oss, The Netherlands), is the only device currently available in the United States and was approved in 2006. It is registered for 3 years of pregnancy prevention. Contraceptive implants have failure rates similar to tubal ligation, and yet they are readily reversible with a return to fertility within days of removal. Moreover, these contraceptive devices can be safely placed in the immediate postpartum period, ensuring good contraceptive coverage for women who may be at risk for an unintended pregnancy. Irregular bleeding is a common side effect for all progestin-only contraceptive implants. Preinsertion counseling should address possible side effects, and treatment may be offered to women who experience prolonged or frequent bleeding.

  19. BMP-Functionalised Coatings to Promote Osteogenesis for Orthopaedic Implants

    PubMed Central

    Wang, Jianfeng; Guo, Jing; Liu, Jingsong; Wei, Limin; Wu, Gang

    2014-01-01

    The loss of bone integrity can significantly compromise the aesthetics and mobility of patients and can be treated using orthopaedic implants. Over the past decades; various orthopaedic implants; such as allografts; xenografts and synthetic materials; have been developed and widely used in clinical practice. However; most of these materials lack intrinsic osteoinductivity and thus cannot induce bone formation. Consequently; osteoinductive functionalisation of orthopaedic implants is needed to promote local osteogenesis and implant osteointegration. For this purpose; bone morphogenetic protein (BMP)-functionalised coatings have proven to be a simple and effective strategy. In this review; we summarise the current knowledge and recent advances regardingBMP-functionalised coatings for orthopaedic implants. PMID:24914764

  20. Impact of implanted phosphorus on the diffusivity of boron and its applicability to silicon solar cells

    NASA Astrophysics Data System (ADS)

    Schrof, Julian; Müller, Ralph; Reedy, Robert C.; Benick, Jan; Hermle, Martin

    2015-07-01

    Boron diffusivity reduction in extrinsically doped silicon was investigated in the context of a process combination consisting of BBr3 furnace diffusion and preceding Phosphorus ion implantation. The implantation of Phosphorus leads to a substantial blocking of Boron during the subsequent Boron diffusion. First, the influences of ion implantation induced point defects as well as the initial P doping on B diffusivity were studied independently. Here, it was found that not the defects created during ion implantation but the P doping itself results in the observed B diffusion retardation. The influence of the initial P concentration was investigated in more detail by varying the P implantation dose. A secondary ion mass spectrometry (SIMS) analysis of the BSG layer after the B diffusion revealed that the B diffusion retardation is not due to potential P content in the BSG layer but rather caused by the n-type doping of the crystalline silicon itself. Based on the observations the B diffusion retardation was classified into three groups: (i) no reduction of B diffusivity, (ii) reduced B diffusivity, and (iii) blocking of the B diffusion. The retardation of B diffusion can well be explained by the phosphorus doping level resulting in a Fermi level shift and pairing of B and P ions, both reducing the B diffusivity. Besides these main influences, there are probably additional transient phenomena responsible for the blocking of boron. Those might be an interstitial transport mechanism caused by P diffusion that reduces interstitial concentration at the surface or the silicon/BSG interface shift due to oxidation during the BBr3 diffusion process. Lifetime measurements revealed that the residual (non-blocked) B leads to an increased dark saturation current density in the P doped region. Nevertheless, electrical quality is on a high level and was further increased by reducing the B dose as well as by removing the first few nanometers of the silicon surface after the BBr3

  1. Impact of implanted phosphorus on the diffusivity of boron and its applicability to silicon solar cells

    SciTech Connect

    Schrof, Julian Müller, Ralph; Benick, Jan; Hermle, Martin; Reedy, Robert C.

    2015-07-28

    Boron diffusivity reduction in extrinsically doped silicon was investigated in the context of a process combination consisting of BBr{sub 3} furnace diffusion and preceding Phosphorus ion implantation. The implantation of Phosphorus leads to a substantial blocking of Boron during the subsequent Boron diffusion. First, the influences of ion implantation induced point defects as well as the initial P doping on B diffusivity were studied independently. Here, it was found that not the defects created during ion implantation but the P doping itself results in the observed B diffusion retardation. The influence of the initial P concentration was investigated in more detail by varying the P implantation dose. A secondary ion mass spectrometry (SIMS) analysis of the BSG layer after the B diffusion revealed that the B diffusion retardation is not due to potential P content in the BSG layer but rather caused by the n-type doping of the crystalline silicon itself. Based on the observations the B diffusion retardation was classified into three groups: (i) no reduction of B diffusivity, (ii) reduced B diffusivity, and (iii) blocking of the B diffusion. The retardation of B diffusion can well be explained by the phosphorus doping level resulting in a Fermi level shift and pairing of B and P ions, both reducing the B diffusivity. Besides these main influences, there are probably additional transient phenomena responsible for the blocking of boron. Those might be an interstitial transport mechanism caused by P diffusion that reduces interstitial concentration at the surface or the silicon/BSG interface shift due to oxidation during the BBr{sub 3} diffusion process. Lifetime measurements revealed that the residual (non-blocked) B leads to an increased dark saturation current density in the P doped region. Nevertheless, electrical quality is on a high level and was further increased by reducing the B dose as well as by removing the first few nanometers of the silicon surface after

  2. Impact of implanted phosphorus on the diffusivity of boron and its applicability to silicon solar cells

    SciTech Connect

    Schrof, Julian; Müller, Ralph; Reedy, Robert C.; Benick, Jan; Hermle, Martin

    2015-07-28

    Boron diffusivity reduction in extrinsically doped silicon was investigated in the context of a process combination consisting of BBr3 furnace diffusion and preceding Phosphorus ion implantation. The implantation of Phosphorus leads to a substantial blocking of Boron during the subsequent Boron diffusion. First, the influences of ion implantation induced point defects as well as the initial P doping on B diffusivity were studied independently. Here, it was found that not the defects created during ion implantation but the P doping itself results in the observed B diffusion retardation. The influence of the initial P concentration was investigated in more detail by varying the P implantation dose. A secondary ion mass spectrometry (SIMS) analysis of the BSG layer after the B diffusion revealed that the B diffusion retardation is not due to potential P content in the BSG layer but rather caused by the n-type doping of the crystalline silicon itself. Based on the observations the B diffusion retardation was classified into three groups: (i) no reduction of B diffusivity, (ii) reduced B diffusivity, and (iii) blocking of the B diffusion. The retardation of B diffusion can well be explained by the phosphorus doping level resulting in a Fermi level shift and pairing of B and P ions, both reducing the B diffusivity. Besides these main influences, there are probably additional transient phenomena responsible for the blocking of boron. Those might be an interstitial transport mechanism caused by P diffusion that reduces interstitial concentration at the surface or the silicon/BSG interface shift due to oxidation during the BBr3 diffusion process. Lifetime measurements revealed that the residual (non-blocked) B leads to an increased dark saturation current density in the P doped region. Nevertheless, electrical quality is on a high level and was further increased by reducing the B dose as well as by removing the first few nanometers of the silicon surface after the BBr3

  3. Cell microencapsulation with synthetic polymers

    PubMed Central

    Olabisi, Ronke M

    2015-01-01

    The encapsulation of cells into polymeric microspheres or microcapsules has permitted the transplantation of cells into human and animal subjects without the need for immunosuppressants. Cell-based therapies use donor cells to provide sustained release of a therapeutic product, such as insulin, and have shown promise in treating a variety of diseases. Immunoisolation of these cells via microencapsulation is a hotly investigated field, and the preferred material of choice has been alginate, a natural polymer derived from seaweed due to its gelling conditions. Although many natural polymers tend to gel in conditions favorable to mammalian cell encapsulation, there remain challenges such as batch to batch variability and residual components from the original source that can lead to an immune response when implanted into a recipient. Synthetic materials have the potential to avoid these issues; however, historically they have required harsh polymerization conditions that are not favorable to mammalian cells. As research into microencapsulation grows, more investigators are exploring methods to microencapsulate cells into synthetic polymers. This review describes a variety of synthetic polymers used to microencapsulate cells. © 2014 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 103A: 846–859, 2015. PMID:24771675

  4. Cell microencapsulation with synthetic polymers.

    PubMed

    Olabisi, Ronke M

    2015-02-01

    The encapsulation of cells into polymeric microspheres or microcapsules has permitted the transplantation of cells into human and animal subjects without the need for immunosuppressants. Cell-based therapies use donor cells to provide sustained release of a therapeutic product, such as insulin, and have shown promise in treating a variety of diseases. Immunoisolation of these cells via microencapsulation is a hotly investigated field, and the preferred material of choice has been alginate, a natural polymer derived from seaweed due to its gelling conditions. Although many natural polymers tend to gel in conditions favorable to mammalian cell encapsulation, there remain challenges such as batch to batch variability and residual components from the original source that can lead to an immune response when implanted into a recipient. Synthetic materials have the potential to avoid these issues; however, historically they have required harsh polymerization conditions that are not favorable to mammalian cells. As research into microencapsulation grows, more investigators are exploring methods to microencapsulate cells into synthetic polymers. This review describes a variety of synthetic polymers used to microencapsulate cells. © 2014 The Authors. Journal of Biomedical Materials Research Part A Published by Wiley Periodicals, Inc.

  5. High Mobility SiGe/Si Transistor Structures on Sapphire Substrates Using Ion Implantation

    NASA Technical Reports Server (NTRS)

    Alterovitz, S. A.; Mueller, C. H.; Croke, E. T.

    2003-01-01

    High mobility n-type SiGe/Si transistor structures have been fabricated on sapphire substrates by ion implanting phosphorus ions into strained 100 Angstrom thick silicon channels for the first time. The strained Si channels were sandwiched between Si(sub 0.7)Ge(sub 0.3) layers, which, in turn, were deposited on Si(sub 0.7)Ge(sub 0.3) virtual substrates and graded SiGe buffer layers. After the molecular beam epitaxy (MBE) film growth process was completed, ion thick silicon channels implantation and post-annealing were used to introduce donors. The phosphorous ions were preferentially located in the Si channel at a peak concentration of approximately 1x10(exp 18)/cu cm. Room temperature electron mobilities exceeding 750 sq cm/V-sec at carrier densities of 1x10(exp 12)/sq cm were measured. Electron concentration appears to be the key factor that determines mobility, with the highest mobility observed for electron densities in the 1 - 2x10(exp 12)/sq cm range.

  6. Monolithic integration of multiple-emission-wavelength laser diodes using low-energy ion implantation

    NASA Astrophysics Data System (ADS)

    Aimez, Vincent; Paquette, Michel; Beauvais, Jacques; Beerens, Jean; Poole, Philip J.; Charbonneau, N. Sylvain

    1998-09-01

    A monolithic optoelectronic chip containing multiple emission wavelength laser diodes has been developed. The semiconductor quantum well lasers have Fabry-Perot cavities of 500 micrometers in length. Electrical insulation between individual integrated devices has been achieved by wet etching the top contact layer and by a lift-off of the surface metal contact between the different lasers. The electroluminescence peak emission spectra of the integrated laser diodes has been shifted over a 25 nm range and 74 nm for discrete devices. Blueshifting of the emission wavelength has been achieved by quantum well intermixing using an industrial low energy ion implanter to generate point defects and a rapid thermal annealer to promote interdiffusion of the barrier and quantum well atoms during the recrystallization anneal. Phosphorus ions were implanted with an energy of 360 keV to precisely defined regions of the heterostructure with SiO2 serving as a masking material. Thus reference and intermixed regions were integrated on a single component. Integrated and discrete laser diodes have been assessed in terms of threshold currents and emission wavelengths.

  7. Synthetic biology, inspired by synthetic chemistry.

    PubMed

    Malinova, V; Nallani, M; Meier, W P; Sinner, E K

    2012-07-16

    The topic synthetic biology appears still as an 'empty basket to be filled'. However, there is already plenty of claims and visions, as well as convincing research strategies about the theme of synthetic biology. First of all, synthetic biology seems to be about the engineering of biology - about bottom-up and top-down approaches, compromising complexity versus stability of artificial architectures, relevant in biology. Synthetic biology accounts for heterogeneous approaches towards minimal and even artificial life, the engineering of biochemical pathways on the organismic level, the modelling of molecular processes and finally, the combination of synthetic with nature-derived materials and architectural concepts, such as a cellular membrane. Still, synthetic biology is a discipline, which embraces interdisciplinary attempts in order to have a profound, scientific base to enable the re-design of nature and to compose architectures and processes with man-made matter. We like to give an overview about the developments in the field of synthetic biology, regarding polymer-based analogs of cellular membranes and what questions can be answered by applying synthetic polymer science towards the smallest unit in life, namely a cell.

  8. Cochlear Implants

    MedlinePlus

    ... outside of the body, behind the ear. A second part is surgically placed under the skin. An implant does not restore normal hearing. It can help a person understand speech. Children and adults can benefit from them. National Institute on Deafness and Other Communication Disorders

  9. Synthetic cannabinoids and potential reproductive consequences.

    PubMed

    Sun, Xiaofei; Dey, Sudhansu K

    2014-02-27

    Increases in emergency room visits due to abuse of designer drugs, popularly known by the street names "K2" and "Spice," are a cause for social, judicial, and clinical concerns. The psychoactive components in these herbal drugs mainly consist of different synthetic cannabinoids, and users of these street drugs are primarily within the age group of 12 to 20years old. The abusive use of synthetic cannabinoids results in anxiety, nausea, vomiting, tachycardia, elevated blood pressure, tremors, seizures, hallucinations, and paranoid behavior, but the effects of maternal use of synthetic cannabinoids during pregnancy are ambiguous due to limited studies in humans and a relative short history of the drugs. In this review, we discuss the known and potential adverse effects of synthetic cannabinoids on human pregnancy using knowledge gathered from studies in mice and limited studies in humans. In mice, multiple sites and stages of pregnancy are potential targets of synthetic cannabinoids, including preimplantation embryo development, oviductal embryo transport, implantation, placentation, and parturition. It is anticipated that maternal use of synthetic cannabinoids would result in severely compromised female fertility and pregnancy outcome.

  10. Synthetic cannabinoids and potential reproductive consequences

    PubMed Central

    Sun, Xiaofei; Dey, Sudhansu K.

    2013-01-01

    Increases in emergency room visits due to abuse of designer drugs, popularly known by the street names “K2” and “Spice,” are a cause for social, judicial, and clinical concerns. The psychoactive components in these herbal drugs mainly consist of different synthetic cannabinoids, and users of these street drugs are primarily within the age group of 12 to 20 years old. The abusive use of synthetic cannabinoids results in anxiety, nausea, vomiting, tachycardia, elevated blood pressure, tremors, seizures, hallucinations, and paranoid behavior, but the effects of maternal use of synthetic cannabinoids during pregnancy are ambiguous due to limited studies in humans and a relative short history of the drugs. In this review, we discuss the known and potential adverse effects of synthetic cannabinoids on human pregnancy using knowledge gathered from studies in mice and limited studies in humans. In mice, multiple sites and stages of pregnancy are potential targets of synthetic cannabinoids, including preimplantation embryo development, oviductal embryo transport, implantation, placentation, and parturition. It is anticipated that maternal use of synthetic cannabinoids would result in severely compromised female fertility and pregnancy outcome. PMID:23827241

  11. Plant synthetic biology.

    PubMed

    Liu, Wusheng; Stewart, C Neal

    2015-05-01

    Plant synthetic biology is an emerging field that combines engineering principles with plant biology toward the design and production of new devices. This emerging field should play an important role in future agriculture for traditional crop improvement, but also in enabling novel bioproduction in plants. In this review we discuss the design cycles of synthetic biology as well as key engineering principles, genetic parts, and computational tools that can be utilized in plant synthetic biology. Some pioneering examples are offered as a demonstration of how synthetic biology can be used to modify plants for specific purposes. These include synthetic sensors, synthetic metabolic pathways, and synthetic genomes. We also speculate about the future of synthetic biology of plants. Copyright © 2015 Elsevier Ltd. All rights reserved.

  12. Impact of ion-implantation-induced band gap engineering on the temperature-dependent photoluminescence properties of InAs/InP quantum dashes

    SciTech Connect

    Hadj Alouane, M. H.; Ilahi, B.; Maaref, H.; Salem, B.; Aimez, V.; Morris, D.; Turala, A.; Regreny, P.; Gendry, M.

    2010-07-15

    We report on the effects of the As/P intermixing induced by phosphorus ion implantation in InAs/InP quantum dashes (QDas) on their photoluminescence (PL) properties. For nonintermixed QDas, usual temperature-dependent PL properties characterized by a monotonic redshift in the emission band and a continual broadening of the PL linewidth as the temperature increases, are observed. For intermediate ion implantation doses, the inhomogeneous intermixing enhances the QDas size dispersion and the enlarged distribution of carrier confining potential depths strongly affects the temperature-dependent PL properties below 180 K. An important redshift in the PL emission band occurs between 10 and 180 K which is explained by a redistribution of carriers among the different intermixed QDas of the ensemble. For higher implantation doses, the homogeneous intermixing reduces the broadening of the localized QDas state distribution and the measured linewidth temperature behavior matches that of the nonintermixed QDas. An anomalous temperature-dependent emission energy behavior has been observed for extremely high implantation doses, which is interpreted by a possible QDas dissolution.

  13. [SYNTHETIC PEPTIDE VACCINES].

    PubMed

    Sergeyev, O V; Barinsky, I F

    2016-01-01

    An update on the development and trials of synthetic peptide vaccines is reviewed. The review considers the successful examples of specific protection as a result of immunization with synthetic peptides using various protocols. The importance of conformation for the immunogenicity of the peptide is pointed out. An alternative strategy of the protection of the organism against the infection using synthetic peptides is suggested.

  14. [From synthetic biology to synthetic humankind].

    PubMed

    Nouvel, Pascal

    2015-01-01

    In this paper, we propose an historical survey of the expression "synthetic biology" in order to identify its main philosophical components. The result of the analysis is then used to investigate the meaning of the notion of "synthetic man". It is shown that both notions share a common philosophical background that can be summed up by the short but meaningful assertion: "biology is technology". The analysis allows us to distinguish two notions that are often confused in transhumanist literature: the notion of synthetic man and the notion of renewed man. The consequences of this crucial distinction are discussed.

  15. Angiogenesis after sintered bone implantation in rat parietal bone.

    PubMed

    Ohtsubo, S; Matsuda, M; Takekawa, M

    2003-01-01

    We studied the effect of bone substitutes on revascularization and the restart of blood supply after sintered bone implantation in comparison with synthetic hydroxyapatite implantation and fresh autogenous bone transplantation (control) in rat parietal bones. Methods for the study included the microvascular corrosion cast method and immunohistochemical techniques were also used. The revascularization of the control group was the same as that for usual wound healing in the observations of the microvascular corrosion casts. The sintered bone implantation group was quite similar to that of the control group. In the synthetic hydroxyapatite group, immature newly-formed blood vessels existed even on the 21st day after implantation and the physiological process of angiogenesis was interrupted. Immunohistochemically, vascular endothelial growth factor (VEGF), which activates angiogenesis, appeared at the early stages of both the control group and the sintered bone implantation group. VEGF reduced parallel with the appearance of the transforming growth factor factor-beta-1 (TGF-beta-1), which obstructs angiogenesis, and the angiogenesis passed gradually into the mature stage. In the hydroxyapatite implantation group, TGF-beta-1 appeared at the early stage of the implants. The appearance of VEGF lagged and it existed around the pores of hydroxyapatite even on the 21st day of the implantation. Proliferation and wandering of endothelial cells continued without any maturing of the vessels. These findings suggest that the structure and the components of the implant material affect angiogenesis after implantation as well as new bone formation.

  16. Subdermal progestin implant contraception.

    PubMed

    Darney, P D

    1991-08-01

    Sustained-release progestin contraceptives are a new approach to meeting a worldwide need for more effective and acceptable birth control. These contraceptive systems provide low, stable levels of synthetic progestins for periods of months to several years. Unlike earlier injectable and oral contraceptives, they do not cause peaks in progestin levels beyond those required for effective contraception, nor do they employ estrogens. For these reasons, sustained-release progestin systems are without some of the health risks attributed to birth control pills, and they are more effective, as well as easy to use, and completely reversible. They share common side effects, the most frequent of which is irregular menstrual bleeding caused by the erratic shedding of hypotrophic endometrium. Despite this and other minor side effects, most users find the sustained-release systems acceptable alternatives to other methods of contraception. Permanent or biodegradable subdermal implants, injections, intrauterine and intracervical devices, and vaginal rings are all employed as delivery systems for contraceptive progestins. The Norplant (Wyeth Ayerst, Radnor, PA) system, consisting of six silastic tubes filled with levonorgestrel and implanted under the skin, was recently approved by the US Food and Drug Administration and is already used by more than a half million women worldwide. The other sustained-release systems are in various stages of development, at least several years away from general use. When these new methods complete clinical trials, women will be able to choose from among implants, injections, or pellets with various durations of action, all providing convenient, highly effective contraception with low risk to health.

  17. Staining undecalcified bone sections a modified technique for an improved visualization of synthetic bone substitutes.

    PubMed

    Mayr-Wohlfart, U; Ravalli, G; Günther, K P; Kessler, S

    2008-12-01

    We describe a detailed embedding procedure for large bone specimens in methyl methacrylate and a new staining method by which thin sections (appr 100 um) of undecalcified bones with synthetic implants can be coloured. Different staining effects were obtained which greatly facilitated the evaluation of sections with bone, new forming bone and especially remnants of synthetic implants. The identification and quantification of the latter is difficult in common staining techniques. A detailed embedding - staining - mounting procedure is proposed.

  18. Short Implants: New Horizon in Implant Dentistry

    PubMed Central

    Gulati, Manisha; Garg, Meenu; Pathak, Chetan

    2016-01-01

    The choice of implant length is an essential factor in deciding the survival rates of these implants and the overall success of the prosthesis. Placing an implant in the posterior part of the maxilla and mandible has always been very critical due to poor bone quality and quantity. Long implants can be placed in association with complex surgical procedures such as sinus lift and bone augmentation. These techniques are associated with higher cost, increased treatment time and greater morbidity. Hence, there is need for a less invasive treatment option in areas of poor bone quantity and quality. Data related to survival rates of short implants, their design and prosthetic considerations has been compiled and structured in this manuscript with emphasis on the indications, advantages of short implants and critical biomechanical factors to be taken into consideration when choosing to place them. Studies have shown that comparable success rates can be achieved with short implants as those with long implants by decreasing the lateral forces to the prosthesis, eliminating cantilevers, increasing implant surface area and improving implant to abutment connection. Short implants can be considered as an effective treatment alternative in resorbed ridges. Short implants can be considered as a viable treatment option in atrophic ridge cases in order to avoid complex surgical procedures required to place long implants. With improvement in the implant surface geometry and surface texture, there is an increase in the bone implant contact area which provides a good primary stability during osseo-integration. PMID:27790598

  19. Short Implants: New Horizon in Implant Dentistry.

    PubMed

    Jain, Neha; Gulati, Manisha; Garg, Meenu; Pathak, Chetan

    2016-09-01

    The choice of implant length is an essential factor in deciding the survival rates of these implants and the overall success of the prosthesis. Placing an implant in the posterior part of the maxilla and mandible has always been very critical due to poor bone quality and quantity. Long implants can be placed in association with complex surgical procedures such as sinus lift and bone augmentation. These techniques are associated with higher cost, increased treatment time and greater morbidity. Hence, there is need for a less invasive treatment option in areas of poor bone quantity and quality. Data related to survival rates of short implants, their design and prosthetic considerations has been compiled and structured in this manuscript with emphasis on the indications, advantages of short implants and critical biomechanical factors to be taken into consideration when choosing to place them. Studies have shown that comparable success rates can be achieved with short implants as those with long implants by decreasing the lateral forces to the prosthesis, eliminating cantilevers, increasing implant surface area and improving implant to abutment connection. Short implants can be considered as an effective treatment alternative in resorbed ridges. Short implants can be considered as a viable treatment option in atrophic ridge cases in order to avoid complex surgical procedures required to place long implants. With improvement in the implant surface geometry and surface texture, there is an increase in the bone implant contact area which provides a good primary stability during osseo-integration.

  20. Materials and technologies for soft implantable neuroprostheses

    NASA Astrophysics Data System (ADS)

    Lacour, Stéphanie P.; Courtine, Grégoire; Guck, Jochen

    2016-10-01

    Implantable neuroprostheses are engineered systems designed to restore or substitute function for individuals with neurological deficits or disabilities. These systems involve at least one uni- or bidirectional interface between a living neural tissue and a synthetic structure, through which information in the form of electrons, ions or photons flows. Despite a few notable exceptions, the clinical dissemination of implantable neuroprostheses remains limited, because many implants display inconsistent long-term stability and performance, and are ultimately rejected by the body. Intensive research is currently being conducted to untangle the complex interplay of failure mechanisms. In this Review, we emphasize the importance of minimizing the physical and mechanical mismatch between neural tissues and implantable interfaces. We explore possible materials solutions to design and manufacture neurointegrated prostheses, and outline their immense therapeutic potential.

  1. Synthetic cathinone abuse

    PubMed Central

    Capriola, Michael

    2013-01-01

    The abuse of synthetic cathinones, widely known as bath salts, has been increasing since the mid-2000s. These substances are derivatives of the naturally occurring compound cathinone, which is the primary psychoactive component of khat. The toxicity of synthetic cathinones includes significant sympathomimetic effects, as well as psychosis, agitation, aggression, and sometimes violent and bizarre behavior. Mephedrone and methylenedioxypyrovalerone are currently the predominantly abused synthetic cathinones. PMID:23869180

  2. Evolvable synthetic neural system

    NASA Technical Reports Server (NTRS)

    Curtis, Steven A. (Inventor)

    2009-01-01

    An evolvable synthetic neural system includes an evolvable neural interface operably coupled to at least one neural basis function. Each neural basis function includes an evolvable neural interface operably coupled to a heuristic neural system to perform high-level functions and an autonomic neural system to perform low-level functions. In some embodiments, the evolvable synthetic neural system is operably coupled to one or more evolvable synthetic neural systems in a hierarchy.

  3. Dental Implant Surgery

    MedlinePlus

    Dental implant surgery Overview By Mayo Clinic Staff Dental implant surgery is a procedure that replaces tooth roots ... that look and function much like real ones. Dental implant surgery can offer a welcome alternative to dentures ...

  4. Hip Implant Systems

    MedlinePlus

    ... Medical Devices Products and Medical Procedures Implants and Prosthetics Metal-on-Metal Hip Implants Hip Implants Share ... femoral head) is removed and replaced with a prosthetic ball made of metal or ceramic, and the ...

  5. Osteogenic differentiation of human mesenchymal stromal cells on surface-modified titanium alloys for orthopedic and dental implants.

    PubMed

    Giannoni, Paolo; Muraglia, Anita; Giordano, Carmen; Narcisi, Roberto; Cancedda, Ranieri; Quarto, R; Chiesa, Roberto

    2009-11-01

    Surface properties of titanium alloys, used for orthopedic and dental applications, are known to affect implant interactions with host tissues. Osteointegration, bone growth and remodeling in the area surrounding the implants can be implemented by specific biomimetic treatments; these allow the preparation of micro/nanostructured titanium surfaces with a thickened oxide layer, doped with calcium and phosphorus ions. We have challenged these experimental titanium alloys with primary human bone marrow stromal cells to compare the osteogenic differentiation outcomes of the cells once they are seeded onto the modified surfaces, thus simulating a prosthetic device-biological interface of clinical relevance. A specific anodic spark discharge was the biomimetic treatment of choice, providing experimental titanium disks treated with different alkali etching approaches. The disks, checked by electron microscopy and spectroscopy, were subsequently used as substrates for the proliferation and osteogenic differentiation of human cells. Expression of markers of the osteogenic lineage was assessed by means of qualitative and quantitative PCR, by cytochemistry, immunohistochemistry, Western blot and matrix metalloprotease activity analyses. Metal surfaces were initially less permissive for cell growth. Untreated control substrates were less efficient in sustaining mineralized matrix deposition upon osteogenic induction of the cells. Interestingly, bone sialo protein and matrix metalloprotease 2 levels were enhanced on experimental metals compared to control surfaces, particularly for titanium oxide coatings etched with KOH. As a whole, the KOH-modification of titanium surfaces seems to allow the best osteogenic differentiation of human mesenchymal stromal cells, representing a possible plus for future clinical prosthetic applications.

  6. Characterizing synthetic gypsum

    SciTech Connect

    Henkels, P.J.; Gaynor, J.C.

    1996-10-01

    Each gypsum wallboard manufacturer has developed its own general guidelines for synthetic gypsum. The guidelines vary accordingly for each manufacturer and are often modified to suite a particular source and end use. In addition, the physical and chemical properties of synthetic gypsum are characterized by several proprietary and published test methods. Characterizing a synthetic gypsum and determining its acceptability is a time consuming process and can be confusing, particularly to those outside the gypsum wallboard industry. This paper describes some of the more important characteristics and practical aspects of synthetic gypsum usage based on USG`s extensive experience in wall board manufacture.

  7. [Cochlear implants].

    PubMed

    Lehnhardt, E; Battmer, R D; Nakahodo, K; Laszig, R

    1986-07-01

    Since the middle of 1984, the HNO-Klinik der Medizinischen Hochschule Hannover has provided deaf adults with a 22-channel cochlear implant (CI) device of Clark-NUCLEUS. The digital working system consists of an implantable stimulator/receiver and an externally worn speech processor. Energy and signals are transmitted transcutaneously via a transmitter coil. During the prevailing 26 operations (April 1986) the electrode array could be inserted at least 17 mm into the cochlea. The threshold and comfort levels of all patients were adjusted very quickly; the dynamic range usually grows during the first postoperative weeks. The individual rehabilitation results vary greatly, but all patients show a significant increase of vowel and consonant comprehension while using the speech processor and an improvement of words understood per minute in speech tracking from lip-reading alone to lip-reading with speech processor. Four months after surgery seven of 17 patients (group I) are able to understand on average 42.7 words per minute by speech tracking without lip-reading. Six patients (group II) recognise 69.2% of vowels and 42.5% of consonants by speech processor alone. Four patients (group III) can correctly repeat only vowels (52.3%) without lip-reading, but using the speech processor together with lip reading they have an improvement in consonant understanding of 37.9% and under freefield conditions they are able to understand up to 17.8% numbers of the Freiburg speech test.

  8. Ion channeling effects on quantum well intermixing in phosphorus-implanted InGaAsP/InGaAs/InP

    SciTech Connect

    Barba, D.; Salem, B.; Morris, D.; Aimez, V.; Beauvais, J.; Chicoine, M.; Schiettekatte, F.

    2005-09-01

    Photoluminescence, time-resolved photoluminescence, and Raman characterization techniques have been used to study In{sub 0.73}Ga{sub 0.27}As{sub 0.57}P{sub 0.43}/In{sub 0.53}Ga{sub 0.47}As/InP single quantum well heterostructure after 20-keV phosphorus ion implantation followed by rapid thermal annealing. The annealing process induces intermixing in the heterostructures and results in the blueshift of the quantum well peak emission. In order to investigate ion channeling effects on this band-gap tuning process, room-temperature implantations have been performed at tilt angles of 0 deg. and 7 deg. with respect to the sample (001)-growth axis. We show that the ion channeling increases the blueshift from 24 to 42 nm, while it reduces both the density of the nonradiative defects within the active layer and the structure disordering. These features are attributed to the nature of the damage generated by channeled ions. The band-gap increase observed in the sample implanted at 0 deg. is consistent with the formation of a compressive strain at the barrier/quantum well interface, whose intensity is measured by Raman spectroscopy.

  9. Implant marketing: cost effective implant dentistry.

    PubMed

    Wohrle, P S; Levin, R P

    1996-01-01

    The application of the KAL-Technique to the field of implant dentistry allows both patients and dental practices to benefit. It is an exciting advance that decreases frustration and stress in providing implant procedures and lowers overall costs. Professionals using the KAL-Technique report significant predictability in achieving passive framework fit. They are also lowering overall cost of implant cases, which increases the number of patients who can accept implant treatment. It has been well established that the more individuals in a practice that receive implants, the more referrals a practice will gain. This is because implant patients find tremendous advances in the quality of life, and do not hesitate to tell others who can take advantage of this opportunity. Implant dentistry is one of the fastest growing fields in dentistry today. While some other areas of dentistry begin to decline in volume and need, implant dentistry provides the opportunity to keep practices strong and to insure long-term success.

  10. Designing synthetic biology.

    PubMed

    Agapakis, Christina M

    2014-03-21

    Synthetic biology is frequently defined as the application of engineering design principles to biology. Such principles are intended to streamline the practice of biological engineering, to shorten the time required to design, build, and test synthetic gene networks. This streamlining of iterative design cycles can facilitate the future construction of biological systems for a range of applications in the production of fuels, foods, materials, and medicines. The promise of these potential applications as well as the emphasis on design has prompted critical reflection on synthetic biology from design theorists and practicing designers from many fields, who can bring valuable perspectives to the discipline. While interdisciplinary connections between biologists and engineers have built synthetic biology via the science and the technology of biology, interdisciplinary collaboration with artists, designers, and social theorists can provide insight on the connections between technology and society. Such collaborations can open up new avenues and new principles for research and design, as well as shed new light on the challenging context-dependence-both biological and social-that face living technologies at many scales. This review is inspired by the session titled "Design and Synthetic Biology: Connecting People and Technology" at Synthetic Biology 6.0 and covers a range of literature on design practice in synthetic biology and beyond. Critical engagement with how design is used to shape the discipline opens up new possibilities for how we might design the future of synthetic biology.

  11. Proliferation of human fibroblasts in vitro after exposure to orbital implants.

    PubMed

    Mawn, L A; Jordan, D R; Gilberg, S

    2001-08-01

    Porous orbital implants allow fibrovascular ingrowth and integration with the extraocular muscles. The available implants have different structural characteristics, which may influence orbital response. We studied the proliferation of orbital fibroblasts in vitro after exposure to four different orbital implants. Four orbital implant biomaterials were studied: hydroxyapatite (Bio-Eye), synthetic hydroxyapatite, porous polyethylene (Medpor) (pore sizes 150 microm and 400 microm) and aluminium oxide (Bioceramic implant). Human fibroblasts obtained from orbital fat at the time of elective blepharoplasty were cultured and then exposed to the individual implants. Cell growth was assessed with immunocytochemical analysis using bromodeoxyuridine, a thymidine analogue. After DNA denaturation, the cells were washed, incubated with secondary antibody and visualized. The fibroblasts growing on the Bio-Eye, synthetic hydroxyapatite, and 150-microm and 400-microm Medpor implants all had debris associated with them. The Bioceramic implant was free of this debris. The Bioceramic implant and the 150-microm Medpor implant had the greatest number of fibroblasts on the coverslips. The proliferation of fibroblasts, as determined by visualization of actively dividing cells with bromodeoxyuridine, differed on the various implants studied. The lack of debris associated with the Bioceramic implant may be related to the crystalline structure of the implant.

  12. Bilayer Implants

    PubMed Central

    Schagemann, Jan C.; Rudert, Nicola; Taylor, Michelle E.; Sim, Sotcheadt; Quenneville, Eric; Garon, Martin; Klinger, Mathias; Buschmann, Michael D.; Mittelstaedt, Hagen

    2016-01-01

    Objective To compare the regenerative capacity of 2 distinct bilayer implants for the restoration of osteochondral defects in a preliminary sheep model. Methods Critical sized osteochondral defects were treated with a novel biomimetic poly-ε-caprolactone (PCL) implant (Treatment No. 2; n = 6) or a combination of Chondro-Gide and Orthoss (Treatment No. 1; n = 6). At 19 months postoperation, repair tissue (n = 5 each) was analyzed for histology and biochemistry. Electromechanical mappings (Arthro-BST) were performed ex vivo. Results Histological scores, electromechanical quantitative parameter values, dsDNA and sGAG contents measured at the repair sites were statistically lower than those obtained from the contralateral surfaces. Electromechanical mappings and higher dsDNA and sGAG/weight levels indicated better regeneration for Treatment No. 1. However, these differences were not significant. For both treatments, Arthro-BST revealed early signs of degeneration of the cartilage surrounding the repair site. The International Cartilage Repair Society II histological scores of the repair tissue were significantly higher for Treatment No. 1 (10.3 ± 0.38 SE) compared to Treatment No. 2 (8.7 ± 0.45 SE). The parameters cell morphology and vascularization scored highest whereas tidemark formation scored the lowest. Conclusion There was cell infiltration and regeneration of bone and cartilage. However, repair was incomplete and fibrocartilaginous. There were no significant differences in the quality of regeneration between the treatments except in some histological scoring categories. The results from Arthro-BST measurements were comparable to traditional invasive/destructive methods of measuring quality of cartilage repair. PMID:27688843

  13. Biodegradable synthetic scaffolds for tendon regeneration

    PubMed Central

    Reverchon, Ernesto; Baldino, Lucia; Cardea, Stefano; De Marco, Iolanda

    2012-01-01

    Summary Tissue regeneration is aimed at producing biological or synthetic scaffolds to be implanted in the body for regenerate functional tissues. Several techniques and materials have been used to obtain biodegradable synthetic scaffolds, on which adhesion, growth, migration and differentiation of human cells has been attempted. Scaffolds for tendon regeneration have been less frequently proposed, because they have a complex hierarchical structure and it is very difficult to mimic their peculiar mechanical properties. In this review, we critically analyzed the proposed materials and fabrication techniques for tendon tissue engineering and we indicated new preparation processes, based on the use of supercritical fluids, to produce scaffolds with characteristics very similar to the native tendon structure. PMID:23738295

  14. Retention of ion-implanted-xenon in olivine: Dependence on implantation dose

    NASA Technical Reports Server (NTRS)

    Melcher, C. L.; Tombrello, T. A.; Burnett, D. S.

    1982-01-01

    The diffusion of Xe in olivine, a major mineral in both meteorites and lunar samples, was studied. Xe ions were implanted at 200 keV into single-crystal synthetic-forsterite targets and the depth profiles were measured by alpha particle backscattering before and after annealing for 1 hour at temperatures up to 1500 C. The fraction of implanted Xe retained following annealing was strongly dependent on the implantation dose. Maximum retention of 100% occurred for an implantion dose of 3 x 10 to the 15th power Xe ions/sq cm. Retention was less at lower doses, with (approximately more than or = 50% loss at one hundred trillion Xe ions/sq cm. Taking the diffusion coefficient at this dose as a lower limit, the minimum activation energy necessary for Xe retention in a 10 micrometer layer for ten million years was calculated as a function of metamorphic temperature.

  15. [Bilateral cochlear implantation].

    PubMed

    Kronenberg, Jona; Migirov, Lela; Taitelbaum-Swead, Rikey; Hildesheimer, Minka

    2010-06-01

    Cochlear implant surgery became the standard of care in hearing rehabilitation of patients with severe to profound sensorineural hearing loss. This procedure may alter the lives of children and adults enabling them to integrate with the hearing population. In the past, implantation was performed only in one ear, despite the fact that binaural hearing is superior to unilateral, especially in noisy conditions. Cochlear implantation may be performed sequentially or simultaneously. The "sensitive period" of time between hearing loss and implantation and between the two implantations, when performed sequentially, significantly influences the results. Shorter time spans between implantations improve the hearing results after implantation. Hearing success after implantation is highly dependent on the rehabilitation process which includes mapping, implant adjustments and hearing training. Bilateral cochlear implantation in children is recommended as the proposed procedure in spite of the additional financial burden.

  16. Synthetic biological networks

    NASA Astrophysics Data System (ADS)

    Archer, Eric; Süel, Gürol M.

    2013-09-01

    Despite their obvious relationship and overlap, the field of physics is blessed with many insightful laws, while such laws are sadly absent in biology. Here we aim to discuss how the rise of a more recent field known as synthetic biology may allow us to more directly test hypotheses regarding the possible design principles of natural biological networks and systems. In particular, this review focuses on synthetic gene regulatory networks engineered to perform specific functions or exhibit particular dynamic behaviors. Advances in synthetic biology may set the stage to uncover the relationship of potential biological principles to those developed in physics.

  17. Saga of synthetic rubber

    SciTech Connect

    Solo, R.A.

    1980-04-01

    The proposal to establish an Energy Mobilization Board and a synthetic fuels industry is reminiscent of World War II efforts to produce synthetic rubber. To avoid the mistakes made in the earlier effort, Mr. Solo suggests that the synthetic-fuel program should (1) use a more-successful technological development project as a model; (2) commit public funding and not rely on profit-oriented private enterprise; and (3) avoid entrusting social planning to single-purpose entities that have not been sensitive to social values. (DCK)

  18. Synthetic Base Fluids

    NASA Astrophysics Data System (ADS)

    Brown, M.; Fotheringham, J. D.; Hoyes, T. J.; Mortier, R. M.; Orszulik, S. T.; Randles, S. J.; Stroud, P. M.

    The chemical nature and technology of the main synthetic lubricant base fluids is described, covering polyalphaolefins, alkylated aromatics, gas-to-liquid (GTL) base fluids, polybutenes, aliphatic diesters, polyolesters, polyalkylene glycols or PAGs and phosphate esters.Other synthetic lubricant base oils such as the silicones, borate esters, perfluoroethers and polyphenylene ethers are considered to have restricted applications due to either high cost or performance limitations and are not considered here.Each of the main synthetic base fluids is described for their chemical and physical properties, manufacture and production, their chemistry, key properties, applications and their implications when used in the environment.

  19. Investigation of peri-implant tissue conditions and peri-implant tissue stability in implants placed with simultaneous augmentation procedure: a 3-year retrospective follow-up analysis of a newly developed bone level implant system.

    PubMed

    Lorenz, Jonas; Lerner, Henriette; Sader, Robert A; Ghanaati, Shahram

    2017-09-05

    Guided bone regeneration (GBR) has been proven to be a reliable therapy to regenerate missing bone in cases of atrophy of the alveolar crest. The aim of the present retrospective analysis was to assess peri-implant tissue conditions and document peri-implant tissue stability in C-Tech implants when placed simultaneously with a GBR augmentation procedure. A total of 47 implants, which were placed simultaneously with a GBR procedure with a synthetic bone substitute material in 20 patients, were investigated clinically and radiologically at least 3 years after loading. Implant survival, the width and thickness of peri-implant keratinized gingiva, probing depth, bleeding on probing (BOP), the Pink Esthetic Score (PES), peri-implant bone loss, and the presence of peri-implant osteolysis were determined. The follow-up investigation revealed a survival rate of 100% and only low median rates for probing depths (2.7 mm) and BOP (30%). The mean PES was 10.1 from the maximum value of 14. No osseous peri-implant defects were obvious, and the mean bone loss was 0.55 mm. In conclusion, implants placed in combination with a GBR procedure can achieve long-term stable functionally and esthetically satisfying results for replacing missing teeth in cases of atrophy of the alveolar crest.

  20. Nanotechnology Approaches for Better Dental Implants

    PubMed Central

    Tomsia, Antoni P.; Launey, Maximilien E.; Lee, Janice S.; Mankani, Mahesh H.; Wegst, Ulrike G.K.; Saiz, Eduardo

    2011-01-01

    The combined requirements imposed by the enormous scale and overall complexity of designing new implants or complete organ regeneration are well beyond the reach of present technology in many dimensions, including nanoscale, as we do not yet have the basic knowledge required to achieve these goals. The need for a synthetic implant to address multiple physical and biological factors imposes tremendous constraints on the choice of suitable materials. There is a strong belief that nanoscale materials will produce a new generation of implant materials with high efficiency, low cost, and high volume. The nanoscale in materials processing is truly a new frontier. Metallic dental implants have been successfully used for decades but they have serious shortcomings related to their osseointegration and the fact that their mechanical properties do not match those of bone. This paper reviews recent advances in the fabrication of novel coatings and nanopatterning of dental implants. It also provides a general summary of the state of the art in dental implant science and describes possible advantages of nanotechnology for further improvements. The ultimate goal is to produce materials and therapies that will bring state-of-the-art technology to the bedside and improve quality of life and current standards of care. PMID:21464998

  1. Nanotechnology approaches to improve dental implants.

    PubMed

    Tomisa, Antoni P; Launey, Maximilien E; Lee, Janice S; Mankani, Mahesh H; Wegst, Ulrike G K; Saiz, Eduardo

    2011-01-01

    The requirements imposed by the enormous scale and overall complexity of designing new implants or complete organ regeneration are well beyond the reach of present technology in many dimensions, including nanoscale, as researchers do not yet have the basic knowledge required to achieve these goals. The need for a synthetic implant to address multiple physical and biologic factors imposes tremendous constraints on the choice of suitable materials. There is a strong belief that nanoscale materials will produce a new generation of implant materials with high efficiency, low cost, and high volume. The nanoscale in materials processing is truly a new frontier. Metallic dental implants have been used successfully for decades, but they have serious shortcomings related to their osseointegration and the fact that their mechanical properties do not match those of bone. This paper reviews recent advances in the fabrication of novel coatings and nanopatterning of dental implants. It also provides a general summary of the state of the art in dental implant science and describes possible advantages of nanotechnology for future improvements. The ultimate goal is to produce materials and therapies that will bring state-of-the-art technology to the bedside and improve quality of life and current standards of care.

  2. Models for synthetic biology

    PubMed Central

    Kaznessis, Yiannis N

    2007-01-01

    Synthetic biological engineering is emerging from biology as a distinct discipline based on quantification. The technologies propelling synthetic biology are not new, nor is the concept of designing novel biological molecules. What is new is the emphasis on system behavior. The objective is the design and construction of new biological devices and systems to deliver useful applications. Numerous synthetic gene circuits have been created in the past decade, including bistable switches, oscillators, and logic gates, and possible applications abound, including biofuels, detectors for biochemical and chemical weapons, disease diagnosis, and gene therapies. More than fifty years after the discovery of the molecular structure of DNA, molecular biology is mature enough for real quantification that is useful for biological engineering applications, similar to the revolution in modeling in chemistry in the 1950s. With the excitement that synthetic biology is generating, the engineering and biological science communities appear remarkably willing to cross disciplinary boundaries toward a common goal. PMID:17986347

  3. Analysis of Synthetic Polymers.

    ERIC Educational Resources Information Center

    Smith, Charles G.; And Others

    1989-01-01

    Reviews techniques for the characterization and analysis of synthetic polymers, copolymers, and blends. Includes techniques for structure determination, separation, and quantitation of additives and residual monomers; determination of molecular weight; and the study of thermal properties including degradation mechanisms. (MVL)

  4. Synthetic Vision Systems

    NASA Technical Reports Server (NTRS)

    Prinzel, L.J.; Kramer, L.J.

    2009-01-01

    A synthetic vision system is an aircraft cockpit display technology that presents the visual environment external to the aircraft using computer-generated imagery in a manner analogous to how it would appear to the pilot if forward visibility were not restricted. The purpose of this chapter is to review the state of synthetic vision systems, and discuss selected human factors issues that should be considered when designing such displays.

  5. Active synthetic soil

    NASA Technical Reports Server (NTRS)

    Ming, Douglas W. (Inventor); Henninger, Donald L. (Inventor); Allen, Earl R. (Inventor); Golden, Dadigamuwage C. (Inventor)

    1995-01-01

    A synthetic soil/fertilizer for horticultural application having all the agronutrients essential for plant growth is disclosed. The soil comprises a synthetic apatite fertilizer having sulfur, magnesium and micronutrients dispersed in a calcium phosphate matrix, a zeolite cation exchange medium saturated with a charge of potassium and nitrogen cations, and an optional pH buffer. Moisture dissolves the apatite and mobilizes the nutrient elements from the apatite matrix and the zeolite charge sites.

  6. Active synthetic soil

    NASA Technical Reports Server (NTRS)

    Ming, Douglas W. (Inventor); Henninger, Donald L. (Inventor); Allen, Earl R. (Inventor); Golden, Dadigamuwage C. (Inventor)

    1995-01-01

    A synthetic soil/fertilizer for horticultural application having all the agronutrients essential for plant growth is disclosed. The soil comprises a synthetic apatite fertilizer having sulfur, magnesium, and micronutrients dispersed in a calcium phosphate matrix, a zeolite cation exchange medium saturated with a charge of potassium and nitrogen cations, and an optional pH buffer. Moisture dissolves the apatite and mobilizes the nutrient elements from the apatite matrix and the zeolite charge sites.

  7. Synthetic battery cycling techniques

    NASA Technical Reports Server (NTRS)

    Leibecki, H.; Thaller, L. H.

    1982-01-01

    The group of techniques that as a class are referred to as synthetic battery cycling are described with reference to spacecraft battery systems. Synthetic battery cycling makes use of the capability of computer graphics to illustrate some of the basic characteristics of operation of individual electrodes within an operating electrochemical cell. It can also simulate the operation of an entire string of cells that are used as the energy storage subsystem of a power system.

  8. Synthetic promoters in planta.

    PubMed

    Dey, Nrisingha; Sarkar, Shayan; Acharya, Sefali; Maiti, Indu B

    2015-11-01

    This paper reviews the importance, prospective and development of synthetic promoters reported in planta. A review of the synthetic promoters developed in planta would help researchers utilize the available resources and design new promoters to benefit fundamental research and agricultural applications. The demand for promoters for the improvement and application of transgenic techniques in research and agricultural production is increasing. Native/naturally occurring promoters have some limitations in terms of their induction conditions, transcription efficiency and size. The strength and specificity of native promoter can be tailored by manipulating its 'cis-architecture' by the use of several recombinant DNA technologies. Newly derived chimeric promoters with specific attributes are emerging as an efficient tool for plant molecular biology. In the last three decades, synthetic promoters have been used to regulate plant gene expression. To better understand synthetic promoters, in this article, we reviewed promoter structure, the scope of cis-engineering, strategies for their development, their importance in plant biology and the total number of such promoters (188) developed in planta to date; we then categorized them under different functional regimes as biotic stress-inducible, abiotic stress-inducible, light-responsive, chemical-inducible, hormone-inducible, constitutive and tissue-specific. Furthermore, we identified a set of 36 synthetic promoters that control multiple types of expression in planta. Additionally, we illustrated the differences between native and synthetic promoters and among different synthetic promoter in each group, especially in terms of efficiency and induction conditions. As a prospective of this review, the use of ideal synthetic promoters is one of the prime requirements for generating transgenic plants suitable for promoting sustainable agriculture and plant molecular farming.

  9. Synthetic battery cycling techniques

    SciTech Connect

    Leibecki, H.; Thaller, L.H.

    1982-09-01

    The group of techniques that as a class are referred to as synthetic battery cycling are described with reference to spacecraft battery systems. Synthetic battery cycling makes use of the capability of computer graphics to illustrate some of the basic characteristics of operation of individual electrodes within an operating electrochemical cell. It can also simulate the operation of an entire string of cells that are used as the energy storage subsystem of a power system.

  10. Skull Reconstruction with Custom Made Three-Dimensional Titanium Implant

    PubMed Central

    Cho, Hyung Rok; Roh, Tae Suk; Shim, Kyu Won; Kim, Yong Oock; Lew, Dae Hyun

    2015-01-01

    Background Source material used to fill calvarial defects includes autologous bones and synthetic alternatives. While autologous bone is preferable to synthetic material, autologous reconstruction is not always feasible due to defect size, unacceptable donor-site morbidity, and other issues. Today, advanced three-dimensional (3D) printing techniques allow for fabrication of titanium implants customized to the exact need of individual patients with calvarial defects. In this report, we present three cases of calvarial reconstructions using 3D-printed porous titanium implants. Methods From 2013 through 2014, three calvarial defects were repaired using custommade 3D porous titanium implants. The defects were due either to traumatic subdural hematoma or to meningioma and were located in parieto-occipital, fronto-temporo-parietal, and parieto-temporal areas. The implants were prepared using individual 3D computed tomography (CT) data, Mimics software, and an electron beam melting machine. For each patient, several designs of the implant were evaluated against 3D-printed skull models. All three cases had a custom-made 3D porous titanium implant laid on the defect and rigid fixation was done with 8 mm screws. Results The custom-made 3D implants fit each patient's skull defect precisely without any dead space. The operative site healed without any specific complications. Postoperative CTs revealed the implants to be in correct position. Conclusion An autologous graft is not a feasible option in the reconstruction of large calvarial defects. Ideally, synthetic materials for calvarial reconstruction should be easily applicable, durable, and strong. In these aspects, a 3D titanium implant can be an optimal source material in calvarial reconstruction.

  11. Histrelin Hydrogel Implant--Valera: Histrelin implant, LHRH-Hydrogel implant, RL 0903, SPD 424.

    PubMed

    2005-01-01

    and could not rationalise keeping the comparator arm of the phase III study. The US FDA then gave permission to continue the US part of the programme without the comparator arm, but with appropriate increases in the patient sample size. Patient enrolment in the phase III trial (US and Canada) was completed in July 2002. Valera Pharmaceuticals believes the product may have advantages over standard prostate cancer treatments including reduced costly surgical procedures, lower dosing, increased patient compliance and peace-of-mind, as well as potentially less cost to the patient. The phase III studies were completed in the second half of 2003.CPP arises from the increased release by the pituitary gland hormone gonadotropins and is characterised by an early onset of sexual development in pre-adolescents. Currently, the treatment of CPP involves injections of synthetic gonadotropic hormone-releasing factor agonists such as Supprelin (histrelin acetate) and TAP Pharmaceutical's Lupron Depot-Red (leuprolide acetate) every 28 days, a potentially painful procedure. This treatment inhibits pituitary release of gonadotropins. Valera's histrelin implant is a compact, removable subcutaneous implant that can be applied under a local anaesthetic in doctor's surgery.

  12. Norplant implants.

    PubMed

    Henley, E

    1993-06-01

    This letter to the editor is in response to 3 articles on the use of the Norplant implant contraceptive in The Indian Health Service (IHS) Provider. Norplant and the FDA-approved Depo-Provera now expand contraceptive options for women. All IHS and 638 sites might be able to offer both options. Several of the authors expressed concern regarding decreased Norplant effectiveness in heavier patients. Norplant is still more effective than any other currently available reversible contraceptive in the US at all weights. Many experts feel the current silastic capsule provides adequate hormone levels even in heavier women. The Crow Service Unit has initiated their Norplant program, although the Wyeth consent form seems unnecessarily extensive. The Albuquerque Service Unit consent form simply describes the procedure and confirms that patients have read and understand the fact sheet. The theoretical risk of thromboembolism is vastly outweighed by the potential benefit of reliable contraception in high risk alcoholic women, except perhaps in women with severe liver disease. While Norplant is expensive, programs need to consider the actual cost of a pregnancy, potential complications, and the financial and social costs of unintended pregnancy. For those in difficult straits, the manufacturer has set up a foundation for obtaining Norplant free of charge. Depo-Provera comes in a 150 mg dose vial that is given every 3 months. The mean time to ovulation is 4.5 months from the last dose. The adverse reaction spectrum is similar to Norplant as they are both progesterone-related agents. Providers and clinics should reduce barriers to family planning by giving out more pill packs at a time; letting adolescents who wish to delay their first pelvic exam have 3 months of pills without an exam; making condoms available in exam rooms rather than through pharmacy prescriptions; and increasing patient accessibility to the morning-after pill.

  13. Synthetic Gauge Fields in Synthetic Dimensions

    NASA Astrophysics Data System (ADS)

    Celi, A.; Massignan, P.; Ruseckas, J.; Goldman, N.; Spielman, I. B.; Juzeliūnas, G.; Lewenstein, M.

    2014-01-01

    We describe a simple technique for generating a cold-atom lattice pierced by a uniform magnetic field. Our method is to extend a one-dimensional optical lattice into the "dimension" provided by the internal atomic degrees of freedom, yielding a synthetic two-dimensional lattice. Suitable laser coupling between these internal states leads to a uniform magnetic flux within the two-dimensional lattice. We show that this setup reproduces the main features of magnetic lattice systems, such as the fractal Hofstadter-butterfly spectrum and the chiral edge states of the associated Chern insulating phases.

  14. Basic science through engineering? Synthetic modeling and the idea of biology-inspired engineering.

    PubMed

    Knuuttila, Tarja; Loettgers, Andrea

    2013-06-01

    Synthetic biology is often understood in terms of the pursuit for well-characterized biological parts to create synthetic wholes. Accordingly, it has typically been conceived of as an engineering dominated and application oriented field. We argue that the relationship of synthetic biology to engineering is far more nuanced than that and involves a sophisticated epistemic dimension, as shown by the recent practice of synthetic modeling. Synthetic models are engineered genetic networks that are implanted in a natural cell environment. Their construction is typically combined with experiments on model organisms as well as mathematical modeling and simulation. What is especially interesting about this combinational modeling practice is that, apart from greater integration between these different epistemic activities, it has also led to the questioning of some central assumptions and notions on which synthetic biology is based. As a result synthetic biology is in the process of becoming more "biology inspired."

  15. Safety considerations for synthetic sling surgery.

    PubMed

    Blaivas, Jerry G; Purohit, Rajveer S; Benedon, Matthew S; Mekel, Gabriel; Stern, Michael; Billah, Mubashir; Olugbade, Kola; Bendavid, Robert; Iakovlev, Vladimir

    2015-09-01

    Implantation of a synthetic midurethral sling (SMUS) is the most commonly performed anti-incontinence operation in women worldwide. The effectiveness of the SMUS is comparable to that of the historical gold standards--autologous fascial slings and the Burch colposuspension. Much controversy, however, has evolved regarding the safety of this type of sling. Overall, the quality of the studies with respect to assessing risks of SMUS-associated complications is currently poor. The most common risks in patients with SMUS include urethral obstruction requiring surgery (2.3% of patients with SMUS), vaginal, bladder and/or urethral erosion requiring surgery (1.8%) and refractory chronic pain (4.1%); these data likely represent the minimum risks. In addition, the failure rate of SMUS implantation surgery is probably at least 5% in patients with stress urinary incontinence (SUI). Furthermore, at least one-third of patients undergoing sling excision surgery develop recurrent SUI. Considering the additional risks of refractory overactive bladder, fistulas and bowel perforations, among others, the overall risk of a negative outcome after SMUS implantation surgery is ≥15%.

  16. The Synthetic Cannabinoids Phenomenon.

    PubMed

    Karila, Laurent; Benyamina, Amine; Blecha, Lisa; Cottencin, Olivier; Billieux, Joël

    2016-01-01

    « Spice » is generally used to describe the diverse types of herbal blends that encompass synthetic cannabinoids on the market. The emergence of smokable herbal products containing synthetic cannabinoids, which mimic the effects of cannabis, appears to become increasingly popular, in the new psychoactive substances landscape. In 2014, the existence of 134 different types of synthetic cannabinoids were reported by the European Union Early Warning System. These drugs are mainly sold online as an alternative to controlled and regulated psychoactive substances. They appear to have a life cycle of about 1-2 years before being replaced by a next wave of products. Legislation controlling these designer drugs has been introduced in many countries with the objective to limit the spread of existing drugs and control potential new analogs. The majority of the synthetic cannabinoids are full agonists at the CB1 receptor and do not contain tobacco or cannabis. They are becoming increasingly popular in adolescents, students and clubbers as an abused substance. Relatively high incidence of adverse effects associated with synthetic cannabinoids use has been documented in the literature. Numerous fatalities linked with their use and abuse have been reported. In this paper, we will review the available data regarding the use and effects of synthetic cannabinoids in humans in order to highlight their impact on public health. To reach this objective, a literature search was performed on two representative databases (Pubmed, Google Scholar), the Erowid Center website (a US non-profit educational organization that provides information about psychoactive plants and chemicals), and various governmental websites. The terms used for the database search were: "synthetic cannabinoids", "spice", "new psychoactive substances", and/or "substance use disorder", and/or "adverse effects", and/or "fatalities". The search was limited to years 2005 to 2016 due to emerging scientific literature at

  17. Differential Synthetic Aperture Ladar

    SciTech Connect

    Stappaerts, E A; Scharlemann, E

    2005-02-07

    We report a differential synthetic aperture ladar (DSAL) concept that relaxes platform and laser requirements compared to conventional SAL. Line-of-sight translation/vibration constraints are reduced by several orders of magnitude, while laser frequency stability is typically relaxed by an order of magnitude. The technique is most advantageous for shorter laser wavelengths, ultraviolet to mid-infrared. Analytical and modeling results, including the effect of speckle and atmospheric turbulence, are presented. Synthetic aperture ladars are of growing interest, and several theoretical and experimental papers have been published on the subject. Compared to RF synthetic aperture radar (SAR), platform/ladar motion and transmitter bandwidth constraints are especially demanding at optical wavelengths. For mid-IR and shorter wavelengths, deviations from a linear trajectory along the synthetic aperture length have to be submicron, or their magnitude must be measured to that precision for compensation. The laser coherence time has to be the synthetic aperture transit time, or transmitter phase has to be recorded and a correction applied on detection.

  18. [Biomaterials in cochlear implants].

    PubMed

    Stöver, T; Lenarz, T

    2009-05-01

    Cochlear implants (CI) represent the "gold standard" for the treatment of congenitally deaf children and postlingually deafened adults. Thus, cochlear implantation is a success story of new bionic prosthesis development. Owing to routine application of cochlear implants in adults but also in very young children (below the age of one), high demands are placed on the implants. This is especially true for biocompatibility aspects of surface materials of implant parts which are in contact with the human body. In addition, there are various mechanical requirements which certain components of the implants must fulfil, such as flexibility of the electrode array and mechanical resistance of the implant housing. Due to the close contact of the implant to the middle ear mucosa and because the electrode array is positioned in the perilymphatic space via cochleostomy, there is a potential risk of bacterial transferral along the electrode array into the cochlea. Various requirements that have to be fulfilled by cochlear implants, such as biocompatibility, electrode micromechanics, and although a very high level of technical standards has been carried out there is still demand for the improvement of implants as well as of the materials used for manufacturing, ultimately leading to increased implant performance. General considerations of material aspects related to cochlear implants as well as potential future perspectives of implant development will be discussed.

  19. Influence of implant shape, surface morphology, surgical technique and bone quality on the primary stability of dental implants.

    PubMed

    Elias, Carlos Nelson; Rocha, Felipe Assis; Nascimento, Ana Lucia; Coelho, Paulo Guilherme

    2012-12-01

    The primary stability of dental implants has been investigated before, but a study of the influence of implant shape, size and surface morphology (machined, acid etched or anodized), surgical technique (press-fit or undersized) and substrate (natural or simulated bone) on the primary stability of dental implants has not been reported. The present work intends to fill this gap. In this work, six different dental implants were inserted into and removed from synthetic and natural bone while measuring the torque. A total of 255 dental implants with three shapes, four sizes and three surface topographies were inserted into pig rib, PTFE and polyurethane. The implant sites were prepared using straight and tapered drills. The primary stability was estimated from the maximum insertion torque. Comparisons between samples were based on the maximum insertion torque (MIT), the maximum removal torque (MRT) and the torque ratio (TR=MRT/MIT). The insertion torque into pig ribs showed larger dispersion. All parameters (shape, size and surface morphology of the implant, surgical technique and substrate type) were found to have a significant influence on primary stability. The insertion of a tapered implant requires a higher torque than the insertion of a straight implant. Surface treatments improve the primary stability. The influence of the surgical technique is smaller than that of implant size and shape. The highest insertion torque was that of anodized tapered implants inserted into undersized sites. Finally, the primary stability of dental implants is highly dependent on implant design, surgical technique and substrate type. Copyright © 2012 Elsevier Ltd. All rights reserved.

  20. An in vivo assessment of the effects of using different implant abutment occluding materials on implant microleakage and the peri-implant microbiome

    NASA Astrophysics Data System (ADS)

    Rubino, Caroline

    Microleakage may be a factor in the progression of peri-implant pathology. Microleakage in implant dentistry refers to the passage of bacteria, fluids, molecules or ions between the abutment-implant interface to and from the surrounding periodontal tissues. This creates a zone of inflammation and reservoir of bacteria at the implant-abutment interface. Bone loss typically occurs within the first year of abutment connection and then stabilizes. It has not yet been definitively proven that the occurrence of microleakage cannot contribute to future bone loss or impede the treatment of peri-implant disease. Therefore, strategies to reduce or eliminate microleakage are sought out. Recent evidence demonstrates that the type of implant abutment channel occluding material can affect the amount of microleakage in an in vitro study environment. Thus, we hypothesize that different abutment screw channel occluding materials will affect the amount of observed microleakage, vis-a-vis the correlation between the microflora found on the abutment screw channel occluding material those found in the peri-implant sulcus. Additional objectives include confirming the presence of microleakage in vivo and assessing any impact that different abutment screw channel occluding materials may have on the peri-implant microbiome. Finally, the present study provides an opportunity to further characterize the peri-implant microbiome. Eight fully edentulous patients restored with at dental implants supporting screw-retained fixed hybrid prostheses were included in the study. At the initial appointment (T1), the prostheses were removed and the implants and prostheses were cleaned. The prostheses were then inserted with polytetrafluoroethylene tape (PTFE, TeflonRTM), cotton, polyvinyl siloxane (PVS), or synthetic foam as the implant abutment channel occluding material and sealed over with composite resin. About six months later (T2), the prostheses were removed and the materials collected. Paper

  1. Foreign body response to subcutaneous implants in diabetic rats.

    PubMed

    Socarrás, Teresa Oviedo; Vasconcelos, Anilton C; Campos, Paula P; Pereira, Nubia B; Souza, Jessica P C; Andrade, Silvia P

    2014-01-01

    Implantation of synthetic matrices and biomedical devices in diabetic individuals has become a common procedure to repair and/or replace biological tissues. However, an adverse foreign body reaction that invariably occurs adjacent to implant devices impairing their function is poorly characterized in the diabetic environment. We investigated the influence of this condition on the abnormal tissue healing response in implants placed subcutaneously in normoglycemic and streptozotocin-induced diabetes in rats. In polyether-polyurethane sponge discs removed 10 days after implantation, the components of the fibrovascular tissue (angiogenesis, inflammation, fibrogenesis, and apoptosis) were assessed. Intra-implant levels of hemoglobin and vascular endothelial growth factor were not different after diabetes when compared with normoglycemic counterparts. However, there were a lower number of vessels in the fibrovascular tissue from diabetic rats when compared with vessel numbers in implants from non-diabetic animals. Overall, the inflammatory parameters (neutrophil accumulation--myeloperoxidase activity, tumor necrosis factor alpha, and monocyte chemotactic protein-1 levels and mast cell counting) increased in subcutaneous implants after diabetes induction. However, macrophage activation (N-acetyl-β-D-glucosaminidase activity) was lower in implants from diabetic rats when compared with those from normoglycemic animals. All fibrogenic markers (transforming growth factor beta 1 levels, collagen deposition, fibrous capsule thickness, and foreign body giant cells) decreased after diabetes, whereas apoptosis (TUNEL) increased. Our results showing that hyperglycemia down regulates the main features of the foreign body reaction induced by subcutaneous implants in rats may be relevant in understanding biomaterial integration and performance in diabetes.

  2. Integrative Performance Analysis of a Novel Bone Level Tapered Implant.

    PubMed

    Dard, M; Kuehne, S; Obrecht, M; Grandin, M; Helfenstein, J; Pippenger, B E

    2016-03-01

    Primary mechanical stability, as measured by maximum insertion torque and resonance frequency analysis, is generally considered to be positively associated with successful secondary stability and implant success. Primary implant stability can be affected by several factors, including the quality and quantity of available bone, the implant design, and the surgical procedure. The use of a tapered implant design, for instance, has been shown to result in good primary stability even in clinical scenarios where primary stability is otherwise difficult to achieve with traditional cylindrical implants-for example, in soft bone and for immediate placement in extraction sockets. In this study, bone-type specific drill procedures are presented for a novel Straumann bone level tapered implant that ensure maximum insertion torque values are kept within the range of 15 to 80 Ncm. The drill procedures are tested in vitro using polyurethane foam blocks of variable density, ex vivo on explanted porcine ribs (bone type 3), and finally in vivo on porcine mandibles (bone type 1). In each test site, adapted drill procedures are found to achieve a good primary stability. These results are further translated into a finite element analysis model capable of predicting primary stability of tapered implants. In conclusion, we have assessed the biomechanical behavior of a novel taper-walled implant in combination with a bone-type specific drill procedure in both synthetic and natural bone of various types, and we have developed an in silico model for predicting primary stability upon implantation. © International & American Associations for Dental Research 2016.

  3. Synthetic growth reference charts.

    PubMed

    Hermanussen, Michael; Stec, Karol; Aßmann, Christian; Meigen, Christof; Van Buuren, Stef

    2016-01-01

    To reanalyze the between-population variance in height, weight, and body mass index (BMI), and to provide a globally applicable technique for generating synthetic growth reference charts. Using a baseline set of 196 female and 197 male growth studies published since 1831, common factors of height, weight, and BMI are extracted via Principal Components separately for height, weight, and BMI. Combining information from single growth studies and the common factors using in principle a Bayesian rationale allows for provision of completed reference charts. The suggested approach can be used for generating synthetic growth reference charts with LMS values for height, weight, and BMI, from birth to maturity, from any limited set of height and weight measurements of a given population. Generating synthetic growth reference charts by incorporating information from a large set of reference growth studies seems suitable for populations with no autochthonous references at hand yet. © 2015 Wiley Periodicals, Inc.

  4. Automated synthetic scene generation

    NASA Astrophysics Data System (ADS)

    Givens, Ryan N.

    Physics-based simulations generate synthetic imagery to help organizations anticipate system performance of proposed remote sensing systems. However, manually constructing synthetic scenes which are sophisticated enough to capture the complexity of real-world sites can take days to months depending on the size of the site and desired fidelity of the scene. This research, sponsored by the Air Force Research Laboratory's Sensors Directorate, successfully developed an automated approach to fuse high-resolution RGB imagery, lidar data, and hyperspectral imagery and then extract the necessary scene components. The method greatly reduces the time and money required to generate realistic synthetic scenes and developed new approaches to improve material identification using information from all three of the input datasets.

  5. Synthetic carbon precursor materials

    SciTech Connect

    Frame, B.J.

    1986-03-01

    Synthetic carbon precursor systems offer advantages over natural petroleum and coal-tar pitch precursors in that they can reproducibly provide a material with a known and uniform composition. They also permit controlled modifications of the derived carbon's properties through variations in the precursor's properties and processing conditions. Extensive research efforts at Oak Ridge have been directed toward the production and characterization of synthetic carbon precursors and the correlations that exist between carbon precursor properties and the properties of the ultimate carbon. This report describes how synthetic carbon precursors can be used to tailor and develop reproducible carbon structures for advanced materials applications. The potential and capability for performing carbon material development at Oak Ridge is also described.

  6. New generation synthetic surfactants.

    PubMed

    Curstedt, Tore; Calkovska, Andrea; Johansson, Jan

    2013-01-01

    The treatment of preterm newborn rabbits with synthetic surfactants containing simple phospholipid mixtures and peptides gives similar tidal volumes to treatment with poractant alfa (Curosurf®). The addition of both surfactant protein B and C analogs to the phospholipid mixture will stabilize the alveoli, measured as lung gas volumes at end expiration, even if no positive end-expiratory pressure is applied. The effect on lung gas volumes seems to depend on the structure of the peptides as well as the phospholipid composition. It seems that synthetic surfactants containing two peptides and a more complex phospholipid composition will be able to replace natural surfactants within the near future, but more experiments need to be performed before any conclusion can be drawn about the ideal composition of this new generation of synthetic surfactants.

  7. Gamma synthetic hydrographs

    NASA Astrophysics Data System (ADS)

    Croley, Thomas E.

    1980-05-01

    The two-parameter Gamma distribution is presented as a basis for synthetic hydrographs with a review of existing applications and non-feasible applications are identified. Several approaches for fitting this function to practical boundary condition parameters are identified and presented in a unified treatment. They are especially designed for use on small programmable calculators since the synthetic hydrograph is extremely sensitive to the Gamma distribution parameters. Nomographs would give large errors in the fit for small errors in the boundary condition parameters. Although non-dimensionalization of the synthetic hydrograph is possible with the Gamma distribution, it is shown to be unnecessary. Current uses of "standard" non-dimensional hydrographs are shown to be in error.

  8. Peri-Implant Diseases

    MedlinePlus

    ... Alcohol Consumption and Gum Health Workshop on Regeneration Periodontal Disease More Prevalent among Ethnic Minorities Dental Implants Periodontal ... factors for developing peri-implant disease include previous periodontal disease diagnosis, poor plaque control, smoking , and diabetes . It ...

  9. Implants for lucky few

    NASA Astrophysics Data System (ADS)

    Brandon, David

    2011-08-01

    In his article "Vision of beauty" (May pp22-27), Richard Taylor points the way to fractal design for retinal implants and makes an enthusiastic case for incorporating such features into the next generation of such implants.

  10. Synthetic guide star generation

    DOEpatents

    Payne, Stephen A.; Page, Ralph H.; Ebbers, Christopher A.; Beach, Raymond J.

    2004-03-09

    A system for assisting in observing a celestial object and providing synthetic guide star generation. A lasing system provides radiation at a frequency at or near 938 nm and radiation at a frequency at or near 1583 nm. The lasing system includes a fiber laser operating between 880 nm and 960 nm and a fiber laser operating between 1524 nm and 1650 nm. A frequency-conversion system mixes the radiation and generates light at a frequency at or near 589 nm. A system directs the light at a frequency at or near 589 nm toward the celestial object and provides synthetic guide star generation.

  11. Synthetic guide star generation

    DOEpatents

    Payne, Stephen A [Castro Valley, CA; Page, Ralph H [Castro Valley, CA; Ebbers, Christopher A [Livermore, CA; Beach, Raymond J [Livermore, CA

    2008-06-10

    A system for assisting in observing a celestial object and providing synthetic guide star generation. A lasing system provides radiation at a frequency at or near 938 nm and radiation at a frequency at or near 1583 nm. The lasing system includes a fiber laser operating between 880 nm and 960 nm and a fiber laser operating between 1524 nm and 1650 nm. A frequency-conversion system mixes the radiation and generates light at a frequency at or near 589 nm. A system directs the light at a frequency at or near 589 nm toward the celestial object and provides synthetic guide star generation.

  12. Synthetic battery cycling techniques

    SciTech Connect

    Leibecki, H.F.; Thaller, L.H.

    1982-01-01

    Synthetic battery cycling makes use of the fast growing capability of computer graphics to illustrate some of the basic characteristics of operation of individual electrodes within an operating electrochemical cell. It can also simulate the operation of an entire string of cells that are used as the energy storage subsystem of a power system. The group of techniques that as a class have been referred to as Synthetic Battery Cycling is developed in part to try to bridge the gap of understanding that exists between single cell characteristics and battery system behavior.

  13. Cochlear Implants for Children.

    ERIC Educational Resources Information Center

    Hasenstab, M. Suzanne; Laughton, Joan

    1991-01-01

    The use of cochlear implants in children with profound bilateral hearing loss is discussed, focusing on how a cochlear implant works; steps in a cochlear implant program (evaluation, surgery, programing, and training); and rehabilitation procedures involved in auditory development and speech development. (JDD)

  14. Implantable Heart Aid

    NASA Technical Reports Server (NTRS)

    1984-01-01

    CPI's human-implantable automatic implantable defibrillator (AID) is a heart assist system, derived from NASA's space circuitry technology, that can prevent erratic heart action known as arrhythmias. Implanted AID, consisting of microcomputer power source and two electrodes for sensing heart activity, recognizes onset of ventricular fibrillation (VF) and delivers corrective electrical countershock to restore rhythmic heartbeat.

  15. Breast implants: the good, the bad and the ugly. Can nanotechnology improve implants?

    PubMed

    Puskas, Judit E; Luebbers, Matthew T

    2012-01-01

    This advanced review will discuss the history of implants used in breast reconstruction and augmentation, the most frequently performed plastic surgery today. Currently, only silicone rubber-based silica nanocomposite implants are available in the United States. The most prevalent issues involving breast implants include capsular contracture, gel bleed, implant rupture, and infection. In the past, studies have also been reported which linked breast implants to increased incidence of systemic diseases such as autoimmune disease, various forms of cancer, and psychological disease. The goal of this review is to survey the literature from the perspective of material science. It is also largely unnoticed that nanotechnology is involved: the silicone rubber shell is reinforced with nanosilica so implants appear to be homogeneous and crystal clear. We are hoping that this review will contribute to a better understanding of the controversial issues and motivate material scientists and medical doctors to work together to develop alternatives based on new nanotechnology for the women who opt for a device made of synthetic materials. Copyright © 2011 Wiley Periodicals, Inc.

  16. Treatment of Infected Facial Implants

    PubMed Central

    Mohan, Kriti; Cox, Joshua A.; Dickey, Ryan M.; Gravina, Paula; Echo, Anthony; Izaddoost, Shayan A.; Nguyen, Anh H.

    2016-01-01

    Alloplastic facial implants have a wide range of uses to achieve the appropriate facial contour. A variety of materials such as metals, polymers, ceramics and synthetic injectable fillers are available to the reconstructive and aesthetic surgeon. Besides choosing the right surgical technique and the adequate material, the surgeon must be prepared to treat complications. Infection is an uncommon but serious complication that can cause displeasing consequences for the patient. There are few references in literature regarding treatment and management of facial implant–related infections. This study aims to discuss the role of biofilm in predisposing alloplastic materials to infection, to provide a review of literature, to describe our own institutional experience, and to define a patient care pathway for facial implant–associated infection. PMID:27152100

  17. Biodegradable synthetic bone composites

    DOEpatents

    Liu, Gao; Zhao, Dacheng; Saiz, Eduardo; Tomsia, Antoni P.

    2013-01-01

    The invention provides for a biodegradable synthetic bone composition comprising a biodegradable hydrogel polymer scaffold comprising a plurality of hydrolytically unstable linkages, and an inorganic component; such as a biodegradable poly(hydroxyethylmethacrylate)/hydroxyapatite (pHEMA/HA) hydrogel composite possessing mineral content approximately that of human bone.

  18. Adaptive synthetic vision

    NASA Astrophysics Data System (ADS)

    Julier, Simon J.; Brown, Dennis; Livingston, Mark A.; Thomas, Justin

    2006-05-01

    Through their ability to safely collect video and imagery from remote and potentially dangerous locations, UAVs have already transformed the battlespace. The effectiveness of this information can be greatly enhanced through synthetic vision. Given knowledge of the extrinsic and intrinsic parameters of the camera, synthetic vision superimposes spatially-registered computer graphics over the video feed from the UAV. This technique can be used to show many types of data such as landmarks, air corridors, and the locations of friendly and enemy forces. However, the effectiveness of a synthetic vision system strongly depends on the accuracy of the registration - if the graphics are poorly aligned with the real world they can be confusing, annoying, and even misleading. In this paper, we describe an adaptive approach to synthetic vision that modifies the way in which information is displayed depending upon the registration error. We describe an integrated software architecture that has two main components. The first component automatically calculates registration error based on information about the uncertainty in the camera parameters. The second component uses this information to modify, aggregate, and label annotations to make their interpretation as clear as possible. We demonstrate the use of this approach on some sample datasets.

  19. Synthetic Confrontation Therapy.

    ERIC Educational Resources Information Center

    Gilliam, Larry

    After initially dispelling predictable fears that his paper might suggest that computers can be equated with man, the author states the problem: what part, if any, might computers play in counseling. Specifically, the possibilities for therapeutic synthetic (artificial) counseling encounters are discussed. Two propositions are significant: (1) the…

  20. Synthetic Bursae for Robots

    NASA Technical Reports Server (NTRS)

    Lovchik, Christopher S.

    2005-01-01

    Synthetic bursae are under development for incorporation into robot joints that are actuated by motor-driven cables in a manner similar to that of arthropod joints actuated by muscle-driven tendons. Like natural bursae, the synthetic bursae would serve as cushions and friction reducers. A natural bursa is a thin bladder filled with synovial fluid, which serves to reduce friction and provide a cushion between a bone and a muscle or a tendon. A synthetic bursa would be similar in form and function: It would be, essentially, a compact, soft roller consisting of a bladder filled with a non-Newtonian fluid. The bladder would be constrained to approximately constant volume. The synthetic bursa would cushion an actuator cable against one of the members of a robot joint and would reduce the friction between the cable and the member. Under load, the pressure in the bladder would hold the opposite walls of the bladder apart, making it possible for them to move freely past each other without rubbing.

  1. Synthetic hydrophilic polymers

    NASA Astrophysics Data System (ADS)

    Rajasekharan Pillai, V. N.; Mutter, Manfred

    1981-11-01

    Synthetic hydrophilic polymers find promising applications in pharmacology, biotechnology and chemistry. The biocompatibility, biodegradability and pharmacological activity of these polymers depend much on their hydrophilic nature. This article summarizes the recent developments in the utilization of the different classes of these hydrophilic polymers as pharmacologically active agents, for enzyme modification and as catalysts and supports for chemical reactions.

  2. Synthetic Aperture Radar Interferometry

    NASA Technical Reports Server (NTRS)

    Rosen, P. A.; Hensley, S.; Joughin, I. R.; Li, F.; Madsen, S. N.; Rodriguez, E.; Goldstein, R. M.

    1998-01-01

    Synthetic aperture radar interferometry is an imaging technique for measuring the topography of a surface, its changes over time, and other changes in the detailed characteristics of the surface. This paper reviews the techniques of interferometry, systems and limitations, and applications in a rapidly growing area of science and engineering.

  3. Synthetic Vision Workshop 2

    NASA Technical Reports Server (NTRS)

    Kramer, Lynda J. (Compiler)

    1999-01-01

    The second NASA sponsored Workshop on Synthetic/Enhanced Vision (S/EV) Display Systems was conducted January 27-29, 1998 at the NASA Langley Research Center. The purpose of this workshop was to provide a forum for interested parties to discuss topics in the Synthetic Vision (SV) element of the NASA Aviation Safety Program and to encourage those interested parties to participate in the development, prototyping, and implementation of S/EV systems that enhance aviation safety. The SV element addresses the potential safety benefits of synthetic/enhanced vision display systems for low-end general aviation aircraft, high-end general aviation aircraft (business jets), and commercial transports. Attendance at this workshop consisted of about 112 persons including representatives from industry, the FAA, and other government organizations (NOAA, NIMA, etc.). The workshop provided opportunities for interested individuals to give presentations on the state of the art in potentially applicable systems, as well as to discuss areas of research that might be considered for inclusion within the Synthetic Vision Element program to contribute to the reduction of the fatal aircraft accident rate. Panel discussions on topical areas such as databases, displays, certification issues, and sensors were conducted, with time allowed for audience participation.

  4. Pharmacokinetics of 7 alpha-methyl-19-nortestosterone (MENT) delivery using subdermal implants in healthy men.

    PubMed

    Suvisaari, J; Moo-Young, A; Juhakoski, A; Elomaa, K; Saleh, S I; Lähteenmäki, P

    1999-11-01

    We studied the pharmacokinetics of 7 alpha-methyl-19-nortestosterone (MENT), a potent synthetic androgen, administered by subdermal implants. The implants contained 112 +/- 4 mg of MENT acetate in a polyethylene vinyl acetate copolymer. MENT acetate released from the implants is rapidly hydrolyzed to MENT in vivo. Fifteen healthy Finnish men were randomized to have either one, two, or four implants inserted in the medial aspect of the upper arm. The implants remained in place for 4 weeks. Blood samples were obtained before implant insertion, 1, 2, 3, and 4 weeks after insertion, and 1 and 2 weeks after removal. Serum MENT concentrations were determined by gas chromatography with mass selective detection. The MENT levels attained in each implant group remained at a steady level during the 4 weeks of implant use. The mean steady state MENT concentrations in the one, two, and four implant groups were 0.6, 1.4, and 2.3 nmol/L, respectively. Serum MENT concentrations during implant use were clearly dose dependent; the between-subject effect of implants as well as the differences between each pair of groups were all statistically significant. The release rate of MENT from one, two, and four implants was calculated to be approximately 0.3, 0.8, and 1.3 mg/day, respectively. This study suggests that MENT acetate implants are a promising method for long-term androgen administration in hypogonadism and male contraception.

  5. Synthetic plant defense elicitors.

    PubMed

    Bektas, Yasemin; Eulgem, Thomas

    2014-01-01

    To defend themselves against invading pathogens plants utilize a complex regulatory network that coordinates extensive transcriptional and metabolic reprogramming. Although many of the key players of this immunity-associated network are known, the details of its topology and dynamics are still poorly understood. As an alternative to forward and reverse genetic studies, chemical genetics-related approaches based on bioactive small molecules have gained substantial popularity in the analysis of biological pathways and networks. Use of such molecular probes can allow researchers to access biological space that was previously inaccessible to genetic analyses due to gene redundancy or lethality of mutations. Synthetic elicitors are small drug-like molecules that induce plant defense responses, but are distinct from known natural elicitors of plant immunity. While the discovery of some synthetic elicitors had already been reported in the 1970s, recent breakthroughs in combinatorial chemical synthesis now allow for inexpensive high-throughput screens for bioactive plant defense-inducing compounds. Along with powerful reverse genetics tools and resources available for model plants and crop systems, comprehensive collections of new synthetic elicitors will likely allow plant scientists to study the intricacies of plant defense signaling pathways and networks in an unparalleled fashion. As synthetic elicitors can protect crops from diseases, without the need to be directly toxic for pathogenic organisms, they may also serve as promising alternatives to conventional biocidal pesticides, which often are harmful for the environment, farmers and consumers. Here we are discussing various types of synthetic elicitors that have been used for studies on the plant immune system, their modes-of-action as well as their application in crop protection.

  6. Synthetic plant defense elicitors

    PubMed Central

    Bektas, Yasemin; Eulgem, Thomas

    2015-01-01

    To defend themselves against invading pathogens plants utilize a complex regulatory network that coordinates extensive transcriptional and metabolic reprogramming. Although many of the key players of this immunity-associated network are known, the details of its topology and dynamics are still poorly understood. As an alternative to forward and reverse genetic studies, chemical genetics-related approaches based on bioactive small molecules have gained substantial popularity in the analysis of biological pathways and networks. Use of such molecular probes can allow researchers to access biological space that was previously inaccessible to genetic analyses due to gene redundancy or lethality of mutations. Synthetic elicitors are small drug-like molecules that induce plant defense responses, but are distinct from known natural elicitors of plant immunity. While the discovery of some synthetic elicitors had already been reported in the 1970s, recent breakthroughs in combinatorial chemical synthesis now allow for inexpensive high-throughput screens for bioactive plant defense-inducing compounds. Along with powerful reverse genetics tools and resources available for model plants and crop systems, comprehensive collections of new synthetic elicitors will likely allow plant scientists to study the intricacies of plant defense signaling pathways and networks in an unparalleled fashion. As synthetic elicitors can protect crops from diseases, without the need to be directly toxic for pathogenic organisms, they may also serve as promising alternatives to conventional biocidal pesticides, which often are harmful for the environment, farmers and consumers. Here we are discussing various types of synthetic elicitors that have been used for studies on the plant immune system, their modes-of-action as well as their application in crop protection. PMID:25674095

  7. Synthetic River Valleys

    NASA Astrophysics Data System (ADS)

    Brown, R.; Pasternack, G. B.

    2011-12-01

    The description of fluvial form has evolved from anecdotal descriptions to artistic renderings to 2D plots of cross section or longitudinal profiles and more recently 3D digital models. Synthetic river valleys, artificial 3D topographic models of river topography, have a plethora of potential applications in fluvial geomorphology, and the earth sciences in general, as well as in computer science and ecology. Synthetic river channels have existed implicitly since approximately the 1970s and can be simulated from a variety of approaches spanning the artistic and numerical. An objective method of synthesizing 3D stream topography based on reach scale attributes would be valuable for sizing 3D flumes in the physical and numerical realms, as initial input topography for morphodynamic models, stream restoration design, historical reconstruction, and mechanistic testing of interactions of channel geometric elements. Quite simply - simulation of synthetic channel geometry of prescribed conditions can allow systematic evaluation of the dominant relationships between river flow and geometry. A new model, the control curve method, is presented that uses hierarchically scaled parametric curves in over-lapping 2D planes to create synthetic river valleys. The approach is able to simulate 3D stream geometry from paired 2D descriptions and can allow experimental insight into form-process relationships in addition to visualizing past measurements of channel form that are limited to two dimension descriptions. Results are presented that illustrate the models ability to simulate fluvial topography representative of real world rivers as well as how channel geometric elements can be adjusted. The testing of synthetic river valleys would open up a wealth of knowledge as to why some 3D attributes of river channels are more prevalent than others as well as bridging the gap between the 2D descriptions that have dominated fluvial geomorphology the past century and modern, more complete, 3D

  8. Innovative Management of Implant Exposure in ADM/Implant-Based Breast Reconstruction with Negative Pressure Wound Therapy.

    PubMed

    Accurso, Antonello; Rocco, Nicola; Accardo, Giuseppe; Reale, Paola; Salerno, Carmela; Mattera, Edi; D'Andrea, Francesco

    2017-02-01

    One-stage implant-based breast reconstruction has been recently improved by the introduction of biological [acellular dermal matrix (ADM)] and synthetic meshes. Advantages of ADMs in implant-based breast reconstruction derive from the expansion of the space available for the direct positioning of an implant, but their use could be associated with several complications. Although the majority of complications can be easily managed, mistakes in dealing with the first clinical signs of a potential adverse event can lead to implant loss. We report a case of ADM/implant exposure following NAC-sparing mastectomy and immediate implant-based reconstruction, successfully managed with an innovative staged treatment using negative pressure wound therapy, which allowed a rapid re-positioning of the prosthesis after complete clearance of bacteria from the implant pocket. The safest strategy to manage implant exposure and concomitant bacterial growth is reported to be implant removal and delayed re-positioning after several months, following prolonged targeted antibiotic therapy. Our case shows how a short-time implant re-positioning following implant removal for implant exposure could be successfully pursued thanks to the shrewd use of negative pressure wound therapy with great advantages in terms of patient satisfaction and post-operative quality of life, offering women experiencing this complication the option of not delaying reconstruction for months after resolution of the complication, potentially avoiding major surgical procedures such as autologous tissue reconstructions. This journal requires that authors assign a level of evidence to each article. For a full description of these Evidence-Based Medicine ratings, please refer to the Table of Contents or the online Instructions to Authors www.springer.com/00266 .

  9. Trends in Cochlear Implants

    PubMed Central

    Zeng, Fan-Gang

    2004-01-01

    More than 60,000 people worldwide use cochlear implants as a means to restore functional hearing. Although individual performance variability is still high, an average implant user can talk on the phone in a quiet environment. Cochlear-implant research has also matured as a field, as evidenced by the exponential growth in both the patient population and scientific publication. The present report examines current issues related to audiologic, clinical, engineering, anatomic, and physiologic aspects of cochlear implants, focusing on their psychophysical, speech, music, and cognitive performance. This report also forecasts clinical and research trends related to presurgical evaluation, fitting protocols, signal processing, and postsurgical rehabilitation in cochlear implants. Finally, a future landscape in amplification is presented that requires a unique, yet complementary, contribution from hearing aids, middle ear implants, and cochlear implants to achieve a total solution to the entire spectrum of hearing loss treatment and management. PMID:15247993

  10. EXPEDITIOUS SYNTHETIC TRANSFORMATIONS USING MICROWAVES

    EPA Science Inventory

    Microwave-expedited solvent-free synthetic processes will be described for the synthesis of a variety of industrially significant compounds and intermediates namely, enamines, nitroalkenes, enones, oxidized sulfur compounds and ionic liquids. This solvent-free synthetic methodolo...

  11. EXPEDITIOUS SYNTHETIC TRANSFORMATIONS USING MICROWAVES

    EPA Science Inventory

    Microwave-expedited solvent-free synthetic processes will be described for the synthesis of a variety of industrially significant compounds and intermediates namely, enamines, nitroalkenes, enones, oxidized sulfur compounds and ionic liquids. This solvent-free synthetic methodolo...

  12. Synthetic Foveal Imaging Technology

    NASA Technical Reports Server (NTRS)

    Monacos, Steve P. (Inventor); Hoenk, Michael E. (Inventor); Nikzad, Shouleh (Inventor)

    2013-01-01

    Apparatuses and methods are disclosed that create a synthetic fovea in order to identify and highlight interesting portions of an image for further processing and rapid response. Synthetic foveal imaging implements a parallel processing architecture that uses reprogrammable logic to implement embedded, distributed, real-time foveal image processing from different sensor types while simultaneously allowing for lossless storage and retrieval of raw image data. Real-time, distributed, adaptive processing of multi-tap image sensors with coordinated processing hardware used for each output tap is enabled. In mosaic focal planes, a parallel-processing network can be implemented that treats the mosaic focal plane as a single ensemble rather than a set of isolated sensors. Various applications are enabled for imaging and robotic vision where processing and responding to enormous amounts of data quickly and efficiently is important.

  13. Wholly Synthetic Molecular Machines.

    PubMed

    Cheng, Chuyang; Stoddart, J Fraser

    2016-06-17

    The past quarter of a century has witnessed an increasing engagement on the part of physicists and chemists in the design and synthesis of molecular machines de novo. This minireview traces the development of artificial molecular machines from their prototypes in the form of shuttles and switches to their emergence as motors and pumps where supplies of energy in the form of chemical fuel, electrochemical potential and light activation become a minimum requirement for them to function away from equilibrium. The challenge facing this rapidly growing community of scientists and engineers today is one of putting wholly synthetic molecules to work, both individually and as collections. Here, we highlight some of the recent conceptual and practical advances relating to the operation of wholly synthetic rotary and linear motors. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. Synthetic aircraft turbine oil

    SciTech Connect

    Reinhard, R.R.; Yaffe, R.

    1980-10-07

    Synthetic lubricating oil composition having improved oxidation stability comprises a major portion of an aliphatic ester base oil having lubricating properties, formed by the reaction of pentaerythritol and an organic monocarboxylic acid and containing a phenylnaphthylamine, a dialkyldiphenylamine, a hydrocarbyl phosphate ester, a polyhydroxy anthraquninone, an alkylamine salt of 3-amino-triazole-dodecenylsuccinamic acid, 2-hydroxylpropyl-n, n-dibutyldithiocarbamate, and an alkyl amine salt of a methyl acid phosphate.

  15. Synthetic Porphyrins and Metalloporphyrins

    DTIC Science & Technology

    1976-12-10

    last type of complexes to be considered are the sterically hindered macrocycles . Examples of this class of complexes exe the capped" or "crow henhe...group IV metalloporphyrins, phthalocyanines and correspond- log Ru"l and Reol complexes induce smaller shifts than the lanthanides (about 8 ppm vs 25...ROLE W1r ROLE wTr ROLE Wt * ~Synthe tic Porphyrins Synthetic lMetalloporphyrinsj tetrapyrrole macrocycles "Inatural" porphyrins * j meso

  16. Automated Synthetic Scene Generation

    DTIC Science & Technology

    2014-07-01

    providing the community with a tool to expand the library of synthetic scenes and therefore expand the potential applications of physics-based...amount of time and manpower needed to generate these scenes, relatively few are available to the DIRSIG user community . 2 More recently, methods have...widely used algorithm in its respective community of scene classification. Originally developed by Celeux and Diesbolt in 1986, SEM performs

  17. Scanning electron microscopic examination of porous orbital implants.

    PubMed

    Mawn, L A; Jordan, D R; Gilberg, S

    1998-06-01

    To compare the structural makeup of five porous orbital implants: two made of coralline hydroxyapatite (Bio-Eye and Chinese implant), one of synthetic hydroxyapatite (FCI), one of porous polyethylene (Medpor) and one of alumina. The Bio-Eye, Medpor and alumina implants are currently available in Canada. Pore size, pore interconnectivity and microcrystalline architecture. The Bio-Eye had multiple interconnected pores ranging from 300 microns to 700 microns in width; higher-power views showed coarse-appearing crystals approximately 2 microns wide. The FCI implant showed similar interconnectivity of the pores but fewer pores, which were about 300 microns to 500 microns in size. Higher-power views showed hexagonal crystals about 1 micron to 5 microns in size. The Chinese hydroxyapatite implant had multiple interconnected pores ranging from 200 microns to 700 microns in size. The crystals were similar in appearance to those of the Bio-Eye but were smaller and more granular. The 150-micron pore size Medpor implant had irregularly shaped pores ranging from 100 microns to 500 microns in size. The 400-micron pore size implant had pores that looked more like channels that coalesced; the pores and channels ranged in size from 125 microns to 1000 microns. In both cases higher-power views showed a woven texture. In the alumina implant the pores were well connected and evenly distributed and were approximately 500 microns in size. On high-power studies the implant showed a cobblestone-like pattern of crystals approximately 4 microns to 5 microns wide. There are notable differences in pore size, pore interconnectivity and microcrystalline architecture between the implants studied. These features may be important in the overall biocompatibility of the implant.

  18. Synthetic biology in plastids.

    PubMed

    Scharff, Lars B; Bock, Ralph

    2014-06-01

    Plastids (chloroplasts) harbor a small gene-dense genome that is amenable to genetic manipulation by transformation. During 1 billion years of evolution from the cyanobacterial endosymbiont to present-day chloroplasts, the plastid genome has undergone a dramatic size reduction, mainly as a result of gene losses and the large-scale transfer of genes to the nuclear genome. Thus the plastid genome can be regarded as a naturally evolved miniature genome, the gradual size reduction and compaction of which has provided a blueprint for the design of minimum genomes. Furthermore, because of the largely prokaryotic genome structure and gene expression machinery, the high transgene expression levels attainable in transgenic chloroplasts and the very low production costs in plant systems, the chloroplast lends itself to synthetic biology applications that are directed towards the efficient synthesis of green chemicals, biopharmaceuticals and other metabolites of commercial interest. This review describes recent progress with the engineering of plastid genomes with large constructs of foreign or synthetic DNA, and highlights the potential of the chloroplast as a model system in bottom-up and top-down synthetic biology approaches.

  19. [Cochlear implant in adults].

    PubMed

    Bouccara, D; Mosnier, I; Bernardeschi, D; Ferrary, E; Sterkers, O

    2012-03-01

    Cochlear implant in adults is a procedure, dedicated to rehabilitate severe to profound hearing loss. Because of technological progresses and their applications for signal strategies, new devices can improve hearing, even in noise conditions. Binaural stimulation, cochlear implant and hearing aid or bilateral cochlear implants are the best opportunities to access to better level of comprehension in all conditions and space localisation. By now minimally invasive surgery is possible to preserve residual hearing and use a double stimulation modality for the same ear: electrical for high frequencies and acoustic for low frequencies. In several conditions, cochlear implant is not possible due to cochlear nerve tumour or major malformations of the inner ear. In these cases, a brainstem implantation can be considered. Clinical data demonstrate that improvement in daily communication, for both cochlear and brainstem implants, is correlated with cerebral activation of auditory cortex.

  20. Bio-packaged transponder MEMS implanted in rats.

    PubMed

    Rodriguez, R; Loske, A M; Estevez, M; Vargas, S; Salazar, R; Pacheco, F; Vazquez-Carpizo, J; Gamboa, J M

    2013-01-01

    A novel hydroxyapatite-based hybrid material with controlled porosity was designed as a bio-package to implant micro-electro-mechanical systems (MEMS) in living organisms. The biomaterial was prepared using synthetic stoichiometric hydroxyapatite powder reacted with a chemical-active, solvent-free, alkyd-based polyurethane. This porous material has interconnected pores with sizes between 100 and 350 μm and a pore volume fraction of 50%, fulfilling the requirements for implants. The biomaterial additionally has high wearing resistance and hydrolytic stability providing high endurance properties. The bio-package was characterized mechanically and morphologically using X-ray diffraction, scanning electron microscopy, densitometry, abrasion and mechanical tests. Twelve packaged micro-electro-mechanical systems were implanted subcutaneously into rats and tested for up to 9 months with good acceptance as revealed by the histological analysis performed on the soft tissue surrounding each implant.

  1. Implant treatment planning considerations.

    PubMed

    Kao, Richard T

    2008-04-01

    As dental implants become a more accepted treatment modality, there is a need for all parties involved with implant dentistry to be familiar with various treatment planning issues. Though the success can be highly rewarding, failure to forecast treatment planning issues can result in an increase of surgical needs, surgical cost, and even case failure. In this issue, the focus is on implant treatment planning considerations.

  2. Opportunities in plant synthetic biology.

    PubMed

    Cook, Charis; Martin, Lisa; Bastow, Ruth

    2014-05-01

    Synthetic biology is an emerging field uniting scientists from all disciplines with the aim of designing or re-designing biological processes. Initially, synthetic biology breakthroughs came from microbiology, chemistry, physics, computer science, materials science, mathematics, and engineering disciplines. A transition to multicellular systems is the next logical step for synthetic biologists and plants will provide an ideal platform for this new phase of research. This meeting report highlights some of the exciting plant synthetic biology projects, and tools and resources, presented and discussed at the 2013 GARNet workshop on plant synthetic biology.

  3. Osseointegrated implant prosthodontics.

    PubMed

    Rogoff, G S

    1992-06-01

    This review covers recent literature on prosthodontic aspects of osseointegrated implants. Long-term prognosis, diagnosis and treatment planning, and clinical impression techniques and fabrication technology are discussed.

  4. [Silastic implant and synovitis].

    PubMed

    Sennwald, G

    1989-07-22

    The silastic implant based on siloxane polymere induces granulomatous synovitis in certain predisposed individuals, a reaction which may continue even after removal of the implant. This is also true of a prosthesis of the trapezium in two of our patients, though to a lesser degree. This is probably the reason why the problem has not yet been widely recognized. The hypothesis is put forward that an enzymatic predisposition may allow chemical degradation of the fragmented silastic implant into a toxic component responsible for the pathologic condition. The slow progression of the lesions is a challenge for the future and puts in question the further use of silastic implants.

  5. Mesh implants: An overview of crucial mesh parameters

    PubMed Central

    Zhu, Lei-Ming; Schuster, Philipp; Klinge, Uwe

    2015-01-01

    Hernia repair is one of the most frequently performed surgical interventions that use mesh implants. This article evaluates crucial mesh parameters to facilitate selection of the most appropriate mesh implant, considering raw materials, mesh composition, structure parameters and mechanical parameters. A literature review was performed using the PubMed database. The most important mesh parameters in the selection of a mesh implant are the raw material, structural parameters and mechanical parameters, which should match the physiological conditions. The structural parameters, especially the porosity, are the most important predictors of the biocompatibility performance of synthetic meshes. Meshes with large pores exhibit less inflammatory infiltrate, connective tissue and scar bridging, which allows increased soft tissue ingrowth. The raw material and combination of raw materials of the used mesh, including potential coatings and textile design, strongly impact the inflammatory reaction to the mesh. Synthetic meshes made from innovative polymers combined with surface coating have been demonstrated to exhibit advantageous behavior in specialized fields. Monofilament, large-pore synthetic meshes exhibit advantages. The value of mesh classification based on mesh weight seems to be overestimated. Mechanical properties of meshes, such as anisotropy/isotropy, elasticity and tensile strength, are crucial parameters for predicting mesh performance after implantation. PMID:26523210

  6. Synthetic cannabinoids revealing adrenoleukodystrophy.

    PubMed

    Fellner, Avi; Benninger, Felix; Djaldetti, Ruth

    2016-02-01

    We report a 41-year-old man who presented with a first generalized tonic-clonic seizure after recent consumption of a synthetic cannabinoid. MRI showed extensive bilateral, mainly frontal, white matter lesions. Blood analysis for very long chain fatty acids was compatible with adrenoleukodystrophy, and a missense mutation in the ABCD1 gene confirmed the diagnosis. We hypothesize that cannabinoid use might have contributed to metabolic decompensation with subacute worsening of the underlying condition. Copyright © 2015 Elsevier Ltd. All rights reserved.

  7. Synthetic passive margin stratigraphy

    SciTech Connect

    Turcotte, D.L.; Kenyon, P.M.

    1984-06-01

    Synthetic stratigraphic cross sections are derived mathematically for a variety of simple conditions. The variables considered in the mathematical model include variations in sea level, rate of tectonic subsidence, rate of sedimentation, and rate of erosion. Derived stratigraphic relationships include unconformities, correlative conformities and disconformities, coastal onlap, coastal toplap, erosional truncation, pinch-out, and sigmoidal progradational clinoforms. An important conclusion is that the rate of erosion is a dominant variable in determining the type of stratigraphic section observed. The proposed approach may provide the basis for either a forward or inverse modeling of seismic stratigraphic sections.

  8. Comparison of vascularization of Medpor and Medpor-Plus orbital implants: a prospective, randomized study.

    PubMed

    Naik, Milind N; Murthy, Ramesh K; Honavar, Santosh G

    2007-01-01

    To compare vascularization of porous polyethylene (Medpor) and porous polyethylene with synthetic bone graft particulate (Medpor-Plus) orbital implants following enucleation. Prospective, randomized study involving 10 patients. A standard enucleation procedure was performed, and each patient was randomized to receive either Medpor or Medpor-Plus orbital implant with anterior scleral cap technique. Gadolinium-enhanced, 3-Tesla MRI was performed at 1.5 months, 3 months, and 4.5 months following surgery. Implant vascularization was calculated in axial, coronal, and sagittal planes with manual planimetric method using postcontrast T1-weighted Digital Imaging and Communications in Medicine images. The mean area of implant vascularization at 1.5 months, 3 months, and 4.5 months for Medpor implants was 58%, 70%, and 75%, respectively, and for Medpor-Plus implants was 69%, 76%, and 85%, respectively. The mean vascularization of Medpor-Plus implants was more than Medpor implants at 1.5 months (p = 0.008), 3 months (p = 0.09), and 4.5 months (p = 0.003). The difference between the 2 groups assessed by repeated measures analysis of variance was statistically significant (p < 0.0001). During the mean follow-up of 36.7 months (range, 18-43 months), 1 patient in the Medpor group had implant exposure that responded to scleral patch graft. Implant vascularization is faster with Medpor-Plus implants compared with Medpor implants when assessed by a planimetric method using 3 Tesla MRI. The addition of synthetic bone graft particulate (Novabone) to porous polyethylene may enhance implant vascularization.

  9. Synthetic collective intelligence.

    PubMed

    Solé, Ricard; Amor, Daniel R; Duran-Nebreda, Salva; Conde-Pueyo, Núria; Carbonell-Ballestero, Max; Montañez, Raúl

    2016-10-01

    Intelligent systems have emerged in our biosphere in different contexts and achieving different levels of complexity. The requirement of communication in a social context has been in all cases a determinant. The human brain, probably co-evolving with language, is an exceedingly successful example. Similarly, social insects complex collective decisions emerge from information exchanges between many agents. The difference is that such processing is obtained out of a limited individual cognitive power. Computational models and embodied versions using non-living systems, particularly involving robot swarms, have been used to explore the potentiality of collective intelligence. Here we suggest a novel approach to the problem grounded in the genetic engineering of unicellular systems, which can be modified in order to interact, store memories or adapt to external stimuli in collective ways. What we label as Synthetic Swarm Intelligence defines a parallel approach to the evolution of computation and swarm intelligence and allows to explore potential embodied scenarios for decision making at the microscale. Here, we consider several relevant examples of collective intelligence and their synthetic organism counterparts. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  10. Analog synthetic biology

    PubMed Central

    Sarpeshkar, R.

    2014-01-01

    We analyse the pros and cons of analog versus digital computation in living cells. Our analysis is based on fundamental laws of noise in gene and protein expression, which set limits on the energy, time, space, molecular count and part-count resources needed to compute at a given level of precision. We conclude that analog computation is significantly more efficient in its use of resources than deterministic digital computation even at relatively high levels of precision in the cell. Based on this analysis, we conclude that synthetic biology must use analog, collective analog, probabilistic and hybrid analog–digital computational approaches; otherwise, even relatively simple synthetic computations in cells such as addition will exceed energy and molecular-count budgets. We present schematics for efficiently representing analog DNA–protein computation in cells. Analog electronic flow in subthreshold transistors and analog molecular flux in chemical reactions obey Boltzmann exponential laws of thermodynamics and are described by astoundingly similar logarithmic electrochemical potentials. Therefore, cytomorphic circuits can help to map circuit designs between electronic and biochemical domains. We review recent work that uses positive-feedback linearization circuits to architect wide-dynamic-range logarithmic analog computation in Escherichia coli using three transcription factors, nearly two orders of magnitude more efficient in parts than prior digital implementations. PMID:24567476

  11. Synthetic Fence Jets

    NASA Astrophysics Data System (ADS)

    Sigurdson, Lorenz; Apps, Christopher

    2000-11-01

    "Synthetic Jets" have previously been produced where an oscillating flow with zero net mass flux acts on the edges of an orifice. The resulting flow is similar to a normal jet. We have proposed and verified that another type of jet called a "Synthetic Fence Jet" (SFJ or "fe-je") can also be created. We introduced a fence perpendicular to both a wall and an oscillating velocity field. Under certain conditions a jet was formed by vortices of alternating sign. The vortices were shed from the fence and they induced each other away from it. This phenomenon could be used as a method of flow control. The objective of this project was to use flow visualization to prove the existence of and characterize this jet. A test rig was used which incorporates smoke-wire flow visualization; independent oscillation level and frequency control; and computer- controlled data acquisition. It has been discovered that the jet direction can be vectored by altering the forcing waveform shape. To explain this a theory was developed that is based on the Biot-Savart law of vortex dynamics.

  12. Analog synthetic biology.

    PubMed

    Sarpeshkar, R

    2014-03-28

    We analyse the pros and cons of analog versus digital computation in living cells. Our analysis is based on fundamental laws of noise in gene and protein expression, which set limits on the energy, time, space, molecular count and part-count resources needed to compute at a given level of precision. We conclude that analog computation is significantly more efficient in its use of resources than deterministic digital computation even at relatively high levels of precision in the cell. Based on this analysis, we conclude that synthetic biology must use analog, collective analog, probabilistic and hybrid analog-digital computational approaches; otherwise, even relatively simple synthetic computations in cells such as addition will exceed energy and molecular-count budgets. We present schematics for efficiently representing analog DNA-protein computation in cells. Analog electronic flow in subthreshold transistors and analog molecular flux in chemical reactions obey Boltzmann exponential laws of thermodynamics and are described by astoundingly similar logarithmic electrochemical potentials. Therefore, cytomorphic circuits can help to map circuit designs between electronic and biochemical domains. We review recent work that uses positive-feedback linearization circuits to architect wide-dynamic-range logarithmic analog computation in Escherichia coli using three transcription factors, nearly two orders of magnitude more efficient in parts than prior digital implementations.

  13. Implantable ultrasound devices

    NASA Astrophysics Data System (ADS)

    Vilkomerson, David; Chilipka, Thomas; Bogan, John; Blebea, John; Choudry, Rashad; Wang, John; Salvatore, Michael; Rotella, Vittorio; Soundararajan, Krishnan

    2008-03-01

    Using medical implants to wirelessly report physiological data is a technique that is rapidly growing. Ultrasound is well-suited for implants -- it requires little power and this form of radiated energy has no ill effects on the body. We report here on techniques we have developed in our experience gained in implanting over a dozen Doppler ultrasound flow-measuring implants in dogs. The goal of our implantable device is to measure flow in an arterial graft. To accomplish this, we place a Doppler transducer in the wall of a graft and an implant unit under the skin that energizes the 20 MHz Doppler transducer system, either when started by external command or by internal timetable. The implant records the digitized Doppler real and imaginary channels and transmits the data to a nearby portable computer for storage and evaluation. After outlining the overall operation of the system, we will concentrate on three areas of implant design where special techniques are required: ensuring safety, including biocompatibility to prevent the body from reacting to its invasion; powering the device, including minimizing energy used so that a small battery can provide long-life; and transmitting the data obtained.

  14. Batteryless implanted echosonometer

    NASA Technical Reports Server (NTRS)

    Kojima, G. K.

    1977-01-01

    Miniature ultrasonic echosonometer implanted within laboratory animals obtains energy from RF power oscillator that is electronically transduced via induction loop to power receiving loop located just under animal's skin. Method of powering device offers significant advantages over those in which battery is part of implanted package.

  15. Implantable, Ingestible Electronic Thermometer

    NASA Technical Reports Server (NTRS)

    Kleinberg, Leonard

    1987-01-01

    Small quartz-crystal-controlled oscillator swallowed or surgically implanted provides continuous monitoring of patient's internal temperature. Receiver placed near patient measures oscillator frequency, and temperature inferred from previously determined variation of frequency with temperature. Frequency of crystal-controlled oscillator varies with temperature. Circuit made very small and implanted or ingested to measure internal body temperature.

  16. A no bleed implant.

    PubMed

    Ersek, R A; Navarro, J A; Nemeth, D Z; Sas, G

    1993-01-01

    Breast implants have evolved from the original saline-filled, smooth-surfaced silicone rubber bag to silicone gel-filled smooth-walled sacs to a combination of a silicone gel-filled bag within a saline-filled sac, and, most recently, a reversed, double-lumen implant with a saline bag inside of a gel-filled bag. Texture-surfaced implants were first used in 1970 when the standard silicone gel-filled implant was covered with a polyurethane foam. Because of concerns about the degradation products of this foam, they were removed from the market in 1991. In 1975 double-lumen silicone textured implants were developed, followed by silicone gel-filled textured implants. In 1990 a new radiolucent, biocompatible gel was produced that reduced the problem of radioopacity of silicone implants. Because of the gel's sufficiently low coefficient of friction, leakage caused by fold flaw fracture may also be decreased. We present a case where this new biocompatible gel implant was repositioned after four months. The resulting scar capsule in this soft breast was thin [< 0.002 cm (0.008 in.)] and evenly textured as a mirror image of the textured silicone surface. Scanning electron microscopy and x-ray defraction spectrophotometry revealed no silicone bleed.

  17. Smoking and dental implants

    PubMed Central

    Kasat, V.; Ladda, R.

    2012-01-01

    Smoking is a prevalent behaviour in the population. The aim of this review is to bring to light the effects of smoking on dental implants. These facts will assist dental professionals when implants are planned in tobacco users. A search of “PubMed” was made with the key words “dental implant,” “nicotine,” “smoking,” “tobacco,” and “osseointegration.” Also, publications on tobacco control by the Government of India were considered. For review, only those articles published from 1988 onward in English language were selected. Smoking has its influence on general as well as oral health of an individual. Tobacco negatively affects the outcome of almost all therapeutic procedures performed in the oral cavity. The failure rate of implant osseointegration is considerably higher among smokers, and maintenance of oral hygiene around the implants and the risk of peri-implantitis are adversely affected by smoking. To increase implant survival in smokers, various protocols have been recommended. Although osseointegrated dental implants have become the state of the art for tooth replacement, they are not without limitations or complications. In this litigious era, it is extremely important that the practitioner clearly understands and is able and willing to convey the spectrum of possible complications and their frequency to the patients. PMID:24478965

  18. Batteryless implanted echosonometer

    NASA Technical Reports Server (NTRS)

    Kojima, G. K.

    1977-01-01

    Miniature ultrasonic echosonometer implanted within laboratory animals obtains energy from RF power oscillator that is electronically transduced via induction loop to power receiving loop located just under animal's skin. Method of powering device offers significant advantages over those in which battery is part of implanted package.

  19. Implantable CMOS Biomedical Devices

    PubMed Central

    Ohta, Jun; Tokuda, Takashi; Sasagawa, Kiyotaka; Noda, Toshihiko

    2009-01-01

    The results of recent research on our implantable CMOS biomedical devices are reviewed. Topics include retinal prosthesis devices and deep-brain implantation devices for small animals. Fundamental device structures and characteristics as well as in vivo experiments are presented. PMID:22291554

  20. Teeth and implants.

    PubMed

    Palmer, R

    1999-08-28

    An osseointegrated implant restoration may closely resemble a natural tooth. However, the absence of a periodontal ligament and connective tissue attachment via cementum, results in fundamental differences in the adaptation of the implant to occlusal forces, and the structure of the gingival cuff.

  1. Percutaneous and skeletal biocarbon implants

    NASA Technical Reports Server (NTRS)

    Mooney, V.

    1977-01-01

    Review of carbon implants developed by NASA discussed four different types of implants and subsequent improvements. Improvements could be of specific interest to rehabilitation centers and similar organizations.

  2. Percutaneous and skeletal biocarbon implants

    NASA Technical Reports Server (NTRS)

    Mooney, V.

    1977-01-01

    Review of carbon implants developed by NASA discussed four different types of implants and subsequent improvements. Improvements could be of specific interest to rehabilitation centers and similar organizations.

  3. Graphene for Biomedical Implants

    NASA Astrophysics Data System (ADS)

    Moore, Thomas; Podila, Ramakrishna; Alexis, Frank; Rao, Apparao; Clemson Bioengineering Team; Clemson Physics Team

    2013-03-01

    In this study, we used graphene, a one-atom thick sheet of carbon atoms, to modify the surfaces of existing implant materials to enhance both bio- and hemo-compatibility. This novel effort meets all functional criteria for a biomedical implant coating as it is chemically inert, atomically smooth and highly durable, with the potential for greatly enhancing the effectiveness of such implants. Specifically, graphene coatings on nitinol, a widely used implant and stent material, showed that graphene coated nitinol (Gr-NiTi) supports excellent smooth muscle and endothelial cell growth leading to better cell proliferation. We further determined that the serum albumin adsorption on Gr-NiTi is greater than that of fibrinogen, an important and well understood criterion for promoting a lower thrombosis rate. These hemo-and biocompatible properties and associated charge transfer mechanisms, along with high strength, chemical inertness and durability give graphene an edge over most antithrombogenic coatings for biomedical implants and devices.

  4. Synthetic biology and genetic causation.

    PubMed

    Oftedal, Gry; Parkkinen, Veli-Pekka

    2013-06-01

    Synthetic biology research is often described in terms of programming cells through the introduction of synthetic genes. Genetic material is seemingly attributed with a high level of causal responsibility. We discuss genetic causation in synthetic biology and distinguish three gene concepts differing in their assumptions of genetic control. We argue that synthetic biology generally employs a difference-making approach to establishing genetic causes, and that this approach does not commit to a specific notion of genetic program or genetic control. Still, we suggest that a strong program concept of genetic material can be used as a successful heuristic in certain areas of synthetic biology. Its application requires control of causal context, and may stand in need of a modular decomposition of the target system. We relate different modularity concepts to the discussion of genetic causation and point to possible advantages of and important limitations to seeking modularity in synthetic biology systems.

  5. Space Synthetic Biology Project

    NASA Technical Reports Server (NTRS)

    Howard, David; Roman, Monsi; Mansell, James (Matt)

    2015-01-01

    Synthetic biology is an effort to make genetic engineering more useful by standardizing sections of genetic code. By standardizing genetic components, biological engineering will become much more similar to traditional fields of engineering, in which well-defined components and subsystems are readily available in markets. Specifications of the behavior of those components and subsystems can be used to model a system which incorporates them. Then, the behavior of the novel system can be simulated and optimized. Finally, the components and subsystems can be purchased and assembled to create the optimized system, which most often will exhibit behavior similar to that indicated by the model. The Space Synthetic Biology project began in 2012 as a multi-Center effort. The purpose of this project was to harness Synthetic Biology principals to enable NASA's missions. A central target for application was to Environmental Control & Life Support (ECLS). Engineers from NASA Marshall Space Flight Center's (MSFC's) ECLS Systems Development Branch (ES62) were brought into the project to contribute expertise in operational ECLS systems. Project lead scientists chose to pursue the development of bioelectrochemical technologies to spacecraft life support. Therefore, the ECLS element of the project became essentially an effort to develop a bioelectrochemical ECLS subsystem. Bioelectrochemical systems exploit the ability of many microorganisms to drive their metabolisms by direct or indirect utilization of electrical potential gradients. Whereas many microorganisms are capable of deriving the energy required for the processes of interest (such as carbon dioxide (CO2) fixation) from sunlight, it is believed that subsystems utilizing electrotrophs will exhibit smaller mass, volume, and power requirements than those that derive their energy from sunlight. In the first 2 years of the project, MSFC personnel conducted modeling, simulation, and conceptual design efforts to assist the

  6. Synthetic and Alternate Fuels Characterization

    DTIC Science & Technology

    1988-02-01

    e-e AD-A197 531 AD_ m iI ORNL/TM-10706 OAK RIDGE NATIONAL Synthetic and Alternate LABORATORY Fuels Characterization •_ _ __ _ _Final Report February...21701-5012 62787A 2787A878 CA 294 11 TITLE (Include Security Classification) Synthetic and Alternate Fuels Characterization 12 PERSONAL AUTHOR(S) W. H...results suggest that highly refined and finished mobility fuels from synthetic or alternate sources will not pose a significantly greater toxicological

  7. Synthetic biology and occupational risk.

    PubMed

    Howard, John; Murashov, Vladimir; Schulte, Paul

    2017-03-01

    Synthetic biology is an emerging interdisciplinary field of biotechnology that involves applying the principles of engineering and chemical design to biological systems. Biosafety professionals have done an excellent job in addressing research laboratory safety as synthetic biology and gene editing have emerged from the larger field of biotechnology. Despite these efforts, risks posed by synthetic biology are of increasing concern as research procedures scale up to industrial processes in the larger bioeconomy. A greater number and variety of workers will be exposed to commercial synthetic biology risks in the future, including risks to a variety of workers from the use of lentiviral vectors as gene transfer devices. There is a need to review and enhance current protection measures in the field of synthetic biology, whether in experimental laboratories where new advances are being researched, in health care settings where treatments using viral vectors as gene delivery systems are increasingly being used, or in the industrial bioeconomy. Enhanced worker protection measures should include increased injury and illness surveillance of the synthetic biology workforce; proactive risk assessment and management of synthetic biology products; research on the relative effectiveness of extrinsic and intrinsic biocontainment methods; specific safety guidance for synthetic biology industrial processes; determination of appropriate medical mitigation measures for lentiviral vector exposure incidents; and greater awareness and involvement in synthetic biology safety by the general occupational safety and health community as well as by government occupational safety and health research and regulatory agencies.

  8. Entraining synthetic genetic oscillators

    NASA Astrophysics Data System (ADS)

    Wagemakers, Alexandre; Buldú, Javier M.; Sanjuán, Miguel A. F.; de Luis, Oscar; Izquierdo, Adriana; Coloma, Antonio

    2009-09-01

    We propose a new approach for synchronizing a population of synthetic genetic oscillators, which consists in the entrainment of a colony of repressilators by external modulation. We present a model where the repressilator dynamics is affected by periodic changes in temperature. We introduce an additional plasmid in the bacteria in order to correlate the temperature variations with the enhancement of the transcription rate of a certain gene. This can be done by introducing a promoter that is related to the heat shock response. This way, the expression of that gene results in a protein that enhances the overall oscillations. Numerical results show coherent oscillations of the population for a certain range of the external frequency, which is in turn related to the natural oscillation frequency of the modified repressilator. Finally we study the transient times related with the loss of synchronization and we discuss possible applications in biotechnology of large-scale production coupled to synchronization events induced by heat shock.

  9. Synthetic quantum systems

    NASA Astrophysics Data System (ADS)

    Cahill, Reginald T.

    2002-10-01

    So far proposed quantum computers use fragile and environmentally sensitive natural quantum systems. Here we explore the new notion that synthetic quantum systems suitable for quantum computation may be fabricated from smart nanostructures using topological excitations of a stochastic neural-type network that can mimic natural quantum systems. These developments are a technological application of process physics which is an information theory of reality in which space and quantum phenomena are emergent, and so indicates the deep origins of quantum phenomena. Analogous complex stochastic dynamical systems have recently been proposed within neurobiology to deal with the emergent complexity of biosystems, particularly the biodynamics of higher brain function. The reasons for analogous discoveries in fundamental physics and neurobiology are discussed.

  10. Evolutionary synthetic biology.

    PubMed

    Peisajovich, Sergio G

    2012-06-15

    Signaling networks process vast amounts of environmental information to generate specific cellular responses. As cellular environments change, signaling networks adapt accordingly. Here, I will discuss how the integration of synthetic biology and directed evolution approaches is shedding light on the molecular mechanisms that guide the evolution of signaling networks. In particular, I will review studies that demonstrate how different types of mutations, from the replacement of individual amino acids to the shuffling of modular domains, lead to markedly different evolutionary trajectories and consequently to diverse network rewiring. Moreover, I will argue that intrinsic evolutionary properties of signaling proteins, such as the robustness of wild type functions, the promiscuous nature of evolutionary intermediates, and the modular decoupling between binding and catalysis, play important roles in the evolution of signaling networks. Finally, I will argue that rapid advances in our ability to synthesize DNA will radically alter how we study signaling network evolution at the genome-wide level.

  11. Peri-implant mucositis and peri-implantitis: bacterial infection.

    PubMed

    Khammissa, R A G; Feller, L; Meyerov, R; Lemmer, J

    2012-03-01

    Osseointegrated dental implants have a ong-term success rate of over 90%, but may be threatened by peri-implant mucostis and peri-implantitis, bacteria biofilm-induced inflammatory conditions. While peri-implant mucositis is a reversible inflammatory condition confined to the peri-implant soft-tissue unit, peri-implantitis is characterised by progressive inflammatory destruction of the crest of the alveolar bone supporting the implant, by increased peri-implant probing depths, and by bleeding and/or suppuration on probing. Effective treatment of peri-implant mucositis will prevent the development of peri-implantitis. Plaque accumulation on the implant/abutment surface juxtaposed to the junctional epithelium and to the connective tissue zone of the peri-implant soft-tissue unit induces the development of peri-implant mucositis which can subsequently progress to peri-implantitis. The aim of this paper is to review some aspects of bacterial infection of the tissue supporting dental implants, and to explore how to maintain the healthy peri-implant soft-tissue unit.

  12. [Extra-oral implants: principal areas of implantation].

    PubMed

    Badie-Modiri, B; Kaplanski, P

    2001-08-01

    The success of extra-oral implants raises a certain number of technical and medical problems. Among these, the anatomy of the implant zone and bone quality are determining factors for osteointegration of the implants. We describe the principal zones of implantation detailing the risks involved in each area.

  13. Resorbable Synthetic Mesh Supported With Omentum Flap in the Treatment of Giant Hiatal Hernia

    PubMed Central

    Pérez Lara, F. J.; Marín, R.; del Rey, A.; Oliva, H.

    2014-01-01

    Covering a large hiatal hernia with a mesh has become a basic procedure in the last few years. However, mesh implants are associated with high complication rates (esophageal erosion, perforation, fistula, etc.). We propose using a synthetic resorbable mesh supported with an omental flap as a possible solution to this problem. A 54-year-old female patient with a large hiatal defect (9 cm) was laparoscopically implanted with a synthetic resorbable mesh supported with an omental flap. The surgical procedure was successful and the patient was discharged on postoperative day 2. On a follow-up examination 6 months after surgery, she remained free of relapse or complication signs. Supporting an implanted resorbable mesh with an omental flap may be a solution to the problems posed by large esophageal hiatus defects. However, more studies based on larger patient samples and longer follow-up periods are necessary. PMID:25216419

  14. Synthetic genomics and synthetic biology applications between hopes and concerns.

    PubMed

    König, Harald; Frank, Daniel; Heil, Reinhard; Coenen, Christopher

    2013-03-01

    New organisms and biological systems designed to satisfy human needs are among the aims of synthetic genomics and synthetic biology. Synthetic biology seeks to model and construct biological components, functions and organisms that do not exist in nature or to redesign existing biological systems to perform new functions. Synthetic genomics, on the other hand, encompasses technologies for the generation of chemically-synthesized whole genomes or larger parts of genomes, allowing to simultaneously engineer a myriad of changes to the genetic material of organisms. Engineering complex functions or new organisms in synthetic biology are thus progressively becoming dependent on and converging with synthetic genomics. While applications from both areas have been predicted to offer great benefits by making possible new drugs, renewable chemicals or clean energy, they have also given rise to concerns about new safety, environmental and socio-economic risks - stirring an increasingly polarizing debate. Here we intend to provide an overview on recent progress in biomedical and biotechnological applications of synthetic genomics and synthetic biology as well as on arguments and evidence related to their possible benefits, risks and governance implications.

  15. Synthetic Genomics and Synthetic Biology Applications Between Hopes and Concerns

    PubMed Central

    König, Harald; Frank, Daniel; Heil, Reinhard; Coenen, Christopher

    2013-01-01

    New organisms and biological systems designed to satisfy human needs are among the aims of synthetic genomics and synthetic biology. Synthetic biology seeks to model and construct biological components, functions and organisms that do not exist in nature or to redesign existing biological systems to perform new functions. Synthetic genomics, on the other hand, encompasses technologies for the generation of chemically-synthesized whole genomes or larger parts of genomes, allowing to simultaneously engineer a myriad of changes to the genetic material of organisms. Engineering complex functions or new organisms in synthetic biology are thus progressively becoming dependent on and converging with synthetic genomics. While applications from both areas have been predicted to offer great benefits by making possible new drugs, renewable chemicals or clean energy, they have also given rise to concerns about new safety, environmental and socio-economic risks – stirring an increasingly polarizing debate. Here we intend to provide an overview on recent progress in biomedical and biotechnological applications of synthetic genomics and synthetic biology as well as on arguments and evidence related to their possible benefits, risks and governance implications. PMID:23997647

  16. Dental Implant Systems

    PubMed Central

    Oshida, Yoshiki; Tuna, Elif B.; Aktören, Oya; Gençay, Koray

    2010-01-01

    Among various dental materials and their successful applications, a dental implant is a good example of the integrated system of science and technology involved in multiple disciplines including surface chemistry and physics, biomechanics, from macro-scale to nano-scale manufacturing technologies and surface engineering. As many other dental materials and devices, there are crucial requirements taken upon on dental implants systems, since surface of dental implants is directly in contact with vital hard/soft tissue and is subjected to chemical as well as mechanical bio-environments. Such requirements should, at least, include biological compatibility, mechanical compatibility, and morphological compatibility to surrounding vital tissues. In this review, based on carefully selected about 500 published articles, these requirements plus MRI compatibility are firstly reviewed, followed by surface texturing methods in details. Normally dental implants are placed to lost tooth/teeth location(s) in adult patients whose skeleton and bony growth have already completed. However, there are some controversial issues for placing dental implants in growing patients. This point has been, in most of dental articles, overlooked. This review, therefore, throws a deliberate sight on this point. Concluding this review, we are proposing a novel implant system that integrates materials science and up-dated surface technology to improve dental implant systems exhibiting bio- and mechano-functionalities. PMID:20480036

  17. Single implant tooth replacement.

    PubMed

    Briley, T F

    1998-01-01

    It has been shown that direct bone anchorage of dental implants will provide long-term predictability for single tooth implants and multi-unit implants. The function of implant-supported restoration is now routinely achieved. The real challenge facing the restorative dentist and laboratory technician is to achieve optimal aesthetics. The learning objective of this article is to review the prosthodontic procedures essential to maximizing natural aesthetics in implant supported restorations. It will provide a review of master impression techniques, prepable titanium abutments and designing the cement on restoration. Particular emphasis is directed to the soft tissue model from which a series of sequenced techniques can be followed to achieve optimal aesthetics. Analysis of the implant alignment with regard to the neighboring teeth will result in having to make a choice of which prepable abutment will maximize the aesthetic result. The following case outlines how to replace a single missing tooth using an externally hexed implant system and a prefabricated titanium abutment on a 26-year-old male patient.

  18. Boron implanted strontium titanate

    NASA Astrophysics Data System (ADS)

    Cooper, C. J. M.

    Single crystals of strontium titanate implanted with boron were found to have highly conductive surface layers. The effects of varying dose from 10 to the 16th power to 10 to the 17th power ions/sq cm, implantation voltage from 50 to 175 keV and annealing conditions on the room temperature surface resistance and Hall mobility are presented. Variation of the implantation voltage did not have a major effect on the sheet resistances obtained by boron implantation of strontium titanate, while dose and annealing conditions have major effects. Doses of 5 x 10 to the 16th power ions/sq cm required annealing on the order of one hour at 500 K for maximum reduction of the room temperature resistance in the implanted layer. Samples implanted with a dose of 1 x 10 to the 17th power ions/sq cm required slightly higher temperatures (approximately 575 K) to obtain a minimum resistance at room temperature. Long term (several weeks) room temperature annealing was found to occur in high dose samples. After one to two months at room temperature followed by an anneal to 575 K, the surface resistances were found to be lower than those produced by the annealing of a freshly implanted sample to 575 K.

  19. Nanotechnology for dental implants.

    PubMed

    Tomsia, Antoni P; Lee, Janice S; Wegst, Ulrike G K; Saiz, Eduardo

    2013-01-01

    With the advent of nanotechnology, an opportunity exists for the engineering of new dental implant materials. Metallic dental implants have been successfully used for decades, but they have shortcomings related to osseointegration and mechanical properties that do not match those of bone. Absent the development of an entirely new class of materials, faster osseointegration of currently available dental implants can be accomplished by various surface modifications. To date, there is no consensus regarding the preferred method(s) of implant surface modification, and further development will be required before the ideal implant surface can be created, let alone become available for clinical use. Current approaches can generally be categorized into three areas: ceramic coatings, surface functionalization, and patterning on the micro- to nanoscale. The distinctions among these are imprecise, as some or all of these approaches can be combined to improve in vivo implant performance. These surface improvements have resulted in durable implants with a high percentage of success and long-term function. Nanotechnology has provided another set of opportunities for the manipulation of implant surfaces in its capacity to mimic the surface topography formed by extracellular matrix components of natural tissue. The possibilities introduced by nanotechnology now permit the tailoring of implant chemistry and structure with an unprecedented degree of control. For the first time, tools are available that can be used to manipulate the physicochemical environment and monitor key cellular events at the molecular level. These new tools and capabilities will result in faster bone formation, reduced healing time, and rapid recovery to function.

  20. A synthetic optogenetic transcription device enhances blood-glucose homeostasis in mice.

    PubMed

    Ye, Haifeng; Daoud-El Baba, Marie; Peng, Ren-Wang; Fussenegger, Martin

    2011-06-24

    Synthetic biology has advanced the design of genetic devices that can be used to reprogram metabolic activities in mammalian cells. By functionally linking the signal transduction of melanopsin to the control circuit of the nuclear factor of activated T cells, we have designed a synthetic signaling cascade enabling light-inducible transgene expression in different cell lines grown in culture or bioreactors or implanted into mice. In animals harboring intraperitoneal hollow-fiber or subcutaneous implants containing light-inducible transgenic cells, the serum levels of the human glycoprotein secreted alkaline phosphatase could be remote-controlled with fiber optics or transdermally regulated through direct illumination. Light-controlled expression of the glucagon-like peptide 1 was able to attenuate glycemic excursions in type II diabetic mice. Synthetic light-pulse-transcription converters may have applications in therapeutics and protein expression technology.

  1. Foreign Body Response to Subcutaneous Implants in Diabetic Rats

    PubMed Central

    Socarrás, Teresa Oviedo; Vasconcelos, Anilton C.; Campos, Paula P.; Pereira, Nubia B.; Souza, Jessica P. C.; Andrade, Silvia P.

    2014-01-01

    Implantation of synthetic matrices and biomedical devices in diabetic individuals has become a common procedure to repair and/or replace biological tissues. However, an adverse foreign body reaction that invariably occurs adjacent to implant devices impairing their function is poorly characterized in the diabetic environment. We investigated the influence of this condition on the abnormal tissue healing response in implants placed subcutaneously in normoglycemic and streptozotocin-induced diabetes in rats. In polyether-polyurethane sponge discs removed 10 days after implantation, the components of the fibrovascular tissue (angiogenesis, inflammation, fibrogenesis, and apoptosis) were assessed. Intra-implant levels of hemoglobin and vascular endothelial growth factor were not different after diabetes when compared with normoglycemic counterparts. However, there were a lower number of vessels in the fibrovascular tissue from diabetic rats when compared with vessel numbers in implants from non-diabetic animals. Overall, the inflammatory parameters (neutrophil accumulation - myeloperoxidase activity, tumor necrosis factor alpha, and monocyte chemotactic protein-1 levels and mast cell counting) increased in subcutaneous implants after diabetes induction. However, macrophage activation (N-acetyl-β-D-glucosaminidase activity) was lower in implants from diabetic rats when compared with those from normoglycemic animals. All fibrogenic markers (transforming growth factor beta 1 levels, collagen deposition, fibrous capsule thickness, and foreign body giant cells) decreased after diabetes, whereas apoptosis (TUNEL) increased. Our results showing that hyperglycemia down regulates the main features of the foreign body reaction induced by subcutaneous implants in rats may be relevant in understanding biomaterial integration and performance in diabetes. PMID:25372281

  2. Tissue Reinforcement in Implant-based Breast Reconstruction

    PubMed Central

    Scheflan, Michael

    2014-01-01

    Background: Tissue reinforcement with allogeneic or xenogeneic acellular dermal matrices (ADMs) is increasingly used in single-stage (direct-to-implant) and 2-stage implant-based breast reconstruction following mastectomy. ADMs allow surgeons to control implant position and obviate the need for submuscular implant placement. Here, we review the benefits and risks of using ADMs in implant-based breast reconstruction based on available data. Methods: A comprehensive analysis of the literature with focus on recent publications was performed. Additional information regarding the proper use of ADMs was based on our institutional experience. Results: ADM use may improve definition of the lateral confines of the breast and lower pole projection. It may facilitate direct-to-implant procedures and improve aesthetic outcomes. The effect of ADMs on complication rates remains controversial. Known patient risk factors such as obesity, smoking, and radiotherapy should be considered during patient selection. For patients with healthy, well-vascularized skin envelopes, ADM-assisted direct-to- implant reconstruction is a safe and cost-effective alternative to 2-stage implant reconstruction, with low complication rates. ADMs may be used to treat capsular contracture, and limited available data further suggest the possibility that ADMs may reduce the risk of capsular contracture. Novel synthetic or biosynthetic tissue reinforcement devices with different physical and ease-of-use properties than ADMs are emerging options for reconstructive surgeons and patients who seek to avoid tissue products from human or mammalian cadavers. Conclusions: ADM-assisted implant-based breast reconstruction may improve aesthetic outcomes. However, appropriate patient selection, surgical technique, and postoperative management are critical for its success, including minimizing the risk of complications. PMID:25426375

  3. Optimization of dental implantation

    NASA Astrophysics Data System (ADS)

    Dol, Aleksandr V.; Ivanov, Dmitriy V.

    2017-02-01

    Modern dentistry can not exist without dental implantation. This work is devoted to study of the "bone-implant" system and to optimization of dental prostheses installation. Modern non-invasive methods such as MRI an 3D-scanning as well as numerical calculations and 3D-prototyping allow to optimize all of stages of dental prosthetics. An integrated approach to the planning of implant surgery can significantly reduce the risk of complications in the first few days after treatment, and throughout the period of operation of the prosthesis.

  4. Oxygen implanter for simox

    NASA Astrophysics Data System (ADS)

    Guerra, M.; Benveniste, V.; Ryding, G.; Douglas-Hamilton, D. H.; Reed, M.; Gagne, G.; Armstrong, A.; Mack, M.

    1985-01-01

    Interest in silicon or) insulator (SOI) technology has led to the development of several alternatives to silicon on sapphire. One of the most promising techniques makes use of an ion implanter to form a buried oxide layer directly in the silicon substrate. To have useful single crystalline silicon on top of the oxide layer, it is necessary to do the implant at high wafer temperatures and rely on solid phase epitaxy to maintain surface structure. A high current, 160 keV, Nova ion implanter has been adapted to provide the ability to perform oxygen implants at elevated temperatures. The operator is free to choose any temperature in the range between 400°C and 600°C. The system then preheats the wafers to the selected temperature before the implant begins. A novel technique for providing both heating and cooling capability to the end station is employed. An infrared signal from the wafers is monitored by a room temperature lead salt detector. This signal is then used by a servo-loop to control the heating of the end station and to maintain the wafer temperature to within ± 20°C during the implant. High doses of the type necessary to form a silicon dioxide buried layer require long lived, high current oxygen sources. An oxygen source has been specially developed, which provides as much as 10 mA of ion current. At a 6 mA output, source lifetimes in excess of 40 hours have been achieved. The implanter uses a specifically designed high temperature disk, which holds ten wafers, each of four inch diameter. A variety of implant angles lying between 0° and 15° is available. The beam is scanned mechanically and an electron flood gun can be used to prevent wafer charging. Special thermal barriers have been employed to protect the apparatus from extreme temperatures and to make the heating sequence more efficient and more rapid. Every effort has been made to avoid contamination of the implant. The implant disk, for example, is overcoated with silicon monoxide. Silicon

  5. Biomedical implantable microelectronics.

    PubMed

    Meindl, J D

    1980-10-17

    Innovative applications of microelectronics in new biomedical implantable instruments offer a singular opportunity for advances in medical research and practice because of two salient factors: (i) beyond all other types of biomedical instruments, implants exploit fully the inherent technical advantages--complex functional capability, high reliability, lower power drain, small size and weight-of microelectronics, and (ii) implants bring microelectronics into intimate association with biological systems. The combination of these two factors enables otherwise impossible new experiments to be conducted and new paostheses developed that will improve the quality of human life.

  6. Transcatheter aortic valve implantation.

    PubMed

    Oliemy, Ahmed; Al-Attar, Nawwar

    2014-01-01

    Transcatheter aortic valve implantation was developed to offer a therapeutic solution to patients with severe symptomatic aortic stenosis who are not candidates for conventional aortic valve replacement. The improvement in transcatheter aortic valve implantation outcomes is still of concern in the areas of stroke, vascular injury, heart block, paravalvular regurgitation and valve durability. Concomitantly, the progress, both technical and in terms of material advances of transcatheter valve systems, as well as in patient selection, renders transcatheter aortic valve implantation an increasingly viable treatment for more and more patients with structural heart disease.

  7. Medical Textiles as Vascular Implants and Their Success to Mimic Natural Arteries

    PubMed Central

    Singh, Charanpreet; Wong, Cynthia S.; Wang, Xungai

    2015-01-01

    Vascular implants belong to a specialised class of medical textiles. The basic purpose of a vascular implant (graft and stent) is to act as an artificial conduit or substitute for a diseased artery. However, the long-term healing function depends on its ability to mimic the mechanical and biological behaviour of the artery. This requires a thorough understanding of the structure and function of an artery, which can then be translated into a synthetic structure based on the capabilities of the manufacturing method utilised. Common textile manufacturing techniques, such as weaving, knitting, braiding, and electrospinning, are frequently used to design vascular implants for research and commercial purposes for the past decades. However, the ability to match attributes of a vascular substitute to those of a native artery still remains a challenge. The synthetic implants have been found to cause disturbance in biological, biomechanical, and hemodynamic parameters at the implant site, which has been widely attributed to their structural design. In this work, we reviewed the design aspect of textile vascular implants and compared them to the structure of a natural artery as a basis for assessing the level of success as an implant. The outcome of this work is expected to encourage future design strategies for developing improved long lasting vascular implants. PMID:26133386

  8. Medical Textiles as Vascular Implants and Their Success to Mimic Natural Arteries.

    PubMed

    Singh, Charanpreet; Wong, Cynthia S; Wang, Xungai

    2015-06-30

    Vascular implants belong to a specialised class of medical textiles. The basic purpose of a vascular implant (graft and stent) is to act as an artificial conduit or substitute for a diseased artery. However, the long-term healing function depends on its ability to mimic the mechanical and biological behaviour of the artery. This requires a thorough understanding of the structure and function of an artery, which can then be translated into a synthetic structure based on the capabilities of the manufacturing method utilised. Common textile manufacturing techniques, such as weaving, knitting, braiding, and electrospinning, are frequently used to design vascular implants for research and commercial purposes for the past decades. However, the ability to match attributes of a vascular substitute to those of a native artery still remains a challenge. The synthetic implants have been found to cause disturbance in biological, biomechanical, and hemodynamic parameters at the implant site, which has been widely attributed to their structural design. In this work, we reviewed the design aspect of textile vascular implants and compared them to the structure of a natural artery as a basis for assessing the level of success as an implant. The outcome of this work is expected to encourage future design strategies for developing improved long lasting vascular implants.

  9. Holographically Correcting Synthetic Aperture Aberrations.

    DTIC Science & Technology

    1987-12-01

    Malacara (20:105-148). The synthetic aperture was aligned in accordance with the synthetic-aperture alignment technique of Gill (8:61-64). The...1987. 20. Malacara , Daniel, ed. Optical Shop Testing. New York: John Wiley & Sons, 1978. 21. Marciniak, Capt Michael. Tutorial Presentation of mV

  10. Synthetic biology and metabolic engineering.

    PubMed

    Stephanopoulos, Gregory

    2012-11-16

    Metabolic engineering emerged 20 years ago as the discipline occupied with the directed modification of metabolic pathways for the microbial synthesis of various products. As such, it deals with the engineering (design, construction, and optimization) of native as well as non-natural routes of product synthesis, aided in this task by the availability of synthetic DNA, the core enabling technology of synthetic biology. The two fields, however, only partially overlap in their interest in pathway engineering. While fabrication of biobricks, synthetic cells, genetic circuits, and nonlinear cell dynamics, along with pathway engineering, have occupied researchers in the field of synthetic biology, the sum total of these areas does not constitute a coherent definition of synthetic biology with a distinct intellectual foundation and well-defined areas of application. This paper reviews the origins of the two fields and advances two distinct paradigms for each of them: that of unit operations for metabolic engineering and electronic circuits for synthetic biology. In this context, metabolic engineering is about engineering cell factories for the biological manufacturing of chemical and pharmaceutical products, whereas the main focus of synthetic biology is fundamental biological research facilitated by the use of synthetic DNA and genetic circuits.

  11. DEALING WITH DENTAL IMPLANT FAILURES

    PubMed Central

    Levin, Liran

    2008-01-01

    An implant-supported restoration offers a predictable treatment for tooth replacement. Reported success rates for dental implants are high. Nevertheless, failures that mandate immediate implant removal do occur. The consequences of implant removal jeopardize the clinician's efforts to accomplish satisfactory function and esthetics. For the patient, this usually involves further cost and additional procedures. The aim of this paper is to describe different methods and treatment modalities to deal with dental implant failure. The main topics for discussion include identifying the failing implant, implants replacing failed implants at the exact site, and the use of other restorative options. When an implant fails, a tailor made treatment plan should be provided to each patient according to all relevant variables. Patients should be informed regarding all possible treatment modalities following implant failure and give their consent to the most appropriate treatment option for them. PMID:19089213

  12. Dealing with dental implant failures.

    PubMed

    Levin, L

    2010-01-01

    An implant-supported restoration offers a predictable treatment for tooth replacement. Reported success rates for dental implants are high. Nevertheless, failures that mandate immediate implant removal do occur. The consequences of implant removal jeopardize the clinician's efforts to accomplish satisfactory function and esthetics. For the patient, this usually involves further cost and additional procedures. The aim of this paper is to describe different methods and treatment modalities to deal with dental implant failure. The main topics for discussion include identifying the failing implant, implants replacing failed implants at the exact site, and the use of other restorative options. When an implant fails, a tailor made treatment plan should be provided to each patient according to all relevant variables. Patients should be informed regarding all possible treatment modalities following implant failure and give their consent to the most appropriate treatment option for them.

  13. Dealing with dental implant failures.

    PubMed

    Levin, Liran

    2008-01-01

    An implant-supported restoration offers a predictable treatment for tooth replacement. Reported success rates for dental implants are high. Nevertheless, failures that mandate immediate implant removal do occur. The consequences of implant removal jeopardize the clinician's efforts to accomplish satisfactory function and esthetics. For the patient, this usually involves further cost and additional procedures. The aim of this paper is to describe different methods and treatment modalities to deal with dental implant failure. The main topics for discussion include identifying the failing implant, implants replacing failed implants at the exact site, and the use of other restorative options.When an implant fails, a tailor made treatment plan should be provided to each patient according to all relevant variables. Patients should be informed regarding all possible treatment modalities following implant failure and give their consent to the most appropriate treatment option for them.

  14. Dealing with dental implant failures.

    PubMed

    Levin, L

    2010-07-01

    An implant-supported restoration offers a predictable treatment for tooth replacement. Reported success rates for dental implants are high. Nevertheless, failures that mandate immediate implant removal do occur. The consequences of implant removal jeopardize the clinician's efforts to accomplish satisfactory function and esthetics. For the patient, this usually involves further cost and additional procedures. The aim of this paper is to describe different methods and treatment modalities to deal with dental implant failure. The main topics for discussion include identifying the failing implant, implants replacing failed implants at the exact site, and the use of other restorative options. When an implant fails, a tailor made treatment plan should be provided to each patient according to all relevant variables. Patients should be informed regarding all possible treatment modalities following implant failure and give their consent to the most appropriate treatment option for them.

  15. Synthetic Foveal Imaging Technology

    NASA Technical Reports Server (NTRS)

    Hoenk, Michael; Monacos, Steve; Nikzad, Shouleh

    2009-01-01

    Synthetic Foveal imaging Technology (SyFT) is an emerging discipline of image capture and image-data processing that offers the prospect of greatly increased capabilities for real-time processing of large, high-resolution images (including mosaic images) for such purposes as automated recognition and tracking of moving objects of interest. SyFT offers a solution to the image-data processing problem arising from the proposed development of gigapixel mosaic focal-plane image-detector assemblies for very wide field-of-view imaging with high resolution for detecting and tracking sparse objects or events within narrow subfields of view. In order to identify and track the objects or events without the means of dynamic adaptation to be afforded by SyFT, it would be necessary to post-process data from an image-data space consisting of terabytes of data. Such post-processing would be time-consuming and, as a consequence, could result in missing significant events that could not be observed at all due to the time evolution of such events or could not be observed at required levels of fidelity without such real-time adaptations as adjusting focal-plane operating conditions or aiming of the focal plane in different directions to track such events. The basic concept of foveal imaging is straightforward: In imitation of a natural eye, a foveal-vision image sensor is designed to offer higher resolution in a small region of interest (ROI) within its field of view. Foveal vision reduces the amount of unwanted information that must be transferred from the image sensor to external image-data-processing circuitry. The aforementioned basic concept is not new in itself: indeed, image sensors based on these concepts have been described in several previous NASA Tech Briefs articles. Active-pixel integrated-circuit image sensors that can be programmed in real time to effect foveal artificial vision on demand are one such example. What is new in SyFT is a synergistic combination of recent

  16. Recent advances in synthetic biosafety

    PubMed Central

    Simon, Anna J.; Ellington, Andrew D.

    2016-01-01

    Synthetically engineered organisms hold promise for a broad range of medical, environmental, and industrial applications. Organisms can potentially be designed, for example, for the inexpensive and environmentally benign synthesis of pharmaceuticals and industrial chemicals, for the cleanup of environmental pollutants, and potentially even for biomedical applications such as the targeting of specific diseases or tissues. However, the use of synthetically engineered organisms comes with several reasonable safety concerns, one of which is that the organisms or their genes could escape their intended habitats and cause environmental disruption. Here we review key recent developments in this emerging field of synthetic biocontainment and discuss further developments that might be necessary for the widespread use of synthetic organisms. Specifically, we discuss the history and modern development of three strategies for the containment of synthetic microbes: addiction to an exogenously supplied ligand; self-killing outside of a designated environment; and self-destroying encoded DNA circuitry outside of a designated environment. PMID:27635235

  17. Breast Reconstruction with Implants

    MedlinePlus

    ... removes your breast to treat or prevent breast cancer. One type of breast reconstruction uses breast implants — silicone devices filled with silicone gel or salt water (saline) — to reshape your breasts. Breast reconstruction ...

  18. Biocompatibility of surgical implants

    NASA Technical Reports Server (NTRS)

    Kaelble, D. H.

    1979-01-01

    Method of selecting biocompatible materials for surgical implants uses fracture mechanic relationships and surface energies of candidate materials in presence of blood plasma. Technique has been used to characterize 190 materials by parameters that reflect their biocompatibility.

  19. Biocompatibility of surgical implants

    NASA Technical Reports Server (NTRS)

    Kaelble, D. H.

    1979-01-01

    Method of selecting biocompatible materials for surgical implants uses fracture mechanic relationships and surface energies of candidate materials in presence of blood plasma. Technique has been used to characterize 190 materials by parameters that reflect their biocompatibility.

  20. Implantable Medical Devices

    MedlinePlus

    ... a Heart Attack Treatment of a Heart Attack Life After a Heart Attack Heart Failure About Heart Failure ... Attack Introduction Medications Surgical Procedures Implantable Medical Devices • Life After a Heart Attack • Heart Attack Tools & Resources • Support ...

  1. Urinary incontinence - injectable implant

    MedlinePlus

    Intrinsic sphincter deficiency repair; ISD repair; Injectable bulking agents for stress urinary incontinence ... Urine leakage that gets worse Pain where the injection was done Allergic reaction to the material Implant ...

  2. Superelastic Orthopedic Implant Coatings

    NASA Astrophysics Data System (ADS)

    Fournier, Eric; Devaney, Robert; Palmer, Matthew; Kramer, Joshua; El Khaja, Ragheb; Fonte, Matthew

    2014-07-01

    The demand for hip and knee replacement surgery is substantial and growing. Unfortunately, most joint replacement surgeries will fail within 10-25 years, thereby requiring an arduous, painful, and expensive revision surgery. To address this issue, a novel orthopedic implant coating material ("eXalt") has been developed. eXalt is comprised of super elastic nitinol wire that is knit into a three-dimensional spacer fabric structure. eXalt expands in vivo to conform to the implantation site and is porous to allow for bone ingrowth. The safety and efficacy of eXalt were evaluated through structural analysis, mechanical testing, and a rabbit implantation model. The results demonstrate that eXalt meets or exceeds the performance of current coating technologies with reduced micromotion, improved osseointegration, and stronger implant fixation in vivo.

  3. Breast reconstruction - implants

    MedlinePlus

    ... cosmetic surgery after breast cancer can improve your sense of well-being and your quality of life. Alternative Names Breast implants surgery References Roehl KR, Wilhelmi BJ, Phillips LG. Breast reconstruction. ...

  4. [Bypass spanning the knee joint with synthetic prosthesis].

    PubMed

    Müller-Wiefel, H

    1989-01-01

    Synthetic tubes are the second choice for below-knee bypass materials. The ring-reinforced thin-walled Goretex-PTFE graft is an approved material which was tested in a multicenter study. The primary 3 years patency for below-knee femoral-popliteal bypass was 64%, for crural bypass 39%. A total of 195 grafts have been implanted. Long-term patency depends very much on the run-off conditions (81% in good and 43% in bad cases). The over-all limb salvage rate was 80% after 3 years.

  5. Interferometric synthetic aperture microscopy

    PubMed Central

    Ralston, Tyler S.; Marks, Daniel L.; Carney, P. Scott; Boppart, Stephen A.

    2014-01-01

    State-of-the-art methods in high-resolution three-dimensional optical microscopy require that the focus be scanned through the entire region of interest. However, an analysis of the physics of the light–sample interaction reveals that the Fourier-space coverage is independent of depth. Here we show that, by solving the inverse scattering problem for interference microscopy, computed reconstruction yields volumes with a resolution in all planes that is equivalent to the resolution achieved only at the focal plane for conventional high-resolution microscopy. In short, the entire illuminated volume has spatially invariant resolution, thus eliminating the compromise between resolution and depth of field. We describe and demonstrate a novel computational image-formation technique called interferometric synthetic aperture microscopy (ISAM). ISAM has the potential to broadly impact real-time three-dimensional microscopy and analysis in the fields of cell and tumour biology, as well as in clinical diagnosis where in vivo imaging is preferable to biopsy. PMID:25635181

  6. Synthetic retinoids in dermatology

    PubMed Central

    Heller, Elizabeth H.; Shiffman, Norman J.

    1985-01-01

    The potential of vitamin A, or retinol, in the treatment of a variety of skin diseases has long been recognized, but because of serious toxic effects this substance generally could not be used. The recent development and marketing of two relatively nontoxic synthetic analogues, which are known as retinoids, has made it possible to treat some of the diseases that are resistant to standard forms of therapy. Isotretinoin is very effective in cystic and conglobate acne, while etretinate is especially useful in the more severe forms of psoriasis. Good results have also been obtained in other disorders of keratinization. Vitamin A and its derivatives apparently have an antineoplastic effect as well and may come to be used in both the prevention and the treatment of epithelial cancer. In many of these diseases the retinoids act by enhancing the normal differentiation and proliferation of epidermal tissues, but the exact mechanisms are not well understood. Their influence on the intracellular polyamines that control the synthesis of nucleic acids and proteins may be an important factor. Although the retinoids have few serious systemic effects, they are teratogenic, and because they persist in the body their use in women of childbearing potential is limited. ImagesFig. 3 PMID:3158386

  7. Synthetic aperture microwave radiometer

    NASA Astrophysics Data System (ADS)

    Levine, D. M.

    Realizing the full potential of microwave remote sensing from space requires putting relatively large antennas in orbit. Research is being conducted to develop synthetic aperture antennas to reduce the physical collecting area required of sensors in space, and to possibly open the door to new applications of microwave remote sensing. The technique under investigation involves using a correlation interferometer with multiple baselines. The Microwave Sensors and Data Collection Branch has been engaged in research to develop this technique for applications to remote sensing of soil moisture from space. Soil moisture is important for agricultural applications and for understanding the global hydrologic cycle. An aircraft prototype of an instrument suitable for making such measurements was developed. This is an L-band radiometer called ESTAR which is hoped will become part of the Earth Observing System (EOS). ESTAR is a hybrid instrument which uses both real aperture antennas (long sticks to obtain resolution in the along-track dimension) and aperture synthesis (correlation between sticks to obtain resolution in the cross track dimension). The hybrid was chosen as a compromise to increase the sensitivity (T) of the instrument.

  8. Synthetic aperture hitchhiker imaging.

    PubMed

    Yarman, Can Evren; Yazici, Birsen

    2008-11-01

    We introduce a novel synthetic-aperture imaging method for radar systems that rely on sources of opportunity. We consider receivers that fly along arbitrary, but known, flight trajectories and develop a spatio-temporal correlation-based filtered-backprojection-type image reconstruction method. The method involves first correlating the measurements from two different receiver locations. This leads to a forward model where the radiance of the target scene is projected onto the intersection of certain hyperboloids with the surface topography. We next use microlocal techniques to develop a filtered-backprojection-type inversion method to recover the scene radiance. The method is applicable to both stationary and mobile, and cooperative and noncooperative sources of opportunity. Additionally, it is applicable to nonideal imaging scenarios such as those involving arbitrary flight trajectories, and has the desirable property of preserving the visible edges of the scene radiance. We present an analysis of the computational complexity of the image reconstruction method and demonstrate its performance in numerical simulations for single and multiple transmitters of opportunity.

  9. Computing with synthetic protocells.

    PubMed

    Courbet, Alexis; Molina, Franck; Amar, Patrick

    2015-09-01

    In this article we present a new kind of computing device that uses biochemical reactions networks as building blocks to implement logic gates. The architecture of a computing machine relies on these generic and composable building blocks, computation units, that can be used in multiple instances to perform complex boolean functions. Standard logical operations are implemented by biochemical networks, encapsulated and insulated within synthetic vesicles called protocells. These protocells are capable of exchanging energy and information with each other through transmembrane electron transfer. In the paradigm of computation we propose, protoputing, a machine can solve only one problem and therefore has to be built specifically. Thus, the programming phase in the standard computing paradigm is represented in our approach by the set of assembly instructions (specific attachments) that directs the wiring of the protocells that constitute the machine itself. To demonstrate the computing power of protocellular machines, we apply it to solve a NP-complete problem, known to be very demanding in computing power, the 3-SAT problem. We show how to program the assembly of a machine that can verify the satisfiability of a given boolean formula. Then we show how to use the massive parallelism of these machines to verify in less than 20 min all the valuations of the input variables and output a fluorescent signal when the formula is satisfiable or no signal at all otherwise.

  10. Ecotoxicology of synthetic pyrethroids.

    PubMed

    Maund, S J; Campbell, P J; Giddings, J M; Hamer, M J; Henry, K; Pilling, E D; Warinton, J S; Wheeler, J R

    2012-01-01

    In this chapter we review the ecotoxicology of the synthetic pyrethroids (SPs). SPs are potent, broad-spectrum insecticides. Their effects on a wide range of nontarget species have been broadly studied, and there is an extensive database available to evaluate their effects. SPs are highly toxic to fish and aquatic invertebrates in the laboratory, but effects in the field are mitigated by rapid dissipation and degradation. Due to their highly lipophilic nature, SPs partition extensively into sediments. Recent studies have shown that toxicity in sediment can be predicted on the basis of equilibrium partitioning, and whilst other factors can influence this, organic carbon content is a key determining variable. At present for SPs, there is no clear evidence for adverse population-relevant effects with an underlying endocrine mode of action. SPs have been studied intensively in aquatic field studies, and their effects under field conditions are mitigated from those measured in the laboratory by their rapid dissipation and degradation. Studies with a range of test systems have shown consistent aquatic field endpoints across a variety of geographies and trophic states. SPs are also highly toxic to bees and other nontarget arthropods in the laboratory. These effects are mitigated in the field through repellency and dissipation of residues, and recovery from any adverse effects tends to be rapid.

  11. Synthetic carriers of oxygen.

    PubMed

    Dellacherie, E; Labrude, P; Vigneron, C; Riess, J G

    1987-01-01

    During the last decade, construction of artificial carriers of oxygen for transfusion purposes has evolved in three main directions, which can be reviewed as follows. The first approach consists of modifying hemoglobin (Hb), the natural oxygen carrier, in order to lower its oxygen affinity and increase its intravascular persistence. To achieve this aim, two basic procedures have been used: molecular and environmental modification. In the first case, Hb is modified with chemical reagents; the second requires encapsulation of Hb to obtain artificial erythrocytes. The second approach is based on the use of synthetic oxygen-carrying chelates that mimic the oxygenation function of Hb. The main products in this class are metalloporphyrins, whose chemical environment is designed to render them efficient as reversible carriers of oxygen in vivo. Finally, the third approach deals with the perfluorochemicals used in emulsified form. Perfluorochemical liquids are excellent gas solvents, but some problems remain unsolved with regard to their development as oxygen carriers in vivo: low O2 dissolving capacity, toxicity, and excretion.

  12. [Larynx: implants and stents].

    PubMed

    Sittel, C

    2009-05-01

    There is a wide variety of devices and materials to be implanted into the human larynx. Some are intended to remain only for a period of time, like laryngeal stents. If removal is not intended the device meets the definition for a medical implant. The majority of implants is used for the treatment of unilateral vocal fold immobility. There a 2 types of implants serving this purpose: Implants in a stricter sense are devices of solid material, which are brought into the paraglottic space through a window in the laryngeal framework (medialization thyroplasty). Several different products are presented in this review. In contrast, there are different substances available for endoscopic injection into the paralyzed vocal fold (injection laryngoplasty). Since some of these substances show a corpuscular consistency and a high viscosity they need to be deposited into the lateral paraglottic space. Therefore, the term "injectable implants" has been coined for these materials. The different substances available are discussed in detail in this review. Laryngeal stents are primarily used in the early postoperative phase after open reconstruction of the larynx. The different devices available on the market are described with their specific characteristics and intended use.

  13. Anodized dental implant surface.

    PubMed

    Mishra, Sunil Kumar; Kumar, Muktadar Anand; Chowdhary, Ramesh

    2017-01-01

    Anodized implants with moderately rough surface were introduced around 2000. Whether these implants enhanced biologic effect to improve the environment for better osseointegration was unclear. The purpose of this article was to review the literature available on anodized surface in terms of their clinical success rate and bone response in patients till now. A broad electronic search of MEDLINE and PubMed databases was performed. A focus was made on peer-reviewed dental journals. Only articles related to anodized implants were included. Both animal and human studies were included. The initial search of articles resulted in 581 articles on anodized implants. The initial screening of titles and abstracts resulted in 112 full-text papers; 40 animal studies, 16 studies on cell adhesion and bacterial adhesion onto anodized surfaced implants, and 47 human studies were included. Nine studies, which do not fulfill the inclusion criteria, were excluded. The long-term studies on anodized surface implants do favor the surface, but in most of the studies, anodized surface is compared with that of machined surface, but not with other surfaces commercially available. Anodized surface in terms of clinical success rate in cases of compromised bone and immediately extracted sockets has shown favorable success.

  14. Biocompatible implant surface treatments.

    PubMed

    Pattanaik, Bikash; Pawar, Sudhir; Pattanaik, Seema

    2012-01-01

    Surface plays a crucial role in biological interactions. Surface treatments have been applied to metallic biomaterials in order to improve their wear properties, corrosion resistance, and biocompatibility. A systematic review was performed on studies investigating the effects of implant surface treatments on biocompatibility. We searched the literature using PubMed, electronic databases from 1990 to 2009. Key words such as implant surface topography, surface roughness, surface treatment, surface characteristics, and surface coatings were used. The search was restricted to English language articles published from 1990 to December 2009. Additionally, a manual search in the major dental implant journals was performed. When considering studies, clinical studies were preferred followed by histological human studies, animal studies, and in vitro studies. A total of 115 articles were selected after elimination: clinical studies, 24; human histomorphometric studies, 11; animal histomorphometric studies, 46; in vitro studies, 34. The following observations were made in this review: · The focus has shifted from surface roughness to surface chemistry and a combination of chemical manipulations on the porous structure. More investigations are done regarding surface coatings. · Bone response to almost all the surface treatments was favorable. · Future trend is focused on the development of osteogenic implant surfaces. Limitation of this study is that we tried to give a broader overview related to implant surface treatments. It does not give any conclusion regarding the best biocompatible implant surface treatment investigated till date. Unfortunately, the eventually selected studies were too heterogeneous for inference of data.

  15. Biomaterials in cochlear implants

    PubMed Central

    Stöver, Timo; Lenarz, Thomas

    2011-01-01

    The cochlear implant (CI) represents, for almost 25 years now, the gold standard in the treatment of children born deaf and for postlingually deafened adults. These devices thus constitute the greatest success story in the field of ‘neurobionic’ prostheses. Their (now routine) fitting in adults, and especially in young children and even babies, places exacting demands on these implants, particularly with regard to the biocompatibility of a CI’s surface components. Furthermore, certain parts of the implant face considerable mechanical challenges, such as the need for the electrode array to be flexible and resistant to breakage, and for the implant casing to be able to withstand external forces. As these implants are in the immediate vicinity of the middle-ear mucosa and of the junction to the perilymph of the cochlea, the risk exists – at least in principle – that bacteria may spread along the electrode array into the cochlea. The wide-ranging requirements made of the CI in terms of biocompatibility and the electrode mechanism mean that there is still further scope – despite the fact that CIs are already technically highly sophisticated – for ongoing improvements to the properties of these implants and their constituent materials, thus enhancing the effectiveness of these devices. This paper will therefore discuss fundamental material aspects of CIs as well as the potential for their future development. PMID:22073103

  16. Contraceptive implants and lactation.

    PubMed

    Díaz, Soledad

    2002-01-01

    The safety and efficacy of four contraceptive implants, plant, Implanon, Nestorone and Elcometrine, have been evaluated during use in the postpartum period by lactating women. These implants provide highly effective contraceptive protection with no negative effect on breastfeeding or infant growth and development. Breastfeeding women initiating Norplant use in the second postpartum month experience significantly longer periods of amenorrhea than do untreated women or intrauterine device users. After weaning, the bleeding pattern is similar to that observed in non-nursing women. Norplant use does not affect bone turnover and density during lactation. Norplant and Implanon release orally active progestins while Nestorone and Elcometrine implants release an orally inactive progestin, which represents an advantage since the infant should be free of steroidal effects. The infant's daily intake of steroids (estimated from concentrations in maternal milk during the first month of use) range from 90 to 100 ng of levonorgestrel (Norplant), 75-120 ng of etonogestrel (Implanon), and 50 ng and 110 ng of Nestorone (Nestorone and Elcometrine implants, respectively). Nursing women needing contraception may use progestin-only implants when nonhormonal methods are not available or acceptable. Implants that deliver orally active steroids should only be used after 6 weeks postpartum to avoid transferring of steroids to the newborn.

  17. Simple Implant Augmentation Rhinoplasty

    PubMed Central

    Nguyen, Anh H.; Bartlett, Erica L.; Kania, Katarzyna; Bae, Sang Mo

    2015-01-01

    Augmentation rhinoplasty among Asian patients is often performed to improve the height of the nasal dorsum. As the use of autogenous tissues poses certain limitations, alloplastic materials are a viable alternative with a long history of use in Asia. The superiority of one implant prosthesis over another for augmentation rhinoplasty is a matter of debate, with each material representing varying strengths and weaknesses, indications for use, and precautions to consider in nasal implant placement. An implant prosthesis should be used on a case-by-case basis. Augmentation rhinoplasty requires the consideration of specific anatomical preoperative factors, including the external nose, nasal length, nasofrontal angle, humps, and facial proportions. It is equally important to consider several operative guidelines to appropriately shape implants to minimize the occurrence of adverse effects and postoperative complications. The most common postoperative complications include infection, nasal height change, movement of implant prosthesis, and silicone implant protrusion. In addition, the surgeon should consider the current standards of Asian beauty aesthetics to better understand the patient's desired outcome. PMID:26648804

  18. Synthetic biology: Understanding biological design from synthetic circuits

    PubMed Central

    Mukherji, Shankar; van Oudenaarden, Alexander

    2011-01-01

    An important aim of synthetic biology is to uncover the design principles of natural biological systems through the rational design of gene and protein circuits. Here we highlight how the process of engineering biological systems — from synthetic promoters to the control of cell–cell interactions — has contributed to our understanding of how endogenous systems are put together and function. Synthetic biological devices allow us to intuitively grasp the ranges of behavior generated by simple biological circuits, such as linear cascades and interlocking feedback loops, as well as to exert control over natural processes such as gene expression and population dynamics. PMID:19898500

  19. Synthetic biology: lessons from the history of synthetic organic chemistry.

    PubMed

    Yeh, Brian J; Lim, Wendell A

    2007-09-01

    The mid-nineteenth century saw the development of a radical new direction in chemistry: instead of simply analyzing existing molecules, chemists began to synthesize them--including molecules that did not exist in nature. The combination of this new synthetic approach with more traditional analytical approaches revolutionized chemistry, leading to a deep understanding of the fundamental principles of chemical structure and reactivity and to the emergence of the modern pharmaceutical and chemical industries. The history of synthetic chemistry offers a possible roadmap for the development and impact of synthetic biology, a nascent field in which the goal is to build novel biological systems.

  20. Short dental implants: an emerging concept in implant treatment.

    PubMed

    Al-Hashedi, Ashwaq Ali; Taiyeb Ali, Tara Bai; Yunus, Norsiah

    2014-06-01

    Short implants have been advocated as a treatment option in many clinical situations where the use of conventional implants is limited. This review outlines the effectiveness and clinical outcomes of using short implants as a valid treatment option in the rehabilitation of edentulous atrophic alveolar ridges. Initially, an electronic search was performed on the following databases: Medline, PubMed, Embase, Cochrane Database of Systematic Reviews, and DARE using key words from January 1990 until May 2012. An additional hand search was included for the relevant articles in the following journals: International Journal of Oral and Maxillofacial Implants, Clinical Oral Implants Research, Journal of Clinical Periodontology, International Journal of Periodontics, Journal of Periodontology, and Clinical Implant Dentistry and Related Research. Any relevant papers from the journals' references were hand searched. Articles were included if they provided detailed data on implant length, reported survival rates, mentioned measures for implant failure, were in the English language, involved human subjects, and researched implants inserted in healed atrophic ridges with a follow-up period of at least 1 year after implant-prosthesis loading. Short implants demonstrated a high rate of success in the replacement of missing teeth in especially atrophic alveolar ridges. The advanced technology and improvement of the implant surfaces have encouraged the success of short implants to a comparable level to that of standard implants. However, further randomized controlled clinical trials and prospective studies with longer follow-up periods are needed.

  1. Synthetic biology and personalized medicine.

    PubMed

    Jain, K K

    2013-01-01

    Synthetic biology, application of synthetic chemistry to biology, is a broad term that covers the engineering of biological systems with structures and functions not found in nature to process information, manipulate chemicals, produce energy, maintain cell environment and enhance human health. Synthetic biology devices contribute not only to improve our understanding of disease mechanisms, but also provide novel diagnostic tools. Methods based on synthetic biology enable the design of novel strategies for the treatment of cancer, immune diseases metabolic disorders and infectious diseases as well as the production of cheap drugs. The potential of synthetic genome, using an expanded genetic code that is designed for specific drug synthesis as well as delivery and activation of the drug in vivo by a pathological signal, was already pointed out during a lecture delivered at Kuwait University in 2005. Of two approaches to synthetic biology, top-down and bottom-up, the latter is more relevant to the development of personalized medicines as it provides more flexibility in constructing a partially synthetic cell from basic building blocks for a desired task.

  2. Spicing thing up: Synthetic cannabinoids

    PubMed Central

    Spaderna, Max; Addy, Peter H; D’Souza, Deepak Cyril

    2013-01-01

    Rationale Recently, products containing synthetic cannabinoids, collectively referred to as Spice, are increasingly being used recreationally. Objectives The availability, acute subjective effects—including self-reports posted on Erowid—laboratory detection, addictive potential, and regulatory challenges of the Spice phenomenon are reviewed. Results Spice is sold under the guise of potpourri or incense. Unlike THC, the synthetic cannabinoids present in Spice are high-potency, high-efficacy, cannabinoid-receptor full agonists. Since standard urine toxicology does not test for the synthetic cannabinoids in Spice, it is often used by those who want to avoid detection of drug use. These compounds have not yet been subjected to rigorous testing in humans. Acute psychoactive effects include changes in mood, anxiety, perception, thinking, memory, and attention. Adverse effects include anxiety, agitation, panic, dysphoria, psychosis, and bizarre behavior. Psychosis outcomes associated with Spice provide additional data linking cannabinoids and psychosis. Adverse events necessitating intervention by Poison Control Centers, law enforcement, emergency responders, and hospitals are increasing. Despite statutes prohibiting the manufacture, distribution, and sale of Spice products, manufacturers are replacing banned compounds with newer synthetic cannabinoids that are not banned. Conclusions There is an urgent need for better research on the effects of synthetic cannabinoids to help clinicians manage adverse events and to better understand cannabinoid pharmacology in humans. The reported psychosis outcomes associated with synthetic cannabinoids contribute to the ongoing debate on the association between cannabinoids and psychosis. Finally, drug-detection tests for synthetic cannabinoids need to become clinically available. PMID:23836028

  3. Distributed and collaborative synthetic environments

    NASA Technical Reports Server (NTRS)

    Bajaj, Chandrajit L.; Bernardini, Fausto

    1995-01-01

    Fast graphics workstations and increased computing power, together with improved interface technologies, have created new and diverse possibilities for developing and interacting with synthetic environments. A synthetic environment system is generally characterized by input/output devices that constitute the interface between the human senses and the synthetic environment generated by the computer; and a computation system running a real-time simulation of the environment. A basic need of a synthetic environment system is that of giving the user a plausible reproduction of the visual aspect of the objects with which he is interacting. The goal of our Shastra research project is to provide a substrate of geometric data structures and algorithms which allow the distributed construction and modification of the environment, efficient querying of objects attributes, collaborative interaction with the environment, fast computation of collision detection and visibility information for efficient dynamic simulation and real-time scene display. In particular, we address the following issues: (1) A geometric framework for modeling and visualizing synthetic environments and interacting with them. We highlight the functions required for the geometric engine of a synthetic environment system. (2) A distribution and collaboration substrate that supports construction, modification, and interaction with synthetic environments on networked desktop machines.

  4. Synthetic biology: advancing biological frontiers by building synthetic systems.

    PubMed

    Chen, Yvonne Y; Galloway, Kate E; Smolke, Christina D

    2012-02-20

    Advances in synthetic biology are contributing to diverse research areas, from basic biology to biomanufacturing and disease therapy. We discuss the theoretical foundation, applications, and potential of this emerging field.

  5. Synthetic biology: advancing biological frontiers by building synthetic systems

    PubMed Central

    2012-01-01

    Advances in synthetic biology are contributing to diverse research areas, from basic biology to biomanufacturing and disease therapy. We discuss the theoretical foundation, applications, and potential of this emerging field. PMID:22348749

  6. Bistatic synthetic aperture radar

    NASA Astrophysics Data System (ADS)

    Yates, Gillian

    Synthetic aperture radar (SAR) allows all-weather, day and night, surface surveillance and has the ability to detect, classify and geolocate objects at long stand-off ranges. Bistatic SAR, where the transmitter and the receiver are on separate platforms, is seen as a potential means of countering the vulnerability of conventional monostatic SAR to electronic countermeasures, particularly directional jamming, and avoiding physical attack of the imaging platform. As the receiving platform can be totally passive, it does not advertise its position by RF emissions. The transmitter is not susceptible to jamming and can, for example, operate at long stand-off ranges to reduce its vulnerability to physical attack. This thesis examines some of the complications involved in producing high-resolution bistatic SAR imagery. The effect of bistatic operation on resolution is examined from a theoretical viewpoint and analytical expressions for resolution are developed. These expressions are verified by simulation work using a simple 'point by point' processor. This work is extended to look at using modern practical processing engines for bistatic geometries. Adaptations of the polar format algorithm and range migration algorithm are considered. The principal achievement of this work is a fully airborne demonstration of bistatic SAR. The route taken in reaching this is given, along with some results. The bistatic SAR imagery is analysed and compared to the monostatic imagery collected at the same time. Demonstrating high-resolution bistatic SAR imagery using two airborne platforms represents what I believe to be a European first and is likely to be the first time that this has been achieved outside the US (the UK has very little insight into US work on this topic). Bistatic target characteristics are examined through the use of simulations. This also compares bistatic imagery with monostatic and gives further insight into the utility of bistatic SAR.

  7. Synthetic biology for therapeutic applications.

    PubMed

    Abil, Zhanar; Xiong, Xiong; Zhao, Huimin

    2015-02-02

    Synthetic biology is a relatively new field with the key aim of designing and constructing biological systems with novel functionalities. Today, synthetic biology devices are making their first steps in contributing new solutions to a number of biomedical challenges, such as emerging bacterial antibiotic resistance and cancer therapy. This review discusses some synthetic biology approaches and applications that were recently used in disease mechanism investigation and disease modeling, drug discovery and production, as well as vaccine development and treatment of infectious diseases, cancer, and metabolic disorders.

  8. Synthetic Biology for Therapeutic Applications

    PubMed Central

    2015-01-01

    Synthetic biology is a relatively new field with the key aim of designing and constructing biological systems with novel functionalities. Today, synthetic biology devices are making their first steps in contributing new solutions to a number of biomedical challenges, such as emerging bacterial antibiotic resistance and cancer therapy. This review discusses some synthetic biology approaches and applications that were recently used in disease mechanism investigation and disease modeling, drug discovery and production, as well as vaccine development and treatment of infectious diseases, cancer, and metabolic disorders. PMID:25098838

  9. [Dental implant-related infections].

    PubMed

    López-Cerero, Lorena

    2008-11-01

    Dental implant-associated infections are expected to be increasingly more common as the number of patients with implants for more than 10 years rises. There are 2 stages of peri-implant infection: early mucositis, consisting of inflammation of the peri-implant soft tissues without loss of supporting bone, and a more advanced form involving a loss of osseointegration, known as peri-implantitis. The estimated prevalence of this latter infection is 10% of 5-year implants and the main risk factor is previous periodontal disease. The etiopathogenesis of peri-implantitis is related with reservoirs of periodontal pathogens; however factors that lead to colonization of the implant surface or increased susceptibility to infection may also have an influence. Treatment should include removal of the bacterial biofilm, debridement of the exposed surface, and surgical regeneration of the peri-implant pocket.

  10. The use of synthetic sub-urethral slings in the treatment of female stress urinary incontinence.

    PubMed

    Feifer, Andrew; Corcos, Jacques

    2007-09-01

    We set out to review the existing literature regarding the use of synthetic suburethral sling products for the treatment of female stress urinary incontinence. Products currently implanted are examined and scrutinized, and evidence regarding their efficacy and complication rates is noted. Additionally, specifics of presently utilized synthetic materials, including construction method and biocompatibility, are explored and directly correlated to currently marketed products. This investigation was undertaken with the use of the Medline database. Studies pertaining to synthetic or surgical mesh, as well as each specific suburethral sling product, are included. Our findings and ultimately our recommendations stem from the preponderance of evidence supporting the continued use of knitted, macroporous polypropelene mesh slings. Several existing marketed products detailed in the study fit this description. Specific reference is made to recent reports of vaginal erosions and deep space infections related to several specific products. A cautionary note is also made regarding the implantation of transobturator sling products currently marketed without the necessary pre-market testing, potentially placing the public at risk. From the currently available literature on biomaterials, it seems clear that knitted macroporous polypropylene is the material of choice for suburethral implantation. With respect to the means and techniques by which these mesh materials are suburethrally implanted, the surgeon's choice often dictates which method is used, but recent experience has demonstrated that the transobturator approach can be equally as effective as the traditional tension-free vaginal tape, with less-associated morbidity. Ongoing randomized controlled trials will further clarify and distinguish between methods.

  11. Chronic subperiosteal hematic cyst formation twelve years after orbital fracture repair with alloplastic orbital floor implant.

    PubMed

    Glavas, Ioannis; Lissauer, Boaz; Hornblass, Albert

    2005-03-01

    An 89-year-old female patient with a history of a left orbital floor fracture repair with synthetic implant 12 years prior, presented with a three-week history of blurry vision, inferior conjunctival chemosis and proptosis of the left eye. CT scan revealed a well-circumscribed subperiosteal lesion with superior elevation of the orbital floor implant. The patient underwent transconjunctival orbital surgery with removal of the implant and drainage of the subperiosteal hemorrhagic cyst. The patient had an uncomplicated postoperative course, with resolution of the proptosis, chemosis, and return of normal vision. This case represents an unusual late complication of orbital fracture repair with associated reduced visual acuity.

  12. Methods for Implant Acceptance and Wound Healing: Material Selection and Implant Location Modulate Macrophage and Fibroblast Phenotypes.

    PubMed

    Boddupalli, Anuraag; Zhu, Lida; Bratlie, Kaitlin M

    2016-10-01

    This review focuses on materials and methods used to induce phenotypic changes in macrophages and fibroblasts. Herein, we give a brief overview on how changes in macrophages and fibroblasts phenotypes are critical biomarkers for identification of implant acceptance, wound healing effectiveness, and are also essential for evaluating the regenerative capabilities of some hybrid strategies that involve the combination of natural and synthetic materials. The different types of cells present during the host response have been extensively studied for evaluating the reaction to different materials and there are varied material approaches towards fabrication of biocompatible substrates. We discuss how natural and synthetic materials have been used to engineer desirable outcomes in lung, heart, liver, skin, and musculoskeletal implants, and how certain properties such as rigidity, surface shape, and porosity play key roles in the progression of the host response. Several fabrication strategies are discussed to control the phenotype of infiltrating macrophages and fibroblasts: decellularization of scaffolds, surface coatings, implant shape, and pore size apart from biochemical signaling pathways that can inhibit or accelerate unfavorable host responses. It is essential to factor all the different design principles and material fabrication criteria for evaluating the choice of implant materials or regenerative therapeutic strategies. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. Approaches to chemical synthetic biology.

    PubMed

    Chiarabelli, Cristiano; Stano, Pasquale; Anella, Fabrizio; Carrara, Paolo; Luisi, Pier Luigi

    2012-07-16

    Synthetic biology is first represented in terms of two complementary aspects, the bio-engineering one, based on the genetic manipulation of extant microbial forms in order to obtain forms of life which do not exist in nature; and the chemical synthetic biology, an approach mostly based on chemical manipulation for the laboratory synthesis of biological structures that do not exist in nature. The paper is mostly devoted to shortly review chemical synthetic biology projects currently carried out in our laboratory. In particular, we describe: the minimal cell project, then the "Never Born Proteins" and lastly the Never Born RNAs. We describe and critically analyze the main results, emphasizing the possible relevance of chemical synthetic biology for the progress in basic science and biotechnology.

  14. A Course on Synthetic Fuels.

    ERIC Educational Resources Information Center

    Kimmel, Howard S.; Tomkins, Reginald P. T.

    1985-01-01

    A senior-level, elective course on synthetic fuels was developed for chemistry and chemical engineering majors. The topics covered in this course, instructional strategies used, and independent student projects are described. (JN)

  15. Synthetic Biology for Specialty Chemicals.

    PubMed

    Markham, Kelly A; Alper, Hal S

    2015-01-01

    In this review, we address recent advances in the field of synthetic biology and describe how those tools have been applied to produce a wide variety of chemicals in microorganisms. Here we classify the expansion of the synthetic biology toolbox into three different categories based on their primary function in strain engineering-for design, for construction, and for optimization. Next, focusing on recent years, we look at how chemicals have been produced using these new synthetic biology tools. Advances in producing fuels are briefly described, followed by a more thorough treatment of commodity chemicals, specialty chemicals, pharmaceuticals, and nutraceuticals. Throughout this review, an emphasis is placed on how synthetic biology tools are applied to strain engineering. Finally, we discuss organism and host strain diversity and provide a future outlook in the field.

  16. Is synthetic biology mechanical biology?

    PubMed

    Holm, Sune

    2015-12-01

    A widespread and influential characterization of synthetic biology emphasizes that synthetic biology is the application of engineering principles to living systems. Furthermore, there is a strong tendency to express the engineering approach to organisms in terms of what seems to be an ontological claim: organisms are machines. In the paper I investigate the ontological and heuristic significance of the machine analogy in synthetic biology. I argue that the use of the machine analogy and the aim of producing rationally designed organisms does not necessarily imply a commitment to mechanical biology. The ideal of applying engineering principles to biology is best understood as expressing recognition of the machine-unlikeness of natural organisms and the limits of human cognition. The paper suggests an interpretation of the identification of organisms with machines in synthetic biology according to which it expresses a strategy for representing, understanding, and constructing living systems that are more machine-like than natural organisms.

  17. Synthetic Turf Multiplies Stadium Use.

    ERIC Educational Resources Information Center

    Leach, Richard

    1979-01-01

    The high school stadium in Flint, Michigan, once was used only for varsity football games. After the installation of synthetic turf, an average of 332 events have been staged there each year. (Author/MLF)

  18. Toward Engineering Synthetic Microbial Metabolism

    PubMed Central

    McArthur, George H.; Fong, Stephen S.

    2010-01-01

    The generation of well-characterized parts and the formulation of biological design principles in synthetic biology are laying the foundation for more complex and advanced microbial metabolic engineering. Improvements in de novo DNA synthesis and codon-optimization alone are already contributing to the manufacturing of pathway enzymes with improved or novel function. Further development of analytical and computer-aided design tools should accelerate the forward engineering of precisely regulated synthetic pathways by providing a standard framework for the predictable design of biological systems from well-characterized parts. In this review we discuss the current state of synthetic biology within a four-stage framework (design, modeling, synthesis, analysis) and highlight areas requiring further advancement to facilitate true engineering of synthetic microbial metabolism. PMID:20037734

  19. Synthetic Turf Multiplies Stadium Use.

    ERIC Educational Resources Information Center

    Leach, Richard

    1979-01-01

    The high school stadium in Flint, Michigan, once was used only for varsity football games. After the installation of synthetic turf, an average of 332 events have been staged there each year. (Author/MLF)

  20. Programming languages for synthetic biology.

    PubMed

    Umesh, P; Naveen, F; Rao, Chanchala Uma Maheswara; Nair, Achuthsankar S

    2010-12-01

    In the backdrop of accelerated efforts for creating synthetic organisms, the nature and scope of an ideal programming language for scripting synthetic organism in-silico has been receiving increasing attention. A few programming languages for synthetic biology capable of defining, constructing, networking, editing and delivering genome scale models of cellular processes have been recently attempted. All these represent important points in a spectrum of possibilities. This paper introduces Kera, a state of the art programming language for synthetic biology which is arguably ahead of similar languages or tools such as GEC, Antimony and GenoCAD. Kera is a full-fledged object oriented programming language which is tempered by biopart rule library named Samhita which captures the knowledge regarding the interaction of genome components and catalytic molecules. Prominent feature of the language are demonstrated through a toy example and the road map for the future development of Kera is also presented.

  1. Positron implantation in solids

    SciTech Connect

    Ghosh, V.J.; Lynn, K.G.; Welch, D.O.

    1993-12-31

    The Monte Carlo technique for modeling positron prior to annihilation and electron implantation in semi-infinite metals is described. Particle implantation is modelled as a multistep process, a series of collisions with the atoms of the host material. In elastic collisions with neutral atoms there is no transfer of energy. The particle loses energy by several different channels, excitation of the electron gas, ionization of the ion cores, or, at low energies, by phonon excitation. These competing scattering mechanisms have been incorporated into the Monte Carlo framework and several different models are being used. Brief descriptions of these Monte Carlo schemes, as well as an analytic model for positron implantation are included. Results of the Monte Carlo simulations are presented and compared with expermental data. Problems associated with modeling positron implantation are discuss and the need for more expermental data on energy-loss in different materials is stressed. Positron implantation in multilayers of different metals is briefly described and extensions of this work to include a study of multilayers and heterostructures is suggested.

  2. Synthetic biology as red herring.

    PubMed

    Preston, Beth

    2013-12-01

    It has become commonplace to say that with the advent of technologies like synthetic biology the line between artifacts and living organisms, policed by metaphysicians since antiquity, is beginning to blur. But that line began to blur 10,000 years ago when plants and animals were first domesticated; and has been thoroughly blurred at least since agriculture became the dominant human subsistence pattern many millennia ago. Synthetic biology is ultimately only a late and unexceptional offshoot of this prehistoric development. From this perspective, then, synthetic biology is a red herring, distracting us from more thorough philosophical consideration of the most truly revolutionary human practice-agriculture. In the first section of this paper I will make this case with regard to ontology, arguing that synthetic biology crosses no ontological lines that were not crossed already in the Neolithic. In the second section I will construct a parallel case with regard to cognition, arguing that synthetic biology as biological engineering represents no cognitive advance over what was required for domestication and the new agricultural subsistence pattern it grounds. In the final section I will make the case with regard to human existence, arguing that synthetic biology, even if wildly successful, is not in a position to cause significant existential change in what it is to be human over and above the massive existential change caused by the transition to agriculture. I conclude that a longer historical perspective casts new light on some important issues in philosophy of technology and environmental philosophy.

  3. Extraoral prostheses using extraoral implants.

    PubMed

    Pekkan, G; Tuna, S H; Oghan, F

    2011-04-01

    The aim of this study was to evaluate extraoral prostheses and the use of extraoral implants in patients with facial defects. 10 cases were treated utilizing maxillofacial prostheses employing extraoral implants in five cases. 16 extraoral implants were installed. Seven implants were placed in irradiated sites in the orbital regions. Six implants were placed in mastoid regions and three in a zygoma region that was irradiated. Two implants failed before initial integration was achieved in irradiated areas. Using 14 extraoral implants as anchors, five extraoral prostheses were set. The other five cases were treated with extraoral prostheses without using extraoral implants due to cost and patient-related factors. The data included age, sex, primary disease, implant length, implant failure, prosthetic attachment, radiation therapy, and peri-implant skin reactions. The use of extraoral implants for the retention of extraoral prostheses has simplified the placement, removal, and cleaning of the prosthesis by the patient. The stability of the prostheses was improved by anchors. Clinical and technical problems are presented with the techniques used for their resolution. Using extraoral implants resulted in a high rate of success in retaining facial prostheses and gave good stability and aesthetic satisfaction.

  4. Management of peri-implantitis

    PubMed Central

    Prathapachandran, Jayachandran; Suresh, Neethu

    2012-01-01

    Peri-implantitis is a site-specific infectious disease that causes an inflammatory process in soft tissues, and bone loss around an osseointegrated implant in function. The etiology of the implant infection is conditioned by the status of the tissue surrounding the implant, implant design, degree of roughness, external morphology, and excessive mechanical load. The microorganisms most commonly associated with implant failure are spirochetes and mobile forms of Gram-negative anaerobes, unless the origin is the result of simple mechanical overload. Diagnosis is based on changes of color in the gingiva, bleeding and probing depth of peri-implant pockets, suppuration, X-ray, and gradual loss of bone height around the tooth. Treatment will differ depending upon whether it is a case of peri-implant mucositis or peri-implantitis. The management of implant infection should be focused on the control of infection, the detoxification of the implant surface, and regeneration of the alveolar bone. This review article deals with the various treatment options in the management of peri-implantitis. The article also gives a brief description of the etiopathogenesis, clinical features, and diagnosis of peri-implantitis. PMID:23559913

  5. Dental implants: A review.

    PubMed

    Guillaume, B

    2016-12-01

    A high number of patients have one or more missing tooth and it is estimated that one in four American subjects over the age of 74 have lost all their natural teeth. Many options exist to replace missing teeth but dental implants have become one of the most used biomaterial to replace one (or more) missing tooth over the last decades. Contemporary dental implants made with titanium have been proven safe and effective in large series of patients. This review considers the main historical facts concerned with dental implants and present the different critical factors that will ensure a good osseo-integration that will ensure a stable prosthesis anchorage. Copyright © 2016 Elsevier Masson SAS. All rights reserved.

  6. Towards biodegradable wireless implants.

    PubMed

    Boutry, Clémentine M; Chandrahalim, Hengky; Streit, Patrick; Schinhammer, Michael; Hänzi, Anja C; Hierold, Christofer

    2012-05-28

    A new generation of partially or even fully biodegradable implants is emerging. The idea of using temporary devices is to avoid a second surgery to remove the implant after its period of use, thereby improving considerably the patient's comfort and safety. This paper provides a state-of-the-art overview and an experimental section that describes the key technological challenges for making biodegradable devices. The general considerations for the design and synthesis of biodegradable components are illustrated with radiofrequency-driven resistor-inductor-capacitor (RLC) resonators made of biodegradable metals (Mg, Mg alloy, Fe, Fe alloys) and biodegradable conductive polymer composites (polycaprolactone-polypyrrole, polylactide-polypyrrole). Two concepts for partially/fully biodegradable wireless implants are discussed, the ultimate goal being to obtain a fully biodegradable sensor for in vivo sensing.

  7. Complications in implant dentistry

    PubMed Central

    Hanif, Ayesha; Qureshi, Saima; Sheikh, Zeeshan; Rashid, Haroon

    2017-01-01

    After tooth loss, an individual may seek tooth replacement so that his/her function and esthetics could be restored. Clinical prosthodontics, during the past decade, has significantly improved and developed according to the advancements in the science and patient's demands and needs. Conventional options in prosthodontics for substituting a missing single tooth include the removable partial denture, partial and full coverage bridgework, and resin-bonded bridgework. Dental implants have gained increasing popularity over the years as they are capable of restoring the function to near normal in both partial and completely edentulous arches. With substantial evidence available, fixed implant-supported prosthesis are fully acknowledged as a reliable treatment option for the replacement of single or multiple missing teeth nowadays. While dental implants are increasingly becoming the choice of replacement for missing teeth, the impediments associated with them are progressively emerging too. PMID:28435381

  8. Implantable Heart Aid

    NASA Technical Reports Server (NTRS)

    1980-01-01

    Medrad utilized NASA's Apollo technology to develop a new device called the AID implantable automatic pulse generator which monitors the heart continuously, recognizes the onset of ventricular fibrillation and delivers a corrective electrical shock. AID pulse generator is, in effect, a miniaturized version of the defibrillator used by emergency squads and hospitals to restore rhythmic heartbeat after fibrillation, but has the unique advantage of being permanently available to the patient at risk. Once implanted, it needs no specially trained personnel or additional equipment. AID system consists of a microcomputer, a power source and two electrodes which sense heart activity.

  9. Hydroxylapatite Otologic Implants

    SciTech Connect

    McMillan, A.D.; Lauf, R.J.; Beale, B.; Johnson, R.

    2000-01-01

    A Cooperative Research and Development Agreement (CRADA) between Lockheed Martin Energy Research Corporation (LMER) and Smith and Nephew Richards Inc. of Bartlett, TN, was initiated in March 1997. The original completion date for the Agreement was March 25, 1998. The purpose of this work is to develop and commercialize net shape forming methods for directly creating dense hydroxylapatite (HA) ceramic otologic implants. The project includes three tasks: (1) modification of existing gelcasting formulations to accommodate HA slurries; (2) demonstration of gelcasting to fabricate green HA ceramic components of a size and shape appropriate to otologic implants: and (3) sintering and evaluation of the HA components.

  10. Synthetic Eelgrass Oil Barrier

    NASA Astrophysics Data System (ADS)

    Curtis, T. G.

    2013-05-01

    Although surviving in situ micro-organisms eventually consume spilled oil, extensive inundation of shore biota by oil requires cleanup to enable ecological recovery within normal time scales. Although effective in calm seas and quiet waters, oil is advected over and under conventional curtain oil booms by wave actions and currents when seas are running. Most sorbent booms are not reusable, and are usually disposed of in landfills, creating excessive waste. A new concept is proposed for a floating oil barrier, to be positioned off vulnerable coasts, to interdict, contain, and sequester spilled oil, which can then be recovered and the barrier reused. While conventional oil boom designs rely principally on the immiscibility of oil in water and its relative buoyancy, the new concept barrier avoids the pitfalls of the former by taking advantage of the synergistic benefits of numerous fluid and material properties, including: density, buoyancy, elasticity, polarity, and surface area to volume ratio. Modeled after Zostera marina, commonly called eelgrass, the new barrier, referred to as synthetic eelgrass (SE), behaves analogously. Eelgrass has very long narrow, ribbon-like, leaves which support periphyton, a complex matrix of algae and heterotrophic microbes, which position themselves there to extract nutrients from the seawater flowing past them. In an analogous fashion, oil on, or in, seawater, which comes in contact with SE, is adsorbed on the surface and sequestered there. Secured to the bottom, in shoal waters, SE rises to the surface, and, if the tide is low enough, floats on the sea surface down wind, or down current to snare floating oil. The leaves of SE, called filaments, consist of intrinsically buoyant strips of ethylene methyl acrylate, aka EMA. EMA, made of long chain, saturated, hydrocarbon molecules with nearly homogeneous electron charge distributions, is a non-polar material which is oleophilic and hydrophobic. Oil must be in close proximity to the

  11. Current trends in dental implants

    PubMed Central

    Gaviria, Laura; Salcido, John Paul; Guda, Teja

    2014-01-01

    Tooth loss is very a very common problem; therefore, the use of dental implants is also a common practice. Although research on dental implant designs, materials and techniques has increased in the past few years and is expected to expand in the future, there is still a lot of work involved in the use of better biomaterials, implant design, surface modification and functionalization of surfaces to improve the long-term outcomes of the treatment. This paper provides a brief history and evolution of dental implants. It also describes the types of implants that have been developed, and the parameters that are presently used in the design of dental implants. Finally, it describes the trends that are employed to improve dental implant surfaces, and current technologies used for the analysis and design of the implants. PMID:24868501

  12. Freedom and Responsibility in Synthetic Genomics: The Synthetic Yeast Project.

    PubMed

    Sliva, Anna; Yang, Huanming; Boeke, Jef D; Mathews, Debra J H

    2015-08-01

    First introduced in 2011, the Synthetic Yeast Genome (Sc2.0) PROJECT is a large international synthetic genomics project that will culminate in the first eukaryotic cell (Saccharomyces cerevisiae) with a fully synthetic genome. With collaborators from across the globe and from a range of institutions spanning from do-it-yourself biology (DIYbio) to commercial enterprises, it is important that all scientists working on this project are cognizant of the ethical and policy issues associated with this field of research and operate under a common set of principles. In this commentary, we survey the current ethics and regulatory landscape of synthetic biology and present the Sc2.0 Statement of Ethics and Governance to which all members of the project adhere. This statement focuses on four aspects of the Sc2.0 PROJECT: societal benefit, intellectual property, safety, and self-governance. We propose that such project-level agreements are an important, valuable, and flexible model of self-regulation for similar global, large-scale synthetic biology projects in order to maximize the benefits and minimize potential harms. Copyright © 2015 by the Genetics Society of America.

  13. Freedom and Responsibility in Synthetic Genomics: The Synthetic Yeast Project

    PubMed Central

    Sliva, Anna; Yang, Huanming; Boeke, Jef D.; Mathews, Debra J. H.

    2015-01-01

    First introduced in 2011, the Synthetic Yeast Genome (Sc2.0) Project is a large international synthetic genomics project that will culminate in the first eukaryotic cell (Saccharomyces cerevisiae) with a fully synthetic genome. With collaborators from across the globe and from a range of institutions spanning from do-it-yourself biology (DIYbio) to commercial enterprises, it is important that all scientists working on this project are cognizant of the ethical and policy issues associated with this field of research and operate under a common set of principles. In this commentary, we survey the current ethics and regulatory landscape of synthetic biology and present the Sc2.0 Statement of Ethics and Governance to which all members of the project adhere. This statement focuses on four aspects of the Sc2.0 Project: societal benefit, intellectual property, safety, and self-governance. We propose that such project-level agreements are an important, valuable, and flexible model of self-regulation for similar global, large-scale synthetic biology projects in order to maximize the benefits and minimize potential harms. PMID:26272997

  14. [Reaction of bone tissue elements on synthetic bioresorbable materials based on lactic and glycolic acids].

    PubMed

    Kulakov, A A; Grigor'ian, A S

    2014-01-01

    The aim of the study was to evaluate the adverse effects of synthetic polymeric bioresorbable materials based on lactic and glycolic acids on the bone tissue. The study was carried-out on 40 Wister-line rats. Four types of bioresorbable polymeric materials were implanted: PolyLactide Glycolide Acid (PLGA), Poly-L-Lactide Acid (PLLA); Poly-96L/4D-Lactide Acid (96/4 PLDLA); Poly-70L/30D-Lactide Acid (70/30 PLDLA). The results showed connective tissue formation (fibrointegration) bordering bone adjacent to implanted materials. This proved the materials to cause pathogenic influence on the bone which mechanisms are described in the article.

  15. Effect of Allogeneic Platelet Lysate and Cyanoacrylate Tissue Glue on the Fibrovascularization of the Porous Polyethylene Implant.

    PubMed

    Ozturk, Sinan; Sahin, Cihan; Tas, Arzu Caputcu; Muftuoglu, Tuba; Karagoz, Huseyin

    2016-01-01

    Because of limited autogenous tissue sources, donor site morbidity, and difficulty of shaping the autologous tissue, surgeons often need to use alloplastic frameworks in reconstruction of 3-dimensional tissue defects. Synthetic porous polyethylene (PP) implant is widely used in plastic surgery for 3-dimensional reconstruction of the lost or highly deformed tissues. One of the main factors of PP implant exposure is delayed fibrovascular ingrowth. In the present study, the authors investigated the effect allogeneic plateletlysate (PL) and cyanoacrylate tissue glue (CTG) (2-octyl cyanoacrylate) on the fibrovascularization of the PP implant.Twenty adult female Wistar rats were divided into 4 groups equally, according to the different surgical techniques and implanted materials used. Only PP implant was implanted subcutaneously through a skin incision on the chest wall skin of the rats in the control group; however, CTG was applied with PP implant in the cyanoacrylate group, PL was applied with PP implant in the platelet group, CTG and platelet was applied together with PP implant in the combination group. All of the implants in each group were histologically assessed at postoperative second week. Determination of the collagen density in the tissues, inflammation, and necrosis and vascularization status was assessed semiquantitatively.A denser collagen structure, low inflammation, and necrosis were found in PL groups. There was, however, a significant decrease in vascular density with PL-treated groups. PL treatment may have a potential to reduce complications related to PP implants.

  16. Biofilm related to dental implants.

    PubMed

    Lee, Angie; Wang, Hom-Lay

    2010-10-01

    Oral biofilm-related diseases such as periodontal and peri-implant diseases are unique infections in that they develop from the resident indigenous microflora. As more implants are nowadays being placed, clinicians may encounter more complications. Therefore, understanding the etiology is warranted to establish adequate diagnosis and provide proper treatment. This article focuses on understanding peri-implant microbiology and its roles in peri-implant diseases.

  17. Neurotoxicology of Synthetic Cathinone Analogs.

    PubMed

    Angoa-Pérez, Mariana; Anneken, John H; Kuhn, Donald M

    The present review briefly explores the neurotoxic properties of methcathinone, mephedrone, methylone, and methylenedioxypyrovalerone (MDPV), four synthetic cathinones most commonly found in "bath salts." Cathinones are β-keto analogs of the commonly abused amphetamines and display pharmacological effects resembling cocaine and amphetamines, but despite their commonalities in chemical structures, synthetic cathinones possess distinct neuropharmacological profiles and produce unique effects. Among the similarities of synthetic cathinones with their non-keto analogs are their targeting of monoamine systems, the release of neurotransmitters, and their stimulant properties. Most of the literature on synthetic cathinones has focused on describing their properties as psychostimulants, their behavioral effects on locomotion, memory, and potential for abuse, whereas descriptions of their neurotoxic properties are not abundant. The biochemical gauges of neurotoxicity induced by non-keto analogs are well studied in humans and experimental animals and include their ability to induce neuroinflammation, oxidative stress, excitotoxicity, temperature alterations as well as dysregulation of neurotransmitter systems and induce changes in monoamine transporters and receptors. These neurotoxicity gauges will serve as parameters to discuss the effects of the four previously mentioned synthetic cathinones alone or in combination with either another cathinone or with some of their non-keto analogs. Bath salts are not a defined combination of drugs and may consist of one synthetic cathinone compound or combinations of more cathinones. Furthermore, this review also presents some of the mechanisms that are thought to underlie this toxicity. A better understanding of the cellular and molecular mechanisms involved in the synthetic cathinones-induced neurotoxicity should contribute to generate modern therapeutic approaches to prevent or attenuate the adverse consequences of use of these

  18. Continuous elevation of blood growth hormone concentrations by beeswax implant.

    PubMed

    Davis, S L; Dodson, M V; Ohlson, D L

    1983-09-01

    We examined constancy of release of purified ovine growth hormone from an implant containing soybean oil and beeswax. Implants contained an amount of growth hormone that was sufficient to increase concentrations in blood plasma by 20 and 40 ng/ml and to maintain those concentrations over 1 wk. Growth hormone in plasma increased to approximately 65 ng/ml in lambs receiving low dose implants the 1st day after implantation, returned to 31 ng/ml on day 2, and remained near this concentration for the remainder of the week. Pulse release of growth hormone was not similiar in the high dose lambs where growth hormone concentration in plasma averaged 45 ng/ml 1 day after implantation, then gradually increased to 60 ng/ml on day 6. Unimplanted control lambs had mean growth hormone concentrations of 2.9 to 3.9 ng/ml throughout the 6-day observation. This approach should interest investigators studying the chronic influence of purified or synthetic growth hormone on dairy cows, beef steers, or lambs.

  19. Synthetic genomics and the construction of a synthetic bacterial cell.

    PubMed

    Glass, John I

    2012-01-01

    The first synthetic cellular organism was created in 2010 and based on a very small, very simple bacterium called Mycoplasma mycoides. The bacterium was called synthetic because its DNA genome was chemically synthesized rather than replicated from an existing template DNA, as occurs in all other known cellular life on Earth. The experiment was undertaken in order to develop a system that would allow creation of a minimal bacterial cell that could lead to a better understand of the first principles of cellular life. The effort resulted in new synthetic genomics techniques called genome assembly and genome transplantation. The ability of scientists to design and build bacteria opens new possibilities for creating microbes to solve human problems.

  20. Biomimetic approach to dental implants.

    PubMed

    Kim, Tae-Il; Jang, Jun-Hyeog; Kim, Hae-Won; Knowles, Jonathan C; Ku, Young

    2008-01-01

    Titanium, as an implant material, is regarded to be durable and biocompatible, which allows functional replacement of missing teeth. Successful dental implantation depends on an osseointegration phenomenon, a direct structural and functional binding reaction between bone and implant. It is well known that physicochemical characteristics of the dental implant surface, such as roughness, topography, chemistry, and electrical charge affect the biological reactions occurring at the interface of tissue and implant. Therefore, considerable efforts have been made to modify the surface of titanium implants which are based on mechanical, physical and chemical treatments. Recently, biological molecules were introduced onto the surface of implants to stimulate osteogenic cells in the early stage of implantation and consequently accelerate bone formation around implant and subsequent rapid implant stabilization. A range of extracellular matrix components, designed peptides, and growth factors have been proposed as the biological moiety. In this review, we address several issues related to the biology of dental implants and discuss biomimetic modification of the implant surface as a novel approach to obtain successful osseointegration.

  1. The silicone breast implant controversy.

    PubMed

    Guerette, P H

    1995-02-01

    Feminists call it objectification. Consumer advocates call it victimization. Medical personnel call it augmentation. Women, implantation. Whatever the term, media hype and the increasing number of lawsuits against U.S. manufacturers of silicone breast implants has caused widespread concern among women and raised serious questions about the long term health risks and safety of breast implant devices.

  2. Sterilisation of bioresorbable polymer implants.

    PubMed

    Bernkopf, M

    2007-01-01

    Bioresorbable polymer implants are rapidly growing alternatives to traditional implants in many applications. Because of their resorption in the body, it is necessary to sterilise the complete product before application. The suitability of different sterilisation methods for bioresorbable polymers is discussed using polylactic acid implants as an example.

  3. Treatment of peri-implantitis and the failing implant.

    PubMed

    Robertson, Kevin; Shahbazian, Timothy; MacLeod, Stephen

    2015-04-01

    Appropriate treatment of implants is becoming increasingly important for the general dentist as the number of implants placed per year continues to increase. Early diagnosis of peri-implantitis is imperative; initiating the correct treatment protocol depends on a proper diagnosis. Several risk factors exist for the development of peri-implantitis, which can guide patient selection and treatment planning. Treatment of peri-implantitis should be tailored to the severity of the lesion (as outlined by the cumulative interceptive supportive treatment protocol), ranging from mechanical debridement to explantation. Several surgical and nonsurgical treatment alternatives exist. There is little consensus on superior treatment methods. Published by Elsevier Inc.

  4. Two-stage implant systems.

    PubMed

    Fritz, M E

    1999-06-01

    Since the advent of osseointegration approximately 20 years ago, there has been a great deal of scientific data developed on two-stage integrated implant systems. Although these implants were originally designed primarily for fixed prostheses in the mandibular arch, they have been used in partially dentate patients, in patients needing overdentures, and in single-tooth restorations. In addition, this implant system has been placed in extraction sites, in bone-grafted areas, and in maxillary sinus elevations. Often, the documentation of these procedures has lagged. In addition, most of the reports use survival criteria to describe results, often providing overly optimistic data. It can be said that the literature describes a true adhesion of the epithelium to the implant similar to adhesion to teeth, that two-stage implants appear to have direct contact somewhere between 50% and 70% of the implant surface, that the microbial flora of the two-stage implant system closely resembles that of the natural tooth, and that the microbiology of periodontitis appears to be closely related to peri-implantitis. In evaluations of the data from implant placement in all of the above-noted situations by means of meta-analysis, it appears that there is a strong case that two-stage dental implants are successful, usually showing a confidence interval of over 90%. It also appears that the mandibular implants are more successful than maxillary implants. Studies also show that overdenture therapy is valid, and that single-tooth implants and implants placed in partially dentate mouths have a success rate that is quite good, although not quite as high as in the fully edentulous dentition. It would also appear that the potential causes of failure in the two-stage dental implant systems are peri-implantitis, placement of implants in poor-quality bone, and improper loading of implants. There are now data addressing modifications of the implant surface to alter the percentage of

  5. Implant contamination during spine surgery.

    PubMed

    Bible, Jesse E; O'Neill, Kevin R; Crosby, Colin G; Schoenecker, Jonathan G; McGirt, Matthew J; Devin, Clinton J

    2013-06-01

    Postoperative spine infections have been reported to occur in 1% to 15% of patients and subsequently lead to significant morbidity and cost, with an elevated risk for instrumented cases. Every effort should be made to minimize the risk of intraoperative wound contamination. Consequently, certain practices are followed in the operating room to prevent contamination, many of which are not evidence based. Conversely, certain objects believed to be sterile are frequently overlooked as potential sources of contamination. To assess to what degree contamination of spinal implants occurs during spine surgery and evaluate whether coverage of implants alters the rate of contamination. Prospective study. This study included 105 consecutive noninfection surgical cases performed by a single spine surgeon that required the use of instrumentation. Spinal implant contamination. Cases were randomized to have all implant trays either remain uncovered (n=54) or covered (n=51) with sterile surgical towels on opening until implants were required for the case. After the last implant was placed, a sterile culture swab was used to obtain a sample from all open implants that had been present at the start of the case. The paper outer wraps of the implant trays were sampled in each case as a positive control, and an additional 105 swabs were capped immediately after they were opened to obtain negative controls. Swab samples were assessed for bacterial growth on 5% sheep blood Columbia agar plates. Of note, only departmental funding was used and no applicable financial relationships exist with any author. No growth was observed on any of the 105 negative controls, whereas 99.1% of positive controls demonstrated obvious contamination. Cultures from implant samples demonstrated a 9.5% overall rate of contamination with 2.0% (n=1) of covered implants versus 16.7% (n=9) of uncovered implants demonstrating contamination. Length of time implant trays were open before sample collection; implant type

  6. Meeting Report: Synthetic Biology Jamboree for Undergraduates

    ERIC Educational Resources Information Center

    Campbell, A. Malcolm

    2005-01-01

    The field of synthetic biology (the name is derived from an analogy to synthetic chemistry) has recognized itself as a "field" only since about 2002. Synthetic biology has gotten some high-profile attention recently, but most people are not aware the field even exists. Synthetic biologists apply engineering principles to genomic circuits to…

  7. Meeting Report: Synthetic Biology Jamboree for Undergraduates

    ERIC Educational Resources Information Center

    Campbell, A. Malcolm

    2005-01-01

    The field of synthetic biology (the name is derived from an analogy to synthetic chemistry) has recognized itself as a "field" only since about 2002. Synthetic biology has gotten some high-profile attention recently, but most people are not aware the field even exists. Synthetic biologists apply engineering principles to genomic circuits to…

  8. The Effect of Temporal Gap Identification on Speech Perception by Users of Cochlear Implants

    ERIC Educational Resources Information Center

    Sagi, Elad; Kaiser, Adam R.; Meyer, Ted A.; Svirsky, Mario A.

    2009-01-01

    Purpose: This study examined the ability of listeners using cochlear implants (CIs) and listeners with normal hearing (NH) to identify silent gaps of different duration and the relation of this ability to speech understanding in CI users. Method: Sixteen NH adults and 11 postlingually deafened adults with CIs identified synthetic vowel-like…

  9. Remote actuated valve implant

    DOEpatents

    McKnight, Timothy E; Johnson, Anthony; Moise, Jr., Kenneth J; Ericson, Milton Nance; Baba, Justin S; Wilgen, John B; Evans, III, Boyd McCutchen

    2014-02-25

    Valve implant systems positionable within a flow passage, the systems having an inlet, an outlet, and a remotely activatable valve between the inlet and outlet, with the valves being operable to provide intermittent occlusion of the flow path. A remote field is applied to provide thermal or magnetic activation of the valves.

  10. Remote actuated valve implant

    DOEpatents

    McKnight, Timothy E.; Johnson, Anthony; Moise, Kenneth J.; Ericson, Milton Nance; Baba, Justin S.; Wilgen, John B.; Evans, Boyd Mccutchen

    2016-05-10

    Valve implant systems positionable within a flow passage, the systems having an inlet, an outlet, and a remotely activatable valve between the inlet and outlet, with the valves being operable to provide intermittent occlusion of the flow path. A remote field is applied to provide thermal or magnetic activation of the valves.

  11. Implantable electrical device

    NASA Technical Reports Server (NTRS)

    Jhabvala, M. D. (Inventor)

    1982-01-01

    A fully implantable and self contained device is disclosed composed of a flexible electrode array for surrounding damaged nerves and a signal generator for driving the electrode array with periodic electrical impulses of nanoampere magnitude to induce regeneration of the damaged nerves.

  12. Semiconductor Ion Implanters

    SciTech Connect

    MacKinnon, Barry A.; Ruffell, John P.

    2011-06-01

    In 1953 the Raytheon CK722 transistor was priced at $7.60. Based upon this, an Intel Xeon Quad Core processor containing 820,000,000 transistors should list at $6.2 billion. Particle accelerator technology plays an important part in the remarkable story of why that Intel product can be purchased today for a few hundred dollars. Most people of the mid twentieth century would be astonished at the ubiquity of semiconductors in the products we now buy and use every day. Though relatively expensive in the nineteen fifties they now exist in a wide range of items from high-end multicore microprocessors like the Intel product to disposable items containing 'only' hundreds or thousands like RFID chips and talking greeting cards. This historical development has been fueled by continuous advancement of the several individual technologies involved in the production of semiconductor devices including Ion Implantation and the charged particle beamlines at the heart of implant machines. In the course of its 40 year development, the worldwide implanter industry has reached annual sales levels around $2B, installed thousands of dedicated machines and directly employs thousands of workers. It represents in all these measures, as much and possibly more than any other industrial application of particle accelerator technology. This presentation discusses the history of implanter development. It touches on some of the people involved and on some of the developmental changes and challenges imposed as the requirements of the semiconductor industry evolved.

  13. Implantable continuous glucose sensors.

    PubMed

    Renard, Eric

    2008-08-01

    Because of the limits of wearable needle-type or microdialysis-based enzymatic sensors in clinical use, fully implantable glucose monitoring systems (IGMS) represent a promising alternative. Long-term use reducing impact of invasiveness due to implantation, less frequent calibration needs because of a more stable tissue environment around the sensor and potential easier inclusion in a closed-loop insulin delivery system are the expected benefits of IGMS. First experiences with subcutaneous and intravenous IGMS have been recently collected in pilot studies. While no severe adverse events have been reported, biointerface issues have been responsible for the failures of IGMS. Tissue reactions around implanted subcutaneous devices and damages of intravenous sensors due to shearing forces of blood flow impaired IGMS function and longevity. In functioning systems, accuracy of glucose measurement reached satisfactory levels for average durations of about 120 days with subcutaneous IGMS and 259 days with intravenous sensors. Moreover, sensor information could help to improve time spent in normal glucose range when provided to patients wearing subcutaneous IGMS and allowed safe and effective closed-loop glucose control when intravenous sensors were connected to implanted pumps using intra-peritoneal insulin delivery. These data could open a favourable perspective for IGMS after improvement of biointerface conditions and if compatible with an affordable cost.

  14. Cochlear Implantation in Neurobrucellosis

    PubMed Central

    Bajin, Münir Demir; Savaş, Özden; Aslan, Filiz; Sennaroğlu, Levent

    2016-01-01

    Background: Neurobrucellosis is a disease consisting of a wide spectrum of complications such as peripheral neuropathy, cranial nerve involvement, ataxia, meningeal irritation, paraplegia, seizures, coma, and even death. The vestibulocochlear nerve seems to be the most commonly affected cranial nerve (10%). We present a patient with neurobrucellosis whose auditory perception and speech intelligibility skill performances improved after cochlear implantation. Case Report: A 35 year-old woman was admitted to another hospital 2 years ago with the symptoms of headache, nausea, and altered consciousness, who was finally diagnosed with neurobrucellosis. She developed bilateral profound sensorineural hearing loss during the following 6 months. There was no benefit of using hearing aids. After successful treatment of her illness, she was found to be suitable for cochlear implantation. After the operation, her auditory perception skills improved significantly with a Categories of Auditory Performance (CAP) score of 5. According to clinical observations and her family members’ statements, her Speech Intelligibility Rating (SIR) score was 3. Her speech intelligibility skills are still improving. Conclusion: Our case report represents the second case of hearing rehabilitation with cochlear implantation after neurobrucellosis. Cochlear implantation is a cost-effective and time-proven successful intervention in post-lingual adult patients with sensorineural hearing loss. Early timing of the surgery after appropriate treatment of meningitis helps the patient to achieve better postoperative results. PMID:26966626

  15. Practicing implant dentistry profitably.

    PubMed

    Stump, G; Adams, M; Alwan, M

    1997-03-01

    The success of dental implants has opened up countless treatment possibilities for restorative dentists to offer to their patients. Just as our clinical paradigms have had to change because of this new technology, so too must our paradigms concerning the way we communicate with our patients change if we are to get them to say "yes" to treatment that we know that they need. Success in clinical treatment using implants requires a systematic approach. A systematic approach to communicating with your patients will allow you to have the same high degree of success with treatment acceptance that is possible with dental implants. The key to the systems we have discussed is Relationship Centered Care. A relationship is fostered and enhanced through a Comprehensive Examination Process, a structured Consultation Process utilizing the influencing process and Financial Arrangements that allow the patient to receive what they want while the office maintains the profitability that it needs. A system for calculating rational fees can be utilized that allows the practice to have control over an area that traditionally was controlled by anecdotal factors. The Pride Institute has developed this material and is presenting it to the profession so that restorative dentists can truly practice implant dentistry profitably.

  16. Implantable Drug Dispenser

    NASA Technical Reports Server (NTRS)

    Collins, E. R. J.

    1983-01-01

    Drugs such as insulin are injected as needed directly into bloodstream by compact implantable dispensing unit. Two vapor cavities produce opposing forces on drug-chamber diaphragm. Heaters in cavities allow control of direction and rate of motion of bellows. Dispensing capsule fitted with coil so batteries can be recharged by induction.

  17. Implantable Drug Dispenser

    NASA Technical Reports Server (NTRS)

    Collins, E. R. J.

    1983-01-01

    Drugs such as insulin are injected as needed directly into bloodstream by compact implantable dispensing unit. Two vapor cavities produce opposing forces on drug-chamber diaphragm. Heaters in cavities allow control of direction and rate of motion of bellows. Dispensing capsule fitted with coil so batteries can be recharged by induction.

  18. Implantable Impedance Plethysmography

    PubMed Central

    Theodor, Michael; Ruh, Dominic; Ocker, Martin; Spether, Dominik; Förster, Katharina; Heilmann, Claudia; Beyersdorf, Friedhelm; Manoli, Yiannos; Zappe, Hans; Seifert, Andreas

    2014-01-01

    We demonstrate by theory, as well as by ex vivo and in vivo measurements that impedance plethysmography, applied extravascularly directly on large arteries, is a viable method for monitoring various cardiovascular parameters, such as blood pressure, with high accuracy. The sensor is designed as an implant to monitor cardiac events and arteriosclerotic progression over the long term. PMID:25123467

  19. Semiconductor Ion Implanters

    NASA Astrophysics Data System (ADS)

    MacKinnon, Barry A.; Ruffell, John P.

    2011-06-01

    In 1953 the Raytheon CK722 transistor was priced at 7.60. Based upon this, an Intel Xeon Quad Core processor containing 820,000,000 transistors should list at 6.2 billion! Particle accelerator technology plays an important part in the remarkable story of why that Intel product can be purchased today for a few hundred dollars. Most people of the mid twentieth century would be astonished at the ubiquity of semiconductors in the products we now buy and use every day. Though relatively expensive in the nineteen fifties they now exist in a wide range of items from high-end multicore microprocessors like the Intel product to disposable items containing `only' hundreds or thousands like RFID chips and talking greeting cards. This historical development has been fueled by continuous advancement of the several individual technologies involved in the production of semiconductor devices including Ion Implantation and the charged particle beamlines at the heart of implant machines. In the course of its 40 year development, the worldwide implanter industry has reached annual sales levels around 2B, installed thousands of dedicated machines and directly employs thousands of workers. It represents in all these measures, as much and possibly more than any other industrial application of particle accelerator technology. This presentation discusses the history of implanter development. It touches on some of the people involved and on some of the developmental changes and challenges imposed as the requirements of the semiconductor industry evolved.

  20. Synthetic biology, metaphors and responsibility.

    PubMed

    McLeod, Carmen; Nerlich, Brigitte

    2017-08-29

    Metaphors are not just decorative rhetorical devices that make speech pretty. They are fundamental tools for thinking about the world and acting on the world. The language we use to make a better world matters; words matter; metaphors matter. Words have consequences - ethical, social and legal ones, as well as political and economic ones. They need to be used 'responsibly'. They also need to be studied carefully - this is what we want to do through this editorial and the related thematic collection. In the context of synthetic biology, natural and social scientists have become increasingly interested in metaphors, a wave of interest that we want to exploit and amplify. We want to build on emerging articles and books on synthetic biology, metaphors of life and the ethical and moral implications of such metaphors. This editorial provides a brief introduction to synthetic biology and responsible innovation, as well as a comprehensive review of literature on the social, cultural and ethical impacts of metaphor use in genomics and synthetic biology. Our aim is to stimulate an interdisciplinary and international discussion on the impact that metaphors can have on science, policy and publics in the context of synthetic biology.

  1. Control theory meets synthetic biology.

    PubMed

    Del Vecchio, Domitilla; Dy, Aaron J; Qian, Yili

    2016-07-01

    The past several years have witnessed an increased presence of control theoretic concepts in synthetic biology. This review presents an organized summary of how these control design concepts have been applied to tackle a variety of problems faced when building synthetic biomolecular circuits in living cells. In particular, we describe success stories that demonstrate how simple or more elaborate control design methods can be used to make the behaviour of synthetic genetic circuits within a single cell or across a cell population more reliable, predictable and robust to perturbations. The description especially highlights technical challenges that uniquely arise from the need to implement control designs within a new hardware setting, along with implemented or proposed solutions. Some engineering solutions employing complex feedback control schemes are also described, which, however, still require a deeper theoretical analysis of stability, performance and robustness properties. Overall, this paper should help synthetic biologists become familiar with feedback control concepts as they can be used in their application area. At the same time, it should provide some domain knowledge to control theorists who wish to enter the rising and exciting field of synthetic biology.

  2. Control theory meets synthetic biology

    PubMed Central

    2016-01-01

    The past several years have witnessed an increased presence of control theoretic concepts in synthetic biology. This review presents an organized summary of how these control design concepts have been applied to tackle a variety of problems faced when building synthetic biomolecular circuits in living cells. In particular, we describe success stories that demonstrate how simple or more elaborate control design methods can be used to make the behaviour of synthetic genetic circuits within a single cell or across a cell population more reliable, predictable and robust to perturbations. The description especially highlights technical challenges that uniquely arise from the need to implement control designs within a new hardware setting, along with implemented or proposed solutions. Some engineering solutions employing complex feedback control schemes are also described, which, however, still require a deeper theoretical analysis of stability, performance and robustness properties. Overall, this paper should help synthetic biologists become familiar with feedback control concepts as they can be used in their application area. At the same time, it should provide some domain knowledge to control theorists who wish to enter the rising and exciting field of synthetic biology. PMID:27440256

  3. Effect of implant design on initial stability of tapered implants.

    PubMed

    Chong, Linus; Khocht, Ahmed; Suzuki, Jon B; Gaughan, John

    2009-01-01

    Implant design is one of the parameters for achieving successful primary stability. This study aims to examine the effect of a self-tapping blades implant design on initial stability in tapered implants. Polyurethane blocks of different densities were used to simulate different bone densities. The two different implant designs included one with self-tapping blades and one without self-tapping blades. Implants were placed at 3 different depths: apical third, middle third, and fully inserted at 3 different densities of polyurethane blocks. A resonance frequency (RF) analyzer was then used to measure stability of the implants. Repeated-measures analysis of variance was used to examine the effect of implant design, insertion depth, and block density on RF. Analysis of covariance was used to examine the strength of association between RF and the aforementioned factors. In both medium-density (P = .017) and high-density (P = .002) blocks, fully inserted non-self-tapping implants showed higher initial stability than self-tapping implants. No differences were noted between the 2 implant designs that were not fully inserted. The highest strength of association was with insertion depth (standardized beta [std beta] = -0.60, P = .0001), followed by block density (std beta = -0.15, P = .0002). Implant design showed a weak association (std beta = -0.07, P = .09). In conclusion, fully inserted implants without self-tapping blades have higher initial stability than implants with self-tapping blades. However, the association strength between implant design and initial stability is less relevant than other factors, such as insertion depth and block density. Thus, if bone quality and quantity are optimal, they may compensate for design inadequacy.

  4. Prosthodontic management of implant therapy.

    PubMed

    Thalji, Ghadeer; Bryington, Matthew; De Kok, Ingeborg J; Cooper, Lyndon F

    2014-01-01

    Implant-supported dental restorations can be screw-retained, cement-retained, or a combination of both, whereby a metal superstructure is screwed to the implants and crowns are individually cemented to the metal frame. Each treatment modality has advantages and disadvantages. The use of computer-aided design/computer-assisted manufacture technologies for the manufacture of implant superstructures has proved to be advantageous in the quality of materials, precision of the milled superstructures, and passive fit. Maintenance and recall evaluations are an essential component of implant therapy. The longevity of implant restorations is limited by their biological and prosthetic maintenance requirements.

  5. [Allergic reactions to implant materials].

    PubMed

    Thomas, P

    2003-01-01

    The extent of the immune response upon implantation of metallic devices depends on the individual reactivity and on material characteristics. If specific T-cellular sensitization occurs or an allergy to metal preexists, hypersensitive reactions to implant components may develop. They include eczema, impaired wound healing, and sterile osteomyelitis. The existence of allergy-induced implant loosening is still an open question. Further improvement of clinical allergological diagnostics, better understanding of peri-implantar immune reactions, and interdisciplinary collection of epidemiological data concerning allergy to implants will contribute to a better knowledge about tolerance of implant material in humans.

  6. Synthetic neurosteroids on brain protection

    PubMed Central

    Rey, Mariana; Coirini, Héctor

    2015-01-01

    Neurosteroids, like allopregnanolone and pregnanolone, are endogenous regulators of neuronal excitability. Inside the brain, they are highly selective and potent modulators of GABAA receptor activity. Their anticonvulsant, anesthetics and anxiolytic properties are useful for the treatments of several neurological and psychiatric disorders via reducing the risks of side effects obtained with the commercial drugs. The principal disadvantages of endogenous neurosteroids administration are their rapid metabolism and their low oral bioavailability. Synthetic steroids analogues with major stability or endogenous neurosteroids stimulation synthesis might constitute promising novel strategies for the treatment of several disorders. Numerous studies indicate that the 3α-hydroxyl configuration is the key for binding and activity, but modifications in the steroid nucleus may emphasize different pharmacophores. So far, several synthetic steroids have been developed with successful neurosteroid-like effects. In this work, we summarize the properties of various synthetic steroids probed in trials throughout the analysis of several neurosteroids-like actions. PMID:25788907

  7. Designer Drugs: A Synthetic Catastrophe.

    PubMed

    Fratantonio, James; Andrade, Lawrence; Febo, Marcelo

    Synthetic stimulants can cause hallucinations, aggressive behaviors, death and are sometimes legal. These substances are sold as plant food and bath salts that are "Not for Human Consumption", therefore skirting the 1986 Federal Analogue Act and giving a false pretense of safety. Studies have proved that these substances are toxic, have a high abuse potential, and are becoming extremely prevalent in the United States. This creates a dilemma for law enforcement agents, hospitals, and substance use disorder treatment centers. Urine Drug Testing is utilized as a clinical diagnostic tool in substance use disorder treatment centers, and the furious pace at which new synthetic stimulants are introduced to the black market are making the detection via urine increasingly difficult. This article will discuss the prevalence, pharmacology and difficulty developing laboratory assays to detect synthetic stimulants.

  8. Synthetic Peptides as Protein Mimics

    PubMed Central

    Groß, Andrea; Hashimoto, Chie; Sticht, Heinrich; Eichler, Jutta

    2016-01-01

    The design and generation of molecules capable of mimicking the binding and/or functional sites of proteins represents a promising strategy for the exploration and modulation of protein function through controlled interference with the underlying molecular interactions. Synthetic peptides have proven an excellent type of molecule for the mimicry of protein sites because such peptides can be generated as exact copies of protein fragments, as well as in diverse chemical modifications, which includes the incorporation of a large range of non-proteinogenic amino acids as well as the modification of the peptide backbone. Apart from extending the chemical and structural diversity presented by peptides, such modifications also increase the proteolytic stability of the molecules, enhancing their utility for biological applications. This article reviews recent advances by this and other laboratories in the use of synthetic protein mimics to modulate protein function, as well as to provide building blocks for synthetic biology. PMID:26835447

  9. Differential Optical Synthetic Aperture Radar

    DOEpatents

    Stappaerts, Eddy A.

    2005-04-12

    A new differential technique for forming optical images using a synthetic aperture is introduced. This differential technique utilizes a single aperture to obtain unique (N) phases that can be processed to produce a synthetic aperture image at points along a trajectory. This is accomplished by dividing the aperture into two equal "subapertures", each having a width that is less than the actual aperture, along the direction of flight. As the platform flies along a given trajectory, a source illuminates objects and the two subapertures are configured to collect return signals. The techniques of the invention is designed to cancel common-mode errors, trajectory deviations from a straight line, and laser phase noise to provide the set of resultant (N) phases that can produce an image having a spatial resolution corresponding to a synthetic aperture.

  10. Designer Drugs: A Synthetic Catastrophe

    PubMed Central

    Fratantonio, James; Andrade, Lawrence; Febo, Marcelo

    2016-01-01

    Synthetic stimulants can cause hallucinations, aggressive behaviors, death and are sometimes legal. These substances are sold as plant food and bath salts that are “Not for Human Consumption”, therefore skirting the 1986 Federal Analogue Act and giving a false pretense of safety. Studies have proved that these substances are toxic, have a high abuse potential, and are becoming extremely prevalent in the United States. This creates a dilemma for law enforcement agents, hospitals, and substance use disorder treatment centers. Urine Drug Testing is utilized as a clinical diagnostic tool in substance use disorder treatment centers, and the furious pace at which new synthetic stimulants are introduced to the black market are making the detection via urine increasingly difficult. This article will discuss the prevalence, pharmacology and difficulty developing laboratory assays to detect synthetic stimulants. PMID:27617301

  11. US Competitiveness in Synthetic Biology.

    PubMed

    Gronvall, Gigi Kwik

    2015-01-01

    Synthetic biology is an emerging technical field that aims to make biology easier to engineer; the field has applications in strategically important sectors for the US economy. While the United States currently leads in synthetic biology R&D, other nations are heavily investing in order to boost their economies, which will inevitably diminish the US leadership position. This outcome is not entirely negative--additional investments will expand markets--but it is critical that the US government take steps to remain competitive: There are applications from which the US population and economy may benefit; there are specific applications with importance for national defense; and US technical leadership will ensure that US experts have a leading role in synthetic biology governance, regulation, and oversight. Measures to increase competitiveness in S&T generally are broadly applicable for synthetic biology and should be pursued. However, the US government will also need to take action on fundamental issues that will affect the field's development, such as countering anti-GMO (genetically modified organism) sentiments and anti-GMO legislation. The United States should maintain its regulatory approach so that it is the product that is regulated, not the method used to create a product. At the same time, the United States needs to ensure that the regulatory framework is updated so that synthetic biology products do not fall into regulatory gaps. Finally, the United States needs to pay close attention to how synthetic biology applications may be governed internationally, such as through the Nagoya Protocol of the Convention on Biological Diversity, so that beneficial applications may be realized.

  12. US Competitiveness in Synthetic Biology

    PubMed Central

    2015-01-01

    Synthetic biology is an emerging technical field that aims to make biology easier to engineer; the field has applications in strategically important sectors for the US economy. While the United States currently leads in synthetic biology R&D, other nations are heavily investing in order to boost their economies, which will inevitably diminish the US leadership position. This outcome is not entirely negative—additional investments will expand markets—but it is critical that the US government take steps to remain competitive: There are applications from which the US population and economy may benefit; there are specific applications with importance for national defense; and US technical leadership will ensure that US experts have a leading role in synthetic biology governance, regulation, and oversight. Measures to increase competitiveness in S&T generally are broadly applicable for synthetic biology and should be pursued. However, the US government will also need to take action on fundamental issues that will affect the field's development, such as countering anti-GMO (genetically modified organism) sentiments and anti-GMO legislation. The United States should maintain its regulatory approach so that it is the product that is regulated, not the method used to create a product. At the same time, the United States needs to ensure that the regulatory framework is updated so that synthetic biology products do not fall into regulatory gaps. Finally, the United States needs to pay close attention to how synthetic biology applications may be governed internationally, such as through the Nagoya Protocol of the Convention on Biological Diversity, so that beneficial applications may be realized. PMID:26690379

  13. Bilateral cochlear implantation: current concepts.

    PubMed

    Eapen, Rose J; Buchman, Craig A

    2009-10-01

    The goal of this review is to examine the most recent literature exploring the indications, outcomes, and long-term benefit of bilateral cochlear implantation in children and adults. The indications for cochlear implantation have expanded, as many unilaterally implanted individuals are able to achieve open-set word recognition. Despite the benefits seen in unilateral implantation, many individuals have difficulty perceiving speech in noisy environments. Bilateral cochlear implantation has made great strides in providing individuals access to sound information from both ears, allowing improved speech perception in quiet and in noise, as well as sound localization. Recently, the House Cochlear Implant study group released a position statement in which the group strongly endorsed bilateral cochlear implantation. Improved speech perception in quiet has also been demonstrated by many groups with bilateral implantation. Improved sound localization abilities have been shown to be dependent on interaural level differences. The binaural benefits of head shadow and summation have been long shown in bilaterally implanted individuals. Recently, a growth in squelch has been seen in these individuals likely as a result of increased experience with both implants. This may indicate neural integration of the inputs over time. The literature supports the binaural benefit of bilateral cochlear implantation with demonstrated improved speech perception outcomes in quiet and in noise, sound localization data, and subjective benefits.

  14. Synthetic Aperture Radar Oceanographic Investigations.

    DTIC Science & Technology

    1987-03-01

    Shuchman, P.G. Teleki, S.V. Hsiao, O.H. Shemdin , and W.E. Brown, Synthetic Aperture Radar Imaging of Ocean Waves : Comparison with Wave Measurements, J... Shemdin , Synthetic Aperture Radar Imaging of Ocean Waves during the Marineland Experiment, IEEE J. Oceanic Eg., OE-8, pp. 83-90, 1983. 12. R.A...If the surface reflectivity is assumed to be spatially un- section. are computed from the wave height spectrum as correlated, i.e. follows . (x. Y. t

  15. Design Automation in Synthetic Biology.

    PubMed

    Appleton, Evan; Madsen, Curtis; Roehner, Nicholas; Densmore, Douglas

    2017-04-03

    Design automation refers to a category of software tools for designing systems that work together in a workflow for designing, building, testing, and analyzing systems with a target behavior. In synthetic biology, these tools are called bio-design automation (BDA) tools. In this review, we discuss the BDA tools areas-specify, design, build, test, and learn-and introduce the existing software tools designed to solve problems in these areas. We then detail the functionality of some of these tools and show how they can be used together to create the desired behavior of two types of modern synthetic genetic regulatory networks.

  16. Synthetic biology in cellular immunotherapy

    PubMed Central

    Chakravarti, Deboki; Wong, Wilson W.

    2015-01-01

    The adoptive transfer of genetically engineered T cells with cancer-targeting receptors has shown tremendous promise for eradicating tumors in clinical trials. This form of cellular immunotherapy presents a unique opportunity to incorporate advanced systems and synthetic biology approaches to create cancer therapeutics with novel functions. Here, we first review the development of synthetic receptors, switches, and circuits to control the location, duration, and strength of T cell activity against tumors. In addition, we discuss the cellular engineering and genome editing of host cells (or the chassis) to improve the efficacy of cell-based cancer therapeutics, and to reduce the time and cost of manufacturing. PMID:26088008

  17. Engineered porous metals for implants

    NASA Astrophysics Data System (ADS)

    Vamsi Krishna, B.; Xue, Weichang; Bose, Susmita; Bandyopadhyay, Amit

    2008-05-01

    Interest is significant in patient-specific implants with the possibility of guided tissue regeneration, particularly for load-bearing implants. For such implants to succeed, novel design approaches and fabrication technologies that can achieve balanced mechanical and functional performance in the implants are necessary. This article is focused on porous load-bearing implants with tailored micro-as well as macrostructures using laser-engineered net shaping (LENS™), a solid freeform fabrication or rapid prototyping technique that can be used to manufacture patient-specific implants. This review provides an insight into LENS, some properties of porous metals, and the potential applications of this process to fabricate unitized structures which can eliminate longstanding challenges in load-bearing implants to increase their in-vivo lifetime, such as in a total hip prosthesis.

  18. Impression techniques for implant dentistry.

    PubMed

    Chee, W; Jivraj, S

    2006-10-07

    The object of making an impression in implant dentistry is to accurately relate an analogue of the implant or implant abutment to the other structures in the dental arch. This is affected by use of an impression coping which is attached to the implant or implant abutment. This impression coping is incorporated in an impression - much as a metal framework is 'picked up' in a remount impression for fixed prosthodontics. With implant copings the coping is usually attached to the implant or abutment with screws. The impression material used is usually an elastomeric impression material; the two types most widely used and shown to be the most appropriate are polyether and polyvinyl siloxane impression materials.

  19. Cochlear implants in children implanted in Jordan: A parental overview.

    PubMed

    Alkhamra, Rana A

    2015-07-01

    Exploring the perspective of parents on the cochlear implant process in Jordan. Sixty parents of deaf children were surveyed on the information gathering process prior to cochlear implant surgery, and their implant outcome expectations post-surgery. Whether child or parent characteristics may impact parents' post-surgical expectations was explored. Although parents used a variety of information sources when considering a cochlear implant, the ear, nose and throat doctor comprised their major source of information (60%). Parents received a range of information prior to cochlear implant but agreed (93.3%) on the need for a multidisciplinary team approach. Post-surgically, parents' expected major developments in the areas of spoken language (97%), and auditory skills (100%). Receiving education in mainstream schools (92%) was expected too. Parents perceived the cochlear implant decision as the best decision they can make for their child (98.3%). A significant correlation was found between parents contentment with the cochlear implant decision and expecting developments in the area of reading and writing (r=0.7). Child's age at implantation and age at hearing loss diagnosis significantly affected parents' post-implant outcome expectations (p<0.05). Despite the general satisfaction from the information quantity and quality prior to cochlear implant, parents agree on the need for a comprehensive multidisciplinary team approach during the different stages of the cochlear implant process. Parents' education about cochlear implants prior to the surgery can affect their post-surgical outcome expectations. The parental perspective presented in this study can help professionals develop better understanding of parents' needs and expectations and henceforth improve their services and support during the different stages of the cochlear implant process. Copyright © 2015. Published by Elsevier Ireland Ltd.

  20. Management of peri-implant mucositis and peri-implantitis.

    PubMed

    Figuero, Elena; Graziani, Filippo; Sanz, Ignacio; Herrera, David; Sanz, Mariano

    2014-10-01

    Peri-implant diseases are defined as inflammatory lesions of the surrounding peri-implant tissues and include peri-implant mucositis (an inflammatory lesion limited to the surrounding mucosa of an implant) and peri-implantitis (an inflammatory lesion of the mucosa that affects the supporting bone with resulting loss of osseointegration). This review aims to describe the different approaches to manage both entities and to provide a critical evaluation of the evidence available on their efficacy. Therapy of peri-implant mucositis and nonsurgical therapy of peri-implantitis usually involve mechanical debridement of the implant surface using curettes, ultrasonic devices, air-abrasive devices or lasers, with or without the adjunctive use of local antibiotics or antiseptics. The efficacy of these therapies has been demonstrated for mucositis: controlled clinical trials show an improvement in clinical parameters, especially in bleeding on probing. For peri-implantitis, the results are limited, especially in terms of probing pocket-depth reduction. Surgical therapy of peri-implantitis is indicated when nonsurgical therapy fails to control the inflammatory changes. Selection of the surgical technique should be based on the characteristics of the peri-implant lesion. In the presence of deep circumferential and intrabony defects, surgical interventions should aim to provide thorough debridement, implant-surface decontamination and defect reconstruction. In the presence of defects without clear bony walls or with a predominant suprabony component, the aim of the surgical intervention should be the thorough debridement and the repositioning of the marginal mucosa to enable the patient to perform effective oral-hygiene practices, although this aim may compromise the esthetic result of the implant-supported restoration. © 2014 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  1. Musical pitch discrimination by cochlear implant users.

    PubMed

    Ping, Lichuan; Yuan, Meng; Feng, Haihong

    2012-05-01

    The main goal of this study was to investigate the effects of acoustic characteristics, including timbre and fundamental frequency (F0), on the musical pitch discrimination of cochlear implant users. Eight postlingually deafened cochlear implant users were recruited, along with 8 control subjects with normal hearing. Pitch discrimination tests were carried out using test stimuli from 4 musical instruments plus synthetic complex stimuli. Three reference tones with different F0s were used. The mean difference limens were 1.8 to 10.7 semitones in the just-noticeable difference task and 2.1 to 13.6 semitones in the pitch-direction discrimination task for different timbre and F0 combinations. Three-way analysis of variance showed that the acoustic characteristics of the musical stimuli, such as timbre and F0, significantly influenced pitch discrimination performance. Acoustic characteristics determine the complexity of the electrical stimulation pattern, which directly affects performance in pitch discrimination. A place pattern with a clear and regular low-order harmonic structure is most important for good pitch discrimination. A clear F0-related temporal pattern is also useful when the F0 is low. Pitch perception performance will worsen when there is interference in the high-frequency channels.

  2. Rupture of poly implant prothèse silicone breast implants: an implant retrieval study.

    PubMed

    Swarts, Eric; Kop, Alan M; Nilasaroya, Anastasia; Keogh, Catherine V; Cooper, Timothy

    2013-04-01

    Poly Implant Prothèse implants were recalled in Australia in April of 2010 following concerns of higher than expected rupture rates and the use of unauthorized industrial grade silicone as a filler material. Although subsequent investigations found that the gel filler material does not pose a threat to human health, the important question of what caused a relatively modern breast implant to have such a poor outcome compared with contemporary silicone breast implants is yet to be addressed. From a cohort of 27 patients, 19 ruptured Poly Implant Prothèse breast implants were subjected to a range of mechanical tests and microscopic/macroscopic investigations to evaluate possible changes in properties as a result of implantation. New Poly Implant Prothèse implants were used as controls. All samples, explanted and controls, complied with the requirements for shell integrity as specified in the International Organization for Standardization 14607. Compression testing revealed rupture rates similar to those reported in the literature. Shell thickness was highly variable, with most shells having regions below the minimum thickness of 0.57 mm that was specified by the manufacturer. Potential regions of stress concentration were observed on the smooth inner surfaces and outer textured surfaces. The high incidence of Poly Implant Prothèse shell rupture is most likely a result of inadequate quality control, with contributory factors being shell thickness variation and manufacturing defects on both inner and outer surfaces of the shell. No evidence of shell degradation with implantation time was determined.

  3. Synthetic substrates for enzyme analysis

    DOEpatents

    Bissell, E.R.; Mitchell, A.R.; Pearson, K.W.; Smith, R.E.

    1983-06-14

    Synthetic substrates are provided which may be represented as A-D. The A moiety includes an amino acid, polypeptide, or derivative. The D moiety includes 7-amino coumarin derivatives having an electron withdrawing substituent group at the 3 position carbon or fused between the 3 and 4 position carbons. No Drawings

  4. SEASAT Synthetic Aperture Radar Data

    NASA Technical Reports Server (NTRS)

    Henderson, F. M.

    1981-01-01

    The potential of radar imagery from space altitudes is discussed and the advantages of radar over passive sensor systems are outlined. Specific reference is made to the SEASAT synthetic aperture radar. Possible applications include oil spill monitoring, snow and ice reconnaissance, mineral exploration, and monitoring phenomena in the urban environment.

  5. Future of synthetic aperture radar

    NASA Technical Reports Server (NTRS)

    Barath, F. T.

    1978-01-01

    The present status of the applications of Synthetic Aperture Radars (SARs) is reviewed, and the technology state-of-the art as represented by the Seasat-A and SIR-A SARs examined. The potential of SAR applications, and the near- and longer-term technology trends are assessed.

  6. Synthetic biology meets tissue engineering.

    PubMed

    Davies, Jamie A; Cachat, Elise

    2016-06-15

    Classical tissue engineering is aimed mainly at producing anatomically and physiologically realistic replacements for normal human tissues. It is done either by encouraging cellular colonization of manufactured matrices or cellular recolonization of decellularized natural extracellular matrices from donor organs, or by allowing cells to self-organize into organs as they do during fetal life. For repair of normal bodies, this will be adequate but there are reasons for making unusual, non-evolved tissues (repair of unusual bodies, interface to electromechanical prostheses, incorporating living cells into life-support machines). Synthetic biology is aimed mainly at engineering cells so that they can perform custom functions: applying synthetic biological approaches to tissue engineering may be one way of engineering custom structures. In this article, we outline the 'embryological cycle' of patterning, differentiation and morphogenesis and review progress that has been made in constructing synthetic biological systems to reproduce these processes in new ways. The state-of-the-art remains a long way from making truly synthetic tissues, but there are now at least foundations for future work. © 2016 Authors; published by Portland Press Limited.

  7. Synthetic stellar libraries for Gaia

    NASA Astrophysics Data System (ADS)

    Sordo, R.

    A large database of synthetic stellar libraries has been collected for the Gaia mission. I will present the libraries in the context of their usage in APSIS, the system of algorithms developed to deal with the automated classification and parameter determination of the observed sources.

  8. Modeling Transport Through Synthetic Nanopores

    PubMed Central

    Aksimentiev, Aleksei; Brunner, Robert K.; Cruz-Chú, Eduardo; Comer, Jeffrey; Schulten, Klaus

    2011-01-01

    Nanopores in thin synthetic membranes have emerged as convenient tools for high-throughput single-molecule manipulation and analysis. Because of their small sizes and their ability to selectively transport solutes through otherwise impermeable membranes, nanopores have numerous potential applications in nanobiotechnology. For most applications, properties of the nanopore systems have to be characterize at the atomic level, which is currently beyond the limit of experimental methods. Molecular dynamics (MD) simulations can provide the desired information, however several technical challenges have to be met before this method can be applied to synthetic nanopore systems. Here, we highlight our recent work on modeling synthetic nanopores of the most common types. First, we describe a novel graphical tool for setting up all-atom systems incorporating inorganic materials and biomolecules. Next, we illustrate the application of the MD method for silica, silicon nitride, and polyethylene terephthalate nanopores. Following that, we describe a method for modeling synthetic surfaces using a bias potential. Future directions for tool development and nanopore modeling are briefly discussed at the end of this article. PMID:21909347

  9. Where Synthetic Biology Meets ET

    NASA Technical Reports Server (NTRS)

    Rothschild, Lynn J.

    2016-01-01

    Synthetic biology - the design and construction of new biological parts and systems and the redesign of existing ones for useful purposes - has the potential to transform fields from pharmaceuticals to fuels. Our lab has focused on the potential of synthetic biology to revolutionize all three major parts of astrobiology: Where do we come from? Where are we going? and Are we alone? For the first and third, synthetic biology is allowing us to answer whether the evolutionary narrative that has played out on planet earth is likely to have been unique or universal. For example, in our lab we are re-evolving the biosynthetic pathways of amino acids in order to understand potential capabilities of an early organism with a limited repertoire of amino acids and developing techniques for the recovery of metals from spent electronics on other planetary bodies. And what about the limits for life? Can we create organisms that expand the envelope for life? In the future synthetic biology will play an increasing role in human activities both on earth, in fields as diverse as human health and the industrial production of novel bio-composites. Beyond earth, we will rely increasingly on biologically-provided life support, as we have throughout our evolutionary history. In order to do this, the field will build on two of the great contributions of astrobiology: studies of the origin of life and life in extreme environments.

  10. Synthetic biology meets tissue engineering

    PubMed Central

    Davies, Jamie A.; Cachat, Elise

    2016-01-01

    Classical tissue engineering is aimed mainly at producing anatomically and physiologically realistic replacements for normal human tissues. It is done either by encouraging cellular colonization of manufactured matrices or cellular recolonization of decellularized natural extracellular matrices from donor organs, or by allowing cells to self-organize into organs as they do during fetal life. For repair of normal bodies, this will be adequate but there are reasons for making unusual, non-evolved tissues (repair of unusual bodies, interface to electromechanical prostheses, incorporating living cells into life-support machines). Synthetic biology is aimed mainly at engineering cells so that they can perform custom functions: applying synthetic biological approaches to tissue engineering may be one way of engineering custom structures. In this article, we outline the ‘embryological cycle’ of patterning, differentiation and morphogenesis and review progress that has been made in constructing synthetic biological systems to reproduce these processes in new ways. The state-of-the-art remains a long way from making truly synthetic tissues, but there are now at least foundations for future work. PMID:27284030

  11. Synthetic substrates for enzyme analysis

    DOEpatents

    Bissell, Eugene R.; Mitchell, Alexander R.; Pearson, Karen W.; Smith, Robert E.

    1983-01-01

    Synthetic substrates are provided which may be represented as A-D. The A moiety thereof includes an amino acid, polypeptide, or derivative thereof. The D moiety thereof includes 7-amino coumarin derivatives having an electron withdrawing substituent group at the 3 position carbon or fused between the 3 and 4 position carbons.

  12. Leaching behaviour of synthetic aggregates.

    PubMed

    van der Sloot, H A; Hoede, D; Cresswell, D J; Barton, J R

    2001-01-01

    In the framework of EU project "Utilising innovative kiln technology to recycle waste into synthetic aggregate" (BRST-CT98-5234), the leaching behaviour of synthetic aggregates has been studied to assess its environmental compatibility in the various stages of its use. Since the conditions are very different for the different uses, the assessment calls for a variety of different leaching conditions. The pH dependence test is used to cover important differences in pH environment to which the materials are exposed to as well as for an assessment of the buffering capacity of the material. Synthetic aggregate features a low buffer capacity, which makes it sensitive to externally imposed pH conditions. Utilisation and storage exposed to acidic conditions needs to be avoided. The results of the pH dependence test and column leaching test are mutually consistent. The CEN TC 154 method appears to provide systematically low values due to the arbitrary selection of test conditions. Synthetic aggregate studied to date will not adversely affect the concrete in its service life. The main issue for aggregate use is the recycling and the "end of life" condition, when the material becomes construction debris. Not metals, but oxyanions, such as Cr VI and Mo are most relevant under these conditions. A concise test has been applied to assess crucial aspects of leaching for different production mixes.

  13. Stereoscopy in cinematographic synthetic imagery

    NASA Astrophysics Data System (ADS)

    Eisenmann, Jonathan; Parent, Rick

    2009-02-01

    In this paper we present experiments and results pertaining to the perception of depth in stereoscopic viewing of synthetic imagery. In computer animation, typical synthetic imagery is highly textured and uses stylized illumination of abstracted material models by abstracted light source models. While there have been numerous studies concerning stereoscopic capabilities, conventions for staging and cinematography in stereoscopic movies have not yet been well-established. Our long-term goal is to measure the effectiveness of various cinematography techniques on the human visual system in a theatrical viewing environment. We would like to identify the elements of stereoscopic cinema that are important in terms of enhancing the viewer's understanding of a scene as well as providing guidelines for the cinematographer relating to storytelling. In these experiments we isolated stereoscopic effects by eliminating as many other visual cues as is reasonable. In particular, we aim to empirically determine what types of movement in synthetic imagery affect the perceptual depth sensing capabilities of our viewers. Using synthetic imagery, we created several viewing scenarios in which the viewer is asked to locate a target object's depth in a simple environment. The scenarios were specifically designed to compare the effectiveness of stereo viewing, camera movement, and object motion in aiding depth perception. Data were collected showing the error between the choice of the user and the actual depth value, and patterns were identified that relate the test variables to the viewer's perceptual depth accuracy in our theatrical viewing environment.

  14. Piezosurgery in implant dentistry

    PubMed Central

    Stübinger, Stefan; Stricker, Andres; Berg, Britt-Isabelle

    2015-01-01

    Piezosurgery, or the use of piezoelectric devices, is being applied increasingly in oral and maxillofacial surgery. The main advantages of this technique are precise and selective cuttings, the avoidance of thermal damage, and the preservation of soft-tissue structures. Through the application of piezoelectric surgery, implant-site preparation, bone grafting, sinus-floor elevation, edentulous ridge splitting or the lateralization of the inferior alveolar nerve are very technically feasible. This clinical overview gives a short summary of the current literature and outlines the advantages and disadvantages of piezoelectric bone surgery in implant dentistry. Overall, piezoelectric surgery is superior to other methods that utilize mechanical instruments. Handling of delicate or compromised hard- and soft-tissue conditions can be performed with less risk for the patient. With respect to current and future innovative surgical concepts, piezoelectric surgery offers a wide range of new possibilities to perform customized and minimally invasive osteotomies. PMID:26635486

  15. [Fully implantable hearing systems].

    PubMed

    Maurer, J

    2009-03-01

    As yet comparatively little experience has been gained with fully implantable hearing systems, as the two systems available at present have only recently received CE permission for Europe and the FDA permissions are still pending in the USA. Additionally the technology is expensive and usually not covered by insurance companies. However, it could be shown that by careful patient selection and very careful surgical techniques, good results can be achieved with this highly sensitive technology, often with better patient satisfaction and hearing quality than with conventional hearing aids. To spread the technology further, the systems must also show reliable results on a broad application. Further surgery to change the batteries should not be necessary more frequently than with cardiac pacemakers. Not all technical problems are finally solved. However, it is to be foreseen that fully implantable hearing systems will be a good long-term alternative to conventional hearing aids for some patients.

  16. Piezosurgery in implant dentistry.

    PubMed

    Stübinger, Stefan; Stricker, Andres; Berg, Britt-Isabelle

    2015-01-01

    Piezosurgery, or the use of piezoelectric devices, is being applied increasingly in oral and maxillofacial surgery. The main advantages of this technique are precise and selective cuttings, the avoidance of thermal damage, and the preservation of soft-tissue structures. Through the application of piezoelectric surgery, implant-site preparation, bone grafting, sinus-floor elevation, edentulous ridge splitting or the lateralization of the inferior alveolar nerve are very technically feasible. This clinical overview gives a short summary of the current literature and outlines the advantages and disadvantages of piezoelectric bone surgery in implant dentistry. Overall, piezoelectric surgery is superior to other methods that utilize mechanical instruments. Handling of delicate or compromised hard- and soft-tissue conditions can be performed with less risk for the patient. With respect to current and future innovative surgical concepts, piezoelectric surgery offers a wide range of new possibilities to perform customized and minimally invasive osteotomies.

  17. Implantable visual prostheses.

    PubMed

    Thanos, S; Heiduschka, P; Stupp, T

    2007-01-01

    Visual impairment and blindness is primarily caused by optic neuropathies like injuries and glaucomas, as well as retinopathies like agerelated macular degeneration (MD), systemic diseases like diabetes, hypertonia and hereditary retinitis pigmentosa (RP). These pathological conditions may affect retinal photoreceptors, or retinal pigment epithelium, or particular subsets of retinal neurons, and in particular retinal ganglion cells (RGCs). The RGCs which connect the retina with the brain are unique cells with extremely long axons bridging the distance from the retina to visual relays within the thalamus and midbrain, being therefore vulnerable to heterogeneous pathological conditions along this pathway. When becoming mature, RGCs loose the ability to divide and to regenerate their accidentally or experimentally injured axons. Consequently, any loss of RGCs is irreversible and results to loss of visual function. The advent of micro- and nanotechnology, and the construction of artificial implants prompted to create visual prostheses which aimed at compensating for the loss of visual function in particular cases. The purpose of the present contribution is to review the considerable engineering expertise that is essential to fabricate current visual prostheses in connection with their functional features and applicability to the animal and human eye. In this chapter, 1) Retinal and cortical implants are introduced, with particular emphasis given to the requirements they have to fulfil in order to replace very complex functions like vision. 2) Advanced work on material research is presented both from the technological and from the biocompatibility aspect as prerequisites of any perspectives for implantation. 3) Ultimately, experimental studies are presented showing the shaping of implants, the procedures of testing their biocompatibility and essential modifications to improve the interfaces between technical devices and the biological environment. The review ends by

  18. Bone Substitutes for Peri-Implant Defects of Postextraction Implants

    PubMed Central

    Santos, Pâmela Letícia; Gulinelli, Jéssica Lemos; Telles, Cristino da Silva; Betoni Júnior, Walter; Chiacchio Buchignani, Vivian; Queiroz, Thallita Pereira

    2013-01-01

    Placement of implants in fresh sockets is an alternative to try to reduce physiological resorption of alveolar ridge after tooth extraction. This surgery can be used to preserve the bone architecture and also accelerate the restorative procedure. However, the diastasis observed between bone and implant may influence osseointegration. So, autogenous bone graft and/or biomaterials have been used to fill this gap. Considering the importance of bone repair for treatment with implants placed immediately after tooth extraction, this study aimed to present a literature review about biomaterials surrounding immediate dental implants. The search included 56 articles published from 1969 to 2012. The results were based on data analysis and discussion. It was observed that implant fixation immediately after extraction is a reliable alternative to reduce the treatment length of prosthetic restoration. In general, the biomaterial should be used to increase bone/implant contact and enhance osseointegration. PMID:24454377

  19. Zirconia in fixed implant prosthodontics.

    PubMed

    Guess, Petra Christine; Att, Wael; Strub, Joerg Rudolf

    2012-10-01

    CAD/CAM technology in combination with zirconia ceramic has increasingly gained popularity in implant dentistry. This narrative review presents the current knowledge on zirconia utilized as framework material for implant-borne restorations and implant abutments, laboratory tests and developments, clinical performance, and possible future trends for implant dentistry are addressed. A review of available literature from 1990 through 2010 was conducted with search terms zirconia,"implants,"abutment,"crown," and "fixed dental prosthesis" using electronic databases (PubMed) and manual searching. Latest applications of zirconia in implant dentistry include implant abutments, multiple unit and full-arch frameworks as well as custom-made bars to support fixed and removable prostheses. High biocompatibility, low bacterial surface adhesion as well as favorable chemical properties of zirconia ceramics are reported. Zirconia stabilized with yttrium oxide exhibits high flexural strength and fracture toughness due to a transformation toughening mechanism. Preliminary clinical data confirmed the high stability of zirconia for abutments and as a framework material for implant borne crowns and fixed dental prostheses. Zirconia abutment or framework damage has rarely been encountered. However, veneering porcelain fractures are the most common technical complication in implant-supported zirconia restorations. These porcelain veneer failures have led to concerns regarding differences in coefficient of thermal expansions between core and veneering porcelain and their respective processing techniques. As presently evidence of clinical long-term data is missing, caution with regard to especially extensive implant-borne zirconia frameworks is recommended. © 2010 Wiley Periodicals, Inc.

  20. [Implantable middle ear hearing aids].

    PubMed

    à Wengen, D F

    2004-01-01

    Conventional acoustic hearing aids are limited in their performance. Due to physical laws their amplification of sound is limited to within 5 kHz. However, the frequencies between 5 and 10 kHz are essential for understanding consonants. Words can only be understood correctly if their consonants can be understood. Furthermore noise amplification remains a problem with hearing aids. Other problems consist of recurrent infections of the external auditory canal, intolerance for occlusion of the ear canal, feedback noise, and resonances in speech or singing. Implantable middle ear hearing aids like the Soundbridge of Symphonix-Siemens and the MET of Otologics offer improved amplification and a more natural sound. Since the first implantation of a Soundbridge in Switzerland in 1996 almost one thousand patients have been implanted worldwide. The currents systems are semi-implantable. The external audio processor containing the microphone, computer chip, battery and radio system is worn in the hair bearing area behind the ear. Implantation is only considered after unsuccessful fitting of conventional hearing aids. In Switzerland the cost for these implantable hearing aids is covered by social insurances. Initially the cost for an implant is higher than for hearing aids. However, hearing aids need replacement every 5 or 6 years whereas implants will last 20 to 30 years. Due to the superior sound quality and the improved understanding of speech in noise, the number of patients with implantable hearing aids will certainly increase in the next years. Other middle ear implants are in clinical testing.

  1. Electronic retinal implant surgery.

    PubMed

    MacLaren, R E

    2017-02-01

    Blindness due to outer retinal degeneration still remains largely untreatable. Photoreceptor loss removes light sensitivity, but the remaining inner retinal layers, the optic nerve, and indeed the physical structure of the eye itself may be unaffected by the degenerative processes. This provides the opportunity to restore some degree of vision with an electronic device in the subretinal space. In this lecture I will provide an overview of our experiences with the first-generation retinal implant Alpha IMS, developed by Retina Implant AG and based on the technology developed by Eberhart Zrenner as part of a multicentre clinical trial (NCT01024803). We are currently in the process of running a second NIHR-funded clinical trial to assess the next-generation device. The positive results from both studies to date indicate that the retinal implant should be included as a potential treatment for patients who are completely blind from retinitis pigmentosa. Evolution of the technology in future may provide further opportunities for earlier intervention or for other diseases.

  2. [Neurotology and cochlear implants].

    PubMed

    Merchán, Miguel A

    2015-05-01

    In this review we analyse cochlear implantation in terms of the fundamental aspects of the functioning of the auditory system. Concepts concerning neuronal plasticity applied to electrical stimulation in perinatal and adult deep hypoacusis are reviewed, and the latest scientific bases that justify early implantation following screening for congenital deafness are discussed. Finally, this review aims to serve as an example of the importance of fostering the sub-specialty of neurotology in our milieu, with the aim of bridging some of the gaps between specialties and thus improving both the knowledge in the field of research on auditory pathologies and in the screening of patients. The objectives of this review, targeted above all towards specialists in the field of otorhinolaryngology, are to analyse some significant neurological foundations in order to reach a better understanding of the clinical events that condition the indications and the rehabilitation of patients with cochlear implants, as well as to use this means to foster the growth of the sub-specialty of neurotology.

  3. The breast implant controversy.

    PubMed

    Cook, R R; Harrison, M C; LeVier, R R

    1994-02-01

    The breast implant issue is a "bad news/good news" story. For many women with implants, the controversy has caused a fair degree of anxiety which may or may not be resolved as further information becomes available. It has also taken its toll on Dow Corning. Whole lines of medical products have been eliminated or are being phase out. The development of new medical applications has been terminated. As a consequence, employees have lost their jobs. What the effect will be on the biomedical industry as a whole remains to be seen (11). While silicones have been an important component in various medical devices, it is likely that other materials can be used as replacements. However, suppliers of non-silicone materials are also reevaluating their role in this market. For example, Du Pont, the nation's largest chemical company, has determined that the unpredictable and excessive costs of doing business with manufacturers of implantable medical devices no longer justifies the unrestricted sale of standard raw materials into this industry. Other companies are quietly following suit. On the up side, it is possible that the research being driven by this controversy will result in a greater understanding of the immunologic implications of xenobiotics, of the importance of nonbiased observations, of the need for ready access to valid data sets, and of the opportunity for valid scientific information to guide legal decisions. Only time will tell.

  4. Tubo-uterine implantation.

    PubMed

    Green-armytage, V G

    1957-02-01

    After characterizing 2 types of patients presenting with tubal infertility (1 that is "as a rule overweight (the uterus is fixed (and there is easily palpable tubo-uterine pathology," and 1 that is "slim, young, intelligent and often beautiful", 12 1-sentence suggestions are made to increase the success of tubo-uterine implantations in the second type of presenting patient (because the first group has, in the author's mind, disappointing prognosis). Figures are the bulk of the document, with 3 figures demonstrating the type of operation, 3 showing the scheme of the operation, 1 figure showing a posterior view of the implanted tube in utero with a polyethylene prosthesis in situ down to the cervix, and 1 figure showing the instruments used in the operation. A few points of experience the author shares are: 1) operate immediately after a menstrual period; 2) give antibiotics prophylactically and after the procedure; 3) use a Bonney Myomectomy Clamp to elevate the uterus; 4) never use a knife or bistoury at the cornua; 5) use polyethylene rods, when available; and 6) caesarean section is the indicated delivery route after tubo-uterine implantation. Out of 38 patients with the requisite history and findings who have been operated on by this author, 14 have gone to full-term, i.e., 36.1%; 2 have aborted, giving a pregnancy rate of 42.2%, and there was 1 ectopic pregnancy.

  5. Diabetes alters inflammation, angiogenesis, and fibrogenesis in intraperitoneal implants in rats.

    PubMed

    Oviedo-Socarrás, Teresa; Vasconcelos, Anilton C; Barbosa, Irma X; Pereira, Nubia B; Campos, Paula P; Andrade, Silvia P

    2014-05-01

    The increased prevalence of diabetes worldwide is associated with increasing numbers of diabetic individuals receiving synthetic matrices and biomedical implants to repair and/or replace biological tissues. This therapeutic procedure invariably leads to adverse tissue healing (foreign body reaction), thus impairing the biomedical device function of subcutaneous implants. However, the influence of diabetes on abnormal tissue healing in intraperitoneal implants is unclear. We investigated key components of foreign body reactions in diabetic rats. Polyether-polyurethane sponge discs were placed intraperitoneally in rats previously injected with streptozotocin for induction of diabetes and in non-diabetic rats. Implants removed 10 days after implantation were assessed by determining the components of the fibrovascular tissue (angiogenesis, inflammation, and fibrogenesis). In implants from diabetic rats, fibrous capsule thickness and fibrovascular tissue infiltration (hematoxylin & eosin and picrosirius staining) were reduced in comparison with implants from non-diabetic rats. Hemoglobin (Hb) content (vascular index) and VEGF levels (pro-angiogenic cytokine) were increased after diabetes. However, the number of vessels (H&E and CD31-immunostaining) in the fibrovascular tissue from diabetic rats was decreased when compared with vessel numbers in implants from non-diabetic animals. Overall, all inflammatory parameters (macrophage accumulation-NAG activity; TNF-α and MCP-1 levels) increased in intraperitoneal implants after diabetes induction. The pro-fibrogenic cytokine (TGFβ-1) increased after diabetes, but collagen deposition remained unaltered in the implants from diabetic rats. These important diabetes-related changes (increased levels of pro-inflammatory and angiogenic and fibrogenic cytokines) in peritoneal implant healing provide an insight into the mechanisms of the foreign body response in the diabetic environment in rats. Copyright © 2014 Elsevier Inc. All

  6. Cross-linked xenogenic collagen implantation in the sheep model for vaginal surgery.

    PubMed

    Endo, Masayuki; Urbankova, Iva; Vlacil, Jaromir; Sengupta, Siddarth; Deprest, Thomas; Klosterhalfen, Bernd; Feola, Andrew; Deprest, Jan

    The properties of meshes used in reconstructive surgery affect the host response and biomechanical characteristics of the grafted tissue. Whereas durable synthetics induce a chronic inflammation, biological grafts are usually considered as more biocompatible. The location of implantation is another determinant of the host response: the vagina is a different environment with specific function and anatomy. Herein, we evaluated a cross-linked acellular collagen matrix (ACM), pretreated by the anti-calcification procedure ADAPT® in a sheep model for vaginal surgery. Ten sheep were implanted with a cross-linked ACM, and six controls were implanted with a polypropylene (PP; 56 g/m(2)) control. One implant was inserted in the lower rectovaginal septum, and one was used for abdominal wall defect reconstruction. Grafts were removed after 180 days; all graft-related complications were recorded, and explants underwent bi-axial tensiometry and contractility testing. Half of ACM-implanted animals had palpable induration in the vaginal implantation area, two of these also on the abdominal implant. One animal had a vaginal exposure. Vaginal ACMs were 63 % less stiff compared to abdominal ACM explants (p = 0.01) but comparable to vaginal PP explants. Seven anterior vaginal ACM explants showed areas of graft degradation on histology. There was no overall difference in vaginal contractility. Considering histologic degradation in the anterior vaginal implant as representative for the host, posterior ACM explants of animals with degradation had a 60 % reduced contractility as compared to PP (p = 0.048). Three abdominal implants showed histologic degradation; those were more compliant than non-degraded implants. Vaginal implantation with ACM was associated with graft-related complications (GRCs) and biomechanical properties comparable to PP. Partially degraded ACM had a decreased vaginal contractility.

  7. Li diffusion and substitution in chemically diverse synthetic zircon

    NASA Astrophysics Data System (ADS)

    Trail, D.

    2015-12-01

    Li concentrations and 7Li/6Li ratios in zircon may potentially trace crustal recycling because continental and mantle-derived zircons yield distinct values (Ushikubo et al. 2008; Bouvier et al. 2012). To some extent, the usefulness of these differences may depend upon the retentively of Li in zircon. Cherniak and Watson (2010) measured relatively high diffusivities for Li; here we sought to discover the scenarios under which Li mobility might be inhibited by charge compensating cations. We conducted "in" diffusion experiments in synthetic Lu-doped (~5000 ppm), P-doped (~250 ppm), and nearly pure zircon following the procedure in Cherniak and Watson (2010). In separate experiments, Li was ion implanted at depth within polished Mud Tank zircon slabs to form a Gaussian Li concentration profile; the relaxed concentration profile was measured after heating the zircon slabs. In all experiments, which ranged from 920 to 650 oC, calculated diffusivities were in agreement with a previously established Arrhenius relationship calibrated on trace element poor Mud Tank zircon (Cherniak and Watson, 2010). We also conducted complementary LA-ICP-MS mapping on the surfaces of P- and Lu-doped synthetic zircon crystals after the Li diffusion results were obtained. This revealed heterogeneous though patterned correlation between Li+Lu in the near surface of the crystal (no strong patterns emerged for P+Li). And finally, we observed that synthetic sector-zoned zircon exhibits near step function Li concentration profiles - correlating with changes in the rare earth element concentrations across these sectors - which allowed us to examine Li diffusion in yet another manner. Re-heating these grains followed by LA-ICP-MS analysis revealed significant Li migration, with no detectable migration of the rare earth elements. While our experiments cannot be considered exhaustive, we have yet to find a scenario where Li mobility in synthetic zircon depends on charge compensating cations.

  8. Nasal base, maxillary, and infraorbital implants--alloplastic.

    PubMed

    Hinderer, U T

    1991-01-01

    The aesthetic surgery of the facial skeletal contour requires either the performance of ostectomies of excessively prominent segments or the augmentation of retruded segments with organic or synthetic material, in order to achieve balanced tridimensional relations of each segment with regard to the total facial unit. Craniomaxillofacial surgeries are necessary in major malformations or in those combined with malocclusion. In the nasal dorsum or tip, the author prefers the use of cartilage, because synthetic materials need adequate soft-tissue bulk for cover to be inserted without tension and absence of passive mobility of the reception site. For malar augmentation, first proposed by the author and independently by Spadafora in 1971, for chin augmentation up to 8 mm, and for augmentation of the mandibular angle, the author prefers silicone implants because they do not change in shape or volume, may be premanufactured or custom-made, have a similar consistency to that of bone, and do not support bacterial growth. On the other hand, autologous bone grafts adapt less to curved bony surfaces, have an erratic rate of resorption, and need an additional surgical step for removal with the corresponding morbidity and scar. Subperiosteal insertion is preferred because it confers greater stability and the cavity is easier to dissect without soft-tissue damage. Although bone erosion may occur, with over 1200 implants clinically no major change in the soft-tissue contour has been observed, nor has the author been consulted for late complication. In the malar region this may be due to the large surface of the implant and absence of muscular pressure. In the chin, an insertion over the site of the dental roots is avoided. For midface augmentation the following implants are used: (1) The premaxillary lower nasal base implant, proposed in 1971, is indicated to correct a concave midfacial profile, frequent in Asian, black, and Mestizo patients from Latin America and in Caucasian

  9. The use of a synthetic progesterone, levonorgestrel (LNG), to control the oestrous cycle in the koala.

    PubMed

    Ballantyne, K; Anderson, S T; Pyne, M; Nicolson, V; Mucci, A; Lisle, A; Johnston, S D

    2015-05-01

    This study investigated the efficacy of a synthetic progestogen, levonorgestrel (LNG), to control koala ovarian activity for the purposes of oestrous synchronisation. Captive koalas were administered either saline control or a 70-mg LNG implant on Day 2 of oestrus. Urogenital cytology, oestrous behaviour and plasma oestradiol-17β and LH concentrations were monitored over a 6-week period. After LNG implant removal females were monitored to determine if the return to oestrus was synchronised. LNG-treated koalas immediately ceased displaying oestrous behaviour, showed no evidence of cornified epithelial cells in smears of urogenital cytology and exhibited low plasma oestradiol-17β concentrations throughout the implantation period. In contrast, oestradiol-17β levels in control koalas showed evidence of continued cyclic activity associated with behavioural oestrus and increased cornified epithelial cells in urogenital smears on Days 33 to 35 after saline injection. After implant removal, LNG-treated koalas exhibited oestrus at 13, 14, 17 and 30 days after implant removal. Plasma LH concentrations varied throughout the study period with no significant time (P = 0.49) or treatment (P = 0.13) effect. Overall results from this study suggest that LNG implants in koalas can inhibit oestrous behaviour and reduce circulating oestradiol-17β levels before oestrus, most likely by preventing development of the pre-ovulatory follicle. However, there was no evidence of LH suppression by the LNG implants. Removal of LNG implants resulted in the synchronous return to oestrus in three of the four treated koalas. Further studies on a larger population are required to validate these findings.

  10. Implantation of the Subcutaneous Implantable Cardioverter-Defibrillator: An Evaluation of 4 Implantation Techniques.

    PubMed

    Brouwer, Tom F; Miller, Marc A; Quast, Anne-Floor B E; Palaniswamy, Chandrasekar; Dukkipati, Srinivas R; Reddy, Vivek; Wilde, Arthur A; Willner, Jonathan M; Knops, Reinoud E

    2017-01-01

    Alternative techniques to the traditional 3-incision subcutaneous implantation of the subcutaneous implantable cardioverter-defibrillator may offer procedural and cosmetic advantages. We evaluate 4 different implant techniques of the subcutaneous implantable cardioverter-defibrillator. Patients implanted with subcutaneous implantable cardioverter-defibrillators from 2 hospitals between 2009 and 2016 were included. Four implantation techniques were used depending on physician preference and patient characteristics. The 2- and 3-incision techniques both place the pulse generator subcutaneously, but the 2-incision technique omits the superior parasternal incision for lead positioning. Submuscular implantation places the pulse generator underneath the serratus anterior muscle and subfascial implantation underneath the fascial layer on the anterior side of the serratus anterior muscle. Reported outcomes include perioperative parameters, defibrillation testing, and clinical follow-up. A total of 246 patients were included with a median age of 47 years and 37% female. Fifty-four patients were implanted with the 3-incision technique, 118 with the 2-incision technique, 38 with submuscular, and 37 with subfascial. Defibrillation test efficacy and shock lead impedance during testing did not differ among the groups; respectively, P=0.46 and P=0.18. The 2-incision technique resulted in the shortest procedure duration and time-to-hospital discharge compared with the other techniques (P<0.001). A total of 18 complications occurred, but there were no significant differences between the groups (P=0.21). All infections occurred in subcutaneous implants (3-incision, n=3; 2-incision, n=4). In the 2-incision group, there were no lead displacements. The presented implantation techniques are feasible alternatives to the standard 3-incision subcutaneous implantation, and the 2-incision technique resulted in shortest procedure duration. © 2017 American Heart Association, Inc.

  11. Bone formation following implantation of bone biomaterials into extraction sites.

    PubMed

    Molly, Liene; Vandromme, Heleen; Quirynen, Marc; Schepers, Evert; Adams, Jessica L; van Steenberghe, Daniel

    2008-06-01

    Adequate bone volume is imperative for the osseointegration of endosseous implants, but postextraction resorption and remodeling may challenge implant placement. The use of bone biomaterials has been advocated to fill extraction sites and to enhance primary implant stability during osseointegration. The objective of the case series was to evaluate bone formation histologically and biomechanically in extraction sites following implantation of three commercially available bone biomaterials to compare their ability to allow guided bone regeneration. Thirty-six periodontally involved teeth were extracted from eight healthy non-smoking subjects. At least two bone biomaterials, a synthetic sponge based on polylactic-polyglycolic acid technology (FIS), bovine porous bone mineral (BPBM), or a natural coral derivative physically and chemically transformed into a calcium carbonate ceramic (COR), and one non-grafted control were applied to the extraction sockets within each subject and were covered by an expanded polytetrafluoroethylene device. The devices were removed after 2 months, and trephine biopsies were obtained from each site 4 months later. At that time, endosseous implants were placed in 25 of the sites, and healing abutments were placed; measurements were taken 4 to 6 months later with an electronic mobility testing device. The percentage of residual biomaterial was 5.6% +/- 8.9% for FIS (P <0.001), 20.2% +/- 17.0% for BPBM (P <0.05), and 12.0% +/- 16.4% for COR (P <0.001). The amount of residual biomaterial after 6 months showed a significant relationship with the insertion torque measurements during the first third of implant insertion (P <0.05) and with values of the electronic mobility testing device at the abutment connection (P = 0.05). Histologically, new bone apposition was seen on BPBM particles. FIS sites showed similar ingrowth of blood vessels and osteocytes as empty controls. All sites revealed good primary stability at implant insertion and proper

  12. Reward-based hypertension control by a synthetic brain–dopamine interface

    PubMed Central

    Rössger, Katrin; Charpin-El Hamri, Ghislaine; Fussenegger, Martin

    2013-01-01

    Synthetic biology has significantly advanced the design of synthetic trigger-controlled devices that can reprogram mammalian cells to interface with complex metabolic activities. In the brain, the neurotransmitter dopamine coordinates communication with target neurons via a set of dopamine receptors that control behavior associated with reward-driven learning. This dopamine transmission has recently been suggested to increase central sympathetic outflow, resulting in plasma dopamine levels that correlate with corresponding brain activities. By functionally rewiring the human dopamine receptor D1 (DRD1) via the second messenger cyclic adenosine monophosphate (cAMP) to synthetic promoters containing cAMP response element-binding protein 1(CREB1)-specific cAMP-responsive operator modules, we have designed a synthetic dopamine-sensitive transcription controller that reversibly fine-tunes specific target gene expression at physiologically relevant brain-derived plasma dopamine levels. Following implantation of circuit-transgenic human cell lines insulated by semipermeable immunoprotective microcontainers into mice, the designer device interfaced with dopamine-specific brain activities and produced a systemic expression response when the animal’s reward system was stimulated by food, sexual arousal, or addictive drugs. Reward-triggered brain activities were able to remotely program peripheral therapeutic implants to produce sufficient amounts of the atrial natriuretic peptide, which reduced the blood pressure of hypertensive mice to the normal physiologic range. Seamless control of therapeutic transgenes by subconscious behavior may provide opportunities for treatment strategies of the future. PMID:24127594

  13. Transmission of acoustic emission in bones, implants and dental materials.

    PubMed

    Ossi, Zannar; Abdou, Wael; Reuben, Robert L; Ibbetson, Richard J

    2013-11-01

    There is considerable interest in using acoustic emission (AE) and ultrasound to assess the quality of implant-bone interfaces and to monitor for micro-damage leading to loosening. However, remarkably little work has been done on the transmission of ultrasonic waves though the physical and biological structures involved. The aim of this in vitro study is to assess any differences in transmission between various dental materials and bovine rib bones with various degrees of hydration. Two types of tests have been carried out using pencil lead breaks as a standard AE source. The first set of tests was configured to assess the surface propagation of AE on various synthetic materials compared with fresh bovine rib bone. The second is a set of transmission tests on fresh, dried and hydrated bones each fitted with dental implants with various degrees of fixity, which includes components due to bone and interface transmission. The results indicate that transmission through glass ionomer cement is closest to the bone. This would suggest that complete osseointegration could potentially be simulated using such cement. The transmission of AE energy through bone was found to be dependent on its degree of hydration. It was also found that perfusing samples of fresh bone with water led to an increase in transmitted energy, but this appeared to affect transmission across the interface more than transmission through the bone. These findings have implications not only for implant interface inspection but also for passive AE monitoring of implants.

  14. Peri-implant complications for posterior endosteal implants

    PubMed Central

    Esquivel-Upshaw, Josephine; Mehler, Alex; Clark, Arthur; Neal, Dan; Gonzaga, Luiz; Anusavice, Kenneth

    2014-01-01

    Objectives (1) To assess whether there is evidence of an association between the number of peri-implant tissue complications and patient characteristics such as gender, diabetes status, smoking status, and bite force; (2) To assess whether there is evidence of an association between the number of peri-implant tissue complications and location of the implant, surgical technique used, bone graft status and sinus lift status. Materials and Methods This randomized controlled clinical trial included a total of 176 implants (Osseospeed, Dentsply) in 67 participants with 88 fixed dental prostheses. Information was obtained from health histories, a baseline exam, surgical notes, and postoperative exams. The data were analyzed using Fisher's exact and Mann-Whitney tests, and generalized estimating equations logistic regression with a significance level set at 0.05. Results All 176 implants survived within a recall period of three years but 11 implants demonstrated peri-implant tissue complications. Ten sites showed dehiscence and one case exhibited vertical bone loss. There was a statistically significant association between surgical technique used (1-stage or 2-stage) and the presence of soft tissue complications (p = 0.005), where 2-stage surgery was associated with a higher frequency of peri-implant soft tissue complications. A correlation, although not statistically significant (p=0.077) was noted, between peri-implant tissue complications and bone grafting, suggesting a possible role for this factor as well. Conclusions Participants who did not require any second stage surgery at the implant sites experienced fewer complications. Therefore, additional surgical procedures should be performed judiciously considering their possible effects on peri-implant tissue health. PMID:25263400

  15. Transfer characteristics of subretinal visual implants: corneally recorded implant responses.

    PubMed

    Stingl, K; Bartz-Schmidt, K U; Braun, A; Gekeler, F; Greppmaier, U; Schatz, A; Stett, A; Strasser, T; Kitiratschky, V; Zrenner, E

    2016-10-01

    The subretinal Alpha IMS visual implant is a CE-approved medical device for restoration of visual functions in blind patients with end-stage outer retina degeneration. We present a method to test the function of the implant objectively in vivo using standard electroretinographic equipment and to assess the devices' parameter range for an optimal perception. Subretinal implant Alpha IMS (Retina Implant AG, Reutlingen, Germany) consists of 1500 photodiode-amplifier-electrode units and is implanted surgically into the subretinal space in blind retinitis pigmentosa patients. The voltages that regulate the amplifiers' sensitivity (V gl) and gain (V bias), related to the perception of contrast and brightness, respectively, are adjusted manually on a handheld power supply device. Corneally recorded implant responses (CRIR) to full-field illumination with long duration flashes in various implant settings for brightness gain (V bias) and amplifiers' sensitivity (V gl) are measured using electroretinographic setup with a Ganzfeld bowl in a protocol of increasing stimulus luminances up to 1000 cd/m(2). CRIRs are a meaningful tool for assessing the transfer characteristic curves of the electronic implant in vivo monitoring the implants' voltage output as a function of log luminance in a sigmoidal shape. Changing the amplifiers' sensitivity (V gl) shifts the curve left or right along the log luminance axis. Adjustment of the gain (V bias) changes the maximal output. Contrast perception is only possible within the luminance range of the increasing slope of the function. The technical function of subretinal visual implants can be measured objectively using a standard electroretinographic setup. CRIRs help the patient to optimise the perception by adjusting the gain and luminance range of the device and are a useful tool for clinicians to objectively assess the function of subretinal visual implants in vivo.

  16. Graphene synthesis by ion implantation

    PubMed Central

    Garaj, Slaven; Hubbard, William; Golovchenko, J. A.

    2010-01-01

    We demonstrate an ion implantation method for large-scale synthesis of high quality graphene films with controllable thickness. Thermally annealing polycrystalline nickel substrates that have been ion implanted with carbon atoms results in the surface growth of graphene films whose average thickness is controlled by implantation dose. The graphene film quality, as probed with Raman and electrical measurements, is comparable to previously reported synthesis methods. The implantation synthesis method can be generalized to a variety of metallic substrates and growth temperatures, since it does not require a decomposition of chemical precursors or a solvation of carbon into the substrate. PMID:21124725

  17. Short implants: A systematic review

    PubMed Central

    Karthikeyan, I.; Desai, Shrikar R.; Singh, Rika

    2012-01-01

    Background: Short implants are manufactured for use in atrophic regions of the jaws. Although many studies report on short implants as ≤10 mm length with considerable success, the literature regarding survival rate of ≤7 mm is sparse. Purpose: The purpose of this study was to systematically evaluate the publications concerning short dental implants defined as an implant with a length of ≤7 mm placed in the maxilla or in the mandible. Materials and Methods: A Medline and manual search was conducted to identify studies concerning short dental implants of length ≤7 mm published between 1991 and 2011. The articles included in this study report data on implant length ≤7 mm, such as demographic variables, implant type, location in jaws, observation time, prostheses and complications. Results: The 28 included studies represent one randomized controlled trial, 12 prospective studies and 10 retrospective studies. The survival rate of short implant was found to be increased from 80% to 90% gradually, with recent articles showing 100%. Conclusion: When severe atrophy of jaws was encountered, short and wide implants can be placed successfully. PMID:23162320

  18. Implant biomaterials: A comprehensive review

    PubMed Central

    Saini, Monika; Singh, Yashpal; Arora, Pooja; Arora, Vipin; Jain, Krati

    2015-01-01

    Appropriate selection of the implant biomaterial is a key factor for long term success of implants. The biologic environment does not accept completely any material so to optimize biologic performance, implants should be selected to reduce the negative biologic response while maintaining adequate function. Every clinician should always gain a thorough knowledge about the different biomaterials used for the dental implants. This article makes an effort to summarize various dental bio-materials which were used in the past and as well as the latest material used now. PMID:25610850

  19. Peptide-based synthetic vaccines

    PubMed Central

    Toth, Istvan

    2016-01-01

    Classically all vaccines were produced using live or attenuated microorganisms or parts of them. However, the use of whole organisms, their components or the biological process for vaccine production has several weaknesses. The presence of immunologically redundant biological components or biological impurities in such vaccines might cause major problems. All the disadvantageous of traditional vaccines might be overcome via the development of fully synthetic peptide-based vaccines. However, once minimal antigenic epitopes only are applied for immunisation, the immune responses are poor. The use of an adjuvant can overcome this obstacle; however, it may raise new glitches. Here we briefly summarise the current stand on peptide-based vaccines, discuss epitope and adjuvant design, and multi-epitope and nanoparticle-based vaccine approaches. This mini review discusses also the disadvantages and benefits associated with peptide-based vaccines. It proposes possible methods to overcome the weaknesses of the synthetic vaccine strategy and suggests future directions for its development. PMID:28791117

  20. Synthetic microbial ecosystems for biotechnology.

    PubMed

    Pandhal, Jagroop; Noirel, Josselin

    2014-06-01

    Most highly controlled and specific applications of microorganisms in biotechnology involve pure cultures. Maintaining single strain cultures is important for industry as contaminants can reduce productivity and lead to longer "down-times" during sterilisation. However, microbes working together provide distinct advantages over pure cultures. They can undertake more metabolically complex tasks, improve efficiency and even expand applications to open systems. By combining rapidly advancing technologies with ecological theory, the use of microbial ecosystems in biotechnology will inevitably increase. This review provides insight into the use of synthetic microbial communities in biotechnology by applying the engineering paradigm of measure, model, manipulate and manufacture, and illustrate the emerging wider potential of the synthetic ecology field. Systems to improve biofuel production using microalgae are also discussed.

  1. Synthetic approaches to multifunctional indenes

    PubMed Central

    López-Pérez, Sara; Dinarès, Immaculada

    2011-01-01

    Summary The synthesis of multifunctional indenes with at least two different functional groups has not yet been extensively explored. Among the plausible synthetic routes to 3,5-disubstituted indenes bearing two different functional groups, such as the [3-(aminoethyl)inden-5-yl)]amines, a reasonable pathway involves the (5-nitro-3-indenyl)acetamides as key intermediates. Although several multistep synthetic approaches can be applied to obtain these advanced intermediates, we describe herein their preparation by an aldol-type reaction between 5-nitroindan-1-ones and the lithium salt of N,N-disubstituted acetamides, followed immediately by dehydration with acid. This classical condensation process, which is neither simple nor trivial despite its apparent directness, permits an efficient entry to a variety of indene-based molecular modules, which could be adapted to a range of functionalized indanones. PMID:22238553

  2. Droplet microfluidics for synthetic biology.

    PubMed

    Gach, Philip C; Iwai, Kosuke; Kim, Peter W; Hillson, Nathan J; Singh, Anup K

    2017-08-18

    Synthetic biology is an interdisciplinary field that aims to engineer biological systems for useful purposes. Organism engineering often requires the optimization of individual genes and/or entire biological pathways (consisting of multiple genes). Advances in DNA sequencing and synthesis have recently begun to enable the possibility of evaluating thousands of gene variants and hundreds of thousands of gene combinations. However, such large-scale optimization experiments remain cost-prohibitive to researchers following traditional molecular biology practices, which are frequently labor-intensive and suffer from poor reproducibility. Liquid handling robotics may reduce labor and improve reproducibility, but are themselves expensive and thus inaccessible to most researchers. Microfluidic platforms offer a lower entry price point alternative to robotics, and maintain high throughput and reproducibility while further reducing operating costs through diminished reagent volume requirements. Droplet microfluidics have shown exceptional promise for synthetic biology experiments, including DNA assembly, transformation/transfection, culturing, cell sorting, phenotypic assays, artificial cells and genetic circuits.

  3. Engineering Ecosystems and Synthetic Ecologies#

    PubMed Central

    Mee, Michael T; Wang, Harris H

    2012-01-01

    Microbial ecosystems play an important role in nature. Engineering these systems for industrial, medical, or biotechnological purposes are important pursuits for synthetic biologists and biological engineers moving forward. Here, we provide a review of recent progress in engineering natural and synthetic microbial ecosystems. We highlight important forward engineering design principles, theoretical and quantitative models, new experimental and manipulation tools, and possible applications of microbial ecosystem engineering. We argue that simply engineering individual microbes will lead to fragile homogenous populations that are difficult to sustain, especially in highly heterogeneous and unpredictable environments. Instead, engineered microbial ecosystems are likely to be more robust and able to achieve complex tasks at the spatial and temporal resolution needed for truly programmable biology. PMID:22722235

  4. Synthetic cannabinoids: analysis and metabolites.

    PubMed

    Elsohly, Mahmoud A; Gul, Waseem; Wanas, Amira S; Radwan, Mohamed M

    2014-02-27

    Cannabimimetics (commonly referred to as synthetic cannabinoids), a group of compounds encompassing a wide range of chemical structures, have been developed by scientists with the hope of achieving selectivity toward one or the other of the cannabinoid receptors CB1 and CB2. The goal was to have compounds that could possess high therapeutic activity without many side effects. However, underground laboratories have used the information generated by the scientific community to develop these compounds for illicit use as marijuana substitutes. This chapter reviews the different classes of these "synthetic cannabinoids" with particular emphasis on the methods used for their identification in the herbal products with which they are mixed and identification of their metabolites in biological specimens.

  5. Synthetic synaesthesia and sensory substitution.

    PubMed

    Proulx, Michael J

    2010-03-01

    Visual information can be provided to blind users through sensory substitution devices that convert images into sound. Through extensive use to develop expertise, some blind users have reported visual experiences when using such a device. These blind expert users have also reported visual phenomenology to other sounds even when not using the device. The blind users acquired synthetic synaesthesia, with visual experience evoked by sounds only after gaining such expertise. Sensorimotor learning may facilitate and perhaps even be required to develop expertise in the use of multimodal information. Furthermore, other areas where expertise is acquired in dividing attention amongst cross-modal information or integrating such information might also give rise to synthetic synaesthesia.

  6. Designing synthetic vaccines for HIV.

    PubMed

    Fernández-Tejada, Alberto; Haynes, Barton F; Danishefsky, Samuel J

    2015-06-01

    Despite three decades of intensive research efforts, the development of an effective prophylactic vaccine against HIV remains an unrealized goal in the global campaign to contain the HIV/AIDS pandemic. Recent characterization of novel epitopes for inducing broadly neutralizing antibodies has fueled research in the design and synthesis of new, well-defined antigenic constructs for the development of HIV envelope-directed vaccines. The present review will cover previous and recent efforts toward the design of synthetic vaccines based on the HIV viral envelope glycoproteins, with special emphasis on examples from our own laboratories. The biological evaluation of some of the most representative vaccine candidates, in terms of their antigenicity and immunogenicity, will also be discussed to illustrate the current state-of-the-art toward the development of fully synthetic HIV vaccines.

  7. Multiscale models for synthetic biology.

    PubMed

    Kaznessis, Yiannis N

    2009-01-01

    Reacting systems away from the thermodynamic limit cannot be accurately modeled with ordinary differential equations. These continuous-deterministic modeling formalisms, traditionally developed and used by chemical engineers can be distinctly false if the number of molecules of reacting chemical species is very small, or if reaction events are very rare. Then stochastic-discrete representations are appropriate. Importantly, in cases where in a network of reactions there are some parts that must be modeled discretely and stochastically, yet others can be modeled continuously and deterministically, the need for development of multiscale models emerges naturally. In computational synthetic biology, such cases arise often. In this work we present the development of multiscale models for synthetic biology applications, demonstrating accuracy, computational efficiency and utility.

  8. Developing technologies for synthetic fuels

    NASA Astrophysics Data System (ADS)

    Sprow, F. B.

    1981-05-01

    After consideration of a likely timetable for the development of a synthetic fuels industry and its necessary supporting technology, the large variety of such fuels and their potential roles is assessed along with their commercialization outlook. Among the fuel production methods considered are: (1) above-ground retorting of oil shale; (2) in-situ shale retorting; (3) open pit mining of tar sands; (4) in-situ steam stimulation of tar sands; (5) coal gasification; (6) methanol synthesis from carbon monoxide and hydrogen; and (7) direct coal liquefaction by the hydrogenation of coal. It is shown that while the U.S. has very limited resource bases for tar sands and heavy crudes, the abundance of shale in the western states and the abundance and greater geographical dispersion of coal will make these the two most important resources of a future synthetic fuels industry.

  9. RESIDUAL RISK ASSESSMENT: SYNTHETIC ORGANIC ...

    EPA Pesticide Factsheets

    This document describes the residual risk assessment for the Synthetic Organic Chemical Manufacturing Industry source category. For stationary sources, section 112 (f) of the Clean Air Act requires EPA to assess risks to human health and the environment following implementation of technology-based control standards. If these technology-based control standards do not provide an ample margin of safety, then EPA is required to promulgate addtional standards. This document describes the methodology and results of the residual risk assessment performed for the Synthetic Organic Chemical Manufacturing Industry source category. The results of this analyiss will assist EPA in determining whether a residual risk rule for this source category is appropriate. Update 9/19/2006: Proposed Rule June 14, 2006 - Risk Assessment complete September 2005 and only available in the Docket.

  10. Designing synthetic vaccines for HIV

    PubMed Central

    2015-01-01

    Summary Despite three decades of intensive research efforts, the development of an effective prophylactic vaccine against HIV remains an unrealized goal in the global campaign to contain the HIV/AIDS pandemic. Recent characterization of novel epitopes for inducing broadly neutralizing antibodies (BnAbs) has fueled research in the design and synthesis of new, well-defined antigenic constructs for the development of HIV envelope-directed vaccines. The present review will cover previous and recent efforts toward the design of synthetic vaccines based on the HIV viral envelope (Env) glycoproteins, with special emphasis on examples from our own laboratories. The biological evaluation of some of the most representative vaccine candidates, in terms of their antigenicity and immunogenicity, will also be discussed to illustrate the current state-of-the-art toward the development of fully synthetic HIV vaccines. PMID:25824661

  11. Synthetic LDL as targeted drug delivery vehicle

    DOEpatents

    Forte, Trudy M [Berkeley, CA; Nikanjam, Mina [Richmond, CA

    2012-08-28

    The present invention provides a synthetic LDL nanoparticle comprising a lipid moiety and a synthetic chimeric peptide so as to be capable of binding the LDL receptor. The synthetic LDL nanoparticle of the present invention is capable of incorporating and targeting therapeutics to cells expressing the LDL receptor for diseases associated with the expression of the LDL receptor such as central nervous system diseases. The invention further provides methods of using such synthetic LDL nanoparticles.

  12. Synthetic Biological Engineering of Photosynthesis

    DTIC Science & Technology

    2015-11-16

    Patrick_Boyle, Edwin_Wintermute, Jeffrey_Way, Christina_Agapakis, Pamela_Silver. Insulation of a synthetic hydrogen metabolism circuit in bacteria , Journal...allowing for greater hydrogen yields and for dark fermentation of internal energy stores into hydrogen gas. These results proved our ability to connect...One of our overarching goals was to engineer photosynthetic bacteria to produce commodities. We had a number of successes with regard to fatty

  13. Synthetic Aperture Radar Simulation Study

    DTIC Science & Technology

    1984-03-01

    multilook are discussed. A chapter is devoted to elevation and planimetric data bases. In addition, six- teen pictures of SAR images from Hughes Aircraft, as...scans. Figure 5.4-1 is a photograph ot two SAR displays. The tirst display is made up ot six subscans and has a multilook ot one. Note that tading is...dentfi by block number) * Synthetic Aperture Radar ( SAR ) Simulation Study Radar Simulation Data Bases 5/~t. 4th.- Computer Image Generation Display 20

  14. Hydrogen speciation in synthetic quartz

    USGS Publications Warehouse

    Aines, R.D.; Kirby, S.H.; Rossman, G.R.

    1984-01-01

    The dominant hydrogen impurity in synthetic quartz is molecular H2O. H-OH groups also occur, but there is no direct evidence for the hydrolysis of Si-O-Si bonds to yield Si-OH HO-Si groups. Molecular H2O concentrations in the synthetic quartz crystals studied range from less than 10 to 3,300 ppm (H/Si), and decrease smoothly by up to an order of magnitude with distance away from the seed. OH- concentrations range from 96 to 715 ppm, and rise smoothly with distance away from the seed by up to a factor of three. The observed OH- is probably all associated with cationic impurities, as in natural quartz. Molecular H2O is the dominant initial hydrogen impurity in weak quartz. The hydrolytic weakening of quartz may be caused by the transformation H2O + Si-O-Si ??? 2SiOH, but this may be a transitory change with the SiOH groups recombining to form H2O, and the average SiOH concentration remaining very low. Synthetic quartz is strengthened when the H2O is accumulated into fluid inclusions and cannot react with the quartz framework. ?? 1984 Springer-Verlag.

  15. Strategies for protein synthetic biology

    PubMed Central

    Grünberg, Raik; Serrano, Luis

    2010-01-01

    Proteins are the most versatile among the various biological building blocks and a mature field of protein engineering has lead to many industrial and biomedical applications. But the strength of proteins—their versatility, dynamics and interactions—also complicates and hinders systems engineering. Therefore, the design of more sophisticated, multi-component protein systems appears to lag behind, in particular, when compared to the engineering of gene regulatory networks. Yet, synthetic biologists have started to tinker with the information flow through natural signaling networks or integrated protein switches. A successful strategy common to most of these experiments is their focus on modular interactions between protein domains or domains and peptide motifs. Such modular interaction swapping has rewired signaling in yeast, put mammalian cell morphology under the control of light, or increased the flux through a synthetic metabolic pathway. Based on this experience, we outline an engineering framework for the connection of reusable protein interaction devices into self-sufficient circuits. Such a framework should help to ‘refacture’ protein complexity into well-defined exchangeable devices for predictive engineering. We review the foundations and initial success stories of protein synthetic biology and discuss the challenges and promises on the way from protein- to protein systems design. PMID:20385577

  16. Synthetic metabolons for metabolic engineering.

    PubMed

    Singleton, Chloe; Howard, Thomas P; Smirnoff, Nicholas

    2014-05-01

    It has been proposed that enzymes can associate into complexes (metabolons) that increase the efficiency of metabolic pathways by channelling substrates between enzymes. Metabolons may increase flux by increasing the local concentration of intermediates, decreasing the concentration of enzymes needed to maintain a given flux, directing the products of a pathway to a specific subcellular location or minimizing the escape of reactive intermediates. Metabolons can be formed by relatively loose non-covalent protein-protein interaction, anchorage to membranes, and (in bacteria) by encapsulation of enzymes in protein-coated microcompartments. Evidence that non-coated metabolons are effective at channelling substrates is scarce and difficult to obtain. In plants there is strong evidence that small proportions of glycolytic enzymes are associated with the outside of mitochondria and are effective in substrate channelling. More recently, synthetic metabolons, in which enzymes are scaffolded to synthetic proteins or nucleic acids, have been expressed in microorganisms and these provide evidence that scaffolded enzymes are more effective than free enzymes for metabolic engineering. This provides experimental evidence that metabolons may have a general advantage and opens the way to improving the outcome of metabolic engineering in plants by including synthetic metabolons in the toolbox.

  17. Hydrolytic stability of synthetic oils

    SciTech Connect

    Echin, A.I.; Kondrat'eva, T.B.; Novosartov, G.T.

    1984-01-01

    This article investigates the hydrolytic stability for diisooctyl sebacate (DOS), the pentaerythritol and diethylene glycol esters of a C/sub 5/-C/sub 9/ synthetic fatty acid cut (PEE and DEGE), and synthetic oils based on these esters: VNII NP 50-1-4f, B-3V, and 36/1 KU-A. The hydrolysis rate was evaluated from the increase in concentration of acid formed in the process of hydrolysis at specific intervals of time. The dependence of the degree of hydrolysis on the content of water in the oil is examined. The results of the study of the hydrolytic stability of esters and synthetic oils show that the indexes most susceptible to change in the course of hydrolysis are the acid number of the oil and the pH and acid number of the water extract. The stability of the kinematic viscosity at /sup -/40/sup 0/C before and after hydrolysis and the absence of sludge after hydrolysis indicate that in the hydrolysis under these conditions, thermal and thermal-oxidative processes have practically no influence on the oil properties. It is determined that the low hydrolytic stability of the USSR diester oils is due to their content of certain additives that catalyze hydrolysis.

  18. 63 FR 41290 - Synthetic Methionine From Japan

    Federal Register 2010, 2011, 2012, 2013, 2014

    1998-08-03

    ... COMMISSION Synthetic Methionine From Japan AGENCY: United States International Trade Commission. ACTION: Institution of a five-year review concerning the antidumping duty order on synthetic methionine from Japan... antidumping duty order on synthetic methionine from Japan would be likely to lead to continuation...

  19. 21 CFR 178.3500 - Glycerin, synthetic.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Glycerin, synthetic. 178.3500 Section 178.3500 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) FOOD FOR... Certain Adjuvants and Production Aids § 178.3500 Glycerin, synthetic. Synthetic glycerin may be safely...

  20. 21 CFR 178.3500 - Glycerin, synthetic.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 3 2011-04-01 2011-04-01 false Glycerin, synthetic. 178.3500 Section 178.3500 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) FOOD... Certain Adjuvants and Production Aids § 178.3500 Glycerin, synthetic. Synthetic glycerin may be safely...

  1. Synthetic Cannabinoids and Cathinones: Prevalence and Markets.

    PubMed

    Bretteville-Jensen, A L; Tuv, S S; Bilgrei, O R; Fjeld, B; Bachs, L

    2013-03-01

    Over the past few years, the phenomenon of new designer drugs has attracted much attention. Synthetic cannabinoids and cathinones are the two main classes of these drugs. Both are potent drugs of abuse, and several cases of severe toxicity and deaths are reported. The present work is based on a systematic review of studies that have assessed the market and prevalence of synthetic cannabinoids and cathinones, and integrates pharmacological, sociological, and epidemiological aspects of these two groups of emerging synthetic drugs. The review reflects that the Internet has made synthetic cannabinoids and cathinones widely available. Furthermore, aggressive and widespread marketing, as well as the low price level of these drugs, their juridical status and their lack of detection on standard drug tests may serve as major motivations for drug use. The number of prevalence studies is small and derived from a limited number of countries. In spite of the many methodological shortcomings, some conclusions may be cautiously drawn. Taken together, the results point toward higher prevalence of use for synthetic cathinones than for synthetic cannabinoids. In the general population, the prevalence of use of synthetic cathinones is reported to be around 4% compared to figures lower than 1% for synthetic cannabinoids. Among students, the prevalence varies from 1-20% for synthetic cathinones and 2-10% for synthetic cannabinoids. Among groups with high rates of drug use, the prevalence varies between 4% to more than 60% for synthetic cathinones and around 10% for synthetic cannabinoids.

  2. 21 CFR 178.3500 - Glycerin, synthetic.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 3 2014-04-01 2014-04-01 false Glycerin, synthetic. 178.3500 Section 178.3500... § 178.3500 Glycerin, synthetic. Synthetic glycerin may be safely used as a component of articles intended for use in packaging materials for food, subject to the provisions of this section: (a) It is...

  3. 21 CFR 178.3500 - Glycerin, synthetic.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 3 2013-04-01 2013-04-01 false Glycerin, synthetic. 178.3500 Section 178.3500... Certain Adjuvants and Production Aids § 178.3500 Glycerin, synthetic. Synthetic glycerin may be safely used as a component of articles intended for use in packaging materials for food, subject to the...

  4. 21 CFR 178.3500 - Glycerin, synthetic.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 3 2012-04-01 2012-04-01 false Glycerin, synthetic. 178.3500 Section 178.3500... Certain Adjuvants and Production Aids § 178.3500 Glycerin, synthetic. Synthetic glycerin may be safely used as a component of articles intended for use in packaging materials for food, subject to the...

  5. Synthetic-aperture chirp confocal imaging.

    PubMed

    Chien, Wei-Chen; Dilworth, D S; Liu, Elson; Leith, E N

    2006-01-20

    An imaging system that combines synthetic-aperture imaging, holography, and an optical chirp with confocal imaging is described and analyzed. Comparisons are made with synthetic-aperture radar systems. Adaptation of several synthetic-aperture radar techniques to the optical counterparts is suggested.

  6. Synthetic thermoelectric materials comprising phononic crystals

    DOEpatents

    El-Kady, Ihab F; Olsson, Roy H; Hopkins, Patrick; Reinke, Charles; Kim, Bongsang

    2013-08-13

    Synthetic thermoelectric materials comprising phononic crystals can simultaneously have a large Seebeck coefficient, high electrical conductivity, and low thermal conductivity. Such synthetic thermoelectric materials can enable improved thermoelectric devices, such as thermoelectric generators and coolers, with improved performance. Such synthetic thermoelectric materials and devices can be fabricated using techniques that are compatible with standard microelectronics.

  7. Age at implantation and auditory memory in cochlear implanted children.

    PubMed

    Mikic, B; Miric, D; Nikolic-Mikic, M; Ostojic, S; Asanovic, M

    2014-05-01

    Early cochlear implantation, before the age of 3 years, provides the best outcome regarding listening, speech, cognition an memory due to maximal central nervous system plasticity. Intensive postoperative training improves not only auditory performance and language, but affects auditory memory as well. The aim of this study was to discover if the age at implantation affects auditory memory function in cochlear implanted children. A total of 50 cochlear implanted children aged 4 to 8 years were enrolled in this study: early implanted (1-3y) n = 27 and late implanted (4-6y) n = 23. Two types of memory tests were used: Immediate Verbal Memory Test and Forward and Backward Digit Span Test. Early implanted children performed better on both verbal and numeric tasks of auditory memory. The difference was statistically significant, especially on the complex tasks. Early cochlear implantation, before the age of 3 years, significantly improve auditory memory and contribute to better cognitive and education outcomes.

  8. New molecular strategies for reducing implantable medical devices associated infections.

    PubMed

    Holban, Alina Maria; Gestal, Monica Cartelle; Grumezescu, Alexandru Mihai

    2014-01-01

    Due to the great prevalence of persistent and recurrent implanted device associated-infections novel and alternative therapeutic approaches are intensely investigated. For reducing complications and antibiotic resistance development, one major strategy is using natural or synthetic modulators for targeting microbial molecular pathways which are not related with cell multiplication and death, as Quorum Sensing, virulence and biofilm formation. The purpose of this review paper is to discuss the most recent in vitro approaches, investigating the efficiency of some novel antimicrobial products and the nano-technologic progress performed in order to increase their effect and stability.

  9. A synthetic mammalian electro-genetic transcription circuit

    PubMed Central

    Weber, Wilfried; Luzi, Stefan; Karlsson, Maria; Sanchez-Bustamante, Carlota Diaz; Frey, Urs; Hierlemann, Andreas; Fussenegger, Martin

    2009-01-01

    Electric signal processing has evolved to manage rapid information transfer in neuronal networks and muscular contraction in multicellular organisms and controls the most sophisticated man-built devices. Using a synthetic biology approach to assemble electronic parts with genetic control units engineered into mammalian cells, we designed an electric power-adjustable transcription control circuit able to integrate the intensity of a direct current over time, to translate the amplitude or frequency of an alternating current into an adjustable genetic readout or to modulate the beating frequency of primary heart cells. Successful miniaturization of the electro-genetic devices may pave the way for the design of novel hybrid electro-genetic implants assembled from electronic and genetic parts. PMID:19190091

  10. Mimicking biological stress-strain behaviour with synthetic elastomers.

    PubMed

    Vatankhah-Varnosfaderani, Mohammad; Daniel, William F M; Everhart, Matthew H; Pandya, Ashish A; Liang, Heyi; Matyjaszewski, Krzysztof; Dobrynin, Andrey V; Sheiko, Sergei S

    2017-09-28

    Despite the versatility of synthetic chemistry, certain combinations of mechanical softness, strength, and toughness can be difficult to achieve in a single material. These combinations are, however, commonplace in biological tissues, and are therefore needed for applications such as medical implants, tissue engineering, soft robotics, and wearable electronics. Present materials synthesis strategies are predominantly Edisonian, involving the empirical mixing of assorted monomers, crosslinking schemes, and occluded swelling agents, but this approach yields limited property control. Here we present a general strategy for mimicking the mechanical behaviour of biological materials by precisely encoding their stress-strain curves in solvent-free brush- and comb-like polymer networks (elastomers). The code consists of three independent architectural parameters-network strand length, side-chain length and grafting density. Using prototypical poly(dimethylsiloxane) elastomers, we illustrate how this parametric triplet enables the replication of the strain-stiffening characteristics of jellyfish, lung, and arterial tissues.

  11. A synthetic mammalian electro-genetic transcription circuit.

    PubMed

    Weber, Wilfried; Luzi, Stefan; Karlsson, Maria; Sanchez-Bustamante, Carlota Diaz; Frey, Urs; Hierlemann, Andreas; Fussenegger, Martin

    2009-03-01

    Electric signal processing has evolved to manage rapid information transfer in neuronal networks and muscular contraction in multicellular organisms and controls the most sophisticated man-built devices. Using a synthetic biology approach to assemble electronic parts with genetic control units engineered into mammalian cells, we designed an electric power-adjustable transcription control circuit able to integrate the intensity of a direct current over time, to translate the amplitude or frequency of an alternating current into an adjustable genetic readout or to modulate the beating frequency of primary heart cells. Successful miniaturization of the electro-genetic devices may pave the way for the design of novel hybrid electro-genetic implants assembled from electronic and genetic parts.

  12. Broad beam ion implanter

    DOEpatents

    Leung, K.N.

    1996-10-08

    An ion implantation device for creating a large diameter, homogeneous, ion beam is described, as well as a method for creating same, wherein the device is characterized by extraction of a diverging ion beam and its conversion by ion beam optics to an essentially parallel ion beam. The device comprises a plasma or ion source, an anode and exit aperture, an extraction electrode, a divergence-limiting electrode and an acceleration electrode, as well as the means for connecting a voltage supply to the electrodes. 6 figs.

  13. Broad beam ion implanter

    DOEpatents

    Leung, Ka-Ngo

    1996-01-01

    An ion implantation device for creating a large diameter, homogeneous, ion beam is described, as well as a method for creating same, wherein the device is characterized by extraction of a diverging ion beam and its conversion by ion beam optics to an essentially parallel ion beam. The device comprises a plasma or ion source, an anode and exit aperture, an extraction electrode, a divergence-limiting electrode and an acceleration electrode, as well as the means for connecting a voltage supply to the electrodes.

  14. Implantable medical sensor system

    DOEpatents

    Darrow, Christopher B.; Satcher, Jr., Joe H.; Lane, Stephen M.; Lee, Abraham P.; Wang, Amy W.

    2001-01-01

    An implantable chemical sensor system for medical applications is described which permits selective recognition of an analyte using an expandable biocompatible sensor, such as a polymer, that undergoes a dimensional change in the presence of the analyte. The expandable polymer is incorporated into an electronic circuit component that changes its properties (e.g., frequency) when the polymer changes dimension. As the circuit changes its characteristics, an external interrogator transmits a signal transdermally to the transducer, and the concentration of the analyte is determined from the measured changes in the circuit. This invention may be used for minimally invasive monitoring of blood glucose levels in diabetic patients.

  15. Gluteal lift with subfascial implants.

    PubMed

    de la Peña-Salcedo, Jose Abel; Soto-Miranda, Miguel Angel; Vaquera-Guevara, Marcelo Osvaldo; Lopez-Salguero, Jose Fernando; Lavareda-Santana, Marco Antonio; Ledezma-Rodriguez, Jocelyn Celeste

    2013-06-01

    Gluteal enhancement surgery includes buttock implants, gluteal flaps, lipografting, and gluteal lifts. However, no information is available on the outcomes achievable using the gluteal lift combined with subfascial gluteal implants. A retrospective study was performed to analyze the outcomes of gluteal lift combined with subfascial gluteal implants performed during a 7-year period by a single surgeon at a single institution. During the study period, 114 patients (228 implants) ages 27-68 years (mean 47 years) were found. The follow-up period was 1-7 years (mean 4.5 years). The findings showed seroma in 11.4 % of the patients, hematoma in 5.26 %, minor wound dehiscence in 19.29 %, major wound dehiscence in 1.75 %, minor infection in 1.75 %, implant exposure in 0 %, capsular contracture Becker 3 and 4 in 3.5 %, implant rupture in 0 %, implant malposition in 5.25 %, long-term numbness of the buttock in 0 %, palpability of the implant in 0 %, implant rippling in 0 %, implant rupture in 0 %, wide scars in 41.2 %, need for secondary surgery in 26.31 %, and dissatisfaction with the final volume in 10.52 %. A patient satisfaction rate of 9.6 in 10 was found. The study showed that the gluteal lift combined with gluteal implants placed in the subfascial pocket provided good long-lasting results with an acceptable rate of complications, very high patient satisfaction, and easily concealed scars. This journal requires that authors assign a level of evidence to each article. For a full description of these Evidence-Based Medicine ratings, please refer to the Table of Contents or the online Instructions to Authors www.springer.com/00266 .

  16. [Implant rehabilitation of distal mandibular atrophy using a blade implant].

    PubMed

    Veron, C; Chanavaz, M

    1997-11-01

    After a brief revision of the anatomy of the posterior mandible and its natural resorption pattern, the ramus plate-form implant would be the implant of choice for the rehabilitation of this region. This "site specific" implant is inserted on the top of the crest and superficially impacted within the residual alveolar bone at the distal segment of the horizontal branch and guided to climb parallel to the anterior aspect of the ascending ramus. Its form and specific dimensions are perfectly compatible with the frequently limited quantity of available bone above the nerve canal in patients with advanced atrophy of the posterior mandible. It provides a predictable abutment for the implant-supported or dento-implant-supported prostheses of the posterior mandible.

  17. Evaluation of Hi-Tec Implant Restoration in Mandibular First Molar Region- A Prospective Clinical Study

    PubMed Central

    Sreeram, Roopa Rani. S.; Prasad, L Krishna; Chakravarthi, P Srinivas; Devi, Naga Neelima; Sreeram, Sanjay Krishna

    2015-01-01

    Background and Aims Missing teeth lead to loss of structural balance, inefficient function, poor aesthetics and psychological effects on human beings, which needs restoration for normal contour, function and aesthetics. Several natural or synthetic substitutes are being used for replacement of missing tooth since centuries. Implants are the latest modality of replacement. So, the study was aimed to assess clinical success rate of Hi-Tec implant; which is economical and new in market. Results of the study will help clinician for appropriate implant selection. Materials and Methods The study included 10 patients from 19 to 31 years and needed restoration of missing mandibular first molar. Restoration had done using Hi Tec Single-tooth implants with metal-ceramic single crown prosthesis after three months of osseointegration. The implants were evaluated clinically (bleeding on probing, probing depth, implant mobility- periotest) and radiographically (marginal bone loss and peri-implant radiolucency) for six years. The observers were blinded for the duration of the study to prevent bias. Results All the patients had uneventful post-surgical healing. No bleeding on probing, Implant mobility, peri-implant radiolucency with minimal marginal bone loss and constant probing depths were observed well within the normal range during follow-up periods. Conclusion Two stage single-tooth Hi Tec implant restoration can be used as a successful treatment modality for replacing mandibular first molar in an economic way. However, these results were obtained after 6 years of follow up with a smaller sample size, so long term multi center studies with a larger sample size is recommended for the predictability of success rate conclusively. PMID:26436053

  18. Nanomaterials and synergistic low intensity direct current (LIDC) stimulation technology for orthopaedic implantable medical devices

    PubMed Central

    Samberg, Meghan E.; Cohen, Paul H.; Wysk, Richard A.; Monteiro-Riviere, Nancy A.

    2012-01-01

    Nanomaterials play a significant role in biomedical research and applications due to their unique biological, mechanical, and electrical properties. In recent years, they have been utilised to improve the functionality and reliability of a wide range of implantable medical devices ranging from well-established orthopaedic residual hardware devices (e.g. hip implants) that can repair defects in skeletal systems to emerging tissue engineering scaffolds that can repair or replace organ functions. This review summarizes the applications and efficacies of these nanomaterials that include synthetic or naturally occurring metals, polymers, ceramics, and composites in orthopaedic implants, the largest market segment of implantable medical devices. The importance of synergistic engineering techniques that can augment or enhance the performance of nanomaterial applications in orthopaedic implants is also discussed,, the focus being on a low intensity direct electric current (LIDC) stimulation technology to promote the long-term antibacterial efficacy of oligodynamic metal-based surfaces by ionization, while potentially accelerating tissue growth and osseointegration. While many nanomaterials have clearly demonstrated their ability to provide more effective implantable medical surfaces, further decisive investigations are necessary before they can translate into medically safe and commercially viable clinical applications. The paper concludes with a discussion about some of the critical impending issues with the application of nanomaterials-based technologies in implantable medical devices, and potential directions to address these. PMID:23335493

  19. Nanomaterials and synergistic low-intensity direct current (LIDC) stimulation technology for orthopedic implantable medical devices.

    PubMed

    Shirwaiker, Rohan A; Samberg, Meghan E; Cohen, Paul H; Wysk, Richard A; Monteiro-Riviere, Nancy A

    2013-01-01

    Nanomaterials play a significant role in biomedical research and applications because of their unique biological, mechanical, and electrical properties. In recent years, they have been utilized to improve the functionality and reliability of a wide range of implantable medical devices ranging from well-established orthopedic residual hardware devices (e.g., hip implants) that can repair defects in skeletal systems to emerging tissue engineering scaffolds that can repair or replace organ functions. This review summarizes the applications and efficacies of these nanomaterials that include synthetic or naturally occurring metals, polymers, ceramics, and composites in orthopedic implants, the largest market segment of implantable medical devices. The importance of synergistic engineering techniques that can augment or enhance the performance of nanomaterial applications in orthopedic implants is also discussed, the focus being on a low-intensity direct electric current (LIDC) stimulation technology to promote the long-term antibacterial efficacy of oligodynamic metal-based surfaces by ionization, while potentially accelerating tissue growth and osseointegration. While many nanomaterials have clearly demonstrated their ability to provide more effective implantable medical surfaces, further decisive investigations are necessary before they can translate into medically safe and commercially viable clinical applications. The article concludes with a discussion about some of the critical impending issues with the application of nanomaterials-based technologies in implantable medical devices, and potential directions to address these. Copyright © 2013 Wiley Periodicals, Inc.

  20. Comparison of Lyophilized Glutaraldehyde-Preserved Bovine Pericardium with Different Vascular Prostheses for Use as Vocal Cords Implants: Experimental Study

    PubMed Central

    Olmos-Zuñiga, J. Raúl; Jasso-Victoria, Rogelio; Gaxiola-Gaxiola, Miguel; Sotres-Vega, Avelina; Hernández-Jiménez, Claudia; Baltazares-Lipp, Matilde; Arredondo del Bosque, Fernando; Santillan-Doherty, Patricio

    2015-01-01

    This study compared the use of lyophilized glutaraldehyde-preserved bovine pericardium (LGPBP), polytetrafluoroethylene (PTFE), polyethylene terephthalate (PET), and Teflon felt (TF) as implants for vocal cords (VC) medialization and aimed to assess the endoscopic, macroscopic, and microscopic VC changes after medialization in a canine model. In 18 mongrel dogs, the right VC were medialized with LGPBP and the left were implanted as follows: Group I (n = 6): LGPBP and PTFE; Group II (n = 6): LGPBP and PET; Group III (n = 6): LGPBP and TF. Surgical handling of the implants was compared. Three months after surgery, macroscopic and microscopic changes of VC and implants were evaluated. LGPBP offered the best surgical handling (p = 0.005, Kruskal-Wallis). TF implants showed extrusion (p = 0.005, Kruskal-Wallis) and severe inflammation. All VC formed fibrous capsules around the implants; the ones developed by LGPBP implants were thinner (p = 0.001, ANOVA, Tukey). VC implanted with synthetic materials showed eosinophilic infiltration (p = 0.01, Kruskal-Wallis). We concluded that the LGPBP could be used as an implant for VC medialization because it is biocompatible, easy to handle and remove during surgical procedures, and nonabsorbable or extrudable and produces an inflammatory reaction similar to PTFE and PET. PMID:26075232

  1. An Unusual Bone Loss Around Implants

    PubMed Central

    Rokn, Amir Reza; Sajedinejad, Neda; Yousefyfakhr, Hosnieh; Badri, Samare

    2013-01-01

    Pre-implant disease is an inflammatory process that affects the surrounding tissues of a functional osseointegrated implant. It is usually the result of a disequilibrium between the micro-flora and the defense system. This case reports a 57-year-old man with unusual bone loss around dental implants. This was an unusual case of peri-implantitis that occurred only in the implants on one side of the mouth although they were all unloaded implants. PMID:24396359

  2. Dental implant changes following incineration.

    PubMed

    Berketa, J; James, H; Marino, V

    2011-04-15

    Non-visual identification of victims utilizes DNA, fingerprint and dental comparison as primary scientific identifiers. In incidents where a victim has been incinerated, there may be loss of fingerprint detail and denaturing of DNA. Although extremely durable, tooth loss will also occur with extreme temperatures and the characteristics of recovered dental implants, if any, may be the only physical identifying data available. Currently, there are no experimental investigations to determine what changes occur to dental implants following high temperature exposure. A selection of dental implants was radiographed, utilizing purpose built apparatus to allow standard methodology. They were then heated in an INFI-TROL™ kiln to a maximum temperature of 1125°C and the radiographic procedure repeated. Image subtraction evaluation of the radiographs was recorded using Adobe(®) Photoshop(®). Both commercially pure titanium and titanium alloy dental implants survived the incineration and there was oxidation of the surface leading to minor alteration of the image. There was, however, no detectable sagging of the implants. The results of this research suggest that dental implants are still recognizable following incineration. In scenarios commonly seen by forensic odontologists, heat will destroy both teeth and conventional dental restorative materials. Implants, however, will resist these conditions and will also retain the features necessary to identify the type of implant. Copyright © 2010 Elsevier Ireland Ltd. All rights reserved.

  3. Implant Maintenance: A Clinical Update

    PubMed Central

    Gulati, Minkle; Govila, Vivek; Anand, Vishal; Anand, Bhargavi

    2014-01-01

    Introduction. The differences in the supporting structure of the implant make them more susceptible to inflammation and bone loss when plaque accumulates as compared to the teeth. Therefore, a comprehensive maintenance protocol should be followed to ensure the longevity of the implant. Material and Method. A research to provide scientific evidence supporting the feasibility of various implant care methods was carried out using various online resources to retrieve relevant studies published since 1985. Results. The electronic search yielded 708 titles, out of which a total of 42 articles were considered appropriate and finally included for the preparation of this review article. Discussion. A typical maintenance visit for patients with dental implants should last 1 hour and should be scheduled every 3 months to evaluate any changes in their oral and general history. It is essential to have a proper instrument selection to prevent damage to the implant surface and trauma to the peri-implant tissues. Conclusion. As the number of patients opting for dental implants is increasing, it becomes increasingly essential to know the differences between natural teeth and implant care and accept the challenges of maintaining these restorations. PMID:27437506

  4. Regenerative Surgical Treatment of Peri-implantitis

    ClinicalTrials.gov

    2016-08-31

    Failure of Dental Implant Due to Infection; Infection; Inflammation; Peri-implantitis; Bacterial Infections; Bleeding of Subgingival Space; Molecular Sequence Variation; Periodontal Diseases; Mouth Diseases

  5. Durability of biologic implants for use in hernia repair: a review.

    PubMed

    Smart, Neil J; Bloor, Stephen

    2012-09-01

    In the past 10 years, hernia repair has evolved from primarily using suture closure to using mesh repair. Synthetic mesh implants were the initial gold standard, but the rate of complications such as infection, adhesions, and erosion was higher with synthetics than has been observed with newer biologic implants. As efforts to develop the ideal implant continue, the advantages of biologics for hernia and other soft-tissue repair become increasingly apparent. Animal-sourced biologics have the potential advantage over human dermis of being more amenable to standardization, and porcine dermal collagen architecture closely resembles that of human dermis. Cross-linking the collagen adds strength and durability to the implant that facilitates healing of surgical wounds, just as endogenous collagen, which is cross-linked, has innate durability that enhances natural wound healing. This review defines and assesses durability of the acellular collagen (biologic) implant options available for hernia repair. The factors that affect wound healing-and hernia repair--are summarized. Additionally, the particular features that enhance durability are described, and durability-related clinical outcomes discussed in the literature are cited to aid clinicians in making informed surgical choices.

  6. Peri-implant complications for posterior endosteal implants.

    PubMed

    Esquivel-Upshaw, Josephine; Mehler, Alex; Clark, Arthur; Neal, Dan; Gonzaga, Luiz; Anusavice, Kenneth

    2015-12-01

    (1) To assess whether there is evidence of an association between the number of peri-implant tissue complications and patient characteristics such as gender, diabetes status, smoking status, and bite force; (2) To assess whether there is evidence of an association between the number of peri-implant tissue complications and location of the implant, surgical technique used, bone graft status and sinus lift status. This randomized, controlled clinical trial included a total of 176 implants (OsseoSpeed, DENTSPLY) in 67 participants with 88 fixed dental prostheses. Information was obtained from health histories, a baseline exam, surgical notes, and post-operative exams. The data were analyzed using Fisher's exact and Mann-Whitney tests and generalized estimating equations using logistic regression with a significance level set at 0.05. All 176 implants survived within a recall period of 3 years, but 11 implants demonstrated peri-implant tissue complications. Ten sites showed dehiscence and one case exhibited vertical bone loss. There was a statistically significant association between surgical technique used (1-stage or 2-stage) and the presence of soft tissue complications (P = 0.005), where 2-stage surgery was associated with a higher frequency of peri-implant soft tissue complications. A correlation, although not statistically significant (P = 0.077), was noted, between peri-implant tissue complications and bone grafting, suggesting a possible role for this factor as well. Participants who did not require any second-stage surgery at the implant sites experienced fewer complications. Therefore, additional surgical procedures should be performed judiciously considering their possible effects on peri-implant tissue health. The clinical implication of this research study is that secondary surgery should be considered with caution during implant placement and it should be performed only when other options have been exhausted, as it has been shown to have a direct

  7. Cochlear implantation following cerebellar surgery.

    PubMed

    Saeed, Shahad; Mawman, Deborah; Green, Kevin

    2011-08-01

    Cochlear implantation in patients with known central nervous system conditions can result in wide-ranging outcomes. The aim of this study is to report two cases of cochlear implantation outcomes in patients with acquired cerebellar ataxia following cerebellar surgery. The first is a female implanted with the Nucleus 24 implant in September 2000 and the second is a male implanted with a MED-EL Sonata Flexsoft electro-acoustic stimulation in July 2009. Programming these patients resulted in significant non-auditory stimulation which resulted in less than optimum map fittings. The patients did not gain any open set speech perception benefit although both of them gained an awareness of sound with the device. However, patient 2 elected to become a non-user because of the limited benefit.

  8. Implant fixation by bone ingrowth.

    PubMed

    Kienapfel, H; Sprey, C; Wilke, A; Griss, P

    1999-04-01

    The term osseointegration referred originally to an intimate contact of bone tissue with the surface of a titanium implant; the term bone ingrowth refers to bone formation within an irregular (beads, wire mesh, casting voids, cut grooves) surface of an implant. The section dealing with the historical background describes the development of macroporous, microporous, and textured surfaces with an emphasis on the evolution of porous and textured metal surfaces. The principal requirements for osseointegration and bone ingrowth are systematically reviewed as follows: i) the physiology of osseointegration and bone ingrowth, including biomaterial biocompatibility with respect to cellular and matrix response at the interface; ii) the implant surface geometry characteristics; iii) implant micromotion and fixation modes; and iv) the implant-bone interface distances. Based on current methods of bone ingrowth assessment, this article comparatively reviews and discusses the results of experimental studies with the objective of determining local and systemic factors that enhance bone ingrowth fixation.

  9. Bimodal fitting or bilateral implantation?

    PubMed

    Ching, Teresa Y C; Massie, Robyn; Van Wanrooy, Emma; Rushbrooke, Emma; Psarros, Colleen

    2009-01-01

    This paper summarises findings from studies that evaluated the benefits of bimodal fitting (combining a hearing aid and a cochlear implant in opposite ears) or bilateral cochlear implantation, relative to unilateral implantation, for children (Ching et al., 2007). On average, the size of binaural speech intelligibility advantages due to redundancy and head shadow was similar for the two bilateral conditions. An added advantage of bimodal fitting was that the low-frequency cues provided by acoustic hearing complemented the high-frequency cues conveyed by electric hearing in perception of voice and music. Some children with bilateral cochlear implants were able to use spatial separation between speech and noise to improve speech perception in noise. This is possibly a combined effect of the directional microphones in their implant systems and their ability to use spatial cues. The evidence to date supports the provision of hearing in two ears as the standard of care.

  10. Synthetic biology: Emerging bioengineering in Indonesia

    NASA Astrophysics Data System (ADS)

    Suhandono, Sony

    2017-05-01

    The development of synthetic biology will shape the new era of science and technology. It is an emerging bioengineering technique involving genetic engineering which can alter the phenotype and behavior of the cell or the new product. Synthetic biology may produce biomaterials, drugs, vaccines, biosensors, and even a recombinant secondary metabolite used in herbal and complementary medicine, such as artemisinin, a malaria drug which is usually extracted from the plant Artemisia annua. The power of synthetic biology has encouraged scientists in Indonesia, and is still in early development. This paper also covers some research from an Indonesian research institute in synthetic biology such as observing the production of bio surfactants and the enhanced production of artemisinin using a transient expression system. Synthetic biology development in Indonesia may also be related to the iGEM competition, a large synthetic biology research competition which was attended by several universities in Indonesia. The application of synthetic biology for drug discovery will be discussed.

  11. Synthetic Fuels Corporation's progress in aiding synthetic fuels development

    SciTech Connect

    Not Available

    1984-07-11

    It has been difficult for the Corporation to make progress toward the goals of the Energy Security Act of June 1980 because of the changing economic and energy conditions. Relative to the 1987 production goal of 500,000 barrels of crude oil equivalent per day, the Corporation had awarded contracts for two projects expected to have a total production equivalent of 9500 barrels of crude oil per day. Including these two projects, the Corporation has said that it plans to award by early 1985 up to $14.8 billion in financial assistance for about 12 projects representing a diverse range of technologies, which would have a combined total production of about 132,000 barrels of crude oil equivalent per day. These plans may be affected by a recent administration proposal to rescind $9 billion of the Corporation's remaining unobligated funds. Private industry officials said that synthetic fuels projects have been abandoned or postponed primarily because of an unfavorable economic climate, a world oil glut that has caused declines in crude oil prices, the uncertainty of future crude oil prices, and the large capital investment needed for project construction. These officials also said that 1982 tax legislation, by reducing the after-tax return on investment, has also caused industry to abandon or delay going forward with synthetic fuels projects.

  12. Custom-Made Synthetic Scaffolds for Bone Reconstruction: A Retrospective, Multicenter Clinical Study on 15 Patients

    PubMed Central

    Macchi, Aldo; Luongo, Giuseppe

    2016-01-01

    Purpose. To present a computer-assisted-design/computer-assisted-manufacturing (CAD/CAM) technique for the design, fabrication, and clinical application of custom-made synthetic scaffolds, for alveolar ridge augmentation. Methods. The CAD/CAM procedure consisted of (1) virtual planning/design of the custom-made scaffold; (2) milling of the scaffold into the exact size/shape from a preformed synthetic bone block; (3) reconstructive surgery. The main clinical/radiographic outcomes were vertical/horizontal bone gain, any biological complication, and implant survival. Results. Fifteen patients were selected who had been treated with a custom-made synthetic scaffold for ridge augmentation. The scaffolds closely matched the shape of the defects: this reduced the operation time and contributed to good healing. A few patients experienced biological complications, such as pain/swelling (2/15: 13.3%) and exposure of the scaffold (3/15: 20.0%); one of these had infection and complete graft loss. In all other patients, 8 months after reconstruction, a well-integrated newly formed bone was clinically available, and the radiographic evaluation revealed a mean vertical and horizontal bone gain of 2.1 ± 0.9 mm and 3.0 ± 1.0 mm, respectively. Fourteen implants were placed and restored with single crowns. The implant survival rate was 100%. Conclusions. Although positive outcomes have been found with custom-made synthetic scaffolds in alveolar ridge augmentation, further studies are needed to validate this technique. PMID:28070512

  13. Custom-Made Synthetic Scaffolds for Bone Reconstruction: A Retrospective, Multicenter Clinical Study on 15 Patients.

    PubMed

    Luongo, Fabrizia; Mangano, Francesco Guido; Macchi, Aldo; Luongo, Giuseppe; Mangano, Carlo

    2016-01-01

    Purpose. To present a computer-assisted-design/computer-assisted-manufacturing (CAD/CAM) technique for the design, fabrication, and clinical application of custom-made synthetic scaffolds, for alveolar ridge augmentation. Methods. The CAD/CAM procedure consisted of (1) virtual planning/design of the custom-made scaffold; (2) milling of the scaffold into the exact size/shape from a preformed synthetic bone block; (3) reconstructive surgery. The main clinical/radiographic outcomes were vertical/horizontal bone gain, any biological complication, and implant survival. Results. Fifteen patients were selected who had been treated with a custom-made synthetic scaffold for ridge augmentation. The scaffolds closely matched the shape of the defects: this reduced the operation time and contributed to good healing. A few patients experienced biological complications, such as pain/swelling (2/15: 13.3%) and exposure of the scaffold (3/15: 20.0%); one of these had infection and complete graft loss. In all other patients, 8 months after reconstruction, a well-integrated newly formed bone was clinically available, and the radiographic evaluation revealed a mean vertical and horizontal bone gain of 2.1 ± 0.9 mm and 3.0 ± 1.0 mm, respectively. Fourteen implants were placed and restored with single crowns. The implant survival rate was 100%. Conclusions. Although positive outcomes have been found with custom-made synthetic scaffolds in alveolar ridge augmentation, further studies are needed to validate this technique.

  14. Hydrogen Implants for Layer Exfoliation

    NASA Astrophysics Data System (ADS)

    Cherekdjian, S.; Couillard, J. G.; Wilcox, C.

    2011-01-01

    Researchers at Corning Incorporated have developed a process whereby single crystal silicon thin films are transferred onto a flat panel display glass substrate using hydrogen ion implantation. The energy of the implant controls the effective exfoliation thickness, agreeing well with SRIM calculations, while the hydrogen ion dose controls the size of the platelets formed. The ion dose was found to influence the final void defect count in exfoliated films. Finally, the ion beam and ion implant end-station cooling characteristics were investigated. These parameters control the effective implant heat load generated during ion beam processing. The temperature at which exfoliation occurs during an exfoliation heat cycle was found to be inversely proportional to the hydrogen ion dose when the temperature during ion implantation is <100 °C. The most sensitive exfoliation temperature to ion dose dependence was observed for cooler implants, i.e. <35 °C. Data indicates that at the minimum exfoliation dose the exfoliation temperature is reduced significantly by increasing the implant heat generated during ion beam processing. Higher hydrogen doses than the minimum required for exfoliation exhibit only a small exfoliation temperature variation with ion dose. By optimizing the implant heat load generated during ion beam processing it is observed that the efficiency of the exfoliation process is also enhanced. Implant temperatures of 150 to 160 °C were found to further reduce the minimum implant dose required for exfoliation by an additional 5%, as verified by calorimetric measurements. These results enable us to further conclude that hydrogen out-diffusion is not significant in this process.

  15. Tribological properties of nitrogen implanted and boron implanted steels

    SciTech Connect

    Kern, K.T.; Walter, K.C.; Griffin, A.J. Jr.; Kung, H.; Lu, Y.; Nastasi, M.; Tesmer, J.R.; Fayeulle, S.

    1996-06-01

    Samples of a steel with high chrome content was implanted separately with 75 keV nitrogen ions and with 75 keV boron ions. Implanted doses of each ion species were 2-, 4-, and 8 {times} 10{sup 17}/cm{sup 2}. Retained doses were measured using resonant non-Rutherford Backscattering Spectrometry. Tribological properties were determined using a pin-on-disk test with a 6-mm diameter ruby pin with a velocity of 0.94 m/min. Testing was done at 10% humidity with a load of 377 g. Wear rate and coefficient of friction were determined from these tests. While reduction in the wear rate for nitrogen implanted materials was observed, greater reduction (more than an order of magnitude) was observed for boron implanted materials. In addition, reduction in the coefficient of friction for high-dose boron implanted materials was observed. Nano-indentation revealed a hardened layer near the surface of the material. Results from grazing incidence x-ray diffraction suggest the formation of Fe{sub 2}N and Fe{sub 3}N in the nitrogen implanted materials and Fe{sub 3}B in the boron implanted materials. Results from transmission electron microscopy will be presented.

  16. Synthetic Biology Guides Biofuel Production

    PubMed Central

    Connor, Michael R.; Atsumi, Shota

    2010-01-01

    The advancement of microbial processes for the production of renewable liquid fuels has increased with concerns about the current fuel economy. The development of advanced biofuels in particular has risen to address some of the shortcomings of ethanol. These advanced fuels have chemical properties similar to petroleum-based liquid fuels, thus removing the need for engine modification or infrastructure redesign. While the productivity and titers of each of these processes remains to be improved, progress in synthetic biology has provided tools to guide the engineering of these processes through present and future challenges. PMID:20827393

  17. Synthetic carbonaceous fuels and feedstocks

    DOEpatents

    Steinberg, Meyer

    1980-01-01

    This invention relates to the use of a three compartment electrolytic cell in the production of synthetic carbonaceous fuels and chemical feedstocks such as gasoline, methane and methanol by electrolyzing an aqueous sodium carbonate/bicarbonate solution, obtained from scrubbing atmospheric carbon dioxide with an aqueous sodium hydroxide solution, whereby the hydrogen generated at the cathode and the carbon dioxide liberated in the center compartment are combined thermocatalytically into methanol and gasoline blends. The oxygen generated at the anode is preferably vented into the atmosphere, and the regenerated sodium hydroxide produced at the cathode is reused for scrubbing the CO.sub.2 from the atmosphere.

  18. Synthetic Fourier transform light scattering.

    PubMed

    Lee, Kyeoreh; Kim, Hyeon-Don; Kim, Kyoohyun; Kim, Youngchan; Hillman, Timothy R; Min, Bumki; Park, Yongkeun

    2013-09-23

    We present synthetic Fourier transform light scattering, a method for measuring extended angle-resolved light scattering (ARLS) from individual microscopic samples. By measuring the light fields scattered from the sample plane and numerically synthesizing them in Fourier space, the angle range of the ARLS patterns is extended up to twice the numerical aperture of the imaging system with unprecedented sensitivity and precision. Extended ARLS patterns of individual microscopic polystyrene beads, healthy human red blood cells (RBCs), and Plasmodium falciparum-parasitized RBCs are presented.

  19. Synthetic Studies in Phytochrome Chemistry

    PubMed Central

    Jacobi, Peter A.; Adel Odeh, Imad M.; Buddhu, Subhas C.; Cai, Guolin; Rajeswari, Sundaramoorthi; Fry, Douglas; Zheng, Wanjun; DeSimone, Robert W.; Guo, Jiasheng; Coutts, Lisa D.; Hauck, Sheila I.; Leung, Sam H.; Ghosh, Indranath; Pippin., Douglas

    2008-01-01

    An account is given of the author’s several approaches to the synthesis of the parent chromophore of phytochrome (1), a protein-bound linear tetrapyrrole derivative that controls photomorphogenesis in higher plants. These studies culminated in enantioselective syntheses of both 2R- and 2S-phytochromobilin (4), as well as several 13C-labeled derivatives designed to probe the site of Z,E-isomerization during photoexcitation. When reacted in vitro, synthetic 2R-4 and recombinant-derived phytochrome apoprotein N-C produced a protein-bound chromophore with identical difference spectra to naturally occurring 1. PMID:18633455

  20. New Synthetic Approaches to TAT

    DTIC Science & Technology

    1990-03-30

    macro- cyclic ligand with glycoluril and tetrazocane units (Cucurbiturils); internal/ex- ternal stabilizat’on of TAT’ structure and reactivity...Ring Synthetic Approaches to TAT via Urea It is known since a long time that urea and phosgene condense in a 2:1 manner to furnish carbonyl-bisurea...8]ane-N 4-system: 0 N h / -O -(o I4J I) While diethyl carbonate, Staab’s reagent, and triethyl orthoformate did not lead to tetrazocanes, phosgene

  1. Dynamic microcompartmentation in synthetic cells

    PubMed Central

    Long, M. Scott; Jones, Clinton D.; Helfrich, Marcus R.; Mangeney-Slavin, Lauren K.; Keating, Christine D.

    2005-01-01

    An experimental model for cytoplasmic organization is presented. We demonstrate dynamic control over protein distribution within synthetic cells comprising a lipid bilayer membrane surrounding an aqueous polymer solution. This polymer solution generally exists as two immiscible aqueous phases. Protein partitioning between these phases leads to microcompartmentation, or heterogeneous protein distribution within the “cell” interior. This model cytoplasm can be reversibly converted to a single phase by slight changes in temperature or osmolarity, such that local protein concentrations can be manipulated within the vesicle interior. PMID:15788532

  2. Synthetic networks in microbial communities

    NASA Astrophysics Data System (ADS)

    Suel, Gurol

    2015-03-01

    While bacteria are single celled organisms, they predominantly reside in structured communities known as biofilms. Cells in biofilms are encapsulated and protected by the extracellular matrix (ECM), which also confines cells in space. During biofilm development, microbial cells are organized in space and over time. Little is known regarding the processes that drive the spatio-temporal organization of microbial communities. Here I will present our latest efforts that utilize synthetic biology approaches to uncover the organizational principles that drive biofilm development. I will also discuss the possible implications of our recent findings in terms of the cost and benefit to biofilm cells.

  3. Clustered Carbohydrates in Synthetic Vaccines†

    PubMed Central

    Peri, Francesco

    2013-01-01

    Are there general rules to achieve efficient immunization against carbohydrate antigens? Thanks to technological advances in glycobiology and glycochemistry we entered in a new era in which the rational design of carbohydrate vaccines has become an achievable goal. Aim of this Tutorial Review is to present the most recent achievements in the field of semi and fully synthetic carbohydrate vaccines against viruses, bacteria and cancer. It is also pointed out that the understanding of the chemical and biochemical processes related to immunization allows the modern chemist to rationally design carbohydrate vaccines with improved efficiency. PMID:23250562

  4. Engineering molecular circuits using synthetic biology in mammalian cells.

    PubMed

    Wieland, Markus; Fussenegger, Martin

    2012-01-01

    Synthetic biology has made significant leaps over the past decade, and it now enables rational and predictable reprogramming of cells to conduct complex physiological activities. The bases for cellular reprogramming are mainly genetic control components affecting gene expression. A huge variety of these modules, ranging from engineered fusion proteins regulating transcription to artificial RNA devices affecting translation, is available, and they often feature a highly modular scaffold. First endeavors to combine these modules have led to autoregulated expression systems and genetic cascades. Analogous to the rational engineering of electronic circuits, the existing repertoire of artificial regulatory elements has further enabled the ambitious reprogramming of cells to perform Boolean calculations or to mimic the oscillation of circadian clocks. Cells harboring synthetic gene circuits are not limited to cell culture, as they have been successfully implanted in animals to obtain tailor-made therapeutics that have made it possible to restore urea or glucose homeostasis as well as to offer an innovative approach to artificial insemination.

  5. Double valve Implantation

    PubMed Central

    Stassano, Paolo; Mannacio, Vito; Musumeci, Antonino; Golino, Alessandro; Maida, Piero; Ferrigno, Vincenzo; Buonocore, Gaetano; Spampinato, Nicola

    1991-01-01

    From January 1976 through December 1987, 194 patients with a mean age of 43.3 ± 13.7 years (range, 11 to 74 years) underwent double (mitral and aortic) replacement of native valves with 8 types of bioprostheses: Carpentier-Edwards, 127 valves; Hancock, 76 valves; Liotta-Bioimplant, 57 valves; Ionescu-Shiley, 53 valves; Vascor, 27 valves; Carpentier-Edwards Pericardial, 22 valves; Angell-Shiley, 20 valves; and Implamedic, 6 valves. Concomitant cardiac procedures were performed in 25 patients (12.8%). There were 18 operative deaths (9.27%). Our retrospective analysis was restricted to 352 bioprostheses implanted in the 176 patients who survived surgery and were considered at risk for valve tissue failure. The overall cumulative duration of follow-up was 1,174.1 patient-years (range, 1 to 13 years). The durations of follow-up for specific valves were: Carpentier-Edwards, 920.2 valve-years; Hancock, 383.8 valve-years; Liotta-Bioimplant, 310.2 valve-years; Ionescu-Shiley, 357.7 valve-years; Vascor, 131.2 valve-years; Carpentier-Edwards Pericardial, 52.0 valve-years; Angell-Shiley, 167.0 valve-years; and Implamedic, 31.0 valve-years. Thirty patients had thromboembolic accidents, for a linearized incidence of 2.5% per patient-year. At 13 years, the actuarial freedom from thromboembolic accidents was 85.8% ± 10.7%. Nine patients had endocarditis, for a linearized incidence of 0.7% per patient-year. At 13 years, the actuarial freedom from endocarditis was 92.0% ± 1.5%. Twenty-four patients had valve tissue failure, for a cumulative linearized incidence of 1.87% per valve-year. The cumulative actuarial probability of freedom from valve tissue failure was 78.6% ± 3.7% at 10 years and 51.2% ± 10.7% at 13 years. The 24 patients with valve tissue failure all underwent reoperation: 20 of these had double valve replacement, 3 had aortic valve replacement alone, and 1 had mitral valve replacement alone. The mean interval between initial valve implantation and reoperation was

  6. Management of fluocinolone implant dissociation during implant exchange.

    PubMed

    Yeh, Steven; Cebulla, Colleen M; Witherspoon, S Robert; Emerson, Geoffrey G; Emerson, M Vaughn; Suhler, Eric B; Albini, Thomas A; Flaxel, Christina J

    2009-09-01

    Three patients with chronic, noninfectious uveitis requiring immunosuppressive therapy underwent fluocinolone acetonide (FA) implant exchange complicated by dissociation of the medication reservoir from its anchoring strut. In 2 patients, the medication reservoir descended into the vitreous cavity and required pars plana vitrectomy with intraocular foreign body removal techniques for its retrieval. The use of viscoelastic or perfluorocarbon to elevate the device was helpful in the safe removal of the FA implant device. Surgeons performing FA implant exchange should be aware of this potential complication and anticipate the possible need for vitreoretinal instrumentation and personnel. Patients undergoing FA explantation or exchange should be counseled regarding this potential complication prior to surgery.

  7. [Implantable artificial heart].

    PubMed

    Nojiri, Chisato

    2005-11-01

    Heart transplants have been decreasing globally due to the lack of available donor hearts. As a result, the increased use of artificial hearts is anticipated as an alternative therapy. Although biocompatibility issues, such as thrombus formation/thromboembolism and infection, are still the main cause of mortality associated with artificial hearts, more than 20 different types are now clinically available after a half-century of development and experimental trials. These devices range from extracorporeal pneumatic to implantable battery-powered artificial hearts. The early development of artificial hearts logically focused on volumetric pump designs incorporating functions similar to the natural heart. Today, development has shifted toward designs that are significantly different from the natural heart. These pumps utilize axial or centrifugal flow allowing for a much simpler design, which is smaller in size and has very few moving parts. With rapid advances in technology, this new generation of artificial heart pumps is beginning to emerge as an alternative to heart transplants.

  8. Implantable, multifunctional, bioresorbable optics

    PubMed Central

    Tao, Hu; Kainerstorfer, Jana M.; Siebert, Sean M.; Pritchard, Eleanor M.; Sassaroli, Angelo; Panilaitis, Bruce J. B.; Brenckle, Mark A.; Amsden, Jason J.; Levitt, Jonathan; Fantini, Sergio; Kaplan, David L.; Omenetto, Fiorenzo G.

    2012-01-01

    Advances in personalized medicine are symbiotic with the development of novel technologies for biomedical devices. We present an approach that combines enhanced imaging of malignancies, therapeutics, and feedback about therapeutics in a single implantable, biocompatible, and resorbable device. This confluence of form and function is accomplished by capitalizing on the unique properties of silk proteins as a mechanically robust, biocompatible, optically clear biomaterial matrix that can house, stabilize, and retain the function of therapeutic components. By developing a form of high-quality microstructured optical elements, improved imaging of malignancies and of treatment monitoring can be achieved. The results demonstrate a unique family of devices for in vitro and in vivo use that provide functional biomaterials with built-in optical signal and contrast enhancement, demonstrated here with simultaneous drug delivery and feedback about drug delivery with no adverse biological effects, all while slowly degrading to regenerate native tissue. PMID:23150544

  9. Tracking the emergence of synthetic biology.

    PubMed

    Shapira, Philip; Kwon, Seokbeom; Youtie, Jan

    2017-01-01

    Synthetic biology is an emerging domain that combines biological and engineering concepts and which has seen rapid growth in research, innovation, and policy interest in recent years. This paper contributes to efforts to delineate this emerging domain by presenting a newly constructed bibliometric definition of synthetic biology. Our approach is dimensioned from a core set of papers in synthetic biology, using procedures to obtain benchmark synthetic biology publication records, extract keywords from these benchmark records, and refine the keywords, supplemented with articles published in dedicated synthetic biology journals. We compare our search strategy with other recent bibliometric approaches to define synthetic biology, using a common source of publication data for the period from 2000 to 2015. The paper details the rapid growth and international spread of research in synthetic biology in recent years, demonstrates that diverse research disciplines are contributing to the multidisciplinary development of synthetic biology research, and visualizes this by profiling synthetic biology research on the map of science. We further show the roles of a relatively concentrated set of research sponsors in funding the growth and trajectories of synthetic biology. In addition to discussing these analyses, the paper notes limitations and suggests lines for further work.

  10. Microbial synthetic biology for human therapeutics.

    PubMed

    Jain, Aastha; Bhatia, Pooja; Chugh, Archana

    2012-06-01

    The emerging field of synthetic biology holds tremendous potential for developing novel drugs to treat various human conditions. The current study discusses the scope of synthetic biology for human therapeutics via microbial approach. In this context, synthetic biology aims at designing, engineering and building new microbial synthetic cells that do not pre-exist in nature as well as re-engineer existing microbes for synthesis of therapeutic products. It is expected that the construction of novel microbial genetic circuitry for human therapeutics will greatly benefit from the data generated by 'omics' approaches and multidisciplinary nature of synthetic biology. Development of novel antimicrobial drugs and vaccines by engineering microbial systems are a promising area of research in the field of synthetic biology for human theragnostics. Expression of plant based medicinal compounds in the microbial system using synthetic biology tools is another avenue dealt in the present study. Additionally, the study suggest that the traditional medicinal knowledge can do value addition for developing novel drugs in the microbial systems using synthetic biology tools. The presented work envisions the success of synthetic biology for human therapeutics via microbial approach in a holistic manner. Keeping this in view, various legal and socio-ethical concerns emerging from the use of synthetic biology via microbial approach such as patenting, biosafety and biosecurity issues have been touched upon in the later sections.

  11. Enzymatic biotransformation of synthetic dyes.

    PubMed

    Rodríguez-Couto, S

    2009-11-01

    Environmental pollution by discharge of dye-containing effluents represents a serious ecological concern in many countries. Public demands for colour-free discharges to receiving waters have made decolouration of a variety of industrial wastewater a top priority. The current existing techniques for dye removal have several drawbacks such as high cost, low efficiency, use of large amounts of chemicals and formation of toxic sub-products. This has impelled the search for alternative methods such as those based on oxidative enzymes. This approach is believed to be a promising technology since it is cost-effective, environmentally friendly and does not produce sludge. Enzymatic transformation of synthetic dyes can be described as the conversion of dye molecules by enzymes into simpler and generally colourless molecules. Detailed characterisation of the metabolites produced during enzymatic transformation of synthetic dyes as well as ecotoxicity studies is of great importance to assess the effectiveness of the biodegradation process. However, most reports on the biotreatment of dyes mainly deal with decolouration and there are few reports on the reduction in toxicity or on the identification of the biodegradation products. This implies a limitation to assess their true technical potential.

  12. CFIT Prevention Using Synthetic Vision

    NASA Technical Reports Server (NTRS)

    Arthur, Jarvis J., III; Prinzel, Lawrence J., III; Kramer, Lynda J.; Bailey, Randall E.; Parrish, Russell V.

    2003-01-01

    In commercial aviation, over 30-percent of all fatal accidents worldwide are categorized as Controlled Flight Into Terrain (CFIT) accidents where a fully functioning airplane is inadvertently flown into the ground, water, or an obstacle. An experiment was conducted at NASA Langley Research Center investigating the presentation of a synthetic terrain database scene to the pilot on a Primary Flight Display (PFD). The major hypothesis for the experiment is that a synthetic vision system (SVS) will improve the pilot s ability to detect and avoid a potential CFIT compared to conventional flight instrumentation. All display conditions, including the baseline, contained a Terrain Awareness and Warning System (TAWS) and Vertical Situation Display (VSD) enhanced Navigation Display (ND). Sixteen pilots each flew 22 approach - departure maneuvers in Instrument Meteorological Conditions (IMC) to the terrain challenged Eagle County Regional Airport (EGE) in Colorado. For the final run, the flight guidance cues were altered such that the departure path went into the terrain. All pilots with a SVS enhanced PFD (12 of 16 pilots) noticed and avoided the potential CFIT situation. All of the pilots who flew the anomaly with the baseline display configuration (which included a TAWS and VSD enhanced ND) had a CFIT event.

  13. Synthetic vision display evaluation studies

    NASA Technical Reports Server (NTRS)

    Regal, David M.; Whittington, David H.

    1994-01-01

    The goal of this research was to help us understand the display requirements for a synthetic vision system for the High Speed Civil Transport (HSCT). Four experiments were conducted to examine the effects of different levels of perceptual cue complexity in displays used by pilots in a flare and landing task. Increased levels of texture mapping of terrain and runway produced mixed results, including harder but shorter landings and a lower flare initiation altitude. Under higher workload conditions, increased texture resulted in an improvement in performance. An increase in familiar size cues did not result in improved performance. Only a small difference was found between displays using two patterns of high resolution texture mapping. The effects of increased perceptual cue complexity on performance was not as strong as would be predicted from the pilot's subjective reports or from related literature. A description of the role of a synthetic vision system in the High Speed Civil Transport is provide along with a literature review covering applied research related to perceptual cue usage in aircraft displays.

  14. Catalysts from synthetic genetic polymers

    PubMed Central

    Taylor, Alexander I.; Pinheiro, Vitor B.; Smola, Matthew J.; Morgunov, Alexey S.; Peak-Chew, Sew; Cozens, Christopher; Weeks, Kevin M.; Herdewijn, Piet; Holliger, Philipp

    2014-01-01

    The emergence of catalysis in early genetic polymers like RNA is considered a key transition in the origin of life1, predating the appearance of protein enzymes. DNA also demonstrates the capacity to fold into three-dimensional structures and form catalysts in vitro2. However, to what degree these natural biopolymers comprise functionally privileged chemical scaffolds3 for folding or the evolution of catalysis is not known. The ability of synthetic genetic polymers (XNAs) with alternative backbone chemistries not found in nature to fold into defined structures and bind ligands4 raises the possibility that these too might be capable of forming catalysts (XNAzymes). Here we report the discovery of such XNAzymes, elaborated in four different chemistries (ANA (arabino nucleic acids)5, FANA (2′-fluoroarabino nucleic acids)6, HNA (hexitol nucleic acids) and CeNA (cyclohexene nucleic acids)7 directly from random XNA oligomer pools, exhibiting in trans RNA endonuclease and ligase activities. We also describe an XNA-XNA ligase metalloenzyme in the FANA framework, establishing catalysis in an entirely synthetic system and enabling the synthesis of FANA oligomers and an active RNA endonuclease FANAzyme from its constituent parts. These results extend catalysis beyond biopolymers and establish technologies for the discovery of catalysts in a wide range of polymer scaffolds not found in nature8. Evolution of catalysis independent of any natural polymer has implications for the definition of chemical boundary conditions for the emergence of life on earth and elsewhere in the universe9. PMID:25470036

  15. Synthetic population system user guide

    SciTech Connect

    Roberts, D.J.

    1998-03-01

    The Los Alamos National Laboratory (LANL) TRansportation Analysis SIMulatiuon System (TRANSIMS) synthetic population system (SYN) is designed to produce populations (family households, non-family households, and group quarters) that are statistically equivalent to actual populations when compared at the level of block group or higher. The methodology used by this system is described in a report entitled Creating Synthetic Baseline Populations. The inputs to the system are US Census Bureau data (STF3A and PUMS) and MABLE/GEOCORR data. Census Bureau STF3A and PUMS data formats are commonly used and are available on CD-ROM from the Census Bureau. These data inputs will not be described in any detail in this guide. The primary function of MABLE/GEOCORR data is to cross-reference STF3 block group data to PUMS areas. The outputs of the system are files that contain family household, non-family household, and group quarters data in the form of household and person records. SYN will run on a variety of Unix platforms.

  16. Synthetic biology: a Jewish view.

    PubMed

    Glick, Shimon

    2012-01-01

    The discipline of synthetic biology may be one of the most dramatic advances of the past few decades. It represents a radical upgrading of humankind's ability to manipulate the world in which we live. The potential for benefits to society is enormous, but the risks for deliberate abuse or dangerous miscalculations are no less great. There are serious ethical issues, legitimate concerns for biosafety, and fears of bioterrorism. The ethical dilemmas posed are new and challenging and are being addressed by various groups and commissions. The present paper presents a Jewish approach to some of the ethical issues posed by this new technology. Judaism traditionally looks favorably on man as a co-creator with God and encourages research for the benefit of humankind. Thus it would have a positive attitude towards the current goals of synthetic biology. But in the Jewish tradition man is also charged with stewardship over nature and is admonished to preserve and nurture, not just to exploit and destroy. In line with the Presidential Commission on Bioethics, it would support a carefully weighed balance between the precautionary and the "proactionary" approaches.

  17. Synthetic Biology of Polyhydroxyalkanoates (PHA).

    PubMed

    Meng, De-Chuan; Chen, Guo-Qiang

    2017-06-01

    Microbial polyhydroxyalkanoates (PHA) are a family of biodegradable and biocompatible polyesters which have been extensively studied using synthetic biology and metabolic engineering methods for improving production and for widening its diversity. Synthetic biology has allowed PHA to become composition controllable random copolymers, homopolymers, and block copolymers. Recent developments showed that it is possible to establish a microbial platform for producing not only random copolymers with controllable monomers and their ratios but also structurally defined homopolymers and block copolymers. This was achieved by engineering the genome of Pseudomonas putida or Pseudomonas entomophiles to weaken the β-oxidation and in situ fatty acid synthesis pathways, so that a fatty acid fed to the bacteria maintains its original chain length and structures when incorporated into the PHA chains. The engineered bacterium allows functional groups in a fatty acid to be introduced into PHA, forming functional PHA, which, upon grafting, generates endless PHA variety. Recombinant Escherichia coli also succeeded in producing efficiently poly(3-hydroxypropionate) or P3HP, the strongest member of PHA. Synthesis pathways of P3HP and its copolymer P3HB3HP of 3-hydroxybutyrate and 3-hydroxypropionate were assembled respectively to allow their synthesis from glucose. CRISPRi was also successfully used to manipulate simultaneously multiple genes and control metabolic flux in E. coli to obtain a series of copolymer P3HB4HB of 3-hydroxybutyrate (3HB) and 4-hydroxybutyrate (4HB). The bacterial shapes were successfully engineered for enhanced PHA accumulation.

  18. Multiple arrested synthetic aperture radar

    NASA Astrophysics Data System (ADS)

    Shuster, J. S.

    1981-05-01

    This report contains the formulation and analysis of an airborne synthetic aperture rate scheme which employs a multiplicity of antennas with the displaced phase center antenna technique to detect slowly moving targets embedded in a severe clutter environment. The radar is evaluated using the target to clutter power ratio as the measure of performance. Noise is ignored in the analysis. An optimization scheme which maximizes this ratio is employed to obtain the optimum processor weighting. The performance of the MASAR processor with optimum weights is compared against that using target weights (composed of the target signal) and that using binomial weights (which, effectively, form an n-pulse canceller). Both the target and the clutter are modeled with the electric field backscattering coefficient. The target is modeled simply as a deterministically moving point scatterer with the same albedo as a point of clutter. The clutter is modeled as a homogeneous, isotropic, two dimensional, spatiotemporal random field for which only the correlation properties are required. The analysis shows that this radar, with its optimum weighting scheme, is a promising synthetic aperture concept for the detection of slowly moving targets immersed in strong clutter environments.

  19. Catalysts from synthetic genetic polymers.

    PubMed

    Taylor, Alexander I; Pinheiro, Vitor B; Smola, Matthew J; Morgunov, Alexey S; Peak-Chew, Sew; Cozens, Christopher; Weeks, Kevin M; Herdewijn, Piet; Holliger, Philipp

    2015-02-19

    The emergence of catalysis in early genetic polymers such as RNA is considered a key transition in the origin of life, pre-dating the appearance of protein enzymes. DNA also demonstrates the capacity to fold into three-dimensional structures and form catalysts in vitro. However, to what degree these natural biopolymers comprise functionally privileged chemical scaffolds for folding or the evolution of catalysis is not known. The ability of synthetic genetic polymers (XNAs) with alternative backbone chemistries not found in nature to fold into defined structures and bind ligands raises the possibility that these too might be capable of forming catalysts (XNAzymes). Here we report the discovery of such XNAzymes, elaborated in four different chemistries (arabino nucleic acids, ANA; 2'-fluoroarabino nucleic acids, FANA; hexitol nucleic acids, HNA; and cyclohexene nucleic acids, CeNA) directly from random XNA oligomer pools, exhibiting in trans RNA endonuclease and ligase activities. We also describe an XNA-XNA ligase metalloenzyme in the FANA framework, establishing catalysis in an entirely synthetic system and enabling the synthesis of FANA oligomers and an active RNA endonuclease FANAzyme from its constituent parts. These results extend catalysis beyond biopolymers and establish technologies for the discovery of catalysts in a wide range of polymer scaffolds not found in nature. Evolution of catalysis independent of any natural polymer has implications for the definition of chemical boundary conditions for the emergence of life on Earth and elsewhere in the Universe.

  20. Synthetic membrane-targeted antibiotics.

    PubMed

    Vooturi, S K; Firestine, S M

    2010-01-01

    Antimicrobial resistance continues to evolve and presents serious challenges in the therapy of both nosocomial and community-acquired infections. The rise of resistant strains like methicillin-resistant Staphylococcus aureus (MRSA), vancomycin-resistant Staphylococcus aureus (VRSA) and vancomycin-resistant enterococci (VRE) suggests that antimicrobial resistance is an inevitable evolutionary response to antimicrobial use. This highlights the tremendous need for antibiotics against new bacterial targets. Agents that target the integrity of bacterial membrane are relatively novel in the clinical armamentarium. Daptomycin, a lipopeptide is a classical example of membrane-bound antibiotic. Nature has also utilized this tactic. Antimicrobial peptides (AMPs), which are found in all kingdoms, function primarily by permeabilizing the bacterial membrane. AMPs have several advantages over existing antibiotics including a broad spectrum of activity, rapid bactericidal activity, no cross-resistance with the existing antibiotics and a low probability for developing resistance. Currently, a small number of peptides have been developed for clinical use but therapeutic applications are limited because of poor bioavailability and high manufacturing cost. However, their broad specificity, potent activity and lower probability for resistance have spurred the search for synthetic mimetics of antimicrobial peptides as membrane-active antibiotics. In this review, we will discuss the different classes of synthetic membrane-bound antibiotics published since 2004.

  1. Microsystems Technology for Retinal Implants

    NASA Astrophysics Data System (ADS)

    Weiland, James

    2005-03-01

    The retinal prosthesis is targeted to treat age-related macular degeneration, retinitis pigmentosa, and other outer retinal degenerations. Simulations of artificial vision have predicted that 600-1000 individual pixels will be needed if a retinal prosthesis is to restore function such as reading large print and face recognition. An implantable device with this many electrode contacts will require microsystems technology as part of its design. An implantable retinal prosthesis will consist of several subsystems including an electrode array and hermetic packaging. Microsystems and microtechnology approaches are being investigated as possible solutions for these design problems. Flexible polydimethylsiloxane (PDMS) substrate electrode arrays and silicon micromachined electrode arrays are under development. Inactive PDMS electrodes have been implanted in 3 dogs to assess mechanical biocompatibility. 3 dogs were followed for 6 months. The implanted was securely fastened to the retina with a single retinal tack. No post-operative complications were evident. The array remained within 100 microns of the retinal surface. Histological evaluation showed a well preserved retina underneath the electrode array. A silicon device with electrodes suspended on micromachined springs has been implanted in 4 dogs (2 acute implants, 2 chronic implants). The device, though large, could be inserted into the eye and positioned on the retina. Histological analysis of the retina from the spring electrode implants showed that spring mounted posts penetrated the retina, thus the device will be redesigned to reduce the strength of the springs. These initial implants will provide information for the designers to make the next generation silicon device. We conclude that microsystems technology has the potential to make possible a retinal prosthesis with 1000 individual contacts in close proximity to the retina.

  2. Patient-Specific Orthopaedic Implants.

    PubMed

    Haglin, Jack M; Eltorai, Adam E M; Gil, Joseph A; Marcaccio, Stephen E; Botero-Hincapie, Juliana; Daniels, Alan H

    2016-11-01

    Patient-specific orthopaedic implants are emerging as a clinically promising treatment option for a growing number of conditions to better match an individual's anatomy. Patient-specific implant (PSI) technology aims to reduce overall procedural costs, minimize surgical time, and maximize patient outcomes by achieving better biomechanical implant fit. With this commercially-available technology, computed tomography or magnetic resonance images can be used in conjunction with specialized computer programs to create preoperative patient-specific surgical plans and to develop custom cutting guides from 3-D reconstructed images of patient anatomy. Surgeons can then place these temporary guides or "jigs" during the procedure, allowing them to better recreate the exact resections of the computer-generated surgical plan. Over the past decade, patient-specific implants have seen increased use in orthopaedics and they have been widely indicated in total knee arthroplasty, total hip arthroplasty, and corrective osteotomies. Patient-specific implants have also been explored for use in total shoulder arthroplasty and spinal surgery. Despite their increasing popularity, significant support for PSI use in orthopaedics has been lacking in the literature and it is currently uncertain whether the theoretical biomechanical advantages of patient-specific orthopaedic implants carry true advantages in surgical outcomes when compared to standard procedures. The purpose of this review was to assess the current status of patient-specific orthopaedic implants, to explore their future direction, and to summarize any comparative published studies that measure definitive surgical characteristics of patient-specific orthopaedic implant use such as patient outcomes, biomechanical implant alignment, surgical cost, patient blood loss, or patient recovery.

  3. The generation of "unnatural" products: synthetic biology meets synthetic chemistry.

    PubMed

    Goss, Rebecca J M; Shankar, Sreejith; Fayad, Antoine Abou

    2012-08-01

    Natural product analogue generation is important, providing tools for chemical biology, enabling structure activity relationship determination and insight into the way in which natural products interact with their target biomolecules. The generation of analogues is also often necessary in order to improve bioavailability and to fine tune compounds' activity. This review provides an overview of the catalogue of approaches available for accessing series of analogues. Over the last few years there have been major advances in genome sequencing and the development of tools for biosynthetic pathway engineering; it is therefore becoming increasingly easy to combine molecular biology and synthetic organic chemistry in order to enable expeditious access to series of natural products. This review outlines the various ways of combining biology and chemistry that have been applied to analogue generation, drawing upon a series of examples to illustrate each approach.

  4. Graftless sinus augmentation technique with contextual placement of implants: a case report.

    PubMed

    Chipaila, Nicolae; Marini, Roberta; Sfasciotti, Gian Luca; Cielo, Alessandro; Bonanome, Laura; Monaco, Annalisa

    2014-12-17

    The positioning of implants in the jaw bones with contextual graftless lateral approach sinus lifting is finding an increasingly broad consensus in the literature. Since the 1970s, various clinical research projects have been conducted on applications of biological and synthetic biomaterials in bone regenerative surgery, both in sinus lift procedures and in cystic cavity filling after cystectomy or in bone defects in regenerative periodontal surgery. Currently, we are finding that there is an increasing trend of clinicians aiming to adopt graftless techniques, with satisfactory results in terms of implant survival in the long term. In our study, through a case report, we describe a variant of graftless sinus augmentation technique with contextual implant placement, emphasizing the role of the blood clot, combined with collagen sponges, as a natural scaffold and the osteogenic potential of the subantral membrane in guided bone regeneration, with reduced morbidity of the patient. To describe the surgical technique, the clinical case of a 38-year-old Caucasian woman with a lateral posterior edentulism was selected. The rehabilitation was solved by a graftless sinus augmentation technique with a contextual implant placement. For each implant, a resonance frequency analysis evaluation was reported as implant stability quotient values. The performance of the implant stability quotient values followed a gradual increase from time zero to the sixth month, as the clot was differentiated into osteoid tissue and then into bone tissue, due to the scaffold effect conferred by the equine collagen sponge. The stabilization phase took place between the fourth and the sixth month, according to the implant stability quotient values. Our graftless sinus augmentation technique seems to be very predictable thanks to the osteoconductive principles on which it is based, and in association with the proper management of peri-implant soft tissue, so as to increase the amount of keratinized

  5. Biofunctionalization of materials for implants using engineered peptides.

    PubMed

    Khatayevich, Dmitriy; Gungormus, Mustafa; Yazici, Hilal; So, Christopher; Cetinel, Sibel; Ma, Hong; Jen, Alex; Tamerler, Candan; Sarikaya, Mehmet

    2010-12-01

    Uncontrolled interactions between synthetic materials and human tissues are a major concern for implants and tissue engineering. The most successful approaches to circumvent this issue involve the modification of the implant or scaffold surfaces with various functional molecules, such as anti-fouling polymers or cell growth factors. To date, such techniques have relied on surface immobilization methods that are often applicable only to a limited range of materials and require the presence of specific functional groups, synthetic pathways or biologically hostile environments. In this study we have used peptide motifs that have been selected to bind to gold, platinum, glass and titanium to modify surfaces with poly(ethylene glycol) anti-fouling polymer and the integrin-binding RGD sequence. The peptides have several advantages over conventional molecular immobilization techniques; they require no biologically hostile environments to bind, are specific to their substrates and could be adapted to carry various active entities. We successfully imparted cell-resistant properties to gold and platinum surfaces using gold- and platinum-binding peptides, respectively, in conjunction with PEG. We also induced a several-fold increase in the number and spreading of fibroblast cells on glass and titanium surfaces using quartz and titanium-binding peptides in conjunction with the integrin ligand RGD. The results presented here indicate that control over the extent of cell-material interactions can be achieved by relatively simple and biocompatible surface modification procedures using inorganic binding peptides as linker molecules.

  6. Male chest enhancement: pectoral implants.

    PubMed

    Benito-Ruiz, J; Raigosa, J M; Manzano-Surroca, M; Salvador, L

    2008-01-01

    The authors present their experience with the pectoral muscle implant for male chest enhancement in 21 patients. The markings and technique are thoroughly described. The implants used were manufactured and custom made. The candidates for implants comprised three groups: group 1 (18 patients seeking chest enhancement), group 2 (1 patient with muscular atrophy), and group 3 (2 patients with muscular injuries). Because of the satisfying results obtained, including significant enhancement of the chest contour and no major complications, this technique is used for an increasing number of male cosmetic surgeries.

  7. [Considerations for optimizing joint implants].

    PubMed

    Tensi, H M; Orloff, S; Gese, H; Hooputra, H

    1994-09-01

    Despite the increasing use of orthopaedic implants, there is still a lack of adequate testing procedures and legal guidelines. Examples of the consequences of this neglect are given. Modern techniques for the calculation of stresses (finite element method [FEM]) and the prediction of life cycle duration are presented. Such methods, applied in the development and manufacturing phases of standard and special implants, may ensure an adequate prosthetic life cycle, with particular emphasis being placed on the biomedical optimization of the implant/bone interface and surrounding bone.

  8. Immunomodulation by mesenchymal stem cells combats the foreign body response to cell-laden synthetic hydrogels.

    PubMed

    Swartzlander, Mark D; Blakney, Anna K; Amer, Luke D; Hankenson, Kurt D; Kyriakides, Themis R; Bryant, Stephanie J

    2015-02-01

    The implantation of non-biological materials, including scaffolds for tissue engineering, ubiquitously leads to a foreign body response (FBR). We recently reported that this response negatively impacts fibroblasts encapsulated within a synthetic hydrogel and in turn leads to a more severe FBR, suggesting a cross-talk between encapsulated cells and inflammatory cells. Given the promise of mesenchymal stem cells (MSCs) in tissue engineering and recent evidence of their immunomodulatory properties, we hypothesized that MSCs encapsulated within poly(ethylene glycol) (PEG) hydrogels will attenuate the FBR. In vitro, murine MSCs encapsulated within PEG hydrogels attenuated classically activated primary murine macrophages by reducing gene expression and protein secretion of pro-inflammatory cytokines, most notably tumor necrosis factor-α. Using a COX2 inhibitor, prostaglandin E2 (PGE2) was identified as a mediator of MSC immunomodulation of macrophages. In vivo, hydrogels laden with MSCs, osteogenically differentiating MSCs, or no cells were implanted subcutaneously into C57BL/6 mice for 28 days to assess the impact of MSCs on the fibrotic response of the FBR. The presence of encapsulated MSCs reduced fibrous capsule thickness compared to acellular hydrogels, but this effect diminished with osteogenic differentiation. The use of MSCs prior to differentiation in tissue engineering may therefore serve as a dynamic approach, through continuous cross-talk between MSCs and the inflammatory cells, to modulate macrophage activation and attenuate the FBR to implanted synthetic scaffolds thus improving the long-term tissue engineering outcome.

  9. Occlusion on oral implants: current clinical guidelines.

    PubMed

    Koyano, K; Esaki, D

    2015-02-01

    Proper implant occlusion is essential for adequate oral function and the prevention of adverse consequences, such as implant overloading. Dental implants are thought to be more prone to occlusal overloading than natural teeth because of the loss of the periodontal ligament, which provides shock absorption and periodontal mechanoreceptors, which provide tactile sensitivity and proprioceptive motion feedback. Although many guidelines and theories on implant occlusion have been proposed, few have provided strong supportive evidence. Thus, we performed a narrative literature review to ascertain the influence of implant occlusion on the occurrence of complications of implant treatment and discuss the clinical considerations focused on the overloading factors at present. The search terms were 'dental implant', 'dental implantation', 'dental occlusion' and 'dental prosthesis'. The inclusion criteria were literature published in English up to September 2013. Randomised controlled trials (RCTs), prospective cohort studies and case-control studies with at least 20 cases and 12 months follow-up interval were included. Based on the selected literature, this review explores factors related to the implant prosthesis (cantilever, crown/implant ratio, premature contact, occlusal scheme, implant-abutment connection, splinting implants and tooth-implant connection) and other considerations, such as the number, diameter, length and angulation of implants. Over 700 abstracts were reviewed, from which more than 30 manuscripts were included. We found insufficient evidence to establish firm clinical guidelines for implant occlusion. To discuss the ideal occlusion for implants, further well-designed RCTs are required in the future.

  10. Accidental Implant Screwdriver Ingestion: A Rare Complication during Implant Placement

    PubMed Central

    Jain, Anshul; Baliga, Shridhar D

    2014-01-01

    One of the complications during a routine dental implant placement is accidental ingestion of the implant instruments, which can happen when proper precautions are not taken. Appropriate radiographs should be taken to locate the correct position of foreign body; usually the foreign body passes asymptomatically from gastrointestinal tract but sometimes it may lead to intestinal obstruction, perforations and impactions. The aim of this article is to report accidental ingestion of 19 mm long screw driver by a senile patient. PMID:25628702

  11. Implant retention systems for implant-retained overdentures.

    PubMed

    Laverty, D P; Green, D; Marrison, D; Addy, L; Thomas, M B M

    2017-03-10

    Implant retained overdentures are being increasingly utilised in both general and specialist practice to rehabilitate patients with missing teeth, particularly those that are edentate. This article aims to inform the reader of a variety of retention systems that are available to retain an implant overdenture and to understand how these systems work, their advantages and disadvantages and to outline some of the clinical and treatment planning considerations involved in selecting the most appropriate retention system for patients.

  12. Word selection affects perceptions of synthetic biology.

    PubMed

    Pearson, Brianna; Snell, Sam; Bye-Nagel, Kyri; Tonidandel, Scott; Heyer, Laurie J; Campbell, A Malcolm

    2011-07-21

    Members of the synthetic biology community have discussed the significance of word selection when describing synthetic biology to the general public. In particular, many leaders proposed the word "create" was laden with negative connotations. We found that word choice and framing does affect public perception of synthetic biology. In a controlled experiment, participants perceived synthetic biology more negatively when "create" was used to describe the field compared to "construct" (p = 0.008). Contrary to popular opinion among synthetic biologists, however, low religiosity individuals were more influenced negatively by the framing manipulation than high religiosity people. Our results suggest that synthetic biologists directly influence public perception of their field through avoidance of the word "create".

  13. Creating biological nanomaterials using synthetic biology

    NASA Astrophysics Data System (ADS)

    Rice, MaryJoe K.; Ruder, Warren C.

    2014-02-01

    Synthetic biology is a new discipline that combines science and engineering approaches to precisely control biological networks. These signaling networks are especially important in fields such as biomedicine and biochemical engineering. Additionally, biological networks can also be critical to the production of naturally occurring biological nanomaterials, and as a result, synthetic biology holds tremendous potential in creating new materials. This review introduces the field of synthetic biology, discusses how biological systems naturally produce materials, and then presents examples and strategies for incorporating synthetic biology approaches in the development of new materials. In particular, strategies for using synthetic biology to produce both organic and inorganic nanomaterials are discussed. Ultimately, synthetic biology holds the potential to dramatically impact biological materials science with significant potential applications in medical systems.

  14. Creating biological nanomaterials using synthetic biology.

    PubMed

    Rice, MaryJoe K; Ruder, Warren C

    2014-02-01

    Synthetic biology is a new discipline that combines science and engineering approaches to precisely control biological networks. These signaling networks are especially important in fields such as biomedicine and biochemical engineering. Additionally, biological networks can also be critical to the production of naturally occurring biological nanomaterials, and as a result, synthetic biology holds tremendous potential in creating new materials. This review introduces the field of synthetic biology, discusses how biological systems naturally produce materials, and then presents examples and strategies for incorporating synthetic biology approaches in the development of new materials. In particular, strategies for using synthetic biology to produce both organic and inorganic nanomaterials are discussed. Ultimately, synthetic biology holds the potential to dramatically impact biological materials science with significant potential applications in medical systems.

  15. Nature's chemicals and synthetic chemicals: comparative toxicology.

    PubMed Central

    Ames, B N; Profet, M; Gold, L S

    1990-01-01

    The toxicology of synthetic chemicals is compared to that of natural chemicals, which represent the vast bulk of the chemicals to which humans are exposed. It is argued that animals have a broad array of inducible general defenses to combat the changing array of toxic chemicals in plant food (nature's pesticides) and that these defenses are effective against both natural and synthetic toxins. Synthetic toxins such as dioxin are compared to natural chemicals, such as indole carbinol (in broccoli) and ethanol. Trade-offs between synthetic and natural pesticides are discussed. The finding that in high-dose tests, a high proportion of both natural and synthetic chemicals are carcinogens, mutagens, teratogens, and clastogens (30-50% for each group) undermines current regulatory efforts to protect public health from synthetic chemicals based on these tests. PMID:2217211

  16. Synthetic biology - the state of play.

    PubMed

    Kitney, Richard; Freemont, Paul

    2012-07-16

    Just over two years ago there was an article in Nature entitled "Five Hard Truths for Synthetic Biology". Since then, the field has moved on considerably. A number of economic commentators have shown that synthetic biology very significant industrial potential. This paper addresses key issues in relation to the state of play regarding synthetic biology. It first considers the current background to synthetic biology, whether it is a legitimate field and how it relates to foundational biological sciences. The fact that synthetic biology is a translational field is discussed and placed in the context of the industrial translation process. An important aspect of synthetic biology is platform technology, this topic is also discussed in some detail. Finally, examples of application areas are described.

  17. Nature's chemicals and synthetic chemicals: Comparative toxicology

    SciTech Connect

    Ames, B.N.; Profet, M.; Gold, L.S. )

    1990-10-01

    The toxicology of synthetic chemicals is compared to that of natural chemicals, which represent the vast bulk of the chemicals to which humans are exposed. It is argued that animals have a broad array of inducible general defenses to combat the changing array of toxic chemicals in plant food (nature's pesticides) and that these defenses are effective against both natural and synthetic toxins. Synthetic toxins such as dioxin are compared to natural chemicals, such as indole carbinol (in broccoli) and ethanol. Trade-offs between synthetic and natural pesticides are discussed. The finding that in high-dose tests, a high proportion of both natural and synthetic chemicals are carcinogens, mutagens, teratogens, and clastogens (30-50{percent} for each group) undermines current regulatory efforts to protect public health from synthetic chemicals based on these tests.

  18. Word selection affects perceptions of synthetic biology

    PubMed Central

    2011-01-01

    Members of the synthetic biology community have discussed the significance of word selection when describing synthetic biology to the general public. In particular, many leaders proposed the word "create" was laden with negative connotations. We found that word choice and framing does affect public perception of synthetic biology. In a controlled experiment, participants perceived synthetic biology more negatively when "create" was used to describe the field compared to "construct" (p = 0.008). Contrary to popular opinion among synthetic biologists, however, low religiosity individuals were more influenced negatively by the framing manipulation than high religiosity people. Our results suggest that synthetic biologists directly influence public perception of their field through avoidance of the word "create". PMID:21777466

  19. Rehabilitation of malpositioned implants with a CAD/CAM milled implant overdenture: a clinical report.

    PubMed

    Moeller, Mauricio S; Duff, Renee E; Razzoog, Michael E

    2011-03-01

    Dentists may be faced with the challenge of restoring unfavorably placed implants. In some instances, previously integrated implants may be from different manufacturers. This clinical report describes the rehabilitation of a patient with a maxillary CAD/CAM implant bar-supported overdenture that presented with malpositioned implants, from different manufacturers, including one from a discontinued implant system.

  20. Safety of Outpatient Implantation of the Implantable Cardioverter-defibrillator.

    PubMed

    Datino, Tomás; Miracle Blanco, Ángel; Núñez García, Alberto; González-Torrecilla, Esteban; Atienza Fernández, Felipe; Arenal Maíz, Ángel; Hernández-Hernández, Jesús; Ávila Alonso, Pablo; Eidelman, Gabriel; Fernández-Avilés, Francisco

    2015-07-01

    Strategies are needed to reduce health care costs and improve patient care. The objective of our study was to analyze the safety of outpatient implantation of cardioverter-defibrillators. A retrospective study was conducted in 401 consecutive patients who received an implantable cardioverter-defibrillator between 2007 and 2012. The rate of intervention-related complications was compared between 232 patients (58%) whose implantation was performed in the outpatient setting and 169 patients (42%) whose intervention was performed in the inpatient setting. The mean age (standard deviation) of the patients was 62 (14) years; 336 (84%) were male. Outpatients had lower left ventricular ejection fraction and a higher percentage had an indication for primary prevention of sudden death, compared to inpatients. Only 21 outpatients (9%) required subsequent hospitalization. The rate of complications until the third month postimplantation was similar for outpatients (6.0%) and inpatients (5.3%); P = .763. In multivariate analysis, only previous anticoagulant therapy was related to the presence of complications (odds ratio = 3.2; 95% confidence interval, 1.4-7.4; P < .01), mainly due to an increased rate of pocket hematomas. Each outpatient implantation saved approximately €735. Outpatient implantation of implantable cardioverter-defibrillators is safe and reduces costs. Close observation is recommended for patients receiving chronic anticoagulation therapy due to an increased risk of complications. Copyright © 2014 Sociedad Española de Cardiología. Published by Elsevier España, S.L.U. All rights reserved.