Science.gov

Sample records for phosphorylates histone h2ax

  1. Cigarette sidestream smoke induces phosphorylated histone H2AX.

    PubMed

    Toyooka, Tatsushi; Ibuki, Yuko

    2009-05-31

    Cigarette sidestream smoke (CSS) is a widespread environmental pollutant having highly genotoxic potency. In spite of the overwhelming evidence that CSS induces a wide range of DNA damage such as oxidative base damage and DNA adducts, evidence that CSS can result in DNA double strand breaks (DSBs) is little. In this study, we showed that CSS generated phosphorylated histone H2AX (gamma-H2AX), recently considered as a sensitive marker of the generation of DSBs, in a human pulmonary epithelial cell model, A549. Treatment with CSS drastically induced discrete foci of gamma-H2AX within the nucleus in a dose-dependent manner. CSS increased intracellular oxidation, and N-acetylcysteine (NAC), an antioxidant, significantly attenuated the formation of gamma-H2AX, suggesting that reactive oxygen species produced from CSS partially contributed to the phosphorylation. The generation of gamma-H2AX is considered to be accompanied the induction of DSBs. CSS in fact induced DSBs, which was also inhibited by NAC. DSBs are the worst type of DNA damage, related to genomic instability and carcinogenesis. Our results would increase the evidence of the strong genotoxicity of passive smoking. PMID:19486862

  2. Histone deacetylase inhibitors enhance phosphorylation of histone H2AX after ionizing radiation

    SciTech Connect

    Zhang Yubin; Adachi, Masaaki . E-mail: adachi@sapmed.ac.jp; Zou Huichao; Hareyama, Masato; Imai, Kohzoh; Shinomura, Yasuhisa

    2006-07-01

    Purpose Histone deacetylase (HDAC) inhibitors are believed to be promising radiosensitizers. To explore their effects on ionizing radiation (IR), we examined whether the HDAC inhibitors m-carboxycinnamic acid bis-hydroxamide (CBHA) and depsipeptide FK228 affect H2AX phosphorylation ({gamma}-H2AX), a landmark of DNA double-strand breaks after IR exposure. Methods and Materials We evaluated the effects of the HDAC inhibitors on clonogenic assay in human lung carcinoma A549 cells and progression of A549 xenograft tumors. IR-induced DNA damage was evaluated by histone {gamma}-H2AX. Histone hyperacetylation was induced by overexpression of histone acetyltransferase p300 and evaluated by Western blots. Results M-carboxycinnamic acid bishydroxyamide pretreatment radiosensitized A549 cells and strongly inhibited A549 xenograft tumor progression. CBHA and FK228, but not 5-fluorouracil, enhanced IR-induced {gamma}-H2AX in A549 and other cancer cell lines. Overexpression of p300 similarly augmented IR-induced {gamma}-H2AX. Conclusion The results of this study suggest that HDAC inhibitors enhance IR-induced {gamma}-H2AX, most likely through histone hyperacetylation, and radiosensitize various cancers.

  3. Phosphorylation of histone H2AX in the mouse brain from development to senescence.

    PubMed

    Barral, Serena; Beltramo, Riccardo; Salio, Chiara; Aimar, Patrizia; Lossi, Laura; Merighi, Adalberto

    2014-01-01

    Phosphorylation of the histone H2AXH2AX form) is an early response to DNA damage and a marker of aging and disease in several cells and tissues outside the nervous system. Little is known about in vivo phosphorylation of H2AX in neurons, although it was suggested that γH2AX is an early marker of neuronal endangerment thus opening the possibility to target it as a neuroprotective strategy. After experimental labeling of DNA-synthesizing cells with 5-bromo-2-deoxyuridine (BrdU), we studied the brain occurrence of γH2AX in developing, postnatal, adult and senescent (2 years) mice by light and electron microscopic immunocytochemistry and Western blotting. Focal and/or diffuse γH2AX immunostaining appears in interkinetic nuclei, mitotic chromosomes, and apoptotic nuclei. Immunoreactivity is mainly associated with neurogenetic areas, i.e., the subventricular zone (SVZ) of telencephalon, the cerebellar cortex, and, albeit to a much lesser extent, the subgranular zone of the hippocampal dentate gyrus. In addition, γH2AX is highly expressed in the adult and senescent cerebral cortex, particularly the piriform cortex. Double labeling experiments demonstrate that γH2AX in neurogenetic brain areas is temporally and functionally related to proliferation and apoptosis of neuronal precursors, i.e., the type C transit amplifying cells (SVZ) and the granule cell precursors (cerebellum). Conversely, γH2AX-immunoreactive cortical neurons incorporating the S phase-label BrdU do not express the proliferation marker phosphorylated histone H3, indicating that these postmitotic cells undergo a significant DNA damage response. Our study paves the way for a better comprehension of the role of H2AX phosphorylation in the normal brain, and offers additional data to design novel strategies for the protection of neuronal precursors and mature neurons in central nervous system (CNS) degenerative diseases. PMID:24451138

  4. Coexposure to silver nanoparticles and ultraviolet A synergistically enhances the phosphorylation of histone H2AX.

    PubMed

    Zhao, Xiaoxu; Takabayashi, Fumiyo; Ibuki, Yuko

    2016-09-01

    Owing to the wide application of silver nanoparticles (AgNPs), the assessment of health risks associated with their use is of great importance. In this study, we revealed that the potential genotoxicity of AgNPs was enhanced by ultraviolet A (UVA) exposure. Three cultured cell lines were treated with AgNPs, followed by exposure to UVA. AgNPs induced phosphorylation of histone H2AX (γ-H2AX) following the formation of DNA double-strand breaks (DSBs), which was synergistically enhanced by UVA exposure. Enhanced γ-H2AX was observed only in cell lines that positively took up AgNPs, and microsized Ag particles, which were difficult to incorporate into cells, showed no γ-H2AX. Incorporation of AgNPs was not increased by UVA exposure. AgNO3 treatment followed by UVA exposure also induced a marked increase in γ-H2AX, indicating that the enhanced γ-H2AX was attributed to Ag ions released from AgNPs. Ag ions reacted with the -SH group of antioxidant molecules, such as glutathione, and induced intracellular oxidative conditions. 8-Hydroxy-2'-deoxyguanosine was formed in the cells treated with AgNPs, which was augmented by UVA irradiation, suggesting that intracellular oxidation caused oxidative DNA damage, leading to the enhanced formation of DSBs and γ-H2AX. Ag has been considered a safe metal; however, our results provide important insights into the influence of sunlight on the genotoxic potency of AgNPs. PMID:27383448

  5. BRCA1, histone H2AX phosphorylation, and male meiotic sex chromosome inactivation.

    PubMed

    Turner, James M A; Aprelikova, Olga; Xu, Xiaoling; Wang, Ruihong; Kim, Sangsoo; Chandramouli, Gadisetti V R; Barrett, J Carl; Burgoyne, Paul S; Deng, Chu-Xia

    2004-12-14

    In mammalian spermatogenesis, the X and Y chromosomes are transcriptionally silenced during the pachytene stage of meiotic prophase (meiotic sex chromosome inactivation, MSCI), forming a condensed chromatin domain termed the sex or XY body. The nucleosomal core histone H2AX is phosphorylated within the XY chromatin domain just prior to MSCI, and it has been hypothesized that this triggers the chromatin condensation and transcriptional repression. Here, we show that the kinase ATR localizes to XY chromatin at the onset of MSCI and that this localization is disrupted in mice with a mutant form of the tumor suppressor protein BRCA1. In the mutant pachytene cells, ATR is usually present at nonsex chromosomal sites, where it colocalizes with aberrant sites of H2AX phosphorylation; in these cells, there is MSCI failure. In rare pachytene cells, ATR does locate to XY chromatin, H2AX is then phosphorylated, a sex body forms, and MSCI ensues. These observations highlight an important role for BRCA1 in recruiting the kinase ATR to XY chromatin at the onset of MSCI and provide compelling evidence that it is ATR that phosphorylates H2AX and triggers MSCI.

  6. Determination of Histone H2AX Phosphorylation in DT40 Cells.

    PubMed

    Nishihara, Kana; Shahane, Sampada A; Xia, Menghang

    2016-01-01

    Visualization of DNA damage response protein recruitment to DNA damage sites enables measurement of the DNA damage. DNA double-strand breaks (DSBs) and blocked replication forks induce the phosphorylation of H2AX at serine 139 (γH2AX), and accumulate γH2AX which can then be detected as foci. The detection of γH2AX foci by immunostaining with antibodies that recognize γH2AX is an indicator of DSBs presence. This chapter describes the measurement of γH2AX immunostaining using a high-content imaging platform in chicken DT40 B-lymphocyte cell lines. PMID:27518625

  7. Evidence of DNA damage in Alzheimer disease: phosphorylation of histone H2AX in astrocytes

    PubMed Central

    Myung, Na-Hye; Zhu, Xiongwei; Kruman, Inna I.; Castellani, Rudy J.; Petersen, Robert B.; Siedlak, Sandra L.; Perry, George; Smith, Mark A.

    2008-01-01

    Phosphorylation of the histone family is not only a response to cell signaling stimuli, but also an important indicator of DNA damage preceding apoptotic changes. While astrocytic degeneration, including DNA damage, has been reported in Alzheimer disease (AD), its pathogenetic significance is somewhat unclear. In an effort to clarify this, we investigated the expression of γH2AX as evidence of DNA damage in astrocytes to elucidate the role of these cells in the pathogenesis of AD. In response to the formation of double-stranded breaks in chromosomal DNA, serine 139 on H2AX, a 14-kDa protein that is a member of the H2A histone family and part of the nucleosome structure, becomes rapidly phosphorylated to generate γH2AX. Using immunocytochemical techniques, we found significantly increased levels of γH2AX in astrocytes in regions know to be vulnerable in AD, i.e., the hippocampal regions and cerebral cortex. These results suggest that astrocytes contain DNA damage, possibly resulting in functional disability, which in turn reduces their support for neurons. These findings further define the role of astrocyte dysfunction in the progression of AD. PMID:19424844

  8. Silver ions enhance UVB-induced phosphorylation of histone H2AX.

    PubMed

    Zhao, Xiaoxu; Toyooka, Tatsushi; Ibuki, Yuko

    2014-08-01

    Silver (Ag) is used in a wide range of industries including healthcare, food, cosmetics, and environmental industries due to its antibacterial properties. The rapidly expanding use of Ag has raised issues concerning its toxicity in humans. However, studies investigating the effects of Ag on humans are very limited, and the combined effects of Ag and other environmental factors have not yet been determined. Ultraviolet (UV) radiation in sunlight is the most prominent and ubiquitous physical stressor in our natural environment. In this study, we investigated the genotoxic potential of combined exposure to Ag(+) (AgNO3) and UVB in the human keratinocyte cell line, HaCaT, by measuring the generation of phosphorylated histone H2AX, which is currently attracting attention as a biomarker for the detection of genotoxic insults. We found that the generation of γ-H2AX was synergistically enhanced when cells were coexposed to Ag(+) and UVB. Furthermore, we showed that the enhanced generation of γ-H2AX could be attributed to the increased formation of UVB-induced cyclobutane pyrimidine dimers and (6-4) photoproducts. These lesions, if not repaired properly, are the major causal factor for skin carcinogenesis. Our results provide an important insight into influence of Ag on the genotoxic potency of sunlight.

  9. Slow elimination of phosphorylated histone {gamma}-H2AX from DNA of terminally differentiated mouse heart cells in situ

    SciTech Connect

    Gavrilov, Boris; Vezhenkova, Irina; Firsanov, Denis; Solovjeva, Liudmila; Svetlova, Maria; Mikhailov, Vyacheslav; Tomilin, Nikolai . E-mail: nvtom@hotmail.com

    2006-09-08

    Phosphorylation of replacement histone H2AX occurs in megabase chromatin domains around double-strand DNA breaks (DSBs) and this modification (called {gamma}-H2AX) may serve as a useful marker of genome damage and repair in terminally differentiated cells. Here using immunohistochemistry we studied kinetics of {gamma}-H2AX formation and elimination in the X-irradiated mouse heart and renal epithelial tissues in situ. Unirradiated tissues have 3-5% {gamma}-H2AX-positive cells and in tissues fixed 1 h after X-irradiation {gamma}-H2AX-positive nuclei are induced in a dose-dependent manner approaching 20-30% after 3 Gy of IR. Analysis of mouse tissues at different times after 3 Gy of IR showed that maximal induction of {gamma}-H2AX in heart is observed 20 min after IR and then is decreased slowly with about half remaining 23 h later. In renal epithelium maximum of the {gamma}-H2AX-positive cells is observed 40 min after IR and then decreases to control values in 23 h. This indicates that there are significant variations between non-proliferating mammalian tissues in the initial H2AX phosphorylation rate as well as in the rate of {gamma}-H2AX elimination after X-irradiation, which should be taken into account in the analysis of radiation responses.

  10. Dynamic change of histone H2AX phosphorylation independent of ATM and DNA-PK in mouse skin in situ

    SciTech Connect

    Koike, Manabu Mashino, Minako; Sugasawa, Jun; Koike, Aki

    2007-11-30

    Histone H2AX undergoes phosphorylation on Ser 139 ({gamma}-H2AX) rapidly in response to DNA double-strand breaks induced by exogenous stimuli, such as ionizing radiation. However, the endogenous phosphorylation pattern and modifier of H2AX remain unclear. Here we show that H2AX is regulated physically at the level of phosphorylation at Ser139 during a hair cycle in the mouse skin. In anagen hair follicles, {gamma}-H2AX-positive cells were observed in the outer root sheath (ORS) and hair bulb in a cycling inferior region but not in a permanent superficial region. In telogen hair follicles, {gamma}-H2AX-positive cells were only detected around the germ cell cap. In contrast, following X-irradiation, {gamma}-H2AX was observed in various cell types including the ORS cells in the permanent superficial region. Furthermore, {gamma}-H2AX-positive cells were detected in the skin of mice lacking either ATM or DNA-PK, suggesting that these kinases are not essential for phosphorylation in vivo.

  11. AIF-mediated caspase-independent necroptosis requires ATM and DNA-PK-induced histone H2AX Ser139 phosphorylation

    PubMed Central

    Baritaud, M; Cabon, L; Delavallée, L; Galán-Malo, P; Gilles, M-E; Brunelle-Navas, M-N; Susin, S A

    2012-01-01

    The alkylating DNA-damage agent N-methyl-N′-nitro-N-nitrosoguanidine (MNNG) induces a form of caspase-independent necroptosis implicating the mitochondrial flavoprotein apoptosis-inducing factor (AIF). Following the activation of PARP-1 (poly(ADP-ribose) polymerase-1), calpains, BID (BH3 interacting domain death agonist), and BAX (Bcl-2-associated X protein), the apoptogenic form of AIF (tAIF) is translocated to the nucleus where, associated with Ser139-phosphorylated histone H2AXH2AX), it creates a DNA-degrading complex that provokes chromatinolysis and cell death by necroptosis. The generation of γH2AX is crucial for this form of cell death, as mutation of H2AX Ser139 to Ala or genetic ablation of H2AX abolish both chromatinolysis and necroptosis. On the contrary, reintroduction of H2AX-wt or the phosphomimetic H2AX mutant (H2AX-S139E) into H2AX−/− cells resensitizes to MNNG-triggered necroptosis. Employing a pharmacological approach and gene knockout cells, we also demonstrate in this paper that the phosphatidylinositol-3-OH kinase-related kinases (PIKKs) ATM (ataxia telangiectasia mutated) and DNA-dependent protein kinase (DNA-PK) mediate γH2AX generation and, consequently, MNNG-induced necroptosis. By contrast, H2AX phosphorylation is not regulated by ATR or other H2AX-related kinases, such as JNK. Interestingly, ATM and DNA-PK phosphorylate H2AX at Ser139 in a synergistic manner with different kinetics of activation. Early after MNNG treatment, ATM generates γH2AX. Further, DNA-PK contributes to H2AX Ser139 phosphorylation. In revealing the pivotal role of PIKKs in MNNG-induced cell death, our data uncover a milestone in the mechanisms regulating AIF-mediated caspase-independent necroptosis. PMID:22972376

  12. Complementarity of phosphorylated histones H2AX and H3 quantification in different cell lines for genotoxicity screening.

    PubMed

    Khoury, Laure; Zalko, Daniel; Audebert, Marc

    2016-08-01

    The in vitro micronucleus assay is broadly used, but is not per se able to discriminate aneugenic from clastogenic compounds, and cytotoxicity can be a confounding factor. In vitro genotoxicity assays generally rely on cell lines with limited metabolic capabilities. Recently, the use of histone H2AX and H3 phosphorylation markers (γH2AX and p-H3) was proposed to discriminate aneugenic from clastogenic chemicals. The aim of the present study was to develop a new genotoxic screening strategy based on the use of the γH2AX and p-H3 biomarkers in combination with cell lines with distinct biotransformation properties. First, we tested a training set of 20 model chemicals comprised of 10 aneugens, five clastogens and five cytotoxics on three human cell lines (HepG2, LS-174T and ACHN). Our data confirm the robustness of these two biomarkers to discriminate efficiently clastogens, aneugens and misleading cytotoxic chemicals in HepG2 cells. Aneugenic compounds induced either an increase or a decrease in p-H3 depending on their mode of action. Clastogens induced γH2AX, and cytotoxic compounds generated a marked decrease in these two biomarkers. Moreover, the use of different cell lines permits to discriminate direct from bioactivated genotoxins without the need of an exogenous metabolic activation system. Finally, we further evaluated this strategy using a test set of 13 chemicals with controversial genotoxic potential. The resulting data demonstrate that the combined analysis of γH2AX and p-H3 is an efficient strategy. Notably, we demonstrated that three compounds (fisetin, hydroquinone and okadaic acid) display both aneugenic and clastogenic properties.

  13. Absolute quantification of acetylation and phosphorylation of the histone variant H2AX upon ionizing radiation reveals distinct cellular responses in two cancer cell lines.

    PubMed

    Matsuda, Shun; Furuya, Kanji; Ikura, Masae; Matsuda, Tomonari; Ikura, Tsuyoshi

    2015-11-01

    Histone modifications change upon the cellular response to ionizing radiation, and their cellular amounts could reflect the DNA damage response activity. We previously reported a sensitive and reliable method for the absolute quantification of γH2AX within cells, using liquid chromatography-tandem mass spectrometry (LC/MS/MS). The technique has broad adaptability to a variety of biological systems and can quantitate different modifications of histones. In this study, we applied it to quantitate the levels of γH2AX and K5-acetylated H2AX, and to compare the radiation responses between two cancer cell lines: HeLa and U-2 OS. The two cell lines have distinct properties in terms of their H2AX modifications. HeLa cells have relatively high γH2AX (3.1 %) against the total H2AX even in un-irradiated cells, while U-2 OS cells have an essentially undetectable level (nearly 0 %) of γH2AX. In contrast, the amounts of acetylated histones are lower in HeLa cells (9.3 %) and higher in U-2 OS cells (24.2 %) under un-irradiated conditions. Furthermore, after ionizing radiation exposure, the time-dependent increases and decreases in the amounts of histone modifications differed between the two cell lines, especially at the early time points. These results suggest that each biological system has distinct kinase/phosphatase and/or acetylase/deacetylase activities. In conclusion, for the first time, we have succeeded in simultaneously monitoring the absolute amounts of phosphorylated and acetylated cellular H2AX after ionizing radiation exposure. This multi-criteria assessment enables precise comparisons of the effects of radiation between any biological systems.

  14. UVB in solar-simulated light causes formation of BaP-photoproducts capable of generating phosphorylated histone H2AX.

    PubMed

    Ohnuki, Go; Toyooka, Tatsushi; Ibuki, Yuko

    2010-09-30

    Polycyclic aromatic hydrocarbons (PAHs), wide-spread mutagenic and carcinogenic environmental pollutants, are consistently exposed to sunlight in the environment. Our previous paper showed that benzo[a]pyrene (BaP) exposed to solar-simulated light (SSL) induced phosphorylation of histone H2AX (γ-H2AX) [T. Toyooka, G. Ohnuki, Y. Ibuki, Solar-simulated light-exposed benzo[a]pyrene induces phosphorylation of histone H2AX, Mutat. Res. 650 (2008) 132-139], a marker of DNA double strand breaks. In this study, we found the ultraviolet B (UVB) region of SSL to produce photomodified BaP with high cytotoxicity and the ability to generate γ-H2AX. Degradation of BaP by SSL, resulting in an increase in cytotoxicity and the generation of γ-H2AX, was decreased by UVB-masking using a glass plate. Exposure to UVB itself increased the cytotoxicity of BaP and amount of γ-H2AX generated. Other PAHs, 1,2-benzoanthracene and 1,2:5,6-dibenzoanthracene, which absorb UVB, also showed enhanced cytotoxicity and the promoted the generation of γ-H2AX after exposure to SSL, whereas naphthalene and chrysene, which have low absorption in the UVB region, did not. These findings suggested that UVB is important for the degradation of PAHs having absorbance in this region, but that the production of genotoxic intermediates during the degradation process needs to be considered. UVB is a two-edged blade in environments, effectively degrading toxic chemicals but also producing genotoxic compounds as reactive intermediates.

  15. Radiation induced DNA damage and damage repair in human tumor and fibroblast cell lines assessed by histone H2AX phosphorylation

    SciTech Connect

    Mahrhofer, Hartmut; Buerger, Susann; Oppitz, Ulrich; Flentje, Michael; Djuzenova, Cholpon S. . E-mail: djuzenova_t@klinik.uni-wuerzburg.de

    2006-02-01

    Purpose: To analyze the radiation-induced levels of {gamma}H2AX and its decay kinetics in 10 human cell lines covering a wide range of cellular radiosensitivity (SF2, 0.06-0.63). Methods and Materials: Five tumor cell lines included Colo-800 melanoma, two glioblastoma (MO59J and MO59K), fibrosarcoma HT 1080, and breast carcinoma MCF7. Five primary skin fibroblasts lines included two normal strains, an ataxia telangiectasia strain, and two fibroblast strains from breast cancer patients with an adverse early skin reaction to radiotherapy. Cellular radiosensitivity was assessed by colony-forming test. Deoxyribonucleic acid damage and repair were analyzed according to nuclear {gamma}H2AX foci intensity, with digital image analysis. Results: The cell lines tested showed a wide degree of variation in the background intensity of immunostained nuclear histone {gamma}H2AX, which was higher for the tumor cell lines compared with the fibroblast strains. It was not possible to predict clonogenic cell survival (SF2) for the 10 cell lines studied from the radiation-induced {gamma}H2AX intensity. In addition, the slopes of the dose-response (0-4 Gy) curves, the rates of {gamma}H2AX disappearance, and its residual expression ({<=}18 h after irradiation) did not correlate with SF2 values. Conclusions: The results from 10 cell lines showed that measurements of immunofluorescence intensity by digital image analysis of phosphorylated histone H2AX as a surrogate marker of DNA double-strand breaks did not allow reliable ranking of cell strains according to their clonogenic survival after irradiation.

  16. DNA Double-Strand Breaks by Cr(VI) Are Targeted to Euchromatin and Cause ATR-Dependent Phosphorylation of Histone H2AX and Its Ubiquitination

    PubMed Central

    DeLoughery, Zachary; Luczak, Michal W.; Ortega-Atienza, Sara; Zhitkovich, Anatoly

    2015-01-01

    Hexavalent chromium is a human respiratory carcinogen that undergoes intracellular activation in vivo primarily via reduction with ascorbate. Replication of Cr-adducted DNA triggers mismatch repair that generates toxic DNA double-strand breaks (DSBs) as secondary lesions. Here, we examined the intranuclear distribution of chromate-induced breaks and a central DSB signaling branch targeting histone H2AX. Using ascorbate-restored cells (H460 human lung epithelial cells, normal human lung and normal mouse embryonic fibroblasts (MEFs)), we found that Cr(VI) produced a typical DSB-associated spectrum of H2AX modifications, including its Ser139-phosphorylated (known as γH2AX) and mono- and diubiquitinated forms. However, whereas canonical DSB signaling relies on ATM, the formation of γH2AX and its ubiquitinated products by Cr(VI) was dependent on ATR kinase. Based on the established mode of ATR activation, this suggests that Cr-induced DSB are not blunt-ended and likely contain single-stranded tails. Confocal imaging with markers of active and inactive chromatin revealed a selective formation of Cr-induced DSB in euchromatin of mouse and human cells. In contrast to DSB, Cr-DNA adducts were produced in both types of chromatin. The euchromatin targeting of Cr-induced DSB makes these lesions particularly dangerous by increasing the probability of deleting active tumor suppressors and producing oncogenic translocations. Accumulation of transcription-inhibiting ubiquitinated forms of γH2AX in euchromatin is expected to contribute to the ability of Cr(VI) to suppress upregulation of inducible genes. PMID:25288669

  17. Tissue-specific DNA-PK-dependent H2AX phosphorylation and {gamma}-H2AX elimination after X-irradiation in vivo

    SciTech Connect

    Koike, Manabu Sugasawa, Jun; Yasuda, Mariko; Koike, Aki

    2008-11-07

    Histone H2AX rapidly undergoes phosphorylation at Ser139 ({gamma}-H2AX) in response to DNA double-strand breaks. Although ATM kinase and DNA-PK phosphorylate Ser139 of H2AX in culture cells, the regulatory mechanism of {gamma}-H2AX level remains unclear in vivo. Here, we detected the phosphorylation of H2AX and the elimination of {gamma}-H2AX in the mouse skin after X-irradiation. Furthermore, following X-irradiation, the level of {gamma}-H2AX also increased in mice lacking either ATM or DNA-PK. Although the elimination after X-irradiation was detected in the skin of these mutant mice, the elimination in DNA-PK-deficient mice was slower than that in C3H and ATM knockout mice, suggesting that a fraction of {gamma}-H2AX in the skin is eliminated in a DNA-PK-dependent manner. Although the DNA-PK-dependent elimination of {gamma}-H2AX was also detected in the liver, kidney, and spleen, the DNA-PK-dependent phosphorylation of H2AX was detected in the spleen only. These results suggest that the regulatory mechanism of {gamma}-H2AX level is tissue-specific.

  18. Differential roles of ATR and ATM in p53, Chk1, and histone H2AX phosphorylation in response to hyperoxia: ATR-dependent ATM activation.

    PubMed

    Kulkarni, Amit; Das, Kumuda C

    2008-05-01

    Elevated level of oxygen (hyperoxia) is widely used in critical care units and in respiratory insufficiencies. In addition, hyperoxia has been implicated in many diseases such as bronchopulmonary dysplasia or acute respiratory distress syndrome. Although hyperoxia is known to cause DNA base modifications and strand breaks, the DNA damage response has not been adequately investigated. We have investigated the effect of hyperoxia on DNA damage signaling and show that hyperoxia is a unique stress that activates the ataxia telangiectasia mutant (ATM)- and Rad3-related protein kinase (ATR)-dependent p53 phosphorylations (Ser6, -15, -37, and -392), phosphorylation of histone H2AX (Ser139), and phosphorylation of checkpoint kinase 1 (Chk1). In addition, we show that phosphorylation of p53 (Ser6) and histone H2AX (Ser139) depend on both ATM and ATR. We demonstrate that ATR activation precedes ATM activation in hyperoxia. Finally, we show that ATR is required for ATM activation in hyperoxia. Taken together, we report that ATR is the major DNA damage signal transducer in hyperoxia that activates ATM.

  19. Histone deacetylase inhibitors valproic acid and depsipeptide sensitize retinoblastoma cells to radiotherapy by increasing H2AX phosphorylation and p53 acetylation-phosphorylation.

    PubMed

    Kawano, Takeshi; Akiyama, Masaharu; Agawa-Ohta, Miyuki; Mikami-Terao, Yoko; Iwase, Satsuki; Yanagisawa, Takaaki; Ida, Hiroyuki; Agata, Naoki; Yamada, Hisashi

    2010-10-01

    Although p53 is intact in most cases of retinoblastoma, it is largely inactivated by the ubiqutin-proteasome system through interaction with murine double minute 2 (MDM2) and murine double minute X (MDMX). The present study showed that the histone deacetylase (HDAC) inhibitors valproic acid (VPA) and depsipeptide (FK228) synergistically enhanced ionizing radiation (IR)-induced apoptosis, associated with activation of caspase-3 and cleavage of poly(ADP-ribose) polymerase in Y79 and WER1-Rb1 human retinoblastoma cells. Both VPA and FK228 enhanced IR-induced phosphorylation of histone H2AX on Ser139 preceding apoptosis. Exposure of cells to IR in the presence of VPA or FK228 induced the accumulation of p53 acetylated at Lys382 and phosphorylated at Ser46 through the reduction of binding affinity with MDM2 and MDMX. These results suggest that acetylation of p53 by HDAC inhibitors is a promising new therapeutic target in refractory retinoblastoma. PMID:20811699

  20. Persistence of histone H2AX phosphorylation after meiotic chromosome synapsis and abnormal centromere cohesion in Poly (ADP-ribose) polymerase (Parp-1) null oocytes

    PubMed Central

    Yang, Feikun; Baumann, Claudia; De La Fuente, Rabindranath

    2009-01-01

    In spite of the impact of aneuploidy on human health little is known concerning the molecular mechanisms involved in the formation of structural or numerical chromosome abnormalities during meiosis. Here, we provide novel evidence indicating that lack of PARP-1 function during oogenesis predisposes the female gamete to genome instability. During prophase I of meiosis, a high proportion of Parp-1 (−/−) mouse oocytes exhibit a spectrum of meiotic defects including incomplete homologous chromosome synapsis or persistent histone H2AX phosphorylation in fully synapsed chromosomes at the late pachytene stage. Moreover, the X chromosome bivalent is also prone to exhibit persistent double strand DNA breaks (DSBs). In striking contrast, such defects were not detected in mutant pachytene spermatocytes. In fully-grown wild type oocytes at the germinal vesicle stage, PARP-1 protein associates with nuclear speckles and upon meiotic resumption, undergoes a striking re-localization towards spindle poles as well as pericentric heterochromatin domains at the metaphase II stage. Notably, a high proportion of in vivo matured Parp-1 (−/−) oocytes show lack of recruitment of the kinetochore-associated protein BUB3 to centromeric domains and fail to maintain metaphase II arrest. Defects in chromatin modifications in the form of persistent histone H2AX phosphorylation during prophase I of meiosis and deficient sister chromatid cohesion during metaphase II predispose mutant oocytes to premature anaphase II onset upon removal from the oviductal environment. Our results indicate that PARP-1 plays a critical role in the maintenance of chromosome stability at key stages of meiosis in the female germ line. Moreover, in the metaphase II stage oocyte PARP-1 is required for the regulation of centromere structure and function through a mechanism that involves the recruitment of BUB3 protein to centromeric domains. PMID:19463809

  1. Elimination of radiation-induced {gamma}-H2AX foci in mammalian nucleus can occur by histone exchange

    SciTech Connect

    Svetlova, Maria; Solovjeva, Liudmila; Nishi, Kayoko; Nazarov, Igor; Siino, Joseph; Tomilin, Nikolai . E-mail: nvtom@mail.ru

    2007-06-29

    Double-strand breaks in mammalian DNA lead to rapid phosphorylation of C-terminal serines in histone H2AX ({gamma}-H2AX) and formation of large nuclear {gamma}-H2AX foci. After DNA repair these foci disappear, but molecular mechanism of elimination of {gamma}-H2AX foci remains unclear. H2AX protein can be phosphorylated and dephosphorylated in vitro in the absence of chromatin. Here, we compared global exchange of GFP-H2AX with kinetics of formation and elimination of radiation-induced {gamma}-H2AX foci. Maximal number of {gamma}-H2AX foci is observed one hour after irradiation, when {approx}20% of GFP-H2AX is exchanged suggesting that formation of the foci mostly occurs by in situ H2AX phosphorylation. However, slow elimination of {gamma}-H2AX foci is weakly affected by an inhibitor of protein phosphatases calyculin A which is known as an agent suppressing dephosphorylation of {gamma}-H2AX. This indicates that elimination of {gamma}-H2AX foci may be independent of dephosphorylation of H2AX which can occur after its removal from the foci by exchange.

  2. Histone H2AX and Fanconi anemia FANCD2 function in the same pathway to maintain chromosome stability

    PubMed Central

    Bogliolo, Massimo; Lyakhovich, Alex; Callén, Elsa; Castellà, Maria; Cappelli, Enrico; Ramírez, María J; Creus, Amadeu; Marcos, Ricard; Kalb, Reinhard; Neveling, Kornelia; Schindler, Detlev; Surrallés, Jordi

    2007-01-01

    Fanconi anemia (FA) is a chromosome fragility syndrome characterized by bone marrow failure and cancer susceptibility. The central FA protein FANCD2 is known to relocate to chromatin upon DNA damage in a poorly understood process. Here, we have induced subnuclear accumulation of DNA damage to prove that histone H2AX is a novel component of the FA/BRCA pathway in response to stalled replication forks. Analyses of cells from H2AX knockout mice or expressing a nonphosphorylable H2AX (H2AXS136A/S139A) indicate that phosphorylated H2AXH2AX) is required for recruiting FANCD2 to chromatin at stalled replication forks. FANCD2 binding to γH2AX is BRCA1-dependent and cells deficient or depleted of H2AX show an FA-like phenotype, including an excess of chromatid-type chromosomal aberrations and hypersensitivity to MMC. This MMC hypersensitivity of H2AX-deficient cells is not further increased by depleting FANCD2, indicating that H2AX and FANCD2 function in the same pathway in response to DNA damage-induced replication blockage. Consequently, histone H2AX is functionally connected to the FA/BRCA pathway to resolve stalled replication forks and prevent chromosome instability. PMID:17304220

  3. Histone H2AX participates the DNA damage-induced ATM activation through interaction with NBS1

    SciTech Connect

    Kobayashi, Junya Tauchi, Hiroshi; Chen, Benjamin; Bruma, Sandeep; Tashiro, Satoshi; Matsuura, Shinya; Tanimoto, Keiji; Chen, David J.; Komatsu, Kenshi

    2009-03-20

    Phosphorylated histone H2AX ({gamma}-H2AX) functions in the recruitment of DNA damage response proteins to DNA double-strand breaks (DSBs) and facilitates DSB repair. ATM also co-localizes with {gamma}-H2AX at DSB sites following its auto-phosphorylation. However, it is unclear whether {gamma}-H2AX has a role in activation of ATM-dependent cell cycle checkpoints. Here, we show that ATM as well as NBS1 is recruited to damaged-chromatin in a {gamma}-H2AX-dependent manner. Foci formation of phosphorylated ATM and ATM-dependent phosphorylation is repressed in H2AX-knockdown cells. Furthermore, anti-{gamma}-H2AX antibody co-immunoprecipitates an ATM-like protein kinase activity in vitro and recombinant H2AX increases in vitro kinase activity of ATM from un-irradiated cells. Moreover, H2AX-deficient cells exhibited a defect in ATM-dependent cell cycle checkpoints. Taken together, {gamma}-H2AX has important role for effective DSB-dependent activation of ATM-related damage responses via NBS1.

  4. Phosphorylation of H2AX histones in response to double-strand breaks and induction of premature chromatin condensation in hydroxyurea-treated root meristem cells of Raphanus sativus, Vicia faba, and Allium porrum.

    PubMed

    Rybaczek, Dorota; Maszewski, Janusz

    2007-01-01

    Histone H2A variant H2AX is rapidly phosphorylated on the induction of DNA double-strand breaks by ionizing radiation and hydroxyurea-mediated replication arrest, resulting in the formation of gamma-H2AX foci along megabase chromatin domains nearby the sites of incurred DNA damage. In an attempt to establish a relationship between species-specific nuclear architecture and H2AX phosphorylation in S/G(2) phase-arrested root meristem cells, immunocytochemical comparisons using an antibody raised against human gamma-H2AX were made among three plants differing with respect to DNA contents: Allium porrum, representing a reticulate type of DNA package, Vicia faba, having semireticulate cell nuclei, and Raphanus sativus, characterised by a chromocentric type of chromatin. Another approach was aimed at determining possible correlations between the extent of hydroxyurea-induced phosphorylation of H2AX histones and the quantities of root meristem cells induced by caffeine to enter aberrant mitotic division (premature chromosome condensation). It was concluded that the higher-order structure of chromatin may contribute to the accessibility of molecular factors engaged in the recognition and repair of genetic lesions. Consequently, in contrast to A. porrum and V. faba, a diffuse chromatin in chromocentric cell nuclei of R. sativus may become more vulnerable both to generate DNA double-strand breaks and to recruit molecular elements needed to arrange the cell cycle checkpoint functions, and thus, more resistant to factors which allow the cells to enter premature chromosome condensation spontaneously. On the other hand, however, caffeine-mediated overriding of the S-M checkpoint control system resulted in the typical appearance of premature chromosome condensation, irrespective of the genomic content of DNA. PMID:17111099

  5. MicroRNA-138 modulates DNA damage response by repressing histone H2AX expression

    PubMed Central

    Wang, Yemin; Huang, Jen-Wei; Li, Ming; Cavenee, Webster K.; Mitchell, Patrick S.; Zhou, Xiaofeng; Tewari, Muneesh; Furnari, Frank B.; Taniguchi, Toshiyasu

    2011-01-01

    Precise regulation of DNA damage response is crucial for cellular survival after DNA damage, and its abrogation often results in genomic instability in cancer. Phosphorylated histone H2AXH2AX) forms nuclear foci at sites of DNA damage and facilitates DNA damage response and repair. MicroRNAs are short, non-protein-encoding RNA molecules, which post-transcriptionally regulate gene expression by repressing translation of and/or degrading mRNA. How microRNAs modulate DNA damage response is largely unknown. In this study, we developed a cell-based screening assay utilizing ionizing radiation-induced γH2AX foci formation in a human osteosarcoma cell line, U2OS, as the readout. By screening a library of human microRNA mimics, we identified several microRNAs that inhibited γH2AX foci formation. Among them, miR-138 directly targeted the histone H2AX 3′-UTR, reduced histone H2AX expression and induced chromosomal instability after DNA damage. Overexpression of miR-138 inhibited homologous recombination and enhanced cellular sensitivity to multiple DNA damaging agents (cisplatin, camptothecin, and ionizing radiation). Reintroduction of histone H2AX in miR-138 overexpressing cells attenuated miR-138-mediated sensitization to cisplatin and camptothecin. Our study suggests that miR-138 is an important regulator of genomic stability and a potential therapeutic agent to improve the efficacy of radiotherapy and chemotherapy with DNA damaging agents. PMID:21693595

  6. High LET-induced H2AX phosphorylation around the Bragg curve.

    PubMed

    Desai, N; Durante, M; Lin, Z W; Cucinotta, F; Wu, H

    2005-01-01

    We investigated the spatial distribution of the induction of the phosphorylated form of the histone protein H2AX (gamma-H2AX), known to be activated by DSBs. Following irradiation of human fibroblast cells with 600 MeV/nucleon silicon and 600 MeV/nucleon iron ions we observed the formation of gamma-H2AX aggregates in the shape of streaks stretching over several micrometers in an x/y plane. Polyethylene shielding was used to achieve a Bragg curve distribution with beam geometry parallel to the monolayer of cells. We present data that highlights the formation of immunofluorescent gamma-H2AX tracks showing the ion trajectories across the Bragg peak of irradiated human fibroblast cells. Qualitative analyses of these distributions indicated potentially increased clustering of DNA damage before the Bragg peak, enhanced gamma-H2AX distribution at the peak, and provided visual evidence of high-linear energy transfer particle traversal of cells beyond the Bragg peak in agreement with one-dimensional transport approximations. Spatial assessment of gamma-H2AX fluorescence may provide direct insights into DNA damage across the Bragg curve for high charge and energy ions including the biological consequences of shielding and possible contributors to bystander effects. PMID:15934200

  7. High LET-induced H2AX phosphorylation around the Bragg curve

    NASA Astrophysics Data System (ADS)

    Desai, N.; Durante, M.; Lin, Z. W.; Cucinotta, F.; Wu, H.

    We investigated the spatial distribution of the induction of the phosphorylated form of the histone protein H2AX (γ-H2AX), known to be activated by DSBs. Following irradiation of human fibroblast cells with 600 MeV/nucleon silicon and 600 MeV/nucleon iron ions we observed the formation of γ-H2AX aggregates in the shape of streaks stretching over several micrometers in an x/ y plane. Polyethylene shielding was used to achieve a Bragg curve distribution with beam geometry parallel to the monolayer of cells. We present data that highlights the formation of immunofluorescent γ-H2AX tracks showing the ion trajectories across the Bragg peak of irradiated human fibroblast cells. Qualitative analyses of these distributions indicated potentially increased clustering of DNA damage before the Bragg peak, enhanced γ-H2AX distribution at the peak, and provided visual evidence of high-linear energy transfer particle traversal of cells beyond the Bragg peak in agreement with one-dimensional transport approximations. Spatial assessment of γ-H2AX fluorescence may provide direct insights into DNA damage across the Bragg curve for high charge and energy ions including the biological consequences of shielding and possible contributors to bystander effects.

  8. UV-induced histone H2AX phosphorylation and DNA damage related proteins accumulate and persist in nucleotide excision repair-deficient XP-B cells.

    PubMed

    Oh, Kyu-Seon; Bustin, Michael; Mazur, Sharlyn J; Appella, Ettore; Kraemer, Kenneth H

    2011-01-01

    DNA double strand breaks (DSB) may be caused by ionizing radiation. In contrast, UV exposure forms dipyrimidine photoproducts and is not considered an inducer of DSB. We found that uniform or localized UV treatment induced phosphorylation of the DNA damage related (DDR) proteins H2AX, ATM and NBS1 and co-localization of γ-H2AX with the DDR proteins p-ATM, p-NBS1, Rad51 and FANCD2 that persisted for about 6h in normal human fibroblasts. This post-UV phosphorylation was observed in the absence of nucleotide excision repair (NER), since NER deficient XP-B cells (lacking functional XPB DNA repair helicase) and global genome repair-deficient rodent cells also showed phosphorylation and localization of these DDR proteins. Resolution of the DDR proteins was dependent on NER, since they persisted for 24h in the XP-B cells. In the normal and XP-B cells p53 and p21 was detected at 6h and 24h but Mdm2 was not induced in the XP-B cells. Post-UV induction of Wip1 phosphatase was detected in the normal cells but not in the XP-B cells. DNA DSB were detected with a neutral comet assay at 6h and 24h post-UV in the normal and XP-B cells. These results indicate that UV damage can activate the DDR pathway in the absence of NER. However, a later step in DNA damage processing involving induction of Wip1 and resolution of DDR proteins was not observed in the absence of NER.

  9. Phosphorylated H2AX in parthenogenetically activated, in vitro fertilized and cloned bovine embryos.

    PubMed

    Pereira, A F; Melo, L M; Freitas, V J F; Salamone, D F

    2015-08-01

    In vitro embryo production methods induce DNA damage in the embryos. In response to these injuries, histone H2AX is phosphorylatedH2AX) and forms foci at the sites of DNA breaks to recruit repair proteins. In this work, we quantified the DNA damage in bovine embryos undergoing parthenogenetic activation (PA), in vitro fertilization (IVF) or somatic cell nuclear transfer (SCNT) by measuring γH2AX accumulation at different developmental stages: 1-cell, 2-cell and blastocyst. At the 1-cell stage, IVF embryos exhibited a greater number of γH2AX foci (606.1 ± 103.2) and greater area of γH2AX staining (12923.6 ± 3214.1) than did PA and SCNT embryos. No differences at the 2-cell stage were observed among embryo types. Although PA, IVF and SCNT were associated with different blastocyst formation rates (31.1%, 19.7% and 8.3%, P < 0.05), no differences in the number of γH2AX foci or area were detected among the treatments. γH2AX is detected in bovine preimplantation embryos produced by PA, IVF and SCNT; the amount of DNA damage was comparable among those embryos developing to the blastocyst stage among different methods for in vitro embryo production. While IVF resulted in increased damage at the 1-cell embryo stage, no difference was observed between PA and SCNT embryos at any developmental stage. The decrease in the number of double-stranded breaks at the blastocyst stage seems to indicate that DNA repair mechanisms are functional during embryo development.

  10. Phosphorylated H2AX in parthenogenetically activated, in vitro fertilized and cloned bovine embryos.

    PubMed

    Pereira, A F; Melo, L M; Freitas, V J F; Salamone, D F

    2015-08-01

    In vitro embryo production methods induce DNA damage in the embryos. In response to these injuries, histone H2AX is phosphorylatedH2AX) and forms foci at the sites of DNA breaks to recruit repair proteins. In this work, we quantified the DNA damage in bovine embryos undergoing parthenogenetic activation (PA), in vitro fertilization (IVF) or somatic cell nuclear transfer (SCNT) by measuring γH2AX accumulation at different developmental stages: 1-cell, 2-cell and blastocyst. At the 1-cell stage, IVF embryos exhibited a greater number of γH2AX foci (606.1 ± 103.2) and greater area of γH2AX staining (12923.6 ± 3214.1) than did PA and SCNT embryos. No differences at the 2-cell stage were observed among embryo types. Although PA, IVF and SCNT were associated with different blastocyst formation rates (31.1%, 19.7% and 8.3%, P < 0.05), no differences in the number of γH2AX foci or area were detected among the treatments. γH2AX is detected in bovine preimplantation embryos produced by PA, IVF and SCNT; the amount of DNA damage was comparable among those embryos developing to the blastocyst stage among different methods for in vitro embryo production. While IVF resulted in increased damage at the 1-cell embryo stage, no difference was observed between PA and SCNT embryos at any developmental stage. The decrease in the number of double-stranded breaks at the blastocyst stage seems to indicate that DNA repair mechanisms are functional during embryo development. PMID:24735637

  11. High LET - induced H2AX phosphorylation at sites of DNA double strand breaks

    NASA Astrophysics Data System (ADS)

    Desai, N.; Cucinotta, F.; Wu, H.

    Within cell nuclei, traversing charged heavy ion particles lead to the accumulation of proteins related to DNA lesions and repair along the ion trajectories. Irradiation using a standard geometric setup with the beam path perpendicular to the cell monolayer generates discrete foci of several proteins known to localize at sites of DNA double strand breaks (DSBs). One such molecule is the histone protein H2AX (gamma-H2AX), which gets rapidly phosphorylated in response to ionizing radiation. Here we present data obtained with a modified irradiation geometry characterized by a beam path parallel to a monolayer of human fibroblast cells. This new irradiation geometry leads to the formation of gamma-H2AX aggregates in the shape of streaks stretching over several micrometers in the x/y plane, thus enabling the analysis of the fluorescence distributions along the particle trajectories. Qualitative analysis of these distributions presented insights into the DNA repair kinetics along the primary track structure and visualization of possible chromatin movement. We also present evidence of colocalization of gamma-H2AX with several other proteins in responses to ionizing radiation exposure. Analysis of gamma-H2AX has the potential to provide useful information on human cell responses to high LET radiation after exposure to space-like radiation.

  12. Phosphorylation of H2AX histone as indirect evidence for double-stranded DNA breaks related to the exchange of nuclear proteins and chromatin remodeling in Chara vulgaris spermiogenesis.

    PubMed

    Wojtczak, A; Popłońska, K; Kwiatkowska, M

    2008-11-01

    Phosphorylation of H2AX histone results not only from DNA damage (caused by ionizing radiation, UV or chemical substances, e.g. hydroxyurea), but also regularly takes place during spermiogenesis, enabling correct chromatin remodeling. Immunocytochemical analysis using antibodies against H2AX histone phosphorylated at serine 139 indirectly revealed endogenous double-stranded DNA breaks in Chara vulgaris spermatids in mid-spermiogenesis (stages V, VI and VII), when protamine-type proteins appear in the nucleus. Fluorescent foci were not observed in early (stages I-IV) and late (VIII-X) spermiogenesis, after replacement of histones by protamine-type proteins was finished. A similar phenomenon exists in animals. Determination of the localization of fluorescent foci and the ultrastructure of nuclei led to the hypothesis that DNA breaks at stage V, when condensed chromatin adheres to the nuclear envelope. This is transformed into a net-like structure during stage VI, probably allowing chromosome repositioning to specific regions in the mature spermatozoid. However, at stages VI and VII, DNA breaks are necessary for transformation of the nucleosomal structure into a fibrillar and finally the extremely condensed status of sleeping genes at stage X.

  13. VRK1 chromatin kinase phosphorylates H2AX and is required for foci formation induced by DNA damage

    PubMed Central

    Salzano, Marcella; Sanz-García, Marta; Monsalve, Diana M; Moura, David S; Lazo, Pedro A

    2015-01-01

    All types of DNA damage cause a local alteration and relaxation of chromatin structure. Sensing and reacting to this initial chromatin alteration is a necessary trigger for any type of DNA damage response (DDR). In this context, chromatin kinases are likely candidates to participate in detection and reaction to a locally altered chromatin as a consequence of DNA damage and, thus, initiate the appropriate cellular response. In this work, we demonstrate that VRK1 is a nucleosomal chromatin kinase and that its depletion causes loss of histones H3 and H4 acetylation, which are required for chromatin relaxation, both in basal conditions and after DNA damage, independently of ATM. Moreover, VRK1 directly and stably interacts with histones H2AX and H3 in basal conditions. In response to DNA damage induced by ionizing radiation, histone H2AX is phosphorylated in Ser139 by VRK1. The phosphorylation of H2AX and the formation of γH2AX foci induced by ionizing radiation (IR), are prevented by VRK1 depletion and are rescued by kinase-active, but not kinase-dead, VRK1. In conclusion, we found that VRK1 is a novel chromatin component that reacts to its alterations and participates very early in DDR, functioning by itself or in cooperation with ATM. PMID:25923214

  14. Unique epigenetic influence of H2AX phosphorylation and H3K56 acetylation on normal stem cell radioresponses

    PubMed Central

    Jacobs, Keith M.; Misri, Sandeep; Meyer, Barbara; Raj, Suyash; Zobel, Cheri L.; Sleckman, Barry P.; Hallahan, Dennis E.; Sharma, Girdhar G.

    2016-01-01

    Normal tissue injury resulting from cancer radiotherapy is often associated with diminished regenerative capacity. We examined the relative radiosensitivity of normal stem cell populations compared with non–stem cells within several radiosensitive tissue niches and culture models. We found that these stem cells are highly radiosensitive, in contrast to their isogenic differentiated progeny. Of interest, they also exhibited a uniquely attenuated DNA damage response (DDR) and muted DNA repair. Whereas stem cells exhibit reduced ATM activation and ionizing radiation–induced foci, they display apoptotic pannuclear H2AX-S139 phosphorylationH2AX), indicating unique radioresponses. We also observed persistent phosphorylation of H2AX-Y142 along the DNA breaks in stem cells, which promotes apoptosis while inhibiting DDR signaling. In addition, down-regulation of constitutively elevated histone-3 lysine-56 acetylation (H3K56ac) in stem cells significantly decreased their radiosensitivity, restored DDR function, and increased survival, signifying its role as a key contributor to stem cell radiosensitivity. These results establish that unique epigenetic landscapes affect cellular heterogeneity in radiosensitivity and demonstrate the nonubiquitous nature of radiation responses. We thus elucidate novel epigenetic rheostats that promote ionizing radiation hypersensitivity in various normal stem cell populations, identifying potential molecular targets for pharmacological radioprotection of stem cells and hopefully improving the efficacy of future cancer treatment. PMID:26941327

  15. TIPRL Inhibits Protein Phosphatase 4 Activity and Promotes H2AX Phosphorylation in the DNA Damage Response

    PubMed Central

    Rosales, Kimberly Romero; Reid, Michael A.; Yang, Ying; Tran, Thai Q.; Wang, Wen-I; Lowman, Xazmin; Pan, Min; Kong, Mei

    2015-01-01

    Despite advances in our understanding of protein kinase regulation in the DNA damage response, the mechanism that controls protein phosphatase activity in this pathway is unclear. Unlike kinases, the activity and specificity of serine/threonine phosphatases is governed largely by their associated proteins. Here we show that Tip41-like protein (TIPRL), an evolutionarily conserved binding protein for PP2A-family phosphatases, is a negative regulator of protein phosphatase 4 (PP4). Knockdown of TIPRL resulted in increased PP4 phosphatase activity and formation of the active PP4-C/PP4R2 complex known to dephosphorylate γ-H2AX. Thus, overexpression of TIPRL promotes phosphorylation of H2AX, and increases γ-H2AX positive foci in response to DNA damage, whereas knockdown of TIPRL inhibits γ-H2AX phosphorylation. In correlation with γ-H2AX levels, we found that TIPRL overexpression promotes cell death in response to genotoxic stress, and knockdown of TIPRL protects cells from genotoxic agents. Taken together, these data demonstrate that TIPRL inhibits PP4 activity to allow for H2AX phosphorylation and the subsequent DNA damage response. PMID:26717153

  16. Induction and Rejoining of DNA Double Strand Breaks Assessed by H2AX Phosphorylation in Melanoma Cells Irradiated with Proton and Lithium Beams

    SciTech Connect

    Ibanez, Irene L.; Bracalente, Candelaria; Molinari, Beatriz L.; Palmieri, Monica A.; Policastro, Lucia; Kreiner, Andres J.; Burlon, Alejandro A.; Valda, Alejandro; Navalesi, Daniela; Davidson, Jorge; Davidson, Miguel; Vazquez, Monica; Ozafran, Mabel; Duran, Hebe

    2009-07-15

    Purpose: The aim of this study was to evaluate the induction and rejoining of DNA double strand breaks (DSBs) in melanoma cells exposed to low and high linear energy transfer (LET) radiation. Methods and Materials: DSBs and survival were determined as a function of dose in melanoma cells (B16-F0) irradiated with monoenergetic proton and lithium beams and with a gamma source. Survival curves were obtained by clonogenic assay and fitted to the linear-quadratic model. DSBs were evaluated by the detection of phosphorylated histone H2AX ({gamma}H2AX) foci at 30 min and 6 h post-irradiation. Results: Survival curves showed the increasing effectiveness of radiation as a function of LET. {gamma}H2AX labeling showed an increase in the number of foci vs. dose for all the radiations evaluated. A decrease in the number of foci was found at 6 h post-irradiation for low LET radiation, revealing the repair capacity of DSBs. An increase in the size of {gamma}H2AX foci in cells irradiated with lithium beams was found, as compared with gamma and proton irradiations, which could be attributed to the clusters of DSBs induced by high LET radiation. Foci size increased at 6 h post-irradiation for lithium and proton irradiations in relation with persistent DSBs, showing a correlation with surviving fraction. Conclusions: Our results showed the response of B16-F0 cells to charged particle beams evaluated by the detection of {gamma}H2AX foci. We conclude that {gamma}H2AX foci size is an accurate parameter to correlate the rejoining of DSBs induced by different LET radiations and radiosensitivity.

  17. Alpha particles induce pan-nuclear phosphorylation of H2AX in primary human lymphocytes mediated through ATM.

    PubMed

    Horn, Simon; Brady, Darren; Prise, Kevin

    2015-10-01

    The use of high linear energy transfer radiations in the form of carbon ions in heavy ion beam lines or alpha particles in new radionuclide treatments has increased substantially over the past decade and will continue to do so due to the favourable dose distributions they can offer versus conventional therapies. Previously it has been shown that exposure to heavy ions induces pan-nuclear phosphorylation of several DNA repair proteins such as H2AX and ATM in vitro. Here we describe similar effects of alpha particles on ex vivo irradiated primary human peripheral blood lymphocytes. Following alpha particle irradiation pan-nuclear phosphorylation of H2AX and ATM, but not DNA-PK and 53BP1, was observed throughout the nucleus. Inhibition of ATM, but not DNA-PK, resulted in the loss of pan-nuclear phosphorylation of H2AX in alpha particle irradiated lymphocytes. Pan-nuclear gamma-H2AX signal was rapidly lost over 24h at a much greater rate than foci loss. Surprisingly, pan-nuclear gamma-H2AX intensity was not dependent on the number of alpha particle induced double strand breaks, rather the number of alpha particles which had traversed the cell nucleus. This distinct fluence dependent damage signature of particle radiation is important in both the fields of radioprotection and clinical oncology in determining radionuclide biological dosimetry and may be indicative of patient response to new radionuclide cancer therapies.

  18. Osmotic stress-induced phosphorylation of H2AX by polo-like kinase 3 affects cell cycle progression in human corneal epithelial cells.

    PubMed

    Wang, Ling; Dai, Wei; Lu, Luo

    2014-10-24

    Increased concentrations of extracellular solutes affect cell function and fate by stimulating cellular responses, such as evoking MAPK cascades, altering cell cycle progression, and causing apoptosis. Our study results here demonstrate that hyperosmotic stress induced H2AX phosphorylationH2AX) by an unrevealed kinase cascade involving polo-like kinase 3 (Plk3) in human corneal epithelial (HCE) cells. We found that hyperosmotic stress induced DNA-double strand breaks and increased γH2AX in HCE cells. Phosphorylation of H2AX at serine 139 was catalyzed by hyperosmotic stress-induced activation of Plk3. Plk3 directly interacted with H2AX and was colocalized with γH2AX in the nuclei of hyperosmotic stress-induced cells. Suppression of Plk3 activity by overexpression of a kinase-silencing mutant or by knocking down Plk3 mRNA effectively reduced γH2AX in hyperosmotic stress-induced cells. This was consistent with results that show γH2AX was markedly suppressed in the Plk3(-/-) knock-out mouse corneal epithelial layer in response to hyperosmotic stimulation. The effect of hyperosmotic stress-activated Plk3 and increased γH2AX in cell cycle progression showed an accumulation of G2/M phase, altered population in G1 and S phases, and increased apoptosis. Our results for the first time reveal that hyperosmotic stress-activated Plk3 elicited γH2AX. This Plk3-mediated activation of γH2AX subsequently regulates the cell cycle progression and cell fate. PMID:25202016

  19. Histone H2AX suppresses translocations in lymphomas of Eμ-c-Myctransgenic mice that contain a germline amplicon of tumor-promoting genes

    PubMed Central

    Fusello, Angela; Horowitz, Julie; Yang-Iott, Katherine; Brady, Brenna L; Yin, Bu; Rowh, Marta AW; Rappaport, Eric; Bassing, Craig H

    2013-01-01

    The DNA damage response (DDR) can restrain the ability of oncogenes to cause genomic instability and drive malignant transformation. The gene encoding the histone H2AX DDR factor maps to 11q23, a region frequently altered in human cancers. Since H2ax functions as a haploinsufficient suppressor of B lineage lymphomas with c-Myc amplification and/or translocation, we determined the impact of H2ax expression on the ability of deregulated c-Myc expression to cause genomic instability and drive transformation of B cells. Neither H2ax deficiency nor haploinsufficiency affected the rate of mortality of Eμ-c-Myc mice from B lineage lymphomas with genomic deletions and amplifications. Yet H2ax functioned in a dosage-dependent manner to prevent unbalanced translocations in Eμ-c-Myc tumors, demonstrating that H2ax functions in a haploinsufficient manner to suppress allelic imbalances and limit molecular heterogeneity within and among Eμ-c-Myc lymphomas. Regardless of H2ax copy number, all Eμ-c-Myc tumors contained identical amplification of chromosome 19 sequences spanning 20 genes. Many of these genes encode proteins with tumor-promoting activities, including Cd274, which encodes the PD-L1 programmed death ligand that induces T cell apoptosis and enables cancer cells to escape immune surveillance. This amplicon was in non-malignant B and T cells and non-lymphoid cells, linked to the Eμ-c-Myc transgene, and associated with overexpression of PD-L1 on non-malignant B cells. Our data demonstrate that, in addition to deregulated c-Myc expression, non-malignant B lineage lymphocytes of Eμ-c-Myc transgenic mice may have constitutive amplification and increased expression of other tumor-promoting genes. PMID:23966158

  20. DNA-PK inhibition causes a low level of H2AX phosphorylation and homologous recombination repair in Medaka (Oryzias latipes) cells

    SciTech Connect

    Urushihara, Yusuke; Kobayashi, Junya; Matsumoto, Yoshihisa; Komatsu, Kenshi; Oda, Shoji; Mitani, Hiroshi

    2012-12-14

    Highlights: Black-Right-Pointing-Pointer We investigated the effect of DNA-PK inhibition on DSB repair using fish cells. Black-Right-Pointing-Pointer A radiation sensitive mutant RIC1 strain showed a low level of DNA-PK activity. Black-Right-Pointing-Pointer DNA-PK dysfunction leads defects in HR repair and DNA-PKcs autophosphorylation. Black-Right-Pointing-Pointer DNA-PK dysfunction leads a slight increase in the number of 53BP1 foci after DSBs. Black-Right-Pointing-Pointer DNA-PK dysfunction leads an alternative NHEJ that depends on 53BP1. -- Abstract: Nonhomologous end joining (NHEJ) and homologous recombination (HR) are known as DNA double-strand break (DSB) repair pathways. It has been reported that DNA-PK, a member of PI3 kinase family, promotes NHEJ and aberrant DNA-PK causes NHEJ deficiency. However, in this study, we demonstrate that a wild-type cell line treated with DNA-PK inhibitor and a mutant cell line with dysfunctional DNA-PK showed decreased HR efficiency in fish cells (Medaka, Oryzias latipes). Previously, we reported that the radiation-sensitive mutant RIC1 strain has a defect in the Histone H2AX phosphorylation after {gamma}-irradiation. Here, we showed that a DNA-PK inhibitor, NU7026, treatment resulted in significant reduction in the number of {gamma}H2AX foci after {gamma}-irradiation in wild-type cells, but had no significant effect in RIC1 cells. In addition, RIC1 cells showed significantly lower levels of DNA-PK kinase activity compared with wild-type cells. We investigated NHEJ and HR efficiency after induction of DSBs. Wild-type cells treated with NU7026 and RIC1 cells showed decreased HR efficiency. These results indicated that aberrant DNA-PK causes the reduction in the number of {gamma}H2AX foci and HR efficiency in RIC1 cells. We performed phosphorylated DNA-PKcs (Thr2609) and 53BP1 focus assay after {gamma}-irradiation. RIC1 cells showed significant reduction in the number of phosphorylated DNA-PKcs foci and no deference in the

  1. Histone H2AX Is Involved in FoxO3a-Mediated Transcriptional Responses to Ionizing Radiation to Maintain Genome Stability

    PubMed Central

    Tarrade, Stephane; Bhardwaj, Tanya; Flegal, Matthew; Bertrand, Lindsey; Velegzhaninov, Ilya; Moskalev, Alexey; Klokov, Dmitry

    2015-01-01

    Histone H2AX plays a crucial role in molecular and cellular responses to DNA damage and in the maintenance of genome stability. It is downstream of ataxia telangiectasia mutated (ATM) damage signaling pathway and there is an emerging role of the transcription factor FoxO3a, a regulator of a variety of other pathways, in activating this signaling. We asked whether H2AX may feedback to FoxO3a to affect respective FoxO3a-dependent pathways. We used a genetically matched pair of mouse embryonic fibroblast H2AX+/+ and H2AX−/− cell lines to carry out comprehensive time-course and dose-response experiments and to show that the expression of several FoxO3a-regulated genes was altered in H2AX−/− compared to H2AX+/+ cells at both basal and irradiated conditions. Hspa1b and Gadd45a were down-regulated four- to five-fold and Ddit3, Cdkn1a and Sod2 were up-regulated 2–3-fold in H2AX−/− cells. Using the luciferase reporter assay, we directly demonstrated that transcriptional activity of FoxoO3a was reduced in H2AX−/− cells. FoxO3a localization within the nuclear phospho-ATM (Ser1981) foci in irradiated cells was affected by the H2AX status, as well as its posttranslational modification (phospho-Thr32). These differences were associated with genomic instability and radiosensitivity in H2AX−/− cells. Finally, knockdown of H2AX in H2AX+/+ cells resulted in FoxO3a-dependent gene expression patterns and increased radiosensitivity that partially mimicked those found in H2AX−/− cells. Taken together, our data suggest a role for FoxO3a in the maintenance of genome integrity in response to DNA damage that is mediated by H2AX via yet unknown mechanisms. PMID:26694365

  2. Ectopic expression of H2AX protein promotes TrkA-induced cell death via modulation of TrkA tyrosine-490 phosphorylation and JNK activity upon DNA damage

    SciTech Connect

    Jung, Eun Joo; Kim, Deok Ryong

    2011-01-21

    Research highlights: {yields} We established TrkA-inducible U2OS cells stably expressing GFP-H2AX proteins. {yields} GFP-H2AX was colocalized with TrkA in the cytoplasm. {yields} {gamma}H2AX production was significantly increased upon activation of TrkA and suppressed by TrkA inhibitor or JNK inhibitor. {yields} Ectopic expression of H2AX promoted TrkA-mediated cell death through the modulation of TrkA tyrosine-490 phosphorylation and JNK activity upon DNA damage. -- Abstract: We previously reported that TrkA overexpression causes accumulation of {gamma}H2AX proteins in the cytoplasm, subsequently leading to massive cell death in U2OS cells. To further investigate how cytoplasmic H2AX is associated with TrkA-induced cell death, we established TrkA-inducible cells stably expressing GFP-tagged H2AX. We found that TrkA co-localizes with ectopically expressed GFP-H2AX proteins in the cytoplasm, especially at the juxta-nuclear membranes, which supports our previous results about a functional connection between TrkA and {gamma}H2AX in TrkA-induced cell death. {gamma}H2AX production from GFP-H2AX proteins was significantly increased when TrkA was overexpressed. Moreover, ectopic expression of H2AX activated TrkA-mediated signal pathways via up-regulation of TrkA tyrosine-490 phosphorylation. In addition, suppression of TrkA tyrosine-490 phosphorylation under a certain condition was removed by ectopic expression of H2AX, indicating a functional role of H2AX in the maintenance of TrkA activity. Indeed, TrkA-induced cell death was highly elevated by ectopic H2AX expression, and it was further accelerated by DNA damage via JNK activation. These all results suggest that cytoplasmic H2AX could play an important role in TrkA-mediated cell death by modulating TrkA upon DNA damage.

  3. Thermal response of proteins (histone H2AX, H3.1) by a coarse-grained Monte Carlo simulation with a knowledge-based phenomenological potential

    NASA Astrophysics Data System (ADS)

    Fritsche, Miriam; Heermann, Dieter; Pandey, Ras; Farmer, Barry

    2012-02-01

    Using a coarse-grained bond fluctuating model, we investigate structure and dynamics of two histones, H2AX (143 residues) and H3.1 (136 residues) as a function of temperature (T). A knowledged based contact matrix is used as an input for a phenomenological residue-residue interaction in a generalized Lennard-Jones potential. Metropolis algorithm is used to execute stochastic movement of each residue. A number of local and global physical quantities are analyzed. Despite unique energy and mobility profiles of its residues in a specific sequence, the histone H3.1 appears to undergo a structural transformation from a random coil to a globular conformation on reducing the temperature. The radius of gyration of the histone H2AX, in contrast, exhibits a non-monotonic dependence on temperature with a maximum at a characteristic temperature (Tc) where crossover occurs from a positive (stretching below Tc) to negative (contraction above Tc) thermal response on increasing T. Multi-scale structures of the proteins are examined by a detailed analysis of their structure functions.

  4. γH2AX Foci Form Preferentially in Euchromatin after Ionising-Radiation

    PubMed Central

    Cowell, Ian G.; Sunter, Nicola J.; Singh, Prim B.; Austin, Caroline A.; Durkacz, Barbara W.; Tilby, Michael J.

    2007-01-01

    Background The histone variant histone H2A.X comprises up to 25% of the H2A complement in mammalian cells. It is rapidly phosphorylated following exposure of cells to double-strand break (DSB) inducing agents such as ionising radiation. Within minutes of DSB generation, H2AX molecules are phosphorylated in large chromatin domains flanking DNA double-strand breaks (DSBs); these domains can be observed by immunofluorescence microscopy and are termed γH2AX foci. H2AX phosphorylation is believed to have a role mounting an efficient cellular response to DNA damage. Theoretical considerations suggest an essentially random chromosomal distribution of X-ray induced DSBs, and experimental evidence does not consistently indicate otherwise. However, we observed an apparently uneven distribution of γH2AX foci following X-irradiation with regions of the nucleus devoid of foci. Methodology/Principle Findings Using immunofluorescence microscopy, we show that focal phosphorylation of histone H2AX occurs preferentially in euchromatic regions of the genome following X-irradiation. H2AX phosphorylation has also been demonstrated previously to occur at stalled replication forks induced by UV radiation or exposure to agents such as hydroxyurea. In this study, treatment of S-phase cells with hydroxyurea lead to efficient H2AX phosphorylation in both euchromatin and heterochromatin at times when these chromatin compartments were undergoing replication. This suggests a block to H2AX phosphorylation in heterochromatin that is at least partially relieved by ongoing DNA replication. Conclusions/Significance We discus a number of possible mechanisms that could account for the observed pattern of H2AX phosphorylation. Since γH2AX is regarded as forming a platform for the recruitment or retention of other DNA repair and signaling molecules, these findings imply that the processing of DSBs in heterochromatin differs from that in euchromatic regions. The differential responses of

  5. Chemical proteomics reveals a γH2AX-53BP1 interaction in the DNA damage response.

    PubMed

    Kleiner, Ralph E; Verma, Priyanka; Molloy, Kelly R; Chait, Brian T; Kapoor, Tarun M

    2015-10-01

    DNA double-strand break repair involves phosphorylation of histone variant H2AX ('γH2AX'), which accumulates in foci at sites of DNA damage. In current models, the recruitment of multiple DNA repair proteins to γH2AX foci depends mainly on recognition of this 'mark' by a single protein, MDC1. However, DNA repair proteins accumulate at γH2AX sites without MDC1, suggesting that other 'readers' of this mark exist. Here, we use a quantitative chemical proteomics approach to profile direct, phospho-selective γH2AX binders in native proteomes. We identify γH2AX binders, including the DNA repair mediator 53BP1, which we show recognizes γH2AX through its BRCT domains. Furthermore, we investigate the targeting of wild-type 53BP1, or a mutant form deficient in γH2AX binding, to chromosomal breaks resulting from endogenous and exogenous DNA damage. Our results show how direct recognition of γH2AX modulates protein localization at DNA damage sites, and suggest how specific chromatin mark-reader interactions contribute to essential mechanisms ensuring genome stability.

  6. Absolute quantification of γH2AX using liquid chromatography-triple quadrupole tandem mass spectrometry.

    PubMed

    Matsuda, Shun; Ikura, Tsuyoshi; Matsuda, Tomonari

    2015-07-01

    Ser139-phosphorylated histone H2AXH2AX) is a useful biomarker of DNA double strand breaks. γH2AX has been conventionally detected by immunology-based methods using anti-γH2AX antibody, but quantitative analysis is difficult to perform with such methods. Here, we describe an absolute quantification method using liquid chromatography-triple quadrupole tandem mass spectrometry that is applicable to peptides derived from γH2AX (ATQA(pS)QEY) and unphosphorylated H2AX (ATQASQEY). Our method was successfully applied to histones extracted from human cervix adenocarcinoma HeLa S3 cells. The estimated number of molecules of γH2AX (ATQA(pS)QEY) per vehicle-treated HeLa S3 cell was 9.4 × 10(4) and increased to 6.2 × 10(5) molecules/cell after exposure to the DNA-damaging agent camptothecin (10 μM) for 1 h. The estimated total amount of H2AX (ATQA(pS)QEY + ATQASQEY) was 3.3-3.6 × 10(6) molecules/cell. Due to its broad adaptability and throughput performance, we believe that our method is a powerful tool for mechanistic studies of the DNA-damage response as well as for genotoxicity testing, cancer drug screening, clinical studies, and other fields.

  7. Chemical proteomics reveals a γH2AX-53BP1 interaction in the DNA damage response

    PubMed Central

    Kleiner, Ralph E.; Verma, Priyanka; Molloy, Kelly R.; Chait, Brian T.; Kapoor, Tarun M.

    2015-01-01

    DNA double-strand break repair involves phosphorylation of histone variant H2AX (‘γH2AX’), which accumulates in foci at sites of damage. In current models, the recruitment of multiple DNA repair proteins to γH2AX foci depends mainly on recognition of this ‘mark’ by a single protein, MDC1. However, DNA repair proteins accumulate at γH2AX sites without MDC1, suggesting that other ‘readers’ exist. Here, we use a quantitative chemical proteomics approach to profile direct, phospho-selective γH2AX binders in native proteomes. We identify γH2AX binders, including the DNA repair mediator, 53BP1, which we show recognizes γH2AX through its BRCT domains. Furthermore, we investigate targeting of wild-type 53BP1 or a mutant form deficient in γH2AX binding, to chromosomal breaks resulting from endogenous and exogenous DNA damage. Our results show how direct recognition of γH2AX modulates protein localization at DNA damage sites, and suggest how specific chromatin ‘mark’-‘reader’ interactions contribute to essential mechanisms ensuring genome stability. PMID:26344695

  8. High mobility group protein-mediated transcription requires DNA damage marker γ-H2AX

    PubMed Central

    Singh, Indrabahadur; Ozturk, Nihan; Cordero, Julio; Mehta, Aditi; Hasan, Diya; Cosentino, Claudia; Sebastian, Carlos; Krüger, Marcus; Looso, Mario; Carraro, Gianni; Bellusci, Saverio; Seeger, Werner; Braun, Thomas; Mostoslavsky, Raul; Barreto, Guillermo

    2015-01-01

    The eukaryotic genome is organized into chromatins, the physiological template for DNA-dependent processes including replication, recombination, repair, and transcription. Chromatin-mediated transcription regulation involves DNA methylation, chromatin remodeling, and histone modifications. However, chromatin also contains non-histone chromatin-associated proteins, of which the high-mobility group (HMG) proteins are the most abundant. Although it is known that HMG proteins induce structural changes of chromatin, the processes underlying transcription regulation by HMG proteins are poorly understood. Here we decipher the molecular mechanism of transcription regulation mediated by the HMG AT-hook 2 protein (HMGA2). We combined proteomic, ChIP-seq, and transcriptome data to show that HMGA2-induced transcription requires phosphorylation of the histone variant H2AX at S139 (H2AXS139ph; γ-H2AX) mediated by the protein kinase ataxia telangiectasia mutated (ATM). Furthermore, we demonstrate the biological relevance of this mechanism within the context of TGFβ1 signaling. The interplay between HMGA2, ATM, and H2AX is a novel mechanism of transcription initiation. Our results link H2AXS139ph to transcription, assigning a new function for this DNA damage marker. Controlled chromatin opening during transcription may involve intermediates with DNA breaks that may require mechanisms that ensure the integrity of the genome. PMID:26045162

  9. Histone phosphorylation

    PubMed Central

    Rossetto, Dorine; Avvakumov, Nikita; Côté, Jacques

    2012-01-01

    Histone posttranslational modifications are key components of diverse processes that modulate chromatin structure. These marks function as signals during various chromatin-based events, and act as platforms for recruitment, assembly or retention of chromatin-associated factors. The best-known function of histone phosphorylation takes place during cellular response to DNA damage, when phosphorylated histone H2A(X) demarcates large chromatin domains around the site of DNA breakage. However, multiple studies have also shown that histone phosphorylation plays crucial roles in chromatin remodeling linked to other nuclear processes. In this review, we summarize the current knowledge of histone phosphorylation and describe the many kinases and phosphatases that regulate it. We discuss the key roles played by this histone mark in DNA repair, transcription and chromatin compaction during cell division and apoptosis. Additionally, we describe the intricate crosstalk that occurs between phosphorylation and other histone modifications and allows for sophisticated control over the chromatin remodeling processes. PMID:22948226

  10. The natural toxin juglone causes degradation of p53 and induces rapid H2AX phosphorylation and cell death in human fibroblasts

    SciTech Connect

    Paulsen, Michelle T.; Ljungman, Mats . E-mail: ljungman@umich.edu

    2005-11-15

    Juglone (5-hydroxy-1,4-naphtoquinone) is a natural toxin produced by walnut trees. In this study we show that juglone differentially reduces viability of human cells in culture. Normal fibroblast were found to be especially sensitive to juglone and lost viability primarily through a rapid apoptotic and necrotic response. This response may have been triggered by DNA damage since juglone induced a rapid and strong phosphorylation of H2AX in all phases of the cell cycle. Furthermore, juglone inhibits mRNA synthesis in human fibroblasts in a dose-dependent manner. Surprisingly, juglone caused a drastic reduction of the basal level of p53 in human fibroblasts and this loss could not be fully rescued by proteasome and calpain I inhibitors. However, when cells were pretreated with UV light or ionizing radiation, juglone was not able to reduce the cellular levels of activated p53. Our results show that juglone has multiple effects on cells such as the induction of DNA damage, inhibition of transcription, reduction of p53 protein levels and the induction of cell death.

  11. Immunofluorescence detection of clustered gamma-H2AX foci induced by HZE-particle radiation.

    PubMed

    Desai, N; Davis, E; O'Neill, P; Durante, M; Cucinotta, F A; Wu, H

    2005-10-01

    We studied the spatial and temporal distributions of foci of the phosphorylated form of the histone protein H2AX (gamma-H2AX), which is known to be activated by double-strand breaks after irradiation of human fibroblast cells with high-energy silicon (54 keV/microm) and iron (176 keV/microm) ions. Here we present data obtained with the ion path parallel to a monolayer of human fibroblast cells that leads to gamma-H2AX aggregates in the shape of streaks stretching over several micrometers in an x/y plane, thus enabling the analysis of the fluorescence distributions along the ion trajectories. Qualitative analyses of these distributions provide insights into DNA damage processing kinetics for high charge and energy (HZE) ions, including evidence of increased clustering of DNA damage and slower processing with increasing LET. PMID:16187760

  12. New mechanism of γ-H2AX generation: Surfactant-induced actin disruption causes deoxyribonuclease I translocation to the nucleus and forms DNA double-strand breaks.

    PubMed

    Zhao, Xiaoxu; Yang, Gang; Toyooka, Tatsushi; Ibuki, Yuko

    2015-12-01

    We previously showed that nonionic surfactants, nonylphenol polyethoxylates (NPEOs), induced phosphorylation of histone H2AX, forming γ-H2AX. In this study, we analyzed the mechanism of γ-H2AX generation by an NPEO with 15 ethylene oxide units (NPEO(15)). In MCF-7 breast carcinoma cells, NPEO(15) treatment induced γ-H2AX in a dose-dependent manner. EDTA and ZnCl2, two inhibitors of deoxyribonuclease I (DNase I), inhibited both the γ-H2AX and DNA double-strand breaks induced by NPEO(15). NPEO(15) disrupted filamentous actin and released free DNase I as detected by cell fractionation analysis. Based on immunofluorescence staining of DNase I and monitoring DNase I-GFP localization, DNase I was translocated from the cytosol to the nucleus of cells after treatment with NPEO(15). This translocation did not occur with the common DNA damage inducers ultraviolet B irradiation and hydrogen peroxide. Other surfactants, Tween 20, Triton X-100 and Nonidet P-40, also generated γ-H2AX. These results show that γ-H2AX induction by surfactants including NPEOs, occurs via a new mechanism involving release of free DNase I with actin disruption. This mechanism is distinct from the process of γ-H2AX generation caused by direct chemically induced DNA damage.

  13. New mechanism of γ-H2AX generation: Surfactant-induced actin disruption causes deoxyribonuclease I translocation to the nucleus and forms DNA double-strand breaks.

    PubMed

    Zhao, Xiaoxu; Yang, Gang; Toyooka, Tatsushi; Ibuki, Yuko

    2015-12-01

    We previously showed that nonionic surfactants, nonylphenol polyethoxylates (NPEOs), induced phosphorylation of histone H2AX, forming γ-H2AX. In this study, we analyzed the mechanism of γ-H2AX generation by an NPEO with 15 ethylene oxide units (NPEO(15)). In MCF-7 breast carcinoma cells, NPEO(15) treatment induced γ-H2AX in a dose-dependent manner. EDTA and ZnCl2, two inhibitors of deoxyribonuclease I (DNase I), inhibited both the γ-H2AX and DNA double-strand breaks induced by NPEO(15). NPEO(15) disrupted filamentous actin and released free DNase I as detected by cell fractionation analysis. Based on immunofluorescence staining of DNase I and monitoring DNase I-GFP localization, DNase I was translocated from the cytosol to the nucleus of cells after treatment with NPEO(15). This translocation did not occur with the common DNA damage inducers ultraviolet B irradiation and hydrogen peroxide. Other surfactants, Tween 20, Triton X-100 and Nonidet P-40, also generated γ-H2AX. These results show that γ-H2AX induction by surfactants including NPEOs, occurs via a new mechanism involving release of free DNase I with actin disruption. This mechanism is distinct from the process of γ-H2AX generation caused by direct chemically induced DNA damage. PMID:26653977

  14. Essential role of autoactivation circuitry on Aurora B-mediated H2AX-pS121 in mitosis

    PubMed Central

    Shimada, Midori; Goshima, Takahiro; Matsuo, Hiromi; Johmura, Yoshikazu; Haruta, Mayumi; Murata, Kazuhiro; Tanaka, Hiromitsu; Ikawa, Masahito; Nakanishi, Keiko; Nakanishi, Makoto

    2016-01-01

    Proper deposition and activation of Aurora B at the centromere is critical for faithful chromosome segregation in mammals. However, the mechanistic basis for abrupt Aurora B kinase activation at the centromere has not yet been fully understood. We demonstrate here that Aurora B-mediated phosphorylation of histone H2AX at serine 121 (H2AX-pS121) promotes Aurora B autophosphorylation and is essential for proper chromosome segregation. Aurora B-mediated H2AX-pS121 is specifically detected at the centromere during mitosis. H2AX depletion results in a severe defect in activation and deposition of Aurora B at this locus. A phosphomimic mutant of H2AX at S121 interacts with activated Aurora B more efficiently than wild-type in vitro. Taken together, these results propose a model in which Aurora B-mediated H2AX-pS121 probably provide a platform for Aurora B autoactivation circuitry at centromeres and thus play a pivotal role in proper chromosome segregation. PMID:27389782

  15. Essential role of autoactivation circuitry on Aurora B-mediated H2AX-pS121 in mitosis.

    PubMed

    Shimada, Midori; Goshima, Takahiro; Matsuo, Hiromi; Johmura, Yoshikazu; Haruta, Mayumi; Murata, Kazuhiro; Tanaka, Hiromitsu; Ikawa, Masahito; Nakanishi, Keiko; Nakanishi, Makoto

    2016-01-01

    Proper deposition and activation of Aurora B at the centromere is critical for faithful chromosome segregation in mammals. However, the mechanistic basis for abrupt Aurora B kinase activation at the centromere has not yet been fully understood. We demonstrate here that Aurora B-mediated phosphorylation of histone H2AX at serine 121 (H2AX-pS121) promotes Aurora B autophosphorylation and is essential for proper chromosome segregation. Aurora B-mediated H2AX-pS121 is specifically detected at the centromere during mitosis. H2AX depletion results in a severe defect in activation and deposition of Aurora B at this locus. A phosphomimic mutant of H2AX at S121 interacts with activated Aurora B more efficiently than wild-type in vitro. Taken together, these results propose a model in which Aurora B-mediated H2AX-pS121 probably provide a platform for Aurora B autoactivation circuitry at centromeres and thus play a pivotal role in proper chromosome segregation. PMID:27389782

  16. Induction and quantification of gammma-H2AX foci following cx- and gamma-irradiaton

    NASA Technical Reports Server (NTRS)

    Leatherbarrow, E. L.; Cucinotta, F. A.; O'Neill, Peter

    2004-01-01

    Following DNA damage the histone H2AX becomes phosphorylated and can be visualised by immunofluorescence as an indicator of DSBs in individual cells. Using a wild type hamster cell line (V79-4) exposed to either a-particles or to Co-60 gamma-rays to induce DNA DSBs at different doses (20-200OmGy), the dose dependent induction of gamma-H2AX foci were scored both manually (by eye) and using image analysis. A linearly dependence on dose was found for both radiations. The number of DSBs determined by image analysis after a post-irradiation period of 30 minutes at 37 C, is 16.6 foci/cell/Gy for alpha-irradiation and 12.2 foci/cell/Gy for gamma-irradiation; the latter being 3-4 times the levels observed by eye and comparable to gamma-radiation-induced levels of prompt DSBs more recently reported using pulse field gel electrophoresis (approx. 16 DSBs/Gy). The average size of the gamma-H2AX foci induced by alpha-irradiation (0.30 square micrometers) is approximately 1.5 times larger than those induced by gamma-irradiation (0.19 square micrometers). The timescale of induction and removal of DSBs up to 24 hours post-irradiation, was investigated with gamma-H2AX foci levels found to remain significantly higher than controls for 4 or 6 hours in gamma-irradiated samples or alpha irradiated samples, respectively. These results demonstrate that not only gamma radiation but also alpha-radiation induce phosphorylation of the H2AX histone in response to DSBs even at low doses (20mGy for gamma-rays, 1 track/cell on average for alpha-particles) and the variation in size and dephosphorylation of the induced foci is dependent on radiation quality (LET).

  17. ATR, BRCA1 and gammaH2AX localize to unsynapsed chromosomes at the pachytene stage in human oocytes.

    PubMed

    Garcia-Cruz, R; Roig, I; Robles, P; Scherthan, H; Garcia Caldés, M

    2009-01-01

    Asynapsis of homologous chromosomes at the pachytene stage has been associated with gametogenic failure and infertility, but the cellular mechanisms involved are currently unknown in human meiocytes. In mice, the protein encoded by the breast-cancer susceptibility gene Brca1 has been described to direct kinase ATR (ataxia telangiectasia and Rad3 related) to any unpaired DNA at the pachytene stage, where ATR triggers H2AX phosphorylation, resulting in the silencing of those chromosomes. In this study, the distribution of ATR, BRCA1 and the phosphorylated histone gammaH2AX is assessed by immunofluorescence in human oocytes and it is found that they localize at unpaired chromosomes at the pachytene stage. Evidence is shown to propose that BRCA1, ATR and gammaH2AX in the human may be part of a system such as the one previously described in mouse, which signals unsynapsed chromosomes at pachytene and may lead to their silencing. PMID:19146767

  18. gammaH2AX: A potential DNA damage response biomarker for assessing toxicological risk of tobacco products.

    PubMed

    Albino, Anthony P; Jorgensen, Ellen D; Rainey, Patrick; Gillman, Gene; Clark, T Jeffrey; Gietl, Diana; Zhao, Hong; Traganos, Frank; Darzynkiewicz, Zbigniew

    2009-08-01

    Differentiation among American cigarettes relies primarily on the use of proprietary tobacco blends, menthol, tobacco substitutes, paper porosity, paper additives, and filter ventilation. These characteristics substantially alter per cigarette yields of tar and nicotine in standardized protocols promulgated by government agencies. However, due to compensatory alterations in smoking behavior to sustain a preferred nicotine dose (e.g., by increasing puff frequency, inhaling more deeply, smoking more cigarettes per day, or blocking filter ventilation holes), smokers actually inhale similar amounts of tar and nicotine regardless of any cigarette variable, supporting epidemiological evidence that all brands have comparable disease risk. Consequently, it would be advantageous to develop assays that realistically compare cigarette smoke (CS)-induced genotoxicity regardless of differences in cigarette construction or smoking behavior. One significant indicator of potentially carcinogenic DNA damage is double strand breaks (DSBs), which can be monitored by measuring Ser 139 phosphorylation on histone H2AX. Previously we showed that phosphorylation of H2AX (defined as gammaH2AX) in exposed lung cells is proportional to CS dose. Thus, we proposed that gammaH2AX may be a viable biomarker for evaluating genotoxic risk of cigarettes in relation to actual nicotine/tar delivery. Here we tested this hypothesis by measuring gammaH2AX levels in A549 human lung cells exposed to CS from a range of commercial cigarettes using various smoking regimens. Results show that gammaH2AX induction, a critical event of the mammalian DNA damage response, provides an assessment of CS-induced DNA damage independent of smoking topography or cigarette type. We conclude that gammaH2AX induction shows promise as a genotoxic bioassay offering specific advantages over the traditional assays for the evaluation of conventional and nonconventional tobacco products. PMID:19591958

  19. DNA DSB measurements and modelling approaches based on gamma-H2AX foci time evolution

    NASA Astrophysics Data System (ADS)

    Esposito, Giuseppe; Campa, Alessandro; Antonelli, Francesca; Mariotti, Luca; Belli, Mauro; Giardullo, Paola; Simone, Giustina; Antonella Tabocchini, Maria; Ottolenghi, Andrea

    DNA double strand breaks (DSBs) induced by ionising radiation are considered the main dam-age related to the deleterious consequences in the cells. Unrepaired or mis-repaired DSBs can cause mutations or loss of chromosome regions which can eventually lead to cell death or neo-plastic transformation. Quantification of the number and complexity of DSBs induced by low doses of radiation remains a complex problem. About ten years ago Rogakou et al. proposed an immunofluorescent technique able to detect even a single DSB per cell. This approach is based on the serine 139 phosphorylation of many molecules (up to 2000) of histone H2AX (γg-H2AX) following the induction of a DSB in the DNA. DSB can be visualized as foci by immunofluores-cence by using phospho-specific antibodies, so that enumeration of foci can be used to measure DSB induction and processing. It is still not completely clear how γ-H2AX dephosphorylation takes place; however it has been related with DSB repair, in particular with the efficiency of DSB repair. In this work we analyse the H2AX phosphorylation-dephosphorylation kinetics after irradiation of primary human fibroblasts (AG1522 cell line) with radiation of differing quality, that is γ-rays and α-particles (125 keV/µm), with the aim of comparing the time evolution of γ-H2AX foci. Our results show that, after a dose of 0.5 Gy, both γ-rays and α-particles induce the maximum number of γ-H2AX foci within 30 minutes from irradiation, that this number depends on the radiation type and is consistent with the number of track traversal in α-irradiated nuclei, that the dephosphorylation kinetics are very different, being the α-induced foci rate of disappearence slower than that of γ-induced foci. In this work a modellistic approach to estimate the number of DSB induced by γ-rays detectable by using the γ-H2AX assay is presented. The competing processes of appearance and disappearance of visible foci will be modeled taking into account the

  20. γ-H2AX induced by linear alkylbenzene sulfonates is due to deoxyribonuclease-1 translocation to the nucleus via actin disruption.

    PubMed

    Zhao, Xiaoxu; Toyooka, Tatsushi; Kubota, Toru; Yang, Guang; Ibuki, Yuko

    2015-07-01

    Phosphorylation of histone H2AX (γ-H2AX) occurs following formation of DNA double strand breaks (DSBs). Other types of DNA damage also generate DSBs through DNA replication and repair, leading to the production of γ-H2AX. In the present study, we demonstrated that linear alkylbenzene sulfonates (LAS), the most widely used and non-genotoxic anionic surfactants, could generate γ-H2AX via a novel pathway. Breast adenocarcinoma MCF-7 cells were treated with five kinds of LAS with alkyl chains ranging from 10 to 14 carbon units (C10-C14LAS). The generation of DSBs and subsequent production of γ-H2AX increased in a manner that depended on the number of carbon units in LAS. γ-H2AX could also be generated with non-cytotoxic doses of LAS and was independent of the cell cycle, indicating the non-apoptotic and DNA replication-independent formation of DSBs. The generation of γ-H2AX could be attenuated by EGTA and ZnCl2, deoxyribonuclease-1 (DNase I) inhibitors, as well as by the knockdown of DNase I. LAS weakened the interaction between DNase I and actin, and the enhanced release of DNase I was dependent on the number of carbon units in LAS. DNase I released by the LAS treatment translocated to the nucleus, in which DNase I attacked DNA and generated γ-H2AX. These results suggested that the LAS-induced generation of γ-H2AX could be attributed to the translocation of DNase I to the nucleus through the disruption of actin, and not to LAS-induced DNA damage.

  1. PP2A-B56ϵ complex is involved in dephosphorylation of γ-H2AX in the repair process of CPT-induced DNA double-strand breaks.

    PubMed

    Li, Xiuying; Nan, Anuo; Xiao, Ying; Chen, Yongzhong; Lai, Yandong

    2015-05-01

    Phosphorylation of histone H2AX (γ-H2AX) in response to DNA double-strand breaks (DSBs) should be eliminated from the sites of DNA damage to fulfill the DNA repair and release cells from the growth arrest. Previous study showed that protein phosphatase 2A (PP2A) interact with γ-H2AX that lead to the dephosphorylation of γ-H2AX. Here, we examined the effects of suppression of PP2A regulatory subunits on dephosphorylation of γ-H2AX in human embryonic kidney epithelial cells (HEK) treated by topoisomerase I inhibitor camptothecin (CPT). We found that cells with suppression of B55α or B56ϵ were more sensitive to DNA damage agents. Suppression of B56ϵ led to persistence of γ-H2AX, resulting in prolonged DSBs repair and increased chromatin instability measured by comet assay. In addition, the deficiency of B56ϵ impaired the cell cycle regulation and the DNA repair pathway of homologous recombination (HR). Notably, we detected that PP2A B56ϵ subunit was involved directly in dephosphorylation of γ-H2AX and translocated from cytoplasm to nucleus upon the treatment of CPT. Our findings demonstrate that PP2A holoenzyme containing B56ϵ is responsible for the dephosphorylation of γ-H2AX and regulation of DNA repair of DSBs induced by CPT.

  2. γ-H2AX as a biomarker of DNA damage induced by ionizing radiation in human peripheral blood lymphocytes and artificial skin

    NASA Astrophysics Data System (ADS)

    Redon, Christophe E.; Dickey, Jennifer S.; Bonner, William M.; Sedelnikova, Olga A.

    2009-04-01

    Ionizing radiation (IR) exposure is inevitable in our modern society and can lead to a variety of deleterious effects including cancer and birth defects. A reliable, reproducible and sensitive assessment of exposure to IR and the individual response to that exposure would provide much needed information for the optimal treatment of each donor examined. We have developed a diagnostic test for IR exposure based on detection of the phosphorylated form of variant histone H2AX (γ-H2AX), which occurs specifically at sites of DNA double-strand breaks (DSBs). The cell responds to a nascent DSB through the phosphorylation of thousands of H2AX molecules flanking the damaged site. This highly amplified response can be visualized as a γ-H2AX focus in the chromatin that can be detected in situ with the appropriate antibody. Here we assess the usability of γ-H2AX focus formation as a possible biodosimeter for human exposure to IR using peripheral blood lymphocytes irradiated ex vivo and three-dimensional artificial models of human skin biopsies. In both systems, the tissues were exposed to 0.2-5 Gy, doses of IR that might be realistically encountered in various scenarios such as cancer radiotherapies or accidental exposure to radiation. Since the γ-H2AX response is maximal 30 min after exposure and declines over a period of hours as the cells repair the damage, we examined the time limitations of the useful detectability of γ-H2AX foci. We report that a linear response proportional to the initial radiation dose was obtained 48 and 24 h after exposure in blood samples and skin cells respectively. Thus, detection of γ-H2AX formation to monitor DNA damage in minimally invasive blood and skin tests could be useful tools to determine radiation dose exposure and analyze its effects on humans.

  3. γ-H2AX is a sensitive marker of DNA damage induced by metabolically activated 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone.

    PubMed

    Ibuki, Yuko; Shikata, Mariko; Toyooka, Tatsushi

    2015-10-01

    4-(Methylnitrosamino)-1-(3-pyridyl)-1-butanone (NNK), a nicotine-derived nitrosamine, is a potent pulmonary carcinogen present in tobacco smoke. DNA adducts induced by metabolically activated NNK cause carcinogenesis; however, the DNA adducts are difficult to detect in cultured cells because of low intrinsic metabolic enzyme activity. In this study, we indirectly detected NNK-induced DNA adducts via the phosphorylation of histone H2AX (γ-H2AX) in A549 human lung adenocarcinoma epithelial cells. NNK treatment dose-dependently induced γ-H2AX. This γ-H2AX induction was suppressed by ataxia telangiectasia mutated inhibitors, suggesting that DNA double-strand breaks (DSBs) are formed during replication and repair of DNA adducts; however, DSBs could not be directly detected by biased sinusoidal field gel electrophoresis (BSFGE). CYP2A13-overexpressing cells showed prolonged γ-H2AX induction compared with control cells, and DSBs could be detected by BSFGE in CYP2A13-overexpressing cells as a clear migration of double-stranded DNA. These findings suggest that γ-H2AX is a sensitive marker of DNA adducts and provides a possible system for genotoxicity screening of chemicals such as NNK, which need metabolic activation to induce DNA damage. PMID:26231820

  4. Nonylphenol polyethoxylates degraded by three different wavelengths of UV and their genotoxic change--detected by generation of γ-H2AX.

    PubMed

    Kubota, Toru; Toyooka, Tatsushi; Ibuki, Yuko

    2013-01-01

    UV rays in sunlight are an important factor in the degradation of chemicals. In this study, we investigated the degradation of nonionic surfactants, nonylphenol polyethoxylates (NPEOs) with 10 or 70 ethylene oxide (EO) units using UVA, B and C, and their genotoxic change based on phosphorylation of histone H2AX (γ-H2AX), a marker of DNA damage. NPEOs were degraded dependent on the energy of UV, that is, UVC having the highest energy was most effective, whereas UVA having the lowest energy caused little change. The EO side chain of NPEO(70) was broken near the benzene ring by UV, producing NPEOs with a shortened EO chain (around 10 units). The generation of γ-H2AX reflected the pattern of degradation; shortening of the EO chain changed NPEO(70) into an inducer for γ-H2AX, and degradation of NPEO(10) attenuated the genotoxicity. The γ-H2AX generated by NPEO(10) and UV-degraded NPEO(70) was independent of the cell cycle. The formation of DNA double strand breaks detected by gel electrophoresis was consistent with the results for γ-H2AX. These results suggested that UV rays can make NPEOs harmless or genotoxic according to the degradation of the EO side chain, the effects being dependent on wavelength.

  5. Kinetics of gamma-H2AX induction and removal in bone marrow and testicular cells of mice after X-ray irradiation.

    PubMed

    Paris, Lorena; Cordelli, Eugenia; Eleuteri, Patrizia; Grollino, Maria Giuseppa; Pasquali, Emanuela; Ranaldi, Roberto; Meschini, Roberta; Pacchierotti, Francesca

    2011-07-01

    Male germ cells have been shown to differ in their DNA damage response (DDR) with respect to somatic cells. In addition, DDR pathways are modulated along spermatogenesis, accompanying profound chromatin modifications. Histone H2AX phosphorylation is a fundamental step of DDR. Few data are available on the long-term kinetics of phosphorylated H2AX (γ-H2AX) after in vivo irradiation. We have investigated, by microscopic and flow cytometric immunochemistry, γ-H2AX induction and removal in testicular cells of irradiated mice, in comparison with bone marrow cells. In unirradiated testicular cells, much higher levels of γ-H2AX were measured by flow cytometry with respect to bone marrow cells. Irradiation induced a redistribution of γ-H2AX into discrete foci detectable by microscopy. In irradiated bone marrow, the percentage of labelled cells peaked at 1 h and rapidly declined, in agreement with data on in vitro cell lines. In contrast, spermatocytes and round spermatids showed persistent labelling until 48 h. During this time, in spermatids, topological changes were observed in γ-H2AX foci from a pattern of many uncountable dots to a pattern of few large spots. Observations of testicular sections confirmed this trend in the reduction of foci number in spite of substantially invariable percentages of labelled cells in the analysed timeframe. To assess whether γ-H2AX persistence in testicular cells was due to unrepaired DNA breaks, we performed comet assay and immunofluorescence analysis of Mdc1, a marker of DDR different from γ-H2AX. Comet assay showed that most breaks were repaired within 2 h. Forty-eight hours after irradiation, contrary to γ-H2AX foci that remained detectable in 80% of initially labelled cells, Mdc1 foci were observed in only 20-30% of cells. These data suggest that, at long times after irradiation, mechanisms additional to impairment of DNA break repair may account for the long persistence of γ-H2AX foci in male germ cells.

  6. Low doses of X-rays induce prolonged and ATM-independent persistence of γH2AX foci in human gingival mesenchymal stem cells.

    PubMed

    Osipov, Andreyan N; Pustovalova, Margarita; Grekhova, Anna; Eremin, Petr; Vorobyova, Natalia; Pulin, Andrey; Zhavoronkov, Alex; Roumiantsev, Sergey; Klokov, Dmitry Y; Eremin, Ilya

    2015-09-29

    Diagnostic imaging delivering low doses of radiation often accompany human mesenchymal stem cells (MSCs)-based therapies. However, effects of low dose radiation on MSCs are poorly characterized. Here we examine patterns of phosphorylated histone H2AXH2AX) and phospho-S1981 ATM (pATM) foci formation in human gingiva-derived MSCs exposed to X-rays in time-course and dose-response experiments. Both γH2AX and pATM foci accumulated linearly with dose early after irradiation (5-60 min), with a maximum induction observed at 30-60 min (37 ± 3 and 32 ± 3 foci/cell/Gy for γH2AX and pATM, respectively). The number of γH2AX foci produced by intermediate doses (160 and 250 mGy) significantly decreased (40-60%) between 60 and 240 min post-irradiation, indicating rejoining of DNA double-strand breaks. In contrast, γH2AX foci produced by low doses (20-80 mGy) did not change after 60 min. The number of pATM foci between 60 and 240 min decreased down to control values in a dose-independent manner. Similar kinetics was observed for pATM foci co-localized with γH2AX foci. Collectively, our results suggest differential DNA double-strand break signaling and processing in response to low vs. intermediate doses of X-rays in human MSCs. Furthermore, mechanisms governing the prolonged persistence of γH2AX foci in these cells appear to be ATM-independent. PMID:26314960

  7. Low doses of X-rays induce prolonged and ATM-independent persistence of γH2AX foci in human gingival mesenchymal stem cells

    PubMed Central

    Osipov, Andreyan N.; Pustovalova, Margarita; Grekhova, Anna; Eremin, Petr; Vorobyova, Natalia; Pulin, Andrey; Zhavoronkov, Alex; Roumiantsev, Sergey; Klokov, Dmitry Y.; Eremin, Ilya

    2015-01-01

    Diagnostic imaging delivering low doses of radiation often accompany human mesenchymal stem cells (MSCs)-based therapies. However, effects of low dose radiation on MSCs are poorly characterized. Here we examine patterns of phosphorylated histone H2AXH2AX) and phospho-S1981 ATM (pATM) foci formation in human gingiva-derived MSCs exposed to X-rays in time-course and dose-response experiments. Both γH2AX and pATM foci accumulated linearly with dose early after irradiation (5–60 min), with a maximum induction observed at 30–60 min (37 ± 3 and 32 ± 3 foci/cell/Gy for γH2AX and pATM, respectively). The number of γH2AX foci produced by intermediate doses (160 and 250 mGy) significantly decreased (40–60%) between 60 and 240 min post-irradiation, indicating rejoining of DNA double-strand breaks. In contrast, γH2AX foci produced by low doses (20–80 mGy) did not change after 60 min. The number of pATM foci between 60 and 240 min decreased down to control values in a dose-independent manner. Similar kinetics was observed for pATM foci co-localized with γH2AX foci. Collectively, our results suggest differential DNA double-strand break signaling and processing in response to low vs. intermediate doses of X-rays in human MSCs. Furthermore, mechanisms governing the prolonged persistence of γH2AX foci in these cells appear to be ATM-independent. PMID:26314960

  8. Low doses of X-rays induce prolonged and ATM-independent persistence of γH2AX foci in human gingival mesenchymal stem cells.

    PubMed

    Osipov, Andreyan N; Pustovalova, Margarita; Grekhova, Anna; Eremin, Petr; Vorobyova, Natalia; Pulin, Andrey; Zhavoronkov, Alex; Roumiantsev, Sergey; Klokov, Dmitry Y; Eremin, Ilya

    2015-09-29

    Diagnostic imaging delivering low doses of radiation often accompany human mesenchymal stem cells (MSCs)-based therapies. However, effects of low dose radiation on MSCs are poorly characterized. Here we examine patterns of phosphorylated histone H2AXH2AX) and phospho-S1981 ATM (pATM) foci formation in human gingiva-derived MSCs exposed to X-rays in time-course and dose-response experiments. Both γH2AX and pATM foci accumulated linearly with dose early after irradiation (5-60 min), with a maximum induction observed at 30-60 min (37 ± 3 and 32 ± 3 foci/cell/Gy for γH2AX and pATM, respectively). The number of γH2AX foci produced by intermediate doses (160 and 250 mGy) significantly decreased (40-60%) between 60 and 240 min post-irradiation, indicating rejoining of DNA double-strand breaks. In contrast, γH2AX foci produced by low doses (20-80 mGy) did not change after 60 min. The number of pATM foci between 60 and 240 min decreased down to control values in a dose-independent manner. Similar kinetics was observed for pATM foci co-localized with γH2AX foci. Collectively, our results suggest differential DNA double-strand break signaling and processing in response to low vs. intermediate doses of X-rays in human MSCs. Furthermore, mechanisms governing the prolonged persistence of γH2AX foci in these cells appear to be ATM-independent.

  9. Analysis of Lymphocytic DNA Damage in Early Multiple Sclerosis by Automated Gamma-H2AX and 53BP1 Foci Detection: A Case Control Study

    PubMed Central

    Rasche, Ludwig; Heiserich, Lisa; Behrens, Janina Ruth; Lenz, Klaus; Pfuhl, Catherina; Wakonig, Katharina; Gieß, René Markus; Freitag, Erik; Eberle, Caroline; Wuerfel, Jens; Dörr, Jan; Bauer, Peter; Bellmann-Strobl, Judith; Paul, Friedemann; Roggenbuck, Dirk; Ruprecht, Klemens

    2016-01-01

    Background In response to DNA double-strand breaks, the histone protein H2AX becomes phosphorylated at its C-terminal serine 139 residue, referred to as γ-H2AX. Formation of γ-H2AX foci is associated with recruitment of p53-binding protein 1 (53BP1), a regulator of the cellular response to DNA double-strand breaks. γ-H2AX expression in peripheral blood mononuclear cells (PBMCs) was recently proposed as a diagnostic and disease activity marker for multiple sclerosis (MS). Objective To evaluate the significance of γ-H2AX and 53BP1 foci in PBMCs as diagnostic and disease activity markers in patients with clinically isolated syndrome (CIS) and early relapsing-remitting MS (RRMS) using automated γ-H2AX and 53BP1 foci detection. Methods Immunocytochemistry was performed on freshly isolated PBMCs of patients with CIS/early RRMS (n = 25) and healthy controls (n = 27) with γ-H2AX and 53BP1 specific antibodies. Nuclear γ-H2AX and 53BP1 foci were determined using a fully automated reading system, assessing the numbers of γ-H2AX and 53BP1 foci per total number of cells and the percentage of cells with foci. Patients underwent contrast enhanced 3 Tesla magnetic resonance imaging (MRI) and clinical examination including expanded disability status scale (EDSS) score. γ-H2AX and 53BP1 were also compared in previously frozen PBMCs of each 10 CIS/early RRMS patients with and without contrast enhancing lesions (CEL) and 10 healthy controls. Results The median (range) number of γ-H2AX (0.04 [0–0.5]) and 53BP1 (0.005 [0–0.2]) foci per cell in freshly isolated PBMCs across all study participants was low and similar to previously reported values of healthy individuals. For both, γ-H2AX and 53BP1, the cellular focus number as well as the percentage of positive cells did not differ between patients with CIS/RRMS and healthy controls. γ-H2AX and 53BP1 levels neither correlated with number nor volume of T2-weighted lesions on MRI, nor with the EDSS. Although γ-H2AX, but not

  10. Calmodulin Mediates DNA Repair Pathways Involving H2AX in Response to Low-Dose Radiation Exposure of RAW 264.7 Macrophages

    SciTech Connect

    Smallwood, Heather S.; Lopez Ferrer, Daniel; Eberlein, P. Elis; Watson, David J.; Squier, Thomas C.

    2009-02-05

    Understanding the molecular mechanisms that modulate macrophage radioresistance is necessary for the development of effective radiation therapies, as tumor-associated macrophages promote both angiogenesis and matrix remodeling that, in turn, enhance metastasis. In this respect, we have identified a dose-dependent increase in the abundance of the calcium regulatory protein calmodulin (CaM) in RAW 264.7 macrophages upon irradiation. CaM overexpression results in increased macrophage survival following radiation exposure, acting to diminish the sensitivity to low-dose exposures. Increases in CaM abundance also result in an increase in the number of phosphorylated histone H2AX protein complexes associated with DNA repair following macrophage irradiation, with no change in the extent of double-stranded DNA damage. In comparison, when NFκB-dependent pathways are inhibited, through the expression of a dominant-negative IκB construct, there is no significant increase in phosphorylated H2AX upon irradiation. These results indicate that the molecular basis for the up-regulation of histone H2AX mediated DNA-repair pathways is not the result of nonspecific NFκB-dependent pathways or a specific threshold of DNA damage. Rather, increases in CaM abundance act to minimize the low-dose hypersensitivity to radiation to enhance macrophage radioresistance through processes that include the upregulation of DNA repair pathways involving histone protein H2AX phosphorylation.

  11. Sexually dimorphic expression of Dmrt1 and γH2AX in germ stem cells during gonadal development in Xenopus laevis.

    PubMed

    Fujitani, Kazuko; Otomo, Asako; Wada, Mikako; Takamatsu, Nobuhiko; Ito, Michihiko

    2016-04-01

    In many animals, primordial germ cells (PGCs) migrate into developing gonads. There, they proliferate and differentiate into female and male germ stem cells (GSCs), oogonia and spermatogonia, respectively. Few studies have focused on the molecular mechanisms underlying the development of GSC sex determination. Here, we investigated the expression of the transcription factor Dmrt1 and a phosphorylated form of the histone variant H2AXH2AX) during gonadal development in Xenopus laevis. During early sexual differentiation, Dmrt1 was expressed in the GSCs of the ZW (female) and ZZ (male) gonads as well as somatic cells of the ZZ gonads. Notably, the PGCs and primary GSCs contained large, unstructured nuclei, whereas condensed, rounder nuclei appeared only in primary oogonia during tadpole development. After metamorphosis, Dmrt1 showed its expression in secondary spermatogonia, but not in secondary oogonia. Like Dmrt1, γH2AX was expressed in the nuclei of primary GSCs in early developing gonads. However, after metamorphosis, γH2AX expression continued in primary and secondary spermatogonia, but was barely detected in the condensed nuclei of primary oogonia. Taken together, these observations indicate that spermatogonia tend to retain PGC characteristics, compared to oogonia, which undergo substantial changes during gonadal differentiation in X. laevis. Our findings suggest that Dmrt1 and γH2AX may contribute to the maintenance of stem cell identity by controlling gene expression and epigenetic changes, respectively. PMID:27239441

  12. UVB irradiation changes genotoxic potential of nonylphenolpolyethoxylates--remarkable generation of γ-H2AX with degradation of chemical structure.

    PubMed

    Toyooka, Tatsushi; Kubota, Toru; Ibuki, Yuko

    2013-01-01

    Nonylphenolpolyethoxylates (NPEOs) are non-ionic surfactants widely used for industrial and household purposes. In actual environments, NPEOs can be biodegraded, but the products are reported to be more persistent and toxic than the parent compounds. NPEOs are also exposed to sunlight and degraded. Studies on the photodegradation of NPEOs have focused mainly on chemical changes after exposure to light. Toxic changes of photodegraded products correlating to the chemical changes are not completely understood. In this study, we examined the genotoxicity of UVB-irradiated NPEOs having ethylene oxide units 15 and 70 in a human breast adenocarcinoma cell line, MCF-7, based on the phosphorylation of histone H2AX (γ-H2AX), a sensitive marker for DNA damage. We clarified that UVB irradiation drastically changed the genotoxic potential of NPEOs: NPEO(15)'s ability to generate γ-H2AX was significantly reduced, whereas non-genotoxic NPEO(70) became able to generate γ-H2AX. Flow cytometric analysis showed that the γ-H2AX generated by UVB-irradiated NPEO(70)was produced independent of cell cycle phases. In addition, its production involved the activation of ATM or DNA-PK, a general signalling pathway in response to DNA double strand breaks. High-performance liquid chromatography analysis indicated that the formation of NPEO intermediates with a short side-chain like NPEO(15) was the cause of the γ-H2AX generation. This study suggests the importance of taking the genotoxicity of photodegraded intermediates into consideration when conducting risk assessments of environmental pollutants. PMID:22987026

  13. Influence of Different Antioxidants on X-Ray Induced DNA Double-Strand Breaks (DSBs) Using γ-H2AX Immunofluorescence Microscopy in a Preliminary Study

    PubMed Central

    Brand, Michael; Sommer, Matthias; Ellmann, Stephan; Wuest, Wolfgang; May, Matthias S.; Eller, Achim; Vogt, Sabine; Lell, Michael M.; Kuefner, Michael A.; Uder, Michael

    2015-01-01

    Background Radiation exposure occurs in X-ray guided interventional procedures or computed tomography (CT) and γ-H2AX-foci are recognized to represent DNA double-strand breaks (DSBs) as a biomarker for radiation induced damage. Antioxidants may reduce the induction of γ-H2AX-foci by binding free radicals. The aim of this study was to establish a dose-effect relationship and a time-effect relationship for the individual antioxidants on DSBs in human blood lymphocytes. Materials and Methods Blood samples from volunteers were irradiated with 10 mGy before and after pre-incubation with different antioxidants (zinc, trolox, lipoic acid, ß-carotene, selenium, vitamin E, vitamin C, N-acetyl-L-cysteine (NAC) and Q 10). Thereby, different pre-incubation times, concentrations and combinations of drugs were evaluated. For assessment of DSBs, lymphocytes were stained against the phosphorylated histone variant γ-H2AX. Results For zinc, trolox and lipoic acid regardless of concentration or pre-incubation time, no significant decrease of γ-H2AX-foci was found. However, ß-carotene (15%), selenium (14%), vitamin E (12%), vitamin C (25%), NAC (43%) and Q 10 (18%) led to a significant reduction of γ-H2AX-foci at a pre-incubation time of 1 hour. The combination of different antioxidants did not have an additive effect. Conclusion Antioxidants administered prior to irradiation demonstrated the potential to reduce γ-H2AX-foci in blood lymphocytes. PMID:25996998

  14. gammaH2AX as a checkpoint maintenance signal.

    PubMed

    Downey, Michael; Durocher, Daniel

    2006-07-01

    A key function of the conserved signaling cascade triggered by DNA damage is to promote the arrest or pause of cell cycle progression, a phenomenon commonly termed a "checkpoint". This response allows time for DNA repair to proceed before entering a new phase of the cell cycle. Although much is known about the initiation and propagation of this signaling pathway, much less is understood about the mechanisms that lead to its extinction. Recent work highlights a role for H2AX phosphorylation as a checkpoint maintenance factor and of its dephosphorylation as a signal for resumption of the cell cycle.

  15. Genetic variants of H2AX gene were associated with PM2.5-modulated DNA damage levels in Chinese Han populations.

    PubMed

    Sun, Chongqi; Chu, Minjie; Chen, Weihong; Jin, Guangfu; Gong, Jianhang; Zhu, Meng; Yuan, Jing; Dai, Juncheng; Wang, Meilin; Pan, Yun; Song, Yuanchao; Ding, Xiaojie; Du, Mulong; Dong, Jing; Zhang, Zhengdong; Hu, Zhibin; Wu, Tangchun; Shen, Hongbing

    2015-08-01

    Exposure to particulate matter 2.5 (PM2.5) may result in DNA damage. Histone variant H2AX phosphorylation plays a central role in the response to damaged chromatin. In the current study, we investigated whether H2AX gene polymorphisms account for PM2.5-modulated DNA damage levels. A total of 307 healthy urban residents were collected from three cities in southern, central, and northern China, Zhuhai, Wuhan, and Tianjin, respectively. The dust mass concentrations of PM2.5 were detected by Gilian 5000 pumps, and the DNA damage levels were measured using comet assay. Seven potentially functional single nucleotide polymorphisms (SNPs) of H2AX gene were selected and genotyped by Illumina Infinium(®) BeadChip. We found that three SNPs (rs10790283 G > A, rs604714 C > A and rs7759 A > G) were significantly associated with DNA damage levels (adjusted P = 0.002, 0.018 and 0.027, respectively). Significant interactions (P < 0.05) were observed between certain genetic polymorphisms and PM2.5-modulated DNA damage levels. These results suggested that genetic variations of H2AX might be associated with the DNA damage levels in urban residents with different exposure to PM2.5. Further studies with large sample size in independent populations merit validating these findings.

  16. Formaldehyde-induced histone H3 phosphorylation via JNK and the expression of proto-oncogenes.

    PubMed

    Yoshida, Ikuma; Ibuki, Yuko

    2014-12-01

    Formaldehyde (FA) is a very reactive compound that forms DNA adducts and DNA-protein crosslinks, which are known to contribute to FA-induced mutations and carcinogenesis. Post-translational modifications to histones have recently attracted attention due to their link with cancer. In the present study, we examined histone modifications following a treatment with FA. FA significantly phosphorylated histone H3 at serine 10 (H3S10), and at serine 28 (H3S28), the time-course of which was similar to the phosphorylation of H2AX at serine 139 (γ-H2AX), a marker of DNA double strand breaks. The temporal deacetylation of H3 was observed due to the reaction of FA with the lysine residues of histones. The phosphorylation mechanism was then analyzed by focusing on H3S10. The nuclear distribution of the phosphorylation of H3S10 and γ-H2AX did not overlap, and the phosphorylation of H3S10 could not be suppressed with an inhibitor of ATM/ATR, suggesting that the phosphorylation of H3S10 was independent of the DNA damage response. ERK and JNK in the MAPK pathways were phosphorylated by the treatment with FA, in which the JNK pathway was the main target for phosphorylation. The phosphorylation of H3S10 increased at the promoter regions of c-fos and c-jun, indicating a relationship between FA-induced tumor promotion activity and phosphorylation of H3S10. These results suggested that FA both initiates and promotes cancer, as judged by an analysis of histone modifications.

  17. The SAGA Deubiquitination Module Promotes DNA Repair and Class Switch Recombination through ATM and DNAPK-Mediated γH2AX Formation.

    PubMed

    Ramachandran, Shaliny; Haddad, Dania; Li, Conglei; Le, Michael X; Ling, Alexanda K; So, Clare C; Nepal, Rajeev M; Gommerman, Jennifer L; Yu, Kefei; Ketela, Troy; Moffat, Jason; Martin, Alberto

    2016-05-17

    Class switch recombination (CSR) requires activation-induced deaminase (AID) to instigate double-stranded DNA breaks at the immunoglobulin locus. DNA breaks activate the DNA damage response (DDR) by inducing phosphorylation of histone H2AX followed by non-homologous end joining (NHEJ) repair. We carried out a genome-wide screen to identify CSR factors. We found that Usp22, Eny2, and Atxn7, members of the Spt-Ada-Gcn5-acetyltransferase (SAGA) deubiquitination module, are required for deubiquitination of H2BK120ub following DNA damage, are critical for CSR, and function downstream of AID. The SAGA deubiquitinase activity was required for optimal irradiation-induced γH2AX formation, and failure to remove H2BK120ub inhibits ATM- and DNAPK-induced γH2AX formation. Consistent with this effect, these proteins were found to function upstream of various double-stranded DNA repair pathways. This report demonstrates that deubiquitination of histone H2B impacts the early stages of the DDR and is required for the DNA repair phase of CSR. PMID:27160905

  18. Ultrasound-induced DNA damage and signal transductions indicated by gammaH2AX

    NASA Astrophysics Data System (ADS)

    Furusawa, Yukihiro; Fujiwara, Yoshisada; Zhao, Qing-Li; Hassan, Mariame Ali; Ogawa, Ryohei; Tabuchi, Yoshiaki; Takasaki, Ichiro; Takahashi, Akihisa; Ohnishi, Takeo; Kondo, Takashi

    2011-09-01

    Ultrasound (US) has been shown to induce cancer cell death via different forms including apoptosis. Here, we report the potential of low-intensity pulsed US (LIPUS) to induce genomic DNA damage and subsequent DNA damage response. Using the ionizing radiation-induced DNA double-strand breaks (DSBs) as the positive control, we were able to observe the induction of DSBs (as neutral comet tails) and the subsequent formation of gammaH2AX-positive foci (by immunofluorescence detection) in human leukemia cells following exposure to LIPUS. The LIPUS-induced DNA damage arose most likely from the mechanical, but not sonochemical, effect of cavitation, based on our observation that the suppression of inertial cavitation abrogated the gammH2AX foci formation, whereas scavenging of free radical formation (e.g., hydroxyl radical) had no protective effect on it. Treatment with the specific kinase inhibitor of ATM or DNA-PKcs, which can phosphorylate H2AX Ser139, revealed that US-induced gammaH2AX was inhibited more effectively by the DNA-PK inhibitor than ATM kinase inhibitor. Notably, these inhibitor effects were opposite to those with radiation-induced gammH2AX. In conclusion, we report, for the first time that US can induce DNA damage and the DNA damage response as indicated by gammaH2AX was triggered by the cavitational mechanical effects. Thus, it is expected that the data shown here may provide a better understanding of the cellular responses to US.

  19. Gamma-H2AX as a biomarker of DNA damage induced by ionizing radiation in targeted and bystander human artificial skin models and peripheral blood lymphocytes

    NASA Astrophysics Data System (ADS)

    Redon, Christophe; Dickey, Jennifer; Bonner, William; Sedelnikova, Olga

    Ionizing radiation (IR) exposure is inevitable. In addition to exposure from cosmic rays, the sun and radioactive substances, modern society has created new sources of radiation exposure such as space and high altitude journeys, X-ray diagnostics, radiological treatments and the increasing threat of radiobiological terrorism. For these reasons, a reliable, reproducible and sensitive assessment of dose and time exposure to IR is essential. We developed a minimally invasive diagnostic test for IR exposure based on detection of a phosphorylated variant of histone H2AX (gamma-H2AX), which occurs specifically at sites of DNA double-strand breaks (DSBs). The phosphorylation of thousands of H2AX molecules forms a gamma-H2AX focus in the chromatin flanking the DSB site that can be detected in situ. We analyzed gamma- H2AX focus formation in both directly irradiated cells as well as in un-irradiated "bystanders" in close contact with irradiated cells. In order to insure minimal invasiveness, we examined commercially available artificial skin models as a surrogate for human skin biopsies as well as peripheral blood lymphocytes. In human skin models, cells in a thin plane were microbeamirradiated and gamma-H2AX formation was measured both in irradiated and in distal bystander cells over time. In irradiated cells DSB formation reached a maximum at 15-30 minutes post- IR and then declined within several hours; all cells were affected. In marked contrast, the incidence of DSBs in bystander cells reached a maximum by 12-48 hours post-irradiation, gradually decreasing over the 7 day time course. At the maxima, 40-60% of bystander cells were affected. Similarly, we analyzed blood samples exposed to IR ex vivo at doses ranging from 0.02 to 3 Gy. The amount of DNA damage was linear in respect to radiation dose and independent of the age or sex of the blood donor. The method is highly reproducible and highly sensitive. In directly irradiated cells, the number of gamma-H2AX foci peaked

  20. Persistence of gamma-H2AX and 53BP1 foci in proliferating and nonproliferating human mammary epithelial cells after exposure to gamma-rays or iron ions

    SciTech Connect

    Groesser, Torsten; Chang, Hang; Fontenay, Gerald; Chen, James; Costes, Sylvain V.; Barcellos-Hoff, Mary Helen; Parvin, Bahram; Rydberg, Bjorn

    2010-12-22

    To investigate {gamma}-H2AX (phosphorylated histone H2AX) and 53BP1 (tumour protein 53 binding protein No. 1) foci formation and removal in proliferating and non-proliferating human mammary epithelial cells (HMEC) after exposure to sparsely and densely ionizing radiation under different cell culture conditions. HMEC cells were grown either as monolayers (2D) or in extracellular matrix to allow the formation of acinar structures in vitro (3D). Foci numbers were quantified by image analysis at various time points after exposure. Our results reveal that in non-proliferating cells under 2D and 3D cell culture conditions, iron-ion induced {gamma}-H2AX foci were still present at 72 h after exposure, although 53BP1 foci returned to control levels at 48 h. In contrast in proliferating HMEC, both {gamma}-H2AX and 53BP1 foci decreased to control levels during the 24-48 h time interval after irradiation under 2D conditions. Foci numbers decreased faster after {gamma}-ray irradiation and returned to control levels by 12 h regardless of marker, cell proliferation status, and cell culture condition. Conclusions: The disappearance of radiation induced {gamma}-H2AX and 53BP1 foci in HMEC have different dynamics that depend on radiation quality and proliferation status. Notably, the general patterns do not depend on the cell culture condition (2D versus 3D). We speculate that the persistent {gamma}-H2AX foci in iron-ion irradiated non-proliferating cells could be due to limited availability of double strand break (DSB) repair pathways in G0/G1-phase, or that repair of complex DSB requires replication or chromatin remodeling.

  1. ATM Localization and Heterochromatin Repair Depend on Direct Interaction of the 53BP1-BRCT2 Domain with γH2AX

    PubMed Central

    Baldock, Robert A.; Day, Matthew; Wilkinson, Oliver J.; Cloney, Ross; Jeggo, Penelope A.; Oliver, Antony W.; Watts, Felicity Z.; Pearl, Laurence H.

    2015-01-01

    Summary 53BP1 plays multiple roles in mammalian DNA damage repair, mediating pathway choice and facilitating DNA double-strand break repair in heterochromatin. Although it possesses a C-terminal BRCT2 domain, commonly involved in phospho-peptide binding in other proteins, initial recruitment of 53BP1 to sites of DNA damage depends on interaction with histone post-translational modifications—H4K20me2 and H2AK13/K15ub—downstream of the early γH2AX phosphorylation mark of DNA damage. We now show that, contrary to current models, the 53BP1-BRCT2 domain binds γH2AX directly, providing a third post-translational mark regulating 53BP1 function. We find that the interaction of 53BP1 with γH2AX is required for sustaining the 53BP1-dependent focal concentration of activated ATM that facilitates repair of DNA double-strand breaks in heterochromatin in G1. PMID:26628370

  2. Chromosome territory relocation during DNA repair requires nuclear myosin 1 recruitment to chromatin mediated by ϒ-H2AX signaling

    PubMed Central

    Kulashreshtha, Mugdha; Mehta, Ishita S.; Kumar, Pradeep; Rao, Basuthkar J.

    2016-01-01

    During DNA damage response (DDR), certain gene rich chromosome territories (CTs) relocate to newer positions within interphase nuclei and revert to their native locations following repair. Such dynamic relocation of CTs has been observed under various cellular conditions, however, the underlying mechanistic basis of the same has remained largely elusive. In this study, we aim to understand the temporal and molecular details of such crosstalk between DDR signaling and CT relocation dynamics. We demonstrate that signaling at DNA double strand breaks (DSBs) by the phosphorylated histone variant (ϒ-H2AX) is a pre-requisite for damage induced CT relocation, as cells deficient in ϒ-H2AX signaling fail to exhibit such a response. Inhibition of Rad51 or DNA Ligase IV mediated late steps of double strand break repair does not seem to abrogate CT relocation completely. Upon DNA damage, an increase in the levels of chromatin bound motor protein nuclear myosin 1 (NM1) ensues, which appears to be functionally linked to ϒ-H2AX signaling. Importantly, the motor function of NM1 is essential for its recruitment to chromatin and CT relocation following damage. Taking these observations together, we propose that early DDR sensing and signaling result in NM1 recruitment to chromosomes which in turn guides DNA damage induced CT relocation. PMID:27365048

  3. ATM Localization and Heterochromatin Repair Depend on Direct Interaction of the 53BP1-BRCT2 Domain with γH2AX.

    PubMed

    Baldock, Robert A; Day, Matthew; Wilkinson, Oliver J; Cloney, Ross; Jeggo, Penelope A; Oliver, Antony W; Watts, Felicity Z; Pearl, Laurence H

    2015-12-15

    53BP1 plays multiple roles in mammalian DNA damage repair, mediating pathway choice and facilitating DNA double-strand break repair in heterochromatin. Although it possesses a C-terminal BRCT2 domain, commonly involved in phospho-peptide binding in other proteins, initial recruitment of 53BP1 to sites of DNA damage depends on interaction with histone post-translational modifications--H4K20me2 and H2AK13/K15ub--downstream of the early γH2AX phosphorylation mark of DNA damage. We now show that, contrary to current models, the 53BP1-BRCT2 domain binds γH2AX directly, providing a third post-translational mark regulating 53BP1 function. We find that the interaction of 53BP1 with γH2AX is required for sustaining the 53BP1-dependent focal concentration of activated ATM that facilitates repair of DNA double-strand breaks in heterochromatin in G1. PMID:26628370

  4. ATM Localization and Heterochromatin Repair Depend on Direct Interaction of the 53BP1-BRCT2 Domain with γH2AX.

    PubMed

    Baldock, Robert A; Day, Matthew; Wilkinson, Oliver J; Cloney, Ross; Jeggo, Penelope A; Oliver, Antony W; Watts, Felicity Z; Pearl, Laurence H

    2015-12-15

    53BP1 plays multiple roles in mammalian DNA damage repair, mediating pathway choice and facilitating DNA double-strand break repair in heterochromatin. Although it possesses a C-terminal BRCT2 domain, commonly involved in phospho-peptide binding in other proteins, initial recruitment of 53BP1 to sites of DNA damage depends on interaction with histone post-translational modifications--H4K20me2 and H2AK13/K15ub--downstream of the early γH2AX phosphorylation mark of DNA damage. We now show that, contrary to current models, the 53BP1-BRCT2 domain binds γH2AX directly, providing a third post-translational mark regulating 53BP1 function. We find that the interaction of 53BP1 with γH2AX is required for sustaining the 53BP1-dependent focal concentration of activated ATM that facilitates repair of DNA double-strand breaks in heterochromatin in G1.

  5. Evaluation of genotoxicity using automated detection of γH2AX in metabolically competent HepaRG cells.

    PubMed

    Quesnot, Nicolas; Rondel, Karine; Audebert, Marc; Martinais, Sophie; Glaise, Denise; Morel, Fabrice; Loyer, Pascal; Robin, Marie-Anne

    2016-01-01

    The in situ detection of γH2AX was recently reported to be a promising biomarker of genotoxicity. In addition, the human HepaRG hepatoma cells appear to be relevant for investigating hepatic genotoxicity since they express most of drug metabolizing enzymes and a wild type p53. The aim of this study was to determine whether the automated in situ detection of γH2AX positive HepaRG cells could be relevant for evaluation of genotoxicity after single or long-term repeated in vitro exposure compared to micronucleus assay. Metabolically competent HepaRG cells were treated daily with environmental contaminants and genotoxicity was evaluated after 1, 7 and 14 days. Using these cells, we confirmed the genotoxicity of aflatoxin B1 and benzo(a)pyrene and demonstrated that dimethylbenzanthracene, fipronil and endosulfan previously found genotoxic with comet or micronucleus assays also induced γH2AX phosphorylation. Furthermore, we showed that fluoranthene and bisphenol A induced γH2AX while no effect had been previously reported in HepG2 cells. In addition, induction of γH2AX was observed with some compounds only after 7 days, highlighting the importance of studying long-term effects of low doses of contaminants. Together, our data demonstrate that automated γH2AX detection in metabolically competent HepaRG cells is a suitable high-through put genotoxicity screening assay.

  6. New distinct compartments in the G2 phase of the cell cycle defined by the levels of γH2AX.

    PubMed

    Dale Rein, Idun; Stokke, Caroline; Jalal, Marwa; Myklebust, June H; Patzke, Sebastian; Stokke, Trond

    2015-01-01

    Induction of DNA double strand breaks leads to phosphorylation and focus-formation of H2AX. However, foci of phosphorylated H2AXH2AX) appear during DNA replication also in the absence of exogenously applied injury. We measured the amount and the number of foci of γH2AX in different phases of the cell cycle by flow cytometry, sorting and microscopy in 4 malignant B-lymphocyte cell lines. There were no detectable γH2AX and no γH2AX-foci in G1 cells in exponentially growing cells and cells treated with PARP inhibitor (PARPi) for 24 h to create damage and reduce DNA repair. The amount of γH2AX increased immediately upon S phase entry, and about 10 and 30 γH2AX foci were found in mid-S phase control and PARPi-treated cells, respectively. The γH2AX-labeled damage caused by DNA replication was not fully repaired before entry into G2. Intriguingly, G2 cells populated a continuous distribution of γH2AX levels, from cells with a high content of γH2AX and the same number of foci as S phase cells (termed "G2H" compartment), to cells that there were almost negative and had about 2 foci (termed "G2L" compartment). EdU-labeling of S phase cells revealed that G2H was directly populated from S phase, while G2L was populated from G2H, but in control cells also directly from S phase. The length of G2H in particular increased after PARPi treatment, compatible with longer DNA-repair times. Our results show that cells repair replication-induced damage in G2H, and enter mitosis after a 2-3 h delay in G2L. PMID:26317799

  7. γ-H2AX as a biomarker for DNA double-strand breaks in ecotoxicology.

    PubMed

    Gerić, Marko; Gajski, Goran; Garaj-Vrhovac, Vera

    2014-07-01

    The visualisation of DNA damage response proteins enables the indirect measurement of DNA damage. Soon after the occurrence of a DNA double-strand break (DSB), the formation of γ-H2AX histone variants is to be expected. This review is focused on the potential use of the γ-H2AX foci assay in assessing the genotoxicity of environmental contaminants including cytostatic pharmaceuticals, since standard methods may not be sensitive enough to detect the damaging effect of low environmental concentrations of such drugs. These compounds are constantly released into the environment, potentially representing a threat to water quality, aquatic organisms, and, ultimately, human health. Our review of the literature revealed that this method could be used in the biomonitoring and risk assessment of aquatic systems affected by wastewater from the production, usage, and disposal of cytostatic pharmaceuticals.

  8. Sirt1 physically interacts with Tip60 and negatively regulates Tip60-mediated acetylation of H2AX

    SciTech Connect

    Yamagata, Kazutsune; Kitabayashi, Issay

    2009-12-25

    Sirt1 appear to be NAD(+)-dependent deacetylase that deacetylates histones and several non-histone proteins. In this study, we identified Sirt1 as a physical interaction partner of Tip60, which is a mammalian MYST-type histone acetyl-transferase that specifically acetylates histones H2A and H4. Although Tip60 also acetylates DNA damage-specific histone H2A variant H2AX in response to DNA damage, which is a process required for appropriate DNA damage response, overexpression of Sirt1 represses Tip60-mediated acetylation of H2AX. Furthermore, Sirt1 depletion by RNAi causes excessive acetylation of H2AX, and enhances accumulation of {gamma}-ray irradiation-induced MDC1, BRCA1, and Rad51 foci in nuclei. These findings suggest that Sirt1 functions as negative regulator of Tip60-mediated acetylation of H2AX. Moreover, Sirt1 deacetylates an acetylated Tip60 in response to DNA damage and stimulates proteasome-dependent Tip60 degradation in vivo, suggesting that Sirt1 negatively regulates the protein level of Tip60 in vivo. Sirt1 may thus repress excessive activation of the DNA damage response and Rad51-homologous recombination repair by suppressing the function of Tip60.

  9. Gamma-H2AX foci counting: image processing and control software for high-content screening

    NASA Astrophysics Data System (ADS)

    Barber, P. R.; Locke, R. J.; Pierce, G. P.; Rothkamm, K.; Vojnovic, B.

    2007-02-01

    Phosphorylation of the chromatin protein H2AX (forming γH2AX) is implicated in the repair of DNA double strand breaks (DSB's); a large number of H2AX molecules become phosphorylated at the sites of DSB's. Fluorescent staining of the cell nuclei for γH2AX, via an antibody, visualises the formation of these foci, allowing the quantification of DNA DSB's and forming the basis for a sensitive biological dosimeter of ionising radiation. We describe an automated fluorescence microscopy system, including automated image processing, to count γH2AX foci. The image processing is performed by a Hough transform based algorithm, CHARM, which has wide applicability for the detection and analysis of cells and cell colonies. This algorithm and its applications for cell nucleus and foci detection will be described. The system also relies heavily on robust control software, written using multi-threaded cbased modules in LabWindows/CVI that adapt to the timing requirements of a particular experiment for optimised slide/plate scanning and mosaicing, making use of modern multi-core processors. The system forms the basis of a general purpose high-content screening platform with wide ranging applications in live and fixed cell imaging and tissue micro arrays, that in future, can incorporate spectrally and time-resolved information.

  10. Activation of H2AX and ATM in varicella-zoster virus (VZV)-infected cells is associated with expression of specific VZV genes.

    PubMed

    Yamamoto, Takenobu; Ali, Mir A; Liu, XueQiao; Cohen, Jeffrey I

    2014-03-01

    Mammalian cells activate DNA damage response pathways in response to virus infections. Activation of these pathways can enhance replication of many viruses, including herpesviruses. Activation of cellular ATM results in phosphorylation of H2AX and recruits proteins to sites of DNA damage. We found that varicella-zoster (VZV) infected cells had elevated levels of phosphorylated H2AX and phosphorylated ATM and that these levels increased in cells infected with VZV deleted for ORF61 or ORF63, but not deleted for ORF67. Expression of VZV ORF61, ORF62, or ORF63 alone did not result in phosphorylation of H2AX. While BGLF4, the Epstein-Barr virus homolog of VZV ORF47 protein kinase, phosphorylates H2AX and ATM, neither VZV ORF47 nor ORF66 protein kinase phosphorylated H2AX or ATM. Cells lacking ATM had no reduction in VZV replication. Thus, VZV induces phosphorylation of H2AX and ATM and this effect is associated with the presence of specific VZV genes in virus-infected cells.

  11. Controlled bile acid exposure to oesophageal mucosa causes up-regulation of nuclear γ-H2AX possibly via iNOS induction

    PubMed Central

    Jiang, Bo; Zhao, Shengqian; Tao, Zhen; Wen, Jin; Yang, Yancheng; Zheng, Yin; Yan, Hongling; Sheng, Ying; Gao, Aimin

    2016-01-01

    Using an in vitro model in which flatmounts of oesophagus was periodically exposed to bile acids, we demonstrate, using multiple methods, that the bile acid receptor TGR5, inducible nitric oxide synthase (iNOS) and γ-histone family 2A variant (γ-H2AX) are up-regulated. This indicates that bile acids cause up-regulation of iNOS, which further causes genotoxic stress as evidenced by increase of the highly sensitive marker, phosphorylated histone. In vitro nitric oxide (NO) assays showed increased production of nitric acid in the oesophageal epithelium exposed to the bile acids. This increase was inhibited in the presence of the nonspecific iNOS inhibitor aminoguanidine (AG). Cumulatively, the results of the present study provide suggestion that not only acid reflux, but also non-acid reflux of bile may cause genotoxic stress. These aspects merit to be tested in wide spectrum of Barrett epithelial tissues. PMID:27247425

  12. Controlled bile acid exposure to oesophageal mucosa causes up-regulation of nuclear γ-H2AX possibly via iNOS induction.

    PubMed

    Jiang, Bo; Zhao, Shengqian; Tao, Zhen; Wen, Jin; Yang, Yancheng; Zheng, Yin; Yan, Hongling; Sheng, Ying; Gao, Aimin

    2016-08-01

    Using an in vitro model in which flatmounts of oesophagus was periodically exposed to bile acids, we demonstrate, using multiple methods, that the bile acid receptor TGR5, inducible nitric oxide synthase (iNOS) and γ-histone family 2A variant (γ-H2AX) are up-regulated. This indicates that bile acids cause up-regulation of iNOS, which further causes genotoxic stress as evidenced by increase of the highly sensitive marker, phosphorylated histone. In vitro nitric oxide (NO) assays showed increased production of nitric acid in the oesophageal epithelium exposed to the bile acids. This increase was inhibited in the presence of the nonspecific iNOS inhibitor aminoguanidine (AG). Cumulatively, the results of the present study provide suggestion that not only acid reflux, but also non-acid reflux of bile may cause genotoxic stress. These aspects merit to be tested in wide spectrum of Barrett epithelial tissues. PMID:27247425

  13. Stella preserves maternal chromosome integrity by inhibiting 5hmC-induced γH2AX accumulation

    PubMed Central

    Nakatani, Tsunetoshi; Yamagata, Kazuo; Kimura, Tohru; Oda, Masaaki; Nakashima, Hiroyuki; Hori, Mayuko; Sekita, Yoichi; Arakawa, Tatsuhiko; Nakamura, Toshinobu; Nakano, Toru

    2015-01-01

    In the mouse zygote, Stella/PGC7 protects 5-methylcytosine (5mC) of the maternal genome from Tet3-mediated oxidation to 5-hydroxymethylcytosine (5hmC). Although ablation of Stella causes early embryonic lethality, the underlying molecular mechanisms remain unknown. In this study, we report impaired DNA replication and abnormal chromosome segregation (ACS) of maternal chromosomes in Stella-null embryos. In addition, phosphorylation of H2AXH2AX), which has been reported to inhibit DNA replication, accumulates in the maternal chromatin of Stella-null zygotes in a Tet3-dependent manner. Cell culture assays verified that ectopic appearance of 5hmC induces abnormal accumulation of γH2AX and subsequent growth retardation. Thus, Stella protects maternal chromosomes from aberrant epigenetic modifications to ensure early embryogenesis. PMID:25694116

  14. Spontaneous γH2AX Foci in Human Solid Tumor-Derived Cell Lines in Relation to p21WAF1 and WIP1 Expression

    PubMed Central

    Mirzayans, Razmik; Andrais, Bonnie; Scott, April; Wang, Ying W.; Weiss, Robert H.; Murray, David

    2015-01-01

    Phosphorylation of H2AX on Ser139 (γH2AX) after exposure to ionizing radiation produces nuclear foci that are detectable by immunofluorescence microscopy. These so-called γH2AX foci have been adopted as quantitative markers for DNA double-strand breaks. High numbers of spontaneous γH2AX foci have also been reported for some human solid tumor-derived cell lines, but the molecular mechanism(s) for this response remains elusive. Here we show that cancer cells (e.g., HCT116; MCF7) that constitutively express detectable levels of p21WAF1 (p21) exhibit low numbers of γH2AX foci (<3/nucleus), whereas p21 knockout cells (HCT116p21−/−) and constitutively low p21-expressing cells (e.g., MDA-MB-231) exhibit high numbers of foci (e.g., >50/nucleus), and that these foci are not associated with apoptosis. The majority (>95%) of cells within HCT116p21−/− and MDA-MB-231 cultures contain high levels of phosphorylated p53, which is localized in the nucleus. We further show an inverse relationship between γH2AX foci and nuclear accumulation of WIP1, an oncogenic phosphatase. Our studies suggest that: (i) p21 deficiency might provide a selective pressure for the emergence of apoptosis-resistant progeny exhibiting genomic instability, manifested as spontaneous γH2AX foci coupled with phosphorylation and nuclear accumulation of p53; and (ii) p21 might contribute to positive regulation of WIP1, resulting in dephosphorylation of γH2AX. PMID:26006237

  15. Structure of a protein (H2AX): a comparative study with knowledge-based interactions

    NASA Astrophysics Data System (ADS)

    Fritsche, Miriam; Heermann, Dieter; Farmer, Barry; Pandey, Ras

    2013-03-01

    The structural and conformational properties of the histone protein H2AX (with143 residues) is studied by a coarse-grained model as a function of temperature (T). Three knowledge-based phenomenological interactions (MJ, BT, and BFKV) are used as input to a generalized Lennard-Jones potential for residue-residue interactions. Large-scale Monte Carlo simulations are performed to identify similarity and differences in the equilibrium structures with these potentials. Multi-scale structures of the protein are examined by a detailed analysis of their structure functions. We find that the radius of gyration (Rg) of H2AX depends non-monotonically on temperature with a maximum at a characteristic value Tc, a common feature to each interaction. The characteristic temperature and the range of non-monotonic thermal response and decay pattern are, however, sensitive to interactions. A comparison of the structural properties emerging from three potentials will be presented in this talk. This work is supported by Air Force Research Laboratory.

  16. Staining Against Phospho-H2AX (γ-H2AX) as a Marker for DNA Damage and Genomic Instability in Cancer Tissues and Cells.

    PubMed

    Nagelkerke, Anika; Span, Paul N

    2016-01-01

    Phospho-H2AX or γ-H2AX- is a marker of DNA double-stranded breaks and can therefore be used to monitor DNA repair after, for example, irradiation. In addition, positive staining for phospho-H2AX may indicate genomic instability and telomere dysfunction in tumour cells and tissues. Here, we provide a protocol to perform immunostaining for phospho-H2AX on cells, cryosections and formalin-fixed, paraffin-embedded tissues. Crucial steps in the protocol and troubleshooting suggestions are indicated. We also provide suggestions on how to combine staining against γ-H2AX with stainings against components of the tumour microenvironment, such as hypoxia and blood vessels. PMID:27325258

  17. Activation of p38 mitogen-activated protein kinase by celecoxib oppositely regulates survivin and gamma-H2AX in human colorectal cancer cells

    SciTech Connect

    Hsiao, P.-W.; Chang, C.-C.; Liu, H.-F.; Tsai, C.-M.; Chiu, Ted H.; Chao, J.-I . E-mail: chaoji@mail.tcu.edu.tw

    2007-07-01

    Cancer cells express survivin that facilitates tumorigenesis. Celecoxib has been shown to reduce human colorectal cancers. However, the role and regulation of survivin by celecoxib in colorectal carcinoma cells remain unclear. Treatment with 40-80 {mu}M celecoxib for 24 h induced cytotoxicity and proliferation inhibition via a concentration-dependent manner in RKO colorectal carcinoma cells. Celecoxib blocked the survivin protein expression and increased the phosphorylation of H2AX at serine-193 ({gamma}-H2AX). The survivin gene knockdown by transfection with a survivin siRNA revealed that the loss of survivin correlated with the expression of {gamma}-H2AX. Meanwhile, celecoxib increased caspase-3 activation and apoptosis. Celecoxib activated the phosphorylation of p38 mitogen-activated protein (MAP) kinase. The phosphorylated proteins of p38 MAP kinase and {gamma}-H2AX were observed in the apoptotic cells. SB203580, a specific p38 MAP kinase inhibitor, protected the survivin protein expression and decreased the levels of {gamma}-H2AX and apoptosis in the celecoxib-exposed cells. The blockade of survivin expression increased the celecoxib-induced cytotoxicity; conversely, overexpression of survivin by transfection with a survivin-expressing vector raised the cancer cell proliferation and resisted the celecoxib-induced cell death. Our results provide for the first time that p38 MAP kinase participates in the down-regulation of survivin and subsequently induces the activation of {gamma}-H2AX for mediating apoptosis following treatment with celecoxib in human colorectal cancer cells.

  18. Accumulation of DSBs in {gamma}-H2AX domains fuel chromosomal aberrations

    SciTech Connect

    Scherthan, H. Hieber, L.; Braselmann, H.; Meineke, V.; Zitzelsberger, H.

    2008-07-11

    DNA double strand breaks (DSBs) pose a severe hazard to the genome as erroneous rejoining of DSBs can lead to mutation and cancer. Here, we have investigated the correlation between X irradiation-induced {gamma}-H2AX foci, theoretically induced DSBs, and the minimal number of mis-rejoined DNA breaks (MNB) in irradiated lymphocytes obtained from two healthy humans by painting of the whole chromosome complement by spectral karyotyping. There were less {gamma}-H2AX foci/dose than theoretically expected, while misrepair, as expressed by MNB/{gamma}-H2AX focus, was similar at 0.5 and 1 Gy but 3.6-fold up at 3 Gy. Hence, our results suggest that X-ray-induced {gamma}-H2AX foci in G0 lymphocyte nuclei contain more than one DSB and that the increasing number of DSBs per {gamma}-H2AX repair factory lead to an increased rate of misrepair.

  19. Cigarette sidestream smoke induces histone H3 phosphorylation via JNK and PI3K/Akt pathways, leading to the expression of proto-oncogenes.

    PubMed

    Ibuki, Yuko; Toyooka, Tatsushi; Zhao, Xiaoxu; Yoshida, Ikuma

    2014-06-01

    Post-translational modifications in histones have been associated with cancer. Although cigarette sidestream smoke (CSS) as well as mainstream smoke are carcinogens, the relationship between carcinogenicity and histone modifications has not yet been clarified. Here, we demonstrated that CSS induced phosphorylation of histones, involving a carcinogenic process. Treatment with CSS markedly induced the phosphorylation of histone H3 at serine 10 and 28 residues (H3S10 and H3S28), which was independent from the cell cycle, in the human pulmonary epithelial cell model, A549 and normal human lung fibroblasts, MRC-5 and WI-38. Using specific inhibitors and small interfering RNA, the phosphorylation of H3S10 was found to be mediated by c-jun N-terminal kinase (JNK) and phosphoinositide 3-kinase (PI3K)/Akt pathways. These pathways were different from that of the CSS-induced phosphorylation of histone H2AX (γ-H2AX) mediated by Ataxia telangiectasia-mutated (ATM) and ATM-Rad3-related (ATR) protein kinases. A chromatin immunoprecipitation assay revealed that the phosphorylation of H3S10 was increased in the promoter sites of the proto-oncogenes, c-fos and c-jun, which indicated that CSS plays a role in tumor promotion. Because the phosphorylation of H3S10 was decreased in the aldehyde-removed CSS and was significantly induced by treatment with formaldehyde, aldehydes are suspected to partially contribute to this phosphorylation. These findings suggested that any chemicals in CSS, including aldehydes, phosphorylate H3S10 via JNK and PI3K/Akt pathways, which is different from the DNA damage response, resulting in tumor promotion.

  20. Induction and inhibition of the pan-nuclear gamma-H2AX response in resting human peripheral blood lymphocytes after X-ray irradiation.

    PubMed

    Ding, D; Zhang, Y; Wang, J; Zhang, X; Gao, Y; Yin, L; Li, Q; Li, J; Chen, H

    2016-01-01

    Human peripheral blood lymphocytes (HPBLs) are one of the most sensitive cells to ionizing radiation (IR) in the human body, and IR-induced DNA damage and functional impairment of HPBLs are the adverse consequences of IR accidents and major side effects of radiotherapy. Phosphorylated H2AXH2AX) is a sensitive marker for DNA double-strand breaks, but the role and regulation of the pan-nuclear γH2AX response in HPBLs after IR remain unclear. We herein demonstrated that the pan-nuclear γH2AX signals were increased in a time- and dose-dependent manner, colocalized with >94% of TUNEL apoptotic staining, and displayed a typical apoptotic pattern in resting HPBLs after low LET X-ray IR. In addition, the X-irradiation-induced pan-nuclear p-ATM and p-DNA-PKcs responses also occurred in resting HPBLs, and were colocalized with 92-95% of TUNEL staining and 97-98% of the pan-nuclear γH2AX signals, respectively, with a maximum at 6 h post irradiation, but disappeared at 24 h post irradiation. Moreover, ATM/DNA-PKcs inhibitor KU55933, p53 inhibitor PFT-μ and pan-caspase inhibitor ZVAD-fmk significantly decreased X-irradiation-induced pan-nuclear γH2AX signals and TUNEL staining, protected HPBLs from apoptosis, but decreased the proliferative response to mitogen in X-irradiated HPBLs. Notably, whereas both KU55933 and PFT-μ increased the IR-induced chromosome breaks and mis-repair events through inhibiting the formation of p-ATM, p-DNA-PKcs and γH2AX foci in X-irradiated HPBLs, the ZVAD-fmk did not increase the IR-induced chromosomal instability. Taken together, our data indicate that pan-nuclear γH2AX response represents an apoptotic signal that is triggered by the transient pan-nuclear ATM and DNA-PKcs activation, and mediated by p53 and pan-caspases in X-irradiated HPBLs, and that caspase inhibitors are better than ATM/DNA-PKcs inhibitors and p53 inhibitors to block pan-nuclear γH2AX response/apoptosis and protect HPBLs from IR. PMID:27551505

  1. Induction and inhibition of the pan-nuclear gamma-H2AX response in resting human peripheral blood lymphocytes after X-ray irradiation

    PubMed Central

    Ding, D; Zhang, Y; Wang, J; Zhang, X; Gao, Y; Yin, L; Li, Q; Li, J; Chen, H

    2016-01-01

    Human peripheral blood lymphocytes (HPBLs) are one of the most sensitive cells to ionizing radiation (IR) in the human body, and IR-induced DNA damage and functional impairment of HPBLs are the adverse consequences of IR accidents and major side effects of radiotherapy. Phosphorylated H2AXH2AX) is a sensitive marker for DNA double-strand breaks, but the role and regulation of the pan-nuclear γH2AX response in HPBLs after IR remain unclear. We herein demonstrated that the pan-nuclear γH2AX signals were increased in a time- and dose-dependent manner, colocalized with >94% of TUNEL apoptotic staining, and displayed a typical apoptotic pattern in resting HPBLs after low LET X-ray IR. In addition, the X-irradiation-induced pan-nuclear p-ATM and p-DNA-PKcs responses also occurred in resting HPBLs, and were colocalized with 92–95% of TUNEL staining and 97–98% of the pan-nuclear γH2AX signals, respectively, with a maximum at 6 h post irradiation, but disappeared at 24 h post irradiation. Moreover, ATM/DNA-PKcs inhibitor KU55933, p53 inhibitor PFT-μ and pan-caspase inhibitor ZVAD-fmk significantly decreased X-irradiation-induced pan-nuclear γH2AX signals and TUNEL staining, protected HPBLs from apoptosis, but decreased the proliferative response to mitogen in X-irradiated HPBLs. Notably, whereas both KU55933 and PFT-μ increased the IR-induced chromosome breaks and mis-repair events through inhibiting the formation of p-ATM, p-DNA-PKcs and γH2AX foci in X-irradiated HPBLs, the ZVAD-fmk did not increase the IR-induced chromosomal instability. Taken together, our data indicate that pan-nuclear γH2AX response represents an apoptotic signal that is triggered by the transient pan-nuclear ATM and DNA-PKcs activation, and mediated by p53 and pan-caspases in X-irradiated HPBLs, and that caspase inhibitors are better than ATM/DNA-PKcs inhibitors and p53 inhibitors to block pan-nuclear γH2AX response/apoptosis and protect HPBLs from IR. PMID:27551505

  2. Induction and inhibition of the pan-nuclear gamma-H2AX response in resting human peripheral blood lymphocytes after X-ray irradiation.

    PubMed

    Ding, D; Zhang, Y; Wang, J; Zhang, X; Gao, Y; Yin, L; Li, Q; Li, J; Chen, H

    2016-01-01

    Human peripheral blood lymphocytes (HPBLs) are one of the most sensitive cells to ionizing radiation (IR) in the human body, and IR-induced DNA damage and functional impairment of HPBLs are the adverse consequences of IR accidents and major side effects of radiotherapy. Phosphorylated H2AXH2AX) is a sensitive marker for DNA double-strand breaks, but the role and regulation of the pan-nuclear γH2AX response in HPBLs after IR remain unclear. We herein demonstrated that the pan-nuclear γH2AX signals were increased in a time- and dose-dependent manner, colocalized with >94% of TUNEL apoptotic staining, and displayed a typical apoptotic pattern in resting HPBLs after low LET X-ray IR. In addition, the X-irradiation-induced pan-nuclear p-ATM and p-DNA-PKcs responses also occurred in resting HPBLs, and were colocalized with 92-95% of TUNEL staining and 97-98% of the pan-nuclear γH2AX signals, respectively, with a maximum at 6 h post irradiation, but disappeared at 24 h post irradiation. Moreover, ATM/DNA-PKcs inhibitor KU55933, p53 inhibitor PFT-μ and pan-caspase inhibitor ZVAD-fmk significantly decreased X-irradiation-induced pan-nuclear γH2AX signals and TUNEL staining, protected HPBLs from apoptosis, but decreased the proliferative response to mitogen in X-irradiated HPBLs. Notably, whereas both KU55933 and PFT-μ increased the IR-induced chromosome breaks and mis-repair events through inhibiting the formation of p-ATM, p-DNA-PKcs and γH2AX foci in X-irradiated HPBLs, the ZVAD-fmk did not increase the IR-induced chromosomal instability. Taken together, our data indicate that pan-nuclear γH2AX response represents an apoptotic signal that is triggered by the transient pan-nuclear ATM and DNA-PKcs activation, and mediated by p53 and pan-caspases in X-irradiated HPBLs, and that caspase inhibitors are better than ATM/DNA-PKcs inhibitors and p53 inhibitors to block pan-nuclear γH2AX response/apoptosis and protect HPBLs from IR.

  3. Relationship between spontaneous γH2AX foci formation and progenitor functions in circulating hematopoietic stem and progenitor cells among atomic-bomb survivors.

    PubMed

    Kajimura, Junko; Kyoizumi, Seishi; Kubo, Yoshiko; Misumi, Munechika; Yoshida, Kengo; Hayashi, Tomonori; Imai, Kazue; Ohishi, Waka; Nakachi, Kei; Weng, Nan-Ping; Young, Lauren F; Shieh, Jae-Hung; Moore, Malcolm A; van den Brink, Marcel R M; Kusunoki, Yoichiro

    2016-05-01

    Accumulated DNA damage in hematopoietic stem cells is a primary mechanism of aging-associated dysfunction in human hematopoiesis. About 70 years ago, atomic-bomb (A-bomb) radiation induced DNA damage and functional decreases in the hematopoietic system of A-bomb survivors in a radiation dose-dependent manner. The peripheral blood cell populations then recovered to a normal range, but accompanying cells derived from hematopoietic stem cells still remain that bear molecular changes possibly caused by past radiation exposure and aging. In the present study, we evaluated radiation-related changes in the frequency of phosphorylated (Ser-139) H2AXH2AX) foci formation in circulating CD34-positive/lineage marker-negative (CD34+Lin-) hematopoietic stem and progenitor cells (HSPCs) among 226Hiroshima A-bomb survivors. An association between the frequency of γH2AX foci formation in HSPCs and the radiation dose was observed, but the γH2AX foci frequency was not significantly elevated by past radiation. We found a negative correlation between the frequency of γH2AX foci formation and the length of granulocyte telomeres. A negative interaction effect between the radiation dose and the frequency of γH2AX foci was suggested in a proportion of a subset of HSPCs as assessed by the cobblestone area-forming cell assay (CAFC), indicating that the self-renewability of HSPCs may decrease in survivors who were exposed to a higher radiation dose and who had more DNA damage in their HSPCs. Thus, although many years after radiation exposure and with advancing age, the effect of DNA damage on the self-renewability of HSPCs may be modified by A-bomb radiation exposure.

  4. Relationship between spontaneous γH2AX foci formation and progenitor functions in circulating hematopoietic stem and progenitor cells among atomic-bomb survivors.

    PubMed

    Kajimura, Junko; Kyoizumi, Seishi; Kubo, Yoshiko; Misumi, Munechika; Yoshida, Kengo; Hayashi, Tomonori; Imai, Kazue; Ohishi, Waka; Nakachi, Kei; Weng, Nan-Ping; Young, Lauren F; Shieh, Jae-Hung; Moore, Malcolm A; van den Brink, Marcel R M; Kusunoki, Yoichiro

    2016-05-01

    Accumulated DNA damage in hematopoietic stem cells is a primary mechanism of aging-associated dysfunction in human hematopoiesis. About 70 years ago, atomic-bomb (A-bomb) radiation induced DNA damage and functional decreases in the hematopoietic system of A-bomb survivors in a radiation dose-dependent manner. The peripheral blood cell populations then recovered to a normal range, but accompanying cells derived from hematopoietic stem cells still remain that bear molecular changes possibly caused by past radiation exposure and aging. In the present study, we evaluated radiation-related changes in the frequency of phosphorylated (Ser-139) H2AXH2AX) foci formation in circulating CD34-positive/lineage marker-negative (CD34+Lin-) hematopoietic stem and progenitor cells (HSPCs) among 226Hiroshima A-bomb survivors. An association between the frequency of γH2AX foci formation in HSPCs and the radiation dose was observed, but the γH2AX foci frequency was not significantly elevated by past radiation. We found a negative correlation between the frequency of γH2AX foci formation and the length of granulocyte telomeres. A negative interaction effect between the radiation dose and the frequency of γH2AX foci was suggested in a proportion of a subset of HSPCs as assessed by the cobblestone area-forming cell assay (CAFC), indicating that the self-renewability of HSPCs may decrease in survivors who were exposed to a higher radiation dose and who had more DNA damage in their HSPCs. Thus, although many years after radiation exposure and with advancing age, the effect of DNA damage on the self-renewability of HSPCs may be modified by A-bomb radiation exposure. PMID:27169377

  5. Early Detection of Genotoxic Urinary Bladder Carcinogens by Immunohistochemistry for γ-H2AX.

    PubMed

    Toyoda, Takeshi; Cho, Young-Man; Akagi, Jun-Ichi; Mizuta, Yasuko; Hirata, Tadashi; Nishikawa, Akiyoshi; Ogawa, Kumiko

    2015-12-01

    DNA double-strand breaks (DSBs) induced by exposure to genotoxic agents are known to cause genome instability and cancer development. To evaluate the applicability of γ-H2AX, a sensitive marker of DSBs, in the early detection of genotoxicity and carcinogenicity of chemicals using animal models, we examined γ-H2AX expression in urinary bladders of rats. Six-week-old male F344 rats were orally treated for 4 weeks with a total of 12 chemicals divided into 4 categories based on genotoxicity and carcinogenicity in the urinary bladder. Animals were sacrificed at the end of administration or after 2 weeks of recovery, and immunohistochemistry for γ-H2AX was performed. At week 4, γ-H2AX expression in bladder epithelial cells was significantly increased by all 4 genotoxic bladder carcinogens as compared with the controls, whereas the 3 chemicals that were genotoxic but not carcinogenic in the bladders did not cause upregulation of γ-H2AX. After the recovery period, γ-H2AX expression was markedly reduced in all groups but remained significantly elevated in rats treated with 3 of the 4 genotoxic bladder carcinogens. Although slight increases in γ-H2AX expression were induced by a weak bladder carcinogen with equivocal genotoxicity (phenethyl isothiocyanate) and 2 nongenotoxic bladder carcinogens (melamine and uracil) at week 4, these differences were not significant and were thought to be associated with activated proliferation by urothelial hyperplasia, as demonstrated by increased Ki67-positive cells. These results suggested that γ-H2AX may be a potential biomarker for the early detection of genotoxic bladder carcinogens.

  6. Relationships between histone phosphorylation and cell proliferation

    SciTech Connect

    Gurley, L.R.; D'Anna, J.A.; Halleck, M.S.; Barham, S.S.; Walters, R.A.; Jett, J.H.; Tobey, R.A.

    1980-01-01

    From studies with various Peromyscus cell lines, correlations were made which led to the proposal that H2A phosphorylation is most active in constitutive heterochromatin. Recent studies on the two H2A variants found in these cells have revealed that the high level of H2A phosphorylation associated with heterochromatin is not the result of an increase in H2A phosphorylation rate or an increase in the number of phosphorylation sites, but rather, is due to an increase in the proportion of one of the H2A variants which is more highly phosphorylated than the other. If H2A phosphorylation is necessary for the constitutive heterochromatin state, it is reasonable that the cell would accomplish the generation of this structure by permanently installing a more highly phosphorylated H2A in the heterochromatin nucleosome rather than by trying to modulate the phosphorylation rate in such a condensed structure. The proposal that histone phosphorylation is involved with the condensed structures of chromatin is based primarily on correlations between histone phosphorylation measurements and cellular phenomena. One proof that this concept is correct ultimately rests in the ability to demonstrate these correlations in isolated chromosomes and chromatin fractions. This demonstration is presently limited by the excessive dephosphorylation of histones which occurs during the isolation of chromosomes and chromatin fractions. Thus, the demonstration of an effective inhibitor of histone dephosphorylation which is compatible with the isolation of nuclear structures and chromatin fractions having native morphologies is essential for future studies on the biological function of histone phosphorylation. (ERB)

  7. Induction and Persistence of Large γH2AX Foci by High Linear Energy Transfer Radiation in DNA-Dependent protein kinase–Deficient Cells

    SciTech Connect

    Bracalente, Candelaria; Ibañez, Irene L.; Molinari, Beatriz; Palmieri, Mónica; Kreiner, Andrés; Valda, Alejandro; and others

    2013-11-15

    Purpose: To evaluate the cell response to DNA double-strand breaks induced by low and high linear energy transfer (LET) radiations when the catalytic subunit of DNA-dependent protein kinase (DNA-PKcs), an essential protein of the nonhomologous end-joining repair pathway, lacks kinase activity. Methods and Materials: CHO10B2, a Chinese hamster ovary cell line, and its derived radiosensitive mutant cell line, irs-20, lacking DNA-PKcs activity, were evaluated after 0 to 3 Gy of γ-rays, plateau and Bragg peak protons, and lithium beams by clonogenic assay, and as a measurement of double-strand breaks, phosphorylated H2AXH2AX) foci number and size were quantified by immunocytofluorescence. Results: Irs-20 exhibited greater radiosensitivity and a higher amount of γH2AX foci than CHO10B2 at 6 hours after irradiation for all types of radiations. Remarkably, CHO10B2 and irs-20 maintained their difference in radiosensitivity after high-LET radiation. Six hours after low-LET radiations, irs-20 did not reach basal levels of γH2AX at high doses, whereas CHO10B2 recovered basal levels for all doses. After high-LET radiation, only CHO10B2 exhibited a reduction in γH2AX foci, but it never reached basal levels. Persistent foci in irs-20 confirmed a repair deficiency. Interestingly, after 30 minutes of high-LET radiation both cell lines exhibited large foci (size >0.9 μm{sup 2}) related to the damage nature, whereas at 6 hours irs-20 showed a higher amount of large foci than CHO10B2, with a 7-fold increase at 3 Gy, that could also be associated to radiosensitivity. Conclusions: We demonstrated, for the first time, an association between deficient DNA-PKcs activity and not only high levels of H2AX phosphorylation but also persistence and size increase of γH2AX foci after high-LET irradiation.

  8. Involvement of ROS-p38-H2AX axis in novel curcumin analogues-induced apoptosis in breast cancer cells.

    PubMed

    Dong, Yinhui; Yin, Shutao; Song, Xinhua; Huo, Yazhen; Fan, Lihong; Ye, Min; Hu, Hongbo

    2016-04-01

    Curcumin-based structural modification for developing more effective curcumin analogues has been drawning increasing attention. As alternative approach, using LC/MS guided purification, we previously obtained a series of novel natural terpene-conjugated curcuminoids from turmeric, and some of them exhibited even more potent anti-cancer activity against multiple types of cancer cells than curcumin. The purpose of this follow-up study was designed to decipher the mechanisms involved in anti-cancer activity of these novel curcumin analogues. Apoptosis was evaluated using sub-G1 analysis by flow cytometry and Cell Death ELISA Kit. Changes of protein expression were analyzed by western blotting. RNA interference was employed to inhibit expression of specific protein. We found that bisabolocurcumin ether (T1) and demethoxybisabolocurcumin ether (T2) were able to trigger much stronger apoptosis induction in multiple types of cancer cells than curcumin, which was attributed to persistent and stronger ROS generation. ROS induction by T1 resulted in activation of p38/H2AX axis and p53. Inhibition of p38/H2AX led to a significant reduction of apoptosis, whereas inactivation of p53 caused a dramatically enhanced H2AX phosphorylation and apoptosis induction, suggesting activation of p38/H2AX contributed to apoptosis induction by T1, whereas p53 activation protected novel curcumins-induced apoptosis via suppression of H2AX activation. Our findings provide mechanistic support for the potential use of terpene-conjugated curcuminoids as a novel class of cancer chemopreventive agents. © 2015 Wiley Periodicals, Inc.

  9. Spatiotemporal kinetics of γ-H2AX protein on charged particles induced DNA damage

    NASA Astrophysics Data System (ADS)

    Niu, H.; Chang, H. C.; Cho, I. C.; Chen, C. H.; Liu, C. S.; Chou, W. T.

    2014-08-01

    In several researches, it has been demonstrated that charged particles can induce more complex DNA damages. These complex damages have higher ability to cause the cell death or cell carcinogenesis. For this reason, clarifying the DNA repair mechanism after charged particle irradiation plays an important role in the development of charged particle therapy and space exploration. Unfortunately, the detail spatiotemporal kinetic of DNA damage repair is still unclear. In this study, we used γ-H2AX protein to investigate the spatiotemporal kinetics of DNA double strand breaks in alpha-particle irradiated HeLa cells. The result shows that the intensity of γ-H2AX foci increased gradually, and reached to its maximum at 30 min after irradiation. A good linear relationship can be observed between foci intensity and radiation dose. After 30 min, the γ-H2AX foci intensity was decreased with time passed, but remained a large portion (∼50%) at 48 h passed. The data show that the dissolution rate of γ-H2AX foci agreed with two components DNA repairing model. These results suggest that charged particles can induce more complex DNA damages and causing the retardation of DNA repair.

  10. Cohesin Protects Genes against γH2AX Induced by DNA Double-Strand Breaks

    PubMed Central

    Caron, Pierre; Aymard, Francois; Iacovoni, Jason S.; Briois, Sébastien; Canitrot, Yvan; Bugler, Beatrix; Massip, Laurent; Losada, Ana; Legube, Gaëlle

    2012-01-01

    Chromatin undergoes major remodeling around DNA double-strand breaks (DSB) to promote repair and DNA damage response (DDR) activation. We recently reported a high-resolution map of γH2AX around multiple breaks on the human genome, using a new cell-based DSB inducible system. In an attempt to further characterize the chromatin landscape induced around DSBs, we now report the profile of SMC3, a subunit of the cohesin complex, previously characterized as required for repair by homologous recombination. We found that recruitment of cohesin is moderate and restricted to the immediate vicinity of DSBs in human cells. In addition, we show that cohesin controls γH2AX distribution within domains. Indeed, as we reported previously for transcription, cohesin binding antagonizes γH2AX spreading. Remarkably, depletion of cohesin leads to an increase of γH2AX at cohesin-bound genes, associated with a decrease in their expression level after DSB induction. We propose that, in agreement with their function in chromosome architecture, cohesin could also help to isolate active genes from some chromatin remodelling and modifications such as the ones that occur when a DSB is detected on the genome. PMID:22275873

  11. Use of the γH2AX assay for assessing the genotoxicity of bisphenol A and bisphenol F in human cell lines.

    PubMed

    Audebert, Marc; Dolo, L; Perdu, E; Cravedi, J-P; Zalko, D

    2011-11-01

    Bisphenol A (BPA) and bisphenol F (BPF) are widely used to manufacture plastics and epoxy resins. Both compounds have been shown to be present in the environment and are food contaminants, with, as a result, a low but chronic exposure of humans. However, the fate and possible bioactivation of these compounds at the level of human cell lines was not completely elucidated yet. In this study, we investigated the ability of human cells (intestinal cell line: LS174T, hepatoma cell line: HepG2, and renal cell line: ACHN) to biotransform BPA and BPF, and focused on the cytotoxicity and genotoxicity of these two bisphenols, through the use of a novel and efficient genotoxic assay based on the detection of histone H2AX phosphorylation. BPA and BPF were extensively metabolized in HepG2 and LS174T cell lines, with stronger biotransformation capabilities in intestinal cells than observed in liver cells. Both cell lines produced the glucuronide as well as the sulfate conjugates of BPA. Conversely, the ACHN cell line was found to be devoid of any metabolic capabilities for the two examined bisphenols. Cytotoxicity was tested for BPA, BPF, as well as one metabolite of BPF produced in vivo in rat, namely dihydroxybenzophenone (DHB). In the three cell lines used, we observed similar ranges of toxicity, with DHB being weakly cytotoxic, BPF exhibiting an intermediary cytotoxicity, and BPA being the most cytotoxic compound tested. BPA and DHB were not found to be genotoxic, whatever the cell line examined. BPF was clearly genotoxic in HepG2 cells. These results demonstrate that some human cell lines extensively metabolize bisphenols and establish the genotoxic potential of bisphenol F.

  12. Gamma-H2AX-Based Dose Estimation for Whole and Partial Body Radiation Exposure

    PubMed Central

    Horn, Simon; Barnard, Stephen; Rothkamm, Kai

    2011-01-01

    Most human exposures to ionising radiation are partial body exposures. However, to date only limited tools are available for rapid and accurate estimation of the dose distribution and the extent of the body spared from the exposure. These parameters are of great importance for emergency triage and clinical management of exposed individuals. Here, measurements of γ-H2AX immunofluorescence by microscopy and flow cytometry were compared as rapid biodosimetric tools for whole and partial body exposures. Ex vivo uniformly X-irradiated blood lymphocytes from one donor were used to generate a universal biexponential calibration function for γ-H2AX foci/intensity yields per unit dose for time points up to 96 hours post exposure. Foci – but not intensity – levels remained significantly above background for 96 hours for doses of 0.5 Gy or more. Foci-based dose estimates for ex vivo X-irradiated blood samples from 13 volunteers were in excellent agreement with the actual dose delivered to the targeted samples. Flow cytometric dose estimates for X-irradiated blood samples from 8 volunteers were in excellent agreement with the actual dose delivered at 1 hour post exposure but less so at 24 hours post exposure. In partial body exposures, simulated by mixing ex vivo irradiated and unirradiated lymphocytes, foci/intensity distributions were significantly over-dispersed compared to uniformly irradiated lymphocytes. For both methods and in all cases the estimated fraction of irradiated lymphocytes and dose to that fraction, calculated using the zero contaminated Poisson test and γ-H2AX calibration function, were in good agreement with the actual mixing ratios and doses delivered to the samples. In conclusion, γ-H2AX analysis of irradiated lymphocytes enables rapid and accurate assessment of whole body doses while dispersion analysis of foci or intensity distributions helps determine partial body doses and the irradiated fraction size in cases of partial body exposures. PMID

  13. Histone markers identify the mode of action for compounds positive in the TK6 micronucleus assay.

    PubMed

    Cheung, Jennifer R; Dickinson, Donna A; Moss, Jocelyn; Schuler, Maik J; Spellman, Richard A; Heard, Pamela L

    2015-01-01

    The in vitro micronucleus assay with TK6 cells is frequently used as part of the genotoxicity testing battery for pharmaceuticals. Consequently, follow-up testing strategies are needed for positive compounds to determine their mode of action, which would then allow for deployment of appropriate in vivo follow-up strategies. We have chosen 3 micronucleus positive compounds, the clastogen etoposide, the aneugen noscapine and the cytotoxicant tunicamycin to evaluate different approaches to determine their aneugenic or clastogenic properties. Each of the three compounds were evaluated following 4 and 24h of continuous treatment by flow cytometry for micronucleus induction, the aneugenicity markers phosphorylated-histone 3 (p-H3) and polyploidy, the clastogenicity marker γH2AX and the apoptosis marker cleaved caspase 3. They were further evaluated by Western blot for mono-ubiquitinated and γH2AX. Results show that the clastogen etoposide produced a dose related increase in γH2AX and mono-ubiquitinated H2AX and a dose related decrease in p-H3 positive mitotic cells. Conversely, the aneugen produced increases in p-H3 and polyploidy with no significant increases seen in mono-ubiquitinated H2AX or γH2AX. Lastly, the cytotoxicant tunicamycin induced neither an increase in p-H3 nor γH2AX. All three compounds produced dose-related increases in cleaved caspase 3. The results from this study provide evidence that adding clastogenicity and aneugenicity markers to the in vitro micronucleus assay in TK6 cells could help to identify the mode of action of positive compounds. The combination of endpoints suggested here needs to be further evaluated by a broader set of test compounds. PMID:25726170

  14. Calculation of Dose Deposition in Nanovolumes and Simulation of gamma-H2AX Experiments

    NASA Technical Reports Server (NTRS)

    Plante, Ianik

    2010-01-01

    Monte-Carlo track structure simulations can accurately simulate experimental data: a) Frequency of target hits. b) Dose per event. c) Dose per ion. d) Radial dose. The dose is uniform in micrometers sized voxels; at the nanometer scale, the difference in energy deposition between high and low-LET radiations appears. The calculated 3D distribution of dose voxels, combined with chromosomes simulated by random walk is very similar to the distribution of DSB observed with gamma-H2AX experiments. This is further evidenced by applying a visualization threshold on dose.

  15. High-resolution profiling of γH2AX around DNA double strand breaks in the mammalian genome

    PubMed Central

    Iacovoni, Jason S; Caron, Pierre; Lassadi, Imen; Nicolas, Estelle; Massip, Laurent; Trouche, Didier; Legube, Gaëlle

    2010-01-01

    Chromatin acts as a key regulator of DNA-related processes such as DNA damage repair. Although ChIP-chip is a powerful technique to provide high-resolution maps of protein–genome interactions, its use to study DNA double strand break (DSB) repair has been hindered by the limitations of the available damage induction methods. We have developed a human cell line that permits induction of multiple DSBs randomly distributed and unambiguously positioned within the genome. Using this system, we have generated the first genome-wide mapping of γH2AX around DSBs. We found that all DSBs trigger large γH2AX domains, which spread out from the DSB in a bidirectional, discontinuous and not necessarily symmetrical manner. The distribution of γH2AX within domains is influenced by gene transcription, as parallel mappings of RNA Polymerase II and strand-specific expression showed that γH2AX does not propagate on active genes. In addition, we showed that transcription is accurately maintained within γH2AX domains, indicating that mechanisms may exist to protect gene transcription from γH2AX spreading and from the chromatin rearrangements induced by DSBs. PMID:20360682

  16. Sensing core histone phosphorylation — A matter of perfect timing☆

    PubMed Central

    Sawicka, Anna; Seiser, Christian

    2014-01-01

    Systematic analysis of histone modifications has revealed a plethora of posttranslational modifications that mediate changes in chromatin structure and gene expression. Histone phosphorylation is a transient histone modification that becomes induced by extracellular signals, DNA damage or entry into mitosis. Importantly, phosphorylation of histone proteins does lead not only to the binding of specific reader proteins but also to changes in the affinity for readers or writers of other histone modifications. This induces a cross-talk between different chromatin modifications that allows the spatio-temporal control of chromatin-associated events. In this review we will summarize the progress in our current knowledge of factors sensing reversible histone phosphorylation in different biological scenarios. This article is part of a Special Issue entitled: Molecular mechanisms of histone modification function. PMID:24747175

  17. Mitotic phosphorylation of histone H3 threonine 80

    PubMed Central

    Hammond, Sharra L; Byrum, Stephanie D; Namjoshi, Sarita; Graves, Hillary K; Dennehey, Briana K; Tackett, Alan J; Tyler, Jessica K

    2014-01-01

    The onset and regulation of mitosis is dependent on phosphorylation of a wide array of proteins. Among the proteins that are phosphorylated during mitosis is histone H3, which is heavily phosphorylated on its N-terminal tail. In addition, large-scale mass spectrometry screens have revealed that histone H3 phosphorylation can occur at multiple sites within its globular domain, yet detailed analyses of the functions of these phosphorylations are lacking. Here, we explore one such histone H3 phosphorylation site, threonine 80 (H3T80), which is located on the nucleosome surface. Phosphorylated H3T80 (H3T80ph) is enriched in metazoan cells undergoing mitosis. Unlike H3S10 and H3S28, H3T80 is not phosphorylated by the Aurora B kinase. Further, mutations of T80 to either glutamic acid, a phosphomimetic, or to alanine, an unmodifiable residue, result in an increase in cells in prophase and an increase in anaphase/telophase bridges, respectively. SILAC-coupled mass spectrometry shows that phosphorylated H3T80 (H3T80ph) preferentially interacts with histones H2A and H4 relative to non-phosphorylated H3T80, and this result is supported by increased binding of H3T80ph to histone octamers in vitro. These findings support a model where H3T80ph, protruding from the nucleosome surface, promotes interactions between adjacent nucleosomes to promote chromatin compaction during mitosis in metazoan cells. PMID:24275038

  18. Mitotic phosphorylation of histone H3 threonine 80.

    PubMed

    Hammond, Sharra L; Byrum, Stephanie D; Namjoshi, Sarita; Graves, Hillary K; Dennehey, Briana K; Tackett, Alan J; Tyler, Jessica K

    2014-01-01

    The onset and regulation of mitosis is dependent on phosphorylation of a wide array of proteins. Among the proteins that are phosphorylated during mitosis is histone H3, which is heavily phosphorylated on its N-terminal tail. In addition, large-scale mass spectrometry screens have revealed that histone H3 phosphorylation can occur at multiple sites within its globular domain, yet detailed analyses of the functions of these phosphorylations are lacking. Here, we explore one such histone H3 phosphorylation site, threonine 80 (H3T80), which is located on the nucleosome surface. Phosphorylated H3T80 (H3T80ph) is enriched in metazoan cells undergoing mitosis. Unlike H3S10 and H3S28, H3T80 is not phosphorylated by the Aurora B kinase. Further, mutations of T80 to either glutamic acid, a phosphomimetic, or to alanine, an unmodifiable residue, result in an increase in cells in prophase and an increase in anaphase/telophase bridges, respectively. SILAC-coupled mass spectrometry shows that phosphorylated H3T80 (H3T80ph) preferentially interacts with histones H2A and H4 relative to non-phosphorylated H3T80, and this result is supported by increased binding of H3T80ph to histone octamers in vitro. These findings support a model where H3T80ph, protruding from the nucleosome surface, promotes interactions between adjacent nucleosomes to promote chromatin compaction during mitosis in metazoan cells.

  19. Gamma-H2AX upregulation caused by Wip1 deficiency increases depression-related cellular senescence in hippocampus

    PubMed Central

    He, Zhi-Yong; Wang, Wen-Yue; Hu, Wei-Yan; Yang, Lu; Li, Yan; Zhang, Wei-Yuan; Yang, Ya-Shu; Liu, Si-Cheng; Zhang, Feng-Lan; Mei, Rong; Xing, Da; Xiao, Zhi-Cheng; Zhang, Ming

    2016-01-01

    The PP2C family member Wild-type p53-induced phosphatase 1 (Wip1) critically regulates DNA damage response (DDR) under stressful situations. In the present study, we investigated whether Wip1 expression was involved in the regulation of DDR-induced and depression-related cellular senescence in mouse hippocampus. We found that Wip1 gene knockout (KO) mice showed aberrant elevation of hippocampal cellular senescence and of γ-H2AX activity, which is known as a biomarker of DDR and cellular senescence, indicating that the lack of Wip1-mediated γ-H2AX dephosphorylation facilitates cellular senescence in hippocampus. Administration of the antidepressant fluoxetine had no significant effects on the increased depression-like behaviors, enriched cellular senescence, and aberrantly upregulated hippocampal γ-H2AX activity in Wip1 KO mice. After wildtype C57BL/6 mice were exposed to the procedure of chronic unpredictable mild stress (CUMS), cellular senescence and γ-H2AX activity in hippocampus were also elevated, accompanied by the suppression of Wip1 expression in hippocampus when compared to the control group without CUMS experience. These CUMS-induced symptoms were effectively prevented following fluoxetine administration in wildtype C57BL/6 mice, with the normalization of depression-like behaviors. Our data demonstrate that Wip1-mediated γ-H2AX dephosphorylation may play an important role in the occurrence of depression-related cellular senescence. PMID:27686532

  20. The proximity ligation assay reveals that at DNA double-strand breaks WRAP53β associates with γH2AX and controls interactions between RNF8 and MDC1.

    PubMed

    Rassoolzadeh, Hanif; Coucoravas, Christos; Farnebo, Marianne

    2015-01-01

    We recently demonstrated that WRAP53β acts as a key regulator of ubiquitin-dependent repair of DNA double-strand breaks. Here, we applied the proximity ligation assay (PLA) to show that at such breaks WRAP53β accumulates in close proximity to γH2AX and, furthermore as demonstrated by their co-immunoprecipitation (IP) binds to γH2AX, in a manner dependent on the ATM and ATR kinases. Moreover, formation of complexes between MDC1 and both its partners RNF8 and phosphorylated ATM was visualized. The interaction of MDC1 with RNF8, but not with ATM requires WRAP53β, suggesting that WRAP53β facilitates the former interaction without altering phosphorylation of MDC1 by ATM. Furthermore, our findings highlight PLA as a more sensitive method for the analysis of recruitment of repair factors and complex formation at DNA breaks that are difficult to detect using conventional immunofluorescence.

  1. Induction and Processing of the Radiation-Induced Gamma-H2AX Signal and Its Link to the Underlying Pattern of DSB: A Combined Experimental and Modelling Study.

    PubMed

    Tommasino, Francesco; Friedrich, Thomas; Jakob, Burkhard; Meyer, Barbara; Durante, Marco; Scholz, Michael

    2015-01-01

    We present here an analysis of DSB induction and processing after irradiation with X-rays in an extended dose range based on the use of the γH2AX assay. The study was performed by quantitative flow cytometry measurements, since the use of foci counting would result in reasonable accuracy only in a limited dose range of a few Gy. The experimental data are complemented by a theoretical analysis based on the GLOBLE model. In fact, original aim of the study was to test GLOBLE predictions against new experimental data, in order to contribute to the validation of the model. Specifically, the γH2AX signal kinetics has been investigated up to 24 h after exposure to increasing photon doses between 2 and 500 Gy. The prolonged persistence of the signal at high doses strongly suggests dose dependence in DSB processing after low LET irradiation. Importantly, in the framework of our modelling analysis, this is related to a gradually increased fraction of DSB clustering at the micrometre scale. The parallel study of γH2AX dose response curves shows the onset of a pronounced saturation in two cell lines at a dose of about 20 Gy. This dose is much lower than expected according to model predictions based on the values usually adopted for the DSB induction yield (≈ 30 DSB/Gy) and for the γH2AX foci extension of approximately 2 Mbp around the DSB. We show and discuss how theoretical predictions and experimental findings can be in principle reconciled by combining an increased DSB induction yield with the assumption of a larger genomic extension for the single phosphorylated regions. As an alternative approach, we also considered in our model the possibility of a 3D spreading-mechanism of the H2AX phosphorylation around the induced DSB, and applied it to the analysis of both the aspects considered. Our results are found to be supportive for the basic assumptions on which GLOBLE is built. Apart from giving new insights into the H2AX phosphorylation process, experiments performed

  2. γ-H2AX Kinetics as a Novel Approach to High Content Screening for Small Molecule Radiosensitizers

    PubMed Central

    Fu, Shibo; Yang, Ying; Tirtha, Das; Yen, Yun; Zhou, Bing-sen; Zhou, Ming-Ming; Ohlmeyer, Michael; Ko, Eric C.; Cagan, Ross; Rosenstein, Barry S.; Chen, Shu-hsia; Kao, Johnny

    2012-01-01

    Background Persistence of γ-H2AX after ionizing radiation (IR) or drug therapy is a robust reporter of unrepaired DNA double strand breaks in treated cells. Methods DU-145 prostate cancer cells were treated with a chemical library ±IR and assayed for persistence of γ-H2AX using an automated 96-well immunocytochemistry assay at 4 hours after treatment. Hits that resulted in persistence of γ-H2AX foci were tested for effects on cell survival. The molecular targets of hits were validated by molecular, genetic and biochemical assays and in vivo activity was tested in a validated Drosophila cancer model. Results We identified 2 compounds, MS0019266 and MS0017509, which markedly increased persistence of γ-H2AX, apoptosis and radiosensitization in DU-145 cells. Chemical evaluation demonstrated that both compounds exhibited structurally similar and biochemical assays confirmed that these compounds inhibit ribonucleotide reductase. DNA microarray analysis and immunoblotting demonstrates that MS0019266 significantly decreased polo-like kinase 1 gene and protein expression. MS0019266 demonstrated in vivo antitumor activity without significant whole organism toxicity. Conclusions MS0019266 and MS0017509 are promising compounds that may be candidates for further development as radiosensitizing compounds as inhibitors of ribonucleotide reductase. PMID:22768044

  3. The R215W mutation in NBS1 impairs {gamma}-H2AX binding and affects DNA repair: molecular bases for the severe phenotype of 657del5/R215W Nijmegen breakage syndrome patients

    SciTech Connect

    Masi, Alessandra di Viganotti, Mara; Polticelli, Fabio; Ascenzi, Paolo; Tanzarella, Caterina; Antoccia, Antonio

    2008-05-09

    Nijmegen breakage syndrome (NBS) is a genetic disorder characterized by chromosomal instability and hypersensitivity to ionising radiation. Compound heterozygous 657del5/R215W NBS patients display a clinical phenotype more severe than the majority of NBS patients homozygous for the 657del5 mutation. The NBS1 protein, mutated in NBS patients, contains a FHA/BRCT domain necessary for the DNA-double strand break (DSB) damage response. Recently, a second BRCT domain has been identified, however, its role is still unknown. Here, we demonstrate that the R215W mutation in NBS1 impairs histone {gamma}-H2AX binding after induction of DNA damage, leading to a delay in DNA-DSB rejoining. Molecular modelling reveals that the 215 residue of NBS1 is located between the two BRCT domains, affecting their relative orientation that appears critical for {gamma}-H2AX binding. Present data represent the first evidence for the role of NBS1 tandem BRCT domains in {gamma}-H2AX recognition, and could explain the severe phenotype observed in 657del5/R215W NBS patients.

  4. γH2AX and p53 responses in TK6 cells discriminate promutagens and nongenotoxicants in the presence of rat liver S9.

    PubMed

    Bernacki, Derek T; Bryce, Steven M; Bemis, Jeffrey C; Kirkland, David; Dertinger, Stephen D

    2016-08-01

    Previous work with a diverse set of reference chemicals suggests that an in vitro multiplexed flow cytometry-based assay (MultiFlow™ DNA Damage Kit-p53, γH2AX, Phospho-Histone H3) can distinguish direct-acting clastogens and aneugens from nongenotoxicants (Bryce SM et al. []: Environ Mol Mutagen 57:171-189). This work extends this line of investigation to include compounds that require metabolic activation to form reactive electrophiles. For these experiments, TK6 cells were exposed to 11 promutagens and 37 presumed nongenotoxicants in 96 well plates. Unless precipitation or foreknowledge about cytotoxicity suggested otherwise, the highest concentration was 1 mM. Exposure occurred for 4 hr after which time cells were washed to remove S9 and test article. Immediately following the wash and again at 24 hr, cell aliquots were added to wells of a microtiter plate containing the working detergent/stain/antibody cocktail. After a brief incubation, robotic sampling was employed for walk-away flow cytometric data acquisition. Univariate logistic regression analyses indicated that γH2AX induction and p53 activation provide the greatest degree of discrimination between clastogens and nongenotoxicants. Multivariate prediction algorithms that incorporated both of these endpoints, in each combination of time points, were evaluated. The best performing models correctly predicted 9 clastogens out of 11 and 36 nongenotoxicants out of 37. These results are encouraging as they suggest that an efficient and highly scalable multiplexed assay can effectively identify clastogenic chemicals that require bioactivation. More work is planned with a broader range of chemicals, additional cell lines, and other laboratories to further evaluate the merits and limitations of this approach. Environ. Mol. Mutagen. 57:546-558, 2016. © 2016 Wiley Periodicals, Inc. PMID:27364561

  5. γ-H2AX Kinetic Profile in Mouse Lymphocytes Exposed to the Internal Emitters Cesium-137 and Strontium-90.

    PubMed

    Turner, Helen C; Shuryak, Igor; Weber, Waylon; Doyle-Eisele, Melanie; Melo, Dunstana; Guilmette, Raymond; Amundson, Sally A; Brenner, David J

    2015-01-01

    In the event of a dirty bomb scenario or an industrial nuclear accident, a significant dose of volatile radionuclides such as 137Cs and 90Sr may be dispersed into the atmosphere as a component of fallout and inhaled or ingested by hundreds and thousands of people. To study the effects of prolonged exposure to ingested radionuclides, we have performed long-term (30 day) internal-emitter mouse irradiations using soluble-injected 137CsCl and 90SrCl2 radioisotopes. The effect of ionizing radiation on the induction and repair of DNA double strand breaks (DSBs) in peripheral mouse lymphocytes in vivo was determined using the γ-H2AX biodosimetry marker. Using a serial sacrifice experimental design, whole-body radiation absorbed doses for 137Cs (0 to 10 Gy) and 90Sr (0 to 49 Gy) were delivered over 30 days following exposure to each radionuclide. The committed absorbed doses of the two internal emitters as a function of time post exposure were calculated based on their retention parameters and their derived dose coefficients for each specific sacrifice time. In order to measure the kinetic profile for γ-H2AX, peripheral blood samples were drawn at 5 specific timed dose points over the 30-day study period and the total γ-H2AX nuclear fluorescence per lymphocyte was determined using image analysis software. A key finding was that a significant γ-H2AX signal was observed in vivo several weeks after a single radionuclide exposure. A mechanistically-motivated model was used to analyze the temporal kinetics of γ-H2AX fluorescence. Exposure to either radionuclide showed two peaks of γ-H2AX: one within the first week, which may represent the death of mature, differentiated lymphocytes, and the second at approximately three weeks, which may represent the production of new lymphocytes from damaged progenitor cells. The complexity of the observed responses to internal irradiation is likely caused by the interplay between continual production and repair of DNA damage, cell cycle

  6. γ-H2AX Kinetic Profile in Mouse Lymphocytes Exposed to the Internal Emitters Cesium-137 and Strontium-90

    PubMed Central

    Turner, Helen C.; Shuryak, Igor; Weber, Waylon; Doyle-Eisele, Melanie; Melo, Dunstana; Guilmette, Raymond; Amundson, Sally A.; Brenner, David J.

    2015-01-01

    In the event of a dirty bomb scenario or an industrial nuclear accident, a significant dose of volatile radionuclides such as 137Cs and 90Sr may be dispersed into the atmosphere as a component of fallout and inhaled or ingested by hundreds and thousands of people. To study the effects of prolonged exposure to ingested radionuclides, we have performed long-term (30 day) internal-emitter mouse irradiations using soluble-injected 137CsCl and 90SrCl2 radioisotopes. The effect of ionizing radiation on the induction and repair of DNA double strand breaks (DSBs) in peripheral mouse lymphocytes in vivo was determined using the γ-H2AX biodosimetry marker. Using a serial sacrifice experimental design, whole-body radiation absorbed doses for 137Cs (0 to 10 Gy) and 90Sr (0 to 49 Gy) were delivered over 30 days following exposure to each radionuclide. The committed absorbed doses of the two internal emitters as a function of time post exposure were calculated based on their retention parameters and their derived dose coefficients for each specific sacrifice time. In order to measure the kinetic profile for γ-H2AX, peripheral blood samples were drawn at 5 specific timed dose points over the 30-day study period and the total γ-H2AX nuclear fluorescence per lymphocyte was determined using image analysis software. A key finding was that a significant γ-H2AX signal was observed in vivo several weeks after a single radionuclide exposure. A mechanistically-motivated model was used to analyze the temporal kinetics of γ-H2AX fluorescence. Exposure to either radionuclide showed two peaks of γ-H2AX: one within the first week, which may represent the death of mature, differentiated lymphocytes, and the second at approximately three weeks, which may represent the production of new lymphocytes from damaged progenitor cells. The complexity of the observed responses to internal irradiation is likely caused by the interplay between continual production and repair of DNA damage, cell cycle

  7. γ-H2AX Kinetic Profile in Mouse Lymphocytes Exposed to the Internal Emitters Cesium-137 and Strontium-90.

    PubMed

    Turner, Helen C; Shuryak, Igor; Weber, Waylon; Doyle-Eisele, Melanie; Melo, Dunstana; Guilmette, Raymond; Amundson, Sally A; Brenner, David J

    2015-01-01

    In the event of a dirty bomb scenario or an industrial nuclear accident, a significant dose of volatile radionuclides such as 137Cs and 90Sr may be dispersed into the atmosphere as a component of fallout and inhaled or ingested by hundreds and thousands of people. To study the effects of prolonged exposure to ingested radionuclides, we have performed long-term (30 day) internal-emitter mouse irradiations using soluble-injected 137CsCl and 90SrCl2 radioisotopes. The effect of ionizing radiation on the induction and repair of DNA double strand breaks (DSBs) in peripheral mouse lymphocytes in vivo was determined using the γ-H2AX biodosimetry marker. Using a serial sacrifice experimental design, whole-body radiation absorbed doses for 137Cs (0 to 10 Gy) and 90Sr (0 to 49 Gy) were delivered over 30 days following exposure to each radionuclide. The committed absorbed doses of the two internal emitters as a function of time post exposure were calculated based on their retention parameters and their derived dose coefficients for each specific sacrifice time. In order to measure the kinetic profile for γ-H2AX, peripheral blood samples were drawn at 5 specific timed dose points over the 30-day study period and the total γ-H2AX nuclear fluorescence per lymphocyte was determined using image analysis software. A key finding was that a significant γ-H2AX signal was observed in vivo several weeks after a single radionuclide exposure. A mechanistically-motivated model was used to analyze the temporal kinetics of γ-H2AX fluorescence. Exposure to either radionuclide showed two peaks of γ-H2AX: one within the first week, which may represent the death of mature, differentiated lymphocytes, and the second at approximately three weeks, which may represent the production of new lymphocytes from damaged progenitor cells. The complexity of the observed responses to internal irradiation is likely caused by the interplay between continual production and repair of DNA damage, cell cycle

  8. The first gamma-H2AX biodosimetry intercomparison exercise of the developing European biodosimetry network RENEB.

    PubMed

    Barnard, S; Ainsbury, E A; Al-hafidh, J; Hadjidekova, V; Hristova, R; Lindholm, C; Monteiro Gil, O; Moquet, J; Moreno, M; Rößler, U; Thierens, H; Vandevoorde, C; Vral, A; Wojewódzka, M; Rothkamm, K

    2015-04-01

    In the event of a mass casualty radiation incident, the gamma-H2AX foci assay could be a useful tool to estimate radiation doses received by individuals. The rapid processing time of blood samples of just a few hours and the potential for batch processing, enabling high throughput, make the assay ideal for early triage categorisation to separate the 'worried well' from the low and critically exposed by quantifying radiation-induced foci in peripheral blood lymphocytes. Within the RENEB framework, 8 European laboratories have taken part in the first European gamma-H2AX biodosimetry exercise, which consisted of a telescoring comparison of 200 circulated foci images taken from 8 samples, and a comparison of 10 fresh blood lymphocyte samples that were shipped overnight to participating labs 4 or 24 h post-exposure. Despite large variations between laboratories in the dose-response relationship for foci induction, the obtained results indicate that the network should be able to use the gamma-H2AX assay for rapidly identifying the most severely exposed individuals within a cohort who could then be prioritised for accurate chromosome dosimetry. PMID:25118318

  9. Histone 3 s10 phosphorylation: "caught in the R loop!".

    PubMed

    Skourti-Stathaki, Konstantina; Proudfoot, Nicholas J

    2013-11-21

    In this issue of Molecular Cell, Castellano-Pozo et al. (2013) describe a connection between R loop structures and histone 3 S10 phosphorylation (H3S10P), a mark of chromatin compaction. Their results constitute a significant advance in our understanding of the role of R loops in genomic instability.

  10. Linking Gamma-H2AX Foci and Cancer in Rat Skin Exposed to Heavy Ions and Electron Radiation

    PubMed Central

    Burns, Fredric J.; Tang, Moon-shong; Wu, Feng; Schmid, Ernst

    2015-01-01

    Abstract This study uses acute doses of three test radiations, [40Ar ions (L = 125 keVμ−1), 20Ne ions (L = 25 keVμ−1) and electron radiation] to examine a potential quantitative link between rat skin cancer induction and gamma-H2AX foci in rat keratinocytes exposed in vitro to radiations with comparable L values. Theory provided a testable link between cancer yield and gamma-H2AX foci yields: YCa(D,L)rat−1 = (NF)2−1YAX(D,L)keratinocyte−1 (eqn 1), where YCa(D,L) is cancers(rat) −1 at 1.0 y, YAX(D,L) is in vitro gamma-H2AX foci(keratinocyte) −1, D is radiation dose, L is linear energy transfer, N is irradiated keratinocytes in vivo, and F is the error rate of end joining. An explicit expression for cancer yield was derived based on cancers arising in the ion track region in proportion to D and L (first term) and independently in proportion to D2 in the delta ray region in between the ion tracks (second term): YCa(D,L) = CCaLD + BCaD2 (eqn 1a). Parameters quantified include: CCa = 0.000589 ± 0.000150 cancers-micron[rat(kev)Gy]−1; BCa = 0.0088 ± 0.0035 cancers(ratGy2)−1, F = (8.18 ± 0.91) × 10−10; N = (8.8 ± 1.2) × 107 and (NF)2−1 = 0.036 ± 0.006 cancer keratinocyte(rat H2AX foci)−1. Verification of eqns (1) and (1a) and the constancy of F support the hypothesis that end-rejoining errors play a major role in radiation carcinogenesis in rat skin. Cancer yields per rat were consistently predictable based on gamma-H2AX foci yields in keratinocytes in vitro such that 27.8 H2AXfoci(keratinocyte)−1 predicted 1.0 cancer(rat)−1 at 1 y. PMID:26107436

  11. Frequency of gamma H2AX foci in healthy volunteers and health workers occupationally exposed to X-irradiation and its relevance in biological dosimetry.

    PubMed

    Raavi, Venkateswarlu; Basheerudeen, Safa Abdul Syed; Jagannathan, Vijayalakshmi; Joseph, Santosh; Chaudhury, Nabo Kumar; Venkatachalam, Perumal

    2016-08-01

    Gamma-H2AX (γ-H2AX) assay is a marker to measure double-strand breaks in the deoxyribonucleic acid. Variables such as age, oxidative stress, temperature, genetic factors and inter-individual variation have been reported to influence the baseline γ-H2AX focus levels. Therefore, knowledge on baseline frequency of γ-H2AX foci in a targeted population would facilitate reliable radiation triage and dose estimation. The objective of the present study was to establish the baseline data using blood samples from healthy volunteers (n = 130) differing in age, occupation and lifestyle as well as from occupationally exposed health workers (n = 20). The γ-H2AX focus assay was performed using epifluorescence microscopy. In vitro dose-response curve for γ-H2AX foci was constructed in blood samples (n = 3) exposed to X-rays (30 min post-exposure). The mean γ-H2AX focus frequency obtained in healthy volunteers was 0.042 ± 0.001 and showed an age-related increase (p < 0.001). Significantly higher (p < 0.005) focus frequencies were observed in health workers (0.066 ± 0.005) than in healthy volunteers. A sub-group analysis did not show a significant (p > 0.1) difference in γ-H2AX focus frequency among sexes. Blood exposed in vitro to X-rays showed dose-dependent increase in γ-H2AX foci frequency (Y = 0.1902 ± 0.1363 + 2.9020 ± 0.3240 * D). Baseline frequency of γ-H2AX foci obtained from different age groups showed a significant (p < 0.01) influence on the dose-response coefficients. The overall results demonstrated that the γ-H2AX assay can be used as a reliable biomarker for radiation triage and estimating the radiation absorbed dose by considering variables such as age, occupation and lifestyle factors. PMID:27287768

  12. Biochemical Kinetics Model of DSB Repair and GammaH2AX FOCI by Non-homologous End Joining

    NASA Technical Reports Server (NTRS)

    Cucinotta, Francis, A.; Pluth, Janice M.; Anderson, Jennifer A.; Harper, Jane V.; O'Neill, Peter

    2007-01-01

    We developed a biochemical kinetics approach to describe the repair of double strand breaks (DSB) produced by low LET radiation by modeling molecular events associated with the mechanisms of non-homologous end-joining (NHEJ). A system of coupled non-linear ordinary differential equations describes the induction of DSB and activation pathways for major NHEJ components including Ku(sub 70/80), DNA-PK(sub cs), and the Ligase IV-XRCC4 hetero-dimer. The autophosphorylation of DNA-PK(sub cs and subsequent induction of gamma-H2AX foci observed after ionizing radiation exposure were modeled. A two-step model of DNA-PK(sub cs) regulation of repair was developed with the initial step allowing access of other NHEJ components to breaks, and a second step limiting access to Ligase IV-XRCC4. Our model assumes that the transition from the first to second-step depends on DSB complexity, with a much slower-rate for complex DSB. The model faithfully reproduced several experimental data sets, including DSB rejoining as measured by pulsed-field electrophoresis (PFGE), quantification of the induction of gamma-H2AX foci, and live cell imaging of the induction of Ku(sub 70/80). Predictions are made for the behaviors of NHEJ components at low doses and dose-rates, where a steady-state is found at dose-rates of 0.1 Gy/hr or lower.

  13. Calculation of Dose Deposition in 3D Voxels by Heavy Ions and Simulation of gamma-H2AX Experiments

    NASA Technical Reports Server (NTRS)

    Plante, I.; Ponomarev, A. L.; Wang, M.; Cucinotta, F. A.

    2011-01-01

    The biological response to high-LET radiation is different from low-LET radiation due to several factors, notably difference in energy deposition and formation of radiolytic species. Of particular importance in radiobiology is the formation of double-strand breaks (DSB), which can be detected by -H2AX foci experiments. These experiments has revealed important differences in the spatial distribution of DSB induced by low- and high-LET radiations [1,2]. To simulate -H2AX experiments, models based on amorphous track with radial dose are often combined with random walk chromosome models [3,4]. In this work, a new approach using the Monte-Carlo track structure code RITRACKS [5] and chromosome models have been used to simulate DSB formation. At first, RITRACKS have been used to simulate the irradiation of a cubic volume of 5 m by 1) 450 1H+ ions of 300 MeV (LET 0.3 keV/ m) and 2) by 1 56Fe26+ ion of 1 GeV/amu (LET 150 keV/ m). All energy deposition events are recorded to calculate dose in voxels of 20 m. The dose voxels are distributed randomly and scattered uniformly within the volume irradiated by low-LET radiation. Many differences are found in the spatial distribution of dose voxels for the 56Fe26+ ion. The track structure can be distinguished, and voxels with very high dose are found in the region corresponding to the track "core". These high-dose voxels are not found in the low-LET irradiation simulation and indicate clustered energy deposition, which may be responsible for complex DSB. In the second step, assuming that DSB will be found only in voxels where energy is deposited by the radiation, the intersection points between voxels with dose > 0 and simulated chromosomes were obtained. The spatial distribution of the intersection points is similar to -H2AX foci experiments. These preliminary results suggest that combining stochastic track structure and chromosome models could be a good approach to understand radiation-induced DSB and chromosome aberrations.

  14. Effect of mild temperature shift on poly(ADP-ribose) and γH2AX levels in cultured cells.

    PubMed

    Yamashita, Sachiko; Tanaka, Masakazu; Sato, Teruaki; Ida, Chieri; Ohta, Narumi; Hamada, Takashi; Uetsuki, Taichi; Nishi, Yoshisuke; Moss, Joel; Miwa, Masanao

    2016-08-01

    Poly (ADP-ribose) (PAR) is rapidly synthesized by PAR polymerases (PARPs) upon activation by DNA single- and double-strand breaks. In this study, we examined the quantitative amount of PAR in HeLa cells cultured within the physiological temperatures below 41 °C for verification of the effect of shifting-up or -down the temperature from 37.0 °C on the DNA breaks, whether the temperature-shift caused breaks that could be monitored by the level of PAR. While PAR level did not change significantly when HeLa cells were cultured at 33.5 °C or 37.0 °C, it was significantly increased 2- and 3-fold when cells were cultured for 12 h and 24 h, respectively, at 40.5 °C as compared to 37.0 °C. Similar to the results with HeLa cells, PAR level was increased 2-fold in CHO-K1 cells cultured at 40.5 °C for 24 h as compared to 37.0 °C. As the cellular levels of PAR polymerase1 (PARP1) and PAR glycohydrolase (PARG), a major degradation enzyme for PAR, did not seem to change significantly, this increase could be caused by activation of PARP1 by DNA strand breaks. In fact, γH2AX, claimed to be a marker of DNA double-strand breaks, was found in cell extracts of HeLa cells and CHO-K1 cells at elevated temperature vs. 37.0 °C, and these γH2AX signals were intensified in the presence of 3-aminobenzamide, a PARP inhibitor. The γH2AX immunohistochemistry results in HeLa cells were consistent with Western blot analyses. In HeLa cells, proliferation was significantly suppressed at 40.5 °C in 72 h-continuous cultures and decreased viabilities were also observed after 24-72 h at 40.5 °C. Flow cytometric analyses showed that the HeLa cells were arrested at G2/M after temperature shift-up to 40.5 °C. These physiological changes were potentiated in the presence of 3-aminobenzamide. Decrease in growth rates, increased cytotoxicity and G2/M arrest, were associated with the temperature-shift to 40.5 °C and are indirect evidence of DNA breaks. In addition to γH2AX

  15. Flow cytometry-assisted quantification of γH2AX expression has potential as a rapid high-throughput biodosimetry tool.

    PubMed

    Achel, Daniel G; Serafin, Antonio M; Akudugu, John M

    2016-08-01

    Large-scale radiological events require immediate and accurate estimates of doses received by victims, and possibly the first responders, to assist in treatment decisions. Although there are numerous efforts worldwide to develop biodosimetric tools to adequately handle triage needs during radiological incidents, such endeavours do not seem to actively involve sub-Saharan Africa which currently has a significant level of nuclear-related activity. To initiate a similar interest in Africa, ex vivo radiation-induced γH2AX expression in peripheral blood lymphocytes from fourteen healthy donors was assessed using flow cytometry. While the technique shows potential for use as a rapid high-throughput biodosimetric tool for radiation absorbed doses up to 5 Gy, significant inter-individual differences in γH2AX expression emerged. Also, female donors exhibited higher levels of γH2AX expression than their male counterparts. To address these shortcomings, gender-based in-house dose-response curves for γH2AX induction in lymphocytes 2, 4, and 6 h after X-ray irradiation are proposed for the South African population. The obtained results show that γH2AX is a good candidate biomarker for biodosimetry, but might need some refinement and validation through further studies involving a larger cohort of donors. PMID:27262315

  16. Linker histone partial phosphorylation: effects on secondary structure and chromatin condensation

    PubMed Central

    Lopez, Rita; Sarg, Bettina; Lindner, Herbert; Bartolomé, Salvador; Ponte, Inma; Suau, Pedro; Roque, Alicia

    2015-01-01

    Linker histones are involved in chromatin higher-order structure and gene regulation. We have successfully achieved partial phosphorylation of linker histones in chicken erythrocyte soluble chromatin with CDK2, as indicated by HPCE, MALDI-TOF and Tandem MS. We have studied the effects of linker histone partial phosphorylation on secondary structure and chromatin condensation. Infrared spectroscopy analysis showed a gradual increase of β-structure in the phosphorylated samples, concomitant to a decrease in α-helix/turns, with increasing linker histone phosphorylation. This conformational change could act as the first step in the phosphorylation-induced effects on chromatin condensation. A decrease of the sedimentation rate through sucrose gradients of the phosphorylated samples was observed, indicating a global relaxation of the 30-nm fiber following linker histone phosphorylation. Analysis of specific genes, combining nuclease digestion and qPCR, showed that phosphorylated samples were more accessible than unphosphorylated samples, suggesting local chromatin relaxation. Chromatin aggregation was induced by MgCl2 and analyzed by dynamic light scattering (DLS). Phosphorylated chromatin had lower percentages in volume of aggregated molecules and the aggregates had smaller hydrodynamic diameter than unphosphorylated chromatin, indicating that linker histone phosphorylation impaired chromatin aggregation. These findings provide new insights into the effects of linker histone phosphorylation in chromatin condensation. PMID:25870416

  17. Linker histone partial phosphorylation: effects on secondary structure and chromatin condensation.

    PubMed

    Lopez, Rita; Sarg, Bettina; Lindner, Herbert; Bartolomé, Salvador; Ponte, Inma; Suau, Pedro; Roque, Alicia

    2015-05-19

    Linker histones are involved in chromatin higher-order structure and gene regulation. We have successfully achieved partial phosphorylation of linker histones in chicken erythrocyte soluble chromatin with CDK2, as indicated by HPCE, MALDI-TOF and Tandem MS. We have studied the effects of linker histone partial phosphorylation on secondary structure and chromatin condensation. Infrared spectroscopy analysis showed a gradual increase of β-structure in the phosphorylated samples, concomitant to a decrease in α-helix/turns, with increasing linker histone phosphorylation. This conformational change could act as the first step in the phosphorylation-induced effects on chromatin condensation. A decrease of the sedimentation rate through sucrose gradients of the phosphorylated samples was observed, indicating a global relaxation of the 30-nm fiber following linker histone phosphorylation. Analysis of specific genes, combining nuclease digestion and qPCR, showed that phosphorylated samples were more accessible than unphosphorylated samples, suggesting local chromatin relaxation. Chromatin aggregation was induced by MgCl2 and analyzed by dynamic light scattering (DLS). Phosphorylated chromatin had lower percentages in volume of aggregated molecules and the aggregates had smaller hydrodynamic diameter than unphosphorylated chromatin, indicating that linker histone phosphorylation impaired chromatin aggregation. These findings provide new insights into the effects of linker histone phosphorylation in chromatin condensation.

  18. Linker histone partial phosphorylation: effects on secondary structure and chromatin condensation.

    PubMed

    Lopez, Rita; Sarg, Bettina; Lindner, Herbert; Bartolomé, Salvador; Ponte, Inma; Suau, Pedro; Roque, Alicia

    2015-05-19

    Linker histones are involved in chromatin higher-order structure and gene regulation. We have successfully achieved partial phosphorylation of linker histones in chicken erythrocyte soluble chromatin with CDK2, as indicated by HPCE, MALDI-TOF and Tandem MS. We have studied the effects of linker histone partial phosphorylation on secondary structure and chromatin condensation. Infrared spectroscopy analysis showed a gradual increase of β-structure in the phosphorylated samples, concomitant to a decrease in α-helix/turns, with increasing linker histone phosphorylation. This conformational change could act as the first step in the phosphorylation-induced effects on chromatin condensation. A decrease of the sedimentation rate through sucrose gradients of the phosphorylated samples was observed, indicating a global relaxation of the 30-nm fiber following linker histone phosphorylation. Analysis of specific genes, combining nuclease digestion and qPCR, showed that phosphorylated samples were more accessible than unphosphorylated samples, suggesting local chromatin relaxation. Chromatin aggregation was induced by MgCl2 and analyzed by dynamic light scattering (DLS). Phosphorylated chromatin had lower percentages in volume of aggregated molecules and the aggregates had smaller hydrodynamic diameter than unphosphorylated chromatin, indicating that linker histone phosphorylation impaired chromatin aggregation. These findings provide new insights into the effects of linker histone phosphorylation in chromatin condensation. PMID:25870416

  19. Establishment of a γ-H2AX foci-based assay to determine biological dose of radon to red bone marrow in rats.

    PubMed

    Wang, Jing; He, Linfeng; Fan, Dunhuang; Ding, Defang; Wang, Xufei; Gao, Yun; Zhang, Xuxia; Li, Qiang; Chen, Honghong

    2016-01-01

    The biodosimetric information is critical for assessment of cancer risk in populations exposed to high radon. However, no tools are available for biological dose estimation following radon exposure. Here, we established a γ-H2AX foci-based assay to determine biological dose to red bone marrow (RBM) in radon-inhaled rats. After 1-3 h of in vitro radon exposure, a specific pattern of γ-H2AX foci, linear tracks with individual p-ATM and p-DNA-PKcs foci, was observed, and the yield of γ-H2AX foci and its linear tracks displayed a linear dose-response manner in both rat peripheral blood lymphocytes (PBLs) and bone-marrow lymphocytes (BMLs). When the cumulative doses of radon inhaled by rats reached 14, 30 and 60 working level months (WLM), the yields of three types of foci markedly increased in both PBLs and BMLs, and γ-H2AX foci-based dose estimates to RBM were 0.97, 2.06 and 3.94 mGy, respectively. Notably, BMLs displayed a more profound increase of three types of foci than PBLs, and the absorbed dose ratio between BMLs and PBLs was similar between rats exposed to 30 and 60 WLM of radon. Taken together, γ-H2AX foci quantitation in PBLs is able to estimate RBM-absorbed doses with the dose-response curve of γ-H2AX foci after in vitro radon exposure and the ratio of RBM- to PBL-absorbed doses in rats following radon exposure. PMID:27445126

  20. Expression of DNA Damage Response Molecules PARP1, γH2AX, BRCA1, and BRCA2 Predicts Poor Survival of Breast Carcinoma Patients1

    PubMed Central

    Park, See-Hyoung; Noh, Sang Jae; Kim, Kyoung Min; Bae, Jun Sang; Kwon, Keun Sang; Jung, Sung Hoo; Kim, Jung Ryul; Lee, Ho; Chung, Myoung Ja; Moon, Woo Sung; Kang, Myoung Jae; Jang, Kyu Yun

    2015-01-01

    BACKGROUND: Poly(ADP-ribose) polymerase 1 (PARP1), γH2AX, BRCA1, and BRCA2 are conventional molecular indicators of DNA damage in cells and are often overexpressed in various cancers. In this study, we aimed, using immunohistochemical detection, whether the co-expression of PARP1, γH2AX, BRCA1, and BRCA2 in breast carcinoma (BCA) tissue can provide more reliable prediction of survival of BCA patients. MATERIALS AND METHODS: We investigated immunohistochemical expression and prognostic significance of the expression of PARP1, γH2AX, BRCA1, and BRCA2 in 192 cases of BCAs. RESULTS: The expression of these four molecules predicted earlier distant metastatic relapse, shorter overall survival (OS), and relapse-free survival (RFS) by univariate analysis. Multivariate analysis revealed the expression of PARP1, γH2AX, and BRCA2 as independent poor prognostic indicators of OS and RFS. In addition, the combined expressional pattern of BRCA1, BRCA2, PARP1, and γH2AX (CSbbph) was an additional independent prognostic predictor for OS (P < .001) and RFS (P < .001). The 10-year OS rate was 95% in the CSbbph-low (CSbbph scores 0 and 1) subgroup, but that was only 35% in the CSbbph-high (CSbbph score 4) subgroup. CONCLUSION: This study has demonstrated that the individual and combined expression patterns of PARP1, γH2AX, BRCA1, and BRCA2 could be helpful in determining an accurate prognosis for BCA patients and for the selection of BCA patients who could potentially benefit from anti-PARP1 therapy with a combination of genotoxic chemotherapeutic agents. PMID:26310369

  1. Establishment of a γ-H2AX foci-based assay to determine biological dose of radon to red bone marrow in rats

    PubMed Central

    Wang, Jing; He, Linfeng; Fan, Dunhuang; Ding, Defang; Wang, Xufei; Gao, Yun; Zhang, Xuxia; Li, Qiang; Chen, Honghong

    2016-01-01

    The biodosimetric information is critical for assessment of cancer risk in populations exposed to high radon. However, no tools are available for biological dose estimation following radon exposure. Here, we established a γ-H2AX foci-based assay to determine biological dose to red bone marrow (RBM) in radon-inhaled rats. After 1–3 h of in vitro radon exposure, a specific pattern of γ-H2AX foci, linear tracks with individual p-ATM and p-DNA-PKcs foci, was observed, and the yield of γ-H2AX foci and its linear tracks displayed a linear dose-response manner in both rat peripheral blood lymphocytes (PBLs) and bone-marrow lymphocytes (BMLs). When the cumulative doses of radon inhaled by rats reached 14, 30 and 60 working level months (WLM), the yields of three types of foci markedly increased in both PBLs and BMLs, and γ-H2AX foci-based dose estimates to RBM were 0.97, 2.06 and 3.94 mGy, respectively. Notably, BMLs displayed a more profound increase of three types of foci than PBLs, and the absorbed dose ratio between BMLs and PBLs was similar between rats exposed to 30 and 60 WLM of radon. Taken together, γ-H2AX foci quantitation in PBLs is able to estimate RBM-absorbed doses with the dose-response curve of γ-H2AX foci after in vitro radon exposure and the ratio of RBM- to PBL-absorbed doses in rats following radon exposure. PMID:27445126

  2. Establishment of a γ-H2AX foci-based assay to determine biological dose of radon to red bone marrow in rats

    NASA Astrophysics Data System (ADS)

    Wang, Jing; He, Linfeng; Fan, Dunhuang; Ding, Defang; Wang, Xufei; Gao, Yun; Zhang, Xuxia; Li, Qiang; Chen, Honghong

    2016-07-01

    The biodosimetric information is critical for assessment of cancer risk in populations exposed to high radon. However, no tools are available for biological dose estimation following radon exposure. Here, we established a γ-H2AX foci-based assay to determine biological dose to red bone marrow (RBM) in radon-inhaled rats. After 1–3 h of in vitro radon exposure, a specific pattern of γ-H2AX foci, linear tracks with individual p-ATM and p-DNA-PKcs foci, was observed, and the yield of γ-H2AX foci and its linear tracks displayed a linear dose-response manner in both rat peripheral blood lymphocytes (PBLs) and bone-marrow lymphocytes (BMLs). When the cumulative doses of radon inhaled by rats reached 14, 30 and 60 working level months (WLM), the yields of three types of foci markedly increased in both PBLs and BMLs, and γ-H2AX foci-based dose estimates to RBM were 0.97, 2.06 and 3.94 mGy, respectively. Notably, BMLs displayed a more profound increase of three types of foci than PBLs, and the absorbed dose ratio between BMLs and PBLs was similar between rats exposed to 30 and 60 WLM of radon. Taken together, γ-H2AX foci quantitation in PBLs is able to estimate RBM-absorbed doses with the dose-response curve of γ-H2AX foci after in vitro radon exposure and the ratio of RBM- to PBL-absorbed doses in rats following radon exposure.

  3. Dynamics of radiation induced γH2AX foci in chromatin subcompartments of mouse pachytene spermatocytes and round spermatids.

    PubMed

    Singh, Priti; Raman, Mercy J

    2014-06-01

    Chromatin compaction is thought to influence the severity of radiation-induced DNA damage. We assessed how chromatin state affects DNA double-strand break repair within eu-/heterochromatin domains in male germ cells by profiling the spatiotemporal dynamics of γ-radiation-induced γH2AX foci in confocal images of mouse pachytene spermatocytes and round spermatids (5 min to 16 hr post-irradiation, in vivo). In unirradiated cells, all DNA-dense heterochromatin domains showed compaction by anti-H3K9me3-staining, except for peripheral areas. Following irradiation, this signal was lost within 5 min, but regained later (8-16 hr); these two events coincided with the appearance and loss of γH2AX foci, respectively. While euchromatin showed a large number of bright foci in both cell types, heterochromatin had few foci. In spermatids, a few small, faint foci appeared within chromocenters. Pachytene-stage, on the other hand, lacked foci within heterochromatin, although a few were closely associated with the heterochromatin periphery. The number of euchromatin foci in spermatids showed a dose-dependent enhancement following irradiation (0.5-4 Gy), although no significant increase was seen in the quantity of heterochromatin foci. While all foci in pachytene-stage cells were resolved, spermatids showed large residual foci-especially from heterochromatin foci, which remained faint for up to 4 hr, then increased in size between 8-16 hr, expanding at the chromocenter periphery and eventually protruding into euchromatin at H3K9me3-signal-free areas. Thus, this study identified scant foci formation and poor repair within heterochromatin, with distinctly different dynamics in meiotic and post-meiotic stages of spermatogenesis, and provides direct evidence for heterochromatin decompaction following DNA damage, which facilitates repair/repositioning of foci towards euchromatin domains. It is the first demonstration of spatiotemporal mobilization of double-strand breaks with respect to

  4. Gamma-H2AX foci in cells exposed to a mixed beam of X-rays and alpha particles

    PubMed Central

    2012-01-01

    Background Little is known about the cellular effects of exposure to mixed beams of high and low linear energy transfer radiation. So far, the effects of combined exposures have mainly been assessed with clonogenic survival or cytogenetic methods, and the results are contradictory. The gamma-H2AX assay has up to now not been applied in this context, and it is a promising tool for investigating the early cellular response to mixed beam irradiation. Purpose To determine the dose response and repair kinetics of gamma-H2AX ionizing radiation-induced foci in VH10 human fibroblasts exposed to mixed beams of 241Am alpha particles and X-rays. Results VH10 human fibroblasts were irradiated with each radiation type individually or both in combination at 37°C. Foci were scored for repair kinetics 0.5, 1, 3 and 24 h after irradiation (one dose per irradiation type), and for dose response at the 1 h time point. The dose response effect of mixed beam was additive, and the relative biological effectiveness for alpha particles (as compared to X-rays) was of 0.76 ± 0.52 for the total number of foci, and 2.54 ± 1.11 for large foci. The repair kinetics for total number of foci in cells exposed to mixed beam irradiation was intermediate to that of cells exposed to alpha particles and X-rays. However, for mixed beam-irradiated cells the frequency and area of large foci were initially lower than predicted and increased during the first 3 hours of repair (while the predicted number and area did not). Conclusions The repair kinetics of large foci after mixed beam exposure was significantly different from predicted based on the effect of the single dose components. The formation of large foci was delayed and they did not reach their maximum area until 1 h after irradiation. We hypothesize that the presence of low X-ray-induced damage engages the DNA repair machinery leading to a delayed DNA damage response to the more complex DNA damage induced by alpha particles. PMID:23121736

  5. Visualisation of γH2AX Foci Caused by Heavy Ion Particle Traversal; Distinction between Core Track versus Non-Track Damage

    PubMed Central

    Nakajima, Nakako Izumi; Brunton, Holly; Watanabe, Ritsuko; Shrikhande, Amruta; Hirayama, Ryoichi; Matsufuji, Naruhiro; Fujimori, Akira; Murakami, Takeshi; Okayasu, Ryuichi; Jeggo, Penny; Shibata, Atsushi

    2013-01-01

    Heavy particle irradiation produces complex DNA double strand breaks (DSBs) which can arise from primary ionisation events within the particle trajectory. Additionally, secondary electrons, termed delta-electrons, which have a range of distributions can create low linear energy transfer (LET) damage within but also distant from the track. DNA damage by delta-electrons distant from the track has not previously been carefully characterised. Using imaging with deconvolution, we show that at 8 hours after exposure to Fe (∼200 keV/µm) ions, γH2AX foci forming at DSBs within the particle track are large and encompass multiple smaller and closely localised foci, which we designate as clustered γH2AX foci. These foci are repaired with slow kinetics by DNA non-homologous end-joining (NHEJ) in G1 phase with the magnitude of complexity diminishing with time. These clustered foci (containing 10 or more individual foci) represent a signature of DSBs caused by high LET heavy particle radiation. We also identified simple γH2AX foci distant from the track, which resemble those arising after X-ray exposure, which we attribute to low LET delta-electron induced DSBs. They are rapidly repaired by NHEJ. Clustered γH2AX foci induced by heavy particle radiation cause prolonged checkpoint arrest compared to simple γH2AX foci following X-irradiation. However, mitotic entry was observed when ∼10 clustered foci remain. Thus, cells can progress into mitosis with multiple clusters of DSBs following the traversal of a heavy particle. PMID:23967070

  6. Comparison of two methods for measuring γ-H2AX nuclear fluorescence as a marker of DNA damage in cultured human cells: applications for microbeam radiation therapy

    NASA Astrophysics Data System (ADS)

    Anderson, D.; Andrais, B.; Mirzayans, R.; Siegbahn, E. A.; Fallone, B. G.; Warkentin, B.

    2013-06-01

    Microbeam radiation therapy (MRT) delivers single fractions of very high doses of synchrotron x-rays using arrays of microbeams. In animal experiments, MRT has achieved higher tumour control and less normal tissue toxicity compared to single-fraction broad beam irradiations of much lower dose. The mechanism behind the normal tissue sparing of MRT has yet to be fully explained. An accurate method for evaluating DNA damage, such as the γ-H2AX immunofluorescence assay, will be important for understanding the role of cellular communication in the radiobiological response of normal and cancerous cell types to MRT. We compare two methods of quantifying γ-H2AX nuclear fluorescence for uniformly irradiated cell cultures: manual counting of γ-H2AX foci by eye, and an automated, MATLAB-based fluorescence intensity measurement. We also demonstrate the automated analysis of cell cultures irradiated with an array of microbeams. In addition to offering a relatively high dynamic range of γ-H2AX signal versus irradiation dose ( > 10 Gy), our automated method provides speed, robustness, and objectivity when examining a series of images. Our in-house analysis facilitates the automated extraction of the spatial distribution of the γ-H2AX intensity with respect to the microbeam array — for example, the intensities in the peak (high dose area) and valley (area between two microbeams) regions. The automated analysis is particularly beneficial when processing a large number of samples, as is needed to systematically study the relationship between the numerous dosimetric and geometric parameters involved with MRT (e.g., microbeam width, microbeam spacing, microbeam array dimensions, peak dose, valley dose, and geometric arrangement of multiple arrays) and the resulting DNA damage.

  7. Comparative potency approach based on H2AX assay for estimating the genotoxicity of polycyclic aromatic hydrocarbons

    SciTech Connect

    Audebert, M.; Zeman, F.; Beaudoin, R.; Péry, A.; Cravedi, J.-P.

    2012-04-01

    Polycyclic Aromatic Hydrocarbons (PAHs) constitute a family of over one hundred compounds and can generally be found in complex mixtures. PAHs metabolites cause DNA damage which can lead to the development of carcinogenesis. Toxicity assessment of PAH complex mixtures is currently expressed in terms of toxic equivalents, based on Toxicity Equivalent Factors (TEFs). However, the definition of new TEFs for a large number of PAH could overcome some limitations of the current method and improve cancer risk assessment. The current investigation aimed at deriving the relative potency factors of PAHs, based on their genotoxic effect measured in vitro and analyzed with mathematical models. For this purpose, we used a new genotoxic assay (γH2AX) with two human cell lines (HepG2 and LS-174T) to analyze the genotoxic properties of 13 selected PAHs at low doses after 24 h treatment. The dose–response for genotoxic effects was modeled with a Hill model; equivalency between PAHs at low dose was assessed by applying constraints to the model parameters. In the two cell lines tested, we observed a clear dose–response for genotoxic effects for 11 tested compounds. LS-174T was on average ten times more sensitive than HepG2 towards PAHs regarding genotoxicity. We developed new TEFs, which we named Genotoxic Equivalent Factor (GEF). Calculated GEF for the tested PAHs were generally higher than the TEF usually used. Our study proposed a new in vitro based method for the establishment of relevant TEFs for PAHs to improve cancer risk assessment. -- Highlights: ► Examination of the genotoxic properties of 13 PAHs on two human cell lines. ► Modelization with a Hill model of the genotoxic dose–response. ► First investigation of the genotoxicity of benzo[c]fluorene on human cell lines. ► Establishment of relevant TEFs for PAHs to improve cancer risk assessment.

  8. Tousled-like kinases phosphorylate Asf1 to promote histone supply during DNA replication

    PubMed Central

    Klimovskaia, Ilnaz M; Young, Clifford; Strømme, Caroline B; Menard, Patrice; Jasencakova, Zuzana; Mejlvang, Jakob; Ask, Katrine; Ploug, Michael; Nielsen, Michael L; Jensen, Ole N; Groth, Anja

    2014-01-01

    During DNA replication, nucleosomes are rapidly assembled on newly synthesized DNA to restore chromatin organization. Asf1, a key histone H3-H4 chaperone required for this process, is phosphorylated by Tousled-Like Kinases (TLKs). Here, we identify TLK phosphorylation sites by mass spectrometry and dissect how phosphorylation impacts on human Asf1 function. The divergent C-terminal tail of Asf1a is phosphorylated at several sites and this is required for timely progression through S phase. Consistent with this, biochemical analysis of wild-type and phosphomimetic Asf1a shows that phosphorylation enhances binding to histones and the downstream chaperones CAF-1 and HIRA. Moreover, we find that TLK phosphorylation of Asf1a is induced in cells experiencing deficiency of new histones and that TLK interaction with Asf1a involves its histone-binding pocket. We thus propose that TLK signaling promotes histone supply in S phase by targeting histone-free Asf1 and stimulating its ability to shuttle histones to sites of chromatin assembly. PMID:24598821

  9. Histone H3 phosphorylation – A versatile chromatin modification for different occasions

    PubMed Central

    Sawicka, Anna; Seiser, Christian

    2012-01-01

    Post-translation modifications of histones modulate the accessibility and transcriptional competence of specific chromatin regions within the eukaryotic genome. Phosphorylation of histone H3 is unique in the sense that it associates on one hand with open chromatin during gene activation and marks on the other hand highly condensed chromatin during mitosis. Phosphorylation of serine residues at histone H3 is a highly dynamic process that creates together with acetylation and methylation marks at neighboring lysine residues specific combinatorial patterns that are read by specific detector proteins. In this review we describe the importance of different histone H3 phosphorylation marks for chromatin condensation during mitosis. In addition, we review the signals that trigger histone H3 phosphorylation and the factors that control this reversible modification during interphase and mediate the biological readout of the signal. Finally, we discuss different models describing the role of histone H3 phosphorylation in the activation of transcription of poised genes or by transient derepression of epigenetically silenced genes. We propose that histone H3 phosphorylation in the context with lysine methylation might temporarily relieve the silencing of specific genes without affecting the epigenetic memory. PMID:22564826

  10. Histone H3 Threonine Phosphorylation Regulates Asymmetric Histone Inheritance in the Drosophila Male Germline.

    PubMed

    Xie, Jing; Wooten, Matthew; Tran, Vuong; Chen, Bi-Chang; Pozmanter, Caitlin; Simbolon, Christine; Betzig, Eric; Chen, Xin

    2015-11-01

    A long-standing question concerns how stem cells maintain their identity through multiple divisions. Previously, we reported that pre-existing and newly synthesized histone H3 are asymmetrically distributed during Drosophila male germline stem cell (GSC) asymmetric division. Here, we show that phosphorylation at threonine 3 of H3 (H3T3P) distinguishes pre-existing versus newly synthesized H3. Converting T3 to the unphosphorylatable residue alanine (H3T3A) or to the phosphomimetic aspartate (H3T3D) disrupts asymmetric H3 inheritance. Expression of H3T3A or H3T3D specifically in early-stage germline also leads to cellular defects, including GSC loss and germline tumors. Finally, compromising the activity of the H3T3 kinase Haspin enhances the H3T3A but suppresses the H3T3D phenotypes. These studies demonstrate that H3T3P distinguishes sister chromatids enriched with distinct pools of H3 in order to coordinate asymmetric segregation of "old" H3 into GSCs and that tight regulation of H3T3 phosphorylation is required for male germline activity. PMID:26522592

  11. Biodosimetry Based on γ-H2AX Quantification and Cytogenetics after Partial- and Total-Body Irradiation during Fractionated Radiotherapy.

    PubMed

    Zahnreich, Sebastian; Ebersberger, Anne; Kaina, Bernd; Schmidberger, Heinz

    2015-04-01

    The aim of this current study was to quantitatively describe radiation-induced DNA damage and its distribution in leukocytes of cancer patients after fractionated partial- or total-body radiotherapy. Specifically, the impact of exposed anatomic region and administered dose was investigated in breast and prostate cancer patients receiving partial-body radiotherapy. DNA double-strand breaks (DSBs) were quantified by γ-H2AX immunostaining. The frequency of unstable chromosomal aberrations in stimulated lymphocytes was also determined and compared with the frequency of DNA DSBs in the same samples. The frequency of radiation-induced DNA damage was converted into dose, using ex vivo generated calibration curves, and was then compared with the administered physical dose. This study showed that 0.5 h after partial-body radiotherapy the quantity of radiation-induced γ-H2AX foci increased linearly with the administered equivalent whole-body dose for both tumor entities. Foci frequencies dropped 1 day thereafter but proportionality to the equivalent whole-body dose was maintained. Conversely, the frequency of radiation-induced cytogenetic damage increased from 0.5 h to 1 day after the first partial-body exposure with a linear dependence on the administered equivalent whole-body dose, for prostate cancer patients only. Only γ-H2AX foci assessment immediately after partial-body radiotherapy was a reliable measure of the expected equivalent whole-body dose. Local tumor doses could be approximated with both assays after one day. After total-body radiotherapy satisfactory dose estimates were achieved with both assays up to 8 h after exposure. In conclusion, the quantification of radiation-induced γ-H2AX foci, but not cytogenetic damage in peripheral leukocytes was a sensitive and rapid biodosimeter after acute heterogeneous irradiation of partial body volumes that was able to primarily assess the absorbed equivalent whole-body dose.

  12. ERK/MAPK Regulates Hippocampal Histone Phosphorylation Following Contextual Fear Conditioning

    ERIC Educational Resources Information Center

    Levenson, Jonathan M.; Sweatt, J. David; Chwang, Wilson B.; O'Riordan, Kenneth J.

    2006-01-01

    Long-term memory formation is regulated by many distinct molecular mechanisms that control gene expression. An emerging model for effecting a stable, coordinated pattern of gene transcription involves epigenetic tagging through modifications of histones or DNA. In this study, we investigated the regulation of histone phosphorylation in the…

  13. γ-H2AX responds to DNA damage induced by long-term exposure to combined low-dose-rate neutron and γ-ray radiation.

    PubMed

    Zhang, Junlin; He, Ying; Shen, Xianrong; Jiang, Dingwen; Wang, Qingrong; Liu, Qiong; Fang, Wen

    2016-01-01

    Risk estimates for low-dose radiation (LDR) remain controversial. The possible involvement of DNA repair-related genes in long-term low-dose-rate neutron-gamma radiation exposure is poorly understood. In this study, 60 rats were divided into control groups and irradiated groups, which were exposed to low-dose-rate n-γ combined radiation (LDCR) for 15, 30, or 60 days. The effects of different cumulative radiation doses on peripheral blood cell (PBC), subsets of T cells of peripheral blood lymphocytes (PBL) and DNA damage repair were investigated. Real-time PCR and immunoblot analyses were used to detect expression of DNA DSB-repair-related genes involved in the NHEJ pathway, such as Ku70 and Ku80, in PBL. The mRNA level of H2AX and the expression level of γ-H2AX were detected by real-time PCR, immunoblot, and flow cytometry. White blood cells (WBC) and platelets (PLT) of all ionizing radiation (IR) groups decreased significantly, while no difference was seen between the 30 day and 60 day exposure groups. The numbers of CD3(+), CD4(+) T cells and CD4(+)/CD8(+) in the PBL of IR groups were lower than in the control group. In the 30 day and 60 day exposure groups, CD8(+) T cells decreased significantly. Real-time PCR and immunoblot results showed no significant difference in the mRNA and protein expression of Ku70 and Ku80 between the control groups and IR groups. However, the mRNA of H2AX increased significantly, and there was a positive correlation with dose. There was no difference in the protein expression of γ-H2AX between 30 day and 60 day groups, which may help to explain the damage to PBL. In conclusion, PBL damage increased with cumulative dose, suggesting that γ-H2AX, but neither Ku70 nor Ku80, plays an important role in PBL impairment induced by LDCR.

  14. Dynamic phosphorylation of Histone Deacetylase 1 by Aurora kinases during mitosis regulates zebrafish embryos development.

    PubMed

    Loponte, Sara; Segré, Chiara V; Senese, Silvia; Miccolo, Claudia; Santaguida, Stefano; Deflorian, Gianluca; Citro, Simona; Mattoscio, Domenico; Pisati, Federica; Moser, Mirjam A; Visintin, Rosella; Seiser, Christian; Chiocca, Susanna

    2016-01-01

    Histone deacetylases (HDACs) catalyze the removal of acetyl molecules from histone and non-histone substrates playing important roles in chromatin remodeling and control of gene expression. Class I HDAC1 is a critical regulator of cell cycle progression, cellular proliferation and differentiation during development; it is also regulated by many post-translational modifications (PTMs). Herein we characterize a new mitosis-specific phosphorylation of HDAC1 driven by Aurora kinases A and B. We show that this phosphorylation affects HDAC1 enzymatic activity and it is critical for the maintenance of a proper proliferative and developmental plan in a complex organism. Notably, we find that Aurora-dependent phosphorylation of HDAC1 regulates histone acetylation by modulating the expression of genes directly involved in the developing zebrafish central nervous system. Our data represent a step towards the comprehension of HDAC1 regulation by its PTM code, with important implications in unravelling its roles both in physiology and pathology.

  15. Dynamic phosphorylation of Histone Deacetylase 1 by Aurora kinases during mitosis regulates zebrafish embryos development

    PubMed Central

    Loponte, Sara; Segré, Chiara V.; Senese, Silvia; Miccolo, Claudia; Santaguida, Stefano; Deflorian, Gianluca; Citro, Simona; Mattoscio, Domenico; Pisati, Federica; Moser, Mirjam A.; Visintin, Rosella; Seiser, Christian; Chiocca, Susanna

    2016-01-01

    Histone deacetylases (HDACs) catalyze the removal of acetyl molecules from histone and non-histone substrates playing important roles in chromatin remodeling and control of gene expression. Class I HDAC1 is a critical regulator of cell cycle progression, cellular proliferation and differentiation during development; it is also regulated by many post-translational modifications (PTMs). Herein we characterize a new mitosis-specific phosphorylation of HDAC1 driven by Aurora kinases A and B. We show that this phosphorylation affects HDAC1 enzymatic activity and it is critical for the maintenance of a proper proliferative and developmental plan in a complex organism. Notably, we find that Aurora-dependent phosphorylation of HDAC1 regulates histone acetylation by modulating the expression of genes directly involved in the developing zebrafish central nervous system. Our data represent a step towards the comprehension of HDAC1 regulation by its PTM code, with important implications in unravelling its roles both in physiology and pathology. PMID:27458029

  16. Chromosomal Protein HMGN1 Modulates the Phosphorylation of Serine 1 in Histone H2A

    PubMed Central

    Postnikov, Yuri V.; Belova, Galina I.; Lim, Jae-Hwan; Bustin, Michael

    2008-01-01

    Here we demonstrate that HMGN1, a nuclear protein that binds specifically to nucleosomes, modulates the level of histone H2A phosphorylation. In Hmgn1-/- cells, loss of HMGN1 elevates the steady-state levels of H2AS1ph throughout the cell cycle. In vitro, HMGN1 reduces the rate of Rsk2- and Msk1-mediated phosphorylation of nucleosomal, but not free, histone H2A. HMGN1 inhibits H2A phosphorylation by binding to nucleosomes since an HMGN mutant, which cannot bind to chromatin, does not inhibit the Rsk2- mediated H2A phosphorylation. HMGN2 also inhibits H2A phosphorylation, suggesting that the inhibition of H2A phosphorylation is not specific to only one member of this protein family. Thus, the present data add modifications of histone H2A to the list of histone modifications affected by HMGN proteins. It supports the suggestion that structural chromatin binding proteins can modify the whole profile of post-translational modifications of core histones. PMID:17154547

  17. Survivin reads phosphorylated histone H3 threonine 3 to activate the mitotic kinase Aurora B

    PubMed Central

    Kelly, Alexander E.; Ghenoiu, Cristina; Xue, John Z.; Zierhut, Christian; Kimura, Hiroshi; Funabiki, Hironori

    2011-01-01

    SUMMARY A hallmark of mitosis is the appearance of high levels of histone phosphorylation, yet the roles of these modifications remain largely unknown. Here we demonstrate that histone H3 phosphorylated at threonine 3 is directly recognized by an evolutionarily conserved binding pocket in the BIR domain of Survivin, a member of the chromosomal passenger complex (CPC). This binding mediates recruitment of the CPC to chromosomes and resulting activation of its kinase subunit Aurora B. Consistently, modulation of the kinase activity of Haspin, which phosphorylates H3T3, leads to defects in the Aurora B-dependent processes of spindle assembly and inhibition of nuclear reformation. These findings establish a direct cellular role for mitotic histone H3T3 phosphorylation, which is read and translated by the CPC to ensure accurate cell division. PMID:20705815

  18. Survivin reads phosphorylated histone H3 threonine 3 to activate the mitotic kinase Aurora B.

    PubMed

    Kelly, Alexander E; Ghenoiu, Cristina; Xue, John Z; Zierhut, Christian; Kimura, Hiroshi; Funabiki, Hironori

    2010-10-01

    A hallmark of mitosis is the appearance of high levels of histone phosphorylation, yet the roles of these modifications remain largely unknown. Here, we demonstrate that histone H3 phosphorylated at threonine 3 is directly recognized by an evolutionarily conserved binding pocket in the BIR domain of Survivin, which is a member of the chromosomal passenger complex (CPC). This binding mediates recruitment of the CPC to chromosomes and the resulting activation of its kinase subunit Aurora B. Consistently, modulation of the kinase activity of Haspin, which phosphorylates H3T3, leads to defects in the Aurora B-dependent processes of spindle assembly and inhibition of nuclear reformation. These findings establish a direct cellular role for mitotic histone H3T3 phosphorylation, which is read and translated by the CPC to ensure accurate cell division. PMID:20705815

  19. Detection of histone H3 phosphorylation in cultured cells and tissue sections by immunostaining.

    PubMed

    Padmanabhan, Jaya

    2009-01-01

    Growth factor stimulation results in phosphorylation of histone H3 at ser 10 and this correlated with expression of immediate early genes suggesting that this phosphorylation is associated with transcriptional activation. Although Western immunoblot analysis allows the detection of protein modifications in histones, in order to determine the localization of histones during different phases of cell cycle or during treatment of cells with different drugs we have to use immunohistochemistry. The protocol described here allows the detection of phosphorylated histones in tissue-cultured cells and tissue sections by fluorescent or bright-field immunostaining analysis. Here we used a serine 10 specific P-histone H3 antibody to determine the localization of this phosphoprotein in an asynchronously growing H4 glioma cell line and brain sections. It has been shown that long-term potentiation (LTP) is associated with gene transcription, and histone acetylation plays a major role in LTP formation (Wood et al., Learn Mem 13:241-244, 2006; Wood et al., Hippocampus 15:610-621, 2005; Alarcon et al., Neuron 42:947-959, 2004; Korzus et al., Neuron 42:961-972, 2004). Stimulus-induced phosphorylation of histone H3 at serine 10 has also been implicated in hippocampal neurons and striatal neurons (Li et al., J Neurochem 90:1117-1131, 2004; Crosio et al., J Cell Sci 116:4905-4914, 2003). Co-staining with a cell-specific antibody will allow us to determine the type of cells that show activation of histone phosphorylation in the brain.

  20. Synchrotron-based imaging of chromium and  γ-H2AX immunostaining in the duodenum following repeated exposure to Cr(VI) in drinking water

    DOE PAGES

    Thompson, Chad M.; Seiter, Jennifer; Chappell, Mark A.; Tappero, Ryan V.; Proctor, Deborah M.; Suh, Mina; Wolf, Jeffrey C.; Haws, Laurie C.; Vitale, Rock; Mittal, Liz; et al

    2014-10-28

    Current drinking water standards for chromium are for the combined total of both hexavalent and trivalent chromium (Cr(VI) and Cr(III)). However, recent studies have shown that Cr(III) is not carcinogenic to rodents, whereas mice chronically exposed to high levels of Cr(VI) developed duodenal tumors. These findings may suggest the need for environmental standards specific for Cr(VI). Whether the intestinal tumors arose through a mutagenic or non-mutagenic mode of action (MOA) greatly impacts how drinking water standards for Cr(VI) are derived. Herein, X-ray fluorescence (spectro)microscopy (µ-XRF) was used to image the Cr content in the villus and crypt regions of duodenamore » from B6C3F1 mice exposed to 180 mg/l Cr(VI) in drinking water for 13 weeks. DNA damage was also assessed by γ-H2AX immunostaining. Exposure to Cr(VI) induced villus blunting and crypt hyperplasia in the duodenum—the latter evidenced by lengthening of the crypt compartment by ~2-fold with a concomitant 1.5-fold increase in the number of crypt enterocytes. γ-H2AX immunostaining was elevated in villi, but not in the crypt compartment. µ-XRF maps revealed mean Cr levels >30 times higher in duodenal villi than crypt regions; mean Cr levels in crypt regions were only slightly above background signal. Despite the presence of Cr and elevated γ-H2AX immunoreactivity in villi, no aberrant foci indicative of transformation were evident. Lastly, these findings do not support a MOA for intestinal carcinogenesis involving direct Cr-DNA interaction in intestinal stem cells, but rather support a non-mutagenic MOA involving chronic wounding of intestinal villi and crypt cell hyperplasia.« less

  1. Synchrotron-based imaging of chromium and γ-H2AX immunostaining in the duodenum following repeated exposure to Cr(VI) in drinking water.

    PubMed

    Thompson, Chad M; Seiter, Jennifer; Chappell, Mark A; Tappero, Ryan V; Proctor, Deborah M; Suh, Mina; Wolf, Jeffrey C; Haws, Laurie C; Vitale, Rock; Mittal, Liz; Kirman, Christopher R; Hays, Sean M; Harris, Mark A

    2015-01-01

    Current drinking water standards for chromium are for the combined total of both hexavalent and trivalent chromium (Cr(VI) and Cr(III)). However, recent studies have shown that Cr(III) is not carcinogenic to rodents, whereas mice chronically exposed to high levels of Cr(VI) developed duodenal tumors. These findings may suggest the need for environmental standards specific for Cr(VI). Whether the intestinal tumors arose through a mutagenic or non-mutagenic mode of action (MOA) greatly impacts how drinking water standards for Cr(VI) are derived. Herein, X-ray fluorescence (spectro)microscopy (µ-XRF) was used to image the Cr content in the villus and crypt regions of duodena from B6C3F1 mice exposed to 180 mg/l Cr(VI) in drinking water for 13 weeks. DNA damage was also assessed by γ-H2AX immunostaining. Exposure to Cr(VI) induced villus blunting and crypt hyperplasia in the duodenum--the latter evidenced by lengthening of the crypt compartment by ∼2-fold with a concomitant 1.5-fold increase in the number of crypt enterocytes. γ-H2AX immunostaining was elevated in villi, but not in the crypt compartment. µ-XRF maps revealed mean Cr levels >30 times higher in duodenal villi than crypt regions; mean Cr levels in crypt regions were only slightly above background signal. Despite the presence of Cr and elevated γ-H2AX immunoreactivity in villi, no aberrant foci indicative of transformation were evident. These findings do not support a MOA for intestinal carcinogenesis involving direct Cr-DNA interaction in intestinal stem cells, but rather support a non-mutagenic MOA involving chronic wounding of intestinal villi and crypt cell hyperplasia. PMID:25352572

  2. Synchrotron-Based Imaging of Chromium and γ-H2AX Immunostaining in the Duodenum Following Repeated Exposure to Cr(VI) in Drinking Water

    PubMed Central

    Thompson, Chad M.; Seiter, Jennifer; Chappell, Mark A.; Tappero, Ryan V.; Proctor, Deborah M.; Suh, Mina; Wolf, Jeffrey C.; Haws, Laurie C.; Vitale, Rock; Mittal, Liz; Kirman, Christopher R.; Hays, Sean M.; Harris, Mark A.

    2015-01-01

    Current drinking water standards for chromium are for the combined total of both hexavalent and trivalent chromium (Cr(VI) and Cr(III)). However, recent studies have shown that Cr(III) is not carcinogenic to rodents, whereas mice chronically exposed to high levels of Cr(VI) developed duodenal tumors. These findings may suggest the need for environmental standards specific for Cr(VI). Whether the intestinal tumors arose through a mutagenic or non-mutagenic mode of action (MOA) greatly impacts how drinking water standards for Cr(VI) are derived. Herein, X-ray fluorescence (spectro)microscopy (µ-XRF) was used to image the Cr content in the villus and crypt regions of duodena from B6C3F1 mice exposed to 180 mg/l Cr(VI) in drinking water for 13 weeks. DNA damage was also assessed by γ-H2AX immunostaining. Exposure to Cr(VI) induced villus blunting and crypt hyperplasia in the duodenum—the latter evidenced by lengthening of the crypt compartment by ∼2-fold with a concomitant 1.5-fold increase in the number of crypt enterocytes. γ-H2AX immunostaining was elevated in villi, but not in the crypt compartment. µ-XRF maps revealed mean Cr levels >30 times higher in duodenal villi than crypt regions; mean Cr levels in crypt regions were only slightly above background signal. Despite the presence of Cr and elevated γ-H2AX immunoreactivity in villi, no aberrant foci indicative of transformation were evident. These findings do not support a MOA for intestinal carcinogenesis involving direct Cr-DNA interaction in intestinal stem cells, but rather support a non-mutagenic MOA involving chronic wounding of intestinal villi and crypt cell hyperplasia. PMID:25352572

  3. Synchrotron-based imaging of chromium and γ-H2AX immunostaining in the duodenum following repeated exposure to Cr(VI) in drinking water.

    PubMed

    Thompson, Chad M; Seiter, Jennifer; Chappell, Mark A; Tappero, Ryan V; Proctor, Deborah M; Suh, Mina; Wolf, Jeffrey C; Haws, Laurie C; Vitale, Rock; Mittal, Liz; Kirman, Christopher R; Hays, Sean M; Harris, Mark A

    2015-01-01

    Current drinking water standards for chromium are for the combined total of both hexavalent and trivalent chromium (Cr(VI) and Cr(III)). However, recent studies have shown that Cr(III) is not carcinogenic to rodents, whereas mice chronically exposed to high levels of Cr(VI) developed duodenal tumors. These findings may suggest the need for environmental standards specific for Cr(VI). Whether the intestinal tumors arose through a mutagenic or non-mutagenic mode of action (MOA) greatly impacts how drinking water standards for Cr(VI) are derived. Herein, X-ray fluorescence (spectro)microscopy (µ-XRF) was used to image the Cr content in the villus and crypt regions of duodena from B6C3F1 mice exposed to 180 mg/l Cr(VI) in drinking water for 13 weeks. DNA damage was also assessed by γ-H2AX immunostaining. Exposure to Cr(VI) induced villus blunting and crypt hyperplasia in the duodenum--the latter evidenced by lengthening of the crypt compartment by ∼2-fold with a concomitant 1.5-fold increase in the number of crypt enterocytes. γ-H2AX immunostaining was elevated in villi, but not in the crypt compartment. µ-XRF maps revealed mean Cr levels >30 times higher in duodenal villi than crypt regions; mean Cr levels in crypt regions were only slightly above background signal. Despite the presence of Cr and elevated γ-H2AX immunoreactivity in villi, no aberrant foci indicative of transformation were evident. These findings do not support a MOA for intestinal carcinogenesis involving direct Cr-DNA interaction in intestinal stem cells, but rather support a non-mutagenic MOA involving chronic wounding of intestinal villi and crypt cell hyperplasia.

  4. Synchrotron-based imaging of chromium and  γ-H2AX immunostaining in the duodenum following repeated exposure to Cr(VI) in drinking water

    SciTech Connect

    Thompson, Chad M.; Seiter, Jennifer; Chappell, Mark A.; Tappero, Ryan V.; Proctor, Deborah M.; Suh, Mina; Wolf, Jeffrey C.; Haws, Laurie C.; Vitale, Rock; Mittal, Liz; Kirman, Christopher R.; Hays, Sean M.; Harris, Mark A.

    2014-10-28

    Current drinking water standards for chromium are for the combined total of both hexavalent and trivalent chromium (Cr(VI) and Cr(III)). However, recent studies have shown that Cr(III) is not carcinogenic to rodents, whereas mice chronically exposed to high levels of Cr(VI) developed duodenal tumors. These findings may suggest the need for environmental standards specific for Cr(VI). Whether the intestinal tumors arose through a mutagenic or non-mutagenic mode of action (MOA) greatly impacts how drinking water standards for Cr(VI) are derived. Herein, X-ray fluorescence (spectro)microscopy (µ-XRF) was used to image the Cr content in the villus and crypt regions of duodena from B6C3F1 mice exposed to 180 mg/l Cr(VI) in drinking water for 13 weeks. DNA damage was also assessed by γ-H2AX immunostaining. Exposure to Cr(VI) induced villus blunting and crypt hyperplasia in the duodenum—the latter evidenced by lengthening of the crypt compartment by ~2-fold with a concomitant 1.5-fold increase in the number of crypt enterocytes. γ-H2AX immunostaining was elevated in villi, but not in the crypt compartment. µ-XRF maps revealed mean Cr levels >30 times higher in duodenal villi than crypt regions; mean Cr levels in crypt regions were only slightly above background signal. Despite the presence of Cr and elevated γ-H2AX immunoreactivity in villi, no aberrant foci indicative of transformation were evident. Lastly, these findings do not support a MOA for intestinal carcinogenesis involving direct Cr-DNA interaction in intestinal stem cells, but rather support a non-mutagenic MOA involving chronic wounding of intestinal villi and crypt cell hyperplasia.

  5. Polo-like kinase-1 triggers histone phosphorylation by Haspin in mitosis

    PubMed Central

    Zhou, Linli; Tian, Xiaoying; Zhu, Cailei; Wang, Fangwei; Higgins, Jonathan MG

    2014-01-01

    Histone modifications coordinate the chromatin localization of key regulatory factors in mitosis. For example, mitotic phosphorylation of Histone H3 threonine-3 (H3T3ph) by Haspin creates a binding site for the chromosomal passenger complex (CPC). However, how these histone modifications are spatiotemporally controlled during the cell cycle is unclear. Here we show that Plk1 binds to Haspin in a Cdk1-phosphorylation-dependent manner. Reducing Plk1 activity decreases the phosphorylation of Haspin and inhibits H3T3ph, particularly in prophase, suggesting that Plk1 is required for initial activation of Haspin in early mitosis. These studies demonstrate that Plk1 can positively regulate CPC recruitment in mitosis. PMID:24413556

  6. Preferential Phosphorylation on Old Histones during Early Mitosis in Human Cells.

    PubMed

    Lin, Shu; Yuan, Zuo-Fei; Han, Yumiao; Marchione, Dylan M; Garcia, Benjamin A

    2016-07-15

    How histone post-translational modifications (PTMs) are inherited through the cell cycle remains poorly understood. Canonical histones are made in the S phase of the cell cycle. Combining mass spectrometry-based technologies and stable isotope labeling by amino acids in cell culture, we question the distribution of multiple histone PTMs on old versus new histones in synchronized human cells. We show that histone PTMs can be grouped into three categories according to their distributions. Most lysine mono-methylation and acetylation PTMs are either symmetrically distributed on old and new histones or are enriched on new histones. In contrast, most di- and tri-methylation PTMs are enriched on old histones, suggesting that the inheritance of different PTMs is regulated distinctly. Intriguingly, old and new histones are distinct in their phosphorylation status during early mitosis in the following three human cell types: HeLa, 293T, and human foreskin fibroblast cells. The mitotic hallmark H3S10ph is predominantly associated with old H3 at early mitosis and becomes symmetric with the progression of mitosis. This same distribution was observed with other mitotic phosphorylation marks, including H3T3/T6ph, H3.1/2S28ph, and H1.4S26ph but not S28/S31ph on the H3 variant H3.3. Although H3S10ph often associates with the neighboring Lys-9 di- or tri-methylations, they are not required for the asymmetric distribution of Ser-10 phosphorylation on the same H3 tail. Inhibition of the kinase Aurora B does not change the distribution despite significant reduction of H3S10ph levels. However, K9me2 abundance on the new H3 is significantly reduced after Aurora B inhibition, suggesting a cross-talk between H3S10ph and H3K9me2. PMID:27226594

  7. Biochemical kinetics model of DSB repair and induction of gamma-H2AX foci by non-homologous end joining.

    PubMed

    Cucinotta, Francis A; Pluth, Janice M; Anderson, Jennifer A; Harper, Jane V; O'Neill, Peter

    2008-02-01

    We developed a biochemical kinetics approach to describe the repair of double-strand breaks (DSBs) produced by low-LET radiation by modeling molecular events associated with non-homologous end joining (NHEJ). A system of coupled nonlinear ordinary differential equations describes the induction of DSBs and activation pathways for major NHEJ components including Ku70/80, DNA-PKcs, and the ligase IV-XRCC4 heterodimer. The autophosphorylation of DNA-PKcs and subsequent induction of gamma-H2AX foci observed after ionizing radiation exposure were modeled. A two-step model of regulation of repair by DNA-PKcs was developed with an initial step allowing access of other NHEJ components to breaks and a second step limiting access to ligase IV-XRCC4. Our model assumes that the transition from the first to the second step depends on DSB complexity, with a much slower rate for complex DSBs. The model faithfully reproduced several experimental data sets, including DSB rejoining as measured by pulsed-field gel electrophoresis (PFGE) at 10 min postirradiation or longer and quantification of the induction of gamma-H2AX foci. A process that is independent of DNA-PKcs is required for the model to reproduce experimental data for rejoining before 10 min postirradiation. Predictions are made for the behaviors of NHEJ components at low doses and dose rates, and a steady state is found at dose rates of 0.1 Gy/h or lower. PMID:18220463

  8. Survival Fraction at 2 Gy and γH2AX Expression Kinetics in Peripheral Blood Lymphocytes From Cancer Patients: Relationship With Acute Radiation-Induced Toxicities

    SciTech Connect

    Pouliliou, Stamatia E.; Dimitriou, Thespis; Giatromanolaki, Alexandra; Papazoglou, Dimitrios; Pappa, Aglaia; Pistevou, Kyriaki

    2015-07-01

    Purpose: Predictive assays for acute radiation toxicities would be clinically relevant in radiation oncology. We prospectively examined the predictive role of the survival fraction at 2 Gy (SF2) and of γH2AX (double-strand break [DSB] DNA marker) expression kinetics in peripheral blood mononuclear cells (PBMCs) from cancer patients before radiation therapy. Methods and Materials: SF2 was measured with Trypan Blue assay in the PBMCs from 89 cancer patients undergoing radiation therapy at 4 hours (SF2{sub [4h]}) and 24 hours (SF2{sub [24h]}) after ex vivo irradiation. Using Western blot analysis and band densitometry, we further assessed the expression of γH2AX in PBMC DNA at 0 hours, 30 minutes, and 4 hours (33 patients) and 0 hour, 4 hours, and 24 hours (56 patients), following ex vivo irradiation with 2 Gy. Appropriate ratios were used to characterize each patient, and these were retrospectively correlated with early radiation therapy toxicity grade. Results: The SF2{sub (4h)} was inversely correlated with the toxicity grade (P=.006). The γH2AX-ratio{sub (30min)} (band density of irradiated/non-irradiated cells at 30 minutes) revealed, similarly, a significant inverse association (P=.0001). The DSB DNA repair rate from 30 minutes to 4 hours, calculated as the relative RγH2AX-ratio (γH2AX-ratio{sub (4h)}/γH2AX-ratio{sub (30min)}) showed a significant direct association with high toxicity grade (P=.01). Conclusions: Our results suggest that SF2 is a significant radiation sensitivity index for patients undergoing radiation therapy. γH2AX Western blot densitometry analysis provided 2 important markers of normal tissue radiation sensitivity. Low γH2AX expression at 30 minutes was linked with high toxicity grade, suggesting that poor γH2AX repair activity within a time frame of 30 minutes after irradiation predicts for poor radiation tolerance. On the other hand, rapid γH2AX content restoration at 4 hours after irradiation, compatible with

  9. The profiles of gamma-H2AX along with ATM/DNA-PKcs activation in the lymphocytes and granulocytes of rat and human blood exposed to gamma rays.

    PubMed

    Wang, Jing; Yin, Lina; Zhang, Junxiang; Zhang, Yaping; Zhang, Xuxia; Ding, Defang; Gao, Yun; Li, Qiang; Chen, Honghong

    2016-08-01

    Establishing a rat model suitable for γ-H2AX biodosimeter studies has important implications for dose assessment of internal radionuclide contamination in humans. In this study, γ-H2AX, p-ATM and p-DNA-PKcs foci were enumerated using immunocytofluorescence method, and their protein levels were measured by Western blot in rat blood lymphocytes and granulocytes exposed to γ-rays compared with human blood lymphocytes and granulocytes. It was found that DNA double-strand break repair kinetics and linear dose responses in rat lymphocytes were similar to those observed in the human counterparts. Moreover, radiation induced clear p-ATM and p-DNA-PKcs foci formation and an increase in ratio of co-localization of p-ATM or p-DNA-PKcs with γ-H2AX foci in rat lymphocytes similar to those of human lymphocytes. The level of γ-H2AX protein in irradiated rat and human lymphocytes was significantly reduced by inhibitors of ATM and DNA-PKcs. Surprisingly, unlike human granulocytes, rat granulocytes with DNA-PKcs deficiency displayed a rapid accumulation, but delayed disappearance of γ-H2AX foci with essentially no change from 10 h to 48 h post-irradiation. Furthermore, inhibition of ATM activity in rat granulocytes also decreased radiation-induced γ-H2AX foci formation. In comparison, human granulocytes showed no response to irradiation regarding γ-H2AX, p-ATM or p-DNA-PKcs foci. Importantly, incidence of γ-H2AX foci in lymphocytes after total-body radiation of rats was consistent with that of in vitro irradiation of rat lymphocytes. These findings show that rats are a useful in vivo model for validation of γ-H2AX biodosimetry for dose assessment in humans. ATM and DNA-PKcs participate together in DSB repair in rat lymphocytes similar to that of human lymphocytes. Further, rat granulocytes, which have the characteristic of delayed disappearance of γ-H2AX foci in response to radiation, may be a useful experimental system for biodosimetry studies.

  10. The profiles of gamma-H2AX along with ATM/DNA-PKcs activation in the lymphocytes and granulocytes of rat and human blood exposed to gamma rays.

    PubMed

    Wang, Jing; Yin, Lina; Zhang, Junxiang; Zhang, Yaping; Zhang, Xuxia; Ding, Defang; Gao, Yun; Li, Qiang; Chen, Honghong

    2016-08-01

    Establishing a rat model suitable for γ-H2AX biodosimeter studies has important implications for dose assessment of internal radionuclide contamination in humans. In this study, γ-H2AX, p-ATM and p-DNA-PKcs foci were enumerated using immunocytofluorescence method, and their protein levels were measured by Western blot in rat blood lymphocytes and granulocytes exposed to γ-rays compared with human blood lymphocytes and granulocytes. It was found that DNA double-strand break repair kinetics and linear dose responses in rat lymphocytes were similar to those observed in the human counterparts. Moreover, radiation induced clear p-ATM and p-DNA-PKcs foci formation and an increase in ratio of co-localization of p-ATM or p-DNA-PKcs with γ-H2AX foci in rat lymphocytes similar to those of human lymphocytes. The level of γ-H2AX protein in irradiated rat and human lymphocytes was significantly reduced by inhibitors of ATM and DNA-PKcs. Surprisingly, unlike human granulocytes, rat granulocytes with DNA-PKcs deficiency displayed a rapid accumulation, but delayed disappearance of γ-H2AX foci with essentially no change from 10 h to 48 h post-irradiation. Furthermore, inhibition of ATM activity in rat granulocytes also decreased radiation-induced γ-H2AX foci formation. In comparison, human granulocytes showed no response to irradiation regarding γ-H2AX, p-ATM or p-DNA-PKcs foci. Importantly, incidence of γ-H2AX foci in lymphocytes after total-body radiation of rats was consistent with that of in vitro irradiation of rat lymphocytes. These findings show that rats are a useful in vivo model for validation of γ-H2AX biodosimetry for dose assessment in humans. ATM and DNA-PKcs participate together in DSB repair in rat lymphocytes similar to that of human lymphocytes. Further, rat granulocytes, which have the characteristic of delayed disappearance of γ-H2AX foci in response to radiation, may be a useful experimental system for biodosimetry studies. PMID:27260225

  11. The N-terminus of histone H2B, but not that of histone H3 or its phosphorylation, is essential for chromosome condensation

    PubMed Central

    de la Barre, Anne-Elisabeth; Angelov, Dimitri; Molla, Annie; Dimitrov, Stefan

    2001-01-01

    We have studied the role of individual histone N-termini and the phosphorylation of histone H3 in chromosome condensation. Nucleosomes, reconstituted with histone octamers containing different combinations of recombinant full-length and tailless histones, were used as competitors for chromosome assembly in Xenopus egg extracts. Nucleosomes reconstituted with intact octamers inhibited chromosome condensation as efficiently as the native ones, while tailless nucleosomes were unable to affect this process. Importantly, the addition to the extract of particles containing only intact histone H2B strongly interfered with chromosome formation while such an effect was not observed with particles lacking the N-terminal tail of H2B. This demonstrates that the inhibition effect observed in the presence of competitor nucleosomes is mainly due to the N-terminus of this histone, which, therefore, is essential for chromosome condensation. Nucleosomes in which all histones but H3 were tailless did not impede chromosome formation. In addition, when competitor nucleosome particles were reconstituted with full-length H2A, H2B and H4 and histone H3 mutated at the phosphorylable serine 10 or serine 28, their inhibiting efficiency was identical to that of the native particles. Hence, the tail of H3, whether intact or phosphorylated, is not important for chromosome condensation. A novel hypothesis, termed ‘the ready production label’ was suggested to explain the role of histone H3 phosphorylation during cell division. PMID:11707409

  12. Investigating chromosome damage and gammaH2AX response in human lymphocytes and lymphocyte subsets as potential biomarkers of radiation sensitivity

    NASA Astrophysics Data System (ADS)

    Beaton, Lindsay A.

    This thesis examines in vitro irradiated blood samples from prostate cancer patients exhibiting late normal tissue damage after receiving radiotherapy, for lymphocyte response. Chromosomal aberrations, translocations and proliferation rate are measured, as well as gammaH2AX response in lymphocytes and lymphocyte subsets. The goal of this thesis is to determine whether the lymphocyte response to in vitro radiation could be used as a marker for radiosensitivity. Patients were selected from a randomized clinical trial evaluating the optimal timing of Dose Escalated Radiation and short course Androgen Deprivation Therapy. Of 438 patients, 3% developed Grade 3 late radiation proctitis and were considered to be radiosensitive. Blood was drawn from 10 of these patients along with 20 matched samples from patients with grade 0 proctitis. The samples were irradiated and were analyzed for dicentric chromosomes, excess fragments and proliferation rates (at 6 Gy), translocations, stable and unstable damage (at 4 Gy), and dose response (up to 10 Gy), along with time response after 2 Gy (0 -- 24 h). Chromosome aberrations, excess fragments per cell, translocations per cell and proliferation rates were analyzed by brightfield and fluorescent microscopy, while the gammaH2AX response in lymphocytes and lymphocyte subsets was analyzed by flow cytometry. Both groups were statistically similar for all endpoints at 0 Gy. At 6 Gy, there were statistically significant differences between the radiosensitive and control cohorts for three endpoints; the mean number of dicentric chromosomes per cell, the mean number of excess fragments per cell and the proportion of cells in second metaphase. At 4 Gy, there were statistically significant differences between the two cohorts for three endpoints; the mean number of translocations per cell, the mean number of dicentric chromosomes per cell and the mean number of deletions per cell. There were no significant differences between the gammaH2AX

  13. Calibration of the γ-H2AX DNA double strand break focus assay for internal radiation exposure of blood lymphocytes.

    PubMed

    Eberlein, Uta; Peper, Michel; Fernández, Maria; Lassmann, Michael; Scherthan, Harry

    2015-01-01

    DNA double strand break (DSB) formation induced by ionizing radiation exposure is indicated by the DSB biomarkers γ-H2AX and 53BP1. Knowledge about DSB foci formation in-vitro after internal irradiation of whole blood samples with radionuclides in solution will help us to gain detailed insights about dose-response relationships in patients after molecular radiotherapy (MRT). Therefore, we studied the induction of radiation-induced co-localizing γ-H2AX and 53BP1 foci as surrogate markers for DSBs in-vitro, and correlated the obtained foci per cell values with the in-vitro absorbed doses to the blood for the two most frequently used radionuclides in MRT (I-131 and Lu-177). This approach led to an in-vitro calibration curve. Overall, 55 blood samples of three healthy volunteers were analyzed. For each experiment several vials containing a mixture of whole blood and radioactive solutions with different concentrations of isotonic NaCl-diluted radionuclides with known activities were prepared. Leukocytes were recovered by density centrifugation after incubation and constant blending for 1 h at 37°C. After ethanol fixation they were subjected to two-color immunofluorescence staining and the average frequencies of the co-localizing γ-H2AX and 53BP1 foci/nucleus were determined using a fluorescence microscope equipped with a red/green double band pass filter. The exact activity was determined in parallel in each blood sample by calibrated germanium detector measurements. The absorbed dose rates to the blood per nuclear disintegrations occurring in 1 ml of blood were calculated for both isotopes by a Monte Carlo simulation. The measured blood doses in our samples ranged from 6 to 95 mGy. A linear relationship was found between the number of DSB-marking foci/nucleus and the absorbed dose to the blood for both radionuclides studied. There were only minor nuclide-specific intra- and inter-subject deviations.

  14. Calibration of the γ-H2AX DNA Double Strand Break Focus Assay for Internal Radiation Exposure of Blood Lymphocytes

    PubMed Central

    Eberlein, Uta; Peper, Michel; Fernández, Maria; Lassmann, Michael; Scherthan, Harry

    2015-01-01

    DNA double strand break (DSB) formation induced by ionizing radiation exposure is indicated by the DSB biomarkers γ-H2AX and 53BP1. Knowledge about DSB foci formation in-vitro after internal irradiation of whole blood samples with radionuclides in solution will help us to gain detailed insights about dose-response relationships in patients after molecular radiotherapy (MRT). Therefore, we studied the induction of radiation-induced co-localizing γ-H2AX and 53BP1 foci as surrogate markers for DSBs in-vitro, and correlated the obtained foci per cell values with the in-vitro absorbed doses to the blood for the two most frequently used radionuclides in MRT (I-131 and Lu-177). This approach led to an in-vitro calibration curve. Overall, 55 blood samples of three healthy volunteers were analyzed. For each experiment several vials containing a mixture of whole blood and radioactive solutions with different concentrations of isotonic NaCl-diluted radionuclides with known activities were prepared. Leukocytes were recovered by density centrifugation after incubation and constant blending for 1 h at 37°C. After ethanol fixation they were subjected to two-color immunofluorescence staining and the average frequencies of the co-localizing γ-H2AX and 53BP1 foci/nucleus were determined using a fluorescence microscope equipped with a red/green double band pass filter. The exact activity was determined in parallel in each blood sample by calibrated germanium detector measurements. The absorbed dose rates to the blood per nuclear disintegrations occurring in 1 ml of blood were calculated for both isotopes by a Monte Carlo simulation. The measured blood doses in our samples ranged from 6 to 95 mGy. A linear relationship was found between the number of DSB-marking foci/nucleus and the absorbed dose to the blood for both radionuclides studied. There were only minor nuclide-specific intra- and inter-subject deviations. PMID:25853575

  15. Twist1 and Slug mediate H2AX-regulated epithelial-mesenchymal transition in breast cells.

    PubMed

    Weyemi, Urbain; Redon, Christophe E; Sethi, Taresh K; Burrell, Allison S; Jailwala, Parthav; Kasoji, Manjula; Abrams, Natalie; Merchant, Anand; Bonner, William M

    2016-09-16

    The epithelial-mesenchymal transition (EMT) is thought to be essential for cancer metastasis. While chromatin remodeling is involved in EMT, which processes contribute to this remodeling remain poorly investigated. Recently, we showed that silencing or removal of the histone variant H2A.X induced mesenchymal-like characteristics, including activation of the EMT transcription factors, Slug and Zeb1 in human colon cancer cells. Here, we provide the evidence that H2A.X loss in human non-tumorigenic breast cell line MCF10A results in a robust EMT activation, as substantiated by a genome-wide expression analysis. Cells deficient for H2A.X exhibit enhanced migration and invasion, along with an activation of a set of mesenchymal genes and a concomitant repression of epithelial genes. In the breast model, the EMT-related transcription factor Twist1 cooperates with Slug to regulate EMT upon H2A.X Loss. Of interest, H2A.X expression level tightly correlates with Twist1, and to a lesser extent with Slug in the panel of human breast cancer cell lines of the NCI-60 datasets. These new findings indicate that H2A.X is involved in the EMT processes in cells of different origins but pairing with transcription factors for EMT may be tissue specific. PMID:27315462

  16. Duodenal crypt health following exposure to Cr(VI): Micronucleus scoring, γ-H2AX immunostaining, and synchrotron X-ray fluorescence microscopy.

    PubMed

    Thompson, Chad M; Wolf, Jeffrey C; Elbekai, Reem H; Paranjpe, Madhav G; Seiter, Jennifer M; Chappell, Mark A; Tappero, Ryan V; Suh, Mina; Proctor, Deborah M; Bichteler, Anne; Haws, Laurie C; Harris, Mark A

    2015-08-01

    Lifetime exposure to high concentrations of hexavalent chromium [Cr(VI)] in drinking water results in intestinal damage and an increase in duodenal tumors in B6C3F1 mice. To assess whether these tumors could be the result of a direct mutagenic or genotoxic mode of action, we conducted a GLP-compliant 7-day drinking water study to assess crypt health along the entire length of the duodenum. Mice were exposed to water (vehicle control), 1.4, 21, or 180 ppm Cr(VI) via drinking water for 7 consecutive days. Crypt enterocytes in Swiss roll sections were scored as normal, mitotic, apoptotic, karyorrhectic, or as having micronuclei. A single oral gavage of 50mg/kg cyclophosphamide served as a positive control for micronucleus induction. Exposure to 21 and 180 ppm Cr(VI) significantly increased the number of crypt enterocytes. Micronuclei and γ-H2AX immunostaining were not elevated in the crypts of Cr(VI)-treated mice. In contrast, treatment with cyclophosphamide significantly increased numbers of crypt micronuclei and qualitatively increased γ-H2AX immunostaining. Synchrotron-based X-ray fluorescence (XRF) microscopy revealed the presence of strong Cr fluorescence in duodenal villi, but negligible Cr fluorescence in the crypt compartment. Together, these data indicate that Cr(VI) does not adversely effect the crypt compartment where intestinal stem cells reside, and provide additional evidence that the mode of action for Cr(VI)-induced intestinal cancer in B6C3F1 mice involves chronic villous wounding resulting in compensatory crypt enterocyte hyperplasia. PMID:26232259

  17. SWI/SNF recruitment to a DNA double-strand break by the NuA4 and Gcn5 histone acetyltransferases.

    PubMed

    Bennett, Gwendolyn; Peterson, Craig L

    2015-06-01

    The DNA damage response to double-strand breaks (DSBs) is critical for cellular viability. Recent work has shown that a host of chromatin regulators are recruited to a DSB, and that they are important for the DNA damage response. However, the functional relationships between different chromatin regulators at DSBs remain unclear. Here we describe a conserved functional interaction among the chromatin remodeling enzyme, SWI/SNF, the NuA4 and Gcn5 histone acetyltransferases, and phosphorylation of histone H2A.XH2AX). Specifically, we find that the NuA4 and Gcn5 enzymes are both required for the robust recruitment of SWI/SNF to a DSB, which in turn promotes the phosphorylation of H2A.X.

  18. Differential regulation of the histone chaperone HIRA during muscle cell differentiation by a phosphorylation switch

    PubMed Central

    Yang, Jae-Hyun; Song, Tae-Yang; Jo, Chanhee; Park, Jinyoung; Lee, Han-Young; Song, Ilang; Hong, Suji; Jung, Kwan Young; Kim, Jaehoon; Han, Jeung-Whan; Youn, Hong-Duk; Cho, Eun-Jung

    2016-01-01

    Replication-independent incorporation of variant histone H3.3 has a profound impact on chromatin function and numerous cellular processes, including the differentiation of muscle cells. The histone chaperone HIRA and H3.3 have essential roles in MyoD regulation during myoblast differentiation. However, the precise mechanism that determines the onset of H3.3 deposition in response to differentiation signals is unclear. Here we show that HIRA is phosphorylated by Akt kinase, an important signaling modulator in muscle cells. By generating a phosphospecific antibody, we found that a significant amount of HIRA was phosphorylated in myoblasts. The phosphorylation level of HIRA and the occupancy of phosphorylated protein on muscle genes gradually decreased during cellular differentiation. Remarkably, the forced expression of the phosphomimic form of HIRA resulted in reduced H3.3 deposition and suppressed the activation of muscle genes in myotubes. Our data show that HIRA phosphorylation limits the expression of myogenic genes, while the dephosphorylation of HIRA is required for proficient H3.3 deposition and gene activation, demonstrating that the phosphorylation switch is exploited to modulate HIRA/H3.3-mediated muscle gene regulation during myogenesis. PMID:27515126

  19. Individual and Combined Expression of DNA Damage Response Molecules PARP1, γH2AX, BRCA1, and BRCA2 Predict Shorter Survival of Soft Tissue Sarcoma Patients

    PubMed Central

    Park, See-Hyoung; Park, Hye Jeong; Wang, Sung Il; Park, Ho Sung; Lee, Ho; Kwon, Keun Sang; Moon, Woo Sung; Lee, Dong Geun; Kim, Jung Ryul; Jang, Kyu Yun

    2016-01-01

    DNA damage response (DDR) molecules are protective against genotoxic stresses. DDR molecules are also involved in the survival of cancer cells in patients undergoing anti-cancer therapies. Therefore, DDR molecules are potential markers of cancer progression in addition to being potential therapeutic targets. In this study, we evaluated the immunohistochemical expression of PARP1, γH2AX, BRCA1, and BRCA2 and their prognostic significance in 112 cases of soft tissue sarcoma (STS). The expression of PARP1, γH2AX, BRCA1, and BRCA2 were significantly associated with each other and were associated with higher tumor stage and presence of distant metastasis. The expression of PARP1, γH2AX, and BRCA2 were significantly associated with shorter disease-specific survival (DSS) and event-free survival (EFS) by univariate analysis. BRCA1 expression was associated with shorter DSS. Multivariate analysis revealed the expression of PARP1 and γH2AX to be independent indicators of poor prognosis of DSS and EFS. BRCA2 expression was an independent indicator of poor prognosis of DSS. In addition, the combined expressional patterns of PARP1, γH2AX, BRCA1, and BRCA2 (CSddrm) were independent prognostic predictors of DSS (P < 0.001) and EFS (P = 0.016). The ten-year DSS rate of the CSddrm-low, CSddrm-intermediate, and CSddrm-high subgroups were 81%, 26%, and 0%, respectively. In conclusion, this study demonstrates that the individual and combined expression patterns of the DDR molecules PARP1, γH2AX, BRCA1, and BRCA2 could be predictive of the prognosis of STS patients and suggests that controlling the activity of these DDR molecules could be employed in new therapeutic stratagems for the treatment of STS. PMID:27643881

  20. Individual and Combined Expression of DNA Damage Response Molecules PARP1, γH2AX, BRCA1, and BRCA2 Predict Shorter Survival of Soft Tissue Sarcoma Patients.

    PubMed

    Kim, Kyoung Min; Moon, Young Jae; Park, See-Hyoung; Park, Hye Jeong; Wang, Sung Il; Park, Ho Sung; Lee, Ho; Kwon, Keun Sang; Moon, Woo Sung; Lee, Dong Geun; Kim, Jung Ryul; Jang, Kyu Yun

    2016-01-01

    DNA damage response (DDR) molecules are protective against genotoxic stresses. DDR molecules are also involved in the survival of cancer cells in patients undergoing anti-cancer therapies. Therefore, DDR molecules are potential markers of cancer progression in addition to being potential therapeutic targets. In this study, we evaluated the immunohistochemical expression of PARP1, γH2AX, BRCA1, and BRCA2 and their prognostic significance in 112 cases of soft tissue sarcoma (STS). The expression of PARP1, γH2AX, BRCA1, and BRCA2 were significantly associated with each other and were associated with higher tumor stage and presence of distant metastasis. The expression of PARP1, γH2AX, and BRCA2 were significantly associated with shorter disease-specific survival (DSS) and event-free survival (EFS) by univariate analysis. BRCA1 expression was associated with shorter DSS. Multivariate analysis revealed the expression of PARP1 and γH2AX to be independent indicators of poor prognosis of DSS and EFS. BRCA2 expression was an independent indicator of poor prognosis of DSS. In addition, the combined expressional patterns of PARP1, γH2AX, BRCA1, and BRCA2 (CSddrm) were independent prognostic predictors of DSS (P < 0.001) and EFS (P = 0.016). The ten-year DSS rate of the CSddrm-low, CSddrm-intermediate, and CSddrm-high subgroups were 81%, 26%, and 0%, respectively. In conclusion, this study demonstrates that the individual and combined expression patterns of the DDR molecules PARP1, γH2AX, BRCA1, and BRCA2 could be predictive of the prognosis of STS patients and suggests that controlling the activity of these DDR molecules could be employed in new therapeutic stratagems for the treatment of STS. PMID:27643881

  1. Aurora B-dependent regulation of class IIa histone deacetylases by mitotic nuclear localization signal phosphorylation.

    PubMed

    Guise, Amanda J; Greco, Todd M; Zhang, Irene Y; Yu, Fang; Cristea, Ileana M

    2012-11-01

    Class IIa histone deacetylases (HDACs 4/5/7/9) are transcriptional regulators with critical roles in cardiac disease and cancer. HDAC inhibitors are promising anticancer agents, and although they are known to disrupt mitotic progression, the underlying mechanisms of mitotic regulation by HDACs are not fully understood. Here we provide the first identification of histone deacetylases as substrates of Aurora B kinase (AurB). Our study identifies class IIa HDACs as a novel family of AurB targets and provides the first evidence that HDACs are temporally and spatially regulated by phosphorylation during the cell cycle. We define the precise site of AurB-mediated phosphorylation as a conserved serine within the nuclear localization signals of HDAC4, HDAC5, and HDAC9 at Ser265, Ser278, and Ser242, respectively. We establish that AurB interacts with these HDACs in vivo, and that this association increases upon disruption of 14-3-3 binding. We observe colocalization of endogenous, phosphorylated HDACs with AurB at the mitotic midzone in late anaphase and the midbody during cytokinesis, complemented by a reduction in HDAC interactions with components of the nuclear corepressor complex. We propose that AurB-dependent phosphorylation of HDACs induces sequestration within a phosphorylation gradient at the midzone, maintaining separation from re-forming nuclei and contributing to transcriptional control.

  2. Basal aurora kinase B activity is sufficient for histone H3 phosphorylation in prophase

    PubMed Central

    Le, Ly-Thuy-Tram; Vu, Hong-Lien; Nguyen, Chi-Hung; Molla, Annie

    2013-01-01

    Summary Histone H3 phosphorylation is the hallmark of mitosis deposited by aurora kinase B. Benzo[e]pyridoindoles are a family of potent, broad, ATP-competitive aurora kinase inhibitors. However, benzo[e]pyridoindole C4 only inhibits histone H3 phosphorylation in prophase but not in metaphase. Under the C4 treatment, the cells enter into mitosis with dephosphorylated histone H3, assemble chromosomes normally and progress to metaphase, and then to anaphase. C4 also induces lagging chromosome in anaphase but we demonstrated that these chromosome compaction defects are not related to the absence of H3 phosphorylation in prophase. As a result of C4 action, mitosis lasts longer and the cell cycle is slowed down. We reproduced the mitotic defects with reduced concentrations of potent pan aurora kinase as well as with a specific aurora B ATP-competitive inhibitor; we therefore propose that histone H3 phosphorylation and anaphase chromosome compaction involve the basal activity of aurora kinase B. Our data suggest that aurora kinase B is progressively activated at mitosis entry and at anaphase onset. The full activation of aurora kinase B by its partners, in prometaphase, induces a shift in the catalytic domain of aurora B that modifies its affinity for ATP. These waves of activation/deactivation of aurora B correspond to different conformations of the chromosomal complex revealed by FRAP. The presence of lagging chromosomes may have deleterious consequences on the daughter cells and, unfortunately, the situation may be encountered in patients receiving treatment with aurora kinase inhibitors. PMID:23616922

  3. Different patterns of chromosomal histone H3 phosphorylation in land plants.

    PubMed

    Marcon-Tavares, Adriana B; Felinto, Filipe; Feitoza, Lidiane; Barros e Silva, Ana E; Guerra, Marcelo

    2014-01-01

    The chromosomal phosphorylation of histone H3 during mitosis and meiosis seems to play a fundamental role in the control of cell division in all eukaryotes. In plants, the temporal and spatial distribution of H3S10 phosphorylated (H3S10ph) is currently known only for chromosomes of a few angiosperms. In the present study, we analyzed the pattern of H3S10ph in mitotic chromosomes of 14 plant species, including 2 bryophytes and 12 tracheophytes. In all species, the phosphorylation of H3S10 was cytologically detected first in prophase and disappeared in late anaphase. Two patterns of chromosomal phosphorylation were observed: (1) only the pericentromeric regions were hyperphosphorylated, whereas the remaining chromosome arms appeared weakly and diffusely immunolabeled, and (2) the whole chromosomes appear uniformly phosphorylated, increasing the labeling intensity at metaphase. The first pattern was observed in all tracheophytes with monocentric chromosomes, whereas the second one was restricted to the bryophytes and angiosperms with holokinetic chromosomes. In both cases, no particular kind of chromatin such as NORs or heterochromatic bands were differentially labeled. Based on this data and previous analyses in other eukaryotes, we suggest that hyperphosphorylation of the whole mitotic metaphase chromosome represents the ancestral condition for eukaryotic chromosomes, and the change to the pericentromeric pattern occurred in the transition from bryophytes to tracheophytes. The meaning and possible implications of these results are discussed in the light of recent and classical experiments. PMID:24993006

  4. UVB-induced COX-2 expression requires histone H3 phosphorylation at Ser10 and Ser28

    PubMed Central

    Keum, Young-Sam; Kim, Hong-Gyum; Bode, Ann M.; Surh, Young-Joon; Dong, Zigang

    2012-01-01

    Cyclooxygenase-2 (COX-2) is an inducible enzyme that contributes to the generation of chronic inflammation in response to chemical carcinogens and environmental stresses, including ultraviolet B (UVB) irradiation. Although post-translational histone modifications are believed to play an important role in modulating transcriptional regulation of UVB-induced COX-2, the underlying biochemical mechanisms are completely unknown. Here, we show that UVB activates the p38 MAPK/MSK1 kinase cascade to phosphorylate histone H3 at Ser10 and Ser28, contributing to UVB-induced COX-2 expression. UVB has no effect on the global trimethylation level of histone H3 (H3K4me3, H3K9me3, and H3K27me3). We observed that selected mammalian 14-3-3 proteins bind to UVB-induced phosphorylated histone H3 (Ser10 and Ser28). In particular, 14-3-3ε is critical for recruiting MSK1 and Cdk9 to the chromatin and subsequently phosphorylating the C-terminal domain (CTD) of RNA polymerase II in the cox-2 promoter. We propose that histone H3 phosphorylation at Ser10 and Ser28 serve as critical switches to promote cox-2 gene expression by facilitating the recruitment of MSK1 and Cdk9 to the cox-2 promoter, thereby promoting RNA polymerase II phosphorylation. PMID:22391560

  5. Imaging flow cytometry as a sensitive tool to detect low-dose-induced DNA damage by analyzing 53BP1 and γH2AX foci in human lymphocytes.

    PubMed

    Durdik, Matus; Kosik, Pavol; Gursky, Jan; Vokalova, Lenka; Markova, Eva; Belyaev, Igor

    2015-12-01

    Ionizing radiation induced foci (IRIF) are considered the most sensitive indicator for DNA double-strand break (DSB) detection. Monitoring DSB induction by low doses of ionizing radiation is important due to the increasing exposure in the general population. γH2AX and 53BP1 are commonly used molecular markers for in situ IRIF assessment. Imaging flow cytometry (IFC) via ImageStream system provides a new opportunity in this field. We analyzed the formation of 53BP1, γH2AX foci and their co-localization induced by γ-rays (2, 5, 10, 50, 200 cGy) in human lymphocytes using ImageStream and the automated microscopic system Metafer. We observed very similar sensitivity of both systems for the detection of endogenous and low-dose-induced IRIF. Statistically significant induction of γH2AX foci was found at doses of 2 and 10 cGy using ImageStream and Metafer, respectively. Statistically significant induction of 53BP1 foci was evident at doses ≥ 5 cGy when analyzed by IFC. Analysis of the co-localizing foci by ImageStream and Metafer showed statistical significance at doses ≥ 2 cGy, suggesting that foci co-localization is a sensitive parameter for DSB quantification. Assessment of γH2AX, 53BP1 foci and their co-localization by Metafer and ImageStream showed similar linear dose responses in the low-dose range up to 10 cGy, although IFC showed slightly better resolution for IRIF in this dose range. At higher doses, IFC underestimated IRIF numbers. Using the imaging ability of ImageStream, we introduced an optimized assay by gating γH2AX foci positive (with 1 or more γH2AX foci) and negative (cells without foci) cells. This assay resulted in statistically significant IRIF induction at doses ≥ 5cGy and a linear dose response up to 50 cGy. In conclusion, we provide evidence for the use of IFC as an accurate high throughput assay for the prompt detection and enumeration of endogenous and low-dose induced IRIF. PMID:26243567

  6. R loops are linked to histone H3 S10 phosphorylation and chromatin condensation.

    PubMed

    Castellano-Pozo, Maikel; Santos-Pereira, José M; Rondón, Ana G; Barroso, Sonia; Andújar, Eloisa; Pérez-Alegre, Mónica; García-Muse, Tatiana; Aguilera, Andrés

    2013-11-21

    R loops are transcription byproducts that constitute a threat to genome integrity. Here we show that R loops are tightly linked to histone H3 S10 phosphorylation (H3S10P), a mark of chromatin condensation. Chromatin immunoprecipitation (ChIP)-on-chip (ChIP-chip) analyses reveal H3S10P accumulation at centromeres, pericentromeric chromatin, and a large number of active open reading frames (ORFs) in R-loop-accumulating yeast cells, better observed in G1. Histone H3S10 plays a key role in maintaining genome stability, as scored by ectopic recombination and plasmid loss, Rad52 foci, and Rad53 checkpoint activation. H3S10P coincides with the presence of DNA-RNA hybrids, is suppressed by ribonuclease H overexpression, and causes reduced accessibility of restriction endonucleases, implying a tight connection between R loops, H3S10P, and chromatin compaction. Such histone modifications were also observed in R-loop-accumulating Caenorhabditis elegans and HeLa cells. We therefore provide a role of RNA in chromatin structure essential to understand how R loops modulate genome dynamics. PMID:24211264

  7. R loops are linked to histone H3 S10 phosphorylation and chromatin condensation.

    PubMed

    Castellano-Pozo, Maikel; Santos-Pereira, José M; Rondón, Ana G; Barroso, Sonia; Andújar, Eloisa; Pérez-Alegre, Mónica; García-Muse, Tatiana; Aguilera, Andrés

    2013-11-21

    R loops are transcription byproducts that constitute a threat to genome integrity. Here we show that R loops are tightly linked to histone H3 S10 phosphorylation (H3S10P), a mark of chromatin condensation. Chromatin immunoprecipitation (ChIP)-on-chip (ChIP-chip) analyses reveal H3S10P accumulation at centromeres, pericentromeric chromatin, and a large number of active open reading frames (ORFs) in R-loop-accumulating yeast cells, better observed in G1. Histone H3S10 plays a key role in maintaining genome stability, as scored by ectopic recombination and plasmid loss, Rad52 foci, and Rad53 checkpoint activation. H3S10P coincides with the presence of DNA-RNA hybrids, is suppressed by ribonuclease H overexpression, and causes reduced accessibility of restriction endonucleases, implying a tight connection between R loops, H3S10P, and chromatin compaction. Such histone modifications were also observed in R-loop-accumulating Caenorhabditis elegans and HeLa cells. We therefore provide a role of RNA in chromatin structure essential to understand how R loops modulate genome dynamics.

  8. Phosphorylation of histone H3 Thr 118 converts nucleosomes into a higher-mass complex

    NASA Astrophysics Data System (ADS)

    North, Justin; Poirier, Michael; Ferdinand, Michelle; Ottesen, Jennifer

    2009-03-01

    The nucleosome is the fundamental unit of DNA compaction in eukaryotes by which 147 base pairs of DNA wrap 1.7 times around a protein complex called the histone octamer. Numerous chemical modifications are found in vivo that alter octamer surface charge and shape. One such modification is phosphorylation of histone H3 residue Thr 118 located in the dyad region of the nucleosome. We find that phosphorylated H3 T118 (H3 pT118) octamer, when reconstituted with DNA of about 200bp, suppresses nucleosome formation and promotes formation of a higher-mass DNA-protein complex. Coordinately, dephosphorylation of H3 pT118 octamer by phosphatase results in reconstitution of normal nucleosomes. DNAse I foot printing reveals that while DNA contacting the octamer surface in nucleosomes is less accessible than free DNA, the entire DNA strand is equally accessible in the higher-mass complex and is digested at one-third the rate of free DNA.

  9. The MUT9p kinase phosphorylates histone H3 threonine 3 and is necessary for heritable epigenetic silencing in Chlamydomonas.

    PubMed

    Casas-Mollano, J Armando; Jeong, Byeong-Ryool; Xu, Jianping; Moriyama, Hideaki; Cerutti, Heriberto

    2008-04-29

    Changes in chromatin organization are emerging as key regulators in nearly every aspect of DNA-templated metabolism in eukaryotes. Histones undergo many, largely reversible, posttranslational modifications that affect chromatin structure. Some modifications, such as trimethylation of histone H3 on Lys 4 (H3K4me3), correlate with transcriptional activation, whereas others, such as methylation of histone H3 on Lys 27 (H3K27me), are associated with silent chromatin. Posttranslational histone modifications may also be involved in the inheritance of chromatin states. Histone phosphorylation has been implicated in a variety of cellular processes but, because of the dynamic nature of this modification, its potential role in long-term gene silencing has remained relatively unexplored. We report here that a Chlamydomonas reinhardtii mutant defective in a Ser/Thr protein kinase (MUT9p), which phosphorylates histones H3 and H2A, shows deficiencies in the heritable repression of transgenes and transposons. Moreover, based on chromatin immunoprecipitation analyses, phosphorylated H3T3 (H3T3ph) and monomethylated H3K4 (H3K4me1) are inversely correlated with di/trimethylated H3K4 and associate preferentially with silenced transcription units. Conversely, the loss of those marks in mutant strains correlates with the transcriptional reactivation of transgenes and transposons. Our results suggest that H3T3ph and H3K4me1 function as reinforcing epigenetic marks for the silencing of euchromatic loci in Chlamydomonas. PMID:18420823

  10. Importance of protamine phosphorylation to histone displacement in spermatids: can the disruption of this process be used for male contraception

    SciTech Connect

    Balhorn, R.; Hud, N.V.; Corzett, M.; Mazrimas, J.

    1995-06-01

    Protamine is a small protein that packages DNA in the sperm of most vertebrates. Shortly after its synthesis, the serine and threonine residues in each protamine are phosphorylated and the modified proteins are deposited onto DNA, displacing the histones and other chromatin proteins. We have hypothesized that the phosphorylation of protamine 1 induces protamine dimerization and these dimers are required for efficient histone displacement. Histone displacement by protamines in late-step spermatids appears to be essential for the production of fertile sperm in man and other mammals, and the disruption of this process could provide a new approach for male contraception. As a first step towards testing this theory, we have initiated a set of in vitro experiments to determine whether of not protamine phosphorylation is essential for histone displacement. Thee results of these experiments, although incomplete, confirm that unphosphorylated protamine cannot effectively displace histone from DNA. Polyarginine molecules twice the size of a protamine molecule and salmine dimer were found to be more effective. These results are consistent with the theory that the disruption of protamine phosphorylation may prove to be a useful new approach for male contraception if it can be shown to facilitate or induce protamine dimerization.

  11. γH2AX formation kinetics in PBMCs of rabbits exposed to acute and fractionated radiation and attenuation of focus frequency through preadministration of a combination of podophyllotoxin and rutin hydrate.

    PubMed

    Yashavarddhan, M H; Shukla, Sandeep K; Srivastava, Nitya N; Suar, Mrutyunjay; Dutta, Sangeeta; Kalita, Bhargab; Ranjan, Rajiv; Singh, Abhinav; Bajaj, Sania; Gupta, Manju L

    2016-07-01

    DNA damage can be assessed by the quantitation of γH2AX foci that form at DSB sites. This study examines the generation and persistence of γH2AX foci, variability in foci size after acute and fractionated radiation exposure, and the effect of pretreatment with a safe radioprotective formulation termed G-003M on foci generation and persistence. G-003M contains a combination of podophyllotoxin and rutin hydrate, and was administered intramuscularly to rabbits 1 hr prior to Co(60) gamma irradiation. Rabbits were assigned to one of the following treatment groups: untreated, G-003M alone, irradiated (single dose 8 Gy, fractionated 2 Gy/day for 4 days or single dose 2 Gy) or G-003M preadministration followed by radiation exposure. Foci continuously persisted for a week in peripheral blood mononuclear cells of rabbits exposed to a single 8 Gy dose. However, the number of foci gradually decreased after reaching a maximum at 1 h. In rabbits exposed to fractionated radiation, foci detected 1 hr after the final exposure were significantly larger (P < 0.001) than in rabbits exposed to a single 8 Gy dose, but disappeared completely after 24 h. In both groups, foci reappeared on days 11-15 in terminally ill animals. G-003M pretreatment significantly (P < 0.05) attenuated the formation of γH2AX foci in all irradiated rabbits. This study reveals that γH2AX focus assessment could be used to confirm radiation exposure, that focus size reflects the type of radiation exposure (acute or fractionated), that the re-appearance of foci is a strong indicator of imminent death in animals, and that G-003M provides protection against radiation. Environ. Mol. Mutagen. 57:455-468, 2016. © 2016 Wiley Periodicals, Inc. PMID:27338557

  12. The influence of x-ray contrast agents in computed tomography on the induction of dicentrics and γ-H2AX foci in lymphocytes of human blood samples

    NASA Astrophysics Data System (ADS)

    Jost, G.; Golfier, S.; Pietsch, H.; Lengsfeld, P.; Voth, M.; Schmid, T. E.; Eckardt-Schupp, F.; Schmid, E.

    2009-10-01

    The aim of this study was to investigate and quantify two biomarkers for radiation exposure (dicentrics and γ-H2AX foci) in human lymphocytes after CT scans in the presence of an iodinated contrast agent. Blood samples from a healthy donor were exposed to CT scans in the absence or presence of iotrolan 300 at iodine concentrations of 5 or 50 mg ml-1 blood. The samples were exposed to 0.025, 0.05, 0.1 and 1 Gy in a tissue equivalent body phantom. Chromosome aberration scoring and automated microscopic analysis of γ-H2AX foci were performed in parts of the same samples. The theoretical physical dose enhancement factor (DEF) was calculated on the basis of the mass energy-absorption coefficients of iodine and blood and the photon energy spectrum of the CT tube. No significant differences in the yields of dicentrics and γ-H2AX foci were observed in the absence or presence of 5 mg iodine ml-1 blood up to 0.1 Gy, whereas at 1 Gy the yields were elevated for both biomarkers. At an iodine concentration of 50 mg ml-1 serving as a positive control, a biological DEF of 9.5 ± 1.4 and 2.3 ± 0.5 was determined for dicentrics and γ-H2AX foci, respectively. A physical DEF of 1.56 and 6.30 was calculated for 5 and 50 mg iodine ml-1, respectively. Thus, it can be concluded that in the diagnostic dose range (radiation and contrast dose), no relevant biological dose-enhancing effect could be detected, whereas a clear biological dose-enhancing effect could be found for a contrast dose well outside the diagnostic CT range for the complete radiation dose range with both methods.

  13. DNA Double-Strand Break Analysis by {gamma}-H2AX Foci: A Useful Method for Determining the Overreactors to Radiation-Induced Acute Reactions Among Head-and-Neck Cancer Patients

    SciTech Connect

    Goutham, Hassan Venkatesh; Mumbrekar, Kamalesh Dattaram; Vadhiraja, Bejadi Manjunath; Fernandes, Donald Jerard; Sharan, Krishna; Kanive Parashiva, Guruprasad; Kapaettu, Satyamoorthy; Bola Sadashiva, Satish Rao

    2012-12-01

    Purpose: Interindividual variability in normal tissue toxicity during radiation therapy is a limiting factor for successful treatment. Predicting the risk of developing acute reactions before initiation of radiation therapy may have the benefit of opting for altered radiation therapy regimens to achieve minimal adverse effects with improved tumor cure. Methods and Materials: DNA double-strand break (DSB) induction and its repair kinetics in lymphocytes of head-and-neck cancer patients undergoing chemoradiation therapy was analyzed by counting {gamma}-H2AX foci, neutral comet assay, and a modified version of neutral filter elution assay. Acute normal tissue reactions were assessed by Radiation Therapy Oncology Group criteria. Results: The correlation between residual DSBs and the severity of acute reactions demonstrated that residual {gamma}-H2AX foci in head-and-neck cancer patients increased with the severity of oral mucositis and skin reaction. Conclusions: Our results suggest that {gamma}-H2AX analysis may have predictive implications for identifying the overreactors to mucositis and skin reactions among head-and-neck cancer patients prior to initiation of radiation therapy.

  14. CHK1-driven histone H3.3 serine 31 phosphorylation is important for chromatin maintenance and cell survival in human ALT cancer cells.

    PubMed

    Chang, Fiona T M; Chan, F Lyn; R McGhie, James D; Udugama, Maheshi; Mayne, Lynne; Collas, Philippe; Mann, Jeffrey R; Wong, Lee H

    2015-03-11

    Human ALT cancers show high mutation rates in ATRX and DAXX. Although it is well known that the absence of ATRX/DAXX disrupts H3.3 deposition at heterochromatin, its impact on H3.3 deposition and post-translational modification in the global genome remains unclear. Here, we explore the dynamics of phosphorylated H3.3 serine 31 (H3.3S31ph) in human ALT cancer cells. While H3.3S31ph is found only at pericentric satellite DNA repeats during mitosis in most somatic human cells, a high level of H3.3S31ph is detected on the entire chromosome in ALT cells, attributable to an elevated CHK1 activity in these cells. Drug inhibition of CHK1 activity during mitosis and expression of mutant H3.3S31A in these ALT cells result in a decrease in H3.3S31ph levels accompanied with increased levels of phosphorylated H2AX serine 139 on chromosome arms and at the telomeres. Furthermore, the inhibition of CHK1 activity in these cells also reduces cell viability. Our findings suggest a novel role of CHK1 as an H3.3S31 kinase, and that CHK1-mediated H3.3S31ph plays an important role in the maintenance of chromatin integrity and cell survival in ALT cancer cells. PMID:25690891

  15. The enhancement of histone H4 and H2A serine 1 phosphorylation during mitosis and S-phase is evolutionarily conserved.

    PubMed

    Barber, Cynthia M; Turner, Fiona B; Wang, Yanming; Hagstrom, Kirsten; Taverna, Sean D; Mollah, Sahana; Ueberheide, Beatrix; Meyer, Barbara J; Hunt, Donald F; Cheung, Peter; Allis, C David

    2004-05-01

    Histone phosphorylation has long been associated with condensed mitotic chromatin; however, the functional roles of these modifications are not yet understood. Histones H1 and H3 are highly phosphorylated from late G2 through telophase in many organisms, and have been implicated in chromatin condensation and sister chromatid segregation. However, mutational analyses in yeast and biochemical experiments with Xenopus extracts have demonstrated that phosphorylation of H1 and H3 is not essential for such processes. In this study, we investigated additional histone phosphorylation events that may have redundant functions to H1 and H3 phosphorylation during mitosis. We developed an antibody to H4 and H2A that are phosphorylated at their respective serine 1 (S1) residues and found that H4S1/H2AS1 are highly phosphorylated in the mitotic chromatin of worm, fly, and mammals. Mitotic H4/H2A phosphorylation has similar timing and localization as H3 phosphorylation, and closely correlates with the chromatin condensation events during mitosis. We also detected a lower level of H4/H2A phosphorylation in 5-bromo-2-deoxyuridine-positive S-phase cells, which corroborates earlier studies that identified H4S1 phosphorylation on newly synthesized histones during S-phase. The evolutionarily conserved phosphorylation of H4/H2A during the cell cycle suggests that they may have a dual purpose in chromatin condensation during mitosis and histone deposition during S-phase. PMID:15133681

  16. Pask integrates hormonal signaling with histone modification via Wdr5 phosphorylation to drive myogenesis

    PubMed Central

    Kikani, Chintan K; Wu, Xiaoying; Paul, Litty; Sabic, Hana; Shen, Zuolian; Shakya, Arvind; Keefe, Alexandra; Villanueva, Claudio; Kardon, Gabrielle; Graves, Barbara; Tantin, Dean; Rutter, Jared

    2016-01-01

    PAS domain containing protein kinase (Pask) is an evolutionarily conserved protein kinase implicated in energy homeostasis and metabolic regulation across eukaryotic species. We now describe an unexpected role of Pask in promoting the differentiation of myogenic progenitor cells, embryonic stem cells and adipogenic progenitor cells. This function of Pask is dependent upon its ability to phosphorylate Wdr5, a member of several protein complexes including those that catalyze histone H3 Lysine 4 trimethylation (H3K4me3) during transcriptional activation. Our findings suggest that, during myoblast differentiation, Pask stimulates the conversion of repressive H3K4me1 to activating H3K4me3 marks on the promoter of the differentiation gene myogenin (Myog) via Wdr5 phosphorylation. This enhances accessibility of the MyoD transcription factor and enables transcriptional activation of the Myog promoter to initiate muscle differentiation. Thus, as an upstream kinase of Wdr5, Pask integrates signaling cues with the transcriptional network to regulate the differentiation of progenitor cells. DOI: http://dx.doi.org/10.7554/eLife.17985.001 PMID:27661449

  17. A phosphorylation switch regulates the transcriptional activation of cell cycle regulator p21 by histone deacetylase inhibitors.

    PubMed

    Simboeck, Elisabeth; Sawicka, Anna; Zupkovitz, Gordin; Senese, Silvia; Winter, Stefan; Dequiedt, Franck; Ogris, Egon; Di Croce, Luciano; Chiocca, Susanna; Seiser, Christian

    2010-12-24

    Histone deacetylase inhibitors induce cell cycle arrest and apoptosis in tumor cells and are, therefore, promising anti-cancer drugs. The cyclin-dependent kinase inhibitor p21 is activated in histone deacetylase (HDAC) inhibitor-treated tumor cells, and its growth-inhibitory function contributes to the anti-tumorigenic effect of HDAC inhibitors. We show here that induction of p21 by trichostatin A involves MAP kinase signaling. Activation of the MAP kinase signaling pathway by growth factors or stress signals results in histone H3 serine 10 phosphorylation at the p21 promoter and is crucial for acetylation of the neighboring lysine 14 and recruitment of activated RNA polymerase II in response to trichostatin A treatment. In non-induced cells, the protein phosphatase PP2A is associated with the p21 gene and counteracts its activation. Induction of p21 is linked to simultaneous acetylation and phosphorylation of histone H3. The dual modification mark H3S10phK14ac at the activated p21 promoter is recognized by the phospho-binding protein 14-3-3ζ, which protects the phosphoacetylation mark from being processed by PP2A. Taken together we have revealed a cross-talk of reversible phosphorylation and acetylation signals that controls the activation of p21 by HDAC inhibitors and identify the phosphatase PP2A as chromatin-associated transcriptional repressor in mammalian cells.

  18. A subset of ATM- and ATR-dependent phosphorylation events requires the BRCA1 protein

    PubMed Central

    Foray, Nicolas; Marot, Didier; Gabriel, Anastasia; Randrianarison, Voahangy; Carr, Antony M.; Perricaudet, Michel; Ashworth, Alan; Jeggo, Penny

    2003-01-01

    BRCA1 is a central component of the DNA damage response mechanism and defects in BRCA1 confer sensitivity to a broad range of DNA damaging agents. BRCA1 is required for homologous recombination and DNA damage-induced S and G2/M phase arrest. We show here that BRCA1 is required for ATM- and ATR-dependent phosphorylation of p53, c-Jun, Nbs1 and Chk2 following exposure to ionizing or ultraviolet radiation, respectively, and is also required for ATM phosphorylation of CtIP. In contrast, DNA damage-induced phosphorylation of the histone variant H2AX is independent of BRCA1. We also show that the presence of BRCA1 is dispensable for DNA damage-induced phosphorylation of Rad9, Hus1 and Rad17, and for the relocalization of Rad9 and Hus1. We propose that BRCA1 facilitates the ability of ATM and ATR to phosphorylate downstream substrates that directly influence cell cycle checkpoint arrest and apoptosis, but that BRCA1 is dispensable for the phosphorylation of DNA-associated ATM and ATR substrates. PMID:12773400

  19. Increased Histone H3 Phosphorylation in Neurons in Specific Brain Structures after Induction of Status Epilepticus in Mice

    PubMed Central

    Mori, Tetsuji; Wakabayashi, Taketoshi; Ogawa, Haruyuki; Hirahara, Yukie; Koike, Taro; Yamada, Hisao

    2013-01-01

    Status epilepticus (SE) induces pathological and morphological changes in the brain. Recently, it has become clear that excessive neuronal excitation, stress and drug abuse induce chromatin remodeling in neurons, thereby altering gene expression. Chromatin remodeling is a key mechanism of epigenetic gene regulation. Histone H3 phosphorylation is frequently used as a marker of chromatin remodeling and is closely related to the upregulation of mRNA transcription. In the present study, we analyzed H3 phosphorylation levels in vivo using immunohistochemistry in the brains of mice with pilocarpine-induced SE. A substantial increase in H3 phosphorylation was detected in neurons in specific brain structures. Increased H3 phosphorylation was dependent on neuronal excitation. In particular, a robust upregulation of H3 phosphorylation was detected in the caudate putamen, and there was a gradient of phosphorylated H3+ (PH3+) neurons along the medio-lateral axis. After unilateral ablation of dopaminergic neurons in the substantia nigra by injection of 6-hydroxydopamine, the distribution of PH3+ neurons changed in the caudate putamen. Moreover, our histological analysis suggested that, in addition to the well-known MSK1 (mitogen and stress-activated kinase)/H3 phosphorylation/c-fos pathway, other signaling pathways were also activated. Together, our findings suggest that a number of genes involved in the pathology of epileptogenesis are upregulated in PH3+ brain regions, and that H3 phosphorylation is a suitable indicator of strong neuronal excitation. PMID:24147063

  20. Autoinhibition and Polo-dependent multisite phosphorylation restrict activity of the histone H3 kinase Haspin to mitosis

    PubMed Central

    Ghenoiu, Cristina; Wheelock, Michael S.; Funabiki, Hironori

    2013-01-01

    SUMMARY The mitosis-specific phosphorylation of Histone H3 at Thr3 (H3T3ph) plays an important role in chromosome segregation by recruiting Aurora B. H3T3 phosphorylation is catalyzed by Haspin, an atypical protein kinase, whose kinase domain is intrinsically active without phosphorylation at the activation loop. We report here the molecular basis for Haspin inhibition during interphase and its reactivation in M phase. We identify a conserved basic segment that autoinhibits Haspin during interphase. This autoinhibition is neutralized when Cdk1 phosphorylates the N terminus of Haspin to recruit Polo-like kinase (Plk1/Plx1), which in turn further phosphorylates multiple sites at the Haspin N terminus. While Plx1, but not Aurora B, is critical for H3T3 phosphorylation in Xenopus egg extracts, Plk1 and Aurora B both promote this modification in human cells. Thus, M phase-specific H3T3 phosphorylation is governed by the combinatorial action of mitotic kinases that neutralizes Haspin autoinhibition through a mechanism dependent on multisite phosphorylation. PMID:24184212

  1. Autoinhibition and Polo-dependent multisite phosphorylation restrict activity of the histone H3 kinase Haspin to mitosis.

    PubMed

    Ghenoiu, Cristina; Wheelock, Michael S; Funabiki, Hironori

    2013-12-12

    The mitosis-specific phosphorylation of histone H3 at Thr3 (H3T3ph) plays an important role in chromosome segregation by recruiting Aurora B. H3T3 phosphorylation is catalyzed by Haspin, an atypical protein kinase whose kinase domain is intrinsically active without phosphorylation at the activation loop. Here, we report the molecular basis for Haspin inhibition during interphase and its reactivation in M phase. We identify a conserved basic segment that autoinhibits Haspin during interphase. This autoinhibition is neutralized when Cdk1 phosphorylates the N terminus of Haspin in order to recruit Polo-like kinase (Plk1/Plx1), which, in turn, further phosphorylates multiple sites at the Haspin N terminus. Although Plx1, and not Aurora B, is critical for H3T3 phosphorylation in Xenopus egg extracts, Plk1 and Aurora B both promote this modification in human cells. Thus, M phase-specific H3T3 phosphorylation is governed by the combinatorial action of mitotic kinases that neutralizes Haspin autoinhibition through a mechanism dependent on multisite phosphorylation. PMID:24184212

  2. Three Distinct Patterns of Histone H3Y41 Phosphorylation Mark Active Genes

    PubMed Central

    Dawson, Mark A.; Foster, Samuel D.; Bannister, Andrew J.; Robson, Samuel C.; Hannah, Rebecca; Wang, Xiaonan; Xhemalce, Blerta; Wood, Andrew D.; Green, Anthony R.; Göttgens, Berthold; Kouzarides, Tony

    2012-01-01

    Summary The JAK2 tyrosine kinase is a critical mediator of cytokine-induced signaling. It plays a role in the nucleus, where it regulates transcription by phosphorylating histone H3 at tyrosine 41 (H3Y41ph). We used chromatin immunoprecipitation coupled to massively parallel DNA sequencing (ChIP-seq) to define the genome-wide pattern of H3Y41ph in human erythroid leukemia cells. Our results indicate that H3Y41ph is located at three distinct sites: (1) at a subset of active promoters, where it overlaps with H3K4me3, (2) at distal cis-regulatory elements, where it coincides with the binding of STAT5, and (3) throughout the transcribed regions of active, tissue-specific hematopoietic genes. Together, these data extend our understanding of this conserved and essential signaling pathway and provide insight into the mechanisms by which extracellular stimuli may lead to the coordinated regulation of transcription. PMID:22999934

  3. A monoclonal antibody specific for prophase phosphorylation of histone deacetylase 1: a readout for early mitotic cells

    PubMed Central

    Segré, Chiara V.; Senese, Silvia; Loponte, Sara; Santaguida, Stefano; Soffientini, Paolo; Grigorean, Gabriela; Cinquanta, Mario; Ossolengo, Giuseppe; Seiser, Christian; Chiocca, Susanna

    2016-01-01

    Histone deacetylases (HDACs) are modification enzymes that regulate a plethora of biological processes. HDAC1, a crucial epigenetic modifier, is deregulated in cancer and subjected to a variety of post-translational modifications. Here, we describe the generation of a new monoclonal antibody that specifically recognizes a novel highly dynamic prophase phosphorylation of serine 406-HDAC1, providing a powerful tool for detecting early mitotic cells. PMID:26467746

  4. A monoclonal antibody specific for prophase phosphorylation of histone deacetylase 1: a readout for early mitotic cells.

    PubMed

    Segré, Chiara V; Senese, Silvia; Loponte, Sara; Santaguida, Stefano; Soffientini, Paolo; Grigorean, Gabriela; Cinquanta, Mario; Ossolengo, Giuseppe; Seiser, Christian; Chiocca, Susanna

    2016-01-01

    Histone deacetylases (HDACs) are modification enzymes that regulate a plethora of biological processes. HDAC1, a crucial epigenetic modifier, is deregulated in cancer and subjected to a variety of post-translational modifications. Here, we describe the generation of a new monoclonal antibody that specifically recognizes a novel highly dynamic prophase phosphorylation of serine 406-HDAC1, providing a powerful tool for detecting early mitotic cells.

  5. Influence of chromatin structure, antibiotics, and endogenous histone methylation on phosphorylation of histones H1 and H3 in the presence of protein kinase A in rat liver nuclei in vitro.

    PubMed

    Prusov, A N; Smirnova, T A; Kolomijtseva, G Ya

    2013-02-01

    In vitro phosphorylation of histones H1 and H3 by cAMP-dependent protein kinase A and endogenous phosphokinases in the presence of [γ-³²P]ATP was studied in isolated rat liver nuclei with different variants of chromatin structural organization: condensed (diameter of fibrils 100-200 nm; N-1) and partly decondensed (diameter of fibrils ~30 nm; N-2). In the N-1 state histone, H1 is phosphorylated approximately twice as much than histone H3. Upon the decondensation of the chromatin in the N-2 state, 1.5-fold decrease of total phosphorylation of H1 is observed, while that of H3 does not change, although the endogenous phosphorylation of both histones is reduced by half. Changes in histone phosphorylation in the presence of low or high concentrations of distamycin and chromomycin differ for H1 and H3 in N-1 and N-2. It was found that distamycin (DM) stimulates the phosphorylation of tightly bound H1 fraction, which is not extractable by polyglutamic acid (PG), especially in N-1. Chromomycin (CM) increases the phosphorylation of both histones in PG extracts and in the nuclear pellets, particularly in N-2. At the same time, in N-1 one can detect phosphorylation of a tightly bound fraction of histones H1 whose N-termini are located on AT-rich sites that become inaccessible for protein kinase in the process of chromatin decondensation in N-2. At the same time, in N-2 the accessibility for protein kinase A of tightly bound H1 fractions, whose N-termini are located on GC-rich sites, increases dramatically. High concentrations of both CM and DM in N-1 and N-2 stimulated phosphorylation of the non-extractable by PG fraction of H1 whose N-termini are located on sites where AT ≈ GC. CM at high concentration stimulated 4-7 times the phosphorylation of a small fraction of H3, which is extracted by PG from both types of nuclei. We detected an effect of endogenous methylation of histones H1 and H3 in the nuclei on their subsequent phosphorylation depending on the chromatin

  6. Osmotic stress induces phosphorylation of histone H3 at threonine 3 in pericentromeric regions of Arabidopsis thaliana

    PubMed Central

    Wang, Zhen; Casas-Mollano, Juan Armando; Xu, Jianping; Riethoven, Jean-Jack M.; Zhang, Chi; Cerutti, Heriberto

    2015-01-01

    Histone phosphorylation plays key roles in stress-induced transcriptional reprogramming in metazoans but its function(s) in land plants has remained relatively unexplored. Here we report that an Arabidopsis mutant defective in At3g03940 and At5g18190, encoding closely related Ser/Thr protein kinases, shows pleiotropic phenotypes including dwarfism and hypersensitivity to osmotic/salt stress. The double mutant has reduced global levels of phosphorylated histone H3 threonine 3 (H3T3ph), which are not enhanced, unlike the response in the wild type, by drought-like treatments. Genome-wide analyses revealed increased H3T3ph, slight enhancement in trimethylated histone H3 lysine 4 (H3K4me3), and a modest decrease in histone H3 occupancy in pericentromeric/knob regions of wild-type plants under osmotic stress. However, despite these changes in heterochromatin, transposons and repeats remained transcriptionally repressed. In contrast, this reorganization of heterochromatin was mostly absent in the double mutant, which exhibited lower H3T3ph levels in pericentromeric regions even under normal environmental conditions. Interestingly, within actively transcribed protein-coding genes, H3T3ph density was minimal in 5′ genic regions, coincidental with a peak of H3K4me3 accumulation. This pattern was not affected in the double mutant, implying the existence of additional H3T3 protein kinases in Arabidopsis. Our results suggest that At3g03940 and At5g18190 are involved in the phosphorylation of H3T3 in pericentromeric/knob regions and that this repressive epigenetic mark may be important for maintaining proper heterochromatic organization and, possibly, chromosome function(s). PMID:26100864

  7. Osmotic stress induces phosphorylation of histone H3 at threonine 3 in pericentromeric regions of Arabidopsis thaliana.

    PubMed

    Wang, Zhen; Casas-Mollano, Juan Armando; Xu, Jianping; Riethoven, Jean-Jack M; Zhang, Chi; Cerutti, Heriberto

    2015-07-01

    Histone phosphorylation plays key roles in stress-induced transcriptional reprogramming in metazoans but its function(s) in land plants has remained relatively unexplored. Here we report that an Arabidopsis mutant defective in At3g03940 and At5g18190, encoding closely related Ser/Thr protein kinases, shows pleiotropic phenotypes including dwarfism and hypersensitivity to osmotic/salt stress. The double mutant has reduced global levels of phosphorylated histone H3 threonine 3 (H3T3ph), which are not enhanced, unlike the response in the wild type, by drought-like treatments. Genome-wide analyses revealed increased H3T3ph, slight enhancement in trimethylated histone H3 lysine 4 (H3K4me3), and a modest decrease in histone H3 occupancy in pericentromeric/knob regions of wild-type plants under osmotic stress. However, despite these changes in heterochromatin, transposons and repeats remained transcriptionally repressed. In contrast, this reorganization of heterochromatin was mostly absent in the double mutant, which exhibited lower H3T3ph levels in pericentromeric regions even under normal environmental conditions. Interestingly, within actively transcribed protein-coding genes, H3T3ph density was minimal in 5' genic regions, coincidental with a peak of H3K4me3 accumulation. This pattern was not affected in the double mutant, implying the existence of additional H3T3 protein kinases in Arabidopsis. Our results suggest that At3g03940 and At5g18190 are involved in the phosphorylation of H3T3 in pericentromeric/knob regions and that this repressive epigenetic mark may be important for maintaining proper heterochromatic organization and, possibly, chromosome function(s). PMID:26100864

  8. Multifaceted Histone H3 Methylation and Phosphorylation Readout by the Plant Homeodomain Finger of Human Nuclear Antigen Sp100C.

    PubMed

    Zhang, Xiaojie; Zhao, Dan; Xiong, Xiaozhe; He, Zhimin; Li, Haitao

    2016-06-10

    The decoding of histone post-translational modifications by chromatin-binding modules ("readers") constitutes one major mechanism of epigenetic regulation. Nuclear antigen Sp100 (SPECKLED, 100 kDa), a constitutive component of the promyelocytic leukemia nuclear bodies, plays key roles in intrinsic immunity and transcriptional repression. Sp100C, a splicing isoform specifically up-regulated upon interferon stimulation, harbors a unique tandem plant homeodomain (PHD) finger and bromodomain at its C terminus. Combining structural, quantitative binding, and cellular co-localization studies, we characterized Sp100C PHD finger as an unmethylated histone H3 Lys(4) (H3K4me0) reader that tolerates histone H3 Thr(3) phosphorylation (H3T3ph), histone H3 Lys(9) trimethylation (H3K9me3), and histone H3 Ser(10) phosphorylation (H3S10ph), hallmarks associated with the mitotic chromosome. In contrast, whereas H3K4me0 reader activity is conserved in Sp140, an Sp100C paralog, the multivalent tolerance of H3T3ph, H3K9me3, and H3S10ph was lost for Sp140. The complex structure determined at 2.1 Å revealed a highly coordinated lysine ϵ-amine recognition sphere formed by an extended N-terminal motif for H3K4me0 readout. Interestingly, reader pocket rigidification by disulfide bond formation enhanced H3K4me0 binding by Sp100C. An additional complex structure solved at 2.7 Å revealed that H3T3ph is recognized by the arginine residue, Arg(713), that is unique to the PHD finger of Sp100C. Consistent with a restrictive cellular role of Sp100C, these results establish a direct chromatin targeting function of Sp100C that may regulate transcriptional gene silencing and promyelocytic leukemia nuclear body-mediated intrinsic immunity in response to interferon stimulation. PMID:27129259

  9. Immunogold electron microscopy and confocal analyses reveal distinctive patterns of histone H3 phosphorylation during mitosis in MCF-7 cells.

    PubMed

    Yan, Yitang; Cummings, Connie A; Sutton, Deloris; Yu, Linda; Castro, Lysandra; Moore, Alicia B; Gao, Xiaohua; Dixon, Darlene

    2016-04-01

    Histone phosphorylation has a profound impact on epigenetic regulation of gene expression, chromosome condensation and segregation, and maintenance of genome integrity. Histone H3 Serine 10 is evolutionally conserved and heavily phosphorylated during mitosis. To examine Histone H3 Serine 10 phosphorylation (H3S10ph) dynamics in mitosis, we applied immunogold labeling and confocal microscopy to visualize H3S10ph expression in MCF-7 cells. Confocal observations showed that MCF-7 cells had abundant H3S10ph expression in prophase and metaphase. In anaphase, the H3S10ph expression was significantly decreased and displayed only sparsely localized staining that mainly associated with the chromatid tips. We showed that immunogold bead density distribution followed the H3S10ph expression patterns observed in confocal analysis. At a higher magnification in metaphase, the immunogold beads were readily visible and the bead distribution along the condensed chromosomes was distinctive, indicating the specificity and reliability of the immunogold staining procedure. In anaphase, the beads were found to distribute focally in specific regions of chromatids, reinforcing the confocal observations of differential H3 phosphorylation. To our knowledge, this is the first report to show the specific H3S10ph expression with an immunogold technique and transmission electron microscopy. Additionally, with confocal microscopy, we analyzed H3S10ph expression in an immortalized cell line derived from benign uterine smooth muscle tumor cells. H3S10ph epitope was expressed more abundantly during anaphase in the benign tumor cells, and there was no dramatic differential expression within the condensed chromatid clusters as observed in MCF-7 cells. The differences in H3S10ph expression pattern and dynamics may contribute to the differential proliferative potential between benign tumor cells and MCF-7 cells.

  10. Histone H3 Phosphorylation in Human Skin Histoculture as a Tool to Evaluate Patient’s Response to Antiproliferative Drugs

    PubMed Central

    Ugarte, Fernando; Porth, Katherine; Sadekova, Svetlana

    2015-01-01

    Evaluation of patient’s response to chemotherapeutic drugs is often difficult and time consuming. Skin punch biopsies are easily accessible material that can be used for the evaluation of surrogate biomarkers of a patient’s response to a drug. In this study, we hypothesized that assessment of phosphorylated histone H3 in human skin punch biopsies could be used as a pharmacodynamics biomarker of patient’s response to the kinesin spindle protein inhibitor SCH2047069. To test this hypothesis, we used a human skin histoculture technique that allows culturing intact human skin in the presence of the drug. Human melanoma and skin histocultures were treated with SCH2047069, and the effect of the drug was assessed by increasing histone H3 phosphorylation using immunohistochemistry. Our results demonstrate that SCH2047069 has a significant effect on cell proliferation in human melanoma and skin histoculture and justify using human skin punch biopsies for evaluation of the pharmacodynamic changes induced by SCH2047069. ACRONYMS Histone subunit H3 (H3), Kinesin spindle protein (KSP), 5-ethynyl-2′-deoxyuridine (EDU), Dimethyl sulfoxide (DMSO), Formalin-fixed paraffin embedded (FFPE). PMID:26917945

  11. Anti-phosphorylated histone H2AThr120: a universal microscopic marker for centromeric chromatin of mono- and holocentric plant species.

    PubMed

    Demidov, D; Schubert, V; Kumke, K; Weiss, O; Karimi-Ashtiyani, R; Buttlar, J; Heckmann, S; Wanner, G; Dong, Q; Han, F; Houben, A

    2014-01-01

    Based on the analysis of 20 different monocot and eudicot species, we propose that the centromeric distribution of the phosphorylated histone H2AThr120 is evolutionary highly conserved across species with mono- and holocentric chromosomes. Therefore, antibodies recognizing the phosphorylated threonine 120 of the histone H2A can serve as a universal marker for the cytological detection of centromeres of mono- and holokinetic plant species. In addition, super resolution microscopy of signals specific to the centromere-specific histone H3 variant CENH3 and to H2AThr120ph revealed that these histone variants are incorporated into different nucleosomes, which form distinct, partly intermingled chromatin domains. This specific arrangement of both histone variants suggests different centromeric functions during the cell cycle. PMID:24642790

  12. MOF phosphorylation by ATM regulates 53BP1-mediated DSB repair pathway choice

    PubMed Central

    Gupta, Arun; Hunt, Clayton R.; Hegdec, Muralidhar L.; Chakraborty, Sharmistha; Udayakumar, Durga; Horikoshi, Nobuo; Singh1, Mayank; Ramnarain, Deepti B.; Hittelman, Walter N.; Namjoshi, Sarita; Asaithamby, Aroumougame; Hazra, Tapas K.; Ludwig, Thomas; Pandita, Raj K.; Tyler, Jessica K.; Pandita, Tej K.

    2014-01-01

    Cell cycle phase is a critical determinant of the choice between DNA damage repair by non-homologous end joining (NHEJ) or homologous recombination (HR). Here we report that DSBs induce ATM-dependent MOF (a histone H4 acetyl-transferase) phosphorylation (p-T392-MOF) and that phosphorylated MOF co-localizes with γ-H2AX, ATM, and 53BP1 foci. Mutation of the phosphorylation site (MOF-T392A) impedes DNA repair in S- and G2-phase but not G1-phase cells. Expression of MOF-T392A also reverses the reduction in DSB associated 53BP1 seen in wild type S/G2-phase cells, resulting in enhanced 53BP1 and reduced BRCA1 association. Decreased BRCA1 levels at DSB sites correlates with defective repairosome formation, reduced HR repair and decreased cell survival following irradiation. These data support a model whereby ATM mediated MOF-T392 phosphorylation modulates 53BP1 function to facilitate the subsequent recruitment of HR repair proteins, uncovering a regulatory role for MOF in DSB repair pathway choice during S/G2-phase. PMID:24953651

  13. Molecular mechanisms for the regulation of histone mRNA stem-loop-binding protein by phosphorylation

    SciTech Connect

    Zhang, Jun; Tan, Dazhi; DeRose, Eugene F.; Perera, Lalith; Dominski, Zbigniew; Marzluff, William F.; Tong, Liang; Tanaka Hall, Traci M.

    2014-08-06

    Replication-dependent histone mRNAs end with a conserved stem loop that is recognized by stem-loop–binding protein (SLBP). The minimal RNA-processing domain of SLBP is phosphorylated at an internal threonine, and Drosophila SLBP (dSLBP) also is phosphorylated at four serines in its 18-aa C-terminal tail. We show that phosphorylation of dSLBP increases RNA-binding affinity dramatically, and we use structural and biophysical analyses of dSLBP and a crystal structure of human SLBP phosphorylated on the internal threonine to understand the striking improvement in RNA binding. Together these results suggest that, although the C-terminal tail of dSLBP does not contact the RNA, phosphorylation of the tail promotes SLBP conformations competent for RNA binding and thereby appears to reduce the entropic penalty for the association. Increased negative charge in this C-terminal tail balances positively charged residues, allowing a more compact ensemble of structures in the absence of RNA.

  14. Wound-induced p38MAPK-dependent histone H3 phosphorylation correlates with increased COX-2 expression in enterocytes.

    PubMed

    Karrasch, Thomas; Steinbrecher, Kris A; Allard, Brigitte; Baldwin, Albert S; Jobin, Christian

    2006-06-01

    Gastrointestinal epithelial cell damage triggers an important biological response called restitution, a process aimed at re-epithelializing the wounded areas. Unfortunately, little is known about the intrinsic molecular signaling events implicated in this host response. We hypothesized that wounding intestinal epithelial cells activates signaling pathways leading to chromatin modification and COX-2 upregulation during restitution. Confluent rat IEC18 cells were mechanically wounded by multiple parallel scratches using a pipet tip. NF-kappaB(Ser536), p38, and histone H3(Ser10) (H3S10) phosphorylation were determined by Western blot using specific phospho-antibodies. COX-2 gene expression was evaluated by RT-PCR, Western Blot, and ELISA. Association of phosphorylated H3, RelA (NF-kappaB), and RNA polymerase II to the COX-2 gene promoter was evaluated by chromatin immunoprecipitation (ChIP). The specific inhibitors Bay11-7082 and SB239063 as well as Ad5IkappaB-superrepressor (Ad5IkappaBAA) and Ad5dnp38 were used to block NF-kappaB- and p38-signaling pathways, respectively. Wounding induced a rapid and sustained (24 h) phosphorylation of RelAS536, H3S10, and p38MAPK in enterocytes. ChIP analysis of the COX-2 gene promoter demonstrated the presence of phospho-H3S10 and recruitment of RelA and RNA polymerase II, a process blocked by SB239063. Finally, molecular blockade of NF-kappaB (Ad5IkappaBAA) or p38MAPK (Ad5dnp38) signaling strongly inhibited enterocyte restitution. p38MAPK-dependent histone 3 phosphorylation is an important component of the intestinal wound-healing response. Targeting-signaling pathways selectively involved in healing/restitution may provide a novel means to maintain or re-establish host intestinal barrier integrity.

  15. Utilisation de l'essai comete et du biomarqueur gamma-H2AX pour detecter les dommages induits a l'ADN cellulaire par le 5-bromodeoxyuridine post-irradiation

    NASA Astrophysics Data System (ADS)

    La Madeleine, Carole

    Ce memoire est presente a la Faculte de medecine et des sciences de la sante de l'Universite de Sherbrooke en vue de l'obtention du grade de maitre es sciences (M.Sc.) en radiobiologie (2009). Un jury a revise les informations contenues dans ce memoire. Il etait compose de professeurs de la Faculte de medecine et des sciences de la sante soit : Darel Hunting PhD, directeur de recherche (departement de medecine nucleaire et radiobiologie), Leon Sanche PhD, directeur de recherche (departement de medecine nucleaire et radiobiologie), Richard Wagner PhD, membre du programme (departement de medecine nucleaire et radiobiologie) et Guylain Boissonneault PhD, membre exterieur au programme (departement de biochimie). Le 5-bromodeoxyuridine (BrdU), un analogue halogene de la thymidine reconnu depuis les annees 60 comme etant un excellent radiosensibilisateur. L'hypothese la plus repandue au sujet de l'effet radio sensibilisant du BrdU est qu'il augmente le nombre de cassures simple et double brin lorsqu'il est incorpore dans l'ADN de la cellule et expose aux radiations ionisantes. Toutefois, de nouvelles recherches semblent remettre en question les observations precedentes. Ces dernieres etudes ont confirme que le BrdU est un bon radiosensibilisateur, car il augmente les dommages radio-induits dans l'ADN. Mais, c'est en etant incorpore dans une region simple brin que le BrdU radiosensibilise l'ADN. Ces recherches ont egalement revele pour la premiere fois un nouveau type de dommages produits lors de l'irradiation de l'ADN contenant du BrdU : les dimeres interbrins. Le but de ces travaux de recherche est de determiner si la presence de bromodeoxyuridine dans l'ADN augmente l'induction de bris simple et / ou double brin chez les cellules irradiees en utilisant de nouvelles techniques plus sensibles et specifiques que celles utilisees auparavant. Pour ce faire, les essais cometes et la detection des foci H2AX phosphorylee pourraient permettre d'etablir les effets engendres par

  16. Epigenetic Regulation of Histone H3 Serine 10 Phosphorylation Status by HCF-1 Proteins in C. elegans and Mammalian Cells

    PubMed Central

    Julien, Eric; Liu, Yi; Wysocka, Joanna; Bowerman, Bruce; Hengartner, Michael O.; Herr, Winship

    2007-01-01

    Background The human herpes simplex virus (HSV) host cell factor HCF-1 is a transcriptional coregulator that associates with both histone methyl- and acetyltransferases, and a histone deacetylase and regulates cell proliferation and division. In HSV-infected cells, HCF-1 associates with the viral protein VP16 to promote formation of a multiprotein–DNA transcriptional activator complex. The ability of HCF proteins to stabilize this VP16-induced complex has been conserved in diverse animal species including Drosophila melanogaster and Caenorhabditis elegans suggesting that VP16 targets a conserved cellular function of HCF-1. Methodology/Principal Findings To investigate the role of HCF proteins in animal development, we have characterized the effects of loss of the HCF-1 homolog in C. elegans, called Ce HCF-1. Two large hcf-1 deletion mutants (pk924 and ok559) are viable but display reduced fertility. Loss of Ce HCF-1 protein at reduced temperatures (e.g., 12°C), however, leads to a high incidence of embryonic lethality and early embryonic mitotic and cytokinetic defects reminiscent of mammalian cell-division defects upon loss of HCF-1 function. Even when viable, however, at normal temperature, mutant embryos display reduced levels of phospho-histone H3 serine 10 (H3S10P), a modification implicated in both transcriptional and mitotic regulation. Mammalian cells with defective HCF-1 also display defects in mitotic H3S10P status. Conclusions/Significance These results suggest that HCF-1 proteins possess conserved roles in the regulation of cell division and mitotic histone phosphorylation. PMID:18043729

  17. Increased Expression of Phosphorylated Polo-Like Kinase 1 and Histone in Bypass Vein Graft and Coronary Arteries following Angioplasty

    PubMed Central

    Sur, Swastika; Swier, Vicki J.; Radwan, Mohamed M.; Agrawal, Devendra K.

    2016-01-01

    Interventional procedures, including percutaneous transluminal coronary angioplasty (PTCA) and coronary artery bypass surgery (CABG) to re-vascularize occluded coronary arteries, injure the vascular wall and cause endothelial denudation and medial vascular smooth muscle cell (VSMCs) metaplasia. Proliferation of the phenotypically altered SMCs is the key event in the pathogenesis of intimal hyperplasia (IH). Several kinases and phosphatases regulate cell cycle in SMC proliferation. It is our hypothesis that increased expression and activity of polo-like kinase-1 (PLK1) in SMCs, following PTCA and CABG, contributes to greater SMC proliferation in the injured than uninjured blood vessels. Using immunofluorescence (IF), we assessed the expression of PLK1 and phosphorylated-PLK1 (pPLK1) in post-PTCA coronary arteries, and superficial epigastric vein grafts (SEV) and compared it with those in the corresponding uninjured vessels. We also compared the expressions of mitotic marker phospho-histone, synthetic-SMC marker, contractile SMC marker, IFN-γ and phosphorylated STAT-3 in the post-PTCA arteries, SEV-grafts, and the uninjured vessels. Immunostaining demonstrated an increase in the number of cells expressing PLK1 and pPLK1 in the neointima of post PTCA-coronary arteries and SEV-grafts compared to their uninjured counterparts. VSMCs in the neointima showed an increased expression of phospho-histone, synthetic and contractile SMC markers, IFN-γ and phosphorylated STAT-3. However, VSMCs of uninjured coronaries and SEV had no significant expression of the aforementioned proteins. These data suggest that PLK1 might play a critical role in VSMC mitosis in hyperplastic intima of the injured vessels. Thus, novel therapies to inhibit PLK1 could be developed to inhibit the mitogenesis of VSMCs and control neointimal hyperplasia. PMID:26820885

  18. Thrombocytopenia induced by the histone deacetylase inhibitor abexinostat involves p53-dependent and -independent mechanisms

    PubMed Central

    Ali, A; Bluteau, O; Messaoudi, K; Palazzo, A; Boukour, S; Lordier, L; Lecluse, Y; Rameau, P; Kraus-Berthier, L; Jacquet-Bescond, A; Lelièvre, H; Depil, S; Dessen, P; Solary, E; Raslova, H; Vainchenker, W; Plo, I; Debili, N

    2013-01-01

    Abexinostat is a pan histone deacetylase inhibitor (HDACi) that demonstrates efficacy in malignancy treatment. Like other HDACi, this drug induces a profound thrombocytopenia whose mechanism is only partially understood. We have analyzed its effect at doses reached in patient plasma on in vitro megakaryopoiesis derived from human CD34+ cells. When added at day 0 in culture, abexinostat inhibited CFU-MK growth, megakaryocyte (MK) proliferation and differentiation. These effects required only a short incubation period. Decreased proliferation was due to induction of apoptosis and was not related to a defect in TPO/MPL/JAK2/STAT signaling. When added later (day 8), the compound induced a dose-dependent decrease (up to 10-fold) in proplatelet (PPT) formation. Gene profiling from MK revealed a silencing in the expression of DNA repair genes with a marked RAD51 decrease at protein level. DNA double-strand breaks were increased as attested by elevated γH2AX phosphorylation level. Moreover, ATM was phosphorylated leading to p53 stabilization and increased BAX and p21 expression. The use of a p53 shRNA rescued apoptosis, and only partially the defect in PPT formation. These results suggest that HDACi induces a thrombocytopenia by a p53-dependent mechanism along MK differentiation and a p53-dependent and -independent mechanism for PPT formation. PMID:23887629

  19. Evidence for the phosphorylation of serine259 of histone deacetylase 5 by protein kinase Cδ.

    PubMed

    Huynh, Q Khai

    2011-02-15

    Signaling via pro-growth G protein coupled receptors triggers phosphorylation of HDAC5 on two serine residues (Ser₂₅₉ and Ser₄₉₈), resulting in nuclear export of HDAC5 and de-repression of downstream target genes. In the previous paper we reported the important role of PKD isozymes in the regulation of HDAC5 by phosphorylating Ser₄₉₈ of HDAC5 [Q.K. Huynh, T.A. Mckinsey, Arch. Biochem. Biophys. 450 (2006) 141-148]. In the present paper, we provide evidence that PKCδ can directly phosphorylate Ser₂₅₉ of HDAC5. The evidence is based on the following facts (a) isolated kinase fraction from human failing heart tissues contained PKCδ that phosphorylated HDAC5 Ser₂₅₉ peptide and no significant activity was found for the unbound fraction after they were immunoprecipitated with PKCδ specific antibody; (b) specific inhibitors for PKCδ inhibited kinase activity from isolated fraction and recombinant human PKCδ with similar IC₅₀ values; (c) recombinant human PKCδ can directly phosphorylate full length Ser₂₅₉ HDAC5 protein and HDAC5 Ser₂₅₉ peptide. The results suggest that in addition to activation of protein kinase D isozymes by phosphorylating Ser₇₄₄ and Ser₇₄₈ at their activation sites, PKCδ may also play a role in the regulation of HDAC5 by phosphorylation of Ser₂₅₉. PMID:21146494

  20. Differences in quantification of DNA double-strand breaks assessed by 53BP1/γH2AX focus formation assays and the comet assay in mammalian cells treated with irradiation and N-acetyl-L-cysteine.

    PubMed

    Kurashige, Tomomi; Shimamura, Mika; Nagayama, Yuji

    2016-06-01

    The biological effect of ionizing radiation (IR) on genomic DNA is thought to be either direct or indirect; the latter is mediated by IR induction of free radicals and reactive oxygen species (ROS). This study was designed to evaluate the effect of N-acetyl-L-cysteine (NAC), a well-known ROS-scavenging antioxidant, on IR induction of genotoxicity, cytotoxicity and ROS production in mammalian cells, and aimed to clarify the conflicting data in previous publications. Although we clearly demonstrate the beneficial effect of NAC on IR-induced genotoxicity and cytotoxicity (determined using the micronucleus assay and cell viability/clonogenic assays), the data on NAC's effect on DNA double-strand break (DSB) formation were inconsistent in different assays. Specifically, mitigation of IR-induced DSBs by NAC was readily detected by the neutral comet assay, but not by the γH2AX or 53BP1 focus assays. NAC is a glutathione precursor and exerts its effect after conversion to glutathione, and presumably it has its own biological activity. Assuming that the focus assay reflects the biological responses to DSBs (detection and repair), while the comet assay reflects the physical status of genomic DNA, our results indicate that the comet assay could readily detect the antioxidant effect of NAC on DSB formation. However, NAC's biological effect might affect the detection of DSB repair by the focus assays. Our data illustrate that multiple parameters should be carefully used to analyze DNA damage when studying potential candidates for radioprotective compounds.

  1. Novel β-Carboline/Hydroxamic Acid Hybrids Targeting Both Histone Deacetylase and DNA Display High Anticancer Activity via Regulation of the p53 Signaling Pathway.

    PubMed

    Ling, Yong; Xu, Chenjun; Luo, Lin; Cao, Jingyi; Feng, Jiao; Xue, Yu; Zhu, Qing; Ju, Caoyun; Li, Fengzhi; Zhang, Yihua; Zhang, Yanan; Ling, Xiang

    2015-12-10

    A novel series of hybrids from β-carboline and hydroxamic acid were designed and synthesized. Several compounds (5m, 11b-d, and 11h) not only exerted significant antiproliferation activity against four human colorectal cancer (CRC) cell lines but also showed histone deacetylase inhibitory effects in vitro. The most potent compound, 11c, exhibited anticancer potency sevenfold higher than that of SAHA. 11c triggered more significant cancer cell apoptosis than did SAHA by cleavage of both PARP and caspase 3 in a dose-dependent manner. Furthermore, 11c simultaneously increased the acetylation of histone H3 and α-tubulin, enhanced expression of DNA damage markers histone H2AX phosphorylation and p-p53 (Ser15), and activated p53 signaling pathway in HCT116 cells. Finally, 11c showed low acute toxicity in mice and inhibited the growth of implanted human CRC in mice more potently than did SAHA. Together, 11c possessed potent antitumor activity and may be a promising candidate for the potential treatment of human CRC.

  2. Comparison of phosphorylation kinetics in DNA repair proteins after exposure to high and low LET radiations

    NASA Astrophysics Data System (ADS)

    Okayasu, R.; Okabe, A.; Takakura, K.

    We irradiated plateau phase normal human fibroblasts with 2 Gy X-rays 70 keV um carbon 290MeV n and 200 keV um iron ions 500 MeV n and observed the kinetics of phosphorylation in various proteins associated with DNA double strand break DSB repair GammaH2AX foci a marker for DSBs were detected immediately after irradiation and the peak of phosphorylation was seen 30 to 60 min post-irradiation for three kinds of radiations Disappearance of gamma-H2AX foci was much faster for X-irradiated samples than that for heavy ion irradiated samples the phosphorylation kinetics for carbon and iron ions are similar for gamma-H2AX foci In contrast phosphorylation of an NHEJ protein DNA-PKcs threonine 2609 was significantly delayed in carbon and iron irradiated cells when compared to X-irradiated cells Disappearance of DNA-PKcs sites was much faster in X-irradiated samples than carbon and iron samples which showed a similar pattern as in the case of gamma-H2AX Furthermore in the case of ATM protein phosphorylation serine 1981 iron irradiation alone caused a significant initial delay but the kinetics of disappearance is similar for iron and carbon samples with much higher remaining number of foci in iron samples than those for X-rays and carbon ions These results suggest that 1 high LET irradiation induces complex and or severe DNA DSB damage which affects the function of DSB repair proteins 2 Both ATM and DNA-PKcs may recognize the complexity of DSBs but ATM may be more sensitive to detecting the complexity of DSB damage 3 gamma-H2AX may

  3. Aurora-A mediated histone H3 phosphorylation of threonine 118 controls condensin I and cohesin occupancy in mitosis

    PubMed Central

    Wike, Candice L; Graves, Hillary K; Hawkins, Reva; Gibson, Matthew D; Ferdinand, Michelle B; Zhang, Tao; Chen, Zhihong; Hudson, Damien F; Ottesen, Jennifer J; Poirier, Michael G; Schumacher, Jill; Tyler, Jessica K

    2016-01-01

    Phosphorylation of histone H3 threonine 118 (H3 T118ph) weakens histone DNA-contacts, disrupting the nucleosome structure. We show that Aurora-A mediated H3 T118ph occurs at pericentromeres and chromosome arms during prophase and is lost upon chromosome alignment. Expression of H3 T118E or H3 T118I (a SIN mutation that bypasses the need for the ATP-dependent nucleosome remodeler SWI/SNF) leads to mitotic problems including defects in spindle attachment, delayed cytokinesis, reduced chromatin packaging, cohesion loss, cohesin and condensin I loss in human cells. In agreement, overexpression of Aurora-A leads to increased H3 T118ph levels, causing cohesion loss, and reduced levels of cohesin and condensin I on chromatin. Normal levels of H3 T118ph are important because it is required for development in fruit flies. We propose that H3 T118ph alters the chromatin structure during specific phases of mitosis to promote timely condensin I and cohesin disassociation, which is essential for effective chromosome segregation. DOI: http://dx.doi.org/10.7554/eLife.11402.001 PMID:26878753

  4. Aurora-A mediated histone H3 phosphorylation of threonine 118 controls condensin I and cohesin occupancy in mitosis.

    PubMed

    Wike, Candice L; Graves, Hillary K; Hawkins, Reva; Gibson, Matthew D; Ferdinand, Michelle B; Zhang, Tao; Chen, Zhihong; Hudson, Damien F; Ottesen, Jennifer J; Poirier, Michael G; Schumacher, Jill; Tyler, Jessica K

    2016-01-01

    Phosphorylation of histone H3 threonine 118 (H3 T118ph) weakens histone DNA-contacts, disrupting the nucleosome structure. We show that Aurora-A mediated H3 T118ph occurs at pericentromeres and chromosome arms during prophase and is lost upon chromosome alignment. Expression of H3 T118E or H3 T118I (a SIN mutation that bypasses the need for the ATP-dependent nucleosome remodeler SWI/SNF) leads to mitotic problems including defects in spindle attachment, delayed cytokinesis, reduced chromatin packaging, cohesion loss, cohesin and condensin I loss in human cells. In agreement, overexpression of Aurora-A leads to increased H3 T118ph levels, causing cohesion loss, and reduced levels of cohesin and condensin I on chromatin. Normal levels of H3 T118ph are important because it is required for development in fruit flies. We propose that H3 T118ph alters the chromatin structure during specific phases of mitosis to promote timely condensin I and cohesin disassociation, which is essential for effective chromosome segregation. PMID:26878753

  5. Histone H3 Phosphorylation in GBM: a New Rational to Guide the Use of Kinase Inhibitors in anti-GBM Therapy

    PubMed Central

    Pacaud, Romain; Cheray, Mathilde; Nadaradjane, Arulraj; Vallette, François M.; Cartron, Pierre-François

    2015-01-01

    Histones post-translational modifications (PTMs) are crucial components of diverse processes that modulate chromatin. Among the histones PTMs, the histones phosphorylation appears such crucial since it plays a significant role into DNA repair structure, transcription and chromatin compaction during cell division and apoptosis. However, little is known about the prognostic value of the histone phosphorylation in human cancer. This point could be considerate such as an important gap in anti-cancer therapy since the use of adequate kinase inhibitors could remedy to the aberrant histone phosphorylation associated with a poor prognosis factor. To remedy at this situation, we analyzed the phosphorylation level of histone H3 at the residues T3, T6, S10, S28, Y41 and T45 in a collection of 42 glioblastoma multiformes (GBM). Our data indicated that the high level of pH3T6, pH3S10 and pH3Y41 are signatures associated with a poor prognosis of overall survival (OS) of GBM treated with the "temozolomide and irradiation standard" treatment of GBM (named TMZ+Irad treatment). Our data also showed that these signatures are correlated with the high activity of kinases already described as writers of the pH3T6, pH3S10 and pH3Y41 i.e. the PKC, Aurora-B and JAK2, respectively. Finally, our analysis revealed that the use of Enzastaurin, AZD1152, and AZD1480 abrogated the high level of pH3T6, pH3S10 and pH3Y41 while increasing the sensitivity to the “temozolomide and irradiation”-induced cell death. To conclude, it appears that this work provides biomarkers for patient stratification for a therapy including kinase inhibitors. PMID:25553095

  6. Trivalent dimethylarsenic compound induces histone H3 phosphorylation and abnormal localization of Aurora B kinase in HepG2 cells

    SciTech Connect

    Suzuki, Toshihide; Miyazaki, Koichi; Kita, Kayoko; Ochi, Takafumi

    2009-12-15

    Trivalent dimethylarsinous acid [DMA(III)] has been shown to induce mitotic abnormalities, such as centrosome abnormality, multipolar spindles, multipolar division, and aneuploidy, in several cell lines. In order to elucidate the mechanisms underlying these mitotic abnormalities, we investigated DMA(III)-mediated changes in histone H3 phosphorylation and localization of Aurora B kinase, which is a key molecule in cell mitosis. DMA(III) caused the phosphorylation of histone H3 (ser10) and was distributed predominantly in mitotic cells, especially in prometaphase cells. By contrast, most of the phospho-histone H3 was found to be localized in interphase cells after treatment with inorganic arsenite [iAs(III)], suggesting the involvement of a different pathway in phosphorylation. DMA(III) activated Aurora B kinase and slightly activated ERK MAP kinase. Phosphorylation of histone H3 by DMA(III) was effectively reduced by ZM447439 (Aurora kinase inhibitor) and slightly reduced by U0126 (MEK inhibitor). By contrast, iAs(III)-dependent histone H3 phosphorylation was markedly reduced by U0126. Aurora B kinase is generally localized in the midbody during telophase and plays an important role in cytokinesis. However, in some cells treated with DMA(III), Aurora B was not localized in the midbody of telophase cells. These findings suggested that DMA(III) induced a spindle abnormality, thereby activating the spindle assembly checkpoint (SAC) through the Aurora B kinase pathway. In addition, cytokinesis was not completed because of the abnormal localization of Aurora B kinase by DMA(III), thereby resulting in the generation of multinucleated cells. These results provide insight into the mechanism of arsenic tumorigenesis.

  7. Ketamine produces antidepressant-like effects through phosphorylation-dependent nuclear export of histone deacetylase 5 (HDAC5) in rats

    PubMed Central

    Choi, Miyeon; Lee, Seung Hoon; Wang, Sung Eun; Ko, Seung Yeon; Song, Mihee; Choi, June-Seek; Duman, Ronald S.; Son, Hyeon

    2015-01-01

    Ketamine produces rapid antidepressant-like effects in animal assays for depression, although the molecular mechanisms underlying these behavioral actions remain incomplete. Here, we demonstrate that ketamine rapidly stimulates histone deacetylase 5 (HDAC5) phosphorylation and nuclear export in rat hippocampal neurons through calcium/calmodulin kinase II- and protein kinase D-dependent pathways. Consequently, ketamine enhanced the transcriptional activity of myocyte enhancer factor 2 (MEF2), which leads to regulation of MEF2 target genes. Transfection of a HDAC5 phosphorylation-defective mutant (Ser259/Ser498 replaced by Ala259/Ala498, HDAC5-S/A), resulted in resistance to ketamine-induced nuclear export, suppression of ketamine-mediated MEF2 transcriptional activity, and decreased expression of MEF2 target genes. Behaviorally, viral-mediated hippocampal knockdown of HDAC5 blocked or occluded the antidepressant effects of ketamine both in unstressed and stressed animals. Taken together, our results reveal a novel role of HDAC5 in the actions of ketamine and suggest that HDAC5 could be a potential mechanism contributing to the therapeutic actions of ketamine. PMID:26647181

  8. Kaposi΄s sarcoma-associated herpesvirus ORF36 protein induces chromosome condensation and phosphorylation of histone H3.

    PubMed

    Kim, Sunmi; Cha, Seho; Jang, Jun Hyeong; Kim, Yejin; Seo, Taegun

    2013-01-01

    Kaposi΄s sarcoma-associated herpesvirus (KSHV) has been known as an agent causing Kaposi΄s sarcoma, primary effusion lymphoma, and multicentric Castleman΄s disease. In the lytic phase of the virus cycle, various viral genes are expressed, which causes host cell dysregulation. Among the lytic genes, viral protein kinase (vPK) encoded by ORF36 is a member of serine/threonine protein kinase (CHPK) family, which is involved in viral gene expression, viral DNA replication and encapsidation, and nuclear egress of virions. Recent studies have shown that the BGLF4 protein of Epstein-Barr virus (EBV), a member of the CHPK family, alters the host cell chromatin structure through phosphorylation of its key regulators. The role of KSHV ORF36 in cellular mitotic events, however, is not yet understood. In the current study, we showed that KSHV ORF36 induced chromosome condensation and phosphorylation of histone H3 on Ser 10, which are known as cellular mitosis markers. These processes have occurred in a kinase activity-dependent manner. PMID:23530827

  9. Differences in quantification of DNA double-strand breaks assessed by 53BP1/γH2AX focus formation assays and the comet assay in mammalian cells treated with irradiation and N-acetyl-L-cysteine

    PubMed Central

    Kurashige, Tomomi; Shimamura, Mika; Nagayama, Yuji

    2016-01-01

    The biological effect of ionizing radiation (IR) on genomic DNA is thought to be either direct or indirect; the latter is mediated by IR induction of free radicals and reactive oxygen species (ROS). This study was designed to evaluate the effect of N-acetyl-L-cysteine (NAC), a well-known ROS-scavenging antioxidant, on IR induction of genotoxicity, cytotoxicity and ROS production in mammalian cells, and aimed to clarify the conflicting data in previous publications. Although we clearly demonstrate the beneficial effect of NAC on IR-induced genotoxicity and cytotoxicity (determined using the micronucleus assay and cell viability/clonogenic assays), the data on NAC's effect on DNA double-strand break (DSB) formation were inconsistent in different assays. Specifically, mitigation of IR-induced DSBs by NAC was readily detected by the neutral comet assay, but not by the γH2AX or 53BP1 focus assays. NAC is a glutathione precursor and exerts its effect after conversion to glutathione, and presumably it has its own biological activity. Assuming that the focus assay reflects the biological responses to DSBs (detection and repair), while the comet assay reflects the physical status of genomic DNA, our results indicate that the comet assay could readily detect the antioxidant effect of NAC on DSB formation. However, NAC's biological effect might affect the detection of DSB repair by the focus assays. Our data illustrate that multiple parameters should be carefully used to analyze DNA damage when studying potential candidates for radioprotective compounds. PMID:26951077

  10. Differences in quantification of DNA double-strand breaks assessed by 53BP1/γH2AX focus formation assays and the comet assay in mammalian cells treated with irradiation and N-acetyl-L-cysteine.

    PubMed

    Kurashige, Tomomi; Shimamura, Mika; Nagayama, Yuji

    2016-06-01

    The biological effect of ionizing radiation (IR) on genomic DNA is thought to be either direct or indirect; the latter is mediated by IR induction of free radicals and reactive oxygen species (ROS). This study was designed to evaluate the effect of N-acetyl-L-cysteine (NAC), a well-known ROS-scavenging antioxidant, on IR induction of genotoxicity, cytotoxicity and ROS production in mammalian cells, and aimed to clarify the conflicting data in previous publications. Although we clearly demonstrate the beneficial effect of NAC on IR-induced genotoxicity and cytotoxicity (determined using the micronucleus assay and cell viability/clonogenic assays), the data on NAC's effect on DNA double-strand break (DSB) formation were inconsistent in different assays. Specifically, mitigation of IR-induced DSBs by NAC was readily detected by the neutral comet assay, but not by the γH2AX or 53BP1 focus assays. NAC is a glutathione precursor and exerts its effect after conversion to glutathione, and presumably it has its own biological activity. Assuming that the focus assay reflects the biological responses to DSBs (detection and repair), while the comet assay reflects the physical status of genomic DNA, our results indicate that the comet assay could readily detect the antioxidant effect of NAC on DSB formation. However, NAC's biological effect might affect the detection of DSB repair by the focus assays. Our data illustrate that multiple parameters should be carefully used to analyze DNA damage when studying potential candidates for radioprotective compounds. PMID:26951077

  11. Chromatin Binding of SRp20 and ASF/SF2 and Dissociation from Mitotic Chromosomes Is Modulated by Histone H3 Serine 10 Phosphorylation

    PubMed Central

    Loomis, Rebecca J.; Naoe, Yoshinori; Parker, J. Brandon; Savic, Velibor; Bozovsky, Matthew R.; Macfarlan, Todd; Manley, James L.; Chakravarti, Debabrata

    2009-01-01

    SUMMARY Histone H3 serine 10 phosphorylation is a hallmark of mitotic chromosomes but its full function remains to be elucidated. We report here that two SR protein splicing factors, SRp20 and ASF/SF2, associate with interphase chromatin, are released from hyperphosphorylated mitotic chromosomes but reassociate with chromatin late in M-phase. Inhibition of Aurora B kinase diminished histone H3 serine 10 phosphorylation and increased SRp20 and ASF/SF2 retention on mitotic chromosomes. Unexpectedly, we also found that HP1 proteins interact with ASF/SF2 in mitotic cells. Strikingly, siRNA-mediated knockdown of ASF/SF2 caused retention of HP1 proteins on mitotic chromatin. Finally, ASF/SF2-depleted cells released from a mitotic block displayed delayed G0/G1 entry, suggesting a functional consequence of these interactions. These findings underscore the evolving role of histone H3 phosphorylation and demonstrate a direct, functional and histone modification-regulated association of SRp20 and ASF/SF2 with chromatin. PMID:19250906

  12. Nuclear c-Abl-mediated tyrosine phosphorylation induces chromatin structural changes through histone modifications that include H4K16 hypoacetylation

    SciTech Connect

    Aoyama, Kazumasa; Fukumoto, Yasunori; Ishibashi, Kenichi; Kubota, Sho; Morinaga, Takao; Horiike, Yasuyoshi; Yuki, Ryuzaburo; Takahashi, Akinori; Nakayama, Yuji; Yamaguchi, Naoto

    2011-12-10

    c-Abl tyrosine kinase, which is ubiquitously expressed, has three nuclear localization signals and one nuclear export signal and can shuttle between the nucleus and the cytoplasm. c-Abl plays important roles in cell proliferation, adhesion, migration, and apoptosis. Recently, we developed a pixel imaging method for quantitating the level of chromatin structural changes and showed that nuclear Src-family tyrosine kinases are involved in chromatin structural changes upon growth factor stimulation. Using this method, we show here that nuclear c-Abl induces chromatin structural changes in a manner dependent on the tyrosine kinase activity. Expression of nuclear-targeted c-Abl drastically increases the levels of chromatin structural changes, compared with that of c-Abl. Intriguingly, nuclear-targeted c-Abl induces heterochromatic profiles of histone methylation and acetylation, including hypoacetylation of histone H4 acetylated on lysine 16 (H4K16Ac). The level of heterochromatic histone modifications correlates with that of chromatin structural changes. Adriamycin-induced DNA damage stimulates translocation of c-Abl into the nucleus and induces chromatin structural changes together with H4K16 hypoacetylation. Treatment with trichostatin A, a histone deacetylase inhibitor, blocks chromatin structural changes but not nuclear tyrosine phosphorylation by c-Abl. These results suggest that nuclear c-Abl plays an important role in chromatin dynamics through nuclear tyrosine phosphorylation-induced heterochromatic histone modifications.

  13. Dynamic alteration in H3 serine 10 phosphorylation is G1-phase specific during ionization radiation induced DNA damage response in human cells.

    PubMed

    Sharma, Ajit K; Bhattacharya, Saikat; Khan, Shafqat A; Khade, Bharat; Gupta, Sanjay

    2015-03-01

    Chromatin acts as a natural barrier in DNA-damage recognition and repair. Histones undergo differential post-translational modification(s) to facilitate DNA damage response (DDR). Importance of modifications like phosphorylation of histone variant H2A.X in DNA repair is very well understood, however, ambiguous results exist in literature regarding the levels of certain histone modifications and their possible role in repair. In the present study, we have investigated in depth the alteration in the level of the highly dynamic histone mark H3S10P as it plays a dual role in different phases of the cell cycle. We show here that H3S10P decreases specifically from irradiated G1-enriched cells irrespective of the damaging agent or the cell line used in the study. Interestingly, the loss occurs predominantly from H3.3 variant which is a transcription activation mark like H3S10P itself, suggesting that the alteration might be implicated in transcription repression. The decrease in other transcription marks like H3K9Ac, H3K14Ac, H3K56Ac and H3S28P along with the occurrence of chromatin condensation in response to DNA damage in G1 phase strengthens the hypothesis. In addition, the alteration in the level of H3S10P shows an inverse correlation with that of γH2AX in a dose-dependent manner and probably occurs from the same mononucleosome. We propose that the drop in the levels of histone H3S10 phosphorylation is a universal phenomenon in response to DNA damage and is a trigger to induce transcription repressive state to facilitate repair.

  14. Vitamin K3 (menadione)-induced oncosis associated with keratin 8 phosphorylation and histone H3 arylation.

    PubMed

    Scott, Gary K; Atsriku, Christian; Kaminker, Patrick; Held, Jason; Gibson, Brad; Baldwin, Michael A; Benz, Christopher C

    2005-09-01

    The vitamin K analog menadione (K3), capable of both redox cycling and arylating nucleophilic substrates by Michael addition, has been extensively studied as a model stress-inducing quinone in both cell culture and animal model systems. Exposure of keratin 8 (k-8) expressing human breast cancer cells (MCF7, T47D, SKBr3) to K3 (50-100 microM) induced rapid, sustained, and site-specific k-8 serine phosphorylation (pSer73) dependent on signaling by a single mitogen activated protein kinase (MAPK) pathway, MEK1/2. Normal nuclear morphology and k-8 immunofluorescence coupled with the lack of DNA laddering or other features of apoptosis indicated that K3-induced cytotoxicity, evident within 4 h of treatment and delayed but not prevented by MEK1/2 inhibition, was due to a form of stress-activated cell death known as oncosis. Independent of MAPK signaling was the progressive appearance of K3-induced cellular fluorescence, principally nuclear in origin and suggested by in vitro fluorimetry to have been caused by K3 thiol arylation. Imaging by UV transillumination of protein gels containing nuclear extracts from K3-treated cells revealed a prominent 17-kDa band shown to be histone H3 by immunoblotting and mass spectrometry (MS). K3 arylation of histones in vitro followed by electrospray ionization-tandem MS analyses identified the unique Cys110 residue within H3, exposed only in the open chromatin of transcriptionally active genes, as a K3 arylation target. These findings delineate new pathways associated with K3-induced stress and suggest a potentially novel role for H3 Cys110 as a nuclear stress sensor.

  15. Histone Deacetylation Critically Determines T-cell Subset Radiosensitivity1

    PubMed Central

    Pugh, Jason L.; Sukhina, Alona S.; Seed, Thomas M.; Manley, Nancy R.; Sempowski, Gregory A.; van den Brink, Marcel R.M.; Smithey, Megan J.; Nikolich-Zugich, Janko

    2014-01-01

    Lymphocytes are sensitive to ionizing radiation and naïve lymphocytes are more radiosensitive than their memory counterparts. Less is known about radiosensitivity of memory cell subsets. We examined the radiosensitivity of naïve (TN), effector memory (TEM), and central memory (TCM) T cell subsets in C57BL/6 mice, and found TEM to be more resistant to radiation-induced apoptosis than either TN or TCM. Surprisingly, we found no correlation between the extent of radiation-induced apoptosis in T cell subsets and : (i) levels of pro- and anti-apoptotic Bcl-2 family members; or (ii) the H2-AX content and maximal γH2-AX fold change. Rather, TEM cell survival correlated with higher levels of immediate γH2-AX marking, immediate break binding and genome-wide open chromatin structure. T cells were able to mark DNA damage seemingly instantly (30 s), even if kept on ice. Relaxing chromatin with the histone deacetylase inhibitor valproic acid following radiation or etoposide treatment, improved the survival of TCM and TN cells up to levels seen in the resistant TEM cells, but did not improve survival from caspase-mediated apoptosis. We conclude that an open genome-wide chromatin state is the key determinant of efficient immediate repair of DNA damage in T cells, explaining the observed T cell subset radiosensitivity differences. PMID:24990082

  16. Inhibition of histone deacetylases enhances DNA damage repair in SCNT embryos.

    PubMed

    Bohrer, Rodrigo Camponogara; Duggavathi, Raj; Bordignon, Vilceu

    2014-01-01

    Recent studies have shown that DNA damage affects embryo development and also somatic cell reprogramming into induced pluripotent stem (iPS) cells. It has been also shown that treatment with histone deacetylase inhibitors (HDACi) improves development of embryos produced by somatic cell nuclear transfer (SCNT) and enhances somatic cell reprogramming. There is evidence that increasing histone acetylation at the sites of DNA double-strand breaks (DSBs) is critical for DNA damage repair. Therefore, we hypothesized that HDACi treatment enhances cell programming and embryo development by facilitating DNA damage repair. To test this hypothesis, we first established a DNA damage model wherein exposure of nuclear donor cells to ultraviolet (UV) light prior to nuclear transfer reduced the development of SCNT embryos proportional to the length of UV exposure. Detection of phosphorylated histone H2A.x (H2AX139ph) foci confirmed that exposure of nuclear donor cells to UV light for 10 s was sufficient to increase DSBs in SCNT embryos. Treatment with HDACi during embryo culture increased development and reduced DSBs in SCNT embryos produced from UV-treated cells. Transcript abundance of genes involved in either the homologous recombination (HR) or nonhomologous end-joining (NHEJ) pathways for DSBs repair was reduced by HDACi treatment in developing embryos at day 5 after SCNT. Interestingly, expression of HR and NHEJ genes was similar between HDACi-treated and control SCNT embryos that developed to the blastocyst stage. This suggested that the increased number of embryos that could achieve the blastocyst stage in response to HDACi treatment have repaired DNA damage. These results demonstrate that DNA damage in nuclear donor cells is an important component affecting development of SCNT embryos, and that HDACi treatment after nuclear transfer enhances DSBs repair and development of SCNT embryos. PMID:24841373

  17. Phosphorylation of threonine 3 on histone H3 by haspin kinase is required for meiosis I in mouse oocytes

    PubMed Central

    Nguyen, Alexandra L.; Gentilello, Amanda S.; Balboula, Ahmed Z.; Shrivastava, Vibha; Ohring, Jacob; Schindler, Karen

    2014-01-01

    ABSTRACT Meiosis I (MI), the division that generates haploids, is prone to errors that lead to aneuploidy in females. Haspin is a kinase that phosphorylates histone H3 on threonine 3, thereby recruiting Aurora kinase B (AURKB) and the chromosomal passenger complex (CPC) to kinetochores to regulate mitosis. Haspin and AURKC, an AURKB homolog, are enriched in germ cells, yet their significance in regulating MI is not fully understood. Using inhibitors and overexpression approaches, we show a role for haspin during MI in mouse oocytes. Haspin-perturbed oocytes display abnormalities in chromosome morphology and alignment, improper kinetochore–microtubule attachments at metaphase I and aneuploidy at metaphase II. Unlike in mitosis, kinetochore localization remained intact, whereas the distribution of the CPC along chromosomes was absent. The meiotic defects following haspin inhibition were similar to those observed in oocytes where AURKC was inhibited, suggesting that the correction of microtubule attachments during MI requires AURKC along chromosome arms rather than at kinetochores. Our data implicate haspin as a regulator of the CPC and chromosome segregation during MI, while highlighting important differences in how chromosome segregation is regulated between MI and mitosis. PMID:25315835

  18. Extended string-like binding of the phosphorylated HP1α N-terminal tail to the lysine 9-methylated histone H3 tail

    PubMed Central

    Shimojo, Hideaki; Kawaguchi, Ayumi; Oda, Takashi; Hashiguchi, Nobuto; Omori, Satoshi; Moritsugu, Kei; Kidera, Akinori; Hiragami-Hamada, Kyoko; Nakayama, Jun-ichi; Sato, Mamoru; Nishimura, Yoshifumi

    2016-01-01

    The chromodomain of HP1α binds directly to lysine 9-methylated histone H3 (H3K9me). This interaction is enhanced by phosphorylation of serine residues in the N-terminal tail of HP1α by unknown mechanism. Here we show that phosphorylation modulates flexibility of HP1α’s N-terminal tail, which strengthens the interaction with H3. NMR analysis of HP1α’s chromodomain with N-terminal tail reveals that phosphorylation does not change the overall tertiary structure, but apparently reduces the tail dynamics. Small angle X-ray scattering confirms that phosphorylation contributes to extending HP1α’s N-terminal tail. Systematic analysis using deletion mutants and replica exchange molecular dynamics simulations indicate that the phosphorylated serines and following acidic segment behave like an extended string and dynamically bind to H3 basic residues; without phosphorylation, the most N-terminal basic segment of HP1α inhibits interaction of the acidic segment with H3. Thus, the dynamic string-like behavior of HP1α’s N-terminal tail underlies the enhancement in H3 binding due to phosphorylation. PMID:26934956

  19. Extended string-like binding of the phosphorylated HP1α N-terminal tail to the lysine 9-methylated histone H3 tail.

    PubMed

    Shimojo, Hideaki; Kawaguchi, Ayumi; Oda, Takashi; Hashiguchi, Nobuto; Omori, Satoshi; Moritsugu, Kei; Kidera, Akinori; Hiragami-Hamada, Kyoko; Nakayama, Jun-Ichi; Sato, Mamoru; Nishimura, Yoshifumi

    2016-03-03

    The chromodomain of HP1α binds directly to lysine 9-methylated histone H3 (H3K9me). This interaction is enhanced by phosphorylation of serine residues in the N-terminal tail of HP1α by unknown mechanism. Here we show that phosphorylation modulates flexibility of HP1α's N-terminal tail, which strengthens the interaction with H3. NMR analysis of HP1α's chromodomain with N-terminal tail reveals that phosphorylation does not change the overall tertiary structure, but apparently reduces the tail dynamics. Small angle X-ray scattering confirms that phosphorylation contributes to extending HP1α's N-terminal tail. Systematic analysis using deletion mutants and replica exchange molecular dynamics simulations indicate that the phosphorylated serines and following acidic segment behave like an extended string and dynamically bind to H3 basic residues; without phosphorylation, the most N-terminal basic segment of HP1α inhibits interaction of the acidic segment with H3. Thus, the dynamic string-like behavior of HP1α's N-terminal tail underlies the enhancement in H3 binding due to phosphorylation.

  20. Nuclear localization of CPI-17, a protein phosphatase-1 inhibitor protein, affects histone H3 phosphorylation and corresponds to proliferation of cancer and smooth muscle cells

    SciTech Connect

    Eto, Masumi; Kirkbride, Jason A.; Chugh, Rishika; Karikari, Nana Kofi; Kim, Jee In

    2013-04-26

    Highlights: •Non-canonical roles of the myosin phosphatase inhibitor (CPI-17) were studied. •CPI-17 is localized in the nucleus of hyperplastic cancer and smooth muscle cells. •CPI-17 Ser12 phosphorylation may regulate the nuclear import. •CPI-17 regulates histone H3 phosphorylation and cell proliferation. •The nuclear CPI-17-PP1 axis plays a proliferative role in cells. -- Abstract: CPI-17 (C-kinase-activated protein phosphatase-1 (PP1) inhibitor, 17 kDa) is a cytoplasmic protein predominantly expressed in mature smooth muscle (SM) that regulates the myosin-associated PP1 holoenzyme (MLCP). Here, we show CPI-17 expression in proliferating cells, such as pancreatic cancer and hyperplastic SM cells. Immunofluorescence showed that CPI-17 was concentrated in nuclei of human pancreatic cancer (Panc1) cells. Nuclear accumulation of CPI-17 was also detected in the proliferating vascular SM cell culture and cells at neointima of rat vascular injury model. The N-terminal 21-residue tail domain of CPI-17 was necessary for the nuclear localization. Phospho-mimetic Asp-substitution of CPI-17 at Ser12 attenuated the nuclear import. CPI-17 phosphorylated at Ser12 was not localized at nuclei, suggesting a suppressive role of Ser12 phosphorylation in the nuclear import. Activated CPI-17 bound to all three isoforms of PP1 catalytic subunit in Panc1 nuclear extracts. CPI-17 knockdown in Panc1 resulted in dephosphorylation of histone H3 at Thr3, Ser10 and Thr11, whereas it had no effects on the phosphorylation of myosin light chain and merlin, the known targets of MLCP. In parallel, CPI-17 knockdown suppressed Panc1 proliferation. We propose that CPI-17 accumulated in the nucleus through the N-terminal tail targets multiple PP1 signaling pathways regulating cell proliferation.

  1. Disruption of IkappaB kinase (IKK)-mediated RelA serine 536 phosphorylation sensitizes human multiple myeloma cells to histone deacetylase (HDAC) inhibitors.

    PubMed

    Dai, Yun; Chen, Shuang; Wang, Li; Pei, Xin-Yan; Funk, Vanessa L; Kramer, Lora B; Dent, Paul; Grant, Steven

    2011-09-30

    Post-translational modifications of RelA play an important role in regulation of NF-κB activation. We previously demonstrated that in malignant hematopoietic cells, histone deacetylase inhibitors (HDACIs) induced RelA hyperacetylation and NF-κB activation, attenuating lethality. We now present evidence that IκB kinase (IKK) β-mediated RelA Ser-536 phosphorylation plays a significant functional role in promoting RelA acetylation, inducing NF-κB activation, and limiting HDACI lethality in human multiple myeloma (MM) cells. Immunoblot profiling revealed that although basal RelA phosphorylation varied in MM cells, Ser-536 phosphorylation correlated with IKK activity. Exposure to the pan-HDACIs vorinostat or LBH-589 induced phosphorylation of IKKα/β (Ser-180/Ser-181) and RelA (Ser-536) in MM cells, including cells expressing an IκBα "super-repressor," accompanied by increased RelA nuclear translocation, acetylation, DNA binding, and transactivation activity. These events were substantially blocked by either pan-IKK or IKKβ-selective inhibitors, resulting in marked apoptosis. Consistent with these events, inhibitory peptides targeting either the NF-κB essential modulator (NEMO) binding domain for IKK complex formation or RelA phosphorylation sites also significantly increased HDACI lethality. Moreover, IKKβ knockdown by shRNA prevented Ser-536 phosphorylation and significantly enhanced HDACI susceptibility. Finally, introduction of a nonphosphorylatable RelA mutant S536A, which failed to undergo acetylation in response to HDACIs, impaired NF-κB activation and increased cell death. These findings indicate that HDACIs induce Ser-536 phosphorylation of the NF-κB subunit RelA through an IKKβ-dependent mechanism, an action that is functionally involved in activation of the cytoprotective NF-κB signaling cascade primarily through facilitation of RelA acetylation rather than nuclear translocation. PMID:21816815

  2. Effect of SPL (Spent Pot Liner) and its main components on root growth, mitotic activity and phosphorylation of Histone H3 in Lactuca sativa L.

    PubMed

    Freitas, Aline Silva; Fontes Cunha, Isabela Martinez; Andrade-Vieira, Larissa Fonseca; Techio, Vânia Helena

    2016-02-01

    Spent Pot Liner (SPL) is a solid waste from the aluminum industry frequently disposed of in industrial landfills; it can be leached and contaminate the soil, sources of drinking water and plantations, and thus may pose a risk to human health and to ecosystems. Its composition is high variable, including cyanide, fluoride and aluminum salts, which are highly toxic and environmental pollutants. This study evaluated the effect of SPL and its main components on root growth and the mitosis of Lactuca sativa, by investigating the mechanisms of cellular and chromosomal alterations with the aid of immunolocalization. To this end, newly emerged roots of L. sativa were exposed to SPL and its main components (solutions of cyanide, fluoride and aluminum) and to calcium chloride (control) for 48h. After this, root length was measured and cell cycle was examined by means of conventional cytogenetics and immunolocalization. Root growth was inhibited in the treatments with SPL and aluminum; chromosomal and nuclear alterations were observed in all treatments. The immunolocalization evidenced normal dividing cells with regular temporal and spatial distribution of histone H3 phosphorylation at serine 10 (H3S10ph). However, SPL and its main components inhibited the phosphorylation of histone H3 at serine 10, inactivated pericentromeric regions and affected the cohesion of sister chromatids, thus affecting the arrangement of chromosomes in the metaphase plate and separation of chromatids in anaphase. In addition, these substances induced breaks in pericentromeric regions, characterized as fragile sites. PMID:26615478

  3. A role for WDR5 in integrating threonine 11 phosphorylation to lysine 4 methylation on histone H3 during androgen signaling and in prostate cancer.

    PubMed

    Kim, Ji-Young; Banerjee, Taraswi; Vinckevicius, Aurimas; Luo, Qianyi; Parker, J Brandon; Baker, Mairead R; Radhakrishnan, Ishwar; Wei, Jian-Jun; Barish, Grant D; Chakravarti, Debabrata

    2014-05-22

    Upon androgen stimulation, PKN1-mediated histone H3 threonine 11 phosphorylation (H3T11P) promotes AR target gene activation. However, the underlying mechanism is not completely understood. Here, we show that WDR5, a subunit of the SET1/MLL complex, interacts with H3T11P, and this interaction facilitates the recruitment of the MLL1 complex and subsequent H3K4 tri-methylation (H3K4me3). Using ChIP-seq, we find that androgen stimulation results in a 6-fold increase in the number of H3T11P-marked regions and induces WDR5 colocalization to one third of H3T11P-enriched promoters, thus establishing a genome-wide relationship between H3T11P and recruitment of WDR5. Accordingly, PKN1 knockdown or chemical inhibition severely blocks WDR5 chromatin association and H3K4me3 on AR target genes. Finally, WDR5 is critical in prostate cancer cell proliferation and is hyperexpressed in human prostate cancers. Together, these results identify WDR5 as a critical epigenomic integrator of histone phosphorylation and methylation and as a major driver of androgen-dependent prostate cancer cell proliferation. PMID:24793694

  4. Effect of SPL (Spent Pot Liner) and its main components on root growth, mitotic activity and phosphorylation of Histone H3 in Lactuca sativa L.

    PubMed

    Freitas, Aline Silva; Fontes Cunha, Isabela Martinez; Andrade-Vieira, Larissa Fonseca; Techio, Vânia Helena

    2016-02-01

    Spent Pot Liner (SPL) is a solid waste from the aluminum industry frequently disposed of in industrial landfills; it can be leached and contaminate the soil, sources of drinking water and plantations, and thus may pose a risk to human health and to ecosystems. Its composition is high variable, including cyanide, fluoride and aluminum salts, which are highly toxic and environmental pollutants. This study evaluated the effect of SPL and its main components on root growth and the mitosis of Lactuca sativa, by investigating the mechanisms of cellular and chromosomal alterations with the aid of immunolocalization. To this end, newly emerged roots of L. sativa were exposed to SPL and its main components (solutions of cyanide, fluoride and aluminum) and to calcium chloride (control) for 48h. After this, root length was measured and cell cycle was examined by means of conventional cytogenetics and immunolocalization. Root growth was inhibited in the treatments with SPL and aluminum; chromosomal and nuclear alterations were observed in all treatments. The immunolocalization evidenced normal dividing cells with regular temporal and spatial distribution of histone H3 phosphorylation at serine 10 (H3S10ph). However, SPL and its main components inhibited the phosphorylation of histone H3 at serine 10, inactivated pericentromeric regions and affected the cohesion of sister chromatids, thus affecting the arrangement of chromosomes in the metaphase plate and separation of chromatids in anaphase. In addition, these substances induced breaks in pericentromeric regions, characterized as fragile sites.

  5. Cancer-preventive peptide lunasin from Solanum nigrum L. inhibits acetylation of core histones H3 and H4 and phosphorylation of retinoblastoma protein (Rb).

    PubMed

    Jeong, Jin Boo; Jeong, Hyung Jin; Park, Jae Ho; Lee, Sun Hee; Lee, Jeong Rak; Lee, Hee Kyeong; Chung, Gyu Young; Choi, Jeong Doo; de Lumen, Ben O

    2007-12-26

    Lunasin, a unique 43 amino acid, 4.8 kDa cancer-chemopreventive peptide initially reported in soybean and now found in barley and wheat, has been shown to be cancer-chemopreventive in mammalian cells and in a skin cancer mouse model against oncogenes and chemical carcinogens. To identify bioactive components in traditional herbal medicines and in search for new sources of lunasin, we report here the properties of lunasin from Solanum nigrum L. (SNL), a plant indigenous to northeast Asia. Lunasin was screened in the crude extracts of five varieties of the medicinal plants of Solanaceae origin and seven other major herbal plants. An in vitro digestion stability assay for measuring bioavailability was carried out on SNL crude protein and autoclaved SNL using pepsin and pancreatin. A nonradioactive histone acetyltransferase (HAT) assay and HAT activity colorimetric assay were used to measure the inhibition of core histone acetylation. The inhibitory effect of lunasin on the phosphorylation of retinoblastoma protein (Rb) was determined by immunoblotting against phospho-Rb. Lunasin isolated from autoclaved SNL inhibited core histone H3 and H4 acetylation, the activities of the HATs, and the phosphorylation of the Rb protein. Lunasin in the crude protein and in the autoclaved crude protein was very stable to pepsin and pancreatin in vitro digestion, while the synthetic pure lunasin was digested at 2 min after the reaction. We conclude that lunasin is a bioactive and bioavailable component in SNL and that consumption of SNL may play an important role in cancer prevention. PMID:18038993

  6. Loss of centromeric histone H2AT120 phosphorylation accompanies somatic chromosomes inactivation in the aberrant spermatocytes of Acricotopus lucidus (Diptera, Chironomidae).

    PubMed

    Staiber, Wolfgang

    2016-01-01

    In the germ line of the chironomid Acricotopus lucidus, two cells with quite different chromosome constitutions result from the last unequal gonial mitosis. In the male, the future primary spermatocyte receives all the germ line-limited chromosomes (=Ks) together with somatic chromosomes (=Ss), and later on undergoes meiotic divisions, while the connected aberrant spermatocyte gets only Ss and remains undivided with chromosomes inactivated in a metaphase-like condensed state. This raises the question whether the centromeres of the permanently condensed Ss of the aberrant spermatocyte remain active during meiosis of the connected regular spermatocyte. Active centromeres exhibit an epigenetic phosphorylation mark at threonine 120 of histone H2A. To visualise the centromeric H2A phosphorylation of the Ss in the aberrant spermatocyte, meiotic stages were immunostained with different anti-phospho histone H2AT120 antibodies. Clear H2AT120ph signals appear at the centromeres of the Ss during prophase, persist on the metaphase-like condensed Ss during meiosis I of the connected primary spermatocyte and disappear during transition to meiosis II. The centromeres of the Ss and Ks of the regular spermatocytes display H2AT120ph signals from prophase I to anaphase II. The loss of the H2AT120 phosphorylation detected on the centromeres of the Ss of the aberrant spermatocyte indicating their deactivation supports the idea of a programmed inactivation of the Ss to block the entry of the germ line-derived aberrant spermatocyte, lacking Ks, into meiosis, and thus to prevent the generation of sperms possessing only Ss. This mechanism would ensure the presence of the Ks in the germ line.

  7. The new low-toxic histone deacetylase inhibitor S-(2) induces apoptosis in various acute myeloid leukaemia cells

    PubMed Central

    Cellai, C; Balliu, M; Laurenzana, A; Guandalini, L; Matucci, R; Miniati, D; Torre, E; Nebbioso, A; Carafa, V; Altucci, L; Romanelli, M N; Paoletti, F

    2012-01-01

    Abstract Histone deacetylase inhibitors (HDACi) induce tumour cell cycle arrest and/or apoptosis, and some of them are currently used in cancer therapy. Recently, we described a series of powerful HDACi characterized by a 1,4-benzodiazepine (BDZ) ring hybridized with a linear alkyl chain bearing a hydroxamate function as Zn++-chelating group. Here, we explored the anti-leukaemic properties of three novel hybrids, namely the chiral compounds (S)-2 and (R)-2, and their non-chiral analogue 4, which were first comparatively tested in promyelocytic NB4 cells. (S)-2 and partially 4– but not (R)-2 – caused G0/G1 cell-cycle arrest by up-regulating cyclin G2 and p21 expression and down-regulating cyclin D2 expression, and also apoptosis as assessed by cell morphology and cytofluorimetric assay, histone H2AX phosphorylation and PARP cleavage. Notably, these events were partly prevented by an anti-oxidant. Moreover, novel HDACi prompted p53 and α-tubulin acetylation and, consistently, inhibited HDAC1 and 6 activity. The rank order of potency was (S)-2 > 4 > (R)-2, reflecting that of other biological assays and addressing (S)-2 as the most effective compound capable of triggering apoptosis in various acute myeloid leukaemia (AML) cell lines and blasts from patients with different AML subtypes. Importantly, (S)-2 was safe in mice (up to 150 mg/kg/week) as determined by liver, spleen, kidney and bone marrow histopathology; and displayed negligible affinity for peripheral/central BDZ-receptors. Overall, the BDZ-hydroxamate (S)-2 showed to be a low-toxic HDACi with powerful anti-proliferative and pro-apototic activities towards different cultured and primary AML cells, and therefore of clinical interest to support conventional anti-leukaemic therapy. PMID:22004558

  8. Nuclear localization of CPI-17, a protein phosphatase-1 inhibitor protein, affects histone H3 phosphorylation and corresponds to proliferation of cancer and smooth muscle cells

    PubMed Central

    Eto, Masumi; Kirkbride, Jason A; Chugh, Rishika; Karikari, Nana Kofi; Kim, Jee In

    2013-01-01

    CPI-17 (C-kinase-activated protein phosphatase-1 (PP1) inhibitor, 17kDa) is a cytoplasmic protein predominantly expressed in mature smooth muscle (SM) that regulates the myosin-associated PP1 holoenzyme (MLCP). Here, we show CPI-17 expression in proliferating cells, such as pancreatic cancer and hyperplastic SM cells. Immunofluorescence showed that CPI-17 was concentrated in nuclei of human pancreatic cancer (Panc1) cells. Nuclear accumulation of CPI-17 was also detected in the proliferating vascular SM cell culture and cells at neointima of rat vascular injury model. The N-terminal 21-residue tail domain of CPI-17 was necessary for the nuclear localization. Phospho-mimetic Asp-substitution of CPI-17 at Ser12 attenuated the nuclear import. CPI-17 phosphorylated at Ser12 was not localized at nuclei, suggesting a suppressive role of Ser12 phosphorylation in the nuclear import. Activated CPI-17 bound to all three isoforms of PP1 catalytic subunit in Panc1 nuclear extracts. CPI-17 knockdown in Panc1 resulted in dephosphorylation of histone H3 at Thr3, Ser10 and Thr11, whereas it had no effects on the phosphorylation of myosin light chain and merlin, the known targets of MLCP. In parallel, CPI-17 knockdown suppressed Panc1 proliferation. We propose that CPI-17 accumulated in the nucleus through the N-terminal tail targets multiple PP1 signaling pathways regulating cell proliferation. PMID:23541585

  9. Inhibition of IKKα by BAY61-3606 Reveals IKKα-Dependent Histone H3 Phosphorylation in Human Cytomegalovirus Infected Cells

    PubMed Central

    Ho, Catherine M. K.; Donovan-Banfield, I’ah Z.; Tan, Li; Zhang, Tinghu; Gray, Nathanael S.; Strang, Blair L.

    2016-01-01

    Protein kinase inhibitors can be used as tools to identify proteins and pathways required for virus replication. Using virus replication assays and western blotting we found that the widely used protein kinase inhibitor BAY61-3606 inhibits replication of human cytomegalovirus (HCMV) strain AD169 and the accumulation of HCMV immediate-early proteins in AD169 infected cells, but has no effect on replication of HCMV strain Merlin. Using in vitro kinase assays we found that BAY61-3606 is a potent inhibitor of the cellular kinase IKKα. Infection of cells treated with siRNA targeting IKKα indicated IKKα was required for efficient AD169 replication and immediate-early protein production. We hypothesized that IKKα was required for AD169 immediate-early protein production as part of the canonical NF-κB signaling pathway. However, although BAY61-3606 inhibited phosphorylation of the IKKα substrate IκBα, we found no canonical or non-canonical NF-κB signaling in AD169 infected cells. Rather, we observed that treatment of cells with BAY61-3606 or siRNA targeting IKKα decreased phosphorylation of histone H3 at serine 10 (H3S10p) in western blotting assays. Furthermore, we found treatment of cells with BAY61-3606, but not siRNA targeting IKKα, inhibited the accumulation of histone H3 acetylation (H3K9ac, H3K18ac and H3K27ac) and tri-methylation (H3K27me3 and H3K36me3) modifications. Therefore, the requirement for IKKα in HCMV replication was strain-dependent and during replication of an HCMV strain requiring IKKα, IKKα-dependent H3S10 phosphorylation was associated with efficient HCMV replication and immediate-early protein production. Plus, inhibition of HCMV replication by BAY61-3606 is associated with acetylation and tri-methylation modifications of histone H3 that do not involve IKKα. PMID:26930276

  10. Inhibition of IKKα by BAY61-3606 Reveals IKKα-Dependent Histone H3 Phosphorylation in Human Cytomegalovirus Infected Cells.

    PubMed

    Ho, Catherine M K; Donovan-Banfield, I'ah Z; Tan, Li; Zhang, Tinghu; Gray, Nathanael S; Strang, Blair L

    2016-01-01

    Protein kinase inhibitors can be used as tools to identify proteins and pathways required for virus replication. Using virus replication assays and western blotting we found that the widely used protein kinase inhibitor BAY61-3606 inhibits replication of human cytomegalovirus (HCMV) strain AD169 and the accumulation of HCMV immediate-early proteins in AD169 infected cells, but has no effect on replication of HCMV strain Merlin. Using in vitro kinase assays we found that BAY61-3606 is a potent inhibitor of the cellular kinase IKKα. Infection of cells treated with siRNA targeting IKKα indicated IKKα was required for efficient AD169 replication and immediate-early protein production. We hypothesized that IKKα was required for AD169 immediate-early protein production as part of the canonical NF-κB signaling pathway. However, although BAY61-3606 inhibited phosphorylation of the IKKα substrate IκBα, we found no canonical or non-canonical NF-κB signaling in AD169 infected cells. Rather, we observed that treatment of cells with BAY61-3606 or siRNA targeting IKKα decreased phosphorylation of histone H3 at serine 10 (H3S10p) in western blotting assays. Furthermore, we found treatment of cells with BAY61-3606, but not siRNA targeting IKKα, inhibited the accumulation of histone H3 acetylation (H3K9ac, H3K18ac and H3K27ac) and tri-methylation (H3K27me3 and H3K36me3) modifications. Therefore, the requirement for IKKα in HCMV replication was strain-dependent and during replication of an HCMV strain requiring IKKα, IKKα-dependent H3S10 phosphorylation was associated with efficient HCMV replication and immediate-early protein production. Plus, inhibition of HCMV replication by BAY61-3606 is associated with acetylation and tri-methylation modifications of histone H3 that do not involve IKKα. PMID:26930276

  11. Structural insights for MPP8 chromodomain interaction with histone H3 lysine 9: potential effect of phosphorylation on methyl-lysine binding

    PubMed Central

    Chang, Yanqi; Horton, John R.; Bedford, Mark T.; Zhang, Xing; Cheng, Xiaodong

    2011-01-01

    M phase phosphoprotein 8 (MPP8) harbors a N-terminal chromodomain and a C-terminal ankyrin repeat domain. MPP8, via its chromodomain, binds histone H3 peptide tri- or di-methylated at lysine 9 (H3K9me3/2) in submicromolar affinity. We determined the crystal structure of MPP8 chromodomain in complex with H3K9me3 peptide. MPP8 interacts with at least six histone H3 residues from glutamine 5 to serine 10, enabling its ability to distinguish lysine 9 containing peptide (QTARKS) from that of lysine 27 (KAARKS), both sharing the ARKS sequence. A partial hydrophobic cage with three aromatic residues (Phe59, Trp80, Tyr83) and one aspartate (Asp87) encloses the methylated lysine 9. MPP8 has been reported to be phosphorylated in vivo, including the cage residue Tyr83 and the succeeding Thr84 and Ser85. Modeling a phosphate group onto the side chain hydroxyl oxygen of Tyr83 suggests the negatively charged phosphate group could enhance the binding of positively charged methyl-lysine or create a regulatory signal by allowing or inhibiting binding of other protein(s). PMID:21419134

  12. A novel small molecule hybrid of vorinostat and DACA displays anticancer activity against human hormone-refractory metastatic prostate cancer through dual inhibition of histone deacetylase and topoisomerase I.

    PubMed

    Yu, Chia-Chun; Pan, Shiow-Lin; Chao, Shi-Wei; Liu, Shih-Ping; Hsu, Jui-Ling; Yang, Yu-Chen; Li, Tsia-Kun; Huang, Wei-Jan; Guh, Jih-Hwa

    2014-08-01

    Vorinostat, which is an extensively studied inhibitor against histone deacetylase (HDAC), shows limited clinical activity to solid tumors. WJ35435, a new hybrid of vorinostat and DACA (a topoisomerase inhibitor) potently inhibited HDAC activity (in particular HDAC1 and HDAC6) in kinase assay and cell-based examination. The anti-HDAC effect was confirmed by the induction of histone H3 acetylation and phosphorylation, α-tubulin acetylation and γ-H2AX formation. WJ35435 showed better potency than vorinostat and DACA against PC-3 and DU-145, two human hormone-refractory metastatic prostate cancer (HRMPC) cell lines, but not benign prostate cells. WJ35435 at differential concentrations induced G1- or G2-phase arrest of the cell cycle in HRMPCs but not in benign prostate cells. WJ35435 induced the formation of topoisomerase I-DNA cleavable complexes but not type-IIα or -IIβ. Topoisomerase activity assay confirmed the selective inhibition of topoisomerase I. WJ35435 induced profound DNA damage using comet tailing assay. WJ35435 was less effective than camptothecin and etoposide in inducing the phosphorylation and activation of Chk1, Chk2 and RPA32 which were crucial coordinators in DNA repair pathway, indicating a low DNA repair activity to WJ35435 action. Furthermore, WJ35435 showed an in vivo antitumor activity. A synergistic apoptosis (combination index=0.55) was obtained in combination between WJ35435 and MG-132 (a proteasome inhibitor). In summary, WJ35435 is a dual-targeted anticancer hybrid induces anti-HDAC and anti-topoisomerase I activities that cause DNA damage associated with a low DNA repair capability, and induce cell cycle arrest at G1- and G2-phase. Ultimately, WJ35435 inhibits cell proliferation and induces apoptosis of HRMPCs.

  13. The cyclin encoded by Kaposi's sarcoma-associated herpesvirus stimulates cdk6 to phosphorylate the retinoblastoma protein and histone H1.

    PubMed Central

    Godden-Kent, D; Talbot, S J; Boshoff, C; Chang, Y; Moore, P; Weiss, R A; Mittnacht, S

    1997-01-01

    Kaposi's sarcoma-associated herpesvirus (KSHV or human herpesvirus 8) is a novel gammaherpesvirus implicated in the cause of Kaposi's sarcoma and certain malignancies of lymphatic origin. One of the candidate genes possibly involved in promoting tumor development is an open reading frame (ORF) with sequence similarity to human type D cyclin genes. This cyclin-like gene, when expressed in tissue culture cells, promotes phosphorylation and inactivation of the retinoblastoma tumor suppressor protein and thereby may result in deregulation of cell division control. We report here the biochemical characterization of this cyclin (KSHV-cyc) and the kinase activity that it elicits upon expression in tissue culture cells. We demonstrate that the kinase activity associated with KSHV-cyc is sensitive to the cdk inhibitor p27 (KIP) and due to activation of cdk6. However, in contrast to cdk6 activated by cellular type D cyclins, the cdk6 activated by KSHV-cyc is capable of phosphorylating not only the retinoblastoma protein but also histone H1. This finding implies that activation by KSHV-cyc alters the substrate preference of this cdk. This may have important physiological consequences in that the kinase activity triggered by this viral cyclin may abrogate cell cycle checkpoints in addition to those targeted by cellular cyclin D-cdk6 kinase. PMID:9151805

  14. Phosphorylation of DNA damage-recognizing proteins at heavy-ion track

    NASA Astrophysics Data System (ADS)

    Ohnishi, T.; Takahashi, A.; Nojima, K.; Furusawa, Y.; Ohnishi, K.

    To identify the repair dynamics for high LET-radiation-induced DNA damage we analyzed the focus formation after exposure to iron-ion beams 500 MeV u 200 KeV um using immunocytochemical methods Since the focus formation of phospho-H2AX gamma-H2AX which is well understood to be activated at radiation-induced double strand breaks DSBs we performed the visualization of the tracks spatial distribution of lesions from an aspect of dose dependency The number of this track induced by iron-ion beams was well corresponded with the value of a calculation well In addition we demonstrate that DNA damage-recognizing proteins such as phospho-serine 1981 of ATM phospho-threonine 2609 of DNA-PKcs phospho-serine 343 of NBS1 and phospho-threonine 68 of Chk2 co-localized with gamma-H2AX at high LET-radiation-induced portion These findings suggest that iron-ion beams were quite effective for detection of DNA damages of DSBs recognized with DNA repair enzymes used here after phosphorylation of them because iron-ion beams can be used to generate extremely localized at DNA damages within restricted regions of the nuclei

  15. Heterochromatin protein 1 (HP1) connects the FACT histone chaperone complex to the phosphorylated CTD of RNA polymerase II

    PubMed Central

    Kwon, So Hee; Florens, Laurence; Swanson, Selene K.; Washburn, Michael P.; Abmayr, Susan M.; Workman, Jerry L.

    2010-01-01

    Heterochromatin protein 1 (HP1) is well known as a silencing protein found at pericentric heterochromatin. Most eukaryotes have at least three isoforms of HP1 that play differential roles in heterochromatin and euchromatin. In addition to its role in heterochromatin, HP1 proteins have been shown to function in transcription elongation. To gain insights into the transcription functions of HP1, we sought to identify novel HP1-interacting proteins. Biochemical and proteomic approaches revealed that HP1 interacts with the histone chaperone complex FACT (facilitates chromatin transcription). HP1c interacts with the SSRP1 (structure-specific recognition protein 1) subunit and the intact FACT complex. Moreover, HP1c guides the recruitment of FACT to active genes and links FACT to active forms of RNA polymerase II. The absence of HP1c partially impairs the recruitment of FACT into heat-shock loci and causes a defect in heat-shock gene expression. Thus, HP1c functions to recruit the FACT complex to RNA polymerase II. PMID:20889714

  16. Shot-gun proteomic analysis of mitochondrial D-loop DNA binding proteins: identification of mitochondrial histones.

    PubMed

    Choi, Yon-Sik; Hoon Jeong, Jae; Min, Hye-Ki; Jung, Hee-Jung; Hwang, Daehee; Lee, Sang-Won; Kim Pak, Youngmi

    2011-05-01

    Transcription and replication of mitochondrial DNA (mtDNA) are regulated by nuclear DNA-encoded proteins that are targeted into mitochondria. A decrease in mtDNA copy number results in mitochondrial dysfunction, which may lead to insulin resistance and metabolic syndromes. We analyzed mitochondrial proteins that physically bind to human mitochondrial D-loop DNA using a shot-gun proteomics approach following protein enrichment by D-loop DNA-linked affinity chromatography. A total of 152 D-loop DNA binding proteins were identified by peptide sequencing using ultra high pressure capillary reverse-phase liquid chromatography/tandem mass spectrometry. Bioinformatic analysis showed that 68 were mitochondrial proteins, 96 were DNA/RNA/protein binding proteins and 114 proteins might form a complex via protein-protein interactions. Histone family members of H1, H2A, H2B, H3, and H4, were detected in abundance among them. In particular, histones H2A and H2B were present in the mitochondrial membrane as integral membrane proteins and not bound directly to mtDNA inside the organelle. Histones H1.2, H3 and H4 were associated with the outer mitochondrial membrane. Silencing of H2AX expression inhibited mitochondrial protein transport. Our data suggests that many mitochondrial proteins may reside in multiple subcellular compartments like H2AX and exert multiple functions. PMID:21359316

  17. Poly(ADP-ribosyl)ation-dependent Transient Chromatin Decondensation and Histone Displacement following Laser Microirradiation.

    PubMed

    Strickfaden, Hilmar; McDonald, Darin; Kruhlak, Michael J; Haince, Jean-Francois; Th'ng, John P H; Rouleau, Michele; Ishibashi, Toytaka; Corry, Gareth N; Ausio, Juan; Underhill, D Alan; Poirier, Guy G; Hendzel, Michael J

    2016-01-22

    Chromatin undergoes a rapid ATP-dependent, ATM and H2AX-independent decondensation when DNA damage is introduced by laser microirradiation. Although the detailed mechanism of this decondensation remains to be determined, the kinetics of decondensation are similar to the kinetics of poly(ADP-ribosyl)ation. We used laser microirradiation to introduce DNA strand breaks into living cells expressing a photoactivatable GFP-tagged histone H2B. We find that poly(ADP-ribosyl)ation mediated primarily by poly(ADP-ribose) polymerase 1 (PARP1) is responsible for the rapid decondensation of chromatin at sites of DNA damage. This decondensation of chromatin correlates temporally with the displacement of histones, which is sensitive to PARP inhibition and is transient in nature. Contrary to the predictions of the histone shuttle hypothesis, we did not find that histone H1 accumulated on poly(ADP-ribose) (PAR) in vivo. Rather, histone H1, and to a lessor extent, histones H2A and H2B were rapidly depleted from the sites of PAR accumulation. However, histone H1 returns to chromatin and the chromatin recondenses. Thus, the PARP-dependent relaxation of chromatin closely correlates with histone displacement.

  18. Poly(ADP-ribosyl)ation-dependent Transient Chromatin Decondensation and Histone Displacement following Laser Microirradiation.

    PubMed

    Strickfaden, Hilmar; McDonald, Darin; Kruhlak, Michael J; Haince, Jean-Francois; Th'ng, John P H; Rouleau, Michele; Ishibashi, Toytaka; Corry, Gareth N; Ausio, Juan; Underhill, D Alan; Poirier, Guy G; Hendzel, Michael J

    2016-01-22

    Chromatin undergoes a rapid ATP-dependent, ATM and H2AX-independent decondensation when DNA damage is introduced by laser microirradiation. Although the detailed mechanism of this decondensation remains to be determined, the kinetics of decondensation are similar to the kinetics of poly(ADP-ribosyl)ation. We used laser microirradiation to introduce DNA strand breaks into living cells expressing a photoactivatable GFP-tagged histone H2B. We find that poly(ADP-ribosyl)ation mediated primarily by poly(ADP-ribose) polymerase 1 (PARP1) is responsible for the rapid decondensation of chromatin at sites of DNA damage. This decondensation of chromatin correlates temporally with the displacement of histones, which is sensitive to PARP inhibition and is transient in nature. Contrary to the predictions of the histone shuttle hypothesis, we did not find that histone H1 accumulated on poly(ADP-ribose) (PAR) in vivo. Rather, histone H1, and to a lessor extent, histones H2A and H2B were rapidly depleted from the sites of PAR accumulation. However, histone H1 returns to chromatin and the chromatin recondenses. Thus, the PARP-dependent relaxation of chromatin closely correlates with histone displacement. PMID:26559976

  19. RNF20-SNF2H Pathway of Chromatin Relaxation in DNA Double-Strand Break Repair

    PubMed Central

    Kato, Akihiro; Komatsu, Kenshi

    2015-01-01

    Rapid progress in the study on the association of histone modifications with chromatin remodeling factors has broadened our understanding of chromatin dynamics in DNA transactions. In DNA double-strand break (DSB) repair, the well-known mark of histones is the phosphorylation of the H2A variant, H2AX, which has been used as a surrogate marker of DSBs. The ubiquitylation of histone H2B by RNF20 E3 ligase was recently found to be a DNA damage-induced histone modification. This modification is required for DSB repair and regulated by a distinctive pathway from that of histone H2AX phosphorylation. Moreover, the connection between H2B ubiquitylation and the chromatin remodeling activity of SNF2H has been elucidated. In this review, we summarize the current knowledge of RNF20-mediated processes and the molecular link to H2AX-mediated processes during DSB repair. PMID:26184323

  20. Expression and functionality of histone H2A variants in cancer

    PubMed Central

    Monteiro, Fátima Liliana; Baptista, Tiago; Amado, Francisco; Vitorino, Rui; Jerónimo, Carmen; Helguero, Luisa A.

    2014-01-01

    Regulation of gene expression includes the replacement of canonical histones for non-allelic histone variants, as well as their multiple targeting by postranslational modifications. H2A variants are highly conserved between species suggesting they execute important functions that cannot be accomplished by canonical histones. Altered expression of many H2A variants is associated to cancer. MacroH2A variants are enriched in heterocromatic foci and are necessary for chromatin condensation. MacroH2A1.1 and macroH2A1.2 are two mutually exclusive isoforms. MacroH2A1.1 and macroH2A2 inhibit proliferation and are associated with better cancer prognosis; while macroH2A1.2 is associated to cancer progression. H2AX variant functions as a sensor of DNA damage and defines the cellular response towards DNA repair or apoptosis; therefore, screening approaches and therapeutic options targeting H2AX have been proposed. H2A.Z is enriched in euchromatin, acting as a proto-oncogene with established roles in hormone responsive cancers and overexpressed in endocrine-resistant disease. Other H2A family members have also been found altered in cancer, but their function remains unknown. Substantial progress has been made to understand histone H2A variants, their contribution to normal cellular function and to cancer development and progression. Yet, implementation of high resolution mass spectrometry is needed to further our knowledge on highly homologous H2A variants expression and function. PMID:25003966

  1. Analysis of histones and histone variants in plants.

    PubMed

    Trivedi, Ila; Rai, Krishan Mohan; Singh, Sunil Kumar; Kumar, Verandra; Singh, Mala; Ranjan, Amol; Lodhi, Niraj; Sawant, Samir V

    2012-01-01

    Histone proteins are the major protein components of chromatin - the physiologically relevant form of the genome (or epigenome) in all eukaryotic cells. For many years, histones were considered passive structural components of eukaryotic chromatin. In recent years, it has been demonstrated that dynamic association of histones and their variants to the genome plays a very important role in gene regulation. Histones are extensively modified during posttranslation viz. acetylation, methylation, phosphorylation, ubiquitylation, etc., and the identification of these covalent marks on canonical and variant histones is crucial for the understanding of their biological significance. Different biochemical techniques have been developed to purify and separate histone proteins; here, we describe techniques for analysis of histones from plant tissues.

  2. Phosphorylation of the butyrate-enhanced protein, histone H1/sup 0/, in Chinese hamster cells. [Effects on H1 configuration and on H1-DNA interactions

    SciTech Connect

    D'Anna, J.A.; Gurley, L.R.; Becker, R.R.; Barham, S.S.; Walters, R.A.; Tobey, R.A.

    1980-01-01

    Although the model studies focus attention upon the ability of H1 phosphorylation to alter H1-DNA interactions, the molecular effects of H1 phosphorylation in chromatin remain unresolved. Part of the difficulty has been technical. For example, most H1 molecules become dephosphorylated during the isolation of chromatin and chromosomes; therefore, it has not been possible to compare the properties of fully phosphorylated chromatin or chromatin subunits with those of their unphosphorylated counterparts. Recent reports, however, suggest that it may be possible to replace unphosphorylated H1 with phosphorylated H1 in oligonucleosomes, nucleosomes, and chromatosomes. Hence, in the near future, we anticipate significant advances in this area.

  3. Simvastatin enhances NMDA receptor GluN2B expression and phosphorylation of GluN2B and GluN2A through increased histone acetylation and Src signaling in hippocampal CA1 neurons.

    PubMed

    Chen, Tingting; Zhang, Baofeng; Li, Guoxi; Chen, Lei; Chen, Ling

    2016-08-01

    Simvastatin (SV) can improve cognitive deficits in Alzheimer's disease patients and mice. Herein, we report that the administration of SV (20 mg/kg) for 5 days in mice (SV-mice) or the treatment of slices with SV (10 μM) for 4 h (SV-slices) could increase the density of NMDA-evoked inward currents (INMDA) in hippocampal CA1 pyramidal cells, which were blocked by farnesol (FOH) that converts farnesyl pyrophosphate (FPP), but not geranylgeraniol (GGOH) that increases geranylgeranylpyrophosphate (GGPP). Sensitivity of INMDA to ifenprodil in SV-mice or SV-slices was significantly increased. The levels of hippocampal GluN2B and GluN2A or Src phosphorylation in SV-mice or SV-slices were higher than controls, which were sensitive to FOH. The Src inhibitor PP2 could inhibit the SV-enhanced phosphorylation of GluN2B and GluN2A and SV-augmented INMDA, but PI3K inhibitor LY294002 did not. The levels of GluN2B mRNA and protein were elevated in SV-mice, which was abolished by FOH, but not by GGOH or PP2. Furthermore, the histone H3K9 and H3K27 acetylation of GluN2B promoter was increased in SV-mice, which was suppressed by FOH rather than GGOH or PP2. In control mice and slices, the reduction of FPP by farnesyl transferase inhibitor could increase the levels of GluN2B expression, the histone H3K9 and H3K27 acetylation and enhance the phosphorylation of GluN2B, GluN2A and Src. The findings indicate that the administration of SV can enhance GluN2B expression and GluN2B and GluN2A phosphorylation leading to augmentation of NMDAR activity through reducing FPP to increase histone acetylation of GluN2B and Src signaling.

  4. In vivo efficacy of the histone deacetylase inhibitor suberoylanilide hydroxamic acid in combination with radiotherapy in a malignant rhabdoid tumor mouse model

    PubMed Central

    2012-01-01

    Purpose Histone deacetylase inhibitors are promising new substances in cancer therapy and have also been shown to sensitize different tumor cells to irradiation (XRT). We explored the effect as well as the radiosensitizing properties of suberoylanilide hydroxamic acid (SAHA) in vivo in a malignant rhabdoid tumor (MRT) mouse model. Methods and material Potential radiosensitization by SAHA was assessed in MRT xenografts by analysis of tumor growth delay, necrosis (HE), apoptosis (TUNEL), proliferation (ki-67) and γH2AX expression as well as dynamic 18F-Fluorodeoxyglucose Positron Emission Tomography (18F-FDG -PET) after treatment with either SAHA alone, single-dose (10 Gy) or fractionated XRT (3 × 3Gy) solely as well as in combination with SAHA compared to controls. Results SAHA only had no significant effect on tumor growth. Combination of SAHA for 8 days with single-dose XRT resulted in a higher number of complete remissions, but failed to prove a significant growth delay compared to XRT only. In contrast fractionated XRT plus SAHA for 3 weeks did induce significant tumor growth delay in MRT-xenografts. The histological examination showed a significant effect of XRT in tumor necrosis, expression of Ki-67, γH2AX and apoptosis. SAHA only had no significant effect in the histological examination. Comparison of xenografts treated with XRT and XRT plus SAHA revealed a significantly increased γH2AX expression and apoptosis induction in the mice tumors after combination treatment with single-dose as well as fractionated XRT. The combination of SAHA with XRT showed a tendency to increased necrosis and decrease of proliferation compared to XRT only, which, however, was not significant. The 18F-FDG-PET results showed no significant differences in the standard uptake value or glucose transport kinetics after either treatment. Conclusion SAHA did not have a significant effect alone, but proved to enhance the effect of XRT in our MRT in vivo model. PMID:22458853

  5. Molecular Modeling of Differentially Phosphorylated Serine 10 and Acetylated lysine 9/14 of Histone H3 Regulates their Interactions with 14-3-3ζ, MSK1, and MKP1

    PubMed Central

    Sharma, Ajit K.; Mansukh, Abhilasha; Varma, Ashok; Gadewal, Nikhil; Gupta, Sanjay

    2013-01-01

    Histone modifications occur in precise patterns, with several modifications known to affect the binding of proteins. These interactions affect the chromatin structure, gene regulation, and cell cycle events. The dual modifications on the H3 tail, serine10 phosphorylation, and lysine14 acetylation (H3Ser10PLys14Ac) are reported to be crucial for interaction with 14-3-3ζ. However, the mechanism by which H3Ser10P along with neighboring site-specific acetylation(s) is targeted by its regulatory proteins, including kinase and phosphatase, is not fully understood. We carried out molecular modeling studies to understand the interaction of 14-3-3ζ, and its regulatory proteins, mitogen-activated protein kinase phosphatase-1 (MKP1), and mitogen- and stress-activated protein kinase-1 (MSK1) with phosphorylated H3Ser10 alone or in combination with acetylated H3Lys9 and Lys14. In silico molecular association studies suggested that acetylated Lys14 and phosphorylated Ser10 of H3 shows the highest binding affinity towards 14-3-3ζ. In addition, acetylation of H3Lys9 along with Ser10PLys14Ac favors the interaction of the phosphatase, MKP1, for dephosphorylation of H3Ser10P. Further, MAP kinase, MSK1 phosphorylates the unmodified H3Ser10 containing N-terminal tail with maximum affinity compared to the N-terminal tail with H3Lys9AcLys14Ac. The data clearly suggest that opposing enzymatic activity of MSK1 and MKP1 corroborates with non-acetylated and acetylated, H3Lys9Lys14, respectively. Our in silico data highlights that site-specific phosphorylation (H3Ser10P) and acetylation (H3Lys9 and H3Lys14) of H3 are essential for the interaction with their regulatory proteins (MKP1, MSK1, and 14-3-3ζ) and plays a major role in the regulation of chromatin structure. PMID:24027420

  6. Chatting histone modifications in mammals

    PubMed Central

    Izzo, Annalisa

    2010-01-01

    Eukaryotic chromatin can be highly dynamic and can continuously exchange between an open transcriptionally active conformation and a compacted silenced one. Post-translational modifications of histones have a pivotal role in regulating chromatin states, thus influencing all chromatin dependent processes. Methylation is currently one of the best characterized histone modification and occurs on arginine and lysine residues. Histone methylation can regulate other modifications (e.g. acetylation, phosphorylation and ubiquitination) in order to define a precise functional chromatin environment. In this review we focus on histone methylation and demethylation, as well as on the enzymes responsible for setting these marks. In particular we are describing novel concepts on the interdependence of histone modifications marks and discussing the molecular mechanisms governing this cross-talks. PMID:21266346

  7. Modification of Histones during Spermiogenesis in Trout: A Molecular Mechanism for Altering Histone Binding to DNA

    PubMed Central

    Sung, Michael T.; Dixon, Gordon H.

    1970-01-01

    At a late stage of spermatogenesis in rainbow-trout testis, the entire complement of histones is replaced by newly synthesized protamine and histones are extensively phosphorylated and acetylated. Tryptic digestion of purified histones labeled by incubation of testicular cells with [32P]phosphate shows that phosphorylation occurs at a small number of seryl residues. Histone I (lysine-rich) is phosphorylated in the sequence Lys-Ser(PO4)-Pro-Lys, which is located in the lysine-rich C-terminal region of the molecule. Histones IIb1 (slightly lysine-rich) and IV (glycine, arginine-rich) give rise to the same phosphopeptide, Ac-Ser(PO4)-Gly-Arg, which comprises the amino terminus of each histone. Thermolysin digests of phosphohistones IIb1 and IV also released a phosphopeptide with composition corresponding to the first six residues of histone IV: Ac-Ser(PO4)-Gly-Arg-Gly-Lys-Gly. An α-helical model of the N-terminal region of histone IV shows that this region is a possible DNA-binding site. Phosphorylation at serine 1 together with ε-amino acetylation at lysines 5, 8, 12, and 16 (observed in histone IV from trout testis) could profoundly modify ionic interactions and lead to an „unzipping” of histone IV from DNA Images PMID:5274484

  8. Trypanosomatid histones.

    PubMed

    Alsford, Sam; Horn, David

    2004-07-01

    The histones are responsible for packaging and regulating access to eukaryotic genomes. Trypanosomatids are flagellated protists that diverged early from the eukaryotic lineage and include parasites that cause disease in humans and other mammals. Here, we review the properties of histones in parasitic trypanosomatids, from gene organization and sequence to expression, post-translational modification and function within chromatin. Phylogenetic and experimental analysis indicates that certain specifically conserved histone sequence motifs, particularly within the N-terminal 'tail' domains, possibly represent functionally important modification substrates conserved throughout the eukaryotic lineage. For example, histone H3 contains a highly conserved methylation substrate. Trypanosomatids also possess at least three variant histones. Among these is an orthologue of H2A.Z, a histone involved in protecting 'active' chromatin from silencing in yeast. Histones provide docking platforms for a variety of regulatory factors. The presence of histone modification and variant histones in trypanosomatids therefore represents evidence for a network that provides the discrimination required to regulate transcription, recombination, repair and chromosome replication and segregation.

  9. Environmental responses mediated by histone variants.

    PubMed

    Talbert, Paul B; Henikoff, Steven

    2014-11-01

    Fluctuations in the ambient environment can trigger chromatin disruptions, involving replacement of nucleosomes or exchange of their histone subunits. Unlike canonical histones, which are available only during S-phase, replication-independent histone variants are present throughout the cell cycle and are adapted for chromatin repair. The H2A.Z variant mediates responses to environmental perturbations including fluctuations in temperature and seasonal variation. Phosphorylation of histone H2A.X rapidly marks double-strand DNA breaks for chromatin repair, which is mediated by both H2A and H3 histone variants. Other histones are used as weapons in conflicts between parasites and their hosts, which suggests broad involvement of histone variants in environmental responses beyond chromatin repair. PMID:25150594

  10. A Peek into the Complex Realm of Histone Phosphorylation▿

    PubMed Central

    Banerjee, Taraswi; Chakravarti, Debabrata

    2011-01-01

    Although discovered long ago, posttranslational phosphorylation of histones has been in the spotlight only recently. Information is accumulating almost daily on phosphorylation of histones and their roles in cellular physiology and human diseases. An extensive cross talk exists between phosphorylation and other posttranslational modifications, which together regulate various biological processes, including gene transcription, DNA repair, and cell cycle progression. Recent research on histone phosphorylation has demonstrated that nearly all histone types are phosphorylated at specific residues and that these modifications act as a critical intermediate step in chromosome condensation during cell division, transcriptional regulation, and DNA damage repair. As with all young fields, apparently conflicting and sometimes controversial observations about histone phosphorylations and their true functions in different species are found in the literature. Accumulating evidence suggests that instead of functioning strictly as part of a general code, histone phosphorylation probably functions by establishing cross talk with other histone modifications and serving as a platform for recruitment or release of effector proteins, leading to a downstream cascade of events. Here we extensively review published information on the complexities of histone phosphorylation, the roles of proteins recognizing these modifications and the resuting physiological outcome, and, importantly, future challenges and opportunities in this fast-moving field. PMID:22006017

  11. Cadmium delays non-homologous end joining (NHEJ) repair via inhibition of DNA-PKcs phosphorylation and downregulation of XRCC4 and Ligase IV.

    PubMed

    Li, Weiwei; Gu, Xueyan; Zhang, Xiaoning; Kong, Jinxin; Ding, Nan; Qi, Yongmei; Zhang, Yingmei; Wang, Jufang; Huang, Dejun

    2015-09-01

    Although studies have shown that cadmium (Cd) interfered with DNA damage repair (DDR), whether Cd could affect non-homologous end joining (NHEJ) repair remains elusive. To further understand the effect of Cd on DDR, we used X-ray irradiation of Hela cells as an in vitro model system, along with γH2AX and 53BP1 as markers for DNA damage. Results showed that X-ray significantly increased γH2AX and 53BP1 foci in Hela cells (p < 0.01), all of which are characteristic of accrued DNA damage. The number of foci declined rapidly over time (1-8h postirradiation), indicating an initiation of NHEJ process. However, the disappearance of γH2AX and 53BP1 foci was remarkably slowed by Cd pretreatment (p < 0.01), suggesting that Cd reduced the efficiency of NHEJ. To further elucidate the mechanisms of Cd toxicity, several markers of NHEJ pathway including Ku70, DNA-PKcs, XRCC4 and Ligase IV were examined. Our data showed that Cd altered the phosphorylation of DNA-PKcs, and reduced the expression of both XRCC4 and Ligase IV in irradiated cells. These observations are indicative of the impairment of NHEJ-dependent DNA repair pathways. In addition, zinc (Zn) mitigated the effects of Cd on NHEJ, suggesting that the Cd-induced NHEJ alteration may partly result from the displacement of Zn or from an interference with the normal function of Zn-containing proteins by Cd. Our findings provide a new insight into the toxicity of Cd on NHEJ repair and its underlying mechanisms in human cells.

  12. DNA double-strand break repair: a theoretical framework and its application.

    PubMed

    Murray, Philip J; Cornelissen, Bart; Vallis, Katherine A; Chapman, S Jon

    2016-01-01

    DNA double-strand breaks (DSBs) are formed as a result of genotoxic insults, such as exogenous ionizing radiation, and are among the most serious types of DNA damage. One of the earliest molecular responses following DSB formation is the phosphorylation of the histone H2AX, giving rise to γH2AX. Many copies of γH2AX are generated at DSBs and can be detected in vitro as foci using well-established immuno-histochemical methods. It has previously been shown that anti-γH2AX antibodies, modified by the addition of the cell-penetrating peptide TAT and a fluorescent or radionuclide label, can be used to visualize and quantify DSBs in vivo. Moreover, when labelled with a high amount of the short-range, Auger electron-emitting radioisotope, (111)In, the amount of DNA damage within a cell can be increased, leading to cell death. In this report, we develop a mathematical model that describes how molecular processes at individual sites of DNA damage give rise to quantifiable foci. Equations that describe stochastic mean behaviours at individual DSB sites are derived and parametrized using population-scale, time-series measurements from two different cancer cell lines. The model is used to examine two case studies in which the introduction of an antibody (anti-γH2AX-TAT) that targets a key component in the DSB repair pathway influences system behaviour. We investigate: (i) how the interaction between anti-γH2AX-TAT and γH2AX effects the kinetics of H2AX phosphorylation and DSB repair and (ii) model behaviour when the anti-γH2AX antibody is labelled with Auger electron-emitting (111)In and can thus instigate additional DNA damage. This work supports the conclusion that DSB kinetics are largely unaffected by the introduction of the anti-γH2AX antibody, a result that has been validated experimentally, and hence the hypothesis that the use of anti-γH2AX antibody to quantify DSBs does not violate the image tracer principle. Moreover, it provides a novel model of DNA damage

  13. DNA double-strand break repair: a theoretical framework and its application

    PubMed Central

    Cornelissen, Bart; Vallis, Katherine A.; Chapman, S. Jon

    2016-01-01

    DNA double-strand breaks (DSBs) are formed as a result of genotoxic insults, such as exogenous ionizing radiation, and are among the most serious types of DNA damage. One of the earliest molecular responses following DSB formation is the phosphorylation of the histone H2AX, giving rise to γH2AX. Many copies of γH2AX are generated at DSBs and can be detected in vitro as foci using well-established immuno-histochemical methods. It has previously been shown that anti-γH2AX antibodies, modified by the addition of the cell-penetrating peptide TAT and a fluorescent or radionuclide label, can be used to visualize and quantify DSBs in vivo. Moreover, when labelled with a high amount of the short-range, Auger electron-emitting radioisotope, 111In, the amount of DNA damage within a cell can be increased, leading to cell death. In this report, we develop a mathematical model that describes how molecular processes at individual sites of DNA damage give rise to quantifiable foci. Equations that describe stochastic mean behaviours at individual DSB sites are derived and parametrized using population-scale, time-series measurements from two different cancer cell lines. The model is used to examine two case studies in which the introduction of an antibody (anti-γH2AX-TAT) that targets a key component in the DSB repair pathway influences system behaviour. We investigate: (i) how the interaction between anti-γH2AX-TAT and γH2AX effects the kinetics of H2AX phosphorylation and DSB repair and (ii) model behaviour when the anti-γH2AX antibody is labelled with Auger electron-emitting 111In and can thus instigate additional DNA damage. This work supports the conclusion that DSB kinetics are largely unaffected by the introduction of the anti-γH2AX antibody, a result that has been validated experimentally, and hence the hypothesis that the use of anti-γH2AX antibody to quantify DSBs does not violate the image tracer principle. Moreover, it provides a novel model of DNA damage

  14. Histone Deacetylases

    PubMed Central

    Parbin, Sabnam; Kar, Swayamsiddha; Shilpi, Arunima; Sengupta, Dipta; Deb, Moonmoon; Rath, Sandip Kumar

    2014-01-01

    In the current era of genomic medicine, diseases are identified as manifestations of anomalous patterns of gene expression. Cancer is the principal example among such maladies. Although remarkable progress has been achieved in the understanding of the molecular mechanisms involved in the genesis and progression of cancer, its epigenetic regulation, particularly histone deacetylation, demands further studies. Histone deacetylases (HDACs) are one of the key players in the gene expression regulation network in cancer because of their repressive role on tumor suppressor genes. Higher expression and function of deacetylases disrupt the finely tuned acetylation homeostasis in both histone and non-histone target proteins. This brings about alterations in the genes implicated in the regulation of cell proliferation, differentiation, apoptosis and other cellular processes. Moreover, the reversible nature of epigenetic modulation by HDACs makes them attractive targets for cancer remedy. This review summarizes the current knowledge of HDACs in tumorigenesis and tumor progression as well as their contribution to the hallmarks of cancer. The present report also describes briefly various assays to detect histone deacetylase activity and discusses the potential role of histone deacetylase inhibitors as emerging epigenetic drugs to cure cancer. PMID:24051359

  15. Disparate impact of butyroyloxymethyl diethylphosphate (AN-7), a histone deacetylase inhibitor, and doxorubicin in mice bearing a mammary tumor.

    PubMed

    Tarasenko, Nataly; Cutts, Suzanne M; Phillips, Don R; Inbal, Aida; Nudelman, Abraham; Kessler-Icekson, Gania; Rephaeli, Ada

    2012-01-01

    The histone deacetylase inhibitor (HDACI) butyroyloxymethyl diethylphosphate (AN-7) synergizes the cytotoxic effect of doxorubicin (Dox) and anti-HER2 on mammary carcinoma cells while protecting normal cells against their insults. This study investigated the concomitant changes occurring in heart tissue and tumors of mice bearing a subcutaneous 4T1 mammary tumor following treatment with AN-7, Dox, or their combination. Dox or AN-7 alone led to inhibition of both tumor growth and lung metastases, whereas their combination significantly increased their anticancer efficacy and attenuated Dox- toxicity. Molecular analysis revealed that treatment with Dox, AN-7, and to a greater degree, AN-7 together with Dox increased tumor levels of γH2AX, the marker for DNA double-strand breaks and decreased the expression of Rad51, a protein needed for DNA repair. These events culminated in increased apoptosis, manifested by the appearance of cytochrome-c in the cytosol. In the myocardium, Dox-induced cardiomyopathy was associated with an increase in γH2AX expression and a reduction in Rad51 and MRE11 expression and increased apoptosis. The addition of AN-7 to the Dox treatment protected the heart from Dox insults as was manifested by a decrease in γH2AX levels, an increase in Rad51 and MRE11 expression, and a diminution of cytochrome-c release. Tumor fibrosis was high in untreated mice but diminished in Dox- and AN-7-treated mice and was almost abrogated in AN-7+Dox-treated mice. By contrast, in the myocardium, Dox alone induced a dramatic increase in fibrosis, and AN7+Dox attenuated it. The high expression levels of c-Kit, Ki-67, c-Myc, lo-FGF, and VEGF in 4T1 tumors were significantly reduced by Dox or AN-7 and further attenuated by AN-7+Dox. In the myocardium, Dox suppressed these markers, whereas AN-7+Dox restored their expression. In conclusion, the combination of AN-7 and Dox results in two beneficial effects, improved anticancer efficacy and cardioprotection.

  16. [WEE1, histone and tumor].

    PubMed

    Liu, Bin

    2015-07-01

    WEE1 is an important factor for histone transcription, chromosome condensation and regulation of cell cycle progression. WEE1 kinase can phosphorylate Cdc2 and down-regulate Cdc2 kinase activity. It can regulate G2 to M phase transition and cell mitosis. It plays a key role in chromosome condensation delay and histone synthesis, suggesting the important functions of WEE1 in the occurrence and development in cancer. At present, a multiple WEE1 inhibitors have been discovered. A great progress has been made in combination of WEE1 inhibitors with DNA damage treatment (chemotherapy or radiotherapy), which makes WEE1 an important target in cancer treatment. PMID:26267696

  17. Detection of DNA damage in oocytes of small ovarian follicles following phosphoramide mustard exposures of cultured rodent ovaries in vitro

    SciTech Connect

    Petrillo, Stephanie K.; Desmeules, Patrice; Truong, To-Quyen; Devine, Patrick J.

    2011-06-01

    Healthy oocytes are critical for producing healthy children, but little is known about whether or not oocytes have the capacity to identify and recover from injury. Using a model ovotoxic alkylating drug, cyclophosphamide (CPA), and its active metabolite, phosphoramide mustard (PM), we previously showed that PM ({>=} 3 {mu}M) caused significant follicle loss in postnatal day 4 (PND4) mouse ovaries in vitro. We now investigate whether PM induces DNA damage in oocytes, examining histone H2AX phosphorylation ({gamma}H2AX), a marker of DNA double-strand breaks (DSBs). Exposure of cultured PND4 mouse ovaries to 3 and 0.1 {mu}M PM induced significant losses of primordial and small primary follicles, respectively. PM-induced {gamma}H2AX was observed predominantly in oocytes, in which foci of {gamma}H2AX staining increased in a concentration-dependent manner and peaked 18-24 h after exposure to 3-10 {mu}M PM. Numbers of oocytes with {>=} 5 {gamma}H2AX foci were significantly increased both 1 and 8 days after exposure to {>=} 1 {mu}M PM compared to controls. Inhibiting the kinases that phosphorylate H2AX significantly increased follicle loss relative to PM alone. In adult mice, CPA also induced follicle loss in vivo. PM also significantly decreased primordial follicle numbers ({>=} 30 {mu}M) and increased {gamma}H2AX foci ({>=} 3 {mu}M) in cultured PND4 Sprague-Dawley rat ovaries. Results suggest oocytes can detect PM-induced damage at or below concentrations which cause significant follicle loss, and there are quantitative species-specific differences in sensitivity. Surviving oocytes with DNA damage may represent an increased risk for fertility problems or unhealthy offspring.

  18. Detection of DNA damage in oocytes of small ovarian follicles following phosphoramide mustard exposures of cultured rodent ovaries in vitro.

    PubMed

    Petrillo, Stephanie K; Desmeules, Patrice; Truong, To-Quyen; Devine, Patrick J

    2011-06-01

    Healthy oocytes are critical for producing healthy children, but little is known about whether or not oocytes have the capacity to identify and recover from injury. Using a model ovotoxic alkylating drug, cyclophosphamide (CPA), and its active metabolite, phosphoramide mustard (PM), we previously showed that PM (≥3μM) caused significant follicle loss in postnatal day 4 (PND4) mouse ovaries in vitro. We now investigate whether PM induces DNA damage in oocytes, examining histone H2AX phosphorylationH2AX), a marker of DNA double-strand breaks (DSBs). Exposure of cultured PND4 mouse ovaries to 3 and 0.1μM PM induced significant losses of primordial and small primary follicles, respectively. PM-induced γH2AX was observed predominantly in oocytes, in which foci of γH2AX staining increased in a concentration-dependent manner and peaked 18-24h after exposure to 3-10μMPM. Numbers of oocytes with ≥5 γH2AX foci were significantly increased both 1 and 8days after exposure to ≥1μMPM compared to controls. Inhibiting the kinases that phosphorylate H2AX significantly increased follicle loss relative to PM alone. In adult mice, CPA also induced follicle loss in vivo. PM also significantly decreased primordial follicle numbers (≥30μM) and increased γH2AX foci (≥3μM) in cultured PND4 Sprague-Dawley rat ovaries. Results suggest oocytes can detect PM-induced damage at or below concentrations which cause significant follicle loss, and there are quantitative species-specific differences in sensitivity. Surviving oocytes with DNA damage may represent an increased risk for fertility problems or unhealthy offspring. PMID:21439308

  19. Histone Octamer

    NASA Technical Reports Server (NTRS)

    1997-01-01

    This is a large 2 mm crystal of histone octamer, grown on STS-81. A very dynamic structure which functions in many aspects of gene regulation from control of gene activity to the more subtle mechanisms of genetic imprinting. Principle Investigator is Dan Carter of New Century Pharmaceuticals.

  20. Histone Octamer

    NASA Technical Reports Server (NTRS)

    1997-01-01

    1 mm histone octamer crystal grown on STS-81. A very dynamic structure which functions in many aspects of gene regulation from control of gene activity to the more subtle mechanisms of genetic imprinting. Principle Investigator is Dan Carter of New Century Pharmaceuticals.

  1. Cohesin phosphorylation and mobility of SMC1 at ionizing radiation-induced DNA double-strand breaks in human cells

    SciTech Connect

    Bauerschmidt, Christina; Helleday, Thomas

    2011-02-01

    Cohesin, a hetero-tetrameric complex of SMC1, SMC3, Rad21 and Scc3, associates with chromatin after mitosis and holds sister chromatids together following DNA replication. Following DNA damage, cohesin accumulates at and promotes the repair of DNA double-strand breaks. In addition, phosphorylation of the SMC1/3 subunits contributes to DNA damage-induced cell cycle checkpoint regulation. The aim of this study was to determine the regulation and consequences of SMC1/3 phosphorylation as part of the cohesin complex. We show here that the ATM-dependent phosphorylation of SMC1 and SMC3 is mediated by H2AX, 53BP1 and MDC1. Depletion of RAD21 abolishes these phosphorylations, indicating that only the fully assembled complex is phosphorylated. Comparison of wild type SMC1 and SMC1S966A in fluorescence recovery after photo-bleaching experiments shows that phosphorylation of SMC1 is required for an increased mobility after DNA damage in G2-phase cells, suggesting that ATM-dependent phosphorylation facilitates mobilization of the cohesin complex after DNA damage.

  2. HISTONE F1 OF TETRAHYMENA MACRONUCLEI

    PubMed Central

    Gorovsky, Martin A.; Keevert, Josephine Bowen; Pleger, Gloria Lorick

    1974-01-01

    Histone fraction F1 has been isolated and purified from macronuclei of the ciliated protozoan, Tetrahymena pyriformis. In many respects, Tetrahymena F1 is similar to that of other organisms. It is the only Tetrahymena histone soluble in 5% perchloric acid or 5% trichloroacetic acid, has a higher molecular weight than any other Tetrahymena histone, is the histone most easily dissociated from Tetrahymena chromatin, and is susceptible to specific proteolytic cleavage. However, unlike F1 in all other organisms, Tetrahymena F1 is not the slowest-migrating histone fraction when analyzed by polyacrylamide gel electrophoresis at low pH. Tetrahymena F1 also exhibits unusual behavior in sodium dodecyl sulfate-containing polyacrylamide gels, migrating faster than calf thymus F1 at pH 10, and slower than calf thymus F1 at pH 7.6. Tetrahymena F1 was found to be highly phosphorylated in rapidly growing cells, suggesting that the relationship between cell replication and F1 phosphorylation previously observed in mammalian cells may extend to all eukaryotes. The observation that extensive F1 phosphorylation occurs in macronuclei, which divide amitotically, argues against a unique role for F1 phosphorylation in the process of chromosome condensation at mitosis. PMID:4206592

  3. Polycomb Protein SCML2 Associates with USP7 and Counteracts Histone H2A Ubiquitination in the XY Chromatin during Male Meiosis

    PubMed Central

    Luo, Mengcheng; Zhou, Jian; Leu, N. Adrian; Abreu, Carla M.; Wang, Jianle; Anguera, Montserrat C.; de Rooij, Dirk G.; Jasin, Maria; Wang, P. Jeremy

    2015-01-01

    Polycomb group proteins mediate transcriptional silencing in diverse developmental processes. Sex chromosomes undergo chromosome-wide transcription silencing during male meiosis. Here we report that mouse SCML2 (Sex comb on midleg-like 2), an X chromosome-encoded polycomb protein, is specifically expressed in germ cells, including spermatogonia, spermatocytes, and round spermatids. SCML2 associates with phosphorylated H2AX and localizes to the XY body in spermatocytes. Loss of SCML2 in mice causes defective spermatogenesis, resulting in sharply reduced sperm production. SCML2 interacts with and recruits a deubiquitinase, USP7, to the XY body in spermatocytes. In the absence of SCML2, USP7 fails to accumulate on the XY body, whereas H2A monoubiquitination is dramatically augmented in the XY chromatin. Our results demonstrate that the SCML2/USP7 complex constitutes a novel molecular pathway in modulating the epigenetic state of sex chromosomes during male meiosis. PMID:25634095

  4. S1219 residue of 53BP1 is phosphorylated by ATM kinase upon DNA damage and required for proper execution of DNA damage response

    SciTech Connect

    Lee, Haemi; Kwak, Hee-Jin; Cho, Il-taeg; Park, Seok Hee; Lee, Chang-Hun

    2009-01-02

    53BP1 is phosphorylated by the protein kinase ATM upon DNA damage. Even though several ATM phosphorylation sites in 53BP1 have been reported, those sites have little functional implications in the DNA damage response. Here, we show that ATM phosphorylates the S1219 residue of 53BP1 in vitro and that the residue is phosphorylated in cells exposed to ionizing radiation (IR). Transfection with siRNA targeting ATM abolished IR-induced phosphorylation at this residue, supporting the theory that this process is mediated by the kinase. To determine the functional relevance of this phosphorylation event, a U2OS cell line expressing S1219A mutant 53BP1 was established. IR-induced foci formation of MDC1 and {gamma}H2AX, DNA damage signaling molecules, was reduced in this cell line, implying that S1219 phosphorylation is required for recruitment of these molecules to DNA damage sites. Furthermore, overexpression of the mutant protein impeded IR-induced G2 arrest. In conclusion, we have shown that S1219 phosphorylation by ATM is required for proper execution of DNA damage response.

  5. Linker histones in hormonal gene regulation.

    PubMed

    Vicent, G P; Wright, R H G; Beato, M

    2016-03-01

    In the present review, we summarize advances in our knowledge on the role of the histone H1 family of proteins in breast cancer cells, focusing on their response to progestins. Histone H1 plays a dual role in gene regulation by hormones, both as a structural component of chromatin and as a dynamic modulator of transcription. It contributes to hormonal regulation of the MMTV promoter by stabilizing a homogeneous nucleosome positioning, which reduces basal transcription whereas at the same time promoting progesterone receptor binding and nucleosome remodeling. These combined effects enhance hormone dependent gene transcription, which eventually requires H1 phosphorylation and displacement. Various isoforms of histone H1 have specific functions in differentiated breast cancer cells and compact nucleosomal arrays to different extents in vitro. Genome-wide studies show that histone H1 has a key role in chromatin dynamics of hormone regulated genes. A complex sequence of enzymatic events, including phosphorylation by CDK2, PARylation by PARP1 and the ATP-dependent activity of NURF, are required for H1 displacement and gene de-repression, as a prerequisite for further nucleosome remodeling. Similarly, during hormone-dependent gene repression a dedicated enzymatic mechanism controls H1 deposition at promoters by a complex containing HP1γ, LSD1 and BRG1, the ATPase of the BAF complex. Thus, a broader vision of the histone code should include histone H1, as the linker histone variants actively participate in the regulation of the chromatin structure. How modifications of the core histones tails affect H1 modifications and vice versa is one of the many questions that remains to be addressed to provide a more comprehensive view of the histone cross-talk mechanisms.

  6. Immunofluorescent Detection of DNA Double Strand Breaks induced by High-LET Radiation

    NASA Technical Reports Server (NTRS)

    Cucinotta, Francis A.; Wu, Honglu; Desai, Nirav

    2004-01-01

    Within cell nuclei, traversing charged heavy ion particles lead to the accumulation of proteins related to DNA lesions and repair along the ion trajectories. Irradiation using a standard geometric setup with the beam path perpendicular to the cell monolayer generates discrete foci of several proteins known to localize at sites of DNA double strand breaks (DSBs). One such molecule is the histone protein H2AX (gamma-H2AX), which gets rapidly phosphorylated in response to ionizing radiation. Here we present data obtained with a modified irradiation geometry characterized by a beam path parallel to a monolayer of human fibroblast cells. This new irradiation geometry leads to the formation of gamma-H2AX aggregates in the shape of streaks stretching over several micrometers in the x/y plane, thus enabling the analysis of the fluorescence distributions along the particle trajectories. Qualitative analysis of these distributions presented insights into the DNA repair kinetics along the primary track structure and visualization of possible chromatin movement. We also present evidence of colocalization of gamma-H2AX with several other proteins in responses to ionizing radiation exposure. Analysis of gamma-H2AX has the potential to provide useful information on human cell responses to high LET radiation after exposure to space-like radiation.

  7. Activation of p53 Transcriptional Activity by SMRT: a Histone Deacetylase 3-Independent Function of a Transcriptional Corepressor

    PubMed Central

    Adikesavan, Anbu Karani; Karmakar, Sudipan; Pardo, Patricia; Wang, Liguo; Liu, Shuang; Li, Wei

    2014-01-01

    The silencing mediator of retinoic acid and thyroid hormone receptors (SMRT) is an established histone deacetylase 3 (HDAC3)-dependent transcriptional corepressor. Microarray analyses of MCF-7 cells transfected with control or SMRT small interfering RNA revealed SMRT regulation of genes involved in DNA damage responses, and the levels of the DNA damage marker γH2AX as well as poly(ADP-ribose) polymerase cleavage were elevated in SMRT-depleted cells treated with doxorubicin. A number of these genes are established p53 targets. SMRT knockdown decreased the activity of two p53-dependent reporter genes as well as the expression of p53 target genes, such as CDKN1A (which encodes p21). SMRT bound directly to p53 and was recruited to p53 binding sites within the p21 promoter. Depletion of GPS2 and TBL1, components of the SMRT corepressor complex, but not histone deacetylase 3 (HDAC3) decreased p21-luciferase activity. p53 bound to the SMRT deacetylase activation domain (DAD), which mediates HDAC3 binding and activation, and HDAC3 could attenuate p53 binding to the DAD region of SMRT. Moreover, an HDAC3 binding-deficient SMRT DAD mutant coactivated p53 transcriptional activity. Collectively, these data highlight a biological role for SMRT in mediating DNA damage responses and suggest a model where p53 binding to the DAD limits HDAC3 interaction with this coregulator, thereby facilitating SMRT coactivation of p53-dependent gene expression. PMID:24449765

  8. Histones in protistan evolution.

    PubMed

    Rizzo, P J

    1985-01-01

    The potential of comparative studies on histones for use in protistan evolution is discussed, using algal histones as specific examples. A basic premise for the importance of histones in protistan evolution is the observation that these proteins are completely absent in prokaryotes (and cytoplasmic organelles), but with few exceptions, the same five major histone types are found in all higher plants and animals. Since the histone content of the algae and other protists is not constant, some of these organisms may represent transition forms between the prokaryotic and eukaryotic modes of packaging the genetic material. Comparative studies of protistan histones may thus be of help in determining evolutionary relationships. However, several problems are encounter with protistan histones, including difficulties in isolating nuclei, proteolytic degradation, anomalous gel migration of histones, and difficulties in histone identification. Because of the above problems, and the observed variability in protistan histones, it is suggested that several criteria be employed for histone identification in protists.

  9. Rac1 protein signaling is required for DNA damage response stimulated by topoisomerase II poisons.

    PubMed

    Huelsenbeck, Stefanie C; Schorr, Anne; Roos, Wynand P; Huelsenbeck, Johannes; Henninger, Christian; Kaina, Bernd; Fritz, Gerhard

    2012-11-01

    To investigate the potency of the topoisomerase II (topo II) poisons doxorubicin and etoposide to stimulate the DNA damage response (DDR), S139 phosphorylation of histone H2AXH2AX) was analyzed using rat cardiomyoblast cells (H9c2). Etoposide caused a dose-dependent increase in the γH2AX level as shown by Western blotting. By contrast, the doxorubicin response was bell-shaped with high doses failing to increase H2AX phosphorylation. Identical results were obtained by immunohistochemical analysis of γH2AX focus formation, comet assay-based DNA strand break analysis, and measuring the formation of the topo II-DNA cleavable complex. At low dose, doxorubicin activated ataxia telangiectasia mutated (ATM) but not ATM and Rad3-related (ATR). Both the lipid-lowering drug lovastatin and the Rac1-specific inhibitor NSC23766 attenuated doxorubicin- and etoposide-stimulated H2AX phosphorylation, induction of DNA strand breaks, and topo II-DNA complex formation. Lovastatin and NSC23766 acted in an additive manner. They did not attenuate doxorubicin-induced increase in p-ATM and p-Chk2 levels. DDR stimulated by topo II poisons was partially blocked by inhibition of type I p21-associated kinases. DDR evoked by the topoisomerase I poison topotecan remained unaffected by lovastatin. The data show that the mechanisms involved in DDR stimulated by topo II poisons are agent-specific with anthracyclines lacking DDR-stimulating activity at high doses. Pharmacological inhibition of Rac1 signaling counteracts doxorubicin- and etoposide-stimulated DDR by disabling the formation of the topo II-DNA cleavable complex. Based on the data we suggest that Rac1-regulated mechanisms are required for DNA damage induction and subsequent activation of the DDR following treatment with topo II but not topo I poisons.

  10. Determination of histone methylation in mono- and dicotyledonous plants.

    PubMed

    Nic-Can, Geovanny I; De la Peña, Clelia

    2012-01-01

    Epigenetics includes DNA methylation and histones posttranslational modifications such as methylation, acetylation, phosphorylation among others. One of the most abundant modifications in histone tail is the methylation. It has been found that the methylation pattern in the histone H3 may provide understanding of the process involved in cell differentiation, adaptation, and evolution in plants. In this work, we detail a method for isolation of nuclear proteins from small amount of sample to identify global changes in different lysines of the histone H3 tail by using immunodetection. PMID:22610638

  11. A brief histone in time: understanding the combinatorial functions of histone PTMs in the nucleosome context.

    PubMed

    Ng, Marlee K; Cheung, Peter

    2016-02-01

    It has been over 50 years since Allfrey et al. proposed that histone acetylation regulates RNA synthesis, and the study of histone modifications has progressed at an extraordinary pace for the past two decades. In this review, we provide a perspective on some key events and advances in our understanding of histone modifications. We also highlight reagents and tools from past to present that facilitated progress in this research field. Using histone H3 phosphorylation as an underlying thread, we review the rationale that led to the proposal of the histone code hypothesis, as well as examples that illustrate the concepts of combinatorial histone modifications and cross-talk pathways. We further highlight the importance of investigating these mechanisms in the context of nucleosomes rather than just at the histone level and present current and developing approaches for such studies. Overall, research on histone modifications has yielded great mechanistic insights into the regulation of genomic functions, and extending these studies using nucleosomes will further elucidate the complexity of these pathways in a more physiologically relevant context.

  12. Bile acid receptor TGR5, NADPH Oxidase NOX5-S and CREB Mediate Bile Acid-Induced DNA Damage In Barrett’s Esophageal Adenocarcinoma Cells

    PubMed Central

    Li, Dan; Cao, Weibiao

    2016-01-01

    The mechanisms whereby bile acid reflux may accelerate the progression from Barrett’s esophagus (BE) to esophageal adenocarcinoma (EA) are not fully understood. In this study we found that bile acid taurodeoxycholic acid (TDCA) significantly increased the tail moment (TM) and histone H2AX phosphorylation in FLO-1 EA cells, an increase which was significantly decreased by knockdown of TGR5. Overexpression of TGR5 significantly increased TDCA-induced TM increase and H2AX phosphorylation. In addition, NADPH oxidase inhibitor diphenylene iodonium significantly inhibited the TDCA-induced increase in TM and H2AX phosphorylation. TDCA-induced increase in TM and H2AX phosphorylation was significantly decreased by knockdown of NOX5-S and overexpression of NOX5-S significantly increased TDCA-induced increase in the tail moment and H2AX phosphorylation. Furthermore, TDCA significantly increased cAMP response element binding protein (CREB) phosphorylation in FLO-1 cells. Knockdown of CREB significantly decreased TDCA-induced increase in NOX5-S mRNA and the tail moment. Conversely, overexpression of CREB significantly increased TDCA-induced TM increase. We conclude that TDCA-induced DNA damage may depend on the activation of TGR5, CREB and NOX5-S. It is possible that in Barrett’s patients bile acids may activate NOX5-S and increase reactive oxygen species (ROS) production via activation of TGR5 and CREB. NOX5-S-derived ROS may cause DNA damage, thereby contributing to the progression from BE to EA. PMID:27511066

  13. Bile acid receptor TGR5, NADPH Oxidase NOX5-S and CREB Mediate Bile Acid-Induced DNA Damage In Barrett's Esophageal Adenocarcinoma Cells.

    PubMed

    Li, Dan; Cao, Weibiao

    2016-01-01

    The mechanisms whereby bile acid reflux may accelerate the progression from Barrett's esophagus (BE) to esophageal adenocarcinoma (EA) are not fully understood. In this study we found that bile acid taurodeoxycholic acid (TDCA) significantly increased the tail moment (TM) and histone H2AX phosphorylation in FLO-1 EA cells, an increase which was significantly decreased by knockdown of TGR5. Overexpression of TGR5 significantly increased TDCA-induced TM increase and H2AX phosphorylation. In addition, NADPH oxidase inhibitor diphenylene iodonium significantly inhibited the TDCA-induced increase in TM and H2AX phosphorylation. TDCA-induced increase in TM and H2AX phosphorylation was significantly decreased by knockdown of NOX5-S and overexpression of NOX5-S significantly increased TDCA-induced increase in the tail moment and H2AX phosphorylation. Furthermore, TDCA significantly increased cAMP response element binding protein (CREB) phosphorylation in FLO-1 cells. Knockdown of CREB significantly decreased TDCA-induced increase in NOX5-S mRNA and the tail moment. Conversely, overexpression of CREB significantly increased TDCA-induced TM increase. We conclude that TDCA-induced DNA damage may depend on the activation of TGR5, CREB and NOX5-S. It is possible that in Barrett's patients bile acids may activate NOX5-S and increase reactive oxygen species (ROS) production via activation of TGR5 and CREB. NOX5-S-derived ROS may cause DNA damage, thereby contributing to the progression from BE to EA. PMID:27511066

  14. RNF8 Transduces the DNA-Damage Signal Via Histone Ubiquitylation And Checkpoint Protein Assembly

    SciTech Connect

    Huen, M.S.Y.; Grant, R.; Manke, I.; Minn, K.; Yu, X.; Yaffe, M.B.; Chen, J.

    2009-06-01

    DNA-damage signaling utilizes a multitude of posttranslational modifiers as molecular switches to regulate cell-cycle checkpoints, DNA repair, cellular senescence, and apoptosis. Here we show that RNF8, a FHA/RING domain-containing protein, plays a critical role in the early DNA-damage response. We have solved the X-ray crystal structure of the FHA domain structure at 1.35 {angstrom}. We have shown that RNF8 facilitates the accumulation of checkpoint mediator proteins BRCA1 and 53BP1 to the damaged chromatin, on one hand through the phospho-dependent FHA domain-mediated binding of RNF8 to MDC1, on the other hand via its role in ubiquitylating H2AX and possibly other substrates at damage sites. Moreover, RNF8-depleted cells displayed a defective G2/M checkpoint and increased IR sensitivity. Together, our study implicates RNF8 as a novel DNA-damage-responsive protein that integrates protein phosphorylation and ubiquitylation signaling and plays a critical role in the cellular response to genotoxic stress.

  15. Phosphorylation-Dependent Regulation of the DNA Damage Response of Adaptor Protein KIBRA in Cancer Cells

    PubMed Central

    Mavuluri, Jayadev; Beesetti, Swarnalatha; Surabhi, Rohan; Kremerskothen, Joachim

    2016-01-01

    Multifunctional adaptor proteins encompassing various protein-protein interaction domains play a central role in the DNA damage response pathway. In this report, we show that KIBRA is a physiologically interacting reversible substrate of ataxia telangiectasia mutated (ATM) kinase. We identified the site of phosphorylation in KIBRA as threonine 1006, which is embedded within the serine/threonine (S/T) Q consensus motif, by site-directed mutagenesis, and we further confirmed the same with a phospho-(S/T) Q motif-specific antibody. Results from DNA repair functional assays such as the γ-H2AX assay, pulsed-field gel electrophoresis (PFGE), Comet assay, terminal deoxynucleotidyltransferase-mediated dUTP-biotin nick end labeling (TUNEL) assay, and clonogenic cell survival assay using stable overexpression clones of wild-type (wt.) KIBRA and active (T1006E) and inactive (T1006A) KIBRA phosphorylation mutants showed that T1006 phosphorylation on KIBRA is essential for optimal DNA double-strand break repair in cancer cells. Further, results from stable retroviral short hairpin RNA-mediated knockdown (KD) clones of KIBRA and KIBRA knockout (KO) model cells generated by a clustered regularly interspaced short palindromic repeat (CRISPR)-Cas9 system showed that depleting KIBRA levels compromised the DNA repair functions in cancer cells upon inducing DNA damage. All these phenotypic events were reversed upon reconstitution of KIBRA into cells lacking KIBRA knock-in (KI) model cells. All these results point to the fact that phosphorylated KIBRA might be functioning as a scaffolding protein/adaptor protein facilitating the platform for further recruitment of other DNA damage response factors. In summary, these data demonstrate the imperative functional role of KIBRA per se (KIBRA phosphorylation at T1006 site as a molecular switch that regulates the DNA damage response, possibly via the nonhomologous end joining [NHEJ] pathway), suggesting that KIBRA could be a potential

  16. Quantitative Phosphoproteomics Reveals Crosstalk Between Phosphorylation and O-GlcNAc in the DNA Damage Response Pathway

    PubMed Central

    Zhong, Jun; Martinez, Marissa; Sengupta, Srona; Lee, Albert; Wu, Xinyan; Chaerkady, Raghothama; Chatterjee, Aditi; O’Meally, Robert N.; Cole, Robert N.; Pandey, Akhilesh; Zachara, Natasha E.

    2015-01-01

    The modification of intracellular proteins by monosaccharides of O-linked β-N-acetylglucosamine (O-GlcNAc) is an essential and dynamic post-translational modification of metazoans. The addition and removal of O-GlcNAc is catalyzed by the O-GlcNAc transferase (OGT) and O-GlcNAcase, respectively. One mechanism by which O-GlcNAc is thought to mediate proteins is by regulating phosphorylation. To provide insight into the pathways regulated by O-GlcNAc, we have utilized stable isotope labeling of amino acids in cell culture (SILAC)-based quantitative proteomics to carry out comparisons of site-specific phosphorylation in OGT wild-type (WT) and Null cells. Quantitation of the phosphoproteome demonstrated that out of 5,529 phosphoserine, phosphothreonine and phosphotyrosine sites, 232 phosphosites were upregulated and 133 downregulated in the absence of O-GlcNAc. Collectively, these data suggest that deletion of OGT has a profound effect on the phosphorylation of cell cycle and DNA damage response proteins. Key events were confirmed by biochemical analyses and demonstrate a increase in the activating autophosphorylation event on ATM (Ser1987) and on ATM’s downstream targets p53, H2AX and Chk2. Together, these data support widespread changes in the phosphoproteome upon removal of O-GlcNAc, suggesting that O-GlcNAc regulates processes such as the cell cycle, genomic stability, and lysosomal biogenesis. PMID:25263469

  17. Baculovirus F-box protein LEF-7 modifies the host DNA damage response to enhance virus multiplication.

    PubMed

    Mitchell, Jonathan K; Byers, Nathaniel M; Friesen, Paul D

    2013-12-01

    The DNA damage response (DDR) of a host organism represents an effective antiviral defense that is frequently manipulated and exploited by viruses to promote multiplication. We report here that the large DNA baculoviruses, which require host DDR activation for optimal replication, encode a conserved replication factor, LEF-7, that manipulates the DDR via a novel mechanism. LEF-7 suppresses DDR-induced accumulation of phosphorylated host histone variant H2AX (γ-H2AX), a critical regulator of the DDR. LEF-7 was necessary and sufficient to block γ-H2AX accumulation caused by baculovirus infection or DNA damage induced by means of pharmacological agents. Deletion of LEF-7 from the baculovirus genome allowed γ-H2AX accumulation during virus DNA synthesis and impaired both very late viral gene expression and production of infectious progeny. Thus, LEF-7 is essential for efficient baculovirus replication. We determined that LEF-7 is a nuclear F-box protein that interacts with host S-phase kinase-associated protein 1 (SKP1), suggesting that LEF-7 acts as a substrate recognition component of SKP1/Cullin/F-box (SCF) complexes for targeted protein polyubiquitination. Site-directed mutagenesis demonstrated that LEF-7's N-terminal F-box is necessary for γ-H2AX repression and Autographa californica multiple nucleopolyhedrovirus (AcMNPV) replication events. We concluded that LEF-7 expedites virus replication most likely by selective manipulation of one or more host factors regulating the DDR, including γ-H2AX. Thus, our findings indicate that baculoviruses utilize a unique strategy among viruses for hijacking the host DDR by using a newly recognized F-box protein. PMID:24027328

  18. Baculovirus F-Box Protein LEF-7 Modifies the Host DNA Damage Response To Enhance Virus Multiplication

    PubMed Central

    Mitchell, Jonathan K.; Byers, Nathaniel M.

    2013-01-01

    The DNA damage response (DDR) of a host organism represents an effective antiviral defense that is frequently manipulated and exploited by viruses to promote multiplication. We report here that the large DNA baculoviruses, which require host DDR activation for optimal replication, encode a conserved replication factor, LEF-7, that manipulates the DDR via a novel mechanism. LEF-7 suppresses DDR-induced accumulation of phosphorylated host histone variant H2AX (γ-H2AX), a critical regulator of the DDR. LEF-7 was necessary and sufficient to block γ-H2AX accumulation caused by baculovirus infection or DNA damage induced by means of pharmacological agents. Deletion of LEF-7 from the baculovirus genome allowed γ-H2AX accumulation during virus DNA synthesis and impaired both very late viral gene expression and production of infectious progeny. Thus, LEF-7 is essential for efficient baculovirus replication. We determined that LEF-7 is a nuclear F-box protein that interacts with host S-phase kinase-associated protein 1 (SKP1), suggesting that LEF-7 acts as a substrate recognition component of SKP1/Cullin/F-box (SCF) complexes for targeted protein polyubiquitination. Site-directed mutagenesis demonstrated that LEF-7's N-terminal F-box is necessary for γ-H2AX repression and Autographa californica multiple nucleopolyhedrovirus (AcMNPV) replication events. We concluded that LEF-7 expedites virus replication most likely by selective manipulation of one or more host factors regulating the DDR, including γ-H2AX. Thus, our findings indicate that baculoviruses utilize a unique strategy among viruses for hijacking the host DDR by using a newly recognized F-box protein. PMID:24027328

  19. An immediate transcriptional signature associated with response to the histone deacetylase inhibitor Givinostat in T acute lymphoblastic leukemia xenografts.

    PubMed

    Pinazza, M; Borga, C; Agnusdei, V; Minuzzo, S; Fossati, G; Paganin, M; Michielotto, B; De Paoli, A; Basso, G; Amadori, A; te Kronnie, G; Indraccolo, S

    2016-01-01

    Despite some success with certain hematological malignancies and in contrast with the strong pro-apoptotic effects measured in vitro, the overall response rate of acute lymphoblastic leukemia (ALL) to histone deacetylase inhibitors (HDACis) is low. With the aim to improve the understanding of how HDACis work in vivo, we investigated the therapeutic efficacy of the clinically approved HDACi Givinostat in a collection of nine pediatric human T-ALL engrafted systemically in NOD/SCID mice. We observed highly heterogeneous antileukemia responses to Givinostat, associated with reduction of the percentage of infiltrating blasts in target organs, induction of apoptosis and differentiation. These effects were not associated with the T-ALL cytogenetic subgroup. Transcriptome analysis disclosed an immediate transcriptional signature enriched in genes involved in cell-cycle regulation and DNA repair, which was validated by quantitative RT-PCR and was associated with in vivo response to this HDACi. Increased phospho-H2AX levels, a marker of DNA damage, were measured in T-ALL cells from Givinostat responders. These results indicate that the induction of the DNA damage response could be an early biomarker of the therapeutic effects of Givinostat in T-ALL models. This information should be considered in the design of future clinical trials with HDACis in acute leukemia. PMID:26764573

  20. An immediate transcriptional signature associated with response to the histone deacetylase inhibitor Givinostat in T acute lymphoblastic leukemia xenografts

    PubMed Central

    Pinazza, M; Borga, C; Agnusdei, V; Minuzzo, S; Fossati, G; Paganin, M; Michielotto, B; De Paoli, A; Basso, G; Amadori, A; te Kronnie, G; Indraccolo, S

    2016-01-01

    Despite some success with certain hematological malignancies and in contrast with the strong pro-apoptotic effects measured in vitro, the overall response rate of acute lymphoblastic leukemia (ALL) to histone deacetylase inhibitors (HDACis) is low. With the aim to improve the understanding of how HDACis work in vivo, we investigated the therapeutic efficacy of the clinically approved HDACi Givinostat in a collection of nine pediatric human T-ALL engrafted systemically in NOD/SCID mice. We observed highly heterogeneous antileukemia responses to Givinostat, associated with reduction of the percentage of infiltrating blasts in target organs, induction of apoptosis and differentiation. These effects were not associated with the T-ALL cytogenetic subgroup. Transcriptome analysis disclosed an immediate transcriptional signature enriched in genes involved in cell-cycle regulation and DNA repair, which was validated by quantitative RT-PCR and was associated with in vivo response to this HDACi. Increased phospho-H2AX levels, a marker of DNA damage, were measured in T-ALL cells from Givinostat responders. These results indicate that the induction of the DNA damage response could be an early biomarker of the therapeutic effects of Givinostat in T-ALL models. This information should be considered in the design of future clinical trials with HDACis in acute leukemia. PMID:26764573

  1. Dynamic interplay between histone H3 modifications and protein interpreters: emerging evidence for a "histone language".

    PubMed

    Oliver, Samuel S; Denu, John M

    2011-01-24

    Histone proteins organize DNA into dynamic chromatin structures and regulate processes such as transcription, repair, and replication. Control of chromatin function and structure is mediated in part by reversible post-translational modifications (PTMs) on histones. The most N-terminal region of histone H3 contains a high density of modifiable residues. Here we focus on the dynamic interplay between histone modification states on the H3 N terminus and the binding modules that recognize these states. Specifically, we discuss the effect of auxiliary modifications to H3K4unmod/me3 binding modules (specifically H3R2 methylation, H3T3 phosphorylation, and H3T6 phosphorylation). Emerging evidence suggests that histone PTMs behave less like a strict "code", but more like a "language", which better illustrates the importance of context. Using androgen-receptor-mediated gene activation as an example, we propose a model of how the combinatorial natures of PTMs on the H3 N terminus and the complexes that recognize these epigenetic modifications control gene expression. PMID:21243717

  2. Cancer Chemoprotection Through Nutrient-mediated Histone Modifications

    PubMed Central

    Gao, Yifeng; Tollefsbol, Trygve O.

    2016-01-01

    Epigenetics, the study of heritable changes in gene expression without modifying the nucleotide sequence, is among the most important topics in medicinal chemistry and cancer chemoprotection. Among those changes, DNA methylation and histone modification have been shown to be associated with various types of cancers in a number of ways, many of which are regulated by dietary components that are mostly found in plants. Although, mechanisms of nutrient components affecting histone acetylation/deacetylation in cancer are widely studied, how those natural compounds affect cancer through other histone modifications, such as methylation, phosphorylation and ubiquitylation, is rarely reviewed. Thus, this review article discusses impacts recently studied on histone acetylation as well as other histone modifications by dietary components, such as genistein, resveratrol, curcumin, epigallocatechin-3-gallate (EGCG), 3,3′-diindolylmethane (DIM), diallyl disulfide, garcinol, procyanidin B3, quercetin, sulforaphane and other isothiocyanates, in various types of cancer. PMID:25891109

  3. Histone chaperones: assisting histone traffic and nucleosome dynamics.

    PubMed

    Gurard-Levin, Zachary A; Quivy, Jean-Pierre; Almouzni, Geneviève

    2014-01-01

    The functional organization of eukaryotic DNA into chromatin uses histones as components of its building block, the nucleosome. Histone chaperones, which are proteins that escort histones throughout their cellular life, are key actors in all facets of histone metabolism; they regulate the supply and dynamics of histones at chromatin for its assembly and disassembly. Histone chaperones can also participate in the distribution of histone variants, thereby defining distinct chromatin landscapes of importance for genome function, stability, and cell identity. Here, we discuss our current knowledge of the known histone chaperones and their histone partners, focusing on histone H3 and its variants. We then place them into an escort network that distributes these histones in various deposition pathways. Through their distinct interfaces, we show how they affect dynamics during DNA replication, DNA damage, and transcription, and how they maintain genome integrity. Finally, we discuss the importance of histone chaperones during development and describe how misregulation of the histone flow can link to disease.

  4. On your histone mark, SET, methylate!

    PubMed Central

    Binda, Olivier

    2013-01-01

    Lysine methylation of histones and non-histone proteins has emerged in recent years as a posttranslational modification with wide-ranging cellular implications beyond epigenetic regulation. The molecular interactions between lysine methyltransferases and their substrates appear to be regulated by posttranslational modifications surrounding the lysine methyl acceptor. Two very interesting examples of this cross-talk between methyl-lysine sites are found in the SET (Su(var)3–9, Enhancer-of-zeste, Trithorax) domain-containing lysine methyltransferases SET7 and SETDB1, whereby the histone H3 trimethylated on lysine 4 (H3K4me3) modification prevents methylation by SETDB1 on H3 lysine 9 (H3K9) and the histone H3 trimethylated on lysine 9 (H3K9me3) modification prevents methylation by SET7 on H3K4. A similar cross-talk between posttranslational modifications regulates the functions of non-histone proteins such as the tumor suppressor p53 and the DNA methyltransferase DNMT1. Herein, in cis effects of acetylation, phosphorylation, as well as arginine and lysine methylation on lysine methylation events will be discussed. PMID:23625014

  5. Inhibition of mitotic-specific histone phophorylation by sodium arsenite

    SciTech Connect

    Cobo, J.M.; Valdez, J.G.; Gurley, L.R.

    1994-10-01

    Synchronized cultures of Chinese hamster cells (line CHO) were used to measure the effects of 10{mu}M sodium arsenite on histone phosphorylation. This treatment caused cell proliferation to be temporarily arrested, after which the cells spontaneously resumed cell proliferation in a radiomimetric manner. Immediately following treatment, it was found that sodium arsenite affected only mitotic-specific HI and H3 phosphorylations. Neither interphase, nor mitotic, H2A and H4 phosphorylations were affected, nor was interphase HI Phosphorylation affected. The phosphorylation of HI was inhibited only in mitosis, reducing HI phosphorylation to 38.1% of control levels, which was the level of interphase HI phosphorylation. The phosphorylation of both H3 variants was inhibited in mitosis, the less hydrophobic H3 to 19% and the more hydrophobic H3 to 24% of control levels. These results suggest that sodium arsenite may inhibite cell proliferation by interfering with the cyclin B/p34{sup cdc2} histone kinase activity which is thought to play a key role in regulating the cell cycle. It has been proposed by our laboratory that HI and H3 phosphorylations play a role in restructuring interphase chromatin into metaphase chromosomes. Interference of this process by sodium arsenite may lead to structurally damaged chromosomes resulting in the increased cancer risks known to be produced by arsenic exposure from the environment.

  6. Disruption of DNA Damage-Response by Propyl Gallate and 9-Aminoacridine.

    PubMed

    Matsuda, Shun; Matsuda, Yoko; Yanagisawa, Shin-Ya; Ikura, Masae; Ikura, Tsuyoshi; Matsuda, Tomonari

    2016-06-01

    The DNA-damage response (DDR) protects the genome from various types of endogenous and exogenous DNA damage, and can itself be a target of certain chemicals that give rise to chromosomal aberrations. Here, we developed a screening method to detect inhibition of Mediator of DNA damage Checkpoint 1 (MDC1) foci formation (the Enhanced Green Fluorescent Protein (EGFP)-MDC1 foci formation-inhibition assay) using EGFP-MDC1-expressing human cells. The assay identified propyl gallate (PG) and 9-aminoacridine (9-AA) as inhibitors of camptothecin (CPT)-induced MDC1 foci formation. We demonstrated that the inhibition of CPT-induced MDC1 foci formation by PG was caused by the direct suppression of histone H2AX phosphorylation at Ser139 (γH2AX), which is required for MDC1 foci formation, by quantifying γH2AX in cells and in vitro 9-AA also directly suppressed H2AX Ser139-phosphorylation in vitro but the concentration was much higher than that required to suppress CPT-induced MDC1 foci formation in cells. Consistent with these findings, PG and 9-AA both suppressed CPT-induced G2/M cell-cycle arrest and increased the number of abnormal nuclei. Our results suggest that early DDR-inhibitory effects of PG and 9-AA contribute to their chromosome-damaging potential, and that the EGFP-MDC1 foci formation-inhibition assay is useful for detection of and screening for H2AX Ser139-phosphorylation-inhibitory effects of chemicals.

  7. Mutagenic Effects of Perfluorooctanesulfonic Acid in gpt Delta Transgenic System Are Mediated by Hydrogen Peroxide.

    PubMed

    Wang, Yichen; Zhang, Xuefeng; Wang, Meimei; Cao, Yiyi; Wang, Xinan; Liu, Yun; Wang, Juan; Wang, Jing; Wu, Lijun; Hei, Tom K; Luan, Yang; Xu, An

    2015-05-19

    Perfluorooctane sulfate (PFOS), a persistent organic pollutant, has recently been closely linked with an increased risk of tumorigenesis. However, PFOS has yielded negative results in various tests of genotoxicity. The present study aimed to investigate the mutagenic response to PFOS in the gpt delta transgenic mouse mutation system and to illustrate the contribution of hydrogen peroxide (H2O2) to PFOS genotoxicity. Mutations at the redBA/gam loci were determined by Spi(-) assay both in vitro and in vivo. DNA damage was measured by phosphorylated histone H2AX (γ-H2AX) and mouse bone marrow micronucleus (MN) testing. Our data showed that PFOS induced concentration-dependent increases in γ-H2AX foci and in mutation frequencies at redBA/gam loci in transgenic mouse embryonic fibroblast cells, which were confirmed by the formation of MNs in the bone marrow and the observations of mutation induction in the livers of gpt delta transgenic mice. Concurrent treatment with catalase, an efficient H2O2 scavenger, significantly decreased the formation of γ-H2AX foci and the mutation yields induced by PFOS. In addition, the generation of H2O2 was found to be closely related to the abnormal peroxisomal β-oxidation caused by PFOS. These finding might provide new mechanistical information about genotoxic effects of PFOS. PMID:25875360

  8. DNA damage recognition in the rat zygote following chronic paternal cyclophosphamide exposure.

    PubMed

    Barton, Tara S; Robaire, Bernard; Hales, Barbara F

    2007-12-01

    The detrimental effects of preconceptional paternal exposure to the alkylating anticancer agent, cyclophosphamide, include aberrant epigenetic programming, dysregulated zygotic gene activation, and abnormalities in the offspring that are transmitted to the next generation. The adverse developmental consequences of genomic instabilities transmitted via the spermatozoon emphasize the need to elucidate the mechanisms by which the early embryo recognizes DNA damage in the paternal genome. Little information exists on DNA damage detection in the zygote. We assessed the impact of paternal cyclophosphamide exposure on phosphorylated H2AX (gammaH2AX) and poly(ADP-ribose) polymerase-1(PARP-1), biomarkers of DNA damage, to determine the capacity in the rat zygote to recognize genomic damage and initiate a response to DNA lesions. An amplified biphasic gammaH2AX response was triggered in the paternal pronucleus in zygotes sired by drug-treated males; the maternal genome was not affected. PARP-1 immunoreactivity was substantially elevated in both parental genomes, coincident with the second phase of gammaH2AX induction in embryos sired by cyclophosphamide-exposed spermatozoa. Thus, paternal exposure to a DNA damaging agent rapidly activates signals implemental for DNA damage recognition in the zygote. Inefficient repair of DNA lesions may lead to persistent alterations of the histone code and chromatin integrity, resulting in aberrant embryogenesis. We propose that the response of the early embryo to disturbances in spermatozoal genomic integrity plays a vital role in determining its outcome.

  9. Biological Response of Positron Emission Tomography Scan Exposure and Adaptive Response in Humans

    PubMed Central

    Schnarr, Kara; Carter, Timothy F.; Gillis, Daniel; Webber, Colin; Dayes, Ian; Dolling, Joanna A.; Gulenchyn, Karen; Boreham, Douglas R.

    2015-01-01

    The biological effects of exposure to radioactive fluorodeoxyglucose (18F-FDG) were investigated in the lymphocytes of patients undergoing positron emission tomography (PET) procedures. Low-dose, radiation-induced cellular responses were measured using 3 different end points: (1) apoptosis; (2) chromosome aberrations; and (3) γH2AX foci formation. The results showed no significant change in lymphocyte apoptosis, or chromosome aberrations, as a result of in vivo 18F-FDG exposure, and there was no evidence the PET scan modified the apoptotic response of lymphocytes to a subsequent 2 Gy in vitro challenge irradiation. However, lymphocytes sampled from patients following a PET scan showed an average of 22.86% fewer chromosome breaks and 39.16% fewer dicentrics after a subsequent 2 Gy in vitro challenge irradiation. The effect of 18F-FDG exposure on phosphorylation of histone H2AXH2AX) in lymphocytes of patients showed a varied response between individuals. The relationship between γH2AX foci formation and increasing activity of 18F-FDG was not directly proportional to dose. This variation is most likely attributed to differences in the factors that combine to constitute an individual’s radiation response. In summary, the results of this study indicate18F-FDG PET scans may not be detrimental but can elicit variable responses between individuals and can modify cellular response to subsequent radiation exposures. PMID:26740810

  10. Dissimilar effects of β-lapachone- and hydroxyurea-induced DNA replication stress in root meristem cells of Allium cepa.

    PubMed

    Zabka, Aneta; Trzaskoma, Paweł; Maszewski, Janusz

    2013-12-01

    Two anticancer drugs, β-lapachone (β-lap, a naphthoquinone) and hydroxyurea (HU, an inhibitor of ribonucleotide reductase), differently affect nuclear morphology and cell cycle control mechanisms in root meristem cells of Allium cepa. The 18 h treatment with 100 μM β-lap results in a lowered number of M-phase cells, increased occurrence of mitotic abnormalities, including over-condensation of chromosomes, their enhanced stickiness, formation of anaphase bridges, micronucleation and reduced mitotic spindles. Following prolonged incubations using high doses of β-lap, cell nuclei reveal dark-red fluorescence evenly distributed in chromatin surrounding the unstained regions of nucleoli. Both drugs generate H2O2 and induce DNA double strand breaks, which is correlated with γ-phoshorylation of H2AX histones. However, the extent of H2AX phosphorylation (including the frequency of γ-H2AX foci and the relative number cells creating phospho-H2AX domains) is considerably reduced in root meristem cells treated jointly with the β-lap/HU mixture. Furthermore, various effects of caffeine (an inhibitor of ATM/ATR cell cycle checkpoint kinases) on β-lap- and HU-induced γ-phoshorylation of H2AX histones and the protective activity of HU against β-lap suggest that their genotoxic activities are largely dissimilar. β-Lap treatment results in the induction of apoptosis-like programmed cell death, while HU treatment leads to cell adaptation to replication stress and promotion of abnormal nuclear divisions with biphasic interphase/mitotic states of chromatin condensation.

  11. Histone chaperones link histone nuclear import and chromatin assembly.

    PubMed

    Keck, Kristin M; Pemberton, Lucy F

    2013-01-01

    Histone chaperones are proteins that shield histones from nonspecific interactions until they are assembled into chromatin. After their synthesis in the cytoplasm, histones are bound by different histone chaperones, subjected to a series of posttranslational modifications and imported into the nucleus. These evolutionarily conserved modifications, including acetylation and methylation, can occur in the cytoplasm, but their role in regulating import is not well understood. As part of histone import complexes, histone chaperones may serve to protect the histones during transport, or they may be using histones to promote their own nuclear localization. In addition, there is evidence that histone chaperones can play an active role in the import of histones. Histone chaperones have also been shown to regulate the localization of important chromatin modifying enzymes. This review is focused on the role histone chaperones play in the early biogenesis of histones, the distinct cytoplasmic subcomplexes in which histone chaperones have been found in both yeast and mammalian cells and the importins/karyopherins and nuclear localization signals that mediate the nuclear import of histones. We also address the role that histone chaperone localization plays in human disease. This article is part of a Special Issue entitled: Histone chaperones and chromatin assembly.

  12. Class I and Class II Histone Deacetylases Are Potential Therapeutic Targets for Treating Pancreatic Cancer

    PubMed Central

    Wang, Guan; He, Jing; Zhao, Jianyun; Yun, Wenting; Xie, Chengzhi; Taub, Jeffrey W.; Azmi, Asfar; Mohammad, Ramzi M.; Dong, Yan; Kong, Wei; Guo, Yingjie; Ge, Yubin

    2012-01-01

    Background Pancreatic cancer is a highly malignant disease with an extremely poor prognosis. Histone deacetylase inhibitors (HDACIs) have shown promising antitumor activities against preclinical models of pancreatic cancer, either alone or in combination with chemotherapeutic agents. In this study, we sought to identify clinically relevant histone deacetylases (HDACs) to guide the selection of HDAC inhibitors (HDACIs) tailored to the treatment of pancreatic cancer. Methodology HDAC expression in seven pancreatic cancer cell lines and normal human pancreatic ductal epithelial cells was determined by Western blotting. Antitumor interactions between class I- and class II-selective HDACIs were determined by MTT assays and standard isobologram/CompuSyn software analyses. The effects of HDACIs on cell death, apoptosis and cell cycle progression, and histone H4, alpha-tubulin, p21, and γH2AX levels were determined by colony formation assays, flow cytometry analysis, and Western blotting, respectively. Results The majority of classes I and II HDACs were detected in the pancreatic cancer cell lines, albeit at variable levels. Treatments with MGCD0103 (a class I-selective HDACI) resulted in dose-dependent growth arrest, cell death/apoptosis, and cell cycle arrest in G2/M phase, accompanied by induction of p21 and DNA double-strand breaks (DSBs). In contrast, MC1568 (a class IIa-selective HDACI) or Tubastatin A (a HDAC6-selective inhibitor) showed minimal effects. When combined simultaneously, MC1568 significantly enhanced MGCD0103-induced growth arrest, cell death/apoptosis, and G2/M cell cycle arrest, while Tubastatin A only synergistically enhanced MGCD0103-induced growth arrest. Although MC1568 or Tubastatin A alone had no obvious effects on DNA DSBs and p21 expression, their combination with MGCD0103 resulted in cooperative induction of p21 in the cells. Conclusion Our results suggest that classes I and II HDACs are potential therapeutic targets for treating pancreatic

  13. The Histone Database: an integrated resource for histones and histone fold-containing proteins.

    PubMed

    Mariño-Ramírez, Leonardo; Levine, Kevin M; Morales, Mario; Zhang, Suiyuan; Moreland, R Travis; Baxevanis, Andreas D; Landsman, David

    2011-01-01

    Eukaryotic chromatin is composed of DNA and protein components-core histones-that act to compactly pack the DNA into nucleosomes, the fundamental building blocks of chromatin. These nucleosomes are connected to adjacent nucleosomes by linker histones. Nucleosomes are highly dynamic and, through various core histone post-translational modifications and incorporation of diverse histone variants, can serve as epigenetic marks to control processes such as gene expression and recombination. The Histone Sequence Database is a curated collection of sequences and structures of histones and non-histone proteins containing histone folds, assembled from major public databases. Here, we report a substantial increase in the number of sequences and taxonomic coverage for histone and histone fold-containing proteins available in the database. Additionally, the database now contains an expanded dataset that includes archaeal histone sequences. The database also provides comprehensive multiple sequence alignments for each of the four core histones (H2A, H2B, H3 and H4), the linker histones (H1/H5) and the archaeal histones. The database also includes current information on solved histone fold-containing structures. The Histone Sequence Database is an inclusive resource for the analysis of chromatin structure and function focused on histones and histone fold-containing proteins.

  14. Damaged DNA-binding protein down-regulates epigenetic mark H3K56Ac through histone deacetylase 1 and 2

    PubMed Central

    Zhu, Qianzheng; Battu, Aruna; Ray, Alo; Wani, Gulzar; Qian, Jiang; He, Jinshan; Wang, Qi-en; Wani, Altaf A.

    2016-01-01

    Acetylated histone H3 lysine 56 (H3K56Ac) is one of the reversible histone post-translational modifications (PTMs) responsive to DNA damage. We previously described a biphasic decrease and increase of epigenetic mark H3K56Ac in response to ultraviolet radiation (UVR)-induced DNA damage. Here, we report a new function of UV damaged DNA-binding protein (DDB) in deacetylation of H3K56Ac through specific histone deacetylases (HDACs). We show that simultaneous depletion of HDAC1/2 compromises the deacetylation of H3K56Ac, while depletion of HDAC1 or HDAC2 alone has no effect on H3K56Ac. The H3K56Ac deacetylation does not require functional nucleotide excision repair (NER) factors XPA and XPC, but depends on the function of upstream factors DDB1 and DDB2. UVR enhances the association of DDB2 with HDAC1 and, enforced DDB2 expression leads to translocation of HDAC1 to UVR-damaged chromatin. HDAC1 and HDAC2 are recruited to UVR-induced DNA damage spots, which are visualized by anti-XPC immunofluorescence. Dual HDAC1/2 depletion decreases XPC ubiquitination, but does not affect the recruitment of DDB2 to DNA damage. By contrast, the local accumulation of γH2AX at UVR-induced DNA damage spots was compromised upon HDAC1 as well as dual HDAC1/2 depletions. Additionally, UVR-induced ATM activation decreased in H12899 cells expressing H3K56Ac-mimicing H3K56Q. These results revealed a novel role of DDB in H3K56Ac deacetylation during early step of NER and the existence of active functional cross-talk between DDB-mediated damage recognition and H3K56Ac deacetylation. PMID:26255936

  15. Interplay between histone H1 structure and function.

    PubMed

    Roque, Alicia; Ponte, Inma; Suau, Pedro

    2016-03-01

    H1 linker histones are involved both in the maintenance of higher-order chromatin structure and in gene regulation. Histone H1 exists in multiple isoforms, is evolutionarily variable and undergoes a large variety of post-translational modifications. We review recent progress in the understanding of the folding and structure of histone H1 domains with an emphasis on the interactions with DNA. The importance of intrinsic disorder and hydrophobic interactions in the folding and function of the carboxy-terminal domain (CTD) is discussed. The induction of a molten globule-state in the CTD by macromolecular crowding is also considered. The effects of phosphorylation by cyclin-dependent kinases on the structure of the CTD, as well as on chromatin condensation and oligomerization, are described. We also address the extranuclear functions of histone H1, including the interaction with the β-amyloid peptide. PMID:26415976

  16. A histone code in meiosis: the histone kinase, NHK-1, is required for proper chromosomal architecture in Drosophila oocytes

    PubMed Central

    Ivanovska, Irena; Khandan, Tulasi; Ito, Takashi; Orr-Weaver, Terry L.

    2005-01-01

    To promote faithful propagation of the genetic material during sexual reproduction, meiotic chromosomes undergo specialized morphological changes that ensure accurate segregation of homologous chromosomes. The molecular mechanisms that establish the meiotic chromosomal structures are largely unknown. We describe a mutation in a recently identified Histone H2A kinase, nhk-1, in Drosophila that leads to female sterility due to defects in the formation of the meiotic chromosomal structures. The metaphase I arrest and the karyosome, a critical prophase I chromosomal structure, require nucleosomal histone kinase-1 (NHK-1) function. The defects are a result of failure to disassemble the synaptonemal complex and to load condensin onto the mutant chromosomes. Embryos laid by nhk-1-/- mutant females arrest with aberrant polar bodies and mitotic spindles, revealing that mitosis is affected as well. We analyzed the role of Histone H2A phosphorylation with respect to the histone code hypothesis and found that it is required for acetylation of Histone H3 and Histone H4 in meiosis. These studies reveal a critical role for histone modifications in chromosome dynamics in meiosis and mitosis. PMID:16230526

  17. Chromatin Proteomics Reveals Variable Histone Modifications during the Life Cycle of Trypanosoma cruzi.

    PubMed

    de Jesus, Teresa Cristina Leandro; Nunes, Vinícius Santana; Lopes, Mariana de Camargo; Martil, Daiana Evelin; Iwai, Leo Kei; Moretti, Nilmar Silvio; Machado, Fabrício Castro; de Lima-Stein, Mariana L; Thiemann, Otavio Henrique; Elias, Maria Carolina; Janzen, Christian; Schenkman, Sergio; da Cunha, Julia Pinheiro Chagas

    2016-06-01

    Histones are well-conserved proteins that form the basic structure of chromatin in eukaryotes and undergo several post-translational modifications, which are important for the control of transcription, replication, DNA damage repair, and chromosome condensation. In early branched organisms, histones are less conserved and appear to contain alternative sites for modifications, which could reveal evolutionary unique functions of histone modifications in gene expression and other chromatin-based processes. Here, by using high-resolution mass spectrometry, we identified and quantified histone post-translational modifications in two life cycle stages of Trypanosoma cruzi, the protozoan parasite that causes Chagas disease. We detected 44 new modifications, namely: 18 acetylations, seven monomethylations, seven dimethylations, seven trimethylations, and four phosphorylations. We found that replicative (epimastigote stage) contains more histone modifications than nonreplicative and infective parasites (trypomastigote stage). Acetylations of lysines at the C-terminus of histone H2A and methylations of lysine 23 of histone H3 were found to be enriched in trypomastigotes. In contrast, phosphorylation in serine 23 of H2B and methylations of lysine 76 of histone H3 predominates in proliferative states. The presence of one or two methylations in the lysine 76 was found in cells undergoing mitosis and cytokinesis, typical of proliferating parasites. Our findings provide new insights into the role of histone modifications related to the control of gene expression and cell-cycle regulation in an early divergent organism.

  18. Chromatin Proteomics Reveals Variable Histone Modifications during the Life Cycle of Trypanosoma cruzi.

    PubMed

    de Jesus, Teresa Cristina Leandro; Nunes, Vinícius Santana; Lopes, Mariana de Camargo; Martil, Daiana Evelin; Iwai, Leo Kei; Moretti, Nilmar Silvio; Machado, Fabrício Castro; de Lima-Stein, Mariana L; Thiemann, Otavio Henrique; Elias, Maria Carolina; Janzen, Christian; Schenkman, Sergio; da Cunha, Julia Pinheiro Chagas

    2016-06-01

    Histones are well-conserved proteins that form the basic structure of chromatin in eukaryotes and undergo several post-translational modifications, which are important for the control of transcription, replication, DNA damage repair, and chromosome condensation. In early branched organisms, histones are less conserved and appear to contain alternative sites for modifications, which could reveal evolutionary unique functions of histone modifications in gene expression and other chromatin-based processes. Here, by using high-resolution mass spectrometry, we identified and quantified histone post-translational modifications in two life cycle stages of Trypanosoma cruzi, the protozoan parasite that causes Chagas disease. We detected 44 new modifications, namely: 18 acetylations, seven monomethylations, seven dimethylations, seven trimethylations, and four phosphorylations. We found that replicative (epimastigote stage) contains more histone modifications than nonreplicative and infective parasites (trypomastigote stage). Acetylations of lysines at the C-terminus of histone H2A and methylations of lysine 23 of histone H3 were found to be enriched in trypomastigotes. In contrast, phosphorylation in serine 23 of H2B and methylations of lysine 76 of histone H3 predominates in proliferative states. The presence of one or two methylations in the lysine 76 was found in cells undergoing mitosis and cytokinesis, typical of proliferating parasites. Our findings provide new insights into the role of histone modifications related to the control of gene expression and cell-cycle regulation in an early divergent organism. PMID:27108550

  19. Histone profiles in cancer.

    PubMed

    Riedel, Simone S; Neff, Tobias; Bernt, Kathrin M

    2015-10-01

    While DNA abnormalities have long been recognized as the cause of cancer, the contribution of chromatin is a relatively recent discovery. Excitement in the field of cancer epigenetics is driven by 3 key elements: 1. Chromatin may play an active and often critical role in controlling gene expression, DNA stability and cell identity. 2. Chromatin modifiers are frequent targets of DNA aberrations, in some cancers reaching near 100%. Particularly in cancers with low rates of DNA mutations, the key "driver" of malignancy is often a chromatin modifier. 3. Cancer-associated aberrant chromatin is amenable to pharmacologic modulation. This has sparked the rapidly expanding development of small molecules targeting chromatin modifiers or reader domains, several of which have shown promise in clinical trials. In parallel, technical advances have greatly enhanced our ability to perform comprehensive chromatin/histone profiling. Despite the discovery that distinct histone profiles are associated with prognostic subgroups, and in some instances may point towards an underlying aberration that can be targeted, histone profiling has not entered clinical diagnostics. Even eligibility for clinical trials targeting chromatin hinges on traditional histologic or DNA-based molecular criteria rather than chromatin profiles. This review will give an overview of the philosophical debate around the role of histones in controlling or modulating gene expression and discuss the most common techniques for histone profiling. In addition, we will provide prominent examples of aberrantly expressed or mutated chromatin modifiers that result in either globally or locally aberrant histone profiles, and that may be promising therapeutic targets.

  20. Modification of histones by sugar β-N-acetylglucosamine (GlcNAc) occurs on multiple residues, including histone H3 serine 10, and is cell cycle-regulated.

    PubMed

    Zhang, Suisheng; Roche, Kevin; Nasheuer, Heinz-Peter; Lowndes, Noel Francis

    2011-10-28

    The monosaccharide, β-N-acetylglucosamine (GlcNAc), can be added to the hydroxyl group of either serines or threonines to generate an O-linked β-N-acetylglucosamine (O-GlcNAc) residue (Love, D. C., and Hanover, J. A. (2005) Sci. STKE 2005 312, 1-14; Hart, G. W., Housley, M. P., and Slawson, C. (2007) Nature 446, 1017-1022). This post-translational protein modification, termed O-GlcNAcylation, is reversible, analogous to phosphorylation, and has been implicated in many cellular processes. Here, we present evidence that in human cells all four core histones of the nucleosome are substrates for this glycosylation in the relative abundance H3, H4/H2B, and H2A. Increasing the intracellular level of UDP-GlcNAc, the nucleotide sugar donor substrate for O-GlcNAcylation enhanced histone O-GlcNAcylation and partially suppressed phosphorylation of histone H3 at serine 10 (H3S10ph). Expression of recombinant H3.3 harboring an S10A mutation abrogated histone H3 O-GlcNAcylation relative to its wild-type version, consistent with H3S10 being a site of histone O-GlcNAcylation (H3S10glc). Moreover, O-GlcNAcylated histones were lost from H3S10ph immunoprecipitates, whereas immunoprecipitation of either H3K4me3 or H3K9me3 (active or inactive histone marks, respectively) resulted in co-immunoprecipitation of O-GlcNAcylated histones. We also examined histone O-GlcNAcylation during cell cycle progression. Histone O-GlcNAcylation is high in G(1) cells, declines throughout the S phase, increases again during late S/early G(2), and persists through late G(2) and mitosis. Thus, O-GlcNAcylation is a novel histone post-translational modification regulating chromatin conformation during transcription and cell cycle progression.

  1. Dynamic interplay between histone H3 modifications and protein interpreters: emerging evidence for a ‘histone language’

    PubMed Central

    Oliver, Samuel S.; Denu, John M.

    2010-01-01

    Histone proteins organize DNA into dynamic chromatin structures and regulate processes such as transcription, repair and replication. Control of chromatin function and structure is mediated in part by reversible posttranslational modifications (PTMs) on histones. The most N-terminal region of histone H3 contains a high density of modifiable residues. In this review, we focus on the dynamic interplay between histone modification states on the H3 N-terminus and the binding modules that recognize these states. Specifically, we will discuss the effect of auxiliary modifications to H3K4unmod/me3 binding modules (specifically H3R2 methylation, H3T3 phosphorylation and H3T6 phosphorylation). Emerging evidence suggests that histone PTMs behave less like a strict ‘code’, but rather like a ‘language’, which better illustrates the importance of context. Using androgen receptor-mediated gene activation as an example, we propose a model for how the combinatorial nature of PTMs on the H3 N-terminus and the complexes that recognize these epigenetic modifications control gene expression. PMID:21243717

  2. The Histone Database: a comprehensive resource for histones and histone fold-containing proteins.

    PubMed

    Mariño-Ramírez, Leonardo; Hsu, Benjamin; Baxevanis, Andreas D; Landsman, David

    2006-03-01

    The Histone Database is a curated and searchable collection of full-length sequences and structures of histones and nonhistone proteins containing histone-like folds, compiled from major public databases. Several new histone fold-containing proteins have been identified, including the huntingtin-interacting protein HYPM. Additionally, based on the recent crystal structure of the Son of Sevenless protein, an interpretation of the sequence analysis of the histone fold domain is presented. The database contains an updated collection of multiple sequence alignments for the four core histones (H2A, H2B, H3, and H4) and the linker histones (H1/H5) from a total of 975 organisms. The database also contains information on the human histone gene complement and provides links to three-dimensional structures of histone and histone fold-containing proteins. The Histone Database is a comprehensive bioinformatics resource for the study of structure and function of histones and histone fold-containing proteins. The database is available at http://research.nhgri.nih.gov/histones/.

  3. Methods for quantitative evaluation of dynamics of repair proteins within irradiated cells

    NASA Astrophysics Data System (ADS)

    Hable, V.; Dollinger, G.; Greubel, C.; Hauptner, A.; Krücken, R.; Dietzel, S.; Cremer, T.; Drexler, G. A.; Friedl, A. A.; Löwe, R.

    2006-04-01

    Living HeLa cells are irradiated well directed with single 100 MeV oxygen ions by the superconducting ion microprobe SNAKE, the Superconducting Nanoscope for Applied Nuclear (=Kern-) Physics Experiments, at the Munich 14 MV tandem accelerator. Various proteins, which are involved directly or indirectly in repair processes, accumulate as clusters (so called foci) at DNA-double strand breaks (DSBs) induced by the ions. The spatiotemporal dynamics of these foci built by the phosphorylated histone γ-H2AX are studied. For this purpose cells are irradiated in line patterns. The γ-H2AX is made visible under the fluorescence microscope using immunofluorescence techniques. Quantitative analysis methods are developed to evaluate the data of the microscopic images in order to analyze movement of the foci and their changing size.

  4. Histone deacetylase inhibitor sodium butyrate enhances cellular radiosensitivity by inhibiting both DNA nonhomologous end joining and homologous recombination.

    PubMed

    Koprinarova, Miglena; Botev, Peter; Russev, George

    2011-09-01

    HDAC inhibitors have been proposed as radiosensitizers in cancer therapy. Their application would permit the use of lower radiation doses and would reduce the adverse effects of the treatment. However, the molecular mechanisms of their action remain unclear. In the present article, we have studied the radiosensitizing effect of sodium butyrate on HeLa cells. FACS analysis showed that it did not abrogate the γ-radiation imposed G2 cell cycle arrest. The dynamics of γ-H2AX foci disappearance in the presence and in the absence of butyrate, however, demonstrated that butyrate inhibited DSB repair. In an attempt to clarify which one of the two major DSBs repair pathways was affected, we synchronized HeLa cells in G1 phase and after γ-irradiation followed the repair of the DSBs by agarose gel electrophoresis. Since HR is not operational during G1 phase, by this approach we determined the rates of NHEJ only. The results showed that NHEJ decreased in the presence of butyrate. In another set of experiments, we followed the dynamics of disappearance of RAD51 foci in the presence and in the absence of butyrate after γ-radiation of HeLa cells. Since RAD51 takes part in HR only, this experiment allows the effect of butyrate on DSB repair by homologous recombination to be assessed. It showed that HR was also obstructed by butyrate. These results were confirmed by host cell reactivation assays in which the repair of plasmids containing a single DSB by NHEJ or HR was monitored. We suggest that after a DSB is formed, HDACs deacetylated core histones in the vicinity of the breaks in order to compact the chromatin structure and prevent the broken DNA ends from moving apart from each other, thus ensuring effective repair.

  5. Adamantanyl-Histone Deacetylase Inhibitor H6CAHA Exhibits Favorable Pharmacokinetics and Augments Prostate Cancer Radiation Sensitivity

    SciTech Connect

    Konsoula, Zacharoula; Cao Hong; Velena, Alfredo; Jung, Mira

    2011-04-01

    Purpose: To evaluate pharmacological properties of H6CAHA, an adamantyl-hydroxamate histone deacetylase inhibitor, and to investigate its effect on prostate cancer cells following exposure to {gamma}-radiation in vitro and in vivo. Methods and Materials: H6CAHA was assessed for in vitro solubility, lipophilicity and growth inhibition, and in vivo plasma pharmacokinetics. The effect of H6CAHA on radiation clonogenic survival and DNA damage repair was evaluated in human prostate cancer (PC3, DU145, LNCaP) and nonmalignant control epithelial (RWPE1 and 267B1) cell lines. The effect of this agent on the growth of prostate cancer xenografts was also assessed in mice. Results: H6CAHA demonstrated good solubility and permeability profiles and preferentially inhibited the growth of prostate cancer cells over nonmalignant cells. Plasma pharmacokinetics revealed that the area under the curve of H6CAHA was 8.08 {+-} 0.91 {mu}M x h, and its half-life was 11.17 {+-} 0.87 h. Radiation clonogenic assays revealed that H6CAHA decreased the survival of prostate cancer cells at the dose that exerted limited effect on normal cells. Concomitantly, delayed DNA damage repair following combination treatment was evident in cancer cells, indicated by the prolonged appearance of {gamma}H2AX and Rad51 foci and suppression of DNA damage repair genes (ATM, BRCA1, and BRCA2). Combined modality of H6CAHA (daily intraperitoneal injections for 10 days) with {gamma}-radiation (10 x 2 Gy) completely blocked the growth of PC3 tumor xenografts (p < 0.001) over 60 days. Conclusion: These results support the potential therapeutic value of H6CAHA in combination with radiation and support the rationale for further clinical investigation.

  6. A Phosphotyrosine Switch Controls the Association of Histone Mark Readers with Methylated Proteins.

    PubMed

    Irving-Hooper, Bronwyn Kate; Binda, Olivier

    2016-03-22

    Although histone post-translational modifications play a paramount role in controlling access to genetic information, our understanding of the precise mechanisms regulating chromatin signaling remains superficial. For instance, histone H3 trimethylated on lysine 9 (H3K9(me3)) favors the association of chromodomain proteins such as heterochromatin protein 1α (HP1α) with chromatin. However, HP1α and other such chromatin proteins are not covering all specific histone marks at all times. Thus, how are these reader-histone interactions regulated? We propose tyrosine phosphorylation within the aromatic cage of histone mark readers as a molecular switch that can either turn ON or OFF and even alter the specificity of reader-histone interactions. We have identified tyrosine phosphorylation events on the chromatin proteins HP1α and M-phase phosphoprotein 8 that regulate their association with methylated histones in vitro (synthetic peptides, calf thymus purified histones, and nucleosomes), but also in cells, thus controlling access to genetic information.

  7. The human actin-related protein hArp5: Nucleo-cytoplasmic shuttling and involvement in DNA repair

    SciTech Connect

    Kitayama, Kumiko; Kamo, Mariko; Oma, Yukako; Matsuda, Ryo; Uchida, Takafumi; Ikura, Tsuyoshi; Tashiro, Satoshi; Ohyama, Takashi; Winsor, Barbara; Harata, Masahiko

    2009-01-15

    Certain actin-related proteins (Arps) of budding yeast are localized in the nucleus, and have essential roles as stoichiometric components of histone acetyltransferase (HAT) and chromatin remodeling complexes. On the other hand, identification of vertebrate nuclear Arps and their functional analyses are just beginning. We show that human Arp5 (hArp5) proteins are localized in the nucleus, and that arp5{delta} yeast cells are partially complemented by hArp5. Thus, hArp5 is a novel member of the nuclear Arps of vertebrates, which possess evolutionarily conserved functions from yeast to humans. We show here that hArp5 shuttles between the nucleus and the cytoplasm. Furthermore, after the induction of DNA double strand breaks (DSB), cell growth and the accumulation of phosphorylated histone H2AX ({gamma}-H2AX) are impaired by hArp5 depletion. Association of hArp5 with the hIno80 chromatin remodeling enzyme and decrease of chromatin-bound hIno80 by hArp5-depletion indicate that hArp5 may have a role in the recruitment of the hINO80 complex to chromatin. Overexpression of hArp5 and hIno80 enhanced {gamma}-H2AX accumulation. These observations suggest that hArp5 is involved in the process of DSB repair through the regulation of the chromatin remodelling machinery.

  8. Cdk5 promotes DNA replication stress checkpoint activation through RPA-32 phosphorylation, and impacts on metastasis free survival in breast cancer patients.

    PubMed

    Chiker, Sara; Pennaneach, Vincent; Loew, Damarys; Dingli, Florent; Biard, Denis; Cordelières, Fabrice P; Gemble, Simon; Vacher, Sophie; Bieche, Ivan; Hall, Janet; Fernet, Marie

    2015-01-01

    Cyclin dependent kinase 5 (Cdk5) is a determinant of PARP inhibitor and ionizing radiation (IR) sensitivity. Here we show that Cdk5-depleted (Cdk5-shRNA) HeLa cells show higher sensitivity to S-phase irradiation, chronic hydroxyurea exposure, and 5-fluorouracil and 6-thioguanine treatment, with hydroxyurea and IR sensitivity also seen in Cdk5-depleted U2OS cells. As Cdk5 is not directly implicated in DNA strand break repair we investigated in detail its proposed role in the intra-S checkpoint activation. While Cdk5-shRNA HeLa cells showed altered basal S-phase dynamics with slower replication velocity and fewer active origins per DNA megabase, checkpoint activation was impaired after a hydroxyurea block. Cdk5 depletion was associated with reduced priming phosphorylations of RPA32 serines 29 and 33 and SMC1-Serine 966 phosphorylation, lower levels of RPA serine 4 and 8 phosphorylation and DNA damage measured using the alkaline Comet assay, gamma-H2AX signal intensity, RPA and Rad51 foci, and sister chromatid exchanges resulting in impaired intra-S checkpoint activation and subsequently higher numbers of chromatin bridges. In vitro kinase assays coupled with mass spectrometry demonstrated that Cdk5 can carry out the RPA32 priming phosphorylations on serines 23, 29, and 33 necessary for this checkpoint activation. In addition we found an association between lower Cdk5 levels and longer metastasis free survival in breast cancer patients and survival in Cdk5-depleted breast tumor cells after treatment with IR and a PARP inhibitor. Taken together, these results show that Cdk5 is necessary for basal replication and replication stress checkpoint activation and highlight clinical opportunities to enhance tumor cell killing. PMID:26237679

  9. Cdk5 promotes DNA replication stress checkpoint activation through RPA-32 phosphorylation, and impacts on metastasis free survival in breast cancer patients

    PubMed Central

    Chiker, Sara; Pennaneach, Vincent; Loew, Damarys; Dingli, Florent; Biard, Denis; Cordelières, Fabrice P; Gemble, Simon; Vacher, Sophie; Bieche, Ivan; Hall, Janet; Fernet, Marie

    2015-01-01

    Cyclin dependent kinase 5 (Cdk5) is a determinant of PARP inhibitor and ionizing radiation (IR) sensitivity. Here we show that Cdk5-depleted (Cdk5-shRNA) HeLa cells show higher sensitivity to S-phase irradiation, chronic hydroxyurea exposure, and 5-fluorouracil and 6-thioguanine treatment, with hydroxyurea and IR sensitivity also seen in Cdk5-depleted U2OS cells. As Cdk5 is not directly implicated in DNA strand break repair we investigated in detail its proposed role in the intra-S checkpoint activation. While Cdk5-shRNA HeLa cells showed altered basal S-phase dynamics with slower replication velocity and fewer active origins per DNA megabase, checkpoint activation was impaired after a hydroxyurea block. Cdk5 depletion was associated with reduced priming phosphorylations of RPA32 serines 29 and 33 and SMC1-Serine 966 phosphorylation, lower levels of RPA serine 4 and 8 phosphorylation and DNA damage measured using the alkaline Comet assay, gamma-H2AX signal intensity, RPA and Rad51 foci, and sister chromatid exchanges resulting in impaired intra-S checkpoint activation and subsequently higher numbers of chromatin bridges. In vitro kinase assays coupled with mass spectrometry demonstrated that Cdk5 can carry out the RPA32 priming phosphorylations on serines 23, 29, and 33 necessary for this checkpoint activation. In addition we found an association between lower Cdk5 levels and longer metastasis free survival in breast cancer patients and survival in Cdk5-depleted breast tumor cells after treatment with IR and a PARP inhibitor. Taken together, these results show that Cdk5 is necessary for basal replication and replication stress checkpoint activation and highlight clinical opportunities to enhance tumor cell killing. PMID:26237679

  10. Global chromatin fibre compaction in response to DNA damage

    SciTech Connect

    Hamilton, Charlotte; Hayward, Richard L.; Gilbert, Nick

    2011-11-04

    Highlights: Black-Right-Pointing-Pointer Robust KAP1 phosphorylation in response to DNA damage in HCT116 cells. Black-Right-Pointing-Pointer DNA repair foci are found in soluble chromatin. Black-Right-Pointing-Pointer Biophysical analysis reveals global chromatin fibre compaction after DNA damage. Black-Right-Pointing-Pointer DNA damage is accompanied by rapid linker histone dephosphorylation. -- Abstract: DNA is protected by packaging it into higher order chromatin fibres, but this can impede nuclear processes like DNA repair. Despite considerable research into the factors required for signalling and repairing DNA damage, it is unclear if there are concomitant changes in global chromatin fibre structure. In human cells DNA double strand break (DSB) formation triggers a signalling cascade resulting in H2AX phosphorylation ({gamma}H2AX), the rapid recruitment of chromatin associated proteins and the subsequent repair of damaged sites. KAP1 is a transcriptional corepressor and in HCT116 cells we found that after DSB formation by chemicals or ionising radiation there was a wave of, predominantly ATM dependent, KAP1 phosphorylation. Both KAP1 and phosphorylated KAP1 were readily extracted from cells indicating they do not have a structural role and {gamma}H2AX was extracted in soluble chromatin indicating that sites of damage are not attached to an underlying structural matrix. After DSB formation we did not find a concomitant change in the sensitivity of chromatin fibres to micrococcal nuclease digestion. Therefore to directly investigate higher order chromatin fibre structures we used a biophysical sedimentation technique based on sucrose gradient centrifugation to compare the conformation of chromatin fibres isolated from cells before and after DNA DSB formation. After damage we found global chromatin fibre compaction, accompanied by rapid linker histone dephosphorylation, consistent with fibres being more regularly folded or fibre deformation being stabilized by

  11. A new phosphorylated form of Ku70 identified in resistant leukemic cells confers fast but unfaithful dna repair in cancer cell lines

    PubMed Central

    Schellenbauer, Amelie; Biard, Denis; Paget, Vincent; Morel-Altmeyer, Sandrine; Guipaud, Olivier; Chambon, Christophe; Salles, Bernard; Maloum, Karim; Merle-Béral, Hélène; Chevillard, Sylvie; Delic, Jozo

    2015-01-01

    Ku70-dependent canonical nonhomologous end-joining (c-NHEJ) DNA repair system is fundamental to the genome maintenance and B-cell lineage. c-NHEJ is upregulated and error-prone in incurable forms of chronic lymphocytic leukemia which also displays telomere dysfunction, multiple chromosomal aberrations and the resistance to DNA damage-induced apoptosis. We identify in these cells a novel DNA damage inducible form of phospho-Ku70. In vitro in different cancer cell lines, Ku70 phosphorylation occurs in a heterodimer Ku70/Ku80 complex within minutes of genotoxic stress, necessitating its interaction with DNA damage-induced kinase pS2056-DNA-PKcs and/or pS1981-ATM. The mutagenic effects of phospho-Ku70 are documented by a defective S/G2 checkpoint, accelerated disappearance of γ-H2AX foci and kinetics of DNA repair resulting in an increased level of genotoxic stress-induced chromosomal aberrations. Together, these data unveil an involvement of phospho-Ku70 in fast but inaccurate DNA repair; a new paradigm linked to both the deregulation of c-NHEJ and the resistance of malignant cells. PMID:26337656

  12. A new phosphorylated form of Ku70 identified in resistant leukemic cells confers fast but unfaithful DNA repair in cancer cell lines.

    PubMed

    Bouley, Julien; Saad, Lina; Grall, Romain; Schellenbauer, Amelie; Biard, Denis; Paget, Vincent; Morel-Altmeyer, Sandrine; Guipaud, Olivier; Chambon, Christophe; Salles, Bernard; Maloum, Karim; Merle-Béral, Hélène; Chevillard, Sylvie; Delic, Jozo

    2015-09-29

    Ku70-dependent canonical nonhomologous end-joining (c-NHEJ) DNA repair system is fundamental to the genome maintenance and B-cell lineage. c-NHEJ is upregulated and error-prone in incurable forms of chronic lymphocytic leukemia which also displays telomere dysfunction, multiple chromosomal aberrations and the resistance to DNA damage-induced apoptosis. We identify in these cells a novel DNA damage inducible form of phospho-Ku70. In vitro in different cancer cell lines, Ku70 phosphorylation occurs in a heterodimer Ku70/Ku80 complex within minutes of genotoxic stress, necessitating its interaction with DNA damage-induced kinase pS2056-DNA-PKcs and/or pS1981-ATM. The mutagenic effects of phospho-Ku70 are documented by a defective S/G2 checkpoint, accelerated disappearance of γ-H2AX foci and kinetics of DNA repair resulting in an increased level of genotoxic stress-induced chromosomal aberrations. Together, these data unveil an involvement of phospho-Ku70 in fast but inaccurate DNA repair; a new paradigm linked to both the deregulation of c-NHEJ and the resistance of malignant cells.

  13. Gamma irradiation induces DNA double-strand breaks in fibroblasts: a model study for the development of biodosimetry

    NASA Astrophysics Data System (ADS)

    Uttayarat, P.; Tangtong, T.; Sukapirom, K.; Boonsirichai, K.

    2015-05-01

    Double-strand breaks (DSBs) of DNAs induced by ionizing radiation can pose detrimental damages on organisms which include genetic instability and cell death. It is necessary to be able to assess health risks associated with irradiation from both accidental and therapeutic exposures in a timely manner for proper medical treatments. This present study showed the first attempt to develop a biodosimetric measure in Thailand based on the quantification of phosphorylated histone H2AX (γ-H2AX) formed at DSB sites with an aim to establish a dose response curve using a two-dimensional (2D) cell culture model. Human dermal fibroblasts were grown into monolayers before irradiated by gamma rays from a Co-60 source in a custom-made lead chamber at doses 0, 0.2, 1, 2 and 4 Gy and a dose rate of 0.21 Gy/min. After 30 min post exposure, γ-H2AX proteins were immunofluorescently labelled for evaluation by confocal microscopy and flow cytometry. The accumulation of phosphorylated γ-H2AX proteins at DSBs appeared as nuclear foci with the most prominent intensity at 4 Gy. Linear regression analysis of flow cytometric data showed a linear response (R2 = 0.9862) of foci intensity in proportion to irradiation dose. In addition, the fraction of cell viability was shown to decrease at higher doses. This technique can be further developed as a quick assessment tool to identify individuals subjected to accidental radiation in parallel to other established biodosimetric measures.

  14. Proteasome activity is important for replication recovery, CHK1 phosphorylation and prevention of G2 arrest after low-dose formaldehyde

    SciTech Connect

    Ortega-Atienza, Sara; Green, Samantha E.; Zhitkovich, Anatoly

    2015-07-15

    Formaldehyde (FA) is a human carcinogen with numerous sources of environmental and occupational exposures. This reactive aldehyde is also produced endogenously during metabolism of drugs and other processes. DNA–protein crosslinks (DPCs) are considered to be the main genotoxic lesions for FA. Accumulating evidence suggests that DPC repair in high eukaryotes involves proteolysis of crosslinked proteins. Here, we examined a role of the main cellular proteolytic machinery proteasomes in toxic responses of human lung cells to low FA doses. We found that transient inhibition of proteasome activity increased cytotoxicity and diminished clonogenic viability of FA-treated cells. Proteasome inactivation exacerbated suppressive effects of FA on DNA replication and increased the levels of the genotoxic stress marker γ-H2AX in normal human cells. A transient loss of proteasome activity in FA-exposed cells also caused delayed perturbations of cell cycle, which included G2 arrest and a depletion of S-phase populations at FA doses that had no effects in control cells. Proteasome activity diminished p53-Ser15 phosphorylation but was important for FA-induced CHK1 phosphorylation, which is a biochemical marker of DPC proteolysis in replicating cells. Unlike FA, proteasome inhibition had no effect on cell survival and CHK1 phosphorylation by the non-DPC replication stressor hydroxyurea. Overall, we obtained evidence for the importance of proteasomes in protection of human cells against biologically relevant doses of FA. Biochemically, our findings indicate the involvement of proteasomes in proteolytic repair of DPC, which removes replication blockage by these highly bulky lesions. - Highlights: • Proteasome inhibition enhances cytotoxicity of low-dose FA in human lung cells. • Active proteasomes diminish replication-inhibiting effects of FA. • Proteasome activity prevents delayed G2 arrest in FA-treated cells. • Proteasome inhibition exacerbates replication stress by FA in

  15. Proteasome activity is important for replication recovery, CHK1 phosphorylation and prevention of G2 arrest after low-dose formaldehyde.

    PubMed

    Ortega-Atienza, Sara; Green, Samantha E; Zhitkovich, Anatoly

    2015-07-15

    Formaldehyde (FA) is a human carcinogen with numerous sources of environmental and occupational exposures. This reactive aldehyde is also produced endogenously during metabolism of drugs and other processes. DNA-protein crosslinks (DPCs) are considered to be the main genotoxic lesions for FA. Accumulating evidence suggests that DPC repair in high eukaryotes involves proteolysis of crosslinked proteins. Here, we examined a role of the main cellular proteolytic machinery proteasomes in toxic responses of human lung cells to low FA doses. We found that transient inhibition of proteasome activity increased cytotoxicity and diminished clonogenic viability of FA-treated cells. Proteasome inactivation exacerbated suppressive effects of FA on DNA replication and increased the levels of the genotoxic stress marker γ-H2AX in normal human cells. A transient loss of proteasome activity in FA-exposed cells also caused delayed perturbations of cell cycle, which included G2 arrest and a depletion of S-phase populations at FA doses that had no effects in control cells. Proteasome activity diminished p53-Ser15 phosphorylation but was important for FA-induced CHK1 phosphorylation, which is a biochemical marker of DPC proteolysis in replicating cells. Unlike FA, proteasome inhibition had no effect on cell survival and CHK1 phosphorylation by the non-DPC replication stressor hydroxyurea. Overall, we obtained evidence for the importance of proteasomes in protection of human cells against biologically relevant doses of FA. Biochemically, our findings indicate the involvement of proteasomes in proteolytic repair of DPC, which removes replication blockage by these highly bulky lesions.

  16. Histone deacetylases and atherosclerosis.

    PubMed

    Zheng, Xia-xia; Zhou, Tian; Wang, Xin-An; Tong, Xiao-hong; Ding, Jia-wang

    2015-06-01

    Atherosclerosis is the most common pathological process that leads to cardiovascular diseases, a disease of large- and medium-sized arteries that is characterized by a formation of atherosclerotic plaques consisting of necrotic cores, calcified regions, accumulated modified lipids, smooth muscle cells (SMCs), endothelial cells, leukocytes, and foam cells. Recently, the question about how to suppress the occurrence of atherosclerosis and alleviate the progress of cardiovascular disease becomes the hot topic. Accumulating evidence suggests that histone deacetylases(HDACs) play crucial roles in arteriosclerosis. This review summarizes the effect of HDACs and HDAC inhibitors(HDACi) on the progress of atherosclerosis.

  17. Trout-liver histones

    PubMed Central

    Palau, J.; Butler, J. A. V.

    1966-01-01

    1. The histones of trout liver were examined and four main fractions (f1, f2b, f2a and f3) were isolated and characterized. 2. The amino acid analyses, N-terminal group analyses and starch-gel electrophoresis patterns are remarkably similar to the corresponding fractions of calf thymus. 3. The group f2a was also separated into two subfractions, f2al and f2a2, which are similar to those of calf thymus. ImagesFig. 1. PMID:5969291

  18. LINE-1 retrotransposition events regulate gene expression after X-ray irradiation.

    PubMed

    Banaz-Yaşar, Ferya; Gedik, Nilgün; Karahan, Selda; Diaz-Carballo, David; Bongartz, Birthe M; Ergün, Süleyman

    2012-09-01

    Long interspersed nuclear element-1 (LINE-1) retrotransposons are mobile elements that insert into new genomic locations via reverse transcription of an RNA intermediate. The mechanism of retrotransposition is not entirely understood. The integration of these elements occurs by target-primed reverse transcription (TPRT), which initiates double-strand breaks (DSBs) during the LINE-1 integration. Also, X-ray is known to induce DNA damage. The aim of this study was to evaluate the potential effects of LINE-1 de novo retrotransposition on the expression of different genes after X-ray irradiation in human endothelial cells. After stable transfection of the human hybrid endothelial cell line EA.hy926 with the human LINE-1 element, we analyzed the expression of different genes after irradiation with 5 Gy X-rays by reverse transcription-polymerase chain reaction (RT-PCR). We determine the expression level of phosphorylated p53 and γ-histone H2AX protein levels upon X-ray irradiation with 5 Gy for 24 h. Our results showed that EA.hy926 LINE-1 cell clones react with a strong upregulation of phosphorylated p53 protein, already 15 min after irradiation compared to the wild type (WT) cells. Also, the expression of γ-histone H2AX protein was elevated in the cell clones with retrotransposition events 15 min after irradiation, whereas the WT cells have a delayed expression of phosphorylated histone H2AX protein. Taken together, our findings provide that LINE-1 retrotransposition events regulate different gene expression after irradiation in the EA.hy926 cell line.

  19. Histone acetylation: truth of consequences?

    PubMed

    Choi, Jennifer K; Howe, Leann J

    2009-02-01

    Eukaryotic DNA is packaged into a nucleoprotein structure known as chromatin, which is comprised of DNA, histones, and nonhistone proteins. Chromatin structure is highly dynamic, and can shift from a transcriptionally inactive state to an active form in response to intra- and extracellular signals. A major factor in chromatin architecture is the covalent modification of histones through the addition of chemical moieties, such as acetyl, methyl, ubiquitin, and phosphate groups. The acetylation of the amino-terminal tails of histones is a process that is highly conserved in eukaryotes, and was one of the earliest histone modifications characterized. Since its identification in 1964, a large body of evidence has accumulated demonstrating that histone acetylation plays an important role in transcription. Despite our ever-growing understanding of the nuclear processes involved in nucleosome acetylation, however, the exact biochemical mechanisms underlying the downstream effects of histone acetylation have yet to be fully elucidated. To date, histone acetylation has been proposed to function in 2 nonmutually exclusive manners: by directly altering chromatin structure, and by acting as a molecular tag for the recruitment of chromatin-modifying complexes. Here, we discuss recent research focusing on these 2 potential roles of histone acetylation and clarify what we actually know about the function of this modification.

  20. The C terminus of the histone chaperone Asf1 cross-links to histone H3 in yeast and promotes interaction with histones H3 and H4.

    PubMed

    Dennehey, Briana K; Noone, Seth; Liu, Wallace H; Smith, Luke; Churchill, Mair E A; Tyler, Jessica K

    2013-02-01

    The central histone H3/H4 chaperone Asf1 comprises a highly conserved globular core and a divergent C-terminal tail. While the function and structure of the Asf1 core are well known, the function of the tail is less well understood. Here, we have explored the role of the yeast (yAsf1) and human (hAsf1a and hAsf1b) Asf1 tails in Saccharomyces cerevisiae. We show, using a photoreactive, unnatural amino acid, that Asf1 tail residue 210 cross-links to histone H3 in vivo and, further, that loss of C-terminal tail residues 211 to 279 weakens yAsf1-histone binding affinity in vitro nearly 200-fold. Via several yAsf1 C-terminal truncations and yeast-human chimeric proteins, we found that truncations at residue 210 increase transcriptional silencing and that the hAsf1a tail partially substitutes for full-length yAsf1 with respect to silencing but that full-length hAsf1b is a better overall substitute for full-length yAsf1. In addition, we show that the C-terminal tail of Asf1 is phosphorylated at T270 in yeast. Loss of this phosphorylation site does not prevent coimmunoprecipitation of yAsf1 and Rad53 from yeast extracts, whereas amino acid residue substitutions at the Asf1-histone H3/H4 interface do. Finally, we show that residue substitutions in yAsf1 near the CAF-1/HIRA interface also influence yAsf1's function in silencing.

  1. Direct interplay among histones, histone chaperones, and a chromatin boundary protein in the control of histone gene expression.

    PubMed

    Zunder, Rachel M; Rine, Jasper

    2012-11-01

    In Saccharomyces cerevisiae, the histone chaperone Rtt106 binds newly synthesized histone proteins and mediates their delivery into chromatin during transcription, replication, and silencing. Rtt106 is also recruited to histone gene regulatory regions by the HIR histone chaperone complex to ensure S-phase-specific expression. Here we showed that this Rtt106:HIR complex included Asf1 and histone proteins. Mutations in Rtt106 that reduced histone binding reduced Rtt106 enrichment at histone genes, leading to their increased transcription. Deletion of the chromatin boundary element Yta7 led to increased Rtt106:H3 binding, increased Rtt106 enrichment at histone gene regulatory regions, and decreased histone gene transcription at the HTA1-HTB1 locus. These results suggested a unique regulatory mechanism in which Rtt106 sensed the level of histone proteins to maintain the proper level of histone gene transcription. The role of these histone chaperones and Yta7 differed markedly among the histone gene loci, including the two H3-H4 histone gene pairs. Defects in silencing in rtt106 mutants could be partially accounted for by Rtt106-mediated changes in histone gene repression. These studies suggested that feedback mediated by histone chaperone complexes plays a pivotal role in regulating histone gene transcription.

  2. Genoprotective effect of hyaluronic acid against benzalkonium chloride-induced DNA damage in human corneal epithelial cells

    PubMed Central

    Wu, Han; Zhang, Huina; Wang, Changjun; Wu, Yihua; Xie, Jiajun; Jin, Xiuming; Yang, Jun

    2011-01-01

    Purpose The aim of this study was to investigate hyaluronic acid (HA) protection on cultured human corneal epithelial cells (HCEs) against benzalkonium chloride (BAC)-induced DNA damage and intracellular reactive oxygen species (ROS) increase. Methods Cells were incubated with different concentrations of BAC with or without the presence of 0.2% HA for 30 min. DNA damage to HCEs was examined by alkaline comet assay and by immunofluorescence microscopic detection of the phosphorylated form of histone variant H2AXH2AX) foci. ROS production was assessed by the fluorescent probe, 2',7'-dichlorodihydrofluorescein diacetate (DCFH-DA). Cell apoptosis was determined with annexin V staining by flow cytometry. Results HA significantly reduced BAC-induced DNA damage as indicated by the tail length (TL) and tail moment (TM) of alkaline comet assay and by γH2AX foci formation, respectively. Moreover, HA significantly decreased BAC-induced ROS increase and cell apoptosis. However, exposure to HA alone did not produce any significant change in DNA damage, ROS generation, or cell apoptosis. Conclusions BAC could induce DNA damage and cell apoptosis in HCEs, probably through increasing oxidative stress. Furthermore, HA was an effective protective agent that had antioxidant properties and could decrease DNA damage and cell apoptosis induced by BAC. PMID:22219631

  3. Assessment of DNA damage in goat preantral follicles after vitrification of the ovarian cortex.

    PubMed

    Faustino, Luciana R; Carvalho, Adeline A; Silva, Cleidson M G; Rossetto, Rafael; Lopes, Cláudio A P; van Tilburg, Maurício F; Carneiro, Pedro B M; Báo, Sônia N; Moura, Arlindo A A; Bordignon, Vilceu; Figueiredo, José R; Rodrigues, Ana Paula R

    2015-03-01

    Effective methods for gamete preservation should have low impact on DNA integrity. The present study investigated the effects of vitrification of goat ovarian tissues on the occurrence of DNA fragmentation and DNA double-stand breaks using the terminal deoxyribonucleotidyl transferase-mediated dUTP-digoxigenin nick end-labelling (TUNEL) assay and detection of phosphorylated histone H2AXH2AX), respectively. Goat ovaries were collected at a local abattoir and 12 tissue fragments were prepared from each ovarian pair. Tissue fragments were used as fresh control samples or were cultured in vitro, vitrified or vitrified and cultured. Vitrification was performed using the Ovarian Tissue Cryosystem. Fragments from all groups (control and treatments) were processed for histology, transmission electron microscopy, TUNEL assay and immunofluorescence. Compared with fresh control samples, a lower percentage of morphologically normal follicles was detected in the vitrification followed by culture treatment group (P<0.05). Normal follicular ultrastructure was observed in all groups. Immunofluorescence revealed the presence of γH2AX foci in few oocytes and ovarian stromal cells. TUNEL-positive follicles were found in samples without significant differences among groups (P>0.05). In conclusion, the vitrification protocol used in the present study did not increase DNA damage in preantral follicles enclosed in goat ovarian tissues. PMID:25481978

  4. Generation of DNA single-strand displacement by compromised nucleotide excision repair

    PubMed Central

    Godon, Camille; Mourgues, Sophie; Nonnekens, Julie; Mourcet, Amandine; Coin, Fréderic; Vermeulen, Wim; Mari, Pierre-Olivier; Giglia-Mari, Giuseppina

    2012-01-01

    Nucleotide excision repair (NER) is a precisely coordinated process essential to avoid DNA damage-induced cellular malfunction and mutagenesis. Here, we investigate the mechanistic details and effects of the NER machinery when it is compromised by a pathologically significant mutation in a subunit of the repair/transcription factor TFIIH, namely XPD. In contrast to previous studies, we find that no single- or double-strand DNA breaks are produced at early time points after UV irradiation of cells bearing a specific XPD mutation, despite the presence of a clear histone H2AX phosphorylationH2AX) signal in the UV-exposed areas. We show that the observed γH2AX signal can be explained by the presence of longer single-strand gaps possibly generated by strand displacement. Our in vivo measurements also indicate a strongly reduced TFIIH-XPG binding that could promote single-strand displacement at the site of UV lesions. This finding not only highlights the crucial role of XPG's interactions with TFIIH for proper NER, but also sheds new light on how a faulty DNA repair process can induce extreme genomic instability in human patients. PMID:22863773

  5. DNA double strand breaks and Hsp70 expression in proton irradiated living cells

    NASA Astrophysics Data System (ADS)

    Fiedler, Anja; Reinert, Tilo; Tanner, Judith; Butz, Tilman

    2007-07-01

    DNA double strand breaks (DSBs) in living cells can be directly provoked by ionising radiation. DSBs can be visualized by immunostaining the phosphorylated histone γH2AX. Our concern was to test the feasibility of γH2AX staining for a direct visualization of single proton hits. If single protons produce detectable foci, DNA DSBs could be used as "biological track detectors" for protons. Ionising radiation can also damage proteins indirectly by inducing free radicals. Heat shock proteins (Hsp) help to refold or even degrade the damaged proteins. The level of the most famous heat shock protein Hsp70 is increased by ionising radiation. We investigated the expression of γH2AX and Hsp70 after cross and line patterned irradiation with counted numbers of 2.25 MeV protons on primary human skin fibroblasts. The proton induced DSBs appear more delocalised than it was expected by the ion hit accuracy. Cooling the cells before the irradiation reduces the delocalisation of DNA DSBs, which is probably caused by the reduced diffusion of DNA damaging agents. Proton irradiation seems to provoke protein damages mainly in the cytoplasm indicated by cytoplasmic Hsp70 aggregates. On the contrary, in control heat shocked cells the Hsp70 was predominantly localized in the cell nucleus. However, the irradiated area could not be recognized, all cells on the Si 3N 4 window showed a homogenous Hsp70 expression pattern.

  6. Interaction of heavy ions with nuclear chromatin: Spatiotemporal investigations of biological responses in a cellular environment

    NASA Astrophysics Data System (ADS)

    Jakob, B.; Taucher-Scholz, G.

    2006-04-01

    Ion beams offer the possibility to generate strictly localized DNA lesions within subregions of a cell nucleus. The distribution of the ion-induced damage can be indirectly visualized by immunocytochemical detection of repair-related proteins as radiation-induced foci. The proteins analyzed here were the double-strand break marker γ-H2AX, the excision repair and replication protein PCNA and the cell cycle regulator CDKN1A. A newly developed adjustable sample holder is now used to apply an irradiation geometry characterized by a small angle between the plane of the cellular monolayer and the incoming ion beam. This allows the spatial analysis of protein accumulations along ion trajectories, revealing an unexpected clustering after irradiation with low-energy zinc ions. The patterns of protein aggregation observed show considerable intrinsic variability, but similar patterns of protein clustering were obtained for functionally different proteins irrespective of the type of ion beam applied, confirming previous observations for lower and higher LET beams. Foci sizes within ion tracks were found to be larger for γ-H2AX foci in comparison to CDKN1A foci, in agreement with the known histone H2AX phosphorylation response. The results suggest that not the pattern of dose deposition but the underlying chromatin structure determines the distribution of protein clusters along tracks. Therefore, the requirement of time-lapse studies using live cells is emphasized for future studies on chromatin movement as a potential component of the DNA damage response.

  7. Histone-modifying enzymes, histone modifications and histone chaperones in nucleosome assembly: Lessons learned from Rtt109 histone acetyltransferases.

    PubMed

    Dahlin, Jayme L; Chen, Xiaoyue; Walters, Michael A; Zhang, Zhiguo

    2015-01-01

    During DNA replication, nucleosomes ahead of replication forks are disassembled to accommodate replication machinery. Following DNA replication, nucleosomes are then reassembled onto replicated DNA using both parental and newly synthesized histones. This process, termed DNA replication-coupled nucleosome assembly (RCNA), is critical for maintaining genome integrity and for the propagation of epigenetic information, dysfunctions of which have been implicated in cancers and aging. In recent years, it has been shown that RCNA is carefully orchestrated by a series of histone modifications, histone chaperones and histone-modifying enzymes. Interestingly, many features of RCNA are also found in processes involving DNA replication-independent nucleosome assembly like histone exchange and gene transcription. In yeast, histone H3 lysine K56 acetylation (H3K56ac) is found in newly synthesized histone H3 and is critical for proper nucleosome assembly and for maintaining genomic stability. The histone acetyltransferase (HAT) regulator of Ty1 transposition 109 (Rtt109) is the sole enzyme responsible for H3K56ac in yeast. Much research has centered on this particular histone modification and histone-modifying enzyme. This Critical Review summarizes much of our current understanding of nucleosome assembly and highlights many important insights learned from studying Rtt109 HATs in fungi. We highlight some seminal features in nucleosome assembly conserved in mammalian systems and describe some of the lingering questions in the field. Further studying fungal and mammalian chromatin assembly may have important public health implications, including deeper understandings of human cancers and aging as well as the pursuit of novel anti-fungal therapies.

  8. Histone-histone interactions in a lower eukaryote, Tetrahymena thermophila.

    PubMed

    Glover, C V; Gorovsky, M A

    1978-12-26

    The six pairwise interactions of Tetrahymena macronuclear histones H2A (formerly HX), H2B, H3, and H4 have been studied using the techniques of circular dichroism and continuous variation. Parallel experiments have been performed with calf thymus histones as controls, and the 12 possible interspecies pairs have also been examined. The behavior of three of the ciliate histones, H2A, H2B, and H3 is virtually identical with that of their vertebrate counterparts. Tetrahymena H4 exhibits a pattern of interactions identical with that of calf thymus H4, but displays significant quantitative differences in the strength of those interactions. Although we have not entirely eliminated the possibility that these differences may be artifactual, we suggest that they reflect the unique primary structure of Tetrahymena H4. These results extend the pattern of histone-histone interactions defined for plants, animals, and fungi to include the protists as well and imply the strong evolutionary conservatism of this pattern in spite of the electrophoretic and compositional differences which exist between homologous histones of different organisms. In addition, they demonstrate conclusively that histone HX should be redefined as Tetrahymena H2A.

  9. DNA Damage Focus Analysis in Blood Samples of Minipigs Reveals Acute Partial Body Irradiation

    PubMed Central

    Lamkowski, Andreas; Forcheron, Fabien; Agay, Diane; Ahmed, Emad A.; Drouet, Michel; Meineke, Viktor; Scherthan, Harry

    2014-01-01

    Radiation accidents frequently involve acute high dose partial body irradiation leading to victims with radiation sickness and cutaneous radiation syndrome that implements radiation-induced cell death. Cells that are not lethally hit seek to repair ionizing radiation (IR) induced damage, albeit at the expense of an increased risk of mutation and tumor formation due to misrepair of IR-induced DNA double strand breaks (DSBs). The response to DNA damage includes phosphorylation of histone H2AX in the vicinity of DSBs, creating foci in the nucleus whose enumeration can serve as a radiation biodosimeter. Here, we investigated γH2AX and DNA repair foci in peripheral blood lymphocytes of Göttingen minipigs that experienced acute partial body irradiation (PBI) with 49 Gy (±6%) Co-60 γ-rays of the upper lumbar region. Blood samples taken 4, 24 and 168 hours post PBI were subjected to γ-H2AX, 53BP1 and MRE11 focus enumeration. Peripheral blood lymphocytes (PBL) of 49 Gy partial body irradiated minipigs were found to display 1–8 DNA damage foci/cell. These PBL values significantly deceed the high foci numbers observed in keratinocyte nuclei of the directly γ-irradiated minipig skin regions, indicating a limited resident time of PBL in the exposed tissue volume. Nonetheless, PBL samples obtained 4 h post IR in average contained 2.2% of cells displaying a pan-γH2AX signal, suggesting that these received a higher IR dose. Moreover, dispersion analysis indicated partial body irradiation for all 13 minipigs at 4 h post IR. While dose reconstruction using γH2AX DNA repair foci in lymphocytes after in vivo PBI represents a challenge, the DNA damage focus assay may serve as a rapid, first line indicator of radiation exposure. The occurrence of PBLs with pan-γH2AX staining and of cells with relatively high foci numbers that skew a Poisson distribution may be taken as indicator of acute high dose partial body irradiation, particularly when samples are available early after

  10. Epigenetic Changes in p21 Expression in Renal Cells after Exposure to Bromate

    PubMed Central

    Scholpa, N.E.; Zhang, X.; Kolli, R.T.; Cummings, B.S.

    2014-01-01

    This study tested the hypothesis that bromate (KBrO3)-induced renal cell death is mediated by epigenetic mechanisms. Global DNA methylation, as assessed by 5-methylcytosine staining, was not changed in normal rat kidney cells treated with acute cytotoxic doses of KBrO3 (100 and 200 ppm), as compared with controls. However, KBrO3 treatment did increase p38, p53 and histone 2AX (H2AX) phosphorylation, and p21 expression. Treatment of cells with inhibitors of DNA methyltransferase (5-azacytidine or 5-Aza) and histone deacetylase (trichostatin A or TSA) in addition to KBrO3 increased cytotoxicity, as compared with cells exposed to KBrO3 alone. 5-Aza and TSA co-treatment did not alter p38 or p53 phosphorylation, but slightly decreased H2AX phosphorylation and significantly decreased p21 expression. We also assessed epigenetic changes in cells treated under sub-chronic conditions with environmentally relevant concentrations of KBrO3. Under these conditions (0–10ppm KBrO3 for up to 18 days), we detected no increases in cell death or DNA damage. In contrast, slight alterations were detected in the phosphorylation of H2AX, p38, and p53. Sub-chronic low-dose KBrO3 treatment also induced a biphasic response in p21 expression, with lower concentrations increasing expression, but higher concentrations decreasing expression. Methylation-specific PCR demonstrated that sub-chronic KBrO3 treatment altered the methylation of cytosine bases in the p21 gene, as compared with controls, correlating to alterations in p21 protein expression. Collectively, these data show the novel finding that KBrO3-induced renal cell death is altered by inhibitors of epigenetic modifying enzymes and that KBrO3 itself induces epigenetic changes in the p21 gene. PMID:25015661

  11. Regulation of protein phosphorylation in oat mitochondria

    SciTech Connect

    Pike, C.; Kopeck, K.; Sceppa, E. )

    1989-04-01

    We sought to identify phosphorylated proteins in isolated oat mitocchondria and to characterize the enzymatic and regulatory properties of the protein kinase(s). Mitochondria from oats (Avena sativa L. cv. Garry) were purified on Percoll gradients. Mitochondria were incubated with {sup 32}P-{gamma}-ATP; proteins were separated by SDS-PAGE. A small number of bands was detected on autoradiograms, most prominently at 70 kD and 42 kD; the latter band has been tentatively identified as a subunit of the pyruvate dehydrogenase complex, a well-known phosphoprotein. The protein kinase(s) could also phosphorylate casein, but not histone. Spermine enhanced the phosphorylation of casein and inhibited the phosphorylation of the 42 kD band. These studies were carried out on both intact and burst mitochondria. Control by calcium and other ions was investigated. The question of the action of regulators on protein kinase or protein phosphatase was studied by the use of {sup 35}S-adenosine thiotriphosphate.

  12. Recognition of modification status on a histone H3 tail by linked histone reader modules of the epigenetic regulator UHRF1

    PubMed Central

    Arita, Kyohei; Isogai, Shin; Oda, Takashi; Unoki, Motoko; Sugita, Kazuya; Sekiyama, Naotaka; Kuwata, Keiko; Hamamoto, Ryuji; Tochio, Hidehito; Sato, Mamoru; Ariyoshi, Mariko; Shirakawa, Masahiro

    2012-01-01

    Multiple covalent modifications on a histone tail are often recognized by linked histone reader modules. UHRF1 [ubiquitin-like, containing plant homeodomain (PHD) and really interesting new gene (RING) finger domains 1], an essential factor for maintenance of DNA methylation, contains linked two-histone reader modules, a tandem Tudor domain and a PHD finger, tethered by a 17-aa linker, and has been implicated to link histone modifications and DNA methylation. Here, we present the crystal structure of the linked histone reader modules of UHRF1 in complex with the amino-terminal tail of histone H3. Our structural and biochemical data provide the basis for combinatorial readout of unmodified Arg-2 (H3-R2) and methylated Lys-9 (H3-K9) by the tandem tudor domain and the PHD finger. The structure reveals that the intermodule linker plays an essential role in the formation of a histone H3–binding hole between the reader modules by making extended contacts with the tandem tudor domain. The histone H3 tail fits into the hole by adopting a compact fold harboring a central helix, which allows both of the reader modules to simultaneously recognize the modification states at H3-R2 and H3-K9. Our data also suggest that phosphorylation of a linker residue can modulate the relative position of the reader modules, thereby altering the histone H3–binding mode. This finding implies that the linker region plays a role as a functional switch of UHRF1 involved in multiple regulatory pathways such as maintenance of DNA methylation and transcriptional repression. PMID:22837395

  13. Identification and characterization of plant Haspin kinase as a histone H3 threonine kinase

    PubMed Central

    2011-01-01

    Background Haspin kinases are mitotic kinases that are well-conserved from yeast to human. Human Haspin is a histone H3 Thr3 kinase that has important roles in chromosome cohesion during mitosis. Moreover, phosphorylation of histone H3 at Thr3 by Haspin in fission yeast, Xenopus, and human is required for accumulation of Aurora B on the centromere, and the subsequent activation of Aurora B kinase activity for accurate chromosome alignment and segregation. Although extensive analyses of Haspin have been carried out in yeast and animals, the function of Haspin in organogenesis remains unclear. Results Here, we identified a Haspin kinase, designated AtHaspin, in Arabidopsis thaliana. The purified AtHaspin phosphorylated histone H3 at both Thr3 and Thr11 in vitro. Live imaging of AtHaspin-tdTomato and GFP-α-tubulin in BY-2 cells showed that AtHaspin-tdTomato localized on chromosomes during prometaphase and metaphase, and around the cell plate during cytokinesis. This localization of AtHaspin overlapped with that of phosphorylated Thr3 and Thr11 of histone H3 in BY-2 cells. AtHaspin-GFP driven by the native promoter was expressed in root meristems, shoot meristems, floral meristems, and throughout the whole embryo at stages of high cell division. Overexpression of a kinase domain mutant of AtHaspin decreased the size of the root meristem, which delayed root growth. Conclusions Our results indicated that the Haspin kinase is a histone H3 threonine kinase in A. thaliana. AtHaspin phosphorylated histone H3 at both Thr3 and Thr11 in vitro. The expression and dominant-negative analysis showed that AtHaspin may have a role in mitotic cell division during plant growth. Further analysis of coordinated mechanisms involving Haspin and Aurora kinases will shed new light on the regulation of chromosome segregation in cell division during plant growth and development. PMID:21527018

  14. Histone deacetylase-mediated morphological transition in Candida albicans.

    PubMed

    Kim, Jueun; Lee, Ji-Eun; Lee, Jung-Shin

    2015-12-01

    Candida albicans is the most common opportunistic fungal pathogen, which switches its morphology from single-cell yeast to filament through the various signaling pathways responding to diverse environmental cues. Various transcriptional factors such as Nrg1, Efg1, Brg1, Ssn6, and Tup1 are the key components of these signaling pathways. Since C. albicans can regulate its transcriptional gene expressions using common eukaryotic regulatory systems, its morphological transition by these signaling pathways could be linked to the epigenetic regulation by chromatin structure modifiers. Histone proteins, which are critical components of eukaryotic chromatin structure, can regulate the eukaryotic chromatin structure through their own modifications such as acetylation, methylation, phosphorylation and ubiquitylation. Recent studies revealed that various histone modifications, especially histone acetylation and deacetylation, participate in morphological transition of C. albicans collaborating with well-known transcription factors in the signaling pathways. Here, we review recent studies about chromatin-mediated morphological transition of C. albicans focusing on the interaction between transcription factors in the signaling pathways and histone deacetylases.

  15. Epiproteomics: quantitative analysis of histone marks and codes by mass spectrometry.

    PubMed

    Zheng, Yupeng; Huang, Xiaoxiao; Kelleher, Neil L

    2016-08-01

    Histones are a group of proteins with a high number of post-translational modifications, including methylation, acetylation, phosphorylation, and monoubiquitination, which play critical roles in every chromatin-templated activity. The quantitative analysis of these modifications using mass spectrometry (MS) has seen significant improvements over the last decade. It is now possible to perform large-scale surveys of dozens of histone marks and hundreds of their combinations on global chromatin. Here, we review the development of three MS strategies for analyzing histone modifications that have come to be known as Bottom Up, Middle Down, and Top Down. We also discuss challenges and innovative solutions for characterizing and quantifying complicated isobaric species arising from multiple modifications on the same histone molecule. PMID:27371874

  16. Dynamics of histone H2A, H4 and HS1ph during spermatogenesis with a focus on chromatin condensation and maturity of spermatozoa

    PubMed Central

    Zhang, Zhao-Hui; Mu, Shu-Mei; Guo, Ming-Shen; Wu, Jiang-li; Li, Yan-qin; Zhang, Han; Wang, Ying; Kang, Xian-Jiang

    2016-01-01

    Histones and histone phosphorylation play vital roles during animal spermatogenesis and spermatozoa maturation. The dynamic distribution of histones H2A and H4 and phosphorylated H2A and H4 at serine 1 (HS1ph) was explored in mammalian and Decapoda germ cells, with a special focus on the distribution of H2A, H4 and HS1ph between mouse condensed spermatozoa chromatin and crab non-condensed spermatozoa chromatin. The distribution of histone marks was also analysed in mature spermatozoa with different chromatin structures. Histone H2A and H4 marks were closely associated with the relatively loose chromatin structure in crab spermatozoa. The significant decrease in the HS1ph signal during spermatogenesis suggests that eliminating most of these epigenetic marks in the nucleusis closely associated with spermatozoa maturity. PMID:27121047

  17. The Role of Dietary Histone Deacetylases (HDACs) Inhibitors in Health and Disease

    PubMed Central

    Bassett, Shalome A.; Barnett, Matthew P. G.

    2014-01-01

    Modification of the histone proteins associated with DNA is an important process in the epigenetic regulation of DNA structure and function. There are several known modifications to histones, including methylation, acetylation, and phosphorylation, and a range of factors influence each of these. Histone deacetylases (HDACs) remove the acetyl group from lysine residues within a range of proteins, including transcription factors and histones. Whilst this means that their influence on cellular processes is more complex and far-reaching than histone modifications alone, their predominant function appears to relate to histones; through deacetylation of lysine residues they can influence expression of genes encoded by DNA linked to the histone molecule. HDAC inhibitors in turn regulate the activity of HDACs, and have been widely used as therapeutics in psychiatry and neurology, in which a number of adverse outcomes are associated with aberrant HDAC function. More recently, dietary HDAC inhibitors have been shown to have a regulatory effect similar to that of pharmacological HDAC inhibitors without the possible side-effects. Here, we discuss a number of dietary HDAC inhibitors, and how they may have therapeutic potential in the context of a whole food. PMID:25322459

  18. Enhanced top-down characterization of histone post-translational modifications

    SciTech Connect

    Tian, Zhixin; Tolić, Nikola; Zhao, Rui; Moore, Ronald J.; Hengel, Shawna M.; Robinson, Errol W.; Stenoien, David L.; Wu, Si; Smith, Richard D.; Paša-Tolić, Ljiljana

    2012-01-01

    Background: Multiple post-translational modifications (PTMs) on core histones often work synergistically to fine tune chromatin structure and functions, generating a “histone code” that can be interpreted by a variety of chromatin interacting proteins. Although previous bottom-up and middle-down proteomic approaches have been developed for limited characterization of PTMs on histone N-terminal tails, high-throughput methods for comprehensive identification of PTMs distributed along the entire primary amino acid sequence are yet to be implemented. Results: Here we report a novel online two-dimensional liquid chromatography - tandem mass spectrometry (2D LC–MS/MS) platform for high-throughput and sensitive characterization of histone PTMs at the intact protein level. The metal-free LC system with reverse phase separation followed by weak cation exchange – hydrophilic interaction chromatography (WCX-HILIC) and online Orbitrap Velos tandem mass spectrometry allowed for unambiguous identification of over 700 histone isoforms from a single 2D LC–MS/MS analysis of 7.5 µg of purified core histones. In comparison with previous offline top-down analysis of H4, this online study identified 100 additional isoforms from 100-fold less sample. This platform enabled comprehensive characterization of histone modifications, including those beyond tail regions, with dramatically improved throughput and sensitivity compared to more traditional platforms. Isoforms identified included those with combinatorial PTMs extending well beyond the N-terminal tail regions as well as a large number of phosphorylated isoforms.

  19. Enhanced susceptibility of ovaries from obese mice to 7,12-dimethylbenz[a]anthracene-induced DNA damage

    PubMed Central

    Ganesan, Shanthi; Nteeba, Jackson; Keating, Aileen F.

    2014-01-01

    7,12-dimethylbenz[a]anthracene (DMBA) depletes ovarian follicles and induces DNA damage in extra-ovarian tissues, thus, we investigated ovarian DMBA-induced DNA damage. Additionally, since obesity is associated with increased offspring birth defect incidence, we hypothesized that a DMBA-induced DNA damage response (DDR) is compromised in ovaries from obese females. Wild type (lean) non agouti (a/a) and KK.Cg-Ay/J heterozygote (obese) mice were dosed with sesame oil or DMBA (1mg/kg; intraperitoneal injection) at 18 wks of age, for 14 days. Total ovarian RNA and protein were isolated and abundance of Ataxia telangiectasia mutated (Atm), X-ray repair complementing defective repair in chinese hamster cells 6 (Xrcc6), Breast cancer type 1 (Brca1), Rad 51 homolog (Rad51), Poly [ADP-ribose] polymerase 1 (Parp1) and Protein kinase, DNA-activated, catalytic polypeptide (Prkdc) were quantified by RT-PCR or Western blot. Phosphorylated histone H2AXH2AX) level was determined by Western blotting. Obesity decreased (P < 0.05) basal protein abundance of PRKDC and BRCA1 proteins but increased (P < 0.05) γH2AX and PARP1 proteins. Ovarian ATM, XRCC6, PRKDC, RAD51 and PARP1 proteins were increased (P < 0.05) by DMBA exposure in lean mice. A blunted DMBA-induced increase (P < 0.05) in XRCC6, PRKDC, RAD51 and BRCA1 was observed in ovaries from obese mice, relative to lean counterparts. Taken together, DMBA exposure induced γH2AX as well as the ovarian DDR, supporting that DMBA causes ovarian DNA damage. Additionally, ovarian DDR was partially attenuated in obese females raising concern that obesity may be an additive factor during chemical-induced ovotoxicity. PMID:25448685

  20. Enhanced susceptibility of ovaries from obese mice to 7,12-dimethylbenz[a]anthracene-induced DNA damage

    SciTech Connect

    Ganesan, Shanthi Nteeba, Jackson Keating, Aileen F.

    2014-12-01

    7,12-Dimethylbenz[a]anthracene (DMBA) depletes ovarian follicles and induces DNA damage in extra-ovarian tissues, thus, we investigated ovarian DMBA-induced DNA damage. Additionally, since obesity is associated with increased offspring birth defect incidence, we hypothesized that a DMBA-induced DNA damage response (DDR) is compromised in ovaries from obese females. Wild type (lean) non agouti (a/a) and KK.Cg-Ay/J heterozygote (obese) mice were dosed with sesame oil or DMBA (1 mg/kg; intraperitoneal injection) at 18 weeks of age, for 14 days. Total ovarian RNA and protein were isolated and abundance of Ataxia telangiectasia mutated (Atm), X-ray repair complementing defective repair in Chinese hamster cells 6 (Xrcc6), breast cancer type 1 (Brca1), Rad 51 homolog (Rad51), poly [ADP-ribose] polymerase 1 (Parp1) and protein kinase, DNA-activated, catalytic polypeptide (Prkdc) were quantified by RT-PCR or Western blot. Phosphorylated histone H2AXH2AX) level was determined by Western blotting. Obesity decreased (P < 0.05) basal protein abundance of PRKDC and BRCA1 proteins but increased (P < 0.05) γH2AX and PARP1 proteins. Ovarian ATM, XRCC6, PRKDC, RAD51 and PARP1 proteins were increased (P < 0.05) by DMBA exposure in lean mice. A blunted DMBA-induced increase (P < 0.05) in XRCC6, PRKDC, RAD51 and BRCA1 was observed in ovaries from obese mice, relative to lean counterparts. Taken together, DMBA exposure induced γH2AX as well as the ovarian DDR, supporting that DMBA causes ovarian DNA damage. Additionally, ovarian DDR was partially attenuated in obese females raising concern that obesity may be an additive factor during chemical-induced ovotoxicity. - Highlights: • DMBA induces markers of ovarian DNA damage. • Obesity induces low level ovarian DNA damage. • DMBA-induced DNA repair response is altered by obesity.

  1. Imaging Features that Discriminate between Foci Induced by High-and Low-LET Radiation in Human Fibroblasts

    SciTech Connect

    Costes, Sylvain V.; Boissiere, Arnaud; Ravani, Shraddha; Romano,Raquel; Parvin, Bahram; Barcellos-Hoff, Mary Helen

    2006-10-08

    In this study, we investigated the formation ofradiation-induced foci in normal human fibroblasts exposed to X rays or130 keV/mum nitrogen ions using antibodies to phosphorylated proteinkinase ataxia telangiectasia mutated (ATMp) and histone H2AX(gamma-H2AX). High-content automatic image analysis was used to quantifythe immunofluorescence of radiation-induced foci. The size ofradiation-induced foci increased for both proteins over a 2-h periodafter nitrogen-ion irradiation, while the size of radiation-induced focidid not change after exposure to low-LET radiation. The number ofradiation-induced ATMp foci showed a more rapid rise and greaterfrequency after X-ray exposure and was resolved more rapidly such thatthe frequency of radiation-induced foci decreased by 90 percent comparedto 60 percent after exposure to high-LET radiation 2 h after 30 cGy. Incontrast, the kinetics of radiation-induced gamma-H2AX focus formationwas similar for high- and low-LET radiation in that it reached a plateauearly and remained constant for up to 2 h. High-resolution 3D images ofradiation-induced gamma-H2AX foci and dosimetry computation suggest thatmultiple double-strand breaks from nitrogen ions are encompassed withinlarge nuclear domains of 4.4 Mbp. Our work shows that the size andfrequency of radiation-induced foci vary as a function of radiationquality, dose, time and protein target. Thus, even though double-strandbreaks and radiation-induced foci are correlated, the dynamic nature ofboth contradicts their accepted equivalence for low doses of differentradiation qualities.

  2. Spatio-temporal radiation biology with conventionally or laser-accelerated particles for ELIMED

    NASA Astrophysics Data System (ADS)

    Ristić-Fira, A.; Bulat, T.; Keta, O.; Romano, F.; Cirrone, P.; Cuttone, G.; Petrović, I.

    2013-07-01

    The aim of this study is to investigate the behavior of radio-resistant human malignant cells, thus enabling better understanding of radiobiological effects of ions in such a case. Radiation sources such as accelerated continuous ion beams and laser technology-based ultra short radiation sources with energy of around 10 MeV will be used. The HTB140 melanoma cells are chosen since it has been shown that they represent the limit case of cellular radio-resistance among the studied tumor cell lines. These cells are particularly interesting as they provide data on the very edge of inactivation capacity of each beam line that is tested. After exposing the cell monolayers to continuous radiations of low (γ-rays) and high (protons) linear energy transfer, the kinetics of disappearance of the phosphorylated histone H2AX (γ-H2AX) foci per cell will be determined. The same procedure will be performed with the pulsed high dose rate protons. Detection and quantification of γ-H2AX foci will be performed by immunohistochemical 3D time-dependent imaging analyses using laser scanning confocal microscopy. Immunoblotting will enable the follow-up of the relation between γ-H2AX and cell cycle arrest via the p53/p21 pathway. In such a way the spatio-temporal changes on sub-cellular level will be visualized, quantified and compared. These results will show whether there is a difference in the effects on cells between continuous and pulsed irradiation mode. Therefore, they will contribute to the data base that might promote pulsed sources for medical treatments of malignant growths.

  3. Spatio-temporal radiation biology with conventionally or laser-accelerated particles for ELIMED

    SciTech Connect

    Ristić-Fira, A.; Bulat, T.; Keta, O.; Petrović, I.; Romano, F.; Cirrone, P.; Cuttone, G.

    2013-07-26

    The aim of this study is to investigate the behavior of radio-resistant human malignant cells, thus enabling better understanding of radiobiological effects of ions in such a case. Radiation sources such as accelerated continuous ion beams and laser technology-based ultra short radiation sources with energy of around 10 MeV will be used. The HTB140 melanoma cells are chosen since it has been shown that they represent the limit case of cellular radio-resistance among the studied tumor cell lines. These cells are particularly interesting as they provide data on the very edge of inactivation capacity of each beam line that is tested. After exposing the cell monolayers to continuous radiations of low (γ-rays) and high (protons) linear energy transfer, the kinetics of disappearance of the phosphorylated histone H2AX (γ-H2AX) foci per cell will be determined. The same procedure will be performed with the pulsed high dose rate protons. Detection and quantification of γ-H2AX foci will be performed by immunohistochemical 3D time-dependent imaging analyses using laser scanning confocal microscopy. Immunoblotting will enable the follow-up of the relation between γ-H2AX and cell cycle arrest via the p53/p21 pathway. In such a way the spatio-temporal changes on sub-cellular level will be visualized, quantified and compared. These results will show whether there is a difference in the effects on cells between continuous and pulsed irradiation mode. Therefore, they will contribute to the data base that might promote pulsed sources for medical treatments of malignant growths.

  4. Correlations between radiation-induced double strand breaks, cell division delay, and cyclin-dependent signaling in x-irradiated NIH3T3 fibroblasts

    NASA Astrophysics Data System (ADS)

    Cariveau, Mickael J.

    2005-07-01

    Molecular responses to radiation-induced DNA double strand breaks (DSB) are mediated by the phosphorylation of the histone variant H2AX which forms identifiable gamma-H2AX foci at the site of the DSB. This event is thought to be linked with the down-regulation of signaling proteins contributing to the checkpoints regulating cell cycle progression and, vis-a-vis , the induction of cell division delay. However, it is unclear whether this division delay is directly related to the number of DSB (gamma-H2AX foci) sustained by an irradiated cell and, if so, whether this number drives cells into cell cycle delay or apoptosis. For this reason, studies were conducted in the immortalized NIH/3T3 fibroblast cell in order to establish correlations between the temporal appearance of the gamma-H2AX foci (a DSB) and the expression of the cell cycle regulatory proteins, cyclin E, A, B1, and their cyclin kinase inhibitor, p21. Cell cycle kinetics and flow cytometry were used to establish radiation-induced division delay over a dose range of 1--6 Gy where a mitotic delay of 2.65 min/cGy was established. Correlations between the expression of cyclin E, A, B1, p21, and the generation of DSB were established in NIH/3T3 cells exposed to 2 or 4 Gy x-irradiation. The data suggest that the G1/S and S phase delay (cyclin E and cyclin A protein levels) are dependent on the dose of radiation while the G2/M (cyclin B1 protein levels) delay is dependent on the quantity of DSB sustained by the irradiated cell.

  5. Transcriptional alterations of ET-1 axis and DNA damage in lung tissue of a rat obesity model.

    PubMed

    Del Ry, Silvia; Cabiati, Manuela; Salvadori, Costanza; Guiducci, Letizia; Caselli, Chiara; Prescimone, Tommaso; Facioni, Maria Sole; Azzarà, Alessia; Chiaramonte, Anna; Mazzoni, Stefano; Bruschi, Fabrizio; Giannessi, Daniela; Scarpato, Roberto

    2015-03-01

    Obesity has been implicated in the development of many cancers. This can lead to genome damage, especially in the form of double-strand break, the presence of which is now easily detected through nuclear phosphorylation of histone H2AX (γ-H2AX) focus assay. Recently, the endothelin (ET) axis has also been shown to have a role in the growth and progression of several tumors, including lung cancer. The aim of this study was to evaluate the ET-1 system transcriptional alterations and γ-H2AX in lung tissue of Zucker rats subdivided into obese (O, n=22) and controls (CO, n=18) rats: under either fasting conditions (CO(fc)-O(fc)) or acute hyperglycemia (CO(AH)-O(AH)). Significantly higher prepro-ET-1 (p=0.05) and ET-converting enzyme (ECE)-2 mRNA expression was observed in O with respect to CO. A significant positive association was observed between prepro-ET-1 and ET-A in the whole rat population (p=0.009) or in the obese group alone (p=0.007). The levels of γ-H2AX in O and in O(AH) rats were significantly higher (p=0.019) than in the corresponding CO and CO(AH) rats (p=0.038). The study shows an inappropriate secretion of ET-1 in O animals with a parallel DNA damage in their lungs, providing novel mechanisms by which ET receptor antagonist may exert organ protection.

  6. Posttranslational Modifications of the Histone 3 Tail and Their Impact on the Activity of Histone Lysine Demethylases In Vitro

    PubMed Central

    Lohse, Brian; Leurs, Ulrike; Cloos, Paul A. C.; Kristensen, Jesper L.; Clausen, Rasmus P.

    2013-01-01

    Posttranslational modifications (PTMs) of the histone H3 tail such as methylation, acetylation and phosphorylation play important roles in epigenetic signaling. Here we study the effect of some of these PTMs on the demethylation rates of methylated lysine 9 in vitro using peptide substrates mimicking histone H3. Various combinations with other PTMs were employed to study possible cross-talk effects by comparing enzyme kinetic characteristics. We compared the kinetics of histone tail substrates for truncated histone lysine demethylases KDM4A and KDM4C containing only the catalytic core (cc) and some combinations were characterized on full length (FL) KDM4A and KDM4C. We found that the substrates combining trimethylated K4 and K9 resulted in a significant increase in the catalytic activity for FL-KDM4A. For the truncated versions of KDM4A and KDM4C a two-fold increase in the catalytic activity toward bis-trimethylated substrates could be observed. Furthermore, a significant difference in the catalytic activity between dimethylated and trimethylated substrates was found for full length demethylases in line with what has been reported previously for truncated demethylases. Histone peptide substrates phosphorylated at T11 could not be demethylated by neither truncated nor full length KDM4A and KDM4C, suggesting that phosphorylation of threonine 11 prevents demethylation of the H3K9me3 mark on the same peptide. Acetylation of K14 was also found to influence demethylation rates significantly. Thus, for truncated KDM4A, acetylation on K14 of the substrate leads to an increase in enzymatic catalytic efficiency (kcat/Km), while for truncated KDM4C it induces a decrease, primarily caused by changes in Km. This study demonstrates that demethylation activities towards trimethylated H3K9 are significantly influenced by other PTMs on the same peptide, and emphasizes the importance of studying these interactions at the peptide level to get a more detailed understanding of the

  7. Exercise-induced histone modifications in human skeletal muscle

    PubMed Central

    McGee, Sean L; Fairlie, Erin; Garnham, Andrew P; Hargreaves, Mark

    2009-01-01

    Skeletal muscle adaptations to exercise confer many of the health benefits of physical activity and occur partly through alterations in skeletal muscle gene expression. The exact mechanisms mediating altered skeletal muscle gene expression in response to exercise are unknown. However, in recent years, chromatin remodelling through epigenetic histone modifications has emerged as a key regulatory mechanism controlling gene expression in general. The purpose of this study was to examine the effect of exercise on global histone modifications that mediate chromatin remodelling and transcriptional activation in human skeletal muscle in response to exercise. In addition, we sought to examine the signalling mechanisms regulating these processes. Following 60 min of cycling, global histone 3 acetylation at lysine 9 and 14, a modification associated with transcriptional initiation, was unchanged from basal levels, but was increased at lysine 36, a site associated with transcriptional elongation. We examined the regulation of the class IIa histone deacetylases (HDACs), which are enzymes that suppress histone acetylation and have been implicated in the adaptations to exercise. While we found no evidence of proteasomal degradation of the class IIa HDACs, we found that HDAC4 and 5 were exported from the nucleus during exercise, thereby removing their transcriptional repressive function. We also observed activation of the AMP-activated protein kinase (AMPK) and the calcium–calmodulin-dependent protein kinase II (CaMKII) in response to exercise, which are two kinases that induce phosphorylation-dependent class IIa HDAC nuclear export. These data delineate a signalling pathway that might mediate skeletal muscle adaptations in response to exercise. PMID:19884317

  8. Phosphorylation of the chromatin binding domain of KSHV LANA.

    PubMed

    Woodard, Crystal; Shamay, Meir; Liao, Gangling; Zhu, Jian; Ng, Ai Na; Li, Renfeng; Newman, Rob; Rho, Hee-Sool; Hu, Jianfei; Wan, Jun; Qian, Jiang; Zhu, Heng; Hayward, S Diane

    2012-01-01

    The Kaposi sarcoma associated herpesvirus (KSHV) latency associated nuclear antigen (LANA) is expressed in all KSHV associated malignancies and is essential for maintenance of KSHV genomes in infected cells. To identify kinases that are potentially capable of modifying LANA, in vitro phosphorylation assays were performed using an Epstein Barr virus plus LANA protein microarray and 268 human kinases purified in active form from yeast. Interestingly, of the Epstein-Barr virus proteins on the array, the EBNA1 protein had the most similar kinase profile to LANA. We focused on nuclear kinases and on the N-terminus of LANA (amino acids 1-329) that contains the LANA chromatin binding domain. Sixty-three nuclear kinases phosphorylated the LANA N-terminus. Twenty-four nuclear kinases phosphorylated a peptide covering the LANA chromatin binding domain (amino acids 3-21). Alanine mutations of serine 10 and threonine 14 abolish or severely diminish chromatin and histone binding by LANA. However, conversion of these residues to the phosphomimetic glutamic acid restored histone binding suggesting that phosphorylation of serine 10 and threonine 14 may modulate LANA function. Serine 10 and threonine 14 were validated as substrates of casein kinase 1, PIM1, GSK-3 and RSK3 kinases. Short-term treatment of transfected cells with inhibitors of these kinases found that only RSK inhibition reduced LANA interaction with endogenous histone H2B. Extended treatment of PEL cell cultures with RSK inhibitor caused a decrease in LANA protein levels associated with p21 induction and a loss of PEL cell viability. The data indicate that RSK phosphorylation affects both LANA accumulation and function. PMID:23093938

  9. A novel, enigmatic histone modification: biotinylation of histones by holocarboxylase synthetase.

    PubMed

    Hassan, Yousef I; Zempleni, Janos

    2008-12-01

    Holocarboxylase synthetase catalyzes the covalent binding of biotin to histones in humans and other eukaryotes. Eleven biotinylation sites have been identified in histones H2A, H3, and H4. K12-biotinylated histone H4 is enriched in heterochromatin, repeat regions, and plays a role in gene repression. About 30% of the histone H4 molecules are biotinylated at K12 in histone H4 in human fibroblast telomeres. The abundance of biotinylated histones at distinct genomic loci depends on biotin availability. Decreased histone biotinylation decreases life span and stress resistance in Drosophila. Low enrichment of biotinylated histones at transposable elements impairs repression of these elements.

  10. Jade-1S phosphorylation induced by CK1α contributes to cell cycle progression.

    PubMed

    Borgal, Lori; Rinschen, Markus M; Dafinger, Claudia; Liebrecht, Valérie I; Abken, Hinrich; Benzing, Thomas; Schermer, Bernhard

    2016-01-01

    The PHD zinc finger protein Jade-1S is a component of the HBO1 histone acetyltransferase complex and binds chromatin in a cell cycle-dependent manner. Jade-1S also acts as an E3 ubiquitin ligase for the canonical Wnt effector protein β-catenin and is influenced by CK1α-mediated phosphorylation. To further elucidate the functional impact of this phosphorylation, we used a stable, low-level expression system to express either wild-type or mutant Jade-1S lacking the N-terminal CK1α phosphorylation motif. Interactome analyses revealed that the Jade-1S mutant unable to be phosphorylated by CK1α has an increased binding affinity to proteins involved in chromatin remodelling, histone deacetylation, transcriptional repression, and ribosome biogenesis. Interestingly, cells expressing the mutant displayed an elongated cell shape and a delay in cell cycle progression. Finally, phosphoproteomic analyses allowed identification of a Jade-1S site phosphorylated in the presence of CK1α but closely resembling a PLK1 phosphorylation motif. Our data suggest that Jade-1S phosphorylation at an N-terminal CK1α motif creates a PLK1 phospho-binding domain. We propose CK1α phosphorylation of Jade 1S to serve as a molecular switch, turning off chromatin remodelling functions of Jade-1S and allowing timely cell cycle progression. As Jade-1S protein expression in the kidney is altered upon renal injury, this could contribute to understanding mechanisms underlying epithelial injury repair.

  11. Acetylation of core histones in response to HDAC inhibitors is diminished in mitotic HeLa cells

    PubMed Central

    Patzlaff, Jason S.; Terrenoire, Edith; Turner, Bryan M.; Earnshaw, William C.; Paulson, James R.

    2010-01-01

    Histone acetylation is a key modification that regulates chromatin accessibility. Here we show that treatment with butyrate or other histone deacetylase (HDAC) inhibitors does not induce histone hyperacetylation in metaphase-arrested HeLa cells. When compared to similarly treated interphase cells, acetylation levels are significantly decreased in all four core histones and at all individual sites examined. However, the extent of the decrease varies, ranging from only slight reduction at H3K23 and H4K12 to no acetylation at H3K27 and barely detectable acetylation at H4K16. Our results show that the bulk effect is not due to increased or butyrate-insensitive HDAC activity, though these factors may play a role with some individual sites. We conclude that the lack of histone acetylation during mitosis is primarily due to changes in histone acetyltransferases (HATs) or changes in chromatin. The effects of protein phosphatase inhibitors on histone acetylation in cell lysates suggest that the reduced ability of histones to become acetylated in mitotic cells depends on protein phosphorylation. PMID:20452346

  12. Stable-isotope-labeled Histone Peptide Library for Histone Post-translational Modification and Variant Quantification by Mass Spectrometry *

    PubMed Central

    Lin, Shu; Wein, Samuel; Gonzales-Cope, Michelle; Otte, Gabriel L.; Yuan, Zuo-Fei; Afjehi-Sadat, Leila; Maile, Tobias; Berger, Shelley L.; Rush, John; Lill, Jennie R.; Arnott, David; Garcia, Benjamin A.

    2014-01-01

    To facilitate accurate histone variant and post-translational modification (PTM) quantification via mass spectrometry, we present a library of 93 synthetic peptides using Protein-Aqua™ technology. The library contains 55 peptides representing different modified forms from histone H3 peptides, 23 peptides representing H4 peptides, 5 peptides representing canonical H2A peptides, 8 peptides representing H2A.Z peptides, and peptides for both macroH2A and H2A.X. The PTMs on these peptides include lysine mono- (me1), di- (me2), and tri-methylation (me3); lysine acetylation; arginine me1; serine/threonine phosphorylation; and N-terminal acetylation. The library was subjected to chemical derivatization with propionic anhydride, a widely employed protocol for histone peptide quantification. Subsequently, the detection efficiencies were quantified using mass spectrometry extracted ion chromatograms. The library yields a wide spectrum of detection efficiencies, with more than 1700-fold difference between the peptides with the lowest and highest efficiencies. In this paper, we describe the impact of different modifications on peptide detection efficiencies and provide a resource to correct for detection biases among the 93 histone peptides. In brief, there is no correlation between detection efficiency and molecular weight, hydrophobicity, basicity, or modification type. The same types of modifications may have very different effects on detection efficiencies depending on their positions within a peptide. We also observed antagonistic effects between modifications. In a study of mouse trophoblast stem cells, we utilized the detection efficiencies of the peptide library to correct for histone PTM/variant quantification. For most histone peptides examined, the corrected data did not change the biological conclusions but did alter the relative abundance of these peptides. For a low-abundant histone H2A variant, macroH2A, the corrected data led to a different conclusion than the

  13. Histone variants: key players of chromatin.

    PubMed

    Biterge, Burcu; Schneider, Robert

    2014-06-01

    Histones are fundamental structural components of chromatin. Eukaryotic DNA is wound around an octamer of the core histones H2A, H2B, H3, and H4. Binding of linker histone H1 promotes higher order chromatin organization. In addition to their structural role, histones impact chromatin function and dynamics by, e.g., post-translational histone modifications or the presence of specific histone variants. Histone variants exhibit differential expression timings (DNA replication-independent) and mRNA characteristics compared to canonical histones. Replacement of canonical histones with histone variants can affect nucleosome stability and help to create functionally distinct chromatin domains. In line with this, several histone variants have been implicated in the regulation of cellular processes such as DNA repair and transcriptional activity. In this review, we focus on recent progress in the study of core histone variants H2A.X, H2A.Z, macroH2A, H3.3, and CENP-A, as well as linker histone H1 variants, their functions and their links to development and disease.

  14. Mass Spectrometric Quantification of Histone Post-translational Modifications by a Hybrid Chemical Labeling Method

    PubMed Central

    Maile, Tobias M.; Izrael-Tomasevic, Anita; Cheung, Tommy; Guler, Gulfem D.; Tindell, Charles; Masselot, Alexandre; Liang, Jun; Zhao, Feng; Trojer, Patrick; Classon, Marie; Arnott, David

    2015-01-01

    Mass spectrometry is a powerful alternative to antibody-based methods for the analysis of histone post-translational modifications (marks). A key development in this approach was the deliberate propionylation of histones to improve sequence coverage across the lysine-rich and hydrophilic tails that bear most modifications. Several marks continue to be problematic however, particularly di- and tri-methylated lysine 4 of histone H3 which we found to be subject to substantial and selective losses during sample preparation and liquid chromatography-mass spectrometry. We developed a new method employing a “one-pot” hybrid chemical derivatization of histones, whereby an initial conversion of free lysines to their propionylated forms under mild aqueous conditions is followed by trypsin digestion and labeling of new peptide N termini with phenyl isocyanate. High resolution mass spectrometry was used to collect qualitative and quantitative data, and a novel web-based software application (Fishtones) was developed for viewing and quantifying histone marks in the resulting data sets. Recoveries of 53 methyl, acetyl, and phosphoryl marks on histone H3.1 were improved by an average of threefold overall, and over 50-fold for H3K4 di- and tri-methyl marks. The power of this workflow for epigenetic research and drug discovery was demonstrated by measuring quantitative changes in H3K4 trimethylation induced by small molecule inhibitors of lysine demethylases and siRNA knockdown of epigenetic modifiers ASH2L and WDR5. PMID:25680960

  15. Molecular basis for phosphospecific recognition of histone H3 tails by Survivin paralogues at inner centromeres

    PubMed Central

    Niedzialkowska, Ewa; Wang, Fangwei; Porebski, Przemyslaw J.; Minor, Wladek; Higgins, Jonathan M. G.; Stukenberg, P. Todd

    2012-01-01

    Survivin, a subunit of the chromosome passenger complex (CPC), binds the N-terminal tail of histone H3, which is phosphorylated on T3 by Haspin kinase, and localizes the complex to the inner centromeres. We used x-ray crystallography to determine the residues of Survivin that are important in binding phosphomodified histone H3. Mutation of amino acids that interact with the histone N-terminus lowered in vitro tail binding affinity and reduced CPC recruitment to the inner centromere in cells, validating our solved structures. Phylogenetic analysis shows that nonmammalian vertebrates have two Survivin paralogues, which we name class A and B. A distinguishing feature of these paralogues is an H-to-R change in an amino acid that interacts with the histone T3 phosphate. The binding to histone tails of the human class A paralogue, which has a histidine at this position, is sensitive to changes around physiological pH, whereas Xenopus Survivin class B is less so. Our data demonstrate that Survivin paralogues have different characteristics of phosphospecific binding to threonine-3 of histone H3, providing new insight into the biology of the inner centromere. PMID:22357620

  16. Non-thermal DNA damage of cancer cells using near-infrared irradiation.

    PubMed

    Tanaka, Yohei; Tatewaki, Naoto; Nishida, Hiroshi; Eitsuka, Takahiro; Ikekawa, Nobuo; Nakayama, Jun

    2012-08-01

    Previously, we reported that near-infrared irradiation that simulates solar near-infrared irradiation with pre- and parallel-irradiational cooling can non-thermally induce cytocidal effects in cancer cells. To explore these effects, we assessed cell viability, DNA damage response pathways, and the percentage of mitotic cancer cells after near-infrared treatment. Further, we evaluated the anti-cancer effects of near-infrared irradiation compared with doxorubicin in xenografts in nude mice by measuring tumor volume and assessing protein phosphorylation by immunoblot analysis. The cell viability of A549 lung adenocarcinoma cells was significantly decreased after three rounds of near-infrared irradiation at 20 J/cm(2). Apoptotic cells were observed in near-infrared treated cells. Moreover, near-infrared treatment increased the phosphorylation of ataxia-telangiectasia mutated (ATM) at Ser(1981), H2AX at Ser(139), Chk1 at Ser(317), structural maintenance of chromosome (SMC) 1 at Ser(966), and p53 at Ser(15) in A549 cells compared with control. Notably, near-infrared treatment induced the formation of nucleic foci of γH2AX. The percentage of mitotic A549 cells, as measured by histone H3 phosphorylation, decreased significantly after three rounds of near-infrared irradiation at 20 J/cm(2). Both near-infrared and doxorubicin inhibited the tumor growth of MDA-MB435 melanoma cell xenografts in nude mice and increased the phosphorylation of p53 at Ser(15), Chk1 at Ser(317), SMC1 at Ser(966), and H2AX at Ser(139) compared with control mice. These results indicate that near-infrared irradiation can non-thermally induce cytocidal effects in cancer cells as a result of activation of the DNA damage response pathway. The near-infrared irradiation schedule used here reduces discomfort and side effects. Therefore, this strategy may have potential application in the treatment of cancer.

  17. TIE2-mediated tyrosine phosphorylation of H4 regulates DNA damage response by recruiting ABL1

    PubMed Central

    Hossain, Mohammad B.; Shifat, Rehnuma; Johnson, David G.; Bedford, Mark T.; Gabrusiewicz, Konrad R.; Cortes-Santiago, Nahir; Luo, Xuemei; Lu, Zhimin; Ezhilarasan, Ravesanker; Sulman, Erik P.; Jiang, Hong; Li, Shawn S. C.; Lang, Frederick F.; Tyler, Jessica; Hung, Mien-Chie; Fueyo, Juan; Gomez-Manzano, Candelaria

    2016-01-01

    DNA repair pathways enable cancer cells to survive DNA damage induced after genotoxic therapies. Tyrosine kinase receptors (TKRs) have been reported as regulators of the DNA repair machinery. TIE2 is a TKR overexpressed in human gliomas at levels that correlate with the degree of increasing malignancy. Following ionizing radiation, TIE2 translocates to the nucleus, conferring cells with an enhanced nonhomologous end-joining mechanism of DNA repair that results in a radioresistant phenotype. Nuclear TIE2 binds to key components of DNA repair and phosphorylates H4 at tyrosine 51, which, in turn, is recognized by the proto-oncogene ABL1, indicating a role for nuclear TIE2 as a sensor for genotoxic stress by action as a histone modifier. H4Y51 constitutes the first tyrosine phosphorylation of core histones recognized by ABL1, defining this histone modification as a direct signal to couple genotoxic stress with the DNA repair machinery.

  18. Histone deacetylases (HDACs): characterization of the classical HDAC family.

    PubMed Central

    de Ruijter, Annemieke J M; van Gennip, Albert H; Caron, Huib N; Kemp, Stephan; van Kuilenburg, André B P

    2003-01-01

    Transcriptional regulation in eukaryotes occurs within a chromatin setting, and is strongly influenced by the post-translational modification of histones, the building blocks of chromatin, such as methylation, phosphorylation and acetylation. Acetylation is probably the best understood of these modifications: hyperacetylation leads to an increase in the expression of particular genes, and hypoacetylation has the opposite effect. Many studies have identified several large, multisubunit enzyme complexes that are responsible for the targeted deacetylation of histones. The aim of this review is to give a comprehensive overview of the structure, function and tissue distribution of members of the classical histone deacetylase (HDAC) family, in order to gain insight into the regulation of gene expression through HDAC activity. SAGE (serial analysis of gene expression) data show that HDACs are generally expressed in almost all tissues investigated. Surprisingly, no major differences were observed between the expression pattern in normal and malignant tissues. However, significant variation in HDAC expression was observed within tissue types. HDAC inhibitors have been shown to induce specific changes in gene expression and to influence a variety of other processes, including growth arrest, differentiation, cytotoxicity and induction of apoptosis. This challenging field has generated many fascinating results which will ultimately lead to a better understanding of the mechanism of gene transcription as a whole. PMID:12429021

  19. Histone variants: emerging players in cancer biology

    PubMed Central

    Vardabasso, Chiara; Hasson, Dan; Ratnakumar, Kajan; Chung, Chi-Yeh; Duarte, Luis F.

    2014-01-01

    Histone variants are key players in shaping chromatin structure, and, thus, in regulating fundamental cellular processes such as chromosome segregation and gene expression. Emerging evidence points towards a role for histone variants in contributing to tumor progression, and, recently, the first cancer-associated mutation in a histone variant-encoding gene was reported. In addition, genetic alterations of the histone chaperones that specifically regulate chromatin incorporation of histone variants are rapidly being uncovered in numerous cancers. Collectively, these findings implicate histone variants as potential drivers of cancer initiation and/or progression, and, therefore, targeting histone deposition or the chromatin remodeling machinery may be of therapeutic value. Here, we review the mammalian histone variants of the H2A and H3 families in their respective cellular functions, and their involvement in tumor biology. PMID:23652611

  20. Unlimited multistability in multisite phosphorylation systems.

    PubMed

    Thomson, Matthew; Gunawardena, Jeremy

    2009-07-01

    Reversible phosphorylation on serine, threonine and tyrosine is the most widely studied posttranslational modification of proteins. The number of phosphorylated sites on a protein (n) shows a significant increase from prokaryotes, with n /= 150 sites. Multisite phosphorylation has many roles and site conservation indicates that increasing numbers of sites cannot be due merely to promiscuous phosphorylation. A substrate with n sites has an exponential number (2(n)) of phospho-forms and individual phospho-forms may have distinct biological effects. The distribution of these phospho-forms and how this distribution is regulated have remained unknown. Here we show that, when kinase and phosphatase act in opposition on a multisite substrate, the system can exhibit distinct stable phospho-form distributions at steady state and that the maximum number of such distributions increases with n. Whereas some stable distributions are focused on a single phospho-form, others are more diffuse, giving the phospho-proteome the potential to behave as a fluid regulatory network able to encode information and flexibly respond to varying demands. Such plasticity may underlie complex information processing in eukaryotic cells and suggests a functional advantage in having many sites. Our results follow from the unusual geometry of the steady-state phospho-form concentrations, which we show to constitute a rational algebraic curve, irrespective of n. We thereby reduce the complexity of calculating steady states from simulating 3 x 2(n) differential equations to solving two algebraic equations, while treating parameters symbolically. We anticipate that these methods can be extended to systems with multiple substrates and multiple enzymes catalysing different modifications, as found in posttranslational modification 'codes' such as the histone code. Whereas simulations struggle with exponentially increasing molecular complexity

  1. Diversity and Divergence of Dinoflagellate Histone Proteins

    PubMed Central

    Marinov, Georgi K.; Lynch, Michael

    2015-01-01

    Histone proteins and the nucleosomal organization of chromatin are near-universal eukaroytic features, with the exception of dinoflagellates. Previous studies have suggested that histones do not play a major role in the packaging of dinoflagellate genomes, although several genomic and transcriptomic surveys have detected a full set of core histone genes. Here, transcriptomic and genomic sequence data from multiple dinoflagellate lineages are analyzed, and the diversity of histone proteins and their variants characterized, with particular focus on their potential post-translational modifications and the conservation of the histone code. In addition, the set of putative epigenetic mark readers and writers, chromatin remodelers and histone chaperones are examined. Dinoflagellates clearly express the most derived set of histones among all autonomous eukaryote nuclei, consistent with a combination of relaxation of sequence constraints imposed by the histone code and the presence of numerous specialized histone variants. The histone code itself appears to have diverged significantly in some of its components, yet others are conserved, implying conservation of the associated biochemical processes. Specifically, and with major implications for the function of histones in dinoflagellates, the results presented here strongly suggest that transcription through nucleosomal arrays happens in dinoflagellates. Finally, the plausible roles of histones in dinoflagellate nuclei are discussed. PMID:26646152

  2. Diversity and Divergence of Dinoflagellate Histone Proteins.

    PubMed

    Marinov, Georgi K; Lynch, Michael

    2015-12-08

    Histone proteins and the nucleosomal organization of chromatin are near-universal eukaroytic features, with the exception of dinoflagellates. Previous studies have suggested that histones do not play a major role in the packaging of dinoflagellate genomes, although several genomic and transcriptomic surveys have detected a full set of core histone genes. Here, transcriptomic and genomic sequence data from multiple dinoflagellate lineages are analyzed, and the diversity of histone proteins and their variants characterized, with particular focus on their potential post-translational modifications and the conservation of the histone code. In addition, the set of putative epigenetic mark readers and writers, chromatin remodelers and histone chaperones are examined. Dinoflagellates clearly express the most derived set of histones among all autonomous eukaryote nuclei, consistent with a combination of relaxation of sequence constraints imposed by the histone code and the presence of numerous specialized histone variants. The histone code itself appears to have diverged significantly in some of its components, yet others are conserved, implying conservation of the associated biochemical processes. Specifically, and with major implications for the function of histones in dinoflagellates, the results presented here strongly suggest that transcription through nucleosomal arrays happens in dinoflagellates. Finally, the plausible roles of histones in dinoflagellate nuclei are discussed.

  3. Interstitial chromatin alteration causes persistent p53 activation involved in the radiation-induced senescence-like growth arrest

    SciTech Connect

    Suzuki, Masatoshi; Suzuki, Keiji; Kodama, Seiji; Watanabe, Masami . E-mail: nabe@rri.kyoto-u.ac.jp

    2006-02-03

    Various stresses including ionizing radiation give normal human fibroblasts a phenotype of senescence-like growth arrest (SLGA), manifested by p53-dependent irreversible G1 arrest. To determine the mechanism of persistent activation of p53, we examined phosphorylated Ataxia telangiectasia mutated (ATM) and phosphorylated histone H2AX foci formation after X-irradiation. Although the multiple tiny foci, detected soon after (<30 min) irradiation, gradually disappeared, some of these foci changed to large foci and persisted for 5 days. Large foci containing phosphorylated ATM and {gamma}-H2AX co-localized and foci with p53 phosphorylated at serine 15 also showed the same distribution. Interestingly, the signals obtained by telomere fluorescence in situ hybridization (FISH) assay did not co-localize with 90% of the large foci. Our results indicate that chromatin alteration in interstitial chromosomal regions is the most likely cause of continuous activation of p53, which results in the induction of SLGA by ionizing radiation.

  4. Mining Conditional Phosphorylation Motifs.

    PubMed

    Liu, Xiaoqing; Wu, Jun; Gong, Haipeng; Deng, Shengchun; He, Zengyou

    2014-01-01

    Phosphorylation motifs represent position-specific amino acid patterns around the phosphorylation sites in the set of phosphopeptides. Several algorithms have been proposed to uncover phosphorylation motifs, whereas the problem of efficiently discovering a set of significant motifs with sufficiently high coverage and non-redundancy still remains unsolved. Here we present a novel notion called conditional phosphorylation motifs. Through this new concept, the motifs whose over-expressiveness mainly benefits from its constituting parts can be filtered out effectively. To discover conditional phosphorylation motifs, we propose an algorithm called C-Motif for a non-redundant identification of significant phosphorylation motifs. C-Motif is implemented under the Apriori framework, and it tests the statistical significance together with the frequency of candidate motifs in a single stage. Experiments demonstrate that C-Motif outperforms some current algorithms such as MMFPh and Motif-All in terms of coverage and non-redundancy of the results and efficiency of the execution. The source code of C-Motif is available at: https://sourceforge. net/projects/cmotif/. PMID:26356863

  5. Epigenetic Modifications and Accumulation of DNA Double-Strand Breaks in Oral Lichen Planus Lesions Presenting Poor Response to Therapy

    PubMed Central

    Dillenburg, Caroline S.; Martins, Marco A.T.; Almeida, Luciana O.; Meurer, Luise; Squarize, Cristiane H.; Martins, Manoela D.; Castilho, Rogerio M.

    2015-01-01

    Abstract Epigenetics refers to changes in cell characteristics that occur independently of modifications to the deoxyribonucleic acid (DNA) sequence. Alterations mediated by epigenetic mechanisms are important factors in cancer progression. Although an exciting prospect, the identification of early epigenetic markers associated with clinical outcome in premalignant and malignant disorders remains elusive. We examined alterations in chromatin acetylation in oral lichen planus (OLP) with distinct clinical behavior and compared the alterations to the levels of DNA double-strand breaks (DSBs). We analyzed 42 OLP patients, who had different responses to therapy, for acetyl-histone H3 at lys9 (H3K9ac), which is associated with enhanced transcription and nuclear decondensation, and the presence of DSBs, as determined by accumulation of phosphorylated γH2AX foci. Patients with high levels of H3K9ac acetylation failed to respond to therapy or experienced disease recurrence shortly after therapy. Similar to H3K9ac, patients who responded poorly to therapy had increased accumulation of DNA DSB, indicating genomic instability. These findings suggest that histone modifications occur in OLP, and H3K9ac and γH2AX histones may serve as epigenetic markers for OLP recurrence. PMID:26222871

  6. Beyond Histone and Deacetylase: An Overview of Cytoplasmic Histone Deacetylases and Their Nonhistone Substrates

    PubMed Central

    Yao, Ya-Li; Yang, Wen-Ming

    2011-01-01

    Acetylation of lysines is a prominent form of modification in mammalian proteins. Deacetylation of proteins is catalyzed by histone deacetylases, traditionally named after their role in histone deacetylation, transcriptional modulation, and epigenetic regulation. Despite the link between histone deacetylases and chromatin structure, some of the histone deacetylases reside in various compartments in the cytoplasm. Here, we review how these cytoplasmic histone deacetylases are regulated, the identification of nonhistone substrates, and the functional implications of their nondeacetylase enzymatic activities. PMID:21234400

  7. CDK2-dependent phosphorylation of Suv39H1 is involved in control of heterochromatin replication during cell cycle progression

    PubMed Central

    Park, Su Hyung; Yu, Seung Eun; Chai, Young Gyu; Jang, Yeun Kyu

    2014-01-01

    Although several studies have suggested that the functions of heterochromatin regulators may be regulated by post-translational modifications during cell cycle progression, regulation of the histone methyltransferase Suv39H1 is not fully understood. Here, we demonstrate a direct link between Suv39H1 phosphorylation and cell cycle progression. We show that CDK2 phosphorylates Suv39H1 at Ser391 and these phosphorylation levels oscillate during the cell cycle, peaking at S phase and maintained during S-G2-M phase. The CDK2-mediated phosphorylation of Suv39H1 at Ser391 results in preferential dissociation from chromatin. Furthermore, phosphorylation-mediated dissociation of Suv39H1 from chromatin causes an enhanced occupancy of JMJD2A histone demethylase on heterochromatin and alterations in inactive histone marks. Overexpression of phospho-mimic Suv39H1 induces early replication of heterochromatin, suggesting the importance of Suv39H1 phosphorylation in the replication of heterochromatin. Moreover, overexpression of phospho-defective Suv39H1 caused altered replication timing of heterochromatin and increases sensitivity to replication stress. Collectively, our data suggest that phosphorylation-mediated modulation of Suv39H1-chromatin association may be an initial step in heterochromatin replication. PMID:24728993

  8. Reconstitution of the cellular response to DNA damage in vitro using damage-activated extracts from mammalian cells

    SciTech Connect

    Roper, Katherine; Coverley, Dawn

    2012-03-10

    In proliferating mammalian cells, DNA damage is detected by sensors that elicit a cellular response which arrests the cell cycle and repairs the damage. As part of the DNA damage response, DNA replication is inhibited and, within seconds, histone H2AX is phosphorylated. Here we describe a cell-free system that reconstitutes the cellular response to DNA double strand breaks using damage-activated cell extracts and naieve nuclei. Using this system the effect of damage signalling on nuclei that do not contain DNA lesions can be studied, thereby uncoupling signalling and repair. Soluble extracts from G1/S phase cells that were treated with etoposide before isolation, or pre-incubated with nuclei from etoposide-treated cells during an in vitro activation reaction, restrain both initiation and elongation of DNA replication in naieve nuclei. At the same time, H2AX is phosphorylated in naieve nuclei in a manner that is dependent upon the phosphatidylinositol 3-kinase-like protein kinases. Notably, phosphorylated H2AX is not focal in naieve nuclei, but is evident throughout the nucleus suggesting that in the absence of DNA lesions the signal is not amplified such that discrete foci can be detected. This system offers a novel screening approach for inhibitors of DNA damage response kinases, which we demonstrate using the inhibitors wortmannin and LY294002. -- Highlights: Black-Right-Pointing-Pointer A cell free system that reconstitutes the response to DNA damage in the absence of DNA lesions. Black-Right-Pointing-Pointer Damage-activated extracts impose the cellular response to DNA damage on naieve nuclei. Black-Right-Pointing-Pointer PIKK-dependent response impacts positively and negatively on two separate fluorescent outputs. Black-Right-Pointing-Pointer Can be used to screen for inhibitors that impact on the response to damage but not on DNA repair. Black-Right-Pointing-Pointer LY294002 and wortmannin demonstrate the system's potential as a pathway focused screening

  9. Inhibition of autophagy enhances DNA damage-induced apoptosis by disrupting CHK1-dependent S phase arrest

    SciTech Connect

    Liou, Jong-Shian; Wu, Yi-Chen; Yen, Wen-Yen; Tang, Yu-Shuan; Kakadiya, Rajesh B.; Su, Tsann-Long; Yih, Ling-Huei

    2014-08-01

    DNA damage has been shown to induce autophagy, but the role of autophagy in the DNA damage response and cell fate is not fully understood. BO-1012, a bifunctional alkylating derivative of 3a-aza-cyclopenta[a]indene, is a potent DNA interstrand cross-linking agent with anticancer activity. In this study, BO-1012 was found to reduce DNA synthesis, inhibit S phase progression, and induce phosphorylation of histone H2AX on serine 139 (γH2AX) exclusively in S phase cells. Both CHK1 and CHK2 were phosphorylated in response to BO-1012 treatment, but only depletion of CHK1, but not CHK2, impaired BO-1012-induced S phase arrest and facilitated the entry of γH2AX-positive cells into G2 phase. CHK1 depletion also significantly enhanced BO-1012-induced cell death and apoptosis. These results indicate that BO-1012-induced S phase arrest is a CHK1-dependent pro-survival response. BO-1012 also resulted in marked induction of acidic vesicular organelle (AVO) formation and microtubule-associated protein 1 light chain 3 (LC3) processing and redistribution, features characteristic of autophagy. Depletion of ATG7 or co-treatment of cells with BO-1012 and either 3-methyladenine or bafilomycin A1, two inhibitors of autophagy, not only reduced CHK1 phosphorylation and disrupted S phase arrest, but also increased cleavage of caspase-9 and PARP, and cell death. These results suggest that cells initiate S phase arrest and autophagy as pro-survival responses to BO-1012-induced DNA damage, and that suppression of autophagy enhances BO-1012-induced apoptosis via disruption of CHK1-dependent S phase arrest. - Highlights: • Autophagy inhibitors enhanced the cytotoxicity of a DNA alkylating agent, BO-1012. • BO-1012-induced S phase arrest was a CHK1-dependent pro-survival response. • Autophagy inhibition enhanced BO-1012 cytotoxicity via disrupting the S phase arrest.

  10. Mass Spectrometric Analysis of Histone Proteoforms

    NASA Astrophysics Data System (ADS)

    Yuan, Zuo-Fei; Arnaudo, Anna M.; Garcia, Benjamin A.

    2014-06-01

    Histones play important roles in chromatin, in the forms of various posttranslational modifications (PTMs) and sequence variants, which are called histone proteoforms. Investigating modifications and variants is an ongoing challenge. Previous methods are based on antibodies, and because they usually detect only one modification at a time, they are not suitable for studying the various combinations of modifications on histones. Fortunately, mass spectrometry (MS) has emerged as a high-throughput technology for histone analysis and does not require prior knowledge about any modifications. From the data generated by mass spectrometers, both identification and quantification of modifications, as well as variants, can be obtained easily. On the basis of this information, the functions of histones in various cellular contexts can be revealed. Therefore, MS continues to play an important role in the study of histone proteoforms. In this review, we discuss the analysis strategies of MS, their applications on histones, and some key remaining challenges.

  11. Mass Spectrometric Analysis of Histone Proteoforms

    PubMed Central

    Yuan, Zuo-Fei; Arnaudo, Anna M.; Garcia, Benjamin A.

    2014-01-01

    Histones play important roles in chromatin, due to various post-translational modifications and sequence variants, which are called histone proteoforms. Investigating modifications and variants is an on-going challenge. Previous methods are based on antibodies and because they usually detect only one modification at a time, they are not suitable to study the various combinations of modifications on histones. Fortunately, mass spectrometry has emerged as a high-throughput technology for histone analysis and does not require prior knowledge about any modifications. From the data generated by mass spectrometers, both identification and quantification of modifications and variants can be easily obtained. Based on this information, the functions of histones in various cellular contexts can be revealed. Therefore, mass spectrometry continues to play an important role in the study of histone proteoforms. In this review, we will discuss the analysis strategies of mass spectrometry, their applications on histones, and some key remaining challenges. PMID:24896311

  12. Identification and interrogation of combinatorial histone modifications.

    PubMed

    Karch, Kelly R; Denizio, Jamie E; Black, Ben E; Garcia, Benjamin A

    2013-01-01

    Histone proteins are dynamically modified to mediate a variety of cellular processes including gene transcription, DNA damage repair, and apoptosis. Regulation of these processes occurs through the recruitment of non-histone proteins to chromatin by specific combinations of histone post-translational modifications (PTMs). Mass spectrometry has emerged as an essential tool to discover and quantify histone PTMs both within and between samples in an unbiased manner. Developments in mass spectrometry that allow for characterization of large histone peptides or intact protein has made it possible to determine which modifications occur simultaneously on a single histone polypeptide. A variety of techniques from biochemistry, biophysics, and chemical biology have been employed to determine the biological relevance of discovered combinatorial codes. This review first describes advancements in the field of mass spectrometry that have facilitated histone PTM analysis and then covers notable approaches to probe the biological relevance of these modifications in their nucleosomal context.

  13. Antitumor activity of a small-molecule inhibitor of the histone kinase Haspin

    PubMed Central

    Huertas, D; Soler, M; Moreto, J; Villanueva, A; Martinez, A; Vidal, A; Charlton, M; Moffat, D; Patel, S; McDermott, J; Owen, J; Brotherton, D; Krige, D; Cuthill, S; Esteller, M

    2012-01-01

    The approval of histone deacetylase inhibitors for treatment of lymphoma subtypes has positioned histone modifications as potential targets for the development of new classes of anticancer drugs. Histones also undergo phosphorylation events, and Haspin is a protein kinase the only known target of which is phosphorylation of histone H3 at Thr3 residue (H3T3ph), which is necessary for mitosis progression. Mitotic kinases can be blocked by small drugs and several clinical trials are underway with these agents. As occurs with Aurora kinase inhibitors, Haspin might be an optimal candidate for the pharmacological development of these compounds. A high-throughput screening for Haspin inhibitors identified the CHR-6494 compound as being one promising such agent. We demonstrate that CHR-6494 reduces H3T3ph levels in a dose-dependent manner and causes a mitotic catastrophe characterized by metaphase misalignment, spindle abnormalities and centrosome amplification. From the cellular standpoint, the identified small-molecule Haspin inhibitor causes arrest in G2/M and subsequently apoptosis. Importantly, ex vivo assays also demonstrate its anti-angiogenetic features; in vivo, it shows antitumor potential in xenografted nude mice without any observed toxicity. Thus, CHR-6494 is a first-in-class Haspin inhibitor with a wide spectrum of anticancer effects that merits further preclinical research as a new member of the family of mitotic kinase inhibitors. PMID:21804608

  14. Mitotic Activation of a Novel Histone Deacetylase 3-Linker Histone H1.3 Protein Complex by Protein Kinase CK2.

    PubMed

    Patil, Hemangi; Wilks, Carrie; Gonzalez, Rhiannon W; Dhanireddy, Sudheer; Conrad-Webb, Heather; Bergel, Michael

    2016-02-12

    Histone deacetylase 3 (HDAC3) and linker histone H1 are involved in both chromatin compaction and the regulation of mitotic progression. However, the mechanisms by which HDAC3 and H1 regulate mitosis and the factors controlling HDAC3 and H1 activity during mitosis are unclear. Furthermore, as of now, no association between class I, II, or IV (non-sirtuin) HDACs and linker histones has been reported. Here we describe a novel HDAC3-H1.3 complex containing silencing mediator of retinoic acid and thyroid hormone receptor (SMRT) and nuclear receptor corepressor 1 (N-CoR) that accumulated in synchronized HeLa cells in late G2 phase and mitosis. Nonetheless, the deacetylation activity by HDAC3 in the complex was evident only in mitotic complexes. HDAC3 associated with H1.3 was highly phosphorylated on Ser-424 only during mitosis. Isolation of inactive HDAC3-H1.3 complexes from late G2 phase cells, and phosphorylation of HDAC3 in the complexes at serine 424 by protein kinase CK2 (also known as casein kinase 2) activated the HDAC3 in vitro. In vivo, CK2α and CK2α' double knockdown cells demonstrated a significant decrease in HDAC3 Ser-424 phosphorylation during mitosis. HDAC3 and H1.3 co-localized in between the chromosomes, with polar microtubules and spindle poles during metaphase through telophase, and partially co-localized with chromatin during prophase and interphase. H1 has been reported previously to associate with microtubules and, therefore, could potentially function in targeting HDAC3 to the microtubules. We suggest that phosphorylation of HDAC3 in the complex by CK2 during mitosis activates the complex for a dual role: compaction of the mitotic chromatin and regulation of polar microtubules dynamic instability.

  15. Mitotic Activation of a Novel Histone Deacetylase 3-Linker Histone H1.3 Protein Complex by Protein Kinase CK2*

    PubMed Central

    Patil, Hemangi; Wilks, Carrie; Gonzalez, Rhiannon W.; Dhanireddy, Sudheer; Conrad-Webb, Heather; Bergel, Michael

    2016-01-01

    Histone deacetylase 3 (HDAC3) and linker histone H1 are involved in both chromatin compaction and the regulation of mitotic progression. However, the mechanisms by which HDAC3 and H1 regulate mitosis and the factors controlling HDAC3 and H1 activity during mitosis are unclear. Furthermore, as of now, no association between class I, II, or IV (non-sirtuin) HDACs and linker histones has been reported. Here we describe a novel HDAC3-H1.3 complex containing silencing mediator of retinoic acid and thyroid hormone receptor (SMRT) and nuclear receptor corepressor 1 (N-CoR) that accumulated in synchronized HeLa cells in late G2 phase and mitosis. Nonetheless, the deacetylation activity by HDAC3 in the complex was evident only in mitotic complexes. HDAC3 associated with H1.3 was highly phosphorylated on Ser-424 only during mitosis. Isolation of inactive HDAC3-H1.3 complexes from late G2 phase cells, and phosphorylation of HDAC3 in the complexes at serine 424 by protein kinase CK2 (also known as casein kinase 2) activated the HDAC3 in vitro. In vivo, CK2α and CK2α' double knockdown cells demonstrated a significant decrease in HDAC3 Ser-424 phosphorylation during mitosis. HDAC3 and H1.3 co-localized in between the chromosomes, with polar microtubules and spindle poles during metaphase through telophase, and partially co-localized with chromatin during prophase and interphase. H1 has been reported previously to associate with microtubules and, therefore, could potentially function in targeting HDAC3 to the microtubules. We suggest that phosphorylation of HDAC3 in the complex by CK2 during mitosis activates the complex for a dual role: compaction of the mitotic chromatin and regulation of polar microtubules dynamic instability. PMID:26663086

  16. Histone modifications and DNA double-strand break repair after exposure to ionizing radiations.

    PubMed

    Hunt, Clayton R; Ramnarain, Deepti; Horikoshi, Nobuo; Iyengar, Puneeth; Pandita, Raj K; Shay, Jerry W; Pandita, Tej K

    2013-04-01

    Ionizing radiation exposure induces highly lethal DNA double-strand breaks (DSBs) in all phases of the cell cycle. After DSBs are detected by the cellular machinery, these breaks are repaired by either of two mechanisms: (1) nonhomologous end joining (NHEJ), which re-ligates the broken ends of the DNA and (2) homologous recombination (HR), that makes use of an undamaged identical DNA sequence as a template to maintain the fidelity of DNA repair. DNA DSB repair must occur within the context of the natural cellular DNA structure. Among the major factors influencing DNA organization are specific histone and nonhistone proteins that form chromatin. The overall chromatin structure regulates DNA damage responses since chromatin status can impede DNA damage site access by repair proteins. During the process of DNA DSB repair, several chromatin alterations are required to sense damage and facilitate accessibility of the repair machinery. The DNA DSB response is also facilitated by hierarchical signaling networks that orchestrate chromatin structural changes that may coordinate cell-cycle checkpoints involving multiple enzymatic activities to repair broken DNA ends. During DNA damage sensing and repair, histones undergo posttranslational modifications (PTMs) including phosphorylation, acetylation, methylation and ubiquitylation. Such histone modifications represent a histone code that directs the recruitment of proteins involved in DNA damage sensing and repair processes. In this review, we summarize histone modifications that occur during DNA DSB repair processes.

  17. Histone H3 as a novel substrate for MAP kinase phosphatase-1.

    PubMed

    Kinney, Corttrell M; Chandrasekharan, Unni M; Yang, Lin; Shen, Jianzhong; Kinter, Michael; McDermott, Michael S; DiCorleto, Paul E

    2009-02-01

    Mitogen-activated protein (MAP) kinase phosphatase-1 (MKP-1) is a nuclear, dual-specificity phosphatase that has been shown to dephosphorylate MAP kinases. We used a "substrate-trap" technique involving a mutation in MKP-1 of the catalytically critical cysteine to a serine residue ("CS" mutant) to capture novel MKP-1 substrates. We transfected the MKP-1 (CS) mutant and control (wild-type, WT) constructs into phorbol 12-myristate 13-acetate (PMA)-activated COS-1 cells. MKP-1-substrate complexes were immunoprecipitated, which yielded four bands of 17, 15, 14, and 10 kDa with the CS MKP-1 mutant but not the WT MKP-1. The bands were identified by mass spectrometry as histones H3, H2B, H2A, and H4, respectively. Histone H3 was phosphorylated, and purified MKP-1 dephosphorylated histone H3 (phospho-Ser-10) in vitro; whereas, histone H3 (phospho-Thr-3) was unaffected. We have previously shown that thrombin and vascular endothelial growth factor (VEGF) upregulated MKP-1 in human endothelial cells (EC). We now show that both thrombin and VEGF caused dephosphorylation of histone H3 (phospho-Ser-10) and histone H3 (phospho-Thr-3) in EC with kinetics consistent with MKP-1 induction. Furthermore, MKP-1-specific small interfering RNA (siRNA) prevented VEGF- and thrombin-induced H3 (phospho-Ser-10) dephosphorylation but had no effect on H3 (phospho-Thr-3 or Thr-11) dephosphorylation. In summary, histone H3 is a novel substrate of MKP-1, and VEGF- and thrombin-induced H3 (phospho-Ser-10) dephosphorylation requires MKP-1. We propose that MKP-1-mediated H3 (phospho-Ser-10) dephosphorylation is a key regulatory step in EC activation by VEGF and thrombin. PMID:19020052

  18. Struvite and prebiotic phosphorylation.

    NASA Technical Reports Server (NTRS)

    Handschuh, G. J.; Orgel, L. E.

    1973-01-01

    Struvite rather than apatite or amorphous calcium phosphate is precipitated when phosphate is added to seawater containing more than 0.01M NH4+ ions. Struvite may have precipitated from evaporating seawater on the primitive earth, and may have been important for prebiotic phosphorylation.

  19. Dissecting the Molecular Roles of Histone Chaperones in Histone Acetylation by Type B Histone Acetyltransferases (HAT-B).

    PubMed

    Haigney, Allison; Ricketts, M Daniel; Marmorstein, Ronen

    2015-12-18

    The HAT-B enzyme complex is responsible for acetylating newly synthesized histone H4 on lysines K5 and K12. HAT-B is a multisubunit complex composed of the histone acetyltransferase 1 (Hat1) catalytic subunit and the Hat2 (rbap46) histone chaperone. Hat1 is predominantly localized in the nucleus as a member of a trimeric NuB4 complex containing Hat1, Hat2, and a histone H3-H4 specific histone chaperone called Hif1 (NASP). In addition to Hif1 and Hat2, Hat1 interacts with Asf1 (anti-silencing function 1), a histone chaperone that has been reported to be involved in both replication-dependent and -independent chromatin assembly. To elucidate the molecular roles of the Hif1 and Asf1 histone chaperones in HAT-B histone binding and acetyltransferase activity, we have characterized the stoichiometry and binding mode of Hif1 and Asf1 to HAT-B and the effect of this binding on the enzymatic activity of HAT-B. We find that Hif1 and Asf1 bind through different modes and independently to HAT-B, whereby Hif1 binds directly to Hat2, and Asf1 is only capable of interactions with HAT-B through contacts with histones H3-H4. We also demonstrate that HAT-B is significantly more active against an intact H3-H4 heterodimer over a histone H4 peptide, independent of either Hif1 or Asf1 binding. Mutational studies further demonstrate that HAT-B binding to the histone tail regions is not sufficient for this enhanced activity. Based on these data, we propose a model for HAT-B/histone chaperone assembly and acetylation of H3-H4 complexes.

  20. Oxidative phosphorylation revisited.

    PubMed

    Nath, Sunil; Villadsen, John

    2015-03-01

    The fundamentals of oxidative phosphorylation and photophosphorylation are revisited. New experimental data on the involvement of succinate and malate anions respectively in oxidative phosphorylation and photophosphorylation are presented. These new data offer a novel molecular mechanistic explanation for the energy coupling and ATP synthesis carried out in mitochondria and chloroplast thylakoids. The mechanism does not suffer from the flaws in Mitchell's chemiosmotic theory that have been pointed out in many studies since its first appearance 50 years ago, when it was hailed as a ground-breaking mechanistic explanation of what is perhaps the most important process in cellular energetics. The new findings fit very well with the predictions of Nath's torsional mechanism of energy transduction and ATP synthesis. It is argued that this mechanism, based on at least 15 years of experimental and theoretical work by Sunil Nath, constitutes a fundamentally different theory of the energy conversion process that eliminates all the inconsistencies in Mitchell's chemiosmotic theory pointed out by other authors. It is concluded that the energy-transducing complexes in oxidative phosphorylation and photosynthesis are proton-dicarboxylic acid anion cotransporters and not simply electrogenic proton translocators. These results necessitate revision of previous theories of biological energy transduction, coupling, and ATP synthesis. The novel molecular mechanism is extended to cover ATP synthesis in prokaryotes, in particular to alkaliphilic and haloalkaliphilic bacteria, essentially making it a complete theory addressing mechanistic, kinetic, and thermodynamic details. Finally, based on the new interpretation of oxidative phosphorylation, quantitative values for the P/O ratio, the amount of ATP generated per redox package of the reduced substrates, are calculated and compared with experimental values for fermentation on different substrates. It is our hope that the presentation of

  1. Extent of histone modifications and H1/sup 0/ content during cell cycle progression in the presence of butyrate

    SciTech Connect

    D'Anna, J.A.; Gurley, L.R.; Tobey, R.A.

    1983-01-01

    The effects of butyrate upon the extents of phosphorylation of histones H1 and H1/sup 0/ during cell-cycle progression have been investigated. Chinese hamster (line CHO) cells were synchronized in early S phase and released into medium containing 0 or 15 mM butyrate to resume cell-cycle traverse into G1 of the next cell cycle. Cells were also mechanically selected from monolayer cultures grown in the presence of colcemid and 0 or 15 mM butyrate to obtain >98% pure populations of metaphase cells. Although cell cycle progression is altered by butyrate, electrophoretic patterns of histones H1, H1/sup 0/, H3, and H4 indicate that butyrate has little, if any, effect on the extents of H1 and H1/sup 0/ phosphorylation during the cell cycle or the mitotic-specific phosphorylation of histone H3. Butyrate does, however, inhibit removal of extraordinary levels of histone H4 acetylation (hyperacetylation) during metaphase, and it appears to cause an increase in the content of H1/sup 0/ in chromatin during the S or G2 phases of the cell cycle. 38 references, 4 figures, 1 table.

  2. Release and activity of histone in diseases.

    PubMed

    Chen, R; Kang, R; Fan, X-G; Tang, D

    2014-01-01

    Histones and their post-translational modifications have key roles in chromatin remodeling and gene transcription. Besides intranuclear functions, histones act as damage-associated molecular pattern molecules when they are released into the extracellular space. Administration of exogenous histones to animals leads to systemic inflammatory and toxic responses through activating Toll-like receptors and inflammasome pathways. Anti-histone treatment (e.g., neutralizing antibodies, activated protein C, recombinant thrombomodulin, and heparin) protect mice against lethal endotoxemia, sepsis, ischemia/reperfusion injury, trauma, pancreatitis, peritonitis, stroke, coagulation, and thrombosis. In addition, elevated serum histone and nucleosome levels have been implicated in multiple pathophysiological processes and progression of diseases including autoimmune diseases, inflammatory diseases, and cancer. Therefore, extracellular histones could serve as biomarkers and novel therapeutic targets in human diseases. PMID:25118930

  3. Polychlorinated biphenyl quinone induces oxidative DNA damage and repair responses: The activations of NHEJ, BER and NER via ATM-p53 signaling axis

    SciTech Connect

    Dong, Hui; Shi, Qiong; Song, Xiufang; Fu, Juanli; Hu, Lihua; Xu, Demei; Su, Chuanyang; Xia, Xiaomin; Song, Erqun; Song, Yang

    2015-07-01

    Our previous studies demonstrated that polychlorinated biphenyl (PCB) quinone induced oxidative DNA damage in HepG2 cells. To promote genomic integrity, DNA damage response (DDR) coordinates cell-cycle transitions, DNA repair and apoptosis. PCB quinone-induced cell cycle arrest and apoptosis have been documented, however, whether PCB quinone insult induce DNA repair signaling is still unknown. In this study, we identified the activation of DDR and corresponding signaling events in HepG2 cells upon the exposure to a synthetic PCB quinone, PCB29-pQ. Our data illustrated that PCB29-pQ induces the phosphorylation of p53, which was mediated by ataxia telangiectasia mutated (ATM) protein kinase. The observed phosphorylated histone H2AX (γ-H2AX) foci and the elevation of 8-hydroxy-2′-deoxyguanosine (8-OHdG) indicated that DDR was stimulated by PCB29-pQ treatment. Additionally, we found PCB29-pQ activates non-homologous end joining (NHEJ), base excision repair (BER) and nucleotide excision repair (NER) signalings. However, these repair pathways are not error-free processes and aberrant repair of DNA damage may cause the potential risk of carcinogenesis and mutagenesis. - Highlights: • Polychlorinated biphenyl quinone induces oxidative DNA damage in HepG2 cells. • The elevation of γ-H2AX and 8-OHdG indicates the activation of DNA damage response. • ATM-p53 signaling acts as the DNA damage sensor and effector. • Polychlorinated biphenyl quinone activates NHEJ, BER and NER signalings.

  4. Origin of H1 linker histones.

    PubMed

    Kasinsky, H E; Lewis, J D; Dacks, J B; Ausió, J

    2001-01-01

    In which taxa did H1 linker histones appear in the course of evolution? Detailed comparative analysis of the histone H1 and histone H1-related sequences available to date suggests that the origin of histone H1 can be traced to bacteria. The data also reveal that the sequence corresponding to the 'winged helix' motif of the globular structural domain, a domain characteristic of all metazoan histone H1 molecules, is evolutionarily conserved and appears separately in several divergent lines of protists. Some protists, however, appear to have only a lysine-rich basic protein, which has compositional similarity to some of the histone H1-like proteins from eubacteria and to the carboxy-terminal domain of the H1 linker histones from animals and plants. No lysine-rich basic proteins have been described in archaebacteria. The data presented in this review provide the surprising conclusion that whereas DNA-condensing H1-related histones may have arisen early in evolution in eubacteria, the appearance of the sequence motif corresponding to the globular domain of metazoan H1s occurred much later in the protists, after and independently of the appearance of the chromosomal core histones in archaebacteria.

  5. Uncoupling histone turnover from transcription-associated histone H3 modifications.

    PubMed

    Ferrari, Paolo; Strubin, Michel

    2015-04-30

    Transcription in eukaryotes is associated with two major changes in chromatin organization. Firstly, nucleosomal histones are continuously replaced by new histones, an event that in yeast occurs predominantly at transcriptionally active promoters. Secondly, histones become modified post-translationally at specific lysine residues. Some modifications, including histone H3 trimethylation at lysine 4 (H3K4me3) and acetylation at lysines 9 (H3K9ac) and 14 (H3K14ac), are specifically enriched at active promoters where histones exchange, suggesting a possible causal relationship. Other modifications accumulate within transcribed regions and one of them, H3K36me3, is thought to prevent histone exchange. Here we explored the relationship between these four H3 modifications and histone turnover at a few selected genes. Using lysine-to-arginine mutants and a histone exchange assay, we found that none of these modifications plays a major role in either promoting or preventing histone turnover. Unexpectedly, mutation of H3K56, whose acetylation occurs prior to chromatin incorporation, had an effect only when introduced into the nucleosomal histone. Furthermore, we used various genetic approaches to show that histone turnover can be experimentally altered with no major consequence on the H3 modifications tested. Together, these results suggest that transcription-associated histone turnover and H3 modification are two correlating but largely independent events.

  6. Chromatin modifiers and histone modifications in bone formation, regeneration, and therapeutic intervention for bone-related disease.

    PubMed

    Gordon, Jonathan A R; Stein, Janet L; Westendorf, Jennifer J; van Wijnen, Andre J

    2015-12-01

    Post-translational modifications of chromatin such as DNA methylation and different types of histone acetylation, methylation and phosphorylation are well-appreciated epigenetic mechanisms that confer information to progeny cells during lineage commitment. These distinct epigenetic modifications have defined roles in bone, development, tissue regeneration, cell commitment and differentiation, as well as disease etiologies. In this review, we discuss the role of these chromatin modifications and the enzymes regulating these marks (methyltransferases, demethylases, acetyltransferases, and deacetylases) in progenitor cells, osteoblasts and bone-related cells. In addition, the clinical relevance of deregulated histone modifications and enzymes as well as current and potential therapeutic interventions targeting chromatin modifiers are addressed.

  7. The interplay of histone modifications – writers that read

    PubMed Central

    Zhang, Tianyi; Cooper, Sarah; Brockdorff, Neil

    2015-01-01

    Histones are subject to a vast array of posttranslational modifications including acetylation, methylation, phosphorylation, and ubiquitylation. The writers of these modifications play important roles in normal development and their mutation or misregulation is linked with both genetic disorders and various cancers. Readers of these marks contain protein domains that allow their recruitment to chromatin. Interestingly, writers often contain domains which can read chromatin marks, allowing the reinforcement of modifications through a positive feedback loop or inhibition of their activity by other modifications. We discuss how such positive reinforcement can result in chromatin states that are robust and can be epigenetically maintained through cell division. We describe the implications of these regulatory systems in relation to modifications including H3K4me3, H3K79me3, and H3K36me3 that are associated with active genes and H3K27me3 and H3K9me3 that have been linked to transcriptional repression. We also review the crosstalk between active and repressive modifications, illustrated by the interplay between the Polycomb and Trithorax histone-modifying proteins, and discuss how this may be important in defining gene expression states during development. PMID:26474904

  8. Alp13, an MRG family protein, is a component of fission yeast Clr6 histone deacetylase required for genomic integrity

    PubMed Central

    Nakayama, Jun-ichi; Xiao, Guoping; Noma, Ken-ichi; Malikzay, Asra; Bjerling, Pernilla; Ekwall, Karl; Kobayashi, Ryuji; Grewal, Shiv I.S.

    2003-01-01

    The post-translational modifications of histones are key to the modulation of chromatin structure. Distinct patterns of modifications established by histone-modifying enzymes control diverse chromosomal processes. Here, we report the purification and molecular characterization of the fission yeast Clr6 histone deacetyl ase involved in higher order chromatin assembly. We show that a chromodomain protein Alp13, which belongs to the conserved MRG protein family linked to cellular senescence in humans, is associated with Clr6. In addition, Clr6 interacts with homologs of the mammalian transcriptional co-repressors Sin3, Pst1 and Pst2, and a WD40 repeat-containing protein, Prw1. Alp13, Pst2 and Prw1 form a stable complex with Clr6 in the nucleus. Deletion of any of these factors causes progressive loss of viability and sensitivity to DNA-damaging agents, and impairs condensation/resolution of chromosomes during mitosis. This is accompanied by hyperacetylation of histones and a reduction in histone H3 Ser10 phosphorylation, which correlates with chromosome condensation during mitosis. These results link the MRG family protein Alp13 to histone deacetylation, and suggest that Clr6 and its associated factors are essential for fundamental chromosomal events. PMID:12773392

  9. Topographic regulation of phosphorylation in giant neurons of the squid, Loligo pealei: role of phosphatases.

    PubMed

    Grant, Philip; Pant, Harish C

    2004-03-01

    In previous studies of phosphorylation in squid stellate ganglion neurons, we demonstrated that a specific multimeric phosphorylation complex characterized each cellular compartment. Although the endogenous protein profile of cell body extracts (giant fiber lobe, GFL), as determined by Coomassie staining, was similar to that of axoplasm from the giant axon, in this study we show that the protein phosphorylation profiles are qualitatively different. Whereas many axoplasm proteins were phosphorylated, including most cytoskeletal proteins, virtually all phosphorylation in perikarya was confined to low molecular weight compounds (<6 kDa). Because phosphorylation of exogenous substrates, histone and casein, was equally active in extracts from both compartments, failure to detect endogenous protein phosphorylation in cell bodies was attributed to the presence of more active phosphatases. To further explore the role of phosphatases in these neurons, we studied phosphorylation in the presence of serine/threonine and protein tyrosine phosphatase (PTP) inhibitors. We found that phosphorylation of axonal cytoskeletal proteins was modulated by okadaic acid-sensitive ser/thr phosphatases, whereas cell body phosphorylation was more sensitive to an inhibitor of protein tyrosine phosphatases, such as vanadate. Inhibition of PTPs by vanadate stimulated endogenous phosphorylation of GFL proteins, including cytoskeletal proteins. Protein tyrosine kinase activity was equally stimulated by vanadate in cell body and axonal whole homogenates and Triton X-100 free soluble extracts, but only the Triton X soluble fraction (membrane bound proteins) of the GFL exhibited significant activation in the presence of vanadate, suggesting higher PTP activities in this fraction than in the axon. The data are consistent with the hypothesis that neuronal protein phosphorylation in axons and cell bodies is modulated by different phosphatases associated with compartment-specific multimeric complexes.

  10. Regulation of cilia assembly, disassembly, and length by protein phosphorylation.

    PubMed

    Cao, Muqing; Li, Guihua; Pan, Junmin

    2009-01-01

    The exact mechanism by which cells are able to assemble, regulate, and disassemble cilia or flagella is not yet completely understood. Recent studies in several model systems, including Chlamydomonas, Tetrahymena, Leishmania, Caenorhabditis elegans, and mammals, provide increasing biochemical and genetic evidence that phosphorylation of multiple protein kinases plays a key role in cilia assembly, disassembly, and length regulation. Members of several protein kinase families--including aurora kinases, never in mitosis A (NIMA)-related protein kinases, mitogen-activated protein (MAP) kinases, and a novel cyclin-dependent protein kinase--are involved in the ciliary regulation process. Among the newly identified protein kinase substrates are Chlamydomonas kinesin-13 (CrKinesin13), a microtubule depolymerizer, and histone deacetylase 6 (HDAC6), a microtubule deacetylase. Chlamydomonas aurora/Ipl1p-like protein kinase (CALK) and CrKinesin13 are two proteins that undergo phosphorylation changes correlated with flagellar assembly or disassembly. CALK becomes phosphorylated when flagella are lost, whereas CrKinesin13 is phosphorylated when new flagella are assembled. Conversely, suppressing CrKinesin13 expression results in cells with shorter flagella. PMID:20362099

  11. Presence of histones in Aspergillus nidulans

    PubMed Central

    1976-01-01

    Five major histone proteins have been extracted from chromatin isolated from purified nuclei of the fungus, Aspergillus nidulans. These proteins had chromatographic properties which were similar to reference calf thymus histones and were purified to electrophoretic homegeneity by gel chromatography of Bio-Gel P10, Bio-Gel P60, and Sephadex G-100. Electrophoresis of these proteins in three different systems (urea- starch, urea-acetic acid polyacrylamide, and discontinuous SDS polyacrylamide) showed that the A. nidulans histones H3 and H4 were nearly identical to calf thymus H3 and H4 with respect to net charge and molecular weight criteria, whereas the fungal histones H1, H2a and H2b were similar but not identical to the corresponding calf thymus histones. Amino acid analysis of A. nidulans histones H2a, H2b, and H4 showed them to be closely related to the homologous calf thymus histones. The mobility patterns of A. nidulans ribosomal basic proteins in three different electrophoretic systems were distinctly different from those of the fungal histones. PMID:799641

  12. Canonical and variant histones of protozoan parasites.

    PubMed

    Dalmasso, Maria Carolina; Sullivan, William Joseph; Angel, Sergio Oscar

    2011-06-01

    Protozoan parasites have tremendously diverse lifestyles that require adaptation to a remarkable assortment of different environmental conditions. In order to complete their life cycles, protozoan parasites rely on fine-tuning gene expression. In general, protozoa use novel regulatory elements, transcription factors, and epigenetic mechanisms to regulate their transcriptomes. One of the most surprising findings includes the nature of their histones--these primitive eukaryotes lack some histones yet harbor novel histone variants of unknown function. In this review, we describe the histone components of different protozoan parasites based on literature and database searching. We summarize the key discoveries regarding histones and histone variants and their impact on chromatin regulation in protozoan parasites. In addition, we list histone genes IDs, sequences, and genomic localization of several protozoan parasites and Microsporidia histones, obtained from a thorough search of genome databases. We then compare these findings with those observed in higher eukaryotes, allowing us to highlight some novel aspects of epigenetic regulation in protists and to propose questions to be addressed in the upcoming years.

  13. Investigating Histone Acetylation Stoichiometry and Turnover Rate.

    PubMed

    Fan, J; Baeza, J; Denu, J M

    2016-01-01

    Histone acetylation is a dynamic epigenetic modification that functions in the regulation of DNA-templated reactions, such as transcription. This lysine modification is reversibly controlled by histone (lysine) acetyltransferases and deacetylases. Here, we present methods employing isotopic labeling and mass spectrometry (MS) to comprehensively investigate histone acetylation dynamics. Turnover rates of histone acetylation are determined by measuring the kinetics of labeling from (13)C-labeled precursors of acetyl-CoA, which incorporates (13)C-carbon onto histones via the acetyltransferase reaction. Overall histone acetylation states are assessed from complete protease digestion to single amino acids, which is followed by MS analysis. Determination of site-specific acetylation stoichiometry is achieved by chemically acetylating endogenous histones with isotopic acetic anhydride, followed by trypsin digestion and LC-MS analysis. Combining metabolic labeling with stoichiometric analysis permits determination of both acetylation level and acetylation dynamics. When comparing genetic, diet, or environmental perturbations, these methods permit both a global and site-specific evaluation of how histone acetylation is dynamically regulated.

  14. Investigating Histone Acetylation Stoichiometry and Turnover Rate.

    PubMed

    Fan, J; Baeza, J; Denu, J M

    2016-01-01

    Histone acetylation is a dynamic epigenetic modification that functions in the regulation of DNA-templated reactions, such as transcription. This lysine modification is reversibly controlled by histone (lysine) acetyltransferases and deacetylases. Here, we present methods employing isotopic labeling and mass spectrometry (MS) to comprehensively investigate histone acetylation dynamics. Turnover rates of histone acetylation are determined by measuring the kinetics of labeling from (13)C-labeled precursors of acetyl-CoA, which incorporates (13)C-carbon onto histones via the acetyltransferase reaction. Overall histone acetylation states are assessed from complete protease digestion to single amino acids, which is followed by MS analysis. Determination of site-specific acetylation stoichiometry is achieved by chemically acetylating endogenous histones with isotopic acetic anhydride, followed by trypsin digestion and LC-MS analysis. Combining metabolic labeling with stoichiometric analysis permits determination of both acetylation level and acetylation dynamics. When comparing genetic, diet, or environmental perturbations, these methods permit both a global and site-specific evaluation of how histone acetylation is dynamically regulated. PMID:27423860

  15. Hydroxyurea-induced replication stress causes poly(ADP-ribose) polymerase-2 accumulation and changes its intranuclear location in root meristems of Vicia faba.

    PubMed

    Rybaczek, Dorota

    2016-07-01

    Replication stress induced by 24 and 48h exposure to 2.5mM hydroxyurea (HU) increased the activity of poly(ADP-ribose) polymerase-2 (PARP-2; EC 2.4.2.30) in root meristem cells of Vicia faba. An increase in the number of PARP-2 foci was accompanied by their delocalization from peripheral areas to the interior of the nucleus. Our results indicate that the increase in PARP-2 was connected with an increase in S139-phosphorylated H2AX histones. The findings suggest the possible role of PARP-2 in replication stress. We also confirm that the intranuclear location of PARP-2 depends on the duration of HU-induced replication stress, confirming the role of PARP-2 as an indicator of stress intensity. Finally, we conclude that the more intense the HU-mediated replication stress, the greater the probability of PARP-2 activation or H2AXS139 phosphorylation, but also the greater the chance of increasing the efficiency of repair processes and a return to normal cell cycle progression. PMID:27155387

  16. Functional interplay between MSL1 and CDK7 controls RNA polymerase II Ser5 phosphorylation.

    PubMed

    Chlamydas, Sarantis; Holz, Herbert; Samata, Maria; Chelmicki, Tomasz; Georgiev, Plamen; Pelechano, Vicent; Dündar, Friederike; Dasmeh, Pouria; Mittler, Gerhard; Cadete, Filipe Tavares; Ramírez, Fidel; Conrad, Thomas; Wei, Wu; Raja, Sunil; Manke, Thomas; Luscombe, Nicholas M; Steinmetz, Lars M; Akhtar, Asifa

    2016-06-01

    Proper gene expression requires coordinated interplay among transcriptional coactivators, transcription factors and the general transcription machinery. We report here that MSL1, a central component of the dosage compensation complex in Drosophila melanogaster and Drosophila virilis, displays evolutionarily conserved sex-independent binding to promoters. Genetic and biochemical analyses reveal a functional interaction of MSL1 with CDK7, a subunit of the Cdk-activating kinase (CAK) complex of the general transcription factor TFIIH. Importantly, MSL1 depletion leads to decreased phosphorylation of Ser5 of RNA polymerase II. In addition, we demonstrate that MSL1 is a phosphoprotein, and transgenic flies expressing MSL1 phosphomutants show mislocalization of the histone acetyltransferase MOF and histone H4 K16 acetylation, thus ultimately causing male lethality due to a failure of dosage compensation. We propose that, by virtue of its interaction with components of the general transcription machinery, MSL1 exists in different phosphorylation states, thereby modulating transcription in flies. PMID:27183194

  17. Jade-1S phosphorylation induced by CK1α contributes to cell cycle progression.

    PubMed

    Borgal, Lori; Rinschen, Markus M; Dafinger, Claudia; Liebrecht, Valérie I; Abken, Hinrich; Benzing, Thomas; Schermer, Bernhard

    2016-01-01

    The PHD zinc finger protein Jade-1S is a component of the HBO1 histone acetyltransferase complex and binds chromatin in a cell cycle-dependent manner. Jade-1S also acts as an E3 ubiquitin ligase for the canonical Wnt effector protein β-catenin and is influenced by CK1α-mediated phosphorylation. To further elucidate the functional impact of this phosphorylation, we used a stable, low-level expression system to express either wild-type or mutant Jade-1S lacking the N-terminal CK1α phosphorylation motif. Interactome analyses revealed that the Jade-1S mutant unable to be phosphorylated by CK1α has an increased binding affinity to proteins involved in chromatin remodelling, histone deacetylation, transcriptional repression, and ribosome biogenesis. Interestingly, cells expressing the mutant displayed an elongated cell shape and a delay in cell cycle progression. Finally, phosphoproteomic analyses allowed identification of a Jade-1S site phosphorylated in the presence of CK1α but closely resembling a PLK1 phosphorylation motif. Our data suggest that Jade-1S phosphorylation at an N-terminal CK1α motif creates a PLK1 phospho-binding domain. We propose CK1α phosphorylation of Jade 1S to serve as a molecular switch, turning off chromatin remodelling functions of Jade-1S and allowing timely cell cycle progression. As Jade-1S protein expression in the kidney is altered upon renal injury, this could contribute to understanding mechanisms underlying epithelial injury repair. PMID:26919559

  18. A genetic system to assess in vivo the functions of histones and histone modifications in higher eukaryotes.

    PubMed

    Günesdogan, Ufuk; Jäckle, Herbert; Herzig, Alf

    2010-10-01

    Despite the fundamental role of canonical histones in nucleosome structure, there is no experimental system for higher eukaryotes in which basic questions about histone function can be directly addressed. We developed a new genetic tool for Drosophila melanogaster in which the canonical histone complement can be replaced with multiple copies of experimentally modified histone transgenes. This new histone-replacement system provides a well-defined and direct cellular assay system for histone function with which to critically test models in chromatin biology dealing with chromatin assembly, variant histone functions and the biological significance of distinct histone modifications in a multicellular organism.